
DEVELOPMENT AND
PROTOTYPING OF TWO-AXIS
SOLAR TRACKER ARRAYS WITH A
DECENTRALIZED DRIVE SYSTEM

July 2022

M
as

te
r's

 th
es

is

M
aster's thesis

Victor Andreu Bañuls Ramirez

2022
Victor Andreu Bañuls Ram

irez

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

le
ct

ric
 P

ow
er

 E
ng

in
ee

rin
g

DEVELOPMENT AND PROTOTYPING OF
TWO-AXIS SOLAR TRACKER ARRAYS
WITH A DECENTRALIZED DRIVE SYSTEM

Victor Andreu Bañuls Ramirez

Erasmus plus
Submission date: July 2022
Supervisor: Steve Völler
Co-supervisor: Ángel Sapena Bañó

Norwegian University of Science and Technology
Department of Electric Power Engineering

1

SUMMARY
Solar trackers are a technology that improves the efficiency of solar farms. This is due to

the fact that they allow for an increase in the peak power and the temporary spacing of

the production. The main drawback of these types of trackers is their high manufacturing

cost compared to fixed solar trackers. The disadvantages of these devices and their high

cost make it pertinent to design an improvement proposal.

Existing two-axis solar trackers behave as mobile supports incorporating all the

necessary components to work as complete units in themselves. Its components can be

divided into three categories, control system, drive system and structure. If you have all

the trackers in the same location they should move synchronously. This allows you to

centralize the control and drive systems. It is by centralizing these systems that the

manufacturing costs of the trackers are intended to be reduced.

A small-scale prototype was fabricated to prove that such a concept of centralizing

systems is possible. For this purpose, a CAD software and a 3d printer were used to

manufacture the structural parts. For the movement system it was used a system based

on 4 stepper motors that transmit their motion to the structure through the use of cables

and pulleys. An Arduino Mega was used for receiving and sending commands or data to

sensors, web servers and motors. For the control and monitoring of the prototype a web

platform was established. In the design process different tools and methods were used,

among which are: sensor characterizations, vector simulations in Matlab, and

programming of motion algorithms.

Performance tests were carried out on the prototype and on the web platforms. From

these it was possible to demonstrate the functionality of the design as well as to obtain

the maximum rotation angles. These turn angles were of has 360º of azimuth turn and

80º of elevation turn. The functionality of the web platforms was also successfully tested.

Once the design concept was demonstrated, it was necessary to prove that centralizing

systems resulted in a cost reduction. To this end, a full-scale manufacturing cost model

was created. For this purpose it was used a CFD and structural software. This allowed

him to obtain the load and stress data needed for sizing. With this study it was possible

to determine the relationships of the variables on which the cost estimation depended.

Among the relationships it was able to determinate the impact of selecting an operating

wind speed limit, or the relationship of the number of trackers in series with the relative

improvement in manufacturing costs. Finally, in order to verify that these costs were

reduced, the model created was compared with the manufacturing costs of the ST2408PH

tracker model. Financially, this comparison yielded a 23.5% actual cost reduction.

SAMMENDRAG
Solar trackers er en teknologi som forbedrer effektiviteten til solfarmer. Dette skyldes det

faktum at de åpner for en økning i toppeffekten og den midlertidige avstanden til

produksjonen. Den største ulempen med disse typer trackere er deres høye

produksjonskostnad sammenlignet med fast monterte solceller. Ulempene med disse

enhetene og deres høye kostnader gjør det relevant å utforme et forbedringsforslag.

 Eksisterende to-akse solcelletrackere oppfører seg som mobile støtter som inneholder

alle nødvendige komponenter for å fungere som komplette enheter. Komponentene kan

deles inn i tre kategorier, kontrollsystem, drivsystem og struktur. Hvis alle trackerene er

på samme sted, beveger de seg synkront. Dette lar deg sentralisere kontroll- og

drivsystemene. Det er ved å sentralisere disse systemene at produksjonskostnadene til

trackerne kan reduseres.

 En småskala prototype ble laget for å bevise at et slikt konsept med sentralisering av

systemer er mulig. Til dette formålet ble CAD-programvare og en 3D-printer brukt til å

produsere konstruksjonsdelene. For bevegelsessystemet ble det brukt et system basert

på 4 trinnmotorer som overfører bevegelsen til strukturen gjennom bruk av kabler og

trinser. En Arduino Mega ble brukt til å motta og sende kommandoer eller data til

sensorer, webservere og motorer. For kontroll og overvåking av prototypen ble det

etablert en webplattform. I designprosessen ble forskjellige verktøy og metoder brukt,

blant annet: sensorkarakteriseringer, vektorsimuleringer i Matlab og programmering av

bevegelsesalgoritmer.

Ytelsestester ble utført på prototypen og på nettplattformene. Fra disse var det mulig å

demonstrere funksjonaliteten til designet samt å oppnå maksimale rotasjonsvinkler.

Disse svingvinklene har 360º asimutsving og 80º høydesving. Funksjonaliteten til

nettplattformene ble også testet.

Når designkonseptet ble demonstrert, var det nødvendig å bevise at sentralisering av

systemer resulterte i en kostnadsreduksjon. For dette formål ble en fullskala

produksjonskostnadsmodell opprettet. Til dette formålet ble det brukt en CFD og

strukturell programvare. Dette tillot meg å få tak i belastnings- og stressdataene som

trengs for dimensjonering. Med denne studien var det mulig å bestemme

sammenhengene mellom variablene som kostnadsestimatet var avhengig av. Blant

forholdene var det i stand til å bestemme virkningen av å velge en

driftsvindhastighetsgrense, eller forholdet mellom antall trackere i serie med den relative

forbedringen i produksjonskostnadene. Til slutt, for å verifisere at disse kostnadene ble

redusert, ble modellen, som ble opprettet, sammenlignet med produksjonskostnadene til

ST2408PH tracker-modellen. Økonomisk ga denne sammenligningen en

kostnadsreduksjon på 23,5 %.

LIST OF FIGURES

Figure 1: Azimuth and altitude for northern latitudes[1] ... 8

Figure 2: Incidence of the sun's rays in summer and winter seasons[2]. 9

Figure 3: Variability of the sun's position for two different locations on June 21,

midsummer[4] ... 10

Figure 4: Slew driver based solar tracker[5] ... 11

Figure 5: Linear actuators based solar tracker[6] ... 12

Figure 6: Energy production curves produced by solar tracked and non-solar

tracked supports.[8].. 12

Figure 7: Relative manufacturing cost graph of two-axis solar trackers 15

Figure 8: Prototype schematic parts ... 16

Figure 9: Process of materialization of the design .. 18

Figure 10: Versions of the main tower ... 18

Figure 11: Versions of panel support .. 19

Figure 12:Versions of the rotula ... 20

Figure 13: Pulleys ... 20

Figure 14: Panel-mount connector .. 21

Figure 15: Gears ... 21

Figure 16: Stepper motor 17HS15-1504S .. 22

Figure 17: Versions of the drums ... 23

Figure 18: Versions of the motor supports .. 23

Figure 19: Layout of Arduino Mega Board[17] ... 24

Figure 20: CNC Shield V3.0[18] ... 25

Figure 21: A4988 stepper motor driver and its modification .. 26

Figure 22: NodeMCU V3.0 module... 26

Figure 23: ESP01 Wi-Fi module .. 27

Figure 24: 3852A-282-103AL potentiometer .. 27

Figure 25: Wire tension sensor Version 1.0 ... 28

Figure 26: Wire tension sensor Version 2.0 ... 29

Figure 27: LDR ... 29

Figure 28: Current sensor ACS70331 ... 30

Figure 29: Frist design diagram .. 31

Figure 30: Matlab simulation graph .. 33

Figure 31: Null moment limit state ... 34

Figure 32: Limit state at maximum torsional moment .. 35

Figure 33: Pulley force distribution[22] ... 36

Figure 34: Constant force spring[23] ... 36

Figure 35: ACS70331 sensor characterization .. 38

Figure 36: Electric noise sound analysis ... 39

Figure 37: Characterization of the potentiometer ... 40

Figure 38: Buttons associated to the output boolean variables 41

Figure 39: Boxes for manual input of angular values .. 41

Figure 40: Output integer variables .. 41

Figure 41: Spreadsheet for data collection .. 42

Figure 42: Flow diagram of photoresistors direction algorithm 44

Figure 43: Flow diagram of potentiometer position feedback algorithm 46

Figure 44: Flow diagram of the angle-to-steps conversion algorithm 47

Figure 45: Flow diagram of the steps-to-angle conversion algorithm 48

Figure 46: Step/Elevation angle ratio... 48

Figure 47: Flow diagram of step tracker position feedback algorithm 49

Figure 48: Connection scheme of the prototipe[29] .. 50

Figure 49: Small scale finish prototype ... 51

Figure 50: Angle reference position .. 52

Figure 51: Test path sequence .. 53

Figure 52: Historical of the maximum wind gust in Trondheim 56

Figure 53: Geometry model of the Ansys simulation ... 56

Figure 54: Ansys simulation mesh ... 57

Figure 55: Ansys simulation pressure results ... 58

Figure 56: Sap2000 geometry simulation models ... 60

Figure 57: Deformed shape results of the structural models 60

Figure 58: Optimal frame results of the structural models .. 61

Figure 59: Axial force diagrams .. 61

Figure 60: Profile dimensions of the full-scale model .. 63

Figure 61: Variation of the manufacturing costs with the number of solar trackers

 ... 66

Figure 62: Variation of the relative improvement in manufacturing cost with the

number of solar trackers ... 66

Figure 63: Effect of the wind speed in the maximum cable tension 68

Figure 64: Histogram of the maximum mean wind speed (24 h) of Trondheim ... 69

Figure 65: Effect of the gearbox reduction factor in the number of solar trackers

per array .. 70

LIST OF TABLES

Table 1: Prototype parts list ... 17

Table 2: Operation times in seconds per algorithm .. 53

Table 3: Precision test results ... 54

Table 4: Maximum cable forces results ... 62

Table 5: Manufacturing costs of the two-axis solar tracker model ST2408PH 64

Table 6: Proposed manufacturing budget ... 70

ABREVIATIONS
PLA Polylactide

.stl File format native to the stereolithography CAD

software

MPPT Maximum power point tracking

LDR Light Depending Resistor

AA Azimuth angle

EA Elevation angle

AI Angle increment

AD Azimuth angle destination

ED Elevation angle destination

CFD Computational fluid dynamics

PP Panel profile

EA Elevation angle

PD Maximum distance between upper and lower pulleys

SD Distance between supports

RS Number of supports at the rear

FS Number of supports at the front

NM Number of motors

CS Control system

NS Nema stepper

SC Steel cable

D Drum

DP Double pulley

SS Steel structure

SN Seafreight to Norway

n Number of solar trackers per array

TCR Total cable required

BPD Budget for the proposed design

BMM Manufacturing budget of the ST2408PH (n)
𝐹𝐷 Drag force
𝐶𝐷 Drag coefficient

ρ Density

A Area

CONTENTS
CHAPTER 1: CONTEXT AND JUSTIFICATION ... 8

1.1 DUAL-AXIS TRACKERS .. 10
1.1.1 SLEW DRIVER BASED DESIGN .. 10
1.1.2 LINEAR ACTUATORS BASED DESIGN .. 11

1.2 ANGLES TRACKERS ... 12
1.3 HIGHER-QUALITY POWER OUTPUT .. 13

CHAPTER 2: OBJECTIVES ... 14

CHAPTER 3: DESIGN PROPOSAL CONCEPT .. 15

CHAPTER 4: PROTOTYPE ... 16

4.1 SOLAR STAND STRUCTURE ... 17
4.1.1 MAIN TOWER. ... 18
4.1.2 SUPPORT FOR THE SOLAR PANEL .. 19
4.1.3 ROTULA ... 20
4.1.4 LOWER PULLEYS .. 20
4.1.5 CABLE .. 20
4.1.6 SOLAR PANEL ... 21
4.1.7 PANEL-MOUNT CONNECTORS ... 21
4.1.8 GEARS .. 21

4.2 MOTORISED WIRE CONTROL SYSTEM .. 22
4.2.1 ELECTRIC MOTOR .. 22
4.2.2 DRUM .. 22
4.2.3 SUPPORT FOR MOTORS ... 23

4.3 COMPUTING SYSTEM ... 23
4.3.1 MICROCONTROLLER .. 24
4.3.2 CNC Shield V3.0 ... 25
4.3.3 A4988 STEPPER MOTOR DRIVER ... 25
4.3.4 WI-FI MODULE NODEMCU V3.0 .. 26
4.3.5 WI-FI MODULE ESP01 .. 26
4.3.6 MULTIPLEXERS .. 27

4.4 FEEDBACK SYSTEMES ... 27
4.4.1 ANGLE DETECTION SYSTEM ... 27
4.4.2 WIRE TENSION DETECTION SYSTEME .. 28
4.4.3 LIGHT SOURCE DETECTION SYSTEME .. 29
4.4.4 ENERGY PRODUCTION DETECTION SYSTEM .. 29

CHAPTER 5: METHODOLOGY .. 31

5.1 METHODOLOFY AND ITERATIONS OF THE SOLAR STAND .. 31
5.2 METHODOLOGY FOR THE GEAR DESING .. 37
5.3 CHARACTERIZATION AND CALIBRATION OF THE SENSORS .. 37

5.3.1 AMPEREMETER ... 37
5.3.2 POTENCIOMETER .. 39

5.4 WEBSITES DESIGN .. 40
5.4.1 MAIN WEB PAGE ... 40
5.4.2 SPREADSHEET FOR THE CALCULATION OF THE POSITION OF THE SUN .. 41
5.4.3 SPREADSHEET FOR DATA COLLECTION ... 42

5.5 ALGORITHMS ... 42
5.5.1 DIRECTION ALGORITHM .. 43

5.5.1.1 SUN PREDICTION DIRECTION ALGORITHM ... 43

5.5.1.2 PHOTORESISTORS DIRECTION ALGORITHM ... 43
5.5.2 FEEDBACK POSITION ALGORITHMS ... 45

5.5.2.1 POTENTIOMETRE POSITION FEEDBACK ALGORITHM ... 45
5.5.2.2 STEP TRACKER POSITION FEEDBACK ALGORITHM .. 47

CHAPTER 6: PROTOTYPE TESTING ... 50

6.1 OVERVIEW OF THE PROTOTYPE'S OPERATION .. 50
6.2 PROTOTYPE TEST CONDITIONS .. 51

CHAPTER 7: DISCUSSION .. 55

7.1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS ... 55
7.1.1 GEOMETRY AND BOUNDARY CONDITIONS ... 55
7.1.2 CHARACTERISTICS OF THE MESH... 56
7.1.3 FLUID CONFIGURATION ... 57
7.1.4 RESULTS ... 58

7.2 SAP2000 ... 58
7.2.1 SIMULATION RESULTS ... 60

7.3 MANUFACTURING COST ANALYSIS .. 62
7.3.1 NUMBER OF SOLAR TRACKERS PER ARRAY ... 62
7.3.2 CALCULATION OF THE AMOUNT OF CABLE REQUIRED ... 63
7.3.3 MANUFACTURING COST OF THE MARKET MODEL ST2408PH .. 64
7.3.4 BUDGET COMPARATION ... 65

7.4 MANUFACTURING BUDGET PROPOSAL ... 67
7.4.1 EFFECT OF WIND SPEED ON THE LOADS ... 67
7.4.2 DETERMINATION OF THE SPEED LIMIT FOR OPERATION .. 68
7.4.3 SELECTION OF GEARBOX REDUCTION FACTOR ... 69
7.4.4 PROPOSED MANUFACTURING BUDGET .. 70

CHAPTER 8: LIMITATIONS ... 71

8.1 LIMITATIONS IN THE DEVELOPMENT OF THE PROTOTYPE ... 71
8.2 IMPROVEMENT PROPOSALS .. 71
8.3 ASSUMPTIONS IN THE DEVELOPMENT OF THE DISCUSSION ... 71

CHAPTER 9: CONCLUSION ... 73

CHAPTER 10: BIBLIOGRAPHY .. 74

CHAPTER 11: APPENDIX.. 75

11.1 PROTOTYPE PARTS ... 75
11.1.1 1. LCW50US12 - SWITCHED-MODE POWER SUPPLY ... 76
STEPPER MOTOR 17HS15-1504S .. 77
11.1.2 9. POTENTIOMETER 3852A-282-103AL ... 78
11.1.3 10. CURRENT SENSOR ACS70331 .. 79

11.2 PROGRAMMING CODES ... 80
11.2.1 MATLAB SIMULACION CODE ... 80
11.2.2 ELECTIRC NOISE TEST CODE .. 83
11.2.3 ARDUINO MEGA CODE .. 84
11.2.4 WEB CODES ... 95

11.2.4.1 MAIN WEB PAGE CODE .. 95
11.2.4.2 SPREADSHEET FOR DATA COLLECTION CODE ... 106
11.2.4.3 SPREADSHEET FOR THE CALCULATION OF THE POSITION OF THE SUN CODE 108

11.3 SPECIFICATION SHEET OF ST2408PH .. 109

8

CHAPTER 1: CONTEXT AND JUSTIFICATION

The use of solar trackers is becoming more and more frequent in photovoltaic plants, as

the solar industry has been able to verify the great advantages they offer. Solar trackers

can significantly increase energy production, and therefore improve the profitability of

projects and the return on investment.

Before going into the objectives and operation of solar trackers, it is essential to explain

the sun's movements and understand how they directly affect solar energy production.

The rotation and translation movements of the earth are responsible for the seasons, the

succession of days and nights, and the temperature differences between different points

of the planet. Solar radiation depends on these movements and will vary according to

latitude and time of year.

The position of the sun, which directly affects the angle of incidence of the sun's rays, is

determined by the elevation and azimuth angles.

Depending on the season of the year, the Sun draws different trajectories. To analyze

this movement, a coordinate system with two angles is used:

• Altitude angle: it is the angle formed by the horizontal of the site with the

apparent position of the Sun. Its value varies between 0 and 90º. The solar

height determines the optimum tilt of the panels. Hereinafter it will refer to this

angle as elevation angle.

• Azimuth angle: is the angular value with the deviation of the normal to the

surface from the local meridian, the origin of angles being South (azimuth angle

= 0º), taking East and West as positive and negative respectively. That is, the

angle determined by the projection of the solar vector on the horizontal plane

and the South direction. Its value varies between 0 and ±180º. Thus, it has

positive values of azimuthal angle before the measured solar day and negative

values after the half solar day. The azimuth angle is the one that determines the

orientation that the panels should have.

Figure 1: Azimuth and altitude for northern latitudes[1]

Figure 2 reflects the incidence of the sun's rays in the summer and winter seasons, both

at noon and on a horizontal surface. As it can be seen, in summer the sun follows an

orbit that causes the sun to be at a very high point in the sky and to remain visible for

more hours of the day. Thus, the sun's rays strike more perpendicularly and with a much

higher energy yield. On the contrary, in winter the inclination is maximum, and the

energetic power of the sun's rays is minimum. Moreover, due to the rotational motion,

the sun remains at a very low point on the horizon and is visible only a few hours a

day.[2]

Figure 2: Incidence of the sun's rays in summer and winter seasons[2].

This effect is accentuated as one moves away from the equator. That is, in regions close

to the polar circles, the daylights are very long in summer and very short in winter, while

in other areas closer to the equator, there is much less variation between night and day.

Thus, the daily and annual solar trajectories of a location vary according to latitude and

directly affect the angle of incidence of radiation[3]. Latitude has a very significant effect

on the range of azimuth angles that the sun adopts, reaching a variability of 360 degrees

at some points of the planet. The higher the latitude, the greater the azimuth angle

variability. This has a resulted that in certain periods of the year and certain regions of

the planet the sun does not set in summer or does not appear in winter. This means that

in regions of the planet that are located especially to the north or south, the

incorporation of solar supports that follow the sun substantially increases the overall

efficiency of producing photovoltaic energy.

As far as this master thesis is concerned, the design will be specialized for the city of

Trondheim, Norway. This city is located at 63 degrees north, and 10 degrees east. In

Figure 3, it can be seen the different variability of the sun's position in Trondheim on

June 21, compared to another location 35 degrees south on the same day. The yellow

crescent-shaped area represents the path of the sun in a horizontal plane. The thickness

of this moon depends on the angle of elevation of the sun, the greater the thickness the

higher the elevation. In the interior of the moon one can see the trajectory of the

different azimuth angles taken by the sun. The orange lines mark the azimuth angle

limits that the sun would take for the particular day and locations.

Figure 3: Variability of the sun's position for two different locations on June 21,

midsummer[4]

Solar trackers are composed of a fixed and movable part, to follow the movement of the

sun and orient the area of the modules perpendicular to the sun. In this way, the

collection of solar radiation and consequently the energy supplied by the installation can

be increased. There are two types of trackers depending on the type of movement they

perform and their tracking algorithm:

• Single-axis trackers: the rotation of the collection surface is made on a single

axis, which can be horizontal, vertical, or oblique. Thus, these trackers move

along the azimuth from east to west during the day.

• Dual-axis trackers: in addition to moving along the azimuth, they also track the

sun's elevation angle, thus achieving full tracking.

This thesis will focus on two-axis solar trackers.

1.1 DUAL-AXIS TRACKERS
There are two predominant two-axis solar tracker designs in the market. The slew driver-

based design and the actuator-based design. Both designs are formed by a mechanism

type structure made of normally steel and aluminum. These structures allow for two

degrees of rotation. In addition, these designs incorporate their own controller, sensor

system and motion system. The main differences that characterize each design are

described below.

1.1.1 SLEW DRIVER BASED DESIGN
This design uses two different types of drive systems. For azimuth axis motion, it

incorporates slew drivers in what would be the main tower. A slew driver is a gearbox

that can safely support radial and axial loads as well as transmit torque. Slew drives are

made by manufacturing gears, bearings, seals, housings, motors and other ancillary

components and assembling them into a finished gearbox. By adopting the slewing

bearing as its core component, the slewing drive can support axial force, radial force and

tilting moment simultaneously. This gearbox normally allows turns of between 280/310

degrees. A linear actuator is used for the lift slewing. This is an electrically powered

hydraulic piston. These pistons have a high power to size ratio. In addition, its power

consumption is very low, partly because it does not require energy expenditure to stay in

a particular position. It has a degree of freedom of movement and has a continuous

movement. Its implementation in solar trackers allows about 80 degrees of rotation on

one axis.

This design is more intended to incorporate a large number of panels in series thanks to

the incorporation of a slew driver which allows it to withstand large loads. In the

following image one can see an example of this design:

Figure 4: Slew driver based solar tracker[5]

1.1.2 LINEAR ACTUATORS BASED DESIGN
The drive system is based on two linear actuators, also called hydraulic ram. Each linear

actuator is responsible for one axis of rotation. These are the same actuators that can be

found in the design described above. For this reason they usually have smaller degrees of

rotation than the previous design. Specifically, they usually have 90-100 degrees of

azimuth rotation and 75-80 degrees of elevation. They support lower loads so they

usually have capacity for fewer panels in series than the previous design. Their simplicity

also makes them less expensive than the previous ones. An example of this design can

be seen in the following image.

Figure 5: Linear actuators based solar tracker[6]

1.2 ANGLES TRACKERS
Thanks to these movements, electricity production can be increased with respect to fixed

installations by up to 20% with single-axis trackers and up to 30% with dual-axis

trackers [7]. Although these values may vary according to geographic location

At this point, it is clear that thanks to the movement of the solar trackers, the amount of

radiation received by the panel and consequently the energy produced increases

significantly. In the following figure it can be seen better.

Figure 6: Energy production curves produced by solar tracked and non-solar tracked

supports.[8]

The Figure 6 shows the energy produced during a day with a fixed photovoltaic

installation and with an installation with solar trackers that move in 1 and 2 axes. The

data is compiled by micropowergrids australia. This data corresponds to energy

production tests for the 3 types of mounts, all with one solar panel of 150W. These tests

were carried out on 21/7/2017 in Sydney. The blue curve is the result obtained in the

static installation, the green curve is the result of the installation with 1-axis trackers and

finally, in the red curve is the result of the installation with 2-axis trackers. All

installations use the same panels.

As it can be seen, the panels installed with solar trackers have received more solar

radiation, and therefore have produced more energy throughout the day. The yield has

increased by about 30% for the 2-axis tracker compared to the fixed installation. This

difference in efficiency can be observed by comparing the areas enclosed by these curves

with the X-axis. These areas show the Wh production, so it can be extrapolated that

more area means more energy produced and therefore more efficiency.

1.3 HIGHER-QUALITY POWER OUTPUT
Another important aspect to highlight is that solar tracking not only increases the energy

production of the photovoltaic plants but also improves how the output power produced

is delivered[3]. With solar tracking it is possible to extend the time of maximum power

and thus produce at a higher capacity for more hours per day.

Going back to Figure 6 this concept can be better understood. In the blue curve there is

an evolution of the power output throughout the day; it gradually increases until it

reaches its peak at noon, then gradually decreases again. On the other hand, the green

and red curves are approaching the maximum power from early in the morning and the

production is maintained until late in the afternoon. These differences in power output

between supports vary during the year, depending on how the fixed tilt angles are

optimized. If these angles are optimized for winter months the panels will have a high tilt

since the sun takes its lowest average elevation values in winter. This would result in

lower yields in summer. This can also be applied in reverse if the fixed angles are

optimized for the summer months. On the other hand, two-axis solar trackers always

take the maximum energy from the sun.

Having commented on all the advantages of implementing these supports, it remains to

explain why they are not as standardized as fixed supports at the time of writing this

thesis. The main problem with solar trackers is their cost, which normally increases the

total budget by 50% compared to an equivalent fixed support [9] . This 50% increase

would have an impact of an increase in efficiency of about 30%, as mentioned above.

This would make it often more convenient, at least in the short term, to invest in more

panels with lower unit production but higher overall production. This has two main

implications. The first is that in some ways it would be deliberately lowering the efficiency

of the system, also without considering the increase in future environmental problems

due to the extra panels. On the other hand, as solar energy captures more of the market,

it will be evident that it will not be necessary to increase peak solar energy production,

but it will be more interesting to have production over longer periods[10].

Finally, this thesis aims to improve this disadvantage by proposing a presumably more

efficient large-scale design that is decentralized and has a two-axis of movement.

CHAPTER 2: OBJECTIVES

The main objective in this thesis is to develop an alternative two-axis solar tracker design

proposal that has lower manufacturing costs than existing two-axis solar trackers on the

market. A prototype of the design is to be built to demonstrate that the design works.

This prototype, in turn, will also be used for research, education and presentation

purposes. This design must be easy to assemble, but it must also be robust to be able to

be outdoors in the Nordic climate. This main objective can be subdivided into these sub-

objectives:

• Design of a tower with a frame for holding the solar panel.

• Design of a motorized system for movement of the solar panel.

• The system must follow the sun (tracking), but it must also be able to be remotely

controlled by digital tools (Internet, SMS...) or follow the predicted sun path

thoughout the day/year

• The panel must tilt from 0 degrees (horizontal) to 90 degrees (vertical) and the

system must rotate 360 degrees.

• The design has to withstand the Nordic climate (ice, snow, wind, wind, rain)

• The system should be built within the period of the master's thesis, if possible,

with the help of the department

• Incorporation of a safety system, e.g. in case of high winds.

• The design should incorporate an energy production measurement system and a

data collection tool should be incorporated.

• Develop a full-scale manufacturing budget for the proposed design.

• Compare manufacturing costs of the proposed design with market designs.

CHAPTER 3: DESIGN PROPOSAL CONCEPT

There are several methods to reduce the manufacturing costs of a product such as the

standardization of parts, optimization of means of transport, optimization of required

material, etc. This thesis proposes to reconceptualize the designs of two-axis solar

mounts existing in the market. As already mentioned, all two-axis solar mounts function

as complete units in themselves. This means that each solar mount is equipped with

everything necessary for its operation. This would include a sensor system, a motor

system, a controller capable of guiding the motors and finally the structure itself. The

inclusion of all these components in each of the solar trackers of a solar farm could

presumably be redundant as all the solar mounts would have to move synchronously.

This is because their optimal angular azimuth and elevation inclination depend on their

location and time, and all trackers would share the same. In this way, it is proposed to

reduce to the maximum all the systems of which a solar tracker is composed,

transforming the design into a centralized one. In this way it is proposed to centralize the

motion system and the control system (this includes the sensor system and the

controller). In this way the final design would be composed of a centralized motor system

which would be in charge of moving multiple structures synchronously. These motors

would be guided by a centralized control system. For the transmission of the forces of the

movement system to the structures, the use of cables and pulleys is proposed. Cables

and pulleys are well established tools in the market. For this reason, they should

presumably not contribute large extra costs and their operation should be robust.

In order to estimate the maximum cost reduction that a centralized system could

provide, the production cost data of a two-axis solar support model on the market will be

taken. The percentage distribution of manufacturing costs for a two-axis tracked solar

mount can be seen in Figure 7. These percentages have been provided by the company

Suntrack Nordic AS [11]. It can be seen that the costs associated with the control system

plus the motion system total 38% of the manufacturing costs of a solar tracker.

Therefore, these two systems make up a large part of the manufacturing costs of a solar

tracker.

Figure 7: Relative manufacturing cost graph of two-axis solar trackers

Control
system

16%

Motion
system

22%

Steel
structure

27%

Seafreight to
Norway

35%

CHAPTER 4: PROTOTYPE

This chapter will describe all the parts of which the prototype is composed, emphasizing

their characteristics, design versions, and purpose. The explanation of how the different

parts interact and how are they calculated will be given in the char of “Methodology”. The

reason for this is that in order to give a detailed explanation of why each part takes the

shape it does, a previous explanation of multiple concepts is required.

The prototype can be divided into four different systems:

• Solar stand structure

• Wired motorized motion system

• Computing system

• Feedback system

In Figure 8, one can see an image with the different parts of the prototype.

Figure 8: Prototype schematic parts

Solar stand structure

1 Main tower

2 Support for the solar panel

3 Rotula

4 Lower pulleys

5 Cable

6 Solar panel

7 Panel-mount connectors

8 Gears

Motorized wire control system

9 Electric motor

10 Drum

11 Support for motors

Computing system

12 Microcontroller

13 CNC shield v3.0

14 A4988 stepper motor driver

15 NodeMCU v3.0 Wi-Fi module

16 ESP01 Wi-Fi module

Feedback systems

17 Angle detection system

18 Wire tension detection system

19 Light source detection system

20 Energy production detection system

Extra components

21 Angle limiter

22 Higher pulleys

23 Energy burn resistors

24 Power supply

Table 1: Prototype parts list

4.1 SOLAR STAND STRUCTURE
This part consists of the structural components of the prototype. Most of the components

that will be shown in this section are printed in PLA. “Polylactide (PLA) is a

biodegradable, aliphatic polyester derived from lactic acid”[12]. The process of

materialization of the designs is as follows:

1. The development begins with the realization of the designs of the 3D models.

These have been made with Inventor, the 3D design tool of Autodesk.

2. Once the designs are finished, they are exported in “.stl” format and implemented

in CURA, a free 3D printing software. This program is compatible with the

"Ultimaker S5" printer, the 3D-printer provided for the development of this thesis.

3. Then the parts go through a post-processing process in which the 3D supports are

removed (these are complements incorporated by the CURA program to ensure a

satisfactory printing).

4. Finally, the parts are assembled, and the tolerances are checked.

In Figure 9 one can see this production process.

Figure 9: Process of materialization of the design

This segment is characterized by having an iterative nature, since, as it will be shown, to

reach the final design of each part, different versions have been passed through. The

solar stand structure parts can be highlighted in this segment, and they are the

following:

4.1.1 MAIN TOWER.
The main purpose of this part is to elevate the panel so that it can move freely. There are

two main differences from the first versions. The first one is the incorporation of rotation

angle limiters. The purpose and operation of these angle limiters are explained in more

detail in section 5.1.The second is the reduction of the tower height. The reasons for the

tower readjustment are again explained in same section. In Figure 10 one can see the

evolution of the versions from left to right.

Figure 10: Versions of the main tower

4.1.2 SUPPORT FOR THE SOLAR PANEL
The purpose of this part is to fix the panel to the structure. It is connected to the main

tower by means of the bracket. In the first version a design was chosen in which the

pulleys were placed in an “x” shape, following the decisions of the panel fixings, as

opposed to a “+” shape. This resulted in the azimuth and elevation axes of rotation not

being linked to a separate set of motors, so that the movement of one motor affected

both axes, rather than just one axis. This had the advantage that the associated with the

elevation swing were not located in a plane that could come into contact with the

structure for turns greater than 80º. The main problem associated with this design was

the extra calculation of adding motion matrices to reflect these axis/motor ratios. This

was a problem for two reasons: The first was that these matrices returned non-integer

values, which could result in cumulative errors, since the motors move discretely and do

not have continuous motions. The second was the extra computation that can result in a

slow down the drive algorithm. To avoid the spin axis cables touching the structure it was

chosen to lower the height of the structure and lower the plane of the pulleys. These

pulleys will also be referred to as upper pulleys hereafter. This made it possible to opt for

a + shape. This can be seen in the second version of the panel support. For the final

version 3 more improvements were added. The first of these was the incorporation of

stiffeners in the structure. The second of these was to corporation the holes to add angle

limiters as in the case of the main tower. And finally, the plane containing the sheaves of

this support was brought closer to the axis of elevation rotation. As already mentioned,

this helped to keep the cables associated with the lifting of the panel from touching the

structure and extended the limits of rotation. This extension of the angles of rotation will

be explain in section 5.1. In Figure 11 one can see the evolution of the versions from left

to right.

Figure 11: Versions of panel support

4.1.3 ROTULA
This has the function of giving two degrees of freedom to the support assembly. More

specifically these degrees of freedom are translated in the two angles of rotation of

elevation and azimuth. It connects the panel support to the main tower through the use

of bearings and shafts. The main change to highlight between versions has been the

adjustment of the wheelbase. This allowed minimizing the distances between upper and

lower poles. This is related to the “Null moment limit state” explain in section 5.1. In

Figure 12 one can see the evolution of the versions from left to right.

Figure 12:Versions of the rotula

4.1.4 LOWER PULLEYS
The purpose of these pulleys is to guide the cable so that it transmits correctly the forces

created by the movement of the motors. They also try to minimize friction. In spite of not

being pulleys (since they do not have movable parts), they have been denominated this

way since in the model to real scale they try to replace for real pulleys. The main reason

for not having bearings is the low relative definition of the 3D printer. This is due to the

fact that a bearing is formed by balls and rings, both with very low tolerances. In Figure

13 one can see the different bearings that can be found in the prototype.

Figure 13: Pulleys

4.1.5 CABLE
The purpose of this cable is to transmit the forces created in the drum connected to the

motor with the support for the solar panel. In the first version of this cable it was chose

to use a Nylon fishing line. In the final version a steel cable has been chosen. The reason

for this decision can be found in “CHAPTER 6:, since its reasoning requires the previous

explanation of multiple concepts.

4.1.6 SOLAR PANEL
The PRT-16835 panel was chosen, featured by SPARKFUN ELECTRONICS. It has a

maximum output of 10W and 5V. Its power output is via an USB connector. It lacks a

MPPT. “The MPPT is a charge controller that compensates for the changing Voltage

Current characteristic of a solar cell. The MPPT fools the panels into outputting a different

voltage and current allowing more power to go into the battery or batteries by making

the solar cell think the load is changing when you really are unable to change the

load”[13].

4.1.7 PANEL-MOUNT CONNECTORS
They have two main purposes. The first is to attach the panel to the bracket. The second

is to serve as a light blocker for the photoresistor-based feedback system. Figure 14

shows these connectors.

Figure 14: Panel-mount connector

4.1.8 GEARS
The purpose of these gears is to transfer the rotation of the shafts to the potentiometers.

The methodology followed for their calculation and design is explained in section 5.2. In

Figure 15 one can see the gears for the elevation axis on the left, and the azimuth axis

on the right.

Figure 15: Gears

4.2 MOTORISED WIRE CONTROL SYSTEM

4.2.1 ELECTRIC MOTOR
The selected family of electric motors is the stepper motor[14]. The stepper motor is a

brushless DC motor in which the rotation is divided into a certain number of steps

resulting from the motor structure. The reasons for this decision are as follows:

• High precision: a complete 360° shaft revolution is divided into 200 steps, which

means that a single shaft stroke is performed every 1.8°.

• Reliability: there are no brushes in the motor construction, which results in high

mechanical durability and increased reliability.

• Easy control: fast starting due to high torque, easy stopping due to high holding

torque and the ability to quickly change the direction of rotation. These are

controlled by a controller that supports digital direction and direction inputs.

This type of motor also has certain disadvantages, which must be considered when

designing the motion algorithms. The main problems of this type of motors are the

following:

• Danger of slippage: if the torque is insufficient, a phenomenon called slippage or

missing steps occurs. Therefore, a feedback mechanism is required for reliable

motor control, which can be realized, for example, on the basis of an encoder or

other type of sensor. Thanks to it, the motor controller can "make sure" that the

motor has performed the indicated number of strokes.

• Energy requirement: The motor requires energy both when it is in motion and

when it is stationary. This disadvantage will be taken into account in the

maintenance cost calculations for this design.

Among the models on the market, the 17HS15-1504S from the manufacturer

STEPPERONLINE has been selected. It has a clamping torque of 42 Ncm. It belongs to

the NEMA17 family of steppers with a standard housing size of 42 x 42 x 39 mm. For

more details on this model the specification sheet can be found in p.75. In Figure 16 one

can see a picture of the model.

Figure 16: Stepper motor 17HS15-1504S

4.2.2 DRUM
The purpose of this part is to collect the cable in order to transmit the movement of the

motors to the structure. In the first option it was opted for a threaded design, in order to

avoid overlaps in the cable. This was necessary since the first prototype design was

based on the use of two motors instead of four and therefore a drum was needed to

collect the cable while transferring it to the other end. This explanation can be found in

more detail in section 5.1 .For the new design with 4 motors the above mentioned

condition was no longer needed, now the drum only needed to be able to either pick up

or yield the cable and not both at the same time. In this way it has been possible to

simplify the design and thus add the cable reels (one for each support to be moved). In

Figure 17 one can see the evolution of the versions from left to right.

Figure 17: Versions of the drums

4.2.3 SUPPORT FOR MOTORS
These allow the motor and drum assembly to be fixed to a surface. In the first version it

allowed the attachment of 2 motors and two drums (one on top of the other). This was

used for the prototype version based on two motors instead of 4. These versions will be

explained later in section 5.1 .The final version reduces the amount of plastic and allows

adjustment of the clearance between the motor and the drum. Figure 18 shows the

evolution of the versions from left to right.

Figure 18: Versions of the motor supports

4.3 COMPUTING SYSTEM
This system oversees processing, receiving and sending data and commands. Its main

component is a microcontroller. It is compatible with a series of modules that allow to

extend its functionalities. These are its components:

4.3.1 MICROCONTROLLER
It is the device in charge of carrying out the instructions defined by the person who

programs the device autonomously, in an electronic system the microcontroller is the

most important component, it is composed of a central processing unit, a memory and a

series of input and output pins. Among the different families of microcontrollers on the

market it was chosen the Arduino family.

Arduino is a family of free hardware boards that incorporates a reprogrammable

microcontroller AVR type (family of microcontrollers of the American manufacturer

Atmel). There are different Arduino boards depending on the use it is needed which is

given depending on the size, memory, number of pins and type of microcontroller[15].

For the development of the project it was used an Arduino Mega 2560 board which due

to its characteristics fits the requirements of the project. Specifically, the Arduino Mega

2560 has been chosen for two reasons: for its greater number of inputs and outputs, and

for its greater ROM memory, with respect to the rest of Arduino boards. To perform the

programming an integrated environment known as IDE was used, that allows

modifications and corrections in the code before they are executed by the

microcontroller. This environment uses C and C++ code language[16]. In Figure 19 one

can see these inputs and outputs.

Figure 19: Layout of Arduino Mega Board[17]

• DC Jack: This is a positive center connector. It is used to power the board when it is

not connected to the computer or a power supply higher than 5 volts is used. The

power applied to this connector should be between 7 and 12 volts. This is because

the Arduino Mega incorporates a voltage regulator.

• RESET Button: This button allows to reset the system. This means that all the

programmed code will be executed again, just as if the system had just been

connected to the power supply.

• Type-B USB: this allows communication with the computer and is powered by 5V.

• Power Pins: this is made up of pins that are used to power other devices when

making a project. These are:

o GND: Ground pins.

o 5V: 5 volt power supply for sensors or other devices.

o 3V3: This pin provides a voltage of 3.3 volts for devices that require it (It can

supply up to 150 mA, although it is recommended not to exceed 50 mA).

o VIN (Similar to the Jack connector): Allows powering the board when it is not

powered using the USB port. This pin can be used to obtain the voltage

present in the Jack connector.

• Analog Input Pins: these are 16 analog inputs (10 bits resolution) denoted A0,

A1,...,A15, which can be used with analog sensors (such as temperature or humidity

probes).

• Communication Pins: these are 6 serial ports that allow the board to communicate

with a computer or other device that supports this protocol.

• Digital IO: these are formed by the 64 pins and can read values of 0 (0 V) and 1

(5V).

To these inputs and outputs have been connected various devices that are detailed in the

following sections.

4.3.2 CNC Shield V3.0
CNC Shield V3.0 is an expansion module mainly used in engraving machines and 3D

printers. It allows to manage 3 stepper motors independently. These are called by the

acronyms “X”, “Y” and “Z”. There also one additional motor call “A” that works as a

duplicate of one of the previous ones. These are controlled by 4 A4988 drivers. It allows

a DC power supply between 12 to 36 volts. The incorporation of this shield is not

completely necessary, but it simplifies the communication with the motors and provides a

cleaner design. It also incorporates capacitors that are used for protecting the A4988

driver from voltage spikes.

Figure 20: CNC Shield V3.0[18]

4.3.3 A4988 STEPPER MOTOR DRIVER
It is a controller to handle the high voltages and currents needed to move stepper motors

such as those used in this project. It also allows to limit the current flowing through the

motor and provide protections to prevent damage to the electronics. For its control only

require two digital outputs, one to indicate the direction of rotation and another to

communicate the number of steps. They also allow micro-stepping, a technique to

achieve accuracies higher than the nominal step of the motor[19]. If these drivers were

connected to the 4 inputs of CNC Shield V3.0 only 3 steppers could be moved

independently. For this reason one of the A4988 has been modified so that its address

pins are not connected to the Shield. In this way they are connected to other free digital

inputs and thus be able to control 4 motors independently. In Figure 21 one can see on

the left the A4988 driver and on the right its modified version.

Figure 21: A4988 stepper motor driver and its modification

4.3.4 WI-FI MODULE NODEMCU V3.0
The NodeMCU module is a small Wi-Fi board. It is mounted around the ESP8266 chip

which offers a complete Wi-Fi networking capabilities, allowing it to host the application

or to serve as a bridge between the Internet and a microcontroller. This module exposes

its pins on the sides. It also features an integrated voltage regulator as well as a USB

programming port. It can be programmed using the Arduino IDE.

The ESP8266 has powerful on-board processing and storage capabilities that allow it to

integrate with sensors and application-specific devices through its GPIOs with minimal

development and minimal run-time overhead. Its high degree of on-chip integration

allows for minimal external circuitry, and the entire solution, including the module is

designed to occupy the minimum area on a PCB[20]. In Figure 22 the module can been

seen.

Figure 22: NodeMCU V3.0 module

4.3.5 WI-FI MODULE ESP01
This module is a simplified version of the previous module. This one has integrated the

same ESP8266 chip, but this one lacks the USB input for the connection with the

computer. The incorporation of this second chip is due to the impossibility to connect to

different web pages at the same time. This is due to problems with the http and https

protocols in Figure 23 the module can been seen.

Figure 23: ESP01 Wi-Fi module

4.3.6 MULTIPLEXERS
Multiplexers are combinational circuits with several inputs and a single data

output. They are equipped with control inputs capable of selecting one, and only

one, of the data inputs to allow transmission from the selected input to that

output. Due to the limited number of analog inputs of the microcontroller, a

multiplexer was required to measure all the sensor values.

4.4 FEEDBACK SYSTEMES
In this segment the set of sensors that are connected to the Arduino Mega will be

described. All of them have analog outputs and are composed of 4 types:

4.4.1 ANGLE DETECTION SYSTEM
This is composed of two rotary potentiometers. One potentiometer has a variable

resistance at each end and a third connection to a slider, which will allow us to increase

or decrease the resistance itself. In the case of the rotary potentiometers, this resistance

varies according to the angle of rotation of an axis. The potentiometer selected is the

3852A-282-103AL of the Bourns brand. This has a turning range of 280º with which it

can go from a value of 2Ω to one of 1kΩ. It has a total resistance tolerance of ±10% and

an independent linearity of ±10%. These tolerances are relatively large since the

potentiometers are not intended for use as precision angular sensors, but rather as an

analog control tool. Assuming a linear equation that relates the rotated angle to an

output voltage value would result in an unacceptable absolute error. For this reason this

sensor has been characterized to increase the average pressure. This characterization is

detailed in section “POTENCIOMETER”. In Figure 24 one can see the selected

potentiometer.

Figure 24: 3852A-282-103AL potentiometer

4.4.2 WIRE TENSION DETECTION SYSTEME
This is intended to detect the tension in the cable to serve as feedback. This is necessary

since the cable is intended to be placed in a range of tensions. Below this range, it would

not be possible to ensure that the panel is sufficiently restrained to maintain a position in

case of dynamic wind loads. Above this range, the motor would be overloaded. It is not

desirable to set this limit much above the minimum. The lower the upper voltage limit,

the more solar mounts can be attached to the motor system because the motor would

somehow be dividing its maximum torque by the number of mounts connected.

The first version was composed of a push button, a spring, a pulley and support for

these. The method for the regulation of this spring followed this procedure. First the

tension value in the cable is determined. With a simple force study, the selected tension

is related to a value of force applied to the spring. Knowing the desired elongation,

Hooke's law can be applied to calculate the desired spring elastic constant. With this

constant the desired spring can be selected. The main problem of this version was the

friction of the pulley with the support, preventing to give an accurate signal. In Figure 25

one can see the 3D design of this first version.

Figure 25: Wire tension sensor Version 1.0

The second version consisted of the use of a force-sensitive resistor. This resistor is able

to modify its resistivity depending on the pressure applied to it. When no pressure is

applied its resistance rises above 1MΩ. Knowing the area of this sensor it is possible to

transform a pressure signal into a force signal. Unlike the previous version, this one

returns analog pressure values, thus providing more information on the actual cable

tension at any given moment. In one Figure 26 can see the 3D design of the final

version.

Figure 26: Wire tension sensor Version 2.0

4.4.3 LIGHT SOURCE DETECTION SYSTEME
This system is based on the use of 4 photoresistors. A photoresistor is an electronic

component whose resistance decreases with increasing incident light intensity. It is also

called light-dependent resistor or by its acronym LDR. Its body consists of a

photoreceptor cell and two pins. The electrical resistance value of an LDR is low when

light is shining on it, and very high when it is dark. These LDRs are installed in the inside

of the panel-mount connectors. As already mentioned these panel-mount connectors

allow to block the light coming from two planes. By installing these connectors pointing

to 4 different quadrants the photoresistors can be used to detect the direction of a light

source. This is done by comparing the different resistivities of the LDRs. This is explained

in more detail in section “PHOTORESISTORS DIRECTION ALGORITHM”. In the following

image one can see these LDRs.

Figure 27: LDR

4.4.4 ENERGY PRODUCTION DETECTION SYSTEM
To obtain an energy value, voltage and current values must be collected. Since the

Arduino is capable of measuring voltage values from 0 to 5V, the same range as the solar

panel, it is only necessary to incorporate a current sensor.

The transducer in charge of translating current values to voltage is the Hall effect current

sensor ACS70331, from the manufacturer Allegro Microsystems. The data sheet can be

found in p.79. This informs about some of its characteristics, such as a maximum

measurement current of 2.5A, a resistance in the conductor of 1.1mΩ, a response time

of less than 550ns and a sensitivity of 800mV/A. Figure 28 shows such a sensor.

Figure 28: Current sensor ACS70331

CHAPTER 5: METHODOLOGY

This section the different methodologies and reasoning applied in the development of the

prototype will be explained.

5.1 METHODOLOFY AND ITERATIONS OF THE SOLAR STAND
As shown in section “CHAPTER 4:” ,this segment has had many iterations. This is due to

two main reasons.

The first is due to the refinement of tolerances. 1 mm can be the difference between a

free bearing or a bearing with a lot of friction. 1 mm can also be the difference between a

shaft with a lot of play that does not transmit the movement to the gears well, thus

producing systemic error, with one that does transmit the movement well.

The second one is due to the assumption of an erroneous hypothesis at the beginning of

the development of this thesis. This assumption was based on the possibility of finding a

design that could be guided by two motors and two cables, since the support to be

designed had two degrees of freedom. In the first stage of development, a prototype was

built based on this assumption. It consisted of the first versions of the segments

belonging to the solar stand structure and the wired motorized motion system. It

resembles notoriously the operation of the final prototype but with a main difference,

based on the use of two motors, one for each axis. When one of the steppers was

activated, it in turn moved the 1.0 drum which served to transmit the motion to the

cable. When the drum rotated in one direction, the cable was picked up at one end and

released at the other end, allowing the panel to rotate on one of the axes. Figure 29

shows a simplified diagram of this operation.

Figure 29: Frist design diagram

If the above hypothesis were true, an invariance would follow. This is that the tension in

the cable would remain constant, it should simply be pre-tensioned only once at the time

of assembly (assuming a perfect grip of the cable on the drum and therefore no

slippage).

In the testing of the first prototype it could be seen that the tension will not be constant,

when the panel rotated more than 45º in one axis. The cable started to untension. This is

not acceptable in the design since the tension in the cables is essential to transmit the

rotation, and without tension both the positioning accuracy and the stability of the panel

are lost.

In order to be able to state that the constant tension hypothesis was wrong (since it

could be due to other factors such as elasticity in the cable), the next step was to

develop a Matlab simulation of the structure[21]. This simulation was intended to

calculate the distances between the pulleys located on the panel support and the pulleys

anchored to the ground, for different angles of elevation and azimuth. In the case of

verifying that the sum of the distances between sheaves is constant with the movement

of the panel, it could be derived that the cable should not slacken. This can be reasoned

since all the extra cable needed to raise one of the ends should be the same with

opposite sign to lower the opposite end (according to the hypothesis presented at the

beginning). This is further supported by the fact that the distance from the drum to the

sheaves is constant. The distances between sheaves were calculated and not the tensions

in the cable since their calculation is simpler.

This simulation makes use of two mathematical tools:

• Rotation matrices: are matrices that allow to calculate the position resulting from

the rotation of a vector. In the following formulas one can see these matrices of

rotation being θ the angle of rotation

.

𝑅𝑥(𝜃) = (
1 0 0
0 cos⁡ 𝜃 −sen⁡ 𝜃
0 sen⁡ 𝜃 cos⁡ 𝜃

)

𝑅𝑦(𝜃) = (
cos⁡ 𝜃 0 sen⁡ 𝜃
0 1 0

−sen⁡ 𝜃 0 cos⁡ 𝜃
)

𝑅𝑧(𝜃) = (
cos⁡ 𝜃 −sen⁡ 𝜃 0
sen⁡ 𝜃 cos⁡ 𝜃 0
0 0 1

)

• Vectorial calculation of distances between two points A and B.

𝐴(𝑥1, 𝑦1) y 𝐵(𝑥2, 𝑦2)

𝑑(𝐴𝐵)2 = 𝐴𝑃2 + 𝐵𝑃2

𝑑(𝐴𝐵)2 = (𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2

√𝑑(𝐴𝐵)2 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2

𝑑(𝐴𝐵) = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

22

Figure 30 shows the simulation plot for an elevation angle (axis of rotation z) of 30º and

an azimuth angle (axis of rotation x) of 30º. In the upper part and in red one can see the

vectors that simulate the ends of the panel support, in these ends the upper poles would

be arranged. At the bottom and in red the main tower would be simulated. Blue and

magenta would be simulating the vectors of rotation of the rotula. Green simulates the

cable needed to move the panel with the azimuth orientation. Yellow would be simulating

the cable needed to move the panel with the elevation orientation. Finally, it would be

these yellow and green vectors that would be calculated to check the hypothesis of

continuity of length in the cable.

Figure 30: Matlab simulation graph

A study of variables has been carried out on this Matlab simulation and several

conclusions can be drawn from it, these are the most relevant ones:

• The distance obtained from the sum of the distances between the upper and lower

poles is not constant and therefore the cable is untightened with the movement of

the panel.

• The height of the tower affects the percentage increase of cable necessary for the

movement of the panel, the higher the height, the lower the percentage increase

of cable.

• The distance from the lower pulleys to the center of the main tower directly

affects the degrees of freedom of rotation that the prototype has. This conclusion

will also apply to the final prototype. This limitation can be explained by two limit

states. For the explanation of the limit states, the system will be view statically,

the forces applied on the panel support generate fictitious "torsional moments".

Non-zero torsional moments would thus indicate a movement of the structure or,

in other words, that the static analysis is not stable. In a real dynamic model, the

torsional moments generated by the cables are compensated and result in a fixed

position, where the torsional moment of the shaft is zero (since it is a rotula).

These are the two limit states:

o Null moment limit state: for there to be torsional moment there must be

forces applied at non-zero perpendicular distances from the axes of rotation.

These forces comes from tension in the cable (force vector) and distances are

those ranging from the cable to the swivel axis of the hinge. For a fixed

dimension of the panel, there is a limit state in which the cable in charge of

moving the panel in one of the orientations comes into contact with the axis of

rotation of the same orientation. At this position the distance at which the

forces are applied is 0, so that forces applied by the cable would not result in a

torsional moment and therefore would not generate motion (regardless of the

magnitude of these forces). The angle formed by the plane containing the

panel with the surface planes (horizontal plane) and the plane of rotation of

the axis (axis that has come into contact with the cable), marks the limit angle

of rotation for the zero moment. At this moment the support is not stable and

collapses. This is the main reason why angle limiters have been added.

Figure 31: Null moment limit state

o Limit state at maximum torsional moment: in the position in which the

cable is contained by the plane containing the support of the panel, a

maximum fictitious torsional moment state is reached. In this position the

cable cannot generate a force vector perpendicular to the panel plane and can

therefore no longer a rotation. The angle formed by the plane containing the

panel with the surface plane, marks the limit angle for maximum torsional

moment. This limit state can be seen in the following picture.

Figure 32: Limit state at maximum torsional moment

The distances between the axes of rotation contain in the rotula and the panel directly

affect the maximum angle for the limit state of zero moment. The greater the distance of

these axes, the less degrees of rotation the null moment limit allows (keeping all other

variables constant).

The distance between the lower sheaves and the main tower is the variable directly

affecting the determination of the maximum angle of rotation by null moment. The

greater the distance, the more degrees of rotation the null moment limit allows (keeping

all other variables constant).

The distance between the lower sheaves and the main tower is the variable directly

affecting the determination of the maximum angle of rotation by maximum moment. The

greater the distance, the less degrees of rotation the maximum moment limit allows

(keeping all other variables constant).

The sum of distances that are kept constant are the distances from the upper sheaves to

the surface plane. If the lower sheaves could be automatically placed under the upper

sheaves, all of the above assumptions would be fulfilled.

All these conclusions are scalable to any size since these conclusions are drawn from

relative positions and sizes, and not from absolute measurements. Finally, all the above

conclusions have been taken into consideration to select the positioning and size

measures for the "Solar stand structure" segment. It should be added that the only

variable that has not been determined by the previous conclusions has been the width of

the tower and the break. This width has been determined by the size of the

potentiometer.

Once it was proven that the tension is not constant for prototype 1.0, it remained to

study the solutions to solve the untensioning problem of the cable. These were the 4

proposed solutions:

• Movable lower pulleys: this proposal is based on designing a mechanism that

somehow allows the movement of the lower pulleys to be located just below the

upper pulleys. This solution has not been tested, due to the complexity of

designing such a mechanism (this will be mentioned in the limitations section).

• Dead weight: this proposal is based on the use of 4 suspended weights anchored

at the 4 ends of the 2 cables. These weights would be in charge of pulling the

rope when it is untensioned. The main advantage of this proposal is the ease of

controlling the tension of the rope. On the other hand, the main disadvantage is

the increase in the unit price of the support, since there would have to be 4 extra

devices per panel support. This proposal has been tested, and its effectiveness

has been demonstrated. Finally it has been discarded because of its main

disadvantage, since the idea of the global design is to lower as much as possible

the unit costs of the "Solar stand structure" segment.

Figure 33: Pulley force distribution[22]

• Constant tension spring: this proposal has an operating principle very similar to

the previous one, but instead of using the gravitational force, it makes use of the

force of a spring. It has the same advantages and disadvantages. Finally, its

implementation has been discarded for the same reasons as the previous

proposal.

Figure 34: Constant force spring[23]

• 4 motorized system: this is based on the use of 4 steppers instead of two as

proposed in prototype 1.0. The main disadvantage is the increase of the system

price, but unlike the previous 3 proposals, the cost of this proposal does not scale

with the increase of steppers. This would be because 4 motors could theoretically

move “n” supports simultaneously. This has finally been the chosen solution

applied in the final prototype.

5.2 METHODOLOGY FOR THE GEAR DESING
For the calculation of the gear design, an internal inventor tool was used. For this

purpose, 4 variables had to be determined:

• Center-to-center distance: this distance is imposed by the rotula design. This

would correspond to the distance from the center of the potentiometer to the axis

of rotation.

• Gear ratio: this is the ratio between the number of teeth in coupling gears. It is

equivalent to the gear ratio, how many turns one gear turns relative to the other.

As the degrees of freedom of rotation of the potentiometer is 280º and the

maximum angle of rotation of the panel is 180º, the optimum gear ratio would be

280/180= 1,55. It is optimal from the point of view of the measurement accuracy

of the potentiometer. The Arduino Mega has a 10-bit analog definition, or in other

words it can measure 1024 different values from 0 to 5V. If the gear coefficient of

1.55 is applied, 180 degrees of panel rotation would be equivalent to 280 of the

potentiometers, this would be turned to 5V output, so the Arduino would measure

a maximum value of 1023 (since it goes from 0 to 1023). This would translate to

the Arduino Mega being able to measure increments of 0.175º of rotation (180

degrees/1024). If the coefficient was 180 degrees of panel rotation would be

equivalent to 180 of the potentiometers, this would be turned to 3.22V output, so

the Arduino would measure a maximum value of 660. This would mean that the

Arduino Mega could measure increments of 0.27º of rotation (180 degrees/660).

Ultimately, a value of 1.5 gear coefficient was chosen as this was the closest value

that the Inventor program allowed. It should be noted that the closest possible

lower value should be selected, otherwise the potentiometer would not be able to

measure the 180 degrees of rotation.

• Number of teeth: this depends mainly on the definition of the 3D printer, the

higher the number of teeth the smaller they are and the worse the printer can

print them. On the other hand, an excessively low number of teeth can cause a

bad transmission of forces. The number of teeth of one of the two gears

associated with a shaft has to be completed (since the tooth calculation of the

remaining gear can be derived by means of the gear module). In this case it was

chosen to set the value of the number of teeth of the gear that is coupled to the

potentiometer. In order to select the best option, different values have been

tested, of which a value of 25 teeth has been chosen.

• Thickness of the gear: this has been determined in 5 mm.

There are more variables such as pressure angles or propeller angles, these have been

selected automatically by the inventor software.

5.3 CHARACTERIZATION AND CALIBRATION OF THE SENSORS

5.3.1 AMPEREMETER
Due to discrepancies of 7.8% between the current values measured by the analog input

of the Arduino Mega and values measured with a multimeter, it has decided to

characterize the sensor.

The output voltage at zero current is 250mV. Its nonlinearity error is ±0.2%, its

sensitivity error is around ±1.5%, its offset error is ±15mV and its total output error is

between ±2% and ±5%. Its power supply is 3.3 V with a typical consumption of 4.5mA.

Based on the data provided by the manufacturer, the sensor has been tested in

MAKENTNU's laboratory[24]. The test consists of arranging circuits with different

resistance values fed by a power supply of known voltage. By applying ohm's law the

current value can be derived. The amperemeter should be connected in series to the

circuit and the output voltage values should be measured using a multimeter. Standard

resistors of 4.81 Ω with tolerances of less than 0.05% have been selected. The selected

power supply has been a 12V power supply with a maximum current of 5A (twice the

current of the amperemeter's measuring range). In this way, the reliability of the

currents produced can be assured. Figure 35 shows the results of the input currents and

their respective output voltages in the test performed.

Figure 35: ACS70331 sensor characterization

It can be seen at a glance and through the coefficient of determination (R), that it is a

purely linear function, with a cut on the y-axis of 314.64mV. This value is far from the

offset published by the manufacturer. Nevertheless, the linearity and sensitivity are

confirmed to be fairly similar to that found in the spec sheet.

With the new characterization of the sensor, the absolute measurement error by the

Arduino is reduced by 7.4%, so there are still one or more factors that are generating

discrepancies in the measurements. Analyzing the data collected by current and voltage

measurement of the Arduino Mega it has been observed that there is a fluctuation of the

measurements (maintaining constant boundary conditions of the solar panel). This could

be explained by the existence of electrical noise produced in the internal circuits of the

solar panel. During the amperemeter characterization tests, a buzzing sound coming

from the solar panels was detected. This buzzing sound would be produced by variations

of the magnetic fields generated in turn variations of electric potentials. In this way,

electrical noises can generate magnetic fields that cause magnetic materials to

vibrate[25]. For the measurement of the noise frequency, an audio software capable of

performing a spectral analysis has been used. It makes use of a microphone placed close

to the solar panel. Figure 36 shows the results of the test. There are 3 axes, the time

axis (vertical axis), the frequency axis (upper horizontal axis) and the wave amplitude

axis (color axis).It can be observed that the main frequency of the noise is located at

3094hz. To the right of this frequency, the harmonics of this main frequency can be

observed.

Figure 36: Electric noise sound analysis

Two alternatives have been proposed to solve this problem. The first one consists of

incorporating a low pass filter that eliminates the high frequencies. This would

incorporate a series resistor and a parallel capacitor. The second is to perform an

arithmetic average of the collection of "N" measurements taken in series in a time

interval.

The maximum sampling frequency of the Arduino Mega is 980 hz. This would in principle

rule out the second option due to the Nyquist-Shannon sampling theorem. This theorem

shows that accurate reconstruction of a continuous baseband signal from its samples is

mathematically possible if the signal is band-limited and the sampling rate is greater

than twice its bandwidth. Since it is not necessary to measure the current waveform but

its average value, the sampling rate of the Arduino Mega is valid since it does not

coincide with any multiple of the electrical noise frequency.

Between these two options, the second option has been chosen since no additional

components are required. For data acquisition, the value of N measurements has been

set to 100, and the acquisition frequency to 980hz (depending on the analog port to

which it is connected).

By incorporating the above settings, the absolute error of the Arduino Mega

measurements has been reduced to 0.82% with respect to the measurements provided

by the multimeter. Finally, this error is acceptable for the framework of this project.

5.3.2 POTENCIOMETER
As mentioned in section 5.3.2, the potentiometer has a total resistance tolerance of ±10

% and an independent linearity of ±10 %. This magnitude of error is not acceptable for

the use of a potentiometer as a precision sensor. For this reason it has been proposed to

characterize this component. For this purpose, a test has been carried out in which

different values of rotation have been given to the potentiometer and measured by

means of the analog input of the Arduino Mega. To measure the angle of rotation of the

potentiometer, an angle transporter has been used. In Figure 37 one can see a

representation of the acquired data.

Figure 37: Characterization of the potentiometer

Two conclusions can be extracted from this graph:

• The first 11º and last 12º of potentiometer rotation do not show any change in

resistivity.

• The R^2 index is very close to 1, so the linearity of the component can be

assured.

From this characterization it is extracted that the degrees in which the potentiometer

really varies its resistivity are 257º (280º-11º-12º) and a linear behavior can be

assumed within this 257º. This has been taken into account in the coupling of the gears

and the potentiometer.

5.4 WEBSITES DESIGN
This segment will expose the three web connections to which the Arduino mega

exchanges data. Being a web connection and not local, all of these allow access to the

data from anywhere on the planet.

5.4.1 MAIN WEB PAGE
This allows real-time monitoring of analog values measured by the Arduino mega. It is

connected through the ESP 01, with which it executes requests in PHP language[26].

These requests allow the exchange of information with a MySQL database. It is here

where the data accessed by the web page itself and the Arduino mega will be temporarily

stored. There are three types of variables:

• Input boolean variables: these take on values of 0 or 1. These act as virtual

buttons to trigger an action on the Arduino mega. It is the user who modifies

them. The first button "Movement Capability" is used to activate or not the

motors. Whenever off the panel will remain static. The second button "Safe Mode"

is used to position the panel in a preset safe position. The third button "Automatic

mode (ON) - Manual mode (OFF)" is used to select an automatic or manual panel

positioning mode. If manual is selected, the angles must be entered manually.

This manual mode is mainly used to calibrate and test the prototype. The next

two buttons "Photoresistors (ON) \ Sun position calculation (OFF)" and "Step

tracking mode (ON) \ Potentiometer mode (OFF)" allow to select the panel

movement algorithms. These algorithms are further detailed in section 5.5.

Figure 38: Buttons associated to the output boolean variables

• Input Integer variables: these send the value stored in their boxes to the Arduino

Mega. They are used to set the manual rotation angle of the panel. For these to

work the third button must be off.

Figure 39: Boxes for manual input of angular values

• Output integer variables: these integer variables are used to display analog data

measured by the Arduino Mega in real time.

Figure 40: Output integer variables

The URL to access the main website is:

https://solartrackertrondheim.000webhostapp.com/index.php

The source code of the web page is written in PHP and HTML language. It can be found

explained in p.95.

5.4.2 SPREADSHEET FOR THE CALCULATION OF THE POSITION OF

THE SUN
This spreadsheet automatically calculates the position of the sun in degrees azimuth and

elevation. For this purpose only the positioning coordinates of the solar panels have to be

determined. It is automatically synchronized with the satellite clock to perform the

necessary calculations. The calculation of the sun's position is based on the equations

shown by J.J. Michalsky in "Astronomical Algorithms"[27]. The accuracy is 0.01 deg, the

observed values may vary from the calculations since they depend on: the composition of

the atmosphere, temperature, pressure and other conditions.

The communication with the Arduino Mega is done by the ESP8266 Wi-Fi module. It

sends a data request to the Spreadsheet and it sends the three variables compressed in

https://solartrackertrondheim.000webhostapp.com/index.php

a string format. These variables are the azimuth angle, the elevation angle and the time.

This string format will later be separated in the Arduino Mega. In this way only one

request has to be sent to receive the three variables.

The URL to access this spreadsheet is:

https://docs.google.com/spreadsheets/d/1g75Y8BZ386HefE1u6Tbkg5Fr1V0LoHuQvh8PY

UYIn2Y/edit?usp=sharing

The source code that allows the connection of the Arduino Mega is written in

JavaScript[28] and can be found explained in the annexes in p.84 .

5.4.3 SPREADSHEET FOR DATA COLLECTION
This spreadsheet stores the voltage, current, elevation angle and azimuth angle data (the

angles provided by the potentiometers). Along with this data, the date and time of

receipt of the data is also recorded. In addition, with the voltage, current and time data,

the energy production is calculated. This spreadsheet allows further analysis of the data.

Figure 41: Spreadsheet for data collection

The URL to access this spreadsheet is: https://docs.google.com/spreadsheets/d/1fAW-

WAu-lRaT28DQSrIhMrFxW3-LFiHu42EQR5wUw1s/edit?usp=sharing

The source code that allows the connection of the Arduino Mega is written in JavaScript

and can be found explained in the appendix p.95.

5.5 ALGORITHMS
For the development of the prototype, 4 algorithms have been developed for the

movement of the structure. In the "prototype testing" section, these algorithms will be

compared. They make use of different sensors and intrinsic characteristics of the

steppers. They can be grouped into two categories. The first is the algorithms used to

know the position of the panel. These are the potentiometer-based algorithm and the

motor step tracking based algorithm. The second category is based on algorithms that

provide a direction of rotation. These are the algorithm based on photoresistors and the

algorithm based on mathematical calculation of the sun position. These two categories

can be combined using the switches found on the main web page, thus producing 4

different "packages" of different algorithms (one package consists of one algorithm from

each category). The development of these 4 packages has not only been designed to

shop them against each other and see which one is the most suitable. There is also the

possibility of incorporating all the algorithms in the final code, as this provides robustness

to the design. When designing a product that is intended to be installed outdoors,

multiple problems can occur with the sensors, such as: partial or total fouling of one or

more of the photoresistors, increase of clearances in the gears and thus loss of pressure

in the potentiometers, etc. In this way, if there is a problem with any sensor, there would

be a replacement method. In addition, these can be used to monitor each other,

selecting one package for panel movement and another to check that the panel is within

an error range.

https://docs.google.com/spreadsheets/d/1g75Y8BZ386HefE1u6Tbkg5Fr1V0LoHuQvh8PYUYIn2Y/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1g75Y8BZ386HefE1u6Tbkg5Fr1V0LoHuQvh8PYUYIn2Y/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1fAW-WAu-lRaT28DQSrIhMrFxW3-LFiHu42EQR5wUw1s/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1fAW-WAu-lRaT28DQSrIhMrFxW3-LFiHu42EQR5wUw1s/edit?usp=sharing

5.5.1 DIRECTION ALGORITHM
These algorithms are used to determine in which direction to move the motors and are

categorized into two types:

5.5.1.1 SUN PREDICTION DIRECTION ALGORITHM

This algorithm is based on using the spreadsheet described in section 5.4.2, to receive a

target angle.

5.5.1.2 PHOTORESISTORS DIRECTION ALGORITHM

This algorithm makes use of 4 photoresistors located at the 4 corners of the panel. These

photoresistors are able to vary their electrical resistance depending on the light they are

receiving. By transforming the resistivity into a voltage value that the Arduino can read,

their values can be bought to determine in which direction the panel should be moved.

This way whenever there is a discrepancy between the photoresistor resistivities the

board will move until they all have the same value (within an error range).

Due to the limited number of analog inputs and as explained in previous sections, a

multiplexer has been used to read the photoresistors. Figure 42 shows a flowchart of how

this algorithm works.

Figure 42: Flow diagram of photoresistors direction algorithm

5.5.2 FEEDBACK POSITION ALGORITHMS
These algorithms allow gathering information on where the panel is positioned at any

given moment. They are fundamental since they are the way that the steering algorithms

know where to be in order to know how to move the panel. They are divided into two

types: potentiometre position feedback algorithm and step tracker position feedback

algorithm, which will be explained below.

5.5.2.1 POTENTIOMETRE POSITION FEEDBACK ALGORITHM

This algorithm makes use of two potentiometers located in the main tower. These can

vary their resistivity according to the angle at which they are rotated. For the

transmission of the panel rotation, gears are used to connect the rotation axes with the

potentiometers. More detailed information on these gears can be found in section 5.2. If

the resistivity is converted into a proportional voltage value the Arduino can measure the

turn angle of the potentiometer and therefore in the panel. In addition, it makes use of

“WIRE TENSION DETECTION SYSTEME” detail on section 4.4.2. In this way the Arduino can

also measure the tension of the cable at any time and thus it can adjust the movement

of the motors to keep the cable tension within a range. In Figure 43 one can see its

flowchart.

Figure 43: Flow diagram of potentiometer position feedback algorithm

5.5.2.2 STEP TRACKER POSITION FEEDBACK ALGORITHM

This makes use of the steppers' ability to move in 1.8° angular increments. If one start

from a known position, one can record the steps. A relationship between steps and panel

position angle can then be found. This would be the principle of operation of 3d printers.

For this purpose this algorithm makes use of 3 different functions or sub-algorithms.

The first of them is one used for the calibration of the panel position. This is based on the

positioning of the panel at a known elevation angle and azimuth. As will be explained in

the limitations, the implementation of this positioning is done manually for reasons of

scope of the thesis. A possible solution for the calibration function would be the

incorporation of push buttons on the main tower, which are activated when the panel is

in a specific position. With the final code it should be manually calibrated each time this

step tracker position feedback algorithm is chosen.

The second one is an algorithm that translates angles into steps. To do so, it makes use

of a database that allows to relate a given angle to a given number of steps. For the

development of this database the Matlab simulation described in section 5.1 was used.

From this simulation the distances between lower and upper sheaves for each possible

azimuth and elevation angle can be found. With these distances the rope lengths

required for these positions can be calculated. Then, knowing the drum diameter and the

angle increment for each motor step, a relationship between these steps and a panel

angle increment can be found. The use of a database or data table is based on two

principles. The first is that the step/angle increment ratio is not constant. The second is

that the computation of this ratio has a very high computational overhead for a single-

core, low-frequency processor, such as the Arduino Mega. In this way the ratio

calculations would be done only once, thus speeding up the algorithm. In Figure 44 one

can see its flowchart.

Figure 44: Flow diagram of the angle-to-steps conversion algorithm

The third would be to perform a reverse transformation, from steps to angles. This is

based on the same principles as the previous one. In Figure 45 one can see its flowchart.

Figure 45: Flow diagram of the steps-to-angle conversion algorithm

In Figure 46 one can see the steps/angle elevation ratios calculated.

Figure 46: Step/Elevation angle ratio

Finally, the flowchart of the step tracker position feedback algorithm can be seen in the

Figure 47.

Figure 47: Flow diagram of step tracker position feedback algorithm

CHAPTER 6: PROTOTYPE TESTING

This section will start explaining in a summarized way how the prototype works to

provide an overview. Subsequently, the conditions under which the prototype was tested

will be defined. This segment will end with the results and conclusions of the tests.

6.1 OVERVIEW OF THE PROTOTYPE'S OPERATION
To start up the prototype, the power supply must be connected and the Wi-Fi modules

must have internet access. To start up the tracking system, the main web page must be

accessed first. From there it must be activated and selected from the different operating

modes. Depending on which operating mode is selected, different sensors are used. The

Arduino Mega, the control center, will receive this information via the ESP 01 Wi-Fi

module. The Arduino Mega then reads the values from the different sensors and sends

them to both the main web page (via the ESP01) and the data collection spreadsheet (via

the NodeMCU). The purpose of this is both for visualization and for gathering information

for monitoring the prototype and for further analysis of its operation. Once this data is

sent, the Arduino proceeds to move the 4 steppers. To do this the CNC Shield V3.0 was

used. This shield makes use of the drivers and the power supply to translate the

commands of the Arduino into movement. To the axis of these steppers are connected

drums that allow winding multiple cables. It is these cables that, with the help of pulleys,

transmit the movement to the structure. It is this ability to add multiple connections that

allows the control of as many supports as the motors can move.

The following image shows the connection and wiring scheme. A more detailed figure

with the naming of each component can be found in appendix p.75.

Figure 48: Connection scheme of the prototipe[29]

An image of the finished prototype is shown in the following picture.

Figure 49: Small scale finish prototype

6.2 PROTOTYPE TEST CONDITIONS
The tests have been carried out with both cable versions mentioned in section 4.1.5 and

several conclusions have been drawn. These revolve around the elasticity of both cables

and how this characteristic affects the behavior of the system. Depending on the

algorithm used for the motor motion the elasticity quality is either an advantage or a

disadvantage.

For algorithms based on the use of pressure sensors this elasticity was an advantage

since it provides more continuous tension readings, i.e. the minimum and maximum

tension step in the cable is less pronounced. This is because the elasticity of the cable

itself absorbs part of the force applied to it as a spring does. This lowers the risk of the

motor exceeding its torque limits, thus preventing it from going out of step.

On the other hand, for algorithms based on step tracking, the elasticity characteristic

would not present an advantage. It would complicate the calculations performed by the

Matlab simulation. Recall that this simulation is used for the creation of the conversion

table from steps to angles and vice versa. For the created reaction obtained by the

simulation of an increase of distance between pulleys in a number of steps of the motor,

an infinite modulus of elasticity or Young's modulus will be assume. This would be the

same as saying that the cable would not bind due to changes in cable tension. In order to

incorporate an elastic cable for this type of algorithm, a force study should be

incorporated in the simulation. This study should add the frictional forces on the pulleys

and the forces required to move the panel. These forces would change according to the

angle of rotation since the distance of the force vector containing the tension in the cable

is not constant. Therefore, a new conversion table from angles to steps would have to be

created. This is beyond the scope of this thesis. The steel has Young's modulus of

205.000MPa and the fishing line 1.300MPa. Finally a steel wire rope has been chosen for

the rest of the tests.

The prototype has can turn 170º in the elevation axis and 160º in the azimuth axis. The

reference position 0º Azimuth and 0º Elevation can be seen in Figure 50Figure 50.

Figure 50: Angle reference position

These were the procedural conditions under which the performance tests were

performed:

• These tests have been performed under cover since the prototype is not prepared

for outdoor conditions. Therefore, a 500W lamp has been used to simulate the

sun.

• The incorporation of the multiplexer define in section 4.3.6, has not been possible

due to time constraints. As mentioned, this multiplexer was intended to apply the

analog inputs of the Arduino Mega, for this reason the different motion algorithms

have been tested separately.

• When testing indoors, a path sequence was stipulated and that consists of

moving the panel in this order: 0º Azimuth, 0º Elevation →0º Azimuth, 80º

Elevation →0º Azimuth, -80º Elevation→ 0º Azimuth, 0º Elevation → 85º

Azimuth, 0º Elevation →-85º Azimuth Elevation 0º →0º Azimuth, 0º Elevation.

This sequence of movements can be seen in Figure 51.

Figure 51: Test path sequence

• Multiple iterations of the travel sequence will be performed to test the ability to

maintain accuracy.

• A "precision test" of the prototype will be performed in which the movement

sequence, "0º Azimuth 0º Elevation 0º Azimuth 85º Elevation", will be performed

5 times. At the beginning of each iteration the prototype will be calibrated by

manually positioning it in the reference position.

To test the functioning of the prototype, the 6 ways of functioning mentioned in section

5.5 (two manual and 4 automatic) have been tested and the functioning of the web

capabilities have been checked. These were the results and conclusions of the tests:

• The algorithms based on potentiometers are 50% slower than those based on

step tracks. The following table shows the time it takes for each algorithm to

complete the first iteration of the run sequence.

Potentiometer Step track

Manual 181 s 124 s

Photoresistors 187 s 126 s

Sun prediction 181 s 123 s

Table 2: Operation times in seconds per algorithm

• Potentiometer-based algorithms have proven to be more robust than step tracker-

based algorithms. The step tracker based algorithms have predicted their

calibration after 3rd iteration contrary to the potentiometer based algorithms. This

may be due to slippage problems in the stepper due to reaching the maximum

torque limit of the stepper.

• Step track based algorithms are more valuable than potentiometer based

algorithms when starting from calibration. In the following table one can see the

elevation degree data obtained from the precision test.

Potentiometer Step track

1º iteration 85º 85º

2º iteration 82º 85º

3º iteration 81º 85º

4º iteration 84º 85º

5º iteration 83º 85º

Table 3: Precision test results

• The connections to the main web page require an estimated time of 38 seconds to

send, receive and send all the variables. 30 of these 38 seconds are spent in

sending the analog values since they are sent one by one in different php

requests, contrary to the boolean variables that are received by the Arduino all in

one request.

• The sending of the data to the data collection spreadsheet, takes 10 seconds,

from serial communication (Arduino Mega-NodeMCU) to web communication

(NodeMCU-Google servers). Due to serial communication problems between the

data sent from the Arduino Mega and the NodeMCU, 1 out of 6 data transmissions

are made with erroneous data. This is due to random reading errors in the

NodeMCU. The quality of this is measured based on the error rate BER (Bit Error

Rate) which is obtained as the result of measuring the number of received

erroneous bits between the total number of transmitted bits. For the data package

that the Arduino Mega sends to the NodeMCU is 144bits, so it is estimated a VER

rate of 1bit/864 bits. This is not acceptable, so it is proposed to incorporate error

detection and correction protocols (such as v.42 or MNP in modems).

• The reception of data from the sun position spreadsheet takes all 9 seconds. This

code execution contemplates reception of web data (Google-NodeMCU servers) up

to serial communication (NodeMCU-Arduino Mega). No communication errors have

been detected with respect to this spreadsheet.

• As it lacks an integrated MPPT it was opted to incorporate a variable resistor with

ranges from 0 Ω to 10 Ω. This range has been obtained by the following formula:

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡𝑒 =
(𝐴𝑣𝑎𝑟𝑎𝑔𝑒⁡𝑣𝑜𝑙𝑡𝑎𝑔𝑒⁡𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑠𝑜𝑙𝑎𝑟⁡𝑝𝑎𝑛𝑒𝑙)2

𝑅𝑎𝑡𝑒𝑑⁡𝑝𝑜𝑤𝑒𝑟⁡𝑜𝑢𝑡𝑝𝑢𝑡
=
52

10
= 2,5Ω

• It should be noted that the azimuth and elevation axis angles shown in the tests

do not correspond to actual azimuth and elevation angles of the sun. The names

of these axes have been given by taking a fixed reference to the sun when it is

located in a southerly orientation (azimuth angle 0°). In this position the angles of

the azimuth axis correspond to the degrees of the sun's azimuth axis, the same

for the degrees of elevation. When the sun is placed in an east or west orientation

the axes are reversed, so that the angles of the elevation axis correspond to the

degrees of the sun's azimuth axis and vice versa. This makes the actual degrees

of rotation of the design to be 360º azimuth and between 80º and 85º elevation

rotation. As will be discussed in the limitations, the angle conversions could not be

implemented in the final model.

CHAPTER 7: DISCUSSION

In this section, an objective analysis of the proposed design will be made and compared

with the two-axis solar tracker designs in the market.

A cost analysis of the different designs described will be carried out. This analysis will be

based on the simulation of the designs by means of different software. This will be the

procedure to be followed in this cost analysis:

First, a study will be carried out with a Computational Fluid Dynamics software or CFD.

From it, the external forces due to wind loads experienced by the structure can be

extracted. These forces will be used to create a state of loads. These will be incorporated

into a structural calculation software. This software will allow to calculate the stresses in

the cables which will be used to calculate the number of supports that can be placed in

parallel. In addition this software will be used to calculate the optimal structural profiles.

In other words, this software will select the necessary tower sections for each design and

will allow to check if there are differences between the different designs.

Once the simulations have been carried out, the different variables that affect the

calculation of the manufacturing cost estimate and the relationship between them will be

defined. The cost analysis will end with the determination of a manufacturing cost

estimate for the proposed full-scale design.

7.1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS
Numerical simulations play a crucial role in the analysis of many outdoor applications

and, more specifically, in the safety measures of these applications. As one of the

objectives is to perform a strength analysis of the structure, it is necessary to perform

extensive and accurate simulations of the air flow around the solar panel.

ANSYS Fluent software has been selected as the CFD program to perform the multiple

simulations. Choosing the right approach to simulate the flow is essential and is a

compromise between high accuracy and low computational cost. The following section

describes the complete process to obtain the results.

7.1.1 GEOMETRY AND BOUNDARY CONDITIONS
Before making the settings and choices in the CFD program, the environment in which

the solar panel will operate has to be chosen.

To do this it will start by setting the simulation speed. For ensuring that the resistance of

the structure the maximum air velocity value measured in Trondheim in the last 20 years

will be taken as the simulation air velocity value. The weather station selected for data

collection is located in Voll Trondheim. These maximum wind gust values can be seen in

Figure 52.

Figure 52: Historical of the maximum wind gust in Trondheim

The maximum wind speed recorded in Trondheim in the year 2021 has been 115 km/h

.Taking a safety margin of 5%, a wind speed of 120 km/h was assumed for the

simulations.

To simulate the environment around the structure, a limited volume can be made. This

can be seen in Figure 53.

Figure 53: Geometry model of the Ansys simulation

7.1.2 CHARACTERISTICS OF THE MESH
The accuracy, convergence and speed of the CFD simulations are highly dependent on

the mesh size and type. The mesh divides complex geometries into small elements used

to compute local approximations of the total domain. Choosing the fine mesh, will result

in higher accuracy, but leads to higher computational cost.

0
10
20
30
40
50
60
70
80
90

100
110
120
130

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

2
0

2
2

W
in

d
 s

p
ee

d
 (

km
/h

)

Year

Maximum wind gust

The CAD program is linked to the ANSYS Fluent meshing program[30]. This is possible by

exporting the geometry to IGES files, and generating a collection of faces. As a result,

the geometry must be repaired through the Spaceclaim software tool, which can now be

fully utilized in Fluent.

In this simulation, it is decided to generate a mesh refinement zone around the panel

that allows to obtain a finer mesh in the region of interest, while maintaining a

reasonable computational cost. The overall mesh size is chosen as 0.1m while the

refinement zone refines the mesh down to 0.05m, resulting in a total of 1.3 million mesh

elements. A cross section of the final mesh can be seen in Figure 54. A mesh check is

performed to ensure that the mesh is of sufficient quality.

Figure 54: Ansys simulation mesh

7.1.3 FLUID CONFIGURATION
A stable solver was chosen. Since the main interest is in the effect of air on the plate,

transient solvers are not necessary. With a stable solver, the calculation does not take

time into account and solves until convergence is reached. For more detailed studies on

the effect of the solar plate on the flow, a transient solver must be used to correctly

represent the time-varying behavior of the turbulence.

In addition, a decision must be made between a pressure-based or density-based solver.

Since the inlet velocity is kept below 120 km/h, the air could be treated as an

incompressible fluid. Since pressure-based solvers show higher accuracy in simulations of

incompressible flows, this option will be chosen. To converge the solution, different

methods can be selected. The default method for coupling velocity with pressure is

SIMPLE. Fluent also offers COUPLED. In cases where pressure and velocity are closely

coupled in a scenario, as in rotating machines, then COUPLED works best. In our case,

SIMPLE will be the appropriate numerical approach. For spatial discretization, the

parameters are kept by default. Only the gradient method is changed to Least Squares

Cell-Based which has higher accuracy than Green-Gauss Cell-Based. It also has

comparable accuracy to the Green-Gauss Node Based method for skewed and

unstructured meshes, but lower computational cost. The Green-Grauss Cell-Based

method could reduce the computational cost. However, in the end the computational cost

was low enough that higher accuracy in this method was opt to used.

In addition, our goal is to compute the forces on the plate due to wind. For this purpose,

multiple report definitions are performed. The faceplate is subdivided into four equal

squares and the average force on the face is calculated over 300 iterations in the

longitudinal direction. Finally, the simulation is initialized and run through 500 iterations

and checked for convergence.

7.1.4 RESULTS
These simulations have been repeated for 3 different combinations of elevation

inclination, 30°, 45° and 60°. In addition, two different wind directions have been

tested. One of them, both directions parallel to the horizontal plane. The first one crosses

the face where the panels are located and the other one is its opposite direction. In the

following image one can see the graphical pressure representation of the results of the

45º of inclination.

Figure 55: Ansys simulation pressure results

7.2 SAP2000
Once the data of the forces applied to the panel is obtained, the solar tracker designs are

modeled in SAP2000. SAP2000 is a finite element program, with a 3D object-oriented

graphical interface, prepared to perform, in a fully integrated way, the modeling, analysis

and dimensioning of the widest range of structures[31]. Due to the similarities in the

degree of rotation characteristics, the design based on Slew drivers and the design

proposed in this thesis will be modeled.

These have been the considerations that have been applied in both modalities:

• Like the simulation in ANSYS Fluent, the surface has been divided into 4

quadrants. This has totaled a surface area of 20m^2. For the incorporation of the

forces applied in each quadrant uniform surface loads have been assumed. In this

way the applied force was divided by the surface area of each quadrant.

• The joint joining the structure to the floor was assumed to be a perfect

embedment.

• The materials selected were a combination of aluminum for the frames supporting

the panel and S355 steel for the main tower.

• The self-weights have been considered for the calculation of the loads.

• In addition to the wind loads, a uniform gravity load of 40 cm of snow was

assumed. For this purpose, a snow density of 200kg/ m3 has been assumed. This

would result in a uniform load of 0.8KN/m^2. So, it has been incorporated as in

combination of loads together with the wind and self-weight loads. For this

purpose, the linear sum of loads has been chosen.

• For the selection of frames, the European standard has been chosen.

These have been the considerations that have been applied in the modulization of the

slew driver design:

• A perfect transmission of forces and moments in the slew driver has been

assumed, so it has been modeled as a continuous element.

• The join joining the panel to the main tower has been implemented as a hinge

that allows rotation in the Y-axis.

• The join joining the structure to the floor has been assumed as a perfect

embedding.

• The join between the actuator and the panel has been implemented as a hinge

that allows rotation in the Y-axis.

These have been the considerations that have been applied in the modulization of the

design proposed in this thesis:

• The joins joining the panel to the main tower have been implemented as a swivel

that allows rotation in the Y and X axis.

• The joins joining the cables to the ground have been implemented as ball joints

allowing rotation in the Y and X axis.

• The joins connecting the cables to the panel are implemented as swivel joints

allowing rotation in the Y- and X-axis.

• For the cable geometry it has been chosen to select a relative undeformed length

of 1.01. This ensures that the cable fixes the position of the panel. This also

means a maximum cable elongation of 1%. In this way the resulting axial in the

cables would reflect the tension in the cable that the motor would have to apply to

maintain the support tilted for the simulated load and angle conditions.

• The loads have been simulated as nonlinear, as this is necessary for the cables to

behave as such and not as frames. In this way, the cables only work at traction.

This simulation of non-linear loads means that the simulation has an iterative

character until a convergent solution is found.

These models have been repeated for each of the three different angle combinations

30º, 45º and 60º with the six load combination cases. In the following image one can

see themeshing of both designs for the 45º inclination models

Figure 56: Sap2000 geometry simulation models

7.2.1 SIMULATION RESULTS
The results of the simulations allow us to observe the moment, deformation, and stress

distributions of both models.

The following image shows the deformed shape of both models with a scale factor applied

so that the deformations can be seen. Both images correspond to the cases of headwind

and 45° tilt, for both designs.

Figure 57: Deformed shape results of the structural models

In the following one can see the optimal sections selected within the European standard

of square frames for the cases of headwind and 45° tilt for both designs.

Figure 58: Optimal frame results of the structural models

The following image shows the axial force diagrams for the case of frontal wind and 45º

degrees of inclination:

Figure 59: Axial force diagrams

The following table shows the maximum axial loads measured in the cables for the 6

types of load cases analyzed in the solar tracker model proposed in this thesis.

Headwind

Case

Backwind

Case

60º 6.12 kN 6.33 kN

45º 6.25 kN 6.58 kN

30º 5.7 kN 6.01 kN

Table 4: Maximum cable forces results

Two main conclusions can be drawn from the simulations in Sap2000:

• There are no major differences in the calculated optimum cross-sections between

the different calculated scenarios, so it can be inferred that the structural

requirements are the same and therefore similar material costs can be assumed.

• The largest axial stress suffered in the cables was 6.58 kN, so this is the

maximum force to be applied by a motor per support.

7.3 MANUFACTURING COST ANALYSIS
There are multiple variables that affect the final manufacturing costs. For this reason, it

is necessary to analyze how these variables interact with each other, in order to select an

optimal budget.

To do this it will start by determining the equation that will define the maximum number

of supports that can be connected to an array. Secondly, the equation that determines

the relationship between the number of solar trackers in an array and the amount of

cable needed will be determined. Third, the relationship between the wind speed and the

maximum axial load on the cables will be defined. In this way a maximum operating

speed can be determined. Fourth, the manufacturing costs of a commercially available

two-axis solar tracker will be presented. Part of these costs will be taken as variables for

the determination of the manufacturing costs of the proposed design. Fifth, the equation

relating all the variables will be determined in order to obtain a manufacturing cost

estimate. Sixth, the variables will be set in order to obtain a final manufacturing cost

estimate.

7.3.1 NUMBER OF SOLAR TRACKERS PER ARRAY
For the calculation of the number of solar trackers that can be moved per array, 3

conditions will be assumed:

• Model 52HT102-5003S will be taken as the stepper motor. This has the highest

torque in the market at 50Nm.

• A reduction gearbox can be included. This will increase the torque by a factor that

can vary between 1 and 100.

• The inside diameter of the drum will be taken as 10cm.

In addition, it must be considered that the Sap 2000 model does not consider the double

sheave system present in the proposed design. These systems allow to double the

applied force. Thus, the axial load obtained from the simulation on the cables must be

divided by two to obtain the real tension in the cable.

Taking these considerations into account, these are the equations:

𝑀𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑡𝑜𝑟𝑞𝑢𝑒⁡𝑜𝑛⁡𝑑𝑟𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑡𝑜𝑟𝑞𝑢𝑒⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑠𝑡𝑒𝑝𝑝𝑒𝑟𝑚𝑜𝑡𝑜𝑟 × 𝐺𝑒𝑎𝑟⁡𝑏𝑜𝑥⁡𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛⁡𝑓𝑎𝑐𝑡𝑜𝑟

𝐶𝑎𝑏𝑙𝑒⁡𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑁) =
𝐴𝑥𝑖𝑎𝑙⁡𝑓𝑜𝑟𝑐𝑒⁡𝑎𝑡⁡𝑡ℎ𝑒⁡𝑐𝑎𝑏𝑙𝑒(𝑁)

2

𝑀𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑝𝑎𝑛𝑒𝑙𝑠⁡𝑝𝑒𝑟⁡𝑎𝑟𝑟𝑎𝑦⁡ =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑡𝑜𝑟𝑞𝑢𝑒⁡𝑜𝑛⁡𝑑𝑟𝑢𝑚(𝑁𝑚)

𝐷𝑟𝑢𝑚⁡𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝑚) × 𝐶𝑎𝑏𝑙𝑒⁡𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑁)

𝑀𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑝𝑎𝑛𝑒𝑙𝑠⁡𝑝𝑒𝑟⁡𝑎𝑟𝑟𝑎𝑦⁡ =
50 × 𝐺𝑒𝑎𝑟⁡𝑏𝑜𝑥⁡𝑓𝑎𝑐𝑡𝑜𝑟

0.01 × 𝐶𝑎𝑏𝑙𝑒⁡𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑁)
=
5000 × 𝐺𝑒𝑎𝑟⁡𝑏𝑜𝑥⁡𝑓𝑎𝑐𝑡𝑜𝑟

𝐶𝑎𝑏𝑙𝑒⁡𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑁)

7.3.2 CALCULATION OF THE AMOUNT OF CABLE REQUIRED
Calculating the distance between supports is fundamental for the sizing of the required

meters of cable.

The distance between supports is determined by the condition of not blocking each

other's sunlight between solar supports. This condition is in turn determined by the

elevation turning limit of the support and the dimensions of the support. The elevation

turning limit of the prototype is 80, therefore, it can work optimally for solar elevation

degrees between 10 and 90 degrees. The lower the degree of elevation of the sun the

more shade to produce, so 10 degrees has been taken as the angle for the calculation of

distances between panels. As for the dimensions of the supports, these will be the same

as those implemented in the Sap2000 models mentioned above. The following image

shows a representation of the dimensions involved in the calculations.

Figure 60: Profile dimensions of the full-scale model

Dimensions:

• Panel profile (PP)= 6 m

• Elevation angle (EA)= 10º.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑏𝑒𝑡𝑤𝑒𝑒𝑛⁡𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠 =
6 ×⁡(Cos(10))2

sin⁡(10)
+ 6 × sin(10) = 34.55𝑚

For the calculation of the required cable it will opt for an in-line model in which the motor

system is positioned in the middle of the 14 supports. In this way there will be 7

supports at the rear and 7 at the front.

Necessary variables for the calculation of the required cable:

• Maximum distance between upper and lower pulleys (PD)=4m

• Distance between supports (SD)=34.55m

• Number of supports at the rear (RS)

• Number of supports at the front (FS)

• Number of motors (NM)=4

𝑇𝑜𝑡𝑎𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠⁡(𝑛)

2
= 𝑅𝑆 = 𝐹𝑆

𝑇𝑜𝑡𝑎𝑙⁡𝑐𝑎𝑏𝑙𝑒⁡𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑⁡(𝑇𝐶𝑅) = 𝑁𝑀 × (∑(𝑛 × 𝑆𝐷 + 2 × 𝑃𝐷)

𝑅𝑆

𝑖=0

+∑(𝑛 × 𝑆𝐷 + 2 × 𝑃𝐷))

𝐹𝑆

𝑖=0

𝑇𝑜𝑡𝑎𝑙⁡𝑐𝑎𝑏𝑙𝑒⁡𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑇𝐶𝑅) = 2 × 𝑁𝑀 ×∑(𝑛 × 𝑆𝐷 + 2 × 𝑃𝐷)

𝑛
2

𝑖=0

𝑇𝑜𝑡𝑎𝑙⁡𝑐𝑎𝑏𝑙𝑒⁡𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑇𝐶𝑅) = 2 × 4 ×∑(𝑛 × 34.55 + 2 × 4)

𝑛
2

𝑖=0

7.3.3 MANUFACTURING COST OF THE MARKET MODEL ST2408PH
To perform the cost comparison, the manufacturing cost data of the solar tracker model

ST2408PH, from Suntrack Nordic AS, will be used[11]. This is a two-axis solar tracker. It

supports a maximum solar panel area of 20𝑚2 , like the simulated models. This model is

an example of a design based on Slew drivers. It supports 300 degrees of azimuth

rotation and 70 degrees of elevation. The specification sheet for this model can be found

on p.109 for more information. The following table shows the manufacturing costs for

each ST2408PH:

Number Resource description Quantity Unit Unit cost Total cost

1 Control system 1 Ud. 15.000 kr 15.000 kr

2 Actuators (Circular and

linear)

1 Ud. 20.000 kr 20.000 kr

3 Steel structure 1 Ud. 25.000 kr 25.000 kr

4 Seafreight to Norway 1 Ud. 33.000 kr 33.000 kr
93.000 kr

Table 5: Manufacturing costs of the two-axis solar tracker model ST2408PH

BUDGET EQUATION

For the generation of a construction budget for the design proposed in this thesis, the

following considerations have been taken:

• For the specifications, a 4 mm diameter cable with a breaking carcass of 16 kN

(more than 4 times the maximum tension in the cable) has been dimensioned.

• For the poles, double pole models with maximum loads of 10 kN have been

selected.

• The same unit costs have been taken for the control system. This is because both

designs can be controlled by very similar systems. The main difference is that in

the design of this thesis only one support is controlled and the others function as

mirror supports, requiring one control system for every n supports. In the event

that one of the supports was not aligned correctly, this could be detected by

individually monitoring the energy production of each support.

• The same unit costs have been taken for the steel structure. This is mainly

because the optimal structural cross-sections calculated in Sap2000 are the same.

• The same unit costs have been taken for the seafreight to Norway.

These are the variables that affect the budget:

• Control system (CS): 15000kr per array.

• Three phase Nema 52 stepper (NS): 20000kr per stepper,4 per array.

• 4mm braided steel cable (SC): 3.7kr per meter.

• Gearbox reducer (GR): 4000kr per gearbox, 4 per array.

• 10 cm lathed drum(D): 4000kr per drum, 4 per array.

• Double pulley 50 mm capacity 10000N (DP): 312.2kr per pulley, 8 pulleys per

solar tracker.

• Steel structure (SS): 25000 kr per structure, one steel structure per solar tracker.

• Seafreight to Norway (SN): 33000 kr per Seafreight, one per solar tracker.

• Number of solar trackers per array (n)

• Total cable required (TCR)

• Budget for the proposed design (BPD)

𝐵𝑃𝐷 = 𝐶𝑆 + 𝑁𝑆 × 4 + 𝑆𝐶 × 𝑇𝐶𝑅 + 𝐺𝑅 × 4 + 𝐷 × 4 + 𝐷𝑃 × 8 × 𝑛 + 𝑆𝑆 × 𝑛 + 𝑆𝑁 × 𝑛

𝐵𝑃𝐷(𝑛) = 15000 + (20000 + 4000 + 4000) × 4 + 3.7 × 2 × 4 ×∑(𝑛 × 34.55 + 2 × 4)

𝑛
2

𝑖=0

+ (312.2 × 8

+ 25000⁡ + 33000)

7.3.4 BUDGET COMPARATION
Since the manufacturing budget of the proposed design does not vary linearly with the

number of solar trackers (n), it will be compared with its market counterpart with respect

to n.

As the market model analyzed incorporates everything necessary for its operation, it can

be assumed that the manufacturing cost will vary linearly with the number of solar

tracks. This is the following equation represents the manufacturing budget of the

ST2408PH (BMM) model versus n:

𝐵𝑀𝑀 = 93000 × 𝑛

The following graph shows the evolution of the manufacturing costs of both models as a

function of the number of solar trackers.

Figure 61: Variation of the manufacturing costs with the number of solar trackers

If a relative comparison is made between the manufacturing costs of the proposed model

and the costs of its market counterpart, the improvements in cost reduction can be

better observed.

The following graph shows this relative improvement in manufacturing costs.

Figure 62: Variation of the relative improvement in manufacturing cost with the number

of solar trackers

Two main conclusions can be drawn from this relative comparison:

• The proposed model is cheaper to manufacture for arrays ranging from 4 to 212

solar trackers in series.

• The relative cost improvement has a maximum of 25.55% when reaching 30

trackers per array.

0 million kr

5 million kr

10 million kr

15 million kr

20 million kr

25 million kr

30 million kr

35 million kr

0 50 100 150 200 250 300 350

Number of solar trackers

Manufacturing budget comparison

Porpose desing

Market desing

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

0 20 40 60 80 100 120 140 160 180 200 220 240

Number of solar trackers

Relative improvement in manufacturing costs

7.4 MANUFACTURING BUDGET PROPOSAL
For the realization of a cost estimate, the number of solar trackers per array (n) must be

determined. This is determined by the balance between the forces that can be exerted by

the driving system and the forces experienced by the support when exposed to a given

load case. For this reason, in this section it will be analyzed how the characteristics of the

drive system and the determination of the limiting operating loads affect n, and therefore

the manufacturing costs. In 𝐵𝑃𝐷(𝑛)⁡formula it can be seen that the determination of the

maximum number of panels per array depends on the gear factor and the cable tension.

This analysis will define the relationship between wind speed and cable tension, an

operating speed and the relationship between the gearbox reduction factor and the

number of trackers.

7.4.1 EFFECT OF WIND SPEED ON THE LOADS
The wind speed directly affects the wind load applied on the panels. This in turn directly

affects the maximum simulated axle in the cables, and therefore the cable tension. And

as already shown, this tension affects the number of panels that can be connected per

array. Finding the relationship between these variables would allow us to know how the

determination of a wind speed limit affects the final manufacturing cost. Above this limit

the panels would be positioned in a more aerodynamic and therefore safer position. This

would involve running multiple simulations in Ansys Fluent for each wind speed. Then

their results would have to be implemented in Sap2000, in order to obtain the tensions in

the cables. Due to the high computational cost of running the simulations in Ansys, it has

chosen to assume that the forces experienced by the panels are as follows with respect

to the wind speed:

𝐹𝐷 =
1

2
𝜌𝐴𝐶𝐷𝑣

2

𝐹𝐷⁡represents the magnitude of the c, which is proportional to the square of the wind

speed (for static objects). 𝐶𝐷 is the drag coefficient, this depends on the geometry o the

object. A is the projected area on the wind direction plane. ρ is the density of the fluid.

The variables⁡𝐶𝐷 , 𝐴⁡and ρ will be considered as constant. In order to keep the same force

distribution as in the simulated one for a wind speed of 120 km/h, 4 different drag

coefficients will be calculated (one for each quadrant).

𝐶𝐷𝑞 =
𝐹𝑚𝑎𝑥,𝑞

1
2
𝜌𝐴𝑄𝑣𝑚𝑎𝑥

2

A𝑞 =
𝑡𝑜𝑡𝑎𝑙⁡𝑠𝑢𝑟𝑓𝑎𝑐𝑒⁡𝑎𝑟𝑒𝑎

𝑛𝑢𝑚𝑏𝑟𝑒⁡𝑜𝑓⁡𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑠
× Cos(Elevation⁡angle) =

20m2

4
× 𝐶𝑜𝑠(45º)

𝐹𝐷𝑄𝑛 =
1

2
𝜌𝐴𝑞𝐶𝐷𝑞𝑣𝑛

2

Once the force values for each quadrant and each speed have been obtained, these

forces must be translated into uniform loads so that they can be added in Sap2000. In

this way the tensions in the cable can be obtained. The following graph shows the

relationship between wind speed and maximum cable tension.

Figure 63: Effect of the wind speed in the maximum cable tension

7.4.2 DETERMINATION OF THE SPEED LIMIT FOR OPERATION
The maximum mean wind speed (24h) data for the last 20 years have been collected to

select a limiting operating speed. In other words, these data would indicate the

maximum mean sustained wind speeds that have been measured in a day, and not the

wind gust data (tgust<<<tmaximun mean). The distribution of these data was then

analyzed by grouping the data into ranges with wind speed increments of 2.5 km/h. This

distribution can be seen in the Figure 64. The left axis shows the probability that the

maximum mean wind speed of any given day will take a value within the range. The right

axis shows the probability that the solar tracker has to stop at least once a day. The

weather station selected for data collection is in Voll Trondheim.

y = 0.2294x2 - 0.1859x + 3.6135
R² = 1

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120 140

M
ax

im
u

m
 c

ab
le

 t
en

si
o

n
 (

N
)

Wind speed (km/h)

Maximum cable tension/Wind speed

Figure 64: Histogram of the maximum mean wind speed (24 h) of Trondheim

For the determination of the final budget, the operating speed limit will be set at 30km/h.

With this speed, there is a 92% probability of uninterrupted daily operation. In addition,

this operating speed is similar to the operating speed limit of the ST2408PH model, which

makes the cost comparison fairer.

7.4.3 SELECTION OF GEARBOX REDUCTION FACTOR
Taking the results of the last two sections, it can be deduced that for + a wind speed of

30 km/h, the tension in the cables is 209.88N. Setting this tension in the cables as the

limiting operating tension, it is possible to infer a straight relation between the gear

factor and the number of trackers in an array.

𝑀𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑝𝑎𝑛𝑒𝑙𝑠⁡𝑝𝑒𝑟⁡𝑎𝑟𝑟𝑎𝑦⁡ =
50 × 𝐺𝑒𝑎𝑟⁡𝑏𝑜𝑥⁡𝑓𝑎𝑐𝑡𝑜𝑟

0.01 × 𝐶𝑎𝑏𝑙𝑒⁡𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑁)

𝑀𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑝𝑎𝑛𝑒𝑙𝑠⁡𝑝𝑒𝑟⁡𝑎𝑟𝑟𝑎𝑦⁡ =
5000 × 𝐺𝑒𝑎𝑟⁡𝑏𝑜𝑥⁡𝑓𝑎𝑐𝑡𝑜𝑟

209.88
= 2.392 × 𝐺𝑒𝑎𝑟⁡𝑏𝑜𝑥⁡𝑓𝑎𝑐𝑡𝑜𝑟

With this equation the Figure 65 has been obtained. It shows the relationship between

the gear box factor, the number of solar trackers per array and the wind speed.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

[0
;2

.5
]

[2
.5

;5
]

[5
;7

.5
]

[7
.5

;1
0

]

[1
0

;1
2

.5
]

[1
2

.5
;1

5
]

[1
5

;1
7

.5
]

[1
7

.5
;2

0
]

[2
0

;2
2

.5
]

[2
2

.5
;2

5
]

[2
5

;2
7

.5
]

[2
7

.5
;3

0
]

[3
0

;3
2

.5
]

[3
2

.5
;3

5
]

[3
5

;3
7

.5
]

[3
7

.5
;4

0
]

[4
0

;4
2

.5
]

[4
2

.5
;4

5
]

[4
5

;4
7

.5
]

[4
7

.5
;5

0
]

[5
0

;5
2

.5
]

[5
2

.5
;5

5
]

[5
5

;5
7

.5
]

[5
7

.5
;6

0
]

[6
0

;6
2

.5
]

[6
2

.5
;6

5
]

P
er

fo
rm

an
ce

 s
h

u
td

o
w

n
 p

ro
b

ab
ili

ty

Fr
eq

u
en

cy

Wind speed (km/h)

Histogram of the maximum mean wind speed (24 h)

Figure 65: Effect of the gearbox reduction factor in the number of solar trackers per

array

For the determination of the gear box reduction factor, two aspects will be taken into

account

• The price of the gear box increases with the gear box factor. This is because the

higher the reduction factor, the greater the complexity and the greater the forces

experienced by the internal gears.

• The graph of sown in Figure 62 will be taken into account, which reflects the

relative improvement in manufacturing costs with respect to the number of

followers in an array.

For an operating wind speed limit of 30 km/h and considering the two factors mentioned

above, the gearbox factor has been set at 1:5. Finally, a total of 16 followers per array

were obtained.

7.4.4 PROPOSED MANUFACTURING BUDGET
Number Resource description Quantity Unit Unit cost Total cost

1 Control system 1 Ud. 15.000 kr 15.000 kr

2 Nema 52 3-phase Stepper Motor

Bipolar 50 Nm

4 Ud. 20.000 kr 80.000 kr

3 4mm steel braided cable 41872 m 3,7 kr 154.926.4 kr

4 Gearbox reducer 1:5 4 Ud. 4.000 kr 16.000 kr

5 10 cm lathed drum 4 Ud. 4.000 kr 16.000 kr

6 Double pulley 3” capacity

1000Kg

128 Ud. 312,2 kr 39.961.6 kr

7 Steel structure 16 Ud. 25.000 kr 400.000 kr

8 Seafreight to Norway 16 Ud. 33.000 kr 528.000 kr

1.249.888 kr

Table 6: Proposed manufacturing budget

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

10 20 40 60 80 100 120

N
u

m
e

r
o

f
so

la
r

tr
ac

ke
r

p
e

r
ar

ra
y

Wind speed(km/h)

Reduction gearbox 1:100

Reduction gearbox 1:100

Reduction gearbox 1:50

Reduction gearbox 1:20

Reduction gearbox 1:10

Reduction gearbox 1:5

Without gearbox

Following the line of reasoning described above, the proposed budget would be 23.5%

cheaper than its market counterpart.

CHAPTER 8: LIMITATIONS

8.1 LIMITATIONS IN THE DEVELOPMENT OF THE PROTOTYPE
The limitations that have affected the development of the prototype can be seen

reflected in the following factors:

• Only one 3D printer was available for the development of a small-scale model.

This lengthened the iterative process described in the section SOLAR STAND

STRUCTURE4.1.

• There have been weeks of delays in the arrival of purchased parts, especially the

force sensitive resistors.

• It was not possible to incorporate the multiplexer in the final testing of the

prototype. The purpose of the multiplexer was to increase the analog inputs of

the Arduino Mega. For this reason, it was not possible to incorporate all the

combinations of the motion algorithms with a single code.

• It has not been possible to build a scale prototype due to problems with NTNU's

manufacturing laboratory being overloaded with other projects. Because of this, it

has not been possible to demonstrate the effectiveness of a full-scale prototype

outdoors.

8.2 IMPROVEMENT PROPOSALS
The following improvements have been proposed for the proposed design.

• Incorporation of a wind sensor: this sensor would allow the behavior of the

support in different wind speeds. The minimum tension of the cables could be

modified in cases of low wind speeds, thus reducing the consumption of the

servomotor. It would also allow to set a wind speed from which the support could

be positioned in a safe state.

• Design of a storage system that allows to feed back the energy produced to move

the servomotors for isolated photovoltaic plants.

• Design to implement a positioning check system that uses the positioning

algorithm that is not in use to check the other one, and in case of discrepancy

implement a warning system.

• Implement a visual web system based on graphs that allows one to check the

performance of the solar tracker. The Google spreadsheet created to collect the

data could be used as a database.

• Implement improvements in the electrical connections of the sensors in order to

test the outdoor design.

• Implement a code that transforms the elevation and azimuth angles of the

prototype axes into real values of angular positions of the sun. For this it is

proposed to use the same scheme used in the development of the Matlab

simulation.

8.3 ASSUMPTIONS IN THE DEVELOPMENT OF THE DISCUSSION
The discussion described in this thesis should be taken as a preliminary study and not as

a complete study. This is due, in part, to the various assumptions that have been made

in performing the analyses. These assumptions can change the balance sheet costs.

These are some these assumptions:

• The fluid and structural analyses have been based on simplified models and only 3

different panel positions have been considered. To increase the reliability of these

analyses, more combinations of both wind positions and wind directions should be

simulated. The reason for the limited number of simulated combinations was the

high computational demand of the fluid simulations. Each simulation required an

average of 50 hours of computation. This added to the fact that these simulations

have been performed in the last stage of the development of the thesis and it has

been decided to limit the number of different simulations to 6. This could

presumably increase the costs of the proposed design if a more critical cable

stress case is encountered.

• Structural analyses do not include dynamic load studies. For this reason, the

fatigue resistance of the calculated optimum sections cannot be assured.

• In the budgeting of the design proposed in this thesis, costs associated with

sensors have not been directly detailed. These have been assumed to be within

the control system costs. This could presumably modify the costs of the proposed

design, since both designs make use of different types of sensors.

• The comparison has been carried out with only one actual model of solar tracker

on the market. This in a very small sample size. From a statistical point of view

this does not give a high reliability in the extrapolation of the comparison to the

total market designs.

• Although the performance of the prototype has been demonstrated on a small

scale, it has not been tested on a full scale. In the process of full-scale

construction of the design, various problems may be discovered that require the

incorporation of new devices, which would increase the cost.

Future lines of research should be conducted to demonstrate the superiority of this

model.

CHAPTER 9: CONCLUSION

The centralization of motion and control systems has proven to be a viable concept. This

has been demonstrated by building and testing the performance of a small-scale model.

In addition, it has been possible to successfully establish a web platform for the control

and monitoring of the prototype. The prototype also meets the turning degree targets

because it has 360º of azimuth turn and 80º of elevation turn. From the testing and

prototype design, the following findings should be highlighted:

• The premise of being able to use two motors due to tension conservation has

been proven incorrect. In contrast, a drive system design based on 4 different

motors has been chosen.

• The relative positioning of the pulleys and shafts directly affects the degree of

rotation of the tracker.

• The performance of the algorithm based on photoresistors has been tested.

• The performance of the algorithm based on the online calculation of the position

of the sun based on geographical position data has been proven.

• The performance of the algorithm based on the use of potentiometers has been

proven.

• The performance of the position algorithm based on motor step tracking has been

proven.

• Position algorithms based on potentiometers are slower and less accurate than

position algorithms based on step tracking

• Position algorithms based on potentiometers are more robust than those based

on step tracking.

From the dimensioning of the full-scale model the following findings can be highlighted:

• Of the six scenarios simulated in the discussion, the most critical one turned out

to be the case of back wind and a 45° inclination.

• For a simulation speed of 120km/h, maximum cable stresses of 3.29kN were

measured.

• The structural section requirements of the presented model and the ST2408PH

model are identical.

• The number of panels in series that can be arranged in an array varies

quadratically with the limiting operating wind speed.

Regarding the described conditions the presented design reduces the manufacturing

costs with respect to its market counterparts. This is based on two findings:

• The manufacturing cost reduction depends on the number of trackers per array.

This has a maximum peak relative cost reduction of 25.5% when the number of

trackers is 30. For manufacturing budget of the proposed full-scale model reduces

by 23.5% its relative manufacturing costs with respect to ST2408PH model

• The number of solar trackers in series should be between 5 and 212 in order to

have lower manufacturing cost values than the solar tracker model ST2408PH.

For future lines of research, improvements are proposed in section 8.2.

CHAPTER 10: BIBLIOGRAPHY

1. Babota, F., INCREASE ENERGY EFFICIENCY AND COMFORT IN HOMES BY INCORPORATING
PASSIVE SOLAR DESIGN FEATURES. Bulletin of the Polytechnic Institute of Jassy,
CONSTRUCTIONS. ARCHITECTURE Section, 2014. 60: p. 175-186.

2. Schroeder, D.V., The Sun and the Seasons. 2011, Weber State University:
https://physics.weber.edu/.

3. Patil, K., et al., Dual Axis Solar Tracker with Cleaner. International Journal for Research in
Applied Science and Engineering Technology, 2022. 10: p. 1253-1256.

4. Position, S.; Available from: https://www.sunearthtools.com/.
5. huayue, HYS-12PV-78-LSD Solar Tracking Solar Controller Dual Axis Solar Pv Tracker Sun

Tracking. 2016.
6. saVRee, 3D Technical Animation - Dual Axis Solar Tracking System. 2019.
7. Lewandoski, C., R. Ferreira Santos, and A. Ikpehai, THE ADVANTAGES OF SOLAR TRACKER.

International Journal of Environmental Resilience Research and Science, 2021. 3.
8. Council, C.E., Solar Tracking in Australia.
9. Hashim, I., A. Ismail, and M. Azizi, Solar Tracker. International Journal of Recent Technology

and Applied Science, 2020. 2: p. 59-65.
10. Soni, V. and N. Singh, Solar Energy Pricing. 2021. p. 217-229.
11. Løvmo, E., Manufacturing costs of the two-axis solar tracker model ST2408PH. 2022:

Suntrack Nordic AS.
12. Pang, X., et al., Polylactic acid (PLA): Research, development and industrialization.

Biotechnology journal, 2010. 5: p. 1125-36.
13. Beriber, D. and A. Talha, MPPT Techniques for PV Systems. 2013.
14. Types of Electric Motors – Classification of AC, DC & Special Motors. Electrical Technology.
15. Banzi, M., Getting Started with Arduino: The Open Source Electronics Prototyping Platform

2015: Make Community, LLC;.
16. Stroustrup, B., The C++ Programming Language. 2013: Addison-Wesley Professional;.
17. Teja, R., Arduino Mega Arduino Mega Pinout | Arduino Mega 2560 Layout, Specifications.

2021: Electronics Hub.
18. Fahad, E., Arduino CNC Shield V3.0 and A4988 Hybrid Stepper Motor Driver + Joystick. 2020.
19. A4988 Stepper Motor Driver Carrier.
20. Koyanagi, F., Arduino MEGA 2560 With WiFi Built-in - ESP8266. 2015: Instructables.
21. MATLAB Programming Fundamentals for R2022a. 2022: Mathworks.
22. Goupillière, Pulleys. Lego maquinas alm jm.
23. Automotive, J., SCHERDEL: constant force and power springs.
24. MAKE NTNU. 2022.
25. Sealey, W., The Audio Noise of Transformers. American Institute of Electrical Engineers,

Transactions of the, 1941: p. 109-112.
26. Forbes, A., The Joy of PHP: A Beginner's Guide to Programming Interactive Web Applications

with PHP and mySQL. 2012: BeakCheck LLC;.
27. Michalsky, J., The Astronomical Almanac's algorithm for approximate solar position (1950–

2050). Solar Energy, 1988. 40: p. 227-235.
28. Portnoy, A., Learning Google-app-script. 2018, riptutorial.com: Strack Overflow contibutors.
29. Commanderfranz, Fritzing - a Tutorial. 2017, instructables.
30. ANSYS Fluent Tutorial Guide 2021 R1. 2021: Ansys Europe.
31. Linear and Nonlinear Static and Dynamic Analysis and Design of Three-Dimensional

Structures Vol. Introductory Tutorial for SAP2000. 2011: Computers and Structures, Inc.

https://physics.weber.edu/
https://www.sunearthtools.com/

CHAPTER 11: APPENDIX

11.1 PROTOTYPE PARTS

List of components:

1. LCW50US12 - Switched-Mode Power Supply

2. Stepper motor 17HS15-1504S

3. A4988 stepper motor driver

4. CNC Shield V3.0

5. 2717 - I2C Multiplexer

6. Arduino Mega 2560

7. ESP01 Wi-Fi module

8. NodeMCU V3.0 module

9. Potentiometer 3852A-282-103AL

10. Current sensor ACS70331

11. LDR

12. Solar panel PRT-16835

13. Force Sensitive Resistor SEN-09375

11.1.1 1. LCW50US12 - SWITCHED-MODE POWER SUPPLY

STEPPER MOTOR 17HS15-1504S

11.1.2 9. POTENTIOMETER 3852A-282-103AL

11.1.3 10. CURRENT SENSOR ACS70331

11.2 PROGRAMMING CODES

11.2.1 MATLAB SIMULACION CODE
%Rotation angles in degrees

THETAz =0;

ALPHAx =0;

BETAY =0;

%Reference points for the position THETAz =0; ALPHAx =0;

BETAY =0;

Panel_reference_point=88.66;

P1 = [0 ; 0 ; -Panel_reference_point];

P2 = [Panel_reference_point ; 0 ; 0];

P3 = [-Panel_reference_point ; 0 ; 0];

P4 = [0; 0 ; Panel_reference_point];

%Definition of lower pulley positions

Pulleydistance=92/2;

Pulley1=[0 ; 0 ; -Pulleydistance];

Pulley2=[Pulleydistance ; 0 ; 0];

Pulley4=[0; 0 ; Pulleydistance];

Pulley3=[-Pulleydistance; 0 ; 0];

%Definition sice of elements

MainTower_height=[0 95 0];

Distace_rotula_Yaxis_Xaxis=[0;49.52;0];

Distace_rotula_Xaxis_panel=[0;3.27;0];

%Rotational matrices

Rx = [1 0 0 ; ...

 0 cosd(ALPHAx) -sind(ALPHAx) ; ...

 0 sind(ALPHAx) cosd(ALPHAx)];

Rz = [cosd(THETAz) -sind(THETAz) 0 ; ...

 sind(THETAz) cosd(THETAz) 0 ; ...

 0 0 1];

%Vector rotation

Pf1 = Rx*Rz*P1

Pf2 = Rx*Rz*P2

Pf3 = Rx*Rz*P3

Pf4 = Rx*Rz*P4

Axisf1= Rx*Distace_rotula_Yaxis_Xaxis

Axisf2= Rx*Rz*Distace_rotula_Xaxis_panel

hold on;

%Calculation and drawing of the vectors from the main

tower to the X-axis of the rotula

Vectoraxis1=[Axisf1(1) Axisf1(2) Axisf1(3)];

Plotaxis1=drawVector(MainTower_height, Vectoraxis1, 'm');

Endpointaxis1=[(MainTower_height(1)+Vectoraxis1(1))

(MainTower_height(2)+Vectoraxis1(2))

(MainTower_height(3)+Vectoraxis1(3))];

hold on

%Calculation and drawing of the vectors from the X-axis to

the panel of the rotula

Pos_rotaxis2=[Endpointaxis1(1) Endpointaxis1(2)

Endpointaxis1(3)];

Vectoraxis2=[Axisf2(1) Axisf2(2) Axisf2(3)];

Plotaxis2=drawVector(Pos_rotaxis2, Vectoraxis2, 'blue');

Endpointaxis2=[(Pos_rotaxis2(1) +Vectoraxis2(1))

(Pos_rotaxis2(2) +Vectoraxis2(2)) (Pos_rotaxis2(3)

+Vectoraxis2(3))];

hold on

%Calculation and drawing of the turned panel vectors

Pointspanel=[Endpointaxis2(1) Endpointaxis2(2)

Endpointaxis2(3) ;Endpointaxis2(1) Endpointaxis2(2)

Endpointaxis2(3) ;Endpointaxis2(1) Endpointaxis2(2)

Endpointaxis2(3) ;Endpointaxis2(1) Endpointaxis2(2)

Endpointaxis2(3)];

Vectorpanel=[Pf1(1) Pf1(2) Pf1(3);Pf2(1) Pf2(2) Pf2(3)

;Pf3(1) Pf3(2) Pf3(3) ;Pf4(1) Pf4(2) Pf4(3)];

Plotpanel=drawVector(Pointspanel, Vectorpanel, 'red');

hold on

%Calculation and drawing of the vectors that contain main

tower and the pulleys positions

Ptower= [0 ; 0 ;0];

Pos2=[0 ; 0 ;0];

Pointssuport=[Ptower(1) Ptower(2) Ptower(3);Pos2(1)

Pos2(2) Pos2(3);Pos2(1) Pos2(2) Pos2(3);Pos2(1) Pos2(2)

Pos2(3);Pos2(1) Pos2(2) Pos2(3)]

Vectorsuport=[MainTower_height(1) MainTower_height(2)

MainTower_height(3) ;Pulley1(1) Pulley1(2)

Pulley1(3);Pulley2(1) Pulley2(2) Pulley2(3);Pulley3(1)

Pulley3(2) Pulley3(3);Pulley4(1) Pulley4(2) Pulley4(3)]

Plotsuport=drawVector(Pointssuport, Vectorsuport, 'red');

hold on

%drawing of the axes

xlabel('X')

ylabel('Y')

zlabel('Z')

daspect([1 1 1])

%calculation of the distances between upper and lower

pulleys

Prodesc1= dot(Pf1,Pf2)

Prodesc2= dot(Pf1,Vectoraxis2)

Endpointpf1=[(Endpointaxis2(1)+Pf1(1))

(Endpointaxis2(2)+Pf1(2)) (Endpointaxis2(3)+Pf1(3))]

Endpointpf2=[(Endpointaxis2(1)+Pf2(1))

(Endpointaxis2(2)+Pf2(2)) (Endpointaxis2(3)+Pf2(3))]

Endpointpf3=[(Endpointaxis2(1)+Pf3(1))

(Endpointaxis2(2)+Pf3(2)) (Endpointaxis2(3)+Pf3(3))]

Endpointpf4=[(Endpointaxis2(1)+Pf4(1))

(Endpointaxis2(2)+Pf4(2)) (Endpointaxis2(3)+Pf4(3))]

Distance1=((Endpointpf1(1)-Pulley1(1))^2 +(Endpointpf1(2)-

Pulley1(2))^2+(Endpointpf1(3)-Pulley1(3))^2)^0.5

Distance2=((Endpointpf2(1)-Pulley2(1))^2 +(Endpointpf2(2)-

Pulley2(2))^2+(Endpointpf2(3)-Pulley2(3))^2)^0.5

Distance3=((Endpointpf3(1)-Pulley3(1))^2 +(Endpointpf3(2)-

Pulley3(2))^2+(Endpointpf3(3)-Pulley3(3))^2)^0.5

Distance4=((Endpointpf4(1)-Pulley4(1))^2 +(Endpointpf4(2)-

Pulley4(2))^2+(Endpointpf4(3)-Pulley4(3))^2)^0.5

%Calculation and drawing of the cables in charge of the X

turn

Pointsdistance=[Endpointpf1(1) Endpointpf1(2)

Endpointpf1(3);Endpointpf4(1) Endpointpf4(2)

Endpointpf4(3)]

Vectordistance=[(Endpointpf1(1)-Pulley1(1)-Pos2(1))

(Endpointpf1(2)-Pulley1(2)-Pos2(2)) (Endpointpf1(3)-

Pulley1(3)-Pos2(3));(Endpointpf4(1)-Pulley4(1)-Pos2(1))

(Endpointpf4(2)-Pulley4(2)-Pos2(2)) (Endpointpf4(3)-

Pulley4(3)-Pos2(3))]

TransVectordistance=transpose(Vectordistance);

Plotdistace=drawVector(Pointsdistance, -Vectordistance,

'g');

%Calculation and drawing of the cables in charge of the X

turn

Pointsdistance2=[Endpointpf2(1) Endpointpf2(2)

Endpointpf2(3);Endpointpf3(1) Endpointpf3(2)

Endpointpf3(3)]

Vectordistance2=[(Endpointpf2(1)-Pulley2(1)-Pos2(1))

(Endpointpf2(2)-Pulley2(2)-Pos2(2)) (Endpointpf2(3)-

Pulley2(3)-Pos2(3));(Endpointpf3(1)-Pulley3(1)-Pos2(1))

(Endpointpf3(2)-Pulley3(2)-Pos2(2)) (Endpointpf3(3)-

Pulley3(3)-Pos2(3))]

TransVectordistance2=transpose(Vectordistance2);

Plotdistace=drawVector(Puntosdistance2, -Vectordistance2,

'y');

hold off

Distance23=Distance2+Distance3

Distance14=Distance1+Distance4

%calculation of moments and forces for static model

Tension1=100

Tension2=100

Vmoment1=transpose(TransVectordistance(:,1))

Vmoment2=transpose(TransVectordistance2(:,1))

Vmoment3=transpose(TransVectordistance2(:,2))

Vmoment4=transpose(TransVectordistance(:,2))

Nmoment1=norm(transpose(TransVectordistance(:,1)))

Nmoment2=norm(transpose(TransVectordistance2(:,1)))

Nmoment3=norm(transpose(TransVectordistance2(:,2)))

Nmoment4=norm(transpose(TransVectordistance(:,2)))

Vfmoment1=Vmoment1/Nmoment1

Vfmoment2=Vmoment2/Nmoment2

Vfmoment3=Vmoment3/Nmoment3

Vfmoment4=Vmoment4/Nmoment4

Moment1=Tension1*Vfmoment1*[0 ;(Endpointpf1(2)-

MainTower_height(2)) ;(Endpointpf1(3)-

MainTower_height(3))]

Moment2=Tension1*Vfmoment2*[0 ;(Endpointpf2(2)-

MainTower_height(2)) ;(Endpointpf2(3)-

MainTower_height(3))]

Moment3=Tension1*Vfmoment3*[0 ;(Endpointpf3(2)-

MainTower_height(2)) ;(Endpointpf3(3)-

MainTower_height(3))]

Moment4=Tension1*Vfmoment4*[0 ;(Endpointpf4(2)-

MainTower_height(2)) ;(Endpointpf4(3)-

MainTower_height(3))]

TorsorX=Moment1+Moment3

TorsorY=Moment2+Moment4

11.2.2 ELECTIRC NOISE TEST CODE
// declare the variables

int sensorPin1 = A2;

int sensorPin2 = A1;

float cur;

float vol;

float ene;

int i;

float currecord;

float volrecord;

void setup() {

Serial.begin(9600);

}

void loop() {

for(i=0;i<100;i++){

// read the value from the sensor:

cur = analogRead(sensorPin1);

Serial.println(cur);

// incorporate the calculated sensor characterization and apply analog value conversion :

cur=((cur*5)/(1023)-0.314)/0.7955;

currecord=cur+currecord;

// read the value from the sensor:

vol = analogRead(sensorPin2);

// apply analog value conversion:

vol=vol*5/1023;

volrecord=vol+volrecord;

}

//

cur=currecord/100;

vol=volrecord/100;

ene=cur*vol;

// print the values into the serial port:

Serial.println("energy");

Serial.println(ene);

Serial.println("voltage");

Serial.println(vol);

Serial.println("current");

Serial.println(cur);

delay(2000);

// reseting the values for starting the next measurement:

i=0;

currecord=0;

volrecord=0;

}

11.2.3 ARDUINO MEGA CODE

11.2.3.1.1 MAIN LOOP
//Include the needed library, we will use softer serial communication with

the Serial2

#include <SoftwareSerial.h>

//#include <avr/power.h>

#include <Stepper.h>

#include <ArduinoJson.h>

//SoftwareSerial Arduino_SoftSerial (10,11);

//LCD config

//#include <Wire.h>

//#include <LiquidCrystal_I2C.h>

//LiquidCrystal_I2C lcd(0x3f,20,4); //sometimes the LCD adress is not

0x3f. Change to 0x27 if it dosn't work.

//Initialise Arduino to NodeMCU (5=Rx & 6=Tx)

//SoftwareSerial nodemcu(5, 6);

int pinA1= A1;

int pinA2= A2;

//Initialisation of DHT11 Sensor

float poten1;

float poten2;

float aa;

//Define the used

#define Serial2_RX 10 //Connect the TX pin from the ESP to this RX pin of

the Arduino

#define Serial2_TX 11 //Connect the TX pin from the Arduino to the RX pin

of ESP

int LED1 = 2;

int LED2 = 3;

int LED3 = 4;

int LED4 = 5;

int LED5 = 6;

int Potentiometer_1 = A0;

int Potentiometer_2 = A1;

int Potentiometer_3 = A2;

int Potentiometer_4 = A3;

int switch1 = 7;

int switch2 = 8;

int switch3 = 9;

///

///

///////////////////////////////Variables you must change according to your

values///

///

///

//Add your data: SSID + KEY + host + location + id + password

//

const char SSID_ESP[] = "Fancy mesh-network"; //Give EXACT name of

your WIFI

const char SSID_KEY[] = "Fjordgata7"; //Add the password of

that WIFI connection

const char* host = "solartrackertrondheim.000webhostapp.com"; //Add the

host without "www" Example: electronoobs.com

String NOOBIX_id = "99999"; //This is the ID you have

on your database, I've used 99999 becuase there is a maximum of 5

characters

String NOOBIX_password = "12345"; //Add the password from the

database, also maximum 5 characters and only numerical values

String location_url = "/TX.php?id="; //location of your PHP file

on the server. In this case the TX.php is directly on the first folder of

the server

 //If you have the files in

a different folder, add thas as well, Example: "/ESP/TX.php?id=" Where

the folder is ESP

///

///

///

///

///

///

 char c;

 String dataIn;

String String1;

String String2;

String send1mn;

String send2mn;

String send3mn;

String send4mn;

String send5mn;

String recive1nm;

String recive2nm;

String recive3nm;

String recive4nm;

String recive5nm;

String aux;

float ElevationGoogle ; float AzimutGoogle ; float HourGoogle;

//Used variables in the code

String url = "";

String URL_withPacket = "";

unsigned long multiplier[] =

{1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000};

//MODES for the ESP

const char CWMODE = '1';//CWMODE 1=STATION, 2=APMODE, 3=BOTH

const char CIPMUX = '1';//CWMODE 0=Single Connection, 1=Multiple

Connections

//Define the used functions later in the code, thanks to Kevin Darrah, YT

channel: https://www.youtube.com/user/kdarrah1234

boolean setup_ESP();

boolean read_until_ESP(const char keyword1[], int key_size, int

timeout_val, byte mode);

void timeout_start();

boolean timeout_check(int timeout_ms);

void serial_dump_ESP();

boolean connect_ESP();

void connect_webhost();

unsigned long timeout_start_val;

char scratch_data_from_ESP[20];//first byte is the length of bytes

char payload[200];

byte payload_size=0, counter=0;

char ip_address[16];

///

//////////////////////////////

///

//////////////////////////////

//Variable to SEND to the DATABASE

bool sent_bool_1 = 0;

bool sent_bool_2 = 0;

bool sent_bool_3 = 0;

int sent_nr_1 = 0;

int sent_nr_2 = 0;

int sent_nr_3 = 0;

int sent_nr_4 = 0;

int sent_nr_5 = 0;

//Variable RECEIVED from the DATABASE

bool received_bool_1 = 0;

bool received_bool_2 = 0;

bool received_bool_3 = 0;

bool received_bool_4 = 0;

bool received_bool_5 = 0;

int received_nr_1 = 0;

int received_nr_2 = 0;

int received_nr_3 = 0;

int received_nr_4 = 0;

int received_nr_5 = 0;

String received_text = "";

///

//////////////////////////////

///

//////////////////////////////

//Store received chars in this variables

char t1_from_ESP[5]; //For time from web

char d1_from_ESP[2]; //For received_bool_2

char d2_from_ESP[2]; //For received_bool_2

char d3_from_ESP[2]; //For received_bool_3

char d4_from_ESP[2]; //For received_bool_4

char d5_from_ESP[2]; //For received_bool_5

char d9_from_ESP[6]; //For received_nr_1

char d10_from_ESP[6]; //For received_nr_2

char d11_from_ESP[6]; //For received_nr_3

char d12_from_ESP[6]; //For received_nr_4

char d13_from_ESP[6]; //For received_nr_5

char d14_from_ESP[300]; //For received_text

//DEFINE KEYWORDS HERE

const char keyword_OK[] = "OK";

const char keyword_Ready[] = "Ready";

const char keyword_no_change[] = "no change";

const char keyword_blank[] = "#&";

const char keyword_ip[] = "192.";

const char keyword_rn[] = "\r\n";

const char keyword_quote[] = "\"";

const char keyword_carrot[] = ">";

const char keyword_sendok[] = "SEND OK";

const char keyword_linkdisc[] = "Unlink";

const char keyword_t1[] = "t1";

const char keyword_b1[] = "b1";

const char keyword_b2[] = "b2";

const char keyword_b3[] = "b3";

const char keyword_b4[] = "b4";

const char keyword_b5[] = "b5";

const char keyword_n1[] = "n1";

const char keyword_n2[] = "n2";

const char keyword_n3[] = "n3";

const char keyword_n4[] = "n4";

const char keyword_n5[] = "n5";

const char keyword_n6[] = "n6";

const char keyword_doublehash[] = "##";

//SoftwareSerial Serial2(10, 11);// rx tx

const int stepsPerRevolution = 10;

// change this to fit the number of steps per revolution

// for your motor

// initialize the stepper library on pins 8 through 11:

Stepper stepper(stepsPerRevolution, 4, 5, 6, 7);

void setup(){// SETUP START

// lcd.init(); //Init the LCD

 //lcd.backlight(); //Activate backlight

 //Pin Modes for ESP TX/RX

 pinMode(Serial2_RX, INPUT);

 pinMode(Serial2_TX, OUTPUT);

 pinMode(LED1, OUTPUT);

 pinMode(LED2, OUTPUT);

 pinMode(LED3, OUTPUT);

 pinMode(LED4, OUTPUT);

 pinMode(LED5, OUTPUT);

 pinMode(Potentiometer_1, INPUT);

 pinMode(Potentiometer_2, INPUT);

 pinMode(Potentiometer_3, INPUT);

 pinMode(Potentiometer_4, INPUT);

 pinMode(switch1, INPUT);

 pinMode(switch2, INPUT);

 pinMode(switch3, INPUT);

 digitalWrite(LED1,LOW);

 digitalWrite(LED2,LOW);

 digitalWrite(LED3,LOW);

 digitalWrite(LED4,LOW);

 digitalWrite(LED5,LOW);

Serial1.begin(9600);

 //Arduino_SoftSerial.begin(9600);

 Serial2.begin(9600);//default baudrate for ESP

// nodemcu.begin(9600);

 //Serial2.listen();//not needed unless using other software serial

instances

 stepper.setSpeed(10);

 Serial.begin(9600); //for status and debug

 // set the speed at 60 rpm:

 digitalWrite(12,LOW);

 digitalWrite(13,HIGH);

 delay(2000);//delay before kicking things off

 setup_ESP();//go setup the ESP

}

void loop(){

 sent_nr_1 = analogRead(Potentiometer_1);

 send1mn=sent_nr_1;

 sent_nr_2 = analogRead(Potentiometer_2);

 send2mn=sent_nr_2;

 sent_nr_3 = analogRead(Potentiometer_3);

 send3mn=sent_nr_3;

 sent_nr_4 = analogRead(Potentiometer_4);

 send4mn=sent_nr_4;

 sent_bool_1 = digitalRead(switch1);

 sent_bool_2 = digitalRead(switch2);

 sent_bool_3 = digitalRead(switch3);

 delay(500);

 MEGADRIVE();

Serial.println("Elevation : ")+Serial.println(ElevationGoogle);

 Serial.println("Azimut : ");

 Serial.println(AzimutGoogle);

 Serial.println("Hour : ");

 Serial.println(HourGoogle);

 aa=0;

 send_to_server_1();

 send_to_server_2();

 send_to_server_3();

 send_to_server_4();

 send_to_server_5();

 digitalWrite(LED1,received_bool_1);

 digitalWrite(LED2,received_bool_2);

 digitalWrite(LED3,received_bool_3);

 digitalWrite(LED4,received_bool_4);

 digitalWrite(LED5,received_bool_5);

}

//End of the main loop

11.2.3.1.2 NODEMCU SERIAL CMUNICATION CODE
void MEGADRIVE() {while(aa==0){

 Serial1.print(send1mn+"!"+send2mn+"@"+send3mn+"#"+send4mn+"\n");

 delay(500);

 while(Serial1.available()>0){

 c =Serial1.read();

 if(c=='\n'){break;}

 else {dataIn+=c;}

 }

 if(c=='\n'){

 Serial.println(dataIn);

 c=0;

 }if(dataIn!=""){

 dataIn.toLowerCase();

 dataIn.trim();

 recive1nm=dataIn.substring(0,dataIn.indexOf('!'));

 recive2nm=dataIn.substring(dataIn.indexOf('!')+1,dataIn.indexOf('@'));

 recive3nm=dataIn.substring(dataIn.indexOf('@')+1,dataIn.indexOf('#'));

 //String4=payload.substring(payload.indexOf('#')+1,payload.length())

ElevationGoogle= recive1nm.toFloat(); AzimutGoogle= recive2nm.toFloat() ;

HourGoogle= recive3nm.toFloat();

 aa=1;}

 //Serial.println("Relay3 : "+String3);

 //Serial.println("Relay4 : "+String4);

 dataIn=""; delay(500);

}}

11.2.3.1.3 ESP SETUP CODE
boolean connect_ESP(){//returns 1 if successful or 0 if not

 Serial.println("CONNECTING");

 //or 443 para HTTPS

 //enshare.000webhostapp.co

Serial2.print("AT+CIPSTART=0,\"TCP\",\"http://solartrackertrondheim.000webh

ostapp.com\",80\r\n");//connect to your web server

 //read_until_ESP(keyword,size of the keyword,timeout in ms, data save 0-

no 1-yes 'more on this later')

 if(read_until_ESP(keyword_OK,sizeof(keyword_OK),5000,0)){//go look for

'OK' and come back

 serial_dump_ESP();//get rid of whatever else is coming

 Serial.println("CONNECTED");//yay, connected

 Serial2.print("AT+CIPSEND=0,");//send AT+CIPSEND=0, size of payload

 Serial2.print(payload_size);//the payload size

 serial_dump_ESP();//everything is echoed back, so get rid of it

 Serial2.print("\r\n\r\n");//cap off that command with a carriage return

and new line feed

 if(read_until_ESP(keyword_carrot,sizeof(keyword_carrot),5000,0)){//go

wait for the '>' character, ESP ready for the payload

 Serial.println("READY TO SEND");

 Serial.println(payload_size);

 for(int i=0; i<payload_size; i++)

 {//print the payload to the ESP

 Serial2.print(payload[i]);

 Serial.print(payload[i]);

 }

 /*

 Serial.println("");

 Serial.println(payload_size);

 Serial.println("");

 */

 if(read_until_ESP(keyword_sendok,sizeof(keyword_sendok),5000,0)){//go

wait for 'SEND OK'

 Serial.println("SENT");//yay, it was sent

 return 1;//get out of here, data is about to fly out of the ESP

 }// got the SEND OK

 else// SEND OK

 Serial.println("FAILED TO SEND");

 }//got the back carrot >

 else

 Serial.println("FAILED TO GET >");

 }//First OK

 else{

 Serial.println("FAILED TO CONNECT");//something went wrong

 setup_ESP();//optional, this will go setup the module and attempt to

repair itself - connect to SSID, set the CIPMUX, etc...

 }

}// VOID CONNECT FUNCTION

11.2.3.1.4 SENT TO WEB SEVER CODE
boolean connect_ESP(){//returns 1 if successful or 0 if not

 Serial.println("CONNECTING");

 //or 443 para HTTPS

 //enshare.000webhostapp.co

Serial2.print("AT+CIPSTART=0,\"TCP\",\"http://solartrackertrondheim.000webh

ostapp.com\",80\r\n");//connect to your web server

 //read_until_ESP(keyword,size of the keyword,timeout in ms, data save 0-

no 1-yes 'more on this later')

 if(read_until_ESP(keyword_OK,sizeof(keyword_OK),5000,0)){//go look for

'OK' and come back

 serial_dump_ESP();//get rid of whatever else is coming

 Serial.println("CONNECTED");//yay, connected

 Serial2.print("AT+CIPSEND=0,");//send AT+CIPSEND=0, size of payload

 Serial2.print(payload_size);//the payload size

 serial_dump_ESP();//everything is echoed back, so get rid of it

 Serial2.print("\r\n\r\n");//cap off that command with a carriage return

and new line feed

 if(read_until_ESP(keyword_carrot,sizeof(keyword_carrot),5000,0)){//go

wait for the '>' character, ESP ready for the payload

 Serial.println("READY TO SEND");

 Serial.println(payload_size);

 for(int i=0; i<payload_size; i++)

 {//print the payload to the ESP

 Serial2.print(payload[i]);

 Serial.print(payload[i]);

 }

 /*

 Serial.println("");

 Serial.println(payload_size);

 Serial.println("");

 */

 if(read_until_ESP(keyword_sendok,sizeof(keyword_sendok),5000,0)){//go

wait for 'SEND OK'

 Serial.println("SENT");//yay, it was sent

 return 1;//get out of here, data is about to fly out of the ESP

 }// got the SEND OK

 else// SEND OK

 Serial.println("FAILED TO SEND");

 }//got the back carrot >

 else

 Serial.println("FAILED TO GET >");

 }//First OK

 else{

 Serial.println("FAILED TO CONNECT");//something went wrong

 setup_ESP();//optional, this will go setup the module and attempt to

repair itself - connect to SSID, set the CIPMUX, etc...

 }

}// VOID CONNECT FUNCTION

11.2.3.1.5 SERIAL COMUNICATION WITH ESP01
//pretty simple function - read everything out of the serial buffer and

whats coming and get rid of it

void serial_dump_ESP(){

 char temp;

 while(Serial2.available()){

 temp =Serial2.read();

 delay(1);//could play around with this value if buffer overflows are

occuring

 }//while

 //Serial.println("DUMPED");

}//serial dump

11.2.3.1.6 NODEMCU CODE
#include <ESP8266WiFi.h>

#include <WiFiClientSecure.h>

#include <SoftwareSerial.h>

#include <ArduinoJson.h>

 //D6 = Rx & D5 = Tx

SoftwareSerial nodemcu(D6, D5);

#define ON_Board_LED 2 //--> Defining an On Board LED, used for indicators

when the process of connecting to a wifi router

const char* ssid = "Gang_wifi"; //--> Your wifi name or SSID.

const char* password = "wifihouse"; //--> Your wifi password.

//--Host & httpsPort

const char* host = "script.google.com";

const int httpsPort = 443;

//--

WiFiClientSecure client; //--> Create a WiFiClientSecure object.

String GAS_ID =

"AKfycbwn5B1t0ftFi9F3p47XpgsUnk6XL8nl3NoZYiEnucrOO7ty7oxO7Pv_9kxFPx336kmP";

//--> spreadsheet script ID

void setup() {

 /// Initialize Serial port

 Serial.begin(9600);

 nodemcu.begin(9600);

 while (!Serial) continue;

 WiFi.begin(ssid, password); //--> Connect to your WiFi router

 Serial.println("");

 pinMode(ON_Board_LED,OUTPUT); //--> On Board LED port Direction output

 digitalWrite(ON_Board_LED, HIGH); //--> Turn off Led On Board

 //--Wait for connection

 Serial.print("Connecting");

 while (WiFi.status() != WL_CONNECTED) {

 Serial.print(".");

 //--Make the On Board Flashing

LED on the process of connecting to the wifi router.

 digitalWrite(ON_Board_LED, LOW);

 delay(250);

 digitalWrite(ON_Board_LED, HIGH);

 delay(250);

 //--

 }

 //--

 digitalWrite(ON_Board_LED, HIGH); //--> Turn off the On Board LED when it

is connected to the wifi router.

 Serial.println("");

 Serial.print("Successfully connected to : ");

 Serial.println(ssid);

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP());

 Serial.println();

 //--

 client.setInsecure();

}

void loop() {

 // Reading temperature or humidity takes about 250 milliseconds!

 // Sensor readings may also be up to 2 seconds 'old' (its a very slow

sensor)

 float potenacu1=0;

 float potenacu2=0;

 float poten1med=0;

 float poten2med=0;

 //for(int i=0;i<=1;i++)

 //{

 StaticJsonBuffer<1000> jsonBuffer;

 JsonObject& data = jsonBuffer.parseObject(nodemcu);

 //if (data == JsonObject::invalid()) {

 //Serial.println("Invalid Json Object");

 // jsonBuffer.clear();

 //return;

 // }

 Serial.println("JSON Object Recieved");

 Serial.print("Recieved potenciometro1: ");

 float poten1 = data["potenciometro1"];

 Serial.println(poten1);

 Serial.print("Recieved potenciometro2: ");

 float poten2 = data["potenciometro2"];

 Serial.println(poten2);

 Serial.println("---");

 potenacu1=poten1+potenacu1;

 potenacu2=poten2+potenacu2;

 delay(1000);

 // }

 poten1med=potenacu1/1;

 poten2med=potenacu2/1;

 sendData(poten1med, poten2med);

}

// Subroutine for sending data to Google Sheets

void sendData(float Poten1 , float Poten2) {

 Serial.println("==========");

 Serial.print("connecting to ");

 Serial.println(host);

 //--Connect to Google host

 if (!client.connect(host, httpsPort)) {

 Serial.println("connection failed");

 return;

 }

 //--

 //--Processing data and sending

data

 String url = "/macros/s/" + GAS_ID + "/exec?value1=" + String(Poten1) +

"&value2=" + String(Poten2)+ "&value3=" + 34;

 Serial.print("requesting URL: ");

 Serial.println(url);

 client.print(String("GET ") + url + " HTTP/1.1\r\n" +

 "Host: " + host + "\r\n" +

 "User-Agent: BuildFailureDetectorESP8266\r\n" +

 "Connection: close\r\n\r\n");

 Serial.println("request sent");

 //--

 //--Checking whether the data was

sent successfully or not

 while (client.connected()) {

 String line = client.readStringUntil('\n');

 if (line == "\r") {

 Serial.println("headers received");

 break;

 }

 }

 String line = client.readStringUntil('\n');

 if (line.startsWith("{\"state\":\"success\"")) {

 Serial.println("esp8266/Arduino CI successfull!");

 } else {

 Serial.println("esp8266/Arduino CI has failed");

 }

 Serial.print("reply was : ");

 Serial.println(line);

 Serial.println("closing connection");

 Serial.println("==========");

 Serial.println();

 //--

}

A

11.2.4 WEB CODES

11.2.4.1 MAIN WEB PAGE CODE

11.2.4.1.1 DATA BASE CONNECTION CODE
<?php

$con=mysqli_connect("localhost","id18417627_solartracker","SoporteSol@r2010

","id18417627_esp8266");// server, user, password, database

?>

11.2.4.1.2 WEB CODE
<?php

//This line will make the page auto-refresh each 15 seconds

$page = $_SERVER['PHP_SELF'];

$sec = "15";

?>

<html>

<head>

<!--//I've used bootstrap for the tables, so I inport the CSS files for

taht as well...-->

<meta http-equiv="refresh" content="<?php echo $sec?>;URL='<?php echo

$page?>'">

<!-- Latest compiled and minified CSS -->

<link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.0/css/bootstrap.min.css

">

<!-- jQuery library -->

<script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></sc

ript>

<!-- Latest compiled JavaScript -->

<script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.0/js/bootstrap.min.js"><

/script>

</head>

http://hilite.me/api

<body>

<?php

include("database_connect.php"); //We include the database_connect.php

which has the data for the connection to the database

// Check the connection

if (mysqli_connect_errno()) {

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

}

//Again, we grab the table out of the database, name is ESPtable2 in this

case

$result = mysqli_query($con,"SELECT * FROM ESPtable2");//table select

//Now we create the table with all the values from the database

echo "<table class='table' style='font-size: 30px;'>

 </thead>

 <tbody>

 <tr class='active'>

 <td>Movement Capability</td>

 <td>Safe Mode </td>

 <td>Automatic mode (ON) \Manual mode (OFF)</td>

 <td>Photoresistors (ON) \ Sun position calculation

(OFF)</td>

 <td>Step tracking mode (ON)\ Potenciometre mode (OFF)</td>

 </tr>

 ";

//loop through the table and print the data into the table

while($row = mysqli_fetch_array($result)) {

 echo "<tr class='success'>";

 $unit_id = $row['id'];

 $column1 = "RECEIVED_BOOL1";

 $column2 = "RECEIVED_BOOL2";

 $column3 = "RECEIVED_BOOL3";

 $column4 = "RECEIVED_BOOL4";

 $column5 = "RECEIVED_BOOL5";

 $current_bool_1 = $row['RECEIVED_BOOL1'];

 $current_bool_2 = $row['RECEIVED_BOOL2'];

 $current_bool_3 = $row['RECEIVED_BOOL3'];

 $current_bool_4 = $row['RECEIVED_BOOL4'];

 $current_bool_5 = $row['RECEIVED_BOOL5'];

 if($current_bool_1 == 1){

 $inv_current_bool_1 = 0;

 $text_current_bool_1 = "ON";

 $color_current_bool_1 = "#6ed829";

 }

 else{

 $inv_current_bool_1 = 1;

 $text_current_bool_1 = "OFF";

 $color_current_bool_1 = "#e04141";

 }

 if($current_bool_2 == 1){

 $inv_current_bool_2 = 0;

 $text_current_bool_2 = "ON";

 $color_current_bool_2 = "#6ed829";

 }

 else{

 $inv_current_bool_2 = 1;

 $text_current_bool_2 = "OFF";

 $color_current_bool_2 = "#e04141";

 }

 if($current_bool_3 == 1){

 $inv_current_bool_3 = 0;

 $text_current_bool_3 = "ON";

 $color_current_bool_3 = "#6ed829";

 }

 else{

 $inv_current_bool_3 = 1;

 $text_current_bool_3 = "OFF";

 $color_current_bool_3 = "#e04141";

 }

 if($current_bool_4 == 1){

 $inv_current_bool_4 = 0;

 $text_current_bool_4 = "ON";

 $color_current_bool_4 = "#6ed829";

 }

 else{

 $inv_current_bool_4 = 1;

 $text_current_bool_4 = "OFF";

 $color_current_bool_4 = "#e04141";

 }

 if($current_bool_5 == 1){

 $inv_current_bool_5 = 0;

 $text_current_bool_5 = "ON";

 $color_current_bool_5 = "#6ed829";

 }

 else{

 $inv_current_bool_5 = 1;

 $text_current_bool_5 = "OFF";

 $color_current_bool_5 = "#e04141";

 }

 echo "<td><form action= update_values.php method= 'post'>

 <input type='hidden' name='value2' value=$current_bool_1

size='15' >

 <input type='hidden' name='value' value=$inv_current_bool_1

size='15' >

 <input type='hidden' name='unit' value=$unit_id >

 <input type='hidden' name='column' value=$column1 >

 <input type= 'submit' name= 'change_but' style=' margin-left: 25%;

margin-top: 10%; font-size: 30px; text-align:center; background-color:

$color_current_bool_1' value=$text_current_bool_1></form></td>";

 echo "<td><form action= update_values.php method= 'post'>

 <input type='hidden' name='value2' value=$current_bool_2

size='15' >

 <input type='hidden' name='value' value=$inv_current_bool_2

size='15' >

 <input type='hidden' name='unit' value=$unit_id >

 <input type='hidden' name='column' value=$column2 >

 <input type= 'submit' name= 'change_but' style=' margin-left: 25%;

margin-top: 10%; font-size: 30px; text-align:center; background-color:

$color_current_bool_2' value=$text_current_bool_2></form></td>";

 echo "<td><form action= update_values.php method= 'post'>

 <input type='hidden' name='value2' value=$current_bool_3

size='15' >

 <input type='hidden' name='value' value=$inv_current_bool_3

size='15' >

 <input type='hidden' name='unit' value=$unit_id >

 <input type='hidden' name='column' value=$column3 >

 <input type= 'submit' name= 'change_but' style=' margin-left: 25%;

margin-top: 10%; font-size: 30px; text-align:center; background-color:

$color_current_bool_3' value=$text_current_bool_3></form></td>";

 echo "<td><form action= update_values.php method= 'post'>

 <input type='hidden' name='value2' value=$current_bool_4

size='15' >

 <input type='hidden' name='value' value=$inv_current_bool_4

size='15' >

 <input type='hidden' name='unit' value=$unit_id >

 <input type='hidden' name='column' value=$column4 >

 <input type= 'submit' name= 'change_but' style=' margin-left: 25%;

margin-top: 10%; font-size: 30px; text-align:center; background-color:

$color_current_bool_4' value=$text_current_bool_4></form></td>";

 echo "<td><form action= update_values.php method= 'post'>

 <input type='hidden' name='value2' value=$current_bool_5

size='15' >

 <input type='hidden' name='value' value=$inv_current_bool_5

size='15' >

 <input type='hidden' name='unit' value=$unit_id >

 <input type='hidden' name='column' value=$column5 >

 <input type= 'submit' name= 'change_but' style=' margin-left: 25%;

margin-top: 10%; font-size: 30px; text-align:center; background-color:

$color_current_bool_5' value=$text_current_bool_5></form></td>";

 echo "</tr>

 </tbody>";

}

echo "</table>

";

?>

<?php

include("database_connect.php");

if (mysqli_connect_errno()) {

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

}

$result = mysqli_query($con,"SELECT * FROM ESPtable2");//table select

echo "<table class='table' style='font-size: 30px;'>

 </thead>

 <tbody>

 <tr class='active'>

 <td>Manual Azumuth input</td>

 <td>Manual Elevation input</td>

 </tr>

 ";

while($row = mysqli_fetch_array($result)) {

 echo "<tr class='success'>";

 $column6 = "RECEIVED_NUM1";

 $column7 = "RECEIVED_NUM2";

 $column8 = "RECEIVED_NUM3";

 $column9 = "RECEIVED_NUM4";

 $column10 = "RECEIVED_NUM5";

 $current_num_1 = $row['RECEIVED_NUM1'];

 $current_num_2 = $row['RECEIVED_NUM2'];

 $current_num_3 = $row['RECEIVED_NUM3'];

 $current_num_4 = $row['RECEIVED_NUM4'];

 $current_num_5 = $row['RECEIVED_NUM5'];

 echo "<td><form action= update_values.php method= 'post'>

 <input type='text' name='value' style='width: 120px;'

value=$current_num_1 size='15' >

 <input type='hidden' name='unit' style='width: 120px;'

value=$unit_id >

 <input type='hidden' name='column' style='width: 120px;'

value=$column6 >

 <input type= 'submit' name= 'change_but' style='width: 120px; text-

align:center;' value='change'></form></td>";

 echo "<td><form action= update_values.php method= 'post'>

 <input type='text' name='value' style='width: 120px;'

value=$current_num_2 size='15' >

 <input type='hidden' name='unit' style='width: 120px;'

value=$unit_id >

 <input type='hidden' name='column' style='width: 120px;'

value=$column7 >

 <input type= 'submit' name= 'change_but' style='text-align:center'

value='change'></form></td>";

 echo "</tr>

 </tbody>";

}

echo "</table>

";

?>

<?php

include("database_connect.php");

if (mysqli_connect_errno()) {

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

}

$result = mysqli_query($con,"SELECT * FROM ESPtable2");//table select

echo "<table class='table' style='font-size: 30px;'>

 </thead>

 <tbody>

 <tr class='active'>

 <td>Azimuth Angle</td>

 <td>Elevation Angle</td>

 <td>Voltage </td>

 <td>Current</td>

 </tr>

 ";

while($row = mysqli_fetch_array($result)) {

 echo "<tr class='info'>";

 echo "<td>" . $row['SENT_NUMBER_1'] . "</td>";

 echo "<td>" . $row['SENT_NUMBER_2'] . "</td>";

 echo "<td>" . $row['SENT_NUMBER_3'] . "</td>";

 echo "<td>" . $row['SENT_NUMBER_4'] . "</td>";

 echo "</tr>

 </tbody>";

}

echo "</table>

";

?>

11.2.4.1.3 CODE 2
<?php

If you paste that link to your browser, it should update b1 value with this

TX.php file. Read more details below.

The ESP will send a link like the one above but with more than just b1. It

will have b1, b2, etc...

*/

//We loop through and grab variables from the received the URL

foreach($_REQUEST as $key => $value) //Save the received value to the hey

variable. Save each cahracter after the "&"

{

 //Now we detect if we recheive the id, the password, unit, or a

value to update

if($key =="id"){

$unit = $value;

}

if($key =="pw"){

$pass = $value;

}

if($key =="un"){

$update_number = $value;

}

if($update_number == 1)

{

 if($key =="n1"){

 $sent_nr_1 = $value;

 }

}

else if($update_number == 2)

{

 if($key =="n2"){

 $sent_nr_2 = $value;

 }

}

else if($update_number == 3)

{

 if($key =="n3"){

 $sent_nr_3 = $value;

 }

}

else if($update_number == 4)

{

 if($key =="n4"){

 $sent_nr_4 = $value;

 }

}

else if($update_number == 5)

 {

 if($key =="b6"){

 $sent_bool_1 = $value;

 }

 if($key =="b7"){

 $sent_bool_2 = $value;

 }

 if($key =="b8"){

 $sent_bool_3 = $value;

 }

}

}//End of foreach

include("database_connect.php"); //We include the database_connect.php

which has the data for the connection to the database

// Check the connection

if (mysqli_connect_errno()) {

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

}

//Now we update the values in database

if($update_number == 1) //If the received data is for SENT_NUMBER_1,

we update that value

 {

 mysqli_query($con,"UPDATE ESPtable2 SET SENT_NUMBER_1 =

$sent_nr_1 WHERE id=$unit AND PASSWORD=$pass");

 }

else if($update_number == 2) //The same and so on...

 {

 mysqli_query($con,"UPDATE ESPtable2 SET SENT_NUMBER_2 =

$sent_nr_2 WHERE id=$unit AND PASSWORD=$pass"); ;

 }

else if($update_number == 3)

 {

 mysqli_query($con,"UPDATE ESPtable2 SET SENT_NUMBER_3 =

$sent_nr_3 WHERE id=$unit AND PASSWORD=$pass"); ;

 }

else if($update_number == 4)

 {

 mysqli_query($con,"UPDATE ESPtable2 SET SENT_NUMBER_4 =

$sent_nr_4 WHERE id=$unit AND PASSWORD=$pass"); ;

 }

else if($update_number == 5)

 {

 mysqli_query($con,"UPDATE ESPtable2 SET SENT_BOOL_1 =

$sent_bool_1, SENT_BOOL_2 = $sent_bool_2, SENT_BOOL_3 = $sent_bool_3

 WHERE id=$unit AND PASSWORD=$pass"); ;

 }

//In case that you need the time from the internet, use this line

date_default_timezone_set('UTC');

$t1 = date("gi"); //This will return 1:23 as 123

//Get all the values form the table on the database

$result = mysqli_query($con,"SELECT * FROM ESPtable2"); //table select

is ESPtable2, must be the same on yor database

//Loop through the table and filter out data for this unit id equal to the

one taht we've received.

while($row = mysqli_fetch_array($result)) {

if($row['id'] == $unit){

 //We update the values for the boolean and numebers we

receive from the Arduino, then we echo the boolean

 //and numbers and the text from the database back to the

Arduino

 $b1 = $row['RECEIVED_BOOL1'];

 $b2 = $row['RECEIVED_BOOL2'];

 $b3 = $row['RECEIVED_BOOL3'];

 $b4 = $row['RECEIVED_BOOL4'];

 $b5 = $row['RECEIVED_BOOL5'];

 $n1 = $row['RECEIVED_NUM1'];

 $n2 = $row['RECEIVED_NUM2'];

 $n3 = $row['RECEIVED_NUM3'];

 $n4 = $row['RECEIVED_NUM4'];

 $n5 = $row['RECEIVED_NUM5'];

 $n6 = $row['TEXT_1'];

 //Next line will echo the data back to the Arduino

 echo "

_t1$t1##_b1$b1##_b2$b2##_b3$b3##_b4$b4##_b5$b5##_n1$n1##_n2$n2##_n3$n3##_n4

$n4##_n5$n5##_n6$n6##";

}

}// End of the while loop

?>

<?php

If you paste that link to your browser, it should update b1 value with this

TX.php file. Read more details below.

The ESP will send a link like the one above but with more than just b1. It

will have b1, b2, etc...

*/

//We loop through and grab variables from the received the URL

foreach($_REQUEST as $key => $value) //Save the received value to the hey

variable. Save each cahracter after the "&"

{

 //Now we detect if we recheive the id, the password, unit, or a

value to update

if($key =="id"){

$unit = $value;

}

if($key =="pw"){

$pass = $value;

}

if($key =="un"){

$update_number = $value;

}

if($update_number == 1)

{

 if($key =="n1"){

 $sent_nr_1 = $value;

 }

}

else if($update_number == 2)

{

 if($key =="n2"){

 $sent_nr_2 = $value;

 }

}

else if($update_number == 3)

{

 if($key =="n3"){

 $sent_nr_3 = $value;

 }

}

else if($update_number == 4)

{

 if($key =="n4"){

 $sent_nr_4 = $value;

 }

}

else if($update_number == 5)

 {

 if($key =="b6"){

 $sent_bool_1 = $value;

 }

 if($key =="b7"){

 $sent_bool_2 = $value;

 }

 if($key =="b8"){

 $sent_bool_3 = $value;

 }

}

}//End of foreach

include("database_connect.php"); //We include the database_connect.php

which has the data for the connection to the database

// Check the connection

if (mysqli_connect_errno()) {

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

}

//Now we update the values in database

if($update_number == 1) //If the received data is for SENT_NUMBER_1,

we update that value

 {

 mysqli_query($con,"UPDATE ESPtable2 SET SENT_NUMBER_1 =

$sent_nr_1 WHERE id=$unit AND PASSWORD=$pass");

 }

else if($update_number == 2) //The same and so on...

 {

 mysqli_query($con,"UPDATE ESPtable2 SET SENT_NUMBER_2 =

$sent_nr_2 WHERE id=$unit AND PASSWORD=$pass"); ;

 }

else if($update_number == 3)

 {

 mysqli_query($con,"UPDATE ESPtable2 SET SENT_NUMBER_3 =

$sent_nr_3 WHERE id=$unit AND PASSWORD=$pass"); ;

 }

else if($update_number == 4)

 {

 mysqli_query($con,"UPDATE ESPtable2 SET SENT_NUMBER_4 =

$sent_nr_4 WHERE id=$unit AND PASSWORD=$pass"); ;

 }

else if($update_number == 5)

 {

 mysqli_query($con,"UPDATE ESPtable2 SET SENT_BOOL_1 =

$sent_bool_1, SENT_BOOL_2 = $sent_bool_2, SENT_BOOL_3 = $sent_bool_3

 WHERE id=$unit AND PASSWORD=$pass"); ;

 }

//In case that you need the time from the internet, use this line

date_default_timezone_set('UTC');

$t1 = date("gi"); //This will return 1:23 as 123

//Get all the values form the table on the database

$result = mysqli_query($con,"SELECT * FROM ESPtable2"); //table select

is ESPtable2, must be the same on yor database

//Loop through the table and filter out data for this unit id equal to the

one taht we've received.

while($row = mysqli_fetch_array($result)) {

if($row['id'] == $unit){

 //We update the values for the boolean and numebers we

receive from the Arduino, then we echo the boolean

 //and numbers and the text from the database back to the

Arduino

 $b1 = $row['RECEIVED_BOOL1'];

 $b2 = $row['RECEIVED_BOOL2'];

 $b3 = $row['RECEIVED_BOOL3'];

 $b4 = $row['RECEIVED_BOOL4'];

 $b5 = $row['RECEIVED_BOOL5'];

 $n1 = $row['RECEIVED_NUM1'];

 $n2 = $row['RECEIVED_NUM2'];

 $n3 = $row['RECEIVED_NUM3'];

 $n4 = $row['RECEIVED_NUM4'];

 $n5 = $row['RECEIVED_NUM5'];

 $n6 = $row['TEXT_1'];

 //Next line will echo the data back to the Arduino

 echo "

_t1$t1##_b1$b1##_b2$b2##_b3$b3##_b4$b4##_b5$b5##_n1$n1##_n2$n2##_n3$n3##_n4

$n4##_n5$n5##_n6$n6##";

}

}// End of the while loop

?>

11.2.4.1.4 CODE 3
<?php

//This file will get the values when you click any of the ON/OFF buttons or

change buttons on the index.php file

//We get that value and send it to the datapase table and by that update

the values

$value = $_POST['value']; //Get the value

$unit = $_POST['unit']; //Get the id if the unit

where we want to update the value

$column = $_POST['column']; //Which coulumn of the database,

could be the RECEIVED_BOOL1, etc...

//connect to the database

include("database_connect.php"); //We include the database_connect.php

which has the data for the connection to the database

// Check the connection

if (mysqli_connect_errno()) {

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

}

//Now update the value sent from the post (ON/OFF, change or send button)

mysqli_query($con,"UPDATE ESPtable2 SET $column = '{$value}'

WHERE id=$unit");

//go back to the interface

header("location: index.php");

?>

11.2.4.2 SPREADSHEET FOR DATA COLLECTION CODE

function doGet(e) {

 Logger.log(JSON.stringify(e)); // view parameters

 var result = 'Ok'; // assume success

 if (e.parameter == 'undefined') {

 result = 'No Parameters';

 }

 else {

 var sheet_id = '1fAW-WAu-lRaT28DQSrIhMrFxW3-LFiHu42EQR5wUw1s';

 // Spreadsheet ID

 var sheet = SpreadsheetApp.openById(sheet_id).getActiveSheet();

 // get Active sheet

 var newRow = sheet.getLastRow() + 1;

 var rowData = [];

 d=new Date();

 rowData[0] = d; // Timestamp in column A

 rowData[1] = d.toLocaleTimeString(); // Timestamp in column A

 for (var param in e.parameter) {

 Logger.log('In for loop, param=' + param);

 var value = stripQuotes(e.parameter[param]);

 Logger.log(param + ':' + e.parameter[param]);

 switch (param) {

 case 'value1': //Parameter 1, It has to be updated in Column in

Sheets in the code, orderwise

 rowData[2] = value; //Value in column A

 result = 'Written on column A';

 break;

 case 'value2': //Parameter 2, It has to be updated in Column in

Sheets in the code, orderwise

 rowData[3] = value; //Value in column B

 result += ' Written on column B';

 break;

 case 'value3': //Parameter 3, It has to be updated in Column in

Sheets in the code, orderwise

 rowData[4] = value; //Value in column C

 result += ' Written on column C';

 break;

 case 'value4': //Parameter 4, It has to be updated in Column in

Sheets in the code, orderwise

 rowData[5] = value; //Value in column E

 result += ' Written on column D';

 break;

 case 'value5': //Parameter 5, It has to be updated in Column in

Sheets in the code, orderwise

 rowData[6] = value; //Value in column E

 result += ' Written on column E';

 break;

 default:

 result = "unsupported parameter";

 }

 }

 Logger.log(JSON.stringify(rowData));

 // Write new row below

 var newRange = sheet.getRange(newRow, 1, 1, rowData.length);

 newRange.setValues([rowData]);

 }

 // Return result of operation

 return ContentService.createTextOutput(result);

}

function stripQuotes(value) {

 return value.replace(/^["']|['"]$/g, "");

}

11.2.4.3 SPREADSHEET FOR THE CALCULATION OF THE POSITION OF

THE SUN CODE

var ss =

SpreadsheetApp.openById('1g75Y8BZ386HefE1u6Tbkg5Fr1V0LoHuQvh8PYUYIn2Y');

var sheet = ss.getSheetByName('output');

function doGet(e){

 var read = e.parameter.read;

 if (read !== undefined){

 return

ContentService.createTextOutput(sheet.getRange('C1').getValue());

 }

 }

11.3 SPECIFICATION SHEET OF ST2408PH

