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Abstract

Long-span suspension bridges are prone to wind-induced response due to the slenderness of

these structures. Therefore, it is important to be able to predict the response due to wind. How-

ever, this is made difficult due to the variability of the wind. The aim of this thesis was therefore

to assess how well the buffeting theory and wind field models were able to predict the wind-

induced response of the Hålogaland Bridge.

In order to take the variability of the wind into account, measurement data from the mon-

itoring system on the Hålogaland Bridge were processed and analysed. A covariance-driven

stochastic subspace identification was performed. This was done in order to assess the accuracy

of the numerical model of the bridge used in the response calculations. Information about the

aerodynamic behaviour of the bridge, required to model the wind load, was obtained through

wind tunnel tests. The buffeting response of the bridge was then predicted, using two differ-

ent probabilistic approaches to obtain the turbulence parameters needed to model the wind

load. First, the parameters were determined as specific percentiles from their probability distri-

butions. Next, a probabilistic model was used to simulate the turbulence standard deviations.

Finally, the predicted and measured response were compared.

The numerical model was found to be satisfactory for use in the response predictions. Fur-

thermore, the analysis of the wind field revealed a large variability of the wind characteristics.

In the probabilistic model, the turbulence standard deviations were modelled as correlated and

lognormally distributed random variables, dependent on the mean wind speed and direction.

The model managed to represent the true turbulence standard deviations, evident by the good

agreement between the simulated and the measured parameters.

It was observed that the variability of the wind propagated into the measured response. The

lateral and vertical response components were well predicted, while the torsional response was

overestimated. However, the good agreement for the lateral response was unexpected. Further-

more, the probabilistic model of the turbulence standard deviations was able to translate the

variability of the wind into the predicted response. It was found that the turbulence parameters

greatly affected the predictions. Additionally, variables such as modal parameters and aerody-

namic derivatives had a great impact.

Using a probabilistic approach, the buffeting theory and wind field models were mostly able

to predict the response of the Hålogaland Bridge. However, determining accurate values of all

variables was found to be of utmost importance in order to obtain satisfactory predictions.
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Sammendrag

Hengebruer med lange spenn er svært utsatt for vindindusert respons, på grunn av slankheten

til disse konstruksjonene. Derfor er det viktig å kunne predikere responsen forårsaket av vind.

Variabiliteten til vinden gjør det imidlertid vanskelig å gjøre nettopp dette. Formålet med denne

oppgaven var derfor å vurdere hvor godt buffeting-teorien og vindfeltmodeller var i stand til å

predikere den vindinduserte responsen til Hålogalandsbrua.

For å ta variabiliteten til vinden med i betraktning, ble data fra målesystemet på Hålogalands-

brua prosessert og analysert. En covariance-driven stochastic subspace identification ble utført.

Dette ble gjort for å evaluere nøyaktigheten til den numeriske modellen av brua, som ble brukt

i responsberegningene. Informasjon om den aerodynamiske oppførselen til brua, som var nød-

vendig for å modellere vindlasten, ble funnet ved hjelp av vindtunneltester. Buffeting-responsen

til brua ble deretter predikert. For å bestemme turbulensparameterne som krevdes for å mod-

ellere vindlasten, ble to ulike sannsynlighetsbaserte metoder brukt. I den første metoden ble

parameterne bestemt ved å bruke spesifikke persentiler fra sannsynlighetsfordelingene deres. I

den andre metoden ble en probabilistisk modell brukt til å simulere turbulensstandardavvikene.

Til slutt ble den predikerte og den målte responsen sammenlignet.

Den numeriske modellen viste seg å være nøyaktig nok til å kunne brukes i responspredik-

sjonene. Videre viste analysen av vindfeltet at det var stor variasjon i vindens egenskaper. I

den probabilistiske modellen ble turbulensstandardavvikene modellert som korrelerte og log-

normalfordelte stokastiske variabler, avhengige av den gjennomsnittlige vindhastigheten og -

retningen. Modellen klarte å representere de virkelige turbulensstandardavvikene, tydeliggjort

av den gode overensstemmelsen mellom de simulerte og de målte parameterne.

Det ble observert at variabiliteten til vinden forplantet seg inn i den målte responsen. Den

laterale og vertikale responsen ble godt predikert, mens torsjonsresponsen ble overestimert.

Imidlertid var den gode overensstemmelsen for den laterale responsen uventet. Videre klarte

den probabilistiske modellen av turbulensstandardavvikene å overføre variabiliteten til vinden

inn i den predikerte responsen. Det viste seg at turbulensparameterne påvirket prediksjonene

i stor grad. I tillegg hadde variabler, som modale parametere og aerodynamiske deriverte, stor

påvirkning.

Ved å bruke en sannsynlighetsbasert metode klarte buffeting-teorien og vindfeltmodellene

stort sett å predikere responsen til Hålogalandsbrua. Imidlertid viste det seg å være svært viktig

å estimere nøyaktige verdier av alle variabler for å oppnå gode responsprediksjoner.
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Chapter 1

Introduction

1.1 Background

Today, traffic demands make it necessary to build increasingly longer suspension bridges. In

order to assure good design of the bridges, it is important to acquire more extensive knowledge

of the behaviour of these types of structures. Due to the slenderness of these bridges, they are

particularly prone to large wind-induced response. In addition, the wind load is one of the most

significant loads acting on a suspension bridge. Thus, prediction of the wind-induced response

is a crucial part of the wind resistant design. The buffeting theory is commonly used for this

purpose. As the wind is a stochastic process, the wind load needs to be modelled in order to

predict the buffeting response. Previous studies have shown that the current models for wind

fields, wind loads and wind-induced response sometimes fail to predict every aspect of the wind

and the wind effects (Macdonald, 2003)(Fenerci and Øiseth, 2017). One probable reason for

discrepancies is that the models do not fully account for the random nature of the wind. The

models typically utilise the spectral densities of the turbulence components in order to predict

the wind field and the wind-induced response. However, since the wind is a stochastic process,

it is not possible to predict the exact spectral densities of the turbulence components using

any mathematical expression. Several expressions have been proposed to describe the spectra

(Kaimal et al., 1972)(Kármán, 1948). However, they are all based on deterministic parameters of

the turbulence components, with the mean wind speed being the only design parameter. Thus,

the variability of the turbulence characteristics, due to the random nature of the wind, is not

represented.

In recent years, full-scale monitoring of long-span bridges has made it possible to study wind

fields and wind-induced response of bridges more thoroughly. Previous papers presenting long-

term monitoring studies show a large randomness in the wind characteristics (Bastos et al.,

2018)(Fenerci et al., 2017). Furthermore, recent studies show that buffeting response analyses

of long-span cable supported bridges are greatly affected by this variability, and that this should

be considered in the design process (Fenerci et al., 2017)(Fenerci and Øiseth, 2017). In order to

1



CHAPTER 1. INTRODUCTION 2

take the variability into account, a probabilistic approach to the problem is one method to im-

prove the prediction of the wind field, and thus improve the buffeting response prediction. This

can be achieved by utilising the probability distributions of the turbulence parameters from the

measurements. In this way, the spectral densities of the turbulence components can be better

approximated, which results in more accurate predictions of the buffeting response. In a com-

plete probabilistic model of the wind field, the dependence of the parameters on other wind

characteristics, such as the mean wind speed and direction, also needs to be considered. Addi-

tionally, the correlation structure of the parameters needs to be determined. Such a probabilistic

model is proposed by Fenerci and Øiseth (2018a), for the wind field along the Hardanger Bridge.

In this thesis, the wind field and the wind-induced response of the Hålogaland Bridge is stud-

ied for the first time. The Hålogaland Bridge is a suspension bridge located in northern Norway.

The bridge was opened to traffic in December 2018 and is, with its span of 1145 m, currently the

second longest suspension bridge in Norway. Due to the desire for an increased understanding

of the dynamic behaviour of long-span suspension bridges, a full-scale monitoring system was

installed in 2021. The system was not completely operational until February 2022, which results

in only two months of data being available for use in this thesis. A thorough description of the

monitoring system will be given later. In this thesis, the measured wind data from the moni-

toring system are utilised to improve the response predictions of the Hålogaland Bridge. The

acceleration response of the bridge is predicted, using buffeting theory. Two different proba-

bilistic approaches are utilised to obtain the turbulence parameters needed for the turbulence

spectra. First, specific percentile values from the probability distributions of the turbulence pa-

rameters are used in the response calculations. Later, a probabilistic model of the wind field is

established, like for the Hardanger Bridge (Fenerci and Øiseth, 2018a). In this way, simulated

turbulence parameters from the probabilistic model can be utilised in the response predictions.

The accuracy of the predicted acceleration response of the Hålogaland Bridge is then evaluated,

by comparing it to the response obtained by the monitoring system at the site.

1.2 Short Literature Review

The number of studies comparing predicted buffeting response with measured response from

full-scale measurements is relatively limited. In a study performed by Macdonald (2003), quasi-

steady theory was used to predict the buffeting response of the Second Severn Crossing, by the

use of full-scale monitoring data. A satisfactory prediction of the vertical and torsional buffet-
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ing response was achieved when the turbulence intensity and total damping was overestimated.

However, these response components were underestimated if values of the turbulence inten-

sity and damping from the measurements were used. On the other hand, the predicted lateral

buffeting response was overestimated, presumably due to underestimation of the aerodynamic

damping from the quasi-steady theory. However, the monitoring system only consisted of an

anemometer and three accelerometers at one location on the bridge girder, and so the predic-

tions did not account for correlation of the wind along the bridge span.

Furthermore, Cheynet et al. (2016) did a study on the Lysefjord Bridge in Norway, where the

calculated buffeting response was compared to the measured response, using measurement

data from one single day. The predicted response matched the measured response reasonably

well, although the predictions showed a tendency to underestimate the lateral and vertical re-

sponse. The study found that two of the main reasons for these discrepancies might be the

topography at the site and the non-stationarity of the wind.

Another study, performed by Fenerci and Øiseth (2017), did a comparison between the mea-

sured response and the predicted buffeting response of the Hardanger Bridge. Long-term mon-

itoring data from the bridge were used to study the wind characteristics along the bridge and

to improve the response predictions. Several different alternatives of the turbulence parame-

ters, from the design basis and from the measurements, were utilised in the response predic-

tions. In this study it was found that the use of parameters from the design basis resulted in an

underestimation of the predicted response. However, by utilising the probability distributions

of the parameters from the measurements to account for the variability of the wind field, the

predicted response matched the measured response to a higher degree. The predicted lateral

response was generally underestimated, presumably due to the wind forces on the cables and

hangers being neglected. It was also found that using conditional probability distributions for

the turbulence intensities, which accounted for the dependence on the mean wind speed, gave

more accurate predictions. Furthermore, it was found that the turbulence parameters were de-

pendent on each other. Therefore, it was suggested that better predictions could be obtained

by accounting for the interaction between the turbulence parameters, by using joint probability

distributions or conditional probability distributions.

As previously described, Fenerci and Øiseth (2018a) utilised measurement data from the

Hardanger Bridge monitoring system, in order to form a probabilistic model of the wind field

along the bridge. The purpose of the study was to take into account the variability and the

correlation of the turbulence parameters, giving a more accurate prediction of the wind field.
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The turbulence parameters were considered as correlated lognormally distributed random vari-

ables, depending on the mean wind speed and direction. Simulations of the wind field from

the probabilistic model were compared with measurement data, which in general showed good

agreement.

1.3 Problem Formulation and Objectives

As demonstrated above, methods for predicting the wind-induced response of long-span sus-

pension bridges and methodologies for wind field modelling for such bridges are still in de-

velopment. It is found that, especially, accounting for the stochastic nature of the wind, can

significantly improve the predictions. This master thesis will contribute to this work by studying

the Hålogaland Bridge.

The main focus of this thesis is to compare the predicted buffeting response of the Hålo-

galand Bridge with the measured response from the monitoring system. This is done in order

to assess how well the buffeting theory and the wind field models are able to predict the true

response of the bridge. Acceleration and wind data from the monitoring system are therefore

retrieved and processed. The wind data are used to take the variability of the wind field into ac-

count, thereby improving the buffeting response predictions. A numerical model of the bridge

is utilised in order to calculate the predicted buffeting response. To assess how well this model is

able to represent the true dynamic characteristics of the bridge, an operational modal analysis

is performed, using the method covariance-driven stochastic subspace identification (Cov-SSI).

Furthermore, wind tunnel tests are performed in order to obtain knowledge about the aerody-

namic behaviour of the bridge girder, which is required to model the wind load acting on the

bridge. To summarise, the main objectives of this thesis are:

• Perform a system identification of the Hålogaland Bridge, using Cov-SSI, in order to assess

the accuracy of the numerical model

• Analyse the wind field at the Hålogaland Bridge

• Establish a probabilistic model of the wind field at the Hålogaland Bridge

• Calculate and compare the predicted buffeting response of the Hålogaland Bridge with the

measured response from the monitoring system
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1.4 Limitations

The main limitations of this thesis are:

• The amount of measurement data available for the analyses is limited to only two months

of data, which may introduce inaccuracies. For example will extreme values not be well

represented in the data.

• The stationarity of the data is not investigated properly. As many of the procedures in

this thesis are based on an assumption of stationarity, the presence of non-stationary data

might introduce errors, particularly in the response predictions.

• The contribution to the predicted buffeting response caused by wind forces acting on the

cables and hangers is not included.

• Only two of the six turbulence parameters necessary to describe the wind field along the

bridge are included in the probabilistic model of the wind field.

1.5 Structure of the Report

Chapter 2 presents the theory used in this thesis. First, relevant theory related to data pro-

cessing is presented, followed by an introduction to basic probability theory. Then, theory

necessary to perform a modal analysis is presented, as well as a brief introduction to Cov-

SSI. Finally, theory related to the buffeting load and calculation of the buffeting response is

presented.

Chapter 3 describes the methods utilised in order to get the results. First, an introduction of the

Hålogaland Bridge and the monitoring system is given, followed by a brief description of

the numerical model of the bridge. Then, the methods used to perform the data processing

and Cov-SSI are explained. A short description of the wind tunnel tests and the extraction

of the results from these tests is also given. Lastly, the process of extracting the necessary

information from the measurement data, the probabilistic wind field modelling and the

calculation of the buffeting response is described.

Chapter 4 presents all the results obtained in this thesis. This includes the results from the nu-

merical model and Cov-SSI, the wind tunnel tests, the wind field analysis and the measured

and predicted response of the bridge.
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Chapter 5 is a discussion of all the results obtained in this thesis.

Chapter 6 presents the final conclusions of the thesis, as well as suggestions for further work.



Chapter 2

Theory

2.1 Data Processing

As the monitoring system on the Hålogaland Bridge is relatively new, only raw data are avail-

able. In order to use the data as a tool to predict and compare the buffeting response with the

measured response, the data must be processed. Therefore, this chapter gives an introduction

to several important aspects regarding processing of data.

2.1.1 Correlation Functions and Spectral Density Functions

Correlation functions and spectral density functions play an important role in the processing

of data from random processes. Given two time series, xk (t ) and yk (t ), assumed to be from

stationary random processes, the auto-correlation function of xk (t ) and the cross-correlation

function between xk (t ) and yk (t ) are defined as (Rainieri and Fabbrocino, 2014)

Rxx (τ) = E [xk (t ) xk (t +τ)] (2.1)

Rx y (τ) = E
[
xk (t ) yk (t +τ)

]
(2.2)

where E [ ] denotes the expected value operation, t is the time and τ is the time lag. The assump-

tion of stationarity implies that the statistical properties of the time series are independent of

time (Newland, 2005). If the time series have zero means, the covariance functions are equal to

the correlation functions (Rainieri and Fabbrocino, 2014).

Furthermore, the two-sided spectral density functions are the Fourier transforms of the cor-

relation functions, given that the time series are processed so that the mean values are zero,

(Bendat and Piersol, 2011). The spectral density functions, also called power spectral densities

(PSDs), are widely used to analyse stochastic processes such as wind, waves and earthquakes.

The PSDs are useful due to the fact that they contain information about the frequency content

of a signal. This can be used to obtain statistical properties of the signal, such as variance and

7
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covariance, in the frequency domain. The one-sided auto- and cross-spectral density functions

are defined as (Rainieri and Fabbrocino, 2014)

Sxx( f ) = 2 lim
T→∞

1

T
E

[∣∣Xk ( f ,T )
∣∣2

]
(2.3)

Sx y ( f ) = 2 lim
T→∞

1

T
E

[
X ∗

k ( f ,T )Yk ( f ,T )
]

(2.4)

where f is the frequency in the range (0 < f <+∞). Xk ( f ,T ) and Yk ( f ,T ) are the Fourier trans-

forms of the time series xk (t ) and yk (t ), and X ∗
k ( f ,T ) is the complex conjugate of Xk ( f ,T ). The

time series have a finite period, T , and are assumed to be stationary within this period.

The spectral density functions can be used to obtain the variance, σ2
x , and covariance, σ2

x y ,

of the time series through the relations (Bendat and Piersol, 2011)

σ2
x ≈

∫ ∞

0
Sxx( f )df (2.5)

σ2
x y ≈

∫ ∞

0
Sx y ( f )df (2.6)

In order to use these relations, it is required that the time series, x(t ) and y(t ), are from ergodic

Gaussian random processes with zero means. A stationary process is said to be ergodic if the

ensemble averages are equal to the time averages (Newland, 2005).

2.1.2 Welch Procedure

There are several ways of estimating the PSDs, defined in Equation (2.3) and Equation (2.4), from

time series of sample records. One common method is the one developed by Welch (1967),

based on a fast Fourier transform (FFT) of the signal. The signal is first divided into nd over-

lapping segments. An appropriate time window is then applied to each segment, in order to

suppress leakage. Leakage is a phenomenon that is introduced when the signals contain fre-

quencies where the period does not coincide with the record length (Bendat and Piersol, 2011),

which is the case for signals of finite length. Leakage results in power at frequencies at the ends

of the segment to leak into nearby frequencies, causing the spectral density to be distorted. This

problem is avoided by the use of a time window, which tapers the data such that the data at the

beginning and the end of the signal are weighted less than the data in the middle. However,

tapering the segments causes errors, which could be rectified by increasing the length of the
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segments. For finite signals, this could be done by reducing the number of segments. However,

the Welch procedure is based on averaging over the segments. Thus, this will lead to a larger

variability in the spectral estimates. Instead, the signal is divided into overlapping segments,

which still increases the length of the segments, while maintaining an acceptable number of di-

visions. Finally, the FFT of each segment is computed and the PSDs are obtained by averaging

over the segments.

2.1.3 Filtering and Downsampling

Time series of measured data contain discrete values. In order to obtain the necessary informa-

tion from the time series, it is important to determine an appropriate sampling frequency. If the

sampling frequency is too high, the values will be redundant due to correlation and cause in-

creased computation. On the other hand, a low sampling frequency can lead to high frequency

content being perceived as low frequency content, a phenomenon called aliasing. The highest

frequency of the signal that can be reproduced is called the Nyquist frequency, and is given as

(Bendat and Piersol, 2011)

f A = 1

2∆t
(2.7)

where ∆t is the sampling interval. In other words, the Nyquist frequency is half of the sam-

pling frequency of the signal. If the signal contains frequency content higher than the Nyquist

frequency, aliasing will occur.

For a signal that has a higher sampling frequency than what is relevant for the analysis, it

could be convenient to downsample the signal. By doing this, both unwanted noise and high

computational time is avoided. One common way of downsampling the signal is to create a

new signal by taking for instance every tenth sample and discarding the rest, creating a new

signal with a lower sampling frequency (Bendat and Piersol, 2011) (Tan and Jiang, 2013) (Rao

and Swamy, 2018).

When a signal has been downsampled, the Nyquist frequency is also changed, causing issues

with aliasing to occur. To avoid this problem, it is necessary to apply a low-pass filter prior to

the downsampling. A low-pass filter will remove frequency content above a specified cut-off

frequency from the signal, keeping only the frequency content of interest (Rainieri and Fabbro-

cino, 2014). A frequently used filter is the Butterworth low-pass filter, which is described by the

magnitude response function, H(iω), in the frequency domain (Tseng and Lee, 2017)
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|H(iω)|2 = 1

1+
(
ω
ωc

)2N
(2.8)

Here, i is the complex number, N is the order of the filter, ω is the sampling frequency and ωc is

the cut-off frequency. The order of the filter determines how abrupt the frequencies are cut off.

Furthermore, by modifying the Butterworth low-pass filter, a high-pass filter can be obtained.

Such a filter removes the frequency content below a cut-off frequency. High-pass filters are often

used to remove spurious trends from data (Rainieri and Fabbrocino, 2014).

2.2 Probability Theory

A huge part of this thesis concerns the analysis of the wind field at the Hålogaland Bridge. Since

wind is a stochastic process, a probabilistic framework is useful for describing the parameters

related to the wind field. The probability density function (PDF) is commonly used, as it ex-

presses the distribution of the values of a random variable (Newland, 2005). In this thesis, the

relevant random variables appear to fit a lognormal probability distribution, which is closely

connected to the normal probability distribution. Taking the natural logarithm of a lognormally

distributed variable, yields a normally distributed variable (Thomopoulos, 2018). The lognor-

mal PDF can be written as

f (y |µ̃, σ̃) = 1

yσ̃
p

2π
exp

(−(l n(y)− µ̃)2

2σ̃2

)
(2.9)

where µ̃ and σ̃ are the mean value and standard deviation of the normally distributed variable,

x, obtained when taking the natural logarithm of the lognormally distributed variable, y.

As a stochastic process consists of several random variables, it is important to consider the

correlation between the variables. Correlation is the statistical relationship between two ran-

dom variables. In other words, the correlation expresses how the values of the random vari-

ables vary together. It is common to express the correlation of random variables using either

the covariance or the correlation coefficient, which are defined in Equations (2.10) and (2.11),

respectively (Newland, 2005).

cov
(
Zi , Z j

)= E
[
(Zi −E [Zi ]) (Z j −E [Z j ])

]
(2.10)
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ρi j =
cov

(
Zi , Z j

)√
σ2

Zi
·σ2

Z j

(2.11)

with σ2
Zi , j

being the variance of the random variables Zi , j .

In this thesis, it is desired to generate correlated lognormally distributed random variables,

related to the wind field at the Hålogaland Bridge. This is achieved with knowledge of the prob-

ability distributions and the correlation structure of the random variables. The easiest method

for sampling a set of multivariate correlated random variables is by utilising diagonalisation of

the covariance matrix, in order to sample the random variables separately. For normally dis-

tributed random variables this introduces no errors. However, for all other distributions this

diagonalisation causes a distortion of the original distribution (Žerovnik et al., 2012). In order to

avoid this effect, the relationship between the normal and the lognormal probability distribu-

tion is utilised. The method presented by Žerovnik et al. (2012) is based on sampling normally

distributed random variables and then transforming these to the desired distribution, which in

this case is the lognormal distribution.

In order to do this, only the mean values and the covariance matrix of the normally dis-

tributed random variables are needed. The covariance matrix of the vector X, containing the

normally distributed variables, can be expressed as a function of the covariance matrix of the

vector Y, containing the lognormally distributed variables, using the relations (Žerovnik et al.,

2012)

cov
(
Xi , X j

)= ln

(
cov

(
Yi ,Y j

)
mi ·m j

+1

)
, mi , j = exp

(
µ̃i , j +

σ̃2
i , j

2

)
(2.12)

where Xi , j and Yi , j are the elements of the vectors X and Y, while µ̃i , j and σ̃i , j are the mean

values and the standard deviations of Xi , j .

Furthermore, Equation (2.12) can be rewritten as an expression of the correlation coefficient

matrix of Y and the standard deviations of X, as

cov
(
Xi , X j

)= l n
[

(ρy )i j

√
exp(σ̃2

i )−1
√

exp(σ̃2
j )−1+1

]
(2.13)

where (ρy )i j are the elements of the correlation coefficient matrix of Y. The mean values and the

covariance matrix of the vector X can then be utilised to sample normally distributed random

variables.

Finally, a set of multivariate correlated lognormally distributed random variables can be ob-
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tained by taking the natural exponents of the set of multivariate correlated normally distributed

random variables.

2.3 Modal Analysis

The behaviour of a dynamic system is governed by the equation of motion. For multi-degree-

of-freedom (MDOF) systems the equilibrium equation is given as (Humar, 2002)

Mr̈(x, t )+Cṙ(x, t )+Kr(x, t ) = p(x, t ) (2.14)

Here, M, C and K denote the mass, damping and stiffness matrices, respectively. The applied

force is represented by the vector p. The displacement of the structure is described by r, which

contains the degrees of freedom (DOFs).

The modal analysis is based on the assumption that the displacements of the structure, r(x, t ),

can be described as the sum of the response from several modes. Each mode is described by its

modal parameters: natural frequency, damping ratio and mode shape. The response from each

mode is obtained as the product of a spatially dependent part and a time dependent part, called

mode shapes and generalised coordinates. The total response of the structure is then obtained

as (Strømmen, 2006)

r(x, t ) =
Nmod∑
i=1

φi (x) ·ηi (t ) =Φ(x) ·η(t ) , Φ(x) = [
φ1 ... φi ... φNmod

]
(2.15)

whereΦ(x) is the mode shape matrix, which contains the Nmod mode shapesφi (x) correspond-

ing to the Nmod generalised coordinates ηi (t ). Here, the mode shapes are regarded as continu-

ous functions.

The natural frequencies and mode shapes of the system is found by solving the eigenvalue

problem (Strømmen, 2006)

(K−ω2
i M)φi = 0 (2.16)

where ωi is the natural frequency corresponding to the mode shape φi . Here, the damping of

the system is neglected.

Inserting the expression for r (Equation (2.15)) into Equation (2.14), pre-multiplying with
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ΦT and integrating both sides over the total length of the structure, results in the uncoupled

equation of motion for the MDOF system (Strømmen, 2006)

M̃η̈(t )+ C̃η̇(t )+ K̃η(t ) = p̃(t ) (2.17)

Here M̃, C̃ and K̃ are the modal mass, damping and stiffness matrices, and p̃ is the modal load

vector. Due to the orthogonal properties of the mode shapes, the modal matrices are diagonal.

Therefore, Equation (2.17) corresponds to Nmod uncoupled equations of motion, which can be

solved separately for each mode.

2.4 Covariance-Driven Stochastic Subspace Identification

The modal parameters of a structure, such as the natural frequencies, damping ratios and mode

shapes, can be obtained through measurements. When the estimation of the modal parameters

is based on response measurements conducted on a structure in operational conditions, the

method is called operational modal analysis (OMA). The method is based on the assumption

of a linear and stationary system, measured by sensors that are located such that all modes of

interest can be observed (Rainieri and Fabbrocino, 2014). The two first conditions imply that the

response of the system is a linear combination of the inputs and that the dynamic characteristics

of the structure are invariant with time.

When conducting an operational modal analysis, the loads acting on the structure are not

controlled or measured. Therefore, some assumptions about the inputs to the system are re-

quired. The structure is assumed to be excited by a broad band of frequencies. If this is not

the case, the dynamic properties of both the input and the structure can be observed in the

response. Thus, some estimated modes might be related to the loads and not to the structure

(Brincker and Kirkegaard, 2010). The broad band excitation is also necessary to ensure that all

the modes of interest are excited (Rainieri and Fabbrocino, 2014).

There are several different OMA methods, and in this thesis the method called covariance-

driven stochastic subspace identification (Cov-SSI) will be utilised. This is a time domain method,

meaning that it is based on the analysis of correlation functions, as opposed to the frequency

domain methods, which are based on the spectral density functions (Rainieri and Fabbrocino,

2014). The Cov-SSI will be conducted in Python by the use of KOMA, which is a package for OMA

implemented by Kvåle (2022), developed for the research paper by Kvåle et al. (2017). Here, the
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essential theory behind Cov-SSI will be briefly explained.

By the use of the Cov-SSI method, a stochastic state-space model of the system is identi-

fied from the response measurements (Kvåle et al., 2017). The state-space model is needed to

convert the equation of motion, given in Equation (2.14), from a second order differential equa-

tion into two first order differential equations (Rainieri and Fabbrocino, 2014). The two new

equations are defined as the state equation and the observation equation. The state equation

is obtained by first introducing p(t ) = B̄u(t ) into Equation (2.14), and pre-multiplying by M−1,

giving

r̈(t )+M−1Cṙ(t )+M−1Kr(t ) = M−1B̄u(t ) (2.18)

where B̄ is a matrix defining the input locations and u represents the time variation. Further-

more, the state vector, s, is defined as

s(t ) =
ṙ(t )

r(t )

 (2.19)

By combining Equations (2.18) and (2.19) the state equation is obtained as (Rainieri and Fab-

brocino, 2014)

ṡ(t ) = Ac s(t )+Bc u(t ) (2.20)

where

Ac =
−M−1C −M−1K

I 0

 , Bc =
−M−1B̄

0

 (2.21)

Ac and Bc are the continuous state matrix and input matrix, respectively, and I is the identity

matrix. Furthermore, the general observation equation, expressing the measured outputs, yl , at

l locations, is given as (Rainieri and Fabbrocino, 2014)

yl (t ) = Ca r̈(t )+Cv ṙ(t )+Cd r(t ) (2.22)

where Ca , Cv and Cd are matrices representing the locations for the measured acceleration, ve-

locity and displacement. Hence, Equation (2.22) represents the observable part of the dynamic
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response modelled in the state equation.

By combining Equations (2.18) and (2.22), the observation equation can be expressed as a

function of the state and the input, as (Rainieri and Fabbrocino, 2014)

yl (t ) = Cc s(t )+Dc u(t ) (2.23)

where Cc and Dc are the continuous output matrix and the direct transmission matrix, which

are functions of the output and input location matrices and the system matrices.

Equations (2.20) and (2.23) represent the deterministic continuous-time state-space model.

In an operational modal analysis, the inputs to the system are unmeasured. Therefore, it is mod-

elled as process noise, wk , and measurement noise, vk . The model also needs to be converted

to discrete time, resulting in the discrete-time stochastic state-space model (Rainieri and Fab-

brocino, 2014)

sk+1 = A sk +wk

yk = C sk +vk

(2.24)

where A and C are the discrete state and output matrices and k denotes the discrete time in-

stance.

The state matrix contains the dynamic properties of the system, through its eigenvalues and

the observable parts of the eigenvectors. Thus, the matrices A and C need to be obtained to

find the modal parameters of the system. For this purpose, the correlation functions, Rk , of the

outputs of the system are estimated, as (Hermans and Auweraer, 1999)

Rk = E
[
yk+n yT

n

]
(2.25)

Here, k is the number of time lags. Further, the correlation matrices for different time lags are

collected in a block-Hankel matrix, given by (Hermans and Auweraer, 1999)

Hi =


R1 R2 . . . Ri

R2 R3 . . . Ri+1
...

...
. . .

...

Ri Ri+1 . . . R2i−1

 (2.26)

where i corresponds to the number of rows and columns in the block-Hankel matrix, and is
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called the number of blockrows.

The block-Hankel matrix can be decomposed as (Hermans and Auweraer, 1999)

Hi =Oi Ci (2.27)

where Oi and Ci are the observability matrix and the controllability matrix, defined as

Oi =



C

C A

C A2

...

C Ai−1


, Ci =

[
G A G . . . Ai−1 G

]
; G = E

[
sk+n yT

n

]
(2.28)

Furthermore, the block-Hankel matrix is pre- and post-multiplied with two weighting ma-

trices, W1 and W2, to enhance the identification of modes with low excitation. Then, a singu-

lar value decomposition (SVD) is conducted, resulting in the relation (Hermans and Auweraer,

1999)

W1 Hi WT
2 = W1 Oi Ci WT

2 = U1Σ1 VT
1 (2.29)

where Σ1 is the matrix containing the non-zero singular values, and U1 and V1 are matrices

containing the corresponding left and right singular vectors. The details behind the SVD and

the weighting matrices will not be explained further, but a more thorough explanation can be

found in Rainieri and Fabbrocino (2014) and Hermans and Auweraer (1999).

From Equation (2.29) it can be shown that

Oi = W−1
1 U1Σ

1/2
1 (2.30)

Finally, from the definition of the observability matrix, given in Equation (2.28), it can be seen

that C equals the first l rows of Oi , while A can be found from (Hermans and Auweraer, 1999)

O ↑
i =O ↓

i A (2.31)

where O ↑
i and O ↓

i are found by discarding the first and last l rows of Oi .
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When the output matrix and the state matrix have been estimated, the modal parameters

of the system can be obtained through an eigenvalue decomposition of A, resulting in the dis-

crete system poles, λ̂r , and eigenvectors, ψr . Then, the continuous system poles, λr , and the

corresponding mode shapes, φr , at the sensor locations, are found as (Hermans and Auweraer,

1999)

λr = 1

∆t
ln λ̂r

φr = Cψr

(2.32)

where ∆t is the sampling period. As damping is not neglected, λr andφr are complex.

Then, assuming that the system is under-critically damped, the following relations can be

utilised to obtain the natural frequencies, ωr , and damping ratios, ξr (Kvåle et al., 2016)

λr =−ξr ωr ±
√

1−ξ2
r ωr i =⇒ ωr = |λr | , ξr =− ℜ (λr )

|λr |
(2.33)

where ℜ( ) implies the real part of a complex number.

2.4.1 Challenges Related to Cov-SSI

Due to noise and modelling inaccuracies, the number of non-zero singular values obtained from

the SVD of the weighted block-Hankel matrix, given in Equation (2.29), is larger than the actual

order of the system (Rainieri and Fabbrocino, 2014) (Kvåle et al., 2017). Thus, the order of the

system needs to be defined manually, according to the number of non-zero singular values and

vectors to include in the computation of the observability matrix. This is a complicated task,

since the actual order of the system is unknown and the choice greatly affects the eigenvalues

and eigenvectors obtained from the eigenvalue decomposition. If the order of the system is set

too low, weakly excited modes may not be identified, while a large value will cause spurious

modes to appear in addition to the physical ones (Rainieri and Fabbrocino, 2014). Therefore,

the order of the system is overestimated to ensure that all physical modes are identified, and

then the spurious modes are eliminated.

The approach to identify the spurious modes starts with the estimation of the modal param-

eters for several system orders. Then, specified criteria are utilised to obtain the stable poles.

This is done by comparing all the poles obtained for each system order with the poles of the

s preceding orders, where s is a defined stabilisation level. The poles that fulfil specified sta-
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bilisation criteria by comparison with the corresponding poles from all the s preceding orders

are defined as stable. The determination of the corresponding poles from the different system

orders are based on the maximisation of a chosen modal indicator. Furthermore, the stabilisa-

tion criteria are based on the deviance of modal parameters obtained for different values of the

system order. A more thorough description of this approach can be found in Kvåle et al. (2017).

After the determination of stable poles, a stabilisation diagram is made, by plotting the sys-

tem orders against the corresponding natural frequencies, for the stable poles. The physical

poles can be detected as straight sequences of stable poles, while the spurious poles are typi-

cally more scattered (Rainieri and Fabbrocino, 2014).

Furthermore, the selection of the number of blockrows, i , and the stabilisation level, s, will

influence the results from the Cov-SSI analysis. If the value of i is chosen too low, the low fre-

quency content of the data will not be identified, while a high value will result in more spurious

modes (Kvåle et al., 2017). In addition, the stabilisation level can be adjusted to eliminate the

spurious modes, while still keeping the physical ones.

2.5 Wind

2.5.1 Buffeting Load

For long-span bridges the most significant loads are the loads due to wind. In general, it is

assumed that the wind can be expressed as the sum of a mean component and a fluctuating

component (Tamura and Kareem, 2013). The wind velocity is split into three orthogonal com-

ponents, with U describing the wind in the along-wind direction, while v and w are the veloc-

ity fluctuations in the across wind horizontal and vertical directions, respectively. The wind in

the along-wind direction is split into a mean value and a fluctuating part, U = V +u(x, t ). V is

commonly known as the mean wind velocity, while u, v and w are known as the turbulence

components (Strømmen, 2006). The amount of turbulence in a wind field is usually described

using the turbulence intensities, Iu and Iw , which are defined as the ratio between the standard

deviations of the turbulence components, σu and σw , and the mean wind velocity (Tamura and

Kareem, 2013)

Iu = σu

V
Iw = σw

V
(2.34)
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The buffeting theory is used to describe the loads due to the wind fluctuations as well as the

motion induced forces. The theory is derived under the assumption of a line-like structure, sur-

rounded by a stationary and homogeneous wind field, where the mean wind is perpendicular to

the x-axis of the structure (Strømmen, 2006). Thus, the across wind horizontal turbulence com-

ponent, v , is not of interest. A stationary wind field implies that the statistical properties are

independent of time (Newland, 2005), whereas homogeneity implies that the statistical prop-

erties are independent of the location in the wind field. A basic assumption in the buffeting

theory is that the wind loads can be calculated from the velocity pressure and the flow inci-

dence dependent drag, lift and moment coefficients, CD , CL and CM . These load coefficients

can be obtained from wind tunnel tests of a section model of the relevant structure. The forces

acting on the bridge deck are by definition given as (Strømmen, 2006)


qD (x, t )

qL(x, t )

qM (x, t )

= 1

2
ρV 2

r el


D ·CD (α)

B ·CL(α)

B 2 ·CM (α)

 (2.35)

Here, qD , qL and qM are the drag, lift and moment forces in the wind flow axes. B and D are the

width and the depth of the deck, ρ is the density of air, Vr el is the instantaneous relative wind

velocity and α is the angle of flow incidence. It is further assumed that the displacements and

rotations are small, and that the turbulence components are much smaller than the mean wind

velocity. Thus, the relative wind velocity and the angle of flow incidence can be approximated

as (Strømmen, 2006)

V 2
r el ≈V 2 +2V u −2V ṙy

α≈ r̄θ+ rθ+
w

V
− ṙz

V

(2.36)

with r̄i and ri being the static and dynamic part of the displacements of the cross section of the

bridge in the lateral (y), vertical (z) or rotational (θ) direction, and ṙi being the velocity of the

cross section.

The load coefficients in reality have a nonlinear variation. However, they are linearly ap-

proximated as functions of the coefficients C̄D , C̄L , C̄M , C ′
D , C ′

L and C ′
M . Finally, the forces are

transformed into the structural axes, which results in the expression for the total wind load, qtot ,

given in Equation (2.37). A more thorough derivation can be found in Strømmen (2006).
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qtot (x, t ) =


q̄y (x)

q̄z(x)

q̄θ(x)

+


qy (x, t )

qz(x, t )

qθ(x, t )

= q̄+
q︷ ︸︸ ︷

Bq ·v+
qae︷ ︸︸ ︷

Cae · ṙ+Kae · r (2.37)

The total wind load contains a horizontal, vertical and torsional component, indicated by y ,

z and θ. As can be seen, it is divided into a static part, q̄, and a dynamic part, q+qae . The static

part is considered trivial and will not be included in the response calculations, described in

Section 2.6. q is the load due to the turbulence of the wind, v = [u w]T , while qae is the motion

induced load, associated with the motion of the structure, r and ṙ. The matrix Bq can be defined

as in Equation (2.38), as a function of the load coefficients and the cross sectional admittance

functions, Amn (Strømmen, 2006). The cross sectional admittance functions are functions of

the frequency and can be determined from section model wind tunnel tests.

Bq (ω, x) = ρV B

2


2(D/B)C̄D Ayu

(
(D/B)C ′

D − C̄L
)

Ay w

2C̄L Azu (C ′
L + (D/B)C̄D )Azw

2BC̄M Aθu BC ′
M Aθw

 Amn (ω)

m = y, z,θ

n = u, w
(2.38)

The motion induced load, qae , also called the self-excited forces, are caused by the interac-

tion between the structure and the wind. These forces can be represented by the use of non-

dimensional parameters called aerodynamic derivatives (ADs). The theoretical expressions for

the self-excited forces as functions of the ADs were first established in the study of aeronautics.

However, studies conducted by Scanlan and Tomko (1971) concluded that this theory can be

applied also in bridge engineering. Originally, Scanlan and Tomko (1971) only investigated the

vertical and torsional motion, but by including the lateral motion the expressions for the forces

are given by

q ae
y = 1

2
ρV 2B

(
K P∗

1

ṙy

V
+K P∗

2
Bṙθ
V

+K 2P∗
3 rθ+K 2P∗

4

ry

B
+K P∗

5
ṙz

V
+K 2P∗

6
rz

B

)
q ae

z = 1

2
ρV 2B

(
K H∗

1
ṙz

V
+K H∗

2
Bṙθ
V

+K 2H∗
3 rθ+K 2H∗

4
rz

B
+K H∗

5

ṙy

V
+K 2H∗

6

ry

B

)
q ae
θ = 1

2
ρV 2B 2

(
K A∗

1
ṙz

V
+K A∗

2
Bṙθ
V

+K 2 A∗
3 rθ+K 2 A∗

4
rz

B
+K A∗

5

ṙy

V
+K 2 A∗

6

ry

B

) (2.39)
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Here q ae
y , q ae

z and q ae
θ

are the motion induced forces and ry , rz and rθ are the displacements

of the structure for lateral, vertical and torsional movement, respectively. Furthermore, P∗
i , H∗

i

and A∗
i are the ADs and K = (ωB)/V is the reduced frequency.

The ADs can be obtained through wind tunnel tests and are functions of the reduced velocity,

V̂ , which is the inverse of the reduced frequency. That is, the ADs depend on the frequency of

motion, ω, the type of cross section, and the mean wind velocity. Thus, the self-excited forces

depend on both the motion of the structure and the wind field. Equation (2.39) is commonly

written in matrix notation, resulting in the expression for qae = [q ae
y q ae

z q ae
θ

]T as given in

Equation (2.37), where Cae and Kae are the aerodynamic damping and stiffness matrices, given

as

Cae = ρB 2

2
·ω


P∗

1 P∗
5 BP∗

2

H∗
5 H∗

1 B H∗
2

B A∗
5 B A∗

1 B 2 A2∗

 , Kae = ρB 2

2
·ω2


P∗

4 P∗
6 BP∗

3

H∗
6 H∗

4 B H∗
3

B A∗
6 B A∗

4 B 2 A3∗

 (2.40)

2.5.2 Wind Turbulence Spectra

Due to the stochastic nature of the wind, the buffeting load used to calculate the buffeting re-

sponse of a structure can not be precisely determined. Therefore, the load is described by the

use of turbulence spectra, which contain information about the frequency content of the wind.

Several models have been suggested to describe the turbulence spectra. One of the models for

the one-point auto-spectra, Su,w , of the turbulence components is the one proposed by Kaimal

et al. (1972), which is of the form:

Su,w f

σ2
u,w

= Au,w fz

(1+1.5Au,w fz)5/3
, fz = f z

V (z)
(2.41)

where f is the frequency, σu,w are the standard deviations of the turbulence components, Au,w

are the non-dimensional spectral parameters, z is the height above ground and V is the mean

wind speed.

In Norway, the Norwegian Public Roads Administration (NPRA) has published a handbook

named N400 (Vegdirektoratet, 2015), which regulates the design of bridges. In N400 the one-

point auto-spectra of the turbulence components are defined based on the Kaimal spectra, giv-
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ing the expression

Su,w f

σ2
u,w

= Au,w f̂u,w

(1+1.5Au,w f̂u,w )5/3
, f̂u,w = f xLu,w (z)

V (z)
(2.42)

where xLu,w (z) are the integral length scales. N400 gives the following recommendations for the

values of the spectral parameters: Au = 6.8 and Aw = 9.4. The expressions for the integral length

scales of u and w are given in N400 as (Vegdirektoratet, 2015)

xLu =

L1(z/z1)0.3 z > zmi n

L1(zmi n/z1)0.3 z ≤ zmi n

(2.43)

xLw = 1

12
xLu (2.44)

where the expression for xLw in Equation (2.44) is based on the assumption of approximately

homogeneous wind flow conditions. Furthermore L1 = 100 m is a reference length scale, z1 = 10

m is a reference height and zmi n is determined according to NS-EN 1991-1-4:2005+NA:2009,

Table NA.4.1 (Standard Norge, 2005).

In order to include information about the spatial variation of the turbulence components,

the normalised cross-spectra are used. In N400 the formulation by Dyrbye and Hansen (1997)

is utilised to define the normalised cross-spectrum, Cnm , as

Cnm( f ,∆x) = Snm( f )√
Sn( f )Sm( f )

n ∈ {u, w}

m ∈ {u, w}
(2.45)

where Snm( f ) is the cross-spectral density, Sn,m( f ) denote the auto-spectral densities at two

separate points and ∆x is the horizontal or vertical distance between the two points.

Furthermore, N400 adopts the widely used expression proposed by Davenport (1961) for the

normalised cross-spectrum, C , which is written as

C ( f ,∆x) = exp

(
−Ki

f ∆x

V

)
i ∈ {u, w,uw} (2.46)
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where Ki is the decay coefficient. Recommended values from N400 are Ku = 10.0 and Kw = 6.5.

Inserting Equation (2.46) into Equation (2.45) yields the expression for the cross-spectrum of

the turbulence components, as

Snm( f ,∆x) =
√

Sn( f )Sm( f ) ·exp

(
−Ki

f ∆x

V

)
(2.47)

2.6 Buffeting Response

The procedure for calculating the buffeting response of a structure is based on the theory de-

scribed in Sections 2.3 and 2.5. There exist several methods for this purpose, with different

levels of detail. In this thesis the single mode three component response calculation, described

by Strømmen (2006), is utilised.

In this method a basic assumption is that the natural frequencies are well spaced out on

the frequency axis. If the structure is considered as continuous, line-like and two-dimensional,

the displacements can be described by a horizontal, vertical and torsional component. Thus,

each mode shape contains three components, φyi (x), φzi (x) and φθi (x), in these directions re-

spectively. As described in Section 2.3, the introduction of generalised coordinates leads to the

uncoupled equation of motion. Therefore, the response from each mode, ri (x, t ), can be found

separately, as

ri (x, t ) =


ry (x, t )

rz(x, t )

rθ(x, t )


i

=


φy (x)

φz(x)

φθ(x)


i

·ηi (t ) =φi (x) ·ηi (t ) (2.48)

where ryi , rzi and rθi are the response components in the horizontal, vertical and torsional

direction, respectively.

The equation of motion for each mode can be written as

M̃i · η̈i (t )+ C̃i · η̇i (t )+ K̃i ·ηi (t ) = Q̃i (t )+Q̃aei
(
t ,ηi , η̇i , η̈i

)
(2.49)

Here, M̃i , C̃i and K̃i are the modal mass, damping and stiffness related to each mode, expressed

as
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M̃i =
∫

L

(
φT

i ·M0 ·φi
)

d x

C̃i = 2 · M̃i ·ωi ·ξi

K̃i =ω2
i · M̃i

(2.50)

where M0 = di ag
[
my (x) mz(x) mθ(x)

]
is the mass matrix containing the distributed masses

in the horizontal, vertical and torsional direction and ξi is the damping ratio for each mode.

Furthermore, Q̃i and Q̃aei constitute the total modal load acting on the structure for each mode,

expressing the flow induced (q) and the motion induced (qae ) part of the load, respectively, as

Q̃i (t ) =
∫

Lexp

φT
i qd x =

∫
Lexp

φT
i ·Bq ·vd x

Q̃aei
(
t ,ηi , η̇i , η̈i

)= ∫
Lexp

φT
i qae d x = C̃aei · η̇i + K̃aei ·ηi

(2.51)

where C̃aei and K̃aei are the modal aerodynamic damping and stiffness related to each mode,

given in Equation (2.52), and Lexp is the part of the structure exposed to wind.

C̃aei =
∫

Lexp

φT
i ·Cae ·φi d x , K̃aei =

∫
Lexp

φT
i ·Kae ·φi d x (2.52)

As the buffeting response is calculated for each mode separately, motion induced coupling be-

tween the modes needs to be avoided. Therefore, Cae and Kae have to be diagonal.

Furthermore, the equation of motion is converted into the frequency domain, by taking the

Fourier transform on each side of Equation (2.49). This leads to the following equation

(−M̃iω
2 + C̃i iω+ K̃i

) ·aηi (ω) = aQ̃i
(ω)+aQ̃aei

(
ω,ηi , η̇i , η̈i

)
(2.53)

where aηi (ω), aQ̃i
(ω) and aQ̃aei

(ω) are the Fourier amplitudes of ηi (t ), Q̃i (t ) and Q̃aei (t ), respec-

tively. The i in the expression C̃aei iω is the imaginary unit,
p−1. The Fourier amplitudes of

Q̃i (t ) and Q̃aei (t ) are given as

aQ̃i
(ω) =

∫
Lexp

φT
i ·Bq ·aV d x , aQ̃aei

(ω) = (
C̃aei iω+ K̃aei

)
aηi (ω) (2.54)

where aV is the Fourier amplitude of V = [u w]T . In Equations (2.53) and (2.54), the relations

aη̇i = iω aηi and aη̈i = (iω)2 aηi , between the Fourier amplitudes of the response, ηi , and its

derivatives, η̇i and η̈i , are utilised.
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By collecting all terms depending on aηi (ω) in Equation (2.53) on the left side, the expression

for the Fourier amplitude of the modal response from mode i is obtained as

aηi (ω) = H̃i (ω) ·aQ̃i
(ω) (2.55)

where the modal frequency response function, H̃i (ω), is introduced. The expression for H̃i (ω)

is given as

H̃i (ω) = [−M̃i ·ω2 + (
C̃i − C̃aei

) · iω+ (
K̃i − K̃aei

)]−1
(2.56)

Furthermore, the one-sided auto-spectrum of the modal response, Sηi (ω), can be obtained

as

Sηi (ω) = lim
T→∞

1

πT
E

[∣∣aηi (ω)
∣∣2

]
= ∣∣H̃i (ω)

∣∣2 · lim
T→∞

1

πT
E

[∣∣∣aQ̃i
(ω)

∣∣∣2
]
= ∣∣H̃i (ω)

∣∣2 ·SQ̃i
(ω) (2.57)

whereas the one-sided auto-spectrum of the modal load, SQ̃i
(ω), can be found as

SQ̃i
(ω) = lim

T→∞
1

πT
E

[∣∣∣aQ̃i
(ω)

∣∣∣2
]

(2.58)

=
∫

Lexp

∫
Lexp

φT
i (x1) ·Bq · lim

T→∞
1

πT
E

[∣∣aV ·aT
V

∣∣] ·BT
q ·φi (x2)d x1 d x2

=
∫

Lexp

∫
Lexp

φT
i (x1) ·Bq ·SV ·BT

q ·φi (x2)d x1 d x2

Here, SV (∆x,ω) is the cross-spectral density matrix of the turbulence. The cross-spectra be-

tween u and w are often neglected, as they have little influence on the response (Øiseth et al.,

2013). Thus, the expression for SV can be written as

SV (∆x,ω) =
Suu (∆x,ω) 0

0 Sw w (∆x,ω)

 (2.59)

where the expressions for the cross-spectra Suu,w w are given in Equation (2.47). By assuming a

homogeneous wind field, these spectra can be simplified to (Fenerci and Øiseth, 2018b)

Suu,w w (∆x,ω) = Su,w (ω) ·Cuu,w w (∆x,ω) (2.60)
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Next, the one-sided auto-spectra of the three displacement components for mode i can be

obtained at a given position, xr , as

Sri (xr ,ω) =


Sry ry

Srz rz

Srθrθ


i

=


φ2

y (xr )

φ2
z(xr )

φ2
θ

(xr )


i

·Sηi (ω) (2.61)

where Sry ry i , Srz rz i and Srθrθi are the auto-spectra for the horizontal, vertical and torsional dis-

placement response for mode i .

Furthermore, the spectra for the acceleration response can be obtained as

Sr̈i (xr ,ω) =ω4 ·Sri (xr ,ω) (2.62)

Finally, the acceleration response of the three displacement components, represented by the

variances, can be obtained by integration of the auto-spectra and summation of the contribu-

tions from each mode. Thus,


σ2

r̈y r̈y
(xr )

σ2
r̈z r̈z

(xr )

σ2
r̈θ r̈θ

(xr )

=
Nmod∑
i=1


σ2

r̈y r̈y
(xr )

σ2
r̈z r̈z

(xr )

σ2
r̈θ r̈θ

(xr )


i

=
Nmod∑
i=1

∫ ∞

0
Sr̈i (xr ,ω)dω (2.63)

where σ2
r̈y r̈y

(xr ), σ2
r̈z r̈z

(xr ) and σ2
r̈θ r̈θ

(xr ) are the total variances of the horizontal, vertical and

torsional acceleration response at position xr . By taking the square root of these terms, the root

mean square (RMS) acceleration responses are obtained.
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Methodology

3.1 The Hålogaland Bridge and the Monitoring System

The Hålogaland Bridge is a suspension bridge located near Narvik in northern Norway. The

bridge crosses the Rombak fjord, which is a branch of the Ofotfjord. In Figures 3.1 and 3.2 the

bridge is pictured and the location of the bridge is shown. The Hålogaland Bridge is the second

longest suspension bridge in Norway, with its main span of 1145 m. The cross section of the

bridge girder is a steel box, which is 18.6 m wide and 3 m high. The girder is carried by two main

cables and 110 hangers. Furthermore, the main cables are supported by two towers reaching up

to approximately 180 m above sea level.

Figure 3.1: Picture of the Hålogaland Bridge. Courtesy of NTNU.

27
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Figure 3.2: The location of the Hålogaland Bridge. The bridge location is marked with a red pin. (Map data ©2022
Google, www.google.com/maps)

The slenderness of the Hålogaland Bridge, due to the combination of a remarkably long span

and a relatively small cross section, leads to particularly low natural frequencies. Furthermore,

the bridge is exposed to wind loading, which is dominated by frequencies in the same frequency

range. Thus, the bridge is particularly prone to wind-induced response. In order to gain more

knowledge about how the wind affects the behaviour of long-span suspension bridges, a moni-

toring system has been installed on the Hålogaland Bridge.

The monitoring system is extensive, and is able to measure acceleration, temperature, strain

and wind. As the main objective of this thesis is to compare the predicted buffeting response

with the measured response, only the acceleration data and the wind data are studied. In total

there are 22 triaxial accelerometers located in various positions on the bridge deck, while there

are 10 anemometers located on the hangers. The monitoring system consists of 11 logger boxes:

2 in the bridge towers and 9 along the bridge span. Each logger is connected to an accelerometer

pair consisting of one accelerometer on each side of the bridge deck, in addition to a varying

number of anemometers. All sensors are connected to the nearest logger box. An illustration of

the bridge with the monitoring system is given in Figure 3.3 (Petersen et al., 2021). Data from 8

accelerometer pairs and 5 anemometers along the bridge are utilised in this thesis. Figure 3.4

illustrates the sensors that are utilised, and the x-coordinates of the sensors along the bridge can

be found in Tables 3.1 and 3.2. Inside the logger boxes, a NI CompactRIO controller is used for

data acquisition. This main hardware unit is programmed by the LabVIEW software to sample

and filter the measurement data from the sensors. In addition, a timestamp with accurate time

from a Trimble Bullet GPS antenna is added, before the data is saved locally on hard drives.
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The CompactRIOs are connected to the internet, and transfers the data to a server with regular

intervals. A more thorough description of the monitoring system on the Hålogaland Bridge can

be found in Petersen et al. (2021).

Figure 3.3: Illustration of the monitoring system on the Hålogaland Bridge (Petersen et al., 2021).
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x

Figure 3.4: Top view of the sensors on the Hålogaland Bridge that are utilised in this thesis. The red and blue dots
illustrate accelerometers and anemometers, respectively.

Table 3.1: x-coordinates of the accelerometers on the Hålogaland Bridge that are utilised in this thesis. The coor-
dinate system has its origin at the midspan of the bridge, with the positive x-direction pointing to the north end of
the bridge.

Name H1E/ H2E/ H3E/ H4E/ H5E/ H6E/ H7E/ H8E/
H1W H2W H3W H4W H5W H6W H7W H8W

x-coordinate [m] -420 -300 -180 -100 0 100 260 420

Table 3.2: x-coordinates of the anemometers on the Hålogaland Bridge that are utilised in this thesis. The coordi-
nate system has its origin at the midspan of the bridge, with the positive x-direction pointing to the north end of
the bridge.

Name A1 A2 A3 A4 A5
x-coordinate [m] -260 -220 -200 -180 0
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3.2 Abaqus Model of the Bridge

A finite element model of the Hålogaland Bridge, modelled in Abaqus (2019), has been provided

by Øyvind Wiig Petersen. This model is used to obtain the modal parameters of the bridge,

which are needed to predict the buffeting response. Here, only a brief description of the model

is given.

The main parts of the bridge are the two towers, the two main cables, the hangers and the

girder. Figure 3.5 shows the Abaqus model of the bridge. The geometry of the model is based

on as-built geometry. The main parts of the bridge are modelled with beam elements. Thus, the

three-dimensional parts are modelled as one-dimensional. This is assumed to be an adequate

approximation, as the cross sections of all parts of the bridge are small compared to the global

dimensions along the beam axes. Both B31 and B32 elements are used, which are 2-node lin-

ear and 3-node quadratic beam elements in space. All degrees of freedom are active for these

elements, and a lumped mass formulation is used for the dynamic calculations (Abaqus, 2019).

Figure 3.5: Abaqus model of the Hålogaland Bridge.

The bridge girder, which is the essential part of the model for the buffeting response calcula-

tions, is modelled with 286 elements of type B32. Consequently, each element is approximately

4 m long. A modal analysis step is performed to extract the modal parameters of the bridge. The

Lanczos eigensolver is chosen for this purpose, which means that Abaqus solves the eigenvalue

problem represented by Equation (2.16) (Abaqus, 2019).

3.3 Data Processing

The data from the monitoring system on the Hålogaland Bridge are stored on a server as Tdms-

files, each containing 8 hours of measurements from one logger box. A Tdms-file is structured

using a hierarchical system with three levels. The highest level is the file itself. The file contains
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groups, and the groups contain channels, where the latter act as arrays. A Tdms-file can be read

using the Python package npTDMS (Reeve, 2021). For a Tdms-file from a logger box on the Hålo-

galand Bridge, all information regarding the accelerations is gathered in one group, whereas the

wind data are organised into one group per anemometer. All groups contain a timestamp chan-

nel, which gives information about the time the data are sampled. The timestamps are given in

Unix time with nanosecond precision, meaning that the time is given as nanoseconds elapsed

since 00:00:00 UTC on 1 January 1970. The acceleration data in each group are separated into

channels for data in x-, y-, and z-direction from each accelerometer in the pair. In addition to

the raw data, the group also contains information about the coordinates of the accelerometers,

as well as the orientation of the accelerometers in relation to the global coordinate system of the

bridge. This is used to verify that the local coordinate system of each accelerometer is consistent

with the global one. As previously mentioned, the wind data are separated into one group per

anemometer. Each group has one channel for the direction of the horizontal wind velocity, one

channel for the magnitude of the horizontal wind velocity and one channel for the vertical wind

velocity.

In order to process the data, the npTDMS package is used to read the data into Python. The

first step of the processing is to time synchronise the data. Even though the logger boxes are

supposed to start recording wind and acceleration at the same time, it is registered time lags of

up to several minutes between different accelerometers and anemometers. In order to ensure

that the wind and acceleration data from the considered loggers have the same time axes, the

data are time synchronised. This is achieved by generating a "master time vector" that starts at

the last recorded initial timestamp and ends at the earliest recorded final timestamp of all the

considered accelerometers and anemometers. The data are then synchronised, by interpolating

the data from the initial, sensor-specific time vector to the master time vector. Acceleration and

wind data are interpolated to the same master time vector. As the wind data are sampled at

32 Hz and the acceleration data are sampled at 64 Hz, the acceleration data are first low-pass

filtered and downsampled to 32 Hz. A Butterworth filter of order 10 and with a cut-off frequency

of half the new Nyquist frequency is used for the low-pass filtering. All low-pass filtering of

the data is done in this way throughout the thesis. Further processing is done separately for

the acceleration data and the wind data, due to different requirements. The main steps of the

routines are explained below, but for details see Appendix A.1.

The data from the accelerometers are given in volt, and has to be converted to m/s2. This

is done by dividing the data by a conversion factor given in the Tdms-file and then multiplying
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with the gravity constant g = 9.82 m/s2, due to the unit of the conversion factor. The accelera-

tion data are once again low-pass filtered and downsampled to a final sampling frequency of 2

Hz, since the frequencies of interest are in the range 0-1 Hz. As a final step, the data are divided

into intervals of a desired time period.

The anemometers are more susceptible to errors than the accelerometers, and therefore the

wind data have to be cleaned more thoroughly. The Python codes developed to clean the data

can be found in Appendix A.1. Some of these are based on codes written by Knut Andreas Kvåle

and Aksel Fenerci in Matlab, and then translated to Python by the authors of this thesis. The

first step is to remove all error values from the data. Each sample from the anemometers comes

with a status code, which contains information about the quality of the sample. Samples with

an error code are removed from the time series. In order to maintain the sampling frequency,

the time series are then filled out using linear interpolation. The time series are also cleaned

for values that exceed six times the standard deviation, in order to avoid anomalies. Finally,

since the directional data contain spikes due to the circular nature of the data, they have to be

corrected so that they only contain values between 0 and 360 degrees.

Similar to the acceleration data, the wind data are low-pass filtered and downsampled to 2

Hz and divided into intervals of a specified length. For each interval, the mean wind speed and

mean wind direction is calculated. Then, the instantaneous horizontal wind is decomposed

into an along-wind turbulence component and an across wind turbulence component using

the transformation


u

v

w

=


U · cos(φ)−V

U · si n(φ)

w

 (3.1)

Here, U is the instantaneous horizontal wind velocity, φ is the difference between the mean

wind direction (α) and the instantaneous direction, V is the mean wind speed and u, v, and

w are the turbulence components. The decomposition of the instantaneous horizontal wind is

illustrated in Figure 3.6. w is equivalent to the vertical wind velocity. A high-pass filter is then

applied to the turbulence data in each interval, using a Butterworth filter of order 2 and with a

cut-off frequency of 1/300 Hz. This is done in order to remove spurious trends from the data.
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Figure 3.6: Illustration of the decomposition of instantaneous horizontal wind, U , into turbulence components, u
and v .

3.4 Covariance-Driven Stochastic Subspace Identification

The natural frequencies, damping ratios and mode shapes of the Hålogaland Bridge are esti-

mated with covariance-driven stochastic subspace identification (Cov-SSI). The theory behind

the method is explained in Section 2.4. All calculations are conducted in Python, and are based

on the functions included in the KOMA package, developed by Kvåle (2022). The results from

Cov-SSI are used to verify the modal parameters from the Abaqus model.

Acceleration data from the accelerometers H1E/H1W-H8E/H8W (see Figure 3.4) are used

as the input to conduct the Cov-SSI. The Tdms-files from the data loggers connected to these

accelerometers are used to extract time synchronised and processed x-, y- and z-acceleration

data, divided in intervals of 30 minutes. The same 30 minute interval of acceleration data from

all accelerometers are then utilised for the Cov-SSI.

The scripts for conducting Cov-SSI can be found in Appendix A.4. It is difficult to know in

advance what to choose as the optimal values for the number of blockrows (i ), the stabilisation

level (s) and the stabilisation criteria. Therefore, different options have to be investigated. The

procedure starts by calculating all the complex poles and eigenvectors from the measurement

data for all the chosen orders of the system, with the chosen number of blockrows. No weighting

of the block-Hankel matrix is performed. Next, the stable poles and corresponding eigenvectors

are found from all poles, based on the chosen stabilisation level and stabilisation criteria. The
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natural frequencies of the poles are used as the modal indicator. Furthermore, the natural fre-

quencies and damping ratios for the stable poles are found from Equation (2.33). A stabilisation

plot is constructed, by plotting the system orders against the corresponding natural frequencies

for the stable poles.

This procedure is repeated for acceleration data from several different Tdms-files and sev-

eral different 30-minute intervals. One specific 30 minute interval, from 4th of February 2022

starting at 00:00:00, is then chosen to extract the modal parameters of the Hålogaland Bridge.

The reason is that the stabilisation plot from this interval includes the evident poles from all the

investigated plots. The mean wind speed corresponding to the chosen interval is 18 m/s. The

stabilisation plot for this interval is constructed for different values of the parameters i and s. In

the end, these values are chosen as i = 24 and s = 6. This provides a clear stabilisation plot with

little scatter, while still including all the evident poles. The calculations are conducted for the

system orders n = 2,4, ...,250, since no new stable poles are observed for higher system orders.

The stabilisation criteria used to determine the stable poles are chosen as the default criteria

from KOMA.

Finally, this stabilisation plot is utilised to determine the physical modes, from the straight

sequences of stable poles. The natural frequencies and corresponding damping ratios are calcu-

lated from the stable poles. To obtain the mode shapes of the bridge girder in horizontal, verti-

cal and torsional direction, the following matrix is used to transform the horizontal and vertical

mode shape values on each side of the bridge into horizontal, vertical and torsional values at

the midspan.


y

z

θ

=


1
2

1
2 0 0

0 0 1
2

1
2

0 0 −1
B

1
B




y1

y2

z1

z2

 (3.2)

Here, B is the width of the bridge deck, y , z and θ are the new mode shape values at the midspan

of the bridge, and y1,2 and z1,2 are the initial mode shape values on each side of the bridge girder.

Due to the damping of the bridge, the components of the mode shapes are complex numbers,

which leads to a phase shift between them. Thus, the maximum amplitude of the components

does not occur at the same time (Kvåle et al., 2017). Therefore, a function from KOMA is utilised
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to obtain the mode shapes where the absolute values of the real parts of all components are

maximised. Furthermore, the mode shapes are plotted as the real parts of the components.

3.5 Wind Tunnel Test

In order to obtain the aerodynamic derivatives and the load coefficients required to model the

wind load acting on the Hålogaland Bridge, wind tunnel tests of a scaled section model of the

bridge girder are performed. The tests are carried out at NTNU, using a wind tunnel with a test

section of approximately 2x3 m2 and a length of 11 m. The scale of the section model is 1:70, and

includes railings in order to reflect the real behaviour of the bridge accurately. The wind tunnel

tests are performed as forced vibration tests. Thus, the section model is set in various motions

and exposed to different wind velocities, while the aerodynamic forces acting on the model are

measured. The tests are performed for winds approaching the bridge from both the east and the

west side. The data from the wind tunnel tests are then processed by Ole Andre Øiseth, which

results in files containing the necessary data to obtain the load coefficients and the expressions

for the ADs. The data for winds from both east and west are investigated, but as it appears that

the data are very similar for the two directions, only the westerly wind data are utilised further

in the calculations.

The file used to obtain the expressions for the aerodynamic derivatives contains values for

the ADs and the corresponding reduced velocities. As the buffeting response of the Hålogaland

Bridge is calculated for each mode separately, only expressions for the ADs on the diagonal of

the aerodynamic damping and stiffness matrices given in Equation (2.40) need to be obtained.

Since the ADs are used to model the self-excited forces given by Equation (2.39), P∗
1 , H∗

1 and

A∗
2 are first multiplied by the reduced frequency, K , while P∗

4 , H∗
4 and A∗

3 are multiplied by K 2.

Then, these terms are plotted against the reduced velocities, and appropriate curve fits are ob-

tained. The fitted curves are only valid for the range of reduced velocities from the experimental

data. Outside this range, the curves are estimated as constant values, corresponding to the start

and end values of the curves. To determine the final expressions for the ADs, the obtained ex-

pressions for K P∗
1 , K H∗

1 and K A∗
2 are divided by K , while the expressions for K 2P∗

4 , K 2H∗
4 and

K 2 A∗
3 are divided by K 2.

The file used to obtain the load coefficients, C̄D , C̄L , C̄M , C ′
D , C ′

L and C ′
M , contains values for

the load coefficients, CD , CL and CM , and the corresponding angles of flow incidence. First, ex-

pressions for CD , CL and CM as functions of the angle of flow incidence are determined through
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appropriate curve fits of the data from the file. Then, C̄D , C̄L and C̄M are obtained as the func-

tion values for the mean value of the angles of incidence. C ′
D , C ′

L and C ′
M are obtained as the

derivatives of the functions, evaluated at the mean value of the angles of incidence. The mean

value of the angles of incidence is assumed to be zero.

3.6 Extraction of Data from the Monitoring System

The buffeting response of the Hålogaland Bridge is calculated at the midspan. Wind and accel-

eration data from a total of 292 Tdms-files from two logger boxes are utilised to extract necessary

data for the response calculations. Acceleration data are extracted from accelerometers H5E and

H5W, while wind data are extracted from anemometers A1-A5 (see Figure 3.4). These sensors are

used because they are located at or near the midspan of the bridge. The data are processed as

described in Section 3.3 and divided into intervals of 10 minutes. Due to errors in Tdms-files

from 2021, as well as only having files from May and June 2021 where the wind speed is mostly

relatively low, only files from February and March 2022 are considered in this thesis. A period of

10 minutes for the intervals is used since it is long enough to represent the wind in a satisfactory

manner, while it is short enough to generally satisfy the requirement of stationarity (Tamura

and Kareem, 2013). Furthermore, due to the fact that low wind speeds are often associated with

high non-stationarity, only recordings with a mean wind speed above 3 m/s are used for further

analysis.

Since the main focus of the thesis is to compare the predicted buffeting response with the

measured response, acceleration data are extracted from the monitoring system. As mentioned,

acceleration data are extracted from the accelerometers at the midspan: H5E and H5W. The

predicted buffeting response is calculated as RMS acceleration response in the horizontal, ver-

tical and torsional direction. Therefore, the acceleration data from the measurements are trans-

formed into a lateral, vertical and torsional component, using the transformation matrix given

in Equation (3.2). Then, the standard deviations of the three response components are calcu-

lated for each 10 minute interval.

Wind data from anemometer A5 are used to extract mean wind speeds, mean wind directions

and turbulence components. The wind data are further utilised to improve the buffeting re-

sponse predictions. In the predictions, the wind load is modelled by the use of the auto-spectra

and the normalised cross-spectra of the turbulence components. In N400, these spectra are de-

fined as in Equations (2.42) and (2.46), with suggestions for the values of the spectral parameters,
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Au,w , and the decay coefficients, Ku,w . N400 refers to NS-EN 1991-1-4:2005+NA:2009 (Standard

Norge, 2005) for the calculation of the turbulence intensities, which are used to calculate the

standard deviations of the turbulence components after Equation (2.34). However, since the

turbulence parameters given in N400 are not site-specific, they do not reflect the actual wind

field at the location of the Hålogaland Bridge. Hence, the turbulence parameters from N400 are

not utilised in the response calculations. Better approximations of these values are estimated

by utilising the measurement data from the monitoring system. Therefore, the turbulence in-

tensities for each 10 minute interval is calculated according to Equation (2.34). These values are

calculated using data from anemometer A5. In addition, more appropriate values of Au,w and

Ku,w , adjusted for each 10-min interval, are calculated.

Wind data from anemometer A5 are used to approximate Au,w . For each 10 minute interval

from the wind recordings, the auto-spectral densities of the along-wind and the vertical tur-

bulence components are estimated. Welch procedure is used for the estimation, with 8 seg-

ments and an overlap of 50%. The values of Au,w are then estimated for each 10 minute interval,

through a non-linear least squares fit between the auto-spectra from the measurements and the

auto-spectra using the Kaimal model as given in Equation (2.41).

For the estimation of Ku,w , it is chosen to use data from anemometers A1-A4. Thus, three

anemometer pairs are used, with separation distances of 20, 40 and 80 m. These anemome-

ters are chosen because of the relatively small separation distances, to overcome weaknesses

of Davenport’s expression for large separation distances (Simiu and Scanlan, 1996). The nor-

malised cross-spectra, given in Equation (2.45), are estimated from the wind data for the three

anemometer pairs, for each 10 minute interval. Welch procedure is used to estimate the spectral

densities, with 8 segments and an overlap of 50%. The values of Ku,w are then estimated for each

10 minute interval, through a non-linear least squares fit between the normalised cross-spectra

from the measurements and Davenport’s expression for the normalised cross-spectra, given in

Equation (2.46). When the spatial correlation of the turbulence components is not apparent,

the expression is unable to represent the normalised cross-spectra satisfactory. Thus, values of

Ku,w above 20 are deemed non-coherent and are consequently ignored. Python scripts used to

obtain the fitted values of Au,w and Ku,w are found in Appendix A.3, where also the script for

extracting all the relevant wind- and acceleration data from all the files can be found.

As the wind varies with time, the estimates of the turbulence parameters, Iu,w , Au,w and Ku,w ,

also show significant variation between each interval. Therefore, the probability distributions of

the turbulence parameters are estimated in order to reflect the variability of the wind field. Log-
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normal probability distributions are fitted to the data, by calculating the lognormal distribution

parameters, µ̃ and σ̃, as the mean and standard deviation of the natural logarithm of the data,

as explained in Section 2.2. The turbulence intensities are divided into three segments, due to

a dependence on the mean wind speed, and a lognormal distribution is fitted to each segment.

Later, the probability distributions will be utilised to choose values of the turbulence parameters

for the buffeting response predictions. Since the framework for the buffeting theory is mainly

applicable for wind that comes perpendicular to the bridge x-axis, samples of the turbulence pa-

rameters which correspond to wind with mean direction deviating more than 20 degrees from

the two perpendicular directions (90 and 270 degrees), are ignored when fitting the probabil-

ity distributions. Instances where values of Au,w and Ku,w coincide with the boundaries of the

considered interval for the least squares fitting are discarded when establishing the probability

distributions. The reason is that these values most likely should be outside the interval, and the

probability distributions will be erroneously represented by including these instances.

3.7 Probabilistic Wind Field Model

As established, the wind field at the Hålogaland Bridge is modelled by the use of the auto-spectra

and the normalised cross-spectra given by Equations (2.41) and (2.46). Thus, six turbulence pa-

rameters are needed: σu,w , Au,w and Ku,w . As stated, these parameters vary with time, and in

the previous section this was considered by establishing the probability distributions of each

parameter. In a second approach, a probabilistic model of the wind field is established by fur-

ther investigation of the probability distributions, the correlation between the parameters and

the dependence of the parameters on the mean wind speed and direction. Simulations from

this model will be utilised in the buffeting response predictions.

In this thesis, only the standard deviations of the turbulence components, σu,w , are investi-

gated and simulated, due to time limitations. Moreover, these parameters have shown to be the

most influential parameters for the wind field. To begin with, σu,w -values are calculated from

the extracted Iu,w -values by the use of Equation (2.34). These values are utilised to establish a

probabilistic model of the turbulence standard deviations. The mean wind speeds and the stan-

dard deviations of the turbulence components are first divided into variables from easterly and

westerly winds, as the winds from these directions show clear differences. The easterly and west-

erly winds are defined as the winds with mean directions (α) 0° <α≤ 180° and 180° <α≤ 360°,

respectively. Here, 0° and 180° are defined as the north and the south direction, respectively. All
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further calculations in this section are conducted for the easterly and westerly winds separately.

The dependence of the mean wind speed on σu,w is investigated by plotting σu,w against

V . These plots show that there is a linear dependence between the mean wind speed and the

turbulence standard deviations. Due to this dependence, the probability distributions of σu,w

need to be determined conditional to the mean wind speed. Therefore, the turbulence standard

deviations are divided into intervals based on the corresponding mean wind speed. The east-

erly and westerly wind data are divided into intervals with approximately 200 and 150 values in

each interval, respectively. Then, the lognormal distribution parameters, µ̃ and σ̃, are obtained

for each interval and plotted against the corresponding mean wind speed. In addition, the cor-

relation coefficients of σu and σw are computed for each interval, to investigate if there is any

dependence on the mean wind speed.

At a mean wind speed of approximately 11 m/s, the µ̃-parameters seem to stabilise (Figures

4.24 and 4.25). Thus, expressions for these parameters as functions of the mean wind speed are

established through appropriate curve fits of the µ̃-values above 11 m/s. As the σ̃-parameters do

not seem to stabilise at any mean wind speed, these parameters are modelled as constant values

by calculating the parameters from all data in the mean wind speed range where the curve fits

are obtained for µ̃. Furthermore, the plot of the correlation coefficients of σu and σw against

the mean wind speed shows that these values remain relatively constant. Thus, the correlation

coefficients are also modelled as constant values for the data in the same wind speed range.

The lognormal distribution parameters and correlation coefficients for σu,w are utilised to

generate correlated lognormally distributed random samples of σu,w . To begin with, functions

from the NumPy library in Python are utilised to obtain random samples from a normal dis-

tribution. As explained in Section 2.2, only the mean value and the covariance matrix of the

normally distributed random variables are needed. The mean value corresponds to the param-

eter µ̃ of the lognormal distribution, while the covariance matrix is obtained from the parameter

σ̃ of the lognormal distribution and the correlation coefficients of the lognormally distributed

random variables, by the use of Equation (2.13). The correlated lognormally distributed random

variables are then obtained by taking the natural exponent of the generated samples.

In this way, correlated lognormally distributed random samples of σu,w from the probabilis-

tic model can be generated for each 10 minute wind recording from the Hålogaland Bridge, ac-

cording to the mean wind speed and direction. The values are only simulated for the recordings

with mean wind speed in the range that the lognormal distribution parameters and the corre-
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lation coefficients are modelled for, i.e. wind recordings with mean wind speed larger than 11

m/s.

The script used to obtain the expressions for the lognormal distribution parameters and the

correlation coefficients for the probabilistic model of the turbulence standard deviations can be

found in Appendix A.2. There, the script used to simulate the turbulence standard deviations

can also be found.

3.8 Calculation of Buffeting Response

The buffeting response of the Hålogaland Bridge is predicted based on a single mode three

component response calculation, as described in Section 2.6. All calculations are conducted

in Python, by the use of a function which takes the mean wind speed, the turbulence parame-

ters, Au,w , Ku,w , Iu,w , and the location on the bridge as the input. The function returns the RMS

acceleration response in the lateral, vertical and torsional direction. The Python function can be

found in Appendix A.3. This function is utilised to calculate the buffeting response of the bridge

at the midspan.

Natural frequencies, mode shapes and modal masses for the response calculations are ob-

tained from the Abaqus model of the bridge. The modal parameters are extracted from the

model by the use of a Python script, provided by Øyvind Wiig Petersen. This script takes the

ODB (output database) file from the Abaqus model as input and gives several text files with the

parameters as output. Information from these text files are then imported to Python as arrays.

The structural damping ratio is assumed to be 0.5% for all modes, based on suggestions from

N400 (Vegdirektoratet, 2015). The modal damping and stiffness for each mode is calculated

based on Equation (2.50). As the wind is dominated by frequencies in the range 0-1 Hz, the

modes with natural frequencies up to 1 Hz are included in the response calculations. Thus, 56

modes are included.

The auto-spectral density of the modal load, given by Equation (2.58), is computed for each

mode. The load coefficients in Bq are found from the wind tunnel tests, as explained in Sec-

tion 3.5, and the cross sectional admittance functions are set to unity. Furthermore, the cross-

spectral density matrix of the turbulence is computed as given in Equation (2.59), where the

cross-spectra are calculated from Equation (2.60). The auto-spectra and the normalised cross-

spectra of the turbulence components from Equations (2.41) and (2.46) are converted to func-

tions of the frequency in rad/s.
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The response calculations are performed for several different cases of the cross-spectral den-

sity matrix of the turbulence. The cases are based on different alternatives of the turbulence

parameters, Au,w , Ku,w and Iu,w . Some of the cases are included to investigate the influence of

the different turbulence parameters on the response predictions. The parameters are taken as

different percentile values from their probability distributions, and for one case the simulations

of σu,w are also utilised. The following alternatives for the parameters are tested:

• Case 1: Au,w , Ku,w and Iu,w as the 50th percentile values.

• Case 2: Au,w as the 50th percentile values, Ku,w as the 50th percentile values and Iu,w as

the 95th percentile values.

• Case 3: Au,w as the 50th percentile values, Ku,w as the 5th percentile values and Iu,w as the

50th percentile values.

• Case 4: Au,w as the 5th percentile values, Ku,w as the 50th percentile values and Iu,w as the

50th percentile values.

• Case 5: Au,w as the 50th percentile values, Ku,w as the 50th percentile values and Iu,w cal-

culated from the simulated σu,w -values (see Section 3.7).

The percentile values for case 1-4 are calculated from the probability distributions that are

obtained as explained in Section 3.6. Thus, only wind data with mean wind speeds larger than 3

m/s and that comes approximately perpendicular to the bridge x-axis are considered. Also, since

the turbulence intensities are divided into three segments based on the mean wind speeds, three

different values for these percentiles are regarded in each case, depending on the mean wind

speed. For the percentile values of Au,w and Ku,w for case 5, only wind data with mean wind

speeds larger than 11 m/s are considered, since the probabilistic model utilised to simulate the

σu,w -values only apply to this wind speed range. To be consistent, the percentiles of Au,w for

this particular case are calculated from probability distributions corresponding to easterly and

westerly winds separately. For the percentiles of Ku,w there is no distinction between easterly

and westerly winds, as the information needed to do this is not obtained. Furthermore, for case

1-4 the response is calculated for mean wind speeds in the range 0-25 m/s, while for case 5 the

response is calculated for the mean wind speeds used to simulate the σu,w -values.

The auto-spectral density of the modal load is computed for frequencies in the range 0-1 Hz.

As the calculation of the spectrum is computational demanding, it is first computed for only 50
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frequency values. Then, the frequency axis for the spectrum is refined, to assure an accurate

response calculation. This is done by linear interpolation of the spectrum computed for the

initial frequency values, to a new frequency axis with 1000 points.

Furthermore, the aerodynamic damping and stiffness matrices are computed, as given in

Equation (2.40), for the refined frequency axis. However, only the diagonal terms are included.

The expressions for the aerodynamic derivatives, P∗
1 , H∗

1 , A∗
2 , P∗

4 , H∗
4 and A∗

3 , are found from

the wind tunnel tests, as explained in Section 3.5.

Next, the modal aerodynamic damping and stiffness for each mode are calculated, from

Equation (2.52). Thus, the modal frequency response function, given in Equation (2.56), can

be calculated for each mode. The auto-spectra of the horizontal, vertical and torsional acceler-

ation response for each mode are then calculated, through Equations (2.57), (2.61) and (2.62).

Finally, the total variances of the horizontal, vertical and torsional acceleration response from

all modes are found from Equation (2.63), and the root mean squares are calculated.

Other constants needed for the calculation of the response are given in Table 3.3.

Table 3.3: Constants needed for the response calculations: air density (ρ), width and height of the bridge cross
section (B , D) and approximate height of anemometer A5 (z).

Constant ρ B D z
[kg/m3] [m] [m] [m]

Value 1.25 18.6 3 54.2



Chapter 4

Results

4.1 Modal Analysis

In this section, the modal parameters of the Hålogaland Bridge, found from the Abaqus model

and the covariance-driven stochastic subspace identification (Cov-SSI), are presented. Only

modes with natural frequencies below 1 Hz are considered from Cov-SSI. The corresponding

modes are also found from the Abaqus model. The presented mode shapes from both Abaqus

and Cov-SSI represent the mode shapes of the bridge girder, and does not include the bridge

towers, the cables or the hangers.

Only mode shapes that can be correctly identified by the monitoring system are presented

in Section 4.1.2, and the corresponding mode shapes from the Abaqus model are presented in

Section 4.1.1. However, the natural frequencies and damping ratios from all the modes that are

identified through Cov-SSI are presented in Section 4.1.3, along with the natural frequencies

from the corresponding modes from Abaqus.

4.1.1 Results from Abaqus

The horizontal, vertical and torsional mode shapes and natural frequencies from Abaqus are

shown in Figures 4.1, 4.2 and 4.3, respectively.

43
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Figure 4.1: Mode shapes and corresponding natural frequencies of horizontal modes from Abaqus.

Figure 4.2: Mode shapes and corresponding natural frequencies of vertical modes from Abaqus.

Figure 4.3: Mode shapes and corresponding natural frequencies of torsional modes from Abaqus.
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4.1.2 Results from Cov-SSI

The stabilisation plot that is utilised to determine the physical modes from Cov-SSI is presented

in Figure 4.4, along with the auto-spectra of the horizontal, vertical and torsional acceleration

response at the midspan of the bridge. In the stabilisation plot, the poles that are assumed to

originate from physical modes are marked with a grey, dotted line.

Figure 4.4: Results from the acceleration recording that was chosen as the basis for Cov-SSI. (a) Stabilisation plot.
Poles assumed to be from physical modes are marked with a grey, dotted line. (b),(c),(d) Auto-spectra of the accel-
eration response at the midspan, for the horizontal, vertical and torsional component, respectively.

The estimated horizontal, vertical and torsional mode shapes, natural frequencies and damp-

ing ratios found from Cov-SSI are shown in Figures 4.5, 4.6 and 4.7, respectively. The mode

shapes are assumed to have zero values at the bridge tower locations.
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Figure 4.5: Estimated mode shapes and corresponding natural frequencies and damping ratios of horizontal modes
from Cov-SSI.

Figure 4.6: Estimated mode shapes and corresponding natural frequencies and damping ratios of vertical modes
from Cov-SSI.

Figure 4.7: Estimated mode shapes and corresponding natural frequencies and damping ratios of torsional modes
from Cov-SSI.
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4.1.3 Comparison of Modal Parameters from Abaqus and Cov-SSI

The natural frequencies and damping ratios of all the horizontal, vertical and torsional modes

that are identified with Cov-SSI are shown in Tables 4.1, 4.2 and 4.3, respectively. The natural

frequencies of the corresponding modes from Abaqus are shown in the same tables. Two of

the horizontal modes from Abaqus are not identified with Cov-SSI. For comparison, the relative

differences between the natural frequencies found with Cov-SSI and Abaqus are also given in

these tables. It should be noted that the relative differences are calculated by including three

significant figures for the values of the natural frequencies, as opposed to the values given in

the tables. Furthermore, the natural frequencies from the two methods are plotted against each

other in Figure 4.8.

Table 4.1: Modal parameters for the horizontal modes: natural frequencies from Abaqus ( f Abaqus ) and Cov-SSI
( fOM A), relative differences between the natural frequencies from the two methods (∆ fn) and damping ratios from
Cov-SSI (ξOM A).

Mode f Abaqus fOM A ∆ fn = fOM A− f Abaqus

f Abaqus
·100 ξOM A

number [Hz] [Hz] [%] [%]
1 0.054 0.055 1.1 0.68
2 0.12 0.12 2.5 1.4
3 0.23 0.24 3.9 0.67
4 0.40 0.41 3.5 1.5
5 0.59 - - -
6 0.89 - - -

Table 4.2: Modal parameters for the vertical modes: natural frequencies from Abaqus ( f Abaqus ) and Cov-SSI ( fOM A),
relative differences between the natural frequencies from the two methods (∆ fn) and damping ratios from Cov-SSI
(ξOM A).

Mode f Abaqus fOM A ∆ fn = fOM A− f Abaqus

f Abaqus
·100 ξOM A

number [Hz] [Hz] [%] [%]
1 0.12 0.12 2.6 5.4
2 0.14 0.15 2.1 3.1
3 0.21 0.21 0.0 3.3
4 0.22 0.22 1.4 2.5
5 0.29 0.29 1.0 1.5
6 0.35 0.36 2.0 1.1
7 0.42 0.43 1.7 1.5
8 0.50 0.51 2.2 1.3
9 0.59 0.60 1.5 1.0

10 0.69 0.69 0.6 0.90
11 0.79 0.80 1.0 0.66
12 0.90 0.90 0.0 1.3
13 1.0 0.98 -3.8 0.52
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Table 4.3: Modal parameters for the torsional modes: natural frequencies from Abaqus ( f Abaqus ) and Cov-SSI
( fOM A), relative differences between the natural frequencies from the two methods (∆ fn) and damping ratios from
Cov-SSI (ξOM A).

Mode f Abaqus fOM A ∆ fn = fOM A− f Abaqus

f Abaqus
·100 ξOM A

number [Hz] [Hz] [%] [%]
1 0.44 0.45 2.3 1.1
2 0.59 0.62 6.2 1.1
3 0.88 0.93 5.8 0.80

Figure 4.8: Natural frequencies from Cov-SSI plotted against the ones from the Abaqus analysis. A 45° line is also
plotted, to illustrate perfect correlation between the natural frequencies. (a),(b),(c) Plots of horizontal, vertical and
torsional natural frequencies, respectively.

4.2 Wind Tunnel Test

In this section, the results from the wind tunnel tests are presented. Figure 4.9 shows the plots

used to determine the expressions for the ADs as functions of the reduced velocity, V̂ . The plots

illustrate both the data from the wind tunnel tests and the curve fits to the data. All the fit-

ted curves are 2nd degree polynomials, which are only valid in the range of reduced velocities

between 1.35 and 17. Outside this range, the curves are estimated as constant values, corre-

sponding to the start and end values of the curves. Table 4.4 presents the final expressions for

the ADs, which are obtained from the fitted curves in Figure 4.9.
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Figure 4.9: Plots used to determine the expressions for the ADs. (a),(b),(c) ADs related to damping, multiplied by
reduced frequency, K , against reduced velocity, V̂ . (d),(e),(f) ADs related to stiffness, multiplied by K 2, against V̂ .
The blue dots illustrate the values from the wind tunnel tests, while the red curves show the curve fits.

Table 4.4: Expressions for the ADs as functions of the reduced velocity, V̂ .

AD Expression
V̂ ≤ 1.35 1.35 < V̂ < 17 V̂ ≥ 17

P∗
1 −0.088 /K (0.0034V̂ 2 −0.071V̂ +0.0015)/K −0.22 /K

H∗
1 −2.3 /K (0.0053V̂ 2 −0.12V̂ −2.2)/K −2.6 /K

A∗
2 −0.22 /K (0.0017V̂ 2 −0.045V̂ −0.16)/K −0.43/K

P∗
4 0.029 /K 2 (−0.000087V̂ 2 +0.0022V̂ +0.026)/K 2 0.039 /K 2

H∗
4 −0.10 /K 2 (−0.0014V̂ 2 +0.033V̂ −0.15)/K 2 −0.0084 /K 2

A∗
3 0.95 /K 2 (−0.00083V̂ 2 +0.019V̂ +0.93)/K 2 1.0 /K 2

Furthermore, Figure 4.10 shows the plots of the load coefficients, CD , CL and CM , against the

angle of flow incidence,α. Similar as for the ADs, the plots illustrate both the data from the wind

tunnel tests and the curve fits to the data. The fitted curves are 2nd degree polynomials. Table

4.5 presents the final values for the load coefficients C̄D , C̄L , C̄M , C ′
D , C ′

L and C ′
M , obtained from

the fitted curves in Figure 4.10.
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Figure 4.10: Plots of load coefficients against the angle of flow incidence, α. (a) CD , (b) CL , (c) CM . The blue dots
illustrate the values from the wind tunnel tests, while the red curves show the curve fits.

Table 4.5: Values for the load coefficients.

C̄D C̄L C̄M C ′
D C ′

L C ′
M

0.79 -0.35 -0.015 -1.1 3.4 1.1

4.3 Wind Field

In this section, the main results from the analysis of the wind field at the Hålogaland Bridge

are presented. Section 4.3.1 presents wind characteristics such as mean wind speed and tur-

bulence intensities obtained from the measurements. Section 4.3.2 concerns results related to

the turbulence spectra and the turbulence parameters. Finally, in Section 4.3.3, results from the

probabilistic modelling of the wind field are presented.

4.3.1 Wind Field Characteristics

The mean wind speed from all 10 minute recordings from the Hålogaland Bridge are presented

in Figure 4.11. In Figure 4.11(a), the mean wind speed is presented using a wind rose plot, il-

lustrating the relation between the magnitude and the direction of the wind. In addition, Figure

4.11(b) presents a histogram of the mean wind speed, showing the distribution of the recorded

mean wind speeds.
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(a) (b)

Figure 4.11: Mean wind speeds from all 10 min recordings presented as (a) a wind rose plot and (b) a histogram.

Furthermore, the turbulence intensities are presented in Figure 4.12 using wind rose plots.

Additionally, the turbulence intensities are depicted using scatter plots in Figure 4.13, showing

how the turbulence intensities vary with the mean wind speed.

(a) (b)

Figure 4.12: Wind rose plots of turbulence intensities: (a) along-wind turbulence intensity and (b) vertical turbu-
lence intensity.
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Figure 4.13: Turbulence intensities against mean wind speed: (a) along-wind turbulence intensity and (b) vertical
turbulence intensity. The dashed lines illustrate the division of the turbulence intensities into three segments.

Finally, Figure 4.14 presents plots to illustrate how selected wind field characteristics vary

along the bridge girder. Only wind data from one single 10 minute recording were utilised for

these calculations. The recording was chosen to display the general trend that could be observed

from investigation of several recordings.

(a)

(b) (c)

Figure 4.14: Wind characteristics along the bridge girder of the Hålogaland Bridge: (a) mean wind speed, (b) along-
wind turbulence intensity and (c) vertical turbulence intensity.
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4.3.2 Wind Turbulence Spectra

Figures 4.15 and 4.16 show the estimated auto-spectra and normalised cross-spectra of the tur-

bulence components for two arbitrary recordings. It is chosen to showcase recordings with rel-

atively high mean wind speeds, in order to avoid non-stationary behaviour of the wind.

Figure 4.15: Estimated auto-spectra of turbulence components for a 10 minute recording (V = 15m/s): (a) along-
wind turbulence and (b) vertical turbulence.

Figure 4.16: Estimated normalised cross-spectra of turbulence components for a 10 minute recording (V = 17m/s):
(a) along-wind turbulence and (b) vertical turbulence. The blue dots illustrate the spectra from the measurements.
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Furthermore, the histograms and the fitted probability distributions of the turbulence pa-

rameters, obtained as explained in Section 3.6, are presented in Figures 4.17-4.20. As previously

explained, only data from 10 minute recordings where the mean wind comes approximately per-

pendicular to the bridge x-axis are included in these probability distributions. The lognormal

distribution parameters, µ and σ, are indicated in the figures.

(a) (b)

(c)

Figure 4.17: Probability distributions of along-wind turbulence intensity.

(a) (b)

(c)

Figure 4.18: Probability distributions of vertical turbulence intensity.
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(a) (b)

Figure 4.19: Probability distributions of the spectral parameters: (a) u component and (b) w component.

(a) (b)

Figure 4.20: Probability distributions of the decay coefficients: (a) u component and (b) w component.

4.3.3 Probabilistic Wind Field Model

In this section, the results from the probabilistic wind field modelling are presented. As previ-

ously explained, only the turbulence standard deviations,σu andσw , are included in the model.

Figure 4.21 shows the scatter plot matrices of the turbulence standard deviations for east-

erly and the westerly winds. The plots only include data from recordings with mean wind speed

larger than 11 m/s, as the probabilistic model only applies to this mean wind speed range. This

figure is included to illustrate the probability distributions for the parameters as well as the cor-

relation between them. The histograms for the parameters are shown on the diagonals, along

with the fitted lognormal probability distributions. The off-diagonal plots illustrate the correla-

tion between the parameters, along with linear regression fits of the data, to clearly illustrate the

correlation.
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(a) (b)

Figure 4.21: Scatter plot matrices of the turbulence standard deviations: (a) easterly winds and (b) westerly winds.
The plots on the diagonals illustrate the histograms of σu,w , while the off-diagonal plots illustrate the correlation
between σu and σw .

Furthermore, Figures 4.22 and 4.23 show the turbulence standard deviations plotted against

the mean wind speed, for the easterly and westerly winds, respectively. The linear regression fits

of the data are also shown in the figures, to clearly illustrate the linear dependence between the

turbulence standard deviations and the mean wind speed.

Figure 4.22: Turbulence standard deviations against mean wind speed for easterly winds: (a) σu and (b) σw . The
straight lines illustrate the linear regression fits of the data.
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Figure 4.23: Turbulence standard deviations against mean wind speed for westerly winds: (a) σu and (b) σw . The
straight lines illustrate the linear regression fits of the data.

Figures 4.24 and 4.25 show the plots of the lognormal distribution parameters of the turbu-

lence standard deviations against the mean wind speed for easterly and westerly winds, respec-

tively. Figure 4.26 shows the plot of the correlation coefficients of the turbulence standard de-

viations against mean wind speed, for both easterly and westerly winds. The plots illustrate the

parameters calculated for each mean wind speed interval, in addition to the curves that are used

for the probabilistic model of the parameters. As can be seen from the figures, the µ̃-parameters

are modelled as linear curves, while σ̃ and ρσuσw are modelled as constant values, as explained

in Section 3.7.

Figure 4.24: Lognormal distribution parameters against mean wind speed, for the turbulence standard deviations
of easterly winds: (a) µ̃ and (b) σ̃. The dotted curves show the calculated parameters for each mean wind speed
interval, while the dashed lines show the curves used for the probabilistic model of σu,w .



CHAPTER 4. RESULTS 58

Figure 4.25: Lognormal distribution parameters against mean wind speed, for the turbulence standard deviations
of westerly winds: (a) µ̃ and (b) σ̃. The dotted curves show the calculated parameters for each mean wind speed
interval, while the dashed lines show the curves used for the probabilistic model of σu,w .

Figure 4.26: Correlation coefficients of the turbulence standard deviations against mean wind speed, for both east-
erly and westerly winds. The dotted curves show the calculated correlation coefficients for each mean wind speed
interval, while the dashed lines show the curves used for the probabilistic model of σu,w .

Furthermore, the final expressions for the lognormal distribution parameters and correlation

coefficients that are utilised to simulate the turbulence standard deviations are presented in

Tables 4.6 and 4.7, respectively. The µ̃-parameters are functions of the mean wind speed, V ,

while σ̃ and ρσuσw are constants.

Table 4.6: Lognormal distribution parameters for the probabilistic model of the turbulence standard deviations.

σu σw

East µ̃ -0.889 + 0.0705V -1.155 + 0.0419V
σ̃ 0.3211 0.2481

West µ̃ -0.685 + 0.0446V -0.982 + 0.0214V
σ̃ 0.4324 0.4604

Table 4.7: Correlation coefficient matrix for the probabilistic model of the turbulence standard deviations.

σu σw

East σu 1 0.8713
σw 0.8713 1

West σu 1 0.9268
σw 0.9268 1
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In order to illustrate how well the probabilistic model of the turbulence standard deviations

is able to reproduce the measured turbulence standard deviations, several plots of the measured

and simulated parameters are presented. Figures 4.27 and 4.28 show scatter plots of the mea-

sured and simulated turbulence standard deviations against the mean wind speed, for easterly

and westerly winds, respectively.

(a) (b)

Figure 4.27: Scatter plots of measured and simulated turbulence standard deviations against mean wind speed, for
easterly winds: (a) σu and (b) σw .

(a) (b)

Figure 4.28: Scatter plots of measured and simulated turbulence standard deviations against mean wind speed, for
westerly winds: (a) σu and (b) σw .

Furthermore, Figure 4.29 shows scatter plots of vertical turbulence standard deviation plot-

ted against along-wind turbulence standard deviation, from both measurements and simula-

tions.
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(a) (b)

Figure 4.29: Scatter plots of σw against σu , from both measurements and simulations: (a) easterly winds and (b)
westerly winds.

4.4 Response of the Bridge

In this section, the root mean square (RMS) acceleration response of the Hålogaland Bridge

is illustrated in different ways. Section 4.4.1 presents plots illustrating how the wind field is

influencing the measured response. Furthermore, in Section 4.4.2, the results from the buffeting

response predictions are presented together with the measured response.

4.4.1 Measured Response

The measured RMS acceleration response is presented in Figure 4.30 using wind rose plots,

showcasing the relation between the magnitude of the response and the mean wind direction.
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(a) (b)

(c)

Figure 4.30: Wind rose plots of RMS acceleration response from measurements: (a) lateral component [m/s2], (b)
vertical component [m/s2] and (c) torsional component [rad/s2].

Additionally, in Figure 4.31 the measured RMS acceleration response is plotted against the

mean wind speed, colour coded according to the turbulence intensity.
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(a) (b)

(c)

Figure 4.31: RMS acceleration response from measurements against mean wind speed: (a) lateral component, (b)
vertical component and (c) torsional component. Colour coding according to turbulence intensity.

Lastly, in Figure 4.32 the measured RMS acceleration response is plotted against the mean

wind speed, colour coded according to the mean wind direction.
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(a) (b)

(c)

Figure 4.32: RMS acceleration response from measurements against mean wind speed: (a) lateral component, (b)
vertical component and (c) torsional component. Colour coding according to mean wind direction.

4.4.2 Comparison of Measured and Predicted Response

In this section, plots of the RMS acceleration response, from both predictions and measure-

ments, against the mean wind speed are presented. The predicted buffeting response is calcu-

lated for the five cases presented in Section 3.8. The values of the turbulence parameters, Au,w ,

Ku,w and Iu,w , corresponding to each case are presented in Table 4.8. Figure 4.33 displays the

predicted buffeting response for case 1-4. As mentioned, the turbulence parameters used to

calculate the predicted response for these cases are obtained by only considering perpendicular

wind. Therefore, only measured response from wind deviating less than 20 degrees from the two

perpendicular directions (90 and 270 degrees) are plotted in Figure 4.33.
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Table 4.8: Turbulence parameters for the auto-spectra and the normalised cross-spectra of turbulence, used to
calculate the predicted buffeting response.

Case Au Aw Ku Kw Iu
∗∗ Iw

∗∗
1 2 3 1 2 3

Case 1 8.3 1.9 8.2 8.6 0.0726 0.0741 0.0735 0.0456 0.0408 0.0346
Case 2 8.3 1.9 8.2 8.6 0.146 0.128 0.121 0.0932 0.0673 0.0576
Case 3 8.3 1.9 5 4.6 0.0726 0.0741 0.0735 0.0456 0.0408 0.0346
Case 4 3.1 0.89 8.2 8.6 0.0726 0.0741 0.0735 0.0456 0.0408 0.0346

Case 5∗ E: 13.9 E: 1.7 7.8 8.9 S S S S S S
W: 9.4 W: 1.8 7.8 8.9

∗E: value for easterly winds, W: value for westerly winds, S: value calculated from simulatedσu,w .
∗∗1: V < 10 m/s, 2: 10 ≤V < 15 m/s, 3: V ≥ 15 m/s

(a) (b)

(c)

Figure 4.33: RMS acceleration response from predictions and measurements against mean wind speed: (a) lateral
component, (b) vertical component and (c) torsional component. The grey dots illustrate the measured response,
while the continuous lines illustrate the different cases of predicted response.
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Furthermore, Figures 4.34 and 4.35 display the predicted buffeting response for case 5, for

easterly and westerly winds, respectively. The response is only plotted for mean wind speeds

above 11 m/s, as the probabilistic wind field model only applies to this mean wind speed range.

(a) (b)

(c)

Figure 4.34: Scatter plots of RMS acceleration response from predictions and measurements against mean wind
speed for easterly winds: (a) lateral component, (b) vertical component and (c) torsional component.
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(a) (b)

(c)

Figure 4.35: Scatter plots of RMS acceleration response from predictions and measurements against mean wind
speed for westerly winds: (a) lateral component, (b) vertical component and (c) torsional component.



Chapter 5

Discussion

5.1 Modal Analysis

In order to verify the accuracy of the Abaqus model, the modal parameters of the Hålogaland

Bridge obtained from Abaqus and Cov-SSI are compared. All the modal parameters are pre-

sented in Section 4.1.

5.1.1 Comparison of Modal Parameters from Abaqus and Cov-SSI

As previously mentioned, all identified modes with natural frequencies up to 1 Hz are consid-

ered from Cov-SSI. The reason is that the buffeting response calculations only include modes up

to 1 Hz from Abaqus. The stabilisation plot that is utilised to identify the physical modes, dis-

played in Figure 4.4, shows clear straight sequences of stable poles, with little scatter. Nearly all

poles in the plot are identified as physical modes. The auto-spectral densities of the horizontal,

vertical and torsional acceleration response at the midspan of the bridge are also shown in the

figure. The peaks of the auto-spectra correspond to the straight sequences of stable poles from

the stabilisation plots, and corroborate the classification of the horizontal, vertical and torsional

modes.

To compare the modal parameters obtained from Abaqus and Cov-SSI, it is necessary to as-

sure correct mode pairing between the modes obtained from the two methods. Thus, both the

natural frequencies and the mode shapes corresponding to each mode need to be regarded.

The modes that are considered as corresponding modes between the two methods have a sim-

ilar mode shape and natural frequency. Only the overall shapes, including the symmetry of the

mode shapes and the number of half-sines, are considered in the comparison. The identified

modes from Cov-SSI include 4 horizontal, 13 vertical and 3 torsional modes. All of these modes

are also found from the modal analysis in Abaqus. A visual inspection of the mode shapes from

Abaqus, shown in Figures 4.1, 4.2 and 4.3, and the mode shapes from Cov-SSI, shown in Figures

4.5, 4.6 and 4.7, shows that the shapes largely agree.

67
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As explained earlier, not all identified modes are presented in Sections 4.1.1 and 4.1.2. Only

mode shapes that can be correctly identified by the monitoring system are presented. The rea-

son is that eight accelerometers on the bridge are utilised for the Cov-SSI: one at the midspan of

the bridge, four on the left side and three on the right side. Thus, the mode shapes found with

Cov-SSI will include a maximum of six or seven half-sines, for asymmetric or symmetric mode

shapes, respectively. Mode shapes with more half-sines than this will be wrongfully represented.

This is the case for 6 of the vertical modes that are identified from Cov-SSI. These are not shown

in Section 4.1.2. However, the corresponding modes were found from the Abaqus model. Al-

though these mode shapes from Cov-SSI can not be correctly represented, the similarity in the

symmetry of the mode shapes and the values of the natural frequencies with the modes from

Abaqus, justify the mode pairing. The natural frequencies of these modes from Cov-SSI and

Abaqus are shown in Table 4.2, along with the natural frequencies from the correctly identified

modes.

Furthermore, the natural frequencies of all identified modes from Cov-SSI and the corre-

sponding modes from Abaqus are presented in Tables 4.1, 4.2 and 4.3. The relative differences

between the natural frequencies obtained from the two methods, which are also shown in these

tables, demonstrate that the natural frequencies are very similar. The largest relative difference

is 6.2%, however most of the relative differences are below 3%. Figure 4.8 also illustrates the

similarity of the natural frequencies obtained from the two methods. In addition, it can be seen

that all natural frequencies obtained from Cov-SSI are larger than the corresponding values from

Abaqus, except from the natural frequency of vertical mode number 13. This indicates that there

is a systematic error present.

As can be seen from Table 4.1, horizontal mode number 5 and 6 were only found from the

modal analysis in Abaqus, not from Cov-SSI. There are also several other modes found from the

Abaqus analysis, which were not identified from Cov-SSI. However, these are modes related to

the hangers or other parts of the bridge than the girder. Only modes related to the girder can

be identified from Cov-SSI, since only sensors on the bridge girder are utilised. All modes from

Abaqus with natural frequencies up to 1 Hz are included in the buffeting response calculations,

including the modes that are mainly related to other parts than the bridge girder. However, since

the response is calculated for the bridge girder, these modes have little contribution to the total

response.

Furthermore, the damping ratios of all the modes that are identified from Cov-SSI are pre-

sented in Tables 4.1, 4.2 and 4.3. The damping ratios are low, as expected. Yet, they are all larger
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than the structural damping ratio assumed in the buffeting response calculations, which is 0.5%

for all modes. However, the damping ratios calculated from Cov-SSI include contributions from

both structural and aerodynamic damping of the bridge. Therefore, the estimated damping ra-

tios depend on the mean wind speed of the chosen acceleration interval. As the mean wind

speed corresponding to the acceleration interval used to perform the Cov-SSI is 18 m/s, there

is likely a significant contribution to the damping ratios from the aerodynamic damping. It is

also worth mentioning that the damping ratios corresponding to the three last horizontal modes

showed great variation, resulting in highly unreliable estimates. Furthermore, the tables show

that the bridge is clearly under-critically damped, which is a necessary assumption for utilising

the formulas to calculate the natural frequencies and damping ratios, given in Equation (2.33).

5.1.2 Reasons for Discrepancies

To summarise, all modes found with Cov-SSI are also obtained from the Abaqus analysis, but

two of the horizontal modes from Abaqus were not identified with Cov-SSI. Although the Cov-

SSI is performed to verify the Abaqus model, there are several sources of error related to the

method, and several assumptions that need to be fulfilled. Firstly, after investigating the sta-

bilisation plots from several different 30 minute intervals of acceleration recordings from the

Hålogaland Bridge, only one interval is chosen to perform the final identification of the modes.

The different intervals reveal very similar stabilisation plots. The same straight sequences of sta-

ble poles are found in most of the plots. The stabilisation plot from the interval that is chosen in

the end includes the evident poles from all the investigated plots. However, the two last horizon-

tal modes from Abaqus can not be identified from this recording. Since the loads on the bridge

are not controlled when conducting the OMA, it is assumed that the bridge is excited by a broad

band of frequencies. If this is not the case, not all modes of interest might be excited. Thus, the

reason for the two unidentified modes from Cov-SSI might be that they were weakly excited dur-

ing the chosen recording. By further investigation and mode identification from several other

acceleration recordings, these modes might also be identified. However, as operational modal

analysis is not a large part of this thesis, further investigations are not conducted.

Furthermore, if the assumption of broad band excitation is wrong and the loads on the bridge

include dominant frequency components, these might be present in the stabilisation plot along

with the actual modes of the bridge. This might be the case for the poles that are present in the

chosen stabilisation plot, but are not identified as physical modes. Some of the reasons why

these poles are not identified as structural modes of the Hålogaland Bridge, are that the mode
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shapes from the poles look strange, the poles are not found from other recordings or no modes

with natural frequencies close to these values are obtained from Abaqus.

It should also be mentioned that the modal parameters from Cov-SSI are found by simply

picking one of the poles in the straight sequences of stable poles that are identified as physical

modes. The natural frequencies and mode shapes corresponding to each of the poles within

the straight sequences are almost identical. However, the damping ratios vary more. There-

fore, these values are more uncertain, and the choice of pole influences these values to a greater

extent. Furthermore, the choice of which acceleration interval to use as the basis for the iden-

tification of the modes from Cov-SSI might have a small influence on the modal parameters.

However, the difference of the modal parameters obtained from different recordings should be

small, as the system is assumed to be stationary.

The choices made when modelling the bridge in Abaqus will obviously have a great impact

on the accuracy of the modal parameters obtained from the model. As the model is not made

by the authors of this thesis, the influence of the modelling choices has not been investigated.

The modal analysis in Abaqus is based on solving the eigenvalue problem given in Equation

(2.16). This means that the damping of the bridge is neglected. Furthermore, this equation rep-

resents the eigenvalue problem for still-air conditions. Thus, the self-excited forces, which will

be present because the bridge is exposed to wind loading, are not considered. As explained in

Section 2.5.1, the self-excited forces depend on the motion of the bridge. Therefore, these forces

will influence the eigenvalue problem. The fact that Abaqus provides still-air vibration modes,

might cause small differences with the modal parameters obtained from Cov-SSI, as the Hålo-

galand Bridge is exposed to wind loading. However, a study conducted by Øiseth et al. (2015)

indicates that errors of the natural frequencies, caused by neglecting the in-wind conditions, are

limited. In the study, the in-wind natural frequencies of the Hardanger Bridge were predicted,

by the use of a finite element model of the bridge in combination with the aerodynamic deriva-

tives of the bridge cross section. The study showed that the natural frequencies barely changed

for mean wind speeds that are relevant in this thesis.

From the comparison of the modal parameters obtained from the Abaqus model and Cov-

SSI, it is concluded that the Abaqus model is able to represent the dynamic behaviour of the

Hålogaland Bridge in a satisfactory way. The model includes all vibration modes that were iden-

tified from the measurements on the bridge, and both the mode shapes and natural frequencies

largely agree with the ones obtained from Cov-SSI.
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5.2 Wind Tunnel Test

The wind tunnel tests are performed to obtain expressions for the ADs and the load coefficients,

used to model the buffeting load. Observing Figure 4.9, it can be seen that the polynomials fit

reasonably well for all the ADs, although several discrepancies are present. It is worth noting that

the values of K P∗
1 from the test indicate two distinct trends for low reduced velocities, which is

the result of different mean wind speeds. The difference in the values between the two trends

for the low reduced velocities results in the polynomial not fitting one of the trends, meaning

that it does not manage to reflect all aspects of the aerodynamic behaviour that the AD is sup-

posed to describe. Furthermore, the polynomial of K 2H∗
4 differs greatly from the measured data

for reduced velocities above 6, with the values seemingly following two different trends before

and after a certain reduced velocity. This causes the polynomial to be ill-fitting in this range of

reduced velocities. The polynomials of K H∗
1 and K 2P∗

4 also show large deviations from some of

the measured data points. As a final comment regarding the ADs, it is worth mentioning that

the curves used to determine the expressions for the ADs are estimated as constant values out-

side the range of measured data points, in order to avoid unrealistic values. As there in reality

is no information about the ADs in these ranges, an uncertainty is introduced into the buffeting

response calculations.

The load coefficients shown in Figure 4.10 all show a clear and distinct trend. CD shows

overall more scatter than CL and CM . CL has some scatter around zero degrees, which is the

angle of flow incidence used in the calculations, meaning that the uncertainty of the coefficient

is at its maximum at this point. However, the fitted polynomials match well for all the load

coefficients.

5.3 Wind Field

5.3.1 Wind Field Characteristics

It is important to analyse the wind characteristics at the Hålogaland Bridge, as the wind field

greatly affects the wind-induced response. Starting from Figure 4.11(a) it can be seen that the

easterly winds are mostly perpendicular to the bridge, while the westerly winds show more

scatter. This can be explained by the bridge being located in the innermost part of the Ofot-

fjord, where it branches off into two smaller fjords called the Rombak fjord and the Herjangs-
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fjord, which stretches eastwards and northwards respectively. The Hålogaland Bridge lies at

the mouth of the Rombak fjord, and the relatively steep mountainsides surrounding the fjord

explain the predominance of perpendicular wind from the east (E). To the west, due to the con-

nection with the Ofotfjord, the bridge is mainly exposed to wind coming from southwest (SW).

However, the figure indicates that a significant amount of wind comes from two additional di-

rections, namely northwest and south. As the buffeting theory is developed for wind approach-

ing perpendicular to the bridge x-axis, the high amount of skew winds present at the site may

cause discrepancies in the buffeting response predictions. The discarding of all recordings with

mean wind below 3 m/s is clearly visible as the empty ring around the bridge, with the lowest

mean wind speed used in the thesis being 3.1 m/s. The highest mean wind speed is around 25

m/s, while most of the recordings have a mean wind of 5-10 m/s, which is also seen in Figure

4.11(b). It should be noted that even though the amount of high mean wind speeds from the

east is larger than from the west, the highest mean wind speed comes from the latter direction.

Figure 4.12 shows how the along-wind and vertical turbulence intensities are related to the

mean wind speed and direction. It can be seen that high turbulence intensities generally corre-

spond to low mean wind speeds. The plots show that there is a large scatter of the turbulence

intensities for low mean wind speeds, which is most likely caused by non-stationary behaviour.

Additionally, as the turbulence standard deviations are divided by the mean wind speed to cal-

culate the turbulence intensities, similar standard deviations result in a larger scatter for low

mean wind speeds than for higher. It is noticeable that high mean wind speeds result in less

scatter of the turbulence intensities, and that the turbulence intensities in general are lower

than for low mean wind speeds. Even if most of the high turbulence intensities occur for the

lowest mean wind speeds, it can be worth noticing the cluster of fairly high turbulence intensi-

ties for winds coming from the south with mean wind speeds between 10-15 m/s. This may be

attributed to the mountains south of the bridge causing more turbulence.

The large amount of scatter for low mean wind speeds can also be seen in Figure 4.13. In

addition, a linear dependence between the turbulence intensities and the mean wind speed is

noticeable in this figure, particularly for mean wind speeds below 15 m/s. It can be seen that the

majority of the turbulence intensities lie in the range 0.02-0.2 and 0.01-0.1 for the along-wind

and vertical components, respectively.

As previously explained, the length of the time series is chosen to satisfy the assumption of

stationarity. In cases where the wind speed levels are sufficiently high, examination of the time

series indicates that this assumption is correct. However, when the wind speed is low, several
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time series show signs of non-stationarity, in the form of rapid changes in the wind direction.

The discarding of all time series with mean wind speeds below 3 m/s is done to exclude effects

due to non-stationarity. Yet, the histogram of the mean wind speeds, shown in Figure 4.11(b),

clearly illustrates that a significant amount of the remaining recordings have mean wind speeds

barely above 3 m/s. This means that a significant part of the included wind data might exhibit

non-stationary behaviour. There are methods to evaluate the stationarity of the data, however

no such tests are conducted in this thesis. For further analyses in this thesis, it is therefore im-

portant to consider that one of the base assumptions of the buffeting theory may be unsatisfied,

and might cause discrepancies between the measured and the predicted acceleration response.

Another assumption is that of a homogeneous wind field. The mean wind speed and the tur-

bulence intensities along the bridge girder are studied for several 10 minute recordings, to inves-

tigate how the wind characteristics vary along the span. Figure 4.14 shows plots of these wind

characteristics along the bridge for one 10 minute recording, and illustrates the general trend

observed in all the investigated recordings. Looking at the mean wind speed (Figure 4.14(a)),

it can be seen that it tends to be lower at the south end of the bridge and increases towards

the north end, with the largest relative difference being around 6.5% for the specific recording.

When it comes to the turbulence intensities (Figures 4.14(b) and 4.14(c)), it is observable that

they vary most for the anemometers that are closely spaced, while there in general seems to be

no specific trend along the bridge girder. The largest relative differences for the turbulence in-

tensities are much larger than those for the mean wind speed, with a 21.5% and a 29.3% relative

difference for Iu and Iw , respectively. This reveals that in addition to a temporal variation, there

is also a spatial variation of the turbulence intensities. These findings indicate that the wind

field along the bridge is non-homogeneous, although it is difficult to determine the extent of

the non-homogeneity. This is also in accordance with the expectation, which is based on the

long span of the Hålogaland Bridge combined with a surrounding terrain with a certain amount

of irregularity in the topography.

5.3.2 Wind Turbulence Spectra

In Figure 4.15, the estimated auto-spectra of the along-wind and vertical turbulence for a 10

minute recording with a mean wind speed of 15 m/s are depicted. Both the spectra from N400

with the proposed spectral parameters and the Kaimal spectra using the fitted spectral param-

eters are shown on top of the estimated spectra from measurements. It is observable that the

fitted Kaimal spectra overall represents the turbulence to a greater degree than the N400 spec-
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tra, especially in the 0.1-1 Hz frequency range. The normalised cross-spectra (Figure 4.16) for

an arbitrary 10 minute recording with a mean wind speed of 17 m/s indicate that the coherence

of the along-wind turbulence is somewhat higher than what is given by N400, while it is slightly

lower for the vertical turbulence.

The probability distributions of the turbulence parameters are shown in Figures 4.17-4.20.

The turbulence intensities are divided into three segments, containing values corresponding to

mean wind speeds below 10 m/s, between 10 and 15 m/s or larger than 15 m/s. This is done to

improve the buffeting response predictions for case 1-4, since the turbulence intensities show

a linear dependence on the mean wind speed, as stated earlier. In this way, the percentile val-

ues of the turbulence intensities corresponding to each mean wind speed interval will be more

accurate. However, the amount of samples in each segment will be smaller, which can cause

issues when trying to represent the data using a lognormal probability distribution. Looking

at the figures, it can be seen that the lognormal probability distributions fit the histograms of

the turbulence parameters to a varying degree. For the turbulence intensities (Figures 4.17 and

4.18), a lognormal distribution seems to represent the two segments for mean wind speeds be-

low 10 m/s and between 10-15 m/s. For the third segment, where the sample size is smallest,

the agreement between the fitted lognormal distributions and the histograms are less reason-

able. For the spectral parameters (Figure 4.19), it is observed that Au is well represented by a

lognormal distribution, while Aw is poorly represented. This is due to the lower boundary of the

considered interval for the least squares fitting of the spectral parameters being set to 1.0. In the

case of Aw , this value seems to be too high, causing the histogram to be distorted. Thus, the his-

togram would probably fit better to a lognormal distribution if lower values had been included

in the considered interval for the least squares fitting. Lastly, the decay coefficients (Figure 4.20)

are well represented by lognormal distributions.

Overall, the findings from the analysis of the wind field clearly imply that there is a large vari-

ability of the wind characteristics at the Hålogaland Bridge. This is in accordance with previous

long-term monitoring studies of bridges (Bastos et al., 2018)(Fenerci et al., 2017)(Fenerci and

Øiseth, 2017). Furthermore, similar to the latter study, the turbulence parameters are found to

be represented by lognormal distributions.
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5.3.3 Probabilistic Wind Field Model

In order to account for the variability of the wind field at the Hålogaland Bridge, a probabilistic

model of the wind field has been established. The probabilistic model only includes the turbu-

lence standard deviations. The plots in Figure 4.21 show that the turbulence standard deviations

for both easterly and westerly winds can be well represented by lognormal probability distribu-

tions. Furthermore, it is evident from the figure that the standard deviations of the turbulence

components are highly correlated for both easterly and westerly winds, as the scatter between

the turbulence standard deviations shows a clear linear trend. In addition, the values for the cor-

relation between the turbulence standard deviations, given in Table 4.7, are very high. Figures

4.22 and 4.23 show that there is a linear dependence between σu,w and V . This dependence is

especially clear for the easterly winds. For the westerly winds, the dependence is not as clear.

However, the linear regression fits of the data highlight the linear trends also for these winds.

The fact that there is much less data for the westerly winds might explain why the linear trend is

not as conspicuous for these winds.

Due to the dependence of the mean wind speed on the turbulence standard deviations, the

probability distributions ofσu andσw are determined conditional to the mean wind speed. Fig-

ures 4.24, 4.25 and 4.26 show the plots used to obtain the expressions for the lognormal distribu-

tion parameters and the correlation coefficients for the probabilistic model. The µ̃-parameters

are stabilising at a mean wind speed of approximately 11 m/s, where they start to show a lin-

ear variation. Thus, these parameters are modelled with linear curve fits to the data points in

the stabilised range. As can be seen from the figures, the curves match the data points with

mean wind speed larger than 11 m/s very well, but do not fit at all for the other data points.

The σ̃-parameters do not stabilise at any mean wind speed for either of the turbulence standard

deviations for either direction, and are therefore modelled as constants. It is evident from the

figures that these parameters are in reality not constant, and that the model curves do not fit

the calculated values. The reason for approximating the σ̃-parameters as constants is to avoid

unrealistically low values for high mean wind speeds, as a curve fit to the data would result in

decreasing curves. With this approximation, the σ̃-parameters are overestimated for high mean

wind speeds. The plot of the correlation coefficients only show slight variations with the mean

wind speed, except for the correlation coefficient from the first mean wind speed interval for the

easterly winds. Thus, these parameters are also modelled as constants. The constant values for

σ̃ and ρσuσw are obtained by considering only data with mean wind speed above 11 m/s, as the
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model curves for the µ̃-parameters are only valid in this mean wind speed range.

Since the expressions for the lognormal distribution parameters and the correlation coeffi-

cients are obtained by only utilising data with mean wind speed larger than 11 m/s, the prob-

abilistic model of σu,w only applies to this mean wind speed range. It is worth noting that the

amount of data used to obtain the probabilistic model is rather limited. Consequently, the num-

ber of values available to estimate the probability distributions of σu,w for each mean wind

speed interval is small. Investigations of the histograms for each interval reveal that some of

them do not fit very well to a lognormal probability distribution. Thus, the lognormal param-

eters calculated for these intervals are not particularly accurate. Furthermore, it can be seen

from Figures 4.24, 4.25 and 4.26 that there are very few data points in the high wind speed

range. For the easterly and westerly winds there are only four and three points corresponding

to a mean wind speed above 11 m/s, respectively. Thus, the observation of a linear trend of the

µ̃-parameters for mean wind speeds larger than 11 m/s is based on very few points, and a small

wind speed range. The largest mean wind speed represented in the plots is approximately 17

m/s. It is therefore uncertain how well the calculated expressions for the lognormal parameters

and the correlation coefficients fit for higher mean wind speeds.

The performance of the probabilistic model of the turbulence standard deviations is assessed

by comparing measured and simulated values of σu and σw . Figures 4.27, 4.28 and 4.29 show

that the probabilistic model seems to represent the measured data reasonably well. As men-

tioned, due to the limited amount of data for mean wind speeds above 11 m/s, there were con-

cerns that the plots shown in Figures 4.24, 4.25 and 4.26 did not manage to capture the be-

haviour of the lognormal parameters and that the estimated expressions would be highly inac-

curate. This was especially a concern for mean wind speeds above 17 m/s, where there are no

data points. Looking at Figures 4.27 and 4.28, the simulated turbulence standard deviations ap-

pear to represent the measured ones also for mean wind speeds larger than 17 m/s reasonably

well. However it is difficult to assess the accuracy of the simulated turbulence parameters in

the highest mean wind speed range, as there are very few samples from the measurements to

compare with.

Additionally, the simulated turbulence parameters appear to reflect the linear dependence of

the turbulence standard deviations on the mean wind speed. This indicates that the calculated

expressions for µ̃ manage to reflect the dependence in an accurate way. This is most evident

in Figure 4.27, since the dependence of the turbulence standard deviations on the mean wind

speed is most apparent for the easterly winds. It can be seen both in Figures 4.27 and 4.28 that
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the scatter of the simulated σu and σw is at times smaller or larger than the scatter of the mea-

sured turbulence parameters. However, for the most part the scatter is largest for the simulated

turbulence parameters. For the easterly winds this is particularly noticeable in the higher mean

wind speed range, while for the westerly winds it is most apparent in the mid mean wind speed

range (14-20 m/s). This is probably due to the σ̃-parameters being modelled as constants, even

though in reality they are not constant at all. Figures 4.24 and 4.25 show that the σ̃-parameters

for the easterly winds have a decreasing trend, while the parameters for the westerly winds show

no apparent trend. For the easterly winds the constant σ̃ causes the variance of σu and σw to

be larger than the measured for mean wind speeds larger than 11 m/s. For the westerly winds

the variance is underestimated in the mean wind speed range of approximately 11-14 m/s, and

overestimated for mean wind speeds above 14 m/s.

Furthermore, Figure 4.29 shows that the probabilistic model of the turbulence standard de-

viations overall is able to represent the relationship between σu and σw in a good way. The

measured values of σu and σw clearly indicate a linear relationship between the two, with an

increasing amount of scatter for higher values, which can also be observed for the simulated

parameters. However, for high values of the turbulence standard deviations, the probabilistic

model seems less able to represent the correlation between the two components.

5.4 Response of the Bridge

The final part of the discussion pertains what is arguably the main objective of this thesis, which

is to assess to what degree the buffeting theory and wind field models are able to predict the true

wind-induced response of the Hålogaland Bridge. Before comparing the predicted response

with the measured response, the nature of the measured response as well as the influence of the

wind characteristics on the response is examined. This also provides more insight into possible

reasons for discrepancies between the predicted and the measured response.

5.4.1 Measured Response

Observing the wind rose plots of the RMS acceleration response in Figure 4.30, it is easy to detect

that the largest response corresponds to high mean wind speeds from the two main directions,

SW and E. It is noticeable that large values of the acceleration response mainly correspond to

winds from these two directions for the vertical and torsional components, while for the lat-

eral component, relatively large response is also recorded for skew winds. Furthermore, Figure
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4.31, where the RMS acceleration response is plotted against the mean wind speed, indicates

that high turbulence intensities are mainly related to low response for all components. For the

vertical and torsional acceleration response, it is mainly low vertical turbulence intensity that

correspond to large response. The lateral acceleration response on the other hand, seems less

affected by the turbulence intensity. For mean wind speeds in the range 17-21 m/s, the accel-

eration response in all directions suddenly show a larger amount of scatter, which a variability

in the turbulence intensity cannot be the cause of. This is particularly visible for the vertical

acceleration response, where it can be seen that the wide scatter only contains response cor-

responding to low turbulence intensity. It is also interesting to note the response for low mean

wind speeds for the lateral and vertical components, which shows a wide scatter (Figures 4.31(a)

and 4.31(b)). In the study by Cheynet et al., 2016, it was found that a non-stationary flow often

coincided with a wide scatter of the response. This could be an explanation for the mentioned

phenomenon, since some of these samples are likely to exhibit non-stationary behaviour, as

they correspond to wind recordings with low mean wind speeds.

The influence of the wind direction on the acceleration response is visualised in Figure 4.32,

which shows a similar trend for the response in all three directions. For low mean wind speeds,

the response is similar for both perpendicular and skew winds, from east and west. When the

wind speed is higher, the easterly winds give higher response than the westerly winds. This trend

is particularly evident in the mean wind speed range of 17-21 m/s, where the westerly winds

show a significantly lower response than the easterly winds. This indicates that the sudden wide

scatter in the response, mentioned in the previous paragraph, relates to the direction of the

wind. Since the response seems to be affected by the wind direction, possible causes for this is

further examined.

As mentioned in Section 3.5, the ADs and load coefficients of the bridge are nearly identical

for winds approaching from east and west. This implies that whether the wind comes from east

or west, the aerodynamic behaviour of the bridge is the same. Hence, it is unlikely that the

aerodynamic behaviour of the bridge is the reason for the different acceleration response for

winds from the two directions. However, a possible explanation could be that the westerly winds

in general are more skew than the easterly, due to the main wind direction being southwest, as

seen in Figure 4.11(a). A closer investigation of the wind indicates that the westerly winds in the

mean wind speed range of 17-21 m/s are less perpendicular than the easterly. For mean wind

speeds above 21 m/s, it appears that the easterly and westerly winds deviate to an equal degree

from the 90°-direction and the 270°-direction, respectively. This could explain why the trend is
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particularly evident in this specific wind speed range.

5.4.2 Comparison of Measured and Predicted Response

Case 1-4

As previously discussed, it is clear that there are huge variations of the wind field characteris-

tics at the Hålogaland Bridge, mostly due to the random nature of the wind. Furthermore, the

plots of the measured acceleration response of the Hålogaland Bridge, shown in Section 4.4.1,

illustrate how this variability propagates into the wind-induced response of the bridge, in the

same way as could be observed for the Hardanger Bridge in Fenerci et al. (2017). Moreover,

this variability leads to difficulties in predicting the buffeting response. Looking at Figure 4.33 it

can be observed that the predicted buffeting response of the Hålogaland Bridge for case 1-4 in

general represents the measured response in a good way for the lateral and vertical directions,

while the torsional response is in general overestimated. It is clear that the different cases, cor-

responding to different percentile values of the turbulence parameters from the measurements,

result in entirely different response predictions. In addition, the case providing the most suit-

able response curve for design purposes is not the same for the three directions. Therefore, it is

challenging to determine one specific case as the most suitable one. It is worth noting that the

measured response plots may have looked somewhat different if more measurement data had

been included in the analysis. With only two months of data available, there is for instance a

limited amount of data corresponding to high mean wind speeds. Consequently, the shape of

the measured response for high mean wind speeds is not very conspicuous, and there are few

points to compare with the prediction curves.

For the lateral and vertical response predictions, the four cases show similar trends. Case 1

and 4 yield very similar response curves. For mean wind speeds up to 19 m/s, the two response

curves lie approximately in the middle of the scatter from the measured response, whereas for

higher wind speeds, the curves follow the lowest measured response. The response curve cor-

responding to case 2 results in the highest predicted response for both directions. The curve

almost perfectly follows the highest measured response for the vertical direction, but shows a

slight underestimation compared to the highest measured response for the lateral direction.

Moreover, case 2 provides the most suitable design curves for these two directions. The response

curve corresponding to case 3 lies in the middle of the curves from case 1 and 2. As discussed

previously, it is noticeable that the response for the lateral and vertical directions for low mean
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wind speeds show a large scatter. The predicted response curves do not represent the measured

response in a good way for mean wind speeds in this range, especially for the vertical response.

The response is underestimated, and also the gradient of the response curve is much larger than

for the measured response, which is almost constant in the range of 3-5 m/s. The poor response

prediction is assumed to be due to the fact that the assumption of stationarity is not satisfied for

this wind speed range.

For the torsional direction on the other hand, it can be observed from Figure 4.33(c) that the

response curve corresponding to case 1 almost perfectly follows the highest measured response,

and is thus the most suitable design curve. The other three curves all overestimate the response

to a certain degree. Case 4 gives a slightly higher response than case 1, case 2 drastically overes-

timates the response, and the curve corresponding to case 3 lies in the middle of case 2 and 4.

These results differ from the findings of Macdonald (2003), which show an underestimation of

the torsional buffeting response of the Second Severn Crossing when values of the turbulence

intensity and total damping from the measurements are used. Fenerci and Øiseth (2017) also

reported an underestimation of the torsional response, in this case for the Hardanger Bridge,

using turbulence parameters determined from wind measurements.

Case 5

The final part of the comparison pertains the results from case 5, shown in Figures 4.34 and

4.35, where the probabilistic model of the wind field at the Hålogaland Bridge is used to predict

the buffeting response. For both easterly and westerly winds the overall agreement between the

predicted and the measured response for the lateral and vertical directions are satisfactory. For

the easterly winds, the lateral and vertical acceleration response are consistently slightly un-

derestimated. The predictions for the westerly winds are more inaccurate than for the easterly

winds, with the predicted lateral and vertical response being more scattered than the measured.

In addition, these two response components are overestimated for mean wind speeds ranging

between 11-20 m/s. However, as previously mentioned, the measured response from the west-

erly winds are strangely scattered, and it is therefore not surprising that the response predictions

do not manage to reflect the response in its entirety.

In addition, it should be noted that the predicted and measured response for case 5 originate

from both perpendicular and skew winds. As the buffeting theory is derived under the assump-

tion that the mean wind comes perpendicular to the bridge x-axis, the response predictions for

the skew winds might be inaccurate. Since the westerly winds include a significant amount of
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skew winds, this might explain why the predictions for the westerly winds are most inaccurate.

Furthermore, the predicted torsional response is severely overestimated and overly scattered

for both easterly and westerly winds. Thus, the general trends observed for the buffeting re-

sponse predictions corresponding to case 5 are the same as the ones for case 1-4. That is to say,

the predicted lateral and vertical acceleration response show good agreement with the mea-

sured response, while the predicted torsional response is severely overestimated.

5.4.3 Influence of the Turbulence Parameters

As shown in Figures 4.15 and 4.16, the fitted turbulence spectra used to model the wind load,

generally represent the measured turbulence spectra reasonably well. However, considering the

variation of the spectra with time, it is impossible to determine one case for the turbulence spec-

tra that can represent the whole wind field. As discussed, different alternatives of the turbulence

parameters result in very different response curves, as can be observed in Figure 4.33. There-

fore, the buffeting response is predicted for case 2-4, to illustrate how the different turbulence

parameters, Au,w , Ku,w and Iu,w , influence the response predictions. For case 1, the 50th per-

centile values of all three parameters are used, and for the other three cases only one parameter

is varied at the time, as explained in Section 3.8. It is clear, by comparison of case 1 with the other

three cases, that the turbulence intensities are the most influential parameters for the predicted

buffeting response, while the decay coefficients also show a significant influence. Comparison

of case 1 and 4 makes it clear that a change in the values of Au,w barely affects the predicted

response, especially for the lateral and vertical acceleration response. Thus, a good estimate of

the turbulence intensities and the decay coefficients is crucial for an accurate response predic-

tion, while the estimate of Au,w is not as important. It can be observed from Figure 4.33 that the

conditional probability distributions of the turbulence intensities improve the response predic-

tions, by preventing them from being unrealistically high for high mean wind speeds. Again, it

should be stressed that the limited amount of measurement data causes the probability distri-

butions, and thus the percentile values, of the turbulence parameters to be less accurate.

5.4.4 Contribution of Wind Forces on Cables and Hangers

Earlier it was stated that the response predictions reflect the measured response reasonably well

for the lateral component. However, it should be mentioned that the good agreement is unex-

pected. The reason is that the wind forces acting on the cables and hangers are neglected in the
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response calculations, even though they are expected to have a significant contribution to the

lateral response. The reason for neglecting these forces is the lack of information about the wind

characteristics at the cable level, causing difficulties in accurately describing the loading. As a

consequence, it is presumed that the response predictions will show clear signs of underesti-

mation, particularly for the lateral component. This phenomenon was observed in the study by

Fenerci and Øiseth (2017), where the buffeting response of the Hardanger Bridge was predicted.

The study examined this further and found that the lateral response of the bridge increased by

approximately 25%, when modifying the drag coefficient for the bridge deck to include the cable

forces. It should be noted that this estimate is conservative and gives an upper bound for the

increase, due to the calculation assuming that the wind forces at the cables and on the bridge

girder are perfectly correlated.

A similar investigation is not performed for the Hålogaland Bridge in this thesis, but it is prob-

able that the increase in the lateral response would be of similar magnitude, as the bridges have

similar lengths and cross sections. However, the cable geometry of the two bridges is slightly

different. The distance between the two main cables of the Hålogaland Bridge is not constant

along the girder, as it is largest at the midspan while it decreases towards the bridge towers.

When the cables are sufficiently close, one cable might prevent the other one from being fully

exposed to the wind. This might cause the total wind force on the cables to be smaller for the

Hålogaland Bridge than for the Hardanger Bridge. However, since this is only the case for parts

of the span, the significance of this is not assumed to be particularly large and it can not fully ex-

plain the unexpectedly high response prediction. Furthermore, it is worth noting that the lateral

response is both under- and overestimated in previous studies. Similarly to the study performed

by Fenerci and Øiseth (2017), Cheynet et al. (2016) also reported an underestimation of the lat-

eral response. This was thought to be due to the local topography and non-stationarity of the

wind. Macdonald (2003) on the other hand, reported an overestimation of the lateral response,

presumably due to underestimation of the AD related to lateral damping, which was obtained

from quasi-steady theory.

5.4.5 Uncertainty of the Structural Damping Ratio

A possible explanation for the unexpectedly high predicted lateral response and the severe over-

estimation of the predicted torsional response, is that the structural damping ratio used in the

calculations is inaccurate for the lateral and torsional modes. N400 suggests a structural damp-

ing ratio between 0.5-0.8% for dynamic response calculations for steel structures (Vegdirek-
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toratet, 2015). In this thesis, the lowest ratio has been chosen for all modes. In order to gain

knowledge about the influence of the structural damping ratio on the predicted response, the

calculations are repeated using different values for the damping. When a structural damping

ratio of 0.3% is utilised, the response predictions increase with 13, 5, and 9% for a mean wind

speed of 25 m/s for the lateral, vertical, and torsional direction, respectively. Increasing the

structural damping ratio to 1% results in a decrease of 18, 10 and 15% for the three directions.

It is clear that the lateral response is most sensitive to the structural damping, however the tor-

sional response is also notably affected. Therefore, it would be interesting to try to estimate the

actual structural damping ratio of the bridge.

The Cov-SSI analysis reported in this thesis is performed for an acceleration recording cor-

responding to a mean wind speed of 18 m/s. Thus, the total damping ratios that are given in

Tables 4.1-4.3 will include a significant contribution from the aerodynamic damping. Therefore,

several Cov-SSI analyses are performed using acceleration recordings with mean wind speeds

around 4 m/s, where it can be assumed that the aerodynamic damping is small compared to

the structural damping. From these analyses, it can generally be seen that the total damping

ratios corresponding to the vertical and torsional modes lie at or slightly above 0.5%. Assuming

that there is an insignificant amount of aerodynamic damping at this wind speed, the struc-

tural damping ratio used in the buffeting response predictions agrees quite well with the actual

damping ratio for these modes. This further implies that the discrepancies related to the tor-

sional response are not caused by the structural damping ratio. Furthermore, if the aerodynamic

damping still contributes to the total damping, this would imply that the structural damping ra-

tio used is too high. Using a lower structural damping ratio would have a negative impact on

the agreement between the predicted and the measured response, particularly for the torsional

component, since a lower damping ratio would result in an even higher response. For the hori-

zontal modes however, the total damping ratios are found to be considerably larger than 0.5%.

This indicates that the structural damping ratio for the horizontal modes are underestimated in

the response calculations, leading to an overestimation of the response.

5.4.6 Uncertainty of the Load Coefficients and the Aerodynamic Derivatives

As defined in Section 2.5.1, the buffeting load caused by the wind turbulence is described using

the load coefficients C̄D , C̄L , C̄M , C ′
D , C ′

L , and C ′
M . These coefficients are dependent on the angle

of flow incidence. When calculating the predicted buffeting response, the angle of incidence is

set to zero and the coefficients are determined accordingly. As seen in Figure 4.10, the values
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of the coefficients show great variation for different angles. Therefore, if the assumption of the

angle of flow incidence is wrong, this could have an impact on the load coefficients, and thus

also on the buffeting load and the predicted response. In addition, the coefficients are obtained

through wind tunnel tests with a scaled section model, and a certain amount of uncertainty

must be expected for these types of tests. The cross sectional admittance functions are also

used to describe the load due to the turbulence. For simplicity, these are set to unity in this

thesis, which is presumed to yield conservative response predictions (Macdonald, 2003).

The other contribution to the buffeting load is the motion induced load, which is represented

by the use of the ADs. As previously discussed, the obtained expressions for the ADs are as-

sumed to be reasonably accurate. However, the wind tunnel tests only gave experimental data

points in a limited range of reduced velocities. The accuracy of the ADs outside this range is

therefore uncertain. It is well known that the aerodynamic damping may have a great influence

on the predicted buffeting response. Repeating the response calculations while neglecting the

aerodynamic damping results in a 32, 125 and 63% increase of the lateral, vertical and torsional

response, for a mean wind speed of 25 m/s. From this, it is seen that the aerodynamic damp-

ing has a significant influence on the predicted response, and any uncertainties in the ADs will

propagate into the response calculations. By calculating the reduced velocity corresponding to

the natural frequencies of all the modes included in the buffeting response calculations, it is

found that only four modes correspond to reduced velocities within the range of experimental

data points. Thus, for most of the ADs corresponding to natural frequencies, the accuracy is

uncertain. Especially for the torsional response, this may cause inaccuracies in the calculations,

as none of the torsional modes have natural frequencies that will give a reduced velocity within

the range of experimental data points.

Another consideration regarding the motion induced load, is that the aerodynamic damping

and stiffness matrices are considered as diagonal in the buffeting response calculations. Thus,

any motion induced coupling between the modes is neglected. In a study performed by Øiseth

et al. (2010), the buffeting response of the Hardanger Bridge was predicted both by considering

and neglecting the motion induced coupling between the modes. The results from the study

indicate that the two approaches yield very similar response, as long as the mean wind speed

is lower than half of a certain stability limit. For the Hålogaland Bridge this limit is found to

be 68.1 m/s (Kvamstad, 2011). As the largest mean wind speed considered in this thesis is well

below half of this limit, mode coupling should not be an issue.
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5.4.7 Uncertainty of the Numerical Model

The natural frequencies and mode shapes used in the buffeting response calculations are ob-

tained from an Abaqus model of the Hålogaland Bridge. By comparison of the modal param-

eters obtained from the Cov-SSI analysis and the Abaqus analysis, it was concluded that the

numerical model did manage to represent the dynamic behaviour of the bridge in a satisfactory

manner. The natural frequencies obtained from the two methods are very similar, however it is

observed that the torsional frequencies differs the most. Furthermore, the torsional frequencies

from Abaqus are lower than those from Cov-SSI. This could indicate that the torsional stiffness

of the bridge in the Abaqus model is too low, which might lead to an overestimation of the re-

sponse. Additionally, when comparing the mode shapes from the two methods, only the overall

shapes are considered. Thus, the exact accuracy of the mode shapes used in the response cal-

culations is uncertain. However, it is unlikely that it is of great importance.

5.4.8 Uncertainty of the Probabilistic Wind Field Model

The probabilistic wind field model obtained in this thesis only include the turbulence standard

deviations. However, a complete probabilistic model would comprise all the six turbulence pa-

rameters needed for the auto-spectra and the normalised cross-spectra of the turbulence. Such

a probabilistic wind field model was proposed by Fenerci and Øiseth (2018a) for the wind field

along the Hardanger Bridge, and the model successfully managed to represent the site-specific

variability. As previously discussed, the decay coefficients have a significant influence on the

predicted buffeting response, while the spectral parameters are not as important. Thus, extend-

ing the wind field model to at least include the decay coefficients, would probably improve the

response predictions for case 5.

Nevertheless, the turbulence intensities are found to be the most influential parameters for

the predicted buffeting response. For case 5, these parameters are calculated from the simulated

turbulence standard deviations, which show good agreement with the ones from the measure-

ments. This indicates that the probabilistic wind field model is not the cause of the overesti-

mated torsional response and the unexpectedly high lateral response, illustrated in Figures 4.34

and 4.35. The considerations regarding the wind forces on the cables and hangers, the structural

and aerodynamic damping, the load coefficients and the Abaqus model are probably the cause

of these discrepancies. However, the misrepresentation of the scatter of the predicted response

for case 5 is believed to be caused by inaccuracies of the probabilistic wind field model. More
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specifically, the approximation of the σ̃-parameters as constants due to the lack of stabilisation

is believed to be the main reason for this misrepresentation. This indicates that in order for a

probabilistic wind field model to perform optimally, the distribution parameters need to sta-

bilise. However, inaccurate σ̃-parameters due to the limited amount of data could also be a part

of the explanation. More measurement data would likely eliminate some of these inaccuracies.



Chapter 6

Conclusion and Further Work

6.1 Conclusion

The numerical model of the Hålogaland Bridge included all the vibration modes that were iden-

tified through Cov-SSI, and the comparison of the modal parameters from Abaqus and Cov-SSI

showed good agreement. It was therefore concluded that the numerical model was able to rep-

resent the dynamic behaviour of the bridge in a satisfactory way.

From the wind data it could be observed that there were two main wind directions, namely

the east and the southwest direction. Further analysis of the wind field revealed a large vari-

ability in the mean wind speed, mean wind direction and turbulence parameters. A thorough

investigation of the latter parameters showed that they could be represented by lognormal prob-

ability distributions. In order to better reflect the variability of the wind field into the response

predictions, a probabilistic model of the wind field at the Hålogaland Bridge was established.

The model only included the turbulence standard deviations, as they were found to be the most

influential turbulence parameters for the response predictions. The turbulence standard devia-

tions were treated as correlated and lognormally distributed random variables. A dependence of

the parameters on the mean wind speed was observed. In addition, there were clear differences

between the winds approaching the bridge from east and west. Thus, the probability distribu-

tions of the parameters were established conditional on the mean wind speed and direction.

The limited amount of data available, especially for high mean wind speeds, affected the ac-

curacy of the probabilistic model. However, comparison of the turbulence standard deviations

from the measurements and simulations from the model showed good agreement. It could be

seen that the model managed to reflect both the linear dependence of the parameters on the

mean wind speed and the correlation between the parameters. Therefore, it was concluded that

the model was able to represent the measured turbulence standard deviations well.

A large variability of the measured acceleration response of the Hålogaland Bridge could

be observed, making it difficult to predict the buffeting response. The turbulence parameters

utilised in the response calculations greatly affected the predictions. It could be seen that while

87
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the turbulence intensities were most influential, the decay coefficients also showed a consider-

able influence. The lateral and vertical response predictions generally showed good agreement

with the measured response, while the predicted torsional response was severely overestimated,

and for case 5 also overly scattered. However, the good agreement between the predicted and

measured lateral response was unexpected. It was presumed that this response component

would be underestimated, as the wind forces acting on the cables and hangers were neglected

in the calculations. Furthermore, the structural and aerodynamic damping greatly affected the

response predictions. Damping estimates from Cov-SSI suggested that the structural damping

ratio used for the lateral modes was too low, which could explain the unexpectedly high pre-

dicted lateral response. In addition, the ADs used to describe the aerodynamic damping were

found to be uncertain for all frequencies corresponding to the torsional modes. Moreover, com-

parison of the natural frequencies from the numerical model and Cov-SSI indicated that the

torsional stiffness of the bridge in the Abaqus model was too low. These findings might explain

the overestimation of the torsional response.

Thus, a final conclusion is that the buffeting theory and wind field models for the most part

are able to predict the wind-induced response of the Hålogaland Bridge, when a probabilistic

framework is used to reflect the variability of the wind field. However, the accuracy of all vari-

ables utilised in the response calculations is crucial in order to obtain satisfactory predictions.

That is, good estimates of variables such as the turbulence parameters, the modal parameters,

the load coefficients and the ADs should be emphasised during buffeting response analyses of

bridges. Additionally, the results suggest that a probabilistic wind field model will be able to

translate the variability of the wind into the response predictions, thereby predicting the re-

sponse in its entirety.

6.2 Recommendations for Further Work

There are several aspects regarding the wind and the buffeting response predictions that have

not been investigated in this thesis. Further research of these topics could improve the buffet-

ing response predictions. A recurring issue in this thesis has been the limited amount of data

from the monitoring system, which introduced inaccuracies into the response predictions. The

main problem was that the limited amount of data caused the probabilistic representation of

the turbulence parameters to be less accurate. Furthermore, the amount of measurement data

available for comparison has been limited, particularly for high mean wind speeds. Thus, it has
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been difficult to determine the accuracy of the predictions for mean wind speeds at this level.

As the turbulence parameters greatly affected the predicted buffeting response, it would be of

interest to repeat the analysis of the wind field and the response predictions using long-term

data. This might lead to more accurate predictions of the buffeting response. In addition, only

the turbulence standard deviations were included in the probabilistic model of the wind field

at the Hålogaland Bridge. It would therefore be interesting to obtain a complete probabilistic

model, including all the six turbulence parameters needed to describe the wind field. By com-

parison of the predicted response using the two probabilistic models, it could be observed how

extensive the model should be in order to achieve a satisfactory representation of the variability

of the response.

As previously mentioned, the stationarity of the data has not been properly investigated

through stationarity tests, and for low mean wind speeds the data showed signs of non-

stationarity. Additionally, a high amount of skew winds were present in the wind field. The effect

of non-stationary wind fluctuations and skew winds on the response have not been examined

thoroughly. Investigating these effects might lead to further knowledge of the wind-induced

response of bridges.

Furthermore, the wind forces on the cables and hangers were neglected in this thesis. It

would be interesting to investigate how these forces contribute to the response, particularly in

the lateral direction. The buffeting load caused by the wind turbulence may be more accurately

described by including the cross sectional admittance functions and by calculating the actual

angle of flow incidence. In this thesis it has also been assumed that mode coupling does not oc-

cur for the considered mean wind speeds. This should be confirmed by calculating the response

using multimode buffeting theory and examining the difference in the predicted response. Fi-

nally, the validity of using a structural damping ratio of 0.5% for all modes should be further

examined.
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Appendix A

Python Scripts
The appendix contains the most important Python scripts used for data processing, probabilis-

tic wind field modelling, buffeting response calculations and operational modal analysis. Most

of the scripts utilise the Python package NumPy, which is shortened to np in the scripts. In order

to shorten the appendix, the lines for importing the package are removed from the scripts in the

appendix.

94



APPENDIX A. PYTHON SCRIPTS 95

A.1 Data Processing

lowPass_DownSample.py

1 def filter_data(s, Wn, N, Fs , ftype):

2 ’’’

3 Arguments:

4 s : signal , 1D-array

5 Wn : cutoff frequency

6 N : order of the filter

7 Fs : sampling frequency of signal

8 ftype : type of filter {’lowpass ’, ’highpass ’}

9 Returns:

10 filtered : filtered signal

11 ----------------------------------------------------------------------------

12 Takes a signal and applies a filter using Butterworth filter of order N.

13 ’’’

14 #Normalizes the cutoff frequency , with 1 being the Nyquist frequency

15 normWn = 2*Wn/Fs

16 #Filter coefficients

17 sos = signal.butter(N, normWn , output=’sos’, btype=ftype)

18 #Forward -backward digital filter

19 filtered = signal.sosfiltfilt(sos , s)

20

21 return filtered

22

23 def lowPassAndDownSample(s, Wn, N, downFreq , Fs , t=[]):

24 ’’’

25 Arguments:

26 s : signal , 1D-array

27 Wn : cutoff frequency , 40 % of the downFreq

28 N : order of the low pass filter

29 downFreq : the frequency that the signal is down sampled to

30 Fs : sampling frequency of signal

31 t : optional argument , time vector to be downsampled

32 Returns:

33 newSignal : down -sampled signal

34 ----------------------------------------------------------------------------

35 Takes a signal and applies low pass filter using Butterworth filter , then down samples

36 the signal. If t is given , the function also outputs a resampled time vector

37 ’’’

38 #Low pass filter

39 filtered = filter_data(s, Wn, N, Fs, ’lowpass ’)

40 #%%Down sampling by decimation

41 factor = (Fs/downFreq)

42 samples = np.shape(filtered)[0] #Number of samples in original signal

43 n = int(samples/factor) #number of samples in new signal

44
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45 if len(t)!=0:

46 time_out = True

47 t_new = np.zeros(n)

48 else:

49 time_out = False

50 newSignal = np.zeros(n)

51 for i in range(n):

52 newSignal[i] = filtered[i*int(factor)]

53 if time_out:

54 t_new[i] = t[i*int(factor)]

55

56 if time_out:

57 return t_new , newSignal

58 else:

59 return newSignal

time_synchronisation.py

1 def time_master(tdms_files , wind_nodes):

2 ’’’

3 Arguments:

4 tdms_files : list of tdms_file

5 wind_nodes : list of strings containing the common part of anemometer name

belonging

6 to considered anode(s). If looking at all nodes , wind_nodes is full

list with

7 ’xx’ at indices where there are no anemometers. If looking at one

anode , wind_nodes

8 only contains the specific anodes

9 Returns:

10 t_master : master time vector given in seconds

11 -----------------------------------------

12 Function takes in a list of tdms -objects , and searches for the one

13 that starts sampling last and the one that ends sampling first , and computes

14 the master time vector from these. The search includes all anemometers.

15 ’’’

16 start_time = 0 #Initial value for start of master time vector

17 end_time = 1e100 #Initial value for end of master time vector

18

19 #Finding start time and end time

20 for i in range(len(tdms_files)):

21 temp_start = tdms_files[i][’acceleration_data ’][’timestamp ’][0]

22 temp_end = tdms_files[i][’acceleration_data ’][’timestamp ’][-1]

23 if temp_start > start_time:

24 start_time = temp_start

25 if temp_end < end_time:

26 end_time = temp_end

27 anemometers = [s for s in list(tdms_files[i]) if wind_nodes[i] in s]

28 for k in range(len(anemometers)):
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29 temp_start = tdms_files[i][ anemometers[k]][’timestamp ’][0]

30 temp_end = tdms_files[i][ anemometers[k]][’timestamp ’][-1]

31 if temp_start > start_time:

32 start_time = temp_start

33 if temp_end < end_time:

34 end_time = temp_end

35

36 t_master = np.arange(np.ceil(start_time *1e-9), np.floor(end_time *1e-9), 1/32)

37 return t_master

38

39 def time_interpolation(data , timestamp , t):

40 ’’’

41 Arguments:

42 data : the data to be interpolated

43 timestamp : timestamp corresponding to data , given in nanoseconds

44 t : master time vector , given in seconds

45 Returns:

46 datn : time synchronised data

47 ---------------------------

48 Function interpolates the data to a master time vector

49 ’’’

50 t1 = t

51 t = timestamp *1e-9

52 datn = interp1d(t, data)(t1)

53 return datn

measurementFunctions.py

1 def transform(sensor1 , sensor2 , B):

2 """

3 Arguments:

4 sensor1 : data from sensor 1 in the sensor pair

5 sensor2 : data from sensor 2 in the sensor pair

6 B : width of the deck

7 Returns:

8 acc_trans : the transformed data , array with size Nx3 , where first column

9 is y, second column is z and third column is theta

10 ------------------------------

11 Function transforms the accelerations from a sensor pair into one component

12 in y, z and theta direction

13 """

14 acc_trans = np.zeros((np.max(np.shape(sensor1)) ,3))

15 acc_trans [:,0] = (sensor1 [:,1] + sensor2 [: ,1])/2

16 acc_trans [:,1] = (sensor1 [:,2] + sensor2 [: ,2])/2

17 acc_trans [:,2] = (-sensor1 [: ,2]+ sensor2 [:,2])/B

18

19 return acc_trans

20

21 def stdAccMeasurements(data_acc):
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22 """

23 Arguments:

24 data_acc : acceleration data , units m/s^2

25 Returns:

26 sigma_y , sigma_z , sigma_theta : standard deviation in y, z and theta direction

27 ----------------------------------

28 This function is made for both input from one sensor pair , and from all

29 sensor pairs. It takes the acceleration data and calculates the standard deviation

30 """

31 B = 18.6 #width of bridge deck

32

33 data_acc=data_acc -np.mean(data_acc ,axis =0) # Removing the mean from the series

34 acc_trans = np.zeros([ data_acc.shape[0], int(data_acc.shape [1]/2) ])

35 k=0

36 for i in range(0,data_acc.shape [1] ,6):

37 acc_trans[:,k:k+3] = transform(data_acc[:,i:i+3], data_acc[:,i+3:i+6],B) #

Transforming into one component per sensor pair

38 k +=3

39 #Separating into each component

40 acc_y = acc_trans [:,np.arange(0,acc_trans.shape[1], 3)] #Acceleration in y-direction

41 acc_z = acc_trans [:,np.arange(1,acc_trans.shape[1], 3)] #Acceleration in z-direction

42 acc_theta = acc_trans [:,np.arange(2,acc_trans.shape[1], 3)] #Acceleration in theta -

direction

43 # Computing the standard deviation

44 sigma_y = np.std(acc_y , axis =0)

45 sigma_z= np.std(acc_z , axis =0)

46 sigma_theta = np.std(acc_theta , axis =0)

47

48 return sigma_y ,sigma_z , sigma_theta

clean_data.py

1 def remove_error(data , fs, status):

2 ’’’

3 Arguments :

4 data : time series

5 fs : sampling frequency

6 status : vector of status codes from the sensor

7 Returns :

8 newData : cleaned time series

9 error_ratio : amount of error values in time series

10 ---------------------------------------------------------------

11 Function returns the clean time series with a time vector. Time

12 is assumed to start from zero. The new series have the same sampling rate as the input

13 Linear interpolation is conducted to preserve the sampling rate

14 NB! Will result in error if the first or last sample is an error value (time

interpolation will fail)

15 ’’’

16 #Generate time vector
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17 l = np.max(np.shape(data))

18 t = np.arange(0,l)*1/fs

19 t1 = t #Store initial time vector

20 #Deleting the values that have error

21 error_ind = np.where(np.logical_and(status !=’00’, status !=’0A’))[0]

22 #Apply linear interpolation if there are error values

23 if np.size(error_ind)!=0:

24 data = np.delete(data , error_ind , axis =0)

25 t = np.delete(t, error_ind)

26 newData = np.zeros ((l, 3))

27 for i in range (3):

28 if np.size(data[:,i])==0:

29 newData[:,i] = np.zeros ((l, np.shape(data[:,i])[1]))

30 error_ratio = 1

31 else:

32 newData[:,i] = interp1d(t, data[:,i])(t1)

33 error_ratio = np.size(error_ind)/l

34 else:

35 newData = data

36 error_ratio = 0

37

38 return newData , error_ratio

39

40 def remove_std(data , fs, x):

41 ’’’

42 Arguments:

43 data : time series

44 x : discard values greater than x*std in an absolute manner

45 fs : sampling frequency

46 Returns:

47 datn : time series

48 stdrig : bool proclaiming if there were any values exceeding limit

49 ------------------------

50 Function discards values larger than x times the standard deviation in an

51 absolute sense. Returns a clean time series with same sampling rate as input.

52 Linear interpolation is conducted to preserve the sampling rate.

53

54 Function is based on code written by Aksel Fenerci

55 ’’’

56 #Generate time vector

57 l = np.max(np.shape(data))

58 t = np.arange(0, l)*1/fs

59 t1 = t

60

61 ind = []

62 datn = np.zeros ((l, 3))

63 for i in range (3):

64 dummy = np.argwhere(data[:,i] > np.mean(data[:,i]) +x *np.std(data[:,i]))

65 dummy2 = np.argwhere(data[:,i] < np.mean(data[:,i]) - x*np.std(data[:,i]))



APPENDIX A. PYTHON SCRIPTS 100

66 ind = np.concatenate ((dummy , dummy2))

67 if np.size(ind)!=0:

68 stdtrig = True

69 else:

70 stdtrig = False

71 if stdtrig:

72 ind = np.sort(ind , axis =0)

73 if ind[0] == 0:

74 ind = np.delete(ind , 0)

75 dat = np.delete(data[:,i], ind)

76 t = np.delete(t1, ind)

77 dat [0] = np.mean(data[:,i]) +x *np.std(data[:,i])

78 elif ind[-1] == l-1:

79 ind = np.delete(ind , -1)

80 dat = np.delete(data[:,i], ind)

81 t = np.delete(t1, ind)

82 dat[-1] = np.mean(data[:,i]) +x *np.std(data[:,i])

83 else:

84 dat = np.delete(data[:,i], ind)

85 t = np.delete(t1, ind)

86 datn[:,i] = interp1d(t, dat)(t1)

87 else:

88 datn[:,i] = data[:,i]

89

90 return datn , stdtrig

91

92 def circArray(data , dataRange):

93 ’’’

94 Arguments:

95 data : time series

96 dataRange : range where the value of data is valid

97 Returns:

98 dataCirc : corrected data

99 ------------------------------------------------

100 Function translates circular array (typically angles).

101

102 Function based on code written by Knut Andreas Kvaale

103 ’’’

104 dataCirc = data

105 span = np.max(dataRange) - np.min(dataRange)

106 dataCirc[data >np.max(dataRange)] = dataCirc[data >np.max(dataRange)] - span

107 dataCirc[data <np.min(dataRange)] = span + dataCirc[data <np.min(dataRange)]

108

109 return dataCirc

windCharacteristics.py

1 def angmean(angles):

2 ’’’
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3 Arguments :

4 angles : array of angles

5 Returns :

6 mean_angle : mean angle of the array

7 ---------------------------

8 Function enstablishes mean of an array of angles

9

10 Function based on code written by Knut Andreas Kvaale

11 ’’’

12 mean_angle = np.arctan2(np.nanmean(np.sin(angles*np.pi /180)), np.nanmean(np.cos(angles*

np.pi/180)))*180/np.pi

13 #Adjust the values to lie between 0 and 360 degrees

14 if mean_angle <0:

15 mean_angle = mean_angle + 360

16 return mean_angle

17

18 def transform_uvw(data , Fs, interval , varargin =[]):

19 ’’’

20 Arguments :

21 data : a nx3 matrix , where data [:,0] is direction , data [:,1] is magnitude

22 in horizontal direction and data [:,2] is the vertical velocity

23 Fs : sampling frequency

24 interval : time interval in minutes

25 varargin : list of additional arguments , varargin [0] is the index of which

26 ten -minute interval that is of interest , and varargin [1] is a

27 string defining whether to detrend or not

28 Returns :

29 V : mean wind velocity

30 u : turbulence component in along -wind direction

31 v : turbulence component in across -wind direction

32 w : turbulence component in vertical direction , mean wind included

33 meandir : mean direction of the wind

34 ----------------------------------------------------

35 Function transforms wind data to uvw coordinates from the polar coordinates

36

37 Function based on code written by Aksel Fenerci

38 ’’’

39 detrend_opt = []

40 ind = []

41 if np.size(varargin)!=0:

42 ind = [varargin [0]]

43 if np.size(varargin) >1:

44 detrend_opt = varargin [1]

45 if detrend_opt !=’on’:

46 detrend_opt = ’off’ #default

47 # Finding number of intervals in data

48 l = np.max(np.shape(data))

49 t = np.arange(0,l)*1/Fs

50 ints = t[ -1]/60/ interval
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51 if ints < 1:

52 ints = 1

53 if ints%1 !=0:

54 ints = int(np.ceil(ints)) - 1

55 l2 = interval *60*Fs*ints + ints #The index of the last element in the last whole

interval

56

57 data = np.delete(data , np.arange(l2,l, 1), axis =0) #Deleting the excess data that does

not fit in an interval

58 p = int(l2/ints)

59 pp = p

60 c = 0

61 #Initializing matrices

62 meandir = np.zeros(ints)

63 phi = np.zeros ((pp,ints))

64 V_alpha= np.zeros ((pp , ints))

65 V_beta = np.zeros((pp, ints))

66 V = np.zeros(ints)

67 u = np.zeros((pp,ints))

68 v = np.zeros((pp, ints))

69 w = np.zeros((pp, ints))

70 if np.any(np.isnan(data)):

71 meandir = np.nan

72 V = np.nan

73 u = np.nan

74 v = np.nan

75 w = np.nan

76 else:

77 if np.size(ind)==0:

78 for i in range(ints):

79 if ~np.any(np.isnan(np.squeeze(data[c:pp ,:]))):

80 meandir[i] = angmean(data[c:pp ,0])

81 phi[:,i] = (data[c:pp ,0] - meandir[i])*np.pi/180

82 V_alpha[:,i] = data[c:pp ,1]*np.cos(phi[:,i])

83 V_beta[:,i] = data[c:pp ,1]*np.sin(phi[:,i])

84 V[i] = np.nanmean(V_alpha[:,i])

85 u[:,i] = V_alpha[:,i] - V[i]

86 v[:,i] = V_beta[:,i]

87 if detrend_opt ==’on’:

88 w[:,i] = data[c:pp ,2] - np.nanmean(data[c:pp ,2])

89 elif detrend_opt == ’off’:

90 w[:,i] = data[c:pp ,2]

91 else:

92 V[i] = np.nan

93 meandir[i] = np.nan

94 u[:,i] = np.nan*np.arange(0, np.max(np.shape(data[c:pp ,1])))

95 w[:,i] = np.nan*np.arange(0, np.max(np.shape(data[c:pp ,1])))

96 w[:,i] = np.nan*np.arange(0, np.max(np.shape(data[c:pp ,1])))

97 c = c + p
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98 pp = pp + p

99 else: #Transformation for one particular interval

100 c = c + p*(ind)

101 pp = pp + p*(ind)

102 if ~np.any(np.isnan(np.squeeze(data[c:pp ,:]))):

103 meandir = angmean(data[c:pp ,0])

104 phi = (data[c:pp ,0] - meandir)*np.pi/180

105 V_alpha = data[c:pp ,1]*np.cos(phi)

106 V_beta = data[c:pp ,1]*np.sin(phi)

107 V = np.nanmean(V_alpha)

108 u = V_alpha - V

109 v = V_beta

110 if detrend_opt == ’on’:

111 w = data[c:pp ,2] - np.nanmean(data[c:pp ,2])

112 elif detrend_opt == ’off’:

113 w = data[c:pp ,2]

114 else:

115 V = np.nan

116 meandir = np.nan

117 u = np.nan*np.arange(0, np.max(np.shape(data[c:pp ,1])))

118 v = np.nan*np.arange(0, np.max(np.shape(data[c:pp ,1])))

119 w = np.nan*np.arange(0, np.max(np.shape(data[c:pp ,1])))

120

121 return V, u, v, w, meandir

122

123 def windProperties(u, w, V):

124 """

125 Arguments :

126 u : turbulence in along wind direction for one anemometer

127 w : turbulence in vertical direction for one anemometer

128 V : mean wind speed

129 Returns:

130 sigma_u : standard deviation of along -wind turbulence

131 sigma_W : standard deviation of vertical turbulence

132 Iu : turbulence intensity in along wind direction

133 Iw : turbulence intensity in vertical direction

134 ------------------------------------------

135 Function finds standard deviation and turbulence intensity of the wind. The turbulence

given as input is without mean value.

136 """

137 # Standard deviation

138 sigma_u = np.std(u, axis =0)

139 sigma_w = np.std(w, axis =0)

140 # Turbulence intensity

141 I_u = sigma_u/V

142 I_w = sigma_w/V

143

144 return sigma_u , sigma_w , I_u , I_w
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get_data.py

1 import numpy as np

2 import measurementFunctions as mf

3 import lowPass_DownSample as ld

4 import clean_data as cd

5 import windCharacteristics as wc

6 import time_synchronisation as ts

7

8 def readAcc(anodeName , tdmsFile , interval , t_master , downFreq):

9 """

10 Arguments:

11 anodeName : name of logger box

12 tdmsFile : one .tdms -file , containing raw data from 8 hour of recordings

13 from one data logger

14 interval : chosen length of intervals in minutes

15 t_master : master time vector , for time synchronization

16 downFreq : frequency that the signal is downsampled to

17 Returns:

18 acc_y : processed horizontal acceleration data , n_intervals*n_samples

19 acc_z : processed vertical acceleration data , n_intervals*n_samples

20 acc_theta : processed torsional acceleration data , n_intervals*n_samples

21 ----------------------------------------------------------------------

22 Function extracts processed acceleration data from one logger box for eight hours of

data

23 """

24 # Constants

25 g = 9.82 # Gravity constant

26 B = 18.6 # Width of bridge deck

27 Fs = 64 # Sampling frequency

28 N = 10 # Order of the low pass filter

29 acc_names = [’-1x’, ’-1y’, ’-1z’, ’-2x’, ’-2y’, ’-2z’]

30 # Retrieving data from file

31 acc_data = tdmsFile[’acceleration_data ’]

32 length = np.max(np.shape(acc_data[’timestamp ’][:])) # Length of acceleration series

33 # Fixing correct units

34 acc_raw = np.zeros ((length , 6))

35 for i in range (6):

36 conversion_factor = float(acc_data[anodeName + acc_names[i]]. properties[’

conversion_factor ’])

37 acc_raw[:,i] = acc_data[anodeName + acc_names[i]][:] / conversion_factor * g

38 # Time synchronisation

39 acc_sync = np.zeros((int(length /(Fs/32)), 6))

40 for i in range (6):

41 acc_sync[:,i] = ld.lowPassAndDownSample(acc_raw[:,i] - np.mean(acc_raw[:,i]),

0.5*32 , N, 32, Fs, False) + np.mean(acc_raw[:,i])

42 stamp = acc_data[’timestamp ’][:]

43 stamp_sync = ld.lowPassAndDownSample(acc_raw [:,0] - np.mean(acc_raw [:,0]), 0.5*32 , N,

32, Fs, False , stamp)[0]
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44 acc_sync_fixed = np.zeros((np.shape(t_master)[0], 6))

45 for i in range (6):

46 acc_sync_fixed [:,i] = ts.time_interpolation(acc_sync[:,i], stamp_sync , t_master)

47

48 Fs = 32 # New sampling frequency

49 length = np.shape(acc_sync_fixed)[0] # New length of acceleration series

50 # Lowpass and down sample

51 acc = np.zeros ((int(length /(Fs/downFreq)), 6))

52 for i in range (6):

53 acc[:,i] = ld.lowPassAndDownSample(acc_sync_fixed [:,i] - np.mean(acc_sync_fixed [:,i

]), 0.5* downFreq , N, downFreq , Fs, False) + np.mean(acc_sync_fixed [:,i])

54 dt_new = 1 / downFreq

55 t_new = np.arange(0, np.max(np.shape(acc))) * dt_new

56 length_new = np.max(np.shape(acc))

57 # Preparations for division in intervals

58 ints = t_new[-1] / 60 / interval # Number of intervals

59 if ints < 1: # If number of intervals is less than one

60 ints = 1

61 if ints % 1 != 0: # If number of intervals is a decimal number

62 ints = int(np.ceil(ints)) - 1

63 l2 = interval * 60 * downFreq * ints + ints # New length

64 acc = np.delete(acc , np.arange(l2, length_new , 1), axis =0)

65 # Dividing into intervals

66 p = int(l2 / ints)

67 pp = p

68 c = 0

69 # Initializing acceleration matrices

70 acc_y = np.zeros([ints , p])

71 acc_z = np.zeros([ints , p])

72 acc_theta = np.zeros([ints , p])

73 for i in range(ints):

74 acc_trans = mf.transform(acc[c:pp, 0:3], acc[c:pp, 3:6], B)

75 acc_y[i, :] = acc_trans[:, 0]

76 acc_z[i, :] = acc_trans[:, 1]

77 acc_theta[i, :] = acc_trans[:, 2]

78 c = c + p

79 pp = pp + p

80

81 return acc_y , acc_z , acc_theta

82 #%% Function for extracting prosessed wind -data from one anemometer

83

84 def readWind(anemometerName , tdmsFile , interval , t_master , downFreq):

85 """

86 Arguments:

87 anemometerName : name of anemometer from the tdmsFile

88 tdmsFile : one .tdms -file , containing raw data from 8 hour of recordings

89 from one logger box

90 interval : chosen length of intervals in minutes

91 t_master : master time axis , for time synchronization
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92 downFreq : frequency that the signal is down sampled to

93 Returns:

94 u : processed wind data; along wind direction , n_samples*n_intervals

95 w : processed wind data; vertical direction , n_samples*n_intervals

96 -------------------------------------------------------------------

97 Function extracts wind data from one anemometer and processes it.

98 """

99 Fs = 32 # Sampling frequency

100 N = 10 # Order of the low pass filter

101 #Retrieving data from file

102 wind = tdmsFile[anemometerName]

103 status = wind[’status_code ’][:]

104 direction = wind[’direction ’][:]

105 magnitude = wind[’magnitude ’][:]

106 vertical = wind[’vertical_velocity ’][:]

107 # Combining wind data into one big matrix

108 wind_data = np.zeros((np.max(np.shape(direction)), 3))

109 wind_data [:,0] = direction

110 wind_data [:,1] = magnitude

111 wind_data [:,2] = vertical

112 # Removing error values

113 newData , error_ratio = cd.remove_error(wind_data , Fs, status)

114 # Time synchronization

115 stamp = wind[’timestamp ’][:]

116 data_sync = np.zeros((np.shape(t_master)[0], 3))

117 for i in range (3):

118 data_sync[:,i] = ts.time_interpolation(newData[:,i], stamp , t_master)

119 # Clean data

120 newData , stdtrig = cd.remove_std(data_sync , Fs, 6)

121 # Fixing spike in directional data

122 newData [:,0]= cd.circArray(newData [:,0], [-180 + np.mean(newData [:,0]), 180 + np.mean(

newData [: ,0])])

123 # Resampling the data

124 if Fs != downFreq:

125 length = np.max(np.shape(newData))

126 data_rs = np.zeros ((int(length /(Fs/downFreq)), 3))

127 for i in range (3):

128 data_rs[:,i] = ld.lowPassAndDownSample(newData[:,i] - np.mean(newData[:,i]),

0.5* downFreq , N, downFreq , Fs , False) + np.mean(newData[:,i])

129 else:

130 data_rs = newData

131 # Obtaining the turbulence components

132 V, u, v, w, meandir = wc.transform_uvw(np.real(data_rs), downFreq , interval)

133 # Applying highpass filter

134 for i in range(np.min(np.shape(u))):

135 u[:,i] = ld.filter_data(u[:,i] - np.mean(u[:,i]), 1/300 , 2, downFreq , ’highpass ’) +

np.mean(u[:,i])

136 w[:,i] = ld.filter_data(w[:,i] - np.mean(w[:,i]), 1/300 , 2, downFreq , ’highpass ’) +

np.mean(w[:,i])
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137

138 return u, w, V, meandir

139

140 def getCharacteristics(tdms_file , node_name , anemometer , t_master , downFreq):

141 ’’’

142 Arguments:

143 filename : a tdms -file containing 8 hours of data

144 node_name : a string specifiying which node to look at

145 anemometer : string containing the name of the chosen anemometer

146 t_master : master time axis , for time synchronisation

147 downFreq : downFreq : frequency that the signal is down sampled to

148 Returns:

149 V : mean wind speed

150 sigma_u ,w : standard deviation for turbulence components

151 of 10 minutes

152 I_u ,w : turbulence intensity

153 u, w : turbulence components

154 sigma_y ,z,theta : standard deviation of acceleration

155 --------------------------

156 Function goes through one eight -hour file and extracts wind and acceleration

characteristics for intervals of 10 minutes. The file that is

157 given as argument should be read in advance.

158 ’’’

159 # Acceleration

160 acc_y , acc_z , acc_theta = readAcc(node_name , tdms_file , 10, t_master , downFreq)

161 sigma_y = np.std(acc_y , axis =1)

162 sigma_z = np.std(acc_z , axis =1)

163 sigma_theta = np.std(acc_theta , axis =1)

164 # Wind

165 u, w, V, meandir = readWind(anemometer , tdms_file , 10, t_master , downFreq)

166 _, _, I_u , I_w = wc.windProperties(u, w - np.mean(w, axis =0), V)

167

168 return V, meandir , u, w, I_u , I_w , sigma_y , sigma_z , sigma_theta

A.2 Probabilistic Wind Field Model

logNormalDist.py

1 def logNormParam(data):

2 ’’’

3 Arguments:

4 data : the data that the lognormal parameters are fitted to

5 Returns:

6 my , sigma : parameters of the lognormal distribution

7 ------------------------------------------------------

8 Function for finding the distribution parameters for data with a lognormal distribution

9 ’’’

10 norm = np.log(data)
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11 my = np.mean(norm)

12 sig = np.std(norm)

13

14 return my, sig

windProbApproach.py

1 #%% Modules

2 import numpy as np

3 import os

4 import logNormalDist as lognorm

5

6 #%% Info for loading data

7 nodes_folder = [’\\ anode003 ’, ’\\ anode004 ’, ’\\ anode005 ’, ’\\ anode006 ’, ’\\ anode007 ’, ’\\

anode008 ’, ’\\ anode009 ’, ’\\ anode010 ’]

8 save_path = os.getcwd () + ’\Results ’

9 #%% Retrieve data from csv -files

10 data = []

11 files = []

12 for file in os.listdir(save_path + nodes_folder [4]):

13 if (file.endswith(’.csv’) and os.path.getsize(save_path + nodes_folder [4] + ’\\’ + file)

> 0):

14 files.append(file)

15 data.append(np.loadtxt(save_path + nodes_folder [4] + ’\\’ + file , delimiter=’,’))

16 elem = 0

17 for i in range(len(data)):

18 if data[i].ndim == 1:

19 elem += 1

20 else:

21 elem += np.shape(data[i])[0]

22 #%% Array of variables

23 V = np.zeros(elem)

24 meandir = np.zeros(elem)

25 Iu = np.zeros(elem)

26 Iw = np.zeros(elem)

27 Au = np.zeros(elem)

28 Aw = np.zeros(elem)

29 c = 0

30 for i in range(len(data)):

31 if data[i].ndim == 1:

32 V[c] = data[i][0]

33 meandir[c] = data[i][1]

34 Iu[c] = data[i][2]

35 Iw[c] = data[i][3]

36 Au[c] = data[i][7]

37 Aw[c] = data[i][8]

38 c += 1

39 else:

40 for k in range(np.shape(data[i])[0]):
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41 V[c] = data[i][k,0]

42 meandir[c] = data[i][k,1]

43 Iu[c] = data[i][k,2]

44 Iw[c] = data[i][k,3]

45 Au[c] = data[i][k,7]

46 Aw[c] = data[i][k,8]

47 c += 1

48 sigma_u = Iu * V

49 sigma_w = Iw * V

50 #%% Dividing data into easterly and westerly wind

51 index_east = np.argwhere(np.logical_and(meandir > 0, meandir <= 180))

52 index_west = np.argwhere(np.logical_and(meandir > 180, meandir <= 360))

53

54 V_east = V[index_east]

55 V_west = V[index_west]

56 sigma_u_east = sigma_u[index_east]

57 sigma_u_west = sigma_u[index_west]

58 sigma_w_east = sigma_w[index_east]

59 sigma_w_west = sigma_w[index_west]

60 #%% Correlation coefficients matrix - only wind above 11

61 corr_east = np.corrcoef(np.array([ sigma_u_east[np.argwhere(V_east [:,0] >= 11)[:,0],0],

sigma_w_east[np.argwhere(V_east [:,0] >= 11) [: ,0] ,0]]))

62 corr_west = np.corrcoef(np.array([ sigma_u_west[np.argwhere(V_west [:,0] >= 11)[:,0],0],

sigma_w_west[np.argwhere(V_west [:,0] >= 11) [: ,0] ,0]]))

63 #%% Conditional probability parameters and correlation coefficients

64 east_sort = np.argsort(V_east [: ,0])

65 V_e = V_east[east_sort ,0]

66 sigma_u_e = sigma_u_east[east_sort ,0]

67 sigma_w_e = sigma_w_east[east_sort ,0]

68

69 west_sort = np.argsort(V_west [: ,0])

70 V_w = V_west[west_sort ,0]

71 sigma_u_w = sigma_u_west[west_sort ,0]

72 sigma_w_w = sigma_w_west[west_sort ,0]

73

74 ## Easterly wind

75 V_east_list = []

76 sigma_u_east_list = []

77 sigma_w_east_list = []

78 start = 0

79 end = 200

80 move = end

81 num = np.floor(np.shape(V_e)[0]/end -1)

82 for i in np.arange(int(num)):

83 V_east_list.append(V_e[start:end])

84 sigma_u_east_list.append(sigma_u_e[start:end])

85 sigma_w_east_list.append(sigma_w_e[start:end])

86 start = end

87 end = end + move
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88 V_east_list.append(V_e[start :])

89 sigma_u_east_list.append(sigma_u_e[start :])

90 sigma_w_east_list.append(sigma_w_e[start :])

91 V_east_mean = np.zeros([len(V_east_list)])

92 param_sigma_u_east = np.zeros ([len(sigma_u_east_list), 2])

93 param_sigma_w_east = np.zeros ([len(sigma_w_east_list), 2])

94 corr_east_list = np.zeros([len(V_east_list)])

95 for i in np.arange(len(sigma_u_east_list)):

96 param_sigma_u_east[i,:] = lognorm.logNormParam(sigma_u_east_list[i])

97 param_sigma_w_east[i,:] = lognorm.logNormParam(sigma_w_east_list[i])

98 V_east_mean[i] = np.mean(V_east_list[i])

99 corr_east_list[i] = np.corrcoef(np.array([ sigma_u_east_list[i], sigma_w_east_list[i]]))

[1,0]

100

101 ## Westerly wind

102 V_west_list = []

103 sigma_u_west_list = []

104 sigma_w_west_list = []

105 start = 0

106 end = 150

107 move = end

108 num = np.floor(np.shape(V_w)[0]/end -1)

109 for i in np.arange(int(num)):

110 V_west_list.append(V_w[start:end])

111 sigma_u_west_list.append(sigma_u_w[start:end])

112 sigma_w_west_list.append(sigma_w_w[start:end])

113 start = end

114 end = end + move

115 V_west_list.append(V_w[start :])

116 sigma_u_west_list.append(sigma_u_w[start :])

117 sigma_w_west_list.append(sigma_w_w[start :])

118 V_west_mean = np.zeros([len(V_west_list)])

119 param_sigma_u_west = np.zeros ([len(sigma_u_west_list), 2])

120 param_sigma_w_west = np.zeros ([len(sigma_w_west_list), 2])

121 corr_west_list = np.zeros([len(V_west_list)])

122 for i in np.arange(len(sigma_u_west_list)):

123 param_sigma_u_west[i,:] = lognorm.logNormParam(sigma_u_west_list[i])

124 param_sigma_w_west[i,:] = lognorm.logNormParam(sigma_w_west_list[i])

125 V_west_mean[i] = np.mean(V_west_list[i])

126 corr_west_list[i] = np.corrcoef(np.array ([ sigma_u_west_list[i], sigma_w_west_list[i]]))

[1,0]

simulate_wind_field.py

1 import os

2

3 def simulate_wind(V, direction):

4 ’’’

5 Arguments:
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6 V : mean wind velocity of a 10 min recording

7 direction : the direction of the mean wind , ’east’ or ’west’

8 Returns:

9 sigma : sample of standard deviation of along wind and vertical turbulence

10 --------------------------------------------------------------------

11 Functions takes in a mean wind velocity , and establishes the conditional distributions

of the wind field model. First , a set of multivariate correlated normally distributed

random variables are generated , and then the parameters are obtained by taking the

natural exponent

12 ’’’

13 if direction ==’east’:

14 my_t = [0.07046*V - 0.8886 , 0.04191*V - 1.1549]

15 sigma_t = [0.3211 , 0.2481]

16 rho = np.array ([[1, 0.8713] , [0.8713 , 1]])

17 else:

18 my_t = [0.04458*V - 0.6850 , 0.02141*V - 0.9824]

19 sigma_t = [0.4324 , 0.4604]

20 rho = np.array ([[1, 0.9268] , [0.9268 , 1]])

21 cov = np.zeros ((len(sigma_t), len(sigma_t)))

22 for i in range(len(sigma_t)):

23 for j in range(len(sigma_t)):

24 cov[i,j] = np.log(rho[i,j]*np.sqrt(np.exp(sigma_t[i]**2) -1)*np.sqrt(np.exp(

sigma_t[j]**2) - 1) + 1)

25 # Generating a sample

26 rng = np.random.default_rng ()

27 x = rng.multivariate_normal(my_t , cov)

28 sigma = np.exp(x)

29

30 return sigma

31

32 #%% Import measured data

33 nodes_folder = [’\\ anode003 ’, ’\\ anode004 ’, ’\\ anode005 ’, ’\\ anode006 ’, ’\\ anode007 ’, ’\\

anode008 ’, ’\\ anode009 ’, ’\\ anode010 ’]

34

35 save_path = os.getcwd () + ’\Results ’

36

37 # Retrieve [V, meandir , Iu, Iw, sigma_y , sigma_z , sigma_theta , Au, Aw, lse_Au , lse_Aw] from

txt -files

38

39 # variables = [V, meandir , Iu , Iw , sigma_y , sigma_z , sigma_theta , Au, Aw, lse_Au , lse_Aw]

40 data = []

41 files = []

42

43 for file in os.listdir(save_path + nodes_folder [4]):

44 if (file.endswith(’.csv’) and os.path.getsize(save_path + nodes_folder [4] + ’\\’ + file)

> 0):

45 files.append(file)

46 data.append(np.loadtxt(save_path + nodes_folder [4] + ’\\’ + file , delimiter=’,’))

47
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48 elem = 0

49 for i in range(len(data)):

50 if data[i].ndim == 1:

51 elem += 1

52 else:

53 elem += np.shape(data[i])[0]

54 #Array of all V and meandir

55 V = np.zeros(elem)

56 meandir = np.zeros(elem)

57 c = 0

58 for i in range(len(data)):

59 if data[i].ndim == 1:

60 V[c] = data[i][0]

61 meandir[c] = data[i][1]

62 c += 1

63 else:

64 for k in range(np.shape(data[i])[0]):

65 V[c] = data[i][k,0]

66 meandir[c] = data[i][k,1]

67 c += 1

68 #%% ------ SIMULATION -----------------

69 V_lim = 11

70 V_upper = 30

71 V_east = V[np.argwhere(np.logical_and(np.logical_and(V >=V_lim , V <= V_upper), np.

logical_and(meandir > 0, meandir <= 180)))]

72 V_west = V[np.argwhere(np.logical_and(np.logical_and(V >=V_lim , V <= V_upper), np.

logical_and(meandir > 180, meandir <= 360)))]

73 sigma_east = np.zeros ((len(V_east), 2))

74 sigma_west = np.zeros ((len(V_west), 2))

75 for i in range(len(V_east)):

76 sigma_east[i,:] = simulate_wind(V_east[i][0], ’east’)

77 for i in range(len(V_west)):

78 sigma_west[i,:] = simulate_wind(V_west[i][0], ’west’)

A.3 Buffeting Response

fitting.py

1 def autoSpectraParam(Fs, u, w, v_m , fitting):

2 """

3 Arguments:

4 Fs : sampling frequency

5 u : along -wind velocity data from one anemometer , without mean wind

6 w : vertical velocity data from one anemometer

7 v_m : mean wind velocity

8 fitting : parameter to decide if the spectral parameters from N400 should

9 be improved by least square fitting

10 Returns:
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11 A_u ,w : spectral parameters for the one -point auto spectra

12 lse_Au ,w : least square error for A_u ,w. Set to zero if fitting is not computed.

13 -------------------------------------------------------------

14 Function takes in the turbulence in u- and w- component for a 10 min recording , and

finds the spectral parameters that gives best fit of the Kaimal auto spectra (Kaimal et

al., 1972) to the spectra from data by using least squares error.

15 """

16 z = 54.2 # height of anemometer

17 # Parameters from wind measurements

18 w = w - np.mean(w) # Subtracting mean value to find zero -mean turbulence component

19 sigma_u = np.std(u)

20 sigma_w = np.std(w)

21

22 if fitting == False:

23 lse_Au = 0

24 lse_Aw = 0

25 else:

26 # Auto -spectra computed with Welch ’ method

27 Nwelch = 8

28 Nwindow = np.floor(np.max(np.shape(u))/Nwelch) # Length of window

29 f, S_u = sci.csd(u, u, Fs, nperseg = Nwindow)

30 f, S_w = sci.csd(w, w, Fs, nperseg = Nwindow)

31 #Removing start and end values

32 f = np.delete(f, [0,-1])

33 S_u = np.delete(S_u , [0,-1])

34 S_w = np.delete(S_w , [0,-1])

35 # Improvement of A_u ,w by least square fitting

36 A_val = np.arange (1 ,80.1 ,0.1) # Vector of A_i values

37 lse_Au = np.zeros(np.shape(A_val)[0]) # Vector of least square errors for A_u

38 lse_Aw = np.zeros(np.shape(A_val)[0]) # Vector of least square errors for A_w

39

40 cnt = 0

41 for A_i in A_val:

42 sum_u = 0

43 sum_w = 0

44 for i in range(np.shape(f)[0]):

45 n_uhat_i = f[i]*z/v_m

46 S_u_kaimal_i = A_i*n_uhat_i /(1+1.5* A_i*n_uhat_i)**(5/3)

47 n_what_i = f[i]*z/v_m

48 S_w_kaimal_i = A_i*n_what_i /(1+1.5* A_i*n_what_i)**(5/3)

49 sum_u = sum_u + (S_u[i]*f[i]/ sigma_u **2 - S_u_kaimal_i)**2

50 sum_w = sum_w + (S_w[i]*f[i]/ sigma_w **2 - S_w_kaimal_i)**2

51 sum_u = np.sqrt(sum_u/np.shape(f)[0])

52 sum_w = np.sqrt(sum_w/np.shape(f)[0])

53 lse_Au[cnt] = sum_u

54 lse_Aw[cnt] = sum_w

55 cnt = cnt + 1

56

57 # Finding optimal value for A_u
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58 lse_Au_min_index = np.argmin(lse_Au)

59 lse_Au = lse_Au[lse_Au_min_index]

60 Au = A_val[lse_Au_min_index]

61 # Finding optimal value for A_w

62 lse_Aw_min_index = np.argmin(lse_Aw)

63 lse_Aw = lse_Aw[lse_Aw_min_index]

64 Aw = A_val[lse_Aw_min_index]

65

66 return Au, Aw, lse_Au , lse_Aw

67

68

69

70 #%% Calculation of decay coefficients for the normalised cross -spectra

71 def normCrossSpectraParam(Fs , u, w, dx):

72 """

73 Returns the decay coefficients of the normalised cross -spectra of u and w for one single

10-min recording and chosen anemometer pairs.

74 Arguments:

75 Fs : sampling frequency

76 u, w : matrices with along -wind (with mean wind) and vertical velocity data

77 from closely spaced anemometers in each column. The first column is

78 the reference anemometer; the normalised cross -spectra are calculated

79 between this anemometer and the others.

80 dx : vector containing the horizontal distances between the anemometers

81 in the anemometer pairs

82 Returns:

83 K_u ,w : decay coefficients for the normalized cross spectra

84 lse_Ku ,w : least square error for K_u ,w. Set to zero if fitting is not computed.

85 ----------------------------------------------------------------------

86 Function returns the fitted decay coefficients of the normalised cross -spectra of u and

w for one single 10 min recording and chosen anemometer pairs. The fit is done by using

least square error. The expression that is fitted is Davenport ’s expression(Davenport ,

1961).

87 """

88 # Parameters from N400

89 Ku = 10.0

90 Kw = 6.5

91 # Parameters needed to estimate Cuu and Cww with Welch method

92 Nwelch = 8

93 Nwindow = np.floor(np.max(np.shape(u))/Nwelch) # Length of window

94 f = sci.csd(u[:,0], u[:,0], Fs, nperseg = Nwindow)[0] # Frequency axis

95 # Estimation of normalised cross -spectra and reduced frequency for each anemometer pair

96 Cuu = np.zeros ([np.shape(f)[0], np.shape(u)[1] -1])

97 Cww = np.zeros ([np.shape(f)[0], np.shape(u)[1] -1])

98 f_red = np.zeros([np.shape(f)[0], np.shape(u)[1] -1])

99 for i in range(np.shape(u)[1] -1):

100 Suu = sci.csd(u[:,0]-np.mean(u[: ,0]), u[:,i+1]-np.mean(u[:,i+1]), Fs , nperseg =

Nwindow)[1] # Cross -spectrum

101 Su1 = sci.csd(u[:,0]-np.mean(u[: ,0]), u[:,0]-np.mean(u[: ,0]), Fs , nperseg = Nwindow)
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[1] # Auto -spectrum of u1

102 Su2 = sci.csd(u[:,i+1]-np.mean(u[:,i+1]), u[:,i+1]-np.mean(u[:,i+1]), Fs , nperseg =

Nwindow)[1] # Auto -spectrum of u2

103 Cuu[:,i] = Suu / np.sqrt(Su1*Su2)

104

105 Sww = sci.csd(w[:,0]-np.mean(w[: ,0]), w[:,i+1]-np.mean(w[:,i+1]), Fs , nperseg =

Nwindow)[1] # Cross spectrum

106 Sw1 = sci.csd(w[:,0]-np.mean(w[: ,0]), w[:,0]-np.mean(w[: ,0]), Fs , nperseg = Nwindow)

[1] # Auto -spectrum of w1

107 Sw2 = sci.csd(w[:,i+1]-np.mean(w[:,i+1]), w[:,i+1]-np.mean(w[:,i+1]), Fs , nperseg =

Nwindow)[1] # Auto -spectrum of w2

108 Cww[:,i] = Sww / np.sqrt(Sw1*Sw2)

109

110 f_red[:,i] = f * dx[i]/(np.mean([np.mean(u[:,0]), np.mean(u[:,i+1])])) # Reduced

frequency

111 ### Improvement of K_u ,w by least square fitting

112 K_val = np.arange (1 ,25.1 ,0.1) # Vector of K_i values

113 lse_Ku = np.zeros(np.shape(K_val)[0]) # Vector of least square errors for K_u

114 lse_Kw = np.zeros(np.shape(K_val)[0]) # Vector of least square errors for K_w

115

116 cnt = 0

117 for K_i in K_val:

118 sum_u = 0

119 sum_w = 0

120 for p in range(np.shape(dx)[0]):

121 for i in range(np.shape(f)[0]):

122 C_i = np.exp(-K_i*f_red[i, p])

123 sum_u = sum_u + (Cuu[i, p] - C_i)**2

124 sum_w = sum_w + (Cww[i, p] - C_i)**2

125 sum_u = np.sqrt(sum_u /(np.shape(f)[0]*np.shape(dx)[0]))

126 sum_w = np.sqrt(sum_w /(np.shape(f)[0]*np.shape(dx)[0]))

127 lse_Ku[cnt] = sum_u

128 lse_Kw[cnt] = sum_w

129 cnt = cnt + 1

130

131 # Finding optimal value for K_u

132 lse_Ku_min_index = np.argmin(lse_Ku)

133 lse_Ku = lse_Ku[lse_Ku_min_index]

134 Ku = K_val[lse_Ku_min_index]

135 # Finding optimal value for K_w

136 lse_Kw_min_index = np.argmin(lse_Kw)

137 lse_Kw = lse_Kw[lse_Kw_min_index]

138 Kw = K_val[lse_Kw_min_index]

139

140 return Ku, Kw, lse_Ku , lse_Kw

master_script.py

1 #%% Import necessary modules and packages
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2 from nptdms import TdmsFile

3 import os

4 import time_synchronisation as ts

5 import get_data as gd

6 import fitting as fit

7 #%% Necessary paths

8 path = ’H:’

9 nodes_folder = [’\\ anode003 ’, ’\\ anode004 ’, ’\\ anode005 ’, ’\\ anode006 ’, ’\\ anode007 ’, ’\\

anode008 ’, ’\\ anode009 ’, ’\\ anode010 ’]

10 save_path = os.getcwd () + ’\Results ’

11 #%% INFO

12 acc_nodes = [’A03’, ’A04’, ’A05’, ’A06’, ’A07’, ’A08’, ’A09’, ’A10’]

13 wind_nodes = [’W03’, ’W04’, ’W05’, ’xx’, ’W07’, ’xx’, ’xx’, ’W10’]

14 anemometers = [’W03 -7-1’, ’W04 -15-1’, ’W05 -17-1’, ’W05 -18-1’, ’W05 -19-1’, ’W05 -19-2’, ’W07

-28-1’, ’W10 -45-1’, ’W10 -47-1’, ’W10 -49-1’]

15 acc_datasets = [’-1x’, ’-1y’, ’-1z’, ’-2x’, ’-2y’, ’-2z’]

16 Fs = 2 # The final frequency of the data

17 #%% Extracting data from midspan

18 folder = path + nodes_folder [4] # anode007

19 acc_node = acc_nodes [4] # W07

20 anemometer = anemometers [6] # W07 -28-1

21

22 filenames = []

23 for file in os.listdir(folder):

24 if (file.endswith(’.tdms’) and file.startswith(’2022’)):

25 filenames.append(file)

26

27 for i in range(len(filenames)):

28 try:

29 tdms_file = TdmsFile.read(folder+’\\’+filenames[i])

30 except:

31 print(’Error opening the file ’ + filenames[i])

32 continue

33 else:

34 print(’File number: ’ + str(i+1) + ’ read’)

35 #Computing master time vector

36 t_master = ts.time_master ([ tdms_file], [wind_nodes [4]])

37 #Extracting data

38 V, meandir , u, w, Iu, Iw, sigma_y , sigma_z , sigma_theta = gd.getCharacteristics(

tdms_file , acc_node , anemometer , t_master , Fs)

39 print(’Finished extracting data from file ’ + str(i+1))

40 # Deleting intervals with mean wind speed below 3 m/s

41 ind = np.sort(np.argwhere(V < 3))

42 V = np.delete(V, ind); meandir = np.delete(meandir , ind); u = np.delete(u, ind , axis

=1); w = np.delete(w, ind , axis =1)

43 Iu = np.delete(Iu , ind); Iw = np.delete(Iw, ind); sigma_y = np.delete(sigma_y , ind);

sigma_z = np.delete(sigma_z , ind); sigma_theta = np.delete(sigma_theta , ind)

44 # Obtaining the spectral values Au and Aw for the intervals

45 Au = np.zeros(len(V))
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46 Aw = np.zeros(len(V))

47 lse_Au = np.zeros(len(V))

48 lse_Aw = np.zeros(len(V))

49 for k in range(len(V)):

50 print(’Calculating A for interval nr. ’ + str(k+1))

51 Au[k], Aw[k], lse_Au[k], lse_Aw[k] = fit.autoSpectraParam(Fs , u[:,k], w[:,k], V[

k], True)

52 tdms_file.close()

53 # Saving the extracted data

54 variables = [V, meandir , Iu , Iw , sigma_y , sigma_z , sigma_theta , Au, Aw, lse_Au ,

lse_Aw]

55 file_data = np.zeros((len(V), len(variables)))

56 for k in range(np.shape(file_data)[1]):

57 file_data[:,k] = variables[k]

58 turbulence = [u, w]

59 turb_data = np.zeros((np.shape(u)[0], np.shape(u)[1], 2))

60 for k in range(np.shape(turb_data)[2]):

61 turb_data [:,:, k] = turbulence[k]

62

63 np.savetxt(save_path + nodes_folder [4] + ’\\’ + filenames[i][0:20] + ’.csv’,

file_data , delimiter=’,’)

64 np.savetxt(save_path + nodes_folder [4] + ’\\’ + ’Turbulence ’ + ’\\’ + filenames[i

][0:20] + ’_u.csv’, turb_data [:,:,0], delimiter=’,’)

65 np.savetxt(save_path + nodes_folder [4] + ’\\’ + ’Turbulence ’ + ’\\’ + filenames[i

][0:20] + ’_w.csv’, turb_data [:,:,1], delimiter=’,’)

66 #%% Extract K_u ,w from fitting of data from anemometers W05 -19-1, W05 -18-1, W05 -17-1 and W04

-15-1

67 dx = np.array ([20, 40, 80]) # Distances between anemometers

68

69 folder1 = path + nodes_folder [1]

70 fileNames_A04 = []

71 for file in os.listdir(folder1):

72 if (file.endswith(’.tdms’) and file.startswith(’2022’)):

73 fileNames_A04.append(file)

74

75 folder2 = path + nodes_folder [2]

76 fileNames_A05 = []

77 for file in os.listdir(folder2):

78 if (file.endswith(’.tdms’) and file.startswith(’2022’)):

79 fileNames_A05.append(file)

80

81 fileNames_inBoth = list(set(fileNames_A04).intersection(fileNames_A05))

82 fileNames_inBoth.sort()

83

84 for file in fileNames_inBoth: # Loop through all files

85 print(’Reading file ’ + file)

86 try:

87 cur_file_A04 = TdmsFile.read(path + nodes_folder [1] + ’\\’ + file)

88 cur_file_A05 = TdmsFile.read(path + nodes_folder [2] + ’\\’ + file)
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89 except:

90 print(’Error opening the file ’ + file)

91 continue

92 else:

93 #Computing master timevector

94 t_master = ts.time_master ([ cur_file_A04 , cur_file_A05], [’W04’, ’W05’])

95 # Extracting data from anemometers

96 u19 , w19 , V19 , meandir19 = gd.readWind(’W05 -19-1’, cur_file_A05 , 10, t_master , Fs)

97 u18 , w18 , V18 , meandir18 = gd.readWind(’W05 -18-1’, cur_file_A05 , 10, t_master , Fs)

98 u17 , w17 , V17 , meandir17 = gd.readWind(’W05 -17-1’, cur_file_A05 , 10, t_master , Fs)

99 u15 , w15 , V15 , meandir15 = gd.readWind(’W04 -15-1’, cur_file_A04 , 10, t_master , Fs)

100 # Deleting intervals that have mean direction deviating more than 20 degrees from 90

and 270 and/or mean wind speed below 3 m/s

101 ind = []

102 dum1 = np.argwhere(np.logical_or ((np.logical_or(meandir19 < 70, meandir19 > 290)),

np.logical_and(meandir19 < 250, meandir19 > 110)))

103 dum2 = np.argwhere(np.logical_or ((np.logical_or(meandir18 < 70, meandir18 > 290)),

np.logical_and(meandir18 < 250, meandir18 > 110)))

104 dum3 = np.argwhere(np.logical_or ((np.logical_or(meandir17 < 70, meandir17 > 290)),

np.logical_and(meandir17 < 250, meandir17 > 110)))

105 dum4 = np.argwhere(np.logical_or ((np.logical_or(meandir15 < 70, meandir15 > 290)),

np.logical_and(meandir15 < 250, meandir15 > 110)))

106 dum5 = np.argwhere(np.logical_or(np.logical_or(np.logical_or(V19 < 3, V18 <3), V17

<3), V15 < 3))

107 ind = np.concatenate ((np.concatenate ((np.concatenate ((np.concatenate ((dum1 , dum2)),

dum3)), dum4)), dum5))

108 ind = np.sort((list(set(ind.flatten ()))))

109 if len(ind)!=0:

110 u19 = np.delete(u19 , ind , axis =1); V19 = np.delete(V19 , ind); u18 = np.delete(

u18 , ind , axis =1); V18 = np.delete(V18 , ind); u17 = np.delete(u17 , ind , axis =1); V17 =

np.delete(V17 , ind); u15 = np.delete(u15 , ind , axis =1); V15 = np.delete(V15 , ind)

111 w19 = np.delete(w19 , ind , axis =1); w18 = np.delete(w18 , ind , axis =1); w17 = np.

delete(w17 , ind , axis =1); w15 = np.delete(w15 , ind , axis =1)

112 # Obtaining Ku and Kw for intervals

113 Ku = np.zeros(np.shape(u19)[1]); lse_Ku = np.zeros(np.shape(u19)[1])

114 Kw = np.zeros(np.shape(u19)[1]); lse_Kw = np.zeros(np.shape(u19)[1])

115 for interval in range(np.shape(u19)[1]):

116 print(’Calculating K for interval nr. ’ + str(interval +1))

117 u = np.array([u19[:, interval] + V19[interval],

118 u18[:, interval] + V18[interval],

119 u17[:, interval] + V17[interval],

120 u15[:, interval] + V15[interval ]]).T

121 w = np.array([w19[:, interval], w18[:, interval], w17[:, interval], w15[:,

interval ]]).T

122 Ku[interval], Kw[interval], lse_Ku[interval], lse_Kw[interval] = fit.

normCrossSpectraParam(Fs , u, w, dx)

123 cur_file_A04.close()

124 cur_file_A05.close()

125 # Saving the extracted values
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126 variables = [Ku, Kw , lse_Ku , lse_Kw , np.mean(np.array([V19 , V18 , V17 , V15]), axis =0)

]

127 file_data = np.zeros((len(Ku), len(variables)))

128 for k in range(np.shape(file_data)[1]):

129 file_data[:,k] = variables[k]

130 np.savetxt(save_path + ’\\K\\’ + file [0:20] + ’.csv’, file_data , delimiter=’,’)

buffeting_response.py

1 #%% Import necessary modules

2 from scipy.interpolate import interp1d

3 import AbaqusInputToBuffetingResponse as inp

4 from csv import writer

5 import os

6 import numpy as np

7 def RMS(U, I_u , I_w , Au , Aw , Ku , Kw, x_r , spectra_type , filename):

8 """

9 Arguments:

10 U : mean wind velocity

11 I_u ,w : turbulence intensity of along -wind and vertical turbulence component

12 A_u ,w : spectral parameters for the one -point auto spectra

13 K_u ,w : decay coefficients for the normalized cross spectra

14 x_r : index in x-vector for position along the bridge

15 spectra_type : ’kaimal ’ / ’N400’

16 filename : name of the file that the outputs should be saved to

17 Returns:

18 rms_tot : vector of root mean square of acceleration response for y, z and theta

19 ms : array of mean square of acceleration response for y, z and theta ,

20 from each mode

21 ----------------------------------------------------------------------

22 Function calculates the buffeting response using either a kaimal type of spectra , or the

N400 spectra.

23 """

24 ##### Constants / parameters

25 rho = 1.25 # Air density

26 B = 18.6 # Width of bridge cross section

27 D = 3 # Height of bridge cross section

28 # Calculation of integral length scale

29 L1 = 100 # Reference length scale

30 z1 = 10 # Reference height

31 z = 54.2 # height of anemometer

32 xLu = L1 * (z/z1)**0.3

33 xLw = 1/12 * xLu

34 if spectra_type == ’kaimal ’:

35 xLu = z

36 xLw = z

37 # Retrieving modal parameters from Abaqus

38 nodes , phi , w_n , Mi_t = inp.modalParam(numberOfModes =56)

39 phi = np.transpose(phi , [0,2,1])
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40 #Interpolation of nodal coordinates and mode shapes

41 L = np.max(nodes) - np.min(nodes)

42 x = np.linspace(np.ceil(-L/2), np.floor(L/2), 281) # Coordinates

43 phi = np.array(interp1d(nodes , phi , axis =1)(x))

44

45 ksi = 0.005 # Damping ratio for each mode , set to 0.5%

46 omega = np.logspace(-3, 0, 100) *2*np.pi # Vector of frequencies [rad/s]

47

48 Cd_bar = 0.793; Cl_bar = -0.353; Cm_bar = -0.0149; Cd_prime = -1.0842; Cl_prime = 3.420;

Cm_prime = 1.0625 # From wind tunnel test at NTNU

49 Bq = rho*U*B/2 * np.array ([[2*(D/B)*Cd_bar , (D/B)*Cd_prime -Cl_bar], [2*Cl_bar , Cl_prime

+(D/B)*Cd_bar], [2*B*Cm_bar , B*Cm_prime ]])

50

51 sigma_u = I_u * U

52 sigma_w = I_w * U

53

54 ##### Calculations #####

55 # Calculating the spectral density of the generalized load through a double for -loop

56 print(’(1) Calculation of spectral density for the generalized loads.’)

57 Su = 1/(2* np.pi) * sigma_u **2 * xLu / U * Au / (1 + 1.5 * Au * (omega*xLu /(2*np.pi*U)))

**(5/3) # One -point auto -spectrum for u

58 Sw = 1/(2* np.pi) * sigma_w **2 * xLw / U * Aw / (1 + 1.5 * Aw * (omega*xLw /(2*np.pi*U)))

**(5/3) # One -point auto -spectrum for w

59 S_Q_red = np.zeros ([np.shape(omega)[0], np.shape(w_n)[0]])

60 dxdx = np.abs(np.array ([x]) - np.array ([x]).T)

61 for i in range(np.shape(w_n)[0]):

62 print(’ Calculating for mode nr. ’ + str(i+1) + ’ out of ’ + str(np.shape(w_n)

[0]))

63 for w in range(np.shape(omega)[0]):

64 Suu = Su[w] * np.exp(-Ku*omega[w]*dxdx /(2*np.pi*U))

65 Sww = Sw[w] * np.exp(-Kw*omega[w]*dxdx /(2*np.pi*U))

66 Int_1 = (np.array ([phi[0,:,i]]).T @ np.array ([phi[0,:,i]]) * Bq[0,0] + np.array

([phi[1,:,i]]).T @ np.array([phi[0,:,i]]) * Bq[1,0] + np.array([phi[2,:,i]]).T @ np.

array ([phi[0,:,i]]) * Bq[2,0]) * Suu * Bq[0,0] + \

67 (np.array([phi[0,:,i]]).T @ np.array([phi[0,:,i]]) * Bq[0,1] + np.array

([phi[1,:,i]]).T @ np.array([phi[0,:,i]]) * Bq[1,1] + np.array([phi[2,:,i]]).T @ np.

array ([phi[0,:,i]]) * Bq[2,1]) * Sww * Bq[0,1]

68 Int_2 = (np.array ([phi[0,:,i]]).T @ np.array ([phi[1,:,i]]) * Bq[0,0] + np.array

([phi[1,:,i]]).T @ np.array([phi[1,:,i]]) * Bq[1,0] + np.array([phi[2,:,i]]).T @ np.

array ([phi[1,:,i]]) * Bq[2,0]) * Suu * Bq[1,0] + \

69 (np.array([phi[0,:,i]]).T @ np.array([phi[1,:,i]]) * Bq[0,1] + np.array

([phi[1,:,i]]).T @ np.array([phi[1,:,i]]) * Bq[1,1] + np.array([phi[2,:,i]]).T @ np.

array ([phi[1,:,i]]) * Bq[2,1]) * Sww * Bq[1,1]

70 Int_3 = (np.array ([phi[0,:,i]]).T @ np.array ([phi[2,:,i]]) * Bq[0,0] + np.array

([phi[1,:,i]]).T @ np.array([phi[2,:,i]]) * Bq[1,0] + np.array([phi[2,:,i]]).T @ np.

array ([phi[2,:,i]]) * Bq[2,0]) * Suu * Bq[2,0] + \

71 (np.array([phi[0,:,i]]).T @ np.array([phi[2,:,i]]) * Bq[0,1] + np.array

([phi[1,:,i]]).T @ np.array([phi[2,:,i]]) * Bq[1,1] + np.array([phi[2,:,i]]).T @ np.

array ([phi[2,:,i]]) * Bq[2,1]) * Sww * Bq[2,1]
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72 Int = Int_1 + Int_2 + Int_3

73 S_Q_red[w,i] = np.trapz(np.trapz(Int ,x), x)

74

75

76 ## Refining the w-axis for the generalized loads by interpolation

77 print(’(2) Refining the frequency axis’)

78 omega_ref = np.linspace (0.001 , 1, 1000) *2*np.pi

79 S_Q = interp1d(omega , S_Q_red , axis =0)(omega_ref)

80

81 ## Calculating generalized damping and stiffness

82 print(’(3) Calculating generalized damping and stiffness ’)

83 Ci_t = np.zeros(np.shape(w_n)[0]) # Generalized damping

84 Ki_t = np.zeros(np.shape(w_n)[0]) # Generalized stiffness

85 for i in range(np.shape(w_n)[0]):

86 Ci_t[i] = 2*Mi_t[i]*w_n[i]*ksi

87 Ki_t[i] = w_n[i]**2* Mi_t[i]

88

89 ## Calculating aerodynamic damping and stiffness

90 print(’(4) Calculating aerodynamic damping and stiffness ’)

91 Cae = np.zeros ([np.shape(omega_ref)[0], 3, 3]) # Aerodynamic damping

92 Kae = np.zeros ([np.shape(omega_ref)[0], 3, 3]) # Aerodynamic stiffness

93 i = 0

94 for w in omega_ref:

95 K = w*B/U # Reduced frequency

96 v_hat = 1 / K

97 # Aerodynamic derivatives

98 if v_hat <= 1.35:

99 v_hat = 1.35

100 elif v_hat >= 17:

101 v_hat = 17

102 P4s = ( -8.73239e-05* v_hat **2 + 0.00220737* v_hat + 0.0263768)/K**2

103 H4s = ( -0.00143984* v_hat **2 + 0.0325336* v_hat + -0.145406)/K**2

104 A3s = ( -0.000826889* v_hat **2 + 0.0192049* v_hat + 0.926908)/K**2

105 P1s = (0.00338829* v_hat **2 + -0.070592* v_hat + 0.00153207)/K

106 H1s = (0.00530354* v_hat **2 + -0.116064* v_hat + -2.19524)/K

107 A2s = (0.0017332* v_hat **2 + -0.0452137* v_hat + -0.157346)/K

108

109 Cae[i, :, :] = (rho*B**2/2)*w * np.array ([[P1s , 0, 0], [0, H1s , 0], [0, 0, B**2* A2s

]])

110 Kae[i, :, :] = (rho*B**2/2)*w**2 * np.array ([[P4s , 0, 0], [0, H4s , 0], [0, 0, B**2*

A3s ]])

111 i = i + 1

112

113 ## Calculating the response

114 print(’(5) Calculating the response ’)

115 ms = np.zeros([3, np.shape(w_n)[0]]) # Mean square of acceleration response for y, z and

theta

116 # Looping through all frequencies

117 S_rdd = np.zeros([3, np.shape(omega_ref)[0]]) # Matrix with auto -spectra for acc. resp.
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in y, z, theta

118 # Looping through each mode

119 for i in range(np.shape(w_n)[0]):

120 print(’ Calculating for mode nr. ’ + str(i+1) + ’ out of ’ + str(np.shape(w_n)

[0]))

121 j = 0

122 for w in omega_ref:

123 Ci_aet = np.trapz(phi[0,:,i]**2* Cae[j,0,0] + phi[1,:,i]**2* Cae[j,1,1] + phi[2,:,

i]**2* Cae[j,2,2], x) # Generalized aerodynamic damping

124 Ki_aet = np.trapz(phi[0,:,i]**2* Kae[j,0,0] + phi[1,:,i]**2* Kae[j,1,1] + phi[2,:,

i]**2* Kae[j,2,2], x) # Generalized aerodynamic stiffness

125 Hi_t = 1/(-Mi_t[i]*w**2 + (Ci_t[i] - Ci_aet)*1j*w + (Ki_t[i] - Ki_aet)) #

Generalized frequency response function

126 Si_eta = np.abs(Hi_t)**2 * S_Q[j, i] # Auto -spectrum for generalized response

127 Si_r = phi[:, x_r , i]**2 * Si_eta # Auto -spectra for disp. resp. in y, z, theta

128 Si_rdd = w**4 * Si_r # Auto -spectra for acc. resp. in y, z, theta

129 S_rdd[:, j] = Si_rdd

130 j = j + 1

131 ms[0, i] = np.trapz(S_rdd[0, :], omega_ref)

132 ms[1, i] = np.trapz(S_rdd[1, :], omega_ref)

133 ms[2, i] = np.trapz(S_rdd[2, :], omega_ref)

134 rms_tot = np.sqrt(np.array ([sum(ms[0]), sum(ms[1]), sum(ms[2])]))

135

136 # Saving results

137 save_path = os.getcwd ()+ ’\Results ’ + ’\\ Predicted ’

138 file_data = np.array([U, rms_tot [0], rms_tot [1], rms_tot [2]]).T

139 with open(save_path + filename + ’.csv’, ’a’, newline=’’) as file:

140 file_write = writer(file)

141 file_write.writerow(file_data)

142 file.close()

143 return rms_tot , ms

response_predictions.py

1 import buffeting_response as br

2 import os

3 from csv import writer

4 #%% Predicted buffeting response using semi -probabilistic approach

5 I_u_all = [0.0726 , 0.0741 , 0.0735]

6 I_w_all = [0.0456 , 0.0408 , 0.0346]

7 Au = 8.3

8 Aw = 1.9

9 Ku = 8.2

10 Kw = 8.6

11 # RUN the calculation

12 U = np.linspace (0.1, 25, 30) # Vector of mean wind velocities

13 U = np.concatenate ((U, np.array [9.95 , 10.05 , 14.95, 15.05]))

14

15 filename = ’Case 1’
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16

17 for i in range(np.shape(U)[0]):

18 if len(I_u_all) > 1:

19 if U[i] < 10:

20 I_u = I_u_all [0]

21 I_w = I_w_all [0]

22 elif U[i] >= 10 and U[i] < 15:

23 I_u = I_u_all [1]

24 I_w = I_w_all [1]

25 elif U[i] >= 15:

26 I_u = I_u_all [2]

27 I_w = I_w_all [2]

28 print(’V = ’+str(U[i]))

29 rms_tot , ms = br.RMS(U[i], I_u , I_w , Au , Aw , Ku, Kw, 140, spectra_type=’kaimal ’,

filename)

30 #%% Predicted buffeting response using probabilistic approach

31 # Retrieving the simulated values of sigma_u and sigma_w

32 simulated = os.getcwd () + ’\Results ’ + ’\\ Predicted\Simulations ’

33 V_east = []; std_u_east = []; std_w_east = [];

34 V_west = []; std_u_west = []; std_w_west = [];

35 for file in os.listdir(simulated):

36 if (file.endswith(’east.csv’)):

37 res = np.loadtxt(simulated + ’\\’ + file , delimiter=’,’)

38 for i in range(np.shape(res)[0]):

39 V_east.append(res[i][0])

40 std_u_east.append(res[i][1])

41 std_w_east.append(res[i][2])

42 if (file.endswith(’west.csv’)):

43 res = np.loadtxt(simulated + ’\\’ + file , delimiter=’,’)

44 for i in range(np.shape(res)[0]):

45 V_west.append(res[i][0])

46 std_u_west.append(res[i][1])

47 std_w_west.append(res[i][2])

48

49 # Predicted response using probabilistic approach for easterly winds

50 Au = 13.9

51 Aw = 1.7

52 Ku = 7.8

53 Kw = 8.9

54 filename = ’sim_east ’

55 for i in range(0, len(V_east)):

56 I_u = std_u_east[i]/ V_east[i]

57 I_w = std_w_east[i]/ V_east[i]

58 print(’ Calculating for V_east nr. ’ + str(i+1) + ’ out of ’ + str(np.shape(V_east)

[0]))

59 rms_tot , ms = br.RMS(V_east[i], I_u , I_w , Au, Aw, Ku, Kw, 140, spectra_type=’kaimal ’,

filename)

60

61 # Predicted response using probabilistic approach for westerly winds
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62 Au = 9.4

63 Aw = 1.8

64 Ku = 7.8

65 Kw = 8.9

66 filename = ’sim_west ’

67 for i in range(np.shape(V_west)[0]):

68 I_u = std_u_west[i]/ V_west[i]

69 I_w = std_w_west[i]/ V_west[i]

70 print(’ Calculating for V_west nr. ’ + str(i+1) + ’ out of ’ + str(np.shape(V_west)

[0]))

71 rms_tot , ms = br.RMS(V_west[i], I_u , I_w , Au, Aw, Ku, Kw, 140, spectra_type=’kaimal ’)

A.4 Operational Modal Analysis

OMA_functions.py

1 ###### Import modules

2 import koma.oma as oma

3 import koma.plot as oma_plot

4 import koma.modal as modal

5 import scipy.signal as sci

6

7 def modalParamOMA(data , fs, orders , i, s, stabcrit ={’freq’: 0.05, ’damping ’: 0.1, ’mac’:

0.1}, autoSpectrum=False):

8 """

9 Arguments:

10 data : data matrix , each column containing data from one accelerometer

11 fs : sampling frequency

12 orders : array of what orders to perform the Cov -SSI for

13 i : maximum number of block rows

14 s : stability level

15 stabcrit : stabilization criteria

16 autospectrum : parameter to decide whether or not to plot an auto -spectrum in the

stabilization plot

17 Returns:

18 f_n_sort , ksi_sort , phi_sort : natural frequencies , damping ratios and mode

19 shapes from stable poles , sorted based on the values of

the

20 natural frequencies

21 ------------------------------------------------------------------

22 Function for computing Cov -SSI to obtain modal parameters from stable poles

23 """

24 ## Find all complex poles and eigenvectors for all orders

25 lambd , phi = oma.covssi(data=data , fs=fs , i=i, orders=orders , weighting=’none’,

matrix_type=’hankel ’, algorithm=’shift’, showinfo=True , balance=True)

26 ## Find stable poles from all poles

27 lambd_stab , phi_stab , orders_stab , idx_stab = oma.find_stable_poles(lambd , phi , orders ,

s, stabcrit=stabcrit , valid_range ={’freq’: [0, np.inf], ’damping ’:[0, np.inf]},
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indicator=’freq’, return_both_conjugates=False)

28 ## Natural frequencies , damping ratios and mode shapes for stable poles , sorted after

the value of the natural frequencies

29 w_n = np.abs(lambd_stab)

30 f_n = w_n / (2*np.pi)

31 ksi = - np.real(lambd_stab) / np.abs(lambd_stab)

32

33 f_n_sort_index = np.argsort(f_n)

34 f_n_sort = f_n[f_n_sort_index]

35 ksi_sort = ksi[f_n_sort_index]

36 phi_sort = phi_stab[:, f_n_sort_index]

37

38 return f_n_sort , ksi_sort , phi_sort

39

40 def getModeShapeInSpecifiedDirection(phi , i_phi_plot , direction):

41 """

42 Arguments:

43 phi : mode shape matrix , each column containing mode shape values

44 for x1, x2, y1, y2, z1, z2 at the sensor locations

45 i_phi_plot : index of which mode shape to plot

46 direction : type of mode shape : ’x’ / ’y’ / ’z’ / ’theta’

47 Returns:

48 phi : normalized mode shape values in specified direction

49 ---------------------------------------------------------

50 Function normalises the mode shape matrix in order to plot the mode shapes in a

specified direction.

51 """

52 B = 18.6

53 if direction == ’x’:

54 norm , _ = modal.normalize_phi(np.real(modal.maxreal ((phi [0:8 ,:]+ phi [8:16 ,:]) /2)))

55 phi = norm[:, i_phi_plot]

56 elif direction == ’y’:

57 norm , _ = modal.normalize_phi(np.real(modal.maxreal ((phi [16:24 ,:]+ phi [24:32 ,:]) /2)))

58 phi = norm[:, i_phi_plot]

59 elif direction == ’z’:

60 norm , _ = modal.normalize_phi(np.real(modal.maxreal ((phi [32:40 ,:]+ phi [40:48 ,:]) /2)))

61 phi = norm[:, i_phi_plot]

62 else:

63 norm , _ = modal.normalize_phi(np.real(modal.maxreal((-phi [32:40 ,:]+ phi [40:48 ,:])/B))

)

64 phi = norm[:, i_phi_plot]

65

66 return phi

OMA_Halogaland.py

1

2 import numpy as np

3 import os



APPENDIX A. PYTHON SCRIPTS 126

4 from nptdms import TdmsFile

5 import get_acc_OMA as gd

6 import OMA_functions as OMA

7 import time_synchronisation as ts

8 #%% Read corresponding file from all data loggers

9 path = os.getcwd ()+’\Data’

10 anodes = [’\\ anode003 ’, ’\\ anode004 ’, ’\\ anode005 ’, ’\\ anode006 ’, ’\\ anode007 ’, ’\\ anode008 ’

, ’\\ anode009 ’, ’\\ anode010 ’] # List of all data loggers

11 anode_names = [’A03’, ’A04’, ’A05’, ’A06’, ’A07’, ’A08’, ’A09’, ’A10’]

12 anemometers = [’W03 -7-1’, ’W04 -15-1’, ’W05 -19-1’, ’W07 -28-1’, ’W10 -49-1’] # List of

anemometer names for each data logger (the ones closest to accelerometers)

13

14 fileToRead = ’2022 -02 -04 -00 -00 -00Z.tdms’

15 files = []

16 for i in range(np.shape(anodes)[0]):

17 files.append(TdmsFile.read(path + anodes[i] + ’\\’ + fileToRead))

18 print(’File nr. ’ + str(i+1) + ’ done.’)

19 #%% Extracting chosen interval of prosessed data from all accelerometers

20 interval = 0

21 fs = 2

22 t_master = ts.time_master(files , [’W03’, ’W04’, ’W05’, ’xx’, ’W07’, ’xx’, ’xx’, ’W10’])

23 # Finding shape to initialize matrices

24 _, acc_1y , _, _, _, _ = gd.readAccForOMA(’A03’, files[0], 30, t_master , fs)

25

26 # Saving accelerations from interval nr. interval from all accelerometers

27 acc_x_all = np.zeros([np.shape(acc_1y)[1], np.shape(files)[0]*2])

28 acc_y_all = np.zeros([np.shape(acc_1y)[1], np.shape(files)[0]*2])

29 acc_z_all = np.zeros([np.shape(acc_1y)[1], np.shape(files)[0]*2])

30 for i in range(np.shape(files)[0]):

31 acc = gd.readAccForOMA(anode_names[i], files[i], 30, t_master , fs)

32 acc_x_all[:, i] = acc [0][ interval , :]; acc_x_all [:, i+8] = acc [3][ interval , :]

33 acc_y_all[:, i] = acc [1][ interval , :]; acc_y_all [:, i+8] = acc [4][ interval , :]

34 acc_z_all[:, i] = acc [2][ interval , :]; acc_z_all [:, i+8] = acc [5][ interval , :]

35

36 acc_all = np.concatenate ((acc_x_all , acc_y_all , acc_z_all), axis =1) # [1x values; 2x values;

1y values; 2y values; 1z values; 2z values]

37 #%% Cov -SSI - parameters

38 i = 24 # Maximum number of block rows

39 s = 6 # Stability level

40 orders = np.arange(2, 252, 2) # Array of what orders to include

41 stabcrit = {’freq’: 0.05, ’damping ’: 0.1, ’mac’: 0.1} # Default

42

43 f_n_sort , ksi_sort , phi_sort , fig = OMA.modalParamOMA(acc_all , fs, orders , i, s, stabcrit=

stabcrit , autoSpectrum=True)
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