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Abstract

Large Convolutional Neural Network (CNN) models such as the UNet have been
shown to be especially efficient at performing semantic segmentation on hyperspec-
tral images. Deploying such networks on Earth Observation (EO) satellites, such as
CubeSats, provides the possibility for greatly reducing the required data for down-
link. These networks are however computationally heavy and have large memory
footprints which makes them difficult to implement on resource constrained embed-
ded devices. This thesis tackles this issue through implementing a memory efficient
UNet software framework capable of running on ARM devices with limited system
memory. Additionally, a hardware/software codesign is proposed to accelerate the
convolutional layers on an Field Programmable Gate Array (FPGA). The software
framework achieves a pixel prediction time of 294μs on 512×512×102 hyperspectral
image cubes, with a system memory footprint of approximately 120MB at maximum.
Finally, the thesis proposes a standardized format called Weights Interleaved by
Filters (WIF) for efficient storage of trainable parameters from CNNs for embedded
devices.
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Sammendrag

Dype konvolusjonelle nevrale nettverksmodeller som UNet arkitekturen har blitt
vist å være spesielt effektive til å segmentere hyperspektral bildedata. Det å imple-
mentere slike nettverk på kubesatellitter som driver med hyperspektral jordobser-
vasjon kan potensielt drastisk redusere dataen nødvending for nedlastning. Disse
nettverkene er derimot svært ressurskrevende og kan være utfordrende å imple-
mentere på mindre innvevde systemer med reduserte ressurser. Denne oppgaven
håndterer dette problemet ved å implementere en ressurseffektiv UNet program-
vare som kan kjøre på ARM systemer. I tillegg legger oppgaven frem et forslag for
akselerering av konvolusjonelle lag på en Field Programmable Gate Array (FPGA).
Programvaren oppnår en piksel prediksjonstid på om lag 294μs på et 512 × 512 × 102
hyperspektralt bilde. Avslutningsvis så foreslår oppgaven et standardisert vektformat
for nevrale nettverk kalt Weights Interleaved by Filters (WIF), som gjør det mer
effektivt å håndtere vektdata på innvevde systemer.
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Introduction 1
„Space is an inspirational concept that allows you

to dream big.

— Peter Diamandis
(Engineer)

Space offers a wast amount of possibilities for remote sensing of our globe, and
as research and investment into Cube Satellites (CubeSats) is constantly growing,
smaller companies and institutions like the Norwegian University of Science and
Technology (NTNU) are now able to conduct their own space missions.

In January 2022, the Small Satellite Lab (SmallSat) at NTNU successfully launched
its first CubeSat, the HYPer-spectral Smallsat for ocean Observation (HYPSO-1),
through one of SpaceXs’ rideshare missions. The HYPSO-1 satellite carries a hyper-
spectral camera capable of capturing ocean colour across the world, supporting the
growing field of hyperspectral remote sensing with its mission. Hyperspectral data
is especially useful in remote sensing, as it captures information that can be used
to determine the chemical compound of what is measured [1][p. 2]. In the case
of HYPSO-1, this allows the satellite to support detecting harmful algal blooms in
near-realtime [2].

Cubesats, such as HYPSO-1 do, however, come with their extra challenges, such as
reduced power capacity, which propagates into less powerful hardware for processing
and downlinking data. This can be an issue for hyperspectral imaging, as it produces
notoriously large amounts of sampled data, resulting in a larger data size for
downlink. There exist ways of reducing the size of the information, such as lossless
compression with the CCSDS123 standard [3], or removing redundant hyperspectral
bands. These are methods deployed by the HYPSO-1 satellite, however, data sizes
still remain within the sizes of megabytes and cause issues where one desires fast
downlink and detection.

A different approach to these reduction techniques is to instead perform on-board
processing for extracting the essence of the information one seeks. In the case of
HYPSO-1, where it is desired to detect ocean colour, one could instead determine
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the type of algae and its location through on-board processing. This would reduce
the data size needed for downlink and essentially make it insignificant as this
type of information could be very compact and small. This would allow for far
more processed captures within the scope of an orbit and support the desire for
near-real-time detection.

Detecting specific compounds within hyperspectral data, which noticeably has been
sampled from space, is not easy, as its characteristics must be determined while also
correcting for atmospheric conditions. However, it has been shown that Machine
Learning (ML) algorithms, such as neural networks, are especially good at tackling
these types of issues [4].

Deep Learning (DL) algorithms used with remote sensing is a field of study that is
starting to emerge with the rise of more energy-efficient and powerful embedded
devices. DL networks, which are densely connected layers of artificial neurons, have
an excellent ability to learn features within data [5]. Since hyperspectral images
contain far more information for a given spatial pixel than that of an RGB image, DL
algorithms can extract more precise features from the data. This has been shown
through the use of Convolutional Neural Networks (CNNs), which performs better
at semantic segmentation when trained on hyperspectral data [6, 7].

Semantic image segmentation is a processing method that could be utilized on a
satellite to determine the chemical compounds of a hyperspectral capture. It could
provide high accuracy if trained correctly and with a fitting CNN architecture. A
famous CNN architecture for image segmentation is the UNet, which is capable
of achieving highly accurate semantic segmentation with little training data [8].
Additionally, the UNet has also been shown to be very effective at image segmenta-
tion with hyperspectral data [6], making it a good option for satellite missions like
HYPSO-1.

CNN networks like the UNet are computationally heavy, requiring several convo-
lutional sliding window operations to segment images. They also utilize millions
of trainable parameters that require large memory sizes and are therefore hard to
implement on embedded devices. More compact versions of the UNet, such as the
C-UNet and C-UNet++ exists, which attempt to address these issues [9]. However,
these networks tend to be less accurate than the original UNet [10, 11].

The compact C-UNet and C-UNet++ were explored in [10, 11] as a part of the
FAUBAI research project between NTNU and European Space Agency (ESA), and
found that compact UNets could be implemented on embedded devices. The same
project also looks to explore the use of the original UNet architecture on embedded
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satellite systems. Due to this, the work presented in this thesis will explore the use
of large CNN networks, specifically the UNet, on embedded devices.

Previous work has shown that CNNs can be computed effectively using accelerated
designs on FPGAs [12, 10, 11]. The work in [10, 11] achieves fully accelerated
designs of compact UNets, however is only achievable due to these networks utilizing
far less trainable parameters than the original UNet. Accelerating the entire UNet on
the FPGA has been proven difficult due to a lack of resources in programmable logic.
Therefore this thesis will look into a software-hardware codesign for an embedded
UNet. This thesis will explore methods that can be used to fit CNNs resembling the
original UNet on the multiprocessing UltraScale+ architecture with limited resources.
The goal will be to achieve a design that can perform semantic segmentation of
hyperspectral image cubes, such as those captured on HYPSO-1. Additionally, the
thesis will seek to create a UNet framework usable within the HYPSO-1 and HYPSO-2
on-board processing systems. Finally, it will explore a accelerated design to support
a software framework, hopefully supporting the FAUBAI research project in pushing
forward for fast CNN networks on embedded devices.

1.1 Contributions

• A software framework for large CNNs within Linux-based embedded systems
with limited memory resources, compatible with both ARM and x86 architec-
tures.

• A software implementation of the UNet architecture capable of performing im-
age segmentation on hyperspectral image cubes of varying spatial dimensions
with a pixel prediction time around 295us.

• A standardized weight format called Weights Interleaved by Filters (WIF),
providing a structured way of storing trainable parameters for CNNs, which is
fast to load into system memory.

• A suggested architectural design of a convolutional accelerator for 2D convolu-
tional layers with upwards to 1024 kernels, each with a maximum depth 1024,
aimed at the UltraScale+ architecture.

The code produced throughout this thesis is stored on the SmallSat GitHub repository.
If the code is desired, or if there are any questions, please contact the author through
email at simennett@gmail.com. Alternatively, send an email to a different member
of the SmallSat team.

1.1 Contributions 5



1.2 Thesis Structure

The thesis is structured into seven chapters, including the introduction, where the
first explains background information, theory and current state-of-the-art. The three
in the middle take the reader through the design and implementations of a UNet
architecture, while the last two include results, discussion, conclusions and further
work. The chapters can be described more precisely as follows:

Chapter 2, Background and Theory, introduces the HYPSO-1 mission in more detail
before providing relevant theory around remote sensing, hyperspectral imaging,
machine learning, convolutional neural networks, FPGAs and embedded Linux.
Additionally, state-of-the-art is presented along with previous relevant work.

Chapter 3, High-Level Model/Design, describes the design and training of a CNN
architecture inspired by the UNet with the high level programming language Python.
The chapter also presents a suggested standardized format for storing weight values
for CNN designs.

Chapter 4, Software Implementation, provides a walk-through of the suggested
UNet software framework created for an embedded Linux environment, in addition
to the design choices made.

Chapter 5, Hardware Acceleration, describes a suggested accelerated design for the
convolutional layer, and how it could be implemented in a Linux system to support
a UNet software framework.

Chapter 6, Results and Discussion, presents the results from Chapter 3, 4 and 5,
and discusses the results for each of the chapters.

Chapter 7, Conclusion, presents the final conclusions drawn from the work, and is
finished off with a section on further work.

6 Chapter 1 Introduction



Background and Theory 2
This chapter is meant to provide some insight into the background of this thesis,
which is helpful in understanding the need for a CNN design on a satellite system. In
addition, will relevant theory be described, which will be helpful in understanding
the design choices presented in the implementation and discussion chapters.

This chapter starts by introducing the HYPSO-1 and HYPSO-2 CubeSats and their
mission concept. This information is helpful, as it provides a better understanding
of the need for on-board image processing, like image segmentation, and highlights
challenges with on-board processing for nanosatellites.

The chapter also describes theory such as remote sensing and hyperspectral imaging,
which are important subjects to grasp, as they provide insight into why this type of
data is used in semantic segmentation. Furthermore, theory surrounding ML, DL,
CNNs, FPGA acceleration and embedded Linux is provided to give a clearer under-
standing of the computational and memory requirements of a UNet architecture
implementation.

2.1 HYPer-spectral Smallsat for ocean Observation

HYPSO-1 is the introductory nanosatellite designed and operated by the SmallSat
team at NTNU. Its mission is to perform Earth Observation (EO) using a hyperspectral
imaging payload and to perform in-orbit image processing, such as target detection
and dimensionality reduction [13]. The satellite was launched with the SpaceX
Transporter-3 mission from Cape Canaveral Space Force Station in January of 2022
[14] and is currently orbiting Earth at a low-Earth orbit of around 500km [2]. An
additional satellite, HYPSO-2, is currently in its design phase and will hopefully
be carrying an additional software-defined radio payload and improved on-board
processing hardware into space in future years.

Figure 2.1 shows the Concept of Operation (CONOPS) for the HYPSO-1 mission,
and describes the different stages of its EO mission. The satellite utilizes two main
ground stations for data transmission, the main one being an S-band antenna at the
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Fig. 2. CONOPS for HYPSO-1 where it 1) receives uploads from a nearby ground station; 2) acquires hyperspectral images during a slew maneuver;
3) immediately processes the images on board; 4) downlinks the data to nearby ground stations; and 5) supports in situ assets in the vicinity that may be
deployed to the observed scene for closer investigation.

To achieve consistent image registration or simply knowing
the location of each pixel to the accuracy of 100 m, e.g., for
georeferencing, then good performance is needed for attitude
and position determination and time synchronization between
the images, attitude data, and position data.

3) Onboard Image Processing: The image processing archi-
tecture shall be modular by design, alleviate the satellite oper-
ations, and quickly provide tailored data upon requests from
end-users. To make such data products useful, the high-level
goals are to:

1) employ lossless compression on hyperspectral data to
reduce their size on board for quicker download;

2) extract relevant spatial-spectral information in the
water-leaving signals by using e.g., dimensionality
reduction, target detection or classification;

3) register and rectify the images, and utilize the SGSD
to achieve better than 100 m spatial resolution by using
image restoration methods, e.g., deconvolution or super-
resolution; and

4) be able to transform pixel indices to geodetic latitude
and longitude, e.g., using georeferencing, such that the
coordinates may guide in situ assets to specific locations
of interest.

The hyperspectral data products shall normally be analyzed in
synergy with other available remote sensing data and in situ
measurements, especially during HYPSO-1’s commissioning
phase. In addition, modeling and simulation tools shall provide
estimated radiometric, spectral, and spatial properties of a
simulated ocean color event to support data analysis and
atmospheric correction [51], [52].

III. HYPERSPECTRAL IMAGER DESIGN

A. Optics

An optical diagram of HYPSO-1’s pushbroom hyperspectral
imager is shown in Fig. 3 with its cross section parallel to
the refraction axis [37]. The components are: 1) a front lens

with aperture diameter D0 and focal length F0; 2) an entrance
slit with height hslit and width wslit; 3) a collimator lens
with aperture diameter D1 and focal length F1; 4) a grating
receiving the incoming light at angle α = 0◦ then diffracting
it at angle β with respect to the grating normal; 5) a detector
lens with aperture diameter D2 and focal length F2; and
finally 6) an image sensor. The FoV components along and
perpendicular to the scan direction are

tan
(εw

2

)
= wslit

2F0
(1a)

tan
(εh

2

)
= hslit

2F0
. (1b)

Assuming no loss in light transmission from the front lens
to the image sensor, the geometric etendue can expressed as

G = π
D2

0

4F2
0

cos(β)wdhd (2)

where the projection of the slit dimensions onto the image
sensor are

wd = wslit F2

cos(β)F1
(3a)

hd = hslit
F2

F1
(3b)

and β is the diffraction angle assumed at the center wave-
length [53]. Shown to the right in Fig. 3, the number of
illuminated pixels along the projected slit width and height
are

Nw = wd

�pλ
(4a)

Nh = hd

�py
(4b)

where �pλ and �py are the pixel width and height,
respectively.

The theoretical spectral bandpass for the optical system
is the recorded full width at half maximum (FWHM) of
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Fig. 2.1: HYPSO-1 CONOPS, where in 1) the satellite receives operational data; 2) HYPSO-1
starts a slew maneuver while performing a pushbroom scan; 3) capture completes
and the slew maneuver ends; 4) in-orbit processing is performed and data is
downlinked to a ground station [2].

roof of NTNU, whilst the other being the Kongsberg Satellite Services (KSAT) S-band
base at Svalbard. Data cubes are compressed and binned to data sizes of around 40
~70 MB, making it possible to downlink a cube within 2-3 passes, where an orbit
takes around 80 minutes. As shown in the figure, HYPSO-1 will receive a target and
autonomously orientate and capture the desired area using a slew manoeuvre while
performing a pushbroom scanning technique. Section 2.2.2 describes this technique
in more detail. Once complete, this data can be downlinked to one of two ground
stations.

The HYPSO-1 mission looks to perform EO of the world’s oceans, with the primary
objective being to observe light-absorbing pigments, such as phytoplankton [2][p. 1].
These algal blooms, of which some are known to be harmful to humans and marine
environments [15], may move considerable distances in a short time, impelling for
EO missions like HYPSO-1 to allow for early detection. As Harmful Algal Bloom
(HAB)s also will continue to arise in the future, with research indicating that they
may even arise more frequently [16], it is vital to continue the research in the field,
supported by satellites like HYPSO-1 and later HYPSO-2.

HABs, which are often visible on the surface of water bodies, have observable
characteristics within wavelengths between 400 nm to 700 nm, commonly referred to
as visible light [2]. Due to this, they can be observed using HYPSO-1s hyperspectral
imaging payload, which has been designed to sample upwards to 1080 bands over
this range with its image sensor.

8 Chapter 2 Background and Theory



2.2 Remote Sensing

Remote sensing is the concept of gathering information about an object, or scene,
from afar, commonly through capturing electromagnetic waves that are either
emitted or reflected by an object [1][p. 1]. In the book Remote Sensing: Image Chain
Approach by J.R Schott, remote sensing is defined as

the field of study associated with extracting information about an object
without coming into physical contact with it [17].

Remote sensing is helpful as it allows the end-user, whether a human or a computer,
to gather information from afar and, through analysing it, make decisions based on
the sampled data [1]. Remote sensing is, however, not necessarily always meant
for decision making and can be connected to more well-known cases, such as the
capture of Red, Green and Blue (RGB) images, like the ones we see every day. For
example, with the typical smartphone, a person can remotely capture a scene with
its built-in camera. This produces what is called a multi-band image and is due to
the camera sensor and optics being restricted to only capturing the bands of visible
light perceivable by humans, such as red, green and blue (wavelengths of 650-, 550-,
and 450-nm respectively.) [1][p. 4].

The wavelengths of red, green and blue in themselves do not provide any elaborate
characteristic for the captured object except to provide a visual representation that
humans can perceive. This is where hyperspectral imaging comes in and why it is
valuable in EO scenarios, as it provides more bands, meaning more data about the
captured object or scene.

2.2.1 Hyperspectral Remote Sensing

Hyperspectral remote sensing refers to the concept of performing remote sensing,
though with the use of hyperspectral imaging sensors, such as the one illustrated in
Figure 2.2. By utilizing various lenses and slits to diffract light to given locations on
an imaging sensor, one can sample several bands of light for a given spatial area at a
time. Depending on the imaging setup, a hyperspectral imager may be capable of
capturing everything between several to thousands of bands.

Figure 2.2 shows how several bands correlate to a given spatial pixel in a captured
scene. As one may see, as data accumulates, one gets a cube-like shape for the data.
Due to this, hyperspectral data is often referred to as an image cube (spectral image
cube in Figure 2.2) since it contains both spatial and spectral dimensions.
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Fig. 2.2: Illustration of how a pushbroom scanning maps to a image sensor through various
lenses and slits, and further into an spectral image cube. The figure also shows how
different bands map to a given spatial locations on the right hand side. Adapted
from illustration by Zsolt Volent with permission [18].

Through sampling several bands for a given pixel, it is possible to visualize and
analyse the spectral characteristics of a spatial area [X, Y ] as shown in the right-
hand part of Figure 2.2. The spectral dimension is denoted as Z. Comparing this
with known characteristics allows for determining the materials or compounds, such
as algae, in the given area [1][p. 8]. This is also the reason why hyperspectral
imaging has shown to be advantageous for training neural networks [7, 6].

2.2.2 Pushbroom Scanning

Standard cameras, e.g., those used in smartphones, utilize sensors with separate
photodiodes for each of the RGB wavelengths per pixel, allowing these sensors to
sample the intensity of red, green and blue simultaneously. However, this is not the
case with hyperspectral imaging sensors since having hundreds of specific diodes
per pixel would not be viable. There are hyperspectral snapshot designs capable of
capturing all bands for a spatial area within the same ∆t; however, this technology
often utilizes detector arrays that are more complex than what is used in, e.g.,
HYPSO-1 [19].

Two more commonly used methods for hyperspectral imaging are the pushbroom
and whiskbroom scanning methods [1][p. 255-247], which involve “scanning” the
surface that is to be captured.
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Fig. 1. Illustration of a pushbroom hyperspectral imager collecting Nx
frames, or lines, consisting of Nλ and Ny pixels.

corrected water-leaving signals should be between
40–100 [42];

4) data latency should be less than 1 h [43]; and
5) revisit times to dedicated areas of interest should be

3 h–72 h [43], [44].
Because HYPSO-1 is a single nanosatellite, but the first in
a prospective constellation, we focus on working toward the
recommendations 1), 2), 3) and 4).

B. Image Acquisition Basics

Even though many sorts of spectrometers can be integrated
on aerial or space platforms [45], the passive pushbroom
imager is an attractive choice that collects a good amount of
light [37], [46], [47]. Low-cost COTS components have also
made this type more accessible, flexible, and affordable [29],
hence chosen as the payload design for HYPSO-1.

A pushbroom imager sequentially scans several lines Nx ,
each consisting of instantaneous spatial pixels Ny and spectral
pixels Nλ, ultimately forming a hyperspectral data cube. Fig. 1
shows the pushbroom imager at altitude H with its scan
oriented toward the velocity direction, where Ny pixels are
counted perpendicular to the scan direction and Nλ pixels
carry the spectral information. The vertical and horizontal
FoV components are εw and εh , respectively. The integration
time �t = 1/FPS = τ + δt is the elapsed time between two
consecutive lines, or frames, where frames per second (FPS)
is the frame rate, τ is the camera exposure time and δt is the
read-out time.

With the imager mounted in a satellite moving at high
orbital speed, the optically induced drawback is generally
much lower spatial resolution along the scan direction.
A work-around is to overlap more frames by slowly tilting the
imager backward as it translates forward, similar to the method
described in [48]. This results in a greater amount of partial
overlap in the pixels, an effect that can be utilized to enhance
SNR or spatial resolution as tradeoffs using image restoration
techniques, e.g., deconvolution or super-resolution [49]. For
clarity, the Euclidean distance on the ground between the same
pixel in two consecutive frames is defined as the Sequential

Ground Sampling Distance (SGSD) which is not to be con-
fused with the Ground Sampling Distance (GSD) being the
ground distance between adjacent pixels in one instantaneous
frame.

C. Concept of Operations

The HYPSO-1 mission is mainly designed based on trade-
offs in spatial resolution, spectral resolution, SNR, data size,
coverage to ground stations, and preferred locations to be
observed. HYPSO-1 will be launched to a 500 km altitude
Sun-Synchronous Orbit (SSO) with Local Time of Descending
Node (LTDN) at 10:00 Universal Time Coordinated (UTC),
thus granting morning access to the Norwegian coastline
during Spring and Summer seasons while also avoiding detri-
mental sunglint effects [50].

The CONOPS for HYPSO-1, illustrated in Fig. 2, enables
five main capabilities:

1) after receiving uploaded telecommands and updates
(e.g., camera settings) from a nearby ground station,
HYPSO-1 is scheduled to orient its hyperspectral imager
to start scanning a predefined region;

2) HYPSO-1 executes a single-axis slew maneuver so that
the imager’s footprint slowly rotates backward with
respect to the velocity direction. With a high camera
frame rate, the goal is to enable an SGSD better than
100 m;

3) after imaging, the hyperspectral data cube is imme-
diately processed onboard to reduce its data size and
therefore speeding up download on the ground;

4) in the case of quick downlink after observing a coastal
region in Norway, the selected ground station network
includes S-band ground stations at NTNU in Trondheim,
Norway, and Kongsberg Satellite Services (KSAT) in
Svalbard, Norway, and Puertollano, Spain; and

5) the Mission Control Center at NTNU Trondheim oper-
ates several robotic assets, such as UAVs, USVs, and
AUVs, that may collect data in situ if within range of
the observed area.

D. System Capabilities

1) Imaging Modes: The hyperspectral imager has three
main configurations for image acquisition:

1) high-resolution mode: enables high spatial resolution
with narrow swath width and high frame rate settings;

2) wide FoV mode: enables a wider swath but at coarser
spatial resolution; and

3) diagnostics mode: provides raw data at full sensor res-
olution mainly to be used for in-orbit calibration and
characterization.

2) Attitude Determination & Control System: To obtain
better than 100 m spatial resolution requires a precise attitude
determination and control system (ADCS) [30]. For a pointing
or maneuvering satellite, attitude sensor and actuator noise
(e.g., reaction wheel jittering) will result in a nonuniform
distribution of images across the observed scene. The attitude
inaccuracies can be categorized by attitude control and knowl-
edge errors, bearing in mind that the latter affects the former.
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Fig. 2.3: Illustration of pushbroom scanning,
where samples with their respec-
tive bands are captured per Nx.
The Cross-track defines the number
of samples Ny captured per frame,
whilst Nλ defines the number of
bands captured [2][p. 3].

Pushbroom scanning, as seen in Fig-
ure 2.3, is a technique that samples all
bands for a spatial line at a time while
moving over its target surface. As the
satellite moves along its track, denoted
as Nx in the figure, a frame is captured
every ∆t. The resulting dimensions of
the image cube will therefore be defined
by the number of pixels used for the
cross-track, also called swath width, the
number of frames captured, and the
number of pixels used for the bands
[1][p. 255-247]. Figure 2.4 shows how
a spatial line maps to the image sensor
for every ∆t. Additionally, since pushb-
room scanning utilizes optics for diffract-
ing the light onto specific locations on
the image sensor, it is common to utilize
monochromatic sensors, which means
that it is receptive to all wavelengths of light [1][p. 315].

Along-track

Sa
mple

s

Bands

Sam
ples

Monochromatic 
sensor

(1) (2)

Fig. 2.4: Illustration of how a line of pixels (1) during pushbroom scanning maps to the
monochromatic image sensor (2) for each sample of the sensor.

When working with hyperspectral image cubes, it is easy to confuse which spatial
dimension refers to the frames and which refers to the swath width. Therefore, a
more precise naming scheme will be used throughout the thesis and is described
in Figure 2.5. In the figure, Samples refers to the spatial line captured for every ∆t,
while the Lines represent the number of frames. Additionally, the Bands logically
represent the bands for each spatial location defined by the lines and samples. For
reference, in Figure 2.2, the X denotes the lines, Y the samples and Z the bands.

2.2 Remote Sensing 11



2.2.3 Raster Formats for Hyperspectral Data

Raster files, or formats, are digital descriptions of image files and can be recognised
through file formats such as JPEG, PNG and GIF. Compared to vector files, which
utilise vectors to define pixel values, raster files have fixed pixel values. Due to this,
if transformed with various processing techniques, they may become distorted and
blurry, while vector data does not. Since hyperspectral data is sampled using an
imaging sensor, this data is stored as fixed pixel values.

Bands

Samples

Lines

Fig. 2.5: Illustration of the naming
schemes for hyperspectral
image data.

Since hyperspectral images consist of several
sampled bands for their spatial pixels, they can-
not be fully visualized as images, as humans only
see red, green and blue. However, hyperspectral
data is often visualized through vivid images,
where three bands are extracted to form an RGB
representation.

Though they are not in themselves image for-
mats, hyperspectral data is often encoded using
three different encoding methods called Band
SeQuential (BSQ), Band Interleaved by Pixel
(BIP) and Band Interleaved by Line (BIL). These
formats essentially structure the data in various
ways, such as the BIP which structures all bands
for a given pixel before moving on to the next as

shown in Figure 2.6. When data is captured with BIP encoding during a pushbroom
scan, the data will be stored in the order of bands, samples, lines.

Bands Interleaved by Pixels

b b b b

Pixel 1

b b b b

Pixel 2

b b b b

Pixel n

Fig. 2.6: Image data array encoded using the BIP format.
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2.3 Deep Learning

Machine Learning (ML) is a branch within the field of Artificial Intelligence (AI)
and computer science that focuses on mimicking the human learning behaviour
and decision making through training statistical models on various input data. A
ML algorithm is described in the book What is Machine Learning by El Naqa I and
Murphy M as:

A machine learning algorithm is a computational process that uses input
data to achieve a desired task without being literally programmed (i.e.,
“hard coded”) to produce a particular outcome [20][p. 18].

Programming the algorithms so that they may iterate on input data and "optimize"
their variables accordingly allows these models to find patterns in data and perform
predictions better than hard-coding them for each scenario, significantly reducing
the programming needed.

Convolutional Neural Networks

Artificial Neural Networks

Deep Learning

Machine Learning

Artificial  
Intelligence

Fig. 2.7: A illustrating of how the the field of
AI is structured for a specific branch
within Deep Learning all the way
down.

Deep Learning (DL) takes the concept
of ML a step further by attempting to
mimic the human brain’s functionality.
As Figure 2.7 suggests, DL is a subfield
of ML, and is a field that focuses on the
training of multilayered learning algo-
rithms. The purpose of DL is to create
multiple levels of abstractions from in-
put data, which allows more features
within the data to be extracted [5][p.
1]. DL has proven to be highly effective
for use cases such as speech recognition,
visual object recognition and object de-
tection, as it manages to extract more in-
tricate details from larger datasets [8][p.
1]. Due to the core component of DL be-
ing neural networks, it is common to use the name Deep Learning synonymously
with Artificial Neural Network (ANN) and will also be done so throughout this
thesis.
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2.3.1 Artifical Neural Networks

ANNs are, as mentioned in the previous section, networks that attempt to resemble
the way human brains work for processing data. The core component of the ANN
is the neuron, which can be added together to form various layers as illustrated in
Figure 2.8. The figure shows the inputs passing into various neurons, which are all
densely connected to a network, before being passed out to the outputs. Each of
these neurons performs a computation on its input data before passing it to the next
layer. The neurons, which are not a part of the input and output, are commonly
called hidden units, and together from the hidden layer [8][p. 3].

Inputs

Hidden Layers

Output

y1

yn

x1

x2

xn

Fig. 2.8: Illustration of a dense ANN with n number of inputs, layers and outputs. The
direction of the data is from left to right, making it a feed-forward network. Each
circle corresponds to a neuron, and each blue line is its connections.

The neuron can be illustrated as shown in Figure 2.9. One can see that the neuron
consists of a variable number of inputs, as previously shown in Figure 2.8, where
each input x is multiplied by its respective weight w. The weight values are called
trainable parameters in a ANN, as they, in addition to the bias value b, are tuned
during the training process. Training is further described in Section 2.3.2.

The output of each weight multiplied by its input is summed together with the
additional bias b value. The bias is another trainable parameter that can be tuned
to either increase or decrease the chance of a neuron “firing”. Once all values are
summed together, the final sum is passed through an activation function f(x) which
checks whether or not the sum passes the threshold of the neuron being activated,
as follows:

y = f(
∑

n

xnwn + b) (2.1)
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f(x) y

Fig. 2.9: Illustration of neuron used in ANNs, where w denotes the weights, b denotes the
bias and f(x) denotes the activation function.

Activation Functions

Activation functions are nonlinear functions that determine whether or not a neuron
will activate. They are important for DL networks as they provide a collection of
neurons with the ability to model nonlinear patterns in data [20][p. 212]. Many
different activation functions are used within the field of DL; however, this thesis
will focus on two, in particular, namely the Rectified Linear Unit (ReLU) and Sigmoid
activation functions. The ReLU function can be seen in equation 2.2, and essentially
removes negative input values, while passing positive ones. Figure 2.10 shows an
illustration of the ReLU behaviour.

f(x) =

x if a > 0,

0 otherwise.
(2.2)

The Sigmoid function is described in equation 2.3 and is an un-linear function that
always produces a value between 0 and 1. The function is usually used in the last
layers of a ANN network to predict the probability of various outputs. Figure 2.10
illustrates how the Sigmoid function f(x) behaves according to different input data
x:

f(x) = 1
1 + e−x

(2.3)

2.3.2 Network Training

ANNs like the ones described in Figure 2.8 can consist of anywhere between
hundreds to millions of neurons depending on the complexity of the network.
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Fig. 2.10: Sigmoid (left) and ReLU (right) activation functions. The x-axis is the input
value, while the f(x)-axis is the output.
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Fig. 2.11: Illustration of different meth-
ods for training ML algorithms.
Adapted from [20][p. 7].

For these neurons to perform predic-
tions on data, their parameters often
referred to as hyperparameters, must be
trained on similar data to what the net-
work will be predicting. The process of
tuning the hyperparameters is what is
referred to as training the neural net-
work. It can briefly be described as an
iterative procedure where a computed
output is compared to the desired val-
ues for a given input, and weights are
changed accordingly. This process of
training ML algorithms aims to emulate
the way humans learn where one trains
through repetitive encounters with spe-
cific tasks. The final goal of this process
is to repeat the training to a degree such

that the algorithm can classify unseen data [20][p. 4].

A common methodology for training neural networks is called supervised learning, in
which an algorithm is passed an input and its expected classification (truth values).
Figure 2.11 describes an additional two types of learning methods, namely Semi-
supervised learning and Unsupervised learning. The first method trains on partly
labelled data which may aid in classifying other parts, while the latter lets the
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algorithm attempt to find the path for itself [20][p. 5]. For image segmentation,
the semi-supervised- and supervised learning methods are the most common and,
therefore, most relevant to this thesis.

2.3.3 Backpropagation

The procedure for tuning ANNs requires an algorithm capable of calculating changes
to the weights backwards in the network. The procedure used for training a feed-
forward ANN is called Backpropagation. It involves calculating an error function,
also called loss or cost functions, and finding the gradient of the error whilst moving
backwards (backpropagating) in the network. As mentioned previously in section
2.3.2 about Network Training, multi-layered networks like ANNs consist of large
amounts of neurons, where each of these neurons contains a variable amount of
weights. Weights are commonly real numbers represented as floating-point values
with varying precision. Due to the vast number of weights requiring tuning, training
neural networks may take a very long time depending on the network architecture,
weight value precision and training hardware. However, Chapter 3 details further the
caveats of arbitrary floating-point precision and network architectures. The tuning
of weights can essentially be boiled down to changing the value of a floating-point
number within the range of 0 and 1. [21, 5].

Inputs

Hidden Layers

Output

y1

yn

x1

x2

xn

Fig. 2.12: Illustration of how backpropagation is used to look at the propagation of error
for all weight values backwards in a feed-forward neural network. Pink lines
represents a singular backpropagation while moving towards the left.

Figure 2.12 attempts to illustrate the connections between neurons and how error
propagates backwards in a network. As the figure clearly shows, the number of
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weights involved for a given output quickly becomes numerous as one moves past the
last layers. Due to this, the denser the neural network is, the more computationally
intensive the training procedure becomes, assuming a fully connected network.

Several loss functions exist for neural networks, which all have different pros and
cons depending on the type of architecture. However, these will not all be mentioned
in this thesis as they are irrelevant. One of the more common loss functions in ML is
the cross-entropy loss function given by equation 2.4. The loss denoted as E can be
calculated for a output ŷi and the desired output yi (truth values) [22].

E = −
∑

i

yilog(ŷi) (2.4)

Cross-entropy entropy has become popular due to its increased training speeds
and ability to generalize networks. Additionally, the loss function can be used for
binary and multi-class classification, making it suitable for image segmentation and
classification networks [22, 8].

Though loss functions like cross-entropy provide a sense of how far off a prediction
was, it does not directly indicate how each weight value throughout the network
should be adjusted. This is where the use of gradient descent comes into play.

Gradient descent is used with loss functions for calculating changes to weights, the
“direction” and magnitude, which provides the highest reduction to the loss function
E. The direction is derived from the mathematical operation of the loss functions
gradient, which calculates the steepness of a slope for a given point. Gradient
descent can be defined as in equation 2.5.

wτ+1 = wτ − η∇En (2.5)

In the equation, τ denotes the iteration number, η the learning rate, w the parameter
vector and ∇En the gradient of the loss function. For each iteration, a new parameter
vector is generated by subtracting the previous parameter vector with the gradient
of the loss function multiplied by the learning rate. Learning rate η defines how
much weight adjustment is performed each iteration, previously mentioned as the
magnitude [23][p. 144].

As with loss functions, different ways of calculating gradient descent exist for training
neural networks. One of the most popular ones is the Adaptive Moment Estimation
optimizer, called Adam. The Adam optimizer utilizes dynamic learning rates for the
parameters, proving to be competitive with other optimization methods [24].
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2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of DL networks which are designed
to process image arrays, such as a RGB or hyperspectral image cubes [5], which the
goal of classifying or segmenting parts of the image. These types of networks are
often structured as a set of convolutional and pooling layers in which the image data
is passed through to extract features. Semantic segmentation, which is the goal in
this thesis, is essentially the prediction task of “painting” a image with its classes.
The previously mentioned UNet is a commonly used CNN network, and can be seen
in Figure 2.29. As the figure shows, a CNN like the UNet utilizes 4 distinctive layers,
namely convolution, max pooling, transposed convolution and concatination.

2.4.1 Convolution

The convolutional operation is the core of the CNN and is used to extract features
from image matrices using kernels. The name implies that the CNN utilizes the
mathematical operation of convolution. However, most CNN networks generally
implement the related cross-correlation function, as seen in Equation 2.6. This
function performs the same operation as convolution, though without flipping the
kernels [25][p. 327]. For simplicity, the operation will be referred to as convolution
throughout this thesis.

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i + m, k + n)K(m, n) (2.6)

Fig. 2.13: Convolutional kernel
of size 3 × 3.

The kernels used in convolutional layers are 2D ma-
trices, as seen in Figure 2.13. The kernel size, de-
noted as Ks, defines the width and height of the
kernel. In a convolutional layer, these kernels are
passed over the image data multiplying element wise
its weights with the image matrix, as described in
Figure 2.14. This essentially means that the Ks de-
fines the number of pixels that will be included in a
convolution. The output of this operation is placed
into a new matrix, as seen on the right hand side of
Figure 2.14. Depending on the configuration of the
kernel, e.g., the Ks and stride, the output will vary
in size [25][p. 330].
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For the example in Figure 2.14, Ks = 3 and a stride of 1 is used. This means the
kernel moves one pixel horizontally and vertically over the image matrix while
convolving. For each position of the kernel window, which in this case has four
possible positions, the kernel values are multiplied with the pixels in the image as
described in Equation 2.7. The f in the equation is one of the activation functions
described in Equation 2.2 and 2.3. The element-wise multiplied pixels and weights
are summed together before passing through the respective activation function,
which defines the value within the outputted feature map.

o22 = f(k11p22 + k12p23 + k13p24 + ... + k31p44) (2.7)

       

 

 

 

  

        

     

     

Fig. 2.14: Kernel sliding over image matrix performing cross-correlation with a stride of 1.
The naming scheme of samples and lines is used to denote the dimensions of the
image and output matrices. S denotes the samples, while L denotes the lines.

By changing the magnitude of the kernel weights, different feature maps can be
computed and is the approach used by a neural network when training.

CNNs like the UNet utilize what’s called 2D convolutional layers. This essentially
specifies that a kernel only moves in a 2D space and always calculates a 2D output
as seen in Figure 2.14. Therefore, in the case where a kernel is subjected to a
3D input, it will have an additional depth dimension Kd corresponding to the
depth of its input. This is visualized in Figure 2.15. The same logic for convolving
a 2 dimensional kernel applies to a 3 dimensional kernel, meaning weights are
multiplied element-wise to the input cube, and summed together.

It’s typical to have several kernels within a convolutional layer, which results in
its output being a 3D feature map. Figure 2.15 attempts to further visualize this
relationship between input dimensions, kernel number and layer output for a 2D
convolutional layer. Kernel number is denoted as Kn.

Convolutional layers have a tendency to reduce the spatial dimensions of its inputs
depending on the kernel size and stride. In the case where spatial dimensions should
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Fig. 2.15: Illustration of a convolutional layer in a CNN, consisting of Kn kernels. Each
kernel (2) have the same depth as the input (1), while the output (3) will have
the same depth as there are kernels kn

be maintained through a convolutional layer, image data is padded before being
subjected to the layer. A standard method is zero padding, which essentially places
zeros around the image cube as seen in Figure 2.16.
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Fig. 2.16: Illustration of how padding is applied to a input to maintain spatial dimensions
through a convolutional layer.
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2.4.2 Max Pooling

Pooling is a CNN layer used to summarize and downscale features from previous
convolutional layers [25][p. 335]. In the UNet described in Figure 2.29, the max-
pooling layer is used, which finds the highest value within a window and places this
into an output feature map as visualized in Figure 2.17.
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Fig. 2.17: Illustration of a max-pooling operation with a 2 × 2 window and a stride of 2.

As an example, the o12 output can be calculated as shown in Equation 2.8. A max-
pooling layer with a window size of 2 × 2 and a stride of 2 will downscale both
spatial dimensions of the input by half, though retaining its depth.

o12 = max(p13, p14, p23, p24) (2.8)

2.4.3 Concatenation

The concatenation layer takes two feature maps of equal spatial dimensions and
concatenates the bands into a new feature map, as seen in Figure 2.18. In Figure
2.29, concatenation, also referred to as skip connections are performed during the
upscaling (decoding) path of the network. This brings features that have not been
max-pooled forward into the network, merging with upscaled features.

Fig. 2.18: Illustration of a concatenating layer combining two feature maps into one feature
map of their combined depth.

22 Chapter 2 Background and Theory



2.4.4 Transposed Convolution

Transposed convolution is a method of upscaling input features with the goal of
increasing the spatial dimensionality of the input [26]. Various methods of upscaling
exist, such as nearest neighbour and max-unpooling. However, in contrast to these,
the transposed convolutional operation utilizes trained weights to perform the
upscaling of input features more accurately.

Much as with the convolutional layer, transposed convolution does not perform
the actual mathematical operation of transposed convolution and is therefore often
referred to as deconvolution [26, 27]. The transposed convolutional operation works
much like the convolutional operation described in Subsection 2.4.1, and can be
seen in Figure 2.19. The main difference is that the transposed convolution works
the “opposite way” to the convolutional operation. The kernel is multiplied with
each input value, creating a 2 × 2 representation shown on the right-hand side. The
kernel slides over the output feature map, in this case with a stride of 2, meaning
the output feature map will have twice the spatial dimensions as its input.

   

   Input Kernel   

  

Output

Fig. 2.19: Illustration of a transposed convolutional operation. The kernel has a size 2 × 2
and a stride of 2. The pink square in the Output represents one instance of the
kernel sliding over the output.

If the stride is not equal to Ks, the kernel multiplications in the output overlap and
are therefore summed together. Additionally, as shown in Subsection 2.4.1, the
depth of the output feature depends on the number of kernels Kn in the layer.
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2.5 UltraScale Architecture

The UltraScale Multi-Processing System on Chip (MPSoC) architecture is a SoC
designed by Xilinx, enabling diverse multiprocessing capabilities for embedded
systems. The architecture, as described in Figure 2.20, includes a Application specific
Processing Unit (APU), Real-time Processing Unit (RPU), Graphics Processing Unit
(GPU) and FPGA within the same chip [28].

Quad ARM
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Floating Point Unit

32KB 
Cache

32KB 
Cache

Memory
Management Unit

Application Processing Unit

Programmable Logic

Real-Time- and Graphics 
Processing Unit

Dual ARM 
Cortex-R5F

ARM 
Mali-400MP

Fig. 2.20: Simplified UltraScale MPSoC architecture describing the processing units within
the SoC.

The APU, typically referred to as a CPU throughout the thesis, includes a quad-core
ARM Cortex-A53 processing system running upwards to 1.5GHz, and supporting
both 32- and 64-bit operation. The Cortex-A53 implements the ARMv8-A ISA,
which includes ARMs NEON technology, capable of Single Instruction Multiple Data
(SIMD) instructions. Additionally, the Cortex-A53 includes a Floating Point Unit
(FPU), providing more efficient floating-point arithmetic, and the possibility for
floating-point SIMD operations [28, 29].

The Programmable Logic (PL) consists of a FPGA with 504K logic cells and 1727 DSP
slices capable of running with a clock speed of upwards to 300MHz. Additionally,
the FPGA has 38MB of BRAM, making it possible to store data within the FPGA for
faster computing.

In conjunction with the APU and PL, the ultrascale architecture also includes a RPU
for applications with real-time constraints, and a GPU meant for mobile graphics
and user interfaces [28].
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2.6 Field Programmable Gate Arrays

Embedded systems are progressing in processing power versus power consumption,
which is especially useful in space applications. However, this progression is heavily
supported by the rise of accelerators, such as FPGAs. Due to satellites, especially
CubeSats, having less powerful SOMs, the use of FPGAs allows for heavy computa-
tions within limited time windows without utilizing huge amounts of power. This
makes FPGAs very useful for CNNs, which are notorious for their high computational
loads. With the use of different processing units such as the CPU and FPGA, the
terminology Hardware/Software Codesign is introduced.

The Field Programmable Gate Array (FPGA) is a generic logic circuit that was
designed to be programmed for specific applications [30][p. 21]. Its main strength
is its ability for parallelism, in contrast to the sequential execution of processors,
thus making it a popular choice for accelerating parts of sequential software. In
many ways, the FPGA looks and functions like a Application-Specific Integrated
Circuit (ASIC), however it consists of a tightly interconnected network of generic
logic cells consisting of LookUp Table (LUT)s and latches, as seen in Figure 2.21
[30][p. 26].

system implemented on an FPGA can often be operated at the native pixel input (or output) clock

frequency. This corresponds to a reduction in clock speed over a serial processor of two orders of

magnitude or more. The dynamic power consumption of a system is directly related to the clock

frequency, so a slower clock results in a significantly lower power design.

If the whole algorithm can be implemented on a single FPGA, the resulting system has a small form

factor. Designs with only two or three chips are possible, enabling the whole image processing system

to be embedded with the sensor. This enables smart sensors and smart cameras to be built, where the

intelligence of the system is built within the camera (Leeser et al., 2004; Mosqueron et al., 2007). The

result is that vision can then be embedded within many applications as a versatile sensor.

2.3 Inside an FPGA

So, what exactly is inside an FPGA? Figure 2.4 shows the basic structure and essential components of a

generic FPGA. The programmable logic consists of a set of fine-grained blocks that are used to implement

the logic of the application. This is sometimes called the fabric of the FPGA. The logic blocks are usually

based on a lookup table architecture, enabling them to implement any arbitrary function of the inputs. The

logic blocks are typically tiled in a grid structure and interconnected via a programmable routing matrix

that enables the blocks to be connected in arbitrary configurations. The input and output (I/O) blocks

interface between the internals or core of the FPGA and external devices. The routingmeans that virtually

any signal can be routed to any I/O pin of the device.

In addition to these basic features, most FPGAs provide some form of clock synchronisation to control

the timing of a clock signal relative to an external source. A clock distribution network provides

clock signals to all parts of the FPGAwhile limiting the clock skew between different sections of a design.

There is also some dedicated logic for loading the configuration into the FPGA. This logic does not

directly form part of the user’s design, but is the overhead required for FPGAs to be programmable and

provides the mechanisms for loading the user’s design onto an FPGA.

Each of these components is examined in a little more detail in the following sections.
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Figure 2.4 The basic architecture of an FPGA.
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Fig. 2.21: The architecture of a FPGA illustrated in a simplified manner. Figure taken from
[30][p. 26].

LUTs are essentially programmable logic blocks, making it possible to cascade them
together to perform various processing tasks. Additionally, a FPGA runs on a set
clock frequency, making it more deterministic than processor systems which often
rely on multi-threading for simulating concurrency. This makes the FPGA very useful
in settings where determinism is essential, such as real-time systems, and is often
used in conjunction with processing systems.
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The FPGA is often compared with the well-known Graphics Processing Unit (GPU),
which essentially is a graphical processing accelerator, due to them both relying
on the concept of parallelism. However, what the FPGA lacks in generalization
compared to the GPU, it makes up in significantly decreased power consumption.
Due to this, the FPGA has become highly popular in cases where a tradeoff between
power consumption and processing power is needed, such as on satellites, phones,
and drones [9].

The points above have also made the FPGA very popular in the field of Deep Learning,
as neural networks consist of large amounts of multiplications and additions, which
are generally parallelizable. The FPGA have even been proven to be more efficient
than the GPU in some instances, such as sliding window operations which are widely
used in image processing and CNNs [31].

2.6.1 Interface

FPGAs are often used together with other peripherals and processing units, which
all need to interface with the FPGA. These interfaces are used to either deliver data
for processing or are simply control signals for the logic implemented on the FPGA.
It is possible to find standalone FPGAs; however, today, it has become common to
include them in multiprocessing System on Chip (SoC)s where specialized interfaces
communicate between, e.g., CPUs and FPGAs.

One such interface is the Advanced eXtensible Interface (AXI) protocol designed
by ARM, mainly designed for on-chip communication. The protocol, which is
part of the Advanced Microcontroller Bus Architecture (AMBA), makes it relatively
simple to connect several devices through an interconnection device. Additionally,
the AXI4 protocol includes various side-channel communication for handshake
synchronization, making it capable of high data throughput and control signalling
[32].

Figure 2.22 shows how a master device can connect to a slave device through the AXI
interconnect. The figure shows that the interconnect behaves like a slave and master
in itself, being able to “command” slave devices whilst also being “commanded” by
the master device. In a multiprocessing system, the master and slave could be, e.g.,
a CPU and a FPGA.
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Fig. 2.22: Illustration of the AXI protocol, showing how a master can communicate with a
slave device through a AXI interconnection [32].

2.6.2 On-Chip Memory

One of the main bottlenecks in high throughput processing on FPGAs is the memory
bandwidth between the device and system memory. As FPGAs lack large storage
capacity on-chip, it is often required to stream data to the device from, e.g., Random
Access Memory (RAM). Due to bandwidth limitations in streaming data between
devices, a FPGA design might not be parallelized as much as wanted. However,
smaller portions of data can be stored on-chip using Block Random Access Memory
(BRAM) [30][p. 400].

2.6.3 Fixed Point Precision

Fixed point precision is a term used when talking about fractional numbers (non-
integers) in computers and touches upon the concept of balancing precision versus
range for floating-point numbers. Fixed point precision refers to decimal numbers
with a fixed exponent and mantissa, meaning there is a fixed number of digits after
the radix point. Commonly, software running on modern systems utilizing 32- and
64-bit architectures rely on single and double precision data types for working with
decimal values; however, these are often floating-point data. Compared to fixed
point, a floating-point may have a varying number of digits after the radix point,
providing more flexibility as a tradeoff for performance. In most programming
languages, single and double precision refers to the data types float and double,
which are 32- and 64-bit, respectively.

Figure 2.23 shows how a single-precision floating-point number is divided into an
exponent and mantissa in a register. This structure is due to floating-point values
relying on scientific notation, e.g., 1.234∗103, to represent different fractional values;
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Fig. 2.23: Illustration of how a float number is stored in a register using the IEEE standard
for floating point arithmetic.

the same goes for fixed point. This makes it possible to represent an extensive range
of numbers without needing hundreds of bits. Additionally, the sign bit specifies
whether the value is positive or negative.

The exponent is often regarded as the integer part in a floating-point value, whilst
the mantissa is the value to the right of the decimal point. However, it is more
sensible to consider the exponent as the part defining the values range, whilst the
mantissa defines the precision. Due to this, if one were to increase the number of
bits for the exponent while decreasing the bit count for the mantissa, one would
sacrifice some fractional precision for more dynamic range [33].

Fixed point precision is commonly used when computing data where one knows the
acceptable balance between precision and range. As fixed-point numbers can be any
total bit length, they can use less memory and be less computationally heavy, thus
increasing performance. They can also be computed faster on architectures which
do not have floating-point arithmetic logic.

1 0 0 1 1 0 0 0 1 1 0 1 1 0

   
MES

Radix point

0 0

Fig. 2.24: Illustration of the BFloat(16) fixed point number where the sign bit is denoted as
S, the exponent as E and the mantissa as M .

Fixed-point precision is often used in hardware accelerators as it decreased the
resources needed for arithmetic operations, and can as a result provide higher
speedup.
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Brain Floating Point

Brain Floating Point (BFloat16) is a half-precision (16-bit) format created for Deep
Learning by Google Brain [34]. It’s structure can be seen in Figure 2.24 where E = 8
and M = 7. This format aims to balance range and precision with DL training in
mind. The BFloat16 format, which has the same dynamic range as the IEEE standard
for single precision, has been shown to provide a good balance between range and
precision for neural networks [35].
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2.7 Linux

Linux is a family of OSs that is very popular in the world of embedded devices due
to being open-source and resource-efficient. Though many different distributions
exist, they all rely on the Linux kernel. The Linux kernel acts as an abstraction
level between the space where applications run, often called User Space, and the
system hardware. These abstraction levels are illustrated in Figure 2.25. If the
user-space requires access to hardware components, such as memory or peripherals,
they can do this through system calls to the kernel. The kernel is also responsible
for scheduling and other OS operations and provides better security in the system
[36][p. 8-9]. E.g., a user-space application cannot as simply cause system crashes.

User Space

Linux Kernel

Hardware

Shell Applications

System Calls Process Management

Device Drivers Memory Management

Processor (CPU) Memory (RAM) Disks IOs

A
bstraction Level

Fig. 2.25: Illustration of the different abstraction levels in a device running a Linux OS. The
User Space is the highest abstraction level, whilst the Hardware is the lowest. The
figure is adapted from [36][p. 9]

2.7.1 System Calls and C Library Functions

When applications within the User Space want to perform operations such as read
and write on files within the Linux system, they need to perform system calls. These
operations can, however, be expensive, as they make the Linux system perform
context switches to kernel threads. The C library implements more efficient ways
to perform system calls in commands that bundle operations together. Some of the
more relevant are:

• fopen() and fclose() opens and closes files.

• fscanf() reads formatted input stream.
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• fread() and fwrite() reads and writes from/to files.

• malloc() allocates memory.

• free() frees allocated memory.

These C library functions allow low-level control over system resources and files
through bundled system calls while still providing a higher abstraction level from
the Kernel Space.

2.7.2 Devices and Address Space

The way hardware is accessible to the kernel space, or Linux Kernel in Figure 2.25,
is through a memory map describing the physical addresses for various IOs and
memory devices [36][p. 11].

Memory (RAM)

Device 

Unmapped

Fig. 2.26: Illustration of a 32-bit address map.

Depending on the system, the
address space can have differ-
ent ranges and consist of more
than one address space. E.g.,
the UltraScale architecture uti-
lizes a main address space of
32-bit, though it has two ad-
ditional address supersets of
36- and 40-bits [37]. Figure
2.26 illustrates what a 32-bit
address space could look like,
where 2GB of RAM is defined
first, and various devices are
mapped throughout the address
space.

The Linux Kernel can control
hardware devices by modifying
the bits within their respective address offsets. However, modern CPUs, such as
the ARM Cortex-53, include Memory Management Unit (MMU)s, which allows for
a memory access method called virtual memory. Virtual memory allows processes
within the system to act as if they have access to the entire system, though when
they, in reality, have to go through the MMU to access a physical address. This

2.7 Linux 31



outsources a lot of the memory and caching operations for the CPU over to the MMU
[36][p. 11].

2.7.3 Compiler Optimizations

Most software written for Linux is coded in either C or C++, as these languages
provide the low-level control desired when working with embedded systems [38][p.
5]. When working with general-purpose code like C and C++, compilers are
necessary tools for converting the source code into executables/binaries for a given
architecture. Intel and ARM processors utilize different types of Instruction Set
Architectures (ISAs), whereas Intel uses the x86 architecture and ARM the less
resource-intensive Reduced Instruction Set Computer (RISC) architecture. An ISA
can shortly be explained as an abstract model defining how a processing system, e.g.,
a CPU, handles data and computations. Some of these processing system vendors,
e.g., Intel, provide specific compilers for their CPUs. However, a more generalized
compiler like the GCC is often easier to use while also providing cross-compilation
compatibility with other architectures like RISC [38][p. 3-4].

Compilers like GCC provide powerful optimizations for generated files, with the
aim of either increasing speed or reducing file size [38][p. 45]. Some types of
optimizations will increase the speed of the application, though with the cost of
size, and vice versa, and is therefore referred to as the speed-space tradeoff [38][p.
47]. Depending on the application, binary sizes could be of concern, such as during
uplinking data to a satellite.

Some standard optimizations are subexpression elimination and function inlining,
which modifies code to reuse variables and function calls in more optimized ways.
Additionally, more advanced optimizations such as loop-unrolling, scheduling and
pipelining can provide even more significant speedup, though at the cost of size
[38][p. 45-49].

These optimizations can be accessed by utilizing certain flags during the compila-
tion procedure. However, many optimizations have been collected into so-called
optimization levels, as seen in Table 2.1. Using various optimization flags will call a
bundle of optimizations fitting the level [38][p. 50]. Although, some optimizations
such as -funroll-loops are not included within any of the -O flags. Depending on
the target architecture, various optimizations depend on the available hardware
within the said architecture. E.g., for ARM processors such as the ARM Cortex-
A53, the -ftree-vectorize flag will be enabled when using the -O3 flag, which will
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Optimization Description
-O0 No optimization and compiles as straightforward as possible.

Good for debugging.
-O1 Most common optimizations that do not require speed-space

tradeoffs.
-O2 More optimizations than -O1, such as instruction scheduling.

Still, no optimizations affect file size.
-O3 Maximum optimization at the cost of file size, includes ev-

erything from -O2 and -O1, plus more.
-funroll-loops Attempt to unroll loops.

Tab. 2.1: GCC optimization levels and optimization flags [38][p. 49-50].

attempt to vectorize arithmetic operations [29, 39]. Additionally, specifying flags
such as -mcpu=cortex-a53 will optimise the compiler more specifically for the given
architecture.

2.8 HYPSO Pipeline

This section is meant to make it easier to understand how embedded processing
devices can be utilized on satellite systems while providing better insight into the
HYPSO-1 processing pipeline. Additionally, Subsection 2.8.1 is meant to show how
a embedded Linux system can be used to control FPGA accelerated designs. This
description is however kept short, as understanding the entire HYPSO-1 processing
system is not necessary.

The HYPSO-1 and HYPSO-2 missions aim to perform in-orbit processing of image
acquisitions, such as super-resolution, atmospheric corrections, target detection
and compression, to name a few [40]. The current HYPSO-1 CubeSat currently
deploys a minimal processing pipeline of image acquisition and compression, which
minimizes the data size for downlink. Due to the architectural design of the satellite
software, new system images may be uplinked and deployed during orbit, allowing
for updating the processing pipeline [40].

Figure 2.27 describes the current minimal processing pipeline deployed on the
HYPSO-1 satellite. As the satellite passes over a target, the satellite performs
a pushbroom scan as described in Section 2.2.2. During a capture, image data
is streamed to the on-board processing unit, a Zynq-7030 SoC, which performs
software binning on the BIP formatted image cube to reduce its size in memory.
Upon completion of the acquisition, a FPGA accelerated CCSDS123 compression
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Fig. 2.27: HYPSO-1 and HYPSO-2 minimal processing pipeline, involving capturing, com-
pressing and downlinking hyperspectral image cubes.

algorithm [3] is performed on the image data, outputting a significantly reduced
image cube ready for downlink [40].

2.8.1 Linux control of FPGA

The HYPSO-1 processing system consists of a Zynq-7030 SoC from Xilinx, utiliz-
ing a simpler, yet similar architecture to that of the UltraScale MPSoC. The SoC
has a dual-core ARM Cortex-A9 CPU in conjunction with a FPGA, allowing for a
software/hardware codesign.

The CPU runs an embedded Linux distribution called Yocto, where the base of
the HYPSO-1 software runs. The CCSDS123 accelerator is implemented on the
on-chip FPGA, and has a AXI Lite interface for control. Internally on the FPGA, the
CCSDS123 device connects to a custom DMA module through a AXI stream interface.
This device further connects to the on-board memory, allowing it to stream data
from the RAM with minimal interaction from the CPU [3].

         

Start Stop ConfigureRAM

Offset address

AXI Lite Control Registers

Fig. 2.28: Illustration of how AXI Lite control registers could be mapped within a arbitrary
Linux system.

This design allows an application running on the CPU to map the physical memory
address of the CubeDMA AXI Lite interface, visualized in Figure 2.28, to virtual
memory. This allows the application to both control and configure the programmable
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logic. This methodology of controlling accelerated designs is a common approach
for embedded Linux-based systems.
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2.9 State of the Art

In the paper U-Net: Convolutional Networks for Biomedical Image Segmentation [8] the
UNet architecture was introduced, as seen in Figure 2.29, which is a fully CNN. The
UNet was, in its original work, used to perform semantic segmentation on biomedical
imaging, and it showed that it could achieve highly accurate segmentation with little
training data. Additionally, it outperformed prior networks shown through the ISBI
challenge; a semantic segmentation challenge [8].

The UNets increased ability to perform semantic segmentation comes from its
architectural design, which is the origin of its name. The network utilizes two
layered paths, a contraction (encoding) path that extracts features from the input
data and a symmetric expansive (decoding) path which enables precise localization
[8].2
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-off between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Fig. 2.29: The architecture of the original UNet. The left hand side is called the contraction
path, while the right hand side is the expansive path. The network utilizes 5
levels, where the deepest uses 1024 kernels per convolutional layer. The “copy
and crop” arrows in the legend represents skip connections. Figure is taken from
[8].

Firstly, the contraction path consists of a series of convolutional and max-pooling lay-
ers, which extract features form their inputs, and downscales the spatial dimensions
of the feature maps as described in Subsection 2.4.1 and 2.4.2 [8].
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Following the contraction path is the expansive path that utilizes a series of trans-
posed convolutional and convolutional layers to increase the spatial dimensions of
the feature maps. Additionally, the expansive path utilizes skip connections on each
level to bring richer feature maps from the contraction path and concatenate them
with upscaled features [8].

Furthermore, the original UNet achieved segmentation on 512 × 512 images within
less of a second on a standard GPU, using the Caffe DL framework, thus making it
faster than many other CNN methods [8]. Since the network utilizes max-pooling
layers in the contraction path, the input image constantly decreases in spatial
dimensions, reducing the computational load of deeper convolutional layers placed
further down the path.

The performance of the UNet architecture has made it a popular CNN within the
field of DL and also within the field of hyperspectral imaging [7, 41, 6]. In the field
of hyperspectral EO where labelled data is sparse, the architecture has shown to be
exceptionally efficient due to its ability to train on smaller datasets [6, 10]. Also, the
increased amount of bands within hyperspectral imaging has shown to make the
network more efficient at performing segmentation [6, 10, 7].

On-board processing, such as segmentation and classification, for nanosatellites,
is becoming increasingly desirable and possible [40] with the emergence of more
efficient embedded computing [9]. However, CubeSats, such as HYPSO-1, having
considerable weight and power constraints, cannot utilize power-hungry accelerators
such as high-end GPUs. Due to this, the UNet architecture has inspired more compact
CNNs like the C-UNet, and C-UNet++ [9] to reduce the resource demand for in-orbit
segmentation processing.

Convolution 1x1 + sigmod Depthwise separable convolution 3x3 + ReLU

Kin
8

16
32 32

16
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Input Convolution 3x3 + ReLUOutputDeconvolution 2x2

Fig. 2.30: Illustration of the layers within the C-UNet architecture, inspired by the original
UNet. Figure is adapted from [9].
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The C-UNet and C-UNet++, visualized in Figures 2.30 and 2.31 respectively, has
shown to achieve close to the segmentation accuracy of the UNet while being up to
100000 times less complex than the state-of-the-art UNet [9]. These CNN networks
reduce the memory demand of the networks by removing the skip connections
and reduce complexity by using lightweight layers, such as depth-wise separable
convolution [9]. The workings of these lightweight layers can be explored further in
work such as [9, 10].

Kin 8
16

32 32
16

8 Kout

C-UNet++

Fig. 2.31: Illustration of the layers within the C-UNet++ architecture, inspired by the
original UNet. Figure is adapted from [9].

Due to the decreased complexity of the C-UNet and C-UNet++, they become more
viable options for embedded devices, such as the previously mentioned Zynq-7030
and Ultrascale architectures. However, with the cost of reduced segmentation
accuracy [10, 11]. Additionally, the reduced size of the CNN networks leads to far
less trainable weights and lower memory footprints. With this, work such as [10,
11] has shown that it is possible to achieve fully accelerated FPGA designs of the
C-Unet++ and C-UNet architectures.

A fully accelerated design of the UNet currently does not exist, mainly due to
the extensive resource constraint of such a network. However, it has been shown
that layer-specific accelerators for convolution and deconvolution are possible and
could significantly increase the segmentation speed of a software/hardware design
approach [12, 26]. The memory footprint of the UNet would still need to be
addressed; however, if solved, a UNet implementation could be applicable to satellite
systems such as HYPSO-1 and HYPSO-2, even with longer runtimes.

It is, however, clear that accelerated designs, such as the C-UNet and C-UNet++
explored in [10, 11], and the CCSDS123 accelerator introduced in [3] can take long
to implement on an existing satellite system, especially for a research-driven CubeSat
mission like HYPSO-1 and HYPSO-2 [40]. They are often designed and tested within
specific environments, such as the Xilinx tools like Vitis High-Level Synthesis (HLS)
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and Vitis Software Platform. Though this decreases development time, which can
be crucial for research projects, it does increase the time until the research can be
explored further in a realistic scenario, such as on an orbiting and re-configurable
CubeSat like HYPSO-1. This thesis will therefore argue that accelerated designs and
software implementations should be explored on a as-close-to the existing system as
possible, which in the case of HYPSO-1 and HYPSO-2 would be on an embedded
Linux OS running on their respective on-board processing hardware.

2.10 FAUBAI Project

The research conducted in this thesis is, in addition to the HYPSO-1 and HYPSO-2
missions, also motivated by the FAUBAI project, a research agreement between
NTNU, the University of Oslo and Silvisense, guided by European Space Agency
(ESA). Silvisense is a company focusing on autonomous forest monitoring using
hyperspectral EO, which is very similar to the research conducted by the SmallSat
team at NTNU. The FAUBAI project aims to create a satellite system for performing
semantic segmentation of hyperspectral imaging to identify both forest regions and
respective tree types. Since downlink is one of the bottlenecks of EO satellites,
performing segmentation in-orbit will seriously reduce the data size needed for
downlink.

Currently, the Silvisense team have a trained CNN highly inspired by the UNet
architecture capable of performing semantic segmentation of forest areas. However,
due to the computational load of the UNet, it is desired to look into alternative
designs and convolutional accelerators to viably fit UNet architectures on embedded
systems within satellites. Previous work within the SmallSat team, such as [10,
11] has looked into the acceleration of compact UNets. As previously mentioned,
however, further research into none compact UNets has yet to be explored.

2.11 Python Libraries

Table 2.2 describes the main libraries used for the high-level model/design and
storage of weight data. The most important libraries are the Tensorflow, QKeras and
Numpy, which make up the core design of the network. Numpy provides ease of use
when working with multidimensional arrays, such as datasets which can consist of
4-dimensional data structures, e.g., N ×H ×W ×D where N is the number of images,
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H image height, W image width, and D the image bands. Tensorflow provides a
set of layers that can be cascaded together to form the desired network architecture
and have easy-to-use functions for training the networks with desired parameters.
QKeras is a community-designed library for fixed-precision neural network training
and functions as an extension to the Tensorflow API.

Library Description

Tensorflow Used to create machine learning models, training
and predicting on data. The library also provides
Keras.

Numpy Adds support for large multi-dimensional arrays
and useful when working with image data.

Scikit-image Library used for image processing, e.g., format
scaling between various data formats, data normal-
ization and exposure scaling.

Scikit-learn Library used for splitting dataset into train, test
and validation sets for network training.

Pillow Library used for image processing, e.g., saving
dataset into patches.

Matplotlib Used for plotting data and images for visualization
purposes.

QKeras Fixed-precision extension library to the Keras/Ten-
sorflow API. Used to train the network on fixed-
precsision weight data.

Tab. 2.2: Main Python libraries used for image pre- and postprocessing, data handling,
network training and quantization, and visualization and UNet implementation
design and training.

2.12 Datasets

Datasets are sets of data that are used to train neural networks to be able to predict
similar data. In the case of CNNs and semantic segmentation, datasets usually
consist of a set of images and respective ground truth data. Ground truths usually
come in the shape of a 2D image, describing the class for a spatial location in the
image data.
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Though the number of labelled hyperspectral datasets is few, some publicly available
ones are taken from airborne sensors within aeroplanes or satellites. These are
relevant for this thesis, as they provide remote sensing scenes resembling that which
will be captured from HYPSO-1 or HYPSO-2. These datasets listed below can be
found at [42].

• Pavia Centre scene is originally a 1096 × 1096 × 102 hyperspectral dataset
captured with the ROSIS sensor. The scene has, however, been reduced in size.
The scene has relatively few labelled pixels, with a total of 7456. Good for
testing segmentation on urban areas.

• Pavia University scene is a 1096 × 1096 × 102 hyperspectral dataset. The scene
is captured with the same sensor used for the Pavia Centre, and also, here
is some data removed. However, the dataset has far more labelled pixels,
totalling 42776. Good for testing segmentation on urban areas.

• Salinas scene is a 512 × 217 × 224 hyperspectral image captured with the
AVIRIS sensor. The scene captured a series of fields of different crops and
could be useful to test segmentation on different foliage. The scene has a total
of 54129 labelled pixels.

• Indian Pines is a 145 × 145 × 224 hyperspectral image captured with the same
sensor as the Salinas scene. Also, this scene consists of fields, much like the
Salinas scene. The scene has a total of 16249 labelled pixels.
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High-Level Model/Design 3
This chapter presents the high-level model/design of a UNet architecture, providing
insight into the tools chosen, an overview of why a high-level model is needed, and a
walkthrough of the steps taken from a high-level design to a similar implementation
running on an embedded system. Additionally, this chapter provides further insight
into the challenges with large CNN models and attempts to find ways to fit such
networks on a resource constraint processing system.

3.1 An Overview

To go from a conceptually described architecture, specifically the UNet presented in
[8], to an implementation running on an embedded system, there are a series of steps
and tools needed to arrive at a functioning but also viable implementation. Figure
3.1 attempts to visualize these steps in a very superficial way, going from a High-level
model where network design and training are performed, to a Embedded model
implementation, where the prior exported network weights are used to segment
input images. The figure also includes a final and third step, in which an embedded
design is improved through a hardware/software codesign.

The emphasis on the Testing within Figure 3.1 is also critical, as the high-level model
functions as a reference model to later designs. The segmentation achieved on a
high-level model can be used to verify the correct behaviour of implemented layers
on an embedded device.

3.1.1 High-level Model

Python was chosen as the programming language for designing, training and testing a
UNet architecture, and for data preprocessing and export. Languages such as Python
are advantageous in such cases as they offer a high abstraction level for operations
such as CNNs, image pre-/postprocessing, and data visualization. Additionally,
having high-level models for what is later to be low-level designs acts as good test
benches for faster debugging.
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Fig. 3.1: Illustration of the steps required to go from a trained high-level model on a dataset
to have a running implementation capable of performing segmentation on the
dataset in an embedded device. Additionally, the illustration shows a final step
where the embedded implementation is improved with hardware acceleration.
The pink arrow between the Testing boxes highlights how testing from the start is
used until the end.

The High-level model can be broken down into 5 separate tasks: Preprocessing,
Network design, Training, Testing and Weights export, as seen in the left hand side
of Figure 3.1. These tasks are crucial for a later embedded design, as they provide
both the trained weights and testing data for segmentation. Preprocessing involves
taking in a dataset consisting of image data and truth values and making the data
compatible with a high-level neural network. This is an important step, as datasets
are often stored differently and are most likely not compatible out of the box. For
this step, the numpy library was used, as it is compatible with most larger Python
libraries.

Network design goes into the use of designing a high-level CNN model, in this case
resembling the UNet architecture as seen in Figure 2.29. For this task, the Tensorflow
API was chosen, as it is widely used and a lot of existing information exists on the
tool. There exists similar APIs for designing and training neural networks, such as
PyTorch, Caffe and Neurolab; however, prior use of the Tensorflow tool within the
SmallSat team was the deciding factor.

Contradictory to the way it’s visualized in Figure 3.1, the tasks of Training and
Testing are more of an iterative process. Within these steps, the neural network is
trained and tested repeatedly until the desired performance is achieved. Also here
was the Tensorflow tool used.

44 Chapter 3 High-Level Model/Design



Once a CNN network is trained to the desired performance, the final task of Weights
export is performed. This step exports the weights from the high abstraction level
Tensorflow model to a compatible format for an embedded Linux application. Addi-
tionally, as Figure 3.1 shows, the Preprocessing step is also used to export image data
in a compatible format for the embedded implementation, which in this case is with
the BIP format.

3.1.2 Embedded Model

The Embedded model in Figure 3.1 represents the tasks needed for creating a low-
level CNN framework capable of performing similar or equal segmentation to that
of the high-level model. The tasks are divided into: Utilities, Layers, Network design,
Testing and Optimizations, however the first three are what essentially defines the
framework.

The C programming language was chosen for the Embedded model, as this is a
language that provides great control over system resources through standard C-
library functions. The Utilities represents the functions created to perform the
essential tasks of bringing weights and image data in and out of memory from the
Linux filesystem. Additionally, the Utilities includes similar preprocessing steps as
the high-level model. The Layers represents the C-functions written to perform CNN
layer operations, such as convolution, max-pooling and transposed convolution.
These functions also rely on the use of utility functions, and is visualized in Figure
3.1 as the Utilities passing to both the Layers and Network deisgn. Finally, the Network
design represents the code used to bring the Layers and Utilities together to perform
image segmentation. The UNet framework is further described in Chapter 4.

Once an embedded UNet design is functioning, the task of Testing is performed
to ensure that the implementation performs correctly by comparing it with tests
performed in the high-level model. Much like the iterative training and testing
process in the High-level model, the same is performed with compiler optimizations
and code changes within the Embedded model to get the best segmentation speed.
This procedure is further presented and discussed in Section 6.2.

3.1.3 Hardware/Software Codesign

The right-most illustration in Figure 3.1 shows the final step of a design, in which the
CNN framework in the Embedded model can be improved through FPGA acceleration
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of its layers. This step was explored using the Xilinx HLS tool. HLS was chosen
as it greatly reduces the complexity of a FPGA design by using object-orientated
programming languages such as C++. Additionally, the Vivado Design Suite was
used to explore the use of DMA modules to interface FPGAs with system memory
and CPUs.

From the figure, it is clear that creating and testing FPGA implementations is hard
to do without a foundation, which in this case is the software framework and a high-
level model. For this thesis, the Hardware/Software codesign represents a suggested
convolutional design described further in Chapter 5.

3.2 UNet Analysis and Design

The full UNet architecture, as presented in [8], was chosen as the architecture for
this thesis research, motivated by the reasons described in Section 2.9 and 2.10. The
terminology “full” in this setting refers to the network utilizing skip connections,
which are excluded in more compact versions of the network, e.g., C-UNet and C-
UNet++ [9] for being memory demanding on embedded devices. Figure 3.2 shows
the network designed for testing in this thesis and is made using the Tensorflow API
in Python.

Due to the complexity and computational load of training a neural network, as
seen in Section 2.12 regarding backpropagation, the designed network was trained
using the Tensorflow API on a high-performance system. This makes it so that the
embedded system will only need to perform the prediction with predefined weights
from the high-level model.

input 16
32

64
128

256
128

64
32

16 output

Fig. 3.2: Illustration of a feed-forward CNN network using the UNet architecture. Data flows
from left to right, where the layers colored green represent max-pooling layers, the
white representing convolutional layers and the blue, transposed convolutionoal
layers. Additionally, the red and orange layers represents a final 1×1 convolutional
layer.
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Comparing 2.29 and 3.2 shows that the latter is slight reduced in the sense that it
utilizes less filters per convolutional and transposed convolutional layers. Though
this affects the network’s accuracy, it does not affect the design choices presented
in this thesis, as the UNet architecture remains. A reduced network was chosen
mainly for having a reduced number of weights during training and testing, as this
circumvented long training times for changes in the code. Additionally, reduced
versions of a neural network downscale the complexity, making it easier to grasp
core concepts in its functionality. The thought process is to create a fundamental
base network that can be expanded or minimized by desire. Hopefully, the core
functionality and ideas provided in this thesis will make the full UNet architecture a
viable option for an embedded system such as HYPSO-1.
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Fig. 3.3: Illustration of an example network provided by the FAUBAI project, usable for e.g.,
cloud segmentation of satellite images.

An example of a more extensive network is the cloud segmentation network sug-
gested through the FAUBAI project, as seen in Figure 3.3. The essential difference
between this network and the one in Figure 3.2 is the number of filters per convolu-
tional and transposed layers, in addition to the number of max-pooling operations
defining the depth of the network. Though the UNet can be modified into various
versions with different depths and filter sizes, as shown in Figure 3.3 and 2.29,
they still remain conceptually the same. Their main difference is the number of
trainable parameters and filter output sizes which are essentially only constrained
by a device’s memory size. Increasing a network’s depth and filter sizes will however
add to the overall runtime, as more arithmetic operations are required. However,
the key components such as the convolutional, max-pooling, transposed convolution
and skip connection layers are the same and can be generalized for use in many
different versions of the original UNet.

It was important to determine which of the networks presented in Figure 3.2,
2.29 and 3.3 could fit an embedded design. Since it was assumed that a software
framework would need to have both the weights and skip connections stored in
system memory for fast execution, it was necessary to estimate their memory
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requirements. Additionally, it was interesting to determine how their differences
affected their system requirement. For this analysis, computational load is neglected,
as this essentially only affects the runtime of a network.

One can, e.g., look at the skip connections of the networks presented. As skip
connections are required in the decoding (upscaling) part of the network, they
must be stored up until the point of need. In other words, the deeper the network,
assuming all levels before the deepest layer utilize skip connections, the more
memory is required.

Equation Dskip = Hi·Wi·Kn·Fbyte

(1024)2 shows how to calculate the size of the feature maps
outputted by a convolutional layer, e.g., the data size required for a given skip
connection layer. In the equation, Dskip denotes the data size in MB, while Hi and
Wi the input width and height, Kn the number of kernels, while Fbyte is the file
format in bytes.

With two-dimensional convolutional layers, as described in section 2.4, each filter
corresponds to a feature map in the outputted data in a given layer. E.g., if a layer
has 64 kernels, the output will, regardless of input size and depth, be 64 bands
or feature maps. With the equation for Dskip, one can calculate the size of each
skip connection and sum them to find the largest memory space required to run the
network effectively. Figure 3.4 attempts to illustrate how the total memory needed
for skip connections adds up as one moves down the encoding path of the previously
presented UNets.

Figure 3.4 also visualizes how increased filter sizes and depth affect the skip connec-
tion memory requirements; however, it shows that they remain within reasonable
sizes for embedded systems (< 1GB), even for the more extensive networks. E.g.,
the FAUBAI UNet skip connections reach 448MB in size (as the bottom level 4 con-
volutional layer is not used as a skip connection) with 32-bit floating-point values.
However, as the last layer needs to be stored until the transposed layers, the total
memory footprint in this case essentially adds up to 512MB.

Level Reduced UNet [MB] Original UNet [MB] FAUBAI UNet [MB]
1 64 256 256
2 32 128 64
3 16 64 128
4 8 32 64
5 8 16 -

Tab. 3.1: Skip connection size for the different levels in the reduced UNet, original UNet
and FAUBAI UNet. The same data is used in Figure 3.4.
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Fig. 3.4: Plot showing the skip connection size for each level in the orignial UNet, reduced
UNet and FAUBAI UNet. Additionally, each networks total skip connection size sum
is shown as dashed lines with similar colors. The plot is given for a 1024px×1024px
sized input on level 1, which is max-pooled between each level. Also, Fbyte = 4,
as the plot assumes the 32-bit float data format. See Table 3.1 for more detailed
values.

Trainable hyperparameters are an additional element to consider when calculating
the memory footprint of a neural network, such as the UNet, as these tend to become
in the number of millions. Compact networks such as the C-UNet and C-UNet++
attempt to reduce these parameters through lightweight encoders and decoders.
Additionally, this is needed to reduce the size of the weights to a point where they
can be synthesized on FPGAs [9, 10].

Compared to the skip connections, the hyperparameters can be shown to add less to
the memory requirement for a network. The number of parameters Np for a given
filter can be calculated with the equation Np = K2

s · Bi · Kn + Kn. The depth of
each kernel directly correlates with the number of bands for the given input, which
is visualized in Figure 2.15. In the equation, the input band size is denoted as Bi,
the number of kernels in the filter as Kn, and the kernel size as Ks. Additionally,
one may see that an Kn is added to the multiplication, representing the bias value
described in Chapter 2 on neural networks. The number of bias values is the same
as the the number of kernels in the layer, because each kernel, which corresponds to
a neuron in a CNN, has its own specific bias value.

Equation Dweight = Np·Fbyte

1024 describes how the data size of the hyperparameters
for a given layer can be calculated using Np, though noticeably in KB. As with the
equation for Dskip, the Fbyte denotes the data format in bytes. Using the equation
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Fig. 3.5: Plot showing the size of hyperparameters at each level for the reduced, original
and FAUBAI UNet neural networks. The data size for each layer is given in KB and
calculated with a three-band deep input on level 1e. The letters e and d represents
the encoding and decoding levels in the networks. Dashed lines represent the total
sum of the given layer, while continuous lines represent layer-specific sizes. The
sizes were calculated assuming Fbyte was 32-bit. See Table 3.2 for more detailed
values.

for Dweight, the hyperparameter sizes for the reduced, original and FAUBAI networks
could be calculated, as seen in Figure 3.5.

The figure shows that though the original and FAUBAI UNets utilize more kernels
per layer, the total hyperparameter data size remains within a reasonable memory
requirement of approximately 114MB and 100MB, respectively. The figure also
makes it clear that weight sizes increase as one moves down the encoding path. This
is due to more depth per feature map as one moves deeper into the network. E.g., at
the lowest level and at the last convolutional layer, the number of hyperparameters
amounts to Np = (32 · 1024 · 1024) + 1024 ≈ 9.438M hyperparameters. Additionally,
the figure shows that weights for the UNets make up less of a memory requirement
than the skip connections. Though the weight number and size do not take up large
amounts of memory in, e.g., RAM, they still are large in the sense of FPGA storage.
However, this issue is further explored in later chapters.

With the findings presented up until the current point of this chapter, it was relatively
safe to assume that larger UNet architectures, such as the original and FAUBAI UNets,
should be possible to implement with a hardware/software codesign approach on
embedded systems. However, it is clear that as a network increases in depth, the
weights’ sizes increase quicker, but the memory requirement for skip connections
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Level Reduced UNet [KB] Original UNet [KB] FAUBAI UNet [KB]
1e 9.5 151.3 151.3
2e 54.2 865 288.5
3e 216.5 3458 10372
4e 865 13828 -
bottom 3458 55304 55304
4d 2241.5 35846 -
3d 560.7 5698.3 35846
2d 140.4 1425.1 944.8
1d 35.9 359.1 499.3

Tab. 3.2: Hyperparameter size for the different levels in the reduced Unet, original Unet
and FAUBAI Unet. The same data is used in Figure 3.5.

decreases. This means having large, fully accelerated CNNs, such as the C-UNet and
C-UNet++ implementations suggested in [10, 11], would prove to be not possible
with the available architectures. However, accelerating parts of the design and
opting for a hardware/software codesign appears to be the realistic approach for an
embedded full-sized UNet.

An additional observation was that it could be possible to push the number of kernels
per filter to greater than 1024 for a pure software approach, though this would
push the data sizes required for bottom layers quite a lot. E.g., if one assumes an
additional level to the original UNet with a convolutional layer utilizing 2048 kernels
and an input with 2048 bands, this would amount to Dweight ≈ 144MB for one
layer. This is, however, not explored further in this thesis.

With the observations described, it seemed reasonably safe to assume that a UNet
architecture could fit the UltraScale architecture. Due to this, the reduced UNet
presented in Figure 3.2 was used for further testing, as it was smaller and faster to
test.
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3.3 Training

The reduced UNet architecture, from now on referred to as the UNet for simplicity,
was trained using the Python Tensorflow API. It was decided to train the UNet on the
Pavia Centre dataset due to its large spatial dimensions and a similar number of bands
to the HYPSO-1 satellite (120 bands). In addition, the dataset had few labelled
pixels, compared to other scenes presented in Section 2.12, and was therefore
presumed to make training faster.

3.3.1 Pavia Centre Scene

The Pavia Centre scene is a hyperspectral image captured from a plane over northern
Italy and resembles the capture of a satellite. The image had originally a spatial
dimension of 1096px × 1096px, with and 102 bands. However, due to issues with
parts of the image, it was cropped to 715 × 1096 × 102, which is visible in the image
as a vertical cut. The capture was sampled with a ROSIS sensor, where each pixel
was sampled with 16-bit data values. Figure 3.6 shows the full-sized Pavia Centre
scene, however where three bands are extracted to create an RGB composite for
visualization purposes [42].

The datasets’ ground truth contains nine classes; water, trees, asphalt, self-blocking
bricks, bitumen, tiles, shadows, meadows and bare soil, as seen in Figure 3.7.
Including the unlabeled pixels makes the dataset’s classes amount to 10. This value
is relevant as it has a slight architectural effect on the UNet design. A CNN creates a
final prediction on the pixel class through a 1 × 1 2D convolutional layer at the end
of the network. This layer is shown as an orange plane in Figure 3.2 and 3.3, and
needs to contain equal number of kernels as there are classes.

3.3.2 Architecture Parameters

The UNet was constructed using the Keras functions (built into Tensorflow) for
the convolutional, transposed convolutional, max-pooling and concatenation layers.
Listing 3.1 shows how the various parameters per layer were specified.

1 Conv2D ( kernel_number , kernel_size , activation_func , padding , input ,
↪→ something_else )

2 MaxPooling2D ( kernel_size , input )
3 Conv2DTranspose ( kernel_number , kernel_size , strides , padding , input

↪→ )
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Fig. 3.6: RGB composite of the Pavia Centre scene, where the bands 70, 51 and 19 have
been used respectievly.

4 concatenate (input1 , input2 )

Listing 3.1: Python code for defining CNN layers for the UNet

The Conv2D layers used the kernel_number equal to the ones described in Figure 3.2,
and a kernel_size of 3 × 3. Additionally, the stride was not defined, as it was desired
to use a stride of 1, which is the default with these layers. With these parameters for
the convolutional layers, pixels will overlap as the sliding window of size 3×3 moves
one pixel at a time, in both horizontal and vertical directions. These parameters
were chosen to mimic the ones used in the original UNet paper [8]. The same goes
for the parameters for the other layers.

The Maxpooling2D layers utilized a kernel_size of 2 × 2, as it is desired to split the
spatial height and width by two before moving to a new level in the network. This is
a crucial feature of the architecture, as this decreases the number of convolutional
operations needed the deeper one goes and decreases the size of skip connections.

The Conv2DTranspose layers also used a kernel_size of 2 × 2, as in these layers, one
wants to upscale the spatial dimensions by a factor of two. Additionally, for this
to be possible, the stride is also set to 2, making the 2 × 2 sliding window move
two pixels at a time in both horizontal and vertical spatial directions. Upscaling the
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Fig. 3.7: Image showing the labeled pixels for the Pavia Centre scene presented in Figure
3.6. Each class has its own color as described in the right hand class list.

feature maps is necessary to match the spatial dimensions of the skip connections
from the encoding path on the same level. Additionally, this upscaling results in the
output on the last layer matching the dimensions of the input in the beginning.

Lastly, each convolutional and transposed layer utilized padding to ensure their
respective feature map did not lose spatial dimensionality. Zero padding was used
to pad the inputs around their spatial dimensions, essentially making the input size
(Hi + 2) × (Wi + 2).

3.3.3 Preprocessing

Preprocessing is an essential step in DL, as datasets often come in various shapes and
sizes. Therefore, more often than not, preprocessing is required before being able
to pass the data to a neural network as training or prediction data. Hyperspectral
datasets are often different in how many bands are captured for a given spatial area
and potentially using different sampling sizes, such as 8- or 16-bit values.

A common issue with image segmentation for hyperspectral data is the lack of
existing labelled data. Neural networks like CNNs often require larger datasets to
generalize, meaning fewer labelled hyperspectral datasets cause issues with training.
However, there are methods for extracting more training data from a single dataset,
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such as dividing it into patches and augmenting them to appear like different data.
Such augmentations can be rotating or mirroring the image data [10]. Using such
techniques with the UNet architecture makes it possible to train on relatively small
datasets.

Fig. 3.8: Image containing the patchified version of the Pavia Centre shown in Figure 3.6.
The RGB image represents the bands 70, 51 and 19 of the original dataset. In the
figure each patch is 128px × 128px, and they add up to 40 in total.

Figure 3.8 shows how the Pavia Centre was patched using Python libraries into
40 patches. As the original dataset was 715 × 1096, it was possible to create 5 × 8
patches where each had the dimensions 128×128×102. Note that figure only shows
an RGB representation of these. A patch size of 128 was a good balance between
amount and size. Various tests were performed with a patch size of 64 and 256,
which caused inadequate training results.
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The patch sizes were chosen to be equal for both the horizontal and vertical spatial
dimensions, simplifying the convolutional operations. It is possible to have different
sizes; however, for this thesis, this is not explored.

During training, it is desirable to have the input data in the form of values between
0 and 1, as this helps to produce accuracy and loss calculations which are more un-
derstandable during training, in addition to having the probability values outputted
by a layer to be within 0 and 1. A way to achieve this is to divide the sampled values
by the highest value for a 16-bit number, which is 216 − 1 = 65535. However, this
method works poorly in cases where the dynamic range of the 16-bit value is poorly
sampled. E.g. for the Pavia Centre, the highest sampled value is 8000. Therefore,
before scaling the input data, the intensity of the data needs to be rescaled to utilize
the entire dynamic range of 16-bit values. The way this is achieved is to first find the
highest value, in this case, 8000, and calculate a scaling factor S = 216−1

8000 = 8.191875.
All values can be rescaled equally by multiplying each value in the input data with S.
Once all values have been rescaled, they can be divided by 65535 to be transformed
into floating-point values between 0 and 1.

3.3.4 Training

When training neural networks, it is customary to split the dataset used for training
into what is commonly called training, testing and validation sets. In the case
of image segmentation, will each set consist of a set number of images and their
respective ground truth. These sets have different functionality during training, as
illustrated in Figure 3.9. The network uses the training set to perform a prediction,
calculate the cost function, and perform backpropagation to determine changes to
the parameters. The validation set is used to check whether or not these changes
pushed the network in the right direction. This process is repeated for the number
of epochs the network is set to train [20][p. 137].

When training neural networks, it is typical to set a maximum amount of epochs
before the training halts. Additionally, it is customary to add checks that stop the
training once the validation set does not experience any progress. For the training of
the UNet, a patience of 100 epochs was used. Additionally, 20% of the Pavia Centre
dataset was set as validation data, while the remaining 80% was used for training.
This was deemed a good balance between training and validation [20][p. 137].

The testing set is used once the network is finished training and allows the network
to perform an unbiased prediction on a piece of similar data [20][p. 137]. In the
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Train model on training set

Are changes to hyperparameters 
making the evaluvation better or worse?

Evaluvate model with
validation set

Test finished trained network on
test set

Fig. 3.9: Flowchart describing the neural network training flow, using the training, valida-
tion and testing sets.

case of the UNet training, no testing data was explicitly defined, and predictions
were performed on the validation set. Though this contradicts Figure 3.9, it was
deemed not too big of an issue since training was merely a process for acquiring a
high-level prediction model and model weights.

The final results of the trained network can be seen in Chapter 6.1. The parameters
described in Figure 6.1 were found through testing and tweaking. The results are not
ideal, as the prediction is not perfect; however, for the sake of the leading research
topic of this thesis, the segmentation accuracy seen in Chapter 6.1 was deemed good
enough.

3.4 Quantized Model

CNNs like the UNet quickly become large with more kernels per convolutional
layer. For example, the original UNet shown in Figure 2.29 utilizes around 31
million trainable parameters, where the largest convolutional layer utilized 9.438M
parameters alone. The size of such a layer with 32-bit weights would amount to
around 9.438 · 106 · 4/10242 ≈ 36MB. Comparing this with the resource constraints
of the UltraScale+ FPGA described in Section 2.5, it was clear that even a single
layer would have issues fitting on the FPGA.

Due to the FPGA memory capacity, it was desirable to explore fixed-point precision to
reduce the weights’ size for individual convolutional layers. Therefore, an additional
modified UNet architecture utilizing the QKeras Python library was explored.
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The concept of fixed-point precision in accelerated designs is not new. It is often
used to reduce the resources needed for arithmetic operations on FPGAs [9][p.
2]. Additionally, fixed-point precision has also been shown to increase the perfor-
mance for CNN processing on ARM devices [43]. However, the downside of weight
quantization is that precision is decreased, which may affect the accuracy of neural
network prediction. E.g., using post-quantization of neural network weights is prone
to induce inaccuracy, as the network loses parts of its trained weight precision.

However, a more effective approach compared to post-quantization is to perform
training quantization, where the network itself is limited to a certain fixed-point
precision during training, allowing it to adapt to this reduced precision. This
method has shown that prediction accuracy can be maintained relatively well with
quantization of weights [43, 10, 11]. Previous work such as [10] also utilized a tool
for performing layer-specific quantization, meaning the weights of different layers
use different precision based on a specific optimizer for the neural network. Though
this can potentially decrease the size of the weights even further, it does introduce
another level of complexity to an accelerated design.

For the sake of simplicity, it was decided to use 16-bit fixed-point for each layer in
the UNet, as this halved the size of the largest UNet convolutional layer to around
18MB, which would fit the FPGA memory constraint. Previous work has shown
that the BFloat16 format presented in Section 2.6.3, could perform better than the
half-precision, 16-bit float IEEE standard, due to its increased precision [35]. Due to
this, the BFlaot16 was interesting to explore and was therefore used for training the
quantized model.

The QKeras, a community addition to the Tensorflow/Keras Python API for network
quantization, was used to limit the network to the BFloat16 format. This was used for
both the bias and weight values for the convolutional and transposed convolutional
layers. The results of training and performing segmentation can be seen in Chapter
6.1.
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3.5 Weights File Format

Weights and biases previously referred to as parameters and hyperparameters, make
up the core of the UNet. To be able to perform predictions on data with an ARM
CPU as presented in Chapter 4, or accelerated on an FPGA as suggested in Chapter
5, the weights need to be in a format that’s available, fast to access and possible to
interpret.

Previous work such as [10, 11, 12] have had the weights stored on the FPGA itself
for fast parallel computations. However, this approach is not possible with more
comprehensive networks like the UNet, as explored in previous sections. Moreover,
this introduces the issue that every time the network is retrained or changed, the
FPGA implementation needs to be resynthesized. Therefore, an alternative approach
for storing layer-specific weights in a standardized format is explored. This approach
avoids storing every layer’s weights within some header file, and allows for a more
generalized design that is easily adaptable.

3.5.1 Tensorflow Weights

When training the UNet model with the Tensorflow/Keras API, the API produces a
Python model object which contains all trainable and non-trainable parameters for
each of the layers of the network. The layers can be accessed by calling model.layers
with the index value of the desired layer. This approach can be been seen in Listing
3.2, where i represents an integer value describing layer number. Line 1 illustrates
how to access a specific layer configuration, whilst line 2 shows how to access the
given layer’s weight values.

1 layer_config = model. layers [i]. get_config ()
2 layer_weights = model. layers [i]. get_weights ()

Listing 3.2: Python code for fetching layer information from network model.

These function calls are practical as they allow for easily fetching information
about each layer and their respective weights. The Tensorflow API does provide
functionality for exporting the weights and biases; however, this stores the data in a
format that is meant to be compatible with Tensorflow. Therefore it was clear that
an alternative way of storing the data was needed.
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3.5.2 Weights Interleaved by Filter

An observation is that even though CNNs are a well-researched topic, there does
not seem to be a standardized method for storing and loading weights and biases.
A series of high-level python libraries exist for ML, though most seem to utilize
different ways to store their trained data. Additionally, for existing implementations,
weight data is often stored into header files which are synthesized or compiled into
a FPGA design or software application. This makes it challenging to modify the
weights within an embedded device, as new application binaries and bitstream flash
files must be provided.

It was therefore desirable to look into a standardized format for storing and reading
weight files which were more simplified than the high-level construct provided
through Tensorflow in Python. One could optionally store the weight data using
the built-in functionality in e.g., numpy library’s array.tofile() function, however
this stores the data with an undesired structure. These files quickly become large
due to the number of trainable parameters in neural networks, which are easily
confusing and hard to manage if not organized well. Additionally, the format or,
more specifically, the orientation of the data stored is advantageous to be in a format
which is quickly accessible from memory or disk while also being stored in a manner
that makes use of data locally in the sense of when the data is needed. This could
prove useful, as CPUs often utilize prefetchers relying on data locality.

A new weight and bias storage format is introduced in this thesis and is named
Weights Interleaved by Filters (WIF). In this setting, the word filter is utilized
synonymously with the word kernel. The format is noticeably inspired by the BIP
format, which is commonly used for hyperspectral images. However, the similarity
is not random, as the inspiration comes from how the BIP format stores all bands
per pixel, allowing for quick access to bands. The same logic is used for the WIF
format, where all weight values for a given kernel are stored before the next kernel
comes. To give a better idea of the concept, Figure 3.10 shows a 3x3 convolutional
layer kernel on the left. The cube represents the dimensions of a single kernel in a
two-dimensional convolutional filter, where x and y denote the kernel size Ks, while
z denotes the kernel depth. z is the same as the number of input bands Bi for the
given filter.

Storing the weight data kernel-wise is helpful as, during a convolutional operation,
one must calculate the sum of an entire kernel for the corresponding position in the
image data. This makes indexing faster and easier when data lie close together. The

60 Chapter 3 High-Level Model/Design



 x   y 

z

Header x0  x1 x2 x0  x1 x2 x0  x1 x2

y0 y1 y2

Kernel size Kernel depth

x0  x1 x2

z0

Kernel

y2

zd

Kernel number

Data format

b0  bn

Fig. 3.10: Illustration of WIF file storage format, which stores the weight, bias and configu-
ration values from convolutional layers in a weights per filter (kernel) fashion,
from where the name Weights Interleaved by Filters comes from.

same logic was used in the structure of a single kernel, where each level z is stored
after each other.

The WIF format was thought out to be a layer-specific format. What is meant by this
is that only the weights for all kernels within a single layer are stored together or
as a single file. This way, it is easier to manage the weights of specific layers. The
format, which is essentially a description of how data is placed in a file, can be seen
on the right-hand side of Figure 3.10. The structure starts with a header describing
the configuration of the specific layer, such as kernel-specific dimensions and the
number of kernels in the layer. The header has its data structured in the order kernel
width, kernel depth and kernel number. The reason for the header is to provide quick
access to the structure of the data, which will help later on during indexing and
looping through the data.

Following the header comes all the bias values for each of the kernels, and are in
the figure denoted as bn, where n is the kernel number. It was experimented with
having the bias values following each specific kernel; however, this proved to add
more complexity than needed during indexing, as skipping bias values would have
had to be implemented. Additionally, having the header and bias part stored first in
the file format should allow for easier streaming of data later on, as one could more
easily stream from specific addresses.

Following the bias values comes the first 3 × 3 pixels for the first level of z, as shown
on the right-hand side of Figure 3.10. The pattern illustrated within the z0 bracket
continues until zd, where d denotes the kernel depth.

Though the figure does not show it, the next kernel in the layer follows straight after
the last weights of the previous kernel, continuing with the pattern shown in Figure
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3.10 until reaching the last kernel number. With this, the WIF file format contains all
kernel weights, biases and configuration data and can then be stored in a file with the
correct naming of the layer and the proper extension, e.g., weights_conv2d_c2_2.wif.
c2_2 in this example would be the second convolutional layer on level 2 in the
network.

The WIF format provides the weight and bias values for all filters in a given layer in
a very compact manner, which has a simple-to-follow structure and can quickly be
loaded into memory through low-level function calls in Linux. The design choice of
separate files for each layer is deliberate, as it provides more flexibility in creating
different-sized networks and pushes for a more generalized embedded network
design. The weight data, which may take upwards to ∼ 100MB of data storage, are
also divided into smaller pieces, allowing for more flexibility in loading them into
memory.

X0 X0

X1

X2 X2

X0

X1

X2

X1

y0 y1 y2

Samples

Kernel

Bands

Lines

Fig. 3.11: Showing how the weight values in
a given filter looks when overlayed
on a image grid whilst sliding over
the image data.

An additional advantage with the WIF
format is its structure regarding when
the weight values are needed. Figure
3.11 attempts to illustrate how a ker-
nel is passing over the image data while
performing convolution. The convolu-
tion operation, which takes in a 3x3
pixel area, can get its weight values for
the first layer of the kernel by simply
looping through the data from the in-
dex value of the first weight value. This
is due to the storage order described
in Figure 3.10. The index value of the
first value can be calculated with Equa-
tion 3.1, where i(x, y, z, n) is the index
function. The variables x, y, z and n

denotes the position and kernel number,
as shown in Figure 3.10. Note that this assumes a 1D array storing the data. The
constant Hn denotes the length of the header data, which, unless changed, would be
the value 3. Kn, Bi, and Ks denotes the number of kernels, number of input bands,
and kernel size, respectively. These constants would be located in the header.

i(x, y, z, n) = Hn + Kn + (n · K2
s · Bi) + (z · K2

s ) + (y · Ks) + x (3.1)
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Software Implementation 4
This chapter will introduce this thesis’ approach to a software design of the UNet
architecture described in Chapter 3. The design is explored with a 64-bit Linux OS
in mind, such as the one running on the ARM Cortex-A53 testbench presented in
Chapter 6.2. Furthermore, the programming language C is utilized due to its fine
control over system memory whilst providing direct control through system calls to
the Linux kernel.

C is a general-purpose programming language, meaning it can be compiled and run
on various processing systems and embedded devices. As projected through the WIF
format, this thesis attempts to create a generalized design that can be reused and
modified. The C language adds to this goal in hopefully making the design choices
presented throughout this thesis applicable to different systems. Such systems could
be current and future satellite systems, such as the HYPSO-1, HYPSO-2 and FAUBAI
projects.

This chapter aims to introduce a foundational design written in C that can perform
semantic segmentation on hyperspectral image data with the UNet on an embedded
system. The main issue with the network’s size is addressed by attempting to
minimize the memory footprint of the network during prediction. Additionally, the
BIP format will be the core format throughout the design, and every feature map
and skip connection will be stored in this format. This choice was mainly motivated
by the HYPSO-1 hyperspectral imager storing its data using BIP.

4.1 Application Framework

To perform the processing required by a CNN, a handful of base functionality is
needed, such as fetching and preparing the data, making it available in memory, and
preprocessing, such as normalization and scaling. The desired functionality can be
summarized as follows:

• Read WIF and BIP formats from file and place into memory.
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• Layers such as convolution, transposed convolution, max-pooling and skip
connections.

• Preprocessing such as normalization, value scaling and padding.

• Array indexation for WIF and BIP formats.

• Write processed data to file.

It was clear that a data handling framework was needed before being able to
implement the UNet itself on a Linux OS. This framework will also be beneficial for
later testing of eventual accelerating designs in programmable logic.

Linux system

UNet applictaion

Load/store data
from/to memory

Normalize
data

weights images

Array
indexation

WIF BIP

CNN layers

Fig. 4.1: Illustration showing the proposed data handling framework for the UNet applica-
tion. The data handling functionality is shown in orange, and CNN layers shown
in green.

Figure 4.1 shows a proposed application design, where the application is divided into
three main parts; the top module implementing the network architecture (yellow),
the utility module providing data handling (orange), and a layers module providing
CNN layers (green). The proposed design is module-based, whereas each different
functionality is made into specific functions. This follows how the UNet is built
upon layers executed step by step. This modularity approach helps in mimicking
processing flow while also providing better readability of code and ease of use when
stitching the functions together for the network architecture.

4.1.1 Utility Module

The utility module described in Figure 4.2 encapsulates the functionality needed for
preparing the image and weight data for processing. The module is designed with
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the notion that it should work with raw captured BIP and WIF data stored within
the Linux system.

-Module-
Uti l i t ies

load_image()
load_weight_ascii()
load_weight_binary()
indexOffsetImage()
indexOffsetBias()
indexOffsetWeights()
check_file_size()
valueScale()
normalize()
padding()
relu()
sigmoid()

-St ruct -
imageInfo

lines
samples
bands

-St ruc t -
weight Info

kernel_width
kernel_depth
kernel_number

Fig. 4.2: The utility module used for various utility operations such as data handling and
preprocessing of image data. The weightInfo and imageInfo are extensions to the
utilities module.

Load Functions

The load functions fetch data from the filesystem and move the data to preallocated
memory addresses using the C library fopen and fread functions.

• load_image() loads image data formatted with binary into preallocated memory
as 16-bit unsiged integer type.

• load_weight_ascii() loads weight data formatted with ASCII into preallocated
memory as 32-bit floating point type.

• load_weight_binary() loads weight data formatted with binary into preallocated
memory as 32-bit floating point type.

• check_file_size() checks the size of a file in bytes.

Each function that requires a allocated memory space is passed this as an pointer.
The reason for this design choice was that it desired to have proper control over
dynamically allocated memory. Having functions allocate and free memory at will
could potentially cause memory leaks and debugging issues. Therefore, all memory
allocations are performed in the top function, where they are freed once used.

The load_weight_ascii() was first used to fetch data from ascii formatted files; how-
ever as seen in Section 6.1, this was not as efficient as loading binary files. This
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was because the data had to be parsed when loaded into memory from ASCII files.
Therefore, an improved function was created called load_weight_binary().

Index Functions

The C language allows for allocating multidimensional arrays, which could be prac-
tical when working with BIP and WIF data formats. However, as multidimensional
arrays are essentially an array of pointers to other pointers, it was less complex
to load data into one array instead and calculate the data index with specified
functions.

• indexOffsetImage() calculates the index of a specified value in the 3 dimensional
BIP data format.

• indexOffsetBias() calculates the index of specified bias values in the WIF data
format.

• indexOffsetWeights() calculates the index of a specified weight value for a given
kernel in the WIF data format.

These functions make it so that one can think about the arrays as multidimensional
arrays, making it easier to grasp how data should be processed.

Preprocessing

The neural network described in Chapter 3 is trained on input data that has been
scaled to floating-point values between 0 and 1. Due to this, before passing raw
BIP to the UNet, the data has to be scaled. The hyperspectral imager of HYPSO-1
utilizes an image sensor that samples the captured image data as 16-bit values, much
like the sensor used for the Pavia Centre. As the sensor does not utilize the entire
dynamic range of 16-bit, the data also has to be intensity scaled.

• valeScale() scales 16-bit image data to 32-bit floating point values in between
0 and 1.

• normalize() performs rescaling of image intensity to utilize entire dynamic
range of 16-bit unsigned integers.
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CNN Specific Utilities

The output spatial dimensions of each convolutional layer will be Hi −2×Wi −2 due
to the kernel size and stride. Therefore padding is needed before each convolutional
operation.

• padding() performs zero padding on input data.

• relu() performs the ReLU activation function check.

• sigmoid() performs the Sigmoid activation function check.

Structs

Chapter 2 describes how hyperspectral data is often stored as cubes shown in
Figure 2.5. During processing with the UNet, it was important to keep track of the
dimensions of feature maps and weights. This was solved using custom structs.

Structs provide a structured way of combining user-defined parameters and types
within a single pointer. By defining a struct template such as imageInfo and weightInfo
shown in Figure 4.2, they could be used to create collections with information about
specific feature maps and weight data throughout the network. Each layer relying
on input dimensions could be passed such a struct.

4.1.2 Layer Module

Figure 4.3 shows the layers module containing the CNN layers which will be used to
construct the UNet architecture.

-Module-
Layers

conv2d_layer()
maxpool_layer()
concatenate_layer()
conv2d_transpose_layer()
conv2d_layer_nopadding()

Fig. 4.3: The layers module including the CNN convolutional, max-pooling, concatenating
and transposed convolutional operations.
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Convolutional Layers

The conv2d_layer() and conv2d_layer_nopadding() functions take in pointers to
image and weight data, and perform a sliding window operation over the im-
age data as shown in Section 2.4. The conv2d_layer() expect the image to have
padding, while the conv2d_layer_nopadding() assumes no padding, as it’s meant
to be used on the last layer of the network to form the final class predictions. The
conv2d_layer_nopadding() also utilize a 1 × 1 kernel with a stride of 1.

1 // slide over input
2 for line =1 to (lines -1) do
3 for sample =1 to (samples -1) do
4
5 // calculate convolution for all kernels
6 for filter =0 to kernel_number do
7 for band =0 to bands do
8 for kernel_y =0 to kernel_size do
9 for kernel_x =0 to kernel_size do

10 sum += image_data [ index_i ] * weight_data [
↪→ index_w ]

Listing 4.1: Convolutional algorithm pseudocode.

Listing 4.1 shows a pseudocode describing how the convolutional operation was
performed using a series of nested loops. For every location in the image, given by
the line and the sample, one calculates the convolutional sum before calculating the
next filter.

1 index_i = indexFunc (line+kernel_x -1, sample +kernel_y -1, band)
2 index_w = indexFunc (kernel_x , kernel_y , band , filter )

Listing 4.2: Index algorithm for image and weight data.

The index for the image and weight data named index_i and index_w in Listing 4.1
can be calculated with the loop values as shown in Listing 4.2.

Max-pooling and Concatenate Layers

The maxpool_layer() functionality was implemented similarly to the convolutional
function in that it slides over the input data with a stride of 2, determining the max
value in every 2 × 2 area and placing this value into a new array with half the spatial
dimensions. See Section 2.4.2 for more information on the layer.
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The concatenate_layer loops over the spatial dimensions of the two inputted feature
maps (which should be the same) and places their respective data into a new array
with the input feature maps’ combined band size. Though this approach works fine,
it could most likely be solved more efficiently, such as using the C library mmcpy()
functions, which copies a specified number of data values from one memory location
to another.

Transposed Convolutional Layer

The conv2d_transpose_layer() is designed to perform the transformed convolution on
its input data, outputting the resulting data into a new array with double the spatial
dimensions.

0

x 0

0 0

x 0

0

x 0 x 0

Stride = 2

Samples

Lines

Fig. 4.4: Illustration of a 2 × 2 kernel moving
with a stride of 2 over an image.

The standard way of performing trans-
posed convolution is to store zeros in
between between the image values be-
fore sliding over the image data with
the trained kernels.

However, the transposed convolution
used for the UNet utilizes a kernel size
2 × 2, and a stride of 2. With these pa-
rameters, there is no overlap between
kernels, as shown in Figure 4.4. Due to
this, the transposed convolution oper-
ation can be simplified as described in
Section 2.19.
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Instead of creating a new array of data expanded with inserted zeros, the new pixels
in the transposed output can be calculated directly, as shown in Figure 4.5. Here
a given pixel in the input data can be multiplied with four respective weights and
placed into a new feature map with spatial dimensions samples · 2 × lines · 2. This
makes the code simpler and the processing quicker.

Kernel

x

Lines

Samples

y00

10 11y10 y11

Samples * 2

Lines * 2

y01

xy01

xy11xy10

xy00

Fig. 4.5: Illustration of how a single pixel is transformed into four pixels using kernel
weights.
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4.2 UNet Architecture

Figure 4.6 shows the combined UNet application. The top function utilizes the
functionality provided through the layers and utility modules to build up the UNet
architecture. The structure of the UNet code resembles that of the UNet network
in that each operation, e.g., loading input data, preprocessing, or convolution is
thought of as layers. Due to this, operations such as normalization and value scaling,
which include a series of steps, are referred to as layers.

-Module-
Layers

conv2d_layer()
maxpool_layer()
concatenate_layer()
conv2d_transpose_layer()
conv2d_layer_nopadding()

-Module-
Uti l i t ies

load_image()
load_weight_ascii()
load_weight_binary()
indexOffsetImage()
indexOffsetBias()
indexOffsetWeights()
check_file_size()
valueScale()
normalize()
padding()
relu()
sigmoid()

-Top Function-
UNet

Fig. 4.6: The UNet application consisting of the top function with the network architecture
and the layers and utilities modules.

4.2.1 Load Image Data

Image data is loaded into memory as shown in Figure 4.7. One can see that memory
is allocated within the UNet top function, and the pointer to the memory address
is passed onto the load_image() function. The load_image() call is also passed a
image_info struct pointer, which upon success from the Utilities module, will contain
dimensions of the input. These values are important as they are used throughout
the network to determine spatial dimensions for other layers. The idea is to make a
network somewhat generalized so that different image sizes can be tested. The only
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limit is that the spatial dimensions need to be divisible by 2d, where d denotes the
depth of the network. In the case of the UNet, d = 5, meaning the input must be
divisible by 25 = 32. This has to do with the max-pooling and convolutional layers
having to pass over the spatial dimension correctly.

UNet

UNet

Utilities

Utilities

check_file_size()

input_size_in_bytes

malloc()

load_image()

Success

Fig. 4.7: Sequence diagram showing the interaction between the UNet and Utilities to load
image data into memory.

4.2.2 Preprocessing

To prepare the input data for the network, it’s passed through the preprocessing steps
of intensity rescaling and float transformation with the Utilities functions normalize()
and valueScale(). Figure 4.8 describes the flow of these two operations, where they
calculate and allocate the required memory size using prior layer information and
perform processing on prior layer data.

To minimize the memory footprint of the network, data used for a layer is freed
once used, as shown twice in Figure 4.8. The same procedure is also used for all
other layers throughout the network. Since a layer in a sequential model depends on
the output of the layer prior to itself, it cannot free the memory before finishing its
operation. Figure 4.9 attempts to visualise better how layers in the UNet code, in this
case, the normalization and value scaling layers, manage allocated memory. This
method constantly allocates and frees memory as one moves through the network,
minimizing the memory footprint.
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UNet

UNet

Utilities

Utilities

allocate mem

calc_size_bytes

malloc()

normalize()

Success

free & allocate mem

free() input mem

allocate mem

valueScale()

Success

free() normalize mem

Fig. 4.8: Sequence diagram showing the interaction between the UNet and Utilities module
for performing preprocessing on input data.

Memory

Process

Input data

Free

Process

Normalized data

Normalized data Allocate

Input  
layer

Normalize 
layer

FreeScaled data

Scaled data

Scale 
layer

Allocate

Allocate

Process

Free

Allocate

Process

Free

(1)

(2)

(3) (1)

(2)

(3)

T
im

e

Fig. 4.9: Illustration of how layers in the network perform memory allocation, processing
and freeing of memory. The right-hand figure describes the layers in parallel
with the left-hand figure describing the layout of the memory. Light grey areas
are unallocated memory, while darker grey represents allocated memory. Pink
represents newly allocated data.
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4.2.3 Network Layers

To keep track of data throughout the network, layers were given specific naming
such as c11 meaning convolutional layer 1 on level 1, p2 for max-pooling on level
2, and u6 for transposed layer on level 6. Previously in Chapter 3, the naming of
the encoding and decoding paths were separated by the letters e and d. However,
as Figure 4.10 describes, the level denotes the position while moving from left to
right. This was a more sensible naming scheme when implementing the network in
software.

Input c11

16 16

c12

32 32

64 64

128 128

256 256

128 128 128

64 64 64

32 32 32

16 16 16 10
c21 c22

c31 c32
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c52

c42+u6 c61

c32+u7 c71

c72
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c82

c81c22+u8

c91 c92

p3

p2

p1

p4

c12+u9 Output

Max-pooling

2D Transposed Convolution

2D Convolution

Skip connection

Fig. 4.10: A descriptive model of the UNet where each layer has been given a specific
name and arrows represent CNN operations such as convolution, max-pooling,
transposed convolution and skip connections.

The convolutional, max-pooling, transposed and skip connection layers were made
similarly as the layers described in Figure 4.8 and 4.9 for the preprocessing, in that
prior layers information structs were used in calculating new memory sizes which
were allocated on need. As a layer finishes, it frees the memory of its prior layer.
The only situation this does not occur is on the p1, p2, p3 and p4 layers, as the c12,
c22, c32 and c42 outputs are saved for the skip connection layers later on.
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Convolutional Layers

Before the convolutional layer can perform its processing, it requires a padded input
and weight data. Since weight data is only utilized during a convolutional layer, this
data can be discarded once the layer is complete. Figure 4.11 shows the procedure
used for a convolutional layer in Figure 4.10, e.g., layer c21. The procedure is
repeated for all the convolutional layers throughout the network, except for the last
layer named Output in Figure 4.10, where the conv2d_nopadding_layer() function is
used instead of conv2d_layer().

UNet

UNet

Utilities

Utilities

Layers

Layers

Padding

allocate mem

padding()

Success

free() input

Load Weights

check_file_size()

file_size_in_bytes

malloc()

load_weight_binary()

Success

Convolution

allocate mem

conv2d_layer()

Success

free() weights & input

Fig. 4.11: Sequence diagram showing the steps needed to perform convolution on an input.
The steps are divided into separate groups representing the various steps required
before actually processing the convolution. Note that the allocate mem is the
group defined in Figure 4.8 and uses previous layer information.

Figure 4.11 describes the processing flow for a convolutional layer, where the opera-
tions of padding and fetching weight data for the specific layer are performed first.
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The weight data is loaded from the filesystem and discarded once the convolutional
operation is complete, along with the input (padded image). In the case where the
next layer is a max-pooling layer, the convolved output of the convolutional layer
is not freed after the max-pooling, as it later in the network will be used as a skip
connection.

Max-pooling Layers

The max-pooling operation does not utilize any trainable parameters or require any
padding before use and is therefore relatively simple, as seen in Figure 4.12. It
follows the same convention as previously described of calculating the new size from
the previous layer; however, noticably, it does not free the input data from memory,
as this data will be used as a skip connection.

UNet

UNet

Layers

Layers

allocate mem

maxpool_layer()

Success

Fig. 4.12: Sequence diagram showing the procedure for performing max-pooling on input
data.
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Transposed Convolution and Skip Connections

The transposed convolution does not require padding and is, therefore, more simpli-
fied in its procedure than the convolutional operation. However, the layer is also
grouped with the concatenating layer, as they together upscale and combine feature
maps. The combined transposed convolutional layer and skip connections are repre-
sented as c42+u6, c32+u7, c22+u8 and c12+u9 in Figure 4.10. Figure 4.13 shows
the procedure for loading layer-specific weights, performing transposed convolution
and concatenating the transposed output with its respective skip connection.

UNet

UNet

Utilities

Utilities

Layers

Layers

Load Weights

Load weights

Success

Transposed Convolution

allocate mem

conv2d_transpose_layer()

Success

free() input & weights

Concatenate

allocate mem

concatenate_layer()

Success

free() both inputs

Fig. 4.13: Sequence diagram showing the procedure for performing transposed convolution
and concatenation. The Load Weights have been simplified as it follows the same
process as shown in Figure 4.11.

The procedure for generating the transposed convolution and skip connection shown
in Figure 4.13 is repeated for all respective layers in Figure 4.10.
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4.3 Linux Filesystem

With the design proposed in Section 4.2, one can perform image segmentation on
raw 16-bit image data stored with the BIP format. Additionally, the UNet application
reads in 32-bit weight data with the WIF format stored within the Linux file system.
This makes it simple to change the weight files for the network. Figure 4.14 proposes
a file system layout for the weights and images that allows for easy network testing.

/
home

hypso
unet_application.........................UNet software directory

weight_data_binary...............Binary weight data directory
header_file.txt....................Network description file
weights_conv2d_c1_1.wif ............. Example weight data
...
weights_conv2_outputs.wif...........Example weight data
...
weights_conv2d_tran_u6.wif..........Example weight data

image_data ............................... Image data directory
hyperspectral_cube.bip...............Example Image data

network_output.......................Network output directory
unet_prediction.bip .............. Example network output

unet_exec_arm64..............UNet software executable/binary

Fig. 4.14: Proposed directory for weights and image data, in addition to the application
executable.

This framework makes it relatively fast to test UNet configurations and explore the
acceleration of specific layers. The framework provides the tools needed for placing
image and weight data into memory, where it can, in a later design, be streamed to
an FPGA. However, there are still more aspects to the framework to be explored and
discussed further in Section 6.2.
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Hardware Acceleration 5
This chapter introduces a suggested convolutional accelerated design thought to
be running on an embedded FPGA to support the software implementation of the
UNet. In the case of this thesis, the accelerated design is aimed at the UltraScale+
architecture, which utilizes both an ARM Cortex-A53 CPU and a FPGA within the
same SoC. This architecture has been chosen as it is used for the UNet software
implementation. However, it is more specifically due to being a proposed architecture
for on-board processing of the HYPSO-2 satellite.

The reason behind accelerating the convolutional operation is because it is the most
computationally heavy operation in CNNs like the UNet architecture. As seen in Fig-
ure 4.10, the UNet explored for this thesis utilizes 19 convolutional layers of varying
filter number and kernel depth, meaning accelerating these layers may provide great
speedup for image segmentation, compared to a CPU only implementation. The
benefits are not only speedup, however, as described in Section 2.6. FPGAs are espe-
cially good at performing parallel operations at a lower power cost compared to e.g.,
a GPU [31]. The benefits of accelerating the convolutional layers will therefore be
useful in providing faster segmentation of image cubes and reducing the network’s
power usage, which can be very valuable in a cube satellite.

However, accelerating sliding window operations like convolution is not a new
concept, as these operations are used in many image processing applications. In
research such as [31], they show that FPGAs outperformed GPUs in energy con-
sumption in most cases of window operations while still maintaining competitive
speeds. Additionally, previous work such as [12, 26] has explored the acceleration
of the convolutional operation for ML purposes, showing great speedups compared
to CPU only implementations.

Previous work has explored the acceleration of the entire C-UNet and C-UNet++
networks [10, 11], as already described previously in the thesis. However, these
designs are limited in their network depth and filter sizes, as the FPGAs does
not have the resources available to store deep networks consisting of millions of
hyperparameters, even with quantization. Approaches within previous work have
therefore been to reduce the number of hyperparameters and weight bit-size to make
the networks fit the resource constraints. Since the task is to explore the original
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UNet, reducing the number of parameters is not an option. However, the size of
the UNet, with its 31 million parameters, cannot fit within the resource constraint
of an FPGA. The only option is then to explore quantization. In Section 3.4 it was
explored to use 16-bit quantization, which makes it possible to fit the weights of
the largest convolutional layer (1024 kernels) within the resource constraint of the
UltraScale FPGA.

5.1 Constraints

The main issue with accelerated designs such as convolution is that both image and
kernel data need to be on the FPGA to perform multiplications and additions of the
data. A common approach is, therefore, to stream data from an external device to
the FPGA, perform operations, and pass the processed data back to the external
device [30][p. 113]. This way, the data does not have to be stored on the FPGA
itself.

However, in the case of the convolutional operation, as it is used within CNNs,
each kernel has its own set of weights. This means that the weights must be either
streamed alongside the image data to the device, or be stored in BRAM logic within
the fabric of the FPGA. The approach used in previous work, such as [10, 11] was to
synthesise entire FPGA implementations with the weights for each layer. This also
avoided the complexity of streaming weights to the device along with the image data.
As it is not viable to store the entire UNet weights within the fabric, an alternative
approach of storing layer-specific weights is proposed.

5.2 Proposed Design

Figure 5.1 shows a superficial visualization of a proposed convolutional accelerated
design. Through using DMA modules, image and weight data can be passed from
system memory to the FPGA using AXI stream interfaces, and controlled by the CPU
thorugh AXI Lite.

5.2.1 Weight Data

Instead of storing the weights of the entire UNet on the FPGA, it was instead explored
to store layer-specific weights using FPGA BRAM logic. In Chapter 3, it was shown
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Address space
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Fig. 5.1: Proposed design for convolutional accelerator controled by the through AXI Lite
interface.

that the largest convolutional layer in the original UNet reached a size of around
36MB when the network was trained for 32-bit weights. This did, however, surpass
the memory constraint of the on-chip memory of the FPGA. It was shown in Section
3.4, that 16-bit weights should fit the resource constraint of the FPGA, as with the
halved bit usage, the highest weight size amounted to around 18MB.

The case of varying weights per layer is, however, an issue as simply storing the
weights of one convolutional layer would only reduce the runtime of the software
implementation slightly. It was therefore also clear that the weights would have to
be streamed to the FPGA as seen in Figure 5.1. Therefore, the suggested design also
had to consider varying kernel sizes and input widths. A proposed way of solving
this is through having a 1024 × 1024 × 9 buffer for weights and a 1024 buffer for
bias values. Since this is the largest convolutional layer possible, it could allow for
streaming the weights of smaller layers.

To avoid the complexity of streaming both weight and image data at the same
time, it is proposed to stream the weights beforehand, allowing the convolutional
acceleration to be as efficient as possible. If one assumes a 32-bit wide DMA bus,
and 100MHz clock frequency, which is not unrealistic for the proposed design, the
transfer of 18MB could take around 18/((100 · 106 · 4)/10242) ≈ 0.047s ≈ 47ms.
Since the DMA can perform the transmission with limited interaction from the CPU,
it could be initiated during the padding layer leading up to the convolutional layer
to reduce the runtime even further.
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5.2.2 Image Data

The suggested design showcased in Figure 5.1 also suggests streaming the image
data to the FPGA, in addition to an output stream with the convolved data back into
RAM. This has to be done, as image cubes can potentially be large and would most
likely not fit the memory constraint of the FPGA. As described in Section 2.4.1, the
convolutional operation is essentially a sliding window operation of size 3 × 3 × Kd

moving over the image data while performing multiplications and additions. This is
further visualized in Figure 5.2 for a 2D image, which shows how the kernel slides
over the image data.

Lines

Samples

Fig. 5.2: 2D illustration of row buffering, where a kernel of size 3 × 3 slides over image
data with a stride of 1. Adapted from [30][p. 117].

Instead of streaming the same image pixels over and over, which would also slow
the acceleration, a common method is to buffer them into the so-called row and
window buffers. A row buffer is essentially a form of a cache for image data and
stores, in the case of a 3 × 3 kernel, two rows of pixels [30][p. 117] in an image.
In the case of Figure 5.2, this would be the number of Samples times 2, which are
displayed as grey areas in the figure. When performing a sliding window operation,
data arriving can immediately be convolved and stored for the next window “pass”
in the row buffers.

Row buffers

Input stream

Window

Fig. 5.3: 2D illustration of a 3 × 3 window buffer with two respective row buffers. Pink
cubes represent pixels of data. Adapted from [30][p. 117].
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The window buffer is essentially a buffer holding the 3 × 3 pixels that will be
convolved as seen in Figure 5.3. As data arrives, it is placed into the bottom row
buffer and bottom window. As indicated in the figure, the data is also shifted through
the row buffers, which act like FIFOs. Once a window is full, it can convolve the
content with the respective weight values and add to the kernel sum. It is worth
noting that these illustrations showcase two-dimensional row and window buffers.
However, in reality, they would be three-dimensional, as they would also take in
the bands of an image. This is further visualized in Figure 5.4 showing a row- and
window buffer for hyperspectral data. Since data, in this case, arrives in BIP order,
all bands for a given pixel come first. Depending on the computational architecture
for the convolutional part, one could either convolve as bands arrive or wait until all
bands for a given window position are available.

Ba
nd

s

SamplesWindow

Data stream

Ba
nd

s

Row buffers

Fig. 5.4: 3D Illustration of how row and window buffers work on image data with several
bands. The row buffers act as FIFOs, and are connected together.
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5.2.3 Interfaces

Figure 5.5 shows the suggested AXI Lite communication between the CPU and FPGA
modules in the accelerated design. As shown in the figure, the CPU could control
the modules through their respective control registers in within the address space.

CPU

DMA

DMA

Logic

FPGA

Address space

AXI Lite

Fig. 5.5: Illustration of the AXI Lite commiunication between the FPGA modules and the
CPU.

5.2.4 Software/Hardware Cooperation

The proposed convolutional design is meant to be a supportive accelerator to the
UNet framework presented in Chapter 4. Figure 5.7 provides a visualization of
how it would fit into the processing flow of the software implementation. The
figure shows how the transfer of weights could be issued before starting the padding
operation on the image data. Since the DMA can operate on the RAM without
significant support from the CPU, the weights can be transferred during the padding
operation. Afterwards, the status register of the DMA may be checked to confirm
the data is completely transmitted before preparing and sending the actual padded
image data.

Figure 5.6 shows a more detailed layout of the suggested convolutional accelerator
in Figure 5.1. Buffers are shown as 2D buffers for simplicity; however, in reality, they
would be 3D, as seen previously. The weights could be stored within BRAM with
multiple ports, allowing for parallel access for convolutional operations. Noticeably,
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the internal design would have some control signals, which would be controlled
through the AXI Lite interfaces.

The suggested design could be designed to be able to accelerate the largest layer in
the original UNet, which is a convolutional layer with 1024 kernels with an input
depth of 1024. If calculated assuming 16-bit fixed-point precision, this would require
a weight and bias buffer of around 18MB. Additionally, since the convolutional layer
should be usable for the first layers in the network, it should have a row buffer
width of at least 512. Assuming 32-bit image data and a depth of 102 bands, the
row buffer would require less than 1MB in size. In theory, should a design utilize
less than 20MB of fabric memory and fit well into the UltraScale FPGA.

AXI stream in

AXI stream out

AXI Lite control

DMA module 
image data

AXI stream in

AXI Lite control

DMA module 
weights

Row buffers Window buffer

ConvolveSum

Weight buffer

BRAM

Dual port

Programmable Logic

Fig. 5.6: Illustration showing the suggested data flow within the FPGA. Two DMA modules
communicate with the CPU through system memory.

5.2 Proposed Design 85



UNet

UNet

Uti l i t ies

Uti l i t ies

Weights  to  FPGA
Define addresses

Initialize DMA

DMA status

Start DMA transfer

Padding
allocate mem

padding()

Success

free() input

Check  Weight  Transfer
Check DMA

DMA status

Im a ge  da ta  to  FPGA
Define addresses

Initialize DMA

DMA status

Start FPGA IP

Start DMA transfer

Fig. 5.7: Sequence diagram showing the proposed usage of the convolutional accelerator
within the UNet software implementation.
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Results and Discussion 6
This chapter will present the results produced throughout the research conducted in
this thesis. The chapter is divided into three sections representing the Chapters 3, 4
and 5, which presents the results for each of the chapters. This way of presenting
the results was chosen as it provides a more natural walkthrough of the results as
they arose in the thesis work. The chapter will also include discussions on each of
the chapter results, making it easier to follow for the reader.

To summarize, this chapter presents the results for the training of the UNet and gen-
eration of weights, runtimes and memory utilization for the software implementation
and discussions around a proposed hardware implementation.

6.1 Training

The UNet described in Chapter 3 consist of two versions, one utilizing 32-bit weights
and biases, and one where quantization was utilized to reduce the weight and
biases bit size to 16-bit, using the BFloat16 format. Throughout this chapter, the
32-bit UNet will be referred to as the UNet, while the quantized one is the quantized
UNet. The UNet was mainly utilized during testing of the software implementation
described in Chapter 4, while the quantized UNet was tested to substantiate the
arguments in Chapter 5 for the accelerated design.

Both the UNet and quantized UNet models were trained on the Pavia Centre dataset
using 128 × 128 sized patches, as seen in Figure 3.8. The spatial dimensions of
128 × 128 per patch were found the be a good middle ground, as it increased the
training data from one large image into 32 smaller ones (subtracting the data used
for validation) while still maintaining relatively good amounts of information per
patch. The patch size had also previously been seen to work well with the Pavia
Centre scene in [10][p. 35].

The UNet was trained with two sets of patches, one where the patch size was
128×128×3, and another of sizes 128×128×102, which was the original number of
bands in the Pavia Centre dataset. The reason was to explore how the difference in
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Fig. 6.1: Plots showing the calculated accuracy and loss per epoch for both the train and
validation sets on the Pavia Centre dataset for th UNet model. Max epochs were
set to 500, with a batch size of 128 and a patience of 100.

network input depth affected the number of weights in the network and the accuracy
of the prediction. In this case, the 128 × 128 × 3 patches can be thought of as RGB
images, while the 128 × 128 × 102 are hyperspectral data.

The metrics of accuracy and loss was used to measure how the training evolved.
Loss can be thought of as the distance between the truth values and the predicted
values. The higher the loss, the larger the error. Loss is therefore also dependant
on the weight values, which is in this case between 0 and 1. Accuracy, on the other
hand, can be seen as a merit of the networks performance. This means that a high
accuracy means the model performs better, however not necessarily that the model
is good.

The model trained on the 128 × 128 × 3 patches can be seen in Figure 6.1, and
is named few-bands in the figure. For the training, a patience of 100 was used
with validation loss as its metric. This means that if the model cannot improve the
validation loss in 100 epochs, it will return and save the model 100 epochs back.
This happened for the few-bands model, which was aborted by the patience callback,
as seen in the figure, and caused the model to not move past 300 epochs. The model
reached a validation loss of around 0.5, and an accuracy of around 0.86.

Comparably, the many-bands model ran for the entire 500 epochs, however the
model ended with similar metric values as the few-bands model. This most like has
to do with the many-bands model having more data to work with, making it slower
at improving than the few-bands model. This also makes sense, as the few-bands
model seems to lose generalization around 150 epochs, where one can see that the
metrics for the training sets get better faster while the metrics for the validation start
to drop.
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Fig. 6.2: Prediction on 16 × 128 × 128 × 3 patches in the Pavia Centre, with bands combined
together to form a 512 × 512 image. The bands used was 70, 51, 19.

Fig. 6.3: Prediction on 16×128×128×102 patches in the Pavia Centre, with bands combined
together to form a 512 × 512 image. Note that the image storage cause some color
fading, which is not a part of the prediction.

Figure 6.2 and 6.3 shows the prediction with the few-bands and many-bands models
respectively. One can see that training with 102 bands provides much more accurate
segmentation than with 3 bands, as assumed, and shows why training networks
with more bands produce better predictions. This has to do with the neural network
being better at extracting features when more data is available, as explained in
Chapter 2. There are ways of measuring how well a network performs, such as the
metric Intersection over Union (IoU), which is more accurate than visual inspection;
however, for this thesis, visual inspection was deemed adequate. Nevertheless, it’s
clear that hyperspectral data provides DL networks more data to work with, and
therefore more accurate at semantic segmentation.
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An interesting observation is that difference in the number of weights for a UNet
trained for 102 bands, compared to 3 bands, is only among 13k parameters. This
is a result of the UNet utilizing 2-dimensional convolutional layers as described in
Section 2.4, which create feature map representations of the input with the same
depth, regardless of input. Additionally, the number of sliding window operations
is only increased for the first convolutional layer, which should have little overall
effect on total runtime.

The segmentation in Figure 6.2 and 6.3 are however not very good, especially
when compared to more compact versions like C-UNet++ in work such as [10]
which achieved better segmentation accuracy. It should have been possible to
acheive similar or better results if data augmentation was used. Techniques such
as overlapping, mirroring or rotating patches could make the dataset much larger,
giving the network more data to work with. However, this was not explored in
this thesis, as the main goal of the training process was to gain weight data and a
prediction reference for the software implementation.

6.1.1 Quantized Model

The quantized UNet model was trained with the same parameters as the UNet, 500
epochs, with early stopping on validation loss with 100 in patience. However, the
network was only trained with 128 × 128 × 102 sized patches. Figure 6.4 shows the
changes in loss and accuracy for every epoch. One can see that the model evolves
much like the models shown in Figure 6.1, even when constrained to 16-bit weight
values with less precision, as opposed to the 32-bit model.
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Fig. 6.4: Plot showing the calculated accuracy and loss per epoch for the train and validation
sets on the Pavia Centre dataset for the quantized UNet.
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Figure 6.5 shows a prediction of a collection of patches from the Pavia Centre dataset,
the same as passed through the UNet model shown in Figure 6.3. One can see that
the network still manages to extract good features even with weight quantization,
as suggested in [43]. The model also seems to predict better in some areas than
the prediction in Figure 6.3. However, looking at the plot in Figure 6.4, there are
signs of the network memorizing the data as validation loss goes back up. This
could explain why some areas are segmented better, as the data used for testing is
the same used for training and validation. These results does however show that a
quantized UNet, utilizing the BFloat16 format, is comparable to a network trained
with 32-bit weights.

Fig. 6.5: Prediction on 16 × 128 × 128 patches fro the Pavia Centre scene. Their prediction
is combined into a 512 × 512 image.

6.1.2 Weights Testing

When working with file storage in a high abstraction level language such as Python,
data is usually stored to a disk using text encoding formats such as American
Standard Code for Information Interchange (ASCII). When the weight values are
stored as text files, the floating values are cast to ASCII representations and saved to
disk. The ASCII format is essentially a character encoding which gives each letter an
integer value representation. Though these files are easy to work with and provide
better readability and ease of use, it affects how the data needs to be parsed once
handled on an embedded system. In case of Linux, the data would need to be parsed
using C-functions such as fopen() and fscanf(), which add extra latency to the read
operations.
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Due to this, it was explored to store the weight data as binary data instead, which
should take up less space on disk and be faster to read into memory. A test was
performed where weight data for the UNet, encoded with the WIF format, was read
into memory on the ARM test setup described in Section 6.2. Figure 6.6 shows the
difference between loading different sized weight files stored with either ASCII or
binary (32-bit float) encoding.

Fig. 6.6: Logarithmic plot of the average runtime for loading weight data into memory
from ASCII and binary files with C-functions. Test was done for different sized
UNet convolutional filters, with number of tests N = 10. Test was run on a Intel
i7-9750H running a Ubuntu Linux distrubution.

As Figure 6.6 shows, there is a reasonable difference between reading and parsing
ASCII files, compared to binary. Even though the difference was expected, it was
higher than anticipated and shows that avoiding the text-to-value parsing with ASCII
files provides good speedup, especially if weight data is to be loaded in and out
of memory often. For example, as the figure shows, the weight file for a 256-filter
convolutional layer, in Figure 6.6 referred to as conv_c5, with a kernel size of 3 × 3,
and an input of 256 bands, has approximately ∼ 500K parameters. For the ASCII
file, the runtime was an average of 116ms, whilst the binary file was 1.2ms. With
such low read times, the weight data can be moved in and out of memory during
execution without taking up too much runtime.

Additionally, as expected, storing weights as pure binary data proved to be much
more space-efficient since binary data is much more compact. For reference, the
files for the UNet amounted to around 7.4MB when binary, while around 21.7MB

as ASCII files. Since a future design should allow for uploading new weights to a
satellite, these differences make a big difference due to the limited uplink speed of
cube satellites.
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Having weights stored as binary files was also explored for quantized weights.
Logically this reduced the total size of the weights further, reducing the weight size
of the UNet to 3.7MB when stored as 16-bit data. However, a caveat of binary
data compared to ASCII is that the way a computer interprets the data may change,
depending on the system’s endianness. In the case of the i7 and ARM architectures
utilized in this thesis, this was not an issue because they both utilised Little-edian.
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6.2 Software Implementation

This section will present the results and discussion around the software implementa-
tion described in Chapter 4. The section starts by describing the test setup used for
embedded software testing and further the design results with and without compiler
optimizations applied. Testing with no optimizations was performed, as it provides
a good reference for how optimizations can improve runtime.

6.3 Test Setup

The implementation described in Chapter 4 was tested on different systems utilizing
components with significant difference in performance. This gave some good insight
into the difference between an edge case device and a more powerful system.

The high performance system utilized an Intel i7-9750H CPU, paired with a Nvidia
GTX 1650 GPU. The system utilized the Windows 10 OS, mainly used for running
Python code, such as neural network training. However, the system had a Linux
co-OS, specifically the Ubuntu 20.04 distribution running as Windows Subsystem
for Linux. This was used for the software implementation tests, as it proved to be a
good reference for the tests on the embedded system. Additionally, it proved to be a
good debugging tool during development.

The low performance system was a ZCU104 development kit from Xilinx, which
utilized the Zynq UltraScale+ SoC. The board has 2GB of Double Data Rate (DDR)4
RAM which is accessible to both the SoCs’ CPU and programmable logic.

Figure 6.7 shows the development kit used for low performance testing. The board
was booted with a Yocto Linux image, built using Xilinxs’ Petalinux tool, which runs
on the ARM Cortex-A53 CPU. The Linux OS was chosen as it provides a similar
environment to the HYPSO-1 processing system, though with a slightly different
architecture. For control of the board, UART and Ethernet peripherals were used. The
UART peripheral provides access to the board’s printouts during boot and is useful to
check that it boots correctly and control it via a connected workstation. Additionally,
the Ethernet peripheral provided fast remote access to the Linux filesystem through
secure shell access (SSH). This was used to transfer binaries and weight files to the
board for testing and observe printouts during execution.
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Fig. 6.7: Image showing the ZCU104 development kit test setup, running the UltraScale+
SoC. The image also shows how the board is connected. Ethernet and UART
peripherals are used for communication with the board.

6.3.1 Verification Tests

To initially verify that the UNet implementation described in Chapter 4 managed to
perform predictions correctly, the code was fed 512 × 512 × 3 and 512 × 512 × 102
image data from the Pavia Centre scene, noticeably the same as used for the network
testing in Section 6.1, as this provides a good reference for what to expect as
predictions. The hope was that the segmentation from the software implementation
would look similar to that of the high-level model.

Figure 6.8 shows the result from feeding the software implementation a 512×512×3
BIP formatted image from the Pavia scene, utilizing 32-bit weights from the few-band
model. Comparing the prediction to the one in Figure 6.2 through visual inspection,
the software segmentation looks very similar and could even be categorized as
performing better in some areas. One can, e.g., see that the model manages to
segment the water area more continuously. However, this was somewhat unexpected,
as the segmentation should perform the same convolutional operations with the
same weight and bias values in theory.

Figure 6.9 shows the result from feeding the software implementation a 512 × 512 ×
102 image cube, utilizing 32-bit weights from the many-band model. The resulting
segmentation performs much better than the few-band model, as expected from the
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Fig. 6.8: Software implementation prediction on 512 × 512 × 3 image taken from the Pavia
Centre dataset, run on the testbench using the UNet 32-bit weights.

Fig. 6.9: Software implementation prediction on 512 × 512 × 102 image data taken from
the Pavia Centre dataset, run on the testbench using the UNet 32-bit weights.

high-level model testing results. However, similar to that seen in the test for the
few-bands model, the segmentation shows increased accuracy in the water areas.
Despite this, the segmentation seems less accurate for certain labels when compared
to the high-level segmentation seen in Figure 6.3. This gives cause to believe there
are differences in how the UNet implementation and the Tensorflow models perform
their predictions.

A hypothesis for where this difference originated was with how the networks were
passed image data. Since the high-level model only accepts 128 × 128 input sizes,
the model has to separably segment 16 patches which afterwards may be stitched
together to form the 512 × 512 labelled image. In contrast, the software implementa-
tion can perform prediction on 512 × 512 image cubes in one go and was therefore
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not subjected to patched image cubes. Since the UNet utilizes 3 × 3 kernels with a
stride of 1, convolutions overlap, as shown in Section 2.4, making the convolutional
operation good where the window is filled with actual image data. However, in
the case of the window being on the image borders, padding is applied to maintain
spatial dimensionality, which may cause convolutions to perform poorly since it has
less actual image data to utilize. Therefore, patches in the high-level model that
reside within the image, away from the border, will be subjected to padding when in
the software implementation, they are not.

Fig. 6.10: Software implementation prediction on 128 × 128 × 102 patches, which are
stitched together to form a 512 × 512 image representing the segmentation. The
32-bit UNet weights were used for prediction.

To make sure the UNet implementation and its respective high-level model were
subjected to the same image data, the 512 × 512 × 102 image cube previously tested
was patched into 16 128 × 128 × 102 patches. These were passed through the UNet
implementation and afterwards stitched together. Figure 6.10 shows the resulting
labeled image. As one can see, the segmentation performs similarly to that shown
in Figure 6.9. This contradicted the hypothesis and meant the reason had to lie
elsewhere. Since it is hard to identify exactly how the Tensorflow API performs a
prediction, it is not easy to narrow down the cause.

Though the test did not provide further insight into the reason for the difference in
segmentation, it did highlight a bug within the UNet implementation. This can be
seen in Figure 6.10 as dark cubes in the bottom right corners of the image patches.
This most likely is an indexation issue within the implementation, though it does
not cause any meaningful issues to the segmentation.
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6.3.2 Runtime Tests without Optimizations

To test the performance of the implementation, the start and end of the software
implementation were timestamped using the standard C library time.h. Additionally,
each CNN layer was timestamped to provide a more exact runtime for the different
processing parts, which also makes it possible to infer the time used by utility
functionality like loading weights and images. The first tests were run for the x86
and ARM test benches to produce comparable results. Additionally, it is important
to specify that the ARM testbench only utilizes one core of its CPU. In contrast,
the intel i7 testbench is locked to 20% of the CPU resources, though it does utilize
multithreading.

Firstly the code was tested without any compiler optimizations or code modifications
to get an idea of the implementation performed without modifications. It was
expected that this would cause the code to be very slow, as the implementation
utilizes large nested loops. Table 6.1 shows the resulting runtimes for both systems,
where two image cube dimensions were tested to understand the difference between
few and many bands as inputs.

Input Data Cube
Intel i7

Runtime [s]
ARM Cortex-A53

Runtime [s]
512 × 512 × 3 135.3 1451.2

512 × 512 × 102 175.3 1905.1

Tab. 6.1: UNet software implementation runtime on ARM and Intel systems without opti-
mizations in seconds.

Table 6.1 shows that the ARM system spent upwards of 20 minutes on one run. This
is very slow, however, also expected as there are no optimizations, and the code runs
on a single core. Comparably, the Intel i7 used upwards of three minutes to compute
the UNet network for a 512 × 512 × 102 input, which is still slow for a system that
runs with considerably higher clock speeds and utilizes more cores. It was clear that
optimizations would be critical to get usable runtimes.

Table 6.2 shows the runtime for specific layers, and are values taken from the
512 × 512 × 102 no optimization test shown in Table 6.1. As the table shows, most of
the runtime goes into the convolutional operation as expected. It is slightly surprising
that the transposed operation amounts to only around 2.2% of the runtime, especially
since it also utilizes relatively large nested loops and sliding window operation as
the convolutional operation. However, at the same time, as described in Chapter
4, the UNet utilizes a 2 × 2 kernel with a stride of 2, meaning there is no overlap
for the transposed convolution. This highly reduces the layer’s complexity and the
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Layer Type
Intel i7

Runtime [s]
ARM Cortex-A53

Runtime [s]
Convolution 170.52 1897.16
Max-pooling 0.03 0.20

Transposed Convolution 3.64 42.66
Utilities 1.10 7.95

Tab. 6.2: Combined layer runtime on ARM and Intel systems for the UNet with an image
cube of 512 × 512 × 102 as input.

number of multiplications and additions per kernel. This has a larger impact on the
runtime of transposed layer than anticipated.

6.3.3 Runtime Tests wtih Optimizations

To improve the runtime of the UNet running on the ARM system, general and
architecture-specific compiler flags were tested to improve the runtime. Compilers
like the GCC have a series of compiler flags that can be used to automate optimization
for arithmetic operations and loops, further described in Subsection 2.7.3. File size
may be a concern in the case of uplinking new binaries to a satellite system; however,
as they tend to remain relatively small regardless of optimization flag due to the
application size, this testing will opt for speed over small binary size.

Compiler Optimizations

The same image cube of size 512 × 512 × 102 used for none-optimization testing as
seen in Table 6.2 was used for optimized testing, as it provided a good reference for
the added benefit of optimizations.

Optimization Runtime [s]
-O1 -mcpu=cortex-a53 469.33
-O2 -mcpu=cortex-a53 130.84

-O2 -ftree-vectorize 130.28
-O3 -mcpu=cortex-a53 130.73

Tab. 6.3: Testing of optimizations flags for running the UNet implementation faster on the
the ARM Cortex-A53. The image cube with dimensions 512 × 512 × 102 was used.

Table 6.3 shows the runtime with various optimization flags used for compiling the
UNet implementation for the ARM 64-bit architecture. The best runtime without
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manual code optimization achieved was 130.73 seconds with the -O2 -ftree-vectorize
flags. This is around 14.5 times the speed compared to the same test without
optimization flags seen in Table 6.2.

Various tests were also conducted using the -mcpu=cortex-a53 flag, which is an
architecture-specific flag attempting to optimize the code for the given CPU. This
did, however, not show any significant improvement, most likely due to the -O2 and
-O3 enabling most of the optimizations already.

Code Optimization

Additionally, a few tests were conducted where changes to the convolutional layer
were done in an attempt to improve runtime further. It was found that the compiler
automatically attempts to optimize the code using Single Instruction Multiple Data
(SIMD) instructions when using -O2/3 and -mcpu flags [39]. It was therefore
attempted to modify the code to accommodate this type of optimization, such as
loop-unrolling.

1 for i to kernel_y do
2 for j to kernel_x do
3 sum += image_data [index] * weight [index ];

Listing 6.1: Original code for calculating kernel sum in convolutional layer.

1 sum += image_data [index] * weight [index ];
2 sum += image_data [index +1] * weight [index +1];
3 ...
4 sum += image_data [index+n] * weight [index+n];

Listing 6.2: Adapted code for calculating kernel sum in convolutional layer.

Listing 6.1 shows the original loop for calculating the kernel sum within the con-
volutional layer. By unrolling this section of the code, as shown in Listing 6.2, the
compiler optimized the code more effectively. Since the UNet always utilizes 3 × 3
kernels for convolution, this approach was viable. However, in the case of different
convolutional kernel sizes, an alternative approach would be needed.

The improvement can be seen in Table 6.4, which shows an decrease in runtime
from 130.8 to 75.6 seconds. It was also found that the -mcpu=cortex-a53 seemed to
add slightly better runtime after the code changes. It was therefore concluded that
the -O3 -mcpu=cortex-a53 flags with loop-untrolling provided the best runtime, and
was therefore used for further testing. Additionally, they had no significant binary
size difference compared to other optimization flags.
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Optimization Runtime [s]
-O2 (with CM) 76.24
-O3 (with CM) 75.74

-O3 -mcpu=cortex-a53 (with CM) 75.58

Tab. 6.4: Testing of loop-unrolling, also with optimization flags, while running the UNet
implementation on the the ARM Cortex-A53. The image cube with dimensions
512 × 512 × 102 was used. CM is an abbreviation of the word Code Modifications,
and refers to code optimizations.

6.3.4 Final Testing

The -O3 -mcpu=cortex-a53 with loop-unrolling were used for further testing of the
UNet implementation on different input sizes to see how it performed. Two tests
were performed for each input size due to the nondeterminism of CPUs, which
provides more realistic results. One 3-band test was also performed to showcase the
difference in runtime with different input depths.

Table 6.5 shows the average runtime for different input cube sizes for the ARM sys-
tem. The total runtime expectantly decreases linearly with lower spatial dimensions,
following a factor of 4 between tests. The major contributor to this is the convolu-
tional layers, which are the most time demanding. This can further be seen in Figure
6.11. Convolutional layer runtime changes between input sizes since the number of
sliding window operations are directly correlated to the spatial dimensions.

Runtime [s]
512 × 512 × 102 512 × 512 × 3 256 × 256 × 102 128 × 128 × 102

Conv 73.36 55.68 18.33 4.58
Pool 0.022 0.023 0.01 ∼ 0.00

TConv 1.33 1.34 0.33 0.083
Utilities 2.56 3.97 1.10 0.27

Total 77.27 61.01 19.77 4.93

Tab. 6.5: Testing of different input cube sizes on the ARM Cortex-A53 system for UNet
implementation. Compiled using optimizations. Each input was tested for N = 2,
meaning the values in the table are averages.

It can be seen in Figure 6.12 that convolutional layers also depend on the input
depth. The figure shows that the overall runtime increases after passing the C5
bottom convolution. This is due to the added skip connections increasing the weight
depths at the start of a new level in the decoding path, adding more computations
than the following convolutional layer.
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Fig. 6.11: Plot showing the runtime of each layer in the UNet network run on the ARM
system. The runtimes are from the tests shown in Table 6.5. For reference, the
naming scheme of the layers follows that showcased in Figure 4.10.

Fig. 6.12: Plot showing the runtime for the different convolutional layers in the UNet
implementation from the tests shown in Table 6.5. Each level contain two
convolutional layers which are combined together in the figure with respective
level names.

From the prior observations, it’s clear that the runtime of the utility and max-
pooling operations are essentially neglectable when compared to the runtimes of
the convolutional and transposed layers. This can be observed for all input sizes
tested.
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6.3.5 Memory Utilization

To check the memory utilization of the software implementation during segmenta-
tion, the system memory was logged. It was interesting to check how the memory
behaved while comparing it to the predicted skip connection sizes in Figure 3.4.

To look at the memory usage, the /proc/meminfo file within the Linux system was
logged due to the file containing information about the status of the system memory.
Figure 6.13 shows the memory usage observed while segmenting two different
image cubes. Memory usage is shown as a percentage of the total memory capacity.
Additionally, a dashed line shows the memory usage during idle state, lying around
32.8%, or about 650MB as a reference.

Idle

Fig. 6.13: Plot of the memory usage as a percentage of total memory for two input cubes to
the UNet implementation. The plots show the usage before, during and after the
segmentation of input cubes. Tests were performed on the ARM system, which
has a total of 2GB RAM available. The green dashed line named Idle represents
the system’s idle memory usage.

For a 512 × 512 × 3 image cube, the median memory usage of 35% was observed,
while for a 512 × 512 × 102 image cube, the median was slightly higher at 35.3%.
However, this variation is expected, as the input with more bands requires more
space in memory when loaded into memory. This becomes more clear in Figure 6.13,
as one can see that the maximum memory usage reached around 38.9%, equalling
approximately 120MB above idle state for the input with 102 bands. Since features
are extracted in the first layer, and the feature depth of the first layer corresponds
to the number of kernels, which are equal for both cases, one can observe that the
memory usage aligns after the first layer around 20 seconds.
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Compared to the calculated size of a 512 × 512 × 102 input image and the weight
size of a 16 kernel filter, the total size would amount to around 102MB when all
data is 32-bit. Therefore, the memory usage observed versus the calculated size
seems to match quite closely, meaning the previously calculated skip connection
sizes in Figure 3.4 are relatively close estimations to the memory requirement for a
network. This can be useful for future determination of the resource demand for
various CNN architectures.

6.3.6 Summary and Final Notes

The tests proved that segmentation worked with the software implementation of
the reduced UNet model, though with certain variances in the accuracy of the
segmentation compared to the high-level model. Additionally, certain bugs such as
dark cubes are apparent; however, they do not seem to have a significant impact on
the segmentation itself.

The variances experienced in the segmentation are hard to explain, as the weights
used for both the software and high-level networks should be the same. One
hypothesis is that precision is lost during the conversion from the high-level model
into a binary file, causing the software application’s activation functions to fire
slightly differently.

A different explanation could be the orientation of the weight data within the
kernel window. Since the Tensorflow API calls that perform prediction are of a
high abstraction level, it is difficult to determine which order kernel weights are
positioned. Since the kernels multiply specific pixels within a window with a specific
weight value, a change to this should cause a difference in the total sum of the
kernel. The kernel will, however, still produce a collective sum that might not be too
different from the “correct” sum. This hypothesis would also make sense, as certain
areas or labels gain segmentation accuracy while others decrease.

The UNet framework designed proved to be very efficient to work with, as changing
the layer weights can be done quickly by simply storing new WIF files into the
Linux filesystem. This approach, in contrast to previous work [10, 11], allows
the network to be updated without recompiling the application binaries, assuming
the architecture itself is not to be modified. With a deployed satellite system in
mind, this is a useful feature, as updating the on-board processing image is a risky
procedure. Instead, weight files can be uplinked onto the satellite processing system,
having little to no risk of changing the network.
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An additional feature is that the software implementation, with minor changes, can
accept many different input sizes, though they have to be equal in size for both
samples and lines. This makes it easy to pass smaller or larger image cubes through
the network. Additionally, since the implementation is built around using the BIP
format, the network can easily accept image data from the HYPSO-1 hyperspectral
imaging payload with the only preprocessing step possibly being dimensionality
reduction.

The runtime of the UNet, noticeably a reduced version and using 32-bit floating
weights, took quite a while to perform segmentation, with runtimes upwards to
77.27 seconds for an input size of 512 × 512 × 102. This results in a pixel prediction
time of 77.27/(512 · 512) ≈ 294.76us. Comparably, the accelerated C-UNet++
implementation in [10] achieved a pixel prediction time of approximately 12.46 us
with floating-point image data. Additionally, the original UNet segmented 512 ×
512 × 1 in less than a second on a high-end GPU. If one considers that the C-
UNet++ utilized 12-bands, far fewer kernels per layer and significantly fewer
parameters; the prediction time for the software implementation is not too bad.
This shows that reasonable runtimes can actually be achieved even with CPU only
implementations.

The implementation manages to keep its memory footprint very small, with the
reduced UNet implementation keeping a maximum of 120MB above idle memory
usage. Though this starts to be less of an issue with more advanced embedded
systems, which have access to larger memories, it can be useful for even more edge
case devices with less memory. An example is the HYPSO-1 satellite currently in
orbit, which has a maximum memory capacity of 1GB, where approximately 500MB
of this is available. Due to the small memory footprint, the application can be
uplinked to the satellite with some modifications and be used for testing with a
deployed system.

To further add to this, the implementation is very adaptable because it is written
in C and for an embedded Linux system. Since many embedded devices run on the
Linux OS, the application can be recompiled to the respective architecture using the
GCC.

The C++ programming language could have been an alternative option to pro-
gramming in C, as it adds slightly more functionality such as templates while still
providing the same low abstraction level control as C. This would have made parts
of the code more general, such as the design of the UNet network, and functions
with different data types.
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6.4 Hardware Acceleration

The convolutional acceleration design proposed in Chapter 5 aims to decrease the
runtime of the software implementation by accelerating convolutional layers. The
proposed design is different from previous work [10, 11, 12] because it aims to
accelerate large convolutional layers using up to 1024 kernels, each 1024 deep.
Additionally, the proposed design aims to be generalized, instead of layer-specific,
by allowing weights to be streamed to the accelerator.

First, achieving the task of accelerating large convolutional layers requires a design
to have the weights stored within the fabric of the programmable logic. This could,
however, be avoided by streaming the weights along with the input data. However,
this would introduce the same issue experienced with the input data, which needs
to be streamed repeatedly. Therefore, the suggested design explored having the
parameters for the largest possible convolutional layer (in the original UNet) stored
in the fabric as BRAM. It was, as Chapter 5 suggests, found that a 1024 kernel large
layer, with an input feature map with a depth of 1024, would require approximately
18MB with 16-bit quantization. This was within the resource constraint of the
UltraScale architecture’s FPGA. Additionally, it was seen that 16-bit quantization did
not affect the segmentation accuracy in any noticeable way in Section 6.1.

Secondly, the concept of a generalized accelerator will affect the performance, as
more resources are needed for generalization. However, with a generalized design,
it would be easier to use the accelerator for each convolutional layer throughout
the network. This does, however, mean it will have to accept both the largest
and smallest possible convolutional layers. This would require a row buffer of
512 × 512 × 1024, as the first layer’s largest spatial dimensions would be 512 × 512.
While the feature output at its lowest spatial dimension, e.g., 16 × 16, would have
1024 bands. This makes for large buffers in the fabric. However, as suggested in
Chapter 5 should be viable.

The proposed design would likely reduce the runtime of the software UNet imple-
mentation significantly and provide a more energy-efficient design. This assumption
is also supported by previous work [12] where a gain in runtime through convolu-
tional accelerators is reported. Though a generalized design would be less effective,
it would likely be a better approach than layer-specific accelerators. The proposed
hardware design would most likely be beneficial on CubeSats like HYPSO-1 and
HYPSO-2, where energy capacity is limited and desired to decrease the runtime. The
Zynq-7030 SoC used in the HYPSO-1 does, however, have lower resource constraints
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in the form of on-chip memory than the UltraScale. Further research into network
quantization would therefore be needed.

Streaming layer-specific weights into the FPGA also circumvents the issues with
storing all UNet weights on the FPGA. Additionally, through a hardware/software
codesign where one moves the weights to the accelerator at clever points in the
processing flow, one can circumvent some drawbacks of moving new weights into
the device for every convolutional layer.

The convolutional accelerator is not fully implemented and, therefore, not tested
within this thesis. The main issue experienced was with incorrect usage of HLS
optimizations within Vitis HLS tool, which caused a long synthesis time. However, a
smaller implementation of the DMA control was implemented and tested as it would
be useful for the future UNet framework. The Vivado Design Suite from Xilinx was
used for the test to set up a DMA running on the UltraScale+ FPGA. Figure 6.14
shows the design where the DMA is connected to the processing system through a
AXI Lite interface.
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Fig. 6.14: Setup within the Vivado Design Suite for testing DMA transfer between the
processing system and FPGA.

For the sake of the test, the DMA was connected to itself with the AXI stream
interface. This means that data transferred with the module will be looped back to
its destination memory address. Through using the Linux mmap() function, one can
map the physical address of the AXI Lite interface for the DMA to virtual memory.
With this, the DMA could be controlled, and it was managed to transfer data from
one memory region to another. This would be beneficial in a future design, as it is
an effective way for interfacing with the FPGA within Linux.
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Conclusion 7
The work presented in this thesis has shown that it is possible to fit a UNet archi-
tecture on an embedded system like the UltraScale+ through a software/hardware
approach. Through this, it has shown that large scale CNNs, like the original UNet
presented in [8] is possible to run on a cube satellite processing systems, like the
one used for HYPSO-1 and in the future HYPSO-2.

Furthermore, a UNet software framework is introduced that is capable of performing
semantic segmentation on BIP formatted hyperspectral image cubes. This is proven
through semantic segmentation of 512 × 512 × 102 image cubes from the Pavia
Centre scene. The UNet implementation, which utilizes convolutional layers with
up till 256 kernels, manages to segment image data with a pixel prediction time
of around 294.75us running on a single core of an ARM Cortex-A53 CPU. It is also
shown that the framework can be extended to utilize convolutional layers with up
to 1024 kernels.

Additionally, in an attempt to standardize the format of CNN hyperparameters for
embedded devices, a new weight format called Weights Interleaved by Filters (WIF)
is introduced, which stores the weight values for kernels in a structured manner. It
is shown that WIF binary files can be read quickly from disk into memory, allowing
for small memory footprints, as weights can be allocated and freed upon desire. The
WIF format also splits the weights for specific layers into separate files, making for a
more generalized network, as the network can quickly be updated.

Finally, a proposed design for a convolutional accelerator has been provided, showing
how the UNet implementation can be further improved through streaming data back
and forth from the UltraScale FPGA. The design proposes to stream weight data to
the FPGA, along with the image data, allowing for a generalized accelerator that
can support any layer up till 1024 kernels.

7.1 Future Work

The UNet framework provided in this thesis will hopefully provide a base CNN
network, from where further research and improvements can be conducted. Hope-
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fully in a future state, it can be utilized for the HYPSO-1 and HYPSO-2 missions.
Additionally, the software framework provided should be relatively easily portable
into the HYPSO-2 software.

Due to lack of time, the proposed convolutional accelerator didn’t reach a state
where it was functional. The main cause of this was the lack of experience with
HLS, and the Vitis HLS tool. Someone with more experience, or more time, could
most likely learn to implement the suggested design in Chapter 5. Since the UNet
software framework is now available, it should provide a good test environment
for an accelerated design. Such a design could potentially significantly increase the
speed of image segmentation. Code adaptions from work such as [10, 11, 12] could
provide useful for creating such an accelerated design.

As shown in [43] quantization of neural networks can speed up processing and
decrease weight size. As shown in Section 6.1, 16-bit quantization using the BFloat16
format still provided good segmentation accuracy compared to the models trained
on 32-bit. Efficient use of 16-bit fixed-point arithmetic could be explored for thr
ARM CPU. Since the architecture supports NEON SIMD instructions [29], this could
significantly speed up the CPU implementation.

Though explored in this thesis, compiler and code optimizations could most likely
be explored further, as there are many ways to efficient code. An example could
be to explore the use of multithreading, as all tests within this thesis looked into
single-core execution. Systems like the ARM Cortex-A53 would most likely perform
significantly better, as it has four cores. This would make the CPU implementation in
itself faster, though if combined with quantization and FPGA acceleration, it could
make the system very fast and energy-efficient. Concurrency is however a slippery
slope, and could potentially provide issues.

The design proposed in Chapter 5 would most likely use most of the FPGA resources,
making acceleration of other layers difficult. However, since flashing FPGAs takes
little time, it could be interesting to explore partial reconfiguration or fully re-
flashing of the FPGA with separate bitstreams for different CNN layers. E.g., one for
convolution and another for transposed convolution.

Testing with different number of bands showed that more bands provided a more
accurate segmentation. However, more bands does provide a slight decrease in
network speed due to the first convolutional layer. If runtime is of a concern, it
might be interesting to explore the reduction of bands as a way to increase runtime.
The number of bands does however have little affect on the total number of network
parameters.

110 Chapter 7 Conclusion



Bibliography

[1]Michael T. Eismann. Hyperspectral Remote Sensing. 2012 (cit. on pp. 3, 9–11).

[2]Mariusz E. Grøtte, Roger Birkeland, Evelyn Honoré-Livermore, et al. “Ocean Color
Hyperspectral Remote Sensing with High Resolution and Low Latency-The HYPSO-1
CubeSat Mission”. In: IEEE Transactions on Geoscience and Remote Sensing 60 (2022)
(cit. on pp. 3, 7, 8, 11).

[3]Johan Fjeldtvedt, Milica Orlandic, and Tor Arne Johansen. “An efficient real-time
FPGA implementation of the CCSDS-123 compression standard for hyperspectral
images”. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 11 (10 Oct. 2018), pp. 3841–3852 (cit. on pp. 3, 34, 38).

[4]Zachary Fasnacht, Joanna Joiner, David Haffner, et al. “Using Machine Learning for
Timely Estimates of Ocean Color Information From Hyperspectral Satellite Measure-
ments in the Presence of Clouds, Aerosols, and Sunglint”. In: Frontiers in Remote
Sensing 3 (May 2022) (cit. on p. 4).

[5]“Deep learning”. In: Nature 2015 521:7553 521 (7553 May 2015), pp. 436–444
(cit. on pp. 4, 13, 17, 19).

[6]Zhuokun Pan, Jiashu Xu, Yubin Guo, Yueming Hu, and Guangxing Wang. “Deep
Learning Segmentation and Classification for Urban Village Using a Worldview
Satellite Image Based on U-Net”. In: Remote Sensing 2020, Vol. 12, Page 1574 12 (10
May 2020), p. 1574 (cit. on pp. 4, 10, 37).

[7]Shih Yu Chen, Yu Chih Cheng, Wen Long Yang, and Mei Yun Wang. “Surface Defect
Detection of Wet-Blue Leather Using Hyperspectral Imaging”. In: IEEE Access 9 (2021),
pp. 127685–127702 (cit. on pp. 4, 10, 37).

[8]Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks
for Biomedical Image Segmentation”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9351 (2015). Trying to find information on the original UNET algortihm, on it’s layer
buildup, and potential resource usage in hardware.<br/>, pp. 234–241 (cit. on
pp. 4, 13, 14, 18, 36, 37, 43, 46, 53, 109).

[9]Gaetan Bahl, Lionel Daniel, Matthieu Moretti, and Florent Lafarge. “Low-power
neural networks for semantic segmentation of satellite images”. In: Proceedings -
2019 International Conference on Computer Vision Workshop, ICCVW 2019 (Oct.
2019), pp. 2469–2476 (cit. on pp. 4, 26, 37, 38, 46, 49, 58).

[10]Sondre Tagestad. “Hardware acceleration of a compact CNN model for semantic
segmentation of hyperspectral satellite images”. In: NTNU Open (2021) (cit. on pp. 4,
5, 37–39, 49, 51, 55, 58, 59, 79, 80, 87, 90, 104–106, 110).

111



[11]Kristina Andersland Thue. “Accelerating compact CNN models for image segmenta-
tion using Vivado HLS”. In: NTNU Open (2020) (cit. on pp. 4, 5, 38, 39, 51, 58, 59,
79, 80, 104, 106, 110).

[12]Bing-tong Ren-hao Cai, Li-quan Song, Peng Li, and Bing-tong Zhang. “Acceler-
ation of convolution layer in FPGA of infrared target detection algorithm”. In:
https://doi.org/10.1117/12.2580137 11563 (5 Nov. 2020), pp. 146–151 (cit. on
pp. 5, 38, 59, 79, 106, 110).

[13]“The effect of dimensionality reduction on signature-based target detection for
hyperspectral remote sensing”. In: https://doi.org/10.1117/12.2529141 11131 (Aug.
2019), pp. 164–182 (cit. on p. 7).

[14]Transporter-3 Mission - SpaceX - Updates. https://www.spacex.com/launches/
transporter-3-mission/. (Accessed on 03/20/2022) (cit. on p. 7).

[15]Kevin G. Sellner, Gregory J. Doucette, and Gary J. Kirkpatrick. “Harmful algal blooms:
causes, impacts and detection”. In: Journal of Industrial Microbiology and Biotechnol-
ogy 30 (7 July 2003), pp. 383–406 (cit. on p. 8).

[16]“Global change and the future of harmful algal blooms in the ocean”. In: Marine
Ecology Progress Series 470 (Dec. 2012), pp. 207–233 (cit. on p. 8).

[17]John R. (John Robert) Schott. “Remote Sensing: The Image Chain Approach”. In:
(2007), p. 666 (cit. on p. 9).

[18]Geir Johnsen. “Kelp forest mapping by use of airborne hyperspectral imager”. In:
Journal of Applied Remote Sensing 1 (1 Dec. 2007), p. 011503 (cit. on p. 10).

[19]Jibo Yue, Haikuan Feng, Xiuliang Jin, et al. “A Comparison of Crop Parameters
Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and
High-Definition Digital Camera”. In: Remote Sensing 2018, Vol. 10, Page 1138 10 (7
July 2018), p. 1138 (cit. on p. 10).

[20]I El Naqa, M J Murphy, Issam El Naqa, and Martin J Murphy. “What Is Machine
Learning?” In: Machine Learning in Radiation Oncology (2015), pp. 3–11 (cit. on
pp. 13, 15–17, 56).

[21]Backpropagation | Brilliant Math & Science Wiki. https://brilliant.org/wiki/
backpropagation/#:~:text=Backpropagation. (Accessed on 05/20/2022) (cit. on
p. 17).

[22]A Gentle Introduction to Cross-Entropy for Machine Learning. https://machinelearningmastery.
com/cross-entropy-for-machine-learning/. (Accessed on 05/21/2022) (cit. on
p. 18).

[23]Christopher M. Bishop. “Pattern Recognition and Machine Learning”. In: Pattern
Recognition and Machine Learning (Dec. 2006) (cit. on p. 18).

[24]An overview of gradient descent optimization algorithms. https : / / ruder . io /
optimizing-gradient-descent/. (Accessed on 05/21/2022) (cit. on p. 18).

[25]Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016 (cit. on pp. 19, 22).

112 Bibliography

https://www.spacex.com/launches/transporter-3-mission/
https://www.spacex.com/launches/transporter-3-mission/
https://brilliant.org/wiki/backpropagation/##:~:text=Backpropagation
https://brilliant.org/wiki/backpropagation/##:~:text=Backpropagation
https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://ruder.io/optimizing-gradient-descent/
https://ruder.io/optimizing-gradient-descent/
http://www.deeplearningbook.org
http://www.deeplearningbook.org


[26]“Optimizing CNN-based Segmentation with Deeply Customized Convolutional and
Deconvolutional Architectures on FPGA”. In: ACM Transactions on Reconfigurable
Technology and Systems (TRETS) 11 (3 Dec. 2018) (cit. on pp. 23, 38, 79).

[27]Vincent Dumoulin, Francesco Visin, and George E P Box. “A guide to convolution
arithmetic for deep learning”. In: (Mar. 2016) (cit. on p. 23).

[28]Xilinx. ds891 - Zynq UltraScale Plus Overview. https://docs.xilinx.com/v/u/en-
US/ds891-zynq-ultrascale-plus-overview. (Accessed on 06/23/2022) (cit. on
p. 24).

[29]Neon – Arm®. https://www.arm.com/technologies/neon. (Accessed on 06/23/2022)
(cit. on pp. 24, 33, 110).

[30]Donald G. (Donald Graeme) Bailey. “Design for embedded image processing on
FPGAs”. In: (Aug. 2011), p. 482 (cit. on pp. 25, 27, 80, 82).

[31]“A performance and energy comparison of FPGAs, GPUs, and multicores for sliding-
window applications”. In: ACM/SIGDA International Symposium on Field Programmable
Gate Arrays - FPGA (2012), pp. 47–56 (cit. on pp. 26, 79).

[32]An introduction to AMBA AXI. https://developer.arm.com/documentation/
102202/0200/AXI-protocol-overview. (Accessed on 05/30/2022) (cit. on pp. 26,
27).

[33]Difference Between Fixed Point and Floating Point - Pediaa.Com. https://pediaa.
com/difference-between-fixed-point-and-floating-point/. (Accessed on
05/27/2022) (cit. on p. 28).

[34]BFloat16: The secret to high performance on Cloud TPUs | Google Cloud Blog. https:
//cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-
secret-to-high-performance-on-cloud-tpus. (Accessed on 06/23/2022) (cit.
on p. 29).

[35]Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, et al. “A Study of
BFLOAT16 for Deep Learning Training”. In: (May 2019) (cit. on pp. 29, 58).

[36]Brian Ward. How Linux works : what every superuser should know. 3rd. 2014, p. 437
(cit. on pp. 30–32).

[37]Xilinx and Inc. “Zynq UltraScale+ MPSoC Product Tables and Product Selection
Guide”. In: (2016) (cit. on p. 31).

[38]An introduction to GCC for the GNU Compilers gcc and g++. Vol. 10. Network Theory
Limited, 2004, p. 144 (cit. on pp. 32, 33).

[39]AArch64 Options (Using the GNU Compiler Collection (GCC)). https://gcc.gnu.
org/onlinedocs/gcc/AArch64-Options.html. (Accessed on 06/16/2022) (cit. on
pp. 33, 100).

[40]“Hyperspectral Image Processing Pipelines on Multiple Platforms for Coordinated
Oceanographic Observation”. In: Workshop on Hyperspectral Image and Signal Pro-
cessing, Evolution in Remote Sensing 2021-March (Mar. 2021) (cit. on pp. 33, 34, 37,
38).

Bibliography 113

https://docs.xilinx.com/v/u/en-US/ds891-zynq-ultrascale-plus-overview
https://docs.xilinx.com/v/u/en-US/ds891-zynq-ultrascale-plus-overview
https://www.arm.com/technologies/neon
https://developer.arm.com/documentation/102202/0200/AXI-protocol-overview
https://developer.arm.com/documentation/102202/0200/AXI-protocol-overview
https://pediaa.com/difference-between-fixed-point-and-floating-point/
https://pediaa.com/difference-between-fixed-point-and-floating-point/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html
https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html


[41]Gan Zhan, Yutaro Uwamoto, and Yen-Wei Chen. “HyperUNet for Medical Hyper-
spectral Image Segmentation on a Choledochal Database”. In: (Mar. 2022), pp. 1–5
(cit. on p. 37).

[42]Hyperspectral Remote Sensing Scenes - Grupo de Inteligencia Computacional (GIC).
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes. (Accessed on 05/31/2022) (cit. on pp. 41, 52).

[43]Peng Peng, You Mingyu, and Xu Weisheng. “Running 8-bit dynamic fixed-point
convolutional neural network on low-cost ARM platforms”. In: Proceedings - 2017
Chinese Automation Congress, CAC 2017 2017-January (Dec. 2017), pp. 4564–4568
(cit. on pp. 58, 91, 110).

114 Bibliography

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes


Bibliography 115



Exploration and Im
plem

entation of Large CN
N

 M
odels for Im

age Segm
entation in H

yperspectral CubeSat M
issions

Sim
en N

etteland

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Simen Netteland

Exploration and Implementation of
Large CNN Models for Image
Segmentation in Hyperspectral
CubeSat Missions

NTNU Small Satellite Lab

Master’s thesis in Electronic Systems Design
Supervisor: Milica Orlandic
June 2022

M
as

te
r’s

 th
es

is


	Abstract
	Sammendrag
	Acknowledgement
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Thesis Structure

	2 Background and Theory
	2.1 HYPer-spectral Smallsat for ocean Observation
	2.2 Remote Sensing
	2.2.1 Hyperspectral Remote Sensing
	2.2.2 Pushbroom Scanning
	2.2.3 Raster Formats for Hyperspectral Data

	2.3 Deep Learning
	2.3.1 Artifical Neural Networks
	2.3.2 Network Training
	2.3.3 Backpropagation

	2.4 Convolutional Neural Networks
	2.4.1 Convolution
	2.4.2 Max Pooling
	2.4.3 Concatenation
	2.4.4 Transposed Convolution

	2.5 UltraScale Architecture
	2.6 Field Programmable Gate Arrays
	2.6.1 Interface
	2.6.2 On-Chip Memory
	2.6.3 Fixed Point Precision

	2.7 Linux
	2.7.1 System Calls and C Library Functions
	2.7.2 Devices and Address Space
	2.7.3 Compiler Optimizations

	2.8 HYPSO Pipeline
	2.8.1 Linux control of fpga

	2.9 State of the Art
	2.10 FAUBAI Project
	2.11 Python Libraries
	2.12 Datasets

	3 High-Level Model/Design
	3.1 An Overview
	3.1.1 High-level Model
	3.1.2 Embedded Model
	3.1.3 Hardware/Software Codesign

	3.2 UNet Analysis and Design
	3.3 Training
	3.3.1 Pavia Centre Scene
	3.3.2 Architecture Parameters
	3.3.3 Preprocessing
	3.3.4 Training

	3.4 Quantized Model
	3.5 Weights File Format
	3.5.1 Tensorflow Weights
	3.5.2 Weights Interleaved by Filter


	4 Software Implementation
	4.1 Application Framework
	4.1.1 Utility Module
	4.1.2 Layer Module

	4.2 UNet Architecture
	4.2.1 Load Image Data
	4.2.2 Preprocessing
	4.2.3 Network Layers

	4.3 Linux Filesystem

	5 Hardware Acceleration
	5.1 Constraints
	5.2 Proposed Design
	5.2.1 Weight Data
	5.2.2 Image Data
	5.2.3 Interfaces
	5.2.4 Software/Hardware Cooperation


	6 Results and Discussion
	6.1 Training
	6.1.1 Quantized Model
	6.1.2 Weights Testing

	6.2 Software Implementation
	6.3 Test Setup
	6.3.1 Verification Tests
	6.3.2 Runtime Tests without Optimizations
	6.3.3 Runtime Tests wtih Optimizations
	6.3.4 Final Testing
	6.3.5 Memory Utilization
	6.3.6 Summary and Final Notes

	6.4 Hardware Acceleration

	7 Conclusion
	7.1 Future Work

	Bibliography

