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Abstract

Numerous long-span suspension bridges are planned as part of Norway’s ”Ferry-free E39” project,
including a bridge crossing the Halsafjord. The fjord is approximately 2 kilometres wide, and the
long span and rough weather conditions complicate the bridge design. As bridges are built longer
and longer, the dynamic effects of wind dominate in terms of structural loading effects and become
the main issue in their overall design. Twin-box bridges have been shown to improve aerodynamic
stability by changing the surface pressure distribution around the bridge deck. Nonetheless, there
is limited experience with twin-box bridges. Wind tunnel testing has shown that the loads on twin-
box bridges are far more complicated than on single-box bridges. Vibration in terms of buffeting
loads induced by the fluctuating wind and vortex-induced vibrations may be encountered due to
the gap between the bridge decks.

This thesis aims to study the pressure distribution on a twin-box bridge and estimate the aero-
dynamic admittance functions. A section model of a twin-box bridge was constructed and tested
in the wind tunnel at the Department of Energy and Process Engineering at NTNU Trondheim
for different wind velocities, angles of attack and active grid-generated turbulence. The pressure
distribution was measured with 256 pressure tubes connected to four MSP4264 pressure scanners.
The tubes were distributed along six strips on each box to investigate the coherence.

The study consists of four main phases. The first phase focused on theoretical studies of wind
effects, wind-tunnel testing, aerodynamic admittance functions, and the development and design
of a 3D-printed mid-section. The second phase was the building process. A 1:50 scale twin-
box bridge was built, and pressure tubes were fastened to the 3D-printed model and the four
pressure scanners. Further, the third phase consisted of additional knowledge of the experimental
setup and processing, pretests of the pressure scanners, and the final tests conducted in the wind
tunnel. The last phase consisted of data processing and interpretation of the final results. The
aerodynamic admittance functions were estimated with three different methods; the general, the
auto-spectral, and the cross-spectral. The calculated pressure distribution, static load coefficients
and the estimated admittance functions were evaluated and compared with previous research.

The estimated admittance functions obtained from the different methods were compared to each
other and the Sears function. Previous research was also used to compare and validate the results.
All methods displayed a peak at approximately 50Hz, which was the same frequency as the peaks
observed in the force spectra. These peaks were mainly caused by the downstream-box due to vor-
tex shedding. Moreover, the Sears function deviated significantly from the identified admittance
functions and is not considered applicable for the twin-box bridge. The Sears function overestim-
ated the admittance function for drag, while the admittance functions for lift and moment were
highly underestimated. The cross-spectral admittance functions showed some deviations compared
to the auto-spectral method, which could indicate that the auto-spectral method produces inac-
curate results. Nevertheless, based on the results obtained in this master’s thesis, as the force
spectra and static coefficients, the estimated admittance functions seem reasonable and are a valid
representation of the buffeting forces acting on the twin-box.
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Sammendrag

Flere hengebruer med lange spenn er planlagt som en del av Norges “Fergefri E39”- prosjekt,
inkludert en bru over Halsafjorden. Fjorden er omtrent 2 kilometer bred, og det lange spennet og
de rgffe veerforholdene gjor brudesignet mer komplisert. Ettersom bruene bygges lengre og lengre,
dominerer de dynamiske vindeffektene nar det kommer til de strukturelle belastningseffektene.
Disse vindeffektene er hovedutfordringen nar det kommer til brudesignet. Dobbel-kasse bruer har
vist seg & forbedre den aerodynamiske stabiliteten ved & endre trykkfordelingen pa overflaten rundt
brutverrsnittet. Likevel er det begrenset med erfaring med slike bruer. Gjennom vindtunneltesting
har det bitt vist at bruer med dobbel-kasse tverrsnitt er langt mer kompliserte enn de tradisjon-
elle enkelt-kasse bruene. Vibrasjoner pa grunn av buffeting krefter fra vinden og virvel-indusert
vibrasjoner kan oppsta pa grunn av avstanden mellom brudekkene.

Malet med denne oppgaven er a studere trykkfordelingen pa dobbel-kasse bruen og estimere frek-
vensresponsfunksjonene. En modell av en dobbel-kasse bru ble bygget og testet i vindtunnelen ved
Institutt for energi- og prosessteknikk ved NTNU Trondheim. Tester med ulike vindhastigheter,
angrepsvinkler og aktivt gittergenerert turbulens ble utfort. Trykkfordelingen ble malt med 256
plastrgr som var koblet til fire MSP4264 trykkskannere. Disse plastrgrene ble fordelt pa seks linjer
i spenn retningen for a undersgke korrelasjonen.

Oppgaven besto i hovedsak av fire faser. Den fgrste fasen besto av det teoretiske grunnlaget av
blant annet vind effektene, vindtunnel testing og frekvensresponsfunksjonene. 1 tillegg ble det
designet og utviklet en 3D-printet modell for plassering av plastrgrene. Den andre fasen var
byggeprosessen der en dobbel-kasse bru i skala 1:50 ble bygget. Plastrgrene ble festet til den 3D-
printede modellen og de fire trykkskannerne. Videre besto den tredje fasen av a sikre oversikt over
det eksperimentelle oppsettet, samt en test av trykkskannerne for de faktiske testene i vindtunnelen
ble utfgrt. Siste fase av oppgaven besto av a prosessere data og tolking av de endelige resultatene.
Frekvensresponsfunksjonene ble estimert ved bruk av tre forskjellige metoder; den generelle, den
auto spektrale og den kryss spektrale metoden. Trykkfordelingen, de statiske koeflisientene og de
estimerte frekvensresponsfunksjonene ble evaluert og sammenlignet med tidligere forskning.

De estimerte frekvensresponsfunksjonene fra de ulike metodene ble sammenlignet med hverandre,
Sears funksjonen og tidligere forskning for a validere resultatene. De estimerte frekvensrespons-
funksjonene viste en topp pa omtrent 50 Hz, noe som ogsa ble observert i lastspektrene. Disse
toppene er i hovedsak forarsaket av nedstrgms-kassen pa grunn av virvelavgivelse fra oppstrgms-
kassen. Det ble observert at Sears funksjonen avvek betydelig fra de identifiserte frekvensrespons-
funksjonene og ansees derfor ikke som gjeldende for bruer med dobbelt-kasse tverrsnitt. Sears
funksjonen overestimerte frekvensresponsfunksjonen for drakreftene, mens den underestimerte for
loft og moment. De kryss spektrale frekvensresponsfunksjonene viste noen avvik sammenlignet
med den auto spektrale metoden, noe som kan indikere at den auto spektrale metoden estimerer
ungyaktige resultater. Ut fra resultatene i denne oppgaven, som blant annet lastspektrene og de
statiske koeflisientene, ansees de estimerte frekvensresponsfunksjonene rimelig og kan brukes for a
forsta buffeting kreftene pa en bru med dobbelt-kasse tverrsnitt.
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Chapter 1

Introduction

Suspension bridges are subjected to enormous wind forces, resulting in extreme loads. To build sus-
pension bridges that can withstand these loads, detailed knowledge of the effects on the structures
is required. Understanding the wind-induced behavior of bridges has come a long way through-
out history. One event that was a turning point in the history of bridge design was the Tacoma
Narrows Bridge disaster in 1940. Following the Tacoma Narrows, aeronautical engineers made a
significant contribution to the development of aerodynamics in civil engineering. Among other
things, it became common practice to conduct tests in a conventional aeronautical wind tunnel in

uniform, smooth airflow rather than with simulated natural winds [1].

As bridges are built longer and longer, the dynamic effects of wind dominate in terms of structural
loading effects and become the main issue in their overall design. Bridges with a main span of
about 1 km or more are often referred to as "long span” bridges. As span length and slenderness
increase, the flexibility of these bridges becomes high, and the first natural frequency is typically
0.1 Hz or below [2]. As a result, long-span bridges become more sensitive to the wind, increasing
the aerodynamic stability requirements.

For wind-induced vibration of long-span bridges, buffeting is a central research area. It is a
random force vibration, which is generated by the structure under the action of natural wind
fluctuation components. Low wind speed causes buffeting, and the effects can result in fatigue or
serviceability issues and are therefore important with the increasing span of bridges. Up to now, the
buffeting response has mainly been obtained by theoretical calculation and wind tunnel tests. The
theoretical model is based on pioneering work achieved by Davenport and has later been enhanced
in several studies. Nonetheless, due to the complexity and diversity of bridge cross-sections and
the characteristics of atmospheric turbulence, it is difficult to estimate the aerodynamic forces
and wind-induced repose entirely through theoretical analysis. Wind tunnel tests are therefore an
important and essential method for calculating the buffeting response.

The aerodynamic admittance function (AAF) is an essential function for estimating the buffeting
response. It is a transfer function that transfers the turbulent wind fluctuations to buffeting forces.
Sears (1941) was the first to propose a theoretical approach for the AAF on streamlined bodies
in the frequency domain. Later, Davenport (1962) extended the theory to buffeting analysis of
bridges based on the quasi-steady theory. However, for bluff bodies, separation and reattachment
of the flow make the spatial characteristics of the aerodynamic forces far more complex. Hence,
the cross-sectional admittance functions may be determined from wind tunnel experiments with
time series of drag, lift, and moment forces or by pressure tap measurements around the periphery
of the cross-section. The pressure distribution can be calculated and indirectly described by the



AAF by pressure measurements. This is, however, "one step further” from standard tests with
force measurements. There are few previous studies, and the experience is limited.

A better understanding of the pressure distribution and the flow around the bridge cross-section
leads to a better description of the response, which has several benefits. More knowledge of wind-
induced behavior provides opportunities for longer bridges and may affect material consumption.
The correct choice and the right amount of material are important to ensure that the bridge
withstands the wind effects. In addition, it may lead to reduced costs and climate footprint.
However, safety is the first priority in civil engineering, and underestimating the response can have
catastrophic consequences.

Today, numerous long-span suspension bridges are planned as part of Norway’s ”Ferry-free E39”
project. The design of single box bridges with a span length of over 1700 meters that satisfy
the aerodynamic requirements is troublesome. However, twin-box bridges have been shown to
improve aerodynamic stability by changing the surface pressure distribution around the bridge
deck. In addition, it may result in lighter structures, and they are therefore more financially
appealing. Thus, twin-box bridges have received much attention and have been used in super
long-span suspension bridges, such as the 1915 Canakkale Bridge with a center span of 2023 m,
the Ti Sun-sin Bridge with a center span of 1545 m, and the Xihoumen Bridge with a center span
of 1650 m [3].

Nonetheless, there is limited experience with twin-box bridges. Wind tunnel testing has shown that
a twin-box bridge’s wind loads are far more complicated than for a single-box bridge [4]. Vibration
in terms of buffeting loads induced by the fluctuating wind and vortex-induced vibrations may be
encountered due to the gap between the bridge decks. There are few previous studies focusing on
the aerodynamic admittance of a twin-box bridge. Therefore, in this thesis, the aim is to estimate
the AAFs of a twin-box bridge. A section model of a twin-box bridge shall be built and tested
in a wind tunnel for different wind velocities and active grid-generated turbulence. To study the
pressure distribution and the aerodynamic forces, 256 pressure tubes shall be used to measure the
surface pressure around the periphery of the cross-section. The pressure tubes will be separated
and distributed along six strips for the opportunity to investigate the correlation between the
buffeting forces. Further, the AAFs will be estimated.




Chapter 2
Bridge Crossing the Halsafjord

The Coastal Highway Route E39 goes from Kristiansand in the south to Trondheim in the north, as
seen in Figure 2.1(a). The road is approximately 1100 kilometers along the west coast of Norway
and passes the citis; Stavanger, Stord, Bergen, Forde, Alesund, and Molde. Today, the travel
time is about 21 hours with seven ferry connections. The Norwegian Public Roads Administration
(NPRA) aims to improve E39 and make it ferry-free to halve the travel time on the entire stretch
and also between the cities. Improving the current E39 will link large business regions, housing,
labor, and service markets more closely and contribute to developing Norway’s largest export
region. This shall be done by making the stretch almost 50 kilometers shorter, replacing ferries
with fixed connections or more frequent ferry departures, as well as improving the road between
the fjords along the stretch [5].

A central part of the improvements of E39 is the project ”Ferry-free E39”, where the plan is to
replace the ferry connections with bridges and sub-sea tunnels. A bridge shall replace the ferry
connection across the Halsafjord. The fjord is approximately 2 kilometers wide and has a depth
of 500 meters [6]. The proposed location of the Halsafjord bridge is illustrated with a blue line in
Figure 2.1(b), while the current ferry connection is outlined in white.

FERRY-FREE
E39

Kristiansand

(a) The ”Ferry-free E39” project. (b) The proposed location of the bridge
across the Halsafjord

Figure 2.1: An overview of the project ”Ferry-free £39” and the Halsafjord.



The long span and the rough weather conditions make the bridge design complicated. Several dif-
ferent variants of bridge concepts have been considered, such as the concept of a twin-box bridge.
After three years of obtaining necessary data about the fjord, it was announced a preliminary pro-
ject. It involved a study of three different bridge concepts for the Halsafjord, which should provide
the Norwegian Public Roads Administration ground for decision-making. Bridge concepts of a
floating bridge and a suspension bridge with one span were delivered in April this year by the work
community involving Norconsult and Dr. techn. Olav Olsen. In addition, the work community
consisting of Aas-Jakobsen, Multiconsult, and COWI delivered a concept of a suspension bridge
with two spans with tension leg platform [6].




Chapter 3

Literature Review

This chapter presents relevant theory for the work done in this master’s thesis. It gives a brief
introduction to modal analysis, wind induced response, scaling laws, wind tunnel effects and aero-
dynamic admittance functions, among other things.

3.1 Modal Analysis

Modal analysis is the process of specifying the dynamic characteristics of a system and using them
to formulate a mathematical model of its dynamic behaviour. It is based upon the fact that the
structural displacements r(x,t) can be expressed by the sum of the products between the natural

eigenmodes, ¢;(x), and the generalized coordinates, n;(t), i.e. [7]:

Nimod

r(a,t) =Y ¢i(x)-ni(t) = (a) - n(t) (3.1)

where
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solution.

By inserting Equation 3.1 into the equilibrium equations of the system, followed by span-wise
integration, the equation of motion in modal frequency domain is obtained:

M0n+éon+I~{0n:Q(t)+Qae(tv7777)vn) (35)

The modal mass Mo, damping C\ and stiffness K| are obtained in still air and defined by:



é() = diag éz] where éi = 2Miwi<i (36)

K, = diag KZ}
where w; are the eigen-frequencies and (; are the damping ratios associated with the corresponding

eigen-modes.

The total modal wind load, Q(t) and the motion induced load, Qae(t, n,1,7) on the right hand
side of Equation 3.5 are derived by integration over the wind exposed part of the bridge (Legp):

Qilt) = / (67 - q)dz (3.7)
Qe (£, 11, 77) = / (67 - ¢5)da (3.8)

where the cross sectional load vectors contains three components representing drag, lift and moment
load per unit length [7].




3.2 Wind Induced Response

When an airflow meets a long-span bridge deck, it will cause the bridge to move. In addition, the
interaction between the wind pressure and the deformation of the structure will change the loads
that the wind generates [8]. This wind-induced dynamic response can be classified into three main
categories; random response due to buffeting by turbulence, vortex shedding, and motion-induced
forces. Buffeting is a vibration phenomenon that stems from pressure fluctuations in the oncoming
flow. Vortex shedding is vortices with alternating rotations which produce a vertical force. In each
vortex, the force changes in direction, causing vibrations of the deck. Motion-induced instabilities
are forces from the interaction between the flow and the oscillating structure itself [7].

These mentioned effects occur at all wind velocities but are vital in fairly separate wind velocity
regions. Vortex shedding is strongest at low wind velocities, buffeting forces occur in stronger
wind velocities, while motion-induced forces are strongest at even higher velocities. Therefore the
response calculations are usually treated separately [7]. This is illustrated in Figure 3.1 below.
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2 @
2 o
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173 o
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Static flow effects Flow induced Vortex Primarily Motion induced
divergence shedding turbulence | load effects
effects

Figure 3.1: Typical behavior for a slender bridge deck, illustration based on [7].

Generally, three force components and three moment components can be considered when a 3D
structure is exposed to wind. However, to simplify the idea, 2D alternatives could be considered as
convenient mathematical models in many wind engineering problems. Some approximations that

can be done are the strip theory assumption and the quasi-steady approximation.

3.2.1 The Strip Theory

The strip theory was originally introduced for aerofoils but is often used for bridges. Instead of
looking at the whole structure, a strip of unit thickness cut off by two planes in the mean wind
direction is considered. This can be done since bridges are only extended in one direction, and the
main concern is their behaviour when the wind comes perpendicular to its longitudinal axis. Then,
three components need to be considered; the lift force Fp, the drag force Fp, and the pitching

moment Fyy [9].

3.2.2 Quasi-Steady Theory

Another well-known approximation in bridge engineering is the Quasi-Steady theory. The approx-
imation ignores the history of motion in the aerodynamic model. Put differently, the aerodynamic




forces at any time depend only on the instantaneous position of the body and velocity at that
instant. This is an acceptable assumption for relatively high wind speed but unacceptable, for
instance, in the case of vortex shedding [9].

The Buffeting Theory

The buffeting load on a structure is associated with velocity fluctuations in the oncoming flow and
motion-induced contributions included in the total wind load. It is assumed that any fluctuating
quantity can be split into a time-invariant mean part depending on position and a fluctuating part
with zero mean, depending on both position and time. The wind velocity is therefore divided into
the stationary wind speed, V', and the fluctuating terms, u and w.

In Figure 3.2 below, the buffeting load is illustrated on a bridge cross-section. There are two
displacement configurations; the mean displacement, 7; and a fluctuating part around the mean
configuration, r;. The cross section is first given the displacements 7,(z), 7.,(x) and 7g(x) at
an arbitrary position along the span. About this position the structure starts to oscillates, and
additional dynamic displacements 7y (x,t), r.(z,t) and r¢(z,t) are given [7].
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Figure 3.2: Buffeting load acting on a bridge cross-section, illustration based on [7].

The forces and moments in the local coordinate system of the fluctuating wind can be expressed
by [7]:

qp(x,t) 1 D Cp(«)
qr(z,t) | = §PVr2ez B-Cp(a) (3.9)
qM(LL',t) 32 . C]w(a)

where p is the air density, D and B are the height and depth of the cross-section respectively, Cp,
C, and C); are the force coefficients, « is the corresponding angle of flow incidence and V,.; is the
relative wind velocity defined by:

Vi = (V +u(t) =7y ()* + (w(t) — 72(1)? (3.10)




The forces can be transformed to the global coordinate system of the section:

Qy cos(B) —sin(B) 0| |gp
Aot (7, 8) = | gz | = |sin(B) cos(B) O |ar (3.11)
o 0 0 1 qm
where
w— 1T,
t =" 12
an 3 Vru—r, (3.12)

Furthermore, it is assumed that the fluctuating flow components (u,w) and the structural dis-
placements (7, 7) are small compared to the mean wind velocity, V. Then, tanf ~ 3, and /8 can
be expressed as:

w— T,
~ 3.13
pa s (3.13)
And thus:
V2, ~ V4 2Vu -2V, (3.14)
w T,
a:T_9+T9+B%1"Tg+T9+V*V (3.15)

In addition, the nonlinear variation of the force coefficients is replaced by a linear approximation:

Cp(a) Cp(a) Cp(a)
Crla) | = | Cr@) | +ar- | Oy (@) (3.16)
Cu(a) Cu(@) Cy (@)

where @ is the mean and «y is the fluctuating part of the angle of attack. Cp(a),C} (@) and
(@) are the slopes of the coefficients curves at &.

By this, rewriting Equation 3.11, the following is obtained:
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q is a time invariant mean part, B, - v is the dynamic loading associated with the turbulence,
while C,. and K. are motion induced loads related to the structural displacement and velocity,
respectively [7].

3.2.3 Identification of static load coefficients

The static aerodynamic load coefficients Cp, Cp, and C); are dependent on the angle of attack.
They can be estimated with a static wind tunnel test, where the cross-section rotates, and the
forces are measured. The static coefficients can be expressed as:

C Fp (@)

D(a) 1 FLD(a)
Culo) | = o | (3.24)
Cu(a) 2 Lé(za)

where Cp is the drag force coefficient, Cp, is the lift force coefficient and C'; is the moment force
coefficient, respectively, Fp is the drag force, Fp, is the lift force and Fj; is the moment force. p
is the air density, V' is the wind velocity and D, B and L are the height, width and the length of
the bridge cross section.

3.2.4 Vortex Shedding

When a bluff body like a long-span bridge deck is met by an airflow, sharp edges will separate
the flow, causing vortices to be shed in the wake of the body. Vortex shedding is vortices with
alternating rotations which produce a vertical force. In each vortex, the force changes in direction,
by that causing vibrations of the deck. A dominant frequency characterizes the fluctuations in the
cross-wind force, the vortex shedding frequency, fs, is given by:

Vv

where St is the Strouhal Number which is a function of the geometry and Reynolds number, V is
the mean wind velocity and D is the across wind width of the deck [7].

Resonance will occur when the vortex shedding frequency, fs, is equal to any natural frequency
of the structure associated with vibrations in the across wind direction or in torsion. If the wind
velocity slowly increases from zero, fs, will increase accordingly. Resonance will occur when f;
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becomes equal to the lowest natural frequency. The next resonance will occur when f, is equal to
the subsequent natural frequency, and so on. Hence, there is a resonance velocity for every natural
frequency, which according to Equation 3.25 is expressed by:

v =1L

& (3.26)

Nevertheless, experiments have shown that fg will deviate from Equation 3.26 for a specific range
of wind velocities. This is called lock-in and happens when resonance occurs due to interaction
between the flow and the oscillating structure. The vortex shedding frequency, fs will be equal
to or stay close to the natural frequency, f,,. The fluctuating load becomes more correlated in
the spanwise direction at a lock-in, adding a motion-induced part. However, these effects decrease
when the fluctuating structural displacements become large [7].

Although twin-box bridges have aerodynamic advantages in flutter stability, the gap makes it more
responsive to vortex shedding excitation than a single bridge deck. During testing, lock-in may
occur and can cause problems if the critical velocity region is the same as the velocity in the wind
tunnel test.

11



3.3 Scaling Laws

In order to get accurate results when comparing the wind tunnel test with a full-scale model, some
non-dimensional quantities and scaling laws must be introduced. The cross-section in this thesis is
based on a cross-section from an earlier master’s thesis with the dimension 1:50 compared to the
full-scale scale bridge deck cross-section.

3.3.1 Scaling Wind Tunnel Model

The bridge model dimensions have to be adapted to fit the wind tunnel. It has to be scaled to
fit the wind tunnel’s size and withstand the maximum wind velocity in the wind tunnel. The
geometric scale of the bridge is defined as [10]:

_ Lwr

AL (3.27)

~ Lps

where WT stands for Wind Tunnel and FS stands for Full Scale and L is the length.

3.3.2 Reduced Frequency and Reduced Velocity

The non-dimensional frequency is usually referred to as the reduced frequency and is defined as:

_/B

fr="

(3.28)

where f is the frequency, B is the width of the deck and V is the wind velocity. The reduced
frequency can be used to indicate the unsteadiness of the system.

Reduced velocity is defined as:

Vv

VF =
fnB

(3.29)

where f, is the natural frequency, B is the width of the deck and V is the wind velocity as
mentioned.

The relation between reduced frequency and reduced velocity can be used as a comparison between
the wind tunnel model (WT) and the full scale model (FS):

Vrs Vwr
= 3.30
frsBrs  fwrBwr (8:30)

3.3.3 Reynolds Number

Reynolds number (Re) measures the turbulence in a fluid. It is a dimensionless number and the
ratio of inertia and viscous forces. The following formula gives the Reynolds number:

12
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where L is characteristic length of the gust, V,, is characteristic velocity, T is the characteristic
time, p is the dynamic viscosity and v is the kinematic viscosity (u/p).

The wind tunnel has limitations that make it almost impossible to obtain Reynolds number sim-
ilarity. The kinematic viscosity of the air does not vary much between the test and the full-scale
bridge. Therefore, the only way to compensate for the scaled length is to increase the wind speed
in the wind tunnel. The increased wind speed is, in most cases, too high and out of reach for
boundary layer wind tunnels [11]. Former research shows that bridge decks with sharp edge bodies
are less sensitive to change of Reynolds number [12]. This is because the separation point that
controls the action of the aerodynamic forces generally occurs at the leading edge, except for a
very large angle of attack.

3.3.4 Strouhal Number

The Strouhal number is a dimensionless number and is often used to describe vortex shedding. It
is defined as [13]:

_LL

St v

(3.32)

where f, is the Strouhal frequency or the vortex shedding frequency as described in Section 3.2.4,
V is the mean wind velocity and L is the characteristic length.

The Strouhal number is important when analyzing unsteady oscillating flow problems. It represents
the ratio between the inertial forces due to the local acceleration of the flow and the inertial forces
due to the convective acceleration. In order to scale the frequency, length, time and wind speed,
it is necessary that the Strouhal number is equal in full scale as in the wind tunnel [13]:

Twr  Lwr Vrs

SﬁWT = StFS or (333)

Trs  Lrs Vwr
If the gap between to girders increases, it will cause the Strouhal number to increase because of
the change in flow regime around the bridge deck. This is essential knowledge for full aerodynamic
evaluation of a twin deck [14]. The Strouhal number does also display a significant dependence on

the Reynolds number as it increases gradually with increasing Re, as shown in a study by Schewe
and Larsen [15].

3.3.5 Froude Number

The Froude number is defined as the ratio of the inertia forces to the gravity forces, given by:

V2 Vivr Lwr
PV _ 34
gL Vs Lrg (3:34)
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where V' is the mean wind velocity, g is the acceleration of gravity and L is the characteristic
length.

As seen in Equation 3.34, the velocity scale is equal to the square root of the geometric sale
since the acceleration of gravity is equal for both the wind tunnel and the full scale. This can
cause a problem since the wind tunnel test must be conducted at a low wind velocity and wind
tunnels are often less accurate at low wind velocities. For long-span bridges, the gravitational force
is important. Therefore, Froude number similarity for the wind tunnel model and the full-scale
model should be respected [11].

3.3.6 Wind Turbulence

Wind turbulence can be expressed in the turbulence spectra and has two parameters; the turbulence
intensity and the integral length scale. Turbulence intensity is a non-dimensional property and
measures the turbulence relative to the mean wind velocity. In other words, it is the standard
deviation of the wind speed divided by average wind speed over a period of typically 10 minutes
[7]:

I, =— where n=u,v,w (3.35)

The auto covariance functions and corresponding auto covariance coefficients of a wind signal,
where 7 is an arbitrary time lag are expressed by [7]:

T
Cov, (1) = En(t)n(t + 7] = % / n(t)n(t + 7)dt where n =u,v,w (3.36)
0
pn(T) = CLZ(T) where n=u,v,w (3.37)
Jn

The auto covariance of the turbulence components diminish at increasing values of the time lag,
7, and at large values of 7 they approach zero.

The time scale can be interpreted as the average duration of a u, v or w wind gust:

T, :/ pn(T)dT where n=u,v,w (3.38)
0

A well-known assumption in wind turbulence is Taylor’s frozen turbulence hypothesis, which as-
sumes that the turbulence is “frozen”. It is based upon that the advection velocity of the turbulence
is much larger than the velocity scale of the turbulence itself [16]. That is, the eddy property is
not changing during advection, and all eddies are advected at the mean wind velocity. Taylor [17]
himself stated:

If the velocity of the air stream which carries the eddies is very much greater than the
turbulent velocity, one may assume that the sequence of changes in u at the fized point
are simply due to the passage of an unchanging pattern of turbulent motion over the

point.

Adopting Taylor’s hypothesis, the turbulence convection in the main flow direction takes place
with the mean wind velocity. The average length scales are given by:

14



L, = V/ pn(T)dT where n=wu,v,w (3.39)
0

These length scales can be interpreted as the average eddy size of u, v and w components in the main
flow direction [7]. Tt is the product of average velocity and integral time scale. It represents the
correlation length and is scaled down by the geometric scale, and consists of eddy sizes in meters.
The integration length is divided into three different directions; the longitudinal component L,,, the
crosswind component L, and the vertical turbulence component L,,. A geometrical scale is used
when scaling down the integral length scale, but some predictions are necessary when determining
the integral length scale in a wind tunnel.

When studying wind loading, a lower turbulence intensity level than required will usually result in
higher loads. This is considered as the conservative case of wind loading. Therefore, the turbulence
intensity in the wind tunnel must be smaller or equal to the value in a full-scale test [13]:

Lywr < Iurs (3.40)

15



3.4 Aerodynamic Admittance Functions

For wind-induced vibration of long-span bridges, buffeting is a central research area. Low wind
speed causes buffeting, and the effects can result in fatigue or serviceability issues and are therefore
important with the increasing span. The Aerodynamic Admittance Functions (AAF) is an import-
ant transfer function for estimating the buffeting response, which transfers the turbulent wind to
buffeting forces. Sears (1941) first proposed a theoretical approach for the AAF on streamlined
bodies in the frequency domain. Later, Davenport (1962) extended the theory to buffeting analysis
of bridges based on the quasi-steady theory. To verify Sears’s function for a thin airfoil, Lamson
(1966) was the first to carry out the identification of the acrodynamic admittance functions in a
wind tunnel [18].

4q,1)
w(x,t)

v q4t) oy \ »q.(t)

Figure 3.3: Wind action on a bridge girder.

Figure 3.3 illustrates a bridge girder subjected to a 2D wind flow and the forces and moment in
the coordinates system of the fluctuating wind. The wind velocity is divided into the stationary
wind speed, V' and the turbulent vector v containing the fluctuating terms v and w. The linearized
buffeting load due to turbulence can be expressed by:

a(2,t) = B,(t)o(x,1) (3.41)

B,v is the dynamic loading associated with the turbulence, where B, is the same as in Equation
3.21 and v is the same as in Equation 3.18.

Similarly, the buffeting load Qp may be obtained by taking the Fourier transform of Equation 3.41:
Qi(z,w) = By(w)v(z,w) (3.42)

where

2D/B)Cpxy (D/B)Ch — Co)xy
B,(z,w) = ipVB 2CL X 2u (CL, 4+ (D/B)Cp)Xzw (3.43)
2BCrX6u BCrXow

and the frequency dependent admittance functions characteristic to the cross section [7]:

n=u,w

Xonn (@) { mehsY (3.44)
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Besides Taylor’s frozen turbulence hypothesis described in Section 3.3.6, Taylor also stated how
the correlation between two points decreases slower for large eddies than for smaller eddies. In the
buffeting theory described in Section 3.2.2, the bridge deck is considered slender with respect to the
longitudinal axis, and the quasi-steady theory holds. However, this holds only if the characteristic
size of the section is small compared with the turbulence length scale and is accurate for low
frequencies [19].

Bridge decks are often very elongated, and the characteristic size of the section cannot be considered
small. Therefore, the turbulent eddies cannot be considered as perfectly correlated around the
body. In Figure 3.4 the mean pressure is represented by vectors for both a) low frequencies and for
b) high frequencies. For low frequencies, the mean pressure is highly correlated because of the slow
wavelengths, and the quasi-steady theory is valid. However, for high frequencies, i.e., rapid varying
eddies, the bridge experience various fields of turbulence, which results in reduced correlation in
the pressure distribution. The aerodynamic admittance functions consider this lack of correlation
between the velocity fluctuation in the region surrounding the bridge [19].
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Figure 3.4: The mean pressure around the periphery of a bridge deck for a) low frequency and b)

high frequency.

The cross sectional admittance functions may be determined from wind tunnel experiments with
time series of drag, lift and moment forces. Another method is by pressure tap measurements
around the periphery of the cross section, which will be done in this thesis.
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3.4.1 Theoretical Aerodynamic Admittance

A method to obtain the buffeting response is through theoretical calculation. This is often based
on the principle of aerodynamics to provide a mathematical model of the relevant wind load before
the structural dynamics method is applied to solve the wind-induced response of the structure. The
current theoretical model is based on pioneering work done by Davenport, among others, which
has been enhanced in several studies [20].

Sears Function

Sears investigated the forces on a thin airfoil due to a sinusoidal coherent gust. The analysis
of the unsteady lift force is based on the strip assumption, as described in Section 3.2.1. From
linearized equations of fluid motion and the Kutta-Jouknowski condition, Sears introduced the lift
force spectrum by:

Sp(f*) =476 (f*) [ Su(f7) (3.45)

where Kutta-Jouknowski condition says that there are no singularities at the rear end of the airfoil,
f* is the reduced frequency expressed by f* = fB/2, B is the deck width and |¢(f*)| is the Sears
function given by [21]:

2 _ | Jolf)Ef*) + i (f) Ko (if*) [

#() i)+ Kolif) (3:40)

where Jy and J; are Bessel functions of the first kind, while Ky and K; are modified Bessel
functions of the second kind. The Sears function is often approximated by an expression suggested
by Leipmann:

1

|6(f*)]? =~ T+ o2 fr (3.47)

Equation 3.45 and 3.47 shows that the lift forces reduces as f* increases. Sears demonstrated
that for any flow fluctuation with a finite wavelength, the fluctuating lift will be less than the
quasi-steady value [21].

The aerodynamic admittance may be defined as:

x(f) = c% (3.48)

Based on this definition, x(f) = 1.0 for the quasi-steady case. Equivalent to the strip assumption,
for a thin airfoil in a fully correlated gust, the aerodynamic admittance can be expressed by:

x(f) =1o(f*) (3.49)

The Sears function, proposed by Liepmann, is often used in bridge aerodynamics to represent the
aerodynamic admittance. However, for streamlined bridge decks in turbulent flow, experiments
have shown that the admittance functions are significantly different from the Sears function. It
might be an acceptable assumption at low frequencies. However, for high frequencies where the
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turbulence length scales are comparable to the thickness, the flat plate assumption is invalid and
leads to an overestimation of the lift [22]. Experiments with section models of streamlined bridge
decks in turbulent flow have shown that the admittance tends to be lower than the Sears function
for low frequencies, and for bluff bridge decks, it tends to be higher for high frequencies [21].

Davenport’s Buffeting Theory

The theoretical analysis of buffeting forces on long-span bridges began when Davenport introduced
aerodynamic admittance in the 1960s. Based on the theory of aerodynamics, Davenport defined the
joint acceptance function and considered the time and space distribution of the aerodynamic forces
on a cross-section. It was introduced to express that the wind loading may vary with frequency
and is not necessarily quasi-steady. Moreover, to represent the spatial variation in the flow over
the region and impact on the forces [20].

The wind loads due to the buffeting action are as described in Section 3.2.2 and are given by:

VB

Fop= pT [2C,u + Cluwl (3.50a)
B

Fop= p‘; 2C,u + Clw] (3.50D)

Moy = V5 2Cu + Clw] (3.50c)

From now on, only the lift components will be considered for simplicity. By assuming the buffeting
loading is a stationary random process, the lift load can be transformed to the frequency domain
by the Fourier transform [21]:

sL<f*>—(”VQB) (4C28u () s ) + C280 () b)) (351)

where Sp(f*) is the spectrum of the lift force per unit length on a cross-sectional strip of the
deck, S, . are the spectral densities of the v and w components of the wind, respectively, and
IXw,w:z(f*)]? is the lift acrodynamic admittance due to the u and w components of the turbulence.

It is troublesome to distinguish between the effects of v and w in experiments. Therefore, the
admittances are generally lumped, and the lift load from Equation 3.51 can be expressed by [21]:

5107 = (%57 ) (PP (C28,(7) + €25,(7°) (352)

Further, via the joint acceptance function J,(f;), the point-like load is made into a line-like load
on a span with length I:

Sk, (f}) = SL(f)IL () (3.53)

where

/ / SL1L2 Ay [ )M‘(yl)Mj(QZ)dyldyQ (3.54)
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Sr, L, is the cross-spectrum of the lift force between strip 1 and 2 separated by Ay and p; is the

4" mode shape, respectively.

The buffeting forces are not fully correlated span-wise. In addition, the effect on the structure from
the gust loading pattern will be different for the various mode of vibration. The joint acceptance
function takes this into account by measuring the correlation between the spatial distribution of
the forces across the span and the mode. Every mode of vibration to the bridge deck has one joint
acceptance function.

Under the basis of the strip assumption, the cross-spectrum can be expressed by:

SL1L2 (Ay’ f*) ~ Swlwz (Aya f*)

~ — 1/2 * .
Sc(f*) Su(f) coh,/"(Ay, f7) (3.55)

Furthermore, the spectrum of the response of a given mode, j, to the buffeting force can be
determined by:

Se () = Sr. (D) (3.56)

where H(f}) is the single degree-of-freedom mechanical admittance function of mode j and can be
expressed by:

\H(f)]” = : (3.57)

() et t)

H(f}) is a function of reduced frequency and damping. The influence from the aerodynamic forces

is represented by adding the contribution of the aerodynamic damping, (, to the structural damp-
ing, (5. The frequency term can also be corrected by including the influence of the aerodynamic
stiffness. This has, however, a negligible influence on the buffeting response and is not done here.

The dynamic response can be divided into the background and resonant components. Due to
the slow variation of wind speeds, the background response acts quasi-statically. The background
response covers a wide frequency band below the lowest natural frequency, while the resonant
response is concentrated in a peak at the natural frequency. The contribution of the w component
of the turbulence to the expression of the background and resonant components are for the vertical
force defined by [21]:

V2BCIN\? fou\2 [ f*Su(f* § § .
b= (25%) () [T B P ang (3.58)

2 (pv2Bc;>2 (%) L0 (3.50)

o2~ )2 w2 (m/4)
Rs; 2 \% o2 |X2(f )| |J2(fj)‘ (CS]’ +Ca(f;))

w

The peak response can be expressed by:

f:F—&—gUU%—&—ZUR? (3.60)

where 7 is the mean response and ¢ is a statistical peak factor which for the buffeting response

typically have a value between 3 and 4. 0% is the mean square background response and O'R? is

the mean square modal response at or close to the j* resonant frequency.
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With Equation 3.59, Davenport defined the aerodynamic admittance functions by [11]:

Sr(f*)
1p2V2B2C2S,(f)

=) = (3.61)
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3.4.2 3D Aerodynamic Admittance Functions

The majority of previous studies of aerodynamic admittance are based on the strip assumption
employed by Sears and Davenport. The Sears function only considers the variation of the vertical
fluctuation in a two-dimensional wind field and can therefore be expressed as a 2D AAF of an
airfoil. The influence of the incident turbulence characteristics, especially the turbulence length
scale, is neglected when looking into these assumptions. The turbulent length scale represents
the average size of the most energetic turbulent eddies. In 1955 Liepmann introduced a two-
wavenumber aerodynamic admittance function to consider the spanwise variations to investigate
the three-dimensional effect of turbulence on an airfoil. This was defined as the 3D AAF. Later in
1970, Graham developed the exact numerical solution of the 3D AAF for the lift of a thin airfoil,
which was experimentally validated by Jackson et al. [23] in 1973 and by Li et al. [24] in 2015.

Graham did not provide an explicit expression for the 3D AAF; therefore, three different expressions
by Mugridge, Filotas, and Blake are defined below [24].

Mugridge’s 3D AAF

1 .
ki, ko)|? 7 ————|F(ky, ko)|? 3.62
Ix(k1, ko)l 14_27T]€1| (K1, k2))| (3.62)
k1 and ko is the chordwise and spanwise wavenumbers, k1 2 = n/U (n is the frequency in Hz and U
is the mean wind velocity), 151 = 27k1B/2 and k~2 = 2mkoB/2. The correlation function is defined
as:

|F (k1. k) |* = (3.63)

k2 + kf2/m?

k2 +2/n? ]

The equation by Mugridge is an approximate closed-form expression for the lift aerodynamic
admittance in terms of a correlation factor to the traditional Sears function. This expression is of
high accuracy for the lower wavenumber range k1 < 1/7, when compared to Graham’s exact result

[24].

Filotas’ 3D AAF

, V2 + k2
X (K1, k)" = ——= —— (3.64)
\/ K2 + k3 + 7 (mkd + k3 + mkiko + 2k)
The approximate expression by Filotas is based on linearized incompressible lifting surface theory.

For limiting cases where the reduced frequency is either very small or very large, this expression
is asymptotically exact.

Blake’s 3D AAF

s 1 1+ 3.2(2k;)'/2

ke, ko) = ~ ~ §
Ixta, o)l 1+ 21k |1+ 2.4(2k)2 + 3.2(2k;)1/2

(3.65)

This expression by Blake is for use in approximations. It is a closed-form expression fitting Gra-
ham’s exact solution. When k; > ko/2, the approximation agreed with Graham’s exact values to
within 20%.
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3.4.3 Experimental Identification of the Aerodynamic Admittance

In this subsection, several studies for estimation of the aerodynamic admittance functions will be
presented; The auto-spectrum and the cross-spectrum method, The Taut Strip Model Approach,
The Colligated Residue Least Square Method of Auto and Cross Spectra (CRLSMACS) and The
Six Complex Aerodynamic Admittance Functions.

The Auto-Spectrum Method (ASM) and the Cross-Spectrum Method (CSM)

One approach for AAF identification is the auto-spectrum method (ASM), also called the equivalent
AAF method. It is based on the measured auto-spectrum of buffeting forces and assume that the
admittance of a buffeting force due to the longitudinal fluctuating velocity, u, is equivalent to the
force due to the vertical fluctuating velocity, w, i.e.:

XFu = XFw = XF where F =L, D, M (3.66)

This assumption is made because the derivative of the static wind coeflicients for lift and moment
(C1,Chy), is much larger than Cp and Cp;. The vertical component, w, has therefore a major
impact in the buffeting force, and the horizontal component, u, can be neglected. In the frequency
domain, the modulus squared value of the equivalent AAFs for each force, |xr|?, may be obtained
to ensure that the reproduced force auto-spectrum is equivalent to the tested or the real force
auto-spectrum. |xr|? is a weighted average of |xr.|? and |xr|?. For a typical bridge, |xr|? is
usually close to |Xpw|?, [XLw|? or [Xarw|? because these are often significantly larger than those of
the other AAFs. The AAF for the lift buffeting force can be expressed as [25]:

SL(w)
(#) [4C3Su(w) + (C}, 4 Cp)?Sw(w)]

IxL(w)]* = (3.67)

To distinguish xp, and x g, a cross-spectrum method was adopted by researchers such as Ma et
al. [26] in 2013 and Zhao and Ge [27] in 2015. The method is based on the measured cross-spectra
between the fluctuating force coefficient Cr and each of u and w. The cross-spectral equations for
solving AAFs are defined by [28]:

Scru = FXFuSu + OFXFuwSwu (3.68a)
SCFU) = aFX*FuSuw + bFX*Fwa (368b)
where
ap = QOF(H())/U (369)
[Ch —CL], F=D
bp={ [C,+Cp], F=L (3.70)
[CEVI] ) F=M
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where Cp and C are the acrodynamic force coefficient and its derivative with respect to the angle
of attack, where F'= D, L, M, U is the mean wind velocity and 6y is the initial angle of attack of
the mean wind.

The two AAF components may be estimated with the following expressions:

* SwSCpu - Squpr
X = ap (Susw - Swusuw)

(3.71a)

% o SuSCFw - SuwSCpu
X = bF (Susw - Swusuw)

(3.71b)

where S¢,., (@ = u, w) are the cross-spectral densities of the buffeting force coefficient Cr and the
fluctuating wind velocity component a.

However, since the correlation between the buffeting force and the fluctuating wind is often quite
weak, the identified AFFs show rather strong random behaviour. Thus, the auto-spectra of the
fluctuating force reproduced using the identified AAFs usually deviate accordingly [25].

Larose - The Response of a Suspension Bridge Deck to Turbulent Wind: the Taut
Strip Model Approach

Larose studied the taut strip model approach to estimate the response of long-span bridges to
turbulent wind. Among other things, the research included measurements of the aerodynamic
admittance and the span-wise cross-correlation of the aerodynamic forces in a smooth flow with
grid-generated turbulence and turbulent boundary layer flow.

From the admittance functions developed by Davenport, Larose [11] included the influence of the
vertical (w) and the longitudinal (u) components of turbulence on the fluctuating lift force. These
can be expressed as follow:

eI = aot g | ST S e (13

and for moment:
ol = o | S R O
Ponsli = g | s St e ) (575)

For a boundary layer flow, Larose observed that the Sears function overestimate the aerodynamic
admittance for low reduced frequencies, while it underestimate at high frequencies. Another ob-
servation was that the span-wise cross-correlation of the aerodynamic forces on the deck was larger
than the span-wise cross-correlation of the oncoming wind velocity fluctuations. Which for the
used cross-section, suggests that the strip assumption is not valid. In addition, the bridge extrac-
ted more energy from the larger scales turbulence of the boundary layer flow at lower reduced

24



frequency, than from the small scale turbulence from a 2D-grid. The opposite was observed for
higher reduced frequency. This suggests that the measurements of the aerodynamic admittance
should be estimated with adequately scaled turbulence in relation with the size of the model [11].

Six Complex Aerodynamic Admittance Functions

In 2010 Han et al.[29] described a new frequency-by-frequency methodology for estimation of six
complex aerodynamic admittance functions. The Sears function is a complex theoretical expression
for the aerodynamic admittance function for a thin airfoil. The aerodynamic admittance function
for a bridge deck should, therefore, also be complex functions. To measure all the six complex
AAF, an active turbulence generator was developed. Wind tunnel tests of a thin plate model and
a streamlined bridge section were conducted in a turbulent flow. The six complex aerodynamic
admittance functions were determined by the developed methodology and compared with the Sears
function and Davenport’s formula.

The six complex aerodynamic admittance functions are derived theoretically; Six complex aero-
dynamic functions are derived from the aerodynamic lift force, drag force, and pitching moment
when exposed to time-varying harmonic turbulent wind components, u(t) and w(t). Further, the
six complex aerodynamic admittance functions are found by taking the FFT of the aerodynamic
forces and the harmonic turbulent wind components. The complex, AAF Xru, Xp., and X,.
corresponding to the longitudinal turbulent component u(t) are defined by:

Ly(w1)

. _ : 3.76
XL (wl) %pUzBDCL% . AL2T61¢1 ( a)
Dy(w1)
. _ : 3.76b
XD (wl) %pUQBDCD% X %ewﬁl ( )
My (w
araen) = b(w1) (3.76¢)

1pU2B2DC)y & - Aul it

Further, the complex AAF Xrw, Xp., and X, corresponding to the vertical turbulent component
w(t) are be defined by:

- Lb(wQ)
XLw(UJQ) - lpUQBD (CL“'CD) ] Meidu (377&)
2 U 2
- Db(wg)
2 U 2
M,
Xnmw(w2) = aC) (3.77¢)

(e} ;
%pUzBQD (}u . BgTe“i’?

where wy and wy are vibration circular frequency of u(t) and w(t), wy # we. Ly, Dy and M, are
the FFT of the lift force, drag force and pitching moment, p is the air density, U is the mean
longitudinal wind velocity and B is the deck width. Cp, C', and C); are the drag force, lift force
and pitching moment coefficients, while C,, C; and C'}, are the associated derivatives with respect
to the angle of attack. Further, A, and B,, are the amplitude of the harmonic functions u(t) and
w(t), T is the total duration and ¢; and ¢, are initial phase angle of u(t) and w(t), respectively.
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For a bridge deck with a length D, the aerodynamic lift force, drag force and pitching moment can
be expressed by:

1 t t
Ly(t) = §PUQBD |:20LXLuu[(j) +(CL + CD)Xwa[S-)] (3.78a)
1 t t
Dy(t) = §PUQBD [2CDXDuu[(]) +(Cp — CL)Xwa[(])] (3.78b)
1 t t
Mb(t) = 5pUQBQD |:2CMXIMUUI(]) + Cg\/[XMww[(J):| (3.78C)

where xrr (R =L, D, M; k = u, w) are aerodynamic admittance functions.

Some conclusions from the study were [29]:

e Drag-force admittance functions and admittance functions corresponding to the longitudinal
component deviate significantly from the Sears function.

e The admittance functions corresponding to the longitudinal component are different from
those corresponding to the vertical component. Thus, it is necessary to estimate all the six
admittance functions.

e With the increase of the reduced frequency, some of the identified aerodynamic admittance
functions increase.

e Similar to the Sears functions, some of the phases of the estimated admittance functions
increase with the increase of the reduced frequency.

Colligated Residue Least Square Method of Auto and Cross Spectra (CRLSMACS)

The above methods for AAF identification have several shortcomings. To overcome these, Zhu et
al. [30] presented in 2017 a new method called the colligated residue least square method of auto
and cross spectra (CRLSMACS). The method identifies six-component AAFs which is based on
force and pressure measurements tests in a passive grid-generated turbulence flow.

The buffeting forces can be expressed by an equation set consisting of six equations. Each ex-
pression is a function of the auto and cross-spectra of the fluctuating wind, Swu, Sw and Suw,
and the AAFs between the distributed buffeting force and the fluctuating wind velocity. By this,
the colligated spectral residue functions are obtained. The residual function for the drag force is
defined by:

Ry (xFe, xim xfo xdm) = wiehp + wa [ (F6)" + (12)°] +ws [(e80) + (e2)°] (3799

ELL = 0.25(pUB)2{4C%|XLu|QSuu + (CD + C£>2|XLw|2§ww + 4CL(CD + CZ)

. R . (3.79D)
x [ (e, + ximxim) SR — (xfoxd — ximadie) St} - S
effe = 0.5pU B |20, xS + (Cp + C1) (xFeSE + xmsi)] - S (8.79¢)
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i =0.5pUB [—20Lxﬁ?§uu +(Cp +Cp) (xFe,shm + xfmst)} — §fm (3.79d)

Lw*wu Lw*wu

efte, = 0.5pUB 201 (xfe88s + xESl) + (Cp + Co)xEoSun] - SE (3.79¢)
efte, = 050U B 20y, (FeStn — x8Ee) — (Co + CoxdSun]| - S (38.791)

where w;(i = 1,2, 3) are weighting factors, “Re” and “Im” represent the real part and imaginary
part of the corresponding aerodynamic admittance or the cross spectra, respectively. The variables
marked with “*” have measured values inserted. Further, the real and imaginary parts of the six-
component complex aerodynamic admittances can be expressed by seeking the minimal values of
the residues defined above.

Traditionally, the measured buffeting force from wind tunnel tests is the total force acting on the
whole model, F(t). Hence, the distributed force acting on cross-section strips, f(¢,z), is equal to
F(t)/1, where [ is the length of the measured section. This implies that it is full correlation along
the longitudinal axes of the cross-section. However, the buffeting force on the cross-section in a
turbulent flow is partially correlated along the longitudinal axes, and f(z,t) is larger than F'(t)/I.
CRLSMACS corrects the incomplete span-wise correlation of the buffeting forces. By measure-
ments from pressure tubes arranged on the model and a Cobra Probe, a span-wise correction
function is obtained, and the auto-spectra of the distributed buffeting forces.

With the presented method, Zhu et al.[30] identified the six-complete AFFs of a flat closed-box
deck of a single tower cable-stayed bridge. The results showed that |xr.| and |xarw| of the flat
closed-box deck are close to each other and to the Sears function, which is reasonable and, to some
extent, demonstrates the reliability of CRLSMACS. Nonetheless, the other components of AAFs
deviated significantly from the Sears function. This is expected since the Sears function can only
reasonable represents | x| and |xasw|. Further, the calculated buffeting response was compared
with a full bridge aeroelastic model tests. The results agreed well and verified the feasibility of
CRLSMACS, the identified six-component AAFs, and the calculated buffeting response.
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3.5 Aerodynamic Admittance of twin-box bridge decks

This section will present the main differences and effects of using a twin-box girder compared to
the traditional closed-box girder. The findings and results are based on an experimental study by
Wang et al. [23].

In the study by Wang et al.[23], the characteristics of aerodynamic admittance of twin-box bridge
decks were investigated. The aerodynamic admittance and the buffeting force coherence along the
span wise direction were obtained as well as the pressure distribution around the cross-section.
This was done to study the difference between a twin-box bridge deck and a closed bridge deck.
To describe the spatial distribution characteristics of aerodynamic forces acting on the bridge, a
coherence function must be introduced. The spanwise coherence of measured lift, drag and moment
can be described as:

Sk (y1,2)°

Cohp = ——22722
B Sr(y1), Se(ys)

F=L,D,M (3.80)

where Sg(y1,y2) is the cross-spectra between forces in two different correlation strips with distance,
Ay, and Sr(y1) and Sr(y2) are the corresponding auto spectrum for each correlation strip.

One-point spectra of lift and moment on the section model were used to investigate the buffeting
force characteristics on twin-box girders. It showed that the total lift and moment on the upstream-
box were considerably larger than on the downstream-box. This indicates that the upstream-box
mainly provides the buffeting forces on the twin-box. The incoming turbulence and flow separation
may affect the formation of the buffeting force acting on a bluff body. Vortex shedding on the
trailing edge of the upstream-box will also affect the downstream-box.

The spanwise coherence of the lift and moment of the twin-box girder was found to be larger
than those of the incident turbulent wind velocity. This may indicate that traditional methods
underestimate the buffeting forces on a twin-box girder and that three-dimensional effects of the
incident turbulent wind velocity cannot be neglected. This is due to the relatively small ratio
of the turbulence integral scale to the width of the structure. However, it was found that the
spanwise coherence of lift and moment on the twin-box girder was smaller than for the closed-box.
This suggests that the three-dimensional effect of the incident wind velocity on twin-box girder
will be less than for the closed-box. It was also detected that the spanwise coherence on the
upstream-box was roughly consistent with the coherence on the closed-box, but much higher than
on the downstream-box. Overall, the main reason the coherence on the twin-box is less than the
closed-box, is the relatively low spanwise coherence of lift and moment on the downstream-box.

The structure of the vortices is also an important mechanism of buffeting force coherence. To
investigate this further, the fluctuating pressure distribution around the twin-box was investigated.
It was shown that the pressure distribution of the windward edge of the twin-box and the closed-box
was very similar. The difference is more significant on the downstream-box and at the trailing edge
of the closed-box. Vortex shedding from the upstream-box can cause higher fluctuating pressure on
the downstream-box, as illustrated in Figure 3.5. Wang et al. [31] did another study on the effects
of gap width on the buffeting force coherence and aerodynamic admittance of a twin deck. The
results showed that under the influence of vortices shed from the upstream-box, the buffeting force
coherence on the downstream-box decreased significantly when the gap width increased. The flow
pattern created by the gap can be an explanation for why the coherence of a twin-box is smaller
than of a closed-box.
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Figure 3.5: Illustration of the mean pressure distribution of the twin-box and closed-box girder

based on results obtained by Wang et al. [23].

The aerodynamic admittance functions can be obtained from the experimentally-determined buf-
feting forces spectrum, the time-averaged aerodynamic force coefficients, and the wind velocity
spectrum. It was found that the aerodynamic admittance of a twin-box was higher than for a tra-
ditional closed-box. This may indicate an underestimation of the buffeting response of a twin-box
if previous research from a closed-box is directly applied to the buffeting analysis of a twin-box.
In addition to this, when comparing the aerodynamic admittance of the twin-box with different
ratios of integral scale to width, it showed that if the ratio increases, the admittance increases. This
fact suggests that the aerodynamic admittance of a twin-box is strongly dependent on the ratio
of integral scale to width and on the wind field at low reduced frequencies. With these detailed
results, it is clear that the aerodynamic admittance is also dependent on the flow separation and
not only the incoming turbulence characteristics. However, both the effect of integral length scale
and the effect of flow separation should be included in the three-dimensional effect of turbulence.
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3.6 Estimation Methods for Aerodynamic Admittance

Functions

As mentioned, the aerodynamic admittance functions is an important transfer function for estim-
ation of the buffeting response as it transfers the turbulent wind to buffeting forces. Due to the
complexity of the flow separation on bluff bodies, such as bridge decks, it has always been prob-
lematic establishing an exact expression for aerodynamic admittance function. In Section 3.4.3,
several experimental methods have been presented. In this thesis, three different methods is used
to estimate the admittance functions; the general, the auto-spectral and the cross-spectral.

The general method is a simplified method based on the auto-spectral where the cross-spectra
between the horizontal and vertical turbulence components are neglected. A transfer function is
found between one force spectrum and one turbulent spectrum which results in an expression that
can be used to estimate the admittance functions:

S.
|XF|2=§J, i=D,L,M and j=u,w (3.81)
i
where S; is the power spectra for the drag force, lift force or moment force, while S; is the turbulent
components for the wind in horizontal or vertical direction. This results in three admittance
functions; drag, lift and moment, where the horizontal turbulence component is used with lift and
moment and the vertical turbulence component is used with drag.

The next method used to estimate the admittance function is the auto-spectra method, also called
the equivalent method. The buffeting force spectra can be expressed as [32]:

UB\?>
Sp = (p2> [4CH Sulxpul®> + (Ch — CL)*Sw|XDwl’] (3.82a)
UB\?
Sy = <p2> [4CT Sulxrul® + (CL — Cp)*SwlxLw|’] (3.82b)
PU32 ? 2 2 2 2
Sy = T [4CMSu|XMu| +CJV[Sw|XI\/[w| ] (3.82C)

where x;; is the aerodynamic admittance functions, V is the mean wind and B is the width of
the section model, Cp,CL,Cp are the drag, lift and moment coefficients. C7,,C7,C), are the
derivative of the coefficients. This method assumes that the two AFF’s (xu, Xiw) in each buffeting
force spectra are equal to each other, i.e X;u = Xiw = Xs- The equivalent AAF for each buffeting
force can then be expressed as:

S
Ixp|? = Z (3.83a)

2
(£42) [4C3 8, + (Cp — Cr)25.)

S
xcl? = D (3.83b)

2
(£52) 1C3Su + (€L + Cp)?Su]

Sp
5 2
(£222)" [4C3, S0+ C S

Ixn|* = (3.83¢)
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The last method used to estimate the admittance functions is the cross-spectral method as de-
scribed in Subsection 3.4.3. This method makes it possible to determine both x ., and xf,. The
method is based on the measured cross-spectra between the fluctuating force coefficient C'r and
each component of the turbulence, v and w. The expression of the cross-power spectrum is defined
as [27):

VB
SFu = pT (aFXFuSu + bFXFwau) F= L, D

(3.84a)
VB
SFw = P (aFXFuSuw +bFXFwa)
pV B2
Spu = 9 (aFXFuS'u + bFXF'wSuw) F=M
(3.84D)
pV B?
Spu = (aFXFuSuw + bFXF'wa)
where
Ch-Cy),  F=D
ar = 2CFp brp = [Ci + CD] , F=L (385)
[Cul, F=M

where the static coefficients Cr is found by using Equation 3.24. The expression for the six
aerodynamic admittance functions can then be found by:

SwSFu - SquFw F=LD

Xpw = aF# (SuSw - Squuw) 7 3.86
o SuSFw - SuwSFu ( . a)
X bF# (SuSw - Squu'w)
XFu = pfngu - SquFw F=M
aF —5 (SuSw - Squuw)
(3.86b)

_ SuSFw — SuwSFu
bF pV2B2 (Susw - Squuw)

XFw
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3.7 Wind Tunnel Effects

The surrounding environment has a strong influence on the wind. Differences in air temperature
and local topography are two effects that significantly affect how the wind acts. The temperature
affects the air density and the wind speed. Local topography will also change the air pattern and
affect the wind speed. The wind tunnel is incapable of recreating these types of effects and is
therefore manipulated to get the desired wind flow. The wind tunnel has some additional effects
that differ from the natural flow, resulting from the limiting cross-section area of the tunnel. The
most important effects of a wind tunnel test will be discussed in this section.

3.7.1 Boundary Layer

Friction along the surface occurs when the wind moves past an object. As a result of this, the
velocity close to the surface will be reduced. This effect is called the boundary layer flow, and
it stimulates the natural wind to recreate the outdoor flow system. The local topography has a
great influence on the flow pattern, which can create turbulence. Therefore, the model must be
placed higher than the boundary layer in order to get laminar airflow with constant velocity. This
distance is approximately 200 mm from the surface of the wind tunnel at NTNU, as shown in 3.6
[33].
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Figure 3.6: Boundary layer effects in the wind tunnel.

As shown in Figure 3.7, it is clear that the bridge is not in the boundary layer.
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Figure 3.7: Bridge inside the wind tunnel.

3.7.2 Blockage

The wind tunnel will have limited space that restricts the wind flow and causes boundary layers.
When the section model is placed inside the wind tunnel, it will obstruct the wind and cause a
local flow acceleration. This blockage effect is different for every model. It depends on the model
shape, aerodynamic effects, the wind field characteristics, and the blockage ratio %7 where S is the
area of the body normal to the wind flow and C is the cross-sectional area of the wind tunnel. If
the blockage ratio is below 5%, the distortion can be neglected [10].

3.7.3 End Plates

In order to maintain a two-dimensional flow around the model in the wind tunnel, end plates are
mounted at both ends. The purpose of the end plates is to avoid outside flow entering the testing
area and to keep the wake two-dimensional. Therefore, the diameter should be at least 8.5 times
the model depth to maintain this [34]. In this thesis, the bridge model spans the entire length of
the wind tunnel, hence end plates are not needed.

3.7.4 Grid Generated Turbulence

The essential characteristics of turbulence are vortex shedding, separations, and attachments. This
can be produced in the wind tunnel by installing a grid net that makes grid-generated turbulence
[35]. The gird net is installed upstream of the model to disrupt the wind. The characteristic of
the turbulence will be greatly affected by the placement and the shape of the grid.

Grid-generated turbulence will often be described as isotropic and homogeneous. These flows are
almost never encountered in practice. However, they can be used to limit the complexity of the
flow for numerical and analytical verification. When three fluctuation velocity components are
invariant, isotropic flow occurs. This is due to an arbitrary rotation of the defining principal axis
and will happen at a specific distance from the grid [36]. Several studies have been done on this
topic, such as Liu et al. [35] and Tresso [36], which show the importance of the installation location
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of the section model in the wind tunnel. Figure 3.8 shows the active grid in the wind tunnel at

the Department of Energy and Process Engineering at NTNU Trondheim.
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Figure 3.8: Active grid in the wind tunnel at NTNU Trondheim.
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3.8 Effects of tube system parameters

The pressure scanners are placed inside the model for some section models, like the one in this
master thesis. A tube system is used to connect the pressure scanners to the measure points.
The tube system may distort the measurement while transferring the fluctuating pressure to the
pressure scanners, leading to inaccurate data. Wang et al. [37] analyzed the relationship between
the fluctuating pressure and parameters of the tube system. The tube system parameters; tube
length, inside diameter, tube curvature, deflection angle, thickness and material, and the effect of
the restrictor were studied. A summary of the effects of the different parameters on the frequency
response function (FRF) is given below.

The frequency response function can be used to describe the effects of the tube system on the
fluctuating pressure. The FRF is the ratio pressure at the inlet and outlet in the frequency domain
and can be defined as [38]:

Y(w)  FFT(Sou)

HwW) = %) = FFT(5m)

(3.87)

where FFT is the fast Fourier Transform processing the pressure measured at the surface 5;,, and
the output pressure measured by the pressure scanners S,,;. If the magnitude of FRF, H(w), is
close to 1 rad and the phase of FRF, ¢(w), is close to 0 rad, the effects of the tube system is small.

The results obtained in the study by Wang et al. showed that the magnitude and phase of FRF
were affected by the tube length. When the tube length increases, the peak frequency of H(w)
decreases, and the phase ¢(w) increases. The frequency, fo, is given for a certain tube length. The
signal magnitude is amplified for f > fy, while for f < fy, the magnitude is minified. Further,
the effects of the tube inside diameter were analyzed, and the results show that the diameter has
remarkable effects on the FRF, as the peak value and peak frequency of H(w) raises and ¢(w)
decreases when the diameter increases. The result also showed that tube curvature has almost no
effect on the magnitude and phase of FRF.

Moreover, H(w) is slightly affected by the deflection angle, but have almost no effect on the ¢(w).
However, twisting of the tube system in the wind tunnel should be avoided. When the FRFs of the
tubes with different thicknesses and materials were analyzed, it was detected that these parameters
had a significant effect on the FRF. It showed that when the strength increases, the peak value
and peak frequency of H(w) increases, while ¢(w) decreases. This indicates that the transmission
of the fluctuating pressure in the tube is a fluid-solid-interaction phenomenon and is influenced by
the material strength and surface smoothness, among other things. Lastly, the results showed that
the FRF is remarkably affected by the restrictor. Tube systems with the restrictor have a lower
peak and are closer to 1 as f < fy, compared to the tube system without the restrictor.

Overall, all the parameters have non-negligible effects on the FRF of the tube system for fluctuating

pressure measurement, except for the curvature.
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3.9 Simulation of Turbulence

This section presents the wind field characteristics defined in N400 and a method for simulation
of a 2D turbulence field using the Monte Carlo simulation.

3.9.1 Turbulence Spectrum

Relevant definitions of a wind field defined in N400 [39] are presented in this subsection. This is
further used for the simulation of a 2D turbulence field together with the spectral properties of a
Kaimal spectrum.

The integral length scale *L,, given in N400 is defined by:

L 043a > Zmin
”Lu:{ 1(z/2) o (3.88)

Ll(zmin/zl)OBa Z < Zmin

where L; is the reference length scale equal to 100 m and z; is the reference height equal to 10 m.

For a 2D approximated homogeneous wind field, the other turbulence intensities and integral length
scale is expressed by:

YL, 1/3
L, 1/5
I,=1/2-1, for |°L,| = [1/12| 7L, (3.89)
VLo 1/18
Ly 1/18

where the turbulence intensity, I, in the main wind direction can be calculated according to
NS-EN 1991-1-4:2005+NA:2009, table NA .4.1.

The auto-spectral density of the turbulence component i, S;(f), is given by:

Si(é)f = Aifi . for i=wu,w (3.90)
o’ (14 1.5A,f;)5/3

where o; is the standard deviation of the turbulence component ¢ and the reduced frequency, fi,
is defined by:

fi= (3.91)

where V(2) is the mean wind velocity at a given height, z.

Using this, the normalized single point Kaimal auto spectrum is presented in Figure 3.9 for the
turbulence components u and w.
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Figure 3.9: A normalized single point auto spectra for the turbulence components u and w.

Further, as a base for the Monte Carlo Simulation, the cross-spectral density of the wind field are
used, which can be expressed by:

fAsy

Re[siﬂz (fa Asy)] = Sil (f) : Si2 (f) ! 67Ciym (392)

where As; is the horizontal distance between the considered points, i1,i2 = u, w, Cy, = 10.0 and
Cyy = 6.5, respectively.

3.9.2 Monte Carlo Simulation of turbulence

Monte Carlo simulation is based on random number generation and is a well-established and useful
tool for the design of complex wind-excited structures. A realizations of a stochastic process can
be simulated by [40]:

N
X(t) = ZAkcos(wkt +¢r) for k=1,2,3, .., (3.93)
k=1

where wy, = (k— %)Aw, Auw is a measure of frequency resolution, t is the time, ¢ are random phase
angles uniformly distributed in the range [0, 27, and Ay are the deterministic constants which are
currently unknown.

The mean value of the process is defined by:

2 N 1
E[X(t)] = /0 Z cos(wyt + ¢k)%d¢k (3.94)
k=1

Further, the autocorrelation function for an ensemble average can be expressed by:

37



Rx(t+7,t)=E[X(t+ )X( )]

27 27
/ /0 ; kzl ApAjcos(wi(t + 7) + ¢r)cos(wit + ¢1) —— @ ¢) 5dorde (3.95)

_ZAk cos(wit) = Rx (1)

Hence, it can be observed that the process is at least weakly stationary. By using the central limit
theorem, it can be verified that the process converges towards a Gaussian process when N — oo,
which signify that the process converges towards a stationary process. The time-averaged value of
the process is defined by:

(X)) =

|
=
=

|
b
=2
5

(3.96)

by:

Rx(T)
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By using the central limit theorem and comparing Equation 3.94 and 3.97 with Equation 3.95, it
it evident that the process converges towards an ergodic process when N — oo.

Provided that NV is sufficiently large, Equation 3.93 can be used to simulate an ergodic Gaussian
process with a prescribed spectral density S%(w) or an autocorrelation function R$ (w). The
following expression is introduced:

Ap = 1/25% (wi)Aw,  wy, = kAw (3.98)
By inserting the expression in Equation 3.95, the following is obtained:

N

Rx (1) = Z S% (wr) Awcos(wyT) (3.99)
k=1
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and

Rx(T) = lim Rx(T)

T—00,Aw—dw

T_mohgi_)dw Z S% (w)Awcos(wyT) (3.100)

_ /_  Sk(w)eos(wr)de

Hence, R, (7) converges to the desired correlation function if Ay is defined as in Equation 3.98 and
N — oco.

It is noted that the simulated stochastic process X (t) will be periodic with the period Ty = Aw
and therefore only half the period will be utilized. Similarly, Aw = %. Additionally, Aw should be
selected such that narrow peaks in the spectral density is reasonably represented. A requirement
for this is often that Aw is significantly smaller than the effective bandwidth of the narrowest peak,
which leads to a large number of harmonic component. Consequently, this is an expensive and
time consuming approach.

Another method for the realization of the stochastic process is by applying the Fast Fourier Trans-
form (FFT) to Equation 3.93 and 3.98. By using the FFT technique, this drastically improve the
computational efficiency of the algorithm and Equation 3.93 can be expressed by:

N
X(t) = Re (Z(Akei%)ewkt) (3.101)

k=1

where the discrete Fourier transform can be recognized. The transformation can be performed by
using the FFT algorithm in Spyder.

By using the method described and the Kaimal turbulence spectrum presented in Subsection 3.9.1
a 2D simualted turbulence field is simulated and shown in Figure 3.10.

Simualted Turbulence
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Figure 3.10: Simulated 2D Turbulence field.

Further, is the simulated turbulence component, u, compared with the Kaimal spectrum in Figure
3.11.
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Figure 3.11: Turbulence spectrum of the 2D simulated turbulence compared to the Kaimal Spec-
trum.
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Chapter 4

Design and Building Process of
the Bridge Model

This chapter describes the design and building process of the twin-box bridge model. The model
was built in the Structural engineering laboratory at NTNU Trondheim, Department of Structural
engineering. The choice of cross-section is based on a previous master’s thesis at NTNU, where
different twin-deck configurations of suspension bridges were studied. The complete model consists
of the material Divinycell, an aluminium pipe, and a mid-section. The mid-section consists of a
3D-printed section and several plastic tubes measuring the pressure.

4.1 Choice of Cross Section

The model in this thesis is based on a previous master’s thesis were nine different twin-deck
configurations with different geometry and gaps were explored to achieve sufficient aerodynamic
stability. The chosen cross-section for this thesis showed sufficient aerodynamic stability, and a
linear behaviour [41]. The bridge model is built in a 1:50 scale and consists of two identical decks.
Figure 4.1 illustrates the geometry of one of the girders, while Figure 4.2 illustrates both girders
with the gap between them.
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Figure 4.1: Cross-section of the upstream-box.
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Figure 4.2: Cross-section of twin-box bridge model with gap.

4.2 Material Properties

Each section consists of the light material, Divinycell, a core aluminium pipe and a 3D-printed
mid-section. The main contribution to the stiffness is the aluminium pipe. The mid-section, where
the pressure on the bridge surface is measured, is a 3D-printed section in the plastic material PLA.
The different materials used and their purpose are listed in Table 4.1.

Main Part Purpose Material
Aluminium pipe Stiffness of model 40x1.5mm Aluminium pipe
Foam model Cross section shape | Divinycell

Adherent Epoxy Resin + hardener

3D-printed section | Cross section shape | PLA
Pressure tubes 1.5 Urethane tubes

Screws 2xM4 30mm and 2xM4 40mm

Table 4.1: Materials used in the bridge model and their function.

4.3 Distribution of Pressure tubes

In order to measure the fluctuating pressure on the bridge deck, 256 pressure tubes were placed
around the 3D-printed mid-section. According to Rocchi et al.[42], the pressure tubes should be
distributed closer where a strong pressure gradient is expected. The pressure gradient will be
significantly larger at the windward edge and decreases along the deck’s surface. This corresponds
with the pressure distribution obtained for the wind tunnel test done by Larose[11] as well as the
previous study by Wang et al.[23].

256 pressure tubes were distributed along six strips around the 3D-printed mid-section, half on
each box. The first strip consists of 48 tubes distributed around the cross-section, while the
remaining five strips consist of 16 tubes each, see Figure 4.3. The five strips with 16 tubes will
act as correlation lines and are used to measure the pressure correlation in the spanwise direction.
The span length, where the correlation lines are distributed, is 220 mm, and the strips are spaced
at various distances, as shown in Figure 4.4.
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Figure 4.3: Distribution of pressure tubes in millimeter, where (a) is the first strip with 48 tubes

and (b) is the remaining strips with 16 tubes.

Figure 4.4: Distance of correlation lines in millimeter illustrated on the 3D-printed mid-section.
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In order to have an overview of which tube that is attached to which channel on the pressure
scanners, a numbering system is made. The numbering system consists of four numbers informing
where the tube is located on the model. The first number identifies which box the tube belongs
to, the second number tells which correlation line the tube belongs to, and the two last numbers
are the tube position on the given correlation line. Table 4.2 illustrates the numbering system of
the pressure tubes.

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6
Upstream-box 1101-1148 | 1201-1216 | 1301-1316 | 1401-1416 | 1501-1516 | 1601-1616
Downstream-box | 2101-2148 | 2201-2216 | 2301-2316 | 2401-2416 | 2501-2516 | 2601-2616

Table 4.2: Numbering system of the pressure tubes.

For the upstream-box, the numbering starts at the left edge and clockwise around the cross-section
and mirrored for the downstream-box. Figure 4.5 illustrates the numbering system on the first and
second correlation lines on the upstream-box. The colour on the numbers corresponds to which
scanner the tube belongs to. Green numbers for the upstream-box indicate that the tube belongs
to scanner no. 179, while blue is for scanner no. 180. As illustrated, more than half of the tubes
are on the left side of the aluminium pipe. Therefore, the tubes with blue numbering on the left
side must be threaded through the aluminium pipe to the correct scanner. The same implies for

the downstream-box.
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Figure 4.5: Numbering system on correlation line one and two on the upstream-box.
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4.4 Building Process

This section will present the building process of the final wind tunnel model. The mid section is
designed in SolidWorks and 3D-printed at NTNU Gjgvik.

4.4.1 SolidWorks

SolidWorks is a mechanical design automation application that makes it possible to sketch out
ideas, experiment with features and dimensions, and produce models and detailed drawings. It
uses a 3D design approach where a 3D-model is created from the initial sketch to the final results.
Further, 2D drawings can be created from the 3D-model. “Part”, as seen in Figure 4.6, is the basic
building block in SolidWorks and is a 3D representation of a single design component. Moreover,
“Assembly ” is a 3D arrangement of parts or other assemblies [43]. This software is used to design
the mid-section of the twin-box bridge before it is 3D-printed.

OO
" Im

Part Assembly Drawing
a 3D representation of a single design a 3D arrangement of parts and/or a 2D engineering drawing, typically of a
component other assemblies part or assembly

Figure 4.6: Options in SolidWorks

4.4.2 3D-printed mid-section

A previous master’s thesis by Haldosen and Jahren [44], used Lexan plates that were glued together
around the mid section. These plates were not completely sealed and caused some irregularities
that affected the flow. In addition, some of the pressure tubes detached from the Lexan plate
before the test was executed. With the plates glued together, it was difficult to access these tubes.
Therefore, it was desirable to create a model that was possible to take apart in order to get access
to the tubes if needed. It was suggested early in the process to 3D-print the mid-section where the
pressure tubes are supposed to be. The solution was, therefore, to 3D-print two separate parts that
could be fastened together with screws, see Figure 4.7. The mid-section was sketched and designed
in SolidWorks. The first concept was a 2.5 mm thick cross-section with four screw connections, as
seen in Figure 4.8. It was designed with holes with a diameter of 1.4 mm for the tubes, distributed
as discussed in Section 4.3. There are locks at both sides of the cross-section to hold the two parts
together before being fastened with four M4 screws, in addition, to preventing wind from entering
the cross-section.

45



(a) The top part (b) The bottom part

Figure 4.7: The first concept for the 3D-printed section.

Space for aluminum pipe/

Figure 4.8: Cross-section of the first concept.

The model is 3D-printed at the Department of Manufacturing and Civil Engineering, NTNU Gjgvik
at the Addlab. The printer supports SolidWorks files, saved as a STEP file format. The 3D-printer,
EOS P395 is an additive manufacturing system that produces parts from plastic powder by using
a laser. The chamber is heated up to approximately 180°C during the process, and the laser is
used to add the rest of the energy needed to melt the powder. The building volume is 300x300x580
mm. Therefore, the model has a total length of 290 mm to fit innside the 3D-printer. Figure 4.9
shows the 3D-printer that was used to print the model.

Figure 4.9: 3D-printer EOS P395
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When finalized, the 3D-printed section showed some defects. Since the thin section consists of
relatively large surfaces with little support, tension occurred when it cooled down, which caused
the section to bend, see Figure 4.10. This also applied when the two parts were fastened with
screws. The bent section would affect the pressure measurements and give inaccurate results.

Figure 4.10: 3D-printed model of the first concept

For the 3D-section to be functional for testing in the wind tunnel, it had to be enhanced. An
attempt to heat the model and slowly cool it down was done. The cross-sectional shape of the
bridge was milled out of Divinycell such that the 3D-printed parts could be pressed down to the
desired shape. A heating gun was used to heat the model before being pressed down with planks
and clamps, see Figure 4.11. This outcome was not optimal as there was still some tension and
bending of the cross-section.

Figure 4.11: An attempt to press the 3D-section into the desired shape.

After discussing possible solutions, the conclusion was to make the cross-section more rigid and
3D-print an improved model. The thickness of the upper and lower surfaces was increased from
2.5 mm to 4 mm, and stiffeners were inserted in both directions, see Figure 4.12 and 4.13. These
improvements resulted in a more rigid cross-section. It still had some tension, but it was not an
issue when the two parts were fastened together with screws, see Figure 4.14.
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(a) The top part (b) The bottom part

Figure 4.12: The second concept for the 3D-printed section.

Space for the pressure tubes

Stiffener 4 mm

Figure 4.13: The cross-section of the second concept.

Figure 4.14: 3D-printed model of the second concept.

4.4.3 Girders

The two identical bridge decks are milled out of the PVC-based material Divinycell. This light
material is easy to use and mill into different shapes. The Divinycell section itself will not give
the desired strength and stiffness. Therefore, an aluminium pipe was inserted throughout both
sections as a reinforcement. The aluminium pipes will also be connected to the load cells in the
wind tunnel. The first step was to mill out four parts in Divinycell with space for the pipe and
the tubes. For this, a milling machine (CNC-router), used the coordinates from a Matlab script to
mill out the bridge sections. The Matlab script was provided by the supervisor Ole Andre Qiseth
and adapted so that the 3D-printed section would fit.
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The next step in the process was to glue two parts, a bottom, and a top part, together with the
aluminium pipe inside. Epoxy resin was used to glue the bridge together. Before the glueing could
start, the epoxy had to be mixed with a hardener. Mixing the epoxy and the hardener starts a
chemical reaction that transforms the mixed liquid into a solid. This means that the assembly of
the bridge deck had to happen fairly quickly and effectively before the glue started to cure.

The epoxy was applied to one side of the section before the bottom, and the top part were glued
together with the aluminium pipe inside. The sections were then clamped together while the epoxy
cured and hardened. This formed the base for the bridge section. After this, the outside geometry
of the model was milled out. Space for placement of the scanners was manually milled out. Figure
4.15 shows parts of the building process.

(a) Element with aluminum pipe  (b) Glued Divinycell elements (c) Milling with CNC-router

Figure 4.15: The building process

4.4.4 Application of the 3D-printed section and pressure tubes

The 3D-printed sections was designed with 256 holes for the pressure tubes. However, some
deviations occurred in the 3D-printing process. Therefore, the holes were additionally drilled out
before the tubes were pulled through to ensure the correct size of the holes. The diameter of the
holes is 1.4 mm, while the tubes have a diameter of 1.5 mm. This is to ensure that the tubes is
fastened sufficiently. Since the aluminium pipe is not centred in the width direction of the bridge
box and the number of tubes on each side is not even, some had to go through the pipe to the
other side. Therefore, holes in the aluminium pipe were drilled out. Further, the tubes were cut to
a suitable length and pulled through the holes. In order to have an overview of which tube would
go to which scanner and channel, the tubes were marked with the numbering system described in
Section 4.3. In addition, they were marked by the colours, green and blue, to make it easier sort
the tubes and connect them to the right scanner. The tubes were then glued to secure and prevent
them from detaching from the 3D-section.

Before the 3D-sections were attached to the girders, the tubes were pulled through the model.
This was done for both the top and bottom 3D-part, before they were fastened together with four
screws. Each tube was then trimmed to the right length and attached to the right channel on the
scanners. Further, tape was used to make the surfaces even and airtight between the 3D-printed
parts and the rest of the model. Last, the tubes were cut to the surface of the 3D-printed parts to
make it as even as possible.
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(a) Overview of the inside of the (b) Overview of the 3D-printed  (c) Pressure scanner placed inside
3D-printed section. sections. the bridge model.

Figure 4.16: Details of the 3D-printed model with the pressure tubes and scanners.

4.4.5 Built-in Tuned Mass Damper

In order to improve the stability of the girders, TMDs were used. A previous master’s thesis by
Grongstad and Kildal[45] used a self-made TMD to damp out the vortex shedding vibrations, and
it showed to be favourable. Another master’s thesis by Sivertsen and Strehl[41] used an upgraded
design for the TMD where the TMD was made of a wood handle, a wood skewer, and 20 coins
on the tip. The coins were replaced with a piece of steel reinforcement in this master’s thesis.
The self-made TMDs were placed inside both sections, see Figure 4.17. The wood skewer and
the reinforcement piece functions as a cantilevered mass that can vibrate freely if the section
vibrates. To tune the TMDs, the skewers were ulled to the length where the TMD and the girder
approximately had the same frequency.

v

Figure 4.17: The self-made TMD
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4.4.6 Railings

Research by Siedziako and @iseth[46] showed that attachments to the girder, such as railings, can
have a significant influence on the results from the wind tunnel tests. Therefore, the twin-box
model is tested with and without railings to investigate how the measurement is affected. Laima et
al.[47] experimentally studied the influence of attachments on the aerodynamic characteristics and
vortex induced vibrations(VIV) of a twin-box girder. Handrails and crash barriers showed to have a
weak influence on the pressure distribution on the upper and lower surface except in the vicinity of
the attachments. However, they could cause a decrease in the vortex shedding frequency. Railings
are also a necessary safety measure on a finished bridge and cannot be disregarded. The railings
are milled out by the CNC-router in a hard plastic transparent material, as shown in Figure 4.18.
Both handrails and crash barriers were used on the model.

Figure 4.18: Handrails (top) and crash barriers (bottom).
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Chapter 5

Wind Tunnel Testing

The wind tunnel testing of the twin-box model is executed at the Fluid Mechanics Laboratory at
the Department of Energy and Process Engineering, NTNU Trondheim. The wind tunnel testing
is used to study the pressure distribution on the surface of the bridge caused by the incoming
flow and estimate the aerodynamic admittance functions. This chapter describes the experimental
setup, the measurement system, and the different tests executed in the wind tunnel.

5.1 Experimental Setup

This section describes the instruments used in the wind tunnel tests and how the different com-
ponents are assembled. The instruments required to achieve the pressure and wind data consisted
of a Pitot Probe, two Cobra Probe and four MSP4264 Miniature Pressure Scanners. The experi-
mental setup synchronizes the Cobra Probe and the pressure scanners to measure simultaneously
and register identical timer histories.

A test of the instruments was done using a table fan before the final tests in the wind tunnel. It is
important to test the system prior to the actual wind tunnel test to exclude possible errors during
the instruments’ assembly or errors with the pressure tube system. After the test, it was detected
that two of the tubes, no.1115 and no.2115, were squeezed due to being too close to the aluminium
pipe. The solution to this and its effect on the measurements will be discussed further in Section
5.3. Figure 5.1 illustrates a flow chart of the experimental setup from sampling in the wind tunnel
to raw data and further data processing.
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Figure 5.1: Flow chart of the experimental setup.
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5.1.1 General Experimental Setup

The wind tunnel at the Fluid Mechanics Laboratory is a closed loop, where the test section is 2.7
m wide, 1.8 m high and 11.1 m long. The experimental setup inside the wind tunnel is shown in
Figure 5.2.

2

Figure 5.2: The experimental setup inside the wind tunnel.

The bridge section was mounted to the load cells with a clamping system. The load cells were
spaced at a distance of 340 mm to get a gap of 80 mm between the girders. The loads cells measures
the wind-induced forces in three directions at each end of the sectional model. Further, the load
cells are mounted to the actuators connected to the outer wall. The actuators generate motion in 3
degrees of freedom; horizontal, vertical and rotational. Figure 5.3 shows how the twin-box section
is mounted to the load cells and the actuator.

80mm

Figure 5.3: Distance between the load cells and the gap width.
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The Cobra Probes measures the turbulence and were placed in front of the first and fifth correlation
line at the upstream side. This resulted in a distance of 105 mm between the Cobra Probes, see
Figure 5.4(a). However, other distances were used in the flow tests, which will be presented in
Subsection 5.2.4. The Cobra Probes were placed 40 cm from the windward edge of the upstream-
box, see Figure 5.4(b). The Pitot Probe measures the wind velocity inside the wind tunnel. Since
the Cobra Probes were placed in front of the mid-section, the Pitot Probe were placed to the right.

An active grid is placed between the inlet and the twin box model, shown in Figure 5.4(c). The
grid generates turbulence and was used as a still open grid and with two different gird rotations,
0.5 Hz and 7 Hz. At the inlet, the velocity is uniform, and the flow is close to laminar [48].

| sl e ] :,\ \ |
EElrrTr T
] 4:( S B

(a) The distance between the (b) The distance between a Cobra (c) Active grid used for turbulence
Cobra Probes Probe and the windward edge generation

Figure 5.4: Details inside the wind tunnel.

5.1.2 MPS4264-Miniature Pressure Scanner

The MSP4264 Miniature pressure scanner measures the fluctuating pressure around the twin-box
bridge. The MPS is a versatile scanner that is specifically designed for use in a wind tunnel where
operational conditions and pressures do not exceed 50 psi [49]. The small size of the MPS make it
easy to be installed inside the wind tunnel model, and it is therefore a user-friendly interface ideal
for wind tunnel testing.

A total of four MPS pressure scanners were used in this master’s thesis, two scanners in each
box. Each scanner incorporates 64 individual piezoresistive pressure sensors. The power and
Ethernet connection is located at the end of the MPS. The power connection also serves as a
trigger connection that synchronizes the data collected between the MPS scanners and the Cobra
probes. The Ethernet cable is connected to a computer via a network switch and is mainly used
for communication with the MPS. When the MPS has been connected, the communications can be
established. This is done by the communication utility ScanTel. ScanTel is a text-based, command-
line program that allows the user to modify the configuration variables and collect data in both
TCP/IP and UDP format [49]. The MPS4264 Pressure scanner is shown in Figure 5.5.
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Figure 5.5: A MPS Miniature Pressure Scanner

The pressure tubes are attached to the input ports, 1-64, on the MPS scanners. Appendix A
presents an overview of which pressure tube that are attached to which pressure channel and
scanner. To ensure that no unwanted offsets are introduced when a zero offset calibration is
performed, an additional tube is connected to the reference port (REF) and placed outside the
wind tunnel. The pressure scanners used in this master’s thesis have the unique serial numbers;
179, 180, 181 and 182.

5.1.3 Cobra Probe

The Cobra Probe measures the wind data from the wind tunnel tests. In the user manual by
Turbulent Flow Instruments (TFI), the Cobra probe is described as [50]:

The Cobra Probe is a multi-hole pressure probe that provides dynamic, 3-component
velocity and local static pressure measurements in real-time. The Cobra Probe is capable
of a linear frequency-response from 0 Hz to more than 2 kHz and is available in various
ranges for use between 2 m/s and 100 m/s. It can measure flow angles in a £45° cone,
all six Reynolds stresses and allows calculation of other higher order terms.

Figure 5.6 illustrates the Cobra Probes main features, while Figure 5.7 and Table 5.1 gives an
overview of the components needed in order to get the measurements of the wind data from the

Cobra probe.

Device 1D Body
number

Yal—
(o] — S~

\— Reference \_—

pressure port

Figure 5.6: Series 100 Cobra Probe main features [50].
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Interface Unit

7-pin connector

DAC card in the cRIO

Figure 5.7: The overview of the Cobra Probe setup.

Component

Purpose

Series 100 Cobra Probe

Measures the wind data from the wind tunnel test.

Connected to the interface unit via the 7-pin connector
that is connected to two groups of four on the DAQ device,
labeled A1-A4 and B1-B4.

DAQ device

Convert analogue data signals to a digital format.

DAC card placed in the cRIO

The Cobra Probe is connected to the DAC card through
the DAQ device.

It is important to insert the cables A1-A4 and B1-B4 in the
right order from 0-3 in the DAC card.

USB stick

Used to store the data from the cRIO.

Ethernet cable

Provides communication between the wiring closet and the
computer.

Reference pressure cable

The tube is placed on the reference pressure port on the
Cobra Probe and put outside the wind tunnel.

Table 5.1: Overview of the components used for the Cobra Probe setup and their purpose.

5.1.4 Pitot Probe

The Pitot Probe is used to measure the wind velocity inside the wind tunnel. There are two holes
in the Pitot Probe. One hole measures the stagnation pressure, while the other measures the static
pressure. In order to obtain the wind speed, the velocity pressure can be used. This is calculated

by measuring the difference between the stagnation and static pressure.
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5.2

Wind Tunnel Tests

A series of tests were executed on the twin-box model in the wind tunnel. The tests were performed

with different wind velocities, turbulence flow, motions, Cobra Probe distance (CPD) and with

and without railings. An overview of the various tests performed in the wind tunnel is presented

in Table 5.2.

Vortex shedding

Model config. | Motion Wind [m/s] | RPM Grid Rotation
Without railings | None Approx. 0-10 Still open grid
Approx. 0-10 7 Hz
Approx. 0-10 0.5 Hz
Static tests
Model config. | Motion Wind [m/s] | RPM Grid Rotation
Without railings | Linear quasi steady | 6, 7, 9, 10 220, 260, 330, 370 | Still open grid
10 deg
6,7,9, 10 280, 325 410, 450 | 7 Hz
6,7,9, 10 260, 310, 400, 440 | 0.5 Hz

Admittance tests

Model config. | Motion Wind [m/s] | RPM Grid Rotation
Without railings | Still -5 deg/+5 deg | 7,9 260, 330 Still open grid

Still -2 deg/+2 deg | 7,9 260, 330 Still open grid

Still 0 deg 7,9 260, 330 Still open grid

Still -5 deg/+5 deg | 7,9 325, 410 7 Hz

Still -5 deg/+5 deg | 7,9 310, 400 0.5 Hz

Still -2 deg/+2 deg | 7,9 325, 410 7 Hz

Still -2 deg/+2 deg | 7,9 310, 400 0.5 Hz

Still 0 deg 7,9 325, 410 7 Hz

Still 0 deg 7,9 310, 400 0.5 Hz
With railings Still -5 deg/+5 deg | 7,9 260, 330 Still open grid

Still -2 deg/+2 deg | 7,9 260, 330 Still open grid

Still 0 deg 7,9 260, 330 Still open grid

Still -5 deg/+5 deg | 7,9 325, 410 7 Hz

Still -5 deg/+5 deg | 7,9 310, 400 0.5 Hz

Still -2 deg/+2 deg | 7,9 325, 410 7 Hz

Still -2 deg/+2 deg | 7,9 310, 400 0.5 Hz

Still 0 deg 7,9 325, 410 7 Hz

Still 0 deg 7,9 310, 400 0.5 Hz

Flow tests

Model config. | Motion | CPD Wind [m/s] | RPM Grid Rotation
Without railings | None 55 mm 9 410, 400 7 Hz, 0.5 Hz
Without railings 106 mm | 9 410, 400 7Hz,0.5 Hz
Without railings 220 mm | 9 410, 400 7Hz,0.5 Hz
Without railings 500 mm | 9 410, 400 7Hz,0.5 Hz
Without railings 1000 mm | 9 410, 400 7Hz,0.5 Hz

Table 5.2: The various tests performed in the wind tunnel.
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Before the testing started, the TMD were manually tuned by tapping the girder gently and pulling
the TMD to get the same natural frequency as the section model. A still air test was done before
every test as a reference and control check. The RPM had to be increased and adapted to get the
desired wind velocity when the active grid generated turbulence. This is because the turbulence
will reduce the wind velocity.

5.2.1 VIV Tests

VIV tests are used to detect vibrations due to vortex shedding. The tests are performed by
gradually increasing the wind velocity while the section model is fixed in the neutral position.
Vibrations can be observed when the bridge is in resonance, and the natural frequency corresponds
with the vortex shedding frequency. The wind velocity causing vibrations will be avoided in the
reaming tests due to disruption of the measured loads. No vibrations due to vortex shedding were
observed during the VIV test, and therefore it was not necessary take this into consideration.

5.2.2 Quasi-Static Tests

Quasi-static tests are executed to estimate the static coefficients for lift, drag, and moment. The
tests is performed with different wind velocities; 6, 7, 9 and 10 m/s, to indicate Reynolds number
dependency. The angle of attack is continually changed as the section model is quasi-statically
rotated with a max amplitude of 10 degrees. For comparison of the measurements, both the loads
cells and pressure scanners were used.

5.2.3 Admittance Tests

The aerodynamic admittance functions can be estimated by performing admittance tests in the
wind tunnel. The tests are executed with different wind velocities, angles of attack and turbulent
flow. In addition, the tests are done with and without railings on the section model to indicate the
impact they have on the measurements. Turbulence components, mean wind and surface pressure
are measured during the test.

5.2.4 Flow Tests

Flow tests were performed with and without the section model inside the wind tunnel. The Cobra
Probes were placed at different distances of 55 mm, 105 mm, 220 mm, 500 mm and 1000 mm.
This is to indicate turbulence correlation in the spanwise direction. These tests may be used to
estimate 3D aerodynamic admittance functions. This thesis does not focus on estimating the 3D
AAF, and therefore, the measurements were not further used.
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5.3 Accuracy and Error Sources

There may be several errors in the experimental setup, which can lead to inaccurate results. As
mentioned in Section 5.1, a test was conducted with a table fan before the final wind tunnel
testing. This was done to exclude errors with the instrument setup, the pressure scanners, and
the tube system. After testing, an error was detected on tube no. 1115 and 2115. Both had
extremely high-pressure measurements compared to the other tubes. They are placed at the same
location at strip one, on separate boxes. After investigating various reasons for the unexpected
error, it was concluded that both tubes were squeezed due to being too close to the aluminium
pipe. At the location of the tubes, there was expected less variation in the pressure distribution.
In addition, since the pressure tubes are evenly distributed and have a relatively short distances
between them on strip one, it was determined to disregard the measurements from these tubes.
When the pressure distribution was calculated, it was therefore chosen to set the mean value of
the neighbouring tubes on both tubes no. 1115 and 2115.

Other sources of error could occur from the mounting of the twin-box bridge in the wind tunnel
and the cross-section itself. A level meter was used to position the sections correctly. Since this
is done manually, there may have be some deviations. Further, it is uncertain if the 3D-printed
parts were completely sealed. Even though this was accounted for when designing the parts,
wind may have entered the cross-sections and could, in that case, affect the flow pattern and the
pressure distribution. In addition, duck tape was used to seal the 3D-printed parts and the rest
of the cross-sections. There were some uneven transitions and uncertainty if it was completely
sealed. This could eventually affect the wind flow and further the pressure distribution. Moreover,
the placement of the Cobra Probe and the Pitot Probe may affect the wind flow in front of the
twin-box.

Dynamic amplification and signature turbulence are sources that could disturb the signal. Dynamic
amplification can be observed as peaks in plots of the power spectral density with vibrations
around the eigenfrequency of the cross-section. Signature turbulence may be formed by vortex
shedding and will affect the buffeting response of the twin-box. In addition, electrical noise and
lose components in the wind tunnel can lead to unwanted noise and vibration of the measured
signals.

Another source of error is the reference pressure for the Cobra Probes and the Pitot Probe. Changes
in the pressure inside the laboratory can occur, which could affect the measured reference pressure.
For example, if a door to the laboratory closes, this may lead to changes in the reference pressure.
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5.4 Post Processing

The measurements from each test in the wind tunnel were saved in separate files for the MPS
pressure scanners, the Cobra Probes, the Pitot Probe, and the load cells. The data acquisition
system and measurements were measured at a sampling rate of 200 Hz per second. The supervisors
processed the raw data to processed data, while further data processing was done in Spyder.

5.4.1 Pressure Measurement

The purpose of the pressure tubes was to estimate the aerodynamic forces around the periphery of
the cross-section for different wind velocities, angles of attack, and flow conditions. The pressure
tubes measures the pressure perpendicular to the surface of the bridge. Raw positive pressure is
defined as pushing pressure and is faced inward on the cross-section, while negative raw pressure
is defined as suction and is faced outward. The mean value of a time series of 5 minutes was used
to obtain a static pressure and load representation. Further, to ensure times series with minimal
disturbance, the time series of the pressure measurements were cut at the start and end. Two
different methods were used to calculate the aerodynamic forces of the twin-box bridge; the piece-
wise load method and the interpolated method. Appendix B shows the Spyder scripts for both
methods.

Figure 5.8 shows the surfaces on the cross-section for the estimation of the forces and moments.

Figure 5.8: Definitions of surfaces on the bridge.

In addition, for the calculation of moments, Figure 5.9 illustrates the definitions of positive and
negative forces.
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Figure 5.9: Tllustration for the moment calculations on (a) the upstream-box and (b) the
downstream-box.

The piece-wise load method assumes that each pressure tube is a point load. Each point load
is multiplied by the surface area to obtain the loads around the cross-section. The width of the
calculated surface area is the sum of the distance between the two neighbouring pressure tubes
in the same correlation line. If the pressure tube is located at the end of a surface, the width is
set to the sum of the distance to the end of the surface and half the distance to the neighbouring
pressure tube. Figure 5.10 illustrates widths on the top surface of the upstream-box associated
with the pressure tubes. The length of the surface area is set to 1 meter.

9,10, 11 12, L1415 16 17 1819, 20 21

Figure 5.10: Illustration of the widths on the to surface of the upstream-box

Figure 5.11 and 5.12 shows an example of the point pressure and point load obtained by the
piece-wise load method.
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Figure 5.11: Example of point pressure by the piece-wise load method.
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Figure 5.12: Example of point load obatined by the piece-wise load method.

The interpolated load method estimates the forces and moments as a distributed load on the
surface of the cross-section. To obtain the distributed pressure, query points with equal spacing of
1 mm are arranged around the cross-section. The pressure is further interpolated with a piece-wise
cubic polynomial function in Spyder. All the forces are multiplied with the same surface area with
a width of 0.001 m and a length of 1 m. The pressure on the ends of the surfaces is, however,
multiplied by half the width. Figure 5.13 and 5.14 shows an example of an interpolated pressure
and load distribution.
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Distributed Pressure
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Figure 5.13: Example of an interpolated pressure distribution by the interpolated load method.
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Figure 5.14: Example of an interpolated load distribution by the interpolated load method.

5.4.2 Wind Data

The sampled data from the Cobra Probe was converted from voltage to velocity by Associate
Professor @yvind Wiig Petersen. The fluctuating part of the wind is used to estimate the spectral
density. This is obtained by subtracting the mean signal from the times series of the wind. The wind
data is transferred to the frequency domain to estimate the aerodynamic admittance functions.
The Welch’s method is used in Spyder for calculating the power spectral density using 10 Hamming
Windows.

5.4.3 Force Spectra

The data obtained from the MSP pressure scanners are zeroed by subtracting the mean of the signal.
The time series of the loads obtained from the pressure measurements with the methods described
above are transformed from the time domain to the frequency domain by Welch’s method using
10 Hamming windows. The spectral densities of drag, lift and moment for the different correlation
lines are plotted with logarithmic axes. Equation 3.80 is used to find the coherence between the
lines.
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5.4.4 Admittance Estimation

The aerodynamic admittance functions are estimated in the frequency domain with three different
methods; the general, the equivalent and the cross-spectral, as described in Section 3.5. The
estimated functions are plotted with the Sears function for comparison with logarithmic axes. The
script used to calculate the aerodynamic admittance functions is attached in Appendix C.
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Chapter 6

Results and Discussions

6.1 Turbulence Spectra

The wind spectra are studied before the admittance functions are estimated. This is important in
order to detect possible errors that could affect the final estimation of the admittance functions.
The turbulence spectra are used to analyze the wind flow. Figure 6.1 and 6.2 presents the horizontal
and vertical spectra of three different wind flows, still open grid and grid rotations of 0.5 Hz and
7 Hz.
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Figure 6.1: Turbulence spectra for the horizontal and vertical component, V' ~ 7m/s.

As expected, the turbulent flow with grid rotations of 0.5 Hz and 7 Hz has higher spectral densities
than the flow with still open grid open. When the grid is still open, the flow display uniform
tendencies, as seen in Figure 6.1. It can also be observed that the spectral densities decrease
gradually as the frequency increases. A small peak for the horizontal turbulence component, wu,
is detected for the still open grid turbulence. The peak could be caused by vibrations from the
Cobra probe at one of the natural frequencies of the Cobra Probe mount, or by electric noise.
The turbulence flow with grid rotation of 0.5 Hz displays higher spectral densities than with grid
rotation of 7 Hz.
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Figure 6.2: Turbulence spectra for the horizontal and vertical component, V =~ 9m/s.

Figure 6.2 presents the turbulence spectra with the wind velocity, V' & 9m/s. The turbulence
spectra show great similarity compared to the turbulence spectra with wind velocity, V' =~ Tm/s.
A small difference is detected for the spectra of turbulent flow, where the spectral density gets a
little higher as the wind velocity increases. The spectral density of the still open grid is almost
unchanged with the increased wind velocity.
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Figure 6.3: Turbulence spectra for the horizontal and vertical component with still open grid,
Va~Tm/s.
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Figure 6.4: Normalized wind spectra with grid rotation of 0.5 Hz, V ~ 9m/s,
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Figure 6.5: Normalized wind spectra with grid rotation of 7 Hz, V' = 9m/s.

Figure 6.3, 6.4 and 6.5 presents the normalized spectra for horizontal and vertical direction for the
three different wind flows. The horizontal and the vertical spectra for the still open grid have a
maximum peak at approximately 3 Hz. The vertical spectra for the turbulent flow have a maximum
peak around the reduced frequency 1 Hz. The horizontal spectra seem to have a maximum peak
at a slightly lower reduced frequency. When studying the turbulence spectra and comparing them
to the turbulence spectra obtained by Larose [11] and Wang et al. [23], similarity is observed.

The turbulence intensities are calculated by Equation 3.40 and shown in Figure 6.1 for still open
grid, Figure 6.2 for a grid generated turbulence with grid rotation of 0.5 Hz, and Figure 6.3 with grid
rotation of 7 Hz. The longitudinal turbulence intensity, I, and the lateral intensity, I,,, are equal
for still open grid. However, for grid-generated turbulence, the longitudinal turbulence intensity,
I, is the maximum. The turbulence intensity with a still open grid is approximately the same
for the different wind velocities but has a small decrease with an increase in wind velocity. This
indicates that the mean wind velocity increases more than the fluctuating components. However,
for grid-generated turbulence, the turbulence intensities increases with increased velocity.

69



Table 6.1: Turbulence intensity with still open grid.

V [m/s] | RPM | I, I,
7 260 | 1,3% | 1,3 %
9 330 [ 12% | 1,2%

V [m/s] | RPM I, I,
7 310 | 143 % | 11,4 %
9 400 | 147 % | 11,3 %

Table 6.2: Turbulence intensity with grid generated turbulence, grid rotation 0.5 Hz.

V [m/s] | RPM I, L,
7 325 | 87% | 7,6 %
9 410 | 93 % | 8,3 %

Table 6.3: Turbulence intensity with grid generated turbulence, grid rotation 7 Hz.

Figure 6.6 presents the normalized measured turbulence spectrum, in which the Kaimal spectrum

given by Equation 3.90 is also plotted for validation and comparison. The horizontal position of

the peaks in the Kaimal spectra is determined by the value of the integral length scale. However,

in a wind tunnel experiment, it is difficult to determine the integral length scale. For the presented

plots, the integral length scales are put equal to xLu = 0.25m and zLw = 0.021m. It is found that

the measured spectrum agrees well with the Kaimal spectrum as it shows a similar distribution of

energy. The measured spectra are, therefore, a good representation of the turbulent wind and are
acceptable for further calculations.
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Figure 6.6: Normalized wind spectra with grid rotation 0.5 Hz together with the Kaimal spectra,

V ~9m/s.
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6.2 Pressure Distribution

This section presents the pressure distribution from the wind tunnel tests measured by the MPS4264
Pressure Scanners. A comparison of tests is done to detect the impact of the railings, and turbulent
wind flow with different grid rotations is studied. Due to the dense distribution of the pressure
holes, the first correlation line will be used. The remaining five correlation lines will be presented
for one test to investigate the spanwise pressure correlation. At each pressure hole, the pressure
distribution is given by the mean value of the time series. Each surface on the bridge cross-section
is defined with names S1-S12, to make it easier to analyze and explain the pressure distribution
on the different surfaces, as described in Subsection 5.4.1. Pressure pointing inwards is defined
as positive pressure (pushing pressure), while pressure pointing outwards is defined as negative
pressure (suction).

6.2.1 Still open grid

The tests presented below are executed with a still open grid. The tests are executed with the
wind the velocities of 7 m/s and 9 m/s, and the angle of attack, «, varying between - 5°, - 2°, 0°,
2° and 5°. The pressure distribution is studied without the railings attached to the girder.
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Figure 6.7: Distributed pressure with still open grid, RPM = 260, V ~ 7m/s and o = 5°.
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Figure 6.8: Distributed pressure with still open grid, RPM = 260, V ~ 7m/s and o = 2°.
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Figure 6.9: Distributed pressure with still open grid, RPM = 260, V & 7m/s and o = 0°.
Distributed Pressure
150 - 45
40
100 -
35
50 - 30
[*]
=
25
™ 01 “SJ
w1
20 E
_ - o
50 15
~100 10
5
—150
: . : : ‘ : : : : 0
-400 -300 —200 -100 0 100 200 300 400
X
Figure 6.10: Distributed pressure with still open grid, RPM = 260, V ~ 7m/s and o = - 2°.
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Figure 6.11: Distributed pressure with still open grid, RPM = 260, V =~ Tm/s and o = - 5°.

Figure 6.7-6.11 presents the distributed pressure with wind velocity 7m/s. The pressure distri-
bution changes as the angle of attack changes. When comparing the pressure distributions with
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angles of attack from 5° to —5°, a reduction of the negative pressure on the leading edge, S2 and
a significant development of negative pressure on S6, is observed. The illustrations shows that the
pressure distribution on the upstream-box changes from having maximum negative pressure on
the upper surface, S2, to maximum negative pressure on the lower surface, S6. Further, negative
pressure on S1 changes to positive pressure and increase gradually with decreased angle of attack.
The pressure distribution on S5 is quite similar for all the angles of attack. However, the negative
pressure increases slightly in the transition between S5 and S6. There are minor to no changes
observed on S3 and S4 when the angle of attack changes.

For the downstream-box, the pressure distribution shows similarities for the five different angles of
attack. The negative pressure on the leading edge of S8 decreases slowly when the angle decreases.
On the corner between S9 and S10 positive pressure is observed. However, when angle of attack is
—5°, negative pressure occurs, see Figure 6.11. For the angle of attack, 5°, some positive pressure
is observed on S10 on the leading edge. The positive pressure turns negative towards the corner
between S10 and S11 and remains negative on S11 and S12. The negative pressure on S11 and S12
remains approximately the same for angles of attack.
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Figure 6.12: Distributed pressure with still open grid, RPM = 330, V &~ 9m/s and « = 5°.
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Figure 6.13: Distributed pressure with still open grid, RPM = 330, V = 9m/s and o = 2°.
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Figure 6.14: Distributed pressure with still open grid, RPM = 330, V = 9m/s and o = 0°.
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Figure 6.15: Distributed pressure with still open grid, RPM = 330, V ~ 9m/s and o = - 2°
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Figure 6.16: Distributed pressure with still open grid, RPM = 330, V = 9m/s, and o = - 5°.

Figure 6.12-6.16 presents the distributed pressure with wind velocity 9m/s. When the twin-box

Pressure [Pa]

Pressure [Pa]

Pressure [Pa]

is

subjected to higher wind velocity, the distribution remains unchanged, but the magnitude increases.
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The negative pressure on the upper surface, S2, of the upstream-box decreases as the angle of
attack decreases. The negative pressure becomes more dominant at the bottom surfaces, where
the maximum amount of negative pressure occurs on S6 on the leading edge, when o = —5°; as
seen in Figure 6.16. Similar observations are done for the downstream-box, where the maximum
negative pressure changes from being on the upper surface to becoming more dominant at the
bottom surfaces.

Pressure Distribution for the six Correlation lines

Figure 6.17 illustrates the correlation of pressure distribution in the span-wise direction. Some
minor changes can be seen for correlation line five on S5, where the negative pressure is more
dominant towards the corner between S5 and S4. This differs from the other correlation lines
where the negative pressure is more dominant towards the corner between S5 and S6. Otherwise,
no significant differences are observed when comparing the pressure distribution for the different
correlation lines. This indicate that the pressure remains approximately the same as the separation
distance between the lines increases. Due to a lower number of pressure tubes with a larger
separation for correlation lines 2-6, the pressure distribution may be more inaccurate than for
correlation line one.
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Figure 6.17: Point pressure for the six correlation lines with still open grid, RPM = 330, V' = 9m/s
and a = 0°.
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6.2.2 Turbulent wind flow

The pressure distribution from the test executed with turbulent wind flow is presented below. The
tests are performed with the grid rotations of 7 Hz and 0.5 Hz and the wind velocity 7 m/s and
9 m/s. This section presents tests with the angles of attack of 5°, 0°and - 5°. Figure 6.18-6.23
presents the pressure distribution of the twin-box with a wind velocity of 9 m/s for the two different
grid-generated turbulence’s. In addition, the pressure distribution on the six correlation lines is
presented for a test with a grid rotation of 7 Hz and wind velocity 9 m/s.
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Figure 6.18: Distributed pressure with grid rotation 7 Hz, RPM = 330, V =~ 9m/s and o = 5°.
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Figure 6.19: Distributed pressure with grid rotation 0.5 Hz, RPM = 330, V = 9m/s and o = 5°.
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Figure 6.20: Distributed pressure with grid rotation 7 Hz, RPM = 330, V &~ 9m/s and o = 0°.
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Figure 6.21: Distributed pressure with grid rotation 0.5 Hz, RPM = 330, V = 9m/s and o = 0°.
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Figure 6.22: Distributed pressure with grid rotation 7 Hz, RPM = 330, V &~ 9m/s and o = - 5°.
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Figure 6.23: Distributed pressure with grid rotation 0.5 Hz, RPM = 330, V ~ 9m/s and o = - 5°.

The pressure distribution displays the same trend as for a still open grid, but with a much larger
magnitude of the pressure. The negative pressure is observed on all surfaces on the downstream
box, except for small values of positive pressure on S9. The negative pressure becomes more
dominant at bottom surfaces for both the upstream-box and the downstream-box as the angle of
attack decreases.
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Pressure distribution for the six correlation lines

The pressure distribution for correlation line 1-6 with wind velocity, V' a 9m/s, angle of attack,

(07

= 0° and grid rotation of 7 Hz, is presented below.
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Figure 6.24: Point pressure with grid rotation
V ~9m/s and o = 0°.
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7 Hz for the six correlation lines, RPM = 330,

The pressure distribution for the different correlation lines in Figure 6.24, displays similarity to
the measurements with a still open grid, shown in Figure 6.17. The pressure on S5 is slightly
different on correlation line 5 than for the other correlation lines. The same observation was done
for the test executed with no grid rotation. Since this is observed on several tests, there may be
something that has disturbed the wind flow near correlation line 5. The Cobra Probes were placed
40 cm from the windward edge, in front of the first and fifth correlation line. This could affect
the measurements of the fluctuating pressure around the cross-section as the Cobra Probes may
disturb the wind flow and cause a slight change in the pressure distribution.

6.2.3 The Effect of Railings

In order to detect the impact of the railings, the pressure distribution is studied. The pressure
distribution for the tests executed with and without railings is compared, and the main differences
are presented below. The tests are done with a still open grid, a mean wind velocity of 9m/s, and
angle of attacks 0°, 2° and 5°. Figure 6.25-6.27 shows the point pressure without and with railings.
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Figure 6.25: Distributed pressure with still open grid, RPM = 330, V &~ 9m/s and a = 0°.
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Figure 6.26: Distributed pressure with still open grid, RPM = 330, V ~ 9m/s and a = 2°.
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Figure 6.27: Distributed pressure with still open grid, RPM = 330, V &~ 9m/s and a = 5°.
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Figure 6.27: Distributed pressure with still open grid, RPM = 330, V &~ 9m/s and a = 5°.

When comparing the pressure distribution from tests done with and without railings, the pressure
distributions display some similarity except in the vicinity of the railings. It can be observed from
Figure 6.25 that the high negative pressure on S2 on the upstream-box and S8 on the downstream-
box decreases when the railings are attached to the girder. In addition, on the lower surface S6, the
negative pressure shows a slight increase due to the railings’ blockage effect. The high fluctuating
pressure on the downstream-box can result from the vortex shed from the upstream-box. When
the railings are attached on the leading edge, they can induce large flow separations that cause an
increase in the distance between the upper and lower shear layers of the gap [47]. The interaction
decreases due to the increased distance between the layers, and less motion-induced vortex shedding
is formed in the gap. This implies that the railings will affect the VIV of the twin-box bridge. The
railings reduces the negative pressure on the leading edge of S2 and produce a wave-like pressure
distribution where the railings are attached.

The negative pressure were increased on the upper surfaces when the angle of attack increases.
The railings showed to have a significant impact on the pressure distribution on the leading edge
of both the upstream-box and the downstream-box when the angle of attack is 5°. It can be seen
in Figure 6.27 that the negative pressure is almost reduced by half.

6.2.4 Comparison and Validation of Pressure Distribution

The pressure distributions presented in this thesis display an unexpected amount of negative pres-
sure on the upstream-box at S6. This does not coincide with results obtained from previous studies
and gives it a reason for questioning the fluctuating pressure on the upstream-box.

When comparing the pressure distribution with the result obtained in the experimental study by
Wang et al. [3], it is a noticeable difference in the pressure on the bottom surface on the windward
edge of the upstream-box. According to the study, the wind flow gives a positive pressure on the
windward edge and slowly turns negative as it gets closer to the bottom surface. This also agrees
with pressure distribution found in other studies and master’s theses. A possible reason for this
unexpected negative pressure may be that something is triggering the wind flow around this area.
The correlation lines show approximately the same pressure distribution for all lines, as seen in
Figure 6.17 and 6.24. This indicates that there are no local errors for correlation line one, since all
the lines presents negative pressure on S6.
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In addition, an underpressure in the wind tunnel could cause negative pressure on the cross-section.
In that case, a tentative underpressure could be subtracted from the mean value of the pressure
from each pressure hole. The measured negative pressure is relatively large, and therefore desires
a large underpressure to obtain the same results as Wang et al. This would completely change the
distributed pressure on the cross-section, which would not correspond with previous findings.

Another contribution to the unexpected negative pressure could be the sharp angle on the windward
edge. The angle of S6 is relatively smaller compared to bridge cross-sections from other studies.
Rocchi et al. [42] did an experimental study where he studied the pressure distribution with
different angles of attack and global forces on a bridge deck. An illustration based on the pressure
distribution found in the study for angle of attack of 0° and -9° is presented below.

0=0 20°

Figure 6.28: Illustration of pressure distribution with angle of attack 0° and -9° based on the study
by Rocchi et al. [42].

An angle of attack of 0° shows an pressure distribution with positive pressure on the lower surface
on the leading edge. The angle of this surface is 20°, which is larger than the angle for the cross-
section used in this thesis. When the angle of attack is -9°, there is a complete separation, and
the positive pressure turns to negative pressure. The surface angle on the leading edge becomes
11° as shown in Figure 6.28, which is approximately the same as the angle for surface S6 as shown
in Figure 4.1. In that case, great similarity is shown when comparing the pressure distribution on
the lower leading surface of the cross-section in this thesis and the cross-section in the study by
Rocchi et al. This observation may confirm that the pressure on S6 at the leading edge may indeed
become negative. If the angle of the leading edge is small enough, the expected positive pressure
on the leading edge may become negative with an angle of attack of 0°.
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6.3 Comparison of Forces

The forces measured by the pressure scanner are calculated using two different methods, the
interpolated method and the piece-wise method, as described in Subsection 5.4.1. Table 6.4 presents
the total static forces on the upstream-box and the downstream-box for wind velocity V' =~ 7m/s
and V &~ 9m/s with an angle of attack of 0°. In addition, the forces from the load cells are also
presented in the table for comparison.

v Interpolated load method | Piece-wise load method Load Cells
[m/s] | Upstream ‘ Downstream Upstream ‘ Downstream | Upstream | Downstream

Fx[N]

7 0.24 0.88 0.29 0.86 1.16 1.58

9 0.48 1.61 0.58 1.61 1.83 247
Fz[N]

7 -9.04 -1.98 -8.81 -1.99 -7.84 -1.33

9 -14.82 -3.31 -14.35 -3.38 -12.09 -2.18

My [Nm]
7 -1.99 0.60 -1.89 0.65 -1.52 0.52
9 -3.31 0.97 -3.10 1.03 -2.35 0.84

Table 6.4: Forces obtained from the interpolated load method, the piece-wise method and the load
cells.

The forces obtained by the pressure scanners are lower compared to the forces obtained from the
load cells in the horizontal direction. The load cells include the friction forces in the measurements,
which the pressure scanners are not able to measure. This results in lower forces and inaccurate
measurements in the horizontal direction. When the wind velocity increases, the deviation between
the forces measured by the pressure scanner and the load cells becomes even more remarkable.
Further, the forces obtained by the pressure measurements in the vertical direction have a higher
magnitude than the forces measured by the load cells for both wind velocities. This also applies
to the moment forces. When comparing the forces, larger errors are observed on the upstream-box
than on the downstream-box.

A slight deviation is observed when comparing the interpolated method and the piece-wise load
method. The forces obtained by the piece-wise load method are slightly closer to the load cell
forces than the forces obtained by the interpolated load method. In general, the interpolated load
method presents forces with a higher magnitude, except for the forces in the vertical direction.
Even though both methods show some differences compared with forces measured by the load
cells, they can be used for further calculations.

6.4 Static Coefficients

The static coefficients can be estimated by using both forces measured by the load cells and forces
measured by the pressure scanners. When the static coefficients are estimated by the load cells, the
static tests described in Section 5.2.2 are used. The section model is rotated with an amplitude
of + 10 ° with wind velocities of approximately 6, 7, 9, and 10 m/s. The tests were executed
with a still open grid, grid rotation of 7 Hz and 0.5 Hz. The measured forces are filtered with
a Butterworth filter of order six and a cutoff frequency equal to 6 Hz. Equation 3.24 is used to
calculate the static coefficients, and the whole width of the twin-box bridge, B, is used in the
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calculations. The drag coefficients Cp(a), lift coefficients Cf,(«), and moment coefficients Cs ()
are plotted as a function of «, which is the incline angle of the bridge decks.

Static Tests

The static coefficients for the total twin-box, the upstream-box and the downstream-box obtained
from the static test with forces measured by the load cells, are presented in Figure 6.29, 6.30 and
6.31. The unfiltered raw data, which is the noise from the vibration response, is plotted together
with the filtered forces. Since the bridge was rotated more than once, a third-degree polynomial
function is fitted to the filtered data. This is used to extract the values for the static coefficients

at different angles of attack.
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Figure 6.29: Total static coefficients for the bridge with still open grid and V = 9m/s.

Total Static Coefficients
aldeg] | Cp Ct Cm
-10 2.425 | -0.6731 | -0.138
-8 1.717 | -0.5943 | -0.1231
-6 1.214 | -0.5005 | -0.1028
-4 0.89 | -0.3943 | -0.0783
-2 0.717 | -0.2785 | -0.0508
0 0.667 | -0.1556 | -0.0214
2 0.713 | -0.0288 | -0.0087
4 0.826 | 0.0997 | 0.0382
6 0.981 | 0.2271 | 0.0661
8 1.148 | 0.3506 | 0.0912
10 1.300 | 0.4675 | 0.1122

Table 6.5: Static coefficients at different angles of attack.

The drag coefficient, Cp(a) in Figure 6.29 shows clear non-linearity and appear as a parabolic
curve. As for the lift coefficient, C7(«), and the moment coefficient Cjs(), a more typical linear
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relationship is displayed. An exception of this linear relationship appears between the negative
inclination —5° and —10° where some non-linearity is observed. This can be caused by the induced
wind flow on top surfaces, creating a more turbulent flow around the cross-section for large negative
angles. As a result of this, the bridge section may start to vibrate. Negative values of C are
observed for approximately « < 3°, which indicates that the vertical forces on the bridge section
are acting in the downward direction. When the angle of attack decreases towards —10°, the
negative pressure on the bottom surfaces gets a higher magnitude than the negative pressure on
the top surface. This is due to flow accelerating over the streamlined bottom surfaces. Moreover,
for @« = 0°, the desired value of C}; is close to zero to avoid rotation of the bridge cross-section
when exposed to wind. The static coefficient C); for this bridge section when the angle of attack
is zero is approximately -0.021. This value is fairly close to zero and therefore indicates sufficient
rational stability.
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Figure 6.30: Static coefficients for the upstream-box, V' ~ 9m/s, still open grid
Static Coefficients Downstream
30
Raw 0.06
Filtered
25 Polyfit
0.04
20 1
o - _ 002
5 15 = L1
g & &
0.00
10
05 4 ~0.02 1
0.0 T T T T T T T T T
=10 -5 o 5 10 =10 -5 0 5 10 =10 -5 0 5 10
a a a

Figure 6.31: Static coefficients for the downstream-box, V & 9m/s, still open grid
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Figure 6.32: Static coefficients for upstream-box and downstream-box, V' = 9m/s, still open grid

Upstream-box Downstream-box

CD CL CM CD C'L C'M

-10 1.419 | -0.4923 | -0.1731 | 1.0128 | -0.1808 | -0.0351
-8 1.001 | -0.4388 | -0.1548 | 0.7152 | -0.1555 | 0.0318
-6 0.6985 | -0.3739 | -0.1306 | 0.5159 | -0.1265 | 0.0279
-4 0.4876 | -0.2995 | -0.1017 | 0.4029 | -0.0948 | 0.0234
-2 0.353 | -0.2174 | -0.0693 | 0.3643 | -0.0611 | 0.0185
0 0.2791 | -01296 | -0.0345 | 0.3882 | -0.0261 | 0.0131
2 0.2501 | -0.038 | 0.0014 | 0.4627 | 0.0092 | 0.0073
4 0.2505 | 0.0555 | 0.0371 | 0.576 | 0.0442 0.001
6

8

0.2645 | 0.1491 | 0.0717 | 0.7161 | 0.078 | -0.0056
0.2764 | 0.2408 | 0.1038 | 0.8711 | 0.1098 | -0.0126
10 0.2707 | 0.3287 | 0.1321 | 1.0292 | 0.1388 | -0.0199

Table 6.6: Static coefficients at different « for the upstream-box and downstream-box.

Figure 6.32 presents the static coefficients for the upstream-box and the downstream-box. It can be
observed from the plot of both Cf, and C),, that the main contribution derive from the upstream-
box for all angles. For Cp the main contribution derive from the upstream-box for —10° < a < —2°
and from the downstream box for o > —2°. For an angle of attack, a = 0°, it is expected that
the main contribution is provided by the upstream-box. The results presented in Figure 6.32 and
Table 6.6, contradict this. It is observed that the downstream-box is the main contribution to the
drag coefficient for &« = 0°. From the forces presented in Section 6.3, it can be seen that forces
in the horizontal direction obtained by the pressure scanner and the load cells are the largest
for the downstream-box, which results in the downstream-box becoming the main contribution
for the drag coefficient. The geometry of the cross-section has a great impact of how the wind
flow interacts with the twin-box, and how the fluctuating pressure is distributed around the cross-
section. The chosen cross-section, with a sharp angle in the leading edge of the upstream-box, may
be the reason for this unexpected observation.
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In order to investigate if the static coefficients are dependent on the wind velocity or turbulence

flow, the response of the bridge section is plotted in Figure 6.33 with four different wind velocities

and in Figure 6.34 with three different grid generations.
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Figure 6.33: Static coefficients for different wind velocities, Still open grid
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Figure 6.34: Static coefficients with different grid rotations, V a 9m/s.

The different curves in the plot present the response of the bridge section with different wind

velocities and different grid generations. The curves show significant similarity when the wind

velocity changes. The same is observed for the curves with different grid generations. The lack of

offset between the curves when the wind flow changes indicates that the twin-box bridge has very

low Reynolds dependency.

The drag, lift and moment slopes, dCp /da, dCr, /da and dCpy/de are presented in Figure 6.35 for
the upstream-box, the downstream-box and the total twin-box. They are defined as the rate of

change of the static coefficients with respect to the angle of attack. When calculating the slopes,

the angle is measured in radians.
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Figure 6.35: Drag, lift and moment slopes for the upstream-box, the downstream-box and the total

twin-box.

oldeg] | Cp | Cp | Ch

-10 3.173 | -1.660 | -0.3547
-8 2.748 | -1.436 | -0.2980
-6 2.418 | -1.20 | -0.2406
-4 2.183 | -0.960 | -0.1825
-2 2.048 | -0.7158 | -0.1237
0 2.002 | -0.4673 | -0.0642
2 2.054 | -0.2146 | -0.004
4 2.202 | 0.0423 | 0.0568
6

8

2.446 | 0.3035 | 0.1183
2.786 | 0.5690 | 0.1806
10 3.221 | 0.8387 | 0.2434

Table 6.7: Derivative of static coefficients for the twin-box.
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Upstream-box Downstream-box
aldeg]
Chb CL CL Ch Cr CL

-10 1.8876 | -1.2412 | -0.4448 | 1.2853 | -0.4261 0.090

-8 1.5876 | -1.0784 | -0.3788 | 1.1599 | -0.3574 | 0.0808
-6 1.3325 | -0.9118 | -0.3116 | 1.0851 | -0.2883 | 0.0711
-4 1.1225 | -0.7413 | -0.2434 | 1.0161 | -0.2187 | 0.609

-2 0.9574 | -0.567 -0.174 | 1.0874 | -0.1488 | 0.0503
0 0.8372 | -0.3889 | -0.1035 | 1.1645 | -0.0784 | 0.0393
2 0.7621 | -0.207 | -0.03187 | 1.2922 | -0.0077 | 0.0279
4 0.7319 | -0.0212 | 0.0409 | 1.4706 | 0.0635 | 0.0159
6 0.7467 | 0.1684 0.1147 | 1.6995 | 0.1351 | 0.0036
8 0.8065 | 0.3618 0.1897 | 1.9791 | 0.2071 | -0.0092
10 0.9112 | 0.5591 0.2658 2.309 | 0.2796 | -0.0224

Table 6.8: Derivative of static coefficients for the upstream-box and the downstream-box.

Pressure Measurements

The static coefficients based on the measurements obtained from the pressure scanners are cal-
culated for five different angles of attack. Table 6.9 presents the static coefficients obtained from
the pressure measurements together with the static coefficients obtained from the load cells for
comparison. The static coefficients for the upstream-box and the downstream-box is presented in

Table 6.10 and 6.11.

CD CL CM
aldeg]
MPS | Load Cells | MPS | Load Cells | MPS | Load Cells
-5 0.6168 1.032 -0.5036 -0.4487 -0.1086 -0.0910
-2 0.3841 0.717 -0.309 -0.2785 -0.0574 -0.0508
0 0.3444 0.667 -0.188 -0.1558 -0.030 -0.0214
2 0.4166 0.713 -0.0651 -0.0288 -0.0045 0.0087
5 0.6223 0.900 0.1525 0.1637 0.0405 0.0525

Table 6.9: Static coefficients obtained from the pressure scanners and the load cells.
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Upstream-box
aldeg] Cp Cr Cm
MPS | Load Cells | MPS | Load Cells | MPS | Load Cells
-5 0.3177 0.5825 -0.3773 -0.3378 -0.1358 -0.1167
-2 0.1373 0.353 -0.2357 -0.2174 -0.0783 -0.0693
0 0.091 0.2791 -0.1521 -0.1296 -0.0444 -0.0345
2 0.0895 0.2501 -0.0697 -0.038 -0.0113 0.0014
5 0.1479 0.2568 0.0857 0.1024 0.0447 0.0547

Table 6.10: Static coefficients for the upstream-box.

Downstream-box
afdeg] Cp C1 Cm
MPS | Load Cells | MPS | Load Cells | MPS | Load Cells
-5 0.2991 0.4493 -0.1263 -0.111 0.0273 0.0257
-2 0.2468 0.3643 -0.0733 -0.0611 0.0209 0.0185
0 0.2533 0.3882 -0.0358 -0.0261 0.0147 0.0131
0.327 0.4627 0.0045 0.0092 0.0068 0.0073
5 0.4759 0.6434 0.0668 0.0613 -0.0042 -0.0022

Table 6.11: Static coefficients for the downstream-box.

It can be observed that the drag coefficients, Cp obtained by the pressure scanner are generally
lower than the drag coefficient from the load cells. As explained in Section 6.3, the pressure scanners
are not able to measure the friction forces. The drag coefficients obtained by the measurements
from pressure scanners are therefore lower. Hence, the drag coefficient measured by the load cells
is more accurate. For the lift and moment coefficient C;, and C);, the deviation is lower, and they
display more similarity than the drag coefficients. It can be observed that for Cr and Cyy, the
static coefficients for the upstream-box is larger than for the downstream-box. This implies that
the largest contribution to the static coefficients C, and Cj; provided by the upstream-box. For
the drag coefficient Cp, the largest contribution comes from the downstream-box. In addition, the
deviation is smaller when the magnitude of the static coefficients is lower.

6.5 Force Spectra

The buffeting forces are calculated based on the measurements obtained from the pressure scanners.
Forces from the piece-wise load method are used when calculating the buffeting forces and force
spectra. The piece-wise load method and the interpolated load method would obtain the same
results, but the piece-wise load method performs the calculations faster. Therefore, the piece-wise
load method is favourable.

The buffeting force spectra for turbulent flow with grid rotations of 0.5 Hz and 7 Hz is presented
in Figure 6.36.
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Figure 6.36: Buffeting Force Spectra, grid rotation of 0.5 Hz (left) and 7 Hz (right), V =~ 9m/s.

For the drag force spectra with grid-rotation of 0.5 Hz, two distinct peaks at the frequencies 18 Hz
and 50 Hz are observed. For the lift and moment force spectra only one distinct peak at frequency
50 Hz is observed. The thin peaks shown on the drag spectra at the frequency of 50 Hz may be
caused by electrical noise, which often occurs at this frequency. For grid-rotation of 7 Hz, the
force spectra for drag, lift, and moment also has a distinct peak at 50 Hz. The buffeting force
spectra for the two different turbulent flows displays similarity, except for some deviations for the
drag force spectra as seen in Figure 6.36b. In the interval 5-20 Hz, several peaks occur. They
are mainly caused by the downstream-box but are also observed on the upstream-box. Vibrations
of the cross-section could cause the peaks. However, it is difficult to determine the exact reason

92



why several peaks occur in this interval for grid-rotation of 7 Hz and not 0.5 Hz. In order to
verify the plots, the buffeting force spectra calculated with the measurements from the load cells
were checked. The results obtained from the load cells also display distinct peaks for the same
frequencies as those obtained from the pressure scanners. This confirms that there is no error in
the calculations of the buffeting force spectra.

Similarity is shown when studying the buffeting force spectra and comparing it to previous studies.
In the experimental study by Wang et al. [23], distinct peaks were observed for the lift and moment
force spectra around a frequency of 25 Hz. The downstream-box is the main contribution to the
peaks, which most likely is caused by the vortex shedding effect. The peaks in the force spectra
obtained in this thesis occur at a much higher frequency, 50 Hz, which most likely is caused by
vortex shedding from the trailing edge of the upstream-box. The main contribution of the drag
force spectra in turbulent flow is from the downstream-box for both grid-generations. For the lift
and moment force spectra, the main contribution is provided by the upstream-box. The vortex
shedding from the upstream-box will affect the downstream-box and, according to this, change the
lift on the downstream-box.

Further, the buffeting force spectra for a still open grid are presented in Figure 6.37. It can be
observed from the figure that for all three force spectra, the main contribution is provided by the
downstream box. This indicates that the grid-generated turbulence increases the lift and moment
forces on the upstream-box, when compared to the downstream-box.
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Figure 6.37: Buffeting Force Spectra, still open grid, V ~ 9m/s
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Figure 6.38 presents the buffeting force spectra of drag, lift and moment on the six correlation
lines. Due to the high similarity between the correlation lines, except for some deviations for
the moment, the two-dimensionality of the mean flow is confirmed. In addition, it confirms the
consistency of the measurements.
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Figure 6.38: Buffeting Force Spectra for different grid-generated turbulence’s, V =~ 9m/s

95



6.6 Coherence

To describe the spatial distribution characteristics of the buffeting forces acting on the cross-
section, the spanwise coherence is estimated. This has been done with the measured drag, lift,
and moment forces from the piece-wise load method. The estimation is based on the cross-spectra
between the forces in two different correlation strips with distance, Ay, and corresponding auto-
spectra for the strips, according to Equation 3.80. Figure 6.39 and 6.40 illustrates the spanwise
coherence between correlation strip one and the five other correlations strips with the distances
Ay = 10,25,55,105,220mm. The coherence is found for the upstream-box, the downstream-box,
and the total model for a grid-generated turbulence with a mean wind velocity of V' =~ 7m/s and
V & 9m/, respectively.

The spanwise coherence at f = 0 decreases to a lower value with increasing separation distances for
all the buffeting forces. It can be observed that the coherence approaches or are close to 1.0 at zero
frequency for the nearest correlation strip. Even though the spanwise coherence is significantly
lower for the distance, Ay = 220, coherence is still observed. Comparing the two figures with
different wind velocity, it can be observed that the influence of the wind velocity is slight. This
also applies to the angle of attack, which has been investigated for several tests. The results
obtained from a study by Zhou et al.[51] emphasize the small impact of change in wind velocity
and angle of attack.

Comparing the spanwise coherence for lift and moment on the upstream-box and the downstream-
box, it can be seen that the coherence is much higher for the upstream-box. There is a particularly
high variation between the downstream-box and the upstream-box for low frequencies. In addition,
the spanwise coherence for the downstream box decay more rapidly in this frequency area. The
overall spanwise coherence is, therefore, mainly affected by the upstream-box. The experimental
study by Wang et al.[23] presented in Section 3.5 where the spanwise coherence of a twin-box girder
and a closed-box girder were compared, also showed lower coherence for the downstream-box. This
affected the overall spanwise coherence of the twin-box girder and was suggested to be the main
factor for significantly less coherence on the twin-box girder compared to the closed-box girder.

Another remark on the spanwise coherence for lift and moment is that the downstream-box has
higher coherence at around 40 Hz for V' = 7m/s and 50 Hz for V' = 9m/s, where a peak is observed.
This may be because of vortex shedding from the rear edge of the upstream-box. A study by Xia
et al. [52] also observed that the coherence was affected by vortex shedding in the high-frequency
region. For higher frequencies, the coherence is enhanced by vortex shedding effects, such that the
turbulence intensity is decisive. Therefore, before the periodical vortices get suppressed by high
turbulence intensity, the coherence is higher for the downstream-box.

In terms of the spanwise coherence of drag, the upstream-box has higher coherence than the
downstream-box. However, the total coherence tends to pursue the downstream-box, which indic-
ates a stronger influence. This has also been observed in the drag coefficients and the drag force
spectra.
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Figure 6.39: Spanwise coherence at V & 7m/s, grid rotation of 7 Hz
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Figure 6.40: Spanwise coherence at V & 9m/s, grid rotation of 7 Hz
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6.7 Aerodynamic Admittance Functions

The aerodynamic admittance function is, as mentioned earlier, an important transfer function that
transfers the turbulent wind to buffeting forces to estimate the buffeting response. The methods
described in Section 3.6 are used to estimate the admittance functions. The first method presented
is the general admittance method, where the admittance function is found by a transfer function
between one force spectra and one turbulence spectra, as seen in Equation 3.81. The next method
used is the auto-spectral method (the equivalent method), given in Equation 3.83, where the force
spectra is related to both turbulence components u and w. Last, the cross-spectral method is
used to estimate the admittance functions, as given in Equation 3.86. This method is based on
the measured cross-spectra between the fluctuating force coefficients Cp, (F = D, L, M) and each
turbulence component, v and w. The auto-spectral and cross-spectral admittance functions are
presented in the same figure for comparison.
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6.7.1 General Admittance Functions

Figure 6.41 and 6.42 presents the general admittance function with the two different grid rotations

of 0.5 Hz and 7 Hz and two different mean wind velocities.
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Figure 6.41: General admittance functions, grid rotation of 0.5 Hz
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Figure 6.42: General admittance functions, grid rotation of 7 Hz

The plots of the general admittance functions for different wind velocity displays similarity, but
vary some when the wind velocity increases. Since the general admittance function transfers
velocity spectra to force spectra, the admittance functions should be close to similar for different
velocities. In general, the deviation between the admittance function for higher wind velocity
becomes smaller, and therefore it may be more accurate to present the admittance functions for
higher wind velocities. This may explain why the deviation between the plots in Figure 6.41 and
6.42 is small for the wind velocities of 7 m/s and 9 m/s. Another observation is that the appearing
peaks in the plots occur at approximately the same frequency as the peaks in the force spectra,
discussed in Section 6.5. The general admittance function for lift is significantly higher than for
drag and moment. Overall, the general admittance functions presented seem acceptable based on

the observations.
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6.7.2 Auto-spectral and Cross-spectral Admittance Functions

The admittance functions estimated by the auto-spectral method |xr|? and the cross-spectral
method |xry|? and |xrw|? , (F = D, L, M) is presented in this section . To compare the identified
admittance functions with the different approaches, the square of the AAF is presented in the
figures together with the Sears function. The admittance functions are plotted in turbulent flow
with grid rotation of 0.5 Hz, with wind velocity 9 m/s and three different angles of attack, —5°,
—2°,0°, 2°, and 5°. The admittance functions for the upstream-box and the downstream-box with
the auto-spectral method are also presented to study the contribution from each deck.
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Figure 6.43: Admittance functions for drag, lift and moment, estimated by auto-spectral method
and cross-spectral method, o = —5° and V =~ 9.
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Figure 6.44: Admittance functions for drag, lift and moment, estimated by auto-spectral method
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and cross-spectral method, o = —2° and V =~ 9.
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Figure 6.45: Admittance functions for drag, lift and moment, estimated by auto-spectral method
and cross-spectral method, @« = 0° and V =~ 9.
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Figure 6.46: Admittance functions for drag, lift and moment, estimated by auto-spectral method
and cross-spectral method, « =2° and V =~ 9
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Figure 6.47: Admittance functions for drag, lift and moment, estimated by auto-spectral method
and cross-spectral method, a« = 5° and V =~ 9.
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Figure 6.43-6.47 presents the admittance functions for drag, lift and moment for five different
angles of attack. A peak is observed for most admittance functions at all angles. The peak occurs
approximately at the same frequency as the peak observed in the force spectra. Moreover, the
admittance functions for drag display steady behaviour, and no noticeable change is observed for
the different angles. The admittance functions for drag are located significantly lower than the
admittance functions for lift and moment. This is mainly because the drag coefficients have a
higher value than the coefficients for lift and moment. Further, the admittance functions |x py|*
and |xpuw|? are very similar to each other and both are located below |yp|?. This may imply that
the auto-spectral method overestimates the admittance function for drag. |xpy|? is slightly closer
to |xp|?, which is common because the horizontal component, u, provides the main contribution to
the drag admittance. When comparing the identified admittance functions for drag with the Sears
function, it is observed that the Sears function deviates significantly from the identified admittance
functions for drag as it overestimates the admittance function. The Sears function underestimates
when it comes to the estimation of the admittance function for lift and moment.

The estimated functions for lift display more variation when the angle of attack changes. For the
angles —5° and —2°, the auto-spectral admittance function |yr|? lays between |x1w|? and |xr.|?,
where |1 |? is higher. The deviation between |xr.,|? and |xr.|? increases as the angle changes
to —2°. According to the static coefficients, this seems reasonable. When the angle of attack is
changed to 0°, the cross-spectral admittance functions |xr.|? and |xz.|? becomes almost identical,
and |xr|? is now above both functions. Deviations between |xr.|?> and |xr.|? is observed again
when the angle is increased to 2° and 5°, where |x1.|? and |x|? are is laying at approximately the
same level, above |xrw|?>. The auto-spectral admittance function |yz|? is a weighted average of
IXLw|? and |xz.|? and is often close to |xz.|?. This is only observed for negative angles of attack,
which may indicate that the auto-spectral method underestimate the admittance functions for lift
for positive angles of attacks.

As for the estimated admittance functions for moment, the identified moment admittance functions
for an angle of attack of 2° deviate compared to the other angles. Both admittance functions from
the auto-spectral and cross-spectral method are located at a significantly higher level for an angle
of attack of 2°. This is because the static coefficient for the moment is very close to zero for this
angle, which causes the admittance functions to lay at a much higher level. Further, it is observed
that the auto-spectral function |xa/| is above both |xp.w|? and |xp.|? for all angles. For the angle
of attack 2°, it is observed that |yp.|? is closer to |xar, since the static coefficient C, is smaller
than Cjy;.

The admittance functions were also compared with different wind velocities. No significant devi-
ations in the shapes were observed, and the admittance functions showed great similarity. There-
fore, the admittance functions were only studied with a wind velocity of 9 m/s.
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The upstream-box and the downstream-box

The auto-spectral admittance functions for the upstream-box and the downstream-box with an
Admittance functions - Drag upstream
wq X

angle of attack 0° and wind velocity 7 m/s and 9 m/s is shown in Figure 6.48.
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Figure 6.48: Admittance functions for drag, lift and moment for the upstream-box and the
downstream-box, estimated with auto-spectral, a = 0°.
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The distinct peak observed in the |yr|? is mainly caused by the downstream-box. This peak
occurs due to vortex shedding from the trailing edge of the upstream-box, as previously discussed
in Section 6.5. The shape of the admittance functions shows similarity for all buffeting forces,
but the magnitude for the estimated |xp|? for both the upstream-box and downstream-box differs
significantly compared to |xr|? and |xas|?. This is expected, since the same trend is observed in

the drag force spectra.

As mentioned previously, the admittance functions presented in this thesis are estimated with
the assumption of 2-dimensional turbulence. Hence, the span-wise correlation is neglected. In
order to investigate this assumption further, the admittance functions are studied for correlation
line one and six, see Figure 6.49. A deviation between the admittance functions for the two
correlation lines is observed, which indicates that the assumption of 2-dimensional turbulence is
incorrect. Therefore, when estimating the admittance functions, the 3-dimensional effects should

be considered.
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Figure 6.49: Admittance functions for drag, lift and moment, at correlation line one and six, a = 0°
and V =~ 9.

Validation of the Estimated Aerodynamic Admittance Functions

The estimated admittance functions obtained by the auto-spectral method and the cross-spectral
method identifies different admittance functions. For some angles of attack, the deviation between
the admittance function for the horizontal and vertical turbulence components is more evident,
which underlines the importance of identifying the admittance functions related to both turbulence
components, u and w, for each buffeting force. The auto-spectral method assumes that the y;, and
Xiw are equal to each other, which can result in inaccurate results. It should be mentioned that
the cross-spectral method does not include the auto-spectral equations of buffeting forces. This
could cause a low accuracy of the identified admittance functions because the correlation between
the buffeting forces and fluctuating wind velocities is relatively weak [30].

When comparing the Sears function with the identified admittance functions, it was detected that
the Sears function overestimates the admittance functions for drag and underestimates for lift and
moment. It should be mentioned that the admittance functions obtained by the cross-spectral
method are slightly closer to the Sears function for lift and moment and share the same changing
rate. The Sears function is theoretically derived for vertical components for the admittance func-
tions xrw and X Of an airfoil. This explains why the admittance functions for drag deviate
significantly from the Sears function and why the Sears function does not apply to the twin-box

bridge.

Another approach for estimating the admittance functions is the colligated residue least square
method of auto and cross spectra (CRLSMACS), as described in Section 3.4.3. In a study by Yan
et al.[30], the two methods used in this thesis and the CRLSMACS method were used to estimate
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the aerodynamic admittance functions for lift and moment. The study showed that, x g, estimated
by the cross-spectral method is much smaller than the corresponding ones estimated by the auto-
spectral method and CRLSMACS. This observation coincides with the results obtained in this
thesis for most of the angles of attack. Further, the results showed that the auto-spectral method
is very close to the x g, obtained by the CRLSMACS method. The main difference between the
results obtained by Yan et al. and the results obtained in this thesis is that the auto-spectral
admittance is located above the cross-spectral admittance for most angles. In contrast, in the
results obtained by Yan et al. where the auto-spectral admittance is located in the middle of x g,
and xpw. The results from the study by Yan et al. are obtained for a closed-box deck with a
different cross-section, which affect the measurements. A twin-box bridge, like the one studied in
this thesis, can be more complex due to the gap between the girders and the geometry. Therefore,
it may be inaccurate to compare the results for a closed-box with the results for a twin-box due
to these differences.

Many factors will affect the result in the end. In this thesis, the admittance functions are identified
for several angles of attack. A previous master’s thesis [44] estimated the admittance functions
for a twin-box bridge for 0° angle of attack. The admittance functions obtained in this thesis
show some similarity in regards to the placement of |xr|? when compared to the results from the
previous master’s thesis. Moreover, studies on estimating aerodynamic admittance functions for
a twin box bridge are limited, and few estimate the admittance functions for drag. Many studies
only estimate the admittance functions for lift and moment and only focus on the angle of attack of
0°. Therefore, it makes it difficult to compare and validate the results. Nevertheless, based on the
results obtained in this master’s thesis, as the force spectra and static coefficients, the estimated
admittance functions seems reasonable and may be a valid representation of the buffeting forces
acting on the twin-box.
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Chapter 7

Conclusion and Further Work

7.1 Conclusion

This thesis aimed to investigate the pressure distribution of a twin-box bridge and estimate the
aerodynamic admittance functions. A section model of a twin-box bridge was built and tested in
a wind tunnel for different wind velocities, angles of attack, and active grid-generated turbulence.
The mid-section for the placement of 256 pressure tubes was designed in SolidWorks and 3D-printed
at the Department of Manufacturing and Civil Engineering at NTNU Gjgvik. The pressure tubes
were distributed equally on the two boxes along six correlation lines.

The pressure distribution on the twin-box was investigated and concluded to be reasonable. The
pressure distribution on the upstream-box changed from having the maximum negative pressure
on the upper surface of the leading edge to the lower surface as the angle of attack decreased. For
the downstream-box, the pressure distribution showed similarities for the different angles of attack.
The negative pressure on the leading edge caused by vortex-shedding decreased slowly as the angle
of attack decreased. However, an unexpected negative pressure was observed on the upstream-box
at edge S6. The sharp angle on the leading edge of the upstream-box could be the main reason for
this. Another contribution may be due to negative pressure in the wind tunnel. When comparing
the effect of railings on the pressure distribution, there were observed similarities, except in the
vicinity of the railings.

The turbulence spectra were studied and concluded to be a reasonable representation of the turbu-
lence wind field. Further, the static forces from the pressure measurements were estimated using
two different methods; the piece-wise load method and the interpolated load method. A slight
difference was observed when comparing the methods. It was also observed that the drag forces
obtained from the pressure measurements were significantly lower than those obtained from the
load cells, and the results deviated more than for the lift force and moment. An explanation for
this could be that the pressure tubes cannot measure the friction forces.

Moreover, the static load coefficients were estimated using the loads from both the pressure meas-
urements and the load cells. The coefficients for lift and moment showed similarities, but the drag
coefficients deviated. However, this was expected since the drag forces from the pressure meas-
urements were lower. The most significant contribution to the lift coefficient, C;, and moment
coefficient, C'yy came from the upstream-box for all angles of attack. However, the downstream
box had the highest contribution to the drag coefficient for angles v > —2°, which was some-
what unexpected. This was observed in the coefficients obtained from the pressure measurements
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and the load cells. Large negative pressure caused by vortex-shedding on the leading edge of the
downstream-box could be the explanation.

The force spectra based on the loads from the piece-wise load method were examined. Several
peaks were observed at a frequency of 50 Hz, which is most likely caused by electric noise and
vortex shedding. The buffeting force spectra for the different correlation lines were compared and
confirmed the consistency of the measurements. The spanwise coherence was also investigated and
showed that the upstream-box mainly affected the overall spanwise coherence for lift and moment.

Further, the aerodynamic admittance functions were estimated by using the three different meth-
ods; the general, the auto-spectral, and the cross-spectral method. The methods displayed a peak
at approximately 50 Hz, mainly caused by the downstream-box due to vortex shedding. The change
in the admittance functions was not very noticeable when the wind velocity increased, indicating
that the admittance functions present more accurate results with higher wind velocities. The drag
admittance function was displayed at a lower magnitude than the admittance functions for lift and
moment for all methods.

The results shows that the admittance functions obtained by the cross-spectral method deviated
compared to the admittance functions from the auto-spectral method. The admittance functions
Ixpu|? and |xpw|? obtained by the cross-spectral method were very similar to each other and
were located below |xp|?, which could imply that the auto-spectral overestimated the admittance
function for drag. This was also observed for the admittance functions for moment. For the lift
admittance functions, the results varied for the different angles of attack. This seems reasonable due
to the value of the static coefficients. The auto-spectral admittance function is a weighted average
of the cross-spectral function and is often close to |xrw|?. This was only observed for negative
angles of attack, implying that the auto-spectral method underestimates the admittance functions
for lift for positive angles of attack. Further, the identified admittance functions for moment for the
angle of attack of 2° deviated compared to the other angles, which could be explained by the very
low value of the static coefficient. The Sears function was presented together with the identified
admittance functions for comparison. It was detected that the Sears function overestimated the
admittance functions for drag and underestimated for moment and lift. In addition, it was observed
that cross-spectral functions for lift and moment were slightly closer to the Sears function because
the Sears function is theoretically derived for the vertical components for the admittance functions
IXLw|? [Xarw|? of airfoil.

Based on the observation, the auto-spectral method seems to estimate inaccurate admittance func-
tions. This underlines the importance of identifying the admittance functions related to turbulence
components, u, and w. Moreover, the cross-spectral method does not include the auto-spectral
equations of buffeting forces, which could cause low accuracy of the identified admittance func-
tions. Therefore, further investigation of the six admittance functions could be done by the using
the CRLSMACS method.

Nevertheless, based on the results obtained in this master’s thesis, as the force spectra and static
coefficients, the estimated admittance functions seems reasonable and may be a valid representation
of the buffeting forces acting on the twin-box.
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7.2 Further work

The pressure distribution and wind data contains much information and for future work it is
therefore recommended to evaluate this further:

e The pressure distribution showed an unexpected large amount of negative pressure on the
upstream-box for angle of attack = 0°, which could be caused by the sharp angle on the
leading edge. Therefore, different cross-sections could be further investigated to determine
to what extent the pressure distribution is effected by the angle.

e Investigate the influence of turbulence length scales on the fluctuating wind effect and pres-
sure distribution on the twin-box.

e Investigate the coherence between the pressure distribution on the two boxes. Studying the
coherence between a tube on the upstream-box and a tube on the downstream-box will, in
addition, give a better understanding of the turbulent flow.

e Study the effect of guide vanes on the pressure distribution.

e Investigate the effect of different gap widths on the pressure distribution and the vortex
shedding.

In addition, the estimation of the aerodynamic admittance functions should be investigated further.
The auto-spectral method tends to overestimate the admittance functions compared to the cross-
spectral method, while the cross-spectra method may not be an accurate representation of the six
admittance functions. Hence, further research are suggested:

e The CRLSMACS method should be conducted for identifying the six aerodynamic admit-
tance function and for comparison with the auto-spectral and cross-spectral method.

o Investigate the 3-dimensional effect of turbulence (3D AAF) and adopt the flow tests into
the calculations.

Moreover, as mentioned in Section 5.3, two tubes were squeezed due to being too close to the
aluminium pipe and the 3D-printed part. Therefore, another suggestion for future work is to
optimize the 3D-part and the placement of the pressure tubes further.
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Appendix A

Tube to Scanner Channel

This appendix contains an overview of which pressure tube is connected to which channel and the

associated scanner.
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UPSTREAM BOX
SCANNER 1 - 179

Channel  Tube nr. Channel  Tubenr. Channel  Tube nr. Channel  Tubenr.
1 1101 2 1102 33 1301 34 1302
3 1103 4 1104 35 1303 36 1304
5 1105 6 1106 37 1313 38 1314
7 1107 8 1108 39 1315 40 1316
9 1109 10 1110 41 1401 42 1402
11 1111 12 1112 43 1403 44 1404
13 1137 14 1138 45 1413 46 1414
15 1139 16 1140 47 1415 48 1416
17 1141 18 1142 49 1501 50 1502
19 1143 20 1144 51 1503 52 1504
21 1145 22 1146 53 1513 54 1514
23 1147 24 1148 55 1515 56 1516
25 1201 26 1202 57 1601 58 1602
27 1203 28 1204 59 1603 60 1604
29 1213 30 1214 61 1613 62 1614
31 1215 32 1216 63 1615 64 1616

SCANNER 2 - 180

Channel  Tube nr. Channel  Tube nr. Channel  Tube nr. Channel  Tube nr.
1 1113 2 1114 33 1305 34 1306
3 1115 4 1116 35 1307 36 1308
5 1117 6 1118 37 1309 38 1310
7 1119 8 1120 39 1311 40 1312
9 1121 10 1122 41 1405 42 1406
11 1123 12 1124 43 1407 44 1408
13 1125 14 1126 45 1409 46 1410
15 1127 16 1128 47 1411 48 1412
17 1129 18 1130 49 1505 50 1506
19 1131 20 1132 51 1507 52 1508
21 1133 22 1134 53 1509 54 1510
23 1135 24 1136 55 1511 56 1512
25 1205 26 1206 57 1605 58 1606
27 1207 28 1208 59 1607 60 1608
29 1209 30 1210 61 1609 62 1610
31 1211 32 1212 63 1611 64 1612

Example, numbering line 1 (upstream):
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DOWNSTREAM BOX
SCANNER 3 - 181

Channel  Tube nr. Channel  Tubenr. Channel  Tube nr. Channel  Tubenr.
1 2113 2 2114 33 2305 34 2306
3 2115 4 2116 35 2307 36 2308
5 2117 6 2118 37 2309 38 2310
7 2119 8 2120 39 2311 40 2312
9 2121 10 2122 41 2405 42 2406
11 2123 12 2124 43 2407 44 2408
13 2125 14 2126 45 2409 46 2410
15 2127 16 2128 47 2411 48 2412
17 2129 18 2130 49 2505 50 2506
19 2131 20 2132 51 2507 52 2508
21 2133 22 2134 53 2509 54 2510
23 2135 24 2136 55 2511 56 2512
25 2205 26 2206 57 2605 58 2606
27 2207 28 2208 59 2607 60 2608
29 2209 30 2210 61 2609 62 2610
31 2211 32 2212 63 2611 64 2612

SCANNER 4 - 182

Channel  Tube nr. Channel  Tube nr. Channel  Tube nr. Channel  Tube nr.
1 2101 2 2102 33 2301 34 2302
3 2103 4 2104 35 2303 36 2304
5 2105 6 2106 37 2313 38 2314
7 2107 8 2108 39 2315 40 2316
9 2109 10 2110 41 2401 42 2402
11 2111 12 2112 43 2403 44 2404
13 2137 14 2138 45 2413 46 2414
15 2139 16 2140 47 2415 48 2416
17 2141 18 2142 49 2501 50 2502
19 2143 20 2144 51 2503 52 2504
21 2145 22 2146 53 2513 54 2514
23 2147 24 2148 55 2515 56 2516
25 2201 26 2202 57 2601 58 2602
27 2203 28 2204 59 2603 60 2604
29 2213 30 2214 61 2613 62 2614
31 2215 32 2216 63 2615 64 2616

Example, numbering line 2 (upstream):
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Appendix B

Python Script for Estimation of
Pressure and Load Distribution

This appendix contains the Python scripts for estimation of the pressure distribution and loads
with the piece-wise load method and the interpolated load method. In addition, several functions
used in both methods for the calculation is attached.

B.1 The Piece-wise Load Method
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Created on Tue Mar 1 13:10:41 2022

@author: marth

from CoordinatesAndAreaFunc import CoordinatesAndArea
import presscan

from SortPressure import SortPressure

from Surfacel6Taps import Areal6Taps

from matplotlib import pyplot as plt
import numpy as np

from numpy.linalg import norm

import matplotlib.cm as cmx

import matplotlib as mpl

folder = 'C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/ScannerFiler/ScannerFiler/05_03_2022_12_59_54_PM'

filename = '191 30 90 179.dat’
(t_frame, t_trig, presl, temp, scan_data) = presscan.readdatfile(filename,folder)

filename = '191 30 90 180.dat’
(t_frame, t_trig, pres2, temp, scan_data) = presscan.readdatfile(filename,folder)

filename = '191 30 90 181.dat’
(t_frame, t_trig, pres3, temp, scan_data) = presscan.readdatfile(filename,folder)

filename = '191 30 90 182.dat’
(t_frame, t_trig, pres4, temp, scan_data) = presscan.readdatfile(filename,folder)

for i in range(len(pres2)):
pres2[i,2] = np.mean([pres2[i,1], pres2[i,3]])
pres3[i,2] = np.mean([pres3[i,1], pres3[i,3]])

presl = presl[2000:58000, : ]
pres2 = pres2[2000:58000, : ]
pres3 = pres3[2000:58000, : ]
pres4 = pres4[2000:58000, : ]

Pres_upll, Pres_up2l, Pres_up31l, Pres_up4l, Pres_up51, Pres_up6l = SortPressure(presl, scanner = 1)
Pres_upl2, Pres_up22, Pres_up32, Pres_up42, Pres_up52, Pres_up62 = SortPressure(pres2, scanner = 2)

Pres_upl = Pres_upll + Pres_upl2
Pres_up2 = Pres_up2l + Pres_up22
Pres_up3 = Pres_up31l + Pres_up32
Pres_up4 = Pres_up4l + Pres_up42
Pres_up5 = Pres_up51 + Pres_up52
Pres_up6 = Pres_up6l + Pres_up62

Pres_downll, Pres_down2l, Pres_down31l, Pres_down4l, Pres_down51, Pres_down6l = SortPressure(pres3, scanner = 3)
Pres_downl12, Pres_down22, Pres_down32, Pres_down42, Pres_down52, Pres_down62 = SortPressure(pres4, scanner = 4)

Pres_downl = Pres_downll
Pres_down2 = Pres_down21l
Pres_down3 = Pres_down31
Pres_down4 = Pres_down4l
Pres_down5 = Pres_down51
Pres_down6 = Pres_down61l

Pres_down12
Pres_down22
Pres_down32
Pres_down42
Pres_down52

+
+
+
+
+
+ Pres_down62

deg = 0
(x_taps_up, y_taps_up, x_taps_down, y_taps_down, x_coord_up, y_coord_up, x_coord_down,y_coord_down, x_taps_up_16,

y_taps_up_16, x_taps_down_16, y_taps_down_16, x_coord_up_16, y_coord_up_16, x_coord_down_16, y_coord_down_16,
Surface, A, angle_up, angle_down) = CoordinatesAndArea(deg)



v_up = np.zeros((7,

v_up[e,:
v_up[1,:
v_up[2,:
v_up[3,:
v_up[4,:
v_up[5,:
v_up[6,:

[ S S S Sy S '
L}

2))

= [x_coord_up[@],y_coord_up[0]]

= [x_coord_up[5],y_coord_up[5]]

= [x_coord_up[25],y_coord_up[25]]
[x_coord_up[30],y_coord_up[30]]
= [x_coord_up[37],y_coord_up[37]]
= [x_coord_up[47],y_coord_up[47]]
= [x_coord_up[59],y_coord_up[59]]

v_down = np.zeros((7,2))

v_down[@,:
v_down[1,:
v_down[2,:
v_down[3,:
v_down[4,:
v_down[5,:
v_down[6, :

[ T S U S S '
U}

[x_coord_down[@],y_coord_down[0]]

[x_coord_down[5],y_coord_down[5]]

[x_coord_down[25],y_coord_down[25]]
[x_coord_down[30],y_coord_down[30]]
[x_coord_down[37],y_coord_down[37]]
[x_coord_down[47],y_coord_down[47]]
[x_coord_down[59],y_coord_down[59]]

Distance_up = np.zeros((6,2))

Distance_upl[o,:
Distance_up[1,:
Distance_up[2,:
Distance_up[3,:
Distance_up[4,:
Distance_up[5,:

[ R S Y

Distance_down = np.

Distance_down[9,:
Distance_down[1,:
Distance_down[2,:
Distance_down[3,:
Distance_down[4,:
Distance_down[5,:

1
1
1
1
1
1

nv_up_1 = Distance_
nv_up_2 = Distance_
nv_up_3 = Distance_
nv_up_4 = Distance_
nv_up_5 = Distance_
nv_up_6 = Distance_

nv_down_1 = Distance_down[@, :]/norm(Distance_down[0, :
nv_down_2 = Distance_down[1,:]/norm(Distance_down[1,:
nv_down_3 = Distance_down[2,:]/norm(Distance_down[2,:
nv_down_4 = Distance_down[3,:]/norm(Distance_down[3,:
nv_down_5 = Distance_down[4,:]/norm(Distance_down[4,:
nv_down_6 = Distance_down[5,:]/norm(Distance_down[5, :

abs(v_up[1,:]-v_up[0,:])
abs(v_up[2,:]-v_up[1,:])
abs(v_up[3,:]-v_up[2,:])
abs(v_up[4,:]-v_up[3,:])
abs(v_up[5,:]-v_up[4,:])
abs(v_up[6,:]-v_up[5,:])
zeros((6,2))

= abs(v_down[1,:]-v_down[®@,:])
= abs(v_down[2,:]-v_down[1,:])
= abs(v_down[3,:]-v_down[2,:])
= abs(v_down[4,:]-v_down[3,:])
= abs(v_down[5,:]-v_down[4,:])
= abs(v_down[6,:]-v_down[5,:])
up[0, :]/norm(Distance_up[0,:])
up[1,:]/norm(Distance_up[1,:])
up[2,:]/norm(Distance_up[2,:])
up[3,:]/norm(Distance_up[3,:])
up[4,:]/norm(Distance_up[4,:])
up[5,:]/norm(Distance_up[5,:])

Pres_up_x = np.zeros((len(presl), 48))
Pres_up_y = np.zeros((len(presl),48))

Pres_up_x[:,0:3]
Pres_up_y[:,0:3]

Pres_upl[:,0:3]*nv_up_1[1]
Pres_upl[:,0:3]*-(nv_up_1[0])

—
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Pres_up_x[:,3:21] = Pres_upl[:,3:21]*nv_up_2[1]
Pres_up_y[:,3:21] Pres_upl[:,3:21]*-nv_up_2[Q]

Pres_up_x[:,21:24] = Pres_upl[:,21:24]*-(nv_up_3[1])
Pres_up_y[:,21:24] = Pres_upl[:,21:24]*-(nv_up_3[0])

Pres_up_x[:,24:29] = Pres_upl[:,24:29]*-nv_up_4[1]
Pres_up_y[:,24:29] = Pres_upl[:,24:29]*nv_up_4[0]

Pres_up_x[:,29:37] = Pres_upl[:,29:37]*nv_up_5[1]
Pres_up_y[:,29:37] = Pres_upl[:,29:37]*nv_up_5[0]

Pres_up_x[:,37:48] = Pres_upl[:,37:48]*nv_up_6[1]
Pres_up_y[:,37:48] = Pres_upl[:,37:48]*nv_up_6[0]

Pres_down_x = np.zeros((len(presl),48))
Pres_down_y = np.zeros((len(presl),48))

Pres_down_x[:,0:3] = Pres_downl[:,0:3]*-nv_down_1[1]
Pres_down_y[:,0:3] = Pres_downl[:,0:3]*-nv_down_1[0]

Pres_down_x[:,3:21] = Pres_downl1[:,3:21]*-nv_down_2[1]
Pres_down_y[:,3:21] = Pres_downl[:,3:21]*-nv_down_2[0]

Pres_down_x[:,21:24] = Pres_downl[:,21:24]*nv_down_3[1]
Pres_down_y[:,21:24] = Pres_downl[:,21:24]*-nv_down_3[0]

Pres_down_x[:,24:29] = Pres_downl[:,24:29]*nv_down_4[1]
Pres_down_y[:,24:29] = Pres_downl[:,24:29]*nv_down_4[0]

Pres_down_x[:,29:37] = Pres_downl[:,29:37]*nv_down_5[1]
Pres_down_y[:,29:37] = Pres_downl[:,29:37]*nv_down_5[0]

Pres_down_x[:,37:48] = Pres_downl[:,37:48]*-nv_down_6[1]
Pres_down_y[:,37:48] = Pres_downl[:,37:48]*nv_down_6[0]

file = folder.split('C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/ScannerFiler/ScannerFiler/")
file = file[1]
savenamel = file + ' PointlLoad Linel’

MeanPres_up_x = Pres_up_x.mean(0)
MeanPres_up_y = Pres_up_y.mean(0)
MeanPres_down_x = Pres_down_x.mean(0)
MeanPres_down_y = Pres_down_y.mean(0)

xnew_up = x_taps_up + MeanPres_up_x
ynew_up = y_taps_up + MeanPres_up_y
xnew_down = X_taps_down + MeanPres_down_x
ynew_down = y_taps_down + MeanPres_down_y

Xy = np.zeros((2*48,2))
new_xy = np.zeros((2*48,2))

for i in range(0,48):

xy[i] = [x_taps_up[i],y_taps_up[i]]
xy[i+48] = [x_taps_down[i], y_taps_down[i]]

for i in range(0,48):
new_xy[i] = [xnew_up[i],ynew_up[i]]
new_xy[i+48] = [xnew_down[i], ynew_down[i]]



dx
dy

new_xy[:,0] - xy[:,0]
new xy[:,1] - xy[:,1]

fig = plt.figure(figsize = (12, 4), dpi = 100)

plt.plot(x_coord_up, y_coord_up, color = 'black', linewidth = 1.0)
plt.plot(x_coord_down, y_ coord_down,color = 'black', linewidth = 1.90)
plt.axis('equal")

ax = fig.add_subplot(111)
cmap = plt.get_cmap('jet")

D = np.sqrt(dx**2 + dy**2)
norm = mpl.colors.Normalize(®, max(D))
scalarMap = cmx.ScalarMappable(norm=norm,cmap=cmap)

for i in range(2*48):
colorVal = scalarMap.to_rgba(D[i])
ax.annotate("", xy = (new_xy[i,0],new_xy[i,1]), xycoords='data',
xytext=(xy[i,0], xy[i,1]), textcoords='data’',
arrowprops=dict(arrowstyle = "-|>, head_width = @©.1, head_length = 8.2", connectionstyle="arc3",
color=colorVal, linewidth = 1.5))

sm = plt.cm.ScalarMappable(cmap = cmap, norm = norm)
sm.set_array([])
ticks = np.arange(@,max(D),5)

clb = plt.colorbar(sm, ticks = ticks, pad = 0.02)
clb.set_label('Pressure [Pa]', labelpad = 10)
plt.title('Point Pressure', fontsize = 15)
plt.xlabel('x")

plt.ylabel('z")

plt.savefig(savenamel + '.png', bbox_inches="tight")
plt.show()

width = 1
Area = A*0.001*width

Load_up_x = np.zeros((len(Pres_upl[:,0]),len(Pres_upl[@,:]

)
Load_up_y = np.zeros((len(Pres_upl[:,0]),len(Pres_upl[0,:])))
Load_down_x = np.zeros((len(Pres_upl[:,0]),len(Pres_upl[0,:])))
Load_down_y = np.zeros((len(Pres_upl[:,0]),len(Pres_upl[0,:])))

for i in range(48):

Load_up_x[:,i] = Pres_up_x[:,i]*Area[i]
Load_up_y[:,i] = Pres_up_y[:,i]*Area[i]

Load_down_x[:,1] = Pres_down_x[:,i]*Area[i]
Load_down_y[:,1i] = Pres_down_y[:,i]*Area[i]

scale = 100

MeanLoad_up_x = Load_up_x.mean(0)
MeanLoad_up_y = Load_up_y.mean(0)
MeanLoad_down_x = Load_down_x.mean(0)
MeanLoad_down_y = Load_down_y.mean(0)

xnew_up = x_taps_up + MeanLoad_up_x*scale
ynew_up = y_taps_up + MeanLoad_up_y*scale
xnew_down = x_taps_down + MeanLoad_down_x*scale
ynew_down = y_taps_down + MeanLoad_down_y*scale

Xy = np.zeros((2*48,2))
new_xy = np.zeros((2*48,2))

for i in range(0,48):
xy[i] = [x_taps_up[i],y_taps_up[i]]



xy[i+48] = [x_taps_down[i], y_taps_down[i]]

for i in range(0,48):
new_xy[i] = [xnew_up[i],ynew_up[i]]
new_xy[i+48] = [xnew_down[i], ynew_down[i]]

dx = new_xy[:,0] - xy[:,0]
dy = new_xy[:,1] - xy[:,1]

fig = plt.figure(figsize = (12, 4), dpi = 100)

plt.plot(x_coord_up, y_coord_up, color = 'black', linewidth = 1.0)
plt.plot(x_coord_down, y_ coord_down,color = 'black', linewidth = 1.90)
plt.axis('equal")

ax = fig.add_subplot(111)
cmap = plt.get_cmap('jet")

D = np.sqrt(dx**2 + dy**2)

norm = mpl.colors.Normalize(®, max(D))
scalarMap = cmx.ScalarMappable(norm=norm,cmap=cmap)

for i in range(2*48):
colorVal = scalarMap.to_rgba(D[i])
ax.annotate("", xy = (new_xy[i,0],new_xy[i,1]), xycoords='data',
xytext=(xy[i,0], xy[i,1]), textcoords='data’',
arrowprops=dict(arrowstyle = "-|>, head_width = @.1, head_length = ©.2", connectionstyle="arc3",
color=colorVal, linewidth = 1.5))

sm = plt.cm.ScalarMappable(cmap = cmap, norm = norm)
sm.set_array([])
ticks = np.arange(0,max(D),10)

clb = plt.colorbar(sm, ticks = ticks, pad = 0.02)
clb.set_label('Force [N] $\cdot 107{-2}$', labelpad = 10)
plt.title('Point Load', fontsize = 15)

plt.xlabel('x")

plt.ylabel('z")

plt.savefig(savenamel + 'PointLoad.png', bbox_inches="tight")
plt.show()

dist_up_x = abs(x_taps_up*10**(-3))
dist_up_y = abs(y_taps_up*10**(-3))
dist_down_x = abs(x_taps_down*10**(-3))
dist_down_y = abs(y_taps_down*10**(-3))

center = [0,0]
Moment_up = np.zeros((len(Load_up_x),48))
Moment_down = np.zeros((len(Load_down_x),48))

for i in range(len(x_taps_up)):
if x_taps_up[i] <= center[@] and y_taps_up[i] >= center[1]:
if @ <= i <= 20:
Moment_up[:,i] = Load_up_x[:,i]*dist_up_y[i] + Load_up_y[:,i]*dist_up_x[i]
else:
Moment_up[:,i] = Load_up_x[:,i]*dist_up_y[i] + Load_up_y[:,i]*dist_up_x[i]

else:
if 1 == 23:
Moment_up[:,i] = - Load_up_x[:,i]*dist_up_y[i] + Load_up_y[:,i]*dist_up_x[i]
elif 24 <= i <= 28:
Moment_up[:,i] = - Load_up_x[:,i]*dist_up_y[i] + Load_up_y[:,i]*dist_up_x[i]

elif 29 <= i <= 36:
Moment_up[:,i] = Load_up_y[:,i]*dist_up_x[1i]
else:
Moment_up[:,i] = - Load_up_x[:,i]*dist_up_y[i] + Load_up_y[:,i]*dist_up_x[i]



for i in range(len(x_taps_down)):
if x_taps_down[i] <= center[@] and y_taps_down[i] >= center[1]:
if @ <= i <= 20:
Moment_down[:,i] = Load_down_x[:,i]*dist_down_y[i] - Load_down_y[:,i]*dist_down_x[i]
else:
Moment_down[:,i] = Load_down_x[:,i]*dist_down_y[i] - Load_down_y[:,i]*dist_down_x[i]
else:
if 1 == 23:
Moment_down[:,i]
elif 24 <= i <= 28:

- Load_down_x[:,i]*dist_down_y[i] - Load_down_y[:,i]*dist_down_x[i]

Moment_down[:,i] = - Load_down_x[:,i]*dist_down_y[i] - Load_down_y[:,i]*dist_down_x[i]
elif 29 <= i <= 36:

Moment_down[:,i] = - Load_down_y[:,i]*dist_down_x[i]
else:

Moment_down[:,i] = - Load_down_x[:,i]*dist_down_y[i] - Load_down_y[:,i]*dist_down_x[i]

file = folder.split('C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/ScannerFiler/ScannerFiler/")
file = file[1]

savenamel = file + ' PointlLoad Linel’

savenamel = savenamel + '.npz'

np.savez_compressed(savenamel,Load_up_x = Load_up_x, Load_up_y = Load_up_y,Load_down_x = Load_down_x,
Load_down_y = Load_down_y, Moment_up = Moment_up, Moment_down = Moment_down)

file = folder.split('C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/ScannerFiler/ScannerFiler/")
file = file[1]
savename2 = file

Pres_up = np.zeros((len(presi[:,0]),16,5))
Pres_down = np.zeros((len(presi[:,0]),16,5))

Pres_up[:,:,0] = Pres_up2
Pres_up[:,:,1] = Pres_up3
Pres_up[:,:,2] = Pres_up4
Pres_up[:,:,3] = Pres_up5
Pres_up[:,:,4] = Pres_up6

Pres_down[:,:,0] = Pres_down2
Pres_down[:,:,1] = Pres_down3
Pres_down[:,:,2] = Pres_down4
Pres_down[:,:,3] = Pres_down5
Pres_down[:,:,4] = Pres_down6

Pres_up_x_cl = np.zeros((len(presl[:,0]),16,5))
Pres_up_y_cl = np.zeros((len(presl[:,0]),16,5))
Pres_down_x_cl = np.zeros((len(presi[:,0]),16,5))
Pres_down_y_cl = np.zeros((len(presi[:,0]),16,5))

for i in range(5):

Pres_up_x_cl[:,0,i] = Pres_up[:,0,i]*nv_up_1[1]
Pres_up_y_cl[:,0,i] = Pres_up[:,0,i]*-nv_up_1[0]

Pres_up[:,1:6,i]*nv_up_2[1]
= Pres_up[:,1:6,i]*-nv_up_2[0]

Pres_up_x_cl[:,1:6,1
Pres_up_y cl[:,1:

()}

-

-

[ —
|

Pres_up_x_cl[:,6,i] = Pres_up[:,6,i]*-nv_up_3[1]
Pres_up_y cl[:,6,i] = Pres_up[:,6,i]*-nv_up_3[0]



Pres_up_x_cl[:,7:9,i] = Pres_up[:,7:9,i]*-nv_up_4[1]
Pres_up_y_cl[:,7:9,i] = Pres_up[:,7:9,i]*nv_up_4[0]

Pres_up_x_cl[:,9:13,1i]
Pres_up_y_cl[:,9:13,1i]

Pres_up[:,9:13,i]*nv_up_5[1]
Pres_up[:,9:13,i]*nv_up_5[0]

Pres_up_x_cl[:,13:16,i] = Pres_up[:,13:16,i]*nv_up_6[1]
Pres_up_y_cl[:,13:16,i] = Pres_up[:,13:16,i]*nv_up_6[0]

Pres_down_x_cl1[:,0,i] = Pres_down[:,0,i]*-nv_down_1[1]
Pres_down_y cl1[:,0,i] = Pres_down[:,0,i]*-nv_down_1[0]

Pres_down_x_cl[:
Pres_down_y clf[:

Pres_down[:,1:6,i]*-nv_down_2[1]
= Pres_down[:,1:6,i]*-nv_down_2[0]

Pres_down_x_cl[:,6,i] = Pres_down[:,6,i]*nv_down_3[1]
Pres_down_y cl[:,6,i] = Pres_down[:,6,i]*-nv_down_3[0]

Pres_down_x_cl[:

:9,i] = Pres_down[:,7:9,i]*nv_down_4[1]
Pres_down_y_clf[: ]

= Pres_down[:,7:9,i]*nv_down_4[0]

Pres_down_x_c1[:,9:13,i] = Pres_down[:,9:13,i]*nv_down_5[1]
Pres_down_y c1[:,9:13,i] = Pres_down[:,9:13,i]*nv_down_5[0]

Pres_down_x_c1[:,13:16,i] = Pres_down[:,13:16,i]*-nv_down_6[1]
Pres_down_y c1[:,13:16,i] = Pres_down[:,13:16,i]*nv_down_6[0]

xy_16 = np.zeros((2*16,2,5))
new_xy_16 = np.zeros((2*16,2,5))

MeanPres_up_x_cl = np.zeros((16,5))
MeanPres_up_y_cl = np.zeros((16,5))
MeanPres_down_x_cl = np.zeros((16,5))
MeanPres_down_y_cl = np.zeros((16,5))

for i in range(5):
for j in range(16):
MeanPres_up_x_cl[j,i] = np.mean(Pres_up_x_cl1[:,j,1])
MeanPres_up_y_cl[j,i] = np.mean(Pres_up_y c1[:,j,1i])
MeanPres_down_x_cl[j,i] = np.mean(Pres_down_x_cl[:,j,i])
MeanPres_down_y_cl[j,i] = np.mean(Pres_down_y_cl[:,j,i])

xnew_up = np.zeros((16,5))
ynew_up = np.zeros((16,5))
xnew_down = np.zeros((16,5))
ynew_down = np.zeros((16,5))

for i in range(5):
xnew_up[:,i] = x_taps_up_16 + MeanPres_up_x_cl[:,i]
ynew_up[:,i] = y_taps_up_16 + MeanPres_up_y cl[:,i]
xnew_down[:,i] = x_taps_down_16 + MeanPres_down_x_c1[:,i]
ynew_down[:,i] = y_taps_down_16 + MeanPres_down_y c1[:,i]

for i in range(5):
for j in range(©0,16):

xy_16[3j,:,1] = [x_taps_up_16[j],y_taps_up_16[3j]]
xy_16[j+16,:,i] = [x_taps_down_16[j], y_taps_down_16[7j]]

new_xy_16[3j,:,1] = [xnew_up[j,i],ynew_up[],i]]
new_xy_16[j+16,:,i] = [xnew_down[j,i], ynew_down[j,i]]



dx_16 = np.zeros((2*16,5))
dy_16 = np.zeros((2*16,5))

for i in range(5):
dx_16[:,i] = xy_16[:,0,i] - new_xy_16[:,0,1i]
dy_16[:,i] = xy_16[:,1,i] - new_xy_16[:,1,1i]

fig = plt.figure(figsize = (12, 4), dpi = 100)

plt.plot(x_coord_up, y_coord_up, color = 'black', linewidth = 1.0)
plt.plot(x_coord_down, y_ coord_down,color = 'black', linewidth = 1.90)
plt.axis('equal")

ax = fig.add_subplot(111)
cmap = plt.get_cmap('jet")

D = np.sgrt(dx_16**2 + dy_16**2)

norm = mpl.colors.Normalize(@, max(D[:,0]))
scalarMap = cmx.ScalarMappable(norm=norm,cmap=cmap)

for i in range(2*16):
colorVal = scalarMap.to_rgba(D[i,0])
ax.annotate("", xy = (new_xy_16[1,0,0],new_xy_16[i,1,0]), xycoords='data',
xytext=(xy_16[1i,0,0], xy_16[1i,1,0]), textcoords='data',
arrowprops=dict(arrowstyle = "-|>, head_width = @.1, head_length = ©.2", connectionstyle="arc3",
color=colorVal, linewidth = 1.5))

sm = plt.cm.ScalarMappable(cmap = cmap, norm = norm)
sm.set_array([])
ticks = np.arange(@,max(D[:,0]),10)

clb = plt.colorbar(sm, ticks = ticks, pad = 0.02)
clb.set_label('Pressure [Pa]', labelpad = 10)
plt.title('Point Pressure', fontsize = 15)
plt.xlabel('x")

plt.ylabel('z")

plt.savefig(savename2 +'_Line2.png', bbox_inches="tight")

Al16 = Areal6Taps()
width = 1
Areal6 = AL6*Width*10%**(-3)

Load_up_x_cl = np.zeros((len(presi[:,0]),16,5))
Load_up_y_cl = np.zeros((len(presi[:,0]),16,5))
Load_down_x_cl = np.zeros((len(presi[:,0]),16,5))
Load_down_y_cl = np.zeros((len(presi[:,0]),16,5))

for i in range(5):
for j in range(16):

Load_up_x_c1[:,j,1i] = Pres_up_x_cl[:,j,i]*Areal6[j]
Load_up_y c1[:,j,i] = Pres_up_y_cl[:,j,i]*Areal6[j]

Load_down_x_c1[:,j,i] = Pres_down_x_cl[:,j,i]*Areal6[]j]
Load_down_y_c1[:,j,i] = Pres_down_y_cl[:,j,i]*Areal6[]j]

dist_up_x = abs(x_taps_up_16*10**(-3))
dist_up_y = abs(y_taps_up_16*10**(-3))
dist_down_x = abs(x_taps_down_16*10**(-3))
dist_down_y = abs(y_taps_down_16*10**(-3))

center = [0,0]
Moment_up_cl = np.zeros((len(Load_up_x),16,5))



Moment_down_cl = np.zeros((len(Load_down_x),16,5))

for i in range(5):
for j in range(16):
if x_taps_up_16[i] <= center[@] and y_taps_up_16[i] >= center[1]:
if @ <= 1 <= 5:
Moment_up_c1[:,j,1i] = Load_up_x_cl[:,j,i]*dist_up_y[i] + Load_up_y_cl[:,j,i]*dist_up_x[i]
else:
Moment_up_c1[:,j,1i]

Load_up_x_cl1[:,j,i]*dist_up_y[i] + Load_up_y_cl[:,j,i]*dist_up_x[i]

else:
if i ==7 or i==8:
Moment_up_c1[:,j,1i]
elif 9 <=1 <= 12:
Moment_up_c1[:,j,1i]
else:
Moment_up_c1[:,j,i] = - Load_up_x_c1[:,j,i]*dist_up_y[i] + Load_up_y cl[:,j,i]*dist_up_x[1i]

- Load_up_x_cl[:,j,i]*dist_up_y[i] + Load_up_y cl[:,j,i]*dist_up_x[i]

Load_up_y_cl1[:,j,i]*dist_up_x[1i]

for i in range(5):
for j in range(16):
if x_taps_down_16[i] <= center[@] and y_taps_down_16[i] >= center[1]:
if @ <= 1 <= 5:
Moment_down_c1[:,j,i] = Load_down_x_cl[:,j,i]*dist_down_y[i] - Load_down_y c1[:,j,i]*dist_down_x[i]
else:
Moment_down_c1[:,j,i] = Load_down_x_cl[:,j,i]*dist_down_y[i] - Load_down_y_cl[:,j,i]*dist_down_x[1i]

else:
if i ==7 or i==8:
Moment_down_c1[:,j,i] = - Load_down_x_cl[:,j,i]*dist_down_y[i] - Load_down_y cl[:,j,i]*dist_down_x[i]
elif 9 <=1 <= 12:
Moment_down_cl[:,j,i] = - Load_down_y_cl[:,j,i]*dist_down_x[1i]
else:
Moment_down_c1[:,j,i] = - Load_down_x_cl[:,j,i]*dist_down_y[i] - Load_down_y cl[:,j,i]*dist_down_x[i]

savename2 = savename2 + '.npz'
np.savez_compressed(savename2, Load_up_x = Load_up_x_cl, Load_up_y = Load_up_y_cl,Load_down_x = Load_down_x_cl,
Load_down_y = Load_down_y_cl, Moment_up = Moment_up_cl, Moment_down = Moment_down_cl )



B.2 The Interpolated Load Method
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Created on Wed Mar 9 14:23:18 2022

@author: marth

from CoordinatesAndAreaFunc import CoordinatesAndArea
import presscan

from CoordinatesEqualSpacing import CoordinatesEqualSpacing
from SortPressure import SortPressure

import numpy as np

from numpy.linalg import norm

from scipy.interpolate import CubicSpline
from matplotlib import pyplot as plt
import matplotlib.cm as cmx

import matplotlib as mpl

folder = 'C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/ScannerFiler/ScannerFiler/05_02_2022_4_08_09_PM'

filename = '191_30 90 179.dat’
(t_frame, t_trig, presl, temp, scan_data) = presscan.readdatfile(filename,folder)

filename = '191_30 90 _18@.dat"'
(t_frame, t_trig, pres2, temp, scan_data) = presscan.readdatfile(filename,folder)

filename = '191_30 90 181.dat’'
(t_frame, t_trig, pres3, temp, scan_data) = presscan.readdatfile(filename,folder)

filename = '191_30 90 182.dat’
(t_frame, t_trig, pres4, temp, scan_data) = presscan.readdatfile(filename,folder)

for i in range(len(pres2)):
pres2[i,2] = np.mean([pres2[i,1], pres2[i,3]])
pres3[i,2] = np.mean([pres3[i,1], pres3[i,3]])

presl = presl[2000:58000, :
pres2 = pres2[2000:58000, :
pres3 = pres3[2000:58000, :
pres4 = pres4[2000:58000, :

— e

Pres_upll, Pres_up2l, Pres_up31l, Pres_up4l, Pres_up51, Pres_up6l = SortPressure(presl, scanner = 1)
Pres_upl2, Pres_up22, Pres_up32, Pres_up42, Pres_up52, Pres_up62 = SortPressure(pres2, scanner = 2)
Pres_upl = Pres_upll + Pres_upl2
Pres_up2 = Pres_up2l + Pres_up22
Pres_up3 = Pres_up31l + Pres_up32
Pres_up4 = Pres_up4l + Pres_up42
Pres_up5 = Pres_up51 + Pres_up52
Pres_up6 = Pres_up6l + Pres_up62

Pres_downll, Pres_down2l, Pres_down31l, Pres_down4l, Pres_down51, Pres_down6l = SortPressure(pres3, scanner = 3)
Pres_downl2, Pres_down22, Pres_down32, Pres_down42, Pres_down52, Pres_down62 = SortPressure(pres4, scanner = 4)

Pres_downl = Pres_downll
Pres_down2 = Pres_down21l
Pres_down3 = Pres_down31
Pres_down4 = Pres_down4l
Pres_down5 = Pres_down51
Pres_down6 = Pres_down61l

Pres_down12
Pres_down22
Pres_down32
Pres_down42
Pres_down52

+
+
+
+
+
+ Pres_down62

Pres_up = np.zeros(48)
Pres_down = np.zeros(48)

for i in range(48):
Pres_up[i] = np.mean(Pres_upl[:,i])
Pres_down[i] = np.mean(Pres_downl[:,i])

deg = 0

(x_taps_up, y_taps_up, x_taps_down, y_taps_down, x_coord_up, y_coord_up, x_coord_down, y_coord_down, x_taps_up_16,
y_taps_up_16, x_taps_down_16, y_taps_down_16, x_coord_up_16, y_coord_up_16, x_coord_down_16, y_coord_down_16,
Surface, A, angle_up, angle_down) = CoordinatesAndArea(deg)

N = [39, 281, 35, 78, 120, 138]



dt = 1

x_start_up = [x_coord_up[@], x_coord_up[5], x_coord_up[25], x_coord_up[30], x_coord_up[37], x_coord_up[47]]
y_start_up = [y_coord_up[@], y_coord_up[5], y_coord_up[25], y_coord_up[30], y_coord_up[37], y_coord_up[47]]

(X_S1, y) = CoordinatesEqualSpacing(x_start_up[@], y_start_up[@],dt, 180 - angle_up[@], N[@])
(X_S2, y) = CoordinatesEqualSpacing(x_start_up[1], y_start_up[1],dt, 180 - angle_up[1], N[1])
(X_S3, y) = CoordinatesEqualSpacing(x_start_up[2], y_start_up[2],dt, 180 - angle_up[2], N[2])
(X_S4, y) = CoordinatesEqualSpacing(x_start_up[3], y_start_up[3],dt, angle_up[3], N[3])
(X_S5, y) = CoordinatesEqualSpacing(x_start_up[4], y_start_up[4],dt, angle_up[4], N[4])
(X_S6, y) = CoordinatesEqualSpacing(x_start_up[5], y_start_up[5],dt, angle_up[5], N[5])

X_coord_up = np.concatenate((X_S1, X_S2, X_S3, X_S4, X_S5, X_S6))

(x, Y_S1) = CoordinatesEqualSpacing(x_start_up[@], y_start_up[@],dt, 180 + angle_up[@], N[O])
(x, Y_S2) = CoordinatesEqualSpacing(x_start_up[1], y_start_up[1],dt, 180 + angle_up[1], N[1])
(x, Y_S3) = CoordinatesEqualSpacing(x_start_up[2], y_start_up[2],dt, angle_up[2], N[2])
(x, Y_S4) = CoordinatesEqualSpacing(x_start_up[3], y_start_up[3],dt, angle_up[3], N[3])
(x, Y_S5) = CoordinatesEqualSpacing(x_start_up[4], y_start_up[4],dt, 180 + angle_up[4], N[4])
(x, Y_S6) = CoordinatesEqualSpacing(x_start_up[5], y_start_up[5],dt, 180 + angle_up[5], N[5])

Y_coord_up = np.concatenate((Y_S1, Y_S2, Y_S3, Y_S4, Y_S5, Y_S6))

x_start_down = [x_coord_down[@], x_coord_down[5], Xx_coord_down[25], x_coord_down[30], x_coord_down[37], x_coord_down[47]]
y_start_down = [y_coord_down[@], y_coord_down[5], y_coord_down[25], y_coord_down[30], y_coord_down[37], y_coord_down[47]]

(X_S7, y) = CoordinatesEqualSpacing(x_start_down[@], y_start_down[@],dt, angle_down[@], N[O])
(X_S8, y) = CoordinatesEqualSpacing(x_start_down[1], y_start_down[1],dt, angle_down[1], N[1])
(X_S9, y) = CoordinatesEqualSpacing(x_start_down[2], y_start_down[2],dt, angle_down[2], N[2])
(X_S10, y) = CoordinatesEqualSpacing(x_start_down[3], y_start_down[3],dt, 180+angle_down[3], N[3])
(X_S11, y) = CoordinatesEqualSpacing(x_start_down[4], y_start_down[4],dt, 180+angle_down[4], N[4])
(X_S12, y) = CoordinatesEqualSpacing(x_start_down[5], y_start_down[5],dt, 180+angle_down[5], N[5])

X_coord_down = np.concatenate((X_S7, X_S8 , X_S9 , X_S10 , X_S11 , X_S12))

(x, Y_S7) = CoordinatesEqualSpacing(x_start_down[@], y_start_down[@],dt, 180 + angle_down[0], N[O])
(x, Y_S8) = CoordinatesEqualSpacing(x_start_down[1], y_start_down[1],dt, 180 + angle_down[1], N[1])
(x, Y_S9) = CoordinatesEqualSpacing(x_start_down[2], y_start_down[2],dt, angle_down[2], N[2])

(x, Y_S10) = CoordinatesEqualSpacing(x_start_down[3], y_start_down[3],dt, angle_down[3], N[3])

(x, Y_S11) = CoordinatesEqualSpacing(x_start_down[4], y_start_down[4],dt, angle_down[4], N[4])

(x, Y_S12) CoordinatesEqualSpacing(x_start_down[5], y_start_down[5],dt, 180 + angle_down[5], N[5])

Y_coord_down = np.concatenate((Y_S7, Y_S8, Y_S9, Y_S10, Y_S11, Y_S12))

for i in range(1,13):

if i == 1:
S_x1 = x_coord_up[0:5]
S x =5S_x1
S_yl = y_coord_up[0:5]
S.y=5Syl
S_tapsl = Pres_up[0:3]
S_taps = S_tapsi1

S_L = np.zeros((len(S_x)))

for i in range(1,len(S_x)):
S_L[i] = S_L[i-1] + np.sqrt((S_x[i]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)

X_s =S _L[1:-1]

XX_s = np.arange(S_L[@], S_L[-1], dt)
s = CubicSpline(X_s, S_taps)

yy_s = s(XX_s)

P1 =
S L1 X
elif i ==
S_x2 = x_coord_up[5:25]
S x =5S_x2
S_y2 = y_coord_up[5:25]
Sy =5S_y2
S_taps2 = Pres_up[3:21]
S_taps = S_taps2



S_L = np.zeros((len(S_x)))

for i1 in range(1,len(S_x)):
S_L[i] = S_L[i-1] + np.sqrt((S_x[1]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)

X_s = S_L[1:-1]
XX_s = np.arange(S_L[0], S_L[-1], dt)
s = CubicSpline(X_s, S_taps)

elif i ==
S_x3 = x_coord_up[25:30]
S x =5S_x3
S_y3 = y_coord_up[25:30]
Sy =5S_y3
S_taps3 = Pres_up[21:24]
S_taps = S_taps3

= np.zeros((len(S_x)))
for i in range(1,len(S_x)):

S_L[i] = S_L[i-1] + np.sqrt((S_x[1]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)
X_s = S_L[1:-1]

XX_s = np.arange(S_L[0], S_L[-1], dt)

s = CubicSpline(X_s, S_taps)

yYy_Ss = s(XX_s)

P3 =
S_L

y_s
S_L

w
<

elif i == 4:
S_x4 = x_coord_up[30:37]
S_X = S_x4
S_y4 = y_coord_up[30:37]
Sy =S_vy4
S_taps4 = Pres_up[24:29]
S_taps = S_taps4

S L
for

= np.zeros((len(S_x)))
i in range(1,len(S_x)):
S_L[i] = S_L[i-1] + np.sqrt((S_x[1i]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)

X_s = S_L[1:-1]

XX_s = np.arange(S_L[0], S_L[-1], dt)
s = CubicSpline(X_s, S_taps)

yy_s = s(xx_s)

P4 =
S L4 X
elif i ==
S_x5= x_coord_up[37:47]
S_x = S_x5
S_y5= y_coord_up[37:47]
Sy =S_y5
S_taps5 = Pres_up[29:37]
S_taps = S_taps5

S_L
for

= np.zeros((len(S_x)))
i in range(1,len(S_x)):
S_L[i] = S_L[i-1] + np.sqrt((S_x[i]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)

X s =S _L[1:-1]

XX_s = np.arange(S_L[@], S_L[-1], dt)
s = CubicSpline(X_s, S_taps)

yy_s = s(xx_s)

P5 = yy s
S L5 =S|
elif i == 6:
S_x6= x_coord_up[47:60]
S_X = S_x6
S_y6 = y_coord_up[47:60]
Sy =S_y6
S_taps6 = Pres_up[37:48]
S_taps = S_taps6

S_L
for

= np.zeros((len(S_x)))
i in range(1,len(S_x)):
S_L[i] = S_L[i-1] + np.sqrt((S_x[i]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)

X_s = S_L[1:-1]



XX_s = np.arange(S_L[0], S_L[-1], dt)
s = CubicSpline(X_s, S_taps)
yy_s = s(xx_s)

P6 = yy s
S L6 =S|
elif i ==
S_Xx7 = x_coord_down[0:5]
S_x = S_x7
S_y7 = y_coord_down[0:5]
S.y =S_y7
S_taps7 = Pres_down[0:3]
S_taps = S_taps?7

S_L = np.zeros((len(S_x)))
for i in range(1,len(S_x)):
S_L[i] = S_L[i-1] + np.sqrt((S_x[1]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)

X_s = S_L[1:-1]

XX_s = np.arange(S_L[0], S_L[-1], dt)
s = CubicSpline(X_s, S_taps)

yy_s = s(xx_s)

P7 = yy s
S L7 =S|
elif i ==
S_x8 = x_coord_down[5:25]
S_x = S_x8
S_y8 = y_coord_down[5:25]
Sy =5S_y8
S_taps8 = Pres_down[3:21]
S_taps = S_taps8

S L
for

= np.zeros((len(S_x)))
i in range(1,len(S_x)):
S_L[i] = S_L[i-1] + np.sqrt((S_x[1]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)

X_s = S_L[1:-1]

XX_s = np.arange(S_L[0], S_L[-1], dt)
s = CubicSpline(X_s, S_taps)

yy_s = s(XX_s)

P8
S_L

y_s
S_L

o I
<

elif i == 9:
S_Xx9 = x_coord_down[25:30]
S_x = S_x9
S_y9 = y_coord_down[25:30]
S_.y =5S_y9
S_taps9 = Pres_down[21:24]
S_taps = S_taps9

S_L
for

= np.zeros((len(S_x)))
i in range(1,len(S_x)):
S_L[i] = S_L[i-1] + np.sqrt((S_x[i]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)

X_s =S _L[1:-1]

XX_Ss = np.arange(S_L[0], S_L[-1], dt)
s = CubicSpline(X_s, S_taps)

yy_s = s(xx_s)

P9 =
S_L9 _
elif i == 10:
S_x10 = x_coord_down[30:37]
S_x = S_x10
S_y10 = y_coord_down[30:37]
S_.y = S_yle
S_tapsl® = Pres_down[24:29]
S_taps = S_tapsie

S_L
for

= np.zeros((len(S_x)))
i in range(1,len(S_x)):
S_L[i] = S_L[i-1] + np.sqrt((S_x[i]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)

X_s =S _L[1:-1]

XX_s = np.arange(S_L[@], S_L[-1], dt)
s = CubicSpline(X_s, S_taps)

yy_s = s(xx_s)

P1e
S_L



elif i == 11:
S_x11 = x_coord_down[37:47]

S_x = S_x11
S_y1l = y_coord_down[37:47]
S.y =S _yll

S_tapsll = Pres_down[29:37]
S_taps = S_tapsill

S L
for

= np.zeros((len(S_x)))
i in range(1,len(S_x)):
S_L[i] = S_L[i-1] + np.sqrt((S_x[1i]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)

X_s = S_L[1:-1]

XX_s = np.arange(S_L[0], S_L[-1], dt)
s = CubicSpline(X_s, S_taps)

yy_s = s(xx_s)

P11 = yy s
S_L11 = S_L

elif i == 12:
S_x12 = x_coord_down[47:60]
S_x = S_x12
S_y12 = y_coord_down[47:60]
S.y = S_yl12
S_tapsl2 = Pres_down[37:48]
S_taps = S_tapsi2

S L
for

= np.zeros((len(S_x)))
i in range(1,len(S_x)):
S_L[i] = S_L[i-1] + np.sqrt((S_x[1]-S_x[i-1])**2 + (S_y[i]-S_y[i-1])**2)

X_s = S_L[1:-1]

XX_s = np.arange(S_L[0], S_L[-1], dt)
s = CubicSpline(X_s, S_taps)

yy_s = s(XX_s)

P12
S_L

edge_up = np.zeros((7,2))

edge_up[0,:] = [x_coord_up[@],y_coord_up[0]]

edge_up[1,:] = [x_coord_up[5],y_coord_up[5]]

edge_up[2,:] = [x_coord_up[25],y_coord_up[25]]
edge_up[3,:] = [x_coord_up[30],y_coord_up[30]]
edge_up[4,:] = [x_coord_up[37],y_coord_up[37]]
edge_up[5,:] = [x_coord_up[47],y_coord_up[47]]
edge_up[6,:] = [x_coord_up[59],y_coord_up[59]]

edge_down = np.zeros((7,2))

edge_down[@, :
edge_down[1,:
edge_down[2,:
edge_down[3,:
edge_down[4,:
edge_down[5, :
edge_down[6, :

= [x_coord_down[@],y_coord_down[@]]

= [x_coord_down[5],y_coord_down[5]]

= [x_coord_down[25],y_coord_down[25]]
= [x_coord_down[30],y_coord_down[30]]
= [x_coord_down[37],y_coord_down[37]]
= [x_coord_down[47],y_coord_down[47]]
= [x_coord_down[59],y_coord_down[59]]

Distance_up = np.zeros((6,2))
Distance_up[0,:] = abs(edge_up[1,:]-edge_up[0,:
Distance_up[1,:] = abs(edge_up[2,:]-edge_up[1,:
Distance_up[2,:] = abs(edge_up[3,:]-edge_up[2,:
Distance_up[3,:] = abs(edge_up[4,:]-edge_up[3,:
Distance_up[4,:] = abs(edge_up[5,:]-edge_up[4,:
Distance_up[5,:] = abs(edge_up[6,:]-edge_up[5,:

Distance_down = np.zeros((6,2))

Distance_down[9,:
Distance_down[1,:
Distance_down[2,:
Distance_down[3,:
Distance_down[4,:
Distance_down[5,:

abs(edge_down[1,:]-edge_down[@,:
= abs(edge_down[2,:]-edge_down[1,:
= abs(edge_down[3,:]-edge_down[2,:
= abs(edge_down[4,:]-edge_down[3,:
= abs(edge_down[5, :]-edge_down[4,:
= abs(edge_down[6, :]-edge_down[5,:

e e e



:]1/norm(Distance_upl[o, :
:]/norm(Distance_up[1,:
:]1/norm(Distance_up[2,:
:]/norm(Distance_up[3,:
:]/norm(Distance_up[4,:
:]/norm(Distance_up[5,:

nv_up_1 = Distance_up[©,
nv_up_2 = Distance_up[1,
nv_up_3 = Distance_up[2,
nv_up_4 = Distance_up[3,
nv_up_5 = Distance_up[4,
nv_up_6 = Distance_up[5,
nv_down_1 = Distance_down[9,:
nv_down_2 = Distance_down[1,:
nv_down_3 = Distance_down[2,:
nv_down_4 = Distance_down[3,:
nv_down_5 = Distance_down[4,:
nv_down_6 = Distance_down[5,:
Px = Pl*nv_up_1[1]

Py = P1l*-nv_up_1[0]

PS = P1

PS_x1 = Px

PS_yl = Py

Px = P2*nv_up_2[1]

Py = P2*-nv_up_2[0]

PS = P2

PS_x2 = Px

PS_y2 = Py

Px = P3*-nv_up_3[1]

Py = P3*-nv_up_3[0]

PS = P3

PS_x3 = Px

PS_y3 = Py

Px = P4*-nv_up_4[1]

Py = P4*nv_up_4[0]

PS = P4

PS_x4 = Px

PS_y4 = Py

Px = P5*nv_up_5[1]

Py = P5*nv_up_5[@]

PS = P5

PS_x5 = Px

PS_y5 = Py

Px = P6*nv_up_6[1]

Py = P6*nv_up_6[0]

PS = P6

PS_x6 = Px

PS_y6 = Py

Px = P7*-nv_down_1[1]

Py = P7*-nv_down_1[@]

PS = P7

PS_x7 = Px

PS_y7 = Py

Px = P8*-nv_down_2[1]

Py = P8*-nv_down_2[@]

PS = P8

PS_x8 = Px

PS_y8 = Py

Px = P9*nv_down_3[1]

Py = P9*-nv_down_3[@]

PS = P9

PS_x9 = Px

/norm(Distance_down[@, :
/norm(Distance_down[1,:
/norm(Distance_down[2,:
/norm(Distance_down[3,:
/norm(Distance_down[4,:
/norm(Distance_down[5, :



Px = P10@*nv_down_4[1]
Py = P10*nv_down_4[@]

PS = P10
PS_x10 = Px
PS_y10 = Py

Px = P11*nv_down_5[1]
Py = P11*nv_down_5[@]

PS = P11
PS_x11 = Px
PS_y11 = Py

Px = P12*-nv_down_6[1]
Py = P12*nv_down_6[@]

PS = P12
PS_x12 = Px
PS_y12 = Py

Px1 = X_S1 + PS_x1
Pyl = Y_S1 + PS_yl

Px2 = X_S2 + PS_x2
Py2 = Y_S2 + PS_y2

Px3 = X_S3 + PS_x3
Py3 = Y_S3 + PS_y3

Px4= X_S4 + PS_x4
Py4 = Y_S4 + PS_y4

Px5 = X_S5 + PS_x5
Py5 = Y_S5 + PS_y5

Px6 = X_S6 + PS_x6
Py6 = Y_S6 + PS_y6
Px7 = X_S7 + PS_x7
Py7 = Y_S7 + PS_y7

Px8 = X_S8 + PS_x8
Py8 = Y_S8 + PS_y8

Px9 = X_S9 + PS_x9
Py9 = Y_S9 + PS_y9

Px10= X_S10 + PS_x10
Pyl0 = Y_S10 + PS_yl@

Px11 = X_S11 + PS_x11
Pyll = Y_S11 + PS_yil

Px12 = X_S12 + PS_x12
Pyl2 = Y_S12 + PS_y12

Pres_up_x = np.concatenate((Px1, Px2, Px3, Px4, Px5, Px6))
Pres_up_y = np.concatenate((Pyl, Py2, Py3, Py4, Py5, Py6))

Pres_down_x = np.concatenate((Px7, Px8, Px9, Px10, Px1l1l, Px12))
Pres_down_y = np.concatenate((Py7, Py8, Py9, Pyle, Pyll, Pyl2))

file = folder.split('C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/ScannerFiler/ScannerFiler/")
file = file[1]
savenamel = file +

_DistributedPressure_Linel"

xy = np.zeros((len(X_coord_up)*2, 2))
xy_pressure = np.zeros((len(X_coord_up)*2, 2))

for i in range(len(X_coord_up)):
xy[i,:] = [X_coord_up[i], Y_coord_up[i]]
xy[i+len(X_coord_up),:] = [X_coord_down[i], Y_coord_down[i]]

for i in range(len(X_coord_up)):
Xy_pressure[i,:] = [Pres_up_x[i], Pres_up_y[i]]
Xy_pressure[i+len(X_coord_up),:] = [Pres_down_x[i],Pres_down_y[i]]

dx = xy_pressure[:,0] - xy[:,0]
dy = xy_pressure[:,1] - xy[:,1]



fig = plt.figure(figsize = (12, 4), dpi = 100)

plt.plot(x_coord_up, y_coord_up, color = 'black', linewidth = 1.5)
plt.plot(x_coord_down, y_coord_down,color = 'black', linewidth = 1.5)
plt.axis('equal')

ax = fig.add_subplot(111)
cmap = plt.get_cmap('jet")

D = np.sqrt(dx**2 + dy**2)

norm = mpl.colors.Normalize(®, max(D))
scalarMap = cmx.ScalarMappable(norm=norm,cmap=cmap)

for i in range(2*len(X_coord_up)):
colorval = scalarMap.to_rgba(D[i])
ax.annotate("", xy = (xy_pressure[i,0],xy_pressure[i,1]), xycoords='data',
xytext=(xy[i,0], xy[i,1]), textcoords='data’,

arrowprops=dict(arrowstyle = "-", connectionstyle="arc3",
color=colorVal, linewidth = 1.5))

sm = plt.cm.ScalarMappable(cmap = cmap, norm = norm)
sm.set_array([])

ticks = np.arange(©,max(D),10)

clb = plt.colorbar(sm, ticks = ticks, pad = 0.02)
clb.set_label('Pressure [Pa]', labelpad = 10)
plt.title('Distributed Pressure', fontsize = 15)
plt.xlabel('x")

plt.ylabel('z")

plt.savefig(savenamel + '.png', bbox_inches="'tight")
plt.show()

w=1.0

Dt = dt*10**(-3)
FS = np.zeros(1)
FS_y = np.zeros(1)

FS_x = np.zeros(1)

for i in range(1,13):

if i == 1:

PS = P1

Py = PS_y1l

Px = PS_x1
elif i == 2:

PS = P2

Py = PS_y2

Px = PS_x2
elif i == 3

PS = P3

Py = PS_y3

Px = PS_x3
elif i == 4

PS = P4

Py = PS_y4

Px = PS_x4
elif i == 5

PS = P5

Py = PS_y5

Px = PS_x5
elif i == 6

PS = P2

Py = PS_y6

Px = PS_x6
elif i ==7

PS = P7

Py = PS_y7

Px = PS_x7
elif i == 8:

PS = P8

Py = PS_y8

Px = PS_x8
elif i == 9:

PS = P9



Py = PS_y9

Px = PS_x9
elif i == 10:

PS = P10

Py = PS_yle

Px = PS_x10
elif i == 11:

PS = P11

Py = PS_yll

Px = PS_x11
elif i == 12:

PS = P12

Py = PS_y12

Px = PS_x12

F = np.zeros(len(PS))
Fy = np.zeros(len(Py))
Fx = np.zeros(len(Px))

F[1:-2] = PS[1:-2]*Dt*w
F[@] = PS[@]*Dt*w/2
F[-1] = PS[-1]*Dt*w/2

Fy[1:-2] = Py[1:-2]*Dt*w
Fy[@] = Py[@]*Dt*w/2
Fy[-1] = Py[-1]*Dt*w/2

Fx[1:-2] = Px[1:-2]*Dt*w
Fx[@] = Px[0]*Dt*w/2
Fx[-1] = Px[-1]*Dt*w/2

if i ==1:
F1 =F
Fy_ 1 = Fy
Fx_1 = Fx
elif i == 2:
F2 = F
Fy_2 = Fy
Fx_2 = Fx
elif i == 3
F3 =
Fy_3 = Fy
FX_3 = Fx
elif i == 4
F4 = F
Fy_4 = Fy
Fx_4 = Fx
elif i == 5
F5 =
Fy_5 = Fy
Fx_5 = Fx
elif i == 6
F6 =
Fy_6 = Fy
Fx_6 = Fx
elif i ==7
F7 =
Fy_7 = Fy
FXx_7 = Fx
elif i == 8
F8 =
Fy_8 = Fy
Fx_8 = Fx
elif i == 9
F9 =
Fy_ 9 = Fy
FX_9 = Fx
elif i == 10:
F10 = F
Fy_10 = Fy
Fx_10 = Fx
elif i == 11:
F11 = F
Fy_11 = Fy



Fx_11 = Fx

elif i == 12:
F12 = F
Fy_12 = Fy
Fx_12 = Fx

FS = np.concatenate((FS,F))
FS_y = np.concatenate((FS_y,Fy))
FS_x = np.concatenate((FS_x,Fx))

Fx_up = np.concatenate((Fx_1, Fx_2, Fx_3, Fx_4, Fx_5, Fx_6))
Fy_up np.concatenate((Fy_1, Fy_2, Fy 3, Fy_4, Fy_5, Fy_6))

Fx_down = np.concatenate((Fx_7, Fx_8, Fx_9, Fx_10, Fx_11, Fx_12))
Fy_down = np.concatenate((Fy_7, Fy_8, Fy_ 9, Fy_10, Fy_11, Fy_12))

Sum_Fx_up = Fx_1.sum() + Fx_2.sum() + Fx_3.sum() + Fx_4.sum() + Fx_5.sum() + Fx_6.sum()
Sum_Fy_up = Fy_1.sum() + Fy_2.sum() + Fy_3.sum() + Fy_4.sum() + Fy_5.sum() + Fy_6.sum()

Sum_Fx_down = Fx_7.sum() + Fx_8.sum() + Fx_9.sum() + Fx_10.sum() + Fx_11l.sum() + Fx_12.sum()
Sum_Fy_down = Fy_7.sum() + Fy_8.sum() + Fy_9.sum() + Fy_10.sum() + Fy_11.sum() + Fy_12.sum()

scale = 1000

L_x1 = X_S1 + Fx_1*scale
L_yl = Y_S1 + Fy_1*scale

L_x2 = X_S2 + Fx_2*scale
L_y2 = Y_S2 + Fy_2*scale

L_x3 = X_S3 + Fx_3*scale
L_y3 = Y_S3 + Fy_3*scale

L_x4 = X_S4 + Fx_4*scale
L_y4 = Y_S4 + Fy_4*scale

L_x5 = X_S5 + Fx_5*scale
L_y5 = Y_S5 + Fy_5*scale

L_x6 = X_S6 + Fx_6*scale
L_y6 = Y_S6 + Fy_6*scale

L_x7 = X_S7 + Fx_7*scale
L_y7 = Y_S7 + Fy_7*scale

L_x8 = X_S8 + Fx_8*scale
L_y8 = Y_S8 + Fy_8*scale

L_x9 = X_S9 + Fx_9*scale
L_y9 = Y_S9 + Fy_9*scale

L_x10 = X_S10 + Fx_10*scale
L_y10 = Y_S10 + Fy_10*scale

L_x11 = X_S11 + Fx_11*scale
L_yll = Y_S11 + Fy_11*scale

L_x12 = X_S12 + Fx_12*scale
L_yl12 = Y_S12 + Fy_12*scale

Load_up_x = np.concatenate((L_x1, L_x2, L_x3, L_x4, L_x5, L_x6))
Load_up_y = np.concatenate((L_y1, L_y2, L y3, L_y4, L_y5, L_y6))

Load_down_x = np.concatenate((L_x7, L_x8, L_x9, L_x10, L_x11, L_x12))
Load_down_y = np.concatenate((L_y7, L_y8, L_y9, L_yl10, L_yll, L_y12))

file = folder.split('C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/ScannerFiler/ScannerFiler/")
file = file[1]
savenamel = file + '_ILM Totalload_Linel’

xy = np.zeros((len(X_coord_up)*2, 2))
xy_load = np.zeros((len(X_coord_up)*2, 2))
for i in range(len(X_coord_up)):

xy[i,:] = [X_coord_up[i], Y_coord_up[i]]

xy[i+len(X_coord_up),:] = [X_coord_down[i], Y_coord_down[i]]

for i in range(len(X_coord_up)):



fig

plt.
plt.
plt.

ax =

cmap

dx
dy =

D =

norm

for i in range(len(X_coord_up)*2):

xy_load[i,:] = [Load_up_x[i], Load_up_y[i]]
xy_load[i+len(X_coord_up),:] = [Load_down_x[i],Load_down_y[i]]

= plt.figure(figsize =

(12, 4), dpi = 100)

plot(x_coord_up, y_coord_up, color = 'black', linewidth = 1.5)
plot(x_coord_down, y_coord_down,color = 'black', linewidth = 1.5)

axis('equal')

fig.add_subplot(111)
= plt.get_cmap('jet")

xy_load[:,0] - xy[:,0]
xy_load[:,1] - xy[:,1]

np.sqrt(dx**2 + dy**2)

= mpl.colors.Normalize(®, max(D))
scalarMap = cmx.ScalarMappable(norm=norm,cmap=cmap)

colorvVal = scalarMap.to_rgba(D[i])

ax.annotate(

, Xy = (xy_load[i,0],xy_load[i,1]), xycoords='data’,

xytext=(xy[i,0], xy[i,1]), textcoords='data’,

arrowprops=dict(arrowstyle = "-", connectionstyle="arc3",
color=colorVal, linewidth = 1.5))

sm = plt.cm.ScalarMappable(cmap = cmap, norm = norm)

sm.s

ticks = np.arange(©,max(D),10)

et_array([])

clb = plt.colorbar(sm, ticks = ticks, pad = 0.02)
set_label('Force [N] $\cdot 107{-3}$', labelpad = 10)
title('Distributed Load', fontsize = 15)

clb.
plt.
plt
plt
plt.
plt.

cent

dist
dist
dist
dist

ml =
m2 =
m3 =
m4 =
m5 =
mé =

M =

.xlabel('x")
.ylabel('z")

savefig(savenamel + 'DistributedLoad.png', bbox_inches="tight")

show()

er = [0,0]

_up_x = abs(xy[0:691,0]*10**(-3))
_up_y = abs(xy[0:691,1]*10**(-3))
_down_x = abs(xy[691:,0]*10**(-3))
_down_y = abs(xy[691:,1]*10**(-3))

len(X_S1)
len(X_S2)
len(X_S3)
len(X_S4)
len(X_S5)
len(X_S6)

m1l+m2+m3+m4+m5+m6

Moment_PS_up = np.zeros(len(X_coord_up))
nt_PS_down = np.zeros(len(X_coord_up))

Mome

for i in range(len(X_coord_up)):
if X_coord_up[i] <= center[©] and Y_coord_up[i] >= center[1]:

for i in range(len(X_coord_down)):

if i <= ml+m2:

Moment_PS_up[i] = Fx_up[i]*dist_up_y[i] + Fy_up[i]*dist_up_x[i]

else:

Moment_PS_up[i] =

else:
if i >= M-m6:

Fx_up[i]*dist_up_y[i] + Fy_up[i]*dist_up_x[i]

Moment_PS_up[i] = -Fx_up[i]*dist_up_y[i] + Fy_up[i]*dist_up_x[i]

elif M-m6é <= i <= M-m6-m5:

Moment_PS_up[i] = Fy_up[i]*dist_up_x[1i]

elif i >= ml+m2+m3:
Moment_PS_up[i]

else:
Moment_PS_up[i]

- Fx_up[i]*dist_up_y[i] + Fy_up[i]*dist_up_x[i]

- Fx_up[i]*dist_up_y[i] + Fy_up[i]*dist_up_x[i]

if X_coord_down[i] >= center[@] and Y_coord_up[i] >= center[1]:

if i <= ml+m2:

Moment_PS_down[1i]

else:

Moment_PS_down[1i]

Fx_down[i]*dist_down_y[i] - Fy_down[i]*dist_down_x[1i]

Fx_down[i]*dist_down_y[i] - Fy_down[i]*dist_down_x[1i]



else:
if 1 >= M-m6:

Moment_PS_down[i] = - Fx_down[i]*dist_down_y[i] - Fy_down[i]*dist_down_x[i]
elif M-m6 <= i <= M-m6-m5:

Moment_PS_down[i] = - Fy_down[i]*dist_down_x[i]
elif i >= ml+m2+m3:

Moment_PS_down[i] = - Fx_down[i]*dist_down_y[i] - Fy_down[i]*dist_down_x[i]
else:

Moment_PS_down[i] = - Fx_down[i]*dist_down_y[i] - Fy_down[i]*dist_down_x[i]

Sum_Moment_up = sum(Moment_PS_up)
Sum_Moment_down = sum(Moment_PS_down)

savenamel = savenamel + '.npz’

np.savez_compressed(savenamel, Fx_down = Sum_Fx_down, Fx_up = Sum_Fx_up, Fz_down = Sum_Fy_down,

Fz_up = Sum_Fy_up, Moment_up = Sum_Moment_up, Moment_down

= Sum_Moment_down)



B.3 Functions for Load Estimation

Several functions have been used in the script for The Piece-wise Load Method and The Interpol-
ated Load Method:

e CoordinatesAndAreaFunc: Imports coordinates to the cross-section and pressure tubes
for different angles of attack. In addition, it imports the area and angles of the cross-section.

SortPressure: Sorts the pressure from the pressure scanner to the right correlation line.

Areal6Taps: Finds surface area for the point pressures in correlation line 2-6.

CoordinatesEqualSpacing: Used in the Interpolated Load Method. The function returns

new coordinates with equal spacing, dt.

B.3.1 CoordinatesAndAreaFunc

146



Created on Thu Feb 17 10:58:33 2022

@author: marth

import pandas as pd
import numpy as np

def CoordinatesAndArea(deg):
if deg == 0:
Coordinates_cross = pd.read_excel(r'C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/Python/Koordinater.xlsx',
sheet_name ='Koordinater 48")
Coordinates_cross = np.array(Coordinates_cross)
Coordinates = pd.read_excel(r'C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/Python/Koordinater.xlsx',
sheet_name='Taps 48")

Coordinates = np.array(Coordinates)

X_taps_up = Coordinates[0:,2]
y_taps_up = Coordinates[0:,3]
Xx_coord_up = Coordinates_cross[0:,2]
y_coord_up = Coordinates_cross[0:,3]

X_taps_down = -x_taps_up
y_taps_down = y_taps_up
X_coord_down = -x_coord_up

y_coord_down = y_coord_up
else:
Coordinates_cross = pd.read_excel(r'C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/Python/Koordinater.xlsx',
sheet_name ='Upstream ' + str(deg))

Coordinates_cross = np.array(Coordinates_cross)

Coordinates_cross_d = pd.read_excel(r'C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/Python/Koordinater.xlsx',
sheet_name='Downstream ' + str(deg))

Coordinates_cross_d = np.array(Coordinates_cross_d)

Coordinates = pd.read_excel(r'C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/Python/Koordinater.xlsx",
sheet_name="'Upstream taps ' + str(deg))

Coordinates = np.array(Coordinates)

Coordinates_d = pd.read_excel(r'C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/Python/Koordinater.xlsx',
sheet_name='Downstream taps ' + str(deg))

Coordinates_d = np.array(Coordinates_d)

X_taps_up = Coordinates[0:,2]
y_taps_up = Coordinates[0:,3]
X_coord_up = Coordinates_cross[0:,2]
y_coord_up = Coordinates_cross[0:,3]

X_taps_down = Coordinates_d[0:,2]
y_taps_down = Coordinates_d[0:,3]
X_coord_down = Coordinates_cross_d[0:,2]
y_coord_down = Coordinates_cross_d[0:,3]

Coordinates_16_cross = pd.read_excel(r'C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/Python/Koordinater.xlsx",
sheet_name="Koordinater 16")

Coordinates_16_cross = np.array(Coordinates_16_cross)



Coordinates_16= pd.read_excel(r'C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/Python/Koordinater.xlsx",
sheet_name="'Taps 16")

Coordinates_16 = np.array(Coordinates_16)

X_taps_up_16 = Coordinates_16[0:,2]
y_taps_up_16 = Coordinates_16[0:,3]
X_coord_up_16= Coordinates_16_cross[0:,2]
y_coord_up_16 = Coordinates_16_cross[0:,3]

X_taps_down_16 = - x_taps_up_16
y_taps_down_16 = y_taps_up_16
X_coord_down_16 = - x_coord_up_16

y_coord_down_16 = y_coord_up_16

a_S1_up = np.arctan2(abs(y_coord_up[4]-y_coord_up[@]),abs(x_coord_up[4]-x_coord_up[0]))*180/np.pi
a_S2_up = np.arctan2(abs(y_coord_up[24]-y_coord_up[5]),abs(x_coord_up[24]-x_coord_up[5]))*180/np.pi
a_S3_up = np.arctan2(abs(y_coord_up[29]-y_coord_up[25]),abs(x_coord_up[29]-x_coord_up[25]))*180/np.pi
a_S4_up = np.arctan2(abs(y_coord_up[36]-y_coord_up[30]),abs(x_coord_up[36]-x_coord_up[30]))*180/np.pi
a_S5_up = np.arctan2(abs(y_coord_up[46]-y_coord_up[37]),abs(x_coord_up[46]-x_coord_up[37]))*180/np.pi
a_S6_up = np.arctan2(abs(y_coord_up[59]-y_coord_up[47]),abs(x_coord_up[59]-x_coord_up[47]))*180/np.pi

angle_up = [a_S1_up, a_S2_up, a_S3_up, a_S4_up, a_S5_up, a_S6_up]

a_S1_down = np.arctan2(abs(y_coord_down[4]-y_coord_down[@]),abs(x_coord_down[4]-x_coord_down[@]))*180/np.pi
a_S2_down = np.arctan2(abs(y_coord_down[24]-y_coord_down[5]),abs(x_coord_down[24]-x_coord_down[5]))*180/np.pi
a_S3_down = np.arctan2(abs(y_coord_down[29]-y_coord_down[25]),abs(x_coord_down[29]-x_coord_down[25]))*180/np.pi
a_S4_down = np.arctan2(abs(y_coord_down[36]-y_coord_down[30]),abs(x_coord_down[36]-x_coord_down[30]))*180/np.pi
a_S5_down = np.arctan2(abs(y_coord_down[46]-y_coord_down[37]),abs(x_coord_down[46]-x_coord_down[37]))*180/np.pi
a_S6_down = np.arctan2(abs(y_coord_down[59]-y_coord_down[47]),abs(x_coord_down[59]-x_coord_down[47]))*180/np.pi

angle_down = [a_S1_down, a_S2_down, a_S3_down, a_S4_down, a_S5_down, a_S6_down]

s1 = [12, 12, 11.62, 3.5]

S2 = [3.5, 12.07, 12.07, 12.07, 12.07, 12.07, 12.07, 12.07, 12.07, 17.93, 17.93, 17.93, 22.46, 20.06, 20.06, 20.06,
20.06, 20.06, 3.5]

S3 = [3.5, 13.2, 13.2, 5]

s4 =[5, 17.11, 17.11, 17.11, 17.11, 3.8]

S5 = [3.5, 20.13, 20.13, 22.5, 12.56, 12.56, 12.56, 12.56, 3.5]

S6 = [3.5, 12.89, 12.88, 12.88, 12.88, 12.05, 12.05, 12.05, 12.05, 12.05, 12.05, 10]

Surface = S1 + S2 + S3 + S4 + S5 + S6

A = np.zeros(49)

A[@] = Surface[@]+Surface[1]/2
A[1] = (Surface[1]+Surface[2])/2
A[2] = Surface[2]/2+Surface[3]

A[3] = Surface[4]+Surface[5]/2

for i in range(4,20):
A[i] = (Surface[i+1]+Surface[i+2])/2

A[20] = Surface[21]/2 + Surface[22]
A[21] = Surface[23] + Surface[24]/2
A[22] = (Surface[24] + Surface[25])/2
A[23] = Surface[25]/2 + Surface[26]
A[24] = Surface[27] + Surface[28]/2

for i in range(25,28):
A[i] = (Surface[i+3]+Surface[i+4])/2

A[28] = Surface[31]/2 + Surface[32]

A[29] = Surface[33]+Surface[34]/2

for i in range(30,36):
A[i] = (Surface[i+4]+Surface[i+5])/2



A[36] = Surface[40]/2 + Surface[41]

A[37] = Surface[42] + Surface[43]/2

for i in range(38,48):
A[i] = (Surface[i+5]+Surface[i+6])/2

A[48] = Surface[52]/2 + Surface[53]
return(x_taps_up, y_taps_up, x_taps_down, y_taps_down, x_coord_up, y_coord_up, x_coord_down,y_coord_down,

x_taps_up_16, y_taps_up_16, x_taps_down_16, y_taps_down_16, x_coord_up_16, y_coord_up_16, x_coord_down_16,
y_coord_down_16, Surface, A, angle_up, angle_down)



B.3.2 SortPressure
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Created on Thu Mar 17 14:22:54 2022

@author: marth

import numpy as np

def SortPressure(pres,scanner):

Sorting the pressure from the pressure scanners after correlation line

Parameters
pres : pressure from pressure scanners
scanner: number on scanner (Upstream = 1,2 Downstream = 3,4)

Returns
Pres_upl = Upstream box, correlation line 1 etc.
Pres_downl = Downstream box, correlation line 1 etc.

Pres_upl = np.zeros((len(pres),48))
Pres_up2 = np.zeros((len(pres),16))
Pres_up3 = np.zeros((len(pres),16))
Pres_up4 = np.zeros((len(pres),16))
Pres_up5 = np.zeros((len(pres),16))
Pres_up6 = np.zeros((len(pres),16))

Pres_downl = np.zeros((len(pres),48))
Pres_down2 = np.zeros((len(pres),16))
Pres_down3 = np.zeros((len(pres),16))
Pres_down4 = np.zeros((len(pres),16))
Pres_down5 = np.zeros((len(pres),16))
Pres_down6 = np.zeros((len(pres),16))

if scanner == 1:
Pres_upl[:,0:12] = pres[:,0:12]
Pres_upl[:,36:48] = pres[:,12:24]

Pres_up2[:,0:4]

= pres[:,24:28]
Pres_up2[:,12:16] =

pres[:,28:32]

Pres_up3[:,0:4]

= pres[:,32:36]
Pres_up3[:,12:16]

pres[:,36:40]

I o

Pres_up4[:,0:4]

= pres[:,40:44]
Pres_up4[:,12:16]

pres[:,44:48]

I o

Pres_up5[:,0:4]

= pres[:,48:52]
Pres_up5[:,12:16] =

pres[:,52:56]

Pres_up6[:,0:4]

= pres[:,56:60]
Pres_up6[:,12:16] =

pres[:,60:64]

return Pres_upl, Pres_up2, Pres_up3, Pres_up4, Pres_up5, Pres_up6



elif scanner ==
Pres_upl[:,12:36] = pres[:,0:24]

Pres_up2[:,4:12]

pres[:,24:32]

Pres_up3[:,4:12] pres[:,32:40]

Pres_up4[:,4:12] pres[:,40:48]

Pres_up5[:,4:12] pres[:,48:56]

Pres_up6[:,4:12] pres[:,56:64]

return Pres_upl, Pres_up2, Pres_up3, Pres_up4, Pres_up5, Pres_upé6

elif scanner ==
Pres_downl[:,12:36] = pres[:,0:24]

Pres_down2[:,4:12]

pres[:,24:32]

Pres_down3[:,4:12] pres[:,32:40]

Pres_down4[:,4:12] pres[:,40:48]

Pres_down5[:,4:12] pres[:,48:56]

Pres_down6[:,4:12]

pres[:,56:64]

return Pres_downl, Pres_down2, Pres_down3, Pres_down4, Pres_down5, Pres_down6

elif scanner == 4:
Pres_downl[:,0:12] = pres[:,0:12]
Pres_downl[:,36:48] = pres[:,12:24]

Pres_down2[:,0:4]

= pres[:,24:28]
Pres_down2[:,12:16] =

pres[:,28:32]

Pres_down3[:,0:4]

= pres[:,32:36]
Pres_down3[:,12:16] =

pres[:,36:40]

Pres_down4[:,0:4]

= pres[:,40:44]
Pres_down4[:,12:16] =

pres[:,44:48]

Pres_down5[:,0:4]

= pres[:,48:52]
Pres_down5[:,12:16] =

pres[:,52:56]

Pres_down6[:,0:4]

= pres[:,56:60]
Pres_down6[:,12:16] =

pres[:,60:64]

return Pres_downl, Pres_down2, Pres_down3, Pres_down4, Pres_down5, Pres_down6



B.3.3 Areal6Taps
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Created on Mon Feb 28 15:46:15 2022

@author: marth

import numpy as np

def ArealéTaps():

S1 = [23.62, 15.12]

S2 = [3.5, 48.28, 48.28,76.25, 60.19, 43.62]
S3 = [16.8, 18.2]

S4 = [5, 34.23, 38.02]

S5 = [3.5, 40.26, 35.06, 37.68, 3.5]

S6 = [42.15, 49.02, 36.14, 10]

Surface = S1 + S2 + S3 + S4 + S5 + S6

A = np.zeros(16)

A[0o] Surface[@] + Surface[1]

A[1] Surface[2]+Surface[3]/2

for i in range(2,5):
A[i] =(Surface[i+1]+Surface[i+2])/2

A[5] = Surface[6]+Surface[7]/2

A[6] = Surface[8]+Surface[9]

A[7] = Surface[10] + Surface[11]/2
A[8] = (Surface[1l1l] + Surface[12])/2
A[9] = Surface[13] + Surface[14]/2

for i in range(10,12):
A[i] = (Surface[i+4]+Surface[i+5])/2

A[12] Surface[16]/2 + Surface[17]

A[13] Surface[18]+Surface[19]/2
A[14]= (Surface[19] + Surface[20])/2
A[15] = Surface[20]/2 + Surface[21]

A = A.transpose()

return A



B.3.4 CoordinatesEqualSpacing
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Created on Tue Mar 1 10:05:56 2022

@author: marth

import numpy as np

def CoordinatesEqualSpacing(x_coord, y_coord, dt, angle, N):

#Makes new coordinate with equal spacing, dt.

Parameters

x_coord: coordiantes in x-direction
y_coord: coordinates im y-direction
dt: spacing

angle: angle between sides

N:Number of coordinates

Returns

X: coordinates in x-direction with spacing dt
Y: coordinates in y-direction with spacing dt

X = np.zeros((N))

Y = np.zeros((N))
X[@] = x_coord
Y[@] = y_coord

for i in range(1,N):
X[i] = -dt*np.cos((np.pi/180)*angle)+X[i-1]
Y[i] -dt*np.sin((np.pi/180)*angle)+Y[i-1]

return X, Y



Appendix C

Python Script for Estimation of
Aerodynamic Admittance
Functions

This appendix contains the Python scripts for estimation of the aerodynamic admittance functions
using the general, the auto-spectral and the cross-spectral method. In addition, a function for
importing the processed data from Matlab and a function for calculating the static load coefficients
is attached.

C.1 Aerodynamic Admittance Functions

Script for estimating the aerodynamic admittance functions. The script also contains codes for
plotting the buffeting force spectra, turbulence spectra and coherence.

157



Created on Wed Mar 16 10:51:45 2022

@author: marth

import numpy as np

import math

from matplotlib import pyplot as plt

from scipy import signal

from ImportDataFromMatlab import ImportMeasuredData
import numpy.polynomial.polynomial as poly

MatFile = 'AGTD21_S2-Gl_Pressure_CPD105_03 12 003.mat’
(Pitotprobe, Displacements, Forces_global, Forces_cr, Temperature, Frequency,
AirDensity, Cobra, t) = ImportMeasuredData(MatFile)

u = Cobra[e,:]

v = Cobra[l,:]

w = Cobraf2,:]

u = u[:61000]

v = v[:61000]

w = w[:61000]

F = Frequency

t = np.arange(0,len(u)/F,1/F)

dt = t[1]- t[e]

rho = AirDensity

U = np.mean(u)
V=U

D = 0.05

B =0.74

L 2.64

Pd = 0.5*rho*U**2

test = '05_ 03 2022 12 48 38 _PM'
file = test + '_PointLoad_Linel.npz'
PointLoad = np.load(file)

Load_up_x = PointlLoad[ 'Load up x']



Load_up_y = PointLoad[ 'Load_up_y']
M_up = PointLoad[ 'Moment_up"]

Load_down_x = PointLoad['Load down_x']
Load_down_y = PointLoad['Load _down_y']
M_down = PointLoad[ 'Moment_down"]

deg = ©
beta = deg*np.pi/180

Fx_up = Load_up_x*np.cos(beta) + Load_up_y*np.sin(beta)
Fx_down = Load_down_x*np.cos(beta) + Load_down_y*np.sin(beta)
Fx_tot = Fx_up + Fx_down

Fz_up = -Load_up_x*np.sin(beta) + Load_up_y*np.cos(beta)
Fz_down = -Load_down_x*np.sin(beta) + Load_down_y*np.cos(beta)
Fz_tot = Fz_up + Fz_down

M_tot = M_up + M_down

Drag_up = np.zeros(len(Fz_up))
Drag_down = np.zeros(len(Fz_up))
Drag_tot = np.zeros(len(Fz_up))

Lift_up = np.zeros(len(Fz_up))
Lift_down = np.zeros(len(Fz_up))
Lift_tot = np.zeros(len(Fz_up))

Moment_up = np.zeros(len(Fz_up))
Moment_down = np.zeros(len(Fz_up))
Moment_tot = np.zeros(len(Fz_up))

for i in range(len(Fz_up)):
Drag_up[i] = np.sum(Fx_up[i,:])
Drag_down[i] = np.sum(Fx_down[i,:])
Drag_tot[i] = np.sum(Fx_tot[i,:])

Lift_up[i] = np.sum(Fz_up[i,:])
Lift_down[i] = np.sum(Fz_down[i,:])
Lift_tot[i] = np.sum(Fz_tot[i,:])

Moment_up[i] = np.sum(M_up[i,:])
Moment_down[i] = np.sum(M _down[i,:])
Moment_tot[i] = np.sum(M_tot[i,:])

Drag_up = Drag_up - np.mean(Drag_up)
Drag_down = Drag_down - np.mean(Drag_down)
Drag_tot = Drag_tot - np.mean(Drag_tot)

Lift_up = Lift_up - np.mean(Lift_up)
Lift_down = Lift_down - np.mean(Lift_down)
Lift_tot = Lift_tot - np.mean(Lift_tot)



Moment_up = Moment_up - np.mean(Moment_up)
Moment_down = Moment_down - np.mean(Moment_down)
Moment_tot = Moment_tot - np.mean(Moment_tot)

1 = min(len(Fx_up),len(u),len(t))

u=uf[:1]
v = v[:1]
w=w[:1]
t = t[:1]
Nwelch = 20

Nwindow = np.round(len(t)/Nwelch)
nfft = 2**math.log2(Nwindow)
window = signal.windows.hamming(int(Nwindow))

f, SD_up = signal.welch(Drag_up, F, window = window, nfft = nfft)
f, SD_down = signal.welch(Drag_down, F, window = window, nfft = nfft)
f, SD_tot = signal.welch(Drag_tot, F, window = window, nfft = nfft)

f, SL_up = signal.welch(Lift_up, F, window = window, nfft = nfft)
f, SL_down = signal.welch(Lift_down, F, window = window , nfft = nfft)
f, SL_tot = signal.welch(Lift_tot, F, window = window, nfft = nfft)

f, SM_up = signal.welch(Moment_up, F, window = window, nfft = nfft)
f, SM_down = signal.welch(Moment_down, F, window = window, nfft = nfft)
f, SM_tot = signal.welch(Moment_tot, F, window = window, nfft = nfft)

plt.figure()

plt.plot(f, SD_up,label = 'Upstream', linewidth = 0.8)
plt.plot(f, SD_down, 1label = ‘'Downstream', linewidth = ©.8)
plt.plot(f, SD_tot, label = 'Total', linewidth = 0.8)
plt.title('Drag Spectrum', fontsize = 15)
plt.yscale('log")

plt.xscale('log")

plt.xlabel('$f$ [Hz]")

plt.ylabel('$S_M(f)$")

plt.legend(loc = 3)

plt.x1im(000.1,100)

plt.ylim(10**(-6),1)

savename = file.split('.npz")

savename = savename[9]

plt.savefig(savename + 'Drag 9 7Hz.png', bbox_inches="tight")
plt.show()

plt.figure()

plt.plot(f, SL_up,label = 'Upstream', linewidth = 0.8)
plt.plot(f, SL _down, 1label = ‘'Downstream', linewidth = ©.8)
plt.plot(f, SL_tot, label = 'Total', linewidth = 0.8)
plt.title('Lift Spectrum', fontsize = 15)

plt.yscale('log")

plt.xscale('log")



plt.xlabel('$f$ [Hz]")
plt.ylabel('$S_M(f)$")
plt.legend(loc = 3)
plt.xlim(©0.1,100)
plt.ylim(1e**(-8),10)

plt.savefig(savename + 'Lift 9 7Hz.png', bbox_inches="tight")
plt.show()

plt.figure()

plt.plot(f, SM up,label = 'Upstream', linewidth = 0.8)
plt.plot(f, SM_down, 1label = ‘'Downstream', linewidth = 0.8)
plt.plot(f, SM tot, label = 'Total', linewidth = 0.8)
plt.title( 'Moment Spectrum', fontsize = 15)
plt.yscale('log")

plt.xscale('log")

plt.xlabel('$f$ [Hz]")

plt.ylabel('$S_M(f)$")

plt.legend(loc = 3)

plt.xlim(©0.1,100)

plt.ylim(1e**(-8),1)

plt.savefig(savename + 'Moment_9 7Hz.png', bbox_inches="'tight")
plt.show()

file2 = test + '_PointlLoad_Line2-6.npz'
PointLoad2 = np.load(file2)

Loadx_up_cl = PointLoad2['Load up_x']
Loadz_up_cl = PointLoad2['Load up_y']
M_up_cl = PointLoad2[ 'Moment_up"]

Loadx_down_cl = PointLoad2['Load_down_x']
Loadz_down_cl = PointLoad2['Load_down_y']
M_down_cl = PointLoad2[ 'Moment_down"]

Fx_up_cl = Loadx_up_cl*np.cos(beta) + Loadz_up_cl*np.sin(beta)
Fx_down_cl = Loadx_down_cl*np.cos(beta) + Loadz_down_cl*np.sin(beta)
Fx_tot_cl = Fx_up_cl + Fx_down_cl

Fz_up_cl = -Loadx_up_cl*np.sin(beta) + Loadz_up_cl*np.cos(beta)
Fz_down_cl = -Loadx_down_cl*np.sin(beta) + Loadz_down_cl*np.cos(beta)
Fz_tot_cl = Fz_up_cl + Fz_down_cl

M_tot_cl = M_up_cl + M_down_cl

Drag_up_cl = np.zeros((len(Fz_up_cl), 5))
Drag_down_cl = np.zeros((len(Fz_up_cl),5))
Drag_tot_cl = np.zeros((len(Fz_up_cl),5))

Lift_up_cl = np.zeros((len(Fz_up_cl),5))
Lift_down_cl = np.zeros((len(Fz_up_cl),5))
Lift_tot cl = np.zeros((len(Fz_up_cl),5))



Moment_up_cl = np.zeros((len(Fz_up_cl),5))
Moment_down_cl = np.zeros((len(Fz_up_cl),5))
Moment_tot_cl = np.zeros((len(Fz_up_cl),5))

Drag_up_cl = np.sum(Fx_up_cl, axis = 1)
Drag_down_cl = np.sum(Fx_down_cl, axis = 1)
Drag_tot_cl= np.sum(Fx_tot_cl, axis = 1)

Lift_up_cl= np.sum(Fz_up_cl, axis = 1)
Lift_down_cl= np.sum(Fz_down_cl, axis = 1)
Lift_tot_cl= np.sum(Fz_tot_cl, axis = 1)

Moment_up_cl= np.sum(M_up_cl, axis = 1)
Moment_down_cl= np.sum(M_down_cl, axis = 1)
Moment_tot_cl = np.sum(M_tot_cl, axis = 1)

for i in range(5):
Drag_up_cl[:,i] = Drag_up_cl[:,i] - np.mean(Drag_up_cl[:,i])
Drag_down_cl[:,i] = Drag_down_cl[:,i] - np.mean(Drag_down_cl[:,i])
Drag_tot_cl[:,i] = Drag_tot_cl[:,i] - np.mean(Drag_tot_cl[:,i])

Lift_up_cl[:,i] = Lift_up_cl[:,i]- np.mean(Lift_up_cl[:,1i])
Lift_down_cl[:,i] = Lift_down_cl[:,i] - np.mean(Lift_down_cl[:,i])
Lift_tot_cl[:,i] = Lift_tot_cl[:,i] - np.mean(Lift_tot_cl[:,i])

Moment_up_cl[:,i] = Moment_up_cl[:,i] - np.mean(Moment_up_cl[:,i])
Moment_down_cl[:,i] = Moment_down_cl[:,i] - np.mean(Moment_down_cl[:,i])
Moment_tot_cl[:,i] = Moment_tot_cl[:,i] - np.mean(Moment_tot_cl[:,i])

Nwelch = 20

Nwindow = np.round(len(t)/Nwelch)

nfft = 2**math.log2(Nwindow)

window = signal.windows.hamming(int(Nwindow))

SD_up_cl = np.zeros((1401,5))
SD_down_cl = np.zeros((1401,5))
SD_tot_cl = np.zeros((1401,5))

SL_up_cl = np.zeros((1401,5))
SL_down_cl = np.zeros((1401,5))
SL_tot_cl = np.zeros((1401,5))

SM_up_cl = np.zeros((1401,5))
SM_down_cl = np.zeros((1401,5))
SM_tot_cl = np.zeros((1401,5))

for i in range(5):

f, SD_up_cl[:,i] = signal.welch(Drag_up_cl[:,i], F, window = window, nfft = nfft)

f, SD_down_cl[:,i]= signal.welch(Drag_down_cl[:,i], F, window = window, nfft =

f, SD_tot_cl[:,i]= signal.welch(Drag_tot_cl[:,i], F, window = window, nfft = nfft)

f, SL_up_cl[:,i] = signal.welch(Lift_up_cl[:,i], F, window = window, nfft = nfft)

f, SL_down_cl[:,i] = signal.welch(Lift_down_cl1l[:,i], F,window = window, nfft =



f, SL_tot_cl[:,i] = signal.welch(Lift_tot_cl[:,i], F, window = window, nfft = nfft)
f, SM_up_cl[:,i] = signal.welch(Moment_up_cl[:,i], F, window = window, nfft = nfft)

f, SM_down_cl[:,i] = signal.welch(Moment_down_cl[:,i], F, window = window, nfft = nfft)
f, SM_tot_cl[:,i] = signal.welch(Moment_tot_cl[:,i], F, window = window, nfft = nfft)

cm = 1/2.54
fig, axs = plt.subplots(1,3,figsize=(30*cm, 12*cm))

axs[0].plot(f, SD_tot, label = 'Line 1', linewidth = 0.8)

axs[0@].plot(f, SD_tot cl[:,0], label = 'Line 2', linewidth = 0.8)
axs[@].plot(f, SD_tot cl[:,1], label = 'Line 3', linewidth = 0.8)
axs[0@].plot(f, SD_tot cl[:,2], label = 'Line 4', linewidth = 0.8)
axs[@].plot(f, SD_tot cl[:,3], label = 'Line 5', linewidth = 0.8)
axs[@].plot(f, SD_tot _cl[:,4], label = 'Line 6', linewidth = 0.8, color = 'c")
axs[@].set_title('Drag Force Spectrum', fontsize = 15)
axs[0].set_yscale('log")

axs[0].set_xscale('log")

axs[0].set_xlabel('$f$ [Hz]")

axs[0].set_ylabel('$S D(F)$")

axs[0].legend(loc = 3)

axs[0].set_x1im(00.1,100)

axs[0].set_ylim(0.00001,1)

axs[1].plot(f, SL_tot, label = 'Line 1', linewidth = 0.8)
axs[1].plot(f, SL_tot cl[:,0], label = 'Line 2', linewidth = 0.8)
axs[1].plot(f, SL_tot cl[:,1], label = 'Line 3', linewidth = 0.8)
axs[1].plot(f, SL_tot cl[:,2], label = 'Line 4', linewidth = 0.8)
axs[1].plot(f, SL_tot cl[:,3], label = 'Line 5', linewidth = 0.8)
axs[1].plot(f, SL_tot _cl[:,4], label = 'Line 6', linewidth = 0.8, color = 'c")
axs[1].set_title('Lift Force Spectrum', fontsize = 15)
axs[1l].set_yscale('log")

axs[1l].set_xscale('log")

axs[1].set_xlabel('$f$ [Hz]")

axs[1l].set_ylabel('$S_L(F)$")

axs[1l].set_x1im(00.1,100)

axs[1].set_ylim(0.00001,10)

axs[2].plot(f, SM tot, label = 'Line 1', linewidth = 0.8)
axs[2].set_title('Moment Spectrum', fontsize = 15)

axs[2].plot(f, SM tot cl[:,0], label = 'Line 2', linewidth = 0.8)
axs[2].plot(f, SM tot cl[:,1], label = 'Line 3', linewidth = 0.8)
axs[2].plot(f, SM tot cl[:,2], label = 'Line 4', linewidth = 0.8)
axs[2].plot(f, SM tot cl[:,3], label = 'Line 5', linewidth = 0.8)
axs[2].plot(f, SM tot cl[:,4], label = 'Line 6', linewidth = 0.8, color = 'c")

axs[2].set_yscale('log")
axs[2].set_xscale('log")
axs[2].set_xlabel('$f$ [Hz]")
axs[2].set_ylabel('$S_M(F)$")
axs[2].set_x1im(00.1,100)
axs[2].set_ylim(0.000001,1)

plt.tight_layout()
plt.savefig('Drag_lift _moment_all lines_9 Opengrid.png', bbox_inches="tight")
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index = cl-2
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figure()

plot(f, SD_up_cl[:,index],label = 'Upstream', linewidth = 1)
plot(f, SD_down_cl[:,index], label = ‘'Downstream', linewidth = 1)
plot(f, SD_tot_cl[:,index], label = 'Total',linewidth = 1)

title('Drag Force Spectra - Correlation line ' + str(cl), fontsize = 12)
yscale('log")

xscale('log")

xlabel('$f$ [Hz]")

ylabel("$S_L(f)$")

ylim(10**(-6),10)
xlim(1e**(-1), 10**(2))

savefig(file + 'DragSpectra_Correlationline.png', bbox_inches="tight")
show()

figure()

plot(f, SL_up_cl[:,index],label = 'Upstream', linewidth = 1)

plot(f, SL_down_cl[:,index], label = ‘'Downstream', linewidth = 1)
plot(f, SL_tot_cl[:,index], label = 'Total',linewidth = 1)

title('Lift Force Spectra - Correlation line ' + str(cl), fontsize = 12)

yscale('log")
xscale('log")
xlabel('$f$ [Hz]")
ylabel("$S_L(f)$")
legend(loc = 3)
ylim(0.0001,10)
xlim(1e**(-1), 10**(2))

savefig(file + 'LiftSpectra_Correlationline.png', bbox_inches="tight")
show()

figure()

plot(f, SM up_cl[:,index],label = 'Upstream', linewidth = 1)

plot(f, SM down_cl[:,index], label = ‘'Downstream', linewidth = 1)
plot(f, SM tot cl[:,index], label = 'Total',linewidth = 1)

title('Moment Spectra - Correlation line ' + str(cl), fontsize = 12)

yscale('log")
xscale('log")
xlabel('$f$ [Hz]")
ylabel("$S_L(f)$")
legend(loc = 3)
ylim(10**(-6),10)

savefig(file + 'MomentSpectra_Correlationline.png', bbox_inches="tight")
show()

Nwelch = 20

Nwindow = np.round(len(t)/Nwelch)

nfft = 2**math.log2(Nwindow)

window = signal.windows.hamming(int(Nwindow))
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np.mean(u)
W =w - np.mean(w)

, Su signal.welch(u, F, window = window, nfft nfft)

, Sw = signal.welch(w, F, window = window, nfft nfft)

, Swu = signal.csd(w, u, F,window = window, nfft = nfft)
, Suw = signal.csd(u, w, F, window = window, nfft = nfft)

plt.figure()

plt.plot(f, Su, label = 'Su', linewidth
plt.plot(f, Sw, label = 'Sw', linewidth
plt.title( Turbulence spectra')
plt.legend(loc = 'best")
plt.yscale('log")

plt.xscale('log")

plt.xlabel('$f$ [Hz]")
plt.ylabel('$S_L(f)$")

plt.savefig(file + 'TurbulenceSpectra.png', bbox_inches="tight")
plt.show()

0.8)
0.8)

f, SDu = signal.csd(Drag_tot, u, F, window = window, nfft = nfft)
f, SLu = signal.csd(Lift_tot, u, F, window = window, nfft = nfft)
f, SMu = signal.csd(Moment_tot, u, F, window = window, nfft = nfft)

f, SDw = signal.csd(Drag_tot, w, F, window = window, nfft = nfft)
f, SLw = signal.csd(Lift_tot, w, F, window = window, nfft = nfft)
f, SMw = signal.csd(Moment_tot, w, F, window = window, nfft = nfft)

f, SDu_up = signal.csd(Drag_up, u, F, window = window, nfft = nfft)
f, SLu_up = signal.csd(Lift_up, u, F, window = window, nfft = nfft)
f, SMu_up = signal.csd(Moment_up, u, F, window = window, nfft = nfft)

f, SDw_up = signal.csd(Drag_up, w, F, window = window, nfft = nfft)
f, SLw_up = signal.csd(Lift_up, w, F, window = window, nfft = nfft)
f, SMw_up = signal.csd(Moment_up, w, F, window = window, nfft = nfft)

f, SDu_down
f, SLu_down
f, SMu_down

signal.csd(Drag_down, u, F, window = window, nfft = nfft)
signal.csd(Lift_down, u, F, window = window, nfft = nfft)
signal.csd(Moment_down, u, F, window = window, nfft = nfft)

f, SDw_down signal.csd(Drag_down, w, F, window = window, nfft nfft)
f, SLw_down signal.csd(Lift_down, w, F, window = window, nfft = nfft)
f, SMw_down = signal.csd(Moment_down, w, F, window = window, nfft = nfft)

Au_drag = SD_tot/Su
Aw_1ift = SL_tot/Sw
Aw_moment = SM_tot/Sw

cm = 1/2.54
fig, axs = plt.subplots(1,3,figsize=(34*cm,12*cm))



plt.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.3, hspace=0.2)

axs[@].plot(f, Au_drag, label = '$\chi u - Drag$')
axs[0].set_xlabel('f [Hz]")
axs[0].set_ylabel('Admittance $[N*2/(m/s)"2]%$")
axs[0].set_yscale('log")

axs[0].set_xscale('log")

axs[0].legend(loc = 2)

axs[0].set_x1im(1, 10**2)
axs[0].set_ylim(10**(-2), 10**5)

axs[1].plot(f, Aw_lift, label = "$\chi w - Lift$ ")
axs[1].set_xlabel('f [Hz]")

axs[1].set_ylabel('Admittance $[N*2/(m/s)"2]%$")
axs[1l].set_yscale('log")

axs[1l].set_xscale('log")

axs[1].legend(loc = 2)

axs[1].set_x1im(1, 10**2)

axs[1].set_ylim(10**(-2), 10**5)

ttl = axs[1].set_title("General Admittance Functions", fontsize = 14)
ttl.set_position([©.5, 1.1])

axs[2].plot(f, Aw_moment, label = "$\chi w - Moment$')
axs[2].set_xlabel('f [Hz]")
axs[2].set_ylabel('Admittance $[N*2/(m/s)"2]%$")
axs[2].set_yscale('log")

axs[2].set_xscale('log")

axs[2].legend(loc = 2)

axs[2].set_x1im(1, 10**2)

axs[2].set_ylim(10**(-2), 10**5)

plt.tight_layout()
plt.savefig(file + 'GeneralAdmittance 7 Opengrid.png', bbox_inches="tight")

Cd = 0.667
Cl = -0.1558
Cm = -0.0214
dCd = 2.002

dCl = -0.4673
dCm = -0.0642

ab = 2*Cd
aL = 2*Cl
aM = 2*Cm
bD = (dCd-Cl)
bL = (dCl+Cd)
bM = dCm

fred = (f*B)/V
sears = np.zeros(len(f))



for i in range(len(f)):
sears[i] = 1/(142*np.pi**2*fred[i])

AL = SL_tot/((0.5%rho*B*V)**2%(aL**2*Su + bL**2*Sw))
ALw = (Su*SLw-Suw*SLu)/((0.5*rho*B*V)*(bL*(Su*Sw-Swu*Suw)))
ALu = (Sw*SLu-Suw*SLw)/((0.5*rho*B*V)*(aL*(Su*Sw-Swu*Suw)))

AD = SD_tot/((@.5*rho*B*V)**2*(aD**2*Su+bD**2*Sw))
ADw = (Su*SDw-Suw*SDu)/((0.5*rho*B*V)*(bD*(Su*Sw-Swu*Suw)))
ADu = (Sw*SDu-Suw*SDw)/((0.5*rho*B*V)*(aD*(Su*Sw-Swu*Suw)))

AM = SM_tot/((0.5*rho*B**2%V)**2%(aM**2*Su+bM**2*Sy))
AMw = (Su*SMw-Suw*SMu)/((0.5*rho*B**2*V)*(bM* (Su*Sw-Swu*Suw)))
AMu = (Sw*SMu-Suw*SMw)/((0.5*rho*B**2*V)*(aM* (Su*Sw-Swu*Suw)))

AL_cl = SL_tot_cl[:,0]/((0.5*%rho*B*V)**2*(aL**2*Su+bL**2*Sw))
AD_cl = SD_tot_cl[:,0]/((0.5*%rho*B*V)**2*(aD**2*Su+bD**2*Sw))
AM cl = SM_tot_cl[:,0]/((0.5%rho*B**2*V)**2* (gM**2*Su+bM**2*Sw))

plt.figure()

plt.plot(fred, sears, label = 'Sears', linewidth = 0.6)
plt.plot(fred, AD, label = '$\chi D$',linewidth = 0.6 )
plt.plot(fred, abs(ADw)**2, label = '$\chi {Dw}$', linewidth =
plt.plot(fred, abs(ADu)**2, label = '$\chi {Du}$', linewidth =
plt.xlabel('$f* = \dfrac{fB}{V}$")

plt.ylabel('$|\chi_i|~2$")

plt.xlim(e0.1, 10)

plt.ylim(1e**(-8), 10**(5))

plt.yscale('log")

plt.xscale('log")

plt.legend(loc = 2, labelspacing = 0.2)

plt.title( 'Admittance functions - Drag')

plt.tight_layout()

plt.savefig(test + 'Admittance _Drag 7 Opengrid.png', bbox_inches="tight")
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plt.figure()

plt.plot(fred, sears, label = 'Sears', linewidth = 0.6)
plt.plot(fred, AL, label = '$\chi L$', linewidth = 0.6)
plt.plot(fred, abs(ALw)**2, label = '$\chi {Lw}$', linewidth =
plt.plot(fred, abs(ALu)**2, label "$\chi_{Lu}$', linewidth
plt.xlabel('$f* = \dfrac{fB}{V}$")
plt.ylabel('$|\chi_i|~2$")

plt.legend(loc = 2, labelspacing = 0.2)

plt.xlim(e.1, 10)

plt.ylim(10**(-4), 10**(5))

plt.yscale('log")

plt.xscale('log")

plt.title( 'Admittance functions - Lift")

plt.tight_layout()

plt.savefig(test + 'Admittance_Lift_7 Opengrid.png', bbox_inches="'tight")
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plt.figure()

plt.plot(fred, sears, label = 'Sears', linewidth = 0.6)
plt.plot(fred, AM, label = '$\chi_M$', linewidth = 0.6)
plt.plot(fred, abs(AMw)**2, label = '$\chi {Mw}$', linewidth =
plt.plot(fred, abs(AMu)**2, label = '$\chi {Mu}$', linewidth =
plt.xlabel('$f* = \dfrac{fB}{V}$")

plt.ylabel('$|\chi_i|~2$")

plt.legend(loc = 2, labelspacing = 0.2)

plt.xlim(0.1, 10)

plt.ylim(1e**(-4),10**(5))

plt.xscale('log")

plt.yscale('log")

plt.title( 'Admittance functions - Moment")

plt.tight_layout()

plt.savefig(test + 'Admittance_Moment_ 7 Opengrid.png', bbox_inches="tight")
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Cd_up = 0.2784

Cl_up = -0.1359

Cm_up = -0.03622
dcd_up = 0.8351

dCl up = -0.4078
dCm_up = -0.1087

aD_up = 2*Cd_up

al_up = 2*Cl_up

aM_up = 2*Cm_up

bD_up = (dCd_up-Cl_up)
bL_up = (dCl_up+Cd_up)
bM_up = dCm_up

fred_up = (f*B)/V
Sears = 1/(1+2*np.pi**2*fred_up)

AL_up = SL_up/((@.5*rho*B*V)**2*(aL_up**2*Su + bL_up**2*Sw))
ALw_up (Su*SLw_up-Suw*SLu_up)/((9.5*rho*B*V)*(bL_up*(Su*Sw-Swu*Suw)))
ALu_up (Sw*SLu_up-Suw*SLw_up)/((0.5*rho*B*V)*(aL_up*(Su*Sw-Swu*Suw)))

AD_up = SD_up/((©.5*rho*B**2*V)**2*(aD up**2*Su+bD_up**2*Sw))
ADw_up (Su*SDw_up-Suw*SDu_up)/((0.5*rho*B*V)*(bD_up* (Su*Sw-Swu*Suw)))
ADu_up (Sw*SDu_up-Suw*SDw_up)/((0.5*rho*B*V)*(aD_up* (Su*Sw-Swu*Suw)))

AM_up = SM _up/((0.5%rho*B**2*V)**2*(gM**2*Su+bM**2*Sw) )
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plt.figure()
plt.plot(fred, Sears, label = 'Sears', linewidth = 1)



plt.plot(fred, AD_up, label = '$\chi D$', linewidth = 1)
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plt.plot(fred, abs(ADu)**2, label = '$\chi {Du}$', linewidth
plt.xlabel('$f* = \dfrac{fB}{V}$")
plt.ylabel('$|\chi_i|~2$")

plt.yscale('log")

plt.xscale('log")

plt.xlim(0.1, 10)

plt.ylim(10**(-8),10**(5))

plt.legend(loc = 2, labelspacing = 0.2)

plt.title( 'Admittance functions - Drag upstream')
plt.savefig(test + 'Admittance_Drag upstream_7 Opengrid.png', bbox_inches="tight")
plt.show()
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Cd_d = 0.4049
Cl.d = -0.0269
Cm_d = 0.0133
dcd_d = 1.2148
dcl d = -0.0806
dcm d = 0.04
aD_d = 2*Cd_d
alL_d = 2*Cl_d

aM_d = 2*Cm_d



bD_d = (dCd_d-Cl_d)
bL_d = (dCl_d+Cd_d)
bM_d = dcm_d

fred_d = (f*B)/V
Sears= 1/(1+2*np.pi**2*fred_d)

AL_d = SL_down/((@.5*%rho*B*V)**2%(aL_d**2*Su + bL_d**2*Sw))
ALw_d = (Su*SLw_down-Suw*SLu_down)/((0.5*rho*B*V)*(bL_d*(Su*Sw-Swu*Suw)))
ALu_d = (Sw*SLu_down-Suw*SLw_down)/((0.5*rho*B*V)*(aL_d*(Su*Sw-Swu*Suw)))
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plt.figure()
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cl =6
index = cl-2

f, S_ D tot = signal.csd(Drag_tot, Drag tot_cl[:,index], F, window = window, nfft = nfft)
Coh_D_tot = abs(S_D_tot)**2/(SD_tot*SD_tot_cl[:,index])

f, S D up = signal.csd(Drag_up, Drag up_cl[:,index], F, window = window, nfft = nfft)
Coh_D_up = abs(S_D_up)**2/(SD_up*SD_up_cl[:,index])

f, S_D down = signal.csd(Drag_down, Drag _down_cl[:,index], F, window = window, nfft = nfft)
Coh_D_down = abs(S_D_down)**2/(SD_down*SD_down_cl[:,index])

f, S_L tot = signal.csd(Lift_tot, Lift _tot cl[:,index], F, window = window, nfft = nfft)
Coh_L_tot = abs(S_L_tot)**2/(SL_tot*SL_tot_cl[:,index])

f, S L up = signal.csd(Lift_up, Lift up_cl[:,index], F, window = window, nfft = nfft)
Coh_L _up = abs(S_L_up)**2/(SL_up*SL_up_cl[:,index])

f, S_L down = signal.csd(Lift_down, Lift _down_cl[:,index], F, window = window, nfft = nfft)
Coh_L_down = abs(S_L_down)**2/(SL_down*SL_down_cl[:,index])

f, S_M tot = signal.csd(Moment_tot, Moment_tot_cl[:,index], F, window = window, nfft = nfft)
Coh_M_tot = abs(S_M tot)**2/(SM_tot*SM tot_cl[:,index])

f, S_Mup = signal.csd(Moment_up, Moment_up_cl[:,index], F, window = window, nfft = nfft)
Coh_M up = abs(S_M up)**2/(SM_up*SM_up_cl[:,index])

f, S_M down = signal.csd(Moment_down, Moment_down_cl[:,index], F, window = window, nfft = nfft)
Coh_M_down = abs(S_M down)**2/(SM_down*SM_down_cl[:,index])

fit_d = poly.polyfit(f, Coh_D_tot, deg = 5)
fit_coh_d = poly.Polynomial(fit_d)(f)



fit_1 = poly.polyfit(f, Coh_L_tot, deg = 5)
fit_coh_l= poly.Polynomial(fit_1)(F)
fit_m = poly.polyfit(f, Coh_M_tot, deg = 5)
fit_coh_m = poly.Polynomial(fit_m)(f)

y = [10,25,55,105,220]

cm = 1/2.54
fig, axs = plt.subplots(1,3,figsize=(38*cm,8%cm))
plt.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.3, hspace=0.2)

axs[0].plot(f,Coh_D _up, label = 'Upstream', linewidth = 0.8)
axs[0].plot(f, Coh_D _down, label = 'Downstream', linewidth = 0.8)
axs[0@].plot(f,Coh_D_tot, label = 'Total', linewidth = 0.8)

axs[@].plot(f, fit_coh_d, label = 'Total - Fitted', color = 'darkgreen' )
axs[0].set_ylim(0,1)

axs[0].set_x1im(0,100)

axs[0].set_ylabel('$Coh D$")

axs[0].set_xlabel('f [Hz]")

axs[@].set_title('Drag-coherence, $\Delta y = $'+ str(y[index]) + 'mm")

axs[1].plot(f,Coh_L_up, label = 'Upstream', linewidth = 0.8)

axs[1].plot(f, Coh_L_down, label = 'Downstream', linewidth = 0.8)
axs[1].plot(f,Coh_L_tot, label = 'Total', linewidth = 0.8)

axs[1].plot(f, fit_coh_1, label = 'Total - Fitted curve', color = ‘'darkgreen' )
axs[1].set_ylim(0,1)

axs[1].set_x1im(0,100)

axs[1].set_ylabel('$Coh _L$")

axs[1].set_xlabel('f [Hz]")

axs[1].set_title('Lift-coherence, $\Delta v = $'+ str(y[index]) +'mm")

axs[2].plot(f,Coh_M up, label = 'Upstream', linewidth = 0.8)
axs[2].plot(f, Coh_M down, label = 'Downstream', linewidth = 0.8)
axs[2].plot(f,Coh_M tot, label = 'Total', linewidth = 0.8)

axs[2].plot(f, fit_coh_m, label = 'Fitted curve', color = 'darkgreen' )
axs[2].set_ylim(0,1)

axs[2].set_x1im(0,100)

axs[2].set_ylabel('$Coh_M$")

axs[2].set_xlabel('f [Hz]")

axs[2].set_title('Moment-coherence, $\Delta y = $'+ str(y[index])+'mm")
axs[2].legend(loc = 1)

plt.savefig('New_Coherence_9 7Hz_line'+ str(cl), bbox_inches="tight")



C.1.1 Functions for Importing Processed Matlab Data

Function for importing the processed data from Matlab to Python.
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Created on Sun May 15 ©9:23:11 2022

@author: marth

import scipy.io
import numpy as np

def ImportMeasuredData(filename):

Parameters

filename : Matlab filename with processed data

Returns

Pitotprobe : Velcity measured by Pitot Probes [m/s]

Displacements : Measured ux[m], uz[m] and u_theta[rad]

Forces_global : Forces in global coordinates in all four load celles [N, N, N, Nm, Nm, Nm] x4

Forces_cr : Forces in global coordinates for all load cells with center of rotation as reference position [N, N, N, Nm, Nm, Nm] x4
Cobra : Cobra probe wind velocity in three directions u[m/s], v[m/s], w[m/s] and pressure[Pa]

Temperature : Temperature in celsius

Frequency : Logging frequency in Hz

AirDensity : Air density in kg/m”3

mat = scipy.io.loadmat('C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/Python/ProcessedMatFiles/' + filename)
NTNUWT = mat.get( 'NTNUWT")

Data = NTNUWT[@][0][4]
ProcessedData = Data[@][@][2]
Root = Data[@][e][@]

Pitotprobe = ProcessedData[@][@][1]
Displacements = ProcessedData[@][1][1]
Forces_global = ProcessedData[@][2][1]
Forces_cr = ProcessedData[@][3][1]

Temperature = Root[@][@][1][0][11][1][@][e][@]
Temperature = Temperature.split('A")
Temperature = float(Temperature[0])

Frequency = Root[@][@][1]1[e][4][1][e][e][e]
Frequency = Frequency.split()

Frequency = Frequency[0]

Frequency = int(Frequency.replace(',',"'."))

AirDensity = Root[@][@][1][@][9][1][@][@][@]
AirDensity = AirDensity.split()

AirDensity = AirDensity[®0]

AirDensity = float(AirDensity.replace(',',"'."))

f = filename.split('AGTD21_S2-G1_Pressure_CPD105_")

f = 'Cobra_AGTD21_S2-G1_Pressure_' + f[1]

file = scipy.io.loadmat('C:/Users/marth/OneDrive - NTNU/Masteroppgave varen 2022/Python/Cobra_AGTD21_S2-G1_all/' + )
cobra = file.get('cobra')

cobra[@][0][5]
cobra[@][0][6]
cobra[@][0][7]
cobra[@][0][9]

+ =< c
non

u = u.mean(axis = 1)
v = v.mean(axis = 1)
W = w.mean(axis = 1)
Cobra = np.array([u[:63800],v[:63800],w[:63800]])

return Pitotprobe, Displacements, Forces_global, Forces_cr, Temperature, Frequency, AirDensity, Cobra, t



C.1.2 Static load coefficients

Function for calculation of the static coefficients.
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Created on Thu May 19 15:02:18 2022

@author: marth

def StaticCoeffs(Fd, F1l, Fm, rho, V):

Parameters

Fd : Drag force
F1 : Lift force
Fm : Moment force
rho : Air Density
V : Wind velocity

Returns

CD : Static drag coefficient
CL : Static lift coefficient
CM : Static moment coefficient

D = 0.05
B =10.74
L =2.64
CD = (Fd/D)/(8.5*rho*V**2*L)

CL
M

(F1/B)/(@.5*rho*V**2*L)
(Fm/B**2)/(0.5*rho*V**2*L)

return CD, CL, CM
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