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Abstract

Understanding chemistry is essential for the optimization of reactions
and the development of new reactions. Chemical reactions can be in-
vestigated by simulations without wasting any precious materials or be
influenced by experimental artifacts and four of the six papers included
in this thesis use simulations to investigate a wide range of chemistry.
They investigate the effect of breaking assumptions of enzymatic assays
for covalent inhibitors, the permeation of ions through a membrane, the
effect of an oncogenic mutation on protein movements, and the depro-
tonation pathways for formic acid in atmospheric water droplets.

One of the most efficient ways of simulating chemical reactions is
replica exchange transition interface sampling (RETIS), where we focus
the simulation on the reaction without wasting computational resources
on simulating either the reactants or the products. In three of the six pa-
pers we further developed the RETIS algorithms and software, we inter-
faced with more molecular dynamics software, introduced more efficient
Monte Carlo moves, and parallelized the RETIS algorithm. All of these
increase the speed of RETIS simulations by orders of magnitude.

Additionally, one of the papers specifically focuses on enhancing the
analysis of RETIS simulations with machine learning (ML) algorithms. For
this we introduce a new data representation that is translational, rota-
tional and atom index invariant without any preselection of important
variables or losing the ability to regenerate a 3D structure from it. This
representation is then used with a human understandable ML algorithm,
Decision Trees (DTs). The paper also introduces a way of investigating
different initial splits of DTs with the help of random forests. This helps
increasing the speed at which we can do analysis of RETIS simulations,
while also reducing the risk of hypothesis bias.
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1 Introduction

The first thing you would think of chemistry is that it is a very experimen-
tal research field where a lot is done inside laboratories. While a lot of
theories exist, finding new reactions or molecules very often still consist
of trying known reactions with slightly altered reactants to see if you get
the expected product. Or, in biochemistry, if you want to test how good
a new drug binds to the intended target you might need to do multiple
experiments to find the right conditions. This can waste a lot of precious
material and can be suspect to experimental artifacts. In this case, sim-
ulations can help to investigate what changing certain parameters would
do without actually having to do the experiment.

In paper D we used did exactly that. We used numerical simulations to
investigate the effect of breaking critical assumptions when using certain
analysis formulas for calculating inhibitor potency of covalent inhibitors,
without having to do the experiments. We also made these simulation
scripts available in running environments for the readers via binder1 so
they can easily understand the limits for their own experiments.

Another type of simulation, Molecular Dynamics (MD), allows us to
look at reactions at an atomistic level and femtosecond timescale. In
these simulations we simulate what happens during chemical reactions
and biochemical processes and can try to understand them. However,
most reactions and processes are so-called rare-events. For example, if a
reaction takes 100 ns to complete, but only happens once every second.
Then we are only spending 0.0001% of the time simulating the interesting
part (the reaction), while spending most time looking at either the reac-
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tant or product states. Also, simulating a second of a process still takes
up to 28 years even on the fastest available supercomputer, which can
simulate 100 µs per day.2

Transition Path Sampling (TPS)3 simulations solve this inefficiency by
focusing theMD to only simulate the reaction paths. This allows us to still
have a detailed understanding of the reaction, without wasting simulation
time on things we are not interested in.

In paper F we used multiple state TPS to investigate the dynamic be-
havior of a protein, and the differences compared with an oncogenic mu-
tant. This would not have been possible with just MD.

An important property for reactions that wewould like to compute are
reaction rates. Reaction rates are used for predicting drug effectiveness
as in paper D andwhichmolecules/molecular structureswill be produced
under certain reaction conditions.4 TPS allows us to compute rates with
an algorithm that is based on umbrella sampling, but it requires long sim-
ulations for complex pathways.5

Instead we use (Replica Exchange) Transition Interface Sampling
((RE)TIS),6,7 where we use Monte Carlo (MC) algorithms to generate
ensembles of paths that are forced to proceed further and further along
the reactions, until reaction completion. We then can compute the rate
by computing the fraction of paths in an ensemble that would also be
valid for an ensemble that is forced to be further along the reaction and
multiplying all these fractions. The TIS algorithm is at least twice as
efficient for computing rates than the TPS method.

The Replica Exchange move is the main difference between TIS and
RETIS. This move allows us to swap information between ensembles for
’free’ (without running more MD).

There are two open-source implementations of RETIS simulations,
OpenPathSampling (OPS),8,9 and PyRETIS.10,11 Recent implementations
in improvements of our software, PyRETIS, are described in paper A.
One of the improvements mentioned is that we added an interface with
OpenMM.12 This allows us to run the MD on GPUs, accelerating these
simulations a 30-fold.13

While increasing the MD speed helps us getting the answer faster in
RETIS simulations, you can also increase the efficiency of howwe use this
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MD. This has been done by several newMCprotocols, further focusing the
MD to certain regions. These protocols use new MC moves for generat-
ing paths such as Shooting from the Top,14 Stone Skipping,15 and Wire
Fencing.16

In paper B we developed and successfully applied 2 new MC moves,
the mirror-move and the target-swap-move, that greatly increased the
sampling efficiency for investigating permeants traveling through amem-
brane.

While RETIS uses CPUs more efficient than TIS, it still has two impor-
tant limitations: First, while TIS could run each ensemble independently
and at the same time, the replica exchange moves in RETIS makes that
only possible until two ensembles have to swap (exchange their replicas).
At that point, the fast ensemble has to wait for the slow one to finish.17

Even this algorithm is hard to implement and both OPS and PyRETIS im-
plement RETIS as a sequential algorithm.

Secondly, you would like to do an infinite amount of swaps between
the ensembles before running MD as this would give the most ’free’ infor-
mation as possible. However, this would take an infinite amount of time
where it would only resample data and not generate any new data and is
therefore not useful in practice. In both OPS and PyRETIS it is customary
to have a 50% probability of doing either a swapping move or a shooting
move.

In paper E we break both of these limitations. We solve the paral-
lelization issue by reformulating the detailed-balance equation to allow
doing swaps without waiting on any ensemble to finish. This reformula-
tion speeds up our simulations depending on how many computers you
have available and even distributes these more efficiently than either the
TIS or RETIS algorithm. We also increased the probability of swaps to in-
finity with an infinite swapping approach,18 but reformulated it into the
computation of permanents. This reformulation circumvents the steep
factorial scaling reported before, and solves the second limit of RETIS.
We named this new application ∞RETIS. With this we greatly increase
how fast we get an answer from our RETIS simulations.

After RETIS simulations are completed we can compute the rate, but
we also would like to understand what environments trigger a chemical
reaction. To understand reactions from RETIS simulations, you normally
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look at the generated paths. However, with the increase in computing
power we now can generate so many reaction paths, that you can find
proof for almost any (reasonable) hypothesis in your data. Thismeans that
there is a risk of hypothesis bias, where not the most common reason for
a reaction is reported, but only the ones you expected to find beforehand.

In paper C we tried to solve this problem. We developed a data repre-
sentation that is invariant to translation, rotation, and atom-indices and
requires minimal user input to prevent hypothesis-bias. This was then
used to train a decision tree (DT) on the question “does this lead to the
deprotonation of formic acid?”. Decision trees are interpretable machine
learning algorithms, thus after training this algorithm we could under-
stand what environments would trigger this reaction.

The thesis starts with a select introduction to molecular dynamics,
path sampling and decision trees. The following chapters present the im-
provements made to the path-sampling simulations, the usage of human
understandable machine learning for the analysis of simulations. The ap-
plications of simulations are presented in chapter 5 and the last chapter
presents an outlook.

1.1 List of papers included in this thesis

Paper A:
PyRETIS 2: An improbability drive for rare events
Enrico Riccardi, Anders Lervik, Sander Roet, Ola Aarøen,
and Titus S. van Erp
J. Comput. Chem. 2020, 41, 370-377,
doi: 10.1002/jcc.26112

Paper B:
Exact non-Markovian permeability from rare event simulations
An Ghysels, Sander Roet, Samaneh Davoudi, and Titus S. van Erp
Phys. Rev. Research 2021, 3, 033068,
doi: 10.1103/PhysRevResearch.3.033068
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Paper C:
Chemistrees: Data-Driven Identification of Reaction Pathways via
Machine Learning
Sander Roet, Christopher D. Daub, and Enrico Riccardi
J. Chem. Theor. Comput. 2021, 17, 6193-6202,
doi: 10.1021/acs.jctc.1c00458

Paper D:
A Comprehensive Guide for Assessing Covalent Inhibition in Enzymatic
Assays Illustrated with Kinetic Simulations
Elma Mons, Sander Roet, Robert Q. Kim, and Monique P.C. Mulder
Current Protocols 2022, 2, e419,
doi: 10.1002/cpz1.419

Paper E:
Exchanging replicas with unequal cost, infinitely and permanently
Sander Roet, Daniel T. Zhang, and Titus S. van Erp
arXiv preprint arXiv:2205.12663v1 [physics.comp-ph]
doi: 10.48550/arXiv.22505.12663

Paper F:
Path sampling simulations reveal how the Q61L mutation alters the dy-
namics of KRas
Sander Roet, Ferry Hooft, Peter G. Bolhuis, David W.H. Swenson, and
Jocelyne Vreede
Manuscript





2 Theoretical background

This chapter contains a highly selective description of the theories that
are required background knowledge for the rest of the thesis. Every sec-
tion ends with a proposed reference for recent developments or greater
understanding.

2.1 Molecular Dynamics

Molecular Dynamics (MD) allows us to simulate molecules at an atomistic
level. It involves a repeating algorithm thatmoves the atoms through time
by solvingNewtons equations ofmotion. Themost simple algorithm is the
Euler algorithm, but it is neither time symmetric nor area preserving, so
it is not suitable for equilibrium simulations.

The simplest time symmetric algorithm is the so called Leap-Frog al-
gorithm.19 However, the velocities are offset by half a time step from the
positions, so it does not define the velocities and positions at the same
time. This can be solved by doing a half step velocity update, which is not
practical in path sampling codes. Therefore the standard MD algorithm
for path sampling is the velocity-Verlet algorithm,20 which consists of the
following steps:

7
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vi(t+
1

2
∆t) = vi(t) +

1

2
ai(t)∆t

xi(t+∆t) = xi(t) + vi(t+
1

2
∆t)∆t

ai(t+∆t) =
Fi(x(t+∆t))

mi

vi(t+∆t) = vi(t+
1

2
∆t) +

1

2
ai(t+∆t)∆t

where ∆t is the time step, xi(t) is the position of atom i at time t, x(t) is
the position vector of all atoms at time t, vi(t) is the velocity of atom i at
time t, ai(t) is the acceleration of atom i at time t, Fi(x(t)) is the force on
atom i, and mi is the mass of atom i.

The forces for the atoms can be computed either via a force field, or
from quantum chemical calculations.21,22 MD allows us to simulate trajec-
tories were we can see atoms move through time.

More information about Molecular Dynamics can be found in ref. 23,
and an investigation on the effect of integrator splitting (like done here
for the velocity updates) can be found in ref. 24.

2.2 Monte Carlo

If we are only interested in equilibrium properties and don’t care about
the dynamics, we can use a Monte-Carlo algorithms instead.25 The basic
algorithm is as follows:

1. Generate a new state S(n), possibly from the old state S(o).

2. Calculate the acceptance probability Pacc(S
(o) → S(n))

3. Draw a random number, r in [0, 1)

4. If r < Pacc(S
(o) → S(n)) accept S(n) and count it. Else throw away

S(n) and recount S(o). Go to step 1

If wewant to sample an equilibriumdistributionwithMC then the number
of moves out of the old state to the new state should be balanced by the
moves to the old state from the new state:

ρ(S(o))π(S(o) → S(n)) = ρ(S(n))π(S(n) → S(o)) (2.1)
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where ρ(S(o)) is the equilibrium distribution of S(o) and π(S(o) → S(n)) is
the probability of going from S(o) to S(n), given a set of MC moves.

This balance is normally enforced by Pacc(S
(o) → S(n)) and if we use

the Metropolis-Hastings26 algorithm it is defined as

Pacc(S
(o) → S(n)) = min

[
1,

ρ(S(n))Pgen(S
(n) → S(o))

ρ(S(o))Pgen(S(o) → S(n))

]
(2.2)

where Pgen(S
(o) → S(n)) is the probability of generating S(n) from S(o).

If this is equal toPgen(S
(n) → S(o)) one could use the less generalmetropo-

lis25 acceptance instead:

Pacc(S
(o) → S(n)) = min

[
1,

ρ(S(n))

ρ(S(o))

]
(2.3)

More information about Monte Carlo sampling can be found in ref. 23.

2.3 Transition Path Sampling

Transition Path Sampling3 (TPS) is the basis of all path sampling algo-
rithms in this thesis. The main idea is that we focus the MD by applying
MC to transition paths.

Firstly, paths are a sequence of frames of phase points obtained from
a MD simulation. For a path of length L:

XL = (x0, x1, · · · , xL−1)

where X is a path and xi is a frame obtained from MD (in order). For any
path, the path probability ρ(XL) is;

ρ(XL) =
1

Z
ρ(x0)

L−2∏

i=0

P (xi → xi+1)

where P (xi → xi+1) is the probability of generating frame xi+1 from frame
xi, and Z is a normalization constant.

A transition path is a path that starts with a frame in state A (com-
monly the reactant state) and ends with a frame in state B (commonly the
product state). To check this we define the following indicator function:

hA(xi) =




1, if xi in state A

0, otherwise
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Similarly we can define hB for state B and the path probability of a tran-
sition path becomes

Ptps(XL) = hA(x0)hB(xL−1)ρ(XL)

From here we are going to drop the subscript L for the paths. The accep-
tance probability for TPS then becomes:

Pacc(X
(o) → X(n)) = min

[
1,

hA(x
(n)
0 )hB(x

(n)
L−1)ρ(X

(n))Pgen(X
(n) → X(o))

hA(x
(o)
0 )hB(x

(o)
L′−1)ρ(X

(o))Pgen(X(o) → X(n))

]

where theL′ is to indicatate that the length can be different between x
(n)
L−1

and x
(o)
L′−1. If we then assume that the old path is a valid transition path

hA(x
(o)
0 ) = hB(x

(o)
L′−1) = 1

This leaves us with

Pacc(X
(o) → X(n)) = min

[
1,

hA(x
(n)
0 )hB(x

(n)
L−1)ρ(X

(n))Pgen(X
(n) → X(o))

ρ(X(o))Pgen(X(o) → X(n))

]

(2.4)
where Pgen depends on the way we generate a new path from an old path.

One of the common ways of generating a new path is the so-called
shooting move. In this move we:

1. select a random frame from X(o), x

2. change the velocities of x, to make frame x′

3. integrate from x′ backwards in time until you hit a stable state

4. integrate from x′ forward in time until you hit a stable state and add
it to the backward sub-trajectory to form a new trajectory, X(n)

Steps 3 and 4 depend on the MD, so Pgen can be split into.

Pgen(X
(o) → X(n)) = Psel(x|X(o))Pvel(x → x′)PMD(X

(n)|x′)

where Psel(x|X(o)) is the probability of selecting frame x given the old tra-
jectoryX(o), Pvel(x → x′) is the probability of altering the velocities of x to
the velocities of x′, and PMD(X

(n)|x′) is the probability of generating X(n)

from x′. As we assume microscopic reversibility;

ρ(x′)PMD(X
(n)|x′) = ρ(X(n))
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this leads to the following

Pgen(X
(o) → X(n)) =

Psel(x|X(o))Pvel(x → x′)ρ(X(n))

ρ(x′)

Filling this in eq 2.4, becomes

Pacc(X
(o) → X(n)) = min

[
1,

hA(x
(n)
0 )hB(x

(n)
L−1)Psel(x

′|X(n))Pvel(x
′ → x)ρ(x′)

Psel(x|X(o))Pvel(x → x′)ρ(x)

]

(2.5)

If we select the shooting point as a random frame not in a stable state,

Psel(x|X(o)) =
1

len(X(o))− 2

where len(X(o)) is the length of trajectory X(o), including the endpoints
in the stable states. Furthermore, the probability of a frame can be split
in the probability of the coordinates, ρ(r), and the probability of the ve-
locities, ρ(v);

ρ(x) = ρ(r)ρ(v)

and
ρ(x′) = ρ(r′)ρ(v′)

If the new velocities are sampled from aMaxwell-Boltzmann distribu-
tion, then;

Pvel(x → x′) = ρ(v′)

Filling this in 2.5 leads to

Pacc(X
(o) → X(n)) = min

[
1,

hA(x
(n)
0 )hB(x

(n)
L−1)(len(X

(o))− 2)ρ(v)ρ(r)ρ(v′)

(len(X(n))− 2)ρ(v′)ρ(r)ρ(v)

]

(2.6)

If the coordinates are not altered, so r = r′, this can be simplified to
the standard flexible length shooting acceptance:

Pacc(X
(o) → X(n)) = min

[
1,

hA(x
(n)
0 )hB(x

(n)
L−1)(len(X

(o))− 2)

len(X(n))− 2

]
(2.7)

One small comment, len(X(n)) = 2 should never happen as at least 1 frame
outside of the stable states from the old trajectory should be part of the
new trajectory.
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If we start by sampling a random number, instead of following the se-
quence as stated in the start of section 2.2, we can know beforehand what
the maximum length of the new path is allowed to be. This can be use-
ful because we can then stop long paths that would have been rejected
anyway. A path is accepted when

r < Pacc(X
(o) → X(n)) (2.8)

where r is a random number in [0, 1), we can replace Pacc(X
(o) → X(n)) via

eq. 2.7

r < min

[
1,

hA(x
(n)
0 )hB(x

(n)
L−1)(len(X

(o))− 2)

len(X(n))− 2

]
(2.9)

as r is always less than 1, only the right element of the min [· · · ] can lead
to a number smaller than r

r <
hA(x

(n)
0 )hB(x

(n)
L−1)(len(X

(o))− 2)

len(X(n))− 2
(2.10)

this can be rearranged into

len(X(n))− 2 <
hA(x

(n)
0 )hB(x

(n)
L−1)(len(X

(o))− 2)

r
(2.11)

if the path is assumed to be a valid transition path, hA(x
(n)
0 ) = hB(x

(n)
L−1) =

1, this gives the definition of the maximum allowed path length for the
new path

len(X(n)) <
len(X(o))− 2

r
+ 2 (2.12)

The acceptance in eq 2.7 can also be extended to transitions between
more than 2 states, as was used for paper F. In this extension any transi-
tion path between two different stables states is allowed and the accep-
tance becomes

Pacc(X
(o) → X(n)) = min

[
1,

hany(x
(n)
0 )hany other(x

(n)
L−1)(len(X

(o))− 2)

len(X(n))− 2

]

where hany is the indicator function that is 1 if the frame is in any of the
stable states, and hany other is an indicator function that is 1 if the frame is
in any stable state except for the stable state of hany, and 0 otherwise.
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2.4 Transition Interface Sampling

TPS allows us to investigate the mechanism of transition paths and allows
us to compute reaction rates based on umbrella sampling, however this
is very inefficient.5 To make the computation of the rate more efficient,
Transition Interface Sampling (TIS) was developed.6

For TIS we start by defining a collective variable (CV) which is some
function that takes the state of the system (positions and velocities) and
returns a number that represents the progress between two stable states.
We then place a series of interfaces (non intersecting hyper surfaces) on
the CV values between the two stable states, λ0,λ1, · · · ,λB , where λ0 de-
fines state A, and λB defines state B. For each of the interfaces we start a
simulation with a different definition of valid paths. Every simulation thus
samples a different ensemble of paths. For every interface, i, an ensemble
is sampled where a valid path is defined as a path that:

1. starts with a single frame in state A

2. crosses λi, while not being inside any stable state.

3. ends with a single frame in state A or state B

These requirements are greedy such that a valid path only has 2 frames
inside a statbel state, the starting and end frame, all others have must be
outside the stable state. The acceptance probability (of a shooting move)
for interface i then becomes

P i
acc(X

(o) → X(n)) = min

[
1,

hA(x
(n)
0 )hAB(x

(n)
L−1)hi(X

(n))(len(X(o))− 2)

len(X(n))− 2

]

where hAB(x) is the indicator function if frame (x) is in state A or state B,
and hi(X) is an indicator function if trajectory X crosses interface i. If
the velocities are not resampled randomly, an extra term is added for the
energy difference.

With these different sampling ensembles we can now define the rate
between state A and state B, kAB as:

kAB = ΦAP (λB|λ0)

whereΦA is theflux (number of crossings per second) out of state A,which
can be obtained from regular MD starting in state A, and P (λB|λ0) is the
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probability that a path crosses λB before λ0 after it crossed λ0 from state
A. This probability is normally quite low, but with our ensembles we can
reformulate this as:

P (λB|λ0) =
n∏

i=0

P (λi+1|λi)

where λn+1 = λB . So instead of waiting for the MD run to produce the
event with small probability that 1 path completes the whole reaction, we
multiply a couple of bigger probabilities that a path crosses one more in-
terface than it is forced to do by the ensemble definition. Normally inter-
faces are placed such that this probability is about 20%.27

For example, if we sample 10 ensembles at a perfect placement (mean-
ing that the total crossing probability would be 0.210 = 10−7) and in addi-
tion, suppose we want for each path ensemble i a 99% certainty that we
sample at least 1 path that also crosses the next interface i + 1. In other
words, we want to have less than a 1% chance that no trajectory crosses
the next interface. In this case, we would need to sample in each path
ensemble a number of paths n equal to:

0.8n < 0.01

n > log0.8(0.01)

n >
ln(0.01)
ln(0.8)

n > 20.6

Hence we would need n = 21 trajectories per ensemble and 210 trajec-
tories for our 10 ensembles. In this case the probability that we obtain a
non-zero estimate of the crossing probability would be 90% (0.9910). Now
we can compare this with the number of trajectories that we would need
without using TIS, i. e. shooting off MD trajectories from λ0 and see how
many cross λB . If we want a 90% chance to observe at least one trajectory
crossing λB we would require ln(1−0.90)

ln(1−10−7)
≈ 24 million trajectories. Hence,

TIS greatly enhances the speed at which we can obtain reasonable esti-
mates of the reaction rate and other properties.

2.5 Replica Exchange Transition Interface Sampling

TIS theoretically samples the complete equilibrium distribution if the
shooting moves are ergodic. However, as shown in paper E and B,
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sampling can get stuck inside a single reaction channel while multiple
exists. This is due to the fact that new trajectories are generated from
previous ones, and swapping between reaction channels requires large
movements in orthogonal reaction coordinates. To alleviate this problem
and to further increase the sampling efficiency, replica exchange moves
were added to TIS. This improved TIS algorithm is called Replica Ex-
change Transition Interface Sampling (RETIS).7 With a replica exchange
move it is attempted to swap the trajectories between two ensembles as
follows:

1. choose two ensembles, i and j

2. try to swap trajectories Xi and Xj

3. accept the move if Xi is valid in ensemble j (crosses λj) and Xj is
valid in ensemble i (crosses λi), else reject

These swappingmoves are really cheap to perform, as they do not require
any MD simulations.

As the probability that the trajectory from the inner interface crosses
the outer interface drops significantly when interfaces are not next to
each other (j /∈ {i− 1, i+1}), default implementations in both OpenPath-
Sampling8,9 and PyRETIS10,11 are to only attempt nearest neighbor swaps
(j ∈ {i− 1, i+ 1})

To further improve the orthogonal sampling of the ensemble that has
to cross λ0 ([0+]) a new ensemble is introduced, the [0−] ensemble. The
rules for a valid path in the [0−] ensemble are:

1. starts with 1 frame outside of state A

2. crosses λ0 into state A at the second frame

3. ends with 1 frame outside of state A

This ensemble allows the simulation to also explore stable state A.
Now, a swapping move between the [0+] and [0−] ensemble consists of
the following steps, for the [0+] → [0−] swap:

1. take the first two frames of the [0+] ensemble (one on each side of
λ0).



16

2. extend the path backwards (into state A) until λ0 is crossed again.

And for the [0−] → [0+] swap:

1. take the last two frames of the [0−] ensemble (one on each side of λ0)

2. extend the path forward (out of state A) until λ0 is crossed again or
λB (unlikely) is crossed.

With this selection strategy we have a 100% acceptance as a [0+] path
can always be integrated backward to produce a [0−] path, but not always
forward if it ends in state B. The reason why we don’t randomly select
one of the two possible crossing points for the [0−] → [0+] swap and (com-
monly) two possible points for the [0+] → [0−] is to prevent a Pacc ̸= 1 term
if we start with an AB path in [0+] and generate an AA path after the swap.
This would waste the MD that is required for this swap. For the standard
RETIS, either TIS shooting moves or replica exchange moves are chosen
randomly, normally with a 50% probability each.

These swapping moves increase the sampling efficiency significantly
as they provide, if accepted, a new sample to two ensembles without the
MD cost (except for the [0−] ↔ [0+] swap). Also, having ensembles with
a lower λi swap with ensembles with a higher λj , j > i, gives a similar
effect as swapping lower temperature and higher temperature replicas in
a parallel tempering.28

The introduction of the [0−] ensemble also gives an alternative way of
computing the flux (in units of 1/(MD time step)):

ΦA =
1

⟨len([0+])⟩+ ⟨len([0−])⟩ − 4
(2.13)

where ⟨len([0+])⟩ is the average path-length in ensemble [0+] and the −4

is to correct for over counting.

There are still two limitations for standard RETIS: Firstly, while for TIS
the ensembles can be simulated in parallel, the replica exchange moves
of RETIS make this difficult and inefficient and both PyRETIS and Open-
PathSampling implement it as a sequential algorithm. Secondly, we would
like to do as many cheap swapping moves as possible, but that would still
take a lot of time. Both of these limitations are solved in paper E.
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This was a very focused introduction of a selection of path sampling
algorithms, used in the papers. For a more complete overview of this field
we advise to read ref. 17 or 29.

2.6 Decision Trees and random forests

In paper C we used machine learning algorithms to analyze the output of
a RETIS simulation. The machine learning algorithms that we used were
Decision Trees and Random Forests.

Decision trees30 try make your data ’pure’ as quickly as possible by
asking a question and splitting the data into sets where that question is
true and one set where the answer to that question is false. First we need
a measure on how ’pure’ our data is, we used information entropy for that
were the information entropy is defined as:

Entropy(p) = S(p) = −
K∑

i=1

pi log2(pi)

where pi =
#objects in class i

# all objects for i ∈ 1, · · · ,K classes. For RETIS we only
have two classes, reactive paths (paths that go from state A to state B) and
unreactive paths (paths that start and end in state A).

Next, we need a measure of how much information purity we can ob-
tain from asking a certain question (for example ’is the distance between
atom X and Y bigger than Z?’). For that we define a gain function G(D,Q)

for the collection of data points, D, and the question Q:

G(D,Q) = S(D)−
∑

a∈A(Q)

#Da

#D
S(Da)

WhereA(Q) is the set of answers a question can have (in our case it would
be {True, False}) and #Da is the size of the subset of the data with that
answer.

The Decision Tree then runs through all possible questions and se-
lects the one that maximizes this gain function. Then it splits the data
depending on the answer to that question and repeats this process on
each subset until a certain depth or purity is reached. One small note:
most implementations of Decision Trees don’t run through all possible
questions, but only a random subset.
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One great feature of the Decision Trees is that they don’t care if there
are highly correlated or even duplicate variables (possible questions) in
your data, as it will select 1 and never tries the others (as they will not
give more information). We used this feature in paper C. For example in
that paper, a single data point was a single frame, labeled if it came from
a reactive path or an unreactive path, and the variables were all atom-
atom distances. Each atom-atom distance occurred twice as we included
both the atom1-atom2 and the atom2-atom1 distance, but only one of the
copies was selected in the Decision Trees.

However, there is also one big issue with Decision Trees; it is a greedy
algorithm and can thus be very sensitive to the initial split. In order to
alleviate that, and get a more robust prediction in exchange for inter-
pretability, you can use the Random Forests31 (RF) algorithms. RF works
by training a ’forest’ of Decision Trees, but each of them only is allowed to
choose questions from a random subset instead of all possible variables
questions. A recent review for recent Decision Trees algorithms and ap-
plications can be found in ref. 32.



3 Accelerating Replica
Exchange Transition
Interface Sampling
Simulations

While Replica Exchange Transition Interface Sampling (RETIS) is a lot
more efficient than Molecular Dynamics (MD), it can still takes months
to generate good estimates for both the rate or any other property of the
path ensembles. This is due to the fact that it is inherently a Monte-Carlo
(MC) algorithm and, ideally, needs to sample a reasonable amount of
path-space. It would thus be really nice to accelerate RETIS simulations
and get a our answers faster or get a better answer with the same amount
of time.

The first way to get the answer faster is by accelerating the MD, as
this is still the aspect on which the RETIS algorithm spends most of its
time. This can be done by using more efficient MD libraries, or ’engines’,
like GROMACS,33 LAMMPS,34 and OpenMM.12 Especially GROMACS and
OpenMM can generate huge speedups if GPUs are available and leverag-
ing them can generate 30-fold speedups.13 Some care has to be taken on
how one interacts with these MD engines and section 3.1 discusses how
this is done in PyRETIS 2.

Another way to get the answer faster is by using the MD more effi-

19
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ciently. This can be achieved with new MC moves, or by altering existing
MC moves. The former was originally done with introducing the swap-
ping moves, going from TIS to RETIS.7 Since then other algorithms were
introduced to enhance the shooting, thewaywe generate a newpath from
an old one, such as one-way shooting,35 Precision Shooting,36 Shoot-
ing from the Top,14 Biased Shooting,37 Aimless Shooting,38 Permutation
Shooting,39 Web Throwing an Stone Skipping,15 andWire Fencing.16 Sec-
tion 3.2 discusses an idea to restrict the (possibly unbound) simulation
time in the [0−] ensemble and two newMCmoves that were developed to
speed up the sampling, one for processes that are symmetric and one for
processes with multiple possible reactants. An example of a process in a
system that is both symmetric and has multiple reactants is the perme-
ation through a membrane.

A third way to accelerate is by using produced data more efficiently.
Also this was done with the original development of RETIS, were the
swapping move gives two ensembles each a new sample for a negligible
amount of CPU-time compared to doing a shooting move. Of course we
want to do as many of these swaps as possible, but if we attempt the
same swap more than once we gain less information. Even worse, this
information gain is 0 for most shooting algorithms, except for the high-
accept moves in Stone Skipping, Web Throwing,15, and Wire Fencing16

where we need more than 1 swap to sample the right distribution. In
practice a random chance of 50% to either perform a swapping move
or a shooting moves is chosen to do as many swaps as possible without
wasting CPU-time on moves that do not generate more information.
Section 3.3 describes how we can use an infinite swapping approach18

to do an infinite amount of swapping moves without using an infinite
amount of time. We also show that the previous reported O(N !) scaling
for the general solution can be reduced to O(2N ) by a reformulation
of the problem into the computing of permanents. This can be further
reduced to a O(N2) algorithm by leveraging a structure that occurs for
most shooting algorithms.

One final way to accelerate requires a discussion about ’time’. Except
theMD engines, all the previous ways to speed up the simulation are done
by using the CPUs more efficiently, getting the answer in less CPU-time.
This is the same as getting the answer faster in general: using less wall-
time (time indicated by a clock on the wall). While CPUs are still get-



21

ting faster, even bigger speedups can be achieved by using multiple CPUs
(or GPUs) at the same time with parallelization. GPUs specifically utilize
this exactly method, consisting of many cores that are slower individu-
ally than the ones in your CPU, but can do many identical operations in
parallel. Going from TIS to RETIS , the path sampling algorithm became
more CPU-efficient, gain more information per CPU-time, but also lost
the ability to run each ensemble independently in an embarrassingly par-
allel fashion. In section 3.4 theMC acceptance rules are rederived from an
’ensemble with a maybe interacting environment’ view instead of the cur-
rent ’superstate view’. This allows us to effectively parallelize the RETIS
algorithm, andwe see a N

2 times speedup of the wall-efficiency withmini-
mal reduction of the CPU-efficiency, whereN is the number of ensembles
in the simulation.

3.1 Leveraging MD engines

As said before, having MD run faster also means we get the RETIS answer
faster. However, some care has to be taken when interacting with an MD
engine. For RETIS there are several ways the algorithm has to interact
with the MD engine:

• A snapshot to start simulating from needs to be extracted from a
trajectory.

• (For certain shooting algorithms) The velocities of that snapshot
need to be altered, which is not trivial when constraints are
involved.

• The altered snapshot to start simulating from needs to be loaded
back into the MD engine.

• The time direction has to be set (either forward or backward).

• Figure out when a simulation has entered a stable state.

• Stop the simulation whenever a simulation entered a stable state or
reaches a maximum path length.

PyRETIS handles the time direction the same for each MD engine: it just
reverses the velocities to go backward in time. This is the main reason
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why symmetric integrators are required. The other interactions are han-
dled differently depending on the MD engine.

For GROMACS most of the interactions are handled through files and
the command line. The snapshot is extracted by using the provided ’trj-
conv’ command. The velocities are altered by running a 0 fs timestep MD
simulation with the option ’genvel’ enabled in the .mdp file, which means
only full randomization of velocities is supported. The altered snapshot is
loaded back in with the provided ’grompp’ command. The output files of
GROMACS are read with MDTraj40 to figure out when a stable state has
been reached. The stopping of the simulation depends on the PyRETIS
version used. The ’gromacs’ engine introduced in PyRETIS 1 runs GRO-
MACS 1 frame at a time, analyses that frame, and start the simulation for
the next frame if it is not in the state. This is not an efficient way of run-
ning these simulations and in PyRETIS 2 the new ’gromacs2’ engine was
introduced. This new engine tells GROMACS to run aMD simulation until
the maximum allowed path length that is pre-computed with eq 2.12. It
then analyses the output trajectory file on-the-fly (while the simulation
is still running) and kills the process (or process-group when GROMACS
runs with MPI) when a stable state is hit. This method has a probability to
’overshoot’ by more than 1 frame in a stable state, if the analysis is expen-
sive to run. The resulting trajectory can be trimmed back to the correct
size. While this might waste some MD, the second implementation is still
significantly more efficient as the overhead for starting a GROMACS sim-
ulation is only encountered once.

For OpenMM the snapshot is extracted directly via the python inter-
face, making sure to grab the positions, velocities, and box vectors. The
velocities are altered inside of PyRETIS and a new snapshot is constructed
with the altered velocities. The position, velocities and box vectors are
loaded back into the OpenMM ’Context’, without reconstructing (recom-
piling) it. This last bit is important as constructing a simulation context
when the simulations are run on GPUs (a common use case for OpenMM)
is really expensive to do, and should be avoided asmuch as possible. Then,
the simulation is run through the Python interface of OpenMM, getting
1 frame back at a time, which is analyzed before a new computation is
started. This is less bad than for the GROMACS simulation as most of the
simulation (the Simulation Context) stays loaded. Still, future improve-
ments could bemade if the data generation and analysis is done in parallel
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as was done for the ’gromacs2’ engine.

Development or usage of any of the other engines included in PyRETIS
are outside of the scope of this thesis. Examples that use these engines
can be found on the PyRETIS website.41

3.2 Leveraging specialized MC moves

Having fastMD simulations helpswith getting the answer faster, but using
that MDs output efficiently is important as well. This was of course the
main idea behind path-sampling and many further developments.

In the RETIS algorithm, MD in the [0−] ensemble can take a long time,
especially if there is no real confining barrier to the left of λA. This can
result in simulations that wander really far from the barrier. To stop sim-
ulations from wandering away, a possibility was introduced in PyRETIS
to also define a λ−1 interface to the left of λA. In the initial implementa-
tion, the MD simulation is stopped and the MC move is rejected as soon
as it hits this ’left’ interface in the [0−] ensemble. This prevented these
long trajectories, however if this happened more than a couple times per
RETIS simulation, equation 2.13 can not be used anymore to compute the
flux, as ⟨len([0−])⟩ becomes inaccurate due to the negligence of the pos-
sible long trajectories. This version of λ−1 was included in PyRETIS 2 and
can be seen in figure 1 of paper A.

The issue with the flux was partially solved later by altering the way
[0−] is sampledwhen λ−1 is defined. In the new sampling ensemble, named
[0−

′
] paths are stopped when λ−1 or λA is hit. However, unlike the previ-

ous implementations, none of the paths are immediately rejected. Instead
they are accepted with the probability:

P i
acc(X

(o) → X(n)) = min

[
1,

hLR(x
(n)
0 )hLR(x

(n)
L−1)(len(X

(o))− 2)

len(X(n))− 2

]
(3.1)

where hLR indicates that this frame is in either in the Left state, left of
λ−1, or in the Right state, right of λA, and len(X) in the length of path
X including the end-points as in chapter 2. The [0+] ↔ [0−] swap is au-
tomatically rejected if the current path in [0−

′
] does not end at the right

interface (at λA). Also, in the used flexible length algorithm, hLR(x
(n)
L−1) is

only 0 if the path hits the maximum length criteria before hitting any of
the 2 interfaces.
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This allows a correction to the flux, which becomes

ΦA =
ξ

ξ(⟨len([0+])⟩ − 2) + ⟨len([0−′ ])⟩ − 2
(3.2)

where ξ is,

ξ =
N→R,[0−′ ]

N[0−′ ]
(3.3)

with N→R,[0−′ ] being the number of paths in the new [0−
′
] ensemble that

end at the right interface, and N[0−′ ] is the total number of paths in [0−
′
].

The main idea of this [0−
′
] ensemble is illustrated in figure 2 of paper B.

Note that ϕA is a conditional flux: it is the flux of a permeant given this
permeant is part of overall state A that excludes the phase space at the
left of λ−1. For a truly unbound system, the actual flux of a single particle
would be 0. However, for properties that are concentration dependent,
like permeation, the flux of any particle is not 0 as long as the concentra-
tion of the solute is constant and this new [0−

′
] ensemble allows for the

computation of these concentration dependent properties with the help
of a normalization. Also, for periodic systems, like permeation through
a membrane, this λ−1 prevents sampling of ’reactive paths’ that only oc-
cur due to particles jumping through the periodic boundary, as seen in
figure 3 of paper B.

When investigating the problem of permeants permeating through a
membrane, there are some other attributes of the systemwe can leverage
with newly developed MC moves. First, if the system is periodic and sta-
tistically symmetric, then sampling should be identical going from right
to left or left to right through the membrane. However the bi-layer of the
membrane can be slightly different between these two options at a cer-
tain time. To sample both of these membrane configurations the ’mirror’
move was implemented. It mirrors the collective variable (CV, as intro-
duced in section 2.4), around an point halfway between λA and λ−1, ef-
fectively swapping these two interfaces and moving all other interfaces.
This only results in valid paths in the [0−

′
] ensemble and is thus only at-

tempted in that ensemble. However, after that this mirrored CV can be
propagated through the other ensembles via replica exchange moves. A
different representation is shown in figure 5 of paper B, where the co-
ordinates are mirrored instead of the CV. As mirroring coordinates of a
periodic system is non-trivial, the implementation relies onmirroring the
CV instead.
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Another attribute of the permeant system is that there are multiple
identical permeants attempting to permeate through the system at the
same time, we leverage this with the ’target swap’ move, illustrated in fig-
ure 4 in paper B. This move is only attempted in the [0−

′
], as we expect

negligible success in any of the other ensembles if the event under inves-
tigation is rare. It proceeds as follows:

1. For each frame in the old trajectory, count how many other perme-
ants are between λ−1 and λA.

2. Sum all these options, which will be named Z
(o→n)
t

3. Pick any of the options (pick a random integer in [1, Z
(o→n)
t ]).

4. With this permeant and time-frame selected, follow the path back-
wards until it crosses either of the interfaces. Here ’follow’ means
that we use frames from the old path until we run out, and only then
generate more frames (if required). We call the initial time-frame j

and the number of backward frames nb

5. Starting again at time j we now follow the path forward until either
of the interfaces is crossed. The number of frames forward is called
nf

6. With this new path repeat step 1 and 2 to compute Z
(n→o)
t

7. Compute the number of time slices that would give the same new
trajectory from the old path, n(n)

s (equation 3.4 below), and the num-
ber of time slices fromwhich the old trajectory could be formed from
the new trajectory, n(o)

s (equation 3.5 below).

8. Accept the move with Pacc = min
(
1,

n
(o)
s Z

(o→n)
t

n
(n)
s Z

(n→o)
t

)

With,
n(n)
s = min (j, nb) +min

(
L(o) − j, nf − 1

)
(3.4)

and

n(o)
s = min (nb + 1, j − 1) +min

(
nf , L

(o) − j − 1
)

(3.5)

This move is summarized in figure 4 of paper B and just as with the
mirror move this ’swapped’ target can be propagated through the other
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ensembles with replica exchange moves. These new MC moves, espe-
cially when combined, lead to a greatly improved sampling of degrees of
freedom orthogonal to the λ-CV, as shown in figures 8 and 9 of the same
paper. There it is shown that for a 2D systemwith 2 slightly different reac-
tion channels, the simulation with the added MC moves converges much
quicker to the right sampling ratio between the two channels as opposed
to more standard RETIS.

3.3 Doing an infinite amount of swapping

In the previous section we accelerated the sampling and convergence of
the TIS half of RETIS, this leaves the replica exchange part. Ideally we
would like to do an infinite amount of replica exchanges (swaps) to make
sure we add the path to as many valid ensembles as possible. While the
swapping move is cheap compared to the MD, it is not truly ’free’ and
doing an infinite amount of them would take an infinite amount of time.
Luckily, there are a finite number of path-ensemble combinations that
can be sampled and directly sampling all the possible combinations in the
right ratios would be sufficient. This is the main idea behind the infinite-
swapping, and has been presented before in ref. 42 with the expected
O(N !) scaling. In this section we will present a fully generalO(2N ) scaling
algorithm, and even faster (up to O(N2)) algorithms that leverage some
special properties in RETIS simulations based on shooting.

First some introductions of the used matrix representations. We start
with 4 states (s1, s2, s3, s4) with some weight for each of the 4 ensembles
(e1, e2, e3, e4),

W =




e1 e2 e3 e3

s1 W11 W12 W13 W14

s2 W21 W22 W23 W24

s3 W31 W32 W33 W34

s4 W41 W42 W43 W44




whereWij is the weight of state i in ensemble j. And we want to compute
the probability of each state for each ensemble after an infinite amount
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of swaps:

P =




e1 e2 e3 e3

s1 P11 P12 P13 P14

s2 P21 P22 P23 P24

s3 P31 P32 P33 P34

s4 P41 P42 P43 P44




where Pij is the final probability of state i in ensemble j. Going from the
W matrix to the P matrix is what we want to solve in this section.

The methods are best illustrated with an example. So let’s start with
defining an example W matrix, Wex:

Wex =




e1 e2 e3 e4

s1 2 1 0 0

s2 5 4 3 0

s3 8 7 6 0

s4 12 11 10 9




and we want to end up with the example P matrix, Pex:

Pex =




e1 e2 e3 e4

s1 15 9 0 0

s2 5 8 11 0

s3 4 7 13 0

s4 0 0 0 24




1

24

We will now show how Pex is obtained fromWex, by showing that forWex

we find that P11 is 15
24 , after which themethod can be repeated for all other

values of Pex. A thing we can see from Pex is that it is bistochastic: every
column and row sum to the same number. This is generally true for all
P-matrices. It is due to the fact that for every combination, every state is
in exactly one ensemble and every ensemble contains exactly one state.

Let’s startwith the naiveway of computing a P-matrix. First let’s define
a permutation set, C, which contains all permutations of distributing the
four states over the four ensembles. We also define the subset,Cs1=e1 ,
which contains all permutations in which state s1 is in ensemble e1. For a
single permutation, say (s2, s1, s3, s4) (meaning s2 is in e1, s1 in e2, s3 in e3

and s4 in e4) we also have a weight vector

w(s2, s1, s3, s4) = W21 ×W12 ×W33 ×W44
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which for our Wex is:

w(s2, s1, s3, s4) = 5× 1× 6× 9 = 270

Then the probability of finding s1 in e1, P11 is computed as

P11 =

∑
σ∈Cs1=e1

w(σ)
∑

σ∈C w(σ)

where
∑

σ∈Cs1=e1

w(σ) =w(s1, s2, s3, s4) + w(s1, s2, s4, s3) + w(s1, s3, s2, s4)+

w(s1, s3, s4, s2) + w(s1, s4, s2, s3) + w(s1, s4, s3, s2)

=(2× 4× 6× 9) + (2× 4× 10× 0) + (2× 7× 3× 9)+

(2× 7× 10× 0) + (2× 11× 3× 0) + (2× 11× 6× 0)

=432 + 0 + 378 + 0 + 0 + 0

=810

and ∑

σ∈C
w(σ) = 1296

so
P11 =

810

1296
=

15

24

which is the result we expected. This can be repeated for each element
in P , after computing w for each permutation. This algorithm scales as
O(N !).

We can also compute this number in a different fashion, by computing
permanents of the W matrix. A permanent is similar to a determinant,
except that all signs are positive. For example,

perm



A B C

D E F

G H I


 =A(E × I +H × F ) +B(D × I + F ×G) + C(D ×H + E × I)

Just as with the determinant, it does not matter which row or column you
choose for the expansion, as all of them lead to the same result.

Our definition for Pij in terms of permanents becomes,

Pij =
Wij × perm(W{ij})

perm(W )
(3.6)
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whereW{ij} is theW matrixwithout row i and column j. For our example
P11 is

P11 =
W11 × perm(W{11})

perm(W )
=

2× perm




4 3 0

7 6 0

11 10 9




perm




2 1 0 0

5 4 3 0

8 7 6 0

12 11 10 9




=
2× 9(6× 4 + 7× 3)

2× 9(6× 4 + 7× 3) + 1× 9(5× 6 + 3× 8)
=

810

1296
=

15

24

where we skipped all terms that would be 0. This leads to the same result
as the naive method. This way of computing the permanent still requires
O(N !) operations, but the Balasubramanian–Bax–Franklin–Glynn (BBFG)
formula43–46 allows for the computing of the permanent with O(2N ) op-
erations, making the scaling of computing the P matrix scale asO(N22N ).
This is still a pretty bad scaling, but it actuallymakes infinite swapping fea-
sible for RETIS simulations. If we want to compute the permanent with
the naive method, we can compute up to N = 7 in about 1 second on
a mid-to-high-end laptop. The BBFG permanent method can do up to
N = 12 in 1 second. If we assume a typical RETIS simulation to have 20
ensembles and states, it would take 15 million years to compute the P

matrix with the naive method, while with the BBFG permanent method it
would only take 711 seconds.

This is the best we can do if we want to compute any P matrix from
anyW matrix, however, theW matrix that comes from RETIS simulations
based on shooting has structures we can leverage to further increase the
speed of this computation.

One nice feature is already shown in Wex, most rows end with some
zeros. For RETIS simulations this happens due to the way the ensembles
are defined. We have a set of non-intersecting interfaces and every path
(a sample for RETIS ) that crosses an interface has to cross all inner inter-
faces. So it should have a non-zero value in the W matrix for each inner
ensemble. If a path does not cross an interface it can’t cross any of the
ones after it. As soon as a weight in the W-matrix is 0 all the weights for
ensembles with interfaces further out have to be 0 as well.
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Permanents have the nice property that you can swap rows, without
the permanent changing. This means we can sort the rows by the number
of non-zero elements. We can then block-diagonalize the problems and
solve each block independently. For Wex we have two blocks, one 3 × 3

highlighted in red, and a 1× 1 in blue:

Wex =




e1 e2 e3 e4

s1 2 1 0 0

s2 5 4 3 0

s3 8 7 6 0

s4 12 11 10 9




We then use equation 3.6, but only with the reduced block matrix instead
of the full matrix. So P11 becomes:

P11 =

2× perm

(
4 3

7 6

)

perm



2 1 0

5 4 3

8 7 6




=
2× (6× 4 + 7× 3)

2× (6× 4 + 7× 3) + 1× (5× 6 + 3× 8)

=
90

144
=

15

24

This allows us to split our 12 4 × 4 permutation computations into 8

3×3 computations and a 1×1 computation, which is much faster to com-
pute. For a RETIS simulation, with a total of 20 interfaces an ideal inter-
face placement would mean that each interface has a 20% probability of
also crossing the next one47. With this ideal placement the probability of
ending up with a block bigger than 12 (which takes 1 second) is 5.73×10−9.
For a non-optimal simulation with 20 interfaces, placed so that each in-
terface has a 50% probability of crossing the next interface, the chance
of getting a block that is bigger than 12× 12 is still less than 0.1%.

Another feature we can exploit for infinite swapping of RETIS simula-
tions is that for most shooting algorithms the swapping weight is either 1
or 0. If this is the case we can fill the P matrix with a fastO(N2) algorithm
instead. We go from the top-row to the bottom row to fill the P matrix
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from a sorted W matrix with the following scheme:

Pij =





0, if Wij = 0

1
ni+1−i , if Wij = 1 and [W(i−1)j = 0 or i = 1](
ni−1−i+1
ni−i+1

)
P(i−1)j , otherwise

(3.7)

where i = 1 is the top row, and ni is the number of ones in row i of theW

matrix.

For a second example, Wex2, with zeroes and ones:

Wex2 =




e1 e2 e3 e4

s1 1 1 0 0

s2 1 1 1 0

s3 1 1 1 0

s4 1 1 1 1




In the first row n1 = 2. Therefore the first row of our Pex2 becomes:

Pex2 =




e1 e2 e3 e4

s1
1
2

1
2 0 0

s2 ? ? ? ?

s3 ? ? ? ?

s4 ? ? ? ?




where the non-zero values are computed using 1
ni+1−i =

1
2+1−1 = 1

2 . The
following row, with n2 = 3, then becomes

Pex2 =




e1 e2 e3 e4

s1
1
2

1
2 0 0

s2
1
4

1
4

1
2 0

s3 ? ? ? ?

s4 ? ? ? ?




where the third value is computed as above, while the first two values are
computed using

(
ni−1−i+1
ni−i+1

)
P(i−1)j =

(
2−2+1
3−2+1

)
1
2 =

(
1
2

)
1
2 = 1

4 . This can be
continued and the final shape of the Pex2 becomes:

Pex2 =




e1 e2 e3 e4

s1
1
2

1
2 0 0

s2
1
4

1
4

1
2 0

s3
1
4

1
4

1
2 0

s4 0 0 0 1
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This is an O(N2) algorithm and can be run under one second for up to
N = 3500, which is way bigger than any foreseeable RETIS simulation.

All of these algorithms allow us to do an infinite amount of swaps in
less than a second for typical RETIS simulations, perfectly spreading ev-
ery data point over all relevant ensembles. This greatly increases the in-
formation gain of the swapping moves for a RETIS simulation and thus
accelerates convergence of the simulation in general.

3.4 Parallelizing the RETIS algorithm

One last way of accelerating RETIS simulations is not by running the sim-
ulations more efficiently, but running them in parallel. For this we first
have to discuss about the two different ’times’ for simulations: The first
one is wall-time, the amount of time that has passed on a clock on thewall
during the simulation. The second one is CPU-time, the total amount of
time that the CPUs have worked. If a simulation is run for 1 hour of wall-
time on 2 CPUs in parallel it takes 2 hours of CPU-time. Up til now all
improvements led to a speedup in both CPU-time and wall-time, but in
this section we are going to accelerate our simulation in wall-time in ex-
change for a (possible) slow down in CPU-time. In other words we are
going to get the answer faster (the time most PhD candidates care about),
even if we potentially use the CPU resources less efficient.

When developing the RETIS algorithm fromTIS, the algorithm became
more efficient in CPU-time due to the introduction of the swappingmove.
However, it also requires communication between the ensembles. This is
hard to parallelize as the time that each ensemble takes to finish a shoot-
ing move is considerably different (outer ensembles need longer paths to
be generated) and even worse, this difference is not constant at all.

This means that while the TIS algorithm is embarrassingly paralleliz-
able, the current released versions of OPS8,9 and PyRETIS 10,11 implement
the RETIS algorithm as fully sequential. For OPS a semi-parallel algorithm
is proposed in ref. 17, where the faster ensemble has to wait for the slower
ones to finish their move.

The following reformulation of the MC equations to allow for paral-
lelization is described in relation to the RETIS algorithm, but is generally
useful for any type of Monte-Carlo based replica exchange where each of
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the ensembles can take a significant different amount of time to gener-
ate new samples, such as for configurational bias MC 23,48,49, cluster MC
algorithms50, and event-chain MC51,52.

If we start from equation 2.3:

Pacc(S
(o) → S(n)) = min

[
1,

ρ(S(n))

ρ(S(o))

]
(3.8)

then normally in RETIS S = (s1, s2, · · · , sN ) is a superstate of all ensembles
at a certain MC step and the probability of that superstate is

ρ(S) = ρ(s1, s2, . . . , sN ) =

N∏

i=1

ρi(si) (3.9)

where pi(·) is the probability density of ensemble i. For a RETIS swapping
move that swaps the first two states, indicating S(o) = (s1, s2, · · · , sN ) and
S(n) = (s2, s1, · · · , sN ), the acceptance probability becomes

Pacc = min
[
1,

ρ1(s2)ρ2(s1)

ρ1(s1)ρ2(s2)

]
(3.10)

and for a shooting move, S(o) = (s
(o)
1 , s2, · · · , sN ) and S(n) =

(s
(n)
1 , s2, · · · , sN ) the acceptance probability via eq 2.2 becomes

Pacc(s
(o)
1 → s

(n)
1 ) = min

[
1,

ρ1(s
(n)
1 )Pgen(s

(n)
1 → s

(o)
1 )

ρ1(s
(o)
1 )Pgen(s

(o)
1 → s

(n)
1 )

]
(3.11)

Due to this superstate view and equations 3.8 and 3.9, all ensembles
need to know their state (have finished their previousmoves) before these
moves can be accepted, leading to the sequential RETIS algorithms.

For the new derivation we instead start from a view from a single en-
semble (e.g. e1), and we can view states in all the other ensembles as an
’environment’ (E = (s2, · · · , sN )). One important point we need to con-
sider is that the environment can change while we are doing a MC move,
as would happen when we run this system in parallel.

We can then write the probability of state s1 in ensemble 1 as an inte-
gral of the probability given a certain environment

ρ1(s1) =

∫
ρ1(s1|E)ρ(E)dE . (3.12)
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and for a single ensemble move, like shooting from s1 to s′1, detailed bal-
ance equation 2.1 becomes a twisted detailed-balance equation

ρ(s1|E)π1(s1, E → s′1,
aE) = ρ(s′1|E)π1(s′1, E → s1,

aE) (3.13)

where aE is any environment. We called this a twisted detailed balance
equation as there is one term that moves in the same direction between
the left and right side of the equation, E → aE , and one term that becomes
twisted, s1 → s′1 becomes s′1 → s1. The complete derivation of this term
is shown in the SI of paper E.

Now, because the ensembles are independent

ρ1(s1|E) = ρ1(s1), (3.14)

and because all ensembles progress independently from each other

π1(s1, E → s′1,
aE) = π1(s1 → s′1)π1(E → aE) (3.15)

Substituting eq. 3.15 into eq. 3.13, the second π(·) term on each side
cancels as π1(E → aE) appears on both sides of the equation (and because
the probability of going from an environment to any environment is 1). If
we furthermore apply eq 3.14, we end up with

ρ1(s1)π1(s1 → s′1) = ρ1(s
′
1)π1(s

′
1 → s1) (3.16)

which is identical to eq 2.1 and leads to the same acceptance probability
as eq 3.11 without relying on the superstate description. For the case that
shooting is the only move being used, we already knew that this was al-
lowed due to TIS being an embarrassingly parallel algorithm, where we
can run each ensemble independently. However, the twisted detailed-
balance allows us to prove that the shooting is stil correct even if it is only
one of the possible MC moves that can be selected, like in RETIS with the
addition of swapping moves (see the SI of paper E).

We can reformulate the swappingmove (e.g. 1 ↔ 2) in a similar fashion
and end up with a similar twisted detailed-balance equation

ρ1(s1|s2, E✁2)ρ2(s2)π̂1↔2(s1, s2, E✁2 → s2, s1,
aE
✁2
) =

ρ1(s2|s1, E✁2)ρ2(s1)π̂1↔2(s2, s1, E✁2 → s1, s2,
aE
✁2
) (3.17)

where E
✁2
is the environment without ensemble 1 and 2 and we use π̂ in-

stead of π to indicate that we only look at possible swaps, and not any 2
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ensemble move. Then using equations 3.14 and 3.15 and the same cancel-
lation as for the shooting move, we end up with

ρ1(s1)ρ2(s2)π̂1↔2(s1, s2 → s2, s1) = ρ1(s2)ρ2(s1)π̂1↔2(s2, s1 → s1, s2) (3.18)

Furthermore,

π̂1↔2(s1, s2 → s2, s1) = Pacc(s1, s2 → s2, s1)Pgen(s1, s2 → s2, s1) (3.19)

and

π̂2↔1(s2, s1 → s1, s2) = Pacc(s2, s1 → s1, s2)Pgen(s2, s1 → s1, s2) (3.20)

If the swap is allowed, converting (s1, s2) to (s2, s1) is the only possible
result. Therefore, Pgen(s1, s2 → s2, s1) and Pgen(s2, s1 → s1, s2) are both 1,
canceling out. We thus end up with

ρ1(s1)ρ2(s2)Pacc(s1, s2 → s2, s1) = ρ1(s2)ρ2(s1)Pacc(s2, s1 → s1, s2) (3.21)

which can be satisfied with equation 3.10 as before. For the completed
and more detailed derivation, please have a look at Sec. II in the SI of
paper E.

With these new derivations we show that we can use the standard for-
mulas to perform swapping and shooting in parallel, as the environment
(all other ensembles) is now allowed to change while we perform these
moves. It does however lead to a different amount of samples in each en-
semble, which requires attention during analysis. In paper E we applied
this together with the infinite swapping, coined∞RETIS, on 3 model sys-
temswith a changing number of workers, number of ensembles simulated
in parallel. If the number of workers is 1, this algorithm performs as the
standard RETIS algorithm (with infinite swapping) and if the number of
workers is identical to the number of ensembles, this algorithm is identi-
cal to TIS as there is just 1 ensemble not doing a MCmove at a given time,
so no swapping can happen. In figure 1 of that paper we also see that we
get the expected linear scaling ofMD time, while having amore than linear
scaling of amount of MC moves done per 12 hours. It also shows that we
accelerated the wall-time speed by a 50 fold for one of our test systems,
and up to a 10 fold increase for another. Both with minimal reduction in
our CPU-time efficiency.

Keep in mind that this new way of deriving the detailed balance equa-
tions is not limited to RETIS simulations and with the continuing trend to
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runmore andmoremassively-parallel computing jobs we expect this new
algorithm to gain importance and that it can open up new avenues in the
field of molecular simulations and maybe even beyond.



4 Accelerating the Analysis

With the current speed of path sampling simulations we can generate
thousands of reaction paths in a couple months. It is common to inves-
tigate these by viewing the trajectories and cleverly plotting some his-
tograms, as in paper F. Both the running of rare-event simulations and the
analysis require a lot of time and multiple groups have significant contri-
butions using Machine Learning (ML) algorithms to accelerate this.53–59

ML algorithms are normally divided into two categories, unsupervised
and supervised algorithms. Unsupervised algorithms try to uncover pat-
terns in the data without user supervision, which means that the data
does not have to be identified beforehand. This results into a clustering
of your data or a dimensionality reduction, and examples of unsupervised
methods are Principle Component Analysis (PCA),60 hierarchical cluster-
ing,61 k-means clustering,62 and Isometric Mapping.63

The other category is supervised ML algorithms, in which an expert
has to label (a subset of) the datawith either a class or a value thatwewant
the algorithm learn. Supervised algorithms result into a model that can
do predictions after training on the labeled subset of the data. Examples
of supervised algorithms are decision trees,30 random forests,31, neural
networks,64 and gradient boosting.65

Other than the choice of ML algorithm that we use to solve our prob-
lem, an important decision has to be made on the structure of the data
that we use to train our algorithms on. For the analysis of rare-event
simulations multiple different algorithms have been used, but most of

37
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them are only trained on a curated data representation of just a few key
variables.54,57,58 This curating has to be done by the researcher and has
the risk of introducing a hypothesis bias, where you only do analysis of
the key variables that you expect to be important beforehand, potentially
completely missing a more important variable that you did not think of.
Section 4.1 describes the newly developed completely generic data rep-
resentation for molecular configurations that is translational, rotational,
and atom-index invariant. It only requires minimal user input and greatly
reduces the chance of hypothesis bias in the data representation that is
used to train the ML algorithms.

After a ML model is trained we would also like to understand ’why’ it
does certain predictions. For black-boxmodels, like neural networks, and
gradient boosting, you can use Shapley values66 or counterfactuals67 to
try to learn how the trained model is working. Shapley values show how
much each variable contribute to the predicted outcome, while counter-
factuals show how much a variable needs to change before we predict
a different class or outcome. Another option is to use so-called human
understandable algorithms, where after the training of the model we can
understand the logic that is used to make decisions. One of such algo-
rithms is decision trees (DTs). DTs has its issues and as mentioned in
section 2.6 a big issue with DTs is that they can be very dependent on the
initial split. In section 4.2 we show how DTs can help us to understand
why a chemical reaction is triggered, together with a way to investigate
how important different initial splits are.

4.1 Translational, rotational, and index invariant data
representation

As mentioned in the introduction of this chapter, in order to start to use
ML algorithms on our data we first have to decide the shape of our data.
For molecular simulations we normally start with the element, x,y,z co-
ordinates and an index for every atom in your simulation box. However,
there are some issues with just feeding this into your ML algorithm. Ide-
ally we would like systems that behave identical to have identical data-
representations, but as you can see in figure 4.1, this is not the case for
the xyz format.
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x y z
0.0435 0.2326 0.0471
0.0619 0.3386 0.0742
0.0157 0.1488 0.1355
0.0552 0.2129 -0.0830
0.0380 0.1114 -0.1131

x y z
0.0435 0.0471 -0.2326
0.0619 0.0742 -0.3386
0.0157 0.1355 -0.1488
0.0552 -0.0830 -0.2129
0.0380 -0.1131 -0.1114

Figure 4.1: The xyz data and structure for a formic acid molecule, one
rotated 90 degrees with respect to the other.

The system is just rotated 90 degrees, so the physics should be iden-
tical, but in the data the y and z columns are swapped and the z column
is multiplied by −1. A similar shift in data would occur if we just move the
origin of our data, while the physics does not change. One option to let
your ML algorithm learn how to deal with all the rotations is by generat-
ing all possible rotations for each of your data points, the other is using a
translational and rotational invariant representation. In paper C we use a
distance-distance matrix, which is identical for any rotation as shown in
figure 4.2.

However, for molecular systems the distance-distance matrix still has
one issue, shown in figure 1 of the SI of paper C. It is not atom-index in-
variant. If we swap two atoms of the same element, the physics should
not change, but the data representation does; two rows and columns
swap places. In order to circumvent this problemwe introduced a sorted-
distance matrix that is shown in figure 2 in paper C. The general idea is as
follows:

1. Start with the distance-distance matrix

2. group all atoms with the same element together
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C0 H0 O0 O1 H1
C0 0.0000 0.1109 0.1250 0.1321 0.2010
H0 0.1109 0.0000 0.2047 0.2013 0.2954
O0 0.1250 0.2047 0.0000 0.2311 0.2524
O1 0.1321 0.2013 0.2311 0.0000 0.1073
H1 0.2010 0.2954 0.2524 0.1073 0.0000

Figure 4.2: The distance distance matrix for both of the formic acid
molecules shown.

3. One element is chosen as the anchor element, and is put in the top-
left corner of our matrix (carbon in our example system)

4. For every time slice one atom from the anchor element is chosen as
the anchor atom, this can be a different atom for each frame.(in our
example system there is only one carbon to choose)

5. The rows within each element group are ordered based on the dis-
tance from the anchor atom.

6. For each row the columns in each element block are sorted based
on their value.

After this we end up with a non-symmetric matrix that is invariant to
translation, rotation and atom index. How well this representation per-
forms depends on how stable the representation is, which largely depends
on how the anchor atom is selected. For path sampling simulations this
should not be too hard to determine as there is always an atom or a group
of atoms that is tracked to determine in which stable state the system is
and one of those atoms can be used as the anchor. This does not mean a
single atom has to be traced. For example, in reference 68 the collective
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variable was the maximum OH bond of all OH-bonds, and either the O or
H of this maximum can be selected as the anchor atom.

One issue with using the sorted distance-distance matrix as a data
representation is that it can be hard to determine what each variable (a
value in our matrix) actually represents, especially if a different anchor
atom is chosen in each frame, possible swapping the specific atoms that
represent each row.

Luckily, we can regenerate the xyz format from our sorted-distance
matrix, up to an arbitrary index-swap, translation and rotation, and in
such a way that we can highlight the atoms that are representing selected
atom-atom distance.

For this back-mapping of our sorted distance-distance matrix to the
xyz format, we first ’unsort’ the matrix from bottom to up back into the
symmetric matrix. Next we adapt the procedure of reference 69, to map
an arbitrary matrix into a N-dimensional space.

From the symmetric distance-distance matrix, D, we can construct

Mij =
D2

1j +D2
i1 −D2

ij

2
(4.1)

whereD1j is the j-th element of the first row andDi1 is the ith element of
the first column. Then an eigenvalue decomposition on M is performed:
M = USUT , where U is aN ×N matrix where the columns are the eigen-
vectors of M and S is a diagonal matrix with the eigenvalues of M . This
allows for the computing of the matrix X = U

√
S. In general, if the ma-

trix is mappable in N dimensional space, only the first N eigenvalues (S)
are non-zero. We know our matrix was generated from 3D space, and
should be able to be mapped into 3 dimensions (every atom position can
be uniquely defined with just 3 variables; x, y, and z). Therefore, we only
take the first 3 columns of X , which become our x, y, and z columns.
This back-mappingwas used in paper Cwhere themolecularmovies were
viewed, but with the distances highlighted that were selected by the ML
algorithm. This helped with anmore data driven analysis on what triggers
the deprotonation of formic acid in small water droplets.

This ability to back-map is also the main improvement over the com-
monly used symmetry functions from Behler and Parrinello, which han-
dles the atom-index variance by smearing all atoms of the same element
together for every single time slice. This method is very useful for the
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development of ML based force fields, but can be hard to interpret if we
use it for ML-based analysis.70

4.2 Using human understandable ML algorithms on
RETIS data

If we want to investigate what triggers a chemical reaction, RETIS simu-
lations give a nice data set to train our ML algorithm on. Namely, it is a
set of paths that start a reaction, but don’t manage to cross the barrier
(A-A paths), and paths that complete the reaction (A-B paths). We can
then use a supervised ML algorithm, give it a frame that is close to the
reactant state and ask it to predict if this frame is from a reactive or un-
reactive path. This forces the ML algorithm to find differences between
the reactive and unreactive paths. If we then can understandwhat theML
algorithm uses to differentiate between these two options, we can learn
what makes reactive paths different, and thus what triggers a reaction.

There are a couple issues that ourML algorithm should be able to han-
dle. First, aswe are looking at rare events it shouldwork onheavily skewed
data-sets. For the test system in paper C of Formic Acid (FA) in water, the
probability of a reactive path is only 10−3.745 = 0.02%, so if our ML algo-
rithm only chooses ’unreactive’ it is correct 99.98% of the time. Secondly,
as we would like to know how the trained algorithm is differentiating be-
tween reactive and unreactive paths it should be human-understandable.
Lastly, as we use the data-representation described in the previous sec-
tion, it should be able to handle multiple identical variables being present,
due to the fact that every distance occurs twice in the distance-distance
matrix.

Luckily there is a type of ML algorithm that handles all three of these
issues, Decision Trees (DTs).30 As described in section 2.6, DTs don’t op-
timize the accuracy directly, but the purity of the subsets. This handles
the first and last issue, as the purity is independent of the skewness of the
data set, and no further purity increase can be achieved with the second
copy of the variable after the first one has been selected. DTs are also in-
terpretable, as long as the input variables are interpretable and the depth
is limited. Our purely distance based input variables are interpretable, es-
pecially when combined with the back-mapping and visual inspection. In
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paper C we settled on a maximum depth of 3 for the interpretability. Ex-
ample trees with highlighted important distances can be seen in figure 4
and 6 of paper C.

As previously mentioned in section 2.6 a drawback of DTs is that they
are greedy algorithms, and can depend heavily on the initial split. We
therefore developed a method to estimate the true probability that the
first variable is truly the most important, and which other variables are
important. It starts with training a random forest (RF)31 with trees of
depth 1 (aswe are only interested in the initial split), togetherwith a block-
error calculation from 10 blocks. This gives us importance averages and
variances, as can be seen in figure 5 and 7 in paper C.

Then, we assume for each variable that this importance is a Gaussian
distribution around the reported average with a σ of the reported vari-
ance. From each of these distributions, we take a single random sample
and count which variable ended up with the highest importance. This is
repeated ten-thousand times to give an estimate of how often each vari-
able was the most important variable to split on.

In paper C these methods were used successfully to investigate the
deprotonation of FA inside small water droplets. Our product state was
achieved when the proton moved more than 3.0 Å from any FA oxygen,
meaning that there was at least 1 water molecule in between the proton
and FA. For FA with 4 water molecules we saw that it was important that
a water 2 hydrogen bonds away from FA was close enough to the water
that was going to accept the proton from FA to prevent immediate repro-
tonation, which would be classified as an AA-path in our data. For FA in 6
waters we saw a similar effect, but also that multiple pathways were pos-
sible and important. The availability of multiple possible deprotonation
pathways gave a reasonable explanation for the observed increase of the
deprotonation rate for FA in the 6 water system.





5 Applications to biochemical
problems

In this chapter applications are discussed in which simulations were ap-
plied to investigate biochemical problems. The first section shows how
multiple state transition path sampling (MSTPS) was used to investigate
the configurational movements of the protein KRas and how they change
when an oncogenic mutation, Q61L, is introduced. The second section
shows how rates, either from literature or computed with a RETIS simu-
lation, can be used to simulate ideal reactions. These were used to inves-
tigate the limits of analysis formulas for covalent inhibition assays, and
distributed as an independent tool for experimentalists to validate that
the rates they find correspond with the signal they observe.

5.1 Conformational changes of KRas

KRas is a GTPase which signals for cell growth and division. It has an ac-
tive state in which two flexible loop regions (S1 and S2) are tightly bound
to GTP and an inactive state in which S1 and S2 are not connected and
unordered. Both the structure of KRas and a schematic representation of
the two states can be seen in figure 1 of paper F. It has multiple possible
mutations that alter the transition between this active and inactive state,
which can result in KRas being active for longer times. As active KRas
triggers cell growth and division, mutations of KRas, and the whole RAS
family of proteins, are frequently found inside cancer cells.71 To under-
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stand this transition we applied transition path sampling (TPS) on KRas
and an oncogenic mutant, Q61L. This mutation changes a glutamine(Q)
into a leucine (L) in the S2 loop.

During an initial simulation, we found that there are actually three sta-
ble states for both S1 and S2, which were identical for both the wild-type
(WT) and Q61L. For S1 they are: the native bound state, where S1 is bound
to GTP as in the crystal structure, the non-native bound state, in which
a different part of S1 is attached to GTP, and the unbound state in which
S1 is disconnected and solvated. For S2 the found stable states are: the
tightly bound state where S2 is attached to GTP, the open state in which
S2 is solvated, and a third state in which S2 moved away from GTP, but
stays attached to the α3-helix. All of these stable states can be seen in
figure 2 of paper F.

Two state TPS simulations are very useful for chemical reactions, but
like KRas a lot of biochemical reactions involve more than two (semi-
)stable states. TPS had previously been extended to sample more than
two stable states at the same time, called multiple state TPS (MSTPS)72

and we used MSTPS to further study the dynamics of KRas.

With this extended method we did not see any differences in the sam-
pling behavior of S1, shown in the top of figure 3 and figure 4 of paper F,
and because this mutation is in S2 and therefore has the most influence
on the dynamics of S2, we focused the rest of our work on the transitions
of S2.

Initially we did not observe any difference in the sampling of the dif-
ferent transitions, as can be seen in the bottom row of figure 3 of paper F.
However, one effect of the extension from TPS to MSTPS together with
one-way shooting is that the simulation can ’switch’ between different
transitions by changing either the beginning state, for a backwards shot,
or the ending state, with a forward shot. We can even go from an A → B
transition to a B→A transition, via A→C andB→C. A schematic overview
of the switching transitions are shown in figure 8 in paper F.

We also analyzed this switching behavior for WT and Q61L, shown in
figure 4 of paper F, which shows a stark difference. This would indicate
that Q61L has a lot more trouble switching between transitions than WT.
With the assumption that these switches also sample an equilibrium dis-
tribution, we can quantify this difference, as shown in figure 5 of paper F.
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From the blue arrows in that figure we see that every single switch hap-
pens less frequently for Q61L than for WT.

Further mechanistic investigation of the MSTPS simulations then re-
vealed the difference of this switching behavior, shown in figure 6 of pa-
per F.

For the WT there are two possible transition channels to go to the
open state, one by direct solvation and one where S2 slides along an hy-
drophobic pocket on the α3-helix into the open state. For Q61L the di-
rect solvation channel disappears, and it binds closer to the hydropho-
bic pocket of the α3-helix. This is reasonable and was to be expected by
swapping the hydrophilic glutamine for a hydrophobic leucine. So while
the individual stable states and transitions did not (seem) to change be-
tween WT and Q61L, MSTPS still alerted us to a potential with the differ-
ent switching behavior. This might have been missed with 3 independent
(regular, non multiple state) TPS simulations.

5.2 Using kinetic simulations for illustrating Covalent
Inhibition in Enzymatic Assays

If we have reaction rates, either from a RETIS simulation or from experi-
ments, then we can simulate the kinetics of reactions under certain con-
ditions. In paper D we use these simulations to investigate assay condi-
tions for enzymatic assays with covalent inhibitors.

Covalent inhibitors bind strongly with a covalent bond to their target.
However, traditional drug design focused mostly on molecules that bind
noncovalently to their target, in a reversible manner. Due to the strong
binding of covalent inhibitors, they also have long lasting side effects if
they bind to the wrong target. These off-target effects were often not
discovered until late-stage clinical trials, and drug discovery programs
were moving away from covalent inhibitors.73 However, successful co-
valent inhibitors are used widely, well before their covalent mechanism
was discovered, such as aspirin and penicillin. More recent successes of
targeted covalent inhibitors (TCIs) triggered a resurgence in the use of
covalent inhibitors in drug discovery programs.74

An overview of experimental methods suitable for kinetic evaluation
structure-activity relationship (SAR) of covalent inhibitors with their co-
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valent binding mode was missing and paper D fits into that gap.

When preparing for that manuscript we discovered that validating the
different experimental methods and analysis methods and their (implicit)
assumptions by performing the actual experimentswas very costly. Also if
we did not obtain a reasonable result, we could not differentiate between
experimental artifacts, enzyme degradation or broken assumptions of the
used analysis.

To circumvent these issues we instead decided to simulate these reac-
tions by direct numerical integration of the rate equations. This allowed
us to purely investigate the effects of breaking certain assumptions, and
selectively turn dilution effects and enzyme degradation on or off.

During the development of themanuscript we realized that these sim-
ulations would also be useful for readers to check and validate their ex-
periments and that it could work as an educational tool to investigate
whatwould happen by varying parameters. Thereforewedecided tomake
them publicly available, runnable through a browser using mybinder.org,1

at tinyurl.com/kineticsimulations.



6 Conclusion and outlook

In this thesis, several improvements to all stages of path sampling sim-
ulations have been presented, increasing the speed at which we can in-
vestigate chemistry with these methods. We started by explaining how
to interface path sampling code with external Molecular Dynamics (MD)
codes that use the increased computing power of GPUs. This greatly im-
proved the amount of MD we can run per hour. Further development in
this direction would make the RETIS algorithm even more widely appli-
cable, for example by interfacing RETIS with other specialist code bases,
such as the coupled-cluster code eT.75

Next, we introduced new sampling moves for the RETIS algorithm.
These steered theMDmore efficiently to the region of interest. It showed
a great increase of the sampling of orthogonal collective variables in a no-
torious test system when compared to the regular implementations. Us-
ing theMDmore efficiently is still an active field of research andwill prob-
ably stay that way. Further improvements are expected from advanced
fast decorrelating MC moves like the wire fencing move.16

The last improvement in this thesis for the RETIS algorithm was en-
abling both parallelization and infinite swapping. The infinite swapping
greatly enhances the efficiency of the swapping, while the parallelization
allows for great scaling with the number of processes available. The exact
scaling of the parallelization depends on the correlation of the sampling.
It has perfect linear scaling untill one worker per ensemble if there is no
correlation between two consecutive samples. If there is some corre-
lation between two consecutive samples, like most real simulations, the
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efficiency has an optimum. A safe bet for optimal efficiency is about 1
2 a

worker per ensemble, as long as the average time per Monte Carlo (MC)
move is more than 1 s.

This change in algorithm does break a lot of assumptions in both com-
mon open source path sampling codes, OpenPathSampling and PyRETIS.
Therefore it is required to either convert one of these softwares or de-
velop a new one depending on these new algorithms in future work. Also,
these algorithms should be even better for real systems as opposed to the
used test cases as a singleMCmove in a realistic high-dimensional system
is in the order of minutes, not seconds. It would be great to see ∞RETIS
be applied to biological systems.

The analysis of a RETIS simulation was also improved by using hu-
man understandable machine learning, together with a data representa-
tion that is invariant to translation, rotation and atom-index. This data
representation together with the machine learning allowed for a speed
up of the analysis, without the issue of a potential hypothesis bias that
is common in other works. This was then used to elucidate the differ-
ence in mechanisms of deprotonation of Formic Acid with either 4 or 6
water molecules. We used Decision Trees (DTs) for our algorithm with
the standard information entropy splitting. However, a different infor-
mation metric for RETIS simulations, called Predictive Power,76 has been
presented before and making a DT algorithm based on this would be an
interesting direction for future work. Another direction for future work
would be the extension of the data representation with bond-graph in-
formation, by mapping the 2D matrix into a 3D sparse matrix.

We also showed that path sampling simulations can be used for
biomolecular systems and either enhancing that work with multiple state
transition interface sampling or investigating more mutants would be
interesting.

Lastly, we showed that relatively simple simulations can be instrumen-
tal for understanding and teaching experimental setups especially when
provided in a way that ’just works’ in students’ browser. The setup via
Binder1 could possibly be used for hands on teaching and it also perfectly
fits for non teaching focused manuscripts with the current focus of the
academic community of data reproducibility.
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The algorithmic development in the field of path sampling has
made tremendous progress in recent years. Although the origi-
nal transition path sampling method was mostly used as a qual-
itative tool to sample reaction paths, the more recent family of
interface-based path sampling methods has paved the way for
more quantitative rate calculation studies. Of the exact
methods, the replica exchange transition interface sampling
(RETIS) method is the most efficient, but rather difficult to
implement. This has been the main motivation to develop the
open-source Python-based computer library PyRETIS that was
released in 2017. PyRETIS is designed to be easily interfaced

with any molecular dynamics (MD) package using either classi-
cal or ab initio MD. In this study, we report on the principles
and the software enhancements that are now included in
PyRETIS 2, as well as the recent developments on the user inter-
face, improvements of the efficiency via the implementation of
new shooting moves, easier initialization procedures, analysis
methods, and supported interfaced software. © 2019 The
Authors. Journal of Computational Chemistry published by Wiley
Periodicals, Inc.

DOI: 10.1002/jcc.26112

Introduction

Simulation of long time scales has been a major challenge in
molecular simulations. Although the increase of system scale is
straightforwardly parallelizable, extending simulation time is
not. This is a severe problem as molecular dynamics
(MD) typically requires femtoseconds time steps. Even if the
computational evaluation of such a step is usually achieved
within a fraction of second, it would take centuries of CPU time
to compute 1 s of real time. This makes it nearly impossible to
study processes like chemical reactions, phase transitions, and
conformational changes with MD. These processes typically
occur so infrequently that years of computer time are needed
to observe even a single event.

The vast majority of methods, which have been developed
for overcoming this problem, either alter the potential energy
surface or the dynamics of the system (see, e.g., Refs. [1,2]). The
use of Monte Carlo (MC) in path space is an approach that does
not disturb the underlying physical dynamics, but generates
unlikely molecular events like an improbability drive.[3,4] This
approach is the essence of transition path sampling (TPS)[5–7] in
which repetitively a new path is being generated from an old
path via MC moves that obey detailed balance. The most
important MC move is the so-called shooting move in which
first a random time slice (comprising the phase point at a cer-
tain MD step) of the old path is selected and then stochastically
modified. For instance, random disturbances could be applied
to the velocities of that point. After that, this point is first prop-
agated backward and then forward in time using a standard
symplectic and time-reversible integrator for MD, Langevin, or
Brownian dynamics. Moreover, as paths consist of time slices
(phase points at discrete time steps), velocity Verlet,[8] and
other reversible integration schemes should be preferred above
leapfrog[9] as the latter provides velocities that are shifted in
time by half a time step.[10] After the completion of these time

integrations, the forward and backward trajectories are glued
together resulting in a new continuous path that follows the
natural dynamics of the system. This path is finally accepted or
rejected based on a Metropolis–Hastings rule.[11,12]

Transition interface sampling (TIS)[13] introduced several fun-
damental key elements that made efficient quantitative path
sampling possible. Firstly, TIS introduced the statistical path
ensemble with flexible path length, reducing the redundant
exploration of the stable regions. Secondly, a series of path
ensembles were defined based on a set of hyperplanes (inter-
faces). These hyperplanes are generally defined by a value of
the order parameter (reaction coordinate/progress coordinate)
which is a function of the coordinates (and possibly velocities)
of the system.

The first interface, called λ0 or λA, defines the region of the ini-
tial state. The last interface, called λn or λB, defines the region of
the final state. The first interface is placed such that a straightfor-
ward MD simulation starting from the reactant side would cross
this interface sufficiently frequently, which enables the determi-
nation of the flux through this plane by straight forward
MD. The last interface is placed sufficiently far across the barrier
so that each trajectory from λ0 to λn will not easily return to the
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initial state A and, therefore, can be considered as a successful
transition from the initial state to the final state. As long as the
positioning of λ0 and λn is reasonable and respects the above
criteria, the final result will not largely be affected by their exact
placement. The other interfaces are defined in between λ0 and
λn and their positions are solely based on efficiency arguments.

Once the interfaces are defined, the TIS rate equation is then
given by

kAB = f APA λBjλAð Þ
PA λBjλAð Þ=

Yn−1

i =0
PA λi + 1jλið Þ ð1Þ

where fA is the flux through λA and PA λBjλAð Þ is the very small
probability that a crossing with λA will lead to a crossing with λB
without recrossing λA. As this probability is generally extremely
small, it cannot be calculated directly. However, it can be com-
puted by the exact factorization in the second expression in
eq. (1). One should realize that PA λi +1jλið Þ is not just the proba-
bility to go from λi to λi+1, but rather a history-dependent con-
ditional probability.

Replica exchange TIS (RETIS) samples all path ensembles in
parallel and applies replica exchange moves between those.[14]

In addition, it replaces the MD simulation for the flux calculation

with the ensemble [0−], which consists of paths that start and

end at λ0 but explore the reactant well region rather than the

reaction barrier. For these features, RETIS is considerably more

complex to implement in computer codes. This has been the

main driving force to develop the open source PyRETIS[15] library.
A year after the official disclosure of PyRETIS, the Open Path

Sampling (OPS) library was released.[16,17] The aims of PyRETIS
and OPS are similar, but the libraries have been written with
slightly different user communities in mind. OPS is more
generic and allows the expert user to design different path
ensembles. PyRETIS, on the other hand, has a stronger focus on
the RETIS algorithm and a stronger emphasis on user-friendly
accessibility (i.e., toward the nonexpert user). There are pres-
ently active collaborations between the two developer groups,
which potentially could lead to a partial, or even full, merger of
the two libraries in the future.

In this article, we discuss the code developments made in
the release of PyRETIS 2. PyRETIS 1 was interfaced with
GROMACS[18] and CP2K,[19] for respectively, performing classical
and ab initio MD. In PyRETIS 2, we improved the GROMACS
interface and added interfaces with OpenMM[20,21] and
LAMMPS.[22] Several structural improvements have been made
to improve the readability and reliability of the code. The major
ones are shortly described in this study. To improve the effi-
ciency, the new MC moves in path space, Stone Skipping and
Web Throwing developed by Riccardi et al.[23] have been
implemented. An easier initialization procedure has also been
introduced such that trajectories, or simple snapshots, can now
directly be read by PyRETIS 2 and used to initialize the RETIS
simulation. In terms of outputs, a graphical user interface (GUI)
to quickly inspect trajectories and density plots as functions of
different descriptors (collective variables) has been constructed
and added to the library.

Algorithmic Improvements

Advanced path generating MC moves

To optimize the sampling efficiency, PyRETIS 2 allows a direct
and intuitive selection of path sampling strategies. Two of the
most promising and recent sampling methods, namely, Stone
Skipping and Web Throwing,[23] have now also been included in
the code. Stone skipping and web throwing are two advanced
MC-based moves that reduce correlations between successively
generated paths. This implies that fewer generated trajectories
are required to estimate crossing probabilities and rate con-
stants within a desired error range. Therefore, despite that the
execution of a single MC step is more costly than standard
shooting, the sampling efficiency can increase considerably (for
the case study of Ref. [23], the increase in efficiency was more
than an order magnitude).

We expect that these new moves will become the default
choice as they are intrinsically faster than standard shooting,
though it will require some adaptations with how PyRETIS pres-
ently handles external engines, before this will be paid off in
practice. The essential aspect of the new MC moves is that they
launch a sequence of short subpaths via a shooting protocol
that shoots from the ensemble-specific interface, that is, from a
time slice just before or after the interface. The shooting move
for creating a subpath propagates in one time direction only,
though requires to cross the interface in one single time step
backward in time or forward in time, depending on whether
the selected shooting point is a point just beyond or before the
interface. If this single-step crossing condition is not fulfilled,
new random velocities should be generated until the condition
is met. While this single-step crossing condition can be verified
in principle for a single MD step without doing an actual force
calculation,[23] the single-step crossing test has to be carried
out explicitly whenever a (PyRETIS) step consist of several MD
steps generated by the external engine. This makes the
repeated generation of random velocities, followed by the test-
ing of the one-step crossing condition, potentially, a very
expensive element of this MC move. If the dynamics is suffi-
ciently stochastic, then this one-step crossing test can be
avoided by maintaining the same two time slices before and
after the interface and create subpaths via one-way shooting
protocol from the point that is after the interface, that is, with-
out changing the velocities. For deterministic dynamics and
dynamics that is only moderately stochastic (e.g., underdamped
Langevin dynamics), the new MC moves might not yet out-
perform standard shooting until a new approach for handling
the external engines has been implemented.

The [0−] ensemble with additional confining interface

The [0−] ensemble was introduced by van Erp[14] to replace the
MD simulation for computing the flux in eq. (1) and to allow for
replica exchange moves between all path ensembles. Paths in
the [0−] ensemble start at λ0, like all other paths in the other
ensembles, but move away from the barrier exploring the reac-
tant well. The path is terminated once it recrosses λ0. As a
result, the time slices of a valid path in the [0−] path ensemble
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have order parameter values <λ0 except for the start and end
points.

This assumes that the reactant well has a natural confine-
ment at the left side of the barrier, either because the potential

energy increases when the order parameter is decreased below
the equilibrium position of the reactant state, or because of
periodic boundaries. For instance, if the order parameter is
(minus) the distance between two molecules that can react if
they approach, the periodic boundaries will ensure that their
separation is bounded. However, if the box dimensions are
large or if another undesired stable state exists at the left side
of the reactant well, it might be needed to terminate the path
early, as a completed path starting and ending at λ0 could be
exceedingly long. This can be done in PyRETIS 2 by setting an
extra boundary, a “minus one” interface λ−1 with λ−1 < λ0, that
ensures that the reactant state ensemble is restricted between
λ−1 and λ0. In the present implementation, a path is rejected
when it hits this left boundary. Please note that the use of a left
boundary on this ensemble results in an incorrect flux calcula-
tion. A more sophisticated approach will be implemented in a
future release in which the flux calculation will account for the
presence of the extra boundary. At the present, the usage of
the left boundary requires a reevaluation of flux term by means
of another simulation without the left boundary. An illustrative
scheme of the λ−1 is reported in Figure 1.

Interface with External Engines

The PyRETIS 1 program provided interfaces with GROMACS and
CP2K. In PyRETIS 2, we have extended this with LAMMPS and
OpenMM. In addition, some fundamental changes related to
the GROMACS interface has been established in PyRETIS
2. These new developments are shortly discussed below. Work-
ing examples for each external engine can be found in the
website (section: Getting started). The external engines commu-
nicate with PyRETIS at a certain frequency, defined by the
subcycles number in the PyRETIS input file in the engine section.
At each subcycles number, the external engine provides the
order parameter or the information for its computation. Its
magnitude depends on the selected engine and on the system
under investigation (trade between speed, accuracy, and stor-
age requirements).

GROMACS

The GROMACS engine has been updated for PyRETIS 2. The
strategy for the GROMACS engine in PyRETIS 1 relied on repeat-
edly starting and stopping the execution of GROMACS. That is,
PyRETIS 1 executes GROMACS for a few MD steps, defined by
the number of subcycles, obtains the order parameter and uses
this to determine if the GROMACS run should be ended or con-
tinued. PyRETIS 2 still not only supports this, but also provides a
potentially more efficient strategy. It will execute GROMACS
and obtain the order parameter while GROMACS is running and
will use this to determine when it is time to end the GROMACS
run. This increases the efficiency of running GROMACS with
PyRETIS as it reduces the number stop/restart calls to the
GROMACS engine. To select the old approach, the engine class
to select in the input file is gromacs, while the latter method is
called by the gromacs2 keyword. The new approach exploits
the functionality of the MDTraj[24] library for efficiently reading
GROMACS trajectory files.

(a)

(b)

Figure 1. Illustration of the difference between standard RETIS interface
positioning and RETIS with an extra λ−1 interface. Upper parts of a) and b)
show the free energy as a function of λ with an example of how interfaces
could be positioned. Bottom parts of a) and b) show examples of possible
trajectories depicted in the (λ, CV) plane generated via the shooting move in
the [0−] ensemble, where CV is an additional collective variable different from
λ. a) The standard situation of systems for which RETIS was originally
designed. The free energy provides a natural boundary at the left side, which
implies that the λ coordinate cannot get much smaller than λ0 and respective
path generation trials (indicated by the numbers 1, 2, and 3) starting from the
shooting points (red circles) will relatively quickly end at λ0 in the backward
and forward time direction, yielding new acceptable paths. This situation is,
for instance, typical for bond breaking, nucleation, and protein folding. b) The
situation for which the additional λ−1 interface was introduced and is typical
in, for example, permeation studies. In this case, the free energy does not
provide a natural boundary at the left. Trajectories can in principle continue to
move toward the left, allowing endlessly long trajectories. PyRETIS 2, however,
allows the user to define a λ−1 interface, such that the shooting moves hitting
the λ−1 interface are directly rejected. This is the case for trials 2 and 4 which
hit the λ−1 interface in the backward and forward time direction, respectively.
[Color figure can be viewed at wileyonlinelibrary.com]

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

J. Comput. Chem. 2020, 41, 370–377 WWW.CHEMISTRYVIEWS.COM372



LAMMPS

PyRETIS 2 also includes an interface for LAMMPS.[22] For this
engine, PyRETIS 2 will only provide information about the initial
configuration and the stopping conditions (i.e., the maximum
number of steps to perform and the location of the relevant
interfaces). This enables the execution of LAMMPS to be fully
handled by LAMMPS itself. This also requires that the order
parameter is defined in a separate LAMMPS input file, which
LAMMPS can use to calculate it. After the completion of a
LAMMPS MD run, PyRETIS 2 will read the calculated order
parameter and energies, and store the generated trajectory.
Currently, PyRETIS 2 only supports microcanonical (NVE) dynam-
ics when using LAMMPS. Note that temperature effects can still
be studied as the temperature is linked to the MC sampling.
That is, paths describe dynamics at constant energy, but the
energies of different paths will fluctuate due to the shooting
move. The approach can be defined as a canonical (NVT)
sampling of NVE paths, and it is a popular approach in path
sampling since it removes the dynamics from unphysical modi-
fications of the equations of motion by a thermostat, while still
sampling the canonical distribution. It reflects a system that is
weakly coupled to a heat bath such that its effect is not notice-
able on the time scale of the path length.

OpenMM

PyRETIS 2 has added an interface with OpenMM.[21] In this ver-
sion, OpenMM can only be used with PyRETIS as a library. That
means that if an OpenMM Simulation class is initialized, this
object can then be used to initiate the OpenMMEngine class
inside PyRETIS. This OpenMMEngine class can then be used for
all the PyRETIS internals. An automated setup from restructured
text input, like the way PyRETIS handles the connection with
the other engines, is not yet supported and will be added in a
later version of PyRETIS. As OpenMM also supports running on
GPUs, special care was taken to not create new OpenMM con-
texts, but instead update the coordinates and velocities by an
in-place operation. This minimizes the communication and pre-
vents unnecessary compilation time for running on GPUs. The
current implementation is only suitable for simulation in the
canonical ensemble. Support for the isothermal–isobaric (NPT)
will be added to a later version of PyRETIS.

Library Structure

Ensemble structure

The paths generated by Path Sampling are grouped into
ensembles. Each of them focuses on a different region of path
space. Each one can rely on different MC rules to generate new
paths. Dedicated setups, tailored to the region to explore, can
thus improve the sampling by enabling the application of the
most suitable techniques. These possible techniques are for
instance the use of Stone Skipping Web Throwing moves (see
“Advanced path generating MC moves” section) or the different
ways to disturb the velocities when performing a shooting
move. To use this feature, a user should simply declare the

ensemble to modify and specify the dedicated input as shown
in the example in Figure 2.

In case that no special treatment for an ensemble is indi-
cated, the main settings will be applied, preserving the same
functionality as the previous version of PyRETIS.

Defining the order parameter and additional collective
variables

The input file to PyRETIS has been updated to directly support
several collective variables. This implies that a set of additional
collective variables can be listed in the input file and those will
be calculated along with the main order parameter. These col-
lective variables do not affect the RETIS algorithm but can pro-
vide valuable information for the analysis of the path
ensembles. The additional collective variables are hence
descriptors to be used in postprocessing to elucidate mecha-
nisms occurring in the investigated transition. There are, there-
fore, no constraints on the number or type of collective
variables. The new input scheme to include additional collective
variables is illustrated in Figure 3.

Paths storage and restart reproducibility

The storage of generated paths has been updated for PyRETIS
2. The trajectories can be saved with any frequency in a com-
pressed format. The respective order parameter and energies
(as a function of time) are saved in separate files with arbitrary
frequencies too. This setup allows independent visual inspec-
tions of the generated trajectories and the restart of a new path

Figure 2. New input structures to insert specific input for an ensemble. Each
ensemble section refers to an interface specified in within. In the example,
for the three ensembles selected, different shooting moves, with different
parameters, have been selected. Note that the default shooting move is
“sh,” the first ensemble section is, therefore, not required.
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sampling simulation from a previous successful trajectory
(in case that the latest data got corrupted, e.g., by a hardware
failure). Furthermore, by selecting a large number of descriptors
(order parameter and collective variables), it is now possible to
limit the size of stored data, while still having a detailed system
description that can be quickly handled by the visualization
tool introduced in the present release.

Random number generators

A new treatment of random number generators has been
implemented in PyRETIS 2 to allow an exact reproducibility of
simulations even if they have been performed in parallel. The
random number generator is called at many places in the RETIS
algorithm: In each cycle, a random number is drawn to select
(1) the RETIS move (to select between the options swap/time-
reversal/shooting or other types of path MC moves), (2) the rel-
ative shooting (if applicable), (3) the selection of the frame
index, (4) the selection of the new velocities (velocities may be
kept unchanged in the case of stochastic dynamics), and (5) the
random forces whenever stochastic dynamics is applied.

In PyRETIS 2, each task has a dedicated and unique random
number generator. The feature permits a more accessible repro-
duction of the simulation results and a precise continuation of
simulations even in parallel jobs.

MDTraj

PyRETIS 2 includes MDTraj[24] as an interpreter for external files.
That is, external trajectories (from GROMACS, CP2K, LAMMPS)
can be read with this Python library that was developed to deal
efficiently with massive trajectories. The aim is to gain, in later
releases of PyRETIS, increased independence from the external
engine. As the minimal output that PyRETIS needs to receive
from the external engine is only an ordered list of order param-
eters describing a trajectory, a universal interpreter to read
external files in the various formats would simplify and uniform
the interface for the various external engines. In PyRETIS
2, MDTraj is used in the load function to extract the desired
frames. The package allows the use and development of arbi-
trary external functions to compute the order parameters and
additional collective variables.

Input/Output Schemes

Load functionality and initialization

A new functionality, the load feature, has been added to
PyRETIS 2 that simplifies one of the most user demanding tasks
of the path sampling algorithm, the initialization of the simula-
tion. The feature permits a direct initialization of path sampling
simulations using configuration frames that could be generated
by any type of fast simulation method and software. The new
load function reads frames and trajectories supplied to PyRETIS
2 without the need for any further descriptor. PyRETIS 2 will
compute the order-parameter, the additional collective vari-
ables and eventually the energy of the provided frames and tra-
jectories. The input information will be automatically
rearranged to satisfy the various ensemble definitions, when
possible. PyRETIS 2 will then start the exploration of the path
space from these initial frames indicating, with the “ld” flag in
the output “pathensemble.txt” files, that the latest accepted
path is a repetition of the initial path loaded. Once the initializa-
tion is completed this “ld” flag should no longer be present in
the newly produced output lines in the “pathensemble.txt” files.

The strategy allows the inclusions of frames along the transi-
tion of interest that can be constructed by for instance con-
strained dynamics, nudge elastic band[25] or metadynamics[2]

using any type of software. It should be underlined that the
load function only simplifies the initialization procedure and will
not influence the final converged result. It is, therefore, possible
to provide to the load function a hypothetical path that has no
physical meaning. The load initialization procedure also has a
preprocessing feature to limit the overall simulation memory
requirements. That is, for a massive trajectory, that explores the
transition region only in a relatively short period, PyRETIS 2 auto-
matically omits the frames that are not part of the ensemble of
interest.

Figure 3. New input structures to include multiple collective variables along
with the main order parameter. The order of the collective variables will be
maintained in the generated output by PyRETIS in the orderp.txt files. In this
example, the order parameter is the x position of atom 0, the first collective
variable is the y component of the atom 16 velocity. The second collective
variable is the angle between the atoms with indexes 1, 3, and 7. While
these descriptors are computed with internal functions, the latter order
parameter, called Custom, is an example of an externally computed
descriptor (located in the module orderp.py).
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The load function can also be invoked after a restart. The
frames from the restart file are then used as frames for the load
method. The difference compared to a normal restart, which is
a continuation, is that the load permits a broad change of the
simulation parameters: from the order parameter selection to
the interface positioning. It should be reminded here that,
unlike a normal restart, the use of load with concomitant
changes in the simulation parameters, should not be viewed as
a continuation, and the previous sampling should be discarded
in the final analysis.

Visualization

As specified by the user, different output files are created and
also the frequency of writing the data can be set. Data sets can
be created by optionally writing all-atom coordinates, velocities,
and a list of descriptors (collective variables) for each trajectory
at each time slice. Writing of all coordinates and velocities gives
rise to huge data sets which asks for significant memory
requirements for storage, and complicates the interpretation
and data analysis. Therefore, we advise the user to reflect on
what may be potentially important collective variables and then
define a large set of descriptors prior to performing production
runs. This simplification reduces the dimensionality of the data
on which the interpretation of the reaction mechanisms shall
be based. Still, even with this reduced dimensionality it can be
nontrivial to filter out the essential information.

To facilitate this task, PyRETIS 2 includes a new visualization
tool, named PyVisA. The software permits an almost immediate
visualization of the initial, partial and final simulation results by
allowing the automated generation of plots of various simula-
tion collective variables. A user can promptly plot energies, the
order parameter, collective variables, cycle number, and path
lengths as a function of each other in different type of plots, for
different ensembles, for selected cycle ranges, for accepted or
rejected paths. A GUI has been constructed facilitate this visual-
ization and to easily navigate through the PyRETIS 2 outputs.

The visualization of the various descriptors, for example,
the collective variable density plots, in the GUI allows the
user to interactively inspect different parameter combinations,
potentially revealing additional information about the system
dynamics. In the initialization stage, a user can better position
the various interfaces, select the most appropriate MC move
(e.g., standard shooting, Stone Skipping, Web Throwing, etc.),
determine metastable states and even evaluate the efficacy
of the selected order parameter in comparison with other col-
lective variables. The descriptors include order parameters,
collective variables, energy, number of simulation steps for
path, RETIS cycles. The user can select the range of cycles to
visualize, their type (accepted/rejected) and the plot type
(e.g., 2D scatter, 3D scatter, local density). Figures 5 and 4
show two reports that can be obtained by the visualization
tool’s GUI. To execute the visualization and analysis tool
(named “PyVisA”), the flag -pyvisa shall be added to the
pyretisanalyse command. Further details, instructions, and
examples can be found in Ref. [27], where the tool structure
and features are detailed.

The visualization tool, furthermore, provides a structured
computational framework that will permit a general implemen-
tation of advanced analysis approaches. Predictor methods[28]

or machine learning methods[29] to evaluate the quality of the
selected order parameter in the description of the sampled
event are the two most immediate examples.

User Support

Compatibility and installation

PyRETIS 2 supports Python 3.6 and 3.7 and is distributed via pip
and conda (via the conda-forge channel) for the main releases.
The visualization package, PyVisA, can be found in the develop-
ment versions of PyRETIS (PyRETIS v2.develop and PyREITS 3.
beta) and in the forthcoming releases beyond Version 2.4. The
development versions can be installed by downloading the
PyRETIS source code from gitlab via the command “python
setup.py install” from the main directory. Further details on its
installation and usage can be found in Ref. [27].

Test examples

Along with a long list of unit tests, the PyRETIS development is
also tested versus a series of main test simulations that are
automatically executed daily to assert the code and its

Figure 4. Visualization (“Plot type: 2D Scatter”) of a set of accepted
trajectories (“Paths: ACC”) for a given range of cycles (“Cycles: 1000 to 1070”)
for all ensembles (“Folder: All”), plotted according to the cycle number (“x:
cycO”), trajectory length (“y: time”) and the potential energy (“z: potE”). With
these selections, an user can gain a statistical insight in the progress of the
sampling for a restricted range of cycles. From this illustrative plot, it can be
noticed that the paths generated in the surrounding of cycle 1070 are
longer and with lower potential energy than the previous for the given
range. A nonuniform path length distribution can be symptom of a
nonconverged sampling. The paths in the latter cycles seems to have
identified a region with lower potential energy, a different pathway might
have been, therefore, identified. [Color figure can be viewed at
wileyonlinelibrary.com]
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dependencies status. These test simulations are available in the
development versions of PyRETIS (which can be installed via git
as described in the section on code availability). The test simu-
lations have also a pedagogical purpose: users can gain experi-
ence and familiarity with the PyRETIS input scheme. These
simulations are grouped by the external engine selected and
by the functionality under test. Hereby, we are constantly
increasing the number of test simulations. At the current stage,
test simulations show the usage of different engines, initiation
functions (e.g., “kick,” “load,” and “restart”), different simulation
schemes (e.g., MD, TIS, and RETIS) and different selection of
shooting moves (e.g., Stone Skipping and Web Throwing).

Web interface

By the release of PyRETIS 1, we created a website (www.pyretis.
org) to give support to PyRETIS users. With PyRETIS 2, new
examples and guides have been included in the Examples

section and the User Guide section to further facilitate and guide
the usage of PyRETIS. In particular, the example section contains
working examples for each of the external engines supported.

Cases of study performed with PyRETIS are constantly
uploaded on the PyRETIS web page under the “Main studies
performed by PyRETIS” section, and the files used to initiate
and control the simulations are shared to facilitate the repro-
ducibility of our investigations, with respect to FAIR data
policies.[30]

In particular, our recent investigation of water autoionization[31]

and the Histone-like Nucleoid Structuring protein (H-NS) bind-
ing to DNA[26] are listed on the website. They constitute two
successful applications of the RETIS algorithm, where the sam-
pling software has been interfaced with CP2K[19] in the first
work, and GROMACS[18] in the latter. The User Guide
section contains a new set of entries to facilitate the usage of
the code. The guide comprises (1) instructions for the installa-
tion of PyRETIS in a user and a developer mode, (2) information
on how to use and set up external engines and order parame-
ters, (3) help for common errors, and (4) instructions on how to
report bugs.

Future Work

Despite the considerable efforts put in the code development,
there are various expansions that would be desirable to
increase usability, efficiency, and compatibility with other sam-
pling software. We aim to automatize some of the parameter
selections such as the interface positions, the number of jumps
in the stone skipping and web throwing moves and the SOUR
interface[23] in web throwing, the relative shooting weights, and
the frequency of selection of the various MC moves.

An interface with VASP has been initiated and partially com-
pleted. It will be released after completion and after performing
sufficient testing. In parallel, we are considering the implemen-
tation of a “translation” platform that might enable a single
scheme to deal with the input and output of multiple engines.
Besides the already implemented MDTraj,[24] Python packages
such as MDanalysis[32,33] and Atomic Simulation Environment
(ASE)[34] can facilitate the realization of such a platform.

In the next PyRETIS release, the visualization tool will become
an integral part of the code. It will provide a multidimensional
and structured analysis framework. Advanced analysis
approaches, such as the predictive power analysis method[28]

and machine learning based methods to evaluate the quality of
different collective variables,[29] will be readily implemented.
We are therefore interested in direct support and collaboration
with potential new developers that are interested to apply and
expand PyRETIS.

Software Availability

PyRETIS 2 is free (released under a LGPLv2.1+ license) and can
be obtained as described previously and at http://www.pyretis.
org/user/install.html. The source code, the visualization tool and
the development version are accessible at: https://gitlab.com/
pyretis/pyretis.

Figure 5. (Figure taken from Ref. [26]) Path frame density plots of RETIS
trajectories for the insertion transition of H-NS to DNA. CQCR − minor is the main
order parameter and it is obtained by a contact map between H-NS (QGR
motif) and the DNA minor groove region. The descriptors CR − SC and CQ − BB

are obtained by the contact map of specific H-NS region (R or Q motif) and
DNA region (side chain and back bone). A complete description of the
descriptors on the axis and of the meta-stable states can be found in the
work of Riccardi et al.[26] Darker color represents a higher probability. The
plots showed that for the Q–BB interaction to happen, the protein has to be
in contact with DNA first, while the R–SC interaction seems to anticipate the
H-NS–DNA interaction. In essence, these descriptive plots showed part of the
mechanisms of H-NS adsorption. [Color figure can be viewed at
wileyonlinelibrary.com]
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Permeation of compounds through membranes is important in biological and engineering processes, e.g.,
drug delivery through lipid bilayers, anesthetics, or chemical reactor design. Simulations at the atomic scale
can provide insight in the diffusive pathways and they give estimates of the membrane permeability based
on counting membrane transitions or on the inhomogeneous solubility-diffusivity model described by the
Smoluchowski equation. For many permeants, permeation through a membrane is too slow to gather sufficient
statistics with conventional molecular dynamics simulations, i.e., permeation is a rare event. Recent attempts to
improve the description of the dynamics of such rare permeation events have been based on milestoning, which
allows the study of processes at timescales beyond those achievable by straightforward molecular dynamics. The
approach is not relying on an overdamped description, but, still, it uses a Markovian approximation which is
only valid for small permeants that are not disruptive to the membrane structure. To overcome this fundamental
limitation, we show here how replica exchange transition interface sampling (RETIS) can effectively be used
on this problem by deriving an effective set of equations that relate the outcome of RETIS simulations and
the permeability coefficient. In addition, we introduce two new path Monte Carlo (MC) moves specifically for
permeation dynamics, that are used in combination with the ordinary path generating moves, which considerably
increase the efficiency. The advantage of our method is that it gives exact results, identical to brute force
molecular dynamics, but orders of magnitude faster.

DOI: 10.1103/PhysRevResearch.3.033068

I. INTRODUCTION

Permeation of compounds through another medium is
essential in both biological and engineering processes. In bi-
ology, the permeation of molecules, nutrients or nanoparticles
through membranes is an integral part of a functioning cell,
and understanding the drug delivery process can aid the de-
sign of new cancer drugs or anesthetics [1–4]. In chemical
engineering, the transport of molecules can play a role in the
selectivity of the molecules [5,6]. In highly complex chemical
systems, it is valuable to unravel the various diffusion path-
ways, which can aid the optimization of a chemical reactor
setup. Despite the existence of spectroscopic methods, such as
fluorescence spectroscopy [7,8] or EPR experiments [9], the
insight in diffusive transport at the molecular scale is difficult
to obtain experimentally. Especially in inhomogeneous media
where the diffusion of permeants is a function of the location,
experiments usually only provide a global effective diffusion
constant, without discerning local differences at the molecular
scale. It is in this respect that molecular dynamics (MD)
simulations can play a major role. MD creates molecular

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

trajectories and transport properties are directly observable at
the molecular scale, such as the permeability P.

The permeability of a membrane is the flux through the
membrane as a response to a concentration gradient over the
membrane. A first standard approach to derive the permeabil-
ity P from MD simulations is the counting method, which
is based on measuring the rate of membrane transitions per
unit of time and area [10–12]. Another standard approach
is Bayesian analysis (BA) using the Smoluchowski equation,
which assumes a position-dependent concentration profile as
well as a position-dependent diffusion profile across the mem-
brane [12–17]. The Smoluchowski equation is a pure diffusion
model, where memory effects are not modeled. The serious
limitation of these approaches is that, when the permeability
is low, the statistics provided by MD might be insufficient,
even when the trajectories are extended up to 1 microsecond
of simulation time.

A more recent approach is the extraction of P from mile-
stoning. Milestoning is based on the sampling of many short
trajectories released from equilibrium distributions at hyper-
surfaces (milestones) [18]. Typically, these hypersurfaces are
defined as subsets of configuration space with fixed values of
the reaction coordinate (RC). The milestoning method then
counts from each originating hypersurface how often the left
or right hypersurface is hit first and the time that it takes
to let this happen. These two properties for the different
milestones are then combined such that the dynamics of the
system can be described by a Markovian hopping sequence

2643-1564/2021/3(3)/033068(24) 033068-1 Published by the American Physical Society
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from one surface to the other. Rates, mean-first-passage times
and other relevant dynamic and thermodynamic data can then
be obtained. The central assumption underlying milestoning is
that the set of first hitting points, of the trajectories originating
from one surface with a hypersurface left or right from it,
is again distributed according to the equilibrium distribution.
This leads to conflicting requirements. On the one hand, the
milestones need to be set closely as this guarantees the highest
efficiency boost compared to brute force MD. On the other
hand, they need to be well separated for the central assumption
to be sufficiently satisfied. In addition, for the assumption
to hold, the choice of the RC is crucial and should ideally
coincide with the committor [19]. The committor is generally
an unknown coordinate that not only describes the position of
the permeant relative to the center of mass of the membrane,
but also should include nontrivial membrane deformations.
Obtaining approximate forms of the committor is generally
an immense task [20].

As a way to overcome the limitation of the Markovian
assumption, this work will make use of the transition in-
terface sampling (TIS) framework and of its extension, the
replica exchange TIS (RETIS) formalism [21–23]. (RE)TIS
gives a completely non-Markovian treatment of the interface
hopping probabilities, while still being orders of magnitude
faster than brute force MD. The overall rate is obtained in
a divide-and-conquer mindset, by constructing a series of
conditional probabilities to reach the next interface. Here we
will show how the permeability, as defined in steady-state
nonequilibrium conditions, can be transformed into func-
tional form that depends on the equilibrium path ensemble
properties which can be obtained from RETIS (instead of
the typical canonical, NVT, or isobaric, NPT, phase space
ensembles).

In an extension, we also show how the rates of transition
can be defined in a meaningful way for an infinite system
or a system with periodic boundaries such that it can be
linked to the permeability. When the phase neighboring the
membrane is unbounded, particles have a probability to indef-
initely diffuse in the opposite direction of the membrane rather
than through the membrane. Also when a system has periodic
boundary conditions, it is difficult to detect whether particles
reach the other side of the membrane through the periodic
boundary or through the membrane itself. The permeability
formula will be adapted to treat those cases. In addition, two
additional moves will be introduced in the MC sampling of the
interface ensembles. They will improve the efficiency when
the simulation box contains multiple permeant molecules or
when the membrane is symmetric with respect to the mem-
brane center.

This article is organized as follows. In Sec. II, we review
the existing approaches for obtaining P from MD simulations.
In Sec. III, the (RE)TIS formalism is revised and the path
ensembles are defined. In Sec. IV, the theoretical derivation
of the permeability from (RE)TIS is presented. In Sec. V we
derive the needed adaptation to treat systems with periodic
boundary conditions. In Sec. VI, the two new MC moves
are presented. In Sec. VII, we illustrate the accuracy and
effectiveness of our approach by computing the permeability
of a few basic model test systems. We end with concluding
remarks in Sec. VIII.

II. EXISTING APPROACHES FOR PERMEABILITY
CALCULATIONS

A. Direct counting

The permeability is defined as the ratio of the net flux J
of particles transiting a membrane in the steady-state regime
when imposing a small concentration difference �c over the
membrane,

P = J

�c
. (1)

To compute the permeability, one could consider imposing
the concentration difference at the membrane boundaries,
as suggested by the definition in Eq. (1). However, at the
molecular scale it is troublesome to impose a nonequilibrium
steady-state concentration gradient, especially when periodic
boundary conditions are applied.

A more common approach is therefore to count transitions
in both directions through the membrane in an equilibrium
simulation [10]. At first sight, Eq. (1) is no longer adequate
for the computation of P. Indeed, note that J in Eq. (1) is the
result of both crossings from left to right and from right to
left, corresponding to a positive flux J+ and a negative flux
J−. These fluxes are proportional to the concentrations at the
left and right hand side of the membrane, respectively, and
bear opposite signs. The net flux is, hence, the result that is left
after a partial cancellation of J+ and J−, and in an equilibrium
situation, where �c = 0, the cancellation is complete and the
net flux is zero. Whereas the permeability in this case is no
longer measurable experimentally, in simulations it is still
possible since it is relatively easy to trace the J+ and J− fluxes
individually from the MD trajectories and one can write

P = |J+|
c(−h/2)

= |J−|
c(h/2)

= |J+| + |J−|
2cref

. (2)

Here, z = 0 is considered to be the center of the mem-
brane of thickness h with borders at z = ±h/2, and c(z) is
the concentration profile across the membrane. The refer-
ence concentration is the concentration outside the membrane
cref = c(−h/2) = c(h/2) and corresponds to the concentra-
tion of permeants in the bulk liquid.

In an equilibrium run, the sum of fluxes |J+| + |J−| is
measured by counting full transitions from −h/2 to h/2 and
vice versa. This approach has the advantage that it is nearly
model-free. However, it is in practice a challenge to measure
the flux at the atomic scale for all but the fastest permeation
events [9,10,16,24–33]

B. Smoluchowski equation

A second common approach is to run equilibrium MD
simulations and to analyze these assuming the validity of
the inhomogeneous solution-diffusivity (ISD) model, where
transport is modeled by position-dependent Brownian dif-
fusion (diffusion profile D(z)) on a free energy landscape
(profile F (z)), as governed by the Smoluchowski equation
[15]. The free energy is related to the permeant concentra-
tion in equilibrium through the Boltzmann probability, c(z) ∼
exp(−βF ), where β = 1/(kBT ) is the inverse temperature, kB

is Boltzmann constant. Given the two profiles F and D, the
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permeability follows directly from solving the Smoluchowski
equation for its steady-state solution in the presence of a fixed
concentration difference �c over the membrane [13,16],

1

P
= e−βFref

� h/2

−h/2

1

e−βF (z)D(z)
dz, (3)

where Fref is the free energy at the reference location, usually
at z = − h

2 .
The structure of Eq. (3) shows that the free energy profile

is the dominant contribution to the permeability. Several cases
can now be thought of for F (z): F (z) has a barrier, is flat, or
has a well. The last two cases are rather academic, as realistic
membranes often form a combination of free energy barri-
ers and wells, e.g., for O2 permeation through phospholipid
bilayers [16]. First, when the permeation implies crossing a
high free energy barrier, the integration range in Eq. (3) can
readily be reduced from [−h/2, h/2] to [−h�/2, h��/2] with
h�, h�� < h,

1

P
≈ e−βFref

� h��/2

−h�/2

1

e−βF (z)D(z)
dz (4)

if the integrand can be neglected for the outer regions −h/2 <

z < −h�/2 and h��/2 < z < h/2. Given the exponential depen-
dence on the free energy barrier, the integration boundaries
−h�/2 and h��/2 can often be chosen rather close to the max-
imum of the free energy barrier as long as Fref is taken in the
bulk region. In the direct counting method, the neglect of the
outer regions in the integration relates to the fact that nearly all
transitions from −h/2 to h/2 contain one and only one single
−h�/2 to h��/2 transition.

Second, the permeability in a homogeneous medium where
F (z) is a flat profile, equals P = D/h with D the diffusion con-
stant. The permeability halves when doubling the thickness
h. This shows that the integration boundaries and reference
region need to be chosen with some care whenever the free
energy barrier is relatively small. Third, when F shows a free
energy well, the permeants may be trapped in the membrane,
and the integration boundaries should also be chosen with
care.

Besides these conceptual fundamental issues related to the
definition of the permeability, there are also practical issues.
The danger exists that not all regions inside and outside of
the membrane are accurately sampled in the equilibrium MD
simulations. Lastly, slow sampling can also originate from
a low diffusivity [D(z) in Eq. (3)], e.g., for permeants that
are bulky. The challenge of the Smoluchowski approach is
to determine the model parameters, i.e., the F (z) and D(z)
profiles, which can be extracted a posteriori from the MD tra-
jectories in various ways [10,12,15,16,28,29,34]. When MD
is inadequate because of its limited timescale, the approach
can be combined with rare events simulation techniques like
umbrella sampling [35], adaptive bias force [36–38], and bi-
ased diffusion [39,40]. All these free energy methods, with
the aim to compute the permeability via Eq. (3), have how-
ever as a shared limitation that they build on the validity of
the Smoluchowski equation. The validity of this equation is
questionable for many complex systems in which the transfer
of permeants over the barrier involves other types of motion,

like a rotation of the permeant or a local stretch of a membrane
opening [38,41].

C. Path sampling approaches

Path sampling methods seem to provide a natural solution
to the permeation problem since they are designed to maintain
the natural dynamics of the process as much as possible,
while still allowing the sampling of events that happen on
long timescales. Among the different path sampling methods,
applications on the permeation problem have so far mostly
adopted the milestoning method [18]. In this technique, phase
space is divided in domains that are separated by interfaces,
called milestones. Trajectories are initiated at each milestone
and run until they cross another milestone. The statistics over
this set of short trajectories give the mean first passage times
between pairs of milestones, which are then incorporated in
a Markovian rate network model to extract the overall rate.
Cardenas and Elber [42] proposed the formula for the perme-
ability

P = J1 q f

cref q1
, (5)

where J1 is the flux of particles hitting the first milestone per
area and per time in equilibrium, q is the absolute flux vec-
tor of trajectories crossing the milestones, when solving the
Markovian rate model for its steady-state solution with spe-
cific boundary conditions. Cardenas and Elber applied this to
the permeation of a small peptide [42] or water molecule [43]
through a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)
phospholipid bilayer, while Fathizadeh and Elber simulated
potassium permeation through this DOPC membrane [44].
Recently, Votapka et al. derived an alternative formulation for
the permeability based on milestoning [45].

The advantage of milestoning is that the MD trajecto-
ries that need to be generated are very short. However, the
milestoning relies on the Markovian assumption that the sys-
tem loses memory when it hits the next interface/milestone
[18,46]. This assumption is only correct if the milestones
are chosen along the isocommittor lines [19]. Hence, since
the milestones are defined by fixed values of the RC, the
RC should be the committor [47–50]. The committor is
therefore often considered as the ideal RC since the dynam-
ics projected on this one-dimensional coordinate becomes
Markovian and models relying on the Markovian assumption,
like Smoluchowski and milestoning, become exact. Note that
the committor is in principle defined in phase space though by
assuming that the dynamics is overdamped the committor can
be defined in configuration space alone.

Hence, if milestoning is applied with this ideal RC (the
committor) then trajectories released from the same milestone
have the same probability of reaching h/2 before −h/2 re-
gardless the point of origin within that milestone. This RC
should account for all relevant rotations of the permeant,
collective motions, and deformations of the membrane that
could be vital for the permeation process. Including these
motions within a single coordinate is highly nontrivial even if
the committor is assumed to be only configuration space de-
pendent based on the overdamped approximation. In practice,
this is generally not even attempted. Rather, a simple intuitive
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RC is chosen such as the z coordinate of the permeant that
is followed. This pragmatic choice will generally invalidate
the Markovian assumption leading to a systematic error that
can be mild or severe depending on the system. Another path
sampling approach that has similarities with milestoning is the
partial path transition interface sampling (PPTIS) [51]. The
PPTIS method is a Markovian variant of the TIS method.
Still, it uses a less stringent assumption than milestoning
by including more memory in the dynamical description. In
PPTIS, if the system hits an interface, the chance to move to
either its left or right interface depends on the history on the
path i.e., from which interface (left or right) it came from.
Still, no memory is retained before that point. The systematic
error due to the nonideal RC is therefore presumably lower in
PPTIS than in milestoning.

Path sampling methods that include the complete history
dependence of the dynamics, such as transition path sampling
(TPS), transition interface sampling (TIS), forward flux sam-
pling (FFS) [52], adaptive multilevel splitting (AMS) [53],
and replica exchange TIS (RETIS), are exact and independent
of the RC, which is a big advantage in complex systems. The
sampling of complete trajectories will make these methods
generally more computationally intensive than milestoning or
PPTIS, though a quantitative comparison relies on the trade-
off between systematic and statistical error. FFS and AMS
are based on a splitting approach which makes it applicable
for nonequilibrium dynamics as well. On the other hand, the
lack of backward-in-time integration limits the applicability
of splitting methods to stochastic dynamics and leads to a
relatively high risk of producing nonrepresentative transition
trajectories [54]. The other three methods, TPS, TIS, and
RETIS, are all based on a MC sampling procedure in path
space. The original TPS approach for rate calculations is no
longer being used in practice as TIS is both faster and more
accurate than TPS. RETIS is even more efficient than TIS, but
requires a more complex implementation. By the emergence
of open source path sampling libraries like OPS [55,56] and
PyRETIS [57,58] the latter aspect has become less of an issue.

In this paper, we show how RETIS can effectively be used
to compute permeability coefficients equally exact as the di-
rect counting approach, but orders of magnitude faster. In the
next section, we shortly introduce the RETIS approach, then
show how it can be amended for permeability calculations in
Sec. IV, and show in Sec. VI two new path MC moves that
can further enhance ergodic sampling.

III. REPLICA EXCHANGE TRANSITION
INTERFACE SAMPLING

TIS and RETIS are rare event techniques that allow to
compute rate constants k when transitions have to overcome
a high free energy barrier, and thus transitions are unlikely to
be observed in a standard MD simulation. Intuitively the rate
constant k can be expressed as a number of transitions, from
reactant state to product state, per unit time and per amount of
reactants. However, the translation of this phenomenological
rate constant into a computational measurable property is far
from trivial since it requires a microscopic definition of the
reactant state and product state. If a single dividing surface is
used to assign whether a molecular system is in the reactant

(a)

(b)

FIG. 1. Path ensembles in RETIS. (a) Paths shown along the
RC λ and an arbitrary orthogonal coordinate. The free energy as a
function of λ is also shown. All top four paths are part of the [0+]
ensemble containing paths that start at λA = λ0, move in the positive
direction and end at λA or λB. The top three path are part of the
[1+] ensemble. These are like the [0+] paths but should cross λ1

in addition. The top two paths are part of the [2+] path ensemble.
The bottom path is a [0−] path that starts at λA = λ0, moves in the
negative direction and ends at λA. The stable state regions A and B,
and the middle region M (no man’s land) are shown. Points in the
region M can be part of the larger overall states A or B. (b) Reaction
coordinate as a function of time for a hypothetical long equilibrium
MD run. The line is solid green (light: stable state A, dark: region M)
when the system belongs to overall state A. It is dashed blue (bright:
stable state B, dark: region M) when part of overall state B.

state or product state, e.g., based on a geometric observable
being lower or higher than a specific value, it is expected to
observe many correlated recrossings of the dividing surface.
Only when the system has moved far enough beyond the
dividing surface, it can be considered as stabilized to the other
state. To avoid the issue of correlated recrossings, it can be
generally better to consider two separate dividing surfaces left
and right of the barrier, λA and λB, respectively [see Fig. 1(a)].
At the left of λA and at the right of λB, the system is considered
committed to the reactant state and product state respectively.
The disadvantage is that the barrier region between the divid-
ing surfaces is not assigned to either state. A transition from
reactant state to product state needs to cross the no man’s land
between A and B, which makes it difficult to assign for each
transition a specific point in time at which it takes place, which
is essential to avoid overcounting.

The TIS and RETIS approaches circumvent this problem
by introducing overall states which are history-dependent
state definitions. Using the two dividing surfaces, λA and λB,
the system is part of stable state A if the value of the chosen
RC is below λA and it is part of stable state B if it is higher
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than λB. The overall states are denoted by the curly letters A
and B, and they include the stable states A and B, respectively.
Further, any instance of the system traveling in no man’s land
is assigned to overall state A or overall state B based on the
stable state that was most recently visited.

The advantage is that the system is always assigned to
either overall state A or B, and the overall state regions are
rather insensitive to the placement of the dividing surfaces
λA and λB as long as these are reasonable [23]. In addition,
a transition from A to B is well defined without hindrance
of recrossings and leads to a microscopically measurable net
flux without perturbing the equilibrium conditions. As such,
the phenomenological rate constant can be expressed as

k = lim
�t→0

�hA(0)hB(�t )�
�hA� �t

, (6)

where hX (t ) equals 1 when the system is in state X at time
t and 0 when the system is not in state X at time t . The
interpretation of the ensemble average that involves history
dependent functions is given in Appendix A.

The above equation counts the rare crossings from left to
right through the surface λB of points that actually come from
λA (when the equations of motion are followed backward in
time, λA is reached without crossing λB). Since we can assume
equilibrium, the same number of counts per second will be
obtained by considering crossings with λA that after crossing
that interface reach λB without recrossing λA. This allows us
to write the rate k as

k = fAPA(λB|λA), (7)

where fA is the conditional flux (crossings per time) through
λA counting all crossings in the positive direction per time
spent in state A, and PA(λB|λA) is the crossing probability, i.e.,
the chance that a crossing with λA is followed by a crossing
with λB before a recrossing with λA occurs.

fA can easily be computed with MD, as is done in TIS,
since crossing λA is not a rare event. In RETIS, the flux is
computed from the average path lengths of two path ensem-
bles. The crossing probability PA(λB|λA) is generally too low
to be computed by straightforward MD, but can be recast into
the following factorization by defining a set of nonintersecting
interfaces:

PA(λB|λA) = PA(λn|λ0) =
n−1�

i=0

PA(λi+1|λi ). (8)

Here, PA(λi+1|λi ) is the history dependent conditional prob-
ability that, given there is a crossing with interface λi for
the first time since last λA = λ0 crossing, interface λi+1 will
be crossed before λA. These conditional probabilities are
computed in n − 1 different path sampling simulations. Each
simulation samples a different path ensemble using a set of
different MC moves to generate new paths in the ensembles.
The ensemble [i+] consists of all possible paths that start at
λA and end at λA or λB and have at least one crossing with λi.
The MC approach is tuned such that the same statistical dis-
tribution of paths is generated as the distribution of paths that
would result if these are cut out from a hypothetical extremely
long MD simulation. The fraction of paths in the [i+] path
ensemble that cross λi+1 equals PA(λi+1|λi ). Performance of

TIS is optimal when the number of interfaces and the spacing
between the interfaces are tuned such that each conditional
probability is around 0.2 [59]. The most important MC move
is the so-called shooting move in which a random point of the
previous path is picked, its velocities are randomly modified
to generate a new phase point, and from this phase point the
equations of motion are followed backward and forward in
time to generate a new path. The new path will be accepted
if it fulfills the requirements for the specific ensemble (like
crossing λi in the [i+] ensemble) and, depending on the type
of velocity randomization procedure, an additional Metropolis
acceptance/rejection step will be invoked. In this work, we
applied the aimless velocity modification in which velocities
are regenerated, independent from the old velocities, from a
Maxwell-Boltzmann distribution [60].

Compared to TIS, RETIS has one additional path ensemble
called [0−]. Like the other ensembles, this ensemble contains
paths starting at λ0, but from there the paths move in the
negative direction away from the barrier. The paths are termi-
nated when they cross λ0 again. While the flux fA in Eq. (7)
is computed with straightforward MD in TIS, in RETIS it is
computed from the average path lengths in the [0−] and [0+]
ensembles (see Sec. IV A).

Another difference between RETIS and TIS, is that RETIS
employs additional MC moves. Since RETIS is purely based
on path sampling simulations, instead of MD and path
sampling simulations, replica exchange moves between the
different path ensembles (parallel path swapping [22]) can
be applied throughout the complete RETIS simulation. The
swapping moves enhance the sampling in a similar way as
parallel tempering [61], since the [i+] path ensemble for a
given i tends to contain trajectories moving on a higher energy
surface than the trajectories of the [(i − 1)+] ensemble. The
higher energy trajectories are less likely to get trapped in
specific reaction channels that are separated by free energy
barriers orthogonal to the RC λ [62]. As paths between [(i −
1)+] and [i+] are sometimes swapped, also the [(i − 1)+]
path ensemble will sample these different reaction channels
more easily. The combination of TPS and standard parallel
tempering can provide a similar effect [63], though in RETIS
there are no additional simulations at alleviated temperatures
needed. In contrast, the [(i − 1)+] ↔ [i+] swapping move is
very inexpensive as it does not require any force evaluations.
If the move is accepted, it provides a new path for both
the [(i − 1)+] and the [i+] path ensemble. In addition, the
accepted swapping moves provide generally paths that are
more decorrelated from the previous path than a shooting
move.

The swapping moves between the [0−] and [0+] path en-
sembles are done by exchanging the end and start points of
the paths and extending those forward and backward in time
respectively. Despite not being a free move, the barrierless
diffusion within the reactant well of the [0−] paths, followed
by exchange moves, will basically feed the [0+] ensemble
with fresh initializations. This facilitates the decorrelation of
the MC sampling even further and orthogonal barriers can
be avoided without having to cross them in any of the path
ensembles. An additional advantage is that this method works
in case where parallel tempering is not effective, that is when
barriers are mainly entropic in nature.
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IV. PERMEABILITY FROM RETIS SIMULATIONS

The rate k in Eq. (6) (with unit 1/time) describes the kinet-
ics of a process, while the permeability P of a membrane (with
unit length/time) describes the transport kinetics through the
layer, and clearly a link between k and P is expected. However
not only the units, but also the formalism for permeability and
rates are somewhat different. This paper will derive the correct
connection between the TIS framework for rare events and the
permeability.

The progression of permeation is most easily measured by
the z coordinate orthogonal to the membrane as the RC. De-
spite this simple order parameter choice, some details ask for
attention. In case of periodic boundary conditions, common
in MD simulations of membranes or porous catalytic crystals,
the question arises how it may be detected whether a molecule
crossed the membrane, or whether it simply circled back to the
other side of the membrane through the water phase because
of the periodic boundary condition in the z-direction. There-
fore we first derive the connection between P and k when the
solvent phase is bounded on both sides (e.g., by hard walls as
in Fig. 1) in Sec. IV A, and second we derive a relation for the
unbounded system when either periodic boundary conditions
or an infinite particle bath [64] are applied in Sec. IV B.

A. Connecting permeability and rate

Figure 1(b) shows a hypothetical long MD equilibrium run.
The timescales are not very realistic as we would in practice
expect that thousands of crossings with λA would proceed a
transition to state B. Yet, it will be used to show how we can
subdivide an ensemble average into different regions A, B or
A,B as follows.

The long trajectory can be seen as a series of visited phase
points. Here, we assume that the MD equilibrium run is in
fact sampling the distribution of interest. The MD integrator
is hence coupled to some kind of thermostat or barostat, when-
ever this distribution is different from the NVE ensemble. The
MD integrator gives a trajectory, which is effectively a series
of phase points (time slices) because of the discrete time step
�t in the numerical integration, such as the velocity Verlet
integration algorithm [65]. Given ergodicity, the phase points
will be visited with the correct relative probability when the
trajectory length T goes to infinity. The trajectory phase points
can be divided into subsets corresponding to the regions A, M,
B in Fig. 1(b) based on the value of the order parameter in each
phase point. The ensemble average becomes

�. . .� = pA�. . .�A + pM�. . .�M + pB�. . .�B, (9)

where M is the membrane region, previously referred to as
no man’s land in the context of TIS and RETIS. Here, pX

is the probability that the system is in state X . Given that
the ergodicity makes the time averages respect the relative
probabilities, it follows that pX = TX /T , where TX is the total
time spent in state X , and T = �

X TX . In Eq. (9), the notation
�. . .�A refers to the ensemble average over all trajectory phase
points associated to A.

As mentioned earlier in Sec. III, the trajectory phase points
can also be assigned to either overall state A or B. The as-
signment to A or B is generally not based on the evaluation of

the order parameter in a single phase point but rather based on
the series of phase points in the trajectory (history dependent).
The ensemble average can be divided in two contributions,

�. . .� = pA�. . .�A + pB�. . .�B. (10)

The notation �. . .�A refers to the ensemble average over all
trajectory phase points associated to A (see Appendix A).

Central to the RETIS methodology are the [i+] path ensem-
bles connected with interfaces at locations λi, i = 0, 1, 2, . . .

and the [0−] path ensemble [see Fig. 1(a)]. Note that any path
in the [i+] ensemble for i > 0 is automatically a valid path
in the [0+] ensemble. The [0−] paths completely lie in state
A except for the first and last points of the trajectories. In
addition, all phase points inside A must lie on a [0−] path.
We can therefore say that state A is equivalent to [0−]. That
is, we can view each path ensemble also as a phase space
ensemble by simply collecting all phase space points that lie
on corresponding paths except for the terminating points. The
[0−] and [0+] ensemble (excluding the end points) are disjunct
and combined they represent all trajectories that pass through
the λ0 interface while not having reached state B yet. The A
ensemble is therefore equal to the combined [0−] and [0+]
ensembles.

As is obvious from Fig. 1(b), an equal number of [0−] as
[0+] trajectories can be cut out from the equilibrium run; each
time the end point of a [0−] path comprises a start point of
[0+] path and, vice versa, each starting point of a [0+] path
relates to an end point of a [0−] path. When NX denotes the
number of paths in the X ensemble that can be cut out from a
long equilibrium MD run, this observation can be summarized
as N[0−] = N[0+] in thermodynamic equilibrium.

Let us compare the three different flux terms: k in Eq. (6),
fA in Eq. (7) and J+ in Eq. (2). Here, fA provides the frequency
of state changes from A to M within the overall state ensemble
A. J+ on the other hand measures all crosses from left to
right along the full region M of all permeants, per time and
per membrane surface area σ . The rate constant k finally also
measures the frequency of full crossings like J+ but with the
same time normalization TA as for fA. In summary,

fA = #(A → M )target

TA
,

k = #(A → M → B)target

TA
,

J+ = #(A → M → B)all perm

T σ
. (11)

One could imagine another flux definition, similar to fA, but
where the denominator is the total time T of the long equilib-
rium run rather than the time spent in A,

f = #(A → M )target

T
= pA fA. (12)

The appearance of the factor pA gives fA the interpretation
of a “conditional” flux compared to f . The flux f is however
not accessible in a RETIS simulation and will not be further
discussed.

If all of the Np permeating particles are identical,

#(A → M → B)all perm. = Np #(A → M → B)target (13)
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and we can relate J+ with fA and k as follows:

J+ = Np
#(A → M → B)target

TAσ

TA
T

= NpkpA
σ

= Np fAPA(λB|λA)pA
σ

, (14)

where PA(λB|λA) is the previously introduced crossing prob-
ability. All terms in Eq. (14) are measurable in a RETIS
simulation except pA, the probability of overall state A.
RETIS simulates the A ensemble (through [0−] and [0+]) but
not the B ensemble; hence TB, T = TA + TB and ultimately
pA = TA/T are not known. Luckily, the factor pA cancels
when we include the cref concentration in order to compute
the permeability based on Eq. (2), as we will show now.

First, let ρref be the one-dimensional probability density to
find a specific permeant (for instance the targeted permeant) at
the reference location zref . We can relate ρref to cref by taking
into account the number of permeants Np in the simulation
box and the cross section area σ ,

ρref = σcref

Np
. (15)

Further, we can use the subdivision in global states in Eq. (10),
giving

ρref = ρ(zref ) = �δ(zref − zt )�
= pA�δ(zref − zt )�A + pB�δ(zref − zt )�B
= pA�δ(zref − zt )�A = pA(ρref )A, (16)

where zt is the z coordinate of the target permeant, and (ρref )A
refers to the probability density within the A ensemble. The
factor �δ(zref − zt )�B is zero, since zref is located in stable state
A and zt does not lie in A for any trajectory phase point that is
assigned to B (see Appendix A). Consequently, we can write

cref = Npρref

σ
= Np(ρref )ApA

σ
. (17)

Substitution of Eqs. (17) and (14) in Eq. (2) gives

P = k

(ρref )A
= fAPA(λB|λA)

(ρref )A
. (18)

This is the first theoretical result connecting P and k. Equation
(18) shows that the B path ensemble needs not be simulated to
find the permeability. In contrast, the direct counting method
of Eq. (2) is based on a long MD run, which includes paths
in both the A and B ensembles. The paths in the A ensemble
are however sufficient for the computation of the permeability
with Eq. (18).

Still, the denominator (ρref )A in Eq. (18) cannot be
computed in a single path ensemble since overall state A
comprises both [0−] and [0+]. Therefore let us first consider
how the probability density at the reference location would
be computed from a long equilibrium MD simulation. We
would need to define a certain interval around zref with a width
�z, [zref − �z/2, zref + �z/2], and (ρref )A is the ratio of the
average time Tref spent in the reference interval region versus
the total time spent in A, divided by �z,

(ρref )A = Tref

TA

1

�z
. (19)

In practice, one would count the number of steps that the z
coordinate is inside the interval, and divide this by �z and
by the total number of steps that the system is part of A
paths, assuming a constant MD integration time step �t . If the
reference location is in a region where the free energy profile
F (z) is flat, then Tref scales linearly with �z, and (ρref )A will
in principle not be affected by the chosen interval length �z.

On the other hand, the conditional flux is the number of
crossings through λA in the positive direction divided by the
time spent in TA,

fA = N[0+]

TA
, (20)

where, as said earlier, N[0+] is the number of [0+] trajectories
that can be cut out from the long equilibrium trajectory. Sub-
stitution of the two previous equations into the permeability
in Eq. (18) makes the TA drop out, and gives a practical
expression for P,

P = N[0+]

Tref
PA(λB|λA) �z. (21)

This is the second expression linking P with RETIS quanti-
ties. It gives the insight that P depends on time spent in the
reference region, but not explicitly on time spent in the [0+]
nor [0−] ensemble.

However, Eq. (21) still refers to the quantities N[0+] and
Tref , which are obtained from a long equilibrium simulation.
In the next last step, the conversion to path ensemble averages
is made. With TX the time spent in a path ensemble X and
NX the number of trajectories in the path ensemble X , the
average path length is given by τX = TX /NX . An advantage
of τX is that it is in principle independent of the simulation
computer time, i.e., if the number of simulated paths in the
ensemble is doubled, the average τX will not change, which
gives τX an intrinsic meaning. We would like to stress that a
path ensemble average like τX is a property that is averaged
over all paths in the path ensemble, and it differs from the
common phase space average, denoted as �. . .�Y , where the
average is taken over all phase points within the ensemble Y .

The conversion to path averages is now simply executed
by introducing factors N[0−], using TA = T[0−] + T[0+], and
exploiting the fact that N[0−] = N[0+] in an equilibrium run.
For the probability density, this gives

(ρref )A = Tref

T[0−] + T[0+]

1

�z

= Tref/N[0−]

T[0−]/N[0−] + T[0+]/N[0+]

1

�z

= τref,[0−]

τ[0−] + τ[0+]

1

�z
, (22)

while the conditional flux is converted to (see Ref. [22])

fA = N[0+]

T[0−] + T[0+]

= 1

T[0−]/N[0−] + T[0+]/N[0+]

= 1

τ[0−] + τ[0+]
. (23)
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Here, τ[0−] and τ[0−] are the average lengths of paths in the
[0−] path ensemble and [0+] path ensemble, respectively,
while τref,[0−] is the average time spent in the [zref − �z/2 :
zref + �z/2] interval per path in the [0−] ensemble.

Again, substituting the previous equations into the perme-
ability in Eq. (18) gives another expression for P,

P = k�z

τref,[0−] fA
= PA(λB|λA)�z

τref,[0−]
. (24)

This is the third theoretical result expressing P in terms of
intrinsic RETIS quantities. Equation (24) is an expression that
can be fully computed in a RETIS simulation since PA(λB|λA)
is standard output of this approach, while τref,[0−] can easily
be obtained from the paths generated in the [0−] ensemble by
histogramming the z coordinate.

Figure 1 is however not typical for an actual membrane
system that has no natural confining energy barrier that pro-
hibits the permeants to drift far away from the membrane. To
deal with the situation of an unconfined system, we derive in
Sec. IV B how a λ−1 interface can be used to constrain the
system in a way that the permeability coefficient can still be
determined exactly, as if the system were unrestrained.

B. The λ−1 interface

The previous section linked the rate constant to a perme-
ability, though the system depicted in Fig. 1 is not exemplary
for a permeation system where we imagine a membrane in a
near-infinite solvent. The rate constant k that follows a single
particle will naturally decrease with the amount of solvent
added to the model system since the target particle will spend
more time away from the membrane. The permeability P is
insensitive to this since it does not depend on the size of
the simulation box. Increasing the solvent while maintaining
constant concentration automatically implies an increase in
the number of permeants. This increase cancels the decrease
of the rate for permeation of the individual particles. Still, as
RETIS computes rates rather than permeation directly, some
confinement is required in practice.

This confinement is achieved by introducing an extra in-
terface λ−1. With the introduction of this interface the overall
state A is reduced to the λ > λ−1 region, and is denoted A�.
The same can be done at the product region side, but this is
not essential for the A → B rate calculation. The new state
division is depicted in Fig. 2, where the outer regions are here
called freeze-time zones which will not be accessed in this
adaptation of the RETIS algorithm. A prime is added to show
that the states A�, B�, A�, and B� contain fewer phase points
than A, B, A, and B, respectively. The ensemble average in
Eq. (10) is updated to reflect the additional freeze-time zones,

�. . .� = pfr-ti�. . .�fr-ti + pA� �. . .�A� + pB� �. . .�B� . (25)

The path ensemble [0−�] resembles the [0−] ensemble, but
contains paths that can start and end at λ−1 in addition to
λ0. The time slices of paths in path ensembles [0−�] and [0+]
fully build up the overall state A�. The freeze-time zone on the
product side does not affect the [0+] ensemble nor the other
[i+] ensembles. The (RE)TIS crossing probability PA(λB|λA)
remains unaffected by the λ−1 interface.

FIG. 2. Illustration of how the freeze-time zones in red are in-
troduced by extra interfaces left of λA (called λ−1) and right of λB

(unnamed). The green and blue regions refer to states A� and B�,
respectively. The line represents a long equilibrium run (RC λ versus
time T ). Note that in the membrane region (previously called no
man’s land) the color is given by the stable states last visited [like
in Fig. 1(b)]. Whenever the system enters a freeze-time zone, the
time T � is stopped and continued whenever it exits this zone. The
trajectories that can be cut out from the [λ−1, λ0] interval constitute
the [0−�] path ensemble. This ensemble is different from the [0−]
ensemble since its paths can start and end at λ−1 in addition to λ0.

Figure 2 shows again a hypothetical unrestrained equilib-
rium MD run just like in Fig. 1(b) with a free energy surface
that is flat at either side of the membrane. Conceptually, the
existence of an equilibrium in such an infinite system is not
obvious as the ergodicity hypothesis implies that for instance
ensemble averages are identical to time averages of an infinite
equilibrium run. However, if the partition function diverges,
even an infinitely long equilibrium run might not visit all
the relevant phase space regions. This issue can be solved
conceptually by taking the infinite limits for space and time
in a controlled way. That is, we consider the potential of
Fig. 2 as a special case of the potential shown in Fig. 1, but
with the vertical-like increase of the free energy occurring
at z = −W and +W . By letting T → ∞ and W → ∞ such
that W 2/(T D) → 0 with D the average diffusion constant,
it can be shown that the ergodicity hypothesis holds. While
this solves the conceptual problem whether we can assume
equilibrium statistics, it does not solve the practical problem
that the rate k is still zero in this limit.

The additional λ−1 interface, however, ensures that the
overall state A� becomes finite and that anything that happens
in the freeze-time zone can be ignored as if the stopwatch,
measuring T �, is paused and statistics are not updated each
time that the trajectory enters that region.

Now that the rate k� and the flux fA� can be computed
from this long equilibrium run using the new definition for
the overall state A�, the same counting strategy applies: it is a
number of crossings/transitions divided by the time spent in
overall state A�. The only difference is that, besides time spent
in overall state B�, also the freeze-time zone is ignored in the
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normalization. The path ensemble [0−] is however changed
to [0−�], which statistically corresponds to the same ensem-
ble one would obtain by cutting out the trajectory segments
between λ−1 and λ0 from the equilibrium run. Specifically,
it is no longer valid that N[0−�] and N[0+] are equal. We will
therefore introduce the parameter ξ to measure the mismatch
between number of paths in these two path ensembles,

ξ = N[0+]

N[0−�]
= N→R,[0−�]

N[0−�]
= h→R[0−�]. (26)

Here N→R,[0−�] is the number of [0−�] paths ending at the right
side (at λ0) that can be cut out of the long equilibrium run. It is
obvious that N→R,[0−�] = N[0+] from observing the λA interface
in Fig. 2. It follows that ξ < 1.

Similarly, h→R is the characteristic function that for each
path provides the output 1 if the path ends at the right and 0
if the path ends at the left, irrespective of the starting point.
Finally, h→R[0−�] is the average of this function over all paths
in the [0−�] ensemble. This parameter ξ can hence be obtained
from a RETIS simulation by the analysis of the [0−�] path
ensemble.

In order to reformulate the expressions for fA� and P, we
first update the expressions for TA� and Tref� to link them to
average path lengths τX , which are intrinsic quantities of a
given path ensemble.

The time TA� can be written to be proportional to N[0+] as

TA� = T[0−�] + T[0+] = N[0−�]τ[0−�] + N[0+]τ[0+]

= N[0+]
�
ξ−1τ[0−�] + τ[0+]

�
. (27)

The time TA� is smaller than TA since A� comprises fewer
phase points than A (the clock is stopped). The time Tref spent
in the reference interval is not affected by the presence of
the λ−1 as the reference interval is located between λ−1 and
λA. The associated intrinsic quantity τref,[0−�] can nevertheless
change as N[0−�] might differ from N[0−] (e.g., seven paths
versus four paths in Fig. 2),

Tref = N[0−�]τref,[0−�]

= N[0+] ξ
−1 τref,[0−�] (28)

These two equations have implications for fA� and P. For
fA� in Eq. (20), the number of paths N[0+] remains unaltered
according to Fig. 2, but the time TA needs to be updated with
TA� , leading to

fA� = N[0+]

TA�
= ξ

τ[0−�] + ξ τ[0+]
. (29)

For P in Eq. (21), the number of paths N[0+] and the cross-
ing probability PA(λB|λA) remain unaltered, and the time Tref

is updated with Eq. (28), leading to the generalized version of
Eq. (24),

P = ξ�z

τref,[0−�]
PA(λB|λA). (30)

The last expression is the central expression that links the per-
meability with thermodynamic averages that can be computed
in a RETIS path sampling simulation. The parameter ξ is
obtained from analyzing the end points of the [0−�] paths, the
crossing probability PA(λB|λA) is a direct output of a (RE)TIS
simulation, �z is a chosen bin width of the reference region

in the flat free energy region to the left of λ0, and τref,[0−�] is
the corresponding time spent per path in the [0−�] ensemble in
this reference bin. The latter can be rewritten as

τref,[0−�] = Tref

TA�

TA�

N[0−�]
= (ρref )A��z τ[0−�], (31)

which leads to an alternative expression for the permeability

P = ξPA(λB|λA)

(ρref )A�τ[0−�]
. (32)

Equation (32) combines path ensemble averages
(ξ , PA(λB|λA), τ[0−�]) with a phase space average ((ρref )A� ),
while Eq. (30) is only based on path ensemble averages.

All quantities in Eqs. (30) and (32) are intrinsic, meaning
they are expressed as averages over the paths. This means that
the same expression is applicable when doubling the number
of paths, i.e., running the MC steps in the path ensembles
longer. This will not affect the absolute value of any of the
terms provided in Eq. (30), but will naturally increase the
accuracy of their numerical estimates.

V. RC FOR PERMEATION WITH PERIODIC BOUNDARY
CONDITIONS

In the previous section, we solved the problem to link the
permeability with the rate constant in an infinite system by
introducing the interface λ−1 and the rate constant k�, which
is nonzero unlike k. In most practical simulations the infinite
system is represented by a system with periodic boundary
conditions (PBC) which poses the need to properly determine
the relative position of the permeant with respect to the cen-
ter of the membrane, which defines the RC, λ. The simple
minimum-image convention will generally not work since the
RETIS trajectories can span the full [λ−1, λB] region and a
permeant located at λ−1 might actually be closer to the left
periodic image of the membrane than to the membrane in the
central image.

In order to properly deal with PBC, we first map the zi coor-
dinates of all particles i in the system within the [−Lz/2, Lz/2]
interval, where z = 0 is matched by convention at the center
of mass of the membrane and Lz is the box length in the z
dimension,

zi = (z�
i − z�

mem.) − round

�
(z�

i − z�
mem.)

Lz

�
Lz, ∀i. (33)

Here, z�
i is the z coordinate of particle i provided by the

molecular simulation program. By this operation, the center
of mass of the membrane is set at 0, while the center of
the solvent slab is at ±Lz/2. Here we assume that original
coordinates z�

j of the membrane particles j are constructed
such that the center of mass at the z� axis can be computed
without the need to add or subtract Lz or multiples of it to any
of the membrane particles. As the membrane is stable, we can
assume that the above remains valid during the full simulation.
That is, membrane particles might move over large distances
only if all membrane particles move in cohort.

The RC is given by the relative position zi of the tagged
permeant i (target) with respect to the membrane. This
implies that if we want to compute the permeability of oxy-
gen through a membrane and our model system contains Np
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oxygen molecules, one of those will be selected and consid-
ered as our target permeant.

In some cases, it can be advantageous to select a collective
RC such as the maximum value of the z coordinates of all per-
meants. This has the advantage that the rate increases which
makes it less of a rare event and is therefore easier to compute.
In addition, the collective RC facilitates the decorrelation of
the sampling since the target permeant defining the RC can
switch during the simulation. This strategy was for instance
applied to study water dissociation where the RC was defined
as the largest OH bond in the system [66]. Also in a recent
paper on permeation by some of us [67] such an approach was
applied to compute escape rates of permeants being trapped in
a membrane.

The reason that we nevertheless choose here a RC based
on a single target permeant is because the permeation problem
is in some applications less of a rare event than for example
water dissociation. This implies that for a system with many
permeants there is almost always one of them in the membrane
region. In fact, the membrane often does not correspond to a
single peaked free energy barrier, but may have a well in the
middle where permeants get temporary trapped. This makes
a collective RC impracticable for describing stable state A. In
addition, there are technical and theoretical problems associ-
ated to such a collective RC for the calculation of τref,[0−�] that
is needed for Eq. (30). The implementation of the collective
RC would also be more cumbersome with periodic boundaries
than when the RC just depends on a single target permeant.
Instead, we can recover the advantages of the collective RC by
the introduction of the new MC moves discussed in Sec. VI.

Still, also in the target permeant approach, care has to be
taken with periodic boundaries when the relative position of
the target permeant with respect to the membrane has to be
determined. As a start, we obey the convention λ−1<λ0 < λn.

In addition, the RC should change continuously along the
sequence of time slices of a complete path, i.e., it should not
suddenly jump by a value equal to Lz which could lead to
untrue transitions between states. Trajectories end and start
with a time slice outside the [λ−1, λn] region and the RC of
these points define the states at which they start and end, so
the ‘jump-free’ interval needs to be extended slightly beyond
the [λ−1, λn] interval. Based on the above, the safest option is
to allow the jump in the RC to occur in the mid-point between
λn and the periodic image of λ−1 (at λ−1 + Lz). This yields for
the final RC

λ =
	

z if − Lz

2 < z <
λB+λ−1+Lz

2

z − Lz if λB+λ−1+Lz

2 � z � Lz

2

(34)

where z ∈ [−Lz/2, Lz/2] is the z coordinate of the target per-
meant following the convention of Eq. (33).

The RC as a function of the target permeant’s position
within a periodic system is shown in Fig. 3. For NPT simula-
tions with fluctuating box dimensions it might be convenient
to define the RC relative to the box size along z: λNPT = λ/Lz

where λ is still defined by Eq. (34). The only difference is that
Lz is the instantaneous box length, which is a variable instead
of a constant.

FIG. 3. Definition z and λ. Here z� is the unbounded coordinate
of the target permeant. z is the same coordinate adjusted for the
PBC such that it is 0 at the membrane center and restricted to
[−Lz/2, LZ/2]. The grey dashed line at λ−1 + Lz is the mirror image
of λ−1. The mid-point between the grey dashed line and λB is located
at (λB + λ−1 + Lz )/2 (thin blue line) and sets the switch for the λ

definition such that λ can have values ∈ [(λB + λ−1 − Lz )/2, (λB +
λ−1 + Lz )/2].

VI. NEW MC MOVES IN PATH SPACE

The choice to select a single target permeant instead of a
more collective RC and allowing the target permeant to cross
the membrane in just one direction (left to right) can lead to
a somewhat restrictive sampling speed in comparison with a
more collective RC. In the next two sections, we show how to
remove these restrictions by introducing two new MC moves
for the [0−�] ensemble without the need to alter the definition
of the RC or the setup of interfaces.

A. Target swap move

As discussed above, the RC is determined by the z coordi-
nate of a single target permeant. The other permeants basically
contribute to the environment around the target permeant like
any of the other nonpermeating particles in the system. The
occurrences of these particles crossing the membrane do not
have to be counted as they are part of the natural fluctuations
in the environment.

Especially when the membrane is not uniform containing
different channels through which the permeants could trans-
fer, it would still be advantageous to utilize the contributions
of all the permeants. Some regions in the membrane that are
easier to penetrate could be blocked by a nontagged permeant.
Waiting for a swap through diffusion of both permeants within
the bulk might take a long time. In order to speed up this
process, we design a MC move in path space that allows
for a swap without diffusion, but by simply reassigning the
target.

The target swap move is explained in Fig. 4 and a stepwise
description of the algorithm is given below.

(1) Assume the old path (upper panel in Fig. 4) has length
L(o) (including start and end points) and is represented by time
frames numbered from 1 to L(o).

(2) For each frame (1 to L(o)), count the number of non-
target permeants inside the [λ−1, λ0] interval. The sum over
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FIG. 4. Illustration of target swap move from an old path (shown in top panel) to a new path. Here, three possible new paths that could
have been generated via the target swap move are shown in the lower panels. The numbers inside the circles indicate the frame numbers
(time slices) of the path. Red circles represent the target permeant’s positions at the different time frames, while blue circles represent the
nontargeted permeants. The top panel shows a path of 5 time slices (including start and end points). The position of the target permeant at the
first and last frame lies outside the [λ−1, λ0] interval while the other time frames lie inside, in agreement with the path ensemble’s criteria.
All permeant/time-frames outside the interval are shown by dashed contour lines and cannot be selected in the target swap moves. Possible
selectable permeant/time-frames are: time frames 2, 4, 5 of permeant 1 and time frames 1-5 of permeant 2. Permeant 3 is outside the interval
at all time frames. The present target, permeant 4, cannot be selected. Each of these permenant/time-frames have an equal probability to be
selected, i.e., with a chance 1/8 in this example. Three possible selections are indicated by (i), (j), and (k) in the top figure and the resulting
new trial paths are shown in the lower panels. After a permeant/time frame is selected, the corresponding permeant is the new target and the
path is either lengthened or shortened by going backward and forward in time starting from the selected time frame until the new target has
a frame outside the interval. Deleted time frames can be temporarily stored (indicated by “S”) such that they could be reused if the next MC
move requires extending the path.

all frames will be called Z (o→n)
t . For example, in Fig. 4 top,

we have 5 frames to sum over, of which permeant 1 is 3
times and permeant 2 is 5 times inside the interval, leading
to Z (o→n)

t = 8.
(3) Pick a random integer i from 1 to Z (o→n)

t .
(4) Select the permeant/time-frame combination corre-

sponding to the i-th count at step 2. We will call this the new
target permeant and the frame index at which this count was
registered is from now on called j.

(5) Starting from time slice j, the path is followed (as
detailed below) backward until we detect a frame in which
the new target has a position outside the [λ−1 : λ0] interval.
We call the number of backward steps nb.

(6) Starting from time slice j, the path is followed (as
detailed below) forward until we detect a frame in which the
new target has a position outside the [λ−1, λ0] interval. We
call the number of forward steps n f .

(7) The new path length is nb + n f + 1 which starts with
frame index j − nb (which can be negative) and ends with
frame index j + n f . Renumber all frame indices by adding
− j + nb + 1 to each frame index. The new indices now run
from 1 to nb + n f + 1.

(8) Compute Z (n→o)
t just as in step 2, but using the new

time region and new target permeant. For example, for the
three bottom panels in Fig. 4, it is 5, 5, and 8 (from left to
right).

(9) Compute the number of selectable permeant/time-
frames n(n)

s [see Eq. (35) below] from which the same new
trajectory can be obtained from the old path, and the number
of selectable permeant/time frames n(o)

s at the new path from
which the old path could be reobtained [see Eq. (36) below].

(10) Accept the move with a probability [see Eq. (37)

below]: Pacc = min

�
1,

n(o)
s

n(n)
s

Z (o→n)
t

Z (n→o)
t

�
.
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At steps 4 and 5, the path is followed backward and for-
ward in time starting from the selected time frame. In order
to minimize the number of expensive force evaluations, this
is done via one of the three possibilities that are listed here
in order of preference. (1) Take the previous/next time slice
from the old path, (2) if all time slices of the old path along a
time direction are used, check for possible stored time slices
in that time direction, and (3) create a new time slice by an
actual MD step if no reusuable time slice is available at (1)
or (2).

At step 9, the calculation of n(n)
s and n(o)

s proceeds as
follows. n(n)

s equals the number of selectable permeant/time
frames combinations by which the same new path can be
obtained. The way how it was actually generated, by selecting
the new target permeant and time frame j, is one of the
possible realisations. However, the exact same path might be
generated by selecting time frames earlier and/or later. To
clarify this, we discuss n(n)

s for the three cases shown in the
bottom panels of Fig. 4. In the bottom-left panel, the new path
can only be obtained by selecting time slice number j = 2 and
consequently n(n)

s = 1. The path in the bottom-middle panel
can be obtained in two ways: selecting permeant 1 and either
time slice j = 4 or j = 5 (renumbered as 2 and 3). Hence
n(n)

s = 2 in this case. Finally, the path in the bottom-right panel
could be obtained by any of the 5 time slices when permeant
2 is selected (n(n)

s = 5).
An expression for n(n)

s and n(o)
s is now derived. The number

of time slices earlier than j that, if selected, would result
into the same path, is restricted by either the old path, j − 1
time slices, or the new path, nb − 1 backward steps (the last
backward step is outside the [λ−1, λn] interval and cannot be
selected). So this gives a contribution min( j − 1, nb − 1) to
n(n)

s . Forward in time these numbers are L(o) − j and n f − 1
for restriction by either the old path or the new path, re-
spectively. This yields a contribution of min(L(o) − j, n f − 1).
Including the time slice j itself, this gives

n(n)
s = min( j − 1, nb − 1) + min(L(o) − j, n f − 1) + 1

= min( j, nb) + min(L(o) − j, n f − 1). (35)

For the reverse move, i.e., selecting the old path from the new
one, the same reasoning applies with the roles of the new
and old paths switched. Hence, j − 1 and nb − 1 are replaced
by nb and j − 2, respectively, when computing the selectable
time slices before j. Further, L(o) − j and n f − 1 are replaced
by, respectively, n f and L(o) − j − 1. This gives for n(o)

s

n(o)
s = min(nb, j − 2) + min(n f , L(o) − j − 1) + 1

= min(nb + 1, j − 1) + min(n f , L(o) − j − 1). (36)

Then, using Metropolis-Hastings rule [68,69], the acceptance
probability can be written as

Pacc(o → n) = min

�
1,

p(n)Pgen(n → o)

p(o)Pgen(o → n)

�

= min

�
1,

n(o)
s /Z (n→o)

t

n(n)
s /Z (o→n)

t

�
, (37)

where p(o) and p(n) are the probabilities of the old and
new path, respectively, and Pgen(X → X �) is the generation

probability to generate path X � from X . As the identity of the
target has no effect on the path probabilities, the probabilities
p(o) and p(n) are essentially the same except for stochastic
force terms related to extending or shortening of the path.
However, these terms cancel in Eq. (37) as they are also part
of the generation probabilities [54]. The only remaining terms
that do not cancel are, hence, the selection probabilities for
selecting the permeant/time slice.

B. Mirror move

In the case that the membrane is symmetric, transitions
through the membrane from left to right and from right to
left are statistically indistinguishable within an equilibrium
sampling. It is then favorable to count transitions in both
directions [10,12]. For instance, the direct counting method
described in Sec. II uses this strategy to improve statistics.

One obvious way to include two-directional transitions
could be achieved by defining the RC as the absolute distance
|z| between the target permeant and the center of the solvent
slab (see also Ref. [67]). However, as explained in Sec. V, this
can lead to an overlap in the z-coordinate space. While this
could still be solved by letting the RC value depend on the
history of the path, i.e., the solvent slab’s periodic image to be
considered is determined by the minimum distance image at
the start of the path, this becomes problematic when the path’s
history is not yet fully determined. For instance, this is the
case when a shooting move is carried out or when the target
swap move implies that some backward in time integration is
required.

The mirror move in path space (see Fig. 5) achieves the
same versatility of the two-directional approach in the count-
ing method without having the problems discussed above. The
mirror move in [0−�], which is always accepted, mirrors the
whole system with respect to the membrane center. The z co-
ordinates of every particle are mirrored and the z-component
of the velocities are multiplied with −1. Because of the peri-
odicity, this mirror move is equivalent to mirroring the whole
system with respect to the midpoint between the membrane
and its periodic image, which is, loosely speaking, the mid-
point of the solvent slab. By construction, this midpoint of the
solvent slab lies in the middle of the [λ−1, λ0] interval related
to [0−�].

The mirror move swaps the roles of the λ0 and λ−1 inter-
faces. This requires that λ0 and λ−1 are placed at the same
distance from the mirror plane. To achieve this, consider the
membrane’s center-of-mass position at z = zmem and its left
periodic image at z = zmem − Lz. The distance between λ0 and
membrane should equal the distance between λ−1 and this
left periodic image membrane. In other words, λ−1 should be
placed such that

zmem − λ0 = λ−1 − (zmem − Lz ). (38)

Equivalently, the interfaces λ−1 and λ0 should have the same
distance to the midpoint of the solvent slab at z = zmem −
Lz/2. Since we applied the periodic coordinates z as defined in
Eq. (33), we have zmem = 0 and therefore λ−1 = −(λ0 + Lz ).

Given the positioning of λ−1 and λ0 according to Eq. (38),
the mirror move simply mirrors the z coordinates of every
particle in the system at every time slice with respect to the
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FIG. 5. Illustration of the mirror move. Numbers, line style and
color scheme are the same as in Fig. 4. The move requires a specific
definition of the λ−1 interface that must be symmetrically positioned
with respect to λA, implying that these are equidistant to the center
of the solvent slab. The top panel shows the old path. The bottom
panel shows the new path in which the positions for each time slice
are inverted in the mirror plane centered at the solvent slab (orange
dashed line at (λ−1 + λA)/2). The mirroring is applied to all particles
in the system, not only the permeants.

plane z = −Lz/2. Hence, it proceeds according to the follow-
ing steps.

(1) Let k run over all time slices of the path. This includes
the start and end point of the path and might include stored
time slices (see Sec. VI A).

(2) For the given time slice, let j run over all point-
particles in the system (atoms/coarse-grained particles de-
scribing the permeants, nonpermeating solvent particles,
membrane particles, . . .).

(3) Consider the z� coordinate of permeant j and its veloc-
ity component at discrete time step k: z�

j (k) and vz, j (k).
(4) Mirror operation: replace z�

j (k) with 2z�
mem. − z�

j (k) −
Lz and replace vz, j (k) with −vz, j (k).

(5) Accept the new path. If the old path started/ended at
λ−1 then the new path will start/end at λ0 and vice versa.

For code-technical reasons we implemented a slightly
different approach where we did not alter the coordinates
or velocities, but instead the definition of the RC function
[Eq. (34) with z replaced by −z]. The system was hence as-
signed an additional flag which indicates whether Eq. (34) has
to be used with the plain z coordinate of the target permeant or
with −z. This pragmatic choice made it easier to use PYRETIS

[57,58] with external MD engines, as these might have very
different ways of altering the coordinates and velocities. The
flag is also exchanged in the replica exchange moves of the
RETIS algorithm.

The new moves are only implemented for the [0−�] en-
semble. For the mirror move, this is because this is the only
ensemble where paths can start at both the left or the right
hand side. In addition, the target swap move is not expected to
give a high acceptance for the [i+] ensemble when crossing λi

is a rare event.

VII. NUMERICAL RESULTS

The theoretical derivation for the permeability calculation
from RETIS has been implemented in the python based open-
source code PYRETIS [57,58]. First, a one-dimensional toy
system was constructed where a Langevin, Brownian, or de-
terministic Newtonian particle permeates through a medium
with or without barrier. For some limiting cases, an analyt-
ical expression for the permeability is available, which can
serve as a validation of the new RETIS permeability formula.
Second, a two-dimensional membrane was simulated with
periodic boundary conditions, where permeants can pass the
membrane through two different permeation channels. This
last system is used to illustrate efficiency of the new Monte
Carlo moves.

A. One-dimensional system setup

For simplicity, the membrane is located symmetrically
around z = 0, in the region |z| < a, with h = 2a as the mem-
brane height. The effect of the membrane is modeled by an
external cosine-shaped potential that acts on a single permeant
particle,

V (z) =

⎧
⎪⎨
⎪⎩

1
2V0

�
cos

πz

a
+ 1

�
, |z| � a

0, a < |z| � b
1
2 kharm(|z| − b)2, |z| > b

. (39)

Here, V0 is barrier height. This membrane model ensures that
the force on the particle is continuous at the membrane bor-
ders z = ±a. The harmonic potential 1

2 kharm(|z| − b)2 is added
only to allow the system also to be studied by a reference
simulation without λ−1 interface. In most simulation setups,
the kharm parameter is set to zero, which reflects the real
physical situation for a permeation system that is unbounded
at either side of the membrane. The dynamics of the permeant
is governed by either Langevin dynamics, Brownian motion,
or deterministic dynamics.

In the Langevin dynamics, the permeant experiences both
friction, inertia effects, and random collisions with a degree
that is controlled by the friction parameter γ . The friction
constant γ (unit 1/time) of the particle relates to the particle’s
diffusion constant as D = kBT/(mγ ). Note that some other
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textbooks use a friction coefficient with unit mass/time. This
refers to an alternative definition of the friction coefficient
γ̃ = mγ . The two other types of dynamics can be viewed as
limiting cases of the Langevin dynamics.

A Brownian particle propagates in discrete steps without
memory under influence of a random Gaussian force and the
force −dV/dz exerted by the potential. It can be considered as
the overdamped limit of the Langevin particle, when γ → ∞.

A Newtonian particle on the other hand propagates deter-
ministically in time according to the equations of Newton. It
has inertia but undergoes no friction nor random collisions,
and energy is conserved. In the RETIS algorithm, the effect of
temperature is then only present in the MC moves when a new
constant-energy path is created from an old constant-energy
path. The detailed balance MC procedure allows the energy
to change between paths such that the overall path ensembles
are canonically distributed. This simulation set up reflects a
system that is so weakly coupled to a thermostat that the
dynamics of a single crossing basically occurs at a constant
energy (NVE, microcanonical). However, at the much longer
timescale between crossing events, the energy could change.
The Newtonian particle can be seen as the low friction limit
of the Langevin particle, when γ → 0.

The driver for solving the equations of motion was the
internal MD-engine of PYRETIS in our toy system [57]. It is
also possible to let PYRETIS manage the path ensembles book
keeping, while it calls simulation programs, such as GROMACS,
OPENMM, or LAMMPS, to drive the molecular dynamics [58].
Throughout Sec. VII, reduced units are used in which mass
m, the Boltzmann constant kB, and temperature T are equal to
unity (m = kB = T = 1 in reduced dimensionless units). Po-
tentially, several physically realistic systems could be mapped
on the model presented in Eq. (39) by tuning appropriate units
of energy, length and mass.

We examined the model system Eq. (39) using the follow-
ing parameters: a = 0.1 (h = 0.2), kharm = 100 or 0, m = 1,
T = 1, and integration time step �t = 0.002. The friction
coefficient γ had values 0.1, 5, 10, 20, 40, 60, 80, or 100. The
Brownian dynamics propagates through configuration space
at discrete steps with a displacement that is governed by a
step-size parameter. This step-size parameter can be associ-
ated to a �t in an equivalent Langevin simulation for a given
mass and friction. In our case, the step-size parameter was set
such that the time between steps was the same as �t of the
corresponding Langevin simulation with γ = 100.

In the RETIS simulations, the number of cycles was set
to 20 000 (this is the number of MC moves in the path
ensembles), the RETIS swapping move frequency was 0.1,
the shooting frequency 0.45, and the time reversal move fre-
quency 0.45. The position z was used as the order parameter
λ. Three interfaces were used, λ0, λ1, λ2, which were chosen
at λ = −0.1, 0, and 0.1. The additional interface λ−1 was
chosen at λ = −0.2 and varied to a few other locations in
the calculations of Table I. The chosen reference region is
[−0.12,−0.1].

B. Analysis of permeability

For the flat potential membrane [V0 = 0 in Eq. (39)], we
examined the effect of the λ−1 interface versus a system that

TABLE I. Numerical results (reduced units) for permeability P
and the three contributing factors ξ , τref/�z, and PA(λB|λA). RETIS
simulation of Langevin particle with γ = 5 and flat potential mem-
brane (V0 = 0). On first line, τref refers to [0−], on other lines to [0−�].
The reported error is based on block averaging and error propagation
rules assuming independence of the different path ensemble simula-
tions. As the latter assumption is not fully valid due to the replica
exchange moves (Ref. [22]), we also estimated the error on P via 10
independent realizations, shown in the last column.

λ−1 ξ τref/�z PA(λB|λA) P

- 1.000 (0%) 2.49 (1%) 0.662 (2%) 0.266 (2.2,2.0%)
−0.2 0.493 (0.3%) 1.22 (1%) 0.674 (2%) 0.274 (2.4,2.9%)
−0.15 0.504 (0.2%) 1.26 (1%) 0.641 (2%) 0.256 (2.1,2.4%)
−0.3 0.507 (1%) 1.28 (1%) 0.661 (2%) 0.261 (2.3,2.9%)

is bounded by a harmonic potential [kharm = 100 in Eq. (39)]
for Langevin dynamics with γ = 5. Table I shows that the
change in τref/�z is compensated by the ξ factor. The perme-
ability further remains fairly unaffected when changing the
λ−1 position. The time spent per path per length is about 1.22
to 1.28 in [0−�], which lies close to the analytical value 1.253
of the deterministic particle (see Appendix B). The time spent
per path per length would become larger when the friction
increases. The crossing probability is lower than for the de-
terministic particle, which makes the Langevin permeability
lower than the deterministic value 0.399 (see Appendix B).

Figure 6 compares the computed permeability for the po-
tential Eq. (39) with V0 = 0 (flat), 0.5, and 1 (cosine barrier
membrane) for the three types of particle dynamics. In the Ap-
pendix we derived analytical expressions for P based on the
Smoluchowski equation and Kramers’ expression for Brow-
nian dynamics and Langevin dynamics, respectively. These
theoretical curves are shown in the same graphs. The analyti-
cal result for deterministic dynamics can be obtained by taking
the limit of Kramers’ expression for γ → 0. The validity of
these theoretical results relies on different kind of approxi-
mations. The Smoluchovski expression [Eq. (B1)] is reliable
for high friction and low to high barriers, while Kramers’
theoretical result [Eq. (B6)] is the reliable reference for high
barriers and low to high friction. There is henceforth a blind
spot in system parameter space: dynamics with low friction
and low barriers is poorly described by both theories.

Indeed, consider the flat potential membrane (V0 = 0) in
Fig. 6(a). It shows good agreement between the theoretical
Smoluchowski curve, P = D/h, and the simulated Langevin
results for the large γ values. Also the computed values for
Brownian and Langevin at γ = 100 agree, as Brownian dy-
namics can be seen as the high friction limit of Langevin
dynamics. However, for low friction, the Smoluchowski curve
and the numerical Langevin results deviate. The Kramers
prediction of the permeability is zero for any γ > 0 and thus
also fails to approximate the Langevin numerical results. Only
the limiting case γ → 0 with γ 2/V0 → 0 has a nonzero solu-
tion equal to

√
kBT/(2πm). The Kramers curve in Fig. 6(a)

actually shows the theoretical results for V0 = 10−4 to vi-
sualize this limiting case. The deterministic

√
kBT/(2πm)

limit to the permeability is indicated by the dashed horizontal
line. Our numerical data on deterministic dynamics and the
Langevin result with γ = 0.1 agree with this limit.
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FIG. 6. Permeability P versus friction coefficient γ for V0 = 0
(a), 0.5 (b), and 1 (c). The purple and green solid lines refer to the the-
oretical Smoluchowski expression Eq. (B1) and Kramers expression
Eq. (B6), respectively. The Kramers curve in (a) actually shows the
function for V0 = 10−4 instead of V0 = 0 to visualize a limiting case
of this expression in which V0 → 0, γ → 0 and with γ 2/V0 → 0.
The dashed horizontal line in the top panel shows the deterministic
limit for the permeability in the flat potential. The filled blue circles
refer to the numerical Langevin results. The open red square and
open gold circle at γ = 0 and 100 show the results for deterministic
dynamics and Brownian dynamics, respectively. Error bars based on
a single standard deviation are mostly within symbol size.

Figured 6(b) and 6(c) show the numerical and theoretical
curves for systems with a membrane barrier, V0 = 0.5 and
1.0, respectively. For these membranes, the two theories agree
in the large friction regime. In the low friction regime, the
Smoluchowski expression is not a good approximation of
the Langevin dynamics. The numerical Langevin simulations
agree with the Kramers’ curve for all values of γ . The de-
terministic and Brownian dynamics simulations also agree
with Kramers’ expression in the limiting γ = 0 and γ = 100,
respectively.

C. Two-channel membrane system setup

A two-dimensional system is constructed that mimics
a membrane barrier through which particles can permeate
through two competing pathways. It could for instance repre-
sent a membrane with two transmembrane protein channels.
Three noninteracting Langevin particles are subjected to the
potential

V (y, z) = e−cz2

�
V1 + A + A sin

2πy

Ly
+ B + B cos

4πy

Ly

�
,

A = (V2 − V1)/2, (40)

B = Vmax/2 − V1/4 − V2/4.

FIG. 7. The potential energy V (y, z) represents a two-channel
membrane. Interfaces λ0, . . . , λ11 indicated with vertical dashed
lines. Reduced units.

The membrane is located in the center of the unit cell around
z = 0, while V (y, z) is approximately zero far away from the
center due to the factor e−cz2

(see Fig. 7). Periodic boundary
conditions are applied, where the system is made periodic in
the z direction with a period [−Lz/2, Lz/2] and in the y di-
rection the period is Ly. Particles can permeate the membrane
through two channels: one channel at about y = −0.25Ly with
barrier height V1 and another channel at about y = 0.25Ly with
barrier height V2. The maximum barrier height is Vmax.

Reduced units are used as in the one-dimensional case. The
parameters in our simulations were V1 = 10, V2 = 11, Vmax =
20, c = 1, and Lz = Ly = 6. The PYRETIS simulations were
run with three Langevin particles with settings �t = 0.02,
γ = 5, T = 1, and m = 1.

The order parameter is the reduced z coordinate of the
target permeant: λ = z j if permeant j is tagged ( j = 1, 2, 3).
While the z coordinates lie in the interval [−3, 3], the period-
icity of λ is shifted to the interval [−4.65, 1.35] (see Fig. 3).
Twelve interfaces are located at λ = −1.5, −1.3, −1.15, −1,
−0.9, −0.8, −0.7, −0.6, −0.5, −0.4, −0.2, and 1.2. The
λ−1 interface is located at λ = −4.5. The reference region
for τref,[0−�] is chosen as [−3.2,−2.8]. Three simulations are
performed.

(1) TIS: In TIS, there are no swapping moves between the
path ensembles. The MC moves are the shooting move and
time reversal move, with equal frequency 0.5. Differently to
standard TIS, the sampling of state A was done using the [0−�]
path ensemble simulation and not via MD.

(2) RETIS: In standard RETIS, the swapping move of
paths between the path ensembles is also allowed as an MC
move. The swapping move frequency was 0.5, shooting move
frequency 0.25, and time reversal move frequency 0.25.

(3) RETIS*: In the last simulation, RETIS is performed
with swapping moves and the newly implemented MC moves
in the [0−�] ensemble. The mirror plane was located at λ =
−3, which is indeed midway between λ−1 = −4.5 and λ0 =
−1.5.
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TABLE II. Numerical results (reduced units) for permeability P
of 3 Langevin particles permeating through a two-channel mem-
brane. Standard error from block averaging and error propagation
between brackets.

PA(λB|λA) P

ξ
τref,[0−�]

�z
×10−5 ×10−6

TIS 0.498 (1%) 5.66 (1%) 1.10 (12%) 0.97 (12%)
RETIS 0.540 (1%) 6.19 (1%) 1.20 (14%) 1.05 (14%)
RETIS* 0.507 (1%) 5.93 (1%) 1.23 (13%) 1.06 (13%)

Each of the three particles could be selected as the target
permeant when performing a target swap move. The swapping
move frequency was 0.5, time reversal move frequency 0.25,
mirror move frequency 0.05, target swap move frequency
0.05, and shooting move frequency 0.15.

After an equilibration run of about 1600 MC moves, the
analysis was performed based on a production run of 35 000
MC moves.

D. Two-channel membrane: analysis

Table II shows the permeability together with the calcu-
lated variables that enter in Eq. (30), ξ , τref,[0−�]/�z, and
PA(λB|λA). Note that the RETIS results on ξ and τref,[0−�]/�z
are somewhat off compared to TIS and RETIS*. Naturally, for
this symmetric system ξ = 0.5 is the exact result which agrees
with TIS and RETIS* while RETIS is 8% too high. This is
due to the relatively wide region between λ0 and λ−1 and the
lower frequency of shooting moves in the RETIS simulation
compared to TIS. In RETIS, 50% of the moves are swapping
moves (replica exchange moves between path ensembles),
which are very useful to improve the sampling of the barrier
region, but not necessarily help the exploration of the water
phase. Both the swapping and time-reversal moves are unable
to generate a λ−1 → λ−1 path from a λ0 → λ0 path and vice
versa. In RETIS*, the target swap move and the mirror move
repair this weakness even if these moves only represent 10%
of the executed MC cycles.

The crossing probabilities PA(λB|λA) and the permeabili-
ties in Table II give quantitative good agreement within about
10%. Given a barrier of at least 10 kBT this is a notable
result. However, even more difficult challenges for a simu-
lation method in this system, are (i) the ability to sample
transitions through both channels, and (ii) to achieve this with
the correct ratio. Since the channels’ barriers only differ by
1 kBT , both permeation routes are competing, but successful
permeation transitions are expected to proceed via the lowest
barrier channel in about 73% of the cases. Getting this ratio
right is extremely challenging for any rare event method.

Figure 8 shows the distribution P(y∗) of the orthogonal
coordinate at the first crossing with λi, y∗, for different path
ensembles, [i+], i = 0, 1, . . . , 10. The crossing point y∗ of a
path is indicative of the channel visited by that path. The
distributions show that for TIS, all y∗ crossing points in the
ensembles [6+] and higher are in the V2 channel, while for
RETIS and RETIS* the other channel is visited as well in all
ensembles. This clearly demonstrates the deficit of the shoot-
ing move. The chance for this move to generate an acceptable

FIG. 8. Distributions P(y∗) of first crossing point with λi along
the y-direction for the different [i+] ensembles. Results are shown
for (a) TIS, (b) RETIS, and (c) RETIS*. Note that the TIS simula-
tions only sample the high-energy barrier V2 for ensembles [6+] and
higher.

path is highest when the shooting point is chosen on the barrier
region, close to λi for ensemble [i+]. However, switching
between channels can practically only occur if the shooting
is initiated from the well region. The fact that TIS got stuck in
the high-energy channel, rather than the low-energy channel is
purely accidental reflecting the memory of the initial path that
was used to bootstrap the simulation. The TIS result (Table II)
is lower than the other values, as one might expect based
on its bias towards the high-barrier channel. Yet, since the
crossing probability up to λ6 is based on the progress through
both channels, the TIS permeability is still rather close to the
RETIS and RETIS* results.

Provided ergodic sampling, TIS and RETIS should be ca-
pable to sample nontrivial multiple-channel systems where
splitting based methods, like FFS and AMS, would fail. An
example of such a case is a system with two channels in which
the lowest-barrier channel goes initially much steeper uphill
than the channel with the higher barrier [62]. However, as is
clear from Fig. 8, the TIS simulation is not ergodic since it is
not able to switch between channels for ensembles [6+] and
higher with just the shooting move.

For this academic model, this aspect could be repaired
using nonlocal shooting moves in which not only the veloc-
ities, but also the configuration point is changed by a nonlocal
displacement. Such a move, however, would have vanishingly
low acceptance in a realistic condensed matter system as
nearly every attempt will lead to a molecular overlap.

The RETIS and RETIS* simulations, however, are able to
sample both channels and get the ratio between low- and high-
barrier pathways at least qualitatively correct. The replica
exchange swapping moves allow the exchange of paths be-
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tween the different path ensembles. Consequently, sampling
in [0−�] and [i+] with low i can facilitate the sampling in [i+]
with high i. Especially the [0−�] and [0+] path ensembles are
very effective to sample the direction that is orthogonal to
the RC enabling the entrance of both channels. Figuratively
speaking, this improved sampling of the orthogonal coordi-
nate can then trickle down into the other ensembles by means
of the swapping moves.

If we examine the height of the distributions in Fig. 8, we
see that both RETIS and RETIS* predict that the majority of
transitions will pass via the low-barrier channel. The RETIS
simulation, however, seems to overestimate the preference of
the V1 channel, especially when the [10+] ensemble is consid-
ered. Integration of exp(−βV (y, λ10)) over y along positive
and negative values indicates a 2.54 higher probability to be
in the negative y-range. Even if these relative probabilities de-
viate a bit from the distribution of first crossing points y∗, this
deviation is expected to be marginal for this model system.

To further analyze the effectiveness of the MC schemes
we analyzed the number of channels switches observed in the
path ensemble simulations. For path ensemble [i+] each path
is assigned to channel V1, channel V2, or neither of the two,
based on the first crossing point y∗ with λi. It is assigned to
belong to the V1-channel if −2.5 < y∗ < −0.5 and to the V2

channel if 0.5 < y∗ < 2.5. A channel switch is counted when
the MC move produces a V2 channel path while the V1 channel
was most recently visited, and vice versa.

Figure 9(a) shows the number of channel switches that are
calculated via this approach for different path ensembles. The
TIS results are magnified by a factor 20 for visualization as
this approach shows dramatically less channel switches than
RETIS and RETIS*. This shows that replica exchange (swaps
between path ensembles) is absolutely necessary for efficient
sampling. From [0+] to [5+] (λ0 = −1.5 to λ5 = −0.8), the
number of channel switches drops from 144 to 1. From [6+] to
[10+] (λ6 = −0.7, λ10 = −0.2), there is not a single channel
switch observed.

The difference in channel switches seems negligible be-
tween RETIS and RETIS* up to λi = −1. After that point,
RETIS* seems to produce significantly more switches. This is
remarkable since the extra moves, the mirror and target swap
move, are only executed in the [0−�] ensemble and its effect
on the [10+] path ensemble is only indirect via the replica
exchange moves. It requires at least 10 path ensemble swaps
to process any information from [0−�] up to [10+]. Still, the
effect is most noticeable for the last seven path ensembles, but
hardly before. Our conjecture is that the channel switches due
to the mirror move and certainly due to the target swap move
are more effective in decorrelating the ensemble. A channel
switch is likely more effective if it enters the new channel
along its central line and indeed this happens more often with
the target swap move than with the shooting move. Also, the
number of channel switches does not tell the full story. If two
path ensemble [i+] and [(i + 1)+] are at different channels and
then make a lot of successful replica exchange moves solely
between each other, this will yield a lot of channel switches.
However, the effectiveness in decorrelating the sampling will
be modest.

To examine this decorrelation, Fig. 9(b) plots the ratio of
the number of paths in the V1 and V2 channels as a function

FIG. 9. (a) Number of channel switches observed in [i+] as a
function of λi for TIS, RETIS, and RETIS*. The TIS results are mag-
nified for visibility and shown with explicit numbers for the nonzero
values. (b) Running average of ratio between generated V1 and V2

trajectories for the [10+] ensemble. Dashed line is the predicted value
based on the numerical integration of exp(−βV (y, λ10 )). (c) A zoom
of the upper curve together with target index on the right vertical axis.
It shows that channel switches (indicated by a change in direction of
the blue line) occur often when the target permeant is reassigned.

of the number of MC moves in the [10+] ensemble. The
TIS curve is a flat zero line as it is stuck in the V2 channel
for the full simulation. Comparing RETIS and RETIS*, we
see that RETIS* converges much faster and approaches the
predicted value of 2.54 that was obtained from the numerical
integration. Figure 9(c) shows a zoom of the curve together
with the index for the target permeant. These running averages
for RETIS and RETIS* have a typical sawtooth shape though
the latter is able to flip much more frequently the slope of
the curve. The zoom in Fig. 9(c) shows that such a flip often
coincides with a change of the index for the target permeant.
This indicates that the target swap move has a strong influence
in the overall sampling even if it is only applied in the [0−�]
ensemble.

VIII. CONCLUSION

In this work, we derived a formula for the permeability
based on path sampling quantities that can be determined
in a RETIS simulation. As the idealized permeation model
represents a membrane inside an infinite solution, the RETIS
path ensembles require an adaptation via the introduction of
an additional interface prior to λ0, called λ−1, and a newly
defined path ensemble [0−�] that replaces the [0−] path ensem-
ble. The resulting approach is exact and does not depend on
the positions of the interfaces including λ−1. Their positions
are therefore set to optimize efficiency.
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In addition to this theoretical derivation, we introduce a
few algorithmic developments such as a consistent way to
define the reaction coordinate for permeability whenever peri-
odic boundary conditions are applied and two additional MC
moves that mainly operate in the new [0−�] path ensemble.
One of these new MC moves is the mirror move which can be
applied whenever the membrane is symmetric. The other MC
move is the target swap move and can be used when more than
one permeant is present in the simulation model system.

Our new theoretical formulation and algorithmic develop-
ments have been implemented in the open-source PYRETIS

code [57,58], and it was successfully tested on a one-
dimensional Langevin system for which analytical results
exist. After this, a challenging two-dimensional model mem-
brane with two competing permeation channels was simulated
to test the effectiveness of the new MC moves. These simula-
tions show that the replica exchange moves are essential to
simulate this system as the plain TIS method gets trapped in-
side a single channel. The inclusion of the two new MC moves
considerably improves the sampling efficiency even further, as
is clear when inspecting the relative transmission through the
two channels. This noticeable difference is surprising given
the fact that the new moves only operate in the [0−�] ensemble
and it takes at least 10 replica exchange moves to transfer the
effect of these moves up to the last path ensemble [10+]. Still,
the direct relation between the improved efficiency and the
new MC moves was demonstrated by a correlation between
the channel-switches and changes of the target permeant’s
identity.

The theoretical derivation in this paper is valid for all kinds
of microscopically reversible dynamics (e.g., deterministic
Newtonian dynamics, Langevin, Brownian, Nosé-Hoover,
etc.). Besides the standard ergodicity hypothesis, it does not
rely on any further assumption nor approximations. This im-
plies that our approach will in principle give the same value
for the permeability as the direct counting method based on
brute force simulations, but orders of magnitude faster.

Our approach has the great advantage that the Markovian
assumption of memoryless hopping between interfaces (see
Sec. I) is not needed like the approaches based on milestoning
[42–45]. Especially for large molecules the permeation pro-
cess is often driven by nontrivial membrane fluctuations such
that the projected dynamics on a one-dimensional coordinate
gets a memory dependent character. Since RETIS is inherently
non-Markovian in its description, it allows a much broader
range of applications. An interesting route of thought could be
the combination of our facilitating RETIS framework with the
high-throughput methods that efficiently scan chemical space
[70]

On the other hand, a milestoning type approach avoids the
creation of full transition trajectories which can be computa-
tionally demanding when the transit time through the mem-
brane is long. In this case, PPTIS [51] could be an interesting
alternative. PPTIS avoids the sampling of complete transition
paths like milestoning, but still maintains some of the history
dependence. Alternatively, the exact non-Markovian character
could be kept by alternating between short and long paths
by means of stone skipping/web throwing [71]. Both PPTIS
and stone skipping/web throwing can straightforwardly be
implemented in our theoretical framework.

In conclusion, our permeability method presents a model-
free approach for the computation of permeability and it is
expected to become a valid standard method when membrane
crossings are rare events.

APPENDIX A: ENSEMBLE AVERAGES IN TRAJECTORY
SPACE

At several instances in our article [e.g., Eqs. (6), (10), and
(16)], we refer to phase space ensemble averages with the
remark that these should actually be viewed as an average
over “trajectory phase points.” Even if this point has mainly
conceptual importance, we will outline here its mathematical
interpretation since it is yet underreported in literature. One
convenient way is to refer to path space ensemble averages
instead of phase space ensemble averages [72]. Here, the path
X = {x0, x1, . . . , xL} can be viewed as a “chain of states” [73]
with xi the phase point that is visited after i MD steps, at time
t = i�t with �t the time step. From this, the path probability
follows as

P[X ] = ρ(x0)
L−1�

i=0

p(xi → xi+1), (A1)

where ρ(x0) is the probability density of the initial state (x0

at t = 0) of the path, and p(xi → xi+1) are the single time
step transition probabilities. The latter are dependent on the
type of dynamics. Mostly, we assume that ρ(·) is the equilib-
rium phase space density given by the Boltzmann distribution:
ρ(x) ∝ exp(−βE (x)) with E (x) the total energy of phase
point x. Actually, while P[X ] and p(xi → xi+1) are commonly
referred to as a type of probabilities, it would have been more
accurate to call these probability densities as well.

Now, by expressing an observable f as a functional of X ,
the path ensemble average can be formally written as

� f � =
�

dX P[X ] f [X ] with dX =
L�

i=0

dxi (A2)

As we assume microscopically time-reversible dynamics,
we can write [72]

ρ(xi )p(xi → xi+1) = p(xi+1 → xi )ρ(xi+1), (A3)

where x refers to the momenta-reversed phase point: if x =
(r, v) with r the configuration and v the particles’ velocities,
then x = (r,−v). Here, it is also assumed that ρ(x) = ρ(x)
for any phase point x. Applying Eq. (A3) multiple times on
Eq. (A1), allows us to write alternative expressions for the
path probability [59]:

P[X ] = ρ(x0)p(x0 → x1)p(x1 → x2)p(x2 → x3) . . .

= p(x̄1 → x̄0)ρ(x1)p(x1 → x2)p(x2 → x3) . . .

= p(x̄1 → x̄0)p(x̄2 → x̄1)ρ(x2)p(x2 → x3) . . .

= p(x̄1 → x̄0)p(x̄2 → x̄1)p(x̄3 → x̄2)ρ(x3) . . .

In the TIS and RETIS theoretical framework, the path concept
is extended by including time slices before x0. In this view,
x0 is considered the present state, the principle phase point,
while xi is a state in the future or in the past whenever
i is, respectively, positive or negative. Hence, for a path
X = {x−M , x−M+1, . . . , x−1, x0, x1, . . . xL−1, xL, }, we can
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write

P[X ] = ρ(x0)

�
L−1�

i=0

p(xi → xi+1)

��
M−1�

i=0

p(x−i → x−i−1)

�
.

(A4)
Using Eq. (A4), we can in principle redefine all phase space
ensemble averages, in which one integrates over x, as path
ensemble averages in which one integrates over x0 and addi-
tional phase points xi �=0 with both positive and negative index
via Eq. (A2) with dX = �L

i=−M dxi. Whenever the value of f
is instantaneously available from the present phase point x0,
the integrals over the additional phase points can be ignored,
since they are unity.

Another way to generalize the ensemble average, which
in some cases could be arguably more intuitive, can be de-
rived from another perspective on the path object as stated
by Crooks and Chandler [73]: “A stochastic trajectory can
be defined by the chain of states that the system visits, but
it can also be represented by the initial state and the set of
random numbers, the noise history, that was used to generate
the trajectory.” [73]. As an example they show that the prob-
ability density of a one-dimensional Brownian dynamics path
X consisting of L time slices can be written as

P[X ] = P[{x0, x1, . . . , xL}] = ρ(x0)
L�

i=1

1√
2π�

exp(−ξ 2
i /2�),

where each ξi is a Gaussian random number of zero mean
and � variance, the stochastic force acting at time between
t = (i − 1)�t to t = i�t . Here, we deliberately shifted the
indexing of the noise terms from 1 to L instead of the original
[73] indexing from 0 to L − 1. The reason becomes clear
when we introduce Eq. (A8).

Since the phase point of the system at t = �t , x1, is fully
determined by the first phase point and first stochastic noise
term, we can write x1 = φ(x0, ξ1) with φ being the MD time-
step integrator. Likewise, x2 = φ(x1, ξ2) = φ(φ(x0, ξ1), ξ2)
etc. It is thus apparent that, when we add to x0 all the
information of the random noise sequence ξ1, ξ2, . . . , ξL to
make an “extended phase point” or “trajectory phase point,”
x̃ = {x0, ξ1, . . . , ξL} = {x0, ξ

L}, basically every property of
the system between t = 0 and L�t becomes a function of x̃,
as if the dynamics would be deterministic.

Henceforth, for a general type of stochastic dynamics that
proceeds via random noises that are drawn from a distribution
pξ (·), we can define phase space density of an extended phase
point x̃ as

ρ(x̃) = P[X (x̃)] = ρ(x0)
L�

i=1

pξ (ξi ). (A5)

So equivalently to Eq. (A2), by expressing an observable f as
a function of an extended phasepoint x̃, we write its ensemble
average as

� f � =
�

dx̃ ρ(x̃) f (x̃) with

dx̃ = dx0

L�

i=1

dξi = dx0dξL,

ρ(x̃) = ρ(x0)
L�

i=1

pξ (ξi ) = ρ(x0)pξ (ξL ). (A6)

This automatically becomes a standard phase space ensemble
average with x instead of x̃ when f is not noise-dependent
since all integrals over dξi become 1.

While the concept of an extended phase point is gener-
ally not explicitly referred to, it is often implicitly used. For
instance, time-correlation functions are often casually intro-
duced as C(t ) = �a(0)b(t )� without being specific about the
noise dependence. Based on Eqs. (A5) and (A6), we can
rigorously define the ensemble average as an integral over
extended phase space:

C(t ) =
�

ρ(x̃)a(x0)b(xL )dx̃ (A7)

=
�

ρ(x0)pξ (ξL )a(x0)b(xL(x0, ξ
L ))dx0 dξL

with L = t/�t,

where a and b are functions of the phase point of the system at
the time under consideration, at t = 0 and L�t , respectively.
The absolute timescale is irrelevant here since we gener-
ally assume we are at an equilibrium distribution at t = 0
and the dynamics conserves this distribution, i.e �a(0)b(t )� =
�a(t �)b(t + t �)� or any arbitrary t �. Hence, the correlation func-
tion C(t ) becomes an ensemble average �a(x̃)b(x̃; t )� where
one just integrates over x̃ and b is parametrically dependent
on t in addition to its dependence on x̃.

Comparing Eqs. (A1) and (A5), it is apparent that p(xi →
xi+1) = pξ (ξi+1) for stochastic dynamics with ξi+1 being the
noise that forces the dynamics to produce xi+1 from xi; xi+1 =
φ(xi, ξi+1). For deterministic dynamics, we can write p(xi →
xi+1) = δ(xi+1 − φ(xi )). In addition, it is clear that the path
interpretation and the extended phase point interpretation are
equivalent; if one knows the initial phase point and the noise
sequence, one knows the path X and vice versa.

As stated before, the TIS and RETIS theoretical framework
requires the description of phase points before x0. This means
that the “noise history” term by Crooks and Chandler to
denote ξL

+ = {ξ1, ξ2, . . . , ξL} is now recoined as noise future
while ξM

− = {ξ−1, ξ−2, . . . , ξ−M} is the actual noise history or
noise past.

Then, equivalent to Eq. (A4), we can define the phase space
density of x̃ = {ξ−M, . . . , ξ−1, x0, ξ1, . . . , ξL} as

ρ(x̃) = P[X (x̃)] = ρ(x0)

�
L�

i=1

pξ (ξi )

��
M�

i=1

pξ (ξ−i)

�

= ρ(x0)pξ (ξL
+)pξ (ξM

− ), (A8)

where the noise terms have a slightly different interpretations
depending on the index being positive or negative. For i > 0,
ξi is the noise needed for φ to produce xi given xi−1, while
ξ−i is the noise needed for φ to produce x̄i given x̄−i+1:
φ(xi−1, ξi ) = xi and φ(x̄i−1, ξi ) = x̄i. Hence, the history of
the path X follows from the negative noise terms as: x−1 =
φ(x0, ξ−1), x−2 = φ(x1, ξ−2), etc, again showing that there is
a one-to-one relation between X and x̃.

Based on Eq. (A8), it is now possible to define the proba-
bility of overall state A as: pA = �hA�. Here hA = hA(x̃) =
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hA(X ) equals

hA(x̃) =
∞�

n=0

h−n
A (x̃) (A9)

with

h−n
A (x̃) = hA(x−n)

n−1�

i=0

(1 − hA(x−i ) − hB(x−i )) (A10)

such that h−n
A is a function of (x0, ξ−1, ξ−2 . . . ξ−n) which is a

part of x̃. The product term is simply 1 if none of the points
xi with index −n < i � 0 is inside A or B. Otherwise it is 0.
Further, h0

A(x̃) is simply hA(x0). Likewise, we can define

hB(x̃) =
∞�

n=0

h−n
B (x̃) with (A11)

h−n
B (x̃) = hB(x−n)

n−1�

i=0

(1 − hA(x−i ) − hB(x−i )).

In principle, we consider the path or random noise se-
quence to extend to infinite in both time directions [L → ∞,
M → ∞ in Eq. (A8)]. However, as h−n

A (x̃) does not depend
on ξi with i > −1 nor i < n, many noise integrals are simply
1 and therefore

pA = �hA� =
�

ρ(x̃)hA(x̃)dx̃ (A12)

=
�

dx0 ρ(x0)
∞�

n=0

�
dξ n

− pξ (ξ n
−)h−n

A (x0, ξ
n
−)

with dξ n
− = dξ−1dξ−2 · · · dξ−n.

Now, suppose f is a function of phase space: f = f (x).
Then, the ensemble average of f does not require the integra-
tion of any noise terms

� f � =
�

dx f (x)ρ(x) (A13)

though the conditional ensemble average � f �A does as

� f �A = � f hA�
�hA� (A14)

=
�

dx0 f (x0)ρ(x0)
�∞

n=0

�
dξ n

− pξ (ξ n
−)h−n

A (x0, ξ
n
−)

�hA� .

The division used in Eq. (10) can now be understood with
this extended phase point picture in mind as

pA� f �A + pB� f �B = �hA�� f �A + �hB�� f �B

=
�

dx0 f (x0)ρ(x0)
∞�

n=0

×
�

dξ n
− p(ξ n

−)
�
h−n
A (x0, ξ

n
−) + h−n

B (x0, ξ
n
−)

�
. (A15)

If we consider the third line of Eq. (A15) separately, we can
identify this, for a given phase point x0, as the chance that the
stochastic dynamics needed exactly n steps backward in time
to move outside no man’s land, i.e., enter either stable state A
or B. Since we assume that no point x0 can be trapped into no

man’s land forever, the sum over n of this probability equals
1. Hence,

pA� f �A + pB� f �B =
�

dx0 f (x0)ρ(x0) = � f �. (A16)

Note that the we can use integration over x [Eq. (A13)]
or x0 [Eq. (A16)] interchangeably since ρ(·) refers to the
equilibrium phase density that is time-invariant. So indeed,
�. . .� = pA�. . .�A + pB�. . .�B like stated in Eq. (10).

As a special case, we can take f (x; z) = δ(z − zt ) with
zt being the z coordinate of a specific particle (the target
permeant). Here, zt is a part of the system’s phase point x
that on its turn can be viewed as x0 which a part of x̃ (recall
that the phase space density is time-invariant). In addition, z is
a parameter that specifies a reference region in configuration
space. Note that the parametric dependence of f on z is not
vanishing when taking the ensemble average since it is not a
part of x̃ and therefore not integrated out. Therefore, we can
write

ρ(z) = �δ(z − zt )� = � f (x; z)� (A17)

= pA� f (x̃; z)�A + pB� f (x̃; z)�B
= pA

� f (x0; z)hA(x̃)�
�hA� + pB

� f (x0; z)hB(x̃)�
�hB�

= pA
�δ(z − zt (x0))hA(x̃)�

�hA� + pB
�δ(z − zt (x0))hB(x̃)�

�hB� .

All ensemble averages in Eq. (A17) are in principle integrals
over x̃, though in the first line an integral over configuration
space would be sufficient since the integrals over momenta
and noise terms are unity. In the last line of Eq. (A17), the
integrals need to be carried out on the principle phase point x0

and the backward noise terms ξ−1, ξ−2, . . . The integrals over
the forward noises ξ1, ξ2, . . . are still unity.

The delta-function is only nonzero whenever zt (x0) equals
z. This implies that if z is inside stable state A, then the prod-
uct δ(z − zt (x0))hB(x̃) is by definition zero; if zt (x0) = z ∈ A
then x0 ∈ A and, therefore, hB(x̃) = 0. This explains the last
equality of Eq. (16) where z = zref ∈ A.

Finally, for the rate in Eq. (6), the product of hA(0) and
hB(�t ) should be evaluated. By defining the principle phase
point to be x0, we have x̃ = (. . . , ξ−2, ξ−1, x0, ξ1, . . .) and
x1 = φ(x0, ξ1) with φ the �t time step integrator. Further, the
product can only be nonzero if both hA(x̃) and hB(x1) are
equal to 1, and hB(�t ) can be replaced by hB(φ(x0, ξ1)) in
the product,

hA(0)hB(�t ) = hA(. . . , ξ−1, x0, ξ1, . . .)hB(φ(x0, ξ1))

= hA(x̃)hB(φ(x0, ξ1)).

The ensemble average in Eq. (6) can be written as

k = lim
�t→0

�hA(0)hB(�t )�
�hA� �t

= lim
�t→0

1

�hA� �t

�
dx0ρ(x0)

�
dξ1 pξ (ξ1)hB(φ(x0, ξ1))

×
∞�

n=0

�
dξ n

− pξ (ξ n
−)h−n

A (x0, ξ
n
−) (A18)
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where noise history and noise future appear within one
equation. The limit �t → 0 only exists formally since �t
will be taken equal to the typical MD step in any practical
case.

APPENDIX B: THEORETICAL PERMEABILITY FOR 1D
TOY SYSTEM

In the 1D toy system, we can express the permeability
in an analytical shape for the following three situations: for
a Brownian particle (based on the Smoluchowski equation),
for a Langevin particle crossing a high barrier (based on
the Kramers equation), and for a deterministic Newtonian
particle.

The Smoluchowski equation for a Brownian particle leads
to the permeability expression in Eq. (3). In the one-
dimensional case, the absence of any other degrees of freedom
implies that the free energy F (z) and the potential energy V (z)
are the same. Hence, for overdamped dynamics, we can derive
a theoretical expression for P by inserting V (z) of Eq. (39) as
F (z) into Eq. (3),

P = D

h

e−βV0/2

I0(βV0/2)
. (B1)

Here, h = 2a and I0(x) = (1/π )
� π

0 exp(cos θ )dθ is the 0th
order modified Bessel function of the first kind. When V0 = 0,
then I0(0) = 1, and the resulting flat potential yields P = D/h.
For large V0, the cosine barrier can be approximated by a
second order Taylor expansion about z = 0, F (z) = V (z) ≈
V0(1 − ( πz

h )2) and it can be assumed that exp(−βV (z))
rapidly decays when moving away from the membrane. This
can be inserted into Eq. (3) and the integration boundaries can
be moved from ±h/2 to ±∞. Solving the resulting Gaussian
integral yields an approximation of P for large V0,

P = D

h

�
πV0

kBT
e−βV0 . (B2)

An alternative approach to the Smoluchowski approach is
to use Kramer’s relation for the rate constant k instead. The
permeability P is then obtained via Eq. (18) by first computing
the rate k while assuming a hard wall at z = −W that can
be taken to infinite. Using a harmonic approximation and a
high barrier assumption, this rate constant k can be written
as [74]

k = κ

�
kBT

2πm

exp(−βV (0))
� 0
−W exp(−βV (z)) dz

, (B3)

where κ is the transmission coefficient that can be approxi-
mated using Kramers’ relation

κ = 1

ω+

�
−γ

2
+

�
γ 2

4
+ ω2

+

�
. (B4)

Here, ω+ is the frequency associated to the curvature at the
top of the barrier: ω+ = √

k+/m with V (z) ≈ V0 − 1
2 k+z2.

From the above Taylor expansion, we have k+ = 2V0π
2/h2

and ω+ = (π/h)
√

2V0/m.

The conditional probability appearing in Eq. (18) is
expressed as

(ρref )A = 1
� 0
−W exp(−βV (z)) dz

(B5)

where we assumed that overall state A condition is statisti-
cally equivalent to the condition z < 0 for this case, which is
a valid assumption for a high barrier.

Inserting Eq. (B4) in Eq. (B3) and inserting Eqs. (B3) and
(B5) in Eq. (18) gives the permeability for a high barrier,

P = κ

�
kBT

2πm
e−βV0 (B6)

= h

π

�
m

2V0

�
−γ

2
+

�
γ 2

4
+ 2V0π2

mh2

��
kBT

2πm
e−βV0 .

In the high friction limit where γ � ω+, Eq. (B4) reduces to
κ = ω+/γ , and P for large V0 becomes

P = π

hγ

�
2V0

m

�
kBT

2πm
e−βV0

= kBT

hγ m

�
πV0

kBT
e−βV0 . (B7)

Since D = kBT/(mγ ), this equation is equal to the Smolu-
chowski equation Eq. (B2) within the harmonic approxima-
tion for the high barrier. A Langevin particle with high friction
is indeed well described by the overdamped dynamics of a
Brownian particle.

In the low friction limit γ � ω+, Eq. (B4) reduces to
κ = 1, and P in Eq. (B6) becomes, for any V0,

P =
�

kBT

2πm
e−βV0 . (B8)

This friction-less limit is exactly the permeability of the deter-
ministic particle. It can also be obtained from Eq. (24). Here,
ξ = 1/2, since a deterministic particle in a flat free energy
region either moves to the right (velocity positive), either to
the left (velocity negative), which have equal Boltzmann prob-
ability. A particle moving to the right will reach the barrier
top with a probability exp(−βV0) and it will not recross, and
therefore PA(λB|λA) = exp(−βV0). The time spent per path in
[0−�] in a reference region of size �z can be computed from
the flux-weighted velocity distribution as

τref,[0−�] = �z
�

πβm/2. (B9)

Inserting these three factors into Eq. (24) gives Eq. (B8).
Let us recap the case of a flat potential membrane (V0 = 0).

For the Brownian particle, the permeability is P = D/h. If the
particle has low friction γ → 0, then D → ∞, and the perme-
ability diverges. For the Langevin particle, the high friction
limit of P in Eq. (B7) based on Kramer’s relation vanishes
when V0 = 0, which is not an adequate approximation of a
flat potential’s permeability. Nevertheless, again considering
a Langevin particle and Kramer’s equation, the low friction
limit in Eq. (B8) converges to P = √

kBT/(2πm), which is
finite.

In conclusion, the two theoretical expressions for the
one-dimensional case, Eq. (B1) based Smoluchowski and
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Eq. (B6) based on Kramers, use respectively an over-
damped assumption or a harmonic approximation to describe
the top of the barrier. For high friction and low barri-
ers, Eq. (B1) will be more accurate than Eq. (B6). For
high barriers and low friction Eq. (B6) will prevail over

Eq. (B1). In the case that both the friction and the barrier
is high, both converge to the same value. In the case that
both the friction and the barrier is low, neither Eq. (B1)
nor Eq. (B6) will be accurate descriptions of a Langevin
particle.
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ABSTRACT: We propose to analyze molecular dynamics (MD)
output via a supervised machine learning (ML) algorithm, the
decision tree. The approach aims to identify the predominant
geometric features which correlate with trajectories that transition
between two arbitrarily defined states. The data-driven algorithm
aims to identify these features without the bias of human “chemical
intuition”. We demonstrate the method by analyzing the proton
exchange reactions in formic acid solvated in small water clusters.
The simulations were performed with ab initio MD combined with
a method to efficiently sample the rare event, path sampling. Our
ML analysis identified relevant geometric variables involved in the
proton transfer reaction and how they may change as the number
of solvating water molecules changes.

1. INTRODUCTION
In regions far from urban areas, formic acid (FA) has been
recognized as one of the main factors which reduces the pH of
rainwater, causing acid rain.1 It has relatively high atmospheric
concentrations2,3 and contributes to the formation of sulfuric
acid in the atmosphere.4,5 Enhanced description of proton
exchange reactions involving solvated FA can improve the
current atmospheric models. Theoretical studies of proton
transport in bulk aqueous media have a long history going back
to the elucidation of the Grotthuss mechanism.6 The current
view of the solvated proton in water focuses on the formation
of Zundel (H5O2

+) and Eigen (H9O4
+) cations and the

mechanisms describing transformations between these
states.7−13

A related area with significant theoretical and computational
contributions in the last decade is the study of acid ionization
in bulk water14−18 or at the water−air interface.9,19−23 By
contrast, there are only a few papers which focus on the nature
of acidic proton transport in small water clusters.24−30 In these
small systems, thermodynamic approaches appropriate for the
bulk system are no longer valid. Instead, these studies have
been forced to approach each specific chemical example as a
separate problem. As such, the use of a generalizable approach
such as the one we present in this study should be of
considerable interest.
Ab initio molecular dynamics (MD) simulations have

recently been used to examine FA deprotonation in aqueous
solution,18,22 successfully describing the proton exchange
reaction between water and FA. While these studies led to
valuable new insights, the limitations of the adopted methods
(e.g., usage of a bias potential and continuous collective

variables) could be overcome, thanks to relatively novel
methodologies such as replica exchange transition interface
sampling (RETIS).31,32 Respecting the natural dynamics of the
system, it allows the study of transitions even with a significant
diffusive contribution33,34 (i.e., a small reaction barrier) and
enables the direct investigation of reaction mechanisms.
RETIS is a rare event method developed to investigate

transitions. Its main advantages are as follows: (a) it does not
alter the natural dynamics of the system, (b) it does not
require a particularly accurate order parameter, (c) its results
are in principle identical to what would be obtained by an
infinitely long unbiased MD simulation. With RETIS, the
transition region is explored by continuously generating new
paths which start from a stable state and end up either back in
such a state (an unreactive path), or reach a different state (a
reactive path). The approach has been successfully employed to
study transitions that would, otherwise, require prohibitively
long simulation times. The results generated have been used to
describe the dynamics of chemical processes (e.g., reaction
rates) while considering the entropic contribution in the
analysis.5,33−36 Since significant amounts of data are often
generated by the sampling procedure, approaches to pragmati-
cally decode reaction mechanisms are greatly beneficial.

Received: May 10, 2021
Published: September 24, 2021

Articlepubs.acs.org/JCTC

© 2021 The Authors. Published by
American Chemical Society

6193
https://doi.org/10.1021/acs.jctc.1c00458

J. Chem. Theory Comput. 2021, 17, 6193−6202

D
o
w

n
lo

ad
ed

 v
ia

 N
O

R
W

E
G

IA
N

 U
N

IV
 S

C
IE

N
C

E
 &

 T
E

C
H

N
O

L
O

G
Y

 o
n 

M
ay

 1
8,

 2
02

2 
at

 1
3:

40
:2

1
 (

U
T

C
).

S
ee

 h
tt

p
s:

//
p
u
b
s.

ac
s.

or
g/

sh
ar

in
gg

u
id

el
in

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 t

o 
le

gi
ti

m
at

el
y 

sh
ar

e 
pu

bl
is

h
ed

 a
rt

ic
le

s.



Our aim is to establish a heuristic approach to describe
transitions regardless of whether they involve crossing an
entropic barrier. Data-driven, physically consistent, and
measurable system descriptors might be generated and their
correlations with the system dynamics asserted. It is a
classification problem, which a machine learning (ML)
algorithm can be trained to solve. The algorithm might then
predict if a certain molecular structure (frame) is part of a
reactive or a non-reactive trajectory. Connecting the
descriptors to measurable quantities provides a data-driven
“unbiased” description of a transition that might support, and
eventually surpass, human-biased “chemical intuition”.
Data-driven algorithms for enhanced sampling or the

analysis of chemical simulations have significant recent
contributions.37−43 Most of these approaches are based on
neural networks, which lack physically consistent interpret-
ability, which is, instead, a characteristic of decision trees
(DTs).39,40 Furthermore, in most of these studies implement-
ing neural networks, a pre-selection of trial collective
variables38,41,42 is required, which could lead to a hypothesis-
bias. DT44 classifiers have a unique solution and are not
sensitive to highly correlated variables. The results can be
readily interpreted if the source variables are also interpretable.
The approach was previously adopted to select optimal
collective variables with DTs, with reasonable success.36

We here propose a method based on DTs, which is both
interpretable and hypothesis-bias-free via an appropriate
system representation invariant to system translation, rotation,
and changes in atomic indices. Our aim is to gain insights into
reaction mechanisms with a systematic and objective
representation of the system.
The approach has been developed with sufficient versatility

to be applied to different types of molecular simulations, from
conventional MD to rare event methods. It should be noted
that conventional MD would require a priori classification of
the data, that is, dividing the source trajectory into reactive and
unreactive segments. The sampling strategy of rare event
methods, instead, generates a data structure which inherently
classifies the trajectories. Regardless of the adopted molecular
simulation approach, limiting the correlation between samples
is a primary task for a quantitative data-driven method to
identify reaction paths and the probability of their occurrence.
We demonstrate our data-driven method in this study on

small clusters of FA solvated by water, HCOOH + (H2O)n, n =
4 and 6. The system is relatively small and well understood and
hence provides an ideal test case for training an ML method.
Our analysis provides new quantitative and qualitative insights
into the acid−water proton transfer reaction in aqueous
clusters.

2. COMPUTATIONAL MODELS AND METHODS

Since the main focus of the present paper is an ML
methodology, we provide only a brief introduction to the
simulation methodology. Please consider our previous
studies5,18 for further details.
2.1. System Description. For studying proton transport,

molecular simulations able to consider bond formation and
bond breaking are required. Born−Oppenheimer MD has been
shown to be a suitable approximation in previous studies of
atmospheric reactions4,5 and of aqueous FA.18,22 The density
functional theory BLYP, implemented in the Quickstep
module of CP2K,45 has been adopted with a double-zeta

basis set supplemented by the use of Grimme’s D2 dispersion
correction.46

A set of systems with an increasing number of water
molecules around FA were studied. Initial configurations were
obtained from minimum energy configurations, of which
snapshots are reported in Figure 1. As more water molecules

were added, the probability of generating reactive trajectories
increased. However, at least four added water molecules were
required to allow generation of trajectories with a significant
charge separation between the deprotonated FA and the
solvated proton. With two additional water molecules, a
significantly higher proton transfer rate was measured. The two
systems composed by FA surrounded by four and six water
molecules have been thus selected and discussed here.

2.2. Definition of the Collective Variable. Path
sampling simulation requires the definition of a collective
variable, s(r), to quantify the progress of a transition (r
contains the positions and velocities of all atoms in the
system). The method is not limited to continuous collective
variables, allowing the consideration of relatively complex
functions to describe proton transport.
The collective variable adopted in the present work is

inspired by the study of water ionization,36 with modifications
introduced to consider acid deprotonation. As a first step, it
locates the smallest distance between any FA oxygen and any
reactive hydrogen in the system (excluding the methyl
hydrogen in FA). This distance is denoted as rOFAH,min.

Figure 1. Minimum energy configurations for systems with FA
associated with four and six water molecules. In the figures, s(r) is
equal to the rOH of the initially protonated FA molecule. These
configurations are the initial states used to initiate PyRETIS
simulations.
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For rOFAH,min < 1.4 Å, FA is considered protonated, so s(r) =

rOFAH,min. For rOFAH,min > 1.4 Å, charge separation between the
solvated proton and FA becomes significant. To quantify it and
thus compute s(r), all the distances between reactive
hydrogens and oxygens are first calculated. Hydrogens are
then assigned to the closest oxygen, either water or FA. Any
water oxygen found to be associated with three hydrogens is
then indexed. All distances between FA oxygens and hydrogens
associated with triply coordinated water oxygens are finally
sorted. s(r) is the minimum value of these distances.
Conceptually, we aimed to describe the formation of

complexes resembling Eigen or Zundel cations. A discontin-
uous jump of s(r) from ∼1.8 up to ∼3 Å is associated with a
change in the identity of the triply coordinated water oxygen
and the formation of structures resembling Zundel cations
H5O2

+. The formation of the Zundel cation with s(r) > 2.9 Å is
here labeled as the product state B.
2.3. RETIS. The PyRETIS47,48 library has been used to

perform RETIS49 simulations coupled with the ab initio MD
external engine CP2K. In the four-water simulations, the first
interface was placed at s(r) = 1.05 Å and the last interface at
s(r) = 3.0 Å, thus defining the initial and the final states of the
transition. Seventeen interfaces were positioned along the
interval. Similarly, the six-water simulations had the first
interface at s(r) = 1.07 Å and the last interface at s(r) = 3.0 Å.
Thirteen interfaces were positioned along the interval.
The initial paths describing the transition from protonated

to deprotonated FA along s(r) were generated by using the
kick method available in the software, starting from the initial
configurations shown in Figure 1. The “kick” approach uses a
mixture of stochastic and deterministic dynamics to generate a
set of initial paths. From the results, the paths that correlated
with the initial generated ones were discarded. Finally, the
remaining trajectories from a set of multiple independent
simulations were merged together for both the four- and six-
water-molecule cases.
2.4. Selection Window. In a trajectory, each frame can be

considered as an instance in a data-representation suitable for
the DT. Depending on the simulation setup, a large number of
frames would generate a long list of instances with a very high
correlation. Furthermore, different trajectories can be highly
correlated with one another, depending on the sampling
algorithm. Since generating a sufficient number of uncorrelated
trajectories often requires excessive computational require-
ments, an approach to provide a sufficient sampling with a
limited correlation is proposed here.
Frames contained in a rather restricted region in the path

space can be identified via a selection window. By randomly
picking a certain number of frames for each trajectory, within
the selection window, the correlation between instances is
minimized. By placing the selection window in proximity to the
initial state, as in the current study, the system configurations
which are correlated with the transitions can be identified prior
to the transition actually occurring. The selection window
location and dimension and the number of frames per
trajectory to consider constitute the three hyper-parameters
of our approach. In the present work, the ML algorithm has
been fed with one frame per trajectory within a selection
window defined by values of the order parameter 1.1 < s(r) <
1.25 Å. The range is sufficiently narrow to consider only a few
frames for each trajectory, each with a similar order parameter.
The ML algorithm should, therefore, be able to determine the

most relevant feature(s) associated with the transition
happening without hypothesis-bias on the main descriptor of
the transition itself. This limits the correlation of the detected
features with the classification of the trajectory.

2.5. Training the DTs, Labels. The ML problem we are
posing is as follows: “what are the main features that a
simulation frame has to have in order to be part of a trajectory
that connects an initial state to a final state (reactive)?” and
“with which probability?” The information gain (entropy) DT
is a viable method for a problem with highly correlated
features.50

DTs report the most important features that differentiate
between reactive and unreactive paths without imposing any
prior hypothesis.
Given a set of trajectories, a classification between reactive

and unreactive paths is first needed. A numerical descriptor,
conventionally defined as the order parameter, can quantify the
progress of a given transition. If its value for a given system is
within certain arbitrarily defined ranges, the system can be
considered to be located in the initial or the final state. A
reactive path is defined as a path starting from an initial state
and ending at a product state. A non-reactive path, instead,
ends at the initial state.
If the input generated by molecular simulation is composed

of a single long trajectory, sub-segments will have to be fed to
the ML task. In such a case, a segment starting at one state and
ending in another state will be considered reactive, whereas a
segment starting and ending at the same state without having
previously entered another state will be unreactive. When using
the input generated by path sampling, paths contained in a
single ensemble should be considered (please consider refs 31
and 51 for the definition of an ensemble and further details of
the path sampling methods).

2.6. Training the DTs, Data Matrix. Generally, all
trajectory segments or trajectories for path sampling can be
considered in the present analysis approach. When using path
sampling, a re-weighting algorithm is adopted to consider all
the generated paths. Due to the statistical weights of the
different ensembles and for simplicity, we opted to consider
only the trajectories included in the outermost ensemble in the
path space (for the definition of an ensemble, please consider
the RETIS formalism49).
From molecular simulations, an ordered data array for the

positions and velocities for each atom is written for each
selected time frame. While the convention facilitates post-
processing and visualization procedures, it includes a bias in
the data representation. Small deviations in the observation
angle or on the choice of coordinate system (e.g., exchanging x
with y coordinates) lead to significantly different data sets
while corresponding to nearly identical systems. For our work,
the data thus have to be pre-processed to become invariant
with respect to translations and rotations. Furthermore, the
ML problem also has to be atom-index-invariant, and the
sorting method also must be reversible to allow back-mapping
of the features indicated by the ML to the relevant atom (or
atom pairs).
In the present work, we considered atomic distances and

velocities as possible features. Since the atomic velocities did
not provide a significant contribution in our results, the
forthcoming analysis has been based on atomic distances only.
The translation and rotation-independent requisites might

be met with an atom−atom distance matrix. The atom-index-
invariant approach requires, on the other hand, a more
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elaborate representation. First, a reference atom, which can
differ in different frames if the atoms are indistinguishable (i.e.,
the same element in an atomistic simulation), shall be selected.
Thereafter, the rows in the atom−atom distance matrix are
grouped per element and sorted within each element-group
based on the distance from the reference atom. For each row in
the matrix, the columns are grouped and sorted following an
analogous procedure. The sorting is thus based on the distance
from the atom indicated by the row. The column indices can
therefore indicate a different atom for each row. A “′” denotes
the secondary index.
The resulting matrix reports the distance from a selected

reference atom (rows) to its next neighbor (columns). A
scheme of the algorithm to generate both the distance matrix
and the index-invariant distance matrix is provided in the
Supporting Information. In Figure 2, the two matrix

representations are provided, as an example, for an isolated
FA molecule, where we used the carbon atom (C0) as the
trivial identifiable reference atom. The resulting internal
coordinate representation allows an independent analysis of
each entry and, thus, a suitable data structure for the ML task.
We would like to note here that a common translational-

and rotational-invariant representation, the Z-matrix,52 also
provides an appealing internal representation of molecular
structures as it scales better with the number of atoms
compared to the distance matrix. However, the values of its
variables (i.e., distances, angles, and dihedrals) are dependent
on each entry and on the atom sequence. In contrast, in our
distance matrix representation, each entry is independent. Also,
distances are unique, with a lower bound (0) and an upper
bound (system size). These three characteristics allow for a
suitable split of sample space by the DTs. Furthermore, our
representation is index-invariant.
We here report the results obtained by the index-invariant

distance matrix, which is the most general approach, even if
more computationally demanding. It is worth noting that the
index-variant distance matrix can be advantageous for its
simplicity and symmetry in certain applications, for example, in
the presence of atoms that do not swap order during a
transition. The results for the index-variant distance matrix are
presented in the Supporting Information.
Computationally, a DecisionTree Classifier from scikit-

learn53 has been fed with the index-invariant matrix, flattened

to a feature vector, using the “entropy” splitting criterion and a
maximum depth of three.

2.7. Data Matrix Notation and DT Visualization. The
atom labeling system we use identifies each atom with a
character and a digit. The character corresponds to the atom
type, while the digit corresponds to the position of the sorted
distance list per element with respect to a reference atom, with
the indexing starting at 0. The digit of the first entry in the
atom−atom distance label refers to the sorted distance list with
respect to the reference atom (C0). The digit of the second
entry refers to the sorted distance list with respect to the first
atom of the atom−atom pair. To highlight it, a prime (′) has
been added to the second index. As two examples, (a) O2−
H5′ corresponds to the distance from the third closest oxygen
(O2) to the C atom to the hydrogen atom, which is 6th closest
to O2. (b) H0−O0′ is the distance from the H closest to the C
(H0) to the oxygen closest to H0.
A symmetric distance matrix can be back-mapped to xyz

coordinates (up to a translation and rotation) as described by
Young and Householder54 (and further detailed in the
Supporting Information). The index-invariant distance matrix
can be unsorted into the symmetric matrix up to an atom index
difference. The approach permits the addition of dummy
atoms according to the splits given by the DT, allowing a direct
visualization of the analysis output (e.g., via VMD55). For a
convenient visualization, only the dummy atoms correspond-
ing to the nodes along each decision path in the tree might be
selected. A main decision path is chosen such that a leaf node
would have the highest number of pertinent reactive paths
weighted by the percentage of pertinent reactive paths: nr·nr/
(nr + nu), where nr is the number of reactive paths in that node
and nu the number of unreactive paths.

2.8. Random Forest Decision Error Estimate. The
prediction error is simulation time-dependent and the true
answer is unknown. Furthermore, due to time evolution, the
distribution is not Gaussian and the noise is heteroscedastic
with respect to the true value. Our implementation of the DT
algorithm is not designed to make statistical predictions;
instead, it focuses on identifying the most important features
(regularization). To provide an estimate of the method’s
reliability in the feature selection, an error-estimate procedure
has been thus developed.
With highly correlated data, significantly different trees can

be originated depending upon the first split from minor
variations of the input. It is a constitutive limitation of the
approach. The relative importance of the first split can be
asserted by using random forests56 with a unit depth. The
random forest reports the importance of all features by
sampling several DTs, each one generated from a subset of
features. By limiting the depth of each tree to 1, the feature
importance of such random forests becomes equal to the
importance of the first split only. It shall be noted that the
feature that has the highest importance in the random forest
plot does not necessarily represent the main split for all
possible DTs.
A sequence of forests of DTs has been generated with

respect to the time sequence during which sampling output has
been generated. Source data have been split into 10 sub-blocks
and randomized within each. A random forest has then been
computed for each of these subsets, generating a sort of time-
dependent profile for the main splits, which allows the
computation of a variance σ for each of the main features.
The average value for each feature can then be computed by

Figure 2. Distance matrix (top) for a structure of FA (right). The
index-invariant distance matrix (bottom) corresponds to the first
distance matrix. The prime on the column atom index indicates that it
depends on the row atom index.
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considering the whole data set. By assuming a Gaussian
distribution for each feature and by using the previously
obtained variance and mean value for each feature, the relative
probability of a feature importance is estimated. By comparing
the probability distribution for each feature, the most relevant
can be identified even if the data are highly correlated.
Computationally, a RandomForest Classifier from scikit-

learn53 has been fed with the index-invariant matrix, flattened
to a feature vector, using the “entropy” splitting criterion and a
maximum depth of one.

3. RESULTS AND DISCUSSION
The rate of proton transfer from FA to the water molecules has
been computed via RETIS simulation and ab initio MD
simulations. Figure 3 reports the rate of reaction for two

systems, where four and six water molecules surrounded FA.
State A (protonated state) is defined as configurations with
s(r) < 1.05 Å (four waters) or with s(r) < 1.07 Å (six waters).
State B includes configurations with s(r) > 3.0 Å for both
systems.
The rate of proton transfer for the four-water-molecule case

is ∼2.10 × 10−14 and ∼1.01 × 10−7 fs−1 for six water molecules
around FA (107 times difference).
We here investigate the mechanism of reactions via DTs to

identify the feature(s) that better correlate for each case with
pathways that lead to proton transfer. The analysis might
provide qualitative and quantitative descriptions of the
different system features responsible for the significant
difference in the reported rates.
3.1. FA with Four Water Molecules. The DT generated

for the system with four water molecules clustered around FA
is reported in Figure 4. To simplify the visualization of the
main splits that lead to the highest reactive trajectories of the
DT, in Figure 4, a Cartesian/xyz representation has been
included. The atoms in blue, yellow, and green are involved in
the first, second, and third splits, respectively.

The deprotonation reaction of FA appears to primarily
require that the distance between O5 and H9′ be smaller than
5.25 Å. The split implies that the distance between the oxygen
furthest from the FA carbon (O5) and the furthest hydrogen
from O5 should be within a given threshold. As H9′ is the
hydrogen of FA, it also implies that a certain orientation of the
molecule, with respect to the water cluster, is also required.
Under these conditions, the probability for the path to be
reactive is 38%.
The next split along the branch with the highest probability

to be reactive is the distance between O1 and H8′ being
smaller than 4.25 Å. The distance between one of the FA
oxygens and one of the furthest hydrogen atoms should be
sufficiently small. This implies that the oxygen of FA should be
located around the center of the cluster and that a sort of
ordered disposition of the water molecules in the cluster is
required. When this condition is satisfied, the probability for a
path to be reactive reaches 63%.
Continuing along the branch with the highest reactive

probability, the distance between O5 and O3′ being bigger
than 3.52 Å represents the last split here considered. This
corresponds to the relative position of two water molecules
being two hydrogen bonds apart. We interpret the requisite as
the suitable distance to establish hydrogen bonding between
the atoms.
When all three of these requirements are met, the

probability of a path being reactive is 71%. By comparing
the number of reactive paths versus the number of unreactive
paths in the final splits of the DT, it can be concluded that the
indicated reactive path is clearly predominant. A similar
conclusion can be reached by observing the first splits reported
in Figure 5. The figure that reports the results obtained from a
random forest of DTs of depth 1 indicates that the relative
probability for the first split to be the most important feature is
39%. The subsequent distances reported by the random forest
analysis have a constantly decaying relevance. The first five
main splits reported by Figure 5 are correlated and taken
together indicate that the water cluster has to be sufficiently
compact and FA has to be oriented such that its oxygen
molecules are in close contact with the surrounding water
molecules.

3.2. FA with Six Water Molecules. For the clusters with
six water molecules around FA, in Figure 6, we report the
generated DT. As we did with the four-water-molecule case, a
visualization of the main splits of the DT that led to the highest
reactive trajectories is also included in Figure 6. The atoms in
blue, yellow, and green are involved in the first, second, and
third splits, respectively.
The deprotonation reaction of FA in the six-water-molecule

cluster requires the distance between O6 and H8′ to be smaller
than 3.55 Å. This split involves two water molecules in the
proximity of FA that need to be within a certain distance. By
inspecting the frame reported in Figure 6, the requirement
seems to indicate a certain orientation of one of the water
molecules associated with another water molecule in proximity
to the FA oxygen. Under such conditions, the probability for
the path to be reactive is 32%.
The next split, along the branch with the highest probability

to be reactive, is the distance between H9 and H11′ being
smaller than 4.27 Å. The distance between these two atoms
can also be interpreted as a combination of molecular
orientation of the water molecules in the surroundings of FA

Figure 3. Effective rate constant kAB computed using RETIS for FA
clustered with four or six water molecules to reach the deprotonated
state. Results are obtained from an average of several RETIS
simulations from different initial conditions weighted by the
respective number of RETIS cycles.
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and the water cluster size. The probability of a reactive path
reaches 53% when both these conditions occur.
Still along the branch with the highest probability to be

reactive, the distance between O2 and O2′ being bigger than
2.57 Å represents the last split here considered. This indicates
that the closest water oxygen to FA (O2) should be close
enough to its second closest oxygen atom to promote the

formation of a hydrogen bond network. When all three
requirements are met, the probability for a path to be reactive
is 72%.
By comparing the number of reactive paths versus the

number of unreactive paths in the final splits of the DT, it can
be concluded that the indicated reactive path is clearly
favorable, but that other significant paths also exist. The
conclusion is also supported by the random forest of DTs with
a single split. Before proposing an interpretation, it is worth the
reminder here that the random forest reports unconditional
entries, while the DT splits depend on the first split. Figure 7
indicates the probability that the first split is the most
important feature is 34%, but the second split has a comparable
relevance: O2−O2′ (28%). It confirms that while a
predominant pathway for the reaction has been sampled,
different main pathways can co-exist.
As reported in Figure 3, the number of water molecules in

the cluster has a significant effect on the rate of the proton
transfer reaction. From the comparison of the previously
discussed Figures 4 and 6, we note that the distance between a
FA oxygen and one of the furthest water hydrogens being
below some distance is the predominant characteristic for a
trajectory to be reactive. In other words, both clusters have to
be sufficiently compact in order to promote the reaction. In the
four-water-molecule case, the orientation of FA with respect to
the water cluster is the most important feature, while for the
six-water-molecule case, the water structure around FA appears
to be the predominant feature.
A second main difference between the four- and six-water

cases is the possible pathways for the reaction to occur. The
smaller system has only one predominant reactive path, while
for the six-water-molecule cluster, multiple paths appear to co-
exist, contributing to the final reaction rate. Physically, if the
system is sufficiently large, different configurations can lead to
the proton transfer reaction, consistent with the observation
that the overall rate is much higher.

Figure 4. DT for the system with four water molecules around the FA molecule based on the index-invariant distance matrix. Each text box
represents one node and reports (1) the inequality which splits the data going out of the node, (2) the number of samples entering the node, (3)
the number of (unreactive, reactive) samples entering the node, and (4) the majority class of the node (i.e., whether most of the data entering
represent unreactive or reactive trajectories). At each split, the “True” branch is on the left and the “False” is on the right. The color indicates the
ratio between unreactive (brown) and reactive (blue) samples included in a node. Wider arrows have been used to link the sequence of data
splittings determined to be the most important in the analysis. In the top left corner, a 3D representation of the system is provided. The atoms
highlighted in blue, yellow, and green correspond to the atoms involved in the first, second, and third split of the most important decision branch,
respectively. In red, white, and black are the oxygen, hydrogen, and carbon atoms if not already highlighted as the most important decision branch.

Figure 5. Importance approximations of the possible first split
inequalities generated from a random forest with a depth of one for
the four-water system. The bars represent the feature importance of a
random forest, with the error bar calculated with a block-error average
based on the generated trajectories. The probability that a split is truly
the most important split is shown above the bars for the three most
probable first splits.
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3.3. Computational Cost, Scaling, Method Trans-
ferability, and Limitations. The computational cost of our
method is negligible in comparison to the cost of generating
pathways via MD. It is worth stressing here that our approach
does not aim to replace the generation of trajectories but to
improve the description of their characteristics.
The time required to train the DT scales as a function of the

number of frames and features. The required time scales as
O(N log N), where N is the number of frames, and linearly
with the number of features. For the six-water-molecule
system, with 529 features and 11,418 frames, the training time
required was 1.7 s on a laptop (Dell XPS-15 with an Intel i7-
8750H, 6 cores, and 12 threads). The number of features in
the proposed representation scales as O(M2), with M being the
number of atoms, which could be an issue in both memory and
computational time for relatively large systems. However, the
training of the DT can be efficiently parallelized over the

number of features, with only one communication step per
split of the DT.
The trained DTs are generally not transferable to other

systems for predictions. However, the training of DTs is
efficient and the training input of the DT is a feature vector
that can be generated directly for any atomistic system as long
as the positions and elements of the atoms in a frame and the
classification of the trajectory are known. The feature vector
can also be extended with user-defined features. Therefore, our
described data representation and training/analysis approach
can be directly applied to other atomistic simulations.
One main limitation of the presented analysis method (as

with any ML/data-driven method) is the effect of “garbage in,
garbage out”. We aim to identify the most relevant features for
a transition in a simulation. When the configuration data (the
proposed feature space) do not properly correlate with the
system dynamics (in the presence of underlying potential
energy bias as in meta-dynamics simulation57) or when frames
are more correlated to a source sub-set (e.g., forward-flux-
sampling58), the DTs still identify the most important feature
for the classification, although the feature may be different
from unbiased simulation.

4. CONCLUSIONS

A data-driven method to systematically compute reaction
pathways has been presented. The conventional Cartesian/xyz
data representation employed in molecular simulations is
converted into an index-invariant distance matrix representa-
tion, which is also translation- and rotation-invariant. There-
after, an approach which limits the correlation between
elements in the source data (MD trajectories) has been
proposed in conjunction with a rare event simulation
framework. The data have then been fed to a supervised
classifier method, the DT.
To simplify the interpretation of the classifier, a back

mapping procedure from the index-invariant matrix has been
adopted to emphasize the atoms involved, with each split
identified by the DT. Generation of a random forest of DTs, in
combination with block averaging, provided an error range for
the first split of the DT.
We thus presented a data-driven approach to gain insight

into a chemical reaction. The method has been designed such
that it is readily applicable to other simulation strategies and

Figure 6. DT for the system with six water molecules around the FA molecule. For details, see the caption for Figure 4.

Figure 7. Importance approximations of the first split question from a
random forest with a depth of one for the six-water system. For
details, see the caption to Figure 5.
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types of transitions. The strength of the present approach is
that it allows the use of complex collective variables which may
be discontinuous and the estimation of the probability of their
occurrence in a transition path. The descriptors to elucidate
transition mechanisms might be directly implemented in a
prediction method.37

The method adopted an index-invariant distance matrix
providing a data-driven insight into the reaction pathways. The
data-driven identification aims to identify interpretable path-
ways in a system composed of indistinguishable molecules.
Applications to more inhomogeneous systems would be
straightforward, especially if only a portion of the system
atoms are of interest. The latter case would combine human
intuition with a data-driven approach, which would, possibly,
provide a better insight into the reaction if, and only if, the
introduced bias is correct. Our method can be further
expanded by considering a higher number of descriptors
alongside the distance matrix. Velocities, angles between
molecules, coarse-graining procedures, or a mix of user-defined
functions59 could be fed into the DT and subsequent analysis.
To demonstrate the capabilities of the developed method, a

mechanistic description of the proton transfer reaction in small
aqueous clusters of FA has been provided. The reaction has
been simulated via rare event simulation (replica exchange
transition interface sampling31) and its rate quantified for two
water clusters, one composed of four and one of six water
molecules surrounding an FA molecule.
The reaction rate we computed is strongly influenced by the

number of water molecules present. Mechanistically, the four-
and six-water proton transfer reaction requires the water
cluster to be sufficiently compact. The four-water-molecule
system requires a certain orientation of the FA molecules and
of the water molecules in its proximity. For the six-water-
molecule case, a certain orientation of the outer water
molecules appears to be more significant in describing the
reaction path. Furthermore, the four-water cluster system
indicated only one predominant pathway for the reaction to
occur, while in the six-water-molecule cluster, several pathways
have been identified, contributing to the higher reaction rate in
this system.
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Making the data atom-index invariant

In a condensed system, the atoms might swap order during a transition. An index invariant

data representation is, therefore, not clearly advantageous since it requires extra processing

and it cannot use a symmetric representation. Yet, as it constitutes the most general case, it

has been considered in addition to the index-variant representation we use in the main text.

As shown in Figure 1, by choosing a ”anchor” atom, which may be different for each

frame, the data representation can become invariant with respect to translation, rotation, and

changes in the atomic indices. For the FA in the water system the carbon atom is the trivial

identifiable anchor. The rest of the atoms are sorted based on the atom type and the distance

1



from the anchor, as illustrated in Figure 2. The resulting data representation is atom-index

invariant. Due to the statistical fluctuations in the atom positions, this procedure requires

more data to achieve convergence of a ML algorithm, and imposes further requirements on

the interpretation of the resulting random tree.

In our simulation, atoms of different indices do not swap places during transitions (They

do, eventually, in the stable states). Therefore, we also reproduced our analysis with the

relatively simple distance matrix.

Figure 2 reports a simplified algorithm to generate the distance matrix, while Figure 4

presents the algorithm to generate the index invariant distance matrix.

C0 H0 O0 O1 H1
C0 0.0000 0.1109 0.1250 0.1321 0.2010
H0 0.1109 0.0000 0.2047 0.2013 0.2954
O0 0.1250 0.2047 0.0000 0.2311 0.2524
O1 0.1321 0.2013 0.2311 0.0000 0.1073
H1 0.2010 0.2954 0.2524 0.1073 0.0000

C0 H0 O0 O1 H1
C0 0.0000 0.2010 0.1250 0.1321 0.1109
H0 0.2010 0.0000 0.2524 0.1073 0.2954
O0 0.1250 0.2524 0.0000 0.2311 0.2047
O1 0.1321 0.1073 0.2311 0.0000 0.2013
H1 0.1109 0.2954 0.2047 0.2013 0.0000

Figure 1: Two distance matrices (left) for an equivalent structure of formic acid (right). The
difference between the two matrices is that H0 and H1 swapped places, or indices. This
leads to a structure that has identical physics, but not an identical data representation. The
distance matrix is therefore not a good representation to train our algorithms on during
simulations where atom indices might change over time.

Back mapping the symmetric distance matrix to xyz

We adopted the procedure first suggested by Young and Householder 1 . If our distance matrix

for a single frame is Dij, we can construct the following mapping Mij =
D2

1j+D2
i1−D2

ij

2
, where

2



C0 H0 H1 O0 O1
C0 0.0000 0.1109 0.2010 0.1250 0.1321
H0 0.1109 0.0000 0.2954 0.2013 0.2047
H1 0.2010 0.0000 0.2954 0.1073 0.2524
O0 0.1250 0.2047 0.2524 0.0000 0.2311
O1 0.1321 0.1073 0.2013 0.0000 0.2311

Figure 2: The index invariant distance matrix. It is created by first choosing an anchor
point, in the present case, C0. Then the rows are grouped per element and sorted based on
the distance from the anchor atom for each element. This representation is translationally,
rotationally and atom-index invariant, making it a suitable general data representation to
train ML algorithms on, including systems where atom indices might change.

Algorithm 2 Algorithm to group the symmetric distance matrix based on elements. Inputs:
’mat’=a symmetric distance matrix, ’Elements’=a list of all elements in the system. Outputs:
’out’=a symmetric distance matrix where all atoms of the same element are grouped together.

1: mat = distance matrix
2: out = output matrix
3: indices = List()
4: for element in Elements do � group indices per element
5: for atom in atoms do
6: if atom.element=element then
7: indices.append(atom.index)
8: end if
9: end for
10: end for
11: row out, col out= 0, 0
12: for row i in indices do � Group elements together
13: for col i in indices do
14: out[row out][col out] = mat[row i][col i]
15: col out + = 1
16: end for
17: row out + = 1
18: end for

3



Algorithm 4 Algorithm to make the element grouped distance matrix atom-index invari-
ant. Inputs: ’mat’=a symmetric distance matrix that has been grouped per element, ’Ele-
ments’=a list of all elements in the system, ’anchor idx’=the row index which is the basis for
the order of the rows in the output matrix. Outputs: ’out’=a sorted index-invariant distance
matrix.

1: mat = grouped distance matrix � Assume mat is grouped per element
2: out = output matrix
3: elem length = List(count(atoms of element e) for e ∈ Elements)
4: out order = List()
5: anchor idx = 0 � Set anchor atom to row 0
6: anchor row = mat[anchor idx]
7: i = 0
8: for j in elem length do � Figure out the output row-order.
9: out order.append(argsort(anchor row[i:i+j]))
10: i + = j
11: end for
12: row out = 0
13: for row idx in out order do
14: row = mat[row idx]
15: i = 0
16: for j in elem length do
17: out[row out][i:i+j] = sort(row[i:i+j])
18: i + = j
19: end for
20: row out + = 1
21: end for

4



D1j is the j-th element of the first row of the distance matrix, and Di1 is the i-th element of

the first column.

The eigenvalue decomposition on M : M = USUT allows the calculation of the matrix

X = U
√
S. Only N of the eigenvalues (S) are non-zero for a system that can be embedded

in N dimensional space, and distances are generated from a 3-dimensional space. Thus, the

first 3 columns of X corresponds to the x, y, and z coordinates for each row or column in

the original distance matrix, up to a translation or rotation.

Analysis based on the index variant distance-matrix

As the result obtained by the index invariant data matrix has been included in the main

paper, only the results obtained from the index variant case have been included here.

Formic Acid with 4 water molecules

The frames identified by the selection windows have been transformed into the distance

matrix representation (translational and rotational invariant) and fed to the machine learning

algorithm to generate the forthcoming analysis. The only hyper-parameters are the location

and size of the selection window.

Our analysis generated the decision tree reported in Figure 3A. To simplify the visual-

ization of the main splits that lead to the highest reactive trajectories of the decision tree,

in Figure 3B we report an xyz representation. The atoms in blue, yellow, and green are

involved in the first, second, and third split, respectively.

The deprotonation reaction of FA appears to primarily require the distance between O0

and O3 to be smaller than 2.56 Å. In other words, the first water molecule that accepts the

proton from FA has to be sufficiently close. When this condition occurs, the probability to

obtain a reactive path rises from 5% to 12%.

From Figure 4 (bottom) the probability that this is the most important feature is 3%.
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A

O0-O3 ≤ 0.256
samples = 7095

value = [6753, 342]
class = unreactive

O4-C0 ≤ 0.42
samples = 2338

value = [2046, 292]
class = unreactive

True

H9-O0 ≤ 0.332
samples = 4757

value = [4707, 50]
class = unreactive

False

O5-H0 ≤ 0.517
samples = 553

value = [391, 162]
class = unreactive

H7-O3 ≤ 0.16
samples = 1785

value = [1655, 130]
class = unreactive

samples = 203
value = [85, 118]
class = reactive

samples = 350
value = [306, 44]
class = unreactive

samples = 129
value = [86, 43]

class = unreactive

samples = 1656
value = [1569, 87]
class = unreactive

O5-H3 ≤ 0.15
samples = 836

value = [794, 42]
class = unreactive

C0-H7 ≤ 0.462
samples = 3921

value = [3913, 8]
class = unreactive

samples = 44
value = [25, 19]

class = unreactive

samples = 792
value = [769, 23]
class = unreactive

samples = 3868
value = [3865, 3]
class = unreactive

samples = 53
value = [48, 5]

class = unreactive

B

Figure 3: Decision tree for the system with 4 water molecules around the formic acid molecule
based on the index-invariant distance matrix. Three splits divide the input, each square
reports 1) the question to split the data, 2) the number of samples going into the node, 3)
the number of [unreactive, reactive] samples going into the node and 4) the majority class of
the node. At each split, the True branch is on the left, False on the right. The color indicates
the ratio between unreactive (brown) and reactive (blue) samples included in a node. Wider
arrows have been used to link the decision three split with the atoms involved. In panel B,
a 3D representation of the system is provided. The atoms highlighted in blue, yellow, and
green correspond to the atoms involved in the first, second, and third split of the decision
three, respectively. In red are the oxygen and in white the hydrogen atoms not indicated by
the decision tree reported in the panel B.
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Figure 4: The importance approximations of the first split question from a random forest
with depth of one for the four water case system. The bars represent the feature importance
of a Random Forest, with the error bar calculated with a block-error average based on the
generated trajectories.
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Another feature has a probability of 16%. This is the distance between O0 and H5, the

hydrogen that is connected to O3. Therefore, this condition is actually equivalent.

The next split, along the branch that leads to the highest reactive probability, is the

requirement that the distance between C0 and O4 is smaller than 4.20 Å. Qualitatively, this

means a water molecule has to be closer than two hydrogen bonds away from FA. If this

second requirement is also satisfied, the probability of a reactive path is of 30%.

Still along the branch towards the highest reactive probability, the distance between O5

and H0 being smaller than 5.17 Å represents the last split here considered. This indicates that

a second water molecule has to be within two hydrogen bonds away. When this additional

requirement is satisfied, the probability of a reactive path reaches 58%.

Formic Acid with 6 water molecules

Figure 5 reports the analysis results obtained from the simulation of the proton transfer

reaction for formic acid in a 6 water molecule cluster. In the figure, the decision tree and

the xyz structure which highlights the most probable splits which determine a reactive path

are included.

In this system the deprotonation reaction of FA appears to primarily require the distance

between O7 and O2 to be smaller than 2.54 Å. The first water molecule that accepts the

proton from FA has to be sufficiently close. When this condition occurs, the probability to

obtain a reactive path raises from 19% to 44%.

From Figure 6 (bottom) the probability that this is the most important feature is 3%.

One other equivalent feature has a probability of 16%, which involves the distance between

O0 and H5, the hydrogen that is connected to O3.

The next split, still along the branch that led to the highest reactive stance, is the distance

between O7 and O3 being smaller than 3.84 Å. If a second water molecule is sufficiently close

to the FA oxygen, the probability of a reactive path is 60%.

Still along the branch towards the highest reactive stance, the distance between the
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A

O7-O2 ≤ 0.254
samples = 7796

value = [6317, 1479]
class = unreactive

O7-O3 ≤ 0.384
samples = 1421

value = [797, 624]
class = unreactive

True

O1-O4 ≤ 0.41
samples = 6375

value = [5520, 855]
class = unreactive

False

H8-H1 ≤ 0.435
samples = 909

value = [365, 544]
class = reactive

O6-H4 ≤ 0.508
samples = 512

value = [432, 80]
class = unreactive

samples = 450
value = [71, 379]
class = reactive

samples = 459
value = [294, 165]
class = unreactive

samples = 132
value = [76, 56]

class = unreactive

samples = 380
value = [356, 24]
class = unreactive

H11-H4 ≤ 0.638
samples = 2315

value = [1749, 566]
class = unreactive

O6-O7 ≤ 0.274
samples = 4060

value = [3771, 289]
class = unreactive

samples = 1901
value = [1351, 550]
class = unreactive

samples = 414
value = [398, 16]
class = unreactive

samples = 919
value = [747, 172]
class = unreactive

samples = 3141
value = [3024, 117]
class = unreactive

B

Figure 5: Decision tree for the system with 6 water molecules around the formic acid
molecule. Three splits divide the input, each square reports 1) the question which splits
the data, 2) the number of samples going into the node, 3) the number of [unreactive, re-
active] samples going into the node and 4) the majority class of the node. At each split,
the True branch is on the left, False on the right. The color indicates the ratio between
unreactive (brown) and reactive (blue) samples included in a node. Wider arrows have been
used to link the decision three split with the atoms involved. In panel B, a 3D representation
of the system is provided. The atoms highlighted in blue, yellow, and green, correspond to
the atoms involved in the first, second, and third split of the decision three, respectively.
In red are the oxygen and in white the hydrogen atoms not indicated by the decision tree
reported in the panel B.
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Figure 6: The importance approximations of the first split question from a random forest
with depth of one for the four water systems. The bars represent the feature importance
of a random forest, with the error bar calculated with a block-error average based on the
generated trajectories.
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hydrogen H8 and H1 being smaller than 4.35 Å represents the last split here considered. This

feature can be interpreted as a structural requirement for the water complex to be reactive,

and may also implicitly involve some requirement involving atomic orientations/angles. In

such conditions, the probability for the path to be reactive is 84%.

The result reported by the decision trees generated by the index variant and index in-

variant representations are physically consistent but different in atom selection. That is,

different atom pairs for the different representations are identified as most relevant. Yet,

the water structure and formic acid orientation are equivalent. It should also be noted that

the index variant representation results in a numerically more stable generation of random

forests, as the importance values for the symmetric features are summed together. For the

distribution of importance of the random forest reported in Figures 4 and 6, the first splits

are thus identified with a higher probability.
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Covalent inhibition has become more accepted in the past two decades, as il-
lustrated by the clinical approval of several irreversible inhibitors designed to
covalently modify their target. Elucidation of the structure-activity relationship
and potency of such inhibitors requires a detailed kinetic evaluation. Here, we
elucidate the relationship between the experimental read-out and the underlying
inhibitor binding kinetics. Interactive kinetic simulation scripts are employed
to highlight the effects of in vitro enzyme activity assay conditions and inhibitor
binding mode, thereby showcasing which assumptions and corrections are cru-
cial. Four stepwise protocols to assess the biochemical potency of (ir)reversible
covalent enzyme inhibitors targeting a nucleophilic active site residue are in-
cluded, with accompanying data analysis tailored to the covalent bindingmode.
Together, this will serve as a guide to make an educated decision regarding the
most suitable method to assess covalent inhibition potency. © 2022 The Au-
thors. Current Protocols published by Wiley Periodicals LLC.
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INTRODUCTION

Traditionally, drug design efforts were focused on small molecules that interact with their
biological target through noncovalent interactions in a reversible manner. In contrast, co-
valent inhibitors have the ability to form a much stronger covalent bond with a nucle-
ophilic amino acid residue at the target protein, which is positioned in close proximity to
a reactive (electrophilic) moiety in the inhibitor (Ward & Grimster, 2021). Risks associ-
ated with covalent reactions that can take place not only with the desired target but also
with off-target proteins, often undiscovered until late-stage clinical development, resulted
in drug discovery programs moving away from candidates bearing intrinsically reactive
electrophilic moieties (Bauer, 2015; Singh, Petter, Baillie, &Whitty, 2011). Nonetheless,
the clinical success of covalent drugs that were being used in the clinic long before their
mechanism of action was elucidated, which include aspirin and penicillin, along with the
more recent clinical approval and success of targeted covalent inhibitors (TCIs) bearing
moderately reactive electrophilic warheads, ultimately triggered the current resurgence
of covalent drugs (Abdeldayem, Raouf, Constantinescu, Moriggl, & Gunning, 2020; De
Cesco, Kurian, Dufresne, Mittermaier, & Moitessier, 2017; Singh et al., 2011).

The covalent inhibitor development process typically involves identification of nonco-
valent inhibitors by high-throughput screening (HTS), followed by modification with
a moderately reactive electrophilic warhead to improve inhibition potency and selec-
tivity (Engel et al., 2015; Zhang, Hatcher, Teng, Gray, & Kostic, 2019). Alternatively,
an electrophilic fragment that forms a covalent bond with the desired enzyme target
is first identified in covalent fragment–based drug discovery (Dalton & Campos, 2020;
Kathman& Statsyuk, 2019; Resnick et al., 2019), followed by optimization of the nonco-
valent affinity and positioning of the electrophile. A prerequisite here is that themolecular
target must contain a nucleophilic residue (e.g., cysteine, serine, lysine) to form a covalent
bond with the electrophilic warhead of the inhibitor (Lagoutte, Patouret, & Winssinger,
2017; Ray & Murkin, 2019). Whether covalent adduct formation is reversible or irre-
versible depends on the selected electrophilic warhead (Bradshaw et al., 2015; Gehringer
&Laufer, 2019; Lee&Grossmann, 2012; Shindo&Ojida, 2021). The PK-PD decoupling
is one of the major advantages of irreversible inhibition: an infinite target residence time,
resulting in a prolonged therapeutic effect after the inhibitor has been cleared from circu-
lation (Abdeldayem et al., 2020; Barf & Kaptein, 2012; Gabizon & London, 2020; Kim,
Hwang, Kim, & Park, 2021). Here, restoration of enzyme activity can only be achieved
by de novo protein synthesis. At the same time, if the consequences of continued on-
target inhibition are poorly understood, this same property can provide a safety concern.Mons et al.
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Consequently, inhibitors with a reversible covalent binding mode have become increas-
ingly popular, with (tunable) target residence times ranging from several hours tomultiple
days (Bradshaw et al., 2015; Owen Dafydd et al., 2021; Serafimova et al., 2012).

Although traditional methods to evaluate inhibitor potency, such as determining half-
maximal inhibitory concentration (IC50 values), are sufficient to identify hits in high-
throughput screens, a more detailed kinetic evaluation is required to elucidate the
structure-activity relationship (SAR) of irreversible covalent inhibitors (De Cesco et al.,
2017; Harris et al., 2018; Holdgate, Meek, & Grimley, 2017). There are many extensive
reviews on the history, development, and success of covalent inhibitors (Abdeldayem
et al., 2020; De Cesco et al., 2017; Johnson, Weerapana, & Cravatt, 2010; Lagoutte et al.,
2017), and experimental methods to assess undesired time-dependent inactivation (TDI)
of CYP450 enzymes have been excellently reviewed (Stresser, Mao, Kenny, Jones, &
Grime, 2014), but a comprehensive overview of experimental methods compatible with
the desired covalent binding mode of TCIs targeting nucleophilic active-site residues has
been missing. In the Strategic Planning section, we will introduce our customized set of
interactive kinetic simulation scripts to study the kinetic concepts of different experimen-
tal methods, followed by a general background on (covalent) inhibitor bindingmodes, the
assumptions on experimental enzyme activity assay conditions, and an introduction on
time-dependent inhibitor kinetics. Our findings are discussed in detail in the section Ex-
perimental Methods and Data Analysis, where stepwise protocols are provided for four
experimental methods with data analysis tailored to the different covalent binding modes.
All are accompanied by an online available set of kinetic simulation scripts and trou-
bleshooting guidelines, allowing readers to evaluate their covalent (ir)reversible inhibitor.

STRATEGIC PLANNING

This guide has been composed to aid readers that have identified an (ir)reversible covalent
inhibitor and are contemplating which experimental method to select for the follow-up
SAR analysis. Here, the performance of the enzymatic assay is not expected to be trou-
blesome, but the challenge lies in the design of an assay method that complies with (of-
ten implied but not explicitly mentioned) assumptions on experimental conditions, and
recognition of artifacts/errors in the interpretation of experimental outcome. As such, we
assume that a functioning enzymatic assay with a robust read-out is already in place, and
we will focus on the connection between (algebraic) data analysis methods and the re-
spective assumptions on experimental conditions. It is important to note that this work is
tailored to enzyme activity assays with a (fluorescence) read-out upon substrate process-
ing to form a detectable product, and as such may not be compatible with other assay
formats such as ligand binding competition assays or direct detection of the covalent
enzyme-inhibitor adduct.

In the section ‘Kinetic Simulations’, we introduce the interactive kinetic simulation
scripts used to illustrate the methods and kinetic concepts in this work. All figures are
composed with in silico data generated in kinetic simulations, and can be recreated
with the information in this section. The section ‘Inhibitor Binding Modes’ provides an
overview of the (covalent) inhibition binding modes compatible with the methods in this
work. It is paramount to select the appropriate algebraic model for data analysis, as the
inhibitor binding mode changes the obtainable parameters as well as the compatibility
with experimental methods. Covalent EI* adduct formation should be validated by direct
detection with MS, X-ray crystallography or NMR (Harris et al., 2018; Liclican et al.,
2020; Mons et al., 2019; Mons et al., 2021). Reversibility of covalent adduct formation
is commonly assessed in rapid/jump dilution or washout assays with detection of re-
gained enzymatic activity after dilution/washout (Copeland, Basavapathruni, Moyer, &
Scott, 2011),MS detection of unbound inhibitor upon denaturation or digestion-mediated Mons et al.
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dissociation (Bradshaw et al., 2015), or competitive binding of a (selective) irreversible
(activity-based) probe (Liclican et al., 2020; Smith et al., 2017). It is important to note
that noncovalent binding can also irreversibly inhibit enzyme activity by aggregation or
precipitation (Auld, Inglese, & Dahlin, 2017).

Next, we investigated which assumptions on experimental enzyme activity assay con-
ditions are embedded in the algebraic models used for kinetic analysis. Our findings
are outlined in the section ‘Critical Parameters: Assumptions on Experimental Assay
Conditions’, highlighting which assumptions are crucial and what the consequences
are when these assumptions are violated. Finally, we provide a kinetic background on
time-dependent (covalent) inhibition in the section ‘Time-dependent Inhibitor Potency’.
Readers new to the field of enzyme inhibition kinetics are strongly encouraged to
familiarize themselves with the work of Copeland for a general introduction into enzyme
kinetics (Copeland, 2000, 2013e) before studying advanced kinetic concepts associated
with (ir)reversible covalent enzyme inhibition and their relation to experimental enzyme
activity read-out.

Kinetic Simulations

Keeping assay requirements in mind, it may seem a daunting task to design, perform,
and analyze proper inhibition experiments. In general, practice is the best teacher to get
a feeling for these assays and the expected output. Kinetic simulations are essential to
understand the importance of reaction conditions and support assay design optimization
(Potratz, 2018). In such simulations, one can freely change the parameters to visualize
the effect on the output and validate that kinetic parameters found after data analysis cor-
relate with the input values. This design precludes assay artifacts and human error, and
also outputs the underlying concentrations of the different reaction species (e.g., unbound
enzyme, enzyme-substrate complex), illustrating the relevance of the experimental assay
conditions. Finally, kinetic simulations can validate if fitted experimental parameters cor-
relate with the experimental read-out (Pollard & De La Cruz, 2013) and aid the rational
design of follow-up experiments by predicting the outcome.

Here, we use a set of customized kinetic simulation scripts based on numerical integration
of the differential equations (Walkup et al., 2015) to simulate the time-dependent prod-
uct concentration as well as the underlying concentrations of various enzyme species
(e.g., unbound, bound to inhibitor or substrate). Some concentrations are essentially
constant under specific assay conditions, and treating these parameters as constants
rather than variables reduces the computing/simulation time. An overview of our ki-
netic scripts and the assumptions on experimental assay conditions can be found in
Table 1. Since understanding kinetics can be greatly facilitated by the ability to ad-
just reaction conditions and changing parameters without using expensive reagents, we
have made interactive versions of these simulation scripts available free of charge at
https:// tinyurl.com/kineticsimulations. We encourage our readers to perform simulations
with their own kinetic parameters to visualize how the underlying concentrations of en-
zyme species affect the detected read-out, and to get a feeling for realistic values and
assay conditions. We selected one model inhibitor for each binding mode to generate the
figures that exemplify the methods described (the kinetic parameters of each model in-
hibitor can be found in Table S1 in Supporting Information). All figures in this work can
be recreated with the information in Table 1 and Table S1.

Our kinetic simulation scripts are tailored to competitive inhibition, where an intrin-
sically reactive inhibitor bearing an electrophilic warhead covalently targets a nucle-
ophilic amino acid residue at the enzymatic substrate binding site, thus blocking sub-
strate access (Copeland, 2013e; Holdgate et al., 2017). Other covalent binding modes
[e.g., prodrugs (Strelow, 2017), covalent allosteric inhibitors (Lu & Zhang, 2017), and
multi-step mechanism-based inhibitors (Tuley & Fast, 2018; Yang, Jamei, Yeo, Tucker,Mons et al.
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Table 1 Kinetic Simulation Scripts Used in this Work
a

Reaction dynamics Script Simulation constants
Experimental
restrictions

KinGen Unbound inhibitor
Unbound substrate

Volume

[I]0 = [I]t� = [I]t
[S]0 = [S]t

Vt� = Vt

[I]0 > 10[E]0
[S]0 > 10[E]0
[P] < 0.1[S]0
Vsub << Vt�

KinSubDpl Unbound inhibitor
Volume

[I]0 = [I]t� = [I]t
Vt� = Vt

[I]0 > 10[E]0
Vsub << Vt�

KinVol Unbound inhibitor

Unbound substrate

[I]0 = [I]t�
= (1+ (Vsub/Vt� ))×[I]t

[S]0 = [S]t

[I]0 > 10[E]0

[S]0 > 10[E]0
[P] < 0.1[S]0

KinInhDpl Volume Vt� = Vt Vsub << Vt�

KinDeg
b

Unbound inhibitor
Unbound substrate

Volume

[I]0 = [I]t� = [I]t
[S]0 = [S]t

Vt� = Vt

[I]0 > 10[E]0
[S]0 > 10[E]0
[P] < 0.1[S]0
Vsub << Vt�

KinVolDeg
b

Unbound inhibitor

Unbound substrate

[I]0 = [I]t�
= (1+ (Vsub/Vt� ))×[I]t

[S]0 = [S]t

[I]0 > 10[E]0

[S]0 > 10[E]0
[P] < 0.1[S]0

[I]0 = unbound inhibitor concentration at onset of inhibition, before (optional) enzyme binding. [I]t� = unbound inhibitor concentration during prein-
cubation, after (optional) enzyme binding. [I]t = unbound inhibitor concentration during incubation, after (optional) enzyme binding. [S]0 = unbound
substrate concentration at onset of product formation, before enzyme binding. [S]t = unbound substrate concentration during incubation, after (optional)
enzyme binding and product formation. Vt� = reaction volume during preincubation. Vsub = volume containing substrate. Vt = reaction volume during
incubation (Vt = Vsub + Vt� ).a
Available at https:// tinyurl.com/kineticsimulations.

b
First-order spontaneous enzyme degradation/denaturation.

& Rostami-Hodjegan, 2005)] are outside the scope of this work, although the described
experimental protocols can be useful in specific cases. For further instructions and de-
tailed information on restrictions, we refer to the webpage itself.

At the start of the simulations, we define the (pre)incubation time. The preincubation
time is the elapsed time since the onset of enzyme inhibition by mixing enzyme and
inhibitor, but before the onset of product formation by adding substrate. The incubation
time is the elapsed time since onset of product formation: after substrate addition. In
this work, we will distinguish between incubation and preincubation by using different
symbols for preincubation t� (enzyme and inhibitor) and incubation t (enzyme, substrate
and inhibitor) in all figures and equations to avoid confusion.

Inhibitor Binding Modes

Reversible noncovalent inhibitors inhibit enzymatic activity by formation of noncova-
lent EI complex in a single reaction step (Fig. 1A). When the initial unbound inhibitor
concentration is equal to inhibition constant Ki, the concentration of unbound enzyme E
will be equal to the concentration of inhibitor-bound enzyme complex EI after steady-
state equilibrium has been reached. For traditional fast-binding reversible inhibitors this
equilibrium will be reached almost instantly, as association rate constant k3 and disso-
ciation rate constant k4 are fast. In this work, the term ‘reaction completion’ relates to
the endpoint of enzyme-inhibitor binding, which refers to reaching an equilibrium for Mons et al.
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Figure 1 Schematic overview of inhibitor binding modes (Tuley & Fast, 2018). E = unbound
enzyme. I= unbound inhibitor.EI= noncovalent enzyme-inhibitor complex.EI*= covalent enzyme-
inhibitor complex. An overview of kinetic constants can be found in Table S2 (see Supporting Infor-
mation). Details on equilibrium constants are available in the Supporting Information. (A) Classic
one-step reversible inhibition. Inhibitor potency ranking based on inhibition constant Ki (M) or target
residence time τ (s). (B) Two-step reversible covalent inhibition. Inhibitor potency ranking based on
steady-state inhibition constant Ki* (M) for total E + I <-> EI + EI* equilibrium or target residence
time τ (s). (C) Two-step irreversible covalent inhibition (affinity label model). Inhibitor potency rank-
ing based on inactivation efficiency: maximum rate of covalent adduct formation over inactivation
constant kinact/KI (M−1s−1). (D) One-step irreversible covalent inhibition (residue-specific reagent
model). Inhibitor potency ranking based on inactivation efficiency:kchem (M−1s−1)= kobs/[I] (M−1s−1).

reversible inhibitors (Fig. 1A and 1B) or reaching full inactivation for irreversible in-
hibitors (Fig. 1C and 1D). Contrary to classic fast-binding inhibitors, time-dependent or
slow-binding inhibition is observed when the steady-state equilibrium or irreversible in-
activation is reached relatively slowly on the assay timescale (Copeland, 2013, 2013b,
d). Typically, this is observed for inhibitors with a covalent binding mode (Fig. 1B-D),
as formation of a covalent adduct is not an instantaneous process.

Reversible covalent adduct formation (Fig. 1B) is a two-step process consisting of (rapid)
initial association to form noncovalent EI complex (rapid equilibrium approximation,
discussed in more detail in the section ‘Critical Parameters: Assumptions on Experimen-
tal Assay Conditions’) preceding covalent EI* adduct formation. Covalent EI* adduct
is at equilibrium with the noncovalent EI complex, as covalent adduct formation is
reversible (k6 > 0), with inhibition constant Ki reflecting the initial noncovalent E +
I <-> EI equilibrium and steady-state inhibition constant Ki* reflecting the steady-state
(overall) E + I <-> EI + EI* equilibrium. Development of reversible covalent inhibitors
typically involves optimization of overall affinity (reflected in low Ki* values), prefer-
ably by slowing dissociation rates (Fig. 1B). A slow off-rate (koff) is favorable, as this is
reciprocal with the drug-target residence time τ (τ = 1/koff), and a longer residence time
has been linked to superior therapeutic potency (Copeland, 2010; Copeland, Pompliano,
& Meek, 2006). An overview of relevant kinetic parameters can be found in Table S2
(see Supporting Information).

Inhibition is considered irreversible when its residence time exceeds the normal lifes-
pan of the target enzyme (Holdgate et al., 2017). Dissociation from covalent EI*
adduct is negligible, resulting in full enzyme engagement when reaction completion
is reached for irreversible covalent inhibitors (Fig. 1C and 1D). The irreversible bind-
ing mode changes the obtainable kinetic parameters to rank inhibitor potency, as theMons et al.
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biochemical IC50 may vary depending on the (pre)incubation time (Holdgate et al., 2017;
Singh et al., 2011). The potency of two-step irreversible inhibitors that engage in an ini-
tial noncovalent enzyme-inhibitor complex EI prior to formation of covalent adduct EI* is
driven by noncovalent affinity reflected in inactivation constant KI along with the max-
imum rate of inactivation kinact (Fig. 1C). Rate constant kinact/KI is generally accepted
as a more suitable measure of two-step irreversible inhibitor potency (Holdgate et al.,
2017; Schwartz et al., 2014; Singh et al., 2011; Strelow, 2017), in an analogous fashion
to kcat/KM reflecting the efficiency of enzymatic substrate conversion (detailed compar-
ison can be found in Table S3 in Supporting Information). The binding mode becomes
one-step when noncovalent equilibrium is non-existent, for example for highly reactive
thiol-alkylating reagents (McWhirter, 2021; Strelow, 2017), with the parameter kchem or
kobs/[I] reflecting potency/efficiency (Fig. 1D).

Drug development of irreversible covalent inhibitors is typically geared towards simul-
taneous improvement of the binding affinity (reflected in a lower KI value) and faster
covalent bond formation (reflected in a higher kinact value) to generate irreversible cova-
lent inhibitors with a high kinact/KI value for the desired enzyme target (Mah, Thomas,
& Shafer, 2014; Schwartz et al., 2014), while minimizing the intrinsic reactivity with
undesired enzymes such as GSH (Guan, Williams, Pan, & Liu, 2021; Lonsdale et al.,
2017; Martin, MacKenzie, Fletcher, & Gilbert, 2019). Typical reported kinact/KI values of
irreversible inhibitors range from 105-107 M−1s−1 for kinase inhibitors (Schwartz et al.,
2014; Telliez et al., 2016; Zhai, Ward, Doig, & Argyrou, 2020), 101-105 M−1s−1 for pro-
tease inhibitors (Meara &Rich, 1995;Mons et al., 2019; Rocha-Pereira et al., 2014), 102-
104 M−1s−1 for other target classes (Fell et al., 2020; Hansen et al., 2018; Lanman et al.,
2020), to 10−2-102 M−1s−1 for covalent fragments (Johansson et al., 2019; Kathman, Xu,
& Statsyuk, 2014). Ranges of clinically relevant kinact/KI values are highly dependent on
the nucleophilicity of the targeted amino acid (cysteine typically being more reactive
than serine) and concentration of naturally present competitors (e.g., ATP-competitive
inhibitors need to overcome competition by ATP at physiological concentrations far ex-
ceeding the KM,ATP).

Critical Parameters: Assumptions on Experimental Assay Conditions

Experimental conditions should meet certain criteria in order to use algebraic fitting
methods. In this paragraph, we focus on the assumptions (Michaelis–Menten Enzyme Ki-
netics, Enzyme Stability, Constant Uninhibited Product Formation Velocity, Rapid Equi-
librium Approximation, Pseudo First-order Reaction Kinetics without Inhibitor Deple-
tion) on the experimental conditions that are embedded in algebraic equations to analyze
time-dependent (covalent) inhibition. Generally, these assumptions involve simplifying
the enzyme-inhibitor binding reaction to a single rate-determining step along with fix-
ing inhibitor/substrate concentrations to a constant value. There are two distinct types
of algebraic analysis: linear regression (fitting straight curves, compatible with com-
monly available software such as Excel) and nonlinear regression (fitting exponential
curves, requiring sophisticated data fitting software). Linear regression was the predom-
inant method to analyze kinetic data, but has now been surpassed by the more accurate
nonlinear regression (Perrin, 2017). For our analyses, we use least-squares nonlinear re-
gression with GraphPad Prism (RRID:SCR_002798), but other software packages are
available too (Rufer, 2021). Please consult the detailed (online) guide on how to imple-
ment user-defined equations for nonlinear regression in GraphPad Prism (Motulsky &
Christopoulos, 2003; also see Internet Resources section at end of article).

To use algebraic fitting, the experiment should meet all the required conditions outlined
below. More complex systems (such as bisubstrate assay or other binding modes like
allostery) violate one or more of these and require a different method of fitting. For such
systems, numerical integration with dedicated software packages [e.g., KinTek (Johnson, Mons et al.
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2009), DynaFit (Kuzmič, 2009)] is recommended. These packages are very powerful,
and can fit anything with good error even when the model does not reflect the biological
situation (Mayer, Khairy, & Howard, 2010). For these complex systems, it is crucial
to ensure that the initial values are reasonable and the amount of (orthogonal) data is
sufficient for the amount of parameters that are fitted. The first step, however, whether
working with complex systems or reactions with a single rate-determining step, should
always be optimization of the experimental conditions.

Michaelis–Menten enzyme kinetics

All experimental methods in this manuscript are based on enzyme activity assays with
multiple turnovers per enzyme, with enzyme release after product formation. We assume
that the uninhibited enzymatic substrate processing reaction (E + S <-> ES → E + P)
complies with Michaelis–Menten enzyme kinetics (Pollard & De La Cruz, 2013; Rufer,
2021). The concentration of unbound substrate has to be constant ([S]t = [S]0) and not
depleted by engagement in a (non)covalent complex ES ([ES]t < 0.1[S]0) or conversion
into product. Therefore, substrate is added in a large excess over the enzyme ([S]0 >

10[E]0), and the uninhibited velocity of product formation (vctrl) is calculated over the
linear part corresponding to less than 10% substrate conversion ([P]t < 0.1[S]0) (Wu,
Yuan, & Hodge, 2003). The signal corresponding to 10% substrate conversion can be
estimated from a product calibration/titration curve (Dharadhar et al., 2019; Janssen et al.,
2019) to avoid substrate depletion. The effect of substrate depletion can be investigated
with the kinetic simulation script KinSubDpl. More complex enzymatic (bisubstrate)
assays (Copeland, 2000) are outside of the scope of this work. However, the methods
described herein could still be applicable under pseudo-single substrate (Hit-and-Run)
conditions.

Enzyme stability

Unless otherwise noted, time-dependent decrease of enzyme activity is attributed solely
to the presence of a (slow-binding) inhibitor. It is thus assumed that the enzyme ac-
tivity is constant throughout the whole experiment, although this does not necessarily
reflect the actual experimental situation. Recombinant enzymes do not have an eternal
life; thus, time-dependent loss of enzyme activity will inevitably occur due to sponta-
neous protein denaturation, degradation, or unfolding (Miyawaki, Kanazawa,Maruyama,
& Dozen, 2017). The Selwyn test is a relatively simple test to see if time-dependence
of uninhibited enzyme activity is due to (spontaneous) enzyme inactivation (Selwyn,
1965). Spontaneous enzyme degradation/denaturation is similar to radioactive decay in a
sense that inactivation is a first-order reaction (degradation rate = kdegE×[E]). Enzyme
stability might be promoted by optimization of the assay buffer, and is less significant
at shorter (pre)incubation times, but degradation cannot completely be avoided. There-
fore, we included data analysis methods to account for spontaneous first-order enzyme
degradation/denaturation. Cannibalistic proteases (Ferrall-Fairbanks, Kieslich, & Platt,
2020) follow a second-order (auto)proteolysis rate (degradation rate = kdegE×[E]2) and
are as such outside of the scope of these methods. In simulations to illustrate the methods
described herein (with kinetic simulation scripts KinDeg and KinVolDeg), we assumed
that first-order decay is uniform for all enzyme species (kdegE = kdegES = kdegEI = kdegEI*)
and combined the individual degradation rates into the enzyme degradation rate constant
kdeg.

Constant uninhibited product formation velocity

The uninhibited controls should be linear for the whole measurement when analyz-
ing time-dependent inhibition. There are various factors contributing to a slight time-
dependent decrease of product formation velocity in the absence of inhibitor (Copeland,
2000), thus violating this assumption. An overview of common troubleshooting optionsMons et al.
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is listed in Table 3 (located in the troubleshooting section at the end of this document).
As discussed above, substrate depletion ([P] > 0.1[S]0) negatively influences the lin-
earity over time, as does product inhibition ([P] > 0.1KD,P). Fortunately, this can be
avoided by decreasing the enzyme concentration and/or shortening the incubation time to
reduce substrate turnover, thereby lowering the absolute and relative product concentra-
tion. Other factors, such as quenching of the fluorescent product signal by photobleaching
(Johnson, 2010), can make the results look nonlinear. This effect can be reduced by in-
creasing the measurement interval and/or reducing the number of excitation cycles. Fi-
nally, optimization of assay conditions can minimize the effect of spontaneous loss of
enzyme activity (kdeg > 0), but cannot be resolved completely. In this work, we will refer
to the overall rate of nonlinearity in the uninhibited control (kobs of [I]= 0) with the sym-
bol kctrl, regardless of the underlying mechanism that causes the time-dependent decrease
of product formation velocity.

Rapid equilibrium approximation

Algebraic analysis of (covalent) inhibition is based on the assumption that time-
dependent inhibition is driven by a single rate-determining step. For two-step covalent
inhibitors (Fig. 1B and 1C), this means that the noncovalent E + I <-> EI equilibrium
that precedes covalent EI* adduct formation should be reached almost instantly after the
onset of inhibition. After this rapid equilibrium, a much slower step of covalent adduct
formation follows (kinact << k4). Whether the noncovalent equilibrium indeed is reached
rapidly is an intrinsic inhibitor property, and (kinase) inhibitors with a low-nM non-
covalent potency are likely to violate this assumption: the association rate constant is
diffusion-limited (k3 ≤ 109 M−1s−1), and thus k4 must be relatively slow if Ki ≤ 10-8 M
(Kuzmič, 2020a). Unfortunately, a slow initial, noncovalent step is not easily recognized
from raw kinetic data, resulting in overestimation of the rate of inactivation kinact and
underestimation of the inactivation constant KI with algebraic rather than numerical data
analysis.

The inactivation constant KI approximates inhibition constant Ki (KI ≈ Ki) when cova-
lent bond formation is driven by the rate-determining conversion of noncovalent com-
plex EI into covalent adduct EI* (kinact << k4) (Fig. 1C), analogous to the Briggs–
Haldane treatment of enzyme-substrate kinetics where KM ≈ KS if kcat is rate-limiting
(McWhirter, 2021). Consequently, Ki and KI may have the same value, but they are
not interchangeable, and it is as such recommended to report kinact/KI rather than
kinact/Ki.

Pseudo first-order reaction kinetics without inhibitor depletion

Algebraic analysis of (covalent) inhibition is typically based on the assumption that
the unbound inhibitor concentration is a constant value ([I]t = [I]0) unaffected by en-
zyme binding (Pollard & De La Cruz, 2013). This assumption is only valid when the
inhibitor is present in large excess with respect to the enzyme ([I]0 > 10[E]0) at re-
action initiation. The enzyme occupancy after reaching the noncovalent equilibrium
is driven solely by the excess inhibitor concentration relative to the (apparent) inhi-
bition constant Ki

app: [EI]eq/[E]0 = 1/(1 + (Ki
app/[I])). The effect of inhibitor deple-

tion can be investigated with the kinetic simulation script KinInhDpl. Violation of
this assumption results in an appreciable reduction of the remaining population of
unbound inhibitor upon complexation with enzyme. Consequently, the inhibitor oc-
cupancy at equilibrium no longer reflects the apparent inhibition constant Ki

app be-
cause the equilibrium is now driven by both enzyme and inhibitor concentration (Fig.
2A). Algebraic correction for inhibitor depletion ([I]t < [I]0) to find the equilib-
rium constant Ki is often performed for one-step reversible inhibitors displaying tight-
binding behavior (with low inhibitor concentrations because Ki

app approaches [Etotal]),
by fitting the (steady-state) equilibrium product formation velocity to (variants of) Mons et al.
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Figure 2 Consequences of inhibitor depletion. Simulated with KinInhDpl for 50 nM inhibitor C
with 5 nM enzyme ([I]0 = 10[E]0) or 50 nM enzyme ([I]0 = [E]0). (A) Inhibitor depletion (blue line) re-
sults in lower noncovalent equilibrium occupancy [EI]eq calculated with Morrison’s quadratic equa-
tion (available in Supporting Information) and slower reaction rates resulting in longer incubation
time to reach full inactivation than for excess inhibitor (black line). (B) First-order reaction conditions
with constant half-life t½ when inhibitor is present in excess (left). Second order reaction conditions
with variable half-life t½ and longer overall reaction time when inhibitor is depleted (right).

Morrison’s quadratic equation (Copeland, 2013c; Murphy, 2004) that treat the inhibitor
concentration as a variable rather than a constant value (more details in Supporting Infor-
mation). However, these equations are only compatible with inhibitors with a reversible
bindingmode after equilibrium has been reached, and are thus not suitable for irreversible
inhibition.

Binding of inhibitor to enzyme is, in principle, a second-order reaction: the association
rate depends on the concentration of unbound enzyme aswell as unbound inhibitor, which
both decrease upon formation of association product EI. Towards the end of the reaction,
the reaction rate is significantly slower when less of the unbound components are left.
Algebraic analysis of second-order (ir)reversible association curves is complicated (data
not included, simulated with simulation script KinInhDpl), even for inhibitors with a
one-step binding (Fig. 1); thus, it is strongly advised to analyze second-order reactions of
two-step (ir)reversible inhibitors by numeric integration (Copeland, 2013a). However, as
mentioned above, unbound inhibitor concentrations remain more or less constant during
the reaction if the inhibitor is present in excess at reaction initiation ([I]0 > 10[E]0).
Consequently, the second-order binding reaction of enzyme and inhibitor behaves like
a first-order reaction when the inhibitor is present in excess: pseudo-first order reaction
kinetics (Copeland, 2013a). The time-dependent association reaction for a (pseudo-)first
order reaction has a constant half-life t½, and the progress curves can be fitted to standard
one-phase exponential association equations (Fig. 2B, left), as will be discussed in more
detail in the next section.

Second-order kinetic association reactions require a longer overall time to reach re-
action completion of the enzyme-inhibitor binding reaction (inactivation or equilib-
rium) with a variable half-life t½ (Fig. 2B, right), because the association reaction rate
slows down when the remaining unbound inhibitor concentration decreases. For two-
step (ir)reversible inhibitors, the time-dependent reduction in covalent reaction rate is
a direct consequence of the decreasing noncovalent occupancy upon inhibitor depletion.
The rate-determining step of covalent adduct formation is preceded by noncovalent com-
plex EI formation, and is thus limited by noncovalent occupancy, which decreased over
time.

Time-Dependent Inhibitor Potency

Methods to analyze time-dependent inhibitors are based on the fact that it takes time
to reach completion, and we use this information to obtain kinetic parameters. UnderMons et al.
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pseudo-first-order conditions (Copeland, 2013a) based on a single rate-determining step,
inhibitor binding follows an exponential one-phase association reaction (Pollard &De La
Cruz, 2013) from the rapid initial binding (rapid equilibrium approximation) to (slowly)
reaching a plateau at reaction completion: equilibrium for reversible inhibitors (Fig. 3A,
right) or inactivation for irreversible inhibitors (Fig. 3A, right). The incubation time to
reaction completion is infinite, but after five half-lives (t = 5t½) reaction progress is at
97%, which is generally sufficient to be considered reaction completion (Fig. 3A). Reac-
tion half-life t½ is inversely related to observed reaction rate kobs (Copeland, 2013a): t½
=LN(2)/kobs. kobs is the experimental reaction rate for reaction progress from initial bind-
ing to reaction completion under the specific assay conditions. Inhibitor concentration as
well as competing substrate concentration are major contributors to the observed reac-
tion rate kobs. The experimental kobs value can be obtained by fitting the time-dependent
binding/occupancy curve to exponential one-phase association Equation I (Fig. 3B) from
initial to final enzyme occupancy.

Biochemical inhibitor potency is seldom assessed by direct observation of enzyme com-
plex/adduct. Typically, enzyme inhibition is indirectly assessed in in vitro assays with
a detectable read-out for product formation as a measure of (remaining) enzyme activ-
ity. Consequently, reversible enzyme inhibition may have reached the enzyme-inhibitor
binding equilibrium (reaction completion), but not all enzyme is occupied (unless [I]
>> Ki

app) so the remaining fraction of unbound enzyme continues to convert substrate
into product (Fig. 3C, left). The reaction is no longer accurately reflected by Equation I
(Fig. 3B), as product concentration at reaction initiation does not reflect the initial bind-
ing equilibrium, and product concentration does not reach a plateau after reaching the
noncovalent equilibrium (reaction completion) for reversible inhibitors. Therefore, time-
dependent product formation is fitted to exponential one-phase association Equation II
(Fig. 3D) to obtain observed reaction rate kobs from initial to final product formation ve-
locity. For irreversible inhibitors, the initial velocity vi reflects the (remaining) enzyme
activity after rapid noncovalent association, and final velocity vs = 0 as this reflects full
enzyme inactivation.

Typically, substrate competition assays are run at various inhibitor concentrations, and
the concentration-dependent kobs is fitted to obtain kinetic parameters (Fig. 3E). In this
work, equations and simulations are tailored to competitive binding of inhibitor and sub-
strate (Holdgate et al., 2017; Rufer, 2021). Consequently, the observed reaction rate kobs
(Fig. 3E) in the presence of competing substrate is slower, and apparent kinetic constants
(marked with app) need to be corrected for substrate competition to reflect the kinetic in-
hibitor potency. Unless otherwise noted, nonlinearity in the uninhibited control kctrl (kobs
of [I] = 0) is assumed to be 0. The relation between kobs and inhibitor concentration
holds important information on the inhibitor binding mechanism. A linear kobs increase
with inhibitor concentration is a hallmark of a one-step binding mode, as reaction rates
are only limited by experimental factors such as solubility. Plots of kobs against two-step
inhibitor concentrations are hyperbolic, as the experimental covalent EI* association rate
is limited by EI occupancy, which reaches its maximum (kinact or k5) at saturating in-
hibitor concentration, as shown in Figure 3E: [I] > 10KI for 2-step IRREV or [I] > 10Ki

for 2-step REV. An exception to this general observation is inhibitors with a two-step
binding mode that will display a linear relationship (Strelow, 2017) when assessed at all
non-saturating inhibitor concentrations (Fig. 3F) or all saturating inhibitor concentrations
(Fig. 3G). These one-step binding behaviors can be distinguished from the Y-intercept
(Y0 = kctrl for [I] << Ki

app and Y0 > kctrl for [I] >> Ki
app) along with the noncova-

lent inhibition of enzyme activity (vi = vctrl for [I] << Ki
app) and vi < vctrl for [I] >>

Ki
app).

Mons et al.
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Figure 3 Time-dependent Inhibition and Reaction Completion. Simulated with KinGen for 1 pM
enzyme with substrate S1. (A) Time-dependent enzyme occupancy simulated for 50 nM one-step
reversible inhibitor A (left) or two-step irreversible inhibitor C (right) in presence of 100 nM sub-
strate S1. Each half-life t½, the occupancy increases by 50% (of the remaining span). After 5t½,
occupancy is at 97% of its maximum (equilibrium concentration [EI]eq or total enzyme concen-
tration [E]0) and generally considered as reaction completion. Half-life t½ is inversely related with
observed reaction rate kobs (under pseudo-first order conditions). (B) Bounded exponential associ-
ation Equation I from initial occupancy (rapid equilibrium) to final occupancy (reaction completion).
(C) Progress curve of time-dependent product formation for enzyme inhibition in Figure 3A. Prod-
uct formation velocity (slope, in AU/s), reflecting the (remaining) enzyme activity decreases until
reaction completion is reached (steady-state equilibrium or inactivation). (D) Exponential associa-
tion Equation II from initial velocity vi (rapid equilibrium) to final velocity vs (reaction completion).
(E) kobs curves in absence (black, [S] = 0) or presence (gray, [S] = 2KM) of competing substrate.
Apparent values are not yet corrected for substrate competition. (F) Two-step irreversible cova-
lent inhibitors display one-step behavior at non-saturating inhibitor concentrations ([I] ≤ 0.1KI). Fit
straight line with Y-intercept = kctrl to obtain kchem = (kinact/KI) from the linear slope. (G) Two-step
irreversible covalent inhibitors display one-step behavior at saturating inhibitor concentrations ([I]
> 10KI). Distinguish from non-saturating inhibitor concentrations in Figure 3F: Y-intercept > kctrl
when fitting a straight line to the kobs curve.

Mons et al.
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EXPERIMENTAL METHODS AND DATA ANALYSIS

We will discuss four methods in this work (Progress Curve Analysis of Substrate Asso-
ciation Competition, Incubation Time–Dependent Potency IC50(t), Preincubation Time-
Dependent Inhibition without Dilution, and Preincubation Time–Dependent Inhibition
with Dilution/Competition) with accompanying data analysis protocols depending on
the inhibitor binding mode (Fig. 4; also see Table 2). For each method, we will start
with an overview of the general conceptual background and assay design considerations.
Subsequent data analysis is subdivided into protocols tailored to a specific inhibitor bind-
ing mode, and for each data analysis protocol we will illustrate the ‘ideal’ situation with
kinetic simulations to guide interpretation of results. A practical comment on the nomen-
clature used: we use the word ‘fit’ for nonlinear fits of raw data (in e.g., GraphPad as part

Figure 4 Schematic overview of experimental protocols to analyze covalent inhibitor potency
included in this work. Incubation time–dependent enzyme inhibition inMethod I and II. Preincuba-
tion time–dependent enzyme inhibition inMethod III and IV. Data Analysis protocols are tailored to
2-step IRREVERSIBLE inhibition (shown in Fig. 1C), 1-step IRREVERSIBLE inhibition (shown in
Fig. 1D), or 2-step REVERSIBLE inhibition (shown in Fig. 1B).

Mons et al.
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of data analysis protocols) and ‘calculate’ to denote that we calculate parameters from
experimental values (in e.g., EXCEL as part of sample calculations). Furthermore, point-
ers on identification of deviations such as nonlinearity in the uninhibited control (kctrl >
0) will be given along with algebraic corrections or troubleshooting options to resolve
issues.

Methods I and II are based on incubation time–dependent enzyme inhibition (Fig. 4).
Here, substrate and inhibitor are mixed, and the reaction is initiated by addition of en-
zyme: i.e., simultaneous onset of product formation and enzyme inhibitor. Methods III
and IV are based on enzyme inhibition after preincubation. Here, enzyme is preincu-
bated with inhibitor before substrate addition. Two major factors contribute to selection
of the appropriate experimental method for your enzymatic inhibition assay: the avail-
able enzyme activity assay and the inhibitor binding mode. Recombinant enzyme inhi-
bition is assessed in an in vitro enzyme activity assay with detectable product forma-
tion (Acker & Auld, 2014; Bisswanger, 2014). This can be a continuous read-out for
enzymatic processing of fluorogenic substrates (e.g., fluorescence intensity, FRET) or
be a stopped/quenched assay that may require a secondary development/quenching or
separation step to detect the formed product (or remaining substrate) such as LC/MS-
based assays, conversion of radiolabeled substrate, and commercial assay technologies
including ADP-GloTM (Promega) ATP consumption/ADP production assays, HTRF®
KinEASETM (Cisbio) and Z�-LYTE (Invitrogen) phosphorylation assays, and Am-
plex® Red (Invitrogen) hydrogen peroxide/peroxidase assays (Acker & Auld, 2014;
Bisswanger, 2014). Method I is only compatible with homogeneous enzymatic assays
that allow continuous read-out, such as cleavage of fluorogenic reporter peptides by pro-
teases. Methods II-IV are also compatible with quenched/stopped assays with develop-
ment step prior to read-out.

METHOD I: PROGRESS CURVE ANALYSIS OF SUBSTRATE ASSOCIATION
COMPETITION

Progress curve analysis is an established method for kinetic analysis of slow-binding in-
hibitors based on continuous detection of product formation after the substrate process-
ing/product formation reaction has been initiated by addition of enzyme to a mixture of
inhibitor and substrate (Fig. 5A). A single measurement at each inhibitor concentration
is sufficient, which is convenient when comparing the potency of multiple inhibitors on
the same target. However, this method requires the availability of an activity assay format
with a continuous read-out, thereby limiting the substrates that can be used. Additionally,
assay optimization for progress curve analysis is labor intensive: it is not uncommon to
perform multiple pilot experiments to find suitable concentrations of substrate, enzyme,
and inhibitor that ensure linear product formation in the uninhibited control (consult
Table 3 in the troubleshooting section near the end of the article for troubleshooting).

For ‘slow-binding’ inhibitors, the slope of time-dependent product formation exponen-
tially decreases from initial product formation velocity vi (rapid noncovalent inhibition)
to the final product formation velocity vs (reaction completion) (Fig. 5B) (Copeland,
2013b). The progress curve of time-dependent product formation (as detected signal
Ft in AU) is fitted to a general exponential inhibitor association Equation II (Fig. 5C)
to obtain the observed rate of reaction completion kobs (in s−1) from initial velocity vi
(in AU/s) to final velocity vs (in AU/s). One-step or two-step binding modes can be iden-
tified by (visual) inspection of the initial velocity (Fig. 5B). The value of initial velocity
vi is inhibitor concentration–dependent for two-step (ir)reversible inhibitors that form a
rapid (noncovalent) equilibrium (vi < vctrl) because the noncovalent enzyme-inhibitor
complex already inhibits the enzyme activity (rapid equilibrium approximation). Simi-
larly, the value of initial velocity vi is equal to the uninhibited velocity vctrl in lieu of a Mons et al.

17 of 85

Current Protocols



Figure 5 Method I: Progress curve analysis of substrate association competition. Simulated with
KinGen for 1 pM enzyme and 100 nM substrate S1. (A) The reaction between enzyme, inhibitor,
and substrate is initiated by addition of enzyme. Product formation is monitored continuously to
detect the time-dependent enzyme activity. Top: simulated for 50 nM reversible two-step inhibitor
B. Bottom: simulated for 50 nM irreversible two-step inhibitor C. Enzyme inhibition increases with
time-dependent formation of covalent EI* until reaching reaction completion. Initially, total enzyme
occupancy [EI + EI*] reflects the rapid noncovalent equilibrium [EI]eq. At reaction completion (t >

5t½), total enzyme occupancy EI + EI* reflects the steady-state equilibrium (reversible) or inactiva-
tion (irreversible). (B) Typical progress curves for enzyme activity in presence of time-dependent in-
hibitors. Time-dependent product formation decreases exponentially from initial velocity vi (dashed
green line) to the steady-state velocity vs (dashed purple line) at reaction completion (t > 5t½). vi
= vctrl when [I] << Ki

app (and for one-step inhibitors) with vctrl = linear product formation in unin-
hibited control (gray line). Simulated for 50 nM one-step reversible inhibitor A, two-step reversible
inhibitor B, one-step irreversible inhibitor D, or two-step irreversible inhibitor C. (C) General expo-
nential association Equation II to fit progress curves of time-dependent inhibition. Parameters are
constrained depending on the inhibitor binding mode. Irreversible inhibition: vs = 0 (inactivation at
reaction completion). One-step inhibition: vi = vctrl (noncovalent complex is not significant at non-
saturating inhibitor concentrations).Ft = time-dependent signal resulting from product formation (in
AU).F0 = Y-intercept= background signal at reaction initiation (in AU). vi = initial product formation
velocity (in AU/s). vs = final/steady-state product formation velocity (in AU/s). t = incubation time
after enzyme addition (in s). kobs = observed rate of time-dependent inhibition from initial vi to final
vs (in s−1). Also fit the uninhibited/fully inhibited controls to obtain reference values for uninhibited
velocity vctrl and the rate of nonlinearity in the uninhibited control kctrl.

rapid initial binding step, as can be observed for two-step (ir)reversible inhibitors at non-
saturating concentrations ([I]<<Ki

app) and one-step (ir)reversible inhibitors (vi < vctrl).
Irreversible inhibitors are expected to reach 100% inhibition at reaction completion for
all inhibitor concentrations, provided inhibitor is present in large excess and the reaction
does not exceed the dynamic enzyme lifetime. Therefore, the final velocity vs is restrained
to full inhibition (vs = 0) for two-step irreversible inhibitors (Data Analysis 1A) and one-
step irreversible inhibitors (Data Analysis 1B). Two-step reversible inhibitors will reach
a reversible steady-state equilibrium (vs ≥ 0) upon reaction completion (Data Analysis
1C). Be aware that the product formation progress curve is not only linear for fast-binding
inhibitors but will also appear linear for slow-binding inhibitors if reaction completion is
much slower than the time course of the assay (t << t½). Importantly, the noncovalent
equilibrium is assumed to be reached instantly for two-step inhibitors (rapid equilibrium
approximation). An algebraic solution to analyze irreversible two-step inhibitors violat-
ing the rapid equilibrium approximation is available as a preprint (Kuzmič, 2020a).Mons et al.
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It is crucial to have linear product formation in the uninhibited control (Fctrl), as progress
curve fitting for time-dependent (ir)reversible inhibition relies on the assumption that un-
inhibited product formation is absolutely linear. This ideal situation is often not feasible to
achieve experimentally, as there are many factors contributing to a slight time-dependent
decrease of product formation velocity in the uninhibited control, and not all of them are
resolvable (common troubleshooting options are listed in Table 3 in the troubleshoot-
ing section near the end of the article). It is possible to correct algebraically. Algebraic
correction for nonlinearity in the uninhibited control kctrl caused by spontaneous enzyme
degradation/denaturation is possible for irreversible inhibitors (Data Analysis 1A-B). Fur-
thermore, it is also possible to perform an algebraic correction for substrate depletion for
two-step irreversible inhibitors (Data Analysis 1D) (Kuzmič, Solowiej, &Murray, 2015).
Ultimately, numerical integration is the preferredmethod in complex systems where mul-
tiple events contribute to the observed nonlinearity.

BASIC
PROTOCOL 1

Progress Curve Analysis of Substrate Association Competition

The protocol below provides a generic set of steps to accomplishing this type of mea-
surement. A practical example with specific reagents, and assay conditions for progress
curve analysis of covalent Cathepsin K inhibitors can be found in Mons et al. (2019).

Materials

1× Assay/reaction buffer supplemented with co-factors and reducing agent
Active enzyme, 4× solution in assay buffer
Substrate with continuous read-out, 4× solution in assay buffer
Positive control: vehicle/solvent as DMSO stock, or 2% solution in assay buffer
Negative control: known inhibitor or alkylating agent as DMSO stock, or 2×

solution in assay buffer
Inhibitor: as DMSO stock, or serial dilution of 2× solution in assay buffer with 2%

DMSO
384-well low volume microplate with nonbinding surface (e.g., Corning 3820 or

4513) for incubation and read-out
Optical clear cover/seal (e.g., Perkin Elmer TopSeal-A Plus, #6050185, Corning

6575 Universal Optical Sealing Tape or Duck Brand HP260 Packing Tape)
1.5 ml (Eppendorf) microtubes to prepare stock solutions
Optional: 96-well microplate to prepare serial dilution of inhibitor concentration
Microplate reader equipped with appropriate filters to detect product formation

(e.g., CLARIOstar microplate reader)
Optional: Automated (acoustic) dispenser (e.g., Labcyte ECHO 550 Liquid

Handler acoustic dispenser)

Before you start, optimize assay conditions in the uninhibited control to ensure compli-
ance with assumptions and restrictions for progress curve analysis—most importantly
linear product formation in the uninhibited control for the duration of the experiment
(kctrl = 0)— by activating the enzyme before reaction initiation (e.g., preincubation with
reducing agent for proteases, or ATP for kinases and ligases), testing the enzyme activ-
ity on the (fluorogenic) substrate in absence of inhibitor, and adjusting the enzyme and
substrate concentration ([S] 0>10[E]0) to reach maximum 10% substrate conversion at
the end of the measurement window ([P]t < 0.1[S]0). Further optimization typically in-
volves tuning the reader settings for optimal sensitivity, measurement of a calibration
curve for product concentration (Dharadhar et al., 2019; Janssen et al., 2019), and cal-
culation of the Z�-score from the uninhibited and inhibited controls (ideally 8 replicates)
in a separate experiment (Zhang, Chung, & Oldenburg, 1999) to validate that enough
product is formed for a good signal/noise ratio (Z� > 0.5) at the end of the measurement.
Consult Table 3 in the troubleshooting section near the end of the article for common
optimization and troubleshooting options. The read-out of product formation must be Mons et al.
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homogeneous/continuous. Product formation of substrates with a less sensitive read-out
(e.g., fluorescence polarization) may generate a relatively low product signal relative to
the unprocessed substrate, and substrate depletion is unavoidable to generate a sufficient
Z�-score (Zhang et al., 1999). Algebraic analysis of two-step irreversible inhibition with
substrate depletion ([P]t < 0.1[S]0) can be performed with Data Analysis Protocol 1D
after completion of Basic Protocol I, steps 2-6.

1. Add inhibitor or control to each well with the uninhibited control for full enzyme ac-
tivity containing the same volume vehicle/solvent instead of inhibitor (we use DMSO
in this protocol). Add a constant volume of serially diluted inhibitor in assay buffer
supplemented with DMSO (e.g., 10.2 μl of 2× solution containing 2% DMSO), or
add inhibitor and controls by (acoustic) dispensing of the pure DMSO stocks, with
DMSObackfill to a constant volume (e.g., 0.2 μl), followed by addition of assay buffer
to each well (e.g., 10 μl) and gentle shaking (300 rpm) to homogenize the solution.

Typically, measurements are performed in triplicate (ormore replicates) with at least 8
inhibitor concentrations. Inhibitor concentrationsmight need optimization, but a good
starting point is 0.1-10×IC50; the highest inhibitor concentration should correspond
to maximum 90% initial (noncovalent) inhibition (vi > 0.1vctrl), as it can be difficult
to accurately detect the increase from 90% to 100% inhibition.

2. Add substrate in assay buffer to each well (e.g., 5 μl of 4× solution) and homogenize
the solutions by gentle shaking (300 rpm).

The order of substrate or inhibitor addition is not important per se, as long as enzyme
is the last reagent to be added, andDMSO stocks are added prior to buffered (aqueous)
solutions. Optionally, gently centrifuge the plate (1 min at 1000 rpm) to ensure that
assay components are not stuck at the top of the well.

3. Add active enzyme in assay buffer to each well (e.g., 5 μl of 4× solution), with mini-
mal delay between addition to the first and the last well. Optionally, gently centrifuge
the plate (1 min at 1000 rpm) if bubbles are formed (especially for buffers containing
surfactants), as these will induce assay artifacts, and to ensure assay components are
in solution together rather than stuck to the wall at the top of the well.

Manual addition of enzyme solution and physically moving the plate to the plate
reader introduces a delay that may slightly affect the accuracy of the measurement,
as it can be variable (depending on the total number of wells, distance to the machine
and walking pace of the researcher). This should not be significant if the delay is short
compared to the total reaction time, but it can affect the outcome in the data analysis
when t0 is actually 1-2 min. One method to monitor the delay between reaction initi-
ation (onset of product formation and inhibition) and the start of product detection in
step 6 is evaluation of the Y-intercept values (as discussed in Table 3). Alternatively,
enzyme addition with an injector built into the plate reader minimizes the delay be-
tween reaction initiation (onset of product formation and inhibition) and starting the
measurement.

4. Seal the wells by applying an optical clear cover.

Continuous kinetic measurements are subject to assay artifacts such as drift due to
evaporation. In our experience, application of an optical clear cover/seal prior to mea-
surement improves the assay robustness and resolves significant aberrant nonlinearity
unrelated to enzyme activity.

5. Measure product formation in microplate reader by detection of the product read-out.

A typical assay measurement window is 60-240 min, with a measurement interval
of 1-2 min. The inhibitor-binding reaction does not have to reach completion (100%Mons et al.
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inhibition for irreversible inhibitors, equilibrium for reversible inhibitors) within this
window, but data will be more reliable when completion is reached before the end of
the measurement (Fig. 5B).

6. Proceed to Basic Data Analysis Protocols to calculate the appropriate kinetic param-
eters for each covalent binding mode: Data Analysis Protocol 1A for two-step irre-
versible inhibitors, Data Analysis Protocol 1B for one-step irreversible inhibitors,
Data Analysis Protocol 1C for two-step reversible inhibitors, or Data Analysis
Protocol 1D for two-step irreversible inhibitors with substrate depletion.

Data Analysis Protocol

EXP Conditions 2-step IRREV 1-step IRREV 2-step REV

kctrl = 0 1A 1B 1C
kdegE > 0 1A 1B –
[P]t > 0.1[S]0 1D – –

Exemplary assay concentrations.

Concentration during incubation t

[stock] V (μl) [conc]t
Enzyme 4 nM 5 0.99 nM
Inhibitor 20 nM 10.2 10.10 nM
Substrate 4 μM 5 0.99 μM
Total 20.2

Data Analysis 1A: Progress Curve Analysis for Two-Step Irreversible Covalent
Inhibition

The progress curve of time-dependent product formation of each inhibitor concentration
is fitted to exponential Equation II (Fig. 5C) constraining final velocity to 100% inhibition
(vs = 0) at reaction completion (Fig. 6A and 6B). The inhibitor concentration–dependent
observed rate of inactivation kobs reflects the rate from initial velocity vi (rapid nonco-
valent equilibrium) to final velocity vs (inactivation at reaction completion). The plot
of inhibitor concentration–dependent kobs reaches maximum rate of inactivation kinact in
the presence of saturating inhibitor concentration ([I] >> KI

app) with the Y-intercept
at 0 when the progress curve in absence of inhibitor is strictly linear (Fig. 6C). Impor-
tantly, the inhibitor concentration that results in half-maximum enzyme inactivation (kobs
= ½×kinact) has to be corrected for competition by the substrate during incubation but
maximum rate of inactivation kinact is unaffected.

Warnings and remarks

A linear plot of inhibitor concentration-dependent kobs (with Y-intercept = kctrl) and an
initial velocity independent of inhibitor concentration (vi = vctrl) are indicative of a one-
step binding mechanism: the inhibitor concentration is not saturating ([I] ≤ 0.1KI

app and
[I] ≤ 0.1Ki

app). This can be resolved by increasing the inhibitor concentration, reducing
the substrate concentration, or processing the data with Basic Data Analysis Protocol 1B.
Inhibitors with a high noncovalent potency ([I] >> Ki

app) might exhibit tight-binding
behavior: complete inactivation is reached at reaction initiation (vi = 0), even at the
lowest inhibitor concentration, without violating the pseudo-first order reaction condi-
tions ([I]0 ≥ 10[E]0). This can be resolved by lowering the inhibitor concentration, but
only if the assay robustness is sufficient to also lower the enzyme concentration, and/or
by increasing the concentration of competing substrate, thus increasing the apparent in-
hibition constant Ki

app. Unfortunately, algebraic correction for progress curve analysis
of one-step inhibitors (Copeland, 2013b) with inhibitor depletion ([I]0 < 10[E]0) is not

Mons et al.
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Figure 6 Data Analysis 1A: Progress curve analysis for two-step irreversible covalent inhibition.
Simulated with KinGen (A-C) or KinDeg (D-F) for inhibitor C with 1 pM enzyme and 100 nM
substrate S1. (A) Schematic enzyme dynamics during incubation for two-step irreversible covalent
inhibition. (B) Time-dependent product formation in absence of inhibitor Fctrl or in presence of
inhibitor. The progress curve for each inhibitor concentration is fitted individually to Equation II (Fig.
5C) (constraining vs = 0) to obtain the observed rate of inactivation kobs. (C) Inhibitor concentration–
dependent kobs reaches kinact at saturating inhibitor concentration (kmax = kinact). Half-maximum kobs
= ½kinact is reached when inhibitor concentration equals the apparent inactivation constant KI

app.
(D) Schematic enzyme dynamics during incubation for two-step irreversible covalent inhibition with
spontaneous loss of enzyme activity. Simulated with kdegE = kdegES = kdegEI = 0.0003 s−1. (E)
Time-dependent product formation in absence of inhibitor Fctrl is not linear because kctrl > 0. The
progress curves for each inhibitor concentration and uninhibited control are fitted individually to
Equation II (Fig. 5C) (constraining vs = 0) to obtain the observed rates of inactivation kobs. (F)
Inhibitor concentration–dependent kobs with spontaneous enzyme degradation increases with kctrl,
but the span from kmin (= kctrl) to kmax (= kinact + kctrl) still equals kinact. Fit with algebraic correction
for nonlinearity (black line, kctrl > 0). Ignoring the nonlinearity (gray line, constrain kctrl = 0) results
in underestimation of KI

app (overestimation of potency) and overestimation of kinact.

compatible with two-step inhibition. Numeric fitting is a possibility to fit progress curves
with depletion of substrate as well as inhibitor (Kuzmič, 2015). Alternatively, tight-
binding two-step irreversible covalent inhibition can be assessed with Method IV if co-
valent adduct formation is relatively slow.

Spontaneous enzyme degradation/denaturation causes a nonlinearity in the uninhibited
control (kctrl > 0) that violates the assumption that time-dependence in the inhibitor-
treated samples is a direct effect of the inhibitor (Fig. 6D and 6E). The first-order enzy-
matic degradation rate contributes to kobs independent of inhibitor concentration (kdegE
= kdegES = kdegEI). Consequently, the Y-intercept of the kobs against inhibitor concentra-
tion plot now corresponds to observed rate kctrl in absence of inhibitor, and kmax is higher
(kmax = kinact + kctrl) (Fig. 6F). Performing a simple algebraic correction for the observed
nonlinearity due to spontaneous enzyme degradation results in good estimates for kinact
and KI

app (Fig. 6F). Ignoring the nonlinearity in the uninhibited control by restraining
kctrl = 0 implies that all time-dependent loss of enzyme activity should be attributed to
inhibitor-mediated inactivation, resulting in an underestimation of inactivation constant
KI

app (overestimation of potency) and overestimation of kinact. This effect is less pro-
nounced when spontaneous enzyme degradation is much slower than the maximum rate
of covalent adduct formation (kinact >> kctrl). It is important to note that stabilizationMons et al.
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of the enzyme species by (noncovalent) inhibitor binding also decreases the contribu-
tion of kctrl to the observed rate kobs at saturating inhibitor concentrations (kmax = kinact).
This impairs the accuracy of the algebraic correction unless kctrl is relatively small (kmax

approaches kinact if kinact >> kctrl).

This algebraic correction does not accurately correct for nonlinearity due to substrate
depletion ([P]t > 0.1[S]0): substrate depletion is dependent on the total product forma-
tion and does not (significantly) contribute to kmax at saturating inhibitor concentration
because enzyme inhibition reduces the total amount of product formed (kmax = kinact).
Please consult Data Analysis 1D for algebraic correction of nonlinearity due to substrate
depletion.

BASIC DATA
ANALYSIS
PROTOCOL 1A

Two-Step Irreversible Covalent Inhibition

Processing of raw data obtained with Basic Protocol I for two-step irreversible covalent
inhibitors.

1. Plot signal F against incubation time t.

Plot signal (in AU) on the Y-axis against incubation time (in s) on the X-axis for each
inhibitor concentration and the controls (Fig. 6B). Product formation in the uninhib-
ited control Fctrl should be linear. Consult Table 3 for troubleshooting of nonlinearity
of the uninhibited control. Optionally, perform background correction to correct for
assay artifacts such as bleaching and drift that cause a negative final velocity (vs <

0 AU/s) in the fully inhibited control. This correction can be subtraction of the back-
ground in presence of substrate (and inhibitor) but absence of enzyme, or subtraction
of the fully inhibited control.

2. Fit signal Ft against t to obtain kobs

Fit signal Ft against incubation time t to Equation II (Fig. 6B/E). Constrain final ve-
locity vs = 0 (in AU/s) for background-corrected product formation, or vs = value for
full inhibition control. A lack of initial noncovalent complex (vi = vctrl) is indicative
of one-step binding behavior.

Ft = vst +
vi − vs
kobs

�
1 − e−kobst

�
+ F0

Equation II

Equation II for nonlinear regression of user-defined explicit equation Y = (vs*X)
+ (((vi-vs)/kobs)*(1-EXP(-kobs*X))) + Y0 with Y = signal Ft (in
AU) and X = incubation time t (in s) to find Y0 = Y-intercept F0 = background
signal at t = 0 (in AU), vi = initial slope vi (in AU/s), vs = final slope vs (in AU/s)
and kobs = observed reaction rate kobs (in s−1).

3. Plot kobs against [I].

Plot the mean and standard deviation of kobs (in s−1) on the Y-axis against inhibitor
concentration (in M) after reaction initiation by enzyme addition (in the final solu-
tion) on the X-axis (Fig. 6C/F). The plot of kobs against [I] should reach a maxi-
mum kobs at saturating inhibitor concentration. Note that a linear curve is indica-
tive of one-step binding behavior at non-saturating inhibitor concentrations ([I] <<

0.1KI
app in Fig. 3F) with vi = vctrl (low initial inhibition). Proceed to Basic Data

Analysis Protocol 1B, step 4, after it has been validated that the linear curve is not re-
sultant from saturating inhibitor concentrations ([I]>> 10KI

app in Fig. 3G) as identi-
fied by vi << vctrl (significant initial inhibition), by repeating the measurement with
a higher competitive substrate concentration (increase KI

app) and/or lower inhibitor
concentration. Mons et al.
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4. Fit kobs against [I] to obtain kinact and KI
app.

Fit kobs against inhibitor concentration to Equation VII to obtain maximum inacti-
vation rate constant kinact (in s−1) and apparent inactivation constant KI

app (in M).
Constrain kctrl = kobs of the uninhibited control (Fig. 6F). Calculate inactivation con-
stant KI (in M) and irreversible covalent inhibitor potency kinact/KI (in M−1s−1) with
Sample Calculation 1&2.

kobs = kctrl +
kinact [I]

KI
app + [I]

Equation VII

Equation VII for nonlinear regression of user-defined explicit equation Y = Y0 +
((kmax*X)/((KIapp) + X))with Y= observed reaction rate kobs (in s−1) and
X = inhibitor concentration (in M) to find Y0 = rate of nonlinearity in uninhibited
control kctrl (in s−1), kmax = maximum reaction rate kinact (in s−1) and KIapp =
Apparent inactivation constant KI

app (in M).

5. EXTRA: Plot and fit vi against [I] to obtain Ki
app.

Inhibition constant Ki can be calculated from the initial velocity vi (obtained in step
3), reflecting the rapid (initial) noncovalent enzyme-inhibitor equilibrium. Plot the
mean and standard deviation of vi (in AU/s) on the Y-axis against inhibitor con-
centration on the X-axis (similar to Fig. 8D). Fit vi against [I] to four-parameter
nonlinear regression Hill Equation VIII (Copeland, 2013e) to obtain apparent inhibi-
tion constant Ki

app (in M). Constrain the top to the uninhibited vi (maximum veloc-
ity = vctrl) and the bottom to the fully inhibited vi (vimin = minimum velocity. For
(background-)corrected product formation vimin = 0). Calculate inhibition constant
Ki (in M) with Sample Calculation 3.

vi = vmin
i + vctrl − vmin

i

1 +
�

[I]
Ki

app

�h

Equation VIII

Equation VIII for nonlinear regression of four-parameter dose-response equation Y
= Bottom + (Top-Bottom)/(1 + (X/IC50)ˆHillSlope) with Y =
initial product formation velocity vi (in AU/s), X = inhibitor concentration (in M),
Bottom = velocity in fully inhibited control vimin (in AU/s), and Top = maximum
velocity in uninhibited control vctrl (in AU/s) to find Hillslope = Hill coefficient h
(unitless) and IC50 = apparent inhibition constant Ki

app (in M).

6. Optional: Validate experimental kinetic parameters with kinetic simulations.

Proceed to Kinetic Simulations 1 to compare the experimental progress curves to the
progress curves simulated with scriptsKinGen andKinDeg (using experimental rate
constant kinact = k5) to confirm that the calculated kinetic constants are in accordance
with the experimental data.

Data Analysis 1B: Progress Curve Analysis for One-Step Irreversible Covalent
Inhibition

The progress curve of time-dependent product formation of each inhibitor concentration
is fitted to exponential Equation II (Fig. 5C) constraining final velocity to inactivation
(vs = 0) at reaction completion (Fig. 7A and 7B). The initial velocity vi equals the unin-
hibited product formation velocity (vi = vctrl), as noncovalent inhibitor binding does not
contribute to enzyme inhibition by one-step irreversible inhibitors. A linear plot of in-
hibitor concentration–dependent kobs is indicative of a one-step binding mechanism with
kchemapp as the slope (Fig. 7C). Two-step irreversible covalent inhibitors also have a linearMons et al.
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Figure 7 Data Analysis 1B: Progress curve analysis for one-step irreversible covalent inhibition.
Simulated with KinGen (A-C) or KinDeg (D-F) for inhibitor D with 1 pM enzyme and 100 nM sub-
strate S1. (A) Schematic enzyme dynamics during incubation for one-step irreversible covalent
inhibition. (B) Time-dependent product formation in absence of inhibitor Fctrl or in presence of in-
hibitor. The progress curve for each inhibitor concentration is fitted individually to Equation II (Fig.
5C) (constraining vs = 0) to obtain the observed rate of inactivation kobs. vi = vctrl for one-step
irreversible inhibitors and two-step irreversible inhibitors at non-saturating concentrations ([I] <<

Ki
app). (C) Inhibitor concentration–dependent kobs increases linearly with inhibitor concentration,

with kchemapp as the slope. (D) Schematic enzyme dynamics during incubation for one-step irre-
versible covalent inhibition with spontaneous loss of enzyme activity. Simulated with kdegE = kdegES
= kdegEI = 0.0003 s−1. (E) Time-dependent product formation in absence of inhibitor Fctrl is not
linear because kctrl > 0. The progress curves for each inhibitor concentration and uninhibited con-
trol are fitted individually to Equation II (Fig. 5C) (constraining vs = 0) to obtain the observed rates
of inactivation kobs. (F) Inhibitor concentration–dependent kobs with spontaneous enzyme degra-
dation/denaturation increases by kctrl. Fit with algebraic correction for nonlinearity (black line, kctrl
> 0) or ignoring nonlinearity (gray line, constrain kctrl = 0). Ignoring the nonlinearity (assuming
Y-intercept = 0) results in overestimation of kchemapp (steeper slope).

kobs against inhibitor concentration plot at non-saturating concentrations ([I] ≤ 0.1KI
app)

with kchemapp = kinact/KI
app.

Warnings and remarks

The slope has to be corrected for substrate competition to obtain the inactivation constant
kchem (in M−1s−1). Substrate will occupy a fraction of the unbound enzyme to reach the
noncovalent E + S <-> ES equilibrium (how much depends on [S]/KM), thus reduc-
ing the unbound enzyme concentration. It may seem counterintuitive to correct for sub-
strate competition, as the pseudo-first-order rate of covalent adduct formation (kobs =
kchemapp[I]) does not seem to involve unbound enzyme (provided inhibitor is present in
large excess), but formation of EI* is limited by the available unbound enzyme at that
moment and it is not possible to form covalent adduct EI* when competing substrate
blocks access to the enzyme active site.

It is important to have linear product formation in the uninhibited control (kctrl = 0) or
to perform an algebraic correction for nonlinearity in the uninhibited control (kctrl > 0)
caused by spontaneous first-order enzyme degradation/denaturation (Fig. 7D-F). Fail-
ure to correct for the contribution of enzyme degradation when fitting the observed rate
of inactivation kobs against inhibitor results in overestimation of kchemapp (Fig. 7F, gray
line). The contribution of nonlinearity kctrl becomes less pronounced at elevated inhibitor Mons et al.
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concentrations as kctrl becomes significantly smaller than kobs (kctrl << kchemapp[I]).
(De)stabilization of enzyme upon inhibitor binding (kdegEI*) does not affect kobs, as EI*
formation is already irreversible, thus removing the species from the available pool of
catalytic enzyme. To our knowledge, methods to algebraically correct for substrate de-
pletion have not been reported.

BASIC DATA
ANALYSIS

PROTOCOL 1B

One-Step Irreversible Covalent Inhibition

Processing of raw data obtained with Basic Protocol I for one-step irreversible covalent
inhibitors and two-step irreversible inhibitors at non-saturating inhibitor concentrations
([I] ≤ 0.1Ki

app).

1. Plot signal F against incubation time t.

Plot signal (in AU) on the Y-axis against incubation time (in s) on the X-axis for each
inhibitor concentration and the controls (Fig. 7B). Product formation in the uninhib-
ited control Fctrl should be linear. Consult Table 3 for troubleshooting of nonlinearity
of the uninhibited control. Optionally, perform background correction to correct for
assay artifacts such as bleaching and drift that cause a negative final velocity (vs <

0 AU/s) in the fully inhibited control. This correction can be subtraction of the back-
ground in presence of substrate (and inhibitor) but absence of enzyme, or subtraction
of the fully inhibited control.

2. Fit Ft against t to obtain kobs.

Fit signal Ft against incubation time t to Equation II (Fig. 7B/E). Constrain final ve-
locity vs = 0 (in AU/s) for background-corrected product formation, or vs = value for
full inhibition control. Initial velocity vi should be a shared value because noncova-
lent inhibition does not significantly contribute to the initial inhibition for inhibitors
displaying one-step behavior.

Ft = vst +
vi − vs
kobs

�
1 − e−kobst

�
+ F0

Equation II

Equation II for nonlinear regression of user-defined explicit equation Y = (vs*X)
+ (((vi-vs)/kobs)*(1-EXP(-kobs*X))) + Y0 with Y = signal Ft (in
AU) and X = incubation time t (in s) to find Y0 = Y-intercept F0 = background
signal at t = 0 (in AU), vi = initial slope (in AU/s), vs = final slope (in AU/s) and
kobs = observed reaction rate kobs (in s−1).

3. Plot kobs against [I].

Plot the mean and standard deviation of kobs (in s−1) on the Y-axis against inhibitor
concentration (in M) after reaction initiation by enzyme addition (in the final solu-
tion) on the X-axis (Fig. 7B/E). The plot of kobs against inhibitor concentration [I]
is linear for one-step irreversible inhibitors and for two-step irreversible inhibitors at
non-saturating inhibitor concentrations ([I] << 0.1Ki

app).

4. Fit kobs against [I] to obtain kchemapp.

Fit kobs against inhibitor concentration to Equation IX to obtain apparent inhibitor
potency kchemapp (in M−1s−1) from the linear slope. Constrain Y-intercept kctrl = kobs
of the uninhibited control (Fig. 7F). Calculate kchem (in M−1s−1) reflecting inhibitor
potency for one-step irreversible covalent inhibition with Sample Calculation 4. Cal-
culate kinact/KI

app (in M−1s−1) and kinact/KI (in M−1s−1) for two-step irreversible in-
hibitors at non-saturating inhibitor concentrations ([I] ≤ 0.1Ki

app) with Sample Cal-
culation 5 and 6.

kobs = kctrl + kappchem [I]

Equation IX
Mons et al.
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Equation IX for nonlinear regression of straight line Y = YIntercept +
Slope*X with Y = observed reaction rate kobs (in s−1) and X = inhibitor concen-
tration (in M) to find YIntercept = rate of nonlinearity in uninhibited control kctrl (in
s−1) and Slope = apparent inactivation rate constant kchemapp (in M−1s−1).

5. Optional: Validate experimental kinetic parameters with kinetic simulations.

Proceed to Kinetic Simulations 1 to compare the experimental progress curves to the
progress curves simulated with scriptsKinGen andKinDeg (using experimental rate
constant kchem = k3) to confirm that the calculated kinetic constants are in accordance
with the experimental data.

Data Analysis 1C: Progress Curve Analysis for Two-Step Reversible Covalent
Inhibition

The progress curve of time-dependent product formation of each inhibitor concentra-
tion (Fig. 8A and 8B) is fitted to exponential Equation II (Fig. 5C). The inhibitor
concentration-dependent observed rate for reaction completion kobs reflects the rate from
initial velocity vi (rapid noncovalent equilibrium) to final velocity vs (slow steady-
state equilibrium). Contrary to irreversible inhibition, steady-state velocity vs is not
constrained to inactivation (vs > 0) because the reversible steady-state equilibrium is
reached at reaction completion. Maximum rate of reaction completion kmax is reached
in the presence of saturating inhibitor concentration ([I] >> Ki

app), and the cova-
lent association rate constant k5 is obtained from the span between kmin and kmax.
Interestingly, the Y-intercept kmin is equal to covalent dissociation rate constant k6;
therefore, the kobs of uninhibited control (kctrl) is excluded from the fit (Fig. 8C).

Figure 8 Data Analysis 1C: Progress curve analysis for two-step reversible covalent inhibition.
Simulated with KinGen for inhibitor B with 1 pM enzyme and 100 nM substrate S1. (A) Schematic
enzyme dynamics during incubation for two-step reversible covalent inhibition. (B) Time-dependent
product formation in absence of inhibitor Fctrl or in presence of inhibitor. The progress curve for
each inhibitor concentration is fitted individually to Equation II (Fig. 5C) to obtain the observed
rate of inactivation kobs and steady-state velocity vs. (C) Inhibitor concentration-dependent kobs
equals kmax at saturating inhibitor concentration (kmax = k5 + k6) and approaches k6 in absence of
inhibitor (kmin = k6). Half-maximum kobs = kmin + ½(kmax - kmin) = k6 + ½k5 is reached when inhibitor
concentration equals the apparent inhibition constant Ki

app. Steady-state inhibition constant Ki
*app

has to be calculated from the fitted values of k5, k6 and Ki
app, thus being very sensitive to errors

and (non)linearity in the uninhibited background (illustrated in Fig. 9). (D) Steady-state inhibition
constant Ki

*app is equal to the IC50 of steady-state velocity vs.
Mons et al.
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Figure 9 Data Analysis 1C: Progress curve analysis for two-step reversible covalent inhibition is
not compatible with spontaneous enzyme degradation/denaturation. Simulated with KinDeg for
inhibitor B with 1 pM enzyme and 100 nM substrate S1. (A) Schematic enzyme dynamics during
incubation for two-step reversible covalent inhibition with spontaneous loss of enzyme activity due
to degradation/denaturation. (B) Time-dependent product formation in absence of inhibitor Fctrl is
not linear because kctrl > 0. The progress curve for each inhibitor concentration is fitted individually
to Equation II (Fig. 5C) to obtain the observed rate of inactivation kobs and steady-state velocity
vs. Simulated for kctrl = 0.00003 s−1. (C) Inhibitor concentration–dependent kobs is driven by spon-
taneous enzyme degradation at low inhibitor concentrations, thus lowering the Y-intercept (kmin

approaches kctrl). Ignoring the nonlinearity in the uninhibited control kctrl results in poor fits with
underestimation of k6 even if kctrl is slower than k6. Simulated for kctrl = kdegE = kdegES = kdegEI =
kdegEI* with kctrl = 0.000003 s−1 (left), kctrl = 0.00003 s−1 (middle) and kctrl = 0.0003 s−1 (right).
(D) Final velocity vs has been ‘contaminated’ by the contribution of irreversible inactivation to the
time-dependent inhibition, and approaches vs = 0 at low inhibitor concentrations. Final velocity vs
no longer reflects the steady-state equilibrium: IC50 is larger than Ki

*app (underestimation of steady-
state potency) unless kctrl is much smaller than k6.

Steady-state inhibition constant Ki
*app can be calculated from the fitted values of Ki

app,
k5, and k6, but this is not the preferred approach, as a small error in k6 has huge
implications for the calculation of Ki*. Other methods such as jump dilution assays gen-
erate more reliable estimates of k6, which is especially important for very potent two-
step reversible covalent inhibitors: relatively small k6-values cannot accurately be esti-
mated from the Y-intercept (Copeland, 2013e; Copeland et al., 2011). Generally, more
reliable estimates of the apparent steady-state inhibition constant Ki

*app are generated
from the dose-response curve of steady-state velocity vs against inhibitor concentration
(Fig. 8D).

Mons et al.
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Warnings and remarks

It is crucial to have strictly linear product formation in the uninhibited control (kctrl =
0) because it is not possible to perform an algebraic correction for spontaneous enzyme
degradation/denaturation (Fig. 9A). Unfortunately, potent reversible covalent inhibitors
are likely to violate this condition. Contrary to irreversible covalent inhibitors that be-
come more potent with a faster kinact, reversible covalent inhibitors are more potent if
they have a longer residence time τ, which is driven by a slow dissociation rate k6 (Fig.
1B) (Copeland, 2010; Copeland et al., 2006). Violation of this assumption (kctrl > 0)
can be identified by fitting the uninhibited product formation Fctrl to Equation II (Fig.
5C): initial velocity victrl should not be larger than steady-state vsctrl. The consequence
of nonlinearity in the uninhibited control is ‘contamination’ of reaction rate kobs and fi-
nal velocity vs (based on the reversible reaction to reach steady-state equilibrium: vs >

0) with the rate of enzyme degradation kctrl (based on an inactivation reaction: vs = 0).
Y-intercept approaching kctrl instead of k6 even though the uninhibited control is not in-
cluded in the fit is an indication that spontaneous enzyme degradation dominates kobs at
low inhibitor concentrations (Fig. 9C). This ‘red flag’ should not be ignored, as it will
result in over/underestimation of kinetic parameters. To our knowledge, models to per-
form an algebraic correction have not been reported. Calculating steady-state inhibition
constant Ki* from final velocity vs also results in an underestimation of the steady-state
potency because the contribution of spontaneous enzyme degradation to final velocity
vs is dominant at low inhibitor concentrations (Fig. 9D). Underestimation of the steady-
state potency of reversible covalent inhibitors that have a relatively slow k6 is more severe
than for the less potent counterpart with a faster k6. We were able to find reasonable esti-
mates of Ki*when the contribution of nonlinearity was significantly smaller than covalent
adduct dissociation (kctrl << k6). Preincubation time–dependent inhibition (Method III)
is a more suitable method to analyze two-step reversible inhibition affected by enzyme
instability: it is possible to algebraically correct for enzyme instability in this method
(Data Analysis 3C).

BASIC DATA
ANALYSIS
PROTOCOL 1C

Two-Step Reversible Covalent Inhibition

Processing of raw data obtained with Basic Protocol I for two-step reversible covalent
inhibitors.

1. Plot signal F against incubation time t.

Plot signal (in AU) on the Y-axis against incubation time (in s) on the X-axis for
each inhibitor concentration and the controls (Fig. 8B). Product formation in the
uninhibited control Fctrl should be linear. Consult Table 3 for troubleshooting of
nonlinearity of the uninhibited control. Optionally, perform background correction
to correct for assay artifacts such as bleaching and drift that cause a negative final ve-
locity (vs < 0 AU/s) in the fully inhibited control. This correction can be subtraction
of the background in the presence of substrate (and inhibitor) but absence of enzyme,
or subtraction of the fully inhibited control.

2. Fit Ft against t to obtain kobs and vs.
Fit signal Ft against incubation time t to Equation II (Fig. 8B) to obtain final product
formation velocity vs (in AU/s) and the observed reaction rate kobs (in s−1) from initial
equilibrium vi to steady-state equilibrium vs. Do not constrain initial velocity vi or
final velocity vs. Also fit the progress curve of the uninhibited control (Fctrl) to validate
that product formation is strictly linear (victrl = vsctrl), because algebraic correction
for nonlinearity in the uninhibited control is not possible (Fig. 9). The observed rate
kobs (in s−1) reflects the exponential reaction rate from initial noncovalent equilibrium
(vi) to final steady-state equilibrium (vs).

Mons et al.
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Ft = vst +
vi − vs
kobs

�
1 − e−kobst

�
+ F0

Equation II

Equation II for nonlinear regression of user-defined explicit equation Y = (vs*X)
+ (((vi-vs)/kobs)*(1-EXP(-kobs*X))) + Y0 with Y = signal Ft (in
AU) and X = incubation time t (in s) to find Y0 = Y-intercept F0 = background
signal at t = 0 (in AU), vi = initial slope (in AU/s), vs = final slope (in AU/s), and
kobs = observed reaction rate kobs (in s−1).

3. Plot and fit vs against [I] to obtain Ki
*app

.

Apparent steady-state inhibition constant Ki
*app (in M) can be calculated from the fi-

nal velocity vs (obtained in the previous step) reflecting enzyme activity after reaching
the steady-state inhibitor equilibrium (reaction completion). Plot the mean and stan-
dard deviation of vs (in AU/s) on the Y-axis against inhibitor concentration (in M) on
the X-axis and fit to four-parameter nonlinear regression Hill Equation X (Copeland,
2013e) to obtain apparent steady-state inhibition constant Ki

*app (in M) (Fig. 8D).
Constrain the top to uninhibited velocity vctrl (maximum velocity = vSmax) and the
bottom to the fully inhibited vs (vsmin, minimum velocity). For (background-) cor-
rected product formation, vsmin = 0. Accurate values are only obtained when unin-
hibited product formation is strictly linear (kctrl = 0) or when the rate of spontaneous
inactivation kctrl is much smaller than the covalent dissociation k6 (Fig. 9). Validate
that vs is not driven by spontaneous enzyme degradation (kctrl << k6) by also fitting
without constraints for vSmax. Calculate steady-state inhibition constant Ki* (in M)
with Sample Calculation 7.

vs = vmin
s + vctrl − vmin

s

1 +
�

[I]
K∗app
i

�h

Equation X

Equation X for nonlinear regression of four-parameter dose-response equation Y =
Bottom + (Top-Bottom)/(1 + (X/IC50)ˆHillSlope) with Y = fi-
nal product formation velocity vs (in AU/s), X = inhibitor concentration (in M),
Bottom = velocity in fully inhibited control vsmin (in AU/s) and Top = maximum
velocity in uninhibited control vctrl (in AU/s) to find Hillslope = Hill coefficient h
(unitless) and IC50 = apparent steady-state inhibition constant Ki

*app (in M).

4. Optional: Plot and fit kobs against [I] to obtain Ki
app, k5, and k6.

This is an optional data processing step to obtain kinetic parameters by fitting to the
observed rate kobs (obtained inData Analysis 1C, step 2), and is used to validate Ki

*app

values found in the previous step, to check if nonlinearity in the uninhibited control
kctrl (in s−1) affects the fit, and/or to generate experimental k5 and k6 values to use
in kinetic simulations. Plot the mean and standard deviation of kobs (in s−1) on the
Y-axis against inhibitor concentration (in M) on the X-axis (Fig. 8C). Exclude kobs of
uninhibited control (kctrl) from the fit. Fit kobs against inhibitor concentration to Equa-
tion XI to obtain rate constants for the covalent association k5 (in s−1) and covalent
dissociation k6 (in s−1), as well as apparent noncovalent inhibition constant Ki

app (in
M) reflecting the rapid (initial) noncovalent equilibrium. Use the inhibitor concen-
tration after reaction initiation by enzyme addition (in the final solution). Accurate
values are only obtained when uninhibited product formation is strictly linear (kctrl
= 0). Y-intercept approaching kctrl despite the uninhibited control not being included
in the fit is a red flag that should not be ignored, as this is indicative of spontaneous
enzyme degradation rather than k6 dominating kobs at low inhibitor concentrations,Mons et al.
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for which algebraic corrections are not available (Fig. 9). Calculate noncovalent inhi-
bition constant Ki (in M) with Sample Calculation 3 and proceed to calculate steady-
state inhibition constant Ki* (in M) with Sample Calculation 8. Optionally, perform
step 6 of Data Analysis 1A to obtain apparent noncovalent inhibition constant Ki

app

(in M) from the initial velocity vi (obtained in Data Analysis Protocol 1C step 2).

kobs = k6 + k5 [I]

Ki
app + [I]

Equation XI

Equation XI for nonlinear regression of user-defined explicit equation Y = Y0 +
((kmax*X)/((Kiapp) + X))with Y= observed reaction rate kobs (in s−1) and
X= inhibitor concentration (in M) to find Y0= covalent dissociation rate constant k6
(in s−1), kmax = covalent association rate constant k5 (in s−1) and Kiapp = Apparent
inhibition constant Ki

app (in M).

5. Optional: Validate experimental kinetic parameters with kinetic simulations.

Proceed to Kinetic Simulations 1 to compare the experimental progress curves to the
progress curves simulated with scripts KinGen and KinDeg to confirm that the cal-
culated kinetic constants are in accordance with the experimental data. Experimental
estimates of k5 and k6 are generated in the previous step of this protocol.

Data Analysis 1D: Algebraic Correction for Substrate Depletion in Progress
Curve Analysis for Two-Step Irreversible Covalent Inhibition

Scientists from BioKin and Pfizer (Kuzmič et al., 2015) derived an algebraic model for
two-step irreversible covalent inhibitors to correct for nonlinearity caused by substrate
depletion (Fig. 10A). Substrate depletion causes a nonlinearity in the uninhibited control

Figure 10 Data Analysis 1D: Algebraic correction for substrate depletion in progress curve anal-
ysis for two-step irreversible covalent inhibition. Simulated with KinSubDpl for inhibitor C with 100
pM enzyme and 10 nM substrate S1. (A) Enzyme dynamics for two-step irreversible covalent inhi-
bition. Algebraic correction for substrate depletion is restricted to a Hit-and-Run model (E + S → E
+ P) for product formation. (B) Substrate depletion ([P]t > 0.1[S]0, blue area) results in a decrease
of product formation in the uninhibited control (solid line) compared to product formation, assuming
substrate conversion does not affect product formation rates (dashed line, simulated with KinGen).
The contribution of substrate depletion to nonlinearity increases with higher enzyme activity (less
inhibition). (C) Time-dependent product formation in the absence of inhibitor Fctrl or in presence of
inhibitor with time-dependent loss of enzyme activity due to substrate depletion. Inhibitor-treated
progress curves are globally fitted to Equation III with shared values for kinact and KI

app. (D) Equa-
tion III. Algebraic model to correct for substrate depletion at low substrate concentrations (Kuzmič
et al., 2015). F0 = Y-intercept = background signal at reaction initiation (in AU). rP = product co-
efficient for detected signal F per formed product [P] (in AU/M). ksub = reaction rate constant for
Hit-and-Run model of enzymatic product formation E + S → E + P (in M−1s−1).
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because the unbound substrate concentration is no longer constant ([S]t < [S]0) when a
significant fraction of the substrate has been converted into product ([P]t > 0.1[S]0). The
contribution of substrate depletion to the progress curve is directly related to the enzyme
activity, as>10% substrate conversion is more likely to be exceeded when enzyme activ-
ity is high (Fig. 10B). Algebraic correction is performed by globally fitting all progress
curves in presence of inhibitor to Equation III with shared values for kinact and KI

app

(Fig. 10C and 10D). Substrate depletion should be the only factor contributing to nonlin-
earity, because the uninhibited control is not included in the global fit. Violation of this
(and other) assumption requires data analysis by numerical solving (Kuzmič, 2015).

Warnings and remarks

The authors demonstrate their algebraic model to correct for substrate depletion with the
EGFR inhibitor afatinib in a homogeneous kinase activity assay. A bisubstrate kinase
activity assay is different from our simulations with a single substrate, but this algebraic
model can be applied in both systems: product formation in single-substrate as well as
bisubstrate reactions can be simplified to a Hit-and-Run model (E + S → E + P) with
rate constant ksub = kcat/KM (in M−1s−1) as long as the substrate concentration is far
below its KM ([S] < 0.1KM) (Fig. 10A). The accuracy of kinact and KI was very good
with low substrate concentrations ([S] ≤ 0.01KM). A slightly higher substrate concentra-
tion ([S] ≥ 0.1KM) resulted in underestimation of kinact and overestimation of KI, but a
good estimation of overall second-order inactivation rate constant kinact/KI. Importantly,
a calibration/titration (Dharadhar et al., 2019; Janssen et al., 2019) should be performed
prior to data analysis to determine product coefficient rP (in AU/M) that transforms the
detected signal Ft (in AU) into product concentration [P]t (in M).

BASIC DATA
ANALYSIS

PROTOCOL 1D

Two-Step Irreversible Covalent Inhibition With Substrate Depletion

Processing of raw data obtained with Basic Protocol I for two-step irreversible covalent
inhibitors with nonlinearity in the uninhibited control resultant from substrate depletion
([P]t < 0.1[S]0).

Before you start, validate compliance with essential assay reaction conditions such as
the Hit-and-Run model. This algebraic correction for substrate depletion (Kuzmič et al.,
2015) has additional requirements for assay conditions, and is only compatible with
two-step irreversible inhibition (Fig. 10). Validate that the product formation reaction
complies with the Hit-and-Run model E + S → E + P (Fig. 10A): substrate concentra-
tion must be far below the KM ([S]0 < 0.1KM) to calculate the pseudo-first order reaction
rate constant for enzymatic product formation ksub = kcat/KM (M−1s−1). Observed non-
linearity in the uninhibited control should be fully attributed to substrate depletion.
Convert the maximum signal Fctrl (in AU) into product concentration (in M) using the
product coefficient rP (in AU/M product) as determined in a separate product calibra-
tion experiment (Dharadhar et al., 2019; Janssen et al., 2019). Validate that the total
substrate conversion to product exceeds 10% of the initial substrate concentration ([Pctrl]t
> 0.1[S]0), and that substrate depletion is the only factor that contributes to the observed
nonlinearity: uninhibited product formation should be linear when incubation times are
shorter ([P]t < 0.1[S]0) or enzyme concentration is lower. Alternatively, perform kinetic
analysis by numeric solving if one or more assumptions are violated (Kuzmič, 2015).

[P]t = Ft − F0
rP

Calculate: Pt=(Ft-F0)/rp with Pt = product concentration at the end of the incuba-
tion [P]t (in M), Ft = signal in uninhibited control at the end of the incubation time Ft

(in AU), F0 = substrate background signal F0 (in AU) and rp = product coefficient rP
(in AU/M product).
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1. Plot signal F against incubation time t.

Plot signal (in AU) on the Y-axis against incubation time (in s) on the X-axis for each
inhibitor concentration (Fig. 10C). Label the columns with the inhibitor concentration
(in M).

2. Perform background correction.

Correct for assay artifacts such as fluorescence bleaching and drift that cause a de-
clining signal in the fully inhibited control. This correction can be subtraction of the
time-dependent background in absence of enzyme but in presence of substrate (and
inhibitor), or subtraction of the fully inhibited control. Consult the guidelines of your
data fitting software for instructions on background corrections (GraphPad Prism; see
Internet Resources).

3. Globally fit Ft against t to obtain kinact and KI
app.

Globally fit the progress curves of time-dependent signal Ft for all inhibitor concen-
trations to Equation III. Exclude the dataset of the fully inhibited control from the fit.
Constrain [E]0 (in M), [S]0 (in M), and [I] = [I]0 (in M) to their theoretical values.
Originally, [I]0 was locally optimized (Kuzmič, 2015), but we used fixed values of
[I]0 in GraphPad Prism. Constrain product coefficient rP (in AU/M product) to the
value determined in a separate product calibration experiment. Constrain kinact, KI,
and ksub to a shared value for all datasets that must be greater than 0, and provide
initial values that are in the anticipated range. Note that Equation III is in agreement
with equation C.16 of the original publication (Kuzmič et al., 2015), but [I]0 and kinact
were unintentionally displaced in Equation III. Calculate inactivation constant KI (in
M) and irreversible covalent inhibitor potency kinact/KI (in M−1s−1) with Sample Cal-
culations 1 and 2.

Ft = F0 + rP[S]0
�
1 − e−β(1−e−αt )

�

α = kinact [I]

KI
app + [I]

β =
�
[E]0 ksub
kinact

	 �
KI

app

[I]

	

Equation III

Equation III for nonlinear regression of user-defined explicit equation:

a = kinact*I0/(I0+KIapp)
b = (E0*ksub/kinact)*(KIapp/I0)
P = S0*(1−exp(−b*(1−exp(−a*X))))
Y = Y0+(rp*P)

with Y= time-dependent signal Ft (in AU), X= incubation time t (in s), rp= product
coefficient rP (AU/M product), E0 = maximum unbound enzyme concentration at
reaction initiation [E]0 (in M), S0 = maximum unbound substrate concentration at
reaction initiation [S]0 (in M) and I0 = maximum unbound inhibitor concentration
[I] (in M) to find globally shared values for ksub = product formation rate constant
ksub = kcat/KM (in M−1s−1), kinact = maximum rate of inactivation kinact (in s−1) and
KIapp = apparent inactivation constant KI

app (in M).

4. Optional: Validate experimental kinetic parameters with kinetic simulations.

Proceed to Kinetic Simulations 1 to compare the experimental progress curves to the
progress curves simulated with script KinSubDpl (using experimental rate constant Mons et al.
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kinact = k5) to confirm that the calculated kinetic constants are in accordance with the
experimental data.

METHOD II: INCUBATION TIME–DEPENDENT POTENCY IC50(t)

The observed potency of irreversible inhibitors increases with longer (pre)incubation
time, as more enzyme is irreversibly bound. In this method, sometimes dubbed ‘the
Krippendorff method’, the time-dependence of potency IC50(t) is utilized to directly find
the relevant kinetic parameters for two-step irreversible covalent inhibition. Contrary to
progress curve analysis (Method I), this method is compatible with quenched/stopped as-
says that require a development/separation/quenching step before read-out, as continuous
measurement of product formation is not required (but optional).

The incubation time–dependent potency IC50(t) reflects the inhibitor concentration re-
sulting in a 50% decrease of cumulative product formed Ft during incubation compared
to cumulative product formed in the uninhibited control Fctrl. Enzymatic product for-
mation is initiated by enzyme addition without preincubation of enzyme and inhibitor
(Fig. 11A). Fractional cumulative product formation Ft/Fctrl decreases with longer in-
cubation times (Fig. 11B). Importantly, this does not reflect the current enzyme activ-
ity because read-out Ft reflects that the cumulative product formed during incubation
will be ‘contaminated’ with product that was formed before full inhibition was reached.
Consequently, incubation time–dependent potency IC50(t) calculated from the fractional
product formation Ft/Fctrl against inhibitor concentration will increase with longer incu-
bation times (for slow-binding inhibitors), but will underestimate the potency compared
to the values based on the current enzyme activity [E+ES]t/[E]0 (Fig. 11C). IC50(t) does
not approach Ki

*app (two-step reversible inhibition) or ½[E]0 (irreversible inhibition) at
infinite incubation times.

An implicit algebraic model based on multipoint IC50(t) values has been derived (Krip-
pendorff, Neuhaus, Lienau, Reichel, &Huisinga, 2009) for two-step irreversible covalent
inhibitors (Data Analysis 2). Additionally, a two-point IC50(t) method for two-step irre-
versible covalent inhibitors as well as a one-point IC50(t) method for one-step irreversible
covalent inhibitors have been reported in a preprint (Kuzmič, 2020b). To our knowledge,
algebraic methods to calculate Ki

*app (two-step reversible covalent inhibitors) from (end-
point) IC50(t) values have not been reported.

Figure 11 Method II: Incubation time-dependent potency IC50(t). Simulated with KinGen for 50
nM inhibitor C with 1 pM enzyme and 100 nM substrate S1. (A) The reaction between enzyme,
inhibitor, and substrate is initiated by addition of enzyme. Enzyme inhibition increases with time-
dependent formation of covalent EI* until reaching reaction completion. (B) Read-out of cumulative
product formation (reflected in signal Ft) in presence of two-step covalent inhibitor relative to prod-
uct formed the uninhibited control (Fctrl) decreases upon longer incubation. (C) Cumulative product
Ft (navy line) is ‘contaminated’ with product formed prior to reaching 100% inhibition even if the
current enzyme activity (blue line) is fully inhibited.

Mons et al.
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BASIC
PROTOCOL II

Incubation Time-Dependent Potency IC50(t)

The below protocol provides a generic set of steps to accomplishing this type of mea-
surement.

Materials

1× Assay/reaction buffer supplemented with co-factors and reducing agent
Active enzyme, 4× solution in assay buffer
Competitive substrate with continuous or quenched read-out, 4× solution in assay

buffer
Positive control: vehicle/solvent as DMSO stock, or 2% solution in assay buffer
Negative control: known inhibitor or alkylating agent as DMSO stock, or 2×

solution in assay buffer
Inhibitor: as DMSO stock, or serial dilution of 2× solution in assay buffer with 2%

DMSO
Optional: Development/quenching solution
384-well low volume microplate with nonbinding surface (e.g., Corning 3820 or

4513) for incubation and/or read-out
Optical clear cover/seal (e.g., Perkin Elmer TopSeal-A Plus, #6050185, Corning

6575 Universal Optical Sealing Tape or Duck Brand HP260 Packing Tape) for
continuous read-out, or a general microplate cover/lid (e.g., Corning 6569
Microplate Aluminum Sealing Tape) for non-continuous read-out

1.5 ml (Eppendorf) microtubes to prepare stock solutions
Optional: 96-well microplate to prepare serial dilution of inhibitor concentration
Optional:Microtubes to perform incubations (e.g., Eppendorf Protein Lobind

Microtubes, #022431018)
Microplate reader equipped with appropriate filters to detect product formation

(e.g., CLARIOstar microplate reader)
Optional: Automated (acoustic) dispenser (e.g., Labcyte ECHO 550 Liquid

Handler acoustic dispenser)

Before you start, optimize assay conditions in the uninhibited control to ensure compli-
ance with assumptions and restrictions (Fig. 13) as outlined for Basic Protocol I. It is
crucial to ensure that uninhibited product formation is linear with incubation time for
the duration of the measurement: no enzyme degradation (kdeg = 0) or other factors con-
tributing to a nonlinearity in product formation in the uninhibited control (kctrl = 0) are
allowed, as correction for nonlinearity is not possible in Data Analysis 2. This method
is compatible with homogeneous (continuous) assays but also with assays that require a
development/quenching step to visualize formed product.

1. Add inhibitor or control (e.g., 0.2 μl) and assay buffer (e.g., 10 μl) to each well with
the uninhibited control for full enzyme activity containing the same volume of vehi-
cle/solvent instead of inhibitor as outlined in step 1 of Basic Protocol I.

Typically, measurements are performed in triplicate (or more replicates) with at least
8 inhibitor concentrations spanning the IC50(t). Inhibitor concentrations might need
optimization, but a good starting point is [I] = 0.1-5 × IC50(t) at the shortest incuba-
tion time t. Alternatively, larger-volume incubations can be performed in (Eppendorf)
Protein Lobind microtubes, from which aliquots are transferred to a microplate after
the indicated incubation time. Whether incubation in tube or plate is performed is a
matter of personal preference, compatibility with lab equipment and automation, and
convenience of dispensing small volumes

2. Add substrate in assay buffer to each well (e.g., 5 μl of 4× solution) and homogenize
the solutions by gentle shaking (1 min at 300 rpm).
The order of substrate or inhibitor addition is not important per se, as long as DMSO
stocks are added prior to buffered (aqueous) solutions and the enzyme is the last Mons et al.
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reagent to be added, to avoid unintentional preincubation (Fig. 13A). Inhibitor bind-
ing mode must be competitive with substrate. Optionally, gently centrifuge the plate
or microtubes (1 min at 1000 rpm) to ensure assay components are not stuck at the
top of the well.

3. Add active enzyme in assay buffer to each well (e.g., 5 μl of 4× solution) or tube as
outlined in step 3 of Basic Protocol I.

The accuracy of the measurement improves if the incubation time is monitored pre-
cisely.

4. Seal the wells by applying an (optical clear) cover or lid, or close the caps of micro-
tubes to prevent evaporation of assay components during incubation.

5. Optional: Transfer aliquots (e.g., 20 μl) from the reaction mixture to the microplate
after each time point, if incubation is performed in large volumes (in Protein Lobind
microtubes or 96-well NBS plate) rather than incubation of replicates in a 384-well
microplate.

6. Quenching: Add development solution to the reaction mixture in the microplate
to quench the product formation reaction for assay formats that require a develop-
ment/quenching step to visualize formed product.

Incubation time t is the elapsed time between reaction initiation by enzyme addi-
tion (step 3) and (optional) quenching of the enzyme activity by addition of develop-
ment/quenching solution (step 6).

7. Measure formed product after incubation by detection of the product read-out in mi-
croplate reader.

Follow manufacturer’s advice on waiting time after addition of development solution
before read-out. A typical assay measurement window is >2 hr, measuring cumula-
tive product formation every 5-30 min (Fig. 11). The best results are obtained when
inhibitor concentrations cover at least 50% of the DRC at all incubation times (Fig.
12C) and there is a significant decrease from the earliest to the last IC50(t) value
(Fig. 12D).

8. Proceed to Basic Data Analysis Protocol 2 to calculate relevant kinetic parameters
for two-step irreversible covalent inhibition

Data Analysis Protocol

EXP Conditions 2-step IRREV 1-step IRREV 2-step REV

kctrl = 0 2 – –

Exemplary assay concentrations.

Concentration during incubation t

[stock] V (μl) [conc]t
Enzyme 4 nM 5 0.99 nM
Inhibitor 20 nM 10.2 10.10 nM
Substrate 4 μM 5 0.99 μM
Total 20.2

Data Analysis 2: Incubation Time–Dependent Potency IC50(t) for Two-Step
Irreversible Covalent Inhibition

Krippendorff and co-workers report an algebraic model to calculate kinact and KI of
irreversible covalent inhibitors from the incubation time–dependent potency IC50(t) after
multiple incubation times (Krippendorff et al., 2009). Detection of cumulative productMons et al.
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Figure 12 Data Analysis 2: Incubation time–dependent potency IC50(t) for two-step irreversible
covalent inhibition. Simulated with KinGen for inhibitor C with 1 pM enzyme and 100 nM substrate
S1. (A) Schematic enzyme dynamics during incubation for two-step irreversible covalent inhibi-
tion. (B) Time-dependent cumulative product formation in absence of inhibitor Fctrl or in presence
of inhibitor Ft is detected with longer measurement intervals compatible with quenched assays. (C)
Incubation time-dependent potency IC50(t) reflects the inhibitor concentration that reduces cumula-
tive product formation during incubation by 50% compared to the uninhibited control. (D) Incubation
time–dependent potency IC50(t) against incubation time is fitted to Equation IV. IC50(0) approaches
apparent noncovalent inhibition constant Ki

app but IC50(0) is never included in the fit because prod-
uct formation does not start until initiation of the incubation (F0 = Fctrl = 0). (E) Implicit algebraic
Equation IV (Krippendorff et al., 2009).

formation after several incubation times is compatible with continuous assays, but more
importantly also with stopped/quenched assays that require a development step to visu-
alize product formation (Fig. 12A and 12B). Incubation time–dependent potency IC50(t)
is calculated for each incubation time from fractional product formation Ft/Fctrl (Fig.
12C) and plotted against the incubation time (Fig. 12D). Finally, the authors derived
implicit algebraic Equation IV (Fig. 12E) to calculate kinact and KI from the incubation
time–dependent potency IC50(t). This method is restricted to substrate-competitive irre-
versible (multi-step) covalent inhibitors: kinact and KI do not have a biological meaning
for reversible inhibitors or for one-step covalent inhibitors.

Warnings and remarks

This method requires software (e.g., GraphPad Prism) that allows fitting a model defined
by an implicit equation (where Y appears on both sides of the equal sign). Product for-
mation in the uninhibited control should be strictly linear (kctrl = 0): normalization of
cumulative product formation (Ft/Fctrl) does not correct for spontaneous loss of enzyme
activity or substrate depletion. It is relatively easy to miss violations of this assumption
because nonlinearity in the uninhibited control (kctrl > 0) is not evident from visual in-
spection of the dose-response curves (Fig. 12B). Violation of this assumption results in
a significant underestimation of kinact and KI values, also when nonlinearity is relatively
small (kctrl << kinact) (Fig. 13A).

Another important assumption is that the onset of product formation and enzyme in-
hibition occur simultaneously: inhibition and product formation are both initiated by
addition of enzyme, without preincubation of enzyme and inhibitor prior to substrate
addition. Unfortunately, numerous publications refer to preincubation of enzyme and Mons et al.
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Figure 13 Experimental Restrictions to fitting Equation IV (Fig. 12E) in Data Analysis 2. (A) En-
zyme degradation/denaturation simulated with KinDeg for inhibitor C with 1 pM enzyme, 100 nM
substrate S1, and kctrl = kdegE = kdegES = kdegEI = kdegEI* with kctrl = 0 s−1 (black) or kctrl = 0.0003
s−1 (gray). The rate of inactivation kinact is significantly underestimated and the potency of inactiva-
tion constant KI is overestimated when kctrl > 0. (B) Preincubation time–dependent potency IC50(t�)
simulated with KinGen for inhibitor C with 1 pM enzyme and 100 nM substrate S1.The rate of inac-
tivation kinact is overestimated, resulting in overestimation of the inactivation efficiency kinact/KI when
preincubation-dependent IC50(t�) (gray) is fitted instead of incubation-dependent IC50(t) (black). Ac-
curate values for preincubation-dependent potency can be obtained by performing Data Analysis
3A (Fig. 15). (C) Ligand binding assay simulated with KinGen for inhibitor C with 1 pM enzyme and
100 nM ligand L1. The rate of inactivation kinact is overestimated while the potency of inactivation
constant KI is underestimated, resulting in overestimation of the inactivation efficiency kinact/KI when
time-dependent IC50(t) from ligand binding inhibition (gray) is fitted instead of substrate cleavage
(black).

inhibitor as ‘incubation’, resulting in the understandable but incorrect fitting of prein-
cubation time–dependent potency IC50(t�) to the Krippendorff model (Kuzmič, 2020b).
Preincubation-dependent potency IC50(t�) is calculated from product formation veloc-
ity vt� , reflecting the enzyme activity after preincubation rather than cumulative prod-
uct formation Ft/Fctrl. Enzyme activity vt� is not ‘contaminated’ by product formed
prior to read-out because product formation is initiated after the preincubation. Fur-
thermore, substrate does not compete with inhibitor for enzyme binding during prein-
cubation. Fitting IC50(t�) values to the Krippendorff model resulted in an overesti-
mation of kinact and an overestimation of the overall inactivation potency kinact/KI

(Fig. 13B).

This method is not compatible with ligand binding competition assays (such as the
Lanthascreen kinase binding assay) where inhibitor binding competes with ligand
(tracer) binding to form enzyme-ligand complex EL as the detectable product (Fig.
13C). The enzyme-ligand equilibrium after incubation in presence of inhibitor re-
flects the current inhibitor competition and is unaffected by binding equilibria prior
to read-out (not cumulative). Furthermore, unbound enzyme is not released after for-
mation of product EL, thereby limiting the product formation to a single turnover
per enzyme. Fitting IC50(t) values obtained in ligand-binding assays (simulated with
kcat = 0) to the Krippendorff model result in overestimation of kinact and/or unstable
parameters.

Mons et al.
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BASIC DATA
ANALYSIS
PROTOCOL 2

Two-Step Irreversible Covalent Inhibition

Processing of raw data obtained with Basic Protocol I or Basic Protocol II for two-step
irreversible covalent inhibitors.

1. Plot signal F against incubation time t.

Plot cumulative signal (in AU) on the Y-axis against incubation time (in s) on the
X-axis for each inhibitor concentration and for the controls (Fig. 12B). Label the
columns with the inhibitor concentration (in M). It is not possible to algebraically
correct for spontaneous loss of enzyme activity. Validate that the product formation
in the uninhibited control Fctrl is linear (vi = vs) by performing steps 1-3 of Basic
Data Analysis Protocol 1A with kobs = kctrl. Consult Table 3 for troubleshooting of
nonlinearity of the uninhibited control.

2. Perform background correction.

Correct for assay artifacts such as fluorescence bleaching and drift that cause a de-
clining signal in the fully inhibited control. This correction can be subtraction of the
time-dependent background in absence of enzyme but in presence of substrate (and
inhibitor), or subtraction of the fully inhibited control.

3. Transpose to plot signal F against inhibitor concentration [I].

For each incubation time, transpose the X and Y values to plot signal Ft (in AU) on
the Y-axis against inhibitor concentration (in M) on the X-axis. Also include product
formation in the uninhibited control Fctrl ([I] = 0).

4. Normalize Ft/Fctrl.

Normalize Ft (in AU) to lowest value = 0 (in AU) and highest value = uninhibited
product formation Fctrl (in AU) to obtain fractional product formation in presence of
inhibitor Ft/Fctrl (Fig. 12C). Consult the guidelines of your data fitting software for
instructions on data normalization to the positive and negative controls (GraphPad;
see Internet Resources).

5. Plot and fit Ft/Fctrl against [I] to obtain the incubation time–dependent potency
IC50(t).

Plot the dose-response curve of fractional signal Ft/Fctrl against inhibitor concen-
tration (in M), and fit to four-parameter nonlinear regression Hill Equation XII
(Copeland, 2013e) to obtain the incubation time–dependent potency IC50(t) (in M)
(Fig. 12C). Use the inhibitor concentration during incubation: after reaction initia-
tion by enzyme addition but before (optional) addition of development solution (Basic
Protocol II, step 3).

Ft
Fctrl

= 1

1 +
�
IC50(t )
[I]

�h

Equation XII

Equation XII for nonlinear regression of four-parameter dose-response equation Y
= Bottom + (Top-Bottom)/(1 + (IC50/X)ˆHillSlope) with Y =
fractional product signal Ft/Fctrl (unitless), X = inhibitor concentration [I] (in M),
Bottom = normalized fully inhibited product signal = 0 (unitless), and Top = nor-
malized uninhibited product signal Fctrl /Fctrl = 1 (unitless) to find Hillslope = Hill
coefficient h (unitless) and IC50= incubation time–dependent potency IC50(t) (inM).

6. Plot and fit IC50(t) against t to obtain kinact and KI.

Plot the mean and standard deviation of IC50(t) (in M) on the Y-axis against incu-
bation time t (in s) on the X-axis (Fig. 12D). The rate of covalent bond formation at Mons et al.
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saturating inhibitor concentration kinact and inactivation constant KI are obtained by
solving implicit Equation IV (Krippendorff et al., 2009) (Fig. 12E). Use the substrate
concentration during incubation (Basic Protocol II, step 3): after reaction initiation by
enzyme addition but before (optional) addition of development/quenching solution.
It is important that the Michaelis constant KM be accurate for the reaction conditions
(buffer, temperature, substrate), as this value is directly used to correct inactivation
constant KI for substrate competition. Consult the guidelines of your data-fitting soft-
ware (GraphPad; see Internet Resources for website) for instructions on solving im-
plicit equations (where Y appears on both sides of the equal sign). Proceed to Sample
Calculation 2 to calculate irreversible covalent inhibitor potency kinact/KI (inM−1s−1)
with propagation of error.

IC50 (t ) = KI

�
1 + [S]0

KM

	 �
2 − 2e−ηkinactt

ηkinactt
− 1

	
with η = IC50 (t )

KI

�
1 + [S]0

KM

�
+ IC50 (t )

Equation IV

Equation IV for nonlinear regression of user-defined implicit equation
Y=(KI*(1+(S/KM)))*(((2-(2*EXP(- (Y/((KI*(1+(S/KM)))+
Y))*kinact*X)))/((Y/((KI*(1+(S/KM)))+Y))*kinact*X))-1),
with Y = incubation time–dependent potency IC50(t) (in M), X = incubation time
t (in s), S = maximum unbound substrate concentration at reaction initiation [S]0
(in M), and KM = Michaelis constant KM (in M) to find kinact = inactivation rate
constant kinact (in s−1) and KI = inactivation constant KI (in M).

7. Optional: Validate experimental kinetic parameters with kinetic simulations.

Proceed to Kinetic Simulations 1 to compare the experimental read-out to the prod-
uct formation simulated with scripts KinGen and KinDeg (using experimental rate
constant kinact = k5) to confirm that the calculated kinetic constants are in accordance
with the experimental data and found IC50(t) values.

METHOD III: PREINCUBATION TIME–DEPENDENT INHIBITION
WITHOUT DILUTION

Preincubation of enzyme and inhibitor prior to initiation of product formation by addition
of substrate is an established method for kinetic analysis of slow-binding (ir)reversible
(covalent) inhibitors (Copeland, 2013b; Ito et al., 1998). In the benchmark protocol by Ito
and co-workers, a low substrate concentration ([S] << KM) is added in a relatively small
volume (Vsub << Vt�) to keep the noncovalent enzyme-inhibitor E + I <-> EI equi-
librium intact. However, (partial) disruption of the noncovalent equilibrium does not af-
fect the accuracy of preincubation experiments for irreversible inhibition, as is illustrated
by Method IV. Product formation is inhibited by formation of EI and EI* during prein-
cubation in absence of competing substrate (Fig. 14A). Preincubation time–dependent
product formation velocity vt� reflects the total inhibition by noncovalent as well as cova-
lent inhibitor binding, and is calculated after a relatively short incubation time (t << t�)
to minimize additional (time-dependent) inhibition of enzyme activity during incubation
resultant from enzyme-inhibitor complex/adduct formation during incubation (Fig. 14B).
Enzyme activity after preincubation in the presence of time-dependent inhibitors vt� de-
creases exponentially from rapid (initial) equilibrium Ki

app (Y-intercept: vi) to reach a
plateau at reaction completion (t� > 5t½), corresponding to the steady-state equilibrium
(vs > 0) or inactivation (vs = 0) (Fig. 14C). Observed rate of reaction completion kobs
(from enzyme activity without preincubation vi to final enzyme activity vs) is obtained by
fitting to bounded exponential decay Equation V (Fig. 14D). Importantly, this equation
fits enzyme activity vt� (in AU/s) rather than directly fitting product signal F (in AU).Mons et al.
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Figure 14 Method III: Preincubation time–dependent inhibition without dilution. Simulated with
KinGen for 1 pM enzyme and 100 nM substrate S1. (A) Enzyme is preincubated with inhibitor to
form noncovalent complex EI and covalent adduct EI* in absence of competing substrate, followed
by addition of substrate.Addition of a low substrate concentration in a small volume to avoid disrup-
tion of the noncovalent E + I <-> EI equilibrium.Simulated for 50 nM inhibitor C with preincubation
t� = 1800 s. (B) Preincubation time–dependent enzyme activity vt� is obtained from the slope of (ini-
tial) linear product formation velocity with a short incubation time t relative to preincubation t� to min-
imize �EI* formation after substrate addition. This measurement is performed separately for each
preincubation time, thus requiring more material than incubation time–dependent inhibition proto-
cols with continuous product read-out. Simulated for 50 nM inhibitor C with preincubation t� = 1800
s. (C) Enzyme activity vt� of time-dependent inhibitors decreases exponentially from rapid (initial)
equilibrium Ki

app (Y-intercept = enzyme activity without preincubation vi) to reaching reaction com-
pletion (t� > 5t½): inactivation for irreversible inhibitors (vs = 0) and steady-state equilibrium Ki

*app

for reversible inhibitors (vs > 0). Enzyme activity without preincubation vi equals the uninhibited en-
zyme activity vctrl for one-step inhibitors and for two-step inhibitors at non-saturating concentration
([I] << Ki

app). Simulated for 50 nM one-step reversible inhibitor A, two-step reversible inhibitor B,
one-step irreversible inhibitor D, and two-step irreversible inhibitor C. (D) General bounded expo-
nential decay Equation V to fit preincubation time–dependent enzyme activity vt� (in AU/s) against
preincubation time t� (in s). Parameters are constrained depending on the inhibitor binding mode.
Irreversible inhibition: vs = 0 (inactivation at reaction completion).One-step inhibition: vi = vctrl (non-
covalent complex is not significant at non-saturating inhibitor concentrations). vt� = preincubation
time–dependent enzyme activity (in AU/s). vi = Enzyme activity based without preincubation (in
AU/s). vs = Enzyme activity after preincubation (t� > 5t½) based on reaching reaction completion
(in AU/s). t� = preincubation time of enzyme and inhibitor before substrate addition (in s). kobs =
observed rate of time-dependent inhibition from initial vi to final vs (in s−1).

Algebraic analysis by linear regression to obtain kobs from the (initial) linear slope of
LN(enzyme activity) against preincubation time t� is still frequently reported. This is
probably because linear regression is part of benchmark protocols (Ito et al., 1998; Kitz &
Wilson, 1962) for kinetic analysis of preincubation time–dependent enzyme inactivation.
It is important to note that these benchmark protocols were published before dedicated
data analysis software for nonlinear regressionwas available (Perrin, 2017). Visualization
of this ‘linear’ relationship is possible by plotting the enzyme activity against preincuba-
tion time t� on a semilog scale (illustrated in Fig. S1 in Supporting Information).

Preincubation assays are generally disfavored because their experimental execution re-
quires more material and is more laborious than substrate competition assays with con-
tinuous read-out (Method I and II). Here, substrate has to be added after the indicated
preincubation time, thus requiring multiple individual measurements for each inhibitor Mons et al.
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concentration. However, preincubation experiments are still favored when reaction
completion is too slow for detection during the normal time course of an substrate compe-
tition assay (t<< t½ inMethod I): substrate competition reduces the (covalent) reaction
rate and inhibitor solubility limits the maximum inhibitor concentration. Instead, prein-
cubation is performed in the absence of competing substrate, thus reaching the maximum
reaction rate at a low inhibitor concentration. Therefore, preincubation experiments are
frequently conducted for compounds that display one-step irreversible inhibition behav-
ior because they have a poor noncovalent affinity, such as covalent fragments (Kathman
& Statsyuk, 2019). Additionally, preincubation times can exceed the maximum incuba-
tion time of progress curve analysis, which is limited by linear product formation ([P]t >
0.1[S]0), as the onset of product formation does not start until preincubation is completed.

This method is less suitable for enzymatic assays with a relatively slow uninhibited prod-
uct formation velocity vctrl, as assay sensitivity might be insufficient to produce enough
product signal Ft during a short incubation time. Reaction completion (t� > 5t½) and/or
full inhibition (vt� = 0) should not be reached before the first (shortest) preincubation
time because it will be impossible to detect time-dependent changes in enzyme activity.
This can be resolved by increasing the measurement interval (shorter dt�), reduction of
the inhibitor concentration, or selection of a different experimental protocol. This method
is compatible with two-step irreversible inhibition (Data Analysis 3A) and one-step ir-
reversible inhibition (Data Analysis 3B), but also with (two-step) reversible inhibition
(Data Analysis 3C).

The protocol below provides a generic set of steps to accomplishing this type of mea-
surement. Specific reagents, and assay conditions for preincubation time–dependent in-
hibition of irreversible covalent papain inhibitor fragments can be found in this reference
(Kathman et al., 2014).

Materials

1× Assay/reaction buffer supplemented with co-factors and reducing agent
Active enzyme, 2× solution in assay buffer
Substrate with continuous or quenched read-out, 11× solution in assay buffer
Positive control: vehicle/solvent as DMSO stock, or 2% solution in assay buffer
Negative control: known inhibitor or alkylating agent as DMSO stock, or 2×

solution in assay buffer
Inhibitor: as DMSO stock, or serial dilution of 2× solution in assay buffer with 2%

DMSO
Optional: Development/quenching solution
1.5 ml (Eppendorf) microtubes to prepare stock solutions
384-well low volume microplate with nonbinding surface (e.g., Corning 3820 or

4513) for preincubation and/or read-out
General microplate cover/lid (e.g., Corning 6569 Microplate Aluminum Sealing

Tape) if preincubation is conducted in a microplate
Optional: 96-well microplate to prepare serial dilution of inhibitor concentration
Optional:Microtubes to perform preincubations (e.g., Eppendorf Protein Lobind

Microtubes, #022431018)
Microplate reader equipped with appropriate filters to detect product formation

(e.g., CLARIOstar microplate reader)
Optional: Automated (acoustic) dispenser (e.g., Labcyte ECHO 550 Liquid

Handler acoustic dispenser)

BASIC
PROTOCOL III

Preincubation Time–Dependent Inhibition Without Dilution

Before you start, optimize assay conditions in the uninhibited control to ensure com-
pliance with assumptions and restrictions, as outlined in the Critical Parameters:Mons et al.

42 of 85

Current Protocols



Assumptions on Experimental Assay Conditions section and Basic Protocol I. Consult
Table 3 in the troubleshooting section for common optimization and troubleshooting
options. Specific adjustments for Method III are that substrate concentration should be
relatively low ([S]0 << KM) to minimize disruption of the noncovalent E + I <->
EI equilibrium or reduction of reaction rates by competition (Fig. 14A); adjustment of
the enzyme concentration might be required to ensure that maximum 10% of the sub-
strate is processed during the read-out ([P]t < 0.1[S]0) and product formation is linear in
the uninhibited control. Furthermore, incubation time t must be relatively short to mini-
mize additional time-dependent enzyme inhibition after substrate addition. As a rule of
thumb, incubation must be much shorter than the shortest preincubation (t<< t�), unless
the product formation read-out is continuous (more details in Data Analysis 3, step 3).
Validate that enough product is formed for a good signal/noise ratio (Z� > 0.5) by calcu-
lating the Z�-score from the uninhibited and inhibited controls (ideally 8 replicates) in a
separate experiment (Zhang et al., 1999). This method is compatible with homogeneous
(continuous) assays but also with assays that require a development/quenching step to
visualize formed product. Note that this protocol was designed for preincubation and
read-out in a 384-well microplate.

1. Add inhibitor or control (e.g., 0.2 μl) and assay buffer (e.g., 10 μl) to each well with
the uninhibited control for full enzyme activity containing the same volume vehi-
cle/solvent instead of inhibitor as outlined in step 1 of Basic Protocol I.

Gently shake to mix DMSO with the aqueous buffer. Typically, measurements are
performed in triplicate (or more replicates) with at least 8 inhibitor concentrations for
at least 5 preincubation times. Inhibitor concentrations might need optimization, but
a rational starting point is to use inhibitor concentrations below 5 times the IC50 at the
shortest preincubation time t�: inhibition is expected to improve in a time-dependent
manner and the best results are obtained when full inhibition is not achieved already
at the shortest preincubation time (Fig. 14C). Alternatively, larger-volume preincuba-
tions (e.g.,>200 μl) can be performed in (Eppendorf) microtubes fromwhich aliquots
(e.g., 20.2 μl) are transferred to a microplate after the indicated preincubation time.
Whether preincubation is performed in a tube or microplate is a matter of personal
preference, compatibility with lab equipment and automation, and convenience of
dispensing small volumes.

2. Add active enzyme in assay buffer to each well (e.g., 10 μl of 2× solution) or tube to
start preincubation of enzyme with inhibitor and homogenize the solution by gently
shaking (1 min at 300 rpm). Alternatively, dispensing the enzyme at a high flow rate
will also mix the components.

The order of enzyme and inhibitor addition is not important per se, as long as DMSO
stocks are added prior to buffered (aqueous) solutions. Inhibitor must be present in
excess during preincubation ([I]0 > 10[E]0). Optionally, gently centrifuge the plate
or microtubes (1 min at 1000 rpm) to ensure assay components are not stuck at the
top of the well.

3. Seal the wells with a cover or lid, and close the caps of microtubes to prevent evapo-
ration of assay components during preincubation.

4. Optional: Transfer aliquots (e.g., 20.2 μl) from the reaction mixture to the microplate
after completion of preincubation if performed in larger volumes.

5. Add substrate in assay buffer (e.g., 2 μl of 11× solution) to (at least) three designated
replicates after preincubation time t�.

Typically, preincubation can run anywhere from several minutes to hours depending
on the enzyme stability and anticipated inhibitor potency, with superior accuracy if Mons et al.
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the preincubation time is monitored precisely. Substrate should be added in a neg-
ligible volume (Vsub < 0.1Vt�) to minimize disruption of the noncovalent equilibria
by dilution (Vt = Vt�) (Fig. 14A). Because at steady-state the equilibrium can be dis-
rupted by dilution in too much competitive substrate, keep the substrate volume Vsub

and substrate concentration low ([S]0 < 0.1KM) for successful analysis of two-step
reversible inhibitors (Data Analysis 3C). Optionally, homogenize the solutions by
gentle shaking (300 rpm) and centrifuge the plate or microtubes (1 min at 1000 rpm)
to ensure that assay components are not stuck at the top of the well.

6. Quenching: Add development solution to the reaction mixture in the microplate to
quench the product formation reaction if read-out of product formation requires a
development/quenching step to visualize formed product after incubation time t.

Follow manufacturer’s advice on waiting time after addition of development solu-
tion before read-out. Incubation time t is the elapsed time between onset of product
formation by substrate addition (step 5) and addition of development/quenching solu-
tion (step 6). A possible advantage to the use of a quenched assay is the possibility to
store the samples after addition of quenching/development solution (step 6) and mea-
sure product formation (step 7) in all samples after completion of the final preincuba-
tion rather than performing multiple separate measurements (after each preincubation
time).

7. Measure formed product after incubation by detection of the product read-out in mi-
croplate reader.

Incubation time (after substrate addition) is relatively short (t<< LN(2)/kobs) to min-
imize additional (time-dependent) inhibition of enzyme activity during incubation
(Fig. 14B).

8. Repeat Basic Protocol III, steps 4-7 for at least another four preincubation times.

Preincubation time t� is the elapsed time between onset of inhibition by mixing en-
zyme and inhibitor (step 2) and addition of substrate (step 5). A typical preincubation
assay consists of multiple hours of measuring enzyme activity every 5-30 min, de-
pending on enzyme stability and inhibitor reaction rates. Best results are obtained if
the incubation time t used to calculate enzyme activity is kept constant at all preincu-
bation times.

9. Proceed to Basic Data Analysis Protocol 3 to convert the raw experimental data into
preincubation time–dependent enzyme activity.

BASIC DATA
ANALYSIS

PROTOCOL 3

Preincubation Time–Dependent Inhibition Without Dilution

Processing of raw experimental data obtained with Basic Protocol III for all inhibitor
binding modes illustrated in Figure 1.

1. Plot signal F against incubation time t.

Plot signal F (in AU) on the Y-axis against the incubation time (in s) on the X-axis
for each inhibitor concentration and for the controls (Fig. 14B).Do this separately for
each preincubation time. Proceed to step 3 of this protocol for continuous read-out
assays that require a longer incubation time to produce enough product for a good
signal/noise ratio.

2. Fit Ft against t to obtain vt� .

Fit signal F (in AU) against incubation time t (in s) to Equation XIII (Fig. 15B/Fig.
16B, left) to obtain preincubation time–dependent product formation velocity vt� (in
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AU/s) from the linear slope. Consult Table 3 for troubleshooting if product formation
is not linear.

Ft = F0 + vt�t

Equation XIII

Equation XIII for nonlinear regression of straight line Y = YIntercept +
Slope*X with Y = signal Ft (in AU) and X = incubation time t (in s) to find YInter-
cept= background signal at reaction initiation F0 (in AU) and Slope= preincubation
time–dependent product formation velocity vt� (in AU/s).

3. Alternative for continuous: Fit Ft against t to obtain vt� .

This is an alternative method to obtain vt� from the initial velocity for assays with a
continuous readout, using the initial velocity in progress curve analysis (Method I).
Fit signal Ft against incubation time t to exponential association Equation XIV (Fig.
15B/Fig. 16B, right) to obtain preincubation time–dependent product formation ve-
locity vt� (in AU/s) from the initial velocity. This resolves issues with low signal/noise
ratios for continuous read-out assays where vt� is not linear (due to additional covalent
modification during the incubation) by allowing longer incubation times to produce
sufficient signal.

Ft = vst +
vt� − vs

k

�
1 − e−kt

�
+ F0

Equation XIV

Equation XIV for nonlinear regression of user-defined explicit equation Y =
(vs*X) + (((vi-vs)/kobs)*(1-EXP(-kobs*X))) + Y0 with Y = sig-
nal Ft (in AU) and X = incubation time t (in s) to find Y0 = Y-intercept F0 = back-
ground signal at t = 0 (in AU), vi = initial slope = preincubation time–dependent
product formation velocity vt� (in AU/s), vs = final slope (in AU/s) and kobs = non-
linearity reaction rate k (in s−1).

4. Proceed to Data Analysis Protocols to obtain the appropriate kinetic parameters
for each covalent binding mode: Data Analysis Protocol 3Ai or 3Aii for two-step
irreversible inhibitors, Data Analysis Protocol 3Bi or 3Bii for one-step irre-
versible inhibitors, and Basic Data Analysis Protocol 3C for two-step reversible
inhibitors.

Selection of a data analysis method for inhibitors with an irreversible binding mode
depends on the desired visual representation aswell as personal preference. Generally,
Basic Data Analysis Protocols 3Ai and 3Bi have less data processing/manipulation
and are more informative for comparison of various inhibitors on a single enzyme
target, as they are compatible with assessment of inhibitor potency simultaneous
with visual assessment of time-dependent enzyme stability kctrl (Figs. 15F and 16F).
Alternative Data Analysis Protocols 3Aii and 3Bii involve normalization of the en-
zyme activity that aids visual assessment of inhibitory potency of a single inhibitor
on multiple enzyme targets (that might have a variable stability) (Figs. 15H and
16H).

Data Analysis Protocol

EXP Conditions 2-step IRREV 1-step IRREV 2-step REV

kctrl = 0 3Ai 3B 3C
kdegE = 0 3Ai/3Aii 3Bi/3Bii 3C
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Exemplary assay concentrations during preincubation and during incubation.

Concentration during preincubation t� Concentration during incubation t

[stock] V (μl) [conc]t� [stock] V (μl) [conc]t
Enzyme 2 nM 10 0.99 nM - - 0.90 nM
Inhibitor 20 nM 10.2 10.10 nM - - 9.19 nM
Substrate - - - 11 μM 2 0.99 μM
Total 20.2 22.2

Data Analysis 3A: Preincubation Time–Dependent Inhibition Without Dilution
for Two-Step Irreversible Covalent Inhibition

Time-dependent product formation is fitted to a straight line for each inhibitor concentra-
tion to obtain the enzyme activity after preincubation vt� (in AU/s) from the linear (initial)
slope (Fig. 15A and 15B, left). It is important that the incubation time be relatively short
(t < 0.1t½) to minimize artifacts caused by significant formation of covalent adduct EI*
after substrate addition (�EI*) because vt� should reflect the enzyme activity at the end
of preincubation. As a rule of thumb, incubation time t should be much shorter than the
shortest preincubation time t�. A short incubation time may result in insufficient product
formation for a robust signal, which can be resolved by increasing the incubation time
and obtaining enzyme activity vt� from the initial velocity of the exponential associa-
tion progress curve, provided that the assay is compatible with progress curve analysis
(continuous read-out) (Fig. 15B, right). Enzyme activity after preincubation vt� is fitted
to bounded exponential decay Equation V (Fig. 14D) (constraining vs = 0) for each in-
hibitor concentration to obtain the observed rate of reaction completion kobs from enzyme
activity without preincubation (Y-intercept at vi) to reaching the final enzyme inactiva-
tion (plateau at vs = 0) (Fig. 15C). Enzyme activity without preincubation in presence of
inhibitor vi is lower than the uninhibited enzyme activity vctrl for two-step (ir)reversible
inhibitors, because vi reflects the rapid noncovalent equilibrium (Ki

app) after substrate
addition (Copeland, 2013b). The plot of inhibitor concentration-dependent kobs reaches
maximum rate of inactivation kinact in presence of saturating inhibitor concentration ([I]
>> KI) with the Y-intercept at kctrl = 0 when uninhibited enzyme activity vctrl is in-
dependent of preincubation time (Fig. 15D). Inhibitor concentrations should correspond
with the inhibitor concentration during preincubation (rather than after substrate addi-
tion). Correction of inactivation constant KI for substrate competition is not necessary
because preincubation is performed in absence of substrate.

Warnings and Remarks

The rapid noncovalent E + I <-> EI equilibrium does not significantly contribute to in-
hibition at non-saturating inhibitor concentrations ([I] << Ki

app), resulting in one-step
binding behavior (Fig. 3F). This will be apparent from the observation that initial veloc-
ity vi is independent of inhibitor concentration (vi = vctrl) along with a linear plot of kobs
against [I]. This is resolved either by increasing the inhibitor concentration or performing
Data Analysis 3B. Increasing the substrate concentration can resolve issues with assay
sensitivity associated with short incubation times, as this will result in a higher product
signal. However, substrate addition in a relatively large volume (Vsub > 0.1Vt�) and/or
addition of a competitive substrate concentration ([S] > 0.1KM) causes (partial) disrup-
tion of the reversible equilibrium, although this does not affect the accuracy of kobs for
irreversible inhibitors. In fact, disruption of the noncovalent complex can be employed
to detect covalent adduct formation of two-step irreversible inhibitors that exhibit tight-
binding behavior (Copeland, 2013c; Murphy, 2004) resulting from very potent noncova-
lent inhibition, as will be discussed in Method IV.Mons et al.

46 of 85

Current Protocols



Figure 15 Data Analysis 3A:Preincubation time–dependent inhibition without dilution for two-step
irreversible covalent inhibition. Simulated with KinGen (A-D) or KinDeg (E-I) for inhibitor C with
1 pM enzyme and 100 nM substrate S1. (A) Schematic enzyme dynamics during preincubation
in absence of substrate and during incubation after substrate addition for two-step irreversible co-
valent inhibition. (B) Time-dependent product formation after preincubation in absence of inhibitor
Fctrl or in presence of inhibitor (t� = 1800 s). Left: Enzyme activity after preincubation vt� is obtained
from the linear slope if the incubation time is relatively short (t<< t�): gray area is excluded from the
fit. Right: Enzyme activity after preincubation vt� is obtained from the initial velocity of the exponen-
tial association progress curve of each inhibitor concentration. (C) Preincubation time–dependent
enzyme activity vt� is fitted to Equation V (Fig. 14D) (constraining vs = 0) for each inhibitor concen-
tration to obtain observed rates of inactivation kobs. Alternatively, vt� can be normalized to a fraction
of the uninhibited enzyme activity vctrl. (D) Inhibitor concentration–dependent kobs reaches kinact
at saturating inhibitor concentration (kmax = kinact). Half-maximum kobs = ½kinact is reached when
inhibitor concentration equals the inactivation constant KI: no correction for substrate competition
because vt� reflects the enzyme activity after preincubation in absence of competing substrate.
(E) Schematic enzyme dynamics during preincubation in absence of substrate and during incuba-
tion after substrate addition for two-step irreversible covalent inhibition with spontaneous enzyme
degradation/denaturation. Simulated with kdegE = kdegES = kdegEI = 0.0003 s−1. (F) Uninhibited en-
zyme activity after preincubation vt� ctrl is not linear. Preincubation time–dependent enzyme activity
vt� is fitted to Equation V (Fig. 14D) (constraining vs = 0) for each inhibitor concentration to obtain

(legend continues on next page)
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observed rates of inactivation kobs, as well as fitting uninhibited activity vt� ctrl to obtain the rate of
nonlinearity kctrl. (G) Inhibitor concentration-dependent kobs with spontaneous enzyme degradation
increases with kctrl but the span from kmin (= kctrl) to kmax (= kinact + kctrl) still equals kinact. Fit with
algebraic correction for nonlinearity (black line, kctrl > 0). Ignoring the nonlinearity (gray line, con-
strain kctrl = 0) results in underestimation of KI (overestimation of potency) and overestimation of
kinact. (H) Normalized enzyme activity vt� /vctrl is fitted to Equation V (Fig. 14D) (constraining vs = 0)
for each inhibitor concentration to obtain corrected observed rates of inactivation kobs. (I) Inhibitor
concentration-dependent kobs has been corrected for enzyme degradation by fitting normalized
enzyme activity vt� /vctrl and does not require further corrections.

Uninhibited enzyme activity vctrl decreases when preincubation is long enough for sig-
nificant spontaneous enzyme degradation (t� >> 0.1t½) (Fig. 15F). A simple algebraic
correction for spontaneous enzyme degradation results in good estimates for kinact and
KI if all enzyme species have the same first-order enzymatic degradation rate (kdegE =
kdegES = kdegEI) (Fig. 15G). Alternatively, normalizing the enzyme activity vt� to unin-
hibited enzyme activity vt�

ctrl at each preincubation time corrects for enzyme degradation
(Fig. 15H), and kobs obtained from normalized enzyme activity vt� /v

ctrl results in good es-
timates of kinact and KI without further correction (Fig. 15I).

BASIC DATA
ANALYSIS

PROTOCOL 3Ai

Two-Step Irreversible Covalent Inhibition

Processing of experimental data obtained with Basic Protocol III that has been processed
according to Basic Data Analysis Protocol 3 for two-step irreversible covalent inhibitors.

1. Plot vt� against preincubation time t� for each inhibitor concentration.

Plot the mean and standard deviation of vt� (in AU/s) on the Y-axis against preincu-
bation time t� (in s) on the X-axis for each inhibitor concentration and the uninhibited
control (Fig. 14C/Fig. 15C). Validate that inhibitor concentrations are not too high:
inhibition should be less than 100% at the shortest t� for at least six inhibitor concen-
trations. Check whether the uninhibited enzyme activity is independent of preincuba-
tion time (v0ctrl = vt�

ctrl, Fig. 15C): an algebraic correction for enzyme instability (kctrl
> 0, Fig. 15F) can be performed in step 4 of this protocol by accounting for nonlin-
earity in the uninhibited control in the secondary kobs plot (Fig. 15G). Alternatively,
proceed to Alternative Data Analysis Protocol 3Aii to correct for enzyme instability
(v0ctrl > vt�

ctrl) by normalization of the enzyme activity vt� /vt�
ctrl (Fig. 15H-I).

2. Fit vt� against preincubation time t� to obtain kobs.

Fit the mean and standard deviation of vt� against preincubation time t� (Fig. 15C/F)
to Equation V. Constrain vs = value in fully inhibited control to obtain the observed
reaction rate kobs (in s−1) from initial velocity vi (Y-intercept) to full inactivation
(Plateau = 0). A lack of initial noncovalent complex (vi = v0ctrl) is indicative of one-
step binding behavior.

vt� = vs + (vi − vs) e
−kobst�

Equation V

Equation V for nonlinear regression of exponential one-phase decay equation Y
= (Y0-Plateau)*EXP(-k*X) + Plateau with Y = preincubation time–
dependent product formation velocity vt� (in AU/s), X = preincubation time t� (in
s), and Plateau = final velocity in the fully inhibited control vs (in AU/s) to find Y0
= Y-intercept = initial velocity vi (in AU/s) and k = observed reaction rate kobs (in
s−1).

3. Plot kobs against [I].

Plot the mean and standard deviation of kobs (in s−1) on the Y-axis against inhibitor
concentration (inM) during preincubation (before addition of substrate) on theX-axis
(Fig. 15D/G). The plot of kobs against [I] should reach a maximum kobs at saturating
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inhibitor concentration. Note that a linear curve is indicative of one-step binding be-
havior at non-saturating inhibitor concentrations ([I] << 0.1KI in Fig. 3F) with vi =
v0ctrl (shared Y-intercept in the previous step). Proceed to Basic Data Analysis Pro-
tocol 3Bi step 4 after it has been validated that the linear curve is not resultant from
saturating inhibitor concentrations ([I] >> 10KI in Fig. 3G) as identified by vi <<

v0ctrl, by repeating the measurement with lower inhibitor concentrations.

4. Fit kobs against [I] to obtain kinact and KI.

Fit kobs (in s−1) against inhibitor concentration during preincubation (in M) to Equa-
tion XV to obtain maximum inactivation rate constant kinact (in s−1) and inactivation
constant KI (in M). Constrain kctrl = kobs of the uninhibited control (Fig. 15G). Inac-
tivation constant KI does not have to be corrected for substrate competition because
preincubation is conducted in absence of competing substrate. Calculate irreversible
covalent inhibitor potency kinact/KI (in M−1s−1) with propagation of error with Sam-
ple Calculation 2.

kobs = kctrl +
kinact [I]

KI + [I]
Equation XV

Equation XV for nonlinear regression of user-defined explicit equation Y = Y0 +
((kmax*X)/((KI) + X))with Y= observed reaction rate kobs (in s−1) and X=
inhibitor concentration during preincubation (in M) to find Y0 = rate of nonlinearity
in uninhibited control kctrl (in s−1), kmax = maximum reaction rate kinact (in s−1) and
KI = Inactivation constant KI (in M).

5. Optional: Validate experimental kinetic parameters with kinetic simulations.

Proceed to Kinetic Simulations 1 to compare the experimental read-out to the prod-
uct formation simulated with scripts KinGen and KinDeg (using experimental rate
constant kinact = k5) to confirm that the calculated kinetic constants are in accordance
with the experimental data. Also perform simulations with KinVol and KinVolDeg
to confirm that addition of substrate does not significantly affect the noncovalent in-
teractions.

ALTERNATIVE
DATA
ANALYSIS
PROTOCOL 3Aii

Two-Step Irreversible Covalent Inhibition

Processing of experimental data obtained with Basic Protocol III that has been processed
according to Basic Data Analysis Protocol 3 for two-step irreversible covalent inhibitors.

1. Plot vt� against preincubation time t� for each inhibitor concentration.

Plot the mean and standard deviation of vt� (in AU/s) on the Y-axis against preincu-
bation time t� (in s) on the X-axis for each inhibitor concentration and the uninhibited
control (Fig. 14C/Fig. 15C). Validate that inhibitor concentrations are not too high:
inhibition should be less than 100% at the shortest t� for at least six inhibitor concen-
trations.

2. Normalize vt� to obtain vt� /v
ctrl.

Normalize vt� (in AU/s) of each inhibitor concentration and the controls to low-
est value = 0 (or full inhibition control) and highest value = uninhibited product
formation vt�

ctrl (in AU/s) to obtain normalized enzyme activity vt� /v
ctrl (Fig. 15H).

Perform this correction separately for each preincubation time.

3. Plot and fit vt� /v
ctrl against preincubation time t� to obtain kobs.

Plot the mean and standard deviation of vt� /v
ctrl on the Y-axis against preincubation

time t� (in s) on the X-axis (Fig. 15H). Fit to exponential decay Equation XVI to obtain Mons et al.
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kobs (in s−1) from initial velocity vi/v0ctrl to full inactivation (Plateau = 0). A lack of
initial noncovalent complex (vi/v0ctrl = 1) is indicative of one-step binding behavior.



vt�

vctrlt�

�
=



vi
vctrl0

�
e−kobst

�

Equation XVI

Equation XVI for nonlinear regression of exponential one-phase decay equation Y =
(Y0-Plateau)*EXP(-k*X) + Plateau with Y = normalized preincubation
time–dependent product formation velocity vt� /v

ctrl (unitless), X= preincubation time
t� (in s), and Plateau = normalized final velocity vs/vsctrl = 0 (unitless) to find Y0 =
Y-intercept= normalized initial velocity vi/v0ctrl (unitless) and k= observed reaction
rate kobs (in s−1).

4. Plot kobs against [I].

Plot the mean and standard deviation of kobs (in s−1) on the Y-axis against inhibitor
concentration (in M) during preincubation (before addition of substrate) on the X-
axis (Fig. 15I). The plot of kobs against [I] should have a Y-intercept = 0, and reach
a maximum kobs at saturating inhibitor concentration. Note that a linear curve is in-
dicative of one-step binding behavior at non-saturating inhibitor concentrations ([I]
<< 0.1KI in Fig. 3F) with vi = v0ctrl (shared Y-intercept = 1 in the previous step).
Proceed to Basic Data Analysis Protocol 3Bii step 5 after it has been validated that
the linear curve is not resultant from saturating inhibitor concentrations ([I] >> 10KI

in Fig. 3G) as identified by vi << v0ctrl (shared Y-intercept = 0 in the previous step),
by repeating the measurement with lower inhibitor concentrations.

5. Fit kobs against [I] to obtain kinact and KI.

Fit kobs against inhibitor concentration during preincubation to Equation XVII to ob-
tain maximum inactivation rate constant kinact (in s−1) and inactivation constant KI (in
M) (Fig. 15I). Do not correct for enzyme instability (kctrl > 0), as this correction has
already been performed by normalizing vt� to vt� /v

ctrl in step 2 of this protocol. Inac-
tivation constant KI does not have to be corrected for substrate competition because
preincubation is conducted in absence of competing substrate. Calculate irreversible
covalent inhibitor potency kinact/KI (in M−1s−1) with propagation of error with Sam-
ple Calculation 2.

kobs = kinact [I]

KI + [I]
Equation XVII

Equation XVII for nonlinear regression of user-defined explicit equation Y = Y0
+ ((kmax*X)/((KI) + X))with Y= observed reaction rate kobs (in s−1), X=
inhibitor concentration during preincubation (in M) and Y0 = 0 (in s−1) to find kmax
= maximum reaction rate kinact (in s−1) and KI = Inactivation constant KI (in M).

6. Optional: Validate experimental kinetic parameters with kinetic simulations by pro-
ceeding to Basic Data Analysis Protocol 3Ai, step 5.

Data Analysis 3B: Preincubation Time–Dependent Inhibition Without Dilution
for One-Step Irreversible Covalent Inhibition

Time-dependent product formation is fitted to a straight line for each inhibitor concen-
tration to obtain the enzyme activity after preincubation vt� (in AU/s) from the linear
slope (Fig. 16A and 16B, left). Incubation must be short enough to minimize formation
of covalent adduct EI* after substrate addition (t << t½); otherwise kchem will be over-
estimated. Similar toData Analysis 3A, preincubation-dependent enzyme activity vt� can
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Figure 16 Data Analysis 3B: Preincubation time–dependent inhibition without dilution for one-
step irreversible covalent inhibition. Simulated with KinGen (A-D) or KinDeg (E-I) for inhibitor D
with 1 pM enzyme and 100 nM substrateS1. (A) Schematic enzyme dynamics during preincubation
in absence of substrate and during incubation after substrate addition for one-step irreversible co-
valent inhibition. (B) Time-dependent product formation after preincubation in absence of inhibitor
Fctrl or in presence of inhibitor (t� = 1800 s). Left: Enzyme activity after preincubation vt� is obtained
from the linear slope if the incubation time is relatively short (t<< t�): gray area is excluded from the
fit. Right: Enzyme activity after preincubation vt� is obtained from the initial velocity of the exponen-
tial association progress curve of each inhibitor concentration. (C) Preincubation time–dependent
enzyme activity vt� is fitted to Equation V (Fig. 14D) (constraining vs = 0) for each inhibitor con-
centration to obtain observed rates of inactivation kobs. vi = vctrl for one-step irreversible inhibitors
and two-step irreversible inhibitors at non-saturating concentrations ([I] << Ki

app). Alternatively, vt�
can be normalized to a fraction of the uninhibited enzyme activity vctrl. (D) Inhibitor concentration–
dependent kobs increases linearly with inhibitor concentration, with kchem as the slope.No correction
for substrate competition because vt� reflects the enzyme activity after preincubation in absence
of competing substrate. (E) Schematic enzyme dynamics during preincubation in absence of sub-
strate and during incubation after substrate addition for one-step irreversible covalent inhibition with
spontaneous enzyme degradation/denaturation. Simulated with kdegE = kdegES = kdegEI* = 0.0003
s−1. (F) Uninhibited enzyme activity after preincubation vt� ctrl is not linear: kctrl > 0. Preincubation
time–dependent enzyme activity vt� is fitted to Equation V (Fig.14D) (constraining vs = 0 and shared

(legend continues on next page)
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value for vi = uninhibited enzyme activity without preincubation v0ctrl) for each inhibitor concentra-
tion to obtain observed rates of inactivation kobs, as well as fitting uninhibited activity vt� ctrl to obtain
the rate of nonlinearity kctrl. (G) Inhibitor concentration–dependent kobs with spontaneous enzyme
degradation/denaturation increases by kctrl. Fit with algebraic correction for nonlinearity (black line,
kctrl > 0) or ignoring nonlinearity (gray line, constrain kctrl = 0). Ignoring the nonlinearity (assuming
Y-intercept = 0) results in overestimation of kchem (steeper slope). (H) Normalized enzyme activ-
ity vt� /vctrl is fitted to Equation V (Fig. 14D) (constraining vs = 0 and Y-intercept = vi/v0ctrl = 1)
for each inhibitor concentration to obtain corrected observed rates of inactivation kobs. (I) Inhibitor
concentration-dependent kobs has been corrected for enzyme degradation/denaturation by fitting
normalized enzyme activity vt� /vctrl and does not require further corrections.

also be obtained from the initial velocity of the exponential association progress curve,
provided that the read-out is continuous (Fig. 16B, right). Enzyme activity after preincu-
bation vt� is fitted to bounded exponential decay Equation V (Fig. 14D) to obtain observed
rate of reaction completion kobs from uninhibited enzyme activity without preincubation
(Y-intercept at vi = vctrl) to reaching the final enzyme inactivation (constraining vs =
0) (Fig. 16C). Inhibited enzyme activity without preincubation is equal to uninhibited
enzyme activity (vi = vctrl), as rapid noncovalent inhibitor binding does not contribute
to enzyme inhibition by one-step irreversible inhibitors. The slope of the linear plot of
kobs against inhibitor concentration during preincubation is equal to kchem (Fig. 16D),
which should not be corrected for substrate competition as preincubation is performed in
absence of competing substrate.

Warnings and remarks

Substrate addition in a relatively large volume (Vsub > 0.1Vt�) and/or addition of a com-
petitive substrate concentration ([S] > 0.1KM) does not significantly affect the accuracy
of kobs because one-step irreversible inhibition does not involve a rapid noncovalent equi-
librium that can be disrupted (also seeMethod IV). Increasing the substrate concentration
can resolve issues with assay sensitivity: higher substrate concentration results in a higher
product concentration after the same incubation time (vctrl = Vmax[S]/([S]+KM)), which
in turn will result in a better signal to noise ratio.

Uninhibited enzyme activity vctrl decreases with longer preincubation due to spontaneous
enzyme degradation (Fig. 16E and 16F). This especially affects assays where preincuba-
tion is long enough for significant enzyme degradation (t� > 0.1t½). Algebraic correction
for spontaneous enzyme degradation (kdegE = kdegES) in the secondary kobs plot is rela-
tively simple (Fig. 16G). Alternatively, correction for enzyme degradation is performed
by normalizing enzyme activity vt� to uninhibited enzyme activity vt�

ctrl at each preincu-
bation time (Fig. 16H and 16I). Stabilization of enzyme upon inhibitor binding (kdegEI*
< kdegE) does not affect kobs, as EI* formation is already irreversible thus removing the
species from the available pool of catalytic enzyme.

BASIC DATA
ANALYSIS

PROTOCOL 3Bi

One-Step Irreversible Covalent Inhibition

Processing of experimental data obtained with Basic Protocol III that has been pro-
cessed according to Basic Data Analysis Protocol 3 for one-step irreversible covalent
inhibitors and two-step irreversible inhibitors at non-saturating inhibitor concentrations
([I] ≤ 0.1KI).

1. Plot vt� against preincubation time t� for each inhibitor concentration.

Plot the mean and standard deviation of vt� (in AU/s) on the Y-axis against prein-
cubation time t� (in s) on the X-axis for each inhibitor concentration and the unin-
hibited control (Fig. 14C/Fig. 16C). Validate that inhibitor concentrations are not too
high: inhibition should be less than 100% at the shortest t� for at least six inhibitor
concentrations. Check whether the uninhibited enzyme activity is independent ofMons et al.
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preincubation time (v0ctrl = vt�
ctrl, Fig. 16C): an algebraic correction for enzyme in-

stability (kctrl > 0, Fig. 16F) can be performed in step 4 of this protocol by accounting
for nonlinearity in the uninhibited control in the secondary kobs plot (Fig. 16G). Alter-
natively, proceed to Alternative Data Analysis Protocol 3Bii to correct for enzyme in-
stability (v0ctrl > vt�

ctrl) by normalization of the enzyme activity vt� /vt�
ctrl (Fig. 16H-I).

2. Fit vt� against preincubation time t� to obtain kobs.

Fit the mean and standard deviation of vt� against preincubation time t� (Fig. 16C/F)
to Equation V. Constrain vs = value in fully inhibited control to obtain the observed
reaction rate kobs (in s−1) from initial velocity vi (Y-intercept) to full inactivation
(Plateau = 0). A lack of initial noncovalent complex (vi = v0ctrl) is indicative of one-
step binding behavior.

vt� = vs + (vi − vs) e
−kobst�

Equation V

Equation V for nonlinear regression of exponential one-phase decay equation Y
= (Y0-Plateau)*EXP(-k*X) + Plateau with Y = preincubation time–
dependent product formation velocity vt� (in AU/s), X = preincubation time t� (in
s), and Plateau = final velocity in the fully inhibited control vs (in AU/s) to find Y0 =
Y-intercept = initial velocity vi = uninhibited initial velocity v0ctrl (in AU/s, shared
value) and k = observed reaction rate kobs (in s−1).

3. Plot kobs against [I].

Plot the mean and standard deviation of kobs (in s−1) on the Y-axis against inhibitor
concentration (inM) during preincubation (before addition of substrate) on theX-axis
(Fig. 16D/G). The plot of kobs against inhibitor concentration [I] is linear for one-
step irreversible inhibitors and for two-step irreversible inhibitors at non-saturating
inhibitor concentrations ([I] << 0.1KI).

4. Fit kobs against [I] to obtain kchem.

Fit kobs against inhibitor concentration during preincubation (inM) to EquationXVIII
to obtain inhibitor potency kchem (in M−1s−1) from the linear slope. Constrain Y-
intercept kctrl = kobs of the uninhibited control (Fig. 16G). Inhibitor potency kchem
does not have to be corrected for substrate competition because preincubation is con-
ducted in absence of competing substrate. Calculate kinact/KI (inM−1s−1) for two-step
irreversible inhibitors at non-saturating inhibitor concentrations ([I] ≤ 0.1KI) with
propagation of error with Sample Calculation 9.

kobs = kctrl + kchem [I]

Equation XVIII

Equation XVIII for nonlinear regression of straight line Y = YIntercept +
Slope*X with Y = observed reaction rate kobs (in s−1) and X = inhibitor concentra-
tion during preincubation (in M) to find YIntercept = rate of nonlinearity in uninhib-
ited control kctrl (in s−1) and Slope = inactivation rate constant kchem (in M−1s−1)

5. Optional: Validate experimental kinetic parameters with kinetic simulations.

Proceed to Kinetic Simulations 1 to compare the experimental read-out to the prod-
uct formation simulated with scripts KinGen and KinDeg (using experimental rate
constant kchem = k3) to confirm that the calculated kinetic constants are in accordance
with the experimental data. Also perform simulations with KinVol and KinVolDeg
to confirm that addition of substrate does not significantly affect the reaction rates by
dilution and/or competition. Mons et al.
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ALTERNATIVE
DATA

ANALYSIS
PROTOCOL 3ii

One-Step Irreversible Covalent Inhibition

Processing of experimental data obtained with Basic Protocol III that has been pro-
cessed according to Basic Data Analysis Protocol 3 for one-step irreversible covalent
inhibitors and two-step irreversible inhibitors at non-saturating inhibitor concentrations
([I] ≤ 0.1KI).

1. Plot vt� against preincubation time t� for each inhibitor concentration.

Plot the mean and standard deviation of vt� (in AU/s) on the Y-axis against preincu-
bation time t� (in s) on the X-axis for each inhibitor concentration and the uninhibited
control (Fig. 14C/Fig. 16C). Validate that inhibitor concentrations are not too high:
inhibition should be less than 100% at the shortest t� for at least six inhibitor concen-
trations.

2. Normalize vt� to obtain vt� /v
ctrl.

Normalize vt� (in AU/s) of each inhibitor concentration and the controls to lowest
value = 0 (or full inhibition control) and highest value = uninhibited product forma-
tion vt�

ctrl (in AU/s) to obtain normalized enzyme activity vt� /v
ctrl (Fig. 16H). Perform

this correction separately for each preincubation time.

3. Plot and fit vt� /v
ctrl against preincubation time t� to obtain kobs

Plot the mean and standard deviation of vt� /v
ctrl on the Y-axis against preincubation

time t� (in s) on the X-axis (Fig. 16H). Fit to exponential decay Equation XVI to obtain
kobs (in s−1) from initial velocity vi/v0ctrl to full inactivation (Plateau = 0). A lack of
initial noncovalent complex (vi/v0ctrl = 1) is indicative of one-step binding behavior.



vt�

vctrlt�

�
= e−kobst

�

Equation XVI

Equation XVI for nonlinear regression of exponential one-phase decay equation Y
= (Y0-Plateau)*EXP(-k*X) + Plateau with Y = normalized preincuba-
tion time–dependent product formation velocity vt� /v

ctrl (unitless), X= preincubation
time t� (in s), Y0 = Y-intercept = normalized initial velocity vi/v0ctrl =1 (unitless),
and Plateau = normalized final velocity vs/vsctrl = 0 (unitless) to find k = observed
reaction rate kobs (in s−1).

4. Plot kobs against [I].

Plot the mean and standard deviation of kobs (in s−1) on the Y-axis against inhibitor
concentration (in M) during preincubation (before addition of substrate) on the X-
axis (Fig. 16I). The plot of kobs against inhibitor concentration [I] is linear for one-
step irreversible inhibitors and for two-step irreversible inhibitors at non-saturating
inhibitor concentrations ([I] << 0.1KI).

5. Fit kobs against [I] to obtain kchem.

Fit kobs against inhibitor concentration during preincubation to Equation XIX to in-
hibitor potency kchem (in M−1s−1) from the linear slope (Fig. 16I). Do not correct for
enzyme instability (kctrl > 0), as this correction has already been performed by nor-
malizing vt� to vt� /v

ctrl in step 2 of this protocol. Inhibitor potency kchem does not have
to be corrected for substrate competition because preincubation is conducted in ab-
sence of competing substrate. Calculate kinact/KI (inM−1s−1) for two-step irreversible
inhibitors at non-saturating inhibitor concentrations ([I]≤ 0.1KI) with propagation of
error with Sample Calculation 9. Alternatively, inhibitor potency kchem (in M−1s−1)Mons et al.
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or kinact/KI (in M−1s−1) can be directly calculated from a single kobs (s−1) and [I] (in
M) with Sample Calculation 10.

kobs = kchem [I]

Equation XIX

Equation XIX for nonlinear regression of straight line Y = YIntercept +
Slope*X with Y = observed reaction rate kobs (in s−1), X = inhibitor concentration
during preincubation (in M), and YIntercept = 0 (in s−1) to find Slope = inactivation
rate constant kchem (in M−1s−1).

6. Optional: Validate experimental kinetic parameters with kinetic simulations by pro-
ceeding to Basic Data Analysis Protocol 3Bi step 5.

Data Analysis 3C: Preincubation Time–Dependent Inhibition Without Dilution
for Reversible Covalent Inhibition

Time-dependent product formation is fitted to a straight line for each inhibitor concentra-
tion to obtain the enzyme activity after preincubation vt� (in AU/s) from the linear slope
(Fig. 17A and 17B). Again, it is important that the incubation time be much shorter than
the shortest preincubation time t� (t<< t�), but enzyme activity vt� can also be calculated
from the initial velocity of the exponential association progress curve, provided that the
assay is compatible with progress curve analysis (continuous read-out). Enzyme activ-
ity after preincubation vt� is fitted to bounded exponential decay Equation V (Fig. 14D)
for each inhibitor concentration to obtain observed rate of reaction completion kobs from
rapid noncovalent equilibrium (Y-intercept at vi < vctrl) to slowly reaching steady-state
equilibrium (plateau at vs > 0) (Fig. 17C). Enzyme activity without preincubation in
presence of inhibitor vi is lower than the uninhibited enzyme activity vctrl for two-step
(ir)reversible inhibitors because vi reflects the rapid noncovalent equilibrium (Ki

app) after
substrate addition (Copeland, 2013b). Contrary to irreversible inhibition, the plateau (vs
> 0) does not approximate enzyme inactivation but reaches the steady-state equilibrium
(Ki*) instead. Steady-state inhibition constant Ki* can be calculated from the fitted val-
ues of Ki, k5 and k6 (Fig. 17D), but this is not the preferred approach as a small error in
k6 has huge implications for the calculation of Ki* (as illustrated in Fig. 9). Generally,
more reliable estimates of the steady-state inhibition constant Ki* are generated from the
dose-response curve of steady-state velocity vs against inhibitor concentration during
preincubation (Fig. 17E).

Warnings and remarks

Steady-state inhibition constant Ki* reflects the reversible E + I <-> EI + EI* equi-
librium that can be disrupted by substrate addition in a relatively large volume (Vsub >

0.1Vt�) and/or addition of a competitive substrate concentration ([S] > 0.1KM). Simu-
lations with high substrate concentration ([S] = 10KM) show that the IC50 of the dose-
response curve for steady-state velocity vs was slightly higher than steady-state inhibi-
tion constant Ki*, but still significantly lower than Ki

*app, as covalent dissociation will
not be significant as long as the incubation time is significantly shorter than the dis-
sociation half-life (t << t½diss). Altogether, fitting exponential association rather than
increasing the substrate concentration is the desired solution to resolve issues with assay
sensitivity associated with short incubation times. Alternatively, reasonable estimates of
the steady-state inhibition constant Ki* were obtained from the endpoint preincubation
time–dependent potency IC50(t�) with minimal substrate competition ([S] << KM) and
preincubation times exceeding the required time to reach reaction completion at all in-
hibitor concentrations (t� > 5t½).

As mentioned before, spontaneous loss of enzyme activity due to first-order degradation
and/or denaturation of enzyme species (kdegE = kdegES = kdegEI) results in a preincuba-
tion time–dependent decrease of uninhibited enzyme activity vctrl (Fig. 17E and 17F).
The biggest advantage of Method III over Method I (Data Analysis 1C) is that it is Mons et al.
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Figure 17 Data Analysis 3C: Preincubation time–dependent inhibition without dilution for two-
step reversible covalent inhibition.Simulated withKinGen (A-E) or KinDeg (F-J) for inhibitor Bwith
1 pM enzyme and 100 nM substrate S1. (A) Schematic enzyme dynamics during preincubation
in absence of substrate and during incubation after substrate addition for two-step reversible co-
valent inhibition. (B) Time-dependent product formation after preincubation in absence of inhibitor
Fctrl or in presence of inhibitor (t� = 1800 s). Enzyme activity after preincubation vt� is obtained from
the linear slope if the incubation time is relatively short (t << t�): gray area is excluded from the
fit. Alternatively, enzyme activity after preincubation vt� is obtained from the initial velocity of the
exponential association progress curve of each inhibitor concentration. (C) Preincubation time–
dependent enzyme activity vt� is fitted to Equation V (Fig. 14D) for each inhibitor concentration to
obtain observed rates of inactivation kobs and steady-state velocity vs (plateau> 0).Alternatively, vt�
can be normalized to a fraction of the uninhibited enzyme activity vctrl. (D) Inhibitor concentration-
dependent kobs equals kmax at saturating inhibitor concentration (kmax = k5 + k6) and approaches
k6 in absence of inhibitor (kmin = k6). Half-maximum kobs = kmin + ½(kmax - kmin) = k6 + ½k5 is
reached when inhibitor concentration equals the inhibition constant Ki. Steady-state inhibition con-
stant Ki* has to be calculated from the fitted values of k5, k6, and Ki, thus being very sensitive
to errors and (non)linearity in the uninhibited background (illustrated in Fig. 8G). No correction for
substrate competition because vt� reflects the enzyme activity after preincubation in absence of
competing substrate. (E) Steady-state inhibition constant Ki* corresponds with the IC50 of steady-
state velocity vs obtained by fitting the dose-response curve to the Hill equation (Copeland, 2013e).

(legend continues on next page)
Mons et al.
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No correction for substrate competition because vt� reflects the enzyme activity after preincubation
in absence of competing substrate. (F) Schematic enzyme dynamics during preincubation in ab-
sence of substrate and during incubation after substrate addition for two-step reversible covalent
inhibition with spontaneous enzyme degradation. Simulated with kdegE = kdegES = kdegEI = kdegEI* =
0.0003 s−1. (G) Uninhibited enzyme activity after preincubation vt� ctrl is not linear. Fitting preincuba-
tion time–dependent enzyme activity vt� to Equation V (Fig. 14D) for each inhibitor concentration
gives observed rates of inactivation kobs, as well as the rate of nonlinearity kctrl for uninhibited
activity vt� ctrl. Inhibitor concentration-dependent kobs and steady-state velocity vs will be driven by
spontaneous enzyme degradation if enzyme activity is not normalized. (H) Enzyme activity vt� is
normalized to the uninhibited enzyme activity vt� ctrl after each preincubation time before fitting to
Equation V (Fig. 14D). (I) Inhibitor concentration-dependent kobs has been corrected for enzyme
degradation/denaturation by fitting normalized enzyme activity vt� /vctrl and does not require fur-
ther corrections (even if kctrl > k6). (J) Steady-state velocity vs has been corrected for enzyme
degradation/denaturation by fitting normalized enzyme activity vt� /vctrl and does not require further
corrections (even if kctrl > k6). Final velocity vs obtained from uncorrected vt� is ‘contaminated’ by
the contribution of irreversible inactivation to the time-dependent inhibition, and does not result in
accurate estimates of steady-state inhibition constant Ki* (illustrated in Fig. 8H).

possible to perform an algebraic correction for the enzyme instability in kinetic analysis
of two-step reversible covalent inhibitors with Data Analysis 3C. Enzyme activity vt� is
normalized to uninhibited enzyme activity vt�

ctrl at each preincubation time (Fig. 17G),
and the normalized enzyme activity after preincubation vt� /v

ctrl is fitted to bounded expo-
nential decay Equation V (Fig. 14D) for each inhibitor concentration to obtain observed
rate of reaction completion kobs and steady-state velocity vs. Kinetic analysis of kobs
(Fig. 17H) and steady-state velocity vs (Fig. 17I) against inhibitor concentration during
preincubation result in good estimates of the kinetic parameters without further correc-
tion, evenwhen kctrl is faster than the covalent dissociation rate k6 (kctrl > k6).We strongly
advise that enzyme activity be normalized prior to analysis of reversible covalent inhibi-
tion even when kctrl is not directly obvious from the product formation in the uninhibited
control vt�

ctrl.

BASIC DATA
ANALYSIS
PROTOCOL 3C

Two-Step Reversible Covalent Inhibition

Processing of experimental data obtained with Basic Protocol III that has been processed
according to Basic Data Analysis Protocol 3 for two-step reversible covalent inhibitors.

1. Plot vt� against preincubation time t� for each inhibitor concentration.

Plot the mean and standard deviation of vt� (in AU/s) on the Y-axis against preincu-
bation time t� (in s) on the X-axis for each inhibitor concentration and the uninhibited
control (Fig. 14C/Fig. 17C). Validate that inhibitor concentrations are not too high:
inhibition should be less than 100% at the shortest t� for at least six inhibitor con-
centrations. Enzyme activity is never truly independent of preincubation time (v0ctrl

> vt�
ctrl, Fig. 17G) and kinetic analysis of reversible inhibitors is very sensitive to

small deviations (illustrated in Fig. 9). Therefore, correction for enzyme instability is
always performed by normalization of the enzyme activity vt� /vt�

ctrl in the next step
(Fig. 17F-J).

2. Normalize vt� to obtain vt� /v
ctrl.

Normalize vt� (in AU/s) of each inhibitor concentration and the controls to lowest
value = 0 (or full inhibition control) and highest value = uninhibited product forma-
tion vt�

ctrl (in AU/s) to obtain normalized enzyme activity vt� /v
ctrl (Fig. 17H). Perform

this correction separately for each preincubation time.

3. Plot and fit vt� /v
ctrl against preincubation time t� to obtain kobs and vs/vsctrl.

Plot the mean and standard deviation of vt� /v
ctrl on the Y-axis against preincubation

time t� (in s) on the X-axis (Fig. 17H). Fit to exponential decay Equation XX to ob-
tain kobs (in s−1) from initial velocity vi/v0ctrl reflecting rapid noncovalent equilibrium

Mons et al.
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(Y-intercept vi/v0ctrl ≤ 1) to the final velocity vs/vsctrl reflecting steady-state equilib-
rium (Plateau vs/vsctrl ≥ 0).



vt�

vctrlt�

�
=

�
vs
vctrls

	
+



vi
vctrl0

− vs
vctrls

�
e−kobst

�

Equation XX

Equation XX for nonlinear regression of exponential one-phase decay equation Y =
(Y0-Plateau)*EXP(-k*X) + Plateau with Y = normalized preincubation
time–dependent product formation velocity vt� /v

ctrl (unitless), X= preincubation time
t� (in s) to find Y0 = Y-intercept = normalized initial velocity vi/v0ctrl (unitless),
Plateau = normalized final velocity vs/vsctrl = 0 (unitless), and k = observed reaction
rate kobs (in s−1).

4. Plot and fit vs/vsctrl against [I] to obtain Ki*.

Steady-state inhibition constant Ki* (in M) can be calculated from vs/vsctrl (obtained
in the previous step) reflecting remaining fractional enzyme activity after reaching
the steady-state inhibitor equilibrium (reaction completion) (Fig. 17J). Plot the mean
and standard deviation of vs/vsctrl on the Y-axis against inhibitor concentration (in
M) during preincubation (before addition of substrate) on the X-axis (Fig. 17J), and
fit the dose-response curve to four-parameter nonlinear regression Hill Equation XXI
(Copeland, 2013e) to obtain steady-state inhibition constant Ki* (in M). The max-
imum product formation velocity at reaction completion corresponds with the un-
inhibited enzyme activity vsctrl/vsctrl = 1 and minimum velocity vsmin/vsctrl = 0 for
(background-)corrected enzyme activity in the full inhibition control. Steady-state
equilibrium constant Ki* (in M) does not does not have to be corrected for substrate
competition because preincubation is conducted in absence of competing substrate.

�
vs
vctrls

	
= 1

1 +
�
[I]
K�
i

�h

Equation XXI

Equation XXI for nonlinear regression of four-parameter dose-response equation Y
= Bottom + (Top-Bottom)/(1 + (X/IC50)ˆHillSlope) with Y =
fractional steady-state product formation velocity vs/vsctrl (unitless), X = inhibitor
concentration during preincubation (in M), Bottom = velocity in fully inhibited con-
trol vsmin/vsctrl = 0 (unitless), and Top = uninhibited enzyme activity vsctrl/vsctrl =
1 (unitless) to find Hillslope = Hill coefficient h (unitless) and IC50 = steady-state
inhibition constant Ki* (in M).

5. Optional: Plot and fit kobs against [I] to obtain Ki, k5, and k6.

This is an optional data processing step to obtain kinetic parameters by fitting to the
observed rate kobs (obtained in Data Analysis 3C, step 3), and can be used to validate
Ki* values found in the previous step or to find values for k5 and k6 to use in kinetic
simulations (next step in this protocol). Plot the mean and standard deviation of kobs
(in s−1) on the Y-axis against inhibitor concentration during preincubation (in M) on
theX-axis (Fig. 17I). Exclude the uninhibited control (kctrl = 0 for normalized enzyme
activity) from the fit becauseY-intercept= k6 rather than kctrl. Fit kobs against inhibitor
concentration to Equation XXII to obtain rate constants for the covalent association
k5 (in s−1) and covalent dissociation k6 (in s−1) as well as noncovalent inhibition
constant Ki (in M) reflecting the rapid (initial) noncovalent equilibrium. Noncovalent
equilibrium constant Ki does not does not have to be corrected for substrate competi-
tion because preincubation is conducted in absence of competing substrate. ProceedMons et al.
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to Sample Calculation 8 to calculate steady-state inhibition constant Ki* (in M) from
experimental values of Ki, k5, and k6.

kobs = k6 + k5 [I]

Ki + [I]
Equation XXII

EquationXXII for nonlinear regression of user-defined explicit equationY = Y0 +
((kmax*X)/((Ki) + X))with Y= observed reaction rate kobs (in s−1) and X=
inhibitor concentration during preincubation (inM) to findY0= covalent dissociation
rate constant k6 (in s−1), kmax = covalent association rate constant k5 (in s−1) and
Ki = inhibition constant Ki (in M).

6. Optional: Validate experimental kinetic parameters with kinetic simulations.

Proceed to Kinetic Simulations 1 to compare the experimental read-out to the product
formation simulated with scripts KinGen and KinDeg to confirm that the calculated
kinetic constants are in accordance with the experimental data. Also perform sim-
ulations with KinVol and KinVolDeg to confirm that addition of substrate does not
significantly affect the noncovalent interactions/equilibria or reaction rates by dilution
and/or competition. Experimental estimates of k5 and k6 are generated in the previous
step of this protocol.

METHOD IV: PREINCUBATION TIME–DEPENDENT INHIBITIONWITH
DILUTION/COMPETITION

Preincubation time–dependent inhibition with dilution and/or competition is a variant of
Method III reported for kinetic analysis of irreversible covalent inhibitors (Kitz & Wil-
son, 1962). Enzyme and inhibitor are preincubated in absence of competing substrate to
form noncovalent EI complex and covalent EI* adduct, followed by dilution in a 10-100-
fold larger volume (Vsub >> Vt�) and/or addition of a high concentration of competing
substrate ([S] >> KM) (Fig. 18A). The inhibitor concentration after substrate addition is
far below the equilibrium concentration ([I]t << 0.1Ki

app), thereby inducing dissociation
of inhibitor from the noncovalent inhibitor-enzyme complex EI and quenching the for-
mation of covalent EI* during incubation (�[EI*]t = 0). The approach is two-pronged:
either dilution (reducing [I]t) or saturating substrate concentration (increasing KI

app and
decreasing kchemapp) can be sufficient as long as covalent EI* adduct formation is fully
quenched, for example by dissociation of noncovalent EI complex. Preincubation time–
dependent product formation velocity vt� reflects the inhibition by covalent EI* adduct
formed during preincubation, and is calculated from the linear slope of product forma-
tion (Fig. 18B). Enzyme activity vt� decreases exponentially from 0% covalent adduct
without preincubation (Y-intercept = vctrl) to reach a plateau at 100% covalent adduct
upon reaction completion (t� > 5t½) for irreversible covalent inhibitors (Fig. 18C). Ob-
served rate of reaction completion kobs (from 0-100% inhibition) is obtained by fitting
to bounded exponential decay Equation VI (Fig. 18D). This is a simplified version of
Equation V (Fig. 14D) in Method III (constraining vs = 0) because we only consider
two-step irreversible inhibition (Data Analysis 4A) and one-step irreversible inhibition
(Data Analysis 4B). Reversible (two-step) covalent inhibition with a slow rate of covalent
dissociation k6 (t½diss = LN(2)/k6) can be analyzed with preincubation dilution assays
using the initial product formation velocity after rapid/jump dilution (Copeland, 2013e;
Copeland et al., 2011) but will not be discussed here because the (slow) dissociation of
covalent EI* adduct can complicate the algebraic analysis.

Generally, preincubation assays are disfavored because their experimental execution re-
quires more material and measurements than incubation assays with continuous read-
out. However, as already mentioned in Method III, preincubation methods are favored Mons et al.
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Figure 18 Method IV: Preincubation time–dependent inhibition with dilution/competition. Simu-
lated with KinVol for 100 pM enzyme and 50 nM two-step irreversible inhibitor C (before dilution)
in Vt� = 1 and 10 μM substrate S1 in Vsub = 99 corresponding with 100-fold dilution in excess
substrate ([S] = 10KM). (A) Enzyme is preincubated with inhibitor to form noncovalent complex EI
and covalent adduct EI* in absence of competing substrate, followed by dilution in excess sub-
strate. Initial noncovalent EI complex forms rapidly ([I]t� /Ki = 0.5) but fully dissociates upon dilution
in a large volume (Vsub >> Vt� ) and/or addition of a high concentration of competing substrate
([S] > KM), as the E + I <-> EI equilibrium has shifted towards fully unbound enzyme ([I]t/Ki

app

<< 0.1). (B) Preincubation time–dependent enzyme activity vt� (in AU/s) is obtained from the (lin-
ear) slope of product formation velocity. Dilution in excess substrate quenches EI* formation after
substrate addition (�EI* = 0), thus enabling longer incubation times compared to Method III. This
measurement must be performed separately after each preincubation time. (C) Enzyme activity vt�
decreases exponentially from 0% covalent adduct (Y-intercept = enzyme activity without preincu-
bation vi) to 100% covalent adduct (vs = 0). Enzyme activity without preincubation vi equals the
uninhibited enzyme activity vctrl for one-step as well as two-step irreversible inhibitors: dilution in
excess substrate should induce full dissociation of noncovalently bound inhibitor ([I]t << 0.1Ki

app),
and covalent adduct does not form instantly. (D) Bounded exponential decay Equation VI to fit
preincubation time–dependent enzyme activity vt� (in AU/s) after dilution in (excess) competing
substrate against preincubation time t� (in s) for irreversible one- and two-step inhibition. This is a
simplified version of Equation V (Fig. 14D) constraining vs = 0 (inactivation at reaction completion).
vi = enzyme activity without preincubation (in AU/s) = uninhibited enzyme activity vctrl because
covalent adduct has not yet been formed and noncovalent complex has been disrupted by dilution
in excess substrate. vt� = preincubation time–dependent enzyme activity (in AU/s) reflecting cova-
lent EI* adduct formed. t� = preincubation time of enzyme and inhibitor before substrate addition
(in s). kobs = observed rate of time-dependent inhibition from initial vi to final vs (in s−1).

for inhibitors that have a slow covalent reaction rate and/or a poor noncovalent affinity.
Additionally, dilution in excess substrate can resolve issues for enzyme assays that do
not generate enough product for a robust signal (slow vctrl), as the maximum incubation
time to calculate vt� is not limited by formation of EI* during incubation (�[EI*]t = 0):
incubation time can be longer than preincubation time. It is important to mention that
there is still a limit to the incubation time: competition and/or dilution cannot fully mit-
igate the covalent adduct formation reaction but it can be reduced to a negligible rate
during the incubation. Finally, this method allows the assessment of covalent adduct for-
mation potency without contamination by reversible inhibition. This can be beneficial
in the analysis of two-step covalent inhibitors that exhibit tight-binding behavior (cus-
tomary for kinase inhibitors that have to compete with ATP): very potent noncovalent
affinity ‘shields’ or ’contaminates’ the rate of covalent adduct formation in the other pro-
tocols but not in this method, as detection is based solely on inhibition by covalent EI*
adduct. However, the enzyme concentration during incubation is much lower than during
preincubation, and inhibitor has to be present in excess during preincubation (pseudo-first
order conditions), thus limiting the inhibitor concentration to higher concentrations than
with other methods, which might be impractical.

Be aware that dilution in (excess) substrate will change the absolute enzyme/inhibitor
concentrations from preincubation to incubation, and make sure to calculate the desiredMons et al.
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enzyme concentration during incubation accordingly. Reaction completion (vt� < 0.1vctrl)
should not be reached before the first (shortest) preincubation time because it will be im-
possible to detect time-dependent changes in enzyme activity. This can be resolved by
increasing the measurement interval (shorter dt�) or reducing the inhibitor concentration
whenever possible. This method is less suitable for inhibitors with a very fast covalent
adduct formation kinact because preincubation is performed in absence of competing sub-
strate (thus allowing the maximum rate of covalent adduct formation possible at this
inhibitor concentration).

BASIC
PROTOCOL IV

Preincubation Time–Dependent Inhibition with Dilution/Competition

The protocol below provides a generic set of steps to accomplish this type of mea-
surement. Specific reagents, and assay conditions for preincubation time–dependent
inhibition with dilution of two-step irreversible covalent acetylcholinesterase inhibitors,
can be found in Kitz & Wilson (1962).

Materials

1× Assay/reaction buffer supplemented with co-factors and reducing agent
Active enzyme, 200× solution in assay buffer
Substrate with continuous or quenched read-out, 1× solution in assay buffer
Positive control: vehicle/solvent as DMSO stock, or 2% solution in assay buffer
Negative control: known inhibitor or alkylating agent as DMSO stock, or 200×

solution in assay buffer
Inhibitor: as DMSO stock, or serial dilution of 200× solution in assay buffer with

2% DMSO
Optional: Development/quenching solution
1.5 ml (Eppendorf) microtubes to prepare stock solutions
384-well low volume microplate with nonbinding surface (e.g., Corning 3820 or

4513) for preincubation
General microplate cover/lid (e.g., Corning 6569 Microplate Aluminum Sealing

Tape) to seal 384-well plate during preincubation
96-well low volume microplate with nonbinding surface (e.g., Corning 3650 or

3820) for quenching and read-out
Optional: 96-well microplate to prepare serial dilution of inhibitor concentration
Optional:Microtubes to perform preincubations (e.g., Eppendorf Protein Lobind

Microtubes, #022431018)
Optional: 384-well low volume microplate with nonbinding surface (e.g., Corning

3820 or 4513) for read-out
Microplate reader equipped with appropriate filters to detect product formation

(e.g., CLARIOstar microplate reader)
Optional: Automated (acoustic) dispenser (e.g., Labcyte ECHO 550 Liquid

Handler acoustic dispenser)

Before you start, optimize assay conditions in the uninhibited control to ensure compli-
ance with assumptions and restrictions, as outlined in Basic Protocol I. Consult Table 3
in the troubleshooting section for common optimization and troubleshooting options.

Specific adjustments for Method IV

Substrate should be added in a large volume (Vsub >> Vt�) and/or at a high concentra-
tion ([S]0 >> KM) to quench time-dependent enzyme inhibition (Fig. 18A). Enzyme
concentration after dilution [Etotal]t should be adjusted to correspond to maximum 10%
substrate conversion until the end of the incubation in the uninhibited control ([P]t <

0.1[S]0), and substrate should be present in excess ([S]0 > 10[Etotal]t). Preincubation-
dependent enzyme activity should be calculated from initial, linear product formation
after substrate addition. Validate that enough product is formed for a good signal/noise Mons et al.
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ratio (Z� > 0.5) by calculating the Z�-score from the uninhibited and inhibited controls
(ideally 8 replicates) in a separate experiment (Zhang et al., 1999). This method is com-
patible with homogeneous (continuous) assays but also with assays that require a devel-
opment/quenching step to visualize formed product. Note that preincubation in very small
volumes (<10 μl) is not representative/reliable and the volume after 100-fold dilution in
substrate will often exceed the maximum well volume of assay plates. Therefore, prein-
cubation is typically performed in a larger volume (tube or plate) from which aliquots are
removed at the end of the preincubation. In this protocol, we perform incubations in trip-
licate (20 μl per replicate) in a 384-well plate, from which 2-μl aliquots are removed and
quenched in 198 μl substrate in a 96-well plate that is also used for read-out. Optionally,
it is possible to then transfer 20 μl to a 384-well plate for read-out, but multiple transfers
of assays solutions will introduce errors. Alternatively, preincubation can be performed
in microtubes or a 96-well plate.

1. Add inhibitor or control (e.g., 0.2 μl) and assay buffer (e.g., 10 μl) to each well with
the uninhibited control for full enzyme activity containing the same volume vehi-
cle/solvent instead of inhibitor, as outlined in step 1 of Basic Protocol III.

Gently shake to mix DMSO with the aqueous buffer. Typically, measurements are
performed in triplicate (or more replicates) with at least 8 inhibitor concentrations for
at least 5 preincubation times. Inhibitor concentrations might need optimization, but
a rational starting point is to use inhibitor concentrations below 5 times the IC50 at the
shortest preincubation time t�: inhibition is expected to improve in a time-dependent
manner, and the best results are obtained when full inhibition is not achieved already
at the shortest preincubation time (Fig. 18C). Whether preincubation is performed in
a tube or microplate is a matter of personal preference, compatibility with lab equip-
ment and automation, and convenience of dispensing small volumes.

2. Add active enzyme in assay buffer to each well (e.g., 10 μl of 200× solution) or tube
to start preincubation of enzymewith inhibitor and homogenize the solution by gently
shaking (1 min at 300 rpm). Alternatively, dispensing the enzyme at a high flow rate
will also mix the components.

The order of enzyme and inhibitor addition is not important per se, as long as DMSO
stocks are added prior to buffered (aqueous) solutions. Inhibitor must be present in
excess during preincubation ([I]0 > 10[E]0). Optionally, gently centrifuge the plate
or microtubes (1 min at 1000 rpm) to ensure assay components are not stuck at the
top of the well.

3. Seal the wells with a cover or lid, and close the caps of microtubes to prevent evapo-
ration of assay components during preincubation.

4. Remove a single aliquot in volume Vt� (e.g., 2 μl) from the reaction mixture, and
transfer to a 96-well microplate already containing a large volume (volume Vsub) of
substrate (e.g., 198 μl of 1× solution in assay buffer) after preincubation time t�.

Substrate should be added in a large volume (Vt << Vt�) and/or at a high concen-
tration ([S] >> KM) to quench time-dependent addition enzyme inhibition during
incubation by dilution ([I]t << [I]t�) or competition (increasing KI

app or decreasing
kchemapp). Dilution to inhibitor concentration far below the equilibrium concentration
([I]t <<Ki

app) promotes dissociation of noncovalently bound inhibitor after substrate
addition (Fig. 18A). The accuracy of the measurement improves if the preincubation
time is monitored precisely. Optionally, homogenize the solutions by gentle shaking
(300 rpm) and centrifuge the plate (1 min at 1000 rpm) to ensure assay components
are not stuck at the top of the well.

Mons et al.

62 of 85

Current Protocols



5. Quenching: Add development solution to the reaction mixture in the microplate to
quench the product formation reaction if read-out of product formation requires a
development/quenching step to visualize formed product after incubation time t.

Follow manufacturer’s advice on waiting time after addition of development solution
before read-out. Incubation time t is the elapsed time between onset of product for-
mation by substrate addition (step 4) and addition of development/quenching solution
(step 5). A possible advantage to the use of a quenched assay is the ability to store the
samples after addition of quenching/development solution (step 5) and measure prod-
uct formation (step 6) in all samples after completion of the final preincubation rather
than performing multiple separate measurements (after each preincubation time).

6. Optional: Transfer aliquot (e.g., 20 μl) to a 384-well microplate for read-out.

Typically, the total volume after dilution in substrate solution (Vt = Vsub + Vt�) ex-
ceeds the maximum well volume of a 384-well microplate. Transfer an appropriate
amount of reaction mixture (at least two technical replicates) to a microplate. This
step can be skipped if read-out is performed in a 96-well plate.

7. Measure formed product after incubation by detection of the product read-out in mi-
croplate reader.

Incubation time t (after substrate addition) is arbitrary as long as product formation
is linear in uninhibited as well as inhibited samples (Fig. 18B).

8. Repeat Basic Protocol IV, steps 4-7, for at least another four preincubation times.

Preincubation time t� is the elapsed time between onset of inhibition by mixing en-
zyme and inhibitor (step 2) and addition of substrate (step 4). A typical preincubation
assay is multiple hours measuring enzyme activity every 5-30 min, depending on en-
zyme stability and inhibitor reaction rates. Best results are obtained if the incubation
time t used to calculate enzyme activity is kept constant at all preincubation times.

9. Proceed to Basic Data Analysis Protocol 4 to convert the raw experimental data into
preincubation time–dependent enzyme activity.

BASIC DATA
ANALYSIS
PROTOCOL 4

Preincubation Time–Dependent Inhibition With Dilution

Processing of raw experimental data obtained with Basic Protocol IV for irreversible
inhibitors.

1. Plot signal F against incubation time t.

Plot signal F (in AU) on the Y-axis against the incubation time (in s) on the X-axis
for each inhibitor concentration and for the controls (Fig. 19B, Fig. 20B). Do this
separately for each preincubation time.

2. Fit Ft against t to obtain vt� .

Fit signal Ft against incubation time t to Equation XIII (Fig. 19B, Fig. 20B) to ob-
tain preincubation time–dependent product formation velocity vt� (in AU/s) from the
linear slope (Fig. 18B). Linear product formation is indicative of effective disruption
of additional covalent modification during incubation by dilution in excess substrate
(Fig. 18A). If product formation is not linear: consult Table 3 for troubleshooting or
proceed to Basic Data Analysis Protocol 3.

Ft = F0 + vt�t

Equation XIII for nonlinear regression of straight line Y = YIntercept +
Slope*X with Y = signal Ft (in AU) and X = incubation time t (in s) to find Mons et al.
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YIntercept = background signal at reaction initiation F0 (in AU) and Slope = prein-
cubation time–dependent product formation velocity vt� (in AU/s).

3. Proceed to Data Analysis Protocols to obtain the appropriate kinetic parameters for
each covalent binding mode: Data Analysis Protocol 4Ai or 4Aii for two-step irre-
versible inhibitors and Data Analysis Protocol 4Bi or 4Bii for one-step irreversible
inhibitors.

Selection of a Data Analysis Method for inhibitors with an irreversible binding mode
depends on the desired visual representation aswell as personal preference. Generally,
Basic Data Analysis Protocols 4Ai and 4Bi have less data processing/manipulation
and are more informative for comparison of various inhibitors on a single enzyme tar-
get, as they are compatible with assessment of inhibitor potency simultaneous with
visual assessment of time-dependent enzyme stability kctrl (Fig. 19F and 19G and
Figs. 20F and 20G). Alternative Data Analysis Protocols 4Aii and 4Bii involve nor-
malization of the enzyme activity that aids visual assessment of inhibitory potency
of a single inhibitor on multiple enzyme targets (that might have a variable stability)
(Fig. 19H and 19I and Fig. 20H and 20I).

Data Analysis Protocol

EXP Conditions 2-step IRREV 1-step IRREV 2-step REV

kctrl = 0 4Ai/4Aii 4Bi/4Bii –
kdegE > 0 4Ai/4Aii 4Bi/4Bii –

Exemplary assay concentrations during preincubation and during incubation.

Concentration during preincubation t� Concentrations during incubation t

[stock] V (μl) [conc]t� [stock] V (μl) [conc]t
Enzyme 200 nM 10 99 nM – 1 1.0 nM
Inhibitor 2000 nM 10.2 1010 nM – 1 10 nM
Substrate – – – 10 μM 198 9.9 μM
Total 20.2 200

Data Analysis 4A: Preincubation Time–Dependent Inhibition With
Dilution/Competition for Two-Step Irreversible Covalent Inhibition

Kinetic analysis of enzyme activity with dilution/competition after preincubation in the
presence of a two-step covalent inhibitor is similar to data analysis of preincubation with-
out dilution/competition (Data Analysis 3A), with the exception that longer incubation
times are possible to calculate enzyme activity vt� from the slope (Fig. 19A and 19B),
and enzyme activity without preincubation vi should be equal to the uninhibited enzyme
activity vctrl (Fig. 19C). Contrary to Method III, this does not imply that the inhibitors
show one-step behavior: it merely confirms that extensive dilution/substrate competition
successfully induced inhibitor dissociation from noncovalent EI complex to unbound
enzyme. It is essential to plot the rate of covalent adduct formation kobs against the in-
hibitor concentration during preincubation (Fig. 19D) to obtain kinetic parameters: kobs
is based on the formation of EI* during preincubation, and the inhibitor concentration
during preincubation is much higher than the inhibitor concentration after dilution in
substrate ([I]t� >> [I]t).

Warnings and remarks

Insufficient dilution/competition will partially disrupt noncovalent EI complex, resulting
in a time-dependent decrease of enzyme activity due to formation of EI* after substrate
addition (Fig. 19B) and deviation from vi = vctrl, as noncovalent complex EI contributes
to inhibition without preincubation (Fig. 19C). Increasing substrate concentration and/orMons et al.
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Figure 19 Data Analysis 4A: Preincubation time–dependent inhibition with dilution/competition
for two-step irreversible covalent inhibition. Simulated with KinVol (A-D) or KinVolDeg (E-I) for
inhibitor C with 100 pM enzyme in Vt� = 1 ([Etotal]t� = 100, [Etotal]t = 1) and 10 μM substrate S1
([S] = 10KM) in Vsub = 99. (A) Schematic enzyme dynamics during preincubation in absence of
substrate and during incubation after dilution in excess substrate for two-step irreversible covalent
inhibition. (B) Time-dependent product formation after preincubation (t� = 1800 s) in absence of
inhibitor Fctrl or in presence of various inhibitor concentrations. Enzyme activity after preincubation
vt� is obtained from the linear slope. (C) Preincubation time–dependent enzyme activity vt� is fit-
ted to Equation VI (Fig. 18D) for each inhibitor concentration with global shared value for vi (vi =
vctrl) to obtain observed rates of inactivation kobs. Alternatively, vt� can be normalized to a fraction
of the uninhibited enzyme activity vctrl. (D) Half-maximum kobs = ½kinact is reached when inhibitor
concentration during preincubation equals the inactivation constant KI: no correction for substrate
competition because vt� reflects the remaining unbound/noncovalent enzyme activity after preincu-
bation in absence of competing substrate. (E) Schematic enzyme dynamics during preincubation
in absence of substrate and during incubation after dilution in excess substrate for two-step ir-
reversible covalent inhibition with spontaneous enzyme degradation/denaturation. Simulated with
kdegE = kdegES = kdegEI = 0.0003 s−1. (F) Uninhibited enzyme activity after preincubation vt� ctrl de-
creases with longer preincubation. Enzyme activity vt� is fitted to Equation VI (Fig. 18D) for each
inhibitor concentration during preincubation with globally shared value for vi (vi = v0ctrl) to obtain
observed rates of inactivation kobs, as well as fitting uninhibited activity vt� ctrl to obtain the rate of

(legend continues on next page) Mons et al.
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nonlinearity kctrl. (G) Inhibitor concentration-dependent kobs with spontaneous enzyme degrada-
tion increases with kctrl but the span from kmin (= kctrl) to kmax (= kinact + kctrl) still equals kinact.
Fit with algebraic correction for nonlinearity (black line, kctrl > 0). Ignoring the nonlinearity (gray
line, constrain kctrl = 0) results in underestimation of KI (overestimation of potency) and overesti-
mation of kinact. (H) Normalized enzyme activity vt� /vctrl is fitted to Equation VI (Fig. 18D) for each
inhibitor concentration during preincubation (constrain vi/v0ctrl = 1) to obtain corrected observed
rates of inactivation kobs. (I) Inhibitor concentration-dependent kobs has been corrected for enzyme
degradation by fitting normalized enzyme activity vt� /vctrl and does not require further corrections.

dilution in a larger volume might resolve this. Alternatively, enzyme activity with par-
tial disruption of noncovalent EI analyzed with Data Analysis 3A still results in reliable
estimates of kobs. Please note that, although detection based only on covalent adduct
formation allows analysis of two-step inhibitors displaying tight-binding behavior (very
high noncovalent affinity resulting in full inhibition at all inhibitor concentrations), these
inhibitor concentrations are saturating if they comply with the rapid equilibrium approx-
imation (Ki ≈ KI); thus, it would only be possible to determine the lower limit of kinact
and the upper limit of KI (Fig. 2G).

Correction for enzyme (in)stability during preincubation by correcting for the rate of
spontaneous degradation kctrl has been reported (Obach, Walsky, & Venkatakrishnan,
2007) for dilution experiments with irreversible covalent inhibitors (Fig. 19E-G). Alter-
natively, enzyme activity after preincubation vt� can be normalized to the uninhibited
enzyme activity after preincubation vt�

ctrl (Fig. 19H and 19I).

BASIC DATA
ANALYSIS

PROTOCOL 4Ai

Two-Step Irreversible Covalent Inhibition

Processing of experimental data obtained with Basic Protocol IV that has been processed
according to Basic Data Analysis Protocol 4 for two-step irreversible inhibitors.

1. Plot vt� against preincubation time t� for each inhibitor concentration.

Plot the mean and standard deviation of vt� (in AU/s) on the Y-axis against preincu-
bation time t� (in s) on the X-axis for each inhibitor concentration and the uninhibited
control (Fig. 19C). Validate that inhibitor concentrations are not too high: inhibition
should be less than 100% at the shortest t� for at least six inhibitor concentrations.
Check whether the uninhibited enzyme activity is independent of preincubation time
(v0ctrl = vt�

ctrl, Fig. 19C): an algebraic correction for enzyme instability (kctrl > 0,
Fig. 19F) can be performed in step 4 of this protocol by accounting for nonlinearity
in the uninhibited control in the secondary kobs plot (Fig. 19G). Alternatively, proceed
to Alternative Data Analysis Protocol 4Bii to correct for enzyme instability (v0ctrl >
vt�

ctrl) by normalization of the enzyme activity vt� /vt�
ctrl (Fig. 19H and 19I).

2. Fit vt� against preincubation time t� to obtain kobs.

Fit the mean and standard deviation of vt� against preincubation time t� (Fig. 19C/F)
for each inhibitor concentration to bounded exponential decay EquationVI (Fig. 18D)
with shared value for initial velocity vi to obtain the observed reaction rate kobs (in
s−1) from initial velocity vi (Y-intercept) to full inactivation (vs in fully inhibited
control). A lack of initial noncovalent complex (vi = v0ctrl) is indicative of effective
disruption of noncovalent interactions by dilution in excess substrate. Validate this
by fitting without constraints for vi. Proceed to Basic Data Analysis Protocol 3Ai if
deviations (vi < v0ctrl) are observed.

vt� = vctrl0 e−kobst
�

Equation VI
Equation VI for nonlinear regression of exponential one-phase decay equation Y
= (Y0-Plateau)*EXP(-k*X) + Plateau with Y = preincubation time–
dependent product formation velocity vt� (in AU/s), X = preincubation time t�Mons et al.
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(in s) and Plateau = final velocity vs = 0 or vs in fully inhibited control (in AU/s)
to find Y0 = Y-intercept = initial velocity vi = uninhibited velocity v0ctrl (in AU/s,
shared value) and k = observed reaction rate kobs (in s−1).

3. Plot kobs against [I].

Plot the mean and standard deviation of kobs (in s−1) on the Y-axis against inhibitor
concentration (inM) during preincubation (before addition of substrate) on theX-axis
(Fig. 19D/G). The plot of kobs against [I] should reach a maximum kobs at saturating
inhibitor concentration. Note that a linear curve is indicative of one-step binding be-
havior at non-saturating inhibitor concentrations ([I] << 0.1KI in Fig. 3F) with vi =
v0ctrl (shared Y-intercept in the previous step). Proceed to Basic Data Analysis Pro-
tocol 4Bi step 4 after it has been validated that the linear curve is not resultant from
saturating inhibitor concentrations ([I] >> 10KI in Fig. 3G) as identified by vi <<

v0ctrl, by repeating the measurement with lower inhibitor concentrations.

4. Fit kobs against [I] to obtain kinact and KI.

Fit kobs against inhibitor concentration during preincubation to Equation XV to obtain
maximum inactivation rate constant kinact (in s−1) and inactivation constant KI (in
M). Constrain kctrl = kobs of the uninhibited control (Fig. 19G). Inactivation constant
KI does not have to be corrected for substrate competition because preincubation is
conducted in absence of competing substrate. Calculate irreversible covalent inhibitor
potency kinact/KI (in M−1s−1) with propagation of error with Sample Calculation 2.

kobs = kctrl +
kinact [I]

KI + [I]
Equation XV

Equation XV for nonlinear regression of user-defined explicit equation Y = Y0 +
((kmax*X)/((KI) + X))with Y= observed reaction rate kobs (in s−1) and X=
inhibitor concentration during preincubation (in M) to find Y0 = rate of nonlinearity
in uninhibited control kctrl (in s−1), kmax = maximum reaction rate kinact (in s−1),
and KI = Inactivation constant KI (in M).

5. Optional: Validate experimental kinetic parameters with kinetic simulations.

Proceed to Kinetic Simulations 1 to compare the experimental read-out to the product
formation simulated with scripts KinVol and KinVolDeg (using experimental rate
constant kinact = k5) to confirm that the calculated kinetic constants are in accordance
with the experimental data.

ALTERNATIVE
DATA
ANALYSIS
PROTOCOL 4Aii

Two-Step Irreversible Covalent Inhibition

Processing of experimental data obtained with Basic Protocol IV that has been processed
according to Basic Data Analysis Protocol 4 for two-step irreversible inhibitors.

1. Plot vt� against preincubation time t� for each inhibitor concentration.

Plot the mean and standard deviation of vt� (in AU/s) on the Y-axis against preincu-
bation time t� (in s) on the X-axis for each inhibitor concentration and the uninhibited
control (Fig. 19C). Validate that inhibitor concentrations are not too high: inhibition
should be less than 100% at the shortest t� for at least six inhibitor concentrations.

2. Normalize vt� to obtain vt� /v
ctrl.

Normalize vt� (in AU/s) of each inhibitor concentration and the controls to lowest
value = 0 (or full inhibition control) and highest value = uninhibited product forma-
tion vt�

ctrl (in AU/s) to obtain normalized enzyme activity vt� /v
ctrl (Fig. 19H). Perform

this correction separately for each preincubation time. Mons et al.
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3. Plot and fit vt� /v
ctrl against preincubation time t� to obtain kobs.

Plot the mean and standard deviation of vt� /v
ctrl on the Y-axis against preincubation

time t� (in s) on the X-axis (Fig. 19H). Fit to exponential decay Equation XVI to
obtain kobs (in s−1) from initial velocity vi/v0ctrl to full inactivation (Plateau = 0). A
lack of initial noncovalent complex (vi = v0ctrl) is indicative of effective disruption
of noncovalent interactions by dilution in excess substrate. Validate this by fitting
without constraints for vi. Proceed to Basic Data Analysis Protocol 3Aii if deviations
(vi < v0ctrl) are observed.



vt�

vctrlt�

�
= e−kobst

�

Equation XVI

Equation XVI for nonlinear regression of exponential one-phase decay equation Y
= (Y0-Plateau)*EXP(-k*X) + Plateau with Y = normalized preincuba-
tion time–dependent product formation velocity vt� /v

ctrl (unitless), X= preincubation
time t� (in s), Y0 = Y-intercept = normalized initial velocity vi/v0ctrl = 1 (unitless),
and Plateau = normalized final velocity vs/vsctrl = 0 (unitless) to find k = observed
reaction rate kobs (in s−1).

4. Plot kobs against [I].

Plot the mean and standard deviation of kobs (in s−1) on the Y-axis against inhibitor
concentration (in M) during preincubation (before addition of substrate) on the X-
axis (Fig. 19I). The plot of kobs against [I] should reach a maximum kobs at saturating
inhibitor concentration. Note that a linear curve is indicative of one-step binding be-
havior at non-saturating inhibitor concentrations ([I] << 0.1KI in Fig. 3F) with vi =
v0ctrl (shared Y-intercept = 1 in the previous step). Proceed to Basic Data Analysis
Protocol 4Bii step 5 after it has been validated that the linear curve is not resultant
from saturating inhibitor concentrations ([I] >> 10KI in Fig. 3G) as identified by vi
<< v0ctrl (shared Y-intercept= 0 in the previous step), by repeating the measurement
with lower inhibitor concentrations.

5. Fit kobs against [I] to obtain kinact and KI.

Fit kobs against inhibitor concentration during preincubation to Equation XVII to ob-
tain maximum inactivation rate constant kinact (in s−1) and inactivation constant KI (in
M) (Fig. 19I). Do not correct for enzyme instability (kctrl > 0), as this correction has
already been performed by normalizing vt� . Inactivation constant KI does not have to
be corrected for substrate competition because preincubation is conducted in absence
of competing substrate. Calculate irreversible covalent inhibitor potency kinact/KI (in
M−1s−1) with propagation of error with Sample Calculation 2

kobs = kinact [I]

KI + [I]
Equation XVII

Equation XVII for nonlinear regression of user-defined explicit equation Y =
Y0+((kmax*X)/((KI) + X)) with Y = observed reaction rate kobs (in s−1),
X = inhibitor concentration during preincubation (in M), and Y0 = 0 (in s−1) to find
kmax = maximum reaction rate kinact (in s−1) and KI = Inactivation constant KI (in
M).

6. Optional:Validate kinetic parameters with kinetic simulations by proceeding to Basic
Data Analysis Protocol 4Ai step 5.Mons et al.
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Data Analysis 4B: Preincubation Time–Dependent Inhibition With
Dilution/Competition for One-Step Irreversible Covalent Inhibition

Kinetic analysis of enzyme activity with dilution/competition after preincubation in pres-
ence of a one-step covalent inhibitor is almost identical to data analysis of preincubation
without dilution in excess substrate (Data Analysis 3B), with the exception that longer
incubation times are possible to calculate enzyme activity vt� from the slope (Fig. 20A-
C). It is essential to plot the rate of covalent adduct formation kobs against the inhibitor
concentration during preincubation (Fig. 20D) to obtain kinetic parameters: kobs is based
on the formation of EI* during preincubation, and the inhibitor concentration during
preincubation will be much higher than the inhibitor concentration after dilution in sub-
strate ([I]t� >> [I]t).

Warnings and remarks

Dilution/competition does not disrupt any noncovalent EI complex, as this is non-existent
for one-step inhibitors, but the rate of covalent adduct formation kobs should be negligible
after dilution in excess substrate, to prevent formation of covalent EI*. Insufficient dilu-
tion and/or competition (�[EI*]t > 0) can result in time-dependent decrease of enzyme
activity due to formation of EI* after substrate addition (Fig. 20B). Increasing substrate
concentration and/or dilution in a larger volume might resolve this if necessary, but sim-
ply performing analysis with Data Analysis Protocol 3B also results in reliable estimates
of kobs. Inhibitor concentrations that reach reaction completion during the shortest prein-
cubation time should be excluded from the fit (highest concentration in Fig. 20C) as these
fits are not reliable.

Correction for enzyme (in)stability during preincubation by correcting for the rate of
spontaneous degradation kctrl has been reported (Obach et al., 2007) for dilution experi-
ments with irreversible covalent inhibitors (Fig. 20E-G). Alternatively, enzyme activity
after preincubation vt� can be normalized to the uninhibited enzyme activity after prein-
cubation vt�

ctrl (Fig. 20H and 20I).

BASIC DATA
ANALYSIS
PROTOCOL 4Bi

One-Step Irreversible Covalent Inhibition

Processing of experimental data obtained with Basic Protocol IV that has been pro-
cessed according to Basic Data Analysis Protocol 4 for one-step irreversible covalent
inhibitors and two-step irreversible inhibitors at non-saturating inhibitor concentrations
([I] ≤ 0.1KI).

1. Plot vt� against preincubation time t� for each inhibitor concentration.

Plot the mean and standard deviation of vt� (in AU/s) on the Y-axis against preincu-
bation time t� (in s) on the X-axis for each inhibitor concentration and the uninhibited
control (Fig. 20C). Validate that inhibitor concentrations are not too high: inhibition
should be less than 100% at the shortest t� for at least six inhibitor concentrations.
Check whether the uninhibited enzyme activity is independent of preincubation time
(v0ctrl = vt�

ctrl, Fig. 20C): an algebraic correction for enzyme instability (kctrl > 0,
Fig. 20F) can be performed in step 4 of this protocol by accounting for nonlinearity
in the uninhibited control in the secondary kobs plot (Fig. 20G). Alternatively, proceed
to Alternative Data Analysis Protocol 4Bii to correct for enzyme instability (v0ctrl >
vt�

ctrl) by normalization of the enzyme activity vt� /vt�
ctrl (Fig. 20H and 20I).

2. Fit vt� against preincubation time t� to obtain kobs.

Fit the mean and standard deviation of vt� against preincubation time t� (Fig. 20C/F)
for each inhibitor concentration to bounded exponential decay Equation VI (Fig.
18D). Constrain initial velocity vi to a shared value to obtain observed reaction rate
kobs (in s−1) from initial velocity vi (Y-intercept) to full inactivation (vs = 0 or value
in fully inhibited control). Mons et al.
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Figure 20 Data Analysis 4B: Preincubation time–dependent inhibition with dilution/competition
for one-step irreversible covalent inhibition. Simulated with KinVol (A-D) or KinVolDeg (E-I) for in-
hibitor D with 100 pM enzyme in Vt� = 1 ([Etotal]t� = 100, [Etotal]t = 1) and 10 μM substrate S1 ([S] =
10KM) in Vsub = 99. (A) Schematic enzyme dynamics during preincubation in absence of substrate
and during incubation after dilution in excess substrate for one-step irreversible covalent inhibition.
(B) Time-dependent product formation after preincubation (t� = 1800 s) in absence of inhibitor Fctrl

or in presence of various inhibitor concentrations.Enzyme activity after preincubation vt� is obtained
from the linear slope. (C) Preincubation time–dependent enzyme activity vt� is fitted to Equation VI
(Fig. 18D) for each inhibitor concentration with global shared value for vi (vi = vctrl) to obtain ob-
served rates of inactivation kobs. Alternatively, vt� can be normalized to a fraction of the uninhibited
enzyme activity vctrl. The highest inhibitor concentration should be excluded: v600 = 0. (D) Inhibitor
concentration-dependent kobs increases linearly with inhibitor concentration during preincubation,
with kchem as the slope. No correction for substrate competition because vt� reflects the remaining
unbound enzyme activity after preincubation in the absence of competing substrate. (E) Schematic
enzyme dynamics during preincubation in absence of substrate and during incubation after dilution
in excess substrate for one-step irreversible covalent inhibition with spontaneous enzyme degra-
dation/denaturation. Simulated with kdegE = kdegES = kdegEI = 0.0003 s−1. (F) Uninhibited enzyme
activity after preincubation vt� ctrl decreases with longer preincubation. Enzyme activity vt� is fitted to
Equation VI (Fig. 18D) for each inhibitor concentration during preincubation with globally shared
value for vi (vi = v0ctrl) to obtain observed rates of inactivation kobs, along with fitting uninhibited

(legend continues on next page)Mons et al.

70 of 85

Current Protocols



activity vt� ctrl to obtain the rate of nonlinearity kctrl. (G) Inhibitor concentration-dependent kobs with
spontaneous enzyme degradation/denaturation increases by kctrl. Fit with algebraic correction for
nonlinearity (black line, kctrl > 0) or ignoring nonlinearity (gray line, constrain kctrl = 0). Ignoring
the nonlinearity (assuming Y-intercept = 0) results in overestimation of kchem (steeper slope). (H)
Normalized enzyme activity vt� /vctrl is fitted to Equation VI (Fig. 18D) for each inhibitor concentration
during preincubation (constrain vi/v0ctrl = 1) to obtain corrected observed rates of inactivation kobs.
(I) Inhibitor concentration-dependent kobs has been corrected for enzyme degradation by fitting
normalized enzyme activity vt� /vctrl and does not require further corrections.

vt� = vctrl0 e−kobst
�

Equation VI

Equation VI for nonlinear regression of exponential one-phase decay equation Y
= (Y0-Plateau)*EXP(-k*X) + Plateau with Y = preincubation time–
dependent product formation velocity vt� (in AU/s), X = preincubation time t� (in
s), and Plateau = final velocity vs = 0 or vs in fully inhibited control (in AU/s) to find
Y0 = Y-intercept = initial velocity vi = uninhibited velocity v0ctrl (in AU/s, shared
value) and k = observed reaction rate kobs (in s−1).

3. Plot kobs against [I].

Plot the mean and standard deviation of kobs (in s−1) on the Y-axis against inhibitor
concentration (inM) during preincubation (before addition of substrate) on theX-axis
(Fig. 20D/G). The plot of kobs against inhibitor concentration [I] is linear for one-
step irreversible inhibitors and for two-step irreversible inhibitors at non-saturating
inhibitor concentrations ([I] << 0.1KI).

4. Fit kobs against [I] to obtain kchem.

Fit kobs against inhibitor concentration during preincubation (inM) to EquationXVIII
to obtain inhibitor potency kchem (in M−1s−1) from the linear slope. Constrain Y-
intercept kctrl = kobs of the uninhibited control (Fig. 20G). Inhibitor potency kchem
does not have to be corrected for substrate competition because preincubation is con-
ducted in absence of competing substrate. Calculate kinact/KI (inM−1s−1) for two-step
irreversible inhibitors at non-saturating inhibitor concentrations ([I] ≤ 0.1KI) with
propagation of error with Sample Calculation 9.

kobs = kctrl + kchem [I]

Equation XVIII

Equation XVIII for nonlinear regression of straight line Y = YIntercept +
Slope*X with Y = observed reaction rate kobs (in s−1) and X = inhibitor concentra-
tion during preincubation (in M) to find YIntercept = rate of nonlinearity in uninhib-
ited control kctrl (in s−1) and Slope = inactivation rate constant kchem (in M−1s−1).

5. Optional: Validate experimental kinetic parameters with kinetic simulations.

Proceed to Kinetic Simulations 1 to compare the experimental read-out to the product
formation simulated with scripts KinVol and KinVolDeg (using experimental rate
constant kchem = k3), to confirm that the calculated kinetic constants are in accordance
with the experimental data.

BASIC DATA
ANALYSIS
PROTOCOL 4Bii

One-Step Irreversible Covalent Inhibition

Processing of experimental data obtained with Basic Protocol IV that has been pro-
cessed according to Basic Data Analysis Protocol 4 for one-step irreversible covalent
inhibitors and two-step irreversible inhibitors at non-saturating inhibitor concentrations
([I] ≤ 0.1KI).

Mons et al.
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1. Plot vt� against preincubation time t� for each inhibitor concentration.

Plot the mean and standard deviation of vt� (in AU/s) on the Y-axis against preincu-
bation time t� (in s) on the X-axis for each inhibitor concentration and the uninhibited
control (Fig. 20C). Validate that inhibitor concentrations are not too high: inhibition
should be less than 100% at the shortest t� for at least six inhibitor concentrations.

2. Normalize vt� to obtain vt� /v
ctrl.

Normalize vt� (in AU/s) of each inhibitor concentration and the controls to lowest
value = 0 (or full inhibition control) and highest value = uninhibited product forma-
tion vt�

ctrl (in AU/s) to obtain normalized enzyme activity vt� /v
ctrl (Fig. 20H). Perform

this correction separately for each preincubation time.

3. Plot and fit vt� /v
ctrl against preincubation time t� to obtain kobs.

Plot the mean and standard deviation of vt� /v
ctrl on the Y-axis against preincubation

time t� (in s) on the X-axis (Fig. 20H). Fit to exponential decay Equation XVI to
obtain kobs (in s−1) from initial velocity vi/v0ctrl (shared value) to full inactivation
(Plateau = 0). 


vt�

vctrlt�

�
= e−kobst

�

Equation XVI

Equation XVI for nonlinear regression of exponential one-phase decay equation Y =
(Y0-Plateau)*EXP(-k*X) + Plateau with Y = normalized preincubation
time–dependent product formation velocity vt� /v

ctrl (unitless), X= preincubation time
t� (in s), Plateau = normalized final velocity vs/vsctrl = 0 (unitless), and Y0 = Y-
intercept = normalized initial velocity vi/v0ctrl = 1 (unitless) to find k = observed
reaction rate kobs (in s−1).

4. Plot kobs against [I].

Plot the mean and standard deviation of kobs (in s−1) on the Y-axis against inhibitor
concentration (in M) during preincubation (before addition of substrate) on the X-
axis (Fig. 20I). The plot of kobs against inhibitor concentration [I] is linear for one-
step irreversible inhibitors and for two-step irreversible inhibitors at non-saturating
inhibitor concentrations ([I] << 0.1KI).

5. Fit kobs against [I] to obtain kchem.

Fit kobs against inhibitor concentration during preincubation to Equation XIX to ob-
tain inhibitor potency kchem (in M−1s−1) from the linear slope (Fig. 20I). Do not cor-
rect for enzyme instability (kctrl > 0), as this correction has already been performed
by normalizing vt� to vt� /v

ctrl in step 2 of this protocol. Inhibitor potency kchem does
not have to be corrected for substrate competition because preincubation is conducted
in absence of competing substrate. Calculate kinact/KI (in M−1s−1) for two-step irre-
versible inhibitors at non-saturating inhibitor concentrations ([I] ≤ 0.1KI) with prop-
agation of error with Sample Calculation 9. Alternatively, inhibitor potency kchem (in
M−1s−1) or kinact/KI (in M−1s−1) can be directly calculated from a single kobs (s−1)
and [I] (in M) with Sample Calculation 10.

kobs = kchem [I]

Equation XIX

Equation XIX for nonlinear regression of straight line Y = YIntercept +
Slope*X with Y = observed reaction rate kobs (in s−1), X = inhibitor concentration
during preincubation (in M), and YIntercept = 0 (in s−1) to find Slope = inactivation
rate constant kchem (in M−1s−1).Mons et al.
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6. Optional: Validate experimental kinetic parameters with kinetic simulations by pro-
ceeding to Basic Data Analysis Protocol 4Bi step 5.

SAMPLE CALCULATIONS

The fits as obtained in the basic protocols described above still have to be converted
into inhibition parameters. These are fairly straightforward linear calculations and can
be performed with more basic software like Microsoft Excel. For each equation, the full
right side of the equal sign is known, so it becomes a linear calculation to obtain the
parameter on the left side of it.

All calculations used are listed here in order of appearance in the manuscript. We have
outlined the key assumptions and a little background on the used variables for improved
readability and direct applicability after following the basic protocols.

Materials

Experimental/fitted values found in Data Analysis Protocols 1-4
Software to perform linear calculations (e.g., EXCEL)

Sample Calculation 1. Calculate KI from KI
app

Apparent inactivation constant KI
app (in M) found inData Analysis Protocols (1A or 1D)

for competitive two-step irreversible inhibitors is corrected for substrate competition to
obtain inactivation constant KI (in M), with propagation of error. Use substrate concen-
tration [S] (in M) after reaction initiation and KM (in M) as determined for these specific
assay conditions (buffer, temperature, enzyme, substrate). Proceed to Sample Calculation
2 to calculate kinact/KI.

KI = KI
app

�
1 + [S]

KM

� with

σKI =

��



1

1 + [S]
KM

�2

σKI
app2 +

�
− KI

app KM

(KM + [S])2

	2

σ[S]2 +
�

KI
app [S]

([S] + KM)2

	2

σKM
2

Sample Calculation 2. Calculate kinact/KI from kinact and KI

Irreversible covalent inhibitor potency kinact/KI (in M−1s−1) is calculated from kinact (in
s−1) and KI (in M) values found in Data Analysis Protocols (1A, 1D, 2, 3Ai, 3Aii, 4Ai
or 4Aii) and Sample Calculation 1 for two-step irreversible inhibitors, with propagation
of error.

�
kinact
KI

	
= kinact

KI
with σ kinact

KI

=
�
kinact
KI

	 ��
σkinact

kinact

	2

+
�

σKI

KI

	2

Sample Calculation 3. Calculate Ki from Ki
app

Apparent inhibition constant Ki
app (inM) found inData Analysis Protocols (1A, 1C, 3Ai,

3Aii or 3C) for competitive two-step (ir)reversible inhibitors is corrected for substrate
competition (Cheng& Prusoff, 1973) to obtain inhibition constant Ki (inM) for the initial
noncovalent equilibrium. Use substrate concentration [S] (in M) after reaction initiation
and KM (in M) as determined for these specific assay conditions (buffer, temperature,
enzyme, substrate). Inhibition constant Ki approximates inactivation constant KI for two-
step irreversible inhibitors if covalent bond formation is rate-limiting (rapid equilibrium
assumption).

Ki = Ki
app

�
1 + [S]

KM

� with
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σKi =

��



1
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KM
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Sample Calculation 4. Calculate kchem from kchemapp

Apparent inhibitor potency kchemapp (in M−1s−1) found in Data Analysis Protocol 1B for
competitive one-step irreversible inhibitors is corrected for substrate competition to ob-
tain inhibition potency kchem (in M−1s−1) with propagation of error. Use substrate con-
centration [S] (in M) after reaction initiation and KM (in M) as determined for these
specific assay conditions (buffer, temperature, enzyme, substrate).

kchem = kappchem

�
1 + [S]

KM

	
with

σkchem =

��
�
1 + [S]

KM

	2

σkappchem

2 +


kappchem

KM

�2
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−kappchem [S]

KM
2

�2

σKM
2

Sample Calculation 5. Calculate kinact/KI
app from kchemapp

The linear slope kchemapp (in M−1s−1) found in Data Analysis Protocol 1B for two-
step irreversible inhibitors equals kinact/KI

app when all inhibitor concentrations are non-
saturating ([I] ≤ 0.1Ki

app). It is not possible to obtain individual values of kinact and KI

from a linear graph, but it is possible to estimate the upper and lower limits: KI
app is

much larger than the highest inhibitor concentration if this concentration is non-saturating
(KI

app >> [I]max). An unchanged slope upon constraining the Y-intercept kctrl (step 5)
to the experimental value for the uninhibited control validates that all inhibitor concen-
trations are non-saturating (Fig. 3F) rather than saturating (Fig. 3G). Proceed to Sample
Calculation 6 to calculate kinact/KI.

kappchem =
�
kinact
KI

app

	

Sample Calculation 6. Calculate kinact/KI from kinact/KI
app

Apparent inactivation potency kinact/KI
app (in M−1s−1) found in Data Analysis Protocols

(1A or 1D) or calculated in Sample Calculation 5 for competitive two-step irreversible in-
hibitors is corrected for substrate competition to obtain kinact/KI (in M) with propagation
of error. Use substrate concentration [S] (in M) after reaction initiation and KM (in M) as
determined for these specific assay conditions (buffer, temperature, enzyme, substrate).
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Sample Calculation 7. Calculate Ki* from Ki
*app

Apparent steady-state inhibition constant Ki
*app (in M) found in Data Analysis Proto-

cols (1C or 3C) for competitive two-step reversible covalent inhibitors is corrected for
substrate competition to obtain steady-state inhibition constant Ki* (in M). Use substrate
concentration [S] (in M) after reaction initiation and KM (in M) as determined for theseMons et al.
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specific assay conditions (buffer, temperature, enzyme, substrate).

K∗
i = K∗app
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Sample Calculation 8. Calculate Ki* from Ki, k5, and k6
Steady-state inhibition constant Ki* (in M) of two-step reversible inhibitors can be cal-
culated from experimental values of Ki (in M), k5 (in s−1), and k6 (in s−1) found with
Data Analysis Protocols 1C or 3C, and Sample Calculation 3. Reliable (relatively) small
k6-values can only be obtained with more sensitive methods such as rapid dilution assays
(Copeland, 2013e; Copeland et al., 2011). The uninhibited control must be strictly linear
(kctrl = 0) for values found with Data Analysis Protocol 1C. This calculation is not the
preferred method to obtain Ki* due to its sensitivity to (experimental) errors in k6 and
contribution of kctrl: values obtained in Data Analysis Protocol 1C or 3C and Sample
Calculation 7 should generally be considered as more reliable.
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Sample Calculation 9. Calculate kinact/KI from kchem
The linear slope kchem (in M−1s−1) found in Data Analysis Protocols (3Bi, 3Bii, 4Bi or
4Bii) for two-step irreversible inhibitors equals kinact/KI when all inhibitor concentrations
are non-saturating ([I] ≤ 0.1Ki). It is not possible to obtain individual values of kinact
and KI from a linear graph, but it is possible to estimate the upper and lower limits:
KI is much larger than the highest inhibitor concentration if this concentration is non-
saturating (KI >> [I]max). An unchanged slope upon constraining the Y-intercept kctrl
to the experimental value for the uninhibited control in step 4 of Basic Data Analysis
Protocols (3Bi and 4Bi) validates that all inhibitor concentrations are non-saturating (Fig.
3F) rather than saturating (Fig. 3G).

kchem =
�
kinact
KI

	

Sample Calculation 10. Calculate kchem or kinact/KI from kobs and [I]

Divide the kobs-value (in s−1) obtained in Alternative Data Analysis Protocols (3Bii or
4Bii) by its corresponding inhibitor concentration (inM) to calculate irreversible inhibitor
potency kchem (in M−1s−1) or kinact/KI (in M−1s−1). This calculation is only accurate
for normalized kobs values (unaffected by contribution of kctrl), in absence of competing
substrate, and (only applicable for two-step irreversible inhibitors) at non-saturating in-
hibitor concentration.

kchem = kobs
[I]

�
kinact
KI

	
= kobs

[I] Mons et al.

75 of 85

Current Protocols



KINETIC SIMULATIONS

The figures illustrating the basic protocols are generated using kinetic simulation scripts.
These scripts are available online (https:// tinyurl.com/kineticsimulations) and can be
used to validate the obtained kinetic parameters or help in optimizing your assay. On
a more educational level, these scripts can show what your assay result could look like
when using wildly different parameters to obtain more insight into how these affect your
assay.

Materials

Kinetic Simulation Script (https:// tinyurl.com/kineticsimulations)
Software to open csv file (e.g., EXCEL)
Data fitting software (e.g., GraphPad Prism)
Experimental values found in Data Analysis Protocols 1-4

Kinetic Simulation 1. Validation of experimental values

Perform kinetic simulations to validate that calculated kinetic parameters are in ac-
cordance with experimental RAW data. A tutorial on how to perform kinetic simula-
tions can be found on the website of our kinetic simulation scripts. Estimate micro-
scopic rate constants from reported (literature) values, or use association rate constants
k1 = k3 = 106-109 M−1s−1 (rapid noncovalent association) to calculate the dissocia-
tion rate constants from the experimental equilibrium constants: k4 = Ki×k3 (Table S2
in Supporting Information) and k2 = (KM×k1)-kcat (Table S3 in Supporting Informa-
tion). Ideally, also simulate the HTS reaction conditions to validate that the calculated
kinetic constants give rise to the experimental inhibition/IC50 (Pollard & De La Cruz,
2013).

Kinetic Simulation 2. Rational design of validation assays

Perform kinetic simulations with the calculated kinetic parameters to rationalize as-
say conditions for subsequent validation assays such as the minimum/maximum
(pre)incubation times for reversibility assays or MS-detection of the covalent adduct
(equations can be found in the Supporting Information).

COMMENTARY

Background Information
The background of covalent inhibition ki-

netics and critical parameters for enzyme ac-
tivity assays can be found in the Strategic
Planning section. It is recommended to refer
to this section before setting up your kinetic
inhibition experiments as well as the core ref-
erences by Copeland (Copeland, 2000, 2013e)
to get a general background on enzyme activ-
ity assays. We would like to reiterate that good
experimental performance is essential for ob-
taining reliable parameters for your covalent
inhibitor.

Our kinetic simulation scripts can help val-
idate the found values by ‘rerunning’ the ex-
periment without human error or experimental
artifacts. Not only will this give insight into
the reliability of your assay, but it can also
help to improve the assay setup and can show
what wildly different values of concentrations

would do for the readout. In fact, figures in this
manuscript have been created this way, and
can as such be reproduced. Keep in mind that
these are simulations, and real-life examples
will always deviate due to machine artifacts or
pipetting errors. Nevertheless, with a working
activity assay and these instructions in hand,
adequate analysis of covalent inhibitors should
be very feasible.

Troubleshooting
Like with any experimental method, our

described methods will also require the neces-
sary optimization. Since data analysis depends
heavily on the experimental input, it is very
important to optimize assay conditions, rather
than trying to apply data corrections, to obtain
reliable kinetic parameters. As the assay
conditions will vary widely, depending on the
enzyme used (Bisswanger, 2014), we can only
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Table 3 Troubleshooting and Optimization Experimental Assay Conditions

Problem Possible cause Solutions

Difference positive
and negative control
is not significant
(poor Z�-score)

Enzyme is not active
(enough)

Increase [E] (not always possible with very potent inhibitors)
Increase [S] to increase absolute maximum signal
Optimize buffer components
Switch to a substrate that is processed faster
Activate enzyme with fresh reagents (e.g., DTT, ATP) in
single-use aliquots
Minimize freeze/thaw cycles

Signal product is not
significant compared to
substrate

Change fluorophore/read-out
Optimize buffer components

Negative control or inhibitor
does not inhibit

Change to reported (specific) inhibitor
Use thiol-alkylating reagent (e.g., NEM, IAc) for cysteines
Use no-enzyme as negative control
Increase concentration of inhibitor
Make fresh dilution/aliquots of inhibitor solution

DMSO in positive control
acts as inhibitor

Validate: compare enzyme activity with/without DMSO
Reduce DMSO to max. 1% of final solution

Machine settings/sensitivity Check if [P] is within the sensitivity range of used machine
Optimize gain settings for [P] = 0–20% [S]0
Check if correct wavelengths/settings are selected

Pipetting error Frequently replace pipette tips to avoid contamination of positive
control with inhibitor (from negative control)
Avoid well-to-well contamination by using an automated
dispenser

Nonlinear
uninhibited product
formation curve Fctrl

Substrate depletion
([P]t > 0.1[S]0)

Decrease [E]
Increase [S]
Shorter incubation time

Spontaneous inactivation of
enzyme (kdeg > 0)

Optimize buffer conditions for stability
Use non-binding surface plates
Shorter incubation time

Drift/evaporation Cover/seal plate with optical clear cover
Shorter incubation time

Pre-steady state kinetics (lag
phase)

Increase [S] to reach E + S <-> ES equilibrium faster
Preincubate enzyme with reducing agent/ATP

Solution is not homogeneous Introduce mixing step before addition of final component

Fluorescence
bleaching/quenching

Optimize excitation conditions (e.g., lower no. of flashes)
Longer measurement intervals/less measurements

Linear inhibited
progress curve Ft

Inhibition is not
time-dependent (or kobs is too
slow)

Longer (pre)incubation time (t > 0.1t½)
Increase [I]
Reduce [S] to decrease competition
Activate enzyme with fresh reagents (e.g., DTT, ATP)
Validate with different enzyme batch/construct
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Table 3 Troubleshooting and Optimization Experimental Assay Conditions, continued

Problem Possible cause Solutions

F0 is not constant Delay between enzyme
addition and read-out

Reduce [E] (less substrate conversion during delay)
Correcting t = 0 for actual time after addition
Use injector in plate reader
Validate row effect: change lay-out of plate (first well has higher
F0 than last well, but containing same components) and reduce
number of samples in one measurement.

Fluorescence interference
inhibitor

Validate: check F0 for inhibitor (no substrate and enzyme),
substrate (no enzyme) and substrate and inhibitor (no enzyme)
Exclude high [I]
Background subtraction (subtract values substrate/inhibitor
without enzyme from enzyme/substrate/inhibitor signal)

Pipetting error substrate Check for bubbles when pipetting
Use low-binding tips

Full initial inhibition
for all [I] (vi = 0)

Noncovalent affinity is too
potent ([I] >> Ki

app)
Reduce [I]
Higher [S] to increase competition (higher Ki

app)
Use method based on covalency (Method IV or direct detection)

kobs is too fast for
detection/resolvable range
(inhibition is not
slow-binding)

Shorter minimal (pre)incubation time
Higher [S] to increase competition (slower kobs)
Reduce [I] (slower kobs)

kobs values are low
compared to
uninhibited control
kctrl

Enzyme is unstable (high
kctrl)

Optimize assay conditions to improve linearity of uninhibited
control (lower kctrl)
Use preincubation protocol (Method III & IV): higher kobs without
competition

Enzyme is not reactive (low
kobs)

Optimize buffer conditions to increase enzyme reactivity
Add (fresh) reagents (e.g., DTT, ATP) in single-use aliquots
Validate with different enzyme batch/construct
Too many freeze/thaw cycles

Low inhibitor concentration
([I] << Ki

app)
Decrease [S] to reduce competition
Increase [I]
Use preincubation protocol (Method III & IV): higher kobs without
competition

Slow reaction kobs Reduce [S] (less competition)
Longer (pre)incubation time (t > 0.1t½)
Use preincubation protocol (Method III & IV): higher kobs without
competition
Optimize buffer conditions to increase enzyme reactivity

kobs vs [I] is linear Inhibitor has 1-step binding
mode

Validate: Y-intercept = kctrl in kobs vs [I] plot
Validate: vi = v0ctrl in [P]t vs t or vt� vs t� plots
Increase [I] to exclude 2-step [I] << KI

app

Decrease [S] to exclude 2-step [I] << KI
app

2-step IRREV inhibitor is
non-saturating ([I] << KI

app)
Validate: Y-intercept = kctrl in kobs vs [I] plot
Validate: vi = v0ctrl in [P]t vs t or vt� vs t� plots
Fit kobs vs [I] to linear function for combined value kinact/KI

Increase [I]
Decrease [S] to reduce competition (lower KI

app)
Use preincubation protocol (Method III & IV): no competition

(Continued)
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Table 3 Troubleshooting and Optimization Experimental Assay Conditions, continued

Problem Possible cause Solutions

2-step IRREV inhibitor is
saturating ([I] >> KI

app)
Validate: Y-intercept > kctrl in kobs vs [I] plot
Validate: vi < v0ctrl in [P]t vs t or vt� vs t� plots
Decrease [I]
Increase [S] to increase competition (higher KI

app)

kobs decreases with
increasing [I]

Inhibitor concentration
beyond resolvable range:
noncovalent affinity is too
potent ([I] >> Ki

app)

Optimize [I] range (vi = 0.1-0.9×vctrl)
Increase [S] (increase competition to increase Ki

app)
Exclude unlikely values from fit

Incorrect formula to calculate
kobs

Validate if correct equation is used to determine kobs; reversible
covalent/irreversible covalent, one-step/two-step etc.

give general pointers on the optimization of
the assay conditions (Table 3). Luckily, many
model substrates come with a satisfactory user
manual or are described in extensive methods
papers (e.g., (Dharadhar et al., 2019; Janssen
et al., 2019)). These resources generally state
reagents required for the reaction (e.g., fresh
reducing agent, for cysteine-based catalysis)
or additives that stabilize the readout (such
as BSA or Tween-20, to prevent aspecific
aggregation). The control for full inhibition
of (catalytic) cysteines is typically a thiol-
alkylating reagent such as iodoacetamide
(IAc) or N-methylmaleimide (NEM), or a
known inhibitor.

As the assay performance is essential to get
reliable fits, we recommend focusing on po-
tential experimental problems before looking
into issues with fitting. A great guide for gen-
eral assay optimization can be found at the
National Center for Advancing Translational
Sciences (Assay Guidance Manual [Internet],
2004-2021; see Internet Resources). Here, we
have supplied a comprehensive troubleshoot-
ing table with potential solutions that deal with
various issues causing a troublesome readout.
For the top half of the table, these solutions are
generally related to the assay conditions and
can generally be executed in the optimization
stage.

The latter half of the table is more geared
towards after the data analysis of an initial
experiment. The problems and accompany-
ing solutions deal more with the experimen-
tal setup: how much inhibitor or substrate one
needs to add becomes more apparent after
these first data points. Some solutions, like

changing inhibitor or substrate concentrations,
can be simulated with our set of interactive ki-
netic simulation scripts. For better understand-
ing and help in optimizing, we recommend
simulating these conditions with our scripts
to see what would happen when changing the
concentrations.

Abbreviations and Symbols

Abbreviations

ATP Adenosine Triphosphate
AU Arbitrary Units
CYP450 Cytochrome P450
IAc Iodoacetamide
IRREV Irreversible
MS Mass Spectrometry
NBS Non-binding Surface
NMR Nuclear Magnetic Resonance
M Concentration in mol/L
NEM N-ethylmaleimide
REV Reversible
SAR Structure-Activity Relationship
TCI Targeted Covalent Inhibition
TDI Time-Dependent Inactivation
PK-PD Pharmacokinetics-

Pharmacodynamics
E unbound enzyme
I unbound inhibitor
EI noncovalent enzyme-inhibitor

complex
EI* covalent enzyme-inhibitor adduct
S unbound substrate
ES noncovalent enzyme-substrate

complex
P (detectable) product
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Symbols

k1 Second-order association rate constant for E + S <-> ES reaction (in M−1s−1)
k2 First-order dissociation rate constant for E + S <-> ES equilibrium (in s−1)
k3 Second-order association rate constant for E + I <-> EI reaction (in M−1s−1)
k4 First-order dissociation rate constant for E + I <-> EI equilibrium (in s−1)
k5 First-order association rate constant for EI → EI* reaction (in s−1)
k6 First-order dissociation rate constant for EI <-> EI* equilibrium (in s−1)
Ft Detected signal reflecting product formation in presence of inhibitor after incubation t

(in AU)
Fctrl Detected signal reflecting product formation in the uninhibited control (in AU)
F0 Background signal at reaction initiation (in AU)
rP Product coefficient for detected signal per formed product (in AU/M)
vi Initial product formation velocity in presence of inhibitor (in AU/s)
vs Steady-state/final product formation velocity in presence of inhibitor (in AU/s)
vt� Product formation velocity after preincubation t� (in AU/s)
vctrl Product formation velocity in the uninhibited control (in AU/s)
vt� ctrl Product formation velocity in the uninhibited control after preincubation t� (in AU/s)
v0ctrl Product formation velocity in the uninhibited control without preincubation: t�=0 (in

AU/s)
t Incubation time after onset of product formation (in s)
t� Preincubation time after onset of enzyme inhibition (in s)
t½ Half-life for reaction progress (in s).
t½diss Half-life for dissociation reaction (in s)
τ Target residence time (in s)
kobs Observed reaction rate constant (in s−1)
kmax Maximum reaction rate constant at saturating inhibitor concentration for 2-step

inhibition (in s−1)
kinact Inactivation rate constant for EI → EI* at saturating inhibitor concentration for 2-step

irreversible inhibition (in s−1)
kctrl Reaction rate constant for nonlinearity or loss of enzyme activity in uninhibited control

(in s−1)
kdegE Enzyme degradation rate constant for E → Edeg (in s−1)
kcat Product formation rate constant for ES → E + P (in s−1) at saturating substrate

concentration
ksub Reaction rate constant for E + S → E + P (in M−1s−1) (= kcat/KM if [S] << 0.1KM)
kchem Reaction rate constant for E + I → EI* of 1-step irreversible inhibitors (in M−1s−1)
koff Overall dissociation rate constant from bound to unbound enzyme EI + EI* → E + I

(in s−1)
Ki Inhibition/dissociation constant (in M) for noncovalent E + I <-> EI equilibrium of

two-step inhibition
Ki

app Apparent noncovalent inhibition constant (in M): with substrate competition
Ki* Steady-state inhibition constant (in M) for E + I <-> EI + EI* equilibrium of two-step

reversible inhibition
Ki

*app Apparent steady-state inhibition constant (in M): with substrate competition
KI Inactivation constant for E + I → EI* (in M) of two-step irreversible inhibition
KI

app Apparent inactivation constant (in M): with substrate competition
KM Michaelis-Menten constant for E + S → E + P (in M)
kinact/KI Inactivation efficiency: reaction rate constant for E + I → EI* of 2-step irreversible

inhibitors (in M−1s−1)
IC50 Inhibitor concentration resulting in half-maximum inhibition (in M)
IC50(t) Inhibitor concentration resulting in half-maximum inhibition after incubation time t (in

M)
[Etotal] Combined total concentration of all enzyme species (Etotal = E + EI + EI* + ES +

Edeg + EIdeg + EI*deg + ESdeg)
[E]0 Unbound enzyme concentration at reaction initiation (before binding to

inhibitor/substrate)
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[I]0 Unbound inhibitor concentration at onset of inhibition (before binding to enzyme)
[S]0 Unbound substrate concentration at onset of product formation (before binding to

enzyme)
[EI]eq Noncovalent EI concentration at (steady-state) equilibrium
[X]0 Concentration of component X at reaction initiation (before binding to other reaction

components)
[X]t Concentration of component X at incubation time t
[X]t� Concentration of component X at preincubation time t�

Vt Incubation reaction volume containing enzyme, inhibitor and substrate (Vt = Vt� +
Vsub)

Vt� Preincubation reaction volume containing enzyme and inhibitor
Vsub Volume containing substrate
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We developed a replica exchange method that is effectively parallelizable even if the computational
cost of the Monte Carlo moves in the parallel replicas are considerably different, for instance, because
the replicas run on different type of processor units or because of the algorithmic complexity. To
prove detailed-balance, we make a paradigm shift from the common conceptual viewpoint in which
the set of parallel replicas represents a high-dimensional superstate, to an ensemble based criterion
in which the other ensembles represent an environment that might or might not participate in
the Monte Carlo move. In addition, based on a recent algorithm for computing permanents, we
effectively increase the exchange rate to infinite without the steep factorial scaling as function
of the number of replicas. We illustrate the effectiveness of the replica exchange methodology
by combining it with a quantitative path sampling method, replica exchange transition interface
sampling (RETIS), in which the costs for a Monte Carlo move can vary enormously as paths in a
RETIS algorithm do not have the same length and the average path lengths tend to vary considerably
for the different path ensembles that run in parallel. This combination, coined ∞RETIS, was tested
on three model systems.

Keywords: Replica Exchange | Path Sampling | infinite swapping | Markov-chain Monte Carlo

The Markov chain Monte Carlo (MC) method is one
of the most important numerical techniques for comput-
ing averages in high-dimensional spaces, like the config-
uration space of a many particle system. The approach
has applications in a wide variety of fields ranging from
computational physics, theoretical chemistry, economics,
and genetics. The MC algorithm effectively generates a
selective random walk through state space in which the
artificial steps are designed such to ensure that the fre-
quency of visiting any particular state is proportional to
the equilibrium probability of that state. The Metropo-
lis [1] or the more general Metropolis-Hastings [2] algo-
rithms are the most common approaches for designing
such random steps (MC moves) based on the detailed-
balance principle. That is, the MC moves should be
constructed such that the number of transition from an
old state s(o) to a new state s(n) is exactly balanced
by the number of transitions from the new to the old
state: ρ(s(o))π(s(o) → s(n)) = ρ(s(n))π(s(n) → s(o))
where, ρ(·) is the state space equilibrium probability
density and π(·) are the probabilities to make a tran-
sition between the two states given the set of possi-
ble MC moves. Further, the transition is split into a
generation and an acceptance/rejection step such that
π(s → s′) = Pgen(s → s′)Pacc(s → s′). In the case that
the sampled state space is the configuration space of a
molecular system at constant temperature, Pgen might
relate to moving a randomly picked particle in a ran-
dom direction over a small random distance, and ρ(s)
is proportional to the Boltzmann weight e−βE(s) with
β = 1/kBT the inverse temperature and E(s) the state’s

∗ titus.van.erp@ntnu.no

energy. The Metropolis-Hastings algorithm takes a spe-
cific solution for the acceptance probability

Pacc(s
(o) → s(n)) = min

�

1,
ρ(s(n))Pgen(s

(n) → s(o))

ρ(s(o))Pgen(s(o) → s(n))

�

(1)

The generation probabilities will cancel in the above
expression if they are symmetric, Pgen(s → s′) =
Pgen(s

′ → s) as in the less generic Metropolis scheme.
At each MC step, the new state is either accepted or
rejected based on the probability above. In case of a re-
jection, the old state is maintained and resampled. This
scheme obeys detailed-balance and if, in addition, the set
of MC moves are ergodic, equilibrium sampling is guar-
anteed. When ergodic sampling, even if mathematically
obeyed, is slowed down by a rough (free) energy land-
scape, Replica exchange MC becomes useful.
Replica exchange MC (or replica exchange molecular

dynamics) is based on the idea to simulate several copies
of the system with different ensemble definitions [3–5],
most commonly ensembles with increasing temperature
(parallel tempering). By performing “swaps” between
adjacent replicas, the low-temperature replicas gain ac-
cess to the broader space region that are explored by
the high-temperature replicas. The detailed-balance and
corresponding acceptance-rejection step can be derived
by viewing the set of states in the different ensem-
bles (replicas) as a single high-dimensional superstate
S = (s1, s2, . . . , sN ) representing the system in a set of N
independent ”parallel universes”. The Metropolis scheme
applied to the superstate yields

Pacc(S
(o) → S(n)) = min

�

1,
ρ(S(n))

ρ(S(o))

�

(2)
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in which the probability of the superstate equals

ρ(S) = ρ(s1, s2, . . . , sN ) =
NY

i=1

ρi(si) (3)

where ρi(·) is the specific probability density of ensemble
i. For example, the move that attempts to swap the first
two states, implying S(o) = (s1, s2, . . . , sN ) and S(n) =
(s2, s1, . . . , sN ), will be accepted with a probability

Pacc = min

�

1,
ρ1(s2)ρ2(s1)

ρ1(s1)ρ2(s2)

�

(4)

In a replica exchange simulation, swapping moves and
standard MC or MD steps are applied alternately. Paral-
lel computing will typically distribute the same number
of processing units per ensemble to carry out the compu-
tational intensive standard moves. The swapping move is
cheap, but it requires that the ensembles involved in the
swap have completed their previous move. If the stan-
dard moves in each ensemble require different computing
times, then several processing units have to wait for the
slow ones to finish. If the disbalance per move is rela-
tively constant, the replicas could effectively be made to
progress in cohort by trying to differentiate the number
of processing units per ensemble or the relative frequency
of doing replica exchange versus standard moves per en-
semble. However, in several MC methods this disbalance
is not constant, such as with configurational bias MC [6–
8] or path sampling [9]. The number of elementary steps
to grow a polymer in configurational bias MC obviously
depends on the polymer’s length that is being grown, but
also early rejections lead to a broad distribution of the
time it takes to complete a single MC move even in uni-
form polymer systems. Analogously, the time required to
complete a MC move in path sampling simulations will
depend on the length of the path being created. Other
examples of complex Monte Carlo methods with a fluc-
tuating CPU cost per move are cluster Monte Carlo al-
gorithms [10] and event-chain Monte Carlo [11, 12].
We will show that the standard acceptance Eqs. 1 and 4

can be applied in a parallel scheme in which ensembles are
updated irregularly in time and the average frequency of
MC moves is different for the ensembles. In addition, we
show that we can apply an infinite swapping [13] scheme
between the available ensembles. For this, we develop
a new protocol based on the evaluation of permanents
that circumvents the steep factorial scaling. This last
development is also useful for standard replica exchange.

METHODS

Finite swapping. In the following, we will assume
that we have two types of MC moves. One move that
is CPU intensive and can be carried out within a single
ensemble, and replica exchange moves between ensembles
which are relatively cheap to execute. The CPU intensive

move will be carried out by a single worker (one processor
unit, one node or a group of nodes) and these workers
perform their task in parallel on the different ensembles.
One essential part of our algorithm is that we have less
workers than ensembles such that whenever the worker
is finished and produced a new state for one ensemble,
this state can directly be swapped with the states of any
of the available ensembles (the ones not occupied by a
worker). After that, the worker will randomly switch
to another unoccupied ensemble for performing a CPU
intensive move.
In its most basic form, the algorithm consists of the

following steps:

1. Define N ensembles and let ρi(·) be the proba-
bility distribution of ensemble i. We also define
PRE which is the probability for a replica exchange
move.

2. Assign K < N ’workers’ (processing units) to K of
the N ensembles for performing a CPU intensive
MC move. Each ensemble is at all times occupied
by either 1 or 0 workers. The following steps are
identical for all the workers.

3. If the worker is finished with its MC move in ensem-
ble i, the new state is accepted or rejected accord-
ing to Eq. 1 (with ρi for ρ). Ensemble i is updated
with the new state (or by resampling the old state
in case of rejection) and is then considered to be
free.

4. Take a uniform random number ν between 0 and
1. If ν > PRE go to step 7.

5. Among the available ensembles, pick a random pair
(i, j).

6. Try to swap the states of ensembles i and j using
Eq. 4 (with labels i, j instead of 1, 2). Update en-
sembles i, j with the swapped state or the old state
in case of a rejection. Return to step 4.

7. Select one of the free ensembles at random and as-
sign the worker to that ensemble for performing a
new standard move. Go to step 3.

In this algorithm ensembles are not updated in co-
hort like in standard replica exchange, but updates occur
at irregular intervals. In addition, the different ensem-
ble conditions can result in systematic differences in the
number of states that are being created over time. To
prove that the above scheme actually samples the cor-
rect distributions requires a fundamentally new concep-
tual view as the superstate picture is no longer appli-
cable. Despite that the algorithm uses the same type
of Eqs. 1 and 4, as one would use in standard replica
exchange, it does not rely on Eqs. 2 and 3 that are no
longer valid. In the Supplementary Information (SI) we
provide a proof from the individual ensemble’s perspec-
tive in which the other ensembles provide an ”environ-
ment” E that might, or might not, participate in the
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move of the ensemble considered. By doing so, we no
longer require that the number of transitions from old
to new, S(o) → S(n), is the same as from new to old,
S(n) → S(o). Instead, by writing S = (s1, E), from
ensemble 1’s perspective, we have that the number of

(s
(o)
1 , E(o)) → (s

(n)
1 , aE(n)) transitions should be equal

to the number of (s
(n)
1 , E(o)) → (s

(o)
1 , aE (n)) transitions

when the standard move is applied where aE(n) refers to
any new environment. The SI shows a similar detailed-
balance condition for the replica exchange moves. At step
6 we sample only ensemble i and j or, alternatively, all
free ensembles get a sample update. This would mean re-
sampling the existing state of those not involved in a swap
(”null move”). This makes the approach more similar to
the superstate sampling albeit using only free ensembles,
as described in the SI. The null move does not reduce
the statistical uncertainty, but we mention it here as it
makes it easier to explain the infinite swapping approach.
But for the detailed-balance conditions to be valid it is
imperative that occupied ensembles are not sampled.
An essential aspect of the efficiency of our algorithm

is that the number of workers K is less than the number
of ensembles N . The case K = N is valid but would
reduce the number of replica exchange moves to zero as
only one ensemble is free at the maximum. Reducing the
K/N ratio will generally imply a higher acceptance in the
replica exchange moves as we can expect a higher num-
ber of free ensembles whose distributions have significant
overlap. What gives the optimum number of workers is
therefore a non-trivial question that we will further ex-
plore in the Results and Discussion section. However, for
case K < N we can maximize the effect of the replica
exchange moves by taking the PRE parameter as high
as possible. In fact, we can simulate the effect of the
limit PRE → 1 without having to do an infinite num-
ber of replica exchange moves explicitly. This lead to an
infinite swapping [13] version of our algorithm.
Infinite swapping. If in the previously described al-

gorithm we take PRE = 1 − δ, we will loop through the
steps 4-6 for many iterations (nit =

P
∞

n=0 n(1 − δ)nδ =
1/δ in the limit δ → 0) before getting to step 7. When δ
vanishes and nit becomes infinitely large, we expect that
all possible swaps will be executed an infinite number of
times. Since the swaps obey detailed balance between un-
occupied ensembles, these will essentially sample the dis-
tribution of Eq. 3 (for the subset S∗ of unoccupied ensem-
bles). Hence, when the loop is exited, each possible per-
mutation σ ∈ S∗ has been sampled nit × ρ(σ)/

P
σ ρ(σ)

times. By lumping all the times that the same permuta-
tion was sampled and normalizing by division with nit,
we simply sample all the possible permutations in one go
using fractional weights that sum up to 1. This is then
the only sampling step, as the single update in step 3 can
be skipped due to its negligible 1/nit weight.
The idea of doing an ”infinite number” of swapping

moves has been proposed before [13–15], but here we
give a different flavor to this approach by a convenient
reformulation of the problem into permanents that allows

us to beat the steep factorial scaling reported in earlier
works [13]. The permanents formulation goes as follows.
Supposed that after step 3, there are 4 free ensembles
(we name them e1, e2, e3, e4) containing 4 states (s1,
s2, s3, s4). Which state is in which ensemble after this
step is irrelevant. We can now define a weight-matrix W :

W =







e1 e2 e3 e3
s1 W11 W12 W13 W14

s2 W21 W22 W23 W24

s3 W31 W32 W33 W34

s4 W41 W42 W43 W44







where Wij ∝ ρj(si). Essential to our approach is
the computation of the permanent of the W matrix,
perm(W ), and that of the W{ij}-matrices in which the
row i and column j are removed.
The permanent of a matrix is similar to the determi-

nant, but without alternating signs. We can, henceforth,
write perm(W ) =

P4
j=1 W1jperm(W{1j}). As the

permanent of the 1 × 1 matrix is obviously equal to
the single matrix value, the permanent of arbitrary
dimension could in principle be solved recursively using
this relation. Based on the permanents of W , we will
construct a probability matrix P :

P =







e1 e2 e3 e4
s1 P11 P12 P13 P14

s2 P21 P22 P23 P24

s3 P31 P32 P33 P34

s4 P41 P42 P43 P44







where Pij is the chance to find state si in ensemble ej .
As for each permutation each state is in one ensemble
and each ensemble contains one state, the P -matrix is
bistochastic: both the columns and the rows sum up to 1.
If we consider S∗

ij the set of permutations in which state
si is in ej, we can write Pij =

P
σ∈S∗

ij
ρ(σ)/

P
σ′∈S∗ ρ(σ′).

We can, however, also use the permanent representation
in which

Pij =
Wijperm(W{ij})

perm(W )
(5)

So far we have not won anything as computing the the
permanent via the recursive relation mentioned above has
still the factorial scaling. The Gaussian elimination ap-
proach, that allows an order O(n3) computation for de-
terminants of n×n matrices, won’t work for permanents
as only some but not all row- and column-operations have
the same effect to a permanent as to a determinant. One
can for instance swap rows and columns without chang-
ing the permanent. Multiplying a row by a nonzero scalar
multiplies the permanent by the same scalar. Hence, this
will not affect the P-matrix based on Eq. 5. Unlike the
determinant, adding or subtracting to a row a scalar mul-
tiple of another row, an essential part of the Gaussian



4

elimination method, does change the permanent. This
makes the permanent computation of a large matrix ex-
cessively more expensive than the computation of a de-
terminant. Yet, recent algorithms based on the Balasub-
ramanian–Bax–Franklin–Glynn (BBFG) formula [16–18]
scale as O(2n). This means that the computation of the
full P -matrix scales as O(2n×n2), which seems still steep
but is nevertheless a dramatic improvement compared to
factorial scaling.
For our target time of 1 second, for instance, we could

only run the algorithm up to N = 7 in the factorial ap-
proach, while we reach N = 12 in the BBFG method
using a mid-to-high-end laptop (DELL XPS 15 with
an Intel Core i7-8750H). If matrix size of N = 20 is
the target, the BBFG method can perform a full P -
matrix determination in ∼ 711 seconds, while it would
take ∼ 15.3 × 106 years in the factorial approach. The
BBFG method is the fastest completely general solution
for the problem of computing a P -matrix from any W -
matrix. For several algorithms, the W -matrix has spe-
cial characteristics that can be exploited to further in-
crease efficiency. For instance, if by shuffling the rows
and columns the W -matrix can be made into a block
form, where squared blocks at the diagonal have only
zero’s at their right and upper side, the permanent is
equal to the product of the block’s permanents. For in-
stance, if W14 = W24 = W34 = 0 we have two blocks,
3 × 3 and 1 × 1. If W13 = W14 = W23 = W24 = 0, we
can identify 2 blocks of 2× 2 etc. Identification of blocks
can hugely decrease the computation of a large perma-
nent. Another speed-up can be made if all rows in the
W -matrix are a sequence of ones followed by all zeros, or
can be made into that form after previously mentioned
column and row operations. This makes an order O(n2)
approach possible. We will further discuss this in Sec.
Application: ∞RETIS.
The infinite swapping approach changes the aforemen-

tioned algorithm from step 3:

3. If the worker is finished with its MC move in a spe-
cific ensemble, the new state is accepted or rejected
(but not yet sampled) according to Eq. 1. The en-
semble is free.

4. Determine the W -matrix based on all unoccupied
ensembles, calculate the P -matrix based on Eq. 5,
and update all the unoccupied ensembles by sam-
pling all free states with the fractional probabilities
corresponding to the columns in the P -matrix.

5. Pick randomly one of the free ensembles ej .

6. Pick one of the available states (s1, s2, . . .) based
on a weighted random selection in which state si
has a probability of Pij to be selected.

7. The worker is assigned to do a new standard move
in ensemble ej based on previous state si. Go to
step 3.

APPLICATION: ∞RETIS

Replica Exchange Transition interface sampling
(RETIS) [19, 20] is a quantitative path sampling al-
gorithm in which the sampled states are short molec-
ular trajectories (paths) with certain start- and end-
conditions, and a minimal progress condition. New paths
are being generated by a Monte Carlo move in path
space, such as the shooting move [21] in which a ran-
domly selected phase point of the previous path is ran-
domly modified and then integrated backward and for-
ward in time by means of molecular dynamics (MD). The
required minimal progress increases with the rank of the
ensemble such that the final ensemble contains a reason-
able fraction of transition trajectories. The start- and
end-conditions, as well as the minimal progress, are ad-
ministered by the crossings of interfaces (λ0,λ1, . . . ,λM )
with λk+1 > λk, that can be viewed as non-intersecting
hypersurfaces in phase space having a fixed value of the
reaction coordinate. A MC move that generates a trial
path not fulfilling the path ensemble’s criteria is always
rejected. RETIS defines different path ensembles based
on the the direction of the paths and the interface that
has to be crossed, but all paths start by crossing λ0 (near
the reactant state/state A) and they end by either cross-
ing λ0 again or reaching the last interface λM (near the
product state/state B). There is one special path en-
semble, called [0−], that explores the left side of λ0, the
reactant well, while all other path ensembles, called [k+]
with k = 0, 1, . . .M−1, start by moving to the right from
λ0 reaching at least λk.

A central concept in RETIS is the so-called overall
crossing probability, the chance that a path that crosses
λ0 in the positive direction reaches λM without recrossing
λ0. It provides the rate of the process when multiplied
with the flux through λ0 (obtained from the path lengths
in [0−] and [0+] [20]) and is usually an extremely small
number. The chance that any of the sampled paths in the
[0+] path ensemble crosses λM is generally negligible, but
a decent fraction of those (∼ 0.1− 0.5) will cross λ1 and
some even λ2. Likewise, paths in the [k+], k > 0, path
ensembles have a much higher chance to cross λk+1 than
a [0+]-path as they already cross λk. This leads to the
calculation of M local conditional crossing probabilities,
the chance to cross λk+1 given λk was crossed for k =
0, 1 . . .M − 1, whose product gives an exact expression
for the overall crossing probability with an exponentially
reduced CPU cost compared to MD.

The efficiency is further hugely improved by execut-
ing replica exchange moves between the path ensembles.
These swaps are essentially cost-free since there is no
need to simulate additional ensembles that are not al-
ready required. An accepted swapping move in RETIS
provides new paths in two ensembles without the ex-
pense of having to do MD steps. The enhancement in
efficiency is generally even larger than one would ex-
pect based on those arguments alone as path ensembles
higher-up the barrier provide a similar effect as the high-
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temperature ensembles in parallel tempering. In addi-
tion, point-exchange moves between the [0−] and [0+]
are performed by exchanging the end- and start-points
of these path that are then continued by MD at the op-
posite site of the λ0 interface.

While TIS [22] (without replica exchange) can run all
path ensembles embarrassingly parallel, the RETIS al-
gorithm increases the CPU-time efficiency, but is diffi-
cult to parallelize and open source path-sampling codes,
like OpenPathSampling [23] and PyRETIS [24], imple-
ment RETIS as a fully sequential algorithm. The path
length distributions are generally broad with an increas-
ing average path length as function of the ensemble’s
rank. This becomes increasingly problematic the more
ensembles you have as they all have to wait for the slow-
est ensemble. This means that while RETIS will give
you the best statistics per CPU-hour, it might not give
you the best statistics in wall-time. With the continuous
increase in computing power, trading some CPU-time ef-
ficiency for wall-time efficiency, getting the answer faster
while spending more CPU-cycles, might be preferential.
Our parallel scheme can effectively deal with the unequal
CPU cost of the replicas, which allows us to increase
the wall-time efficiency with no or minimal reduction in
CPU-time efficiency.

The W -matrix in RETIS. If there are M + 1 in-
terfaces, λ0,λ1, . . . ,λM , there are also N = M + 1 en-
sembles, [0−], [0+], [1+], . . . , [(M − 1)+]. For K workers,
the size of the W -matrix is, hence, either (N −K +1)×
(N − K + 1) or (N − K) × (N − K) as swappings are
executed when 1 of the K workers is free, while the re-
maining K − 1 workers occupy path ensembles that are
locked and do not participate in the swap. The smallest
matrix occurs when one worker is occupying both [0−]
and [0+] during the point exchange move, as described
in the simulation methods.

Paths can be represented by a sequence of time slices,
the phase points visited by the MD trajectory. For a
path of length L+1, X = (x0, x1, . . . , xL), the plain path
probability density ρ(X) is given by the probability of the
initial phase point times the dynamical transition prob-
abilities to go from one phase point to the next: ρ(X) =
ρ(x0)φ(x0 → x1)φ(x1 → x2) . . .φ(xL−1 → xL). Here,
the transition probabilities depend on the type of dy-
namics (deterministic, Langevin, Nosé-Hoover dynamics,
etc). The weight of a path within a specific path ensemble
ρj(X) can be expressed as the plain path density times
the indicator function 1ej and possibly an additional
weight function wj(X): ρj(X) = ρ(X)×1ej (X)×wj(X).
The indicator function equals 1 if the path X belongs to
ensemble ej . Otherwise it is 0. The additional weight
function wj(X) is part of the high-acceptance protocol
that is used in combination with the more recent path
generation MC moves such as stone skipping [25] and
wire-fencing [26]. Using these ”high-acceptance weights”,
nearly all the CPU intensive moves can be accepted as
they are tuned to cancel the Pgen-terms in Metropolis-
Hastings scheme, Eq. 1, and the effect of the non-physical

weights is undone in the analysis by weighting each sam-
pled path with the inverse of wj(X).

While the path probability ρ(si = X) is difficult to
compute, determining 1j(si) and wj(si) is trivial. It
is therefore a fortunate coincidence that we can replace
Wij = ρj(si) with

Wij = 1ej (si)wj(si) (6)

because the P -matrix does not change if we divide or
multiply a row by the same number, as mentioned in
Sec. Methods. Except for [0−], all path ensembles have
the same start and end condition and only differ with
respect to the interface crossing condition. A path that
crosses interface λk automatically crosses all lower inter-
faces λl<k. Reversely, if the path does not cross λk, it
won’t cross any of the higher interfaces λl>k. This im-
plies that if the columns of Wij are ordered such that the
1st column (e1) is the first available ensemble from the
sequence ([0−], [0+], [1+], . . . , [(M − 1)+]), the 2nd col-
umn (e2) is the second available ensemble etc, most rows
will end with a series of zeros.

Reordering the rows with respect to the number of
trailing zeros, almost always ensures that the W -matrix
can be brought into a block-form such that the perma-
nent can be computed faster based on smaller matrices.
In particular, if [0−] is part of the free ensembles, it will
always form a 1× 1 block as there is always one and no
more than one available path that fits in this ensemble.

If high-acceptance is not applied, we have wj(X) = 1
and each row in the W -matrix (after separating the [0−]
ensemble if it is part of the free ensembles) is a sequence
of ones followed by all zeros. The W -matrix can hence
be represented by an array (n1, n2, n3, . . . nn) where each
integer ni indicates the number of ones in row i. As we
show in the SI, the permanent of such a W -matrix is
simply the product of (ni + 1− i): perm(W ) =

Q
i(ni +

1 − i). Further, the P -matrix can be constructed from
following order O(n2) method.

The first step is to order the rows of theW -matrix such
that n1 ≤ n2 ≤ . . . ≤ nn. We then fill in the P -matrix
from top to bottom for each row using

Pij =











0, if Wij = 0
1

ni+1−i , if Wij = 1 and [W(i−1)j = 0 or i = 1]
�

ni−1+1−i
ni−i

�

P(i−1)j , otherwise

(7)

The approach is extremely fast and allows the compu-
tation of P -matrices from a large W -matrix, up to sev-
eral thousands, within a second of CPU-time. The above
method applies whenever the rows of the W -matrix can
be transformed into sequence of ones followed by all ze-
ros. Besides RETIS without high-acceptance, this would
apply to other MC methods like subset-sampling [27]
or umbrella sampling [28] with semi-infinite rectangular
windows.
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RESULTS AND DISCUSSION

To test our algorithms we ran 3 types of simulations.
First a memoryless single variable stochastic (MSVS)
process was simulated in order to mimic a RETIS simu-
lation in which the average path length increases linearly
with the rank of the ensemble. A ”path” is created by
drawing 2 random numbers where the first determines
how much progress a path makes and the second deter-
mines the path length. These two outcomes are variable
and depend on the rank of the ensemble such that the fic-
titious path in ensemble [k+] has a 0.1 probability to cross
λk+1 and has an average path length of approximately
k/10 seconds (see Section Materials and Methods). The
worker is paused for a number of seconds equal to the
path length before it can participate in replica moves to
mimic the time it would take to do all the necessary MD
steps. While this artificial simulation allows us to in-
vestigate the potential strength of the method to tackle
extremely rare events, it cannot reveal the effect of corre-
lations between accepted paths when fast exploration of
the reaction coordinate’s orthogonal directions are cru-
cial. To analyze this effect, we also ran a 2D membrane
permeation system with two slightly asymmetric chan-
nels [29]. Lastly, to study our algorithm with a more
generic W -matrix that needs to be solved via BBFG for-
mula, we also ran a set of underdamped Langevin simula-
tions of a particle in a double well potential [30] using the
recent wire fencing algorithm with the high acceptance
protocol [26]. All simulation results were performed using
5 independent runs of 12 hours. Errors were based on the
standard deviations from these 5 simulations, except for
the MSVS process, where a more reliable statistical error
was desired for the comparison with analytical results.
Here, block errors were determined on each of the five
simulations based on the running average of the overall
crossing probability. The block errors were finally com-
bined to obtain the statistical error in the average of the
five simulations.

Memoryless single variable stochastic (MSVS)
process

Table I reports the overall crossing probabilities and
their statistical errors for a system with 50 interfaces and
1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 workers. All
values are within a 50% deviation from the true value of
10−50 with the more accurate estimates for the simula-
tions having a large number of workers. Also, the true
value is within one standard deviation of the reported
averages for 70% of the data points, as is expected from
the standard Gaussian confidence intervals. Figure 1a
shows the scaling of the MD time (solid lines) and num-
ber of MC moves (dashed lines) of the MSVS simulations
(orange) compared to linear scaling (black) and the ex-
pected scaling for standard replica exchange (REPEX)
in which ensembles are updated in cohort (purple).

Whereas the number of ”MD steps” and MC moves
quickly levels off to a nearly flat plateau in the standard
approach due to workers being idle as they need to wait
for the slowest worker, the replica exchange approach de-
veloped in this article shows a perfect linear scaling with
respect to the MD time. The number of MC moves in
the new method shows an even better than linear scaling
due to the fact that the ensembles with shorter ”path
lengths” get simulated relatively more often with more
workers, resulting in more MC moves per second. This in
itself does not necessarily mean that the simulations con-
verge much faster because the additional computational
effort may not be targeted to the sampling where it is
needed. If we neglect the fact that path ensemble sim-
ulations are correlated via the replica exchange moves,
we can write that the relative error in overall crossing
probability ǫ follows from the relative errors in each path
ensemble ǫi via: ǫ2 =

P
i ǫ

2
i . It is henceforth clear that

additional computational power should not aim to lower
the error in a few path ensembles that were already low
compared to other path ensembles. We therefore mea-
sure the effectiveness of the additional workers by cal-
culating computational efficiencies. The efficiency of a
specific computational method is here defined as the in-
verse computer time, CPU- or wall-time, to obtain an
overall relative error equal to 1: ǫ = 1.

In figure 1d the efficiencies based on wall-time (solid)
and CPU-time (dashed) are plotted for the MSVS pro-
cess. These plots depends on the ability of computing
reliable statistical errors in the overall crossing probabil-
ity that is an extremely small number, 10−50. The some-
what fluctuating behavior of these curves should hence
be viewed as statistical noise as the confidence interval
of these efficiencies depends on the statistical error of
this error. Despite that, clear trends can be observed in
which the CPU-time efficiency is more or less flat, while
the wall-time efficiency shows an upward trend. If we
neglect the effect of replica exchange moves on the effi-
ciency, we can relate these numerical results with theo-
retical ones [20, 31] for any possible division of a fixed
total CPU-time over the different ensembles. A common
sense approach would be to aim for the same error ǫi
in each ensemble (which implies doing the same number
of MC moves per ensemble) or to divide the total CPU-
time evenly over the ensembles. These two strategies
correspond to the case K = 1 or standard RETIS and
K = N or standard TIS, respectively. Ref. [31] showed
that these two strategies provide the same efficiency and
in the SI we derive that this leads to a wall-time effi-
ciency as function of the number of workers (K) equal to
K/56250 which is the continuous purple line in figure 1d.
The optimum division, however, would give a slightly
better wall-time efficiency equal to K/50000 which is the
continuous black line in this figure. Also shown in fig-
ure 1d are the expected theoretical efficiencies based on
the numerical distribution of MC moves in each ensem-
ble. This hybrid numerical/theoretical result is shown
by the small purple dots. This shows that ∞RETIS, at
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TABLE I. Results of the 3 model systems showing crossing probabilities (Pcross), permeabilities (perm.), and rates for different
number of workers (#w). All results are shown in dimensionless units. Errors are based on single standard deviations. Values
shown in the lower part are a: exact result, b: Ref. [29], c: approximated value based on Kramers’ therory (see SI), d: Ref. [30],
and e: Ref. [26].

MSVS two-channel system double well with wire fencing
#w Pcross/10−50 #w Pcross/10−5 perm./10−6 #w Pcross/10−7 rate/10−7

1 0.61± 0.33 1 1.52± 0.17 1.28± 0.14 1 5.91± 0.18 2.59± 0.07
5 1.47± 1.04 2 1.63± 0.24 1.37± 0.20 2 5.70± 0.13 2.51± 0.06

10 0.86± 0.51 3 1.52± 0.07 1.28± 0.06 3 5.57± 0.19 2.45± 0.08
15 0.68± 0.08 4 1.42± 0.10 1.19± 0.08 4 5.20± 0.30 2.34± 0.12
20 1.02± 0.13 5 1.40± 0.12 1.18± 0.10 5 5.05± 0.41 2.23± 0.18
25 1.02± 0.17 6 1.54± 0.06 1.30± 0.05 6 5.49± 0.29 2.42± 0.13
30 1.26± 0.24 7 1.48± 0.08 1.24± 0.07 7 4.99± 0.39 2.21± 0.17
35 1.05± 0.15 8 1.46± 0.08 1.23± 0.06 8 4.88± 0.43 2.15± 0.19
40 1.05± 0.14 9 1.42± 0.10 1.20± 0.08
45 0.93± 0.09 10 1.44± 0.08 1.21± 0.07
50 1.00± 0.07 11 1.41± 0.09 1.19± 0.08

12 1.30± 0.15 1.09± 0.12
literature/theoretical result

1.23± 0.16b 1.06± 0.14b 2.79± 0.70d

5.84± 0.13e 2.58± 0.06e

1.00a 1.61c 1.37c 5.83c 2.58c

least for a system in which the path length grows linearly
with the ensemble’s rank, naturally provides a division of
the computational resources that is even better than TIS
(K = N) or RETIS (K = 1). Yet, due to statistical in-
accuracies this is only evident for the K = 15 case. The
best wall-time efficiency is obtained for the case K = N ,
which is essentially equivalent of running independent
TIS simulations (i.e. without doing any replica exchange
moves). We do not expect this to apply to more com-
plex systems where the replica exchange move is a proven
weapon for efficient sampling.

Two-channel simulations

In the middle column of table I we report the calcu-
lated crossing probabilities and permeabilities for 5 simu-
lations for every number of workers. All simulations are
somewhat higher, though still in good agreement with
the previous simulation from Ref. [29]. We also evalu-
ated the approximate result based on Kramers’ theory
(see SI) which seem to confirm the results obtained in
this paper.
Figure 1b shows the scaling of the MD time (solid

lines) and number of MC moves (dashed lines) of the
two-channel simulations (blue) compared to linear scal-
ing (black). We see a slightly worse than linear scaling of
the MD time, which might just be due to a small positive
fluctuation of the 1 worker data-point. We also see a sim-
ilar more than linear scaling in the number of MC moves
as with the MSVS simulations, for the same reason. In
figure 1e the efficiencies based on wall-time (solid) and
CPU-time (dashed) are plotted for the two-channel sys-
tem. The CPU-time efficiency is more or less flat until 8
workers after which it starts to drop off. The wall-time
efficiency shows an upward trend until 10 workers after

which it starts to drop off as well. We assign this drop
to the reduction of replica exchange moves which is an
essential aspect for sampling this system efficiently [29].
This is tangible from figure S1 in the SI where we plot
fraction of trajectories, passing through λM−1, that are
in the lower barrier channel. While from the average
fraction it still looks like the simulations sampled both
channels for any number of workers, 4 out of the 5 simu-
lations in the K = N = 12 case solely visited one of the
two channels. This is in agreement with previous TIS re-
sults [29]. The K = 11 case already provides a dramatic
improvement, but is still expected to be sub optimal due
to the relatively low frequency of replica exchange moves
compared to K < 11. As reported in ref. [29], this ratio
requires many MC moves to converge to the theoretical
value of 0.71 without the added MC moves introduced
in that paper. We did not simulate with these added
moves and thus see the same slow convergence for all of
our simulations. From this 2D system it would indicate
that having half the number of ensembles as workers is a
safe bet for optimum efficiency.

Double well 1D barrier using wire fencing

In the right column of table I we report the calculated
crossing probabilities and rates for the underdamped
Langevin particle in the 1D double well potential. All
simulations are in reasonable agreement with each other
and the results of Refs. [26] and and [30], as well as the
approximate value based on Kramers’ theory. However,
while these results confirm the soundness of the method,
the scaling and efficiency are less convincing. Figure 1b
shows a significantly worse than linear scaling. On fur-
ther inspection we found the average time per MC move
was significantly smaller than our infinite-swapping goal
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FIG. 1. The average scaling of total MD time (cumulative time spend by all the workers) (solid) and MC moves (dashed)
(a-c) and wall-time (solid) and the CPU-time (dashed) efficiencies (d-f) for each number of workers. This is shown for the
memoryless single variable stochastic (MSVS) process (a, d, orange), the two-channel system (b, e, blue) and the double well
with wire fencing (c, f, green) simulations. Each of the data points is based on 5 independent simulations. For the scaling
plots, the black lines are guides for linear scaling from the 1 worker data-point. The purple lines in the scaling plot for the
MSVS simulations (a) show what the scaling would be if we had to wait for the slowest ensemble to finish for each MC move.
The black line, purple line, and points in the efficiency plot of the MSVS process (d) show the optimal, optimal TIS/RETIS,
and hybrid wall-time efficiency, respectively, as computed in the SI.

of 1 s when the simulation was run with more than 2
workers. This results in a bottleneck on how many MC
moves can be started per second, which is the reason for
the observed bad scaling. It still is slightly positive in-
stead of flat as the infinite swapping procedure becomes
quicker with more workers due to the smaller W -matrix.
The same bottleneck can be seen in figure 1f were both
efficiencies plummet with more than 2 workers. The re-
ported scaling deficiency is of little significance for actual
molecular systems where the creation of a full path takes
minutes to hours rather than subseconds.

CONCLUSIONS

We developed a new generic replica exchange method
that is able to effectively deal with MC moves with vary-
ing CPU costs, for instance due to the algorithmic com-
plexity of the MC moves. An essential aspect of the
method is that the number of workers, who execute the
ensemble’s specific MC moves in parallel, is less than the
number of ensembles. Once a worker is finished with its
move, replica exchange moves are carried out solely be-
tween those ensembles that are not occupied by a worker.
This implies that the ensembles are updated at irregular
intervals and a different number of MC moves will be
executed for each ensemble. As a result, the conceptual
viewpoint in which the set of replica’s are viewed as a sin-
gle superstate is no longer valid and the existence of some

kind of detailed-balance relation is no longer trivial. To
prove the exactness of our approach, we introduced some
new conceptual views on the replica exchange methodol-
ogy that is different from the common superstate princi-
ple. Instead, we show that the distributions in the new
approach are conserved for each ensemble individually
via a twisted detailed balance relation in which the other
ensembles constitute an environment that is potentially
actively involved in the MC move of the ensemble con-
sidered. In addition, the method can be combined with
an infinite swapping approach without the factorial scal-
ing based on a mathematical reformulation using perma-
nents.

We applied the novel replica exchange technique on a
path sampling algorithm, RETIS, which is a prototype
of algorithm where the costs for a Monte Carlo move can
vary enormously. The resulting new path sampling algo-
rithm, coined ∞RETIS, was thereafter tested on three
model systems. The results of these simulations show
that the number of MD steps increase linearly with the
number of workers invoked as long as the ensemble’s MC
move has a lower computational cost than the replica
exchange move carried out by the scheduler. The num-
ber of executed MC moves shows an even better than
linear scaling. Moreover, the efficiency increases linearly
with the number of workers for a low-dimensional system
in which the replica exchange has little effect, while it
has an optimum in more complex systems as the number
of successful replica exchange moves decreases when the
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number of workers is close to the number of ensembles.

In summary, the replica exchange method discussed in
this paper has a clear potential to accelerate present path
sampling simulations, but can also be combined with
many other complex algorithms including those that are
yet to be invented. With continuing trend to to run pro-
gressively more massively-parallel computing jobs, our
algorithm is likely to gain importance and will open up
new avenues in the field of molecular simulations and be-
yond.

Supporting Information Appendix (SI)

This article contains Supplementary Information

MATERIALS AND METHODS

Simulation methods

The implementation of∞RETIS was structured as fol-
lows. We start 1 ≤ K ≤ N worker- and 1 scheduler-
process. Each of the worker-processes is going to process
ensemble specific MC moves while the scheduler-process
will do all the replica exchange moves and submits new
jobs to the workers. All ensembles/trajectories that are
currently being updated by a worker-process are not con-
sidered for MC moves by the scheduler, essentially being
’locked’. This means that no data is written for those
ensembles and they are not valid targets for swapping
moves. After a worker is done, it submits the result to
the scheduler, the scheduler then unlocks the returned
ensemble/trajectory and executes the replica exchange
moves on all ensembles/trajectories that that are not
locked. It then submits a new job to the freed worker for
performing a new MC move in a randomly chosen free
ensemble (or two ensembles in case of a point exchange
move) and locks the involved ensembles/trajectories.

In the ∞RETIS method there are two kind of ensem-
ble moves that involve MD steps. The first one is the
shooting move (either standard shooting [21] or the more
recent sub-trajectory moves [25, 26]) in which a new path
is being generated from an old path within a single en-
semble. The second one is the point exchange move be-
tween [0−] and [0+]. If a worker is assigned to this task,
it means that both [0−] and [0+] are occupied by this
worker. The scheduler ensures that there is never more
than 1 worker considered free at a given time. When the
free worker is assigned to perform a new MC move, each
of the ensembles have an equal probability to be selected.
If [0+] or [0−] is selected and the other is also free, there
is a 50% chance to perform a [0−] ↔ [0+] point exchange
move instead of a shooting move in the selected ensemble.

Memoryless single variable stochastic (MSVS)
process

No actual MD is run for the MSVS simulations. In-
stead, we directly sample two random numbers, r1 and
r2 from an uniform distribution ∈ [0, 1) to set the path’s
progress and the path length. A path in ensemble [k+] is
assumed to cross interface λk+l if r1 < (0.1)l. After this,
we wait a random time, t = 0.2 r2 k + 0.1 in seconds.
This was done to simulate both the increasing average
simulation time and variance for outer ensembles. This
setup means that we have no history dependence and
allows us to compute the theoretical values show in fig-
ure 1. 5 independent ∞RETIS simulations were run with
1, 5, 10, 15, . . . , 45, 50 workers.

Double channel simulations

In order to investigate the effect of our algorithm on
the ergodicity of the sampling, a 2D two-channel sim-
ulation was run as described in reference [29]. The new
RETIS moves introduced in that paper (mirror-move and
target-swap move) were not used. Instead, MD was only
run to do shooting moves or the [0−] ↔ [0+] point ex-
changes. As the MD for this system completed too fast,
every worker was set to wait 9 times the time it took
to run the MD before returning the result. 5 indepen-
dent ∞RETIS simulations were run with 1, 2, . . . , 11, 12
workers.

1D double well with wire fencing

In order to investigate the accuracy with a W ma-
trix that contains more numbers than 0s or 1s we sim-
ulated a 1D double-well system [30] together with the
high-acceptance version of a novel path-sampling algo-
rithm, wire fencing. The algorithm is described in refer-
ence [26], but for us the relevant part is that the high-
acceptance weight is the number of frames that a path
has outside the interface for each ensemble times an ex-
tra factor 2 if the path ends at the last interface. As for
the two-channel system, a worker was set to wait 9 times
the time it took to complete the MD move before return-
ing the result. 5 independent ∞RETIS simulations were
run with 1, 2, . . . , 7, 8 workers with interfaces placed at
[−0.99,−0.8,−0.7,−0.6,−0.5,−0.4,−0.3, 1.0].
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I. SUPPORTING INFORMATION TEXT

This Supplementary Information contains the following data, derivations, and numerical examples. In Sec. II, we
provide a proof that the replica exchange method with cost unbalanced replicas conserves the equilibrium distribution
at the individual ensemble level. Instead of the superstate principle, the derivation is based on the individual ensemble’s
perspective where the other ensembles serve as an environment, which finally leads to a twisted detailed-balance
relation. In Sec.III, we show a O(n2) algorithm for computing the P -matrix from a W -matrix for the case that the
W -matrix consists of rows having a series with ones, followed by zeros. This is the type of matrix that is relevant for
RETIS simulations based on the standard shooting move. Sec. IV presents the derivations of the theoretical results
on the crossing probabilities, rate constant, and permeability via Kramer’s theory that are shown in table 1 of the
main article. In Sec. V the computational efficiencies, including the derivations for the most optimal efficiencies, are
discussed. Finally, in Sec. VI we provide some additional simulation results on the relative transition probabilities
through the lower and higher barrier channel.

II. DETAILED-BALANCE RELATIONS

In this section, we will derive detailed-balance relations for parallel replica’s that are not based on the common
superstate viewpoint. These alternative relations can be used to validate the replica exchange algorithm for replica’s
with unequal CPU cost. Our derivation is based on the finite swapping approach, though the infinite swapping version
follows automatically from this when the probability to perform a swap goes to unity (PRE → 1) as explained in the
main text. To simplify matters, we assume that we have one type of replica exchange move that is low in CPU cost
and one type of ensemble move that operates within one ensemble and has a high CPU cost. The relations that we
derive are, however, by no means limited to that. In fact, in the RETIS algorithm there is also a point exchange move
between the [0−] and [0+] ensemble. In previous publications this move, annotated as [0−] ↔ [0+], was categorized as
a special type of swapping/replica exchange move. In this article we reserve the name swap or replica exchange to an
operation that involves the swapping of full paths, which does not require any MD steps. In contrast, the [0−] ↔ [0+]
point exchange implies the exchange of time slices at the end and start of the paths that are then extended at the
other side of the λ0 interface. In our implementation, this [0−] ↔ [0+] move is carried out by a single worker that
locks both the [0−] and [0+] ensembles during this move. As the [0−] paths can never be swapped with any of the
other paths, we can view the point exchange move as an ensemble move in ensemble [0+].
As explained in the main article, the replica exchange algorithm that we propose is based on a set of workers

and a set of ensembles. The number of workers K is less than the number of ensembles N . Most of the time the
worker is performing a CPU intensive single-ensemble move. The ensemble in which the worker operates is considered
occupied/locked. Once a worker has completed a CPU intensive move, the move will be accepted or rejected, after
which either a replica exchange move will be carried out with any of the unoccupied ensembles or the worker will be
assigned to do a new single-ensemble move at a randomly picked free ensemble.
In order to indicate the difference between occupied and unoccupied ensembles, we introduce a new state vector

that indicates both the available ensembles as in the main text and the occupied ensembles with a bar, e. g:
S = (s1, s2, s3, s4, s5) to show that there are 5 ensembles of which ensemble 3 and 5 are occupied by a worker.
For both occupied and unoccupied ensembles, the si-terms reflect the most recent state that was sampled in the ith
ensemble. Now our sole aim is to ensure that if we just count the instances that an ensemble i is updated with a
new sample (which could be a copy of the previous sample in case of a rejected move), these should be distributed
according the correct probability density ρi.
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It is important to note that the time between two updates can vary and depends on the state that was most
recently sampled. However, the waiting time between an update of a specific ensemble and the point in time that
this ensemble gets occupied by a worker will depend on the states of all other ensembles, but not on the state in the
ensemble considered. Since the ensembles are independent, this waiting time will be the same on average irrespective
to this sampled state. This has as a consequence that if we take ”photographs” of the state vector, at intervals or
randomly, evenly distributed over time, we should again obtain the correct distributions ρi, for all i, of the states in
ensemble i as long as we ignore the instances that this ensemble is occupied. In other words, we can write for the
previous example state vector

ρ(S) = ρ(s1, s2, s3, s4, s5) = ρ1(s1)ρ2(s2)ρ
u
3 (s3)ρ4(s4)ρ

u
5 (s5) (1)

where ρi(·) is the statistically correct distribution of ensemble i, and ρuj (·) an unknown distribution for occupied
ensemble j that has no clear physical interpretation. For instance, it can happen that a state s is relatively unlikely
to exist in ensemble i, low ρi(s), but that any MC move starting from that state takes a very long time, resulting in
a high ρui (s).
Now, let’s consider the Markov chain from the perspective of ensemble 1 where we monitor its state at the point

that a new MC is initiated from an old state s1. From the viewpoint of ensemble 1, the other ensembles are viewed
as an ”environment” (E = (s2, s3, s4, s5) in the aforementioned example), that might or might not influence the MC
move. The probability of state s1 in ensemble 1 can be written as an integral of the conditional probability given an
environment:

ρ1(s1) =

Z
ρ1(s1|E)ρ(E)dE . (2)

As the ensembles are independent we can write

ρ1(s1|E) = ρ1(s1), (3)

but we temporary keep the condition to clarify the logical structure of the upcoming derivation.
As stated, we assume that we employ two types of moves: 1) a CPU intensive move that modifies s1 without

using the environment E and 2) a swapping move. In addition, the environment might influence the relative selection
probabilities for choosing either 1) or 2). Typically, this selection probability will depend on Na(E), the number of
unoccupied ensembles in E . Further, we need to keep in mind that during the execution of the MC move in ensemble
1, the environment changes. How much the environment changes will depend on how long it takes to fully execute
the move involving ensemble 1.
To derive detailed-balance relations for the replica exchange method for cost unbalanced ensembles, we start with

the more general balance concept; if we have an infinite number of states distributed according to the equilibrium
distribution, all of which make a MC move at the same time, then we have to get the equilibrium distribution again.
This means that the flux out off s1 should be equal to the flux into s1 which can be written as

Z
ρ1(s1|E)ρ(E)π(s1, E → s′1, E

′)dEdE ′ds′1 =

Z
ρ1(s

′′

1 |E
′′)ρ(E ′′)π(s′′1 , E

′′ → s1, E
′′′)dE ′′dE ′′′ds′′1 (4)

The transition probability π(·) can be split into the transitions via the different types moves (that we will indicate
with the Greek letter α) which will be selected with a probability P sel

α (E) that can depend on the environment E :

π(s1, E → s′1, E
′) =

X

α

P sel
α (E)πα(s1, E → s′1, E

′) (5)

This shows another complicating factor as in standard detailed-balance we need to consider the probability that the
exact reverse move will be executed once the new state has been established. However, as the environment could have
changed, the reverse move might involve different selection probabilities.
By substituting Eq. 5 into Eq. 4, we get an extra summation over α in addition to the integrals:

X

α

Z
ρ1(s1|E)ρ(E)P

sel
α (E)πα(s1, E → s′1, E

′)dEdE ′ds′1 =
X

α

Z
ρ1(s

′′

1 |E
′′)ρ(E ′′)P sel

α (E ′′)πα(s
′′

1 , E
′′ → s1, E

′′′)dE ′′dE ′′′ds′′1

(6)

But at this point, we apply the first level of ”detailedness” by requiring the equation to hold for each α:
Z

ρ1(s1|E)ρ(E)P
sel
α (E)πα(s1, E → s′1, E

′)dEdE ′ds′1 =

Z
ρ1(s

′′

1 |E
′′)ρ(E ′′)P sel

α (E ′′)πα(s
′′

1 , E
′′ → s1, E

′′′)dE ′′dE ′′′ds′′1 (7)
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So now we can evaluate the different moves separately. We further simplify this expression by integration out the
variables E ′ and E ′′′ using the following relation:

Z
πα(s, E → s′, E ′)dE ′ = πα(s, E → s′, aE) (8)

where aE refers to any possible environment. Substitution of Eq. 8 in Eq. 7 gives:
Z

ρ1(s1|E)ρ(E)P
sel
α (E)πα(s1, E → s′1,

aE)dEds′1 =

Z
ρ1(s

′′

1 |E
′′)ρ(E ′′)P sel

α (E ′′)πα(s
′′

1 , E
′′ → s1,

aE)dE ′′ds′′1 (9)

First, we consider α = 1 referring the CPU intensive move that only operates in ensemble 1. For this move we
substitute α = 1 in Eq. 9 and replace E ′′ and s′′1 with respectively E and s′1, which is allowed since these are dummy
integration variables

Z
ρ1(s1|E)ρ(E)P

sel
1 (E)π1(s1, E → s′1,

aE)dEds′1 =

Z
ρ1(s

′

1|E)ρ(E)P
sel
1 (E)π1(s

′

1, E → s1,
aE)dEds′1

Then, we fix another level of detailedness by requiring that the integrands at the left and right side of equality sign
to be identical for any E and s′1. As a result, ρ(E)P sel

α (E) will cancel out such that we can write

ρ(s1|E)π1(s1, E → s′1,
aE) = ρ(s′1|E)π1(s

′

1, E → s1,
aE) (10)

Since in move 1) the ensembles progress independently from each other, we have

π1(s1, E → s′1,
aE) = π1(s1 → s′1)π1(E → aE) (11)

The subscript ”1” in π1(E → aE) might seem contradictory to the previous statement on independent progression,
but it just indicates that the points in time at which the environment is evaluated relates the duration of the MC
move in ensemble 1: E is the environment at the start of the MC move in ensemble 1, and aE is that when the move
is completed. As the time for a s1 → s′1 move is likely not the same as the time for a s′1 → s1 move, the final
environments are likely not the same. However, aE refers to any environment. Hence, by substituting Eq. 11 into
Eq. 10, π1(E → aE) does not only cancel as it appears at both sides of the equals sign, it is also equal to one. We
therefore have not just one, but two very good reasons to eliminate this term such that:

ρ1(s1|E)π1(s1 → s′1) = ρ1(s
′

1|E)π1(s
′

1 → s1) (12)

or, via Eq. 3:

ρ1(s1)π1(s1 → s′1) = ρ1(s
′

1)π1(s
′

1 → s1) (13)

This equation essentially the same as the standard detailed balance equation such that we can adapt our acceptance
according to

Pacc(s1 → s′1) = min

�

1,
ρ1(s

′

1)Pgen(s
′

1 → s1)

ρ1(s1)Pgen(s1 → s′1)

�

(14)

which is exactly the same as in standard Metropolis-Hastings. Still, the underlying philosophy is different from a
super-state perspective as the number of transitions from old to new, S(o) → S(n), is not the same as from new to

old, S(n) → S(o). Instead, by writing S = (s1, E) we have that the number of (s
(o)
1 , E(o)) → (s

(n)
1 , aE(n)) transitions

should be equal to the number of (s
(n)
1 , E(o)) → (s

(o)
1 , aE(n)) transitions. In addition, as at the end of the move we

only update ensemble 1, and not those that are here considered as environment, the number of sampled states in the
ensembles do not increase in cohort. Sampling all states simultaneously like in a true superstate move would imply
that distributions get mixed with the unknown and unphysical ρui distributions.
For the swapping move we just consider the example of an attempted 1 ↔ 2 swap as all other swaps i ↔ j are

completely analogous. We start again at Eq. 7 with α = 1 ↔ 2, and further we split the environment E = {s2, E✄2
}

into the part that participates in the swap move, s2, and the rest, E
✄2
:

Z
ρ1(s1|s2, E✄2

)ρ2(s2)ρ(E✄2
)P sel

1↔2(E ✄2
)× π1↔2(s1, s2, E✄2

→ s′1, s
′

2, E
′

✄2
)ds2dE✄2

ds′2dE
′

✄2
ds′1 =

Z
ρ1(s

′′

1 |s
′′

2 , E
′′

✄2
)ρ2(s

′′

2 )ρ(E
′′

✄2
)P sel

1↔2(E
′′

✄2
)× π1↔2(s

′′

1 , s
′′

2 , E
′′

✄2
→ s1, s

′′′

2 , E ′′′

✄2
)ds′′2dE

′′

✄2
ds′′′2 dE ′′′

✄2
ds′′1 (15)
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Here, we assume that the selection probability P sel
1↔2 depends on E

✄2
. The chance to do a replica exchange move equals

PRE, but once it is decided to perform a replica exchange move, all possible swaps i ↔ j compete to be selected with
an equal probability. Hence, the probability for the 1 ↔ 2 swap to be selected depends on the number of available
ensembles, which is the total number of ensembles minus the number of occupied ones. This latter information is
contained in E

✄2
The swapping transition probability π1↔2 relates to a move that has only one possible outcome, namely the one in

which the states in ensemble 1 and 2 are exchanged. Therefore, π1↔2(s1, s2, E✄2
→ s′1, s

′

2, E
′

✄2
) is vanishing if s′1 6= s2

and s′2 6= s1. Likewise, π1↔2(s
′′

1 , s
′′

2 , E
′′

✄2
→ s1, s

′′′

2 , E ′′′

✄2
) vanishes if s′′2 6= s1 and s′′1 6= s′′′2 . We can, therefore, write

π1↔2(s1, s2, E✄2
→ s′1, s

′

2, E
′

✄2
) = π̂1↔2(s1, s2, E✄2

→ s2, s1, E
′

✄2
)δ(s2 − s′1)δ(s1 − s′2)

π1↔2(s
′′

1 , s
′′

2 , E
′′

✄2
→ s1, s

′′′

2 , E ′′′

✄2
) = π̂1↔2(s

′′′

2 , s1, E
′′

✄2
→ s1, s

′′′

2 , E ′′′

✄2
)δ(s′′′2 − s′′1)δ(s1 − s′′2) (16)

where the transition probability with the hat, π̂1↔2, differs from transition probability without the hat, π1↔2, by the
fact that the latter considers any potential (even if impossible) result of the swapping operation, while the former
actually relates to the probability of successfully executing the move in practice in which s1 and s2 change places.
Substitution of Eqs. 16 in Eq. 15 allows us to eliminate the integrals over s′1, s

′

2, s
′′

1 , and s′′2 via the delta-function
integration property.

Z
ρ1(s1|s2, E✄2

)ρ2(s2)ρ(E✄2
)P sel

1↔2(E ✄2
)π̂1↔2(s1, s2, E✄2

→ s2, s1, E
′

✄2
)ds2dE✄2

dE ′

✄2
=

Z
ρ1(s

′′′

2 |s1, E
′′

✄2
)ρ2(s1)ρ(E

′′

✄2
)P sel

1↔2(E
′′

✄2
)π̂1↔2(s

′′′

2 , s1, E
′′

✄2
→ s1, s

′′′

2 , E ′′′

✄2
)dE ′′

✄2
ds′′′2 dE ′′′

✄2
(17)

We then eliminate the integrals over E ′

✄2
and E ′′′

✄2
using a similar expression as Eq. 8.

Z
ρ1(s1|s2, E✄2

)ρ2(s2)ρ(E✄2
)P sel

1↔2(E ✄2
)π̂1↔2(s1, s2, E✄2

→ s2, s1,
aE
✄2
)ds2dE✄2

=

Z
ρ1(s

′′′

2 |s1, E
′′

✄2
)ρ2(s1)ρ(E

′′

✄2
)P sel

1↔2(E
′′

✄2
)π̂1↔2(s

′′′

2 , s1, E
′′

✄2
→ s1, s

′′′

2 , aE
✄2
)dE ′′

✄2
ds′′′2 (18)

In the next step, we change some of the dummy integration variable names: s′′′2 to s2 and E ′′

✄2
to E

✄2
.

Z
ρ1(s1|s2, E✄2

)ρ2(s2)ρ(E✄2
)P sel

1↔2(E ✄2
)π̂1↔2(s1, s2, E✄2

→ s2, s1,
aE
✄2
)ds2dE✄2

=

Z
ρ1(s2|s1, E✄2

)ρ2(s1)ρ(E✄2
)P sel

1↔2(E ✄2
)π̂1↔2(s2, s1, E✄2

→ s1, s2,
aE
✄2
)dE

✄2
ds2 (19)

and use a detailed-balance principle by stating that the equality does not only hold when integrated, but is true for
any pair s2, E✄2

.

ρ1(s1|s2, E✄2
)ρ2(s2)π̂1↔2(s1, s2, E✄2

→ s2, s1,
aE
✄2
) = ρ1(s2|s1, E✄2

)ρ2(s1)π̂1↔2(s2, s1, E✄2
→ s1, s2,

aE
✄2
) (20)

We further simplify ρ1(s1|s2, E✄2
) by ρ1(s1) using Eq. 3, and split π̂1↔2(s1, s2, E✄2

→ s2, s1,
aE
✄2
) into π̂1↔2(s1, s2 →

s2, s1)× π1↔2(E ✄2
→ aE

✄2
) where the latter term cancels like before:

ρ1(s1)ρ2(s2)π̂1↔2(s1, s2 → s2, s1) = ρ1(s2)ρ2(s1)π̂1↔2(s2, s1 → s1, s2) (21)

Since π̂1↔2(s2, s1 → s1, s2) is the transition probability from (s1, s2) to (s2, s1) in the first two ensembles given that
the 1 ↔ 2 swap move was selected, and given that there are no other possible outcomes of this swap (Pgen = 1), the
transition probability equals the acceptance probability:

ρ1(s1)ρ2(s2)Pacc(s1, s2 → s2, s1) = ρ1(s2)ρ2(s1)Pacc(s2, s1 → s1, s2) (22)

To satisfy this relation, Eq. (4) of the main article suffices.

Pacc = min

�

1,
ρ1(s2)ρ2(s1)

ρ1(s1)ρ2(s2)

�

(23)
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So also here, the standard replica exchange acceptance rule applies. The main difference is that ensembles are not
updated in cohort. After the 1 ↔ 2 swap move we only update ensembles 1 and 2. Alternatively, after the 1 ↔ 2
swap all other free ensembles will be updated as well with ”null moves”. In the example of Eq. 1 this would mean
that besides, ensemble 1 and 2, also ensemble 4 would be updated. As the state in this ensemble is not changing in
a 1 ↔ 2 swap, this would imply recounting the existing s4 state. Hence, this could be viewed as a superstate move,
but then without the occupied states. Resampling s4 is allowed as the chance for resampling is independent of the
content of ensemble 4. However, the sampling of the ensembles 3 and 5 should, while occupied, at all cost be avoided
since the time that ensembles 3 and 5 remain occupied can correlate with the values of s3 and s5, respectively.
Like in Eq. 14, the acceptance rule of Eq. 23 is based on a twisted detailed balance relation: we require that,

given an equilibrium distribution, the number of (s
(o)
1 , s

(o)
2 , E

(o)

✄2
) → (s

(n)
1 , s

(n)
2 , aE

✄2
(n)) transitions should be equal to

the number of (s
(n)
1 , s

(n)
2 , E

(o)

✄2
) → (s

(o)
1 , s

(o)
2 , aE

✄2
(n)) transitions, where s

(o)
1 = s

(n)
2 = s1 and s

(o)
2 = s

(n)
1 = s2. So in

this section, we proved that standard acceptance-rejection rules can be applied in a parallel scheme in which replica
exchange moves occur only between unoccupied ensembles, such that ensembles are not updated in cohort.

III. MATRICES WITH CONSECUTIVE ONES AND ZEROS

If the high-acceptance approach is not applied, wi(X) = 1 in Eq. (6) of the main article and the W -matrix has rows
consisting of a sequence of ones, followed a sequence of zeros. The P -matrix can then be determined from Eq. (7) of
the main article which has an O(n2) scaling. In this section we provide the proof of this equation.
Let ni be the number of ones in row i. The first step to order the rows with increasing order of ni. For instance in

the following 5× 5 matrix

W =











e1 e2 e3 e4 e5
s1 1 1 0 0 0
s2 1 1 1 1 0
s3 1 1 1 0 0
s4 1 1 1 1 0
s5 1 1 1 1 1











we see that s2, originating from an MC move in ensemble e2, is also valid for e3 and e4. State s3 that was created
in e3 only reaches the minimal condition for that ensemble. In path sampling, where s2 and s3 are paths and e2, e3
and e4 refer to path ensembles [k+], [l+] and [m+] with m > l > k, it would mean that path s3 crosses λl, but not
λm, while path s2 crosses at least m − k more additional interfaces than strictly needed for being a valid trajectory
in e2 = [k+]. As a result, the third row has fewer ones than the second row. After reordering, the W -matrix looks as
follows:

W =











e1 e2 e3 e4 e5
s′1 = s1 1 1 0 0 0
s′2 = s3 1 1 1 0 0
s3 = s2 1 1 1 1 0
s′4 = s4 1 1 1 1 0
s′5 = s5 1 1 1 1 1











= W [n1, n2, n3, n4, n5] = W [2, 3, 4, 4, 5]

where we introduced the bracket notation W [·] indicating the number of ones in each row in which 1 ≤ n1 ≤ n2 ≤
n3 . . . ≤ nn = n. Likewise, we always have ni ≥ i.
Based on the recursive relation, perm(W ) =

P
j W1jperm(W{1j}), and the fact that the matrix after removing

row 1 and column j, W{1j}, is identical for any j ≤ n1, we can write

perm(W [n1, n2, n3, . . . , nn]) = n1 × perm(W [n2 − 1, n3 − 1, . . . , nn − 1]) (24)

The permanent of the remaining matrix W [n2−1, n3−1, . . . , nn−1] can again be written as (n2−1)×perm(W [n3−
2, . . . , nn − 2]) and so on. The permanent is, hence, equal to

perm(W [n1, n2, . . . , nn]) =

nY

i=1

(ni + 1− i) (25)
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The P -matrix follows from Eq. (5) of the main article: Pij = Wijperm(W{ij}/perm(W ). This means that Pij = 0
whenever Wij = 0. If Wij = 1, and ni−1 < j or i = 1, we have that for a matrix W [n1, n2, . . . , ni−1, ni, ni+1, . . . , nn]
the following matrix remains after removal of row i and column j:

W{ij} = W [n1, n2, . . . , ni−1, ni+1 − 1, . . . , nn − 1] (26)

and the permanent

perm(W{ij}) =

 
i−1Y

i′=1

(ni′ + 1− i′)

! 
nY

i′=i+1

(ni′ − 1 + 1− (i′ − 1))

!

=

 
i−1Y

i′=1

(ni′ + 1− i′)

! 
nY

i′=i+1

(ni′ + 1− i′)

!
=

perm(W )

(ni + 1− i)
(27)

and, therefore, for this case we have

Pij =
1× perm(W{ij})

perm(W )
=

1

(ni + 1− i)
. (28)

If for some k < i, nk ≥ j, while nk−1 < j or k = 1, we have that for a matrixW [n1, n2, . . . , nk−1, nk, . . . , ni, ni+1, . . . , nn]
the following matrix remains after removal of row i and column j:

W{ij} = W [n1, n2, . . . , nk−1, nk − 1, nk+1 − 1, . . . , ni−1 − 1, ni+1 − 1, . . . , nn − 1] (29)

Therefore, the permanent of W{ij} can be written as

perm(W{ij}) =

 
k−1Y

i′=1

(ni′ + 1− i′)

! 
i−1Y

i′=k

(ni′ − 1 + 1− i′)

! 
nY

i′=i+1

(ni′ + 1− 1− (i′ − 1))

!

=

 
k−1Y

i′=1

(ni′ + 1− i′)

! 
i−1Y

i′=k

(ni′ − i′)

! 
nY

i′=i+1

(ni′ + 1− i′)

!

=
perm(W )

(ni + 1− i)

i−1Y

i′=k

(ni′ − i′)

ni′ + 1− i′
(30)

This gives for Pij :

Pij =
1

(ni + 1− i)

i−1Y

i′=k

(ni′ − i′)

ni′ + 1− i′
(31)

We can compare this result with that of one row below (row i+ 1):

P(i+1)j =
1

(ni+1 + 1− (i+ 1))

iY

i′=k

(ni′ − i′)

ni′ + 1− i′
=

Pij(ni + 1− i)

(ni+1 − i)

(ni − i)

ni + 1− i
= Pij

ni − i

(ni+1 − i)
(32)

Therefore, we have following recursive relations

Pij =











0, if Wij = 0
1

ni+1−i , if Wij = 1 and [W(i−1)j = 0 or i = 1]
�

ni−1+1−i
ni+1−i

�

P(i−1)j , otherwise

(33)

For the example given above, this relation gives the following P -matrix:

P =













e1 e2 e3 e4 e5
s′1 = s1

1
2

1
2 0 0 0

s′2 = s3
1
4

1
4

1
2 0 0

s3 = s2
1
8

1
8

1
4

1
2 0

s′4 = s4
1
8

1
8

1
4

1
2 0

s′5 = s5 0 0 0 0 1
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This O(n2) algorithm can be done within a second for n ≤ 3500, bigger than any foreseeable RETIS simulation,
without even leveraging the block-diagonalization. One could swap again the second and third row to get them
ordered according to the original si-states, though there is in principle no need for this. This is because it is irrelevant
to connect the existing states to the ensembles in which they were originally created.

IV. KRAMER’S THEORY

For Langevin dynamics, Kramer’s relation provides a way to improve upon transition state theory via an approxi-
mate expression for the transmission coefficient:

κ = (1/ωb)

�

−γ/2 +
q
γ2/4 + w2

b

�

(34)

Here, γ is the friction coefficient of the Langevin dynamics and ωb =
p
k/m with m the particle’s mass and k

the curvature along the reaction coordinate at the transition state. The rate constant is then the product of the
transmission coefficient times the transition state theory expression for the rate:

k = κkTST (35)

For a one-dimensional motion along a coordinate z, the transition state theory expression can be expressed as [1]:

kTST =

r
kBT

2πm

e−βV (0)

R 0

−∞
e−βV (z)dz

(36)

where V (·) is the underlying potential, T the temperature, kB the Boltzmann constant, and β = 1/kBT . The
transition state is here assumed to be located at z = 0 and the system is in state A, the reactant state, if z < 0.
The Kramer’s approximation for the rate constant k follows from Eqs. 34-36. However, other properties like crossing

probabilities and the permeability through a membrane can be derived from the transmission coefficient as well.
The crossing probability PA(λB |λA) from interface λA to interface λB follows from the main TIS/RETIS rate

equation:

k = fAPA(λB|λA) (37)

where fA is the conditional flux through λA given the system is in state A. Here, λA and λB correspond to the first, λ0,
and last interface, λM , respectively. The flux fA through λA is similar to kTST, the flux through the transition state
without recrossing correction, as it counts all positive crossings and is based on the same normalization (integration
over state A):

fA =

r
kBT

2πm

e−βV (λA)

R 0

−∞
e−βV (z)dz

(38)

From Eqs. 34-38 we end up with an equation for the crossing probability:

PA(λB |λA) =
κe−βV (0)

e−βV (λA)
(39)

Hence, based on the underlying potential and Kramer’s expression, Eq. 34, one can obtain an approximate value for
the crossing probability. Likewise, for a membrane system we can derive a Kramer’s expression for the permeability
P starting from Eq. 18 in Ref.[2]:

P =
k

(ρref)A
=

fAPA(λB|λA)

(ρref)A
(40)

where ρref refers to the probability density for a permeant at a location away from the membrane, zref , where V (·) is
considered to be flat, and the subscript (·)A indicates that it is normalized over the reactant state region A:

(ρref)A =
e−βV (zref )

R 0

−∞
e−βV (z)dz

(41)
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Note that the integral in the denominator of Eqs. 38 and 41 is usually diverging since the underlying potential V (·)
is generally flat away from the barrier in a membrane system. Fortunately, this integral term cancels in Eq. 40:

P =

r
kBT

2πm

�

e−βV (λA)

e−βV (zref )

�

PA(λB |λA) =

r
kBT

2πm

�

κe−βV (0)

e−βV (zref )

�

(42)

where in the second equality we substituted PA(λB |λA) using Eq. 39. Hence, based on Eq. 34 and Eq. 42, we can
obtain a value for the permeability based on Kramer’s theory.
The aforementioned equations can be generalized for multidimensional systems by replacing the V (z) terms with

the Landau free energy F (z). That is, for one additional degree of freedom y:

F (z) = −kBT ln

�Z
e−βV (y,z)dy

�

(43)

In addition, if multiple reaction channels yield competing parallel saddle points in the potential energy surface, these
need to summed up as we will do in the next section.

A. Kramer’s relation for crossing probability of a two-channel system

The potential energy surface described in Ref. [2] is the following

V (y, z) = e−cz2

�

V1 +A+A sin

�

2πy

Ly

�

+B +B cos

�

4πy

Ly

��

with

A = (V2 − V1)/2, B = Vmax/2− V1/4− V2/4, V1 = 10, V2 = 11, Vmax = 20, c = 1, Ly = 6 (44)

Note that the potential is periodic along the y-direction such that V (y, z) = V (y + Ly, z) and that it is zero in the
limit |z| → ∞. Further, the following mass, Langevin friction coefficient and thermodynamic parameters were set in
dimensionless reduced units: γ = 5, T = m = kB = β = 1. The first and last interfaces were set at: λA = −1.5 and
λB = 1.2. In this case, we have two saddle points at (−Ly/4, 0) and at (+Ly/4, 0) where the former is slightly lower
in potential energy by 1kBT (V1 and V2, respectively). The curvatures can be obtained by applying a second order
Taylor expansion around z = 0:

V (−Ly/4, z) ≈ V1 − cV1z
2 ⇒ k1 = 2cV1

V (+Ly/4, z) ≈ V2 − cV2z
2 ⇒ k2 = 2cV2

which gives wb,1 =
√
20 and wb,2 =

√
22. As a result κ1 = 0.5866, κ2 = 0.6002 via Eq. 34. From this we can compute

the crossing probability based on essentially Eq. 39, but using the Landau free energy, F (·), by Eq. 43, instead of
the potential energy, V (·), and using both transmission coefficients for the parts along the orthogonal coordinate, y,
where they are relevant:

PA(λB |λA) ≈
κ1

R 0

−3
e−βV (y,0)dy + κ2

R 3

0
e−βV (y,0)dy

R 3

−3 e
−βV (y,λA)dy

= 1.61 · 10−5 (45)

where the integrals over y are taken over one period. Note that the system in Ref. [2] actually contains 3 particles
that move in this 2D potential energy surface such that the dimension of the system is actually 6. However, since
we follow one single target permeant and the other particles are assumed to have no influence on the target (the
interparticle interaction was set to 0 [2]), the effective dimension for our analysis is 2 with coordinates y and z.
The permeability then follows from Eq. 42 with V (·) replaced by F (·), where we used the expression based on the

crossing probability to have the effect of the two different transmission coefficients directly included:

P =

r
kBT

2πm

 R 3

−3
e−βV (y,λA)dy

R 3

−3 e
−βV (y,zref )dy

!
PA(λB |λA) =

1

6

r
kBT

2πm

�Z 3

−3

e−βV (y,λA)dy

�

PA(λB |λA) = 1.37 · 10−6 (46)

where we assumed that zref is taken far away from the membrane at z = 0 such that zref ≪ 0 and V (y, zref) ≈ 0.
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B. Kramer’s relation for crossing probability of double well potential

The double well potential is given by [3]

V (z) = k1z
4 − k2z

2 with k1 = 1, k2 = 2 (47)

which has a transition state at z = 0 and minima at z = −1 and z = 1. Further is given that T = 0.07 and kB = m = 1
such that the transition state theory expression for the rate, Eq. 36, equals [3]: kTST = 2.776 · 10−7.
The curvature at the transition state equals 2k2 = 4 such that wb = 2. Together with the friction coefficient of

γ = 0.3, Kramer’s relation, Eq. 34, provides a transmission coefficient: κ = 0.9278. Henceforth, by Eq. 35 the rate
constant based on Kramer’s theory equals: k = 2.58 · 10−7.
The crossing probability follows from Eq. 39 where in this case λA = −0.99 [4]. From the previously determined

value for κ, we get: PA(λB |λA) = 5.83 · 10−7

V. COMPUTATIONAL EFFICIENCIES

In this paper, the computational efficiency is defined as

efficiency =
1

τeff
(48)

where τeff is the efficiency time [5], which is equal to the computational cost that is needed to get a statistical relative
error equal to 1 for the property that is computed. Here, τeff could be expressed as the number of MD steps in path
sampling simulations of large systems or path sampling simulations based on Ab Initio MD where the number of force
calculations completely determines the total CPU cost. Expressing the efficiency time is this way has the advantage
that it is hardware independent. In this article, however, we express the efficiency time in actual CPU- or wall-time
seconds in order to include also the computational cost for calculating the permanents in the replica exchange move.
When a simulation is completed after a certain time τ and the relative error ǫ has been obtained via, e.g. independent

runs, block averaging or bootstrapping, the efficiency time is estimated by

τeff = ǫ2τ (49)

Note that for serial simulations this property is in principle independent of the simulation length τ . If we increase
the simulation by a certain factor, the error should reduce by the square root of this factor such that τeff remains
unchanged. However, we should realize that there is a rather large statistical uncertainty in the estimated values for
τeff due the fact that the statistical error in the error is generally large.
In the following, unless stated otherwise, we will refer to the CPU-time and CPU-based efficiency time when

referring to τ and τeff . However, let us shortly discuss the wall-time efficiency that follows from the same equation,
Eq. 49, but with τ being the wall-time instead of CPU-time. In all our simulations, we fixed the wall-time to 5×12
hours with 5 independent runs. So the wall-time is constant and independent to the number of workers that is used.
However, with K workers instead of 1, the CPU-time increases by a factor K. This means that if the error would
follow the same trend as in a serial run, the use of K instead of 1 worker would result in a

√
K reduction of the

error. Yet, with τ in Eq. 49 being the wall-time instead of CPU-time, the reduction in the error is not canceled by
an increase in τ and the efficiency, Eq. 48, would increase linearly with K. This would mean that we can write:

efficiency(wall-time) = K × efficiency(CPU-time) (50)

if the parallel run uses the total CPU-time as effectively as a serial simulation that runs K × 5 × 12 hours long.
However, our parallel algorithm will introduce changes in the relative CPU-time that is used for MC moves in the
different ensembles. This effect was investigated for the memoryless single variable stochastic (MSVS) process. In the
next subsection, we give the meaning and derivation of the continuous curves shown in Fig. 1 of the main article.

A. Theoretical efficiencies for the MSVS process

The efficiency time can also be calculated for for specific parts of the calculation. In specific, TIS/RETIS consists
of different path ensemble simulations that compute a local crossing probability. In the path ensemble [k+] which
consists of paths that at least cross λk, this local crossing probability equals the fraction of paths that cross λk+1 as
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well. Based on the expected error in the local crossing probability, the CPU-based efficiency time of ensemble [k+]
can be expressed as [5]:

τeffk =
1− pk
pk

NkξkLk (51)

where pk is the local crossing probability of ensemble [k+], Lk is the average path length (expressed in MD steps
or CPU seconds), and ξk is the ratio of the average cost of a MC move to Lk. In other words, ξkLk is the average
computational cost for doing a MC move (creation of a trial path that might then be accepted or rejected). Finally,
Nk is a measure of the effective correlations between MC moves also called the ”statistical inefficiency”. Paths can be
correlated due to rejections, which implies that the old path is recounted, or because of similarities between accepted
paths. In practice, Nk tends to be significantly larger than 1 while ξk is often smaller than 1 as many rejections occur
without that a trial path needs to be fully completed. In addition, some MC moves like the replica exchange move or
the time-reversal move do not require any MD steps.
In the following, we will neglect the effect that the replica exchange moves have on the errors and on the CPU-time.

Under this assumption, the successive MC moves are completely independent. In addition, the ensemble moves are
memoryless (hence N = 1). The overall error can thus be computed from the errors in the individual ensembles
using standard error propagation rules for independent estimates. Except for the replica exchange part, the MSVS
simulation is rejection-free such that we also have ξ = 1. In addition, the random artificial MD time for a path
in ensemble in ensemble [k+] was on average 0.1 k + 0.1 seconds. To simplify our analysis, we neglect the final 0.1
addition, and state that Lk = ak with a = 0.1. Finally, we fixed the local crossing probability to pk = p = 1/10 for
all ensembles [k+] such that

τeffk = a
1− p

p
k (52)

The relative error in estimate of the local crossing probability of ensemble [k+] follows from Eq. 49:

ǫk =

s
τeffk
τk

(53)

with τk the CPU-time that is spend to ensemble [k+]. Given a certain division of the total simulation time τ into the
times (τ0, τ1, . . . , τN−1), we can compute the total efficiency time by Eq. 49 with

ǫ2 =

N−1X

k=0

ǫ2k =

N−1X

k=0

τeffk
τk

and τ =

N−1X

k=0

τk (54)

The first expression is the standard error propagation rule for the error in a final estimate that is obtained from a
product of independent estimates.
Now let us first consider standard TIS or the N = K case. In this simulation we would have an equal number of

workers as ensembles. Each worker is solely designated to a single ensemble such that an equal amount of CPU-time
is spend per ensemble when the simulation is stopped. So we can simply put τk = 1 such that τ = N and

ǫ2 =

N−1X

k=0

τeffk = a
1− p

p

N−1X

k=0

k = a
1− p

p

1

2
(N − 1)N ≈ a

2

1− p

p
N2 (55)

where in the last equality we assumed N ≫ 1. The efficiency time for TIS is hence

τeff ≈ 1

2
a
1− p

p
N3, for TIS or K = N (56)

For serial RETIS, each ensemble is updated by a MC move before a next cycle of moves is started. As a result, in
each ensemble the same number of MC moves are carried out such that τk ∝ Lk ∝ k. By taking τk = k, we get that
τ = (N − 1)N/2 ≈ N2/2 and

ǫ2 =

N−1X

k=0

τeffk
τk

= aN
1− p

p
(57)
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and the CPU-based efficiency time is exactly the same

τeff ≈ 1

2
a
1− p

p
N3, for RETIS or K = 1 (58)

This is in agreement with Ref. [5] which stated that an equal division of CPU-time or aiming for the same error in
each ensemble gives the same efficiency. Since the local crossing probability is the same for each ensemble, pk = p,
aiming for the same error in each ensemble is equivalent to having the same number of MC moves per ensemble (if
the statistical inefficiencies, Nk, are the same). The optimal division of CPU-time over the different ensembles is,

however, τk ∝
q
τeffk [5]. By taking τk =

√
k, the total CPU-time becomes

τ =

N−1X

k=0

√
k ≈

Z N

0

√
xdx =

2

3
N3/2 (59)

and the total error

ǫ2 =
N−1X

k=0

τeffk
τk

= a
1− p

p

N−1X

k=0

√
k ≈ a

1− p

p

2

3
N3/2 (60)

which by Eq. 49 results in a slightly lower efficiency time than for TIS/RETIS:

τeff ≈ 4

9
a
1− p

p
N3, for an optimal division (61)

Based on a = p = 0.1 andN = 50, the efficiency times are τeff = 56250 for TIS/RETIS and τeff = 50000 for the optimal
division. Naturally, the corresponding CPU-time efficiencies by Eq. 48 are 1/56250 and 1/50000. Furthermore, based
on Eq. 50, the optimal wall-time efficiency and the optimal TIS/RETIS wall-time efficiency are given by K/50000
and K/56250, respectively. These are the continuous black and purple curves in Fig.1d of the main article.
It is interesting to observe that the optimal TIS/RETIS CPU-time efficiency is only 12.5% lower than the optimal

CPU-time efficiency. This seems to suggest that it is difficult to improve the CPU-time efficiency of TIS and RETIS
unless the division of CPU-time is exactly targeted to do so. On the other hand, one can easily get a much worse CPU-
time efficiency when errors in some ensembles are reduced to unnecessary small values while the other ensemble errors

are ignored. Based on the fact that τk ∝
q
τeffk gives the optimum, the optimum division of MC moves is obtained

when in ensembles [k+] the number of MC moves is proportional to
q
τeffk /Lk. For the MSVS system this means that

the number of executed MC moves in each ensemble should optimally be taken as ∝ 1/
√
k for k = 1, 2, . . . ,M − 1 (to

account for k = 0 we should have kept the neglected 0.1 addition in the path length to avoid divergence). This means
that it is actually good to execute more MC moves at the lower rank ensembles (low k) than at the higher rank (high
k). However, this should not be exaggerated since too many MC moves in the low ranked ensembles will just result in
inefficient use of CPU-time as discussed above. Based on the numerical sampling ratios, we determined the CPU-time
spend in each ensemble, τk, by multiplying these ratios by Lk = ak. We then estimated the error based on Eqs. 54
and 52. The resulting efficiency, based on the actual sampling ratios of ∞RETIS, turned out to give a slightly better
CPU-time efficiency than that of TIS/RETIS. The resulting wall-time efficiencies of this hybrid theoretical/numerical
result is shown by the purple dots if Fig.1d as well. This shows that ∞RETIS can actually improve both the CPU-
and wall-time efficiency compared to TIS/RETIS. The latter is expected based on the brute force principle that more
CPU power is used per second. The former is more subtle and related to the fact that ∞RETIS leads to a more
efficient distribution of the CPU-time among the different ensembles compared to TIS or RETIS.

VI. ADDITIONAL SIMULATION RESULTS

A. Ratios of channels crossings
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FIG. 1. The ratio of first crossings points for the last ensemble in the more favorable channel. The blue icons shows the sampled
ratio for each simulation, the blue line is the average of 5 simulations for each amount of workers and the black line is the
expected value from direct integration of exp(−βV (y, z)) over y with z fixed at z = λ10 = −0.2. The 3 icons overlapping at
0.0 for 12 workers is the result of the known ergodicity issues of the TIS algorithm due to the lack of replica exchange moves.
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Abstract

The GTPase KRas is a signaling protein in networks for cell differentiation, growth,

and division. When active, KRas tightly binds GTP. KRas mutations can affect the

conversion between this rigid state and inactive, more flexible states, thus prolong-

ing activation of signal transduction pathways, which may result in tumor formation.

Transitions in KRas take place on time scales of microseconds and longer, which are

difficult to characterize experimentally at high resolution in both space and time. In

this work, we applied path sampling simulations to investigate the dynamic behaviour

of KRas-4B (wild-type, WT) and the oncogenic mutant Q61L (Q61L). Our results

show KRas visiting several states, which are the same for WT and Q61L. The mul-

tiple state transition path sampling (MSTPS) method samples transitions between

1



the different states simultaneously, by allowing switching between different transitions.

Large differences occurred in the switching dynamics between WT and Q61L. Further

investigation of the MSTPS results revealed that for Q61L a route to a flexible state

is inaccessible, which shifts the equilibrium to more rigid states. The methodology

presented here enables a detailed characterization of protein flexibility on time scales

not accessible with brute-force molecular dynamics simulations.

Introduction

Ras GTPases are signal transduction proteins that mediate cell growth, cell differentiation

and death. Binding of guanosine triphosphate (GTP) activates signal transduction by Ras

proteins, while their GTPase function inactivates signal transduction again by hydrolyzing

GTP to guanosine diphosphate (GDP). Ras GTPases comprise the most frequently occurring

family of oncoproteins in human cancers .1,2 Mutations in Ras proteins initiate cell transfor-

mation, drive oncogenesis and promote tumor maintenance. The Ras family of oncoproteins

has been studied extensively for almost three decades, as activation of Ras represents a key

feature of malignant transformation for many cancers. In the cancers that contribute most

heavily to worldwide mortality, Ras mutations are extremely common.3 Several isoforms of

Ras exist, which are implicated in different types of cancer.2,3 A member of this family,

KRas-4B, is often found in common and life-threatening cancers, such as lung cancer, colon

cancer and pancreatic cancer.3

Ras proteins consist of a highly conserved catalytic domain called the G domain and

a variable C domain which anchors Ras in the membrane. In this work we focus on the

G domain of the KRas-4B isoform, which contains 166 residues and can be considered as

the minimal signaling unit. This domain contains the guanine nucleotide binding site and

two regions that can detect the nature of the bound nucleotide, switch 1, S1, and switch 2,

S2. These regions, highlighted in green (S1) and blue (S2) in figure 1(left), are involved in

many interactions between Ras and partners. In the GTP-bound state, Ras interacts with

2



downstream effectors such as the Raf and PI3K kinases.4 After hydrolysis of GTP, these loop

regions adopt a more open conformation5 and exhibit more flexibility, causing Ras to lose

the ability to bind to downstream effectors. While bound to GTP, Ras exists in a dynamic

equilibrium between a weakly populated state 1 and a dominant state 2.6,7 Conformational

state 1 is more flexible and open than the closed, ordered state 2, as schematically shown

in figure 1(right). Crystal structures of Ras bound with GTP analogues are typically in

the state 2 form of Ras.4,8 However, 31P-NMR studies report that the switch regions can

also adopt disordered conformations when bound to GTP, similar to the GDP-bound state.9

This work will focus on the transition between the ordered (state 2) and disordered (state 1)

states of GTP-bound KRas-4B.

Even though the role of Ras mutations in tumor formation has long been recognised, Ras

is considered undruggable.12,13 Targeting direct competition with GTP binding is difficult,

as Ras has a picomolar affinity for GTP, with micromolar concentrations of GTP in cancer

cells. The absence of a hydrophobic pocket for the binding of small molecules complicates

the development of allosteric inhibitors of Ras. Obtaining a more detailed understanding of

the dynamics underlying the activation of Ras could provide new insights that eventually

could lead to new therapeutic leads. However, probing the dynamics of Ras at sufficient

resolution in both space and time proves to be very difficult experimentally.14

Molecular dynamics (MD) simulations are well suited to obtain high resolution insights

into protein dynamics.14 While it is currently possible to run microseconds of straightfor-

ward MD, an investigation of the mechanism and kinetic aspects of protein conformational

transitions is not feasible. Transitions occurring on microsecond or longer timescales involves

high free energy barriers separating stable conformational states. During an MD simulation,

most of the time is spent in the stable states, waiting for a barrier crossing, resulting in

poor sampling of the transitions. Protein flexibility often involves more than two stable

configurations, requiring the sampling of several transitions. The transition path sampling

(TPS) algorithm15 addresses this timescale problem by focusing the MD simulations on the
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Figure 1: Ras structure and function. Structure of GTP-bound KRas in the active
state 2 (left) and a schematic representation of the inactive state 1 and the active state 2
of GTP-bound KRas (right). In the protein drawing, the switch regions are highlighted in
green for S1 and blue for S2, helix α3 is highlighted in yellow. The protein is shown as a
ribbon with an transparent stick representation for the amino acids in S1 and S2. GTP is
shown as solid sticks, with carbon atoms colored in green, oxygen in red, nitrogen in blue
and phosphorus in orange. Mg2+ is shown as a green ball. Note that no consensus has been
reached yet on the residues ranges that correspond to S1 and S2 .10,11 We chose to use a
narrow definition that corresponds to the residues that are important for the conformational
changes in this study, using residues 30-33 for S1 and residues 60–66 for S2. In the schematic
drawing the S1 region is represented in green, the S2 region in blue, and the rest of the protein
in grey. State 1 corresponds to the conformational state in which S1 and S2 are more flexible
and not bound to GTP. State 2 corresponds to the conformational state in which both S1
and S2 are bound to GTP. State 2 activates downstream effectors like RAF and PI3K by
binding them.

barrier regions. TPS is a Monte Carlo (MC) simulation in the space of trajectories and col-

lects an ensemble of short reactive trajectories connecting a predefined initial and final state,

without prior knowledge of the transition state region. The speed-up gained by using TPS

and related techniques is tremendous. Assuming a transition rate in the order of 10 µs−1,

observing a single transition would require on average 10 µs of MD. In contrast, when using

TPS, the barrier region is sampled using MD trajectories of only tens of nanoseconds, thus
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providing a speed up in the order of several thousand to a million. Even though path sam-

pling methods like TPS were originally developed for two states, they have been extended to

be used with multiple stable states.16 In this setup, transitions between any two stable states

can be sampled, and therefore it is possible to generate trajectories that connect different

pairs of states. The frequency of such switching between transitions depends on the barrier

separating different transition channels. Analysis of the switching behavior between these

transition channels provides useful insight into the overall dynamics.

It is still an open question how Ras converts from ordered to less ordered conformational

states. Ras-activating mutations include substitutions at glutamine (Q) 61,17 which affect

the conformational equilibrium of Ras. Changing Q61, located in S2, results in reduced

GTPase activity in Ras 18 and an altered conformational space for KRas-4B .19 Replacing

Q61 by leucine (L) results in an oncogenic mutant.10 By changing a hydrophilic glutamine

into a hydrophobic leucine,20 the hypothesis is that the conformational space of GTP-bound

KRas-4B will change, and alter the transition between state 1 and state 2. In particular the

effect of mutations on these transitions is unclear. In this work we present multiple state TPS

simulations of KRas-4B and the oncogenic Q61L mutant, showing that indeed S2 displays

different dynamics for the two systems. In particular, the WT switches frequently from one

transition to another, while the Q61L hardly switches at all. Here, we present a way to

qualitatively analyse the kinetics of the switching behavior. Closer examination reveals that

the WT S2 can reach the flexible open state via a channel that is not accessible for Q61L.

Both WT and Q61L can reach the open state by S2 sliding along a slightly hydrophobic

pocket of the α3-helix. However, the Q61L mutation prevents direct solvation of S2, which

is possible for the WT protein. As a result, the open, inactive state will occur less frequently

in Q61L and the protein is more likely to be in an ordered state. Our results show that our

methodology is able to map out the dynamics of a Ras protein and can indicate differences

in dynamics between a WT protein and an oncogenic mutant. Moreover, the methodology

presented here is able to reveal details on the nature of the altered behavior as caused by
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the mutation. As such, this work is an example of using MSTPS simulations to characterize

protein flexibility on time scales of microseconds and longer.

Results and discussion

Identification of conformational states

The crystal structure of GppNHp bound HRas (PDB: 4EFL)21,22 was used as a structural

template to model the sequence of WT and Q61L KRas-4B with GTP bound. With these

two structures we performed four 100 ns MD simulations to explore the conformational

space of KRas, for both WT and Q61L. These simulations resulted in the characterization

of two stable states for S1, S1-D33 and S1-open, and two stable states for S2, S2-GTP, and

S2-open. After initial TPS simulation ended up with trajectories that did not end in any of

these states, a third state was found for S1, S1-30-32, as well as S2, S2-α3. All the stable

states are shown in figure 2. When S1 is in the S1-D33 state, the side chain of D33 is involved

in (water-mediated) hydrogen bond interactions with GTP. For the S1-30-32 state, S1 has

shifted along GTP, compared to the S1-D33 state, to form one or more hydrogen bonds

between the side chains of residues D30, E31, or Y32 and GTP. The conformations in which

S1 has no hydrogen bond interaction with GTP and where it is oriented away from GTP

are classified as the S1-open state. The S2-GTP state corresponds to the conformation of S2

where it forms hydrogen bonds with GTP. Two states can occur when S2 is oriented away

from GTP. In the S2-α3 state, S2 has multiple interactions between its side chains and the

α3-helix. In the S2-open state S2 has no binding interactions with GTP. The parameters for

defining these states are listed in Appendix S1.Within the timescale of the path sampling

simulations, the conformation of S1 has little effect on the conformation of S2 or vice versa.

The same stable states were found for both WT and Q61L, and were stable for at least 100 ns

of MD. Note that no consensus has been reached yet on the range of residues that correspond

to each switch region.10,11 We chose to use a narrow definition that includes the residues that
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are important for the conformational changes in this study, using residues 30-33 for S1 and

residues 60–66 for S2. Adding more residues will not change the stable state definitions.

Figure 2: Stable states of KRas. The stable states found for S1 and S2 are shown with
the same coloring as figure 1(left). The S1-D33 state corresponds to the conformation in
which D33 in S1 has a hydrogen bond with GTP. The S1-30-32 state corresponds to the
conformation in which one or more hydrogen bonds occur between residues 30-32 and GTP.
The S1-open state corresponds to the conformation in which S1 has no interactions with GTP
and is oriented away from GTP. For S2 the S2-GTP state corresponds to the conformation
in which S2 has one or more hydrogen bonds with GTP. The S2-open state corresponds to a
state in which S2 has no interactions with GTP and is oriented away from GTP. The S2-α3
state corresponds to a conformation in which S2 has no interactions with GTP, but instead
has 4 interactions with the α3-helix.
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Mapping conformational transitions

Using MSTPS, we investigated the transitions between the stable states as identified in the

MD simulations for S1 and S2 separately. For both S1 and S2 three pairs of transitions

are observed: S1-D33 ↔ S1-30-32, S1-D33 ↔ S1-open, and S1-30-32 ↔ S1-open for S1,

and S2-GTP ↔ S2-α3, S2-GTP ↔ S2-open, and S2-α3 ↔ S2-open for S2. For both WT

and Q61L we performed one MSTPS simulation for S1 starting at the S1-30-32 ↔ S1-open

transition, and three independent MSTPS simulations for S2, each starting in a different

transition, resulting in eight MSTPS simulations in total. The statistics of the MSTPS

simulations are listed in table 1 and indicate a good acceptance ratio of 33% or higher, and

an aggregate simulation time of microseconds.

Table 1: Statistics of the MSTPS simulations. MC steps indicates the number of Monte-Carlo
trials, also called shooting moves. Accepted steps refers to the number of MC trials that were
accepted and the acceptance is accepted steps

MC steps
. Decorrelated trajectories indicate the number of

accepted trajectories that do not have any frames in common. The total simulation time is
the total time of MD performed by the MD engine in the MSTPS simulations.

S1 WT S1 Q61L S2 WT S2 Q61L
sim 1 sim 1 sim 1 sim2 sim 3 sim 1 sim 2 sim 3

MC steps 1000 1000 2000 2000 2000 2000 2000 2000
Accepted steps 355 334 766 824 787 688 748 759
Acceptance 35.5% 33.4% 38.3% 41.2% 39.4% 34.4% 37.4% 38.0%
Decorrelated trajectories 50 57 131 151 128 99 129 125
Average path length (ns) 5.94 2.28 3.49 1.26 1.50 1.42 1.36 1.98
Total simulation time (µs) 4.88 2.67 6.01 2.15 2.10 2.26 1.83 3.74

Path sampling simulations for proteins (with stochastic dynamics and diffuse barriers)

commonly employ the stochastic, or “one-way” shooting algorithm,23 which improves the

acceptance ratio. In this algorithm a trial move replaces only part of the trajectory (forward

or backward). Therefore, successive trajectories will have segments with overlapping frames

and at least two trials (one forward and one backward) are needed for an accepted trajectory

to have no frames in common with the original. These no-overlap trajectories are referred to

as “decorrelated”, and are required for sufficient sampling. Table1 shows that each simulation
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generated on average 100 decorrelated trajectories.

Figure 3: Transitions of S1, and S2 in WT and Q61L. A schematic representation
of the number of samples per transition for S1(top) and S2(bottom) for the WT (left) and
Q61L (right) TPS simulations. The circles correspond to the stable states of S1 , with D33
being the S1-D33 state, 30-32 being the S1-30-32 state, and open the S1-open state. For the
S2 plots, GTP is the S2-GTP state, open the S2-open state, and α3 the S2-α3 state. The
arrows represent the sampled transition, pointing in the direction that was considered forward
during the simulation. The labels are the number of accepted paths in each transition, and
the width of the arrows is scaled with a 10 log scale of this number.

The transitions sampled in the MSTPS simulations are summarized in figure 3. Between
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each pair of states there are two possible transitions, corresponding to what is the forward

time direction in the path. Both the WT and the Q61L simulations have sampled all allowed

transitions for both S1 and S2. At infinite sampling, the relative sampling frequency for the

two transitions between a given pair of states will be identical.

When looking at the transitions sampled for S1 WT, the number of samples differ for the

directions of the 30-32 ↔ D33 and the 30-32 ↔ open by more than an order of magnitude,

this indicates that this simulation did not converge. For the S1 Q61L system, the number of

samples in both directions of each transition is within the same order of magnitude, which is

a first indication that this simulation might be converged. While the WT simulation has not

converged, for all three of the transitions the WT has at least one sampling direction with

the same order of magnitude as Q61L (like the D33 →30-32 transition, which has 62 an 47

samples for respectively the WT and Q61L). This, together with the fact that this switch is

unaltered by the mutation, makes us believe that all transitions would be the same order of

magnitude between S1 Q61L and S1 WT when the WT simulation converges.

For S2, while the transitions are different between the wild-type and Q61L, the counts for

most transition pairs are within an order of magnitude of each other, indicating acceptable

sampling. The exception is the S2-open and S2-α3 pair in Q61L, where the S2-open→S2-α3

transition is sampled 5830 times, and the S2-open←S2-α3 transition only 114 times. This

difference in sampling the S2-open and S2-α3 transition in WT and Q61L suggests that the

mutation has altered the transition region. Such an alteration can happen in two ways,

that do not exclude each other. The mutation changes the stability of one or more of the

stable states, thus making transitions less (or more) likely. The mutation can also alter the

mechanism of the transition, which has a direct effect on the transition region.

Although MSTPS only samples one transition at a time, switching between transitions

can occur when there are more than two states. For example, given states A, B, and C, an

initial A → B trajectory can produce a trial A → C trajectory if a forward trial ends in

state C. Such a transition of transitions is called a “switch”. The Methods section contains
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a more detailed explanation. Analyzing the switching behavior provides useful insight into

the transition region. A lack of switching between two states indicates there is a large (free

energy) barrier in the transition region between the channels for the individual reactions.

Conversely, many switching events suggests a flatter, more diffusive landscape in the

transition region.

Figure 14 in appendix S4 plots the transition sampled in each accepted path as a function

of the number of MC steps for both S1 simulations. Figures 9 and 10 in appendix S2 plot

the sampled transitions per MC step for the S2 WT and S2 Q61L simulations respectively.

For both the S1 simulations MC steps resulting in accepted and decorrelated (no-overlap)

trajectories are distributed mostly uniformly throughout both simulations. At around step

900 in the Q61L simulation, no acceptance occurs for several MC steps, indicating the

simulation is trapped in the D33 ← 30-32 transition and the probability of accepting a new

(part of a) path has become very low.

For the S2 WT simulations, MC steps resulting in accepted trajectories and decorrelated

trajectories are distributed uniformly throughout all 3 simulations. Throughout most of

the WT simulations, switching occurs on average every 16 MC steps, indicating that the

simulation loses memory of the starting transition path. The second part of the simulation

starting from an S2-α3 to S2-open transition is an exception, as this simulation remains

in the S2-open → S2-GTP transition for over 1000 MC steps. For the S2 Q61L simula-

tions the accepted and decorrelating MC steps are also distributed uniformly throughout

all three simulations. All simulations spend a significant amount of simulation steps in the

S2-open → S2-α3 transition, possibly indicating that the barrier separating the open state

from the S2-α3 state is lower in Q61L. The number of switches occurring between the tran-

sitions is much lower than in the WT simulations. The lack of switching also explains why

the Q61L simulations are less well sampled than the WT simulations.

Figure 4 shows the number of switches between the six transitions occurring for S1 and

the six transitions of S2 as arrows with a thickness relative to the number of switches. The
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switching looks very similar between WT and Q61L for S1, however this is not the case for

S2. Clearly, the number of switches between transitions in S2 is much lower for the mutant

than for the WT, indicating that the WT has a lower free energy barrier between the different

transition channels than Q61L. Further analysis is done only on S2 in the following sections,

as the S2 data showed the strongest difference.

Kinetic analysis of switching of S2

To quantify the relative frequency or “population” of each transition and the switching

rate between transitions, we applied a kinetics analysis approach as developed for Replica

Exchange MD24 on our MSTPS data. In this analysis, rate constants are estimated from

the number of transitions between stable states and the average residence times in the

stable states. To apply this analysis to our MSTPS data, time, stable states and transitions

correspond to respectively the MC trials, the transitions between the states and the switches

(transitions of transitions). Such a kinetics analysis results in rate constants that measure

the switching rate between transitions in units of MC steps, see the Methods section for more

detail. We analyzed the kinetics by including all accepted trajectories, or only decorrelated

trajectories, see Figure 5. For one Q61L simulation, starting from S2-GTP → S2-open,

no switching occurs out of the S2-GTP ↔ S2-α3 transition and we therefore excluded this

simulation from the switching analysis. The “population” of the S2-α3 ↔ S2-open transition

is almost twice as high for Q61L (63.23%) than for WT (36.09%), while the S2-GTP↔ S2-α3

is less likely for Q61L (6.22%) than for WT (21.97%). When including all accepted paths,

most switching rates are lower for Q61L than for WT, except for the switches out of the

S2-GTP ↔ S2-α3 transition.

The largest relative difference between WT and Q61L are observed for the switching

rates out of the S2-α3 ↔ S2-open transition. When including only decorrelated trajectories,

all switching rates are lower for Q61L, with the largest relative difference for the transition

into the S2-GTP ↔ S2-α3 transition. These observations indicate that the barrier separat-
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ing S2-α3 and S2-open states is lower in Q61L than in WT. In addition, it is difficult to

obtain decorrelated paths for the S2-GTP ↔ S2-α3 transition. This is also apparent from

figures 9 and 10 in Appendix S2 , where the residence time in the S2-GTP ↔ S2-α3 tran-

sitions is almost always only a single MC step. Less switching would occur if the transition

channels in the free energy landscape are less deep. An alternative view is that part of the

region between transitions would be less favorable for Q61L compared to WT.

Path densities reveal two channels for S2

To further investigate the origin of the difference in switching kinetics, we projected the

trajectory space sampled in the combined TPS simulations in a path density histogram,

see the Methods section for an explanation on how path density histograms are computed.

Figure 6(top) shows the path density for the WT (left) and Q61L (right) S2 TPS simulations,

projected in the plane of the distances between S2 and GTP, and between S2 and residues

H95, Y96, Q99, and R102 of the α3-helix (see table 4 in Appendix S1 for definitions of

these distances). Note that path densities do not show stable states, as the trajectories are

stopped when reaching one. Comparing the two path density plots indicate that the WT

simulations sample a larger region on the vertical axis, as the WT path density extends to

above 1.25 nm, while the Q61L path density is more confined to the region below 1.25 nm

in S2− α3 distance.

Inspection of the least changed path, a trajectory connecting paths on top of the tran-

sition barrier, in figures 11 and 12 in Appendix S3, confirms that the observed switching

is indeed a diffusive process and that the Q61L mutation constrains the dynamics. This

indicates that S2 can move away from the α3-helix more easily in the WT protein. The WT

histogram even shows a second channel for transitions between the S2-GTP and the S2-open

states, at a distance of more than 1.75 nm from the α3-helix. The Q61L simulations sample

configurations closer to the α3-helix, as indicated by the density below 0.8 nm on the verti-

cal axis. A more pronounced negative correlation exists between the S2 - α3-helix and the
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S2 - GTP distances. The further away S2 is from GTP, the closer it is to α3. Furthermore,

the Q61L simulations do not sample the second channel at all. As three independent sim-

ulations were performed for both WT and Q61L, each initiated from a different transition,

the absence of direct solvation transitions for Q61L are likely to be a direct consequence of

the mutation.

The two conformations plotted in figure 6(bottom) illustrate the difference between the

two reaction mechanisms or channels. The image on the left shows the WT protein in the

S2-open state with S2 at a distance of at least 1.75 nm from the α3-helix. On the right

Q61L is shown in the S2-open state with S2 closer than 1.25 nm to the α3-helix, see video

supplements 1 and 2 for movies of typical trajectories for each of the two reaction channels.

The distance of S2 to α3 is indicative of the different mechanisms. The channel far away

from the α3-helix represents a mechanism involving water molecules solvating S2, resulting

in S2 extending into the solvent, away from both GTP and the α3-helix. The channel

close to the α3-helix represents S2 moving along a hydrophobic pocket on the α3-helix.

In this reaction mechanism, S2 can either enter the S2-α3 state by forming four contacts

between S2 and the α3-helix, or by sliding along the helix until entering S2-open. The Q61L

mutation changes a hydrophilic residue to a hydrophobic one, thus lowering the affinity of

S2 for water. Therefore, the solvated transition channel, which is easily accessible for the

WT protein, becomes much less likely for Q61L. Moreover, the mutated S2 has stronger

interactions with the α3-helix, as shown by the higher path density in the channel close

to α3-helix (Figure 6(top, right)), indicating that for Q61L it is harder to escape from the

α3-state. The increased stability of the α3-state renders the S2-GTP↔S2-open transition

less likely. Figure 7 summarizes this conclusion.

Q61L has a higher propensity for a more structured S2-open

Visual inspection of the transition paths shows that in some WT trajectories the α2-helix

(residues 65–73, overlapping with part of S2), unfolds when entering the S2-open state,

14



but retains its shape for the Q61L mutant. Probability histograms of the S2-open state

obtained from the transition path ensemble by projection on the number of helical hydrogen

bonds in the α2-helix and the S2-α3-helix distance shown in figure 13 in Appendix S3further

substantiates this observation. Therefore, we can conclude that the S2-open state contains

multiple sub-states, characterized by the conformation of the α2-helix and the S2-α3 distance.

Furthermore, these probability histograms show that Q61L has a higher propensity compared

to WT for the more structured conformations of the S2-open state. The α2 helix plays a

vital role in binding other proteins,5 suggesting that these structured sub-states are more

similar to the active state 2 than the inactive state 1.

The more open and flexible sub-states of the S2-open state are less likely to be recognized

by downstream effectors. A β-strand in the PI3 kinase interacts with KRas via both S1 and

S2,4 which can only occur when both S1 and S2 are in a closed conformation. The more open

conformations are harder to reach in Q61L, and indeed, we only observe these flexible sub-

states in the WT simulations, thus providing an explanation for the increased probability of

Q61L to bind a downstream effector. This prediction may be tested by repeating the NMR

experiment as performed by Geyer et al.,9 comparing the effect of the Q61L mutation on

the switching frequency. Alternatively, the lifetime of the S2-α3 state could be measured

using 15N NMR spectroscopy, by labeling nitrogen atom NE2 in the Q95 side chain, located

in the α3-helix. Finally, the α3-helix identified as important for the transitions between the

ordered, active state 2 and the flexible, inactive state 1 might provide a new target for the

development of compounds that could ameliorate the effect induced by the Q61L mutation.
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Figure 4: Switches between transitions. A schematic representation of the amount of
switching between different sampled transitions in WT (left) and Q61L (right), for both
S1(top) and S2(bottom). The circles represent the stable states and the gray arrows show
the unscaled transitions. The same state abbreviations were used as in figure 3. Each of the
black arrows represents a switch between the transitions, scaled linearly to the number of
times this switch occurred.
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Figure 5: Population analysis. (left) All WT S2 simulations (right) Q61L simulations
starting in the S2-α3 → S2-GTP transition and the S2-open → S2-α3 transition. The circles
represent the stable states and the same state abbreviations are used as in figure 3. The black
arrows are the time combined transitions, the red arrows are the switching rates obtained
from all accepted paths, and the blue arrows are the switching rates observed from only using
decorrelated paths. The labels of the transitions arrows are the population percentages from
all accepted paths, with the decorrelated data in parentheses. The labels of the switching
arrows are the rates of switching per 100 MC steps.
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Figure 6: Mechanistic differences between WT and Q61L. (top) Path density his-
tograms of the WT (left) and Q61L (right) simulations with on the x-axis the distance
between the circular mean center of mass (cCOM) of S2 and on the y-axis the cCOM of
GTP and on the y-axis the distance between the cCOM of S2 and the cCOM of residues 95,
96, 99, and 102. The bin widths are 0.25 Å for both axes. The coloring shows the sampled
configuration of the transitions, weighted per trajectory, and normalized to 1. The stable
states are not defined entirely based on these coordinates, but S2-GTP corresponds roughly
to the area left of 1.6 nm on the x-axis, S2-open to the area right of 2 nm on the x-axis,
and S2-α3 at intermediate distances on the x-axis, and below 0.8 on the y-axis. (bottom)
Snapshots of the S2-open-state with the same coloring as figure 1(left) from (left) the channel
that is far away from the α3-helix in the WT simulation and (right) the channel close to the
α3-helix in the Q61L simulation. 18



Figure 7: Schematic overview of the effect of the Q61L mutation on the dynamics
of KRas. (left) WT (right) Q61L. The S1 region is represented in green, the S2 region
in blue for WT and red for Q61L, the α3-helix in yellow, and the rest of the protein in
grey. Downstream effectors are also shown in grey. Assuming only the S2 GTP-bound
state triggers the downstream effectors, the Q61L mutation alters the conformational space
such that one channel to reach the open state becomes very unlikely. This would lead to
either a shift in the equilibrium distribution between the open and GTP-bound state or
to transitions occurring more frequently. Both of these effects would lead to an increased
probability to encounter downstream effectors while in the GTP-bound state, which would
trigger the downstream signaling networks.

19



Methods

Structure generation

The initial GTP-bound KRas-4B structure was constructed from the crystal structure of

GppNHp bound HRas (PDB-code: 4EFL).21,22 This was done by first using homology mod-

eling (MODELLER v9.16),25 using sequential alignment to convert HRas to KRas-4B. Then

the GppNHp was manually modified into GTP, by changing the nitrogen into an oxygen

and removing the attached hydrogen. Finally, structures of the protein and the GTP were

combined into a single file. The initial structure for the mutant (Q61L) was made from this

structure by mutating the glutamine (Q) 61 of this final structure into a leucine (L), using

MODELLER.25

The initial structures were put inside a dodecahedral periodic box with a minimum

distance between the structures and the side of the box of 1 nm. This resulted in boxes with

volumes of 228.154 nm3 and 230.723 nm3 for the wild type (WT) and Q61L, respectively.

The boxes were filled with TIP3P water.26 51 of the waters were replaced by 30 Na+ and

21 Cl− ions to neutralize the systems and achieve a physiological salt concentration of 0.15 M

NaCl. This resulted in total system sizes of 22561 and 22857 atoms for the WT and Q61L,

respectively.

Molecular Dynamics

Procedure

The initial systems were equilibrated in four steps, consisting of energy minimization, an

isothermal equilibration, an isothermal-isobaric equilibration and a 1 ns molecular dynamics

simulation. The equilibrated structures were used to run four 100 ns molecular dynamics

simulations for both WT and Q61L.
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Settings

In the molecular dynamics simulations the atomic interactions were described by the AMBER99SB-

ILDN27 force field, extended with optimized parameters for the triphosphate chain of GTP.28

Long-range electrostatic interactions were treated via the Particle Mesh Ewald method.29

The short-range non-bonded interactions (e.g. electrostatics and Van der Waals interactions)

were cut off at 1.1 nm.

All of the equilibration was performed with GROMACS v.4.6.5.30 The leap-frog integrator

was used with a time step of 2 fs. Temperature was kept constant at 310 K using the v-

rescale thermostat31 using two temperature coupling groups: the first group consisted of the

protein, GTP and Mg2+, while the second group consisted of water, Na+, and Cl−. The

pressure was kept constant using the Parrinello-Rahman barostat32 at a pressure of 1 bar.

All bond lengths were constrained using the LINCS algorithm.33

The 100 ns production runs were performed with OpenMM (7.1.0.dev-5e53567).34 The

constraints were changed to only affect bonds including a hydrogen atom, using SHAKE,35

the integrator was the Velocity Verlet with velocity randomization (VVVR) integrator36 from

OpenMMTools v.0.1437 and the barostat was the Monte Carlo barostat.38 The production

simulations were run using the CUDA platform of OpenMM on NVIDIA GeForce GTX

TITAN X GPUs.

Collective variables and stable states

The long molecular dynamics runs were visually analyzed to identify stable states, using

VMD.39 Five types of collective variable functions were used to define the stable states,

which are described in table 2 in Appendix S1.

For both WT and Q61L the relevant collective variables can be found in table 3 and 4,

for S1 and S2, respectively. These collective variables are comprised of the collective variable

types described in table 2. The stable states for S1 were S1-D33, S1-30-32, and S1-open,

and for S2 were S2-GTP, S2-α3 , and S2-open. The definitions of all stable states can be
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found in table 5.

Transition Path Sampling (TPS)

In the long molecular dynamics simulations some transitions spontaneously occurred once

in several 100 ns simulations. These transitions were used as the starting transition path

for TPS.15,23 One TPS simulation was performed for S1, starting from the S1-30-32 to

S1-open transition. For S2 three TPS simulations where performed, each starting from a

different transition. This was done for both WT and Q61L. The initial trajectories were first

equilibrated with a TPS simulation until the first decorrelated transition path (a transition

path that has no frames in common with the original path) was obtained. This decorrelated

path was used as the starting point for the production TPS simulations.

Settings

The TPS simulations were performed with OpenPathSampling(0.1.0.dev-c192493).40,41 Mul-

tiple state TPS (MSTPS)16 was performed with an all-to-all flexible length ensemble, ex-

cluding self-transitions. All-to-all means all transitions connecting two states are allowed.

A self-transition is a path that starts in a states and returns to that same state after cross-

ing the boundaries set by the state definitions. We used the one-way shooting algorithm,42

with uniform shooting point selection. For the S1 simulations, 1000 shooting trials were

performed, while for each of the S2 simulations 2000 shooting trials were performed.

Analysis

All analysis of the TPS simulations was performed using the tools included in the Open-

PathSampling package ,40,41 extended with custom Python code. Matplotlib43 was used for

plotting the graphs and triangles.

The supporting figures 9 and 10 show the type of transition as a function of the MC trial

for S2 of WT and Q61L.
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Path density histograms

Path density histograms (pdhs) are two-dimensional histograms that show the configurations

in a transition path, projected on collective variables. Each path is weighed with its MC

weight, and divided by the number of total MC trials. For example, if a trajectory visits a

histogram bin, the count of that bin is increased by the MC weight of that trajectory. It

does not matter how often the trajectory visits a bin, it counts the trajectory only once. The

path density gives the reactive flux of trajectories, whereas regular projection would give a

configurational density which is usually overwhelmed by intermediate states.

Switching analysis

In MSTPS simulations, more than one transition is possible (e.g., A → B, A → C, B → A,

etc.), however, only one transition is sampled at a given MC step of the MSTPS simulation.

With one-way shooting, an initial A → B trajectory can produce a trial A → C trajectory

if a forward trial ends in state C as schematically shown in figure 8. Such a transition of

transitions is called a “switch.” Analyzing the switching behavior provides useful insight

into the transition region.

With one-way shooting, switching between a transition A → B and its reversed version,

B → A, requires at least three sequential switches: e.g., starting from an A → B transition,

a transition from A → C can be generated, followed by a B → C transition, from which the

next shot can result in a B → A transition, see figure 8 for a visualisation. One-way shooting

can only change the starting or ending state with a backward or forward shot respectively, but

cannot change both in the same MC step. As MSTPS samples an equilibrium distribution,

the number of paths collected from the A → B transition should be similar to the number

of paths from B → A, reversed in time, which provides a measure for convergence of the

simulation.

This measure helps to provide heuristics to assess the convergence of the MSTPS simu-

lations. First, it is an estimate of the ergodicity of the simulation whether all transitions are
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Figure 8: Schematic overview of switching transitions in a three state system.
The three states are labeled A, B and C. The current path is indicated by a solid line. The
previous accepted path is indicated by a dashed line. Shooting points are indicated by an
asterisk.

visited. Second, forward and backward versions of transitions with the same pair of states

(e.g., A → B and B → A) should have similar statistics in all ways. Furthermore, the

fraction of MC steps spent in the two transitions between the same pair of states should be

the same. The same goes for the path length distributions.

24



Kinetics analysis

As we assume that the switching samples an equilibrium distribution, the probability Pi of

sampling a transition i is given by:

Pi =
1�

j �=i nji

�

j �=i

nij + nji

1
Pi

+ 1
Pj

tj
ti

(1)

where nij is the number of switches from i to j, and ti is the number of MC steps sampling

transition i. As the sum of all probabilities is equal to one
�

i Pi = 1, equation 1 can be

solved for all Pi. From the probabilities the switching rate from i to j, kij, can be calculated

by:

kij =
nij + nji

ti + tj
Pi

Pj

(2)

The values for n and t are taken from the MSTPS simulations. This analysis is adapted

from.24

Conclusion

In this work we investigated the conformational space and dynamic behavior of KRas in

complex with GTP using multiple state transition path sampling. The loops in KRas that

interact with GTP each visit three different conformational states. Surprisingly, these con-

formational states do not change upon introducing the Q61L mutation, located in region S2.

However, the mutation has a significant effect on the transitions between the conformational

states of region S2. This effect could be a result of changes in the relative free energies of the

conformational states or changes in the transition mechanisms, or a combination of both.

While the WT protein frequently changes from one transition to another, the mutant hardly

changes at all. Closer examination of the various transitions revealed that S2 in the WT

protein is more likely to be solvated than in the Q61L mutant. The Q61L mutation pre-

vents direct solvation of S2, which is an accessible route for the WT protein. Both WT and
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mutant can reach the opened up state by S2 sliding along a slightly hydrophobic pocket on

the α3-helix. Our results show that the MSTPS methodology in combination with the novel

switching analysis, is able to map out the dynamics of a Ras protein, indicate differences

in dynamics between the WT protein and an oncogenic mutant, and reveal details on the

nature of the altered behavior as caused by the mutation.
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Supporting Information Available

Appendix S1: Stable state definitions The stable states are defined by ranges in

collective variables. This appendix provides a guide to these stable state definitions. Table 2

gives the types of collective variables, while Tables 3 and 4 list the collective variables used

to define the stable states for S1 and S2, respectively. Table 5 gives the ranges in collective

variable space for the stable states found for S1 and S2.
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Table 2: List of the different collective variable types.

CV type Description
Minimum distance The smallest distance between two groups of

atoms. Using MDTraj,44 distances of every
atom pair were calculated. The lowest is the
minimum distance.

Circular mean center of mass (cCOM)* The circular mean center of mass (cCOM) is a
center of geometry calculation that allows for
periodicity. The system is first mapped onto a
cube, followed by the calculation of the center
of mass, using the procedure of ref.45 Then the
cCOM is mapped back onto the original axes.

Number of hydrogen bonds The number of hydrogen bonds is calculated
by counting how many of the possible donor-
acceptor pairs form a hydrogen bond. A hy-
drogen bond in this code is defined by hav-
ing a Hdonor-acceptor distance smaller than
0.25 nm and having an Xdonor-Hdonor-acceptor
angle larger than 2

3
π rad.

Number of water mediated hydrogen bonds The number of water mediated hydrogen
bonds is calculated by first selecting all water
oxygens that are within a distance of 0.35 nm
from both input groups. If a water forms a
hydrogen bond with both groups, it is counted
as a water mediated hydrogen bond. The hy-
drogen bond calculation is done as described
above.

Number of bonds The number of bonds is the number of pairs,
from a given list of pairs, for which the min-
imum distance is smaller than 0.35 nm. The
minimum distance is defined in the minimum
distance cv type.

* Note that this circular mean center of mass does not give the actual center of mass.

In the CV type column the name of the collective variable type as used in table 3 and 4 are
shown, with their description in the Description column.
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Table 3: List of the relevant collective variables for the stable state definitions of
S1.

CV Description
d GTP asp30a The minimum distance between the Cγ of as-

partic acid 30 and the heavy atoms of GTP,
including Mg2+.

d GTP glu31a The minimum distance between the Cδ of glu-
tamic acid 31 and the heavy atoms of GTP,
including Mg2+.

d GTP tyr32a The minimum distance between the side-chain
oxygen of tyrosine 32 and the heavy atoms of
GTP, including Mg2+.

d GTP asp33a The minimum distance between the Cγ of as-
partic acid 33 and the heavy atoms of GTP,
including Mg2+.

n hbonds GTP asp30c The number of hydrogen bonds between the
side-chain oxygens of aspartic acid 30 and the
hydroxyl groups on the ribose of GTP.

n hbonds GTP tyr32c The number of hydrogen bonds between the
hydroxyl oxygen of tyrosine 32 and the hy-
droxyl groups on the ribose of GTP.

n hbonds tyr32 GTPc The number of hydrogen bonds between the
oxygens of GTP and the hydroxyl group of
tyrosine 32.

n hbonds ile55 tyr40c The number of hydrogen bonds between the
backbone carbonyl of isoleucine 55 and the
backbone amide of tyrosine 40.

n hbonds GTP S1c The number of hydrogen bonds between the
backbone carbonyls of valine 29 and aspar-
tic acid 30 and the hydroxyls on the ribose
of GTP.

n h med bonds GTP asp33d The number of water mediated hydrogen
bonds between all oxygens of aspartic acid 33
and all oxygens of GTP.

n h med bonds MG asp33d The number of water mediated hydrogen
bonds between all oxygens of aspartic acid 33
and Mg2+.

n h med bonds GTP nnbd The number of water mediated hydrogen
bonds between the side-chain oxygens of as-
partic acid 30, glutamic acid 31 and tyrosine
32 and all oxygens of GTP.

n h med bonds MG nnbd The number of water mediated hydrogen
bonds between the side-chain oxygens of as-
partic acid 30, glutamic acid 31 and tyrosine
32 and Mg2+.

a This collective variable uses the minimum distance as described in table 2.
c This collective variable uses the number of hydrogen bonds as described in table 2.
d This collective variable uses the number of water mediated hydrogen bonds as described
in table 2.
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Table 4: List of the relevant collective variables for the stable state definitions of
S2

CV Description
d gly12 gly60a The minimum distance between the heavy

atoms of glycine 12 and the heavy atoms of
glycine 60.

d gly12 gln61a,wt The minimum distance between the heavy
atoms of glycine 12 and the side-chain heavy
atoms of glutamine 61.

d gly12 leu61a,Q61L The minimum distance between the heavy
atoms of glycine 12 and the side-chain heavy
atoms of leucine 61.

d GTP glu62a The minimum distance between the Cδ of glu-
tamic acid 62 and the heavy atoms of GTP,
including Mg2+.

d GTP glu63a The minimum distance between the Cδ of glu-
tamic acid 63 and the heavy atoms of GTP,
including Mg2+.

d cCOM GTP S2a,b The minimum distance between the circular
mean center of mass of all atoms of residues
61 to 66 and the circular mean center of mass
of all atoms of GTP, including Mg2+.

n S2 α3e The number of combinations between the sets
of {histidine 95, tyrosine 96, glutamine 99,
arginine 102} and {{61}*, glutamic acid 62,
glutamic acid 63, tyrosine 64} for which the
minimal distance between the side-chain heavy
atoms of the residue from the first set and all
heavy atoms of the residue from the second set
is smaller than 0.35 nm.

a This collective variable uses the minimum distance as described in table 2.
b This collective variable uses the circular mean center of mass as described in table 2.
e This collective variable uses the number of bonds as described in table 2.
wt Only used in wild-type KRas.
Q61L Only used in the Q61L mutant of KRas.
* {61} is glutamine 61 for wild-type KRas and leucine 61 for the Q61L mutant of KRas.

These definitions apply to both WT and Q61L. The CV column shows the collective
variable names, with their description in the Description column.
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Table 5: List of the stable state definitions for KRas.

* {61} is glutamine 61 for the wild type and leucine 61 for the Q61L mutant. a One or
more of the conditions must be true. b All conditions must be true.

The State column are the names of the stable states. Every stable state is build by
combining the Constraints and Logic columns. For example in set notation the S2-GTP
state corresponds to (({ x | d gly12 gly60(x) ∈ [0.0, 0.3] } ∪ {x | d gly12 {61}(x) ∈
[0.0, 0.3] } ∪ { x | d GTP glu62(x) ∈ [0.0, 0.65] } ∪ {x | d GTP glu63(x) ∈
[0.0, 0.65] }) ∩ { x | d cCOM GTP S2(x) ∈ [0.0, 1.6] }) in words this would be: ((0.0 ≤
d gly12 gly60(x) ≤ 0.35 or 0.0 ≤ d gly12 {61}(x) ≤ 0.35 or 0.0 ≤ d GTP glu62(x) ≤
0.65 or 0.0 ≤ d GTP glu63(x) ≤ 0.65) and 0.0 ≤ d cCOM GTP S2(x) ≤ 1.6)
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Appendix S2: Transitions as function of the Monte-Carlo (MC) steps The figures

listed in this appendix show the type of transition as sampled for each step in the TPS

simulations.

Figure 9: Transitions as function of the Monte-Carlo step for the WT simulations.
The simulations started from (top) the S2-α3 to S2-open transition, (middle) the S2-α3 to
S2-GTP transition and (bottom) the S2-open to S2-GTP transition. The x-axis shows
the number of the MC steps. The y-axis shows the sampled transition. The y-axis lists
all transitions that can occur for S2. The gray lines represents the trial moves, with the
accepted MC steps highlighted as yellow dots and the accepted MC steps that lead to a new
decorrelated trajectory with a blue dot.
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Figure 10: Transitions as function of the Monte-Carlo step for the Q61L simu-
lations. The simulations started from (top) the S2-GTP to S2-open transition, (middle)
the S2-α3 to S2-GTP transition and (bottom) the S2-open to S2-α3 transition. The x-axis
shows the number of the MC steps. The y-axis shows the sampled transition. The y-axis
lists all transitions that can occur for S2. The gray lines represents the trial moves, with the
accepted MC steps highlighted as yellow dots and the accepted MC steps that lead to a new
decorrelated trajectory with a blue dot.
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Appendix S3: MSTPS results for S2 The sampling statistics of the S2 MSTPS sim-

ulations are shown in table 1. The number of Monte Carlo (MC) trials was equal for all

simulations. The acceptance is between 34 % and 42 %, which is reasonable considering

the theoretical maximum of 67 %. This theoretical maximum is due to the fact that in our

shooting algorithm only self transitions are forbidden. This leads to a maximum acceptance

of (N−1)
N

, for N number of states. With N = 3 this leads to the theoretical maximum accep-

tance of 67% for this MSTPS study. The number of decorrelated trajectories is satisfactory

for all simulations, and are spread well throughout the simulation as shown by the blue dots

in the figures in Appendix . The average path length and total simulation time are only

different for WT simulation 1. This simulation enters a different transition channel than the

other simulations, which would explain these altered numbers.

The Least Changed Path (LCP) is the sequence of frames that, together, represent all

accepted trajectories of a path sampling simulation. When running backwards in the sim-

ulation (from the last MC step to the first) a sequence of frames that are in between the

shooting point of the latest trajectory and the shooting point of the trajectory in which that

shooting point of the latest trajectory is replaced, on the last accepted trajectory before this

next trajectory is added to the LCP. This is continued until the first MC step is reached.

These LCPs represent the barrier region that is sampled during the TPS simulation.46 Fig-

ure 11 (WT) and figure 12 (Q61L) show the LCPs for all simulations, projected on top of the

combined pdhs from figure 6. The colouring is based on the first sampled transition of each

frame of the LCP and is red for S2-GTP ↔ S2-open, blue for S2-GTP ↔ S2-α3, and yellow

for S2-α3 ↔ S2-open. For the WT, all transitions sample the same diffuse barrier region,

as indicated by the overlap of the clouds, which supports the hypothesis that the switching

is also a diffusive process. For the extra channel for the S2-GTP↔S2-open transition, this

mostly occurs in simulation 1 of WT, but it is also observed in simulation 2 and 3. For

the Q61L simulations, the LCP is more constrained to a value of under 1.3 nm for the S2-

α3-distance. Also, the clouds overlap less with each other, making switching more unlikely.
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Simulation 1 and 3 of Q61L also show sampling of an extra S2-α3 ↔ S2-open channel, at

values of 0.75 nm or lower for the S2-α3-distance.

Figure 11: The Least-Changed-Paths of the WT simulations. The frames of the LCP
of each WT simulation, shown on top of the combined path density histogram, as shown in
(figure 6(top)). The color of each frame represents the first transition sampled by that frame,
red for S2-GTP ↔ S2-open, blue for S2-GTP ↔ S2-α3, and yellow for S2-α3 ↔ S2-open.
The numbering of the simulations is in the order of figure 9.

Figure 12: The Least-Changed-Paths of the Q61L simulations. The LCP are shown
on top of the combined path density histogram (figure 6(top)). The color of each frame
represents the first transition sampled by that frame, and is the same as in figure 11. The
numbering of the simulations is in the order of figure 10.

Visual inspection of the transition paths as sampled for WT shows that in some paths

helix α2 (residues 65-73) contained within S2, unfolds when entering the open state, but

retains its shape in the S2-open state for the Q61L mutant. Two-dimensional probability

histograms of the S2-α3 distance and the number of helical hydrogen bonds of the α2-helix
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(residues 65-73), for frames in the S2-open state, are shown in figure 13 for both WT and

Q61L. Looking at the WT plot, there are two maxima for states in the reaction channel

close to the α3-helix (under 1.5 nm on the y-axis), one where the α2-helix has all 5 helical

H-bonds and one where it has only 1 helical H-bond. For the WT S2-open states away from

the α3-helix (above 1.5 nm on the y-axis), the α2-helix has lost part of it helical structure, as

indicated by a distribution around 2 helical H-bonds. When looking at the transition region

between these two reaction channels at around 1.5 on the y-axis, helix α2 has lost most of

its helical hydrogen bonds, which may indicate a correlation between the unfolding of helix

α2 and the switching between the two reaction channels. The probability histogram for the

S2-open frames of Q61L show a maximum at 4 helical H-bonds and S2 close to helix α3.

These observations suggest that Q61L has a more structured open state.

Figure 13: Two-dimensional probability histogram of the S2-α3-helix distance and
the number of helical hydrogen bonds in α2-helix for the S2-open state. These
are shown for (left) WT and (right) Q61L. The y-axis is the cCOM of S2 to the α3-helix
(as used in figure 6). The x-axis is the number of hydrogen bonds (as described in table 2)
between the backbone O of residue i and the backbone NH of residue i + 4 for i ∈ [65, 69].
The colors indicate the probability.

Appendix S4: MSTPS results for S1 The transitions as function of the MC trials of

the S1 simulations are shown in figure 14. The x-axes represent the number of the MC trials,

while the y-axis shows the sampled transition. Like in the supplements of figure 3, the y-

axis lists the transitions, ordered such that the simulation can only switch to the transitions
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directly above or below the current transition, or between the top and bottom transition.

This ordering is possible, because only either the initial or the final state can change per

MC step due to the one-way shooting algorithm. With a forward shot the final state can

change and a backward shot may change the initial state. The trial moves are shown as a

gray line, with the accepted MC steps highlighted as yellow dots and the accepted MC steps

that result in a new decorrelated trajectory with a blue dot. The accepted and decorrelating

MC steps are distributed well throughout both simulations. The number of switches that

occur between the transitions is similar for both WT and Q61L. Both simulations spend a

significant amount of simulation steps in the 30-32 → open transition.

Figure 14: Transitions as function of the Monte-Carlo step for the S1 simulations.
(top) WT (bottom) Q61L. The same axis setup and labeling is used as in the supplements
for figures 9 and 10. Here D33 corresponds to the S1-D33 state, 30-32 to the S1-30-32 state,
and open to the S1-open state.

The sampling and switching behaviour of both simulations is summarized in figure 15.

This could be attributed to a lack of convergence of the simulations. The number of

switches that occur between the transitions is similar for both the WT and the Q61L simu-
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Figure 15: Results of the S1 path sampling simulations. (left) Transitions in the (top,
left) WT and (bottom, left) Q61L simulations. (right) Switches in the (top, right) WT and
(bottom, right) Q61L simulations. The same labeling for the states is used as in figure 14.

lation.

Representative trajectories of all sampled transitions of both the WT and the Q61L were

visually compared. No distinct differences in transition mechanisms between WT and the

Q61L were observed. In conclusion, these results suggest that the mutation in S2 has little

effect on the dynamical behavior of S1.
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S5 Video Movie of a typical trajectory of the S2-GTP and the S2-open transi-

tion for WT. The frames in these movies are rendered with the switch regions highlighted

in green for S1 and blue for S2. The α3-helix is highlighted in yellow. The protein is shown

as a ribbon with an transparent stick representation for the amino acids in S1 and S2. GTP

is shown as solid sticks, with carbon atoms colored in green, oxygen in red, nitrogen in blue

and phosphorus in orange. Mg2+ is shown as a green ball.

S6 Video Movie of a typical trajectory of the S2-GTP and the S2-open transi-

tion for Q61L. The frames in these movies are rendered with the switch regions highlighted

in green for S1 and blue for S2. The α3-helix is highlighted in yellow. The protein is shown

as a ribbon with an transparent stick representation for the amino acids in S1 and S2. GTP

is shown as solid sticks, with carbon atoms colored in green, oxygen in red, nitrogen in blue

and phosphorus in orange. Mg2+ is shown as a green ball.
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Graphical TOC Entry

Schematic overview of the effect of the Q61L
mutation on the dynamics of KRas. KRas and its
mutant Q61V show similar conformational tran-
sitions, at different frequencies.
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