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Abstract
The financial failure of a firm causes considerable losses to both the business
community and society as a whole. Consequently, bankruptcy prediction has
been a field of great interest and importance for academics and practitioners
alike. In recent years, more opaque machine and deep learning methods have
been developed, proven to have superior predictive performance compared
to simpler machine learning models. Still, simpler bankruptcy prediction
models are often preferred for use in practice due to the black box problem,
encompassing reduced interpretability and trustworthiness.

In this thesis we explore the use of long short-term memory (LSTM)
networks capable of utilizing sequential accounting data for bankruptcy
prediction, while focusing on interpretability using the Shapley Additive
Explanations (SHAP) framework. Further, to evaluate the predictive
performance of the LSTM networks, we create a recurrent neural network
(RNN) and a fully connected feed-forward neural network. The networks
are trained on a real-world dataset of Norwegian small and medium sized
enterprises (SME). The dataset consists of 212 020 unconsolidated financial
statements from 2006–2019, used to construct 156 predictor variables. Only
a small percentage of the financial statements (0.5665%) were classified as
bankrupt in the period, meaning the dataset is severely imbalanced. To
account for this, we implement a cost-sensitive learning strategy in the
training of all the deep neural networks.

The LSTM network using a sequence of four accounting years and all
features, obtained an AUC and a Brier score of 0.9288 and 0.0477, respectively.
This was an increase of 5.56% in AUC and decrease of 65.36% in Brier score
compared to the fully connected feed-forward neural network. Moreover, the
LSTM network using a subset of 30 features and a sequence of four years
achieved an increase of 1.74% in AUC compared to the RNN. This indicates
that LSTM networks have higher predictive performance than the baseline
neural networks. We further observed a decrease in predictive performance
for each time step omitted from the LSTM networks, indicating that longer
sequences of data better enables the LSTM networks to predict bankruptcy.
To enhance model interpretability, we implement SHAP to explain individual
predictions and to give insight into the general logic of the model. Moreover,
we evaluate whether the learned behavior of the LSTM networks is consistent
with economic theory and discuss the framework’s capabilities from a financial
institution and decision-making perspective. Our findings suggest that SHAP
increases the interpretability of deep neural networks, and therefore facilitates
adoption of high-performing LSTM networks for bankruptcy prediction in
the financial services sector.
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Sammendrag
Konkurs fører til betydelige tap for både næringsliv og samfunnet som helhet.
Derfor har konkursprediksjon vært et viktig tema for akademikere, finansielle
institusjoner, bedriftsledelse og andre interessenter. I de siste årene, har
flere maskin- og dyplæringsmetoder med gode prediktive evner blitt utviklet.
Likevel, på grunn av black–box–problemet, som medfører redusert tolkbarhet
og pålitelighet, blir gjerne enklere maskinlæringsmodeller foretrukket for bruk
i den virkelige verden.

I denne oppgaven utforsker vi bruken av “Lang korttidsminne” (LSTM)
nettverk, i stand til å bruke sekvensiell regnskapsdata for konkursprediksjon.
For å forbedre tolkbarheten av LSTM nettverkene implementerte vi Shapley
Additive Explanations-rammeverket (SHAP). Videre, for å evaluere de
prediktive evnene til LSTM nettverkene, konstruer vi et rekurrent nevralt
nettverk (RNN), og et flerlags forovermatet nevralt nettverk. Modellene
blir trent på et datasett med små og mellomstore norske bedrifter (SMB).
Datasettet består av 212 020 ukonsoliderte årsregnskap fra perioden 2006–
2019, som vi brukte til å konstruere 156 variabler. Kun en liten prosentandel
av regnskapene (0,5665%) var klassifisert som konkurs i perioden, noe som
betyr at datasettet er svært ubalansert. For å ta høyde for dette, ble en
kostnadssensitiv læringsstrategi brukt i treningen av de nevrale nettverkene.

LSTM-nettverket som brukte en sekvens på fire regnskapsår og alle
variabler oppnådde en AUC og Brier score på respektive 0.9288 og 0.0477,
en økning på 5,56% i AUC og reduksjon på 65,36% sammenlignet med det
forovermatede nevrale nettverket. I tillegg oppnådde LSTM-nettverket som
brukte en sekvens på fire regnskapsår og 30 variabler en økning på 1,74%
i AUC sammenlignet med RNN. Dette indikerer at LSTM-nettverkene har
høyere prediktive evner enn de andre nevrale nettverkene. Videre observerte
vi en reduksjon av prediktive evner når vi reduserte sekvenslengden, noe som
indikerer at lengre sekvenser av data øker LSTM-nettverkene sin evne til å
predikere konkurs. For å øke tolkbarheten av LSTM-nettverkene, brukte vi
SHAP-rammeverket for å forklare individuelle prediksjoner, samt for å gi
innsikt til den generelle oppførselen til modellene. Videre sammenlignet vi om
den lærte oppførselen til LSTM-nettverkene var i tråd med økonomisk teori.
I tillegg diskuterte vi SHAP-rammeverkets evner fra et finansinstitusjons- og
beslutningstakingsperspektiv. Funnene våre tyder på at SHAP-rammeverket
øker tolkbarheten av dype nevrale nettverk, og derfor kan fasilitere bruk av
komplekse, høytytende LSTM-nettverk for konkursprediksjon i næringslivet.
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Chapter 1

Introduction

Corporate bankruptcy leads to considerable losses to both the business
community and society as a whole (Van Gestel et al., 2003). Therefore,
bankruptcy prediction is a field of great interest and importance to researchers,
financial institutions, company decision-makers, employees, investors and
other stakeholders (Shi & Li, 2019b; Smiti & Soui, 2020; Tang et al., 2019;
Van Gestel et al., 2003). Consequently, this has resulted in the development
of several distinct financial failure forecasting tools providing company
management the ability to make timely strategic decisions to prevent further
financial distress. Likewise, financial institutions such as banks can leverage
these tools to reduce their cost of capital by efficiently and automatically
predicting their clients’ default risk (Härdle et al., 2009; Van Gestel et al.,
2003).

Due to the availability of more data and increased computing power, we
have in the past decade been witnessing the development of more complex
machine learning methods such as deep neural networks. Despite some of
these state-of-the-art models showing superior performance compared to
more traditional statistical models, are they often criticized for being black
box methods, meaning they allow limited transparency into the decision
process. This in turn have restricted their use in disciplines such as finance
and healthcare. Consequently, financial institutions still mostly use more
simplistic models to predict bankruptcy (Zhang & Thomas, 2015) even though
small performance increases can lead to significant economic gains (Stein,
2005).

Furthermore, the General Data Protection Regulation (GDPR) was
adopted by the European Parliament and became law as of May 2018. One
part of GDPR is the article concerning automated decision-making, which to
some extent, introduces a right of explanation. This gives individuals a right
to obtain “meaningful explanations of the logic involved” when automated
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Chapter 1. Introduction

decision making takes place (Art. 22 GDPR, 2016). Although the right of
explanation in GDPR only concerns private individuals and not companies, it
illustrates how interpretability in AI is a topic of growing concern, and how
it rationalizes the use of more simplistic interpretable models.

However, simplistic models are not able to treat bankruptcy as a process,
but only as a steady state, which induce some serious drawbacks. The failure
of a company is not a sudden or unexpected event (Laitinen, 2005), but
rather a result of several periods of adverse performance. Therefore, Kim
et al. (2020), states multi-period sequential models are more appropriate for
bankruptcy prediction.

Still, in order to utilize complex multi-period models in the real world,
the lack of interpretability needs to be addressed. The research domain of
explainable AI aims to increase interpretability and explainability of complex
machine learning models while keeping high levels of predictive performance. A
major contributor to such research is Lundberg and Lee (2017), who introduced
the Shapley Additive explanations (SHAP) framework. The framework enables
both global and local explanations, encompassing interpretations of feature
effect and magnitude on model prediction based on Shapley values from
coalition game theory. However, the use of this framework in the domain of
deep learning neural networks for bankruptcy prediction is still scarce.

Despite the majority of global companies being small or medium-sized
enterprises (SMEs), the literature on corporate failure prediction is mostly
focused on large or listed companies (Gordini, 2014; Paraschiv et al., 2021).
According to the European Commission (2021), 99.8% of all EU enterprises
were categorized as SMEs in 2020. Combined, the SMEs were accountable for
over 50% of the total value added produced by the EU. The lack of research on
bankruptcy prediction amongst SMEs is mainly due to better availability of
financial data for larger enterprises. Additionally, market-based information
for privately held SMEs are often unavailable (Filipe et al., 2016). It would
be mutually beneficial to both financial institutions and the SMEs themselves
to improve their bankruptcy prediction models. Financial institution would
reduce their risk exposure, resulting in improved financing options for SMEs
through lower risk premiums (Tobback et al., 2017).

Moreover, data scarcity is a common problem for bankruptcy prediction;
most recent studies employ data samples from only 400 companies or less
(Veganzones & Severin, 2020). In many cases the available data is also limited
in terms of quality due to the data often being sourced from, for example, a
single set of clients from a specific bank, which may induce bias and distort
the result. Additionally, bankruptcy is considered a rare event, meaning
bankruptcy data usually has problems with imbalanced class distributions.
Therefore, training machine learning models for bankruptcy prediction often

2



1.1. Research questions

requires implementations of data balancing strategies such as resampling
methods. However, as Zmijewski (1984) demonstrates, the use of these
strategies may also result in biased probability estimates, meaning model
training on unprocessed data is to be preferred for real world applications.

1.1 Research questions
The motivation for the topic of this thesis is an accumulation of all previously
described challenges in regards to the use of complex deep neural networks
for bankruptcy prediction in the real world. The objective of this master
thesis is therefore to discuss and utilize the SHAP framework to increase
model interpretability and enhance real-world applications of deep recurrent
neural networks for bankruptcy prediction. To achieve this, we train LSTM
networks on sequential imbalanced data of all unconsolidated annual financial
statements from Norwegian companies, in the accounting years 2006–2019.
We further compare the predictive performance of the LSTM networks with
a traditional RNN and a fully connected feed-forward network. This thesis
will therefore have the following research questions:

• To what extent can LSTM networks using sequential accounting data
produce superior predictive performance compared to other neural
network models for bankruptcy prediction?

• How can the SHAP framework increase interpretability of deep recurrent
neural networks for bankruptcy prediction, and to what extent can this
facilitate the adoption of deep learning for bankruptcy prediction in the
financial services sector?

1.2 Thesis structure
In chapter 2 all considerations and relevant background for deep neural
networks for bankruptcy prediction are presented, including a description of
the black box problem and explainable AI. Moreover, we present problems
related to imbalanced datasets and the neglect of the time dimension in
bankruptcy prediction. Lastly, relevant previous work is presented.

Chapter 3 describes the foundation of the models utilized in this thesis.
Firstly, the basics of neural networks are presented, followed by a description of
deep recurrent neural networks and LSTM networks. Secondly, a description
of Shapley values and the SHAP framework for model interpretability is
presented. Relevant evaluation metrics for bankruptcy prediction models are

3



Chapter 1. Introduction

also introduced. Lastly, a cost-sensitive learning strategy to address the data
imbalance is described.

Chapter 4 gives details of our specific choices in regards to methodology,
based on the two previous chapters. We start by describing the data and
data preprocessing, followed by a description of the training and test splitting
scheme. We further outline the implementation of the LSTM neural networks,
describing the chosen architecture and parameters. Moreover, we describe
the implementation of the baseline neural networks. Lastly, we present the
model evaluation metrics.

Further, in chapter 5, the results based on the evaluation metrics are
presented. This is followed by results regarding the SHAP framework utilized
to interpret the learned behaviour of the LSTM networks, including the
feature impact magnitude and effect. Moreover, we present three individual
predictions made by the LSTM networks.

The discussion regarding model performance is found in Chapter 6,
followed by interpretations of the learned behaviour of the LSTM networks
based on the SHAP framework. Moreover, we evaluate the SHAP frameworks
ability to interpret specific predictions. Furthermore, we discuss the
limitations of the thesis, ending with a discussion regarding the real-world
implications of our analysis.

We outline the findings of the thesis in Chapter 7, before ultimately
pointing out new directions for future work in the field of deep learning for
bankruptcy prediction, especially in regards to real-world applications.

1.3 Contributions
This thesis has evaluated the use of the SHAP framework for increased
interpretability of deep LSTM networks for bankruptcy prediction in order
to increase applicability of complex deep neural networks in the financial
services sector.

Though we are not the first to utilize deep LSTM network for bankruptcy
prediction, the research within the domain is lacking. Therefore, by
demonstrating the predictive performance of a deep LSTM networks, we
further confirm the usefulness of complex machine learning models capable of
utilizing sequential data within the field.

To the best of our knowledge, this thesis represents the first attempt to
utilize cost-sensitive learning as a solution to the imbalanced data problem
for deep recurrent neural networks for bankruptcy prediction as motivated
by Zmijewski (1984). We found the strategy to be a feasible alternative to
resampling methods, with the benefit of not altering data.

4



1.3. Contributions

Still, the main contribution of this thesis comes from the testing and
discussion of the SHAP framework to enhance interpretability of deep LSTM
networks. We found SHAP to be a viable tool for reducing the black box
problem, facilitating adoption of LSTM networks in the financial services
sector.
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Chapter 2

Theoretical background and
previous work

In this chapter the theoretical background in regards to bankruptcy prediction,
deep learning, the black box problem and the characteristics of bankruptcy
data is presented. We also present previous work regarding bankruptcy
prediction, feature effects, interpretability, data balancing and time sensitive
modeling.

2.1 Bankruptcy prediction
Bankruptcy prediction models have been a staple credit risk management
tool for both investors and creditors alike over the past few decades (Härdle
et al., 2009). Throughout time, such financial forecasting tools have been
gradually developed and improved. A notable event that had considerable
impact on the development of bankruptcy prediction models was the financial
crisis of 2008–2009, where numerous companies either went bankrupt or
experienced financial distress. This became a wake up call for regulators,
practitioners, and other company stakeholders, accelerating research in the
domain of bankruptcy prediction (Shi & Li, 2019a). Another factor that
contributed to the development of bankruptcy prediction models, is the
Basel II framework (“Basel II”, 2004), which established new risk and capital
management requirements for the banking sector. Because the minimum
capital requirements for companies are calculated using existing bankruptcy
prediction models, banks are incentivized to refine their models in order to
lower their capital requirements in the future (Kirkos, 2015). This interest
and research has resulted in a number of different bankruptcy prediction
models being developed over the years (Gupta & Chaudhry, 2019).

7



Chapter 2. Theoretical background and previous work

2.1.1 Definition of bankruptcy
Bankruptcy for companies in Norway is regulated through The Bankruptcy
Act of 1984. §61 of this act states that “The debtor is insolvent when he/she
cannot meet his/her obligations as they fall due unless this insolvency may
be assumed to be of a transient nature”. Furthermore, §60 states that “If
the debtor is insolvent, the person in question’s estate shall be subject to
bankruptcy proceedings when the debtor or a creditor so requests” (The
Bankruptcy Act, 60–61, 1984). In this thesis, bankruptcy is considered a
binary event, determined by our dichotomous target variable bankruptfs.
This variable is described in section 4.1.1.

2.1.2 Machine learning for bankruptcy prediction
In classical programming, humans construct and define rules which an
algorithm uses to analyze data and produce answers (output). On the other
hand, in a machine learning (ML) system, the human inputs the data and the
answers, and the model outputs the rules. This means that the algorithm (or
system) is trained rather than explicitly programmed (Chollet, 2018). These
rules (models) can in turn be applied to new data, with the main areas of
focus being prediction, classification and clustering (Athey, 2018).

The use of machine learning algorithms is closely related to Data-driven
decision making, suggested by Brynjolfsson et al. (2011) to increase output
and profitability of businesses. Artificial intelligence (AI) and machine
learning systems have therefore emerged a staple of operations within multiple
sectors utilizing new information technologies for increased business value
(Barredo Arrieta et al., 2020). Further, for company stakeholders and financial
institutions, financial forecasting tools such as bankruptcy prediction models
have become a valuable asset.

Still, to understand why machine learning models have become so
important, we need to understand what they do. A machine learning model
transforms input data into outputs. How to transform the data (rules) is
learned by the model through continuous exposure to input data with known
outputs. Thus, the core problem for a machine learning model is learning
to transform the input data into more easily understandable and usable
representations of the data. These representations are simply another way for
the model to look at the data, that enables it to better understand what the
information indicate and thereby produce the correct output (Chollet, 2018).
This way of learning are referred to as representation learning (Bengio et al.,
2014).
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For a machine learning model for bankruptcy prediction to be considered
effective, two criteria need to be satisfied. First of all, the model must be
accurate in its predictions. Secondly, the model needs to be interpretable (Son
et al., 2019). However, there is a trade-off between predictive performance
and model interpretability (Došilović et al., 2018), and how to prioritize
these criteria depends on the situation. As previously mentioned, financial
forecasting tools provide companies the ability to make decisions to prevent
further financial distress, while financial institutions such as banks can
leverage the predictions to determine their clients’ default risk. These different
applications of bankruptcy prediction models do not necessarily have the
same prioritization between accuracy and interpretability. To elaborate, lets
give an example. When a bank is deciding whether to issue a loan, the
primary criterion is prediction accuracy, as the banks main objective is to
reduce their own risk. To do this, they do not necessarily need to know why
the model came to the decision it did. Meanwhile, a company’s leadership
is interested in the reasoning behind the prediction. This in order to know
what decisions need to be made to reduce the likelihood of further financial
distress. Hence, for such a case, the tool not only needs to be accurate, but
also interpretable (Alaka et al., 2018). A more detailed description of issues
related interpretability can be found in Section 2.2.

2.1.3 Deep learning for bankruptcy prediction
Deep learning is a subfield of machine learning that similarly aims to learn how
to create the most appropriate representations of the data, that best enables
the model to do the task at hand. However, a deep learning model focuses
on learning “successive layers of increasingly meaningful representations”
(Chollet, 2018) in order to learn high-level nuances and patterns not necessarily
recognized by traditional machine learning methods. This means that a deep
learning model aims to produce multiple layers of representations (Guo et al.,
2016). More often than not, these layers of representations are learned
via neural networks. Neural networks are stacked layers of interconnected
computational nodes that through training learn to transform and combine
input data into meaningful outputs (representations) to be further transmitted
through the network. This way the model transform representations at one
level to representations of a higher level (LeCun et al., 2015), being the main
reason why deeper networks tend to be better at learning representations in
data than traditional machine learning models (Razavi, 2021). The amount
of stacked layers are the depth of the model, where modern deep models can
have hundreds of successive layers (Chollet, 2018).
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There are multiple different types of neural networks. The most basic are fully
connected feed-forward neural networks, also referred to as densely connected
neural networks (Chollet, 2018). “Fully connected” refers to the fact that
each node in a layer are connected to all nodes in the next layer. Moreover,
“feed-forward” imply that there are no backwards connections between the
layers (Gawehn et al., 2016). A more in-depth description of a fully connected
network is presented in Section 3.1.1.

Another type of neural networks is convolutional neural networks (CNNs).
These networks specializes in image recognition (O’Shea & Nash, 2015), and
are designed to process data in forms of multiple arrays (LeCun et al., 2015).

Recurrent neural networks (RNNs) specializes in processing sequential
data, and are often used for language and speech recognition. RNNs process
the elements of the sequence one at a time, while calculating a hidden state that
contains information about the previous elements of the sequence (Chollet,
2018; LeCun et al., 2015). However, traditional RNNs often struggles to retain
long-term dependencies in data. Therefore, Hochreiter and Schmidhuber
(1997) created a special type of RNN called long short-term memory (LSTM)
networks that in addition to the hidden state introduces a cell state that
enhances the models capabilities of “remembering” information for longer
periods of time. A more thorough description of RNNs and LSTM networks
are presented in Sections 3.1.6 and 3.1.7. In this thesis, we focus on using
LSTM networks for bankruptcy prediction in order to process accounting
data over multiple periods (sequential accounting data).

Neural networks, and specifically deep learning, have become an important
topic in both academic research and practical applications spanning multiple
fields (Qu et al., 2019). Still, Qu et al. (2019) state that research on the
application of deep learning in finance and management is lacking. An
overview of the literature is found in Section 2.5.1.

2.1.4 Accounting-based predictor variables
The causes of bankruptcies and financial distress are numerous, including:
macroeconomic and industry specific factors, governance and managerial
problems, political events and laws, and even pandemics and wars. Even
though there are many causes to bankruptcy and these causes often are easily
determined, capturing such information in terms of data is difficult because
each cause cannot be entirely reduced to a single, measurable parameter.
Moreover, information regarding the previously listed causes are often not
available for every company, making such data difficult to use for modeling.

Despite the fact that corporate failure prediction has been a subject of
extensive research, the literature is largely inconclusive and contradictory
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on what types of features are the key determinants of bankruptcy. There is
strong evidence that the best predictor variables differ significantly between
data samples (Balcaen & Ooghe, 2006) and between countries in terms of
their interactions and influence (Filipe et al., 2016). Because of this, finding
predictive variables that apply for all populations of firms is difficult, and
prediction models applied outside the original context may not be as accurate.
To obtain accurate information regarding the population in question, the
modeling therefore needs to be data specific.

In order to address the issue of determining what types of features to use for
bankruptcy prediction, accounting based financial ratios are most commonly
used, because they often provide a relatively objective, quantitative measure
of a company’s financial situation and performance (Balcaen & Ooghe, 2006;
Veganzones & Severin, 2020). A financial ratio is simply a ratio where both
the numerator and the denominator are accounting items retrieved from the
financial statements of a firm, and therefore provide information regarding the
financial situation of a company (Nadar & Wadhwa, 2019). Accounting data
are both easily available through annually public financial statements of the
companies and they are reliable. One of the main strengths of financial ratios
compared to raw entries springs form their ability to control for companies
size effect (Barnes, 1987; Salmi & Martikainen, 1994).

Other advantages of using financial ratios to predict bankruptcy are their
ability to control for industry-wide factors (Barnes, 1987). Additionally,
bankruptcies are often the result of several years of adverse performance
and will therefore largely be captured by the firm’s accounting statements,
whereas the relationship between corporate failure and alternative predictor
variables such as corporate governance measurements are more ambiguous
and challenging to identify. Loan covenants are generally based on accounting
numbers and this information is more likely to be reflected in accounting-ratio-
based models (Agrawal et al., 2018). Furthermore, the International Financial
Reporting Standards (IFRS) promote the comparability of financial statements
internationally, thus aiding the development of more widely generalizable
bankruptcy prediction models between countries.

2.2 The black box problem
Significant concerns about the moral hazards associated with the increasing
prevalence of algorithms and machine learning as a substitute for human
judgement in decisions within financial services and consumer credit ratings
has been raised in recent years. The concern stems from the opacity into the
inner workings of deep machine learning models, meaning there is an absence
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of mechanisms to reproduce or explain the decision-making processes of a
given model (von Eschenbach, 2021). Consequently, understanding the reason
a machine learning model reaches a decision becomes difficult when the “ex
ante predictions and ex post assessment of the system’s operations is difficult
to formulate precisely” (Zerilli et al., 2019). This is the essence of the black
box problem.

A machine learning algorithm can generally be opaque in two different
ways: (1) the process or mechanism for how machine learning arrives at
outputs from given inputs may be inaccessible or unknowable, and (2) inputs
themselves may be unknown to programmer or observers (von Eschenbach,
2021). These types of opacity can stem from intentional company secrecy,
technical illiteracy or the characteristics of the algorithm (Burrell, 2016).

2.2.1 Explainable AI
Considering that the prediction accuracy of machine learning can be superior
to human judgement, its use is not in itself problematic. The troublesome
part is when opaque machine learning models is used for decisions that
substantially influences people’s lives, and the result or decision made by the
model are difficult, if not impossible, to dispute or appeal. Additionally, those
who suffer the consequences of the decisions often lack recourse to address
them (von Eschenbach, 2021). Moreover, the black box problem for Deep
Learning algorithms is enhanced when the outcomes are ethically problematic,
and are based on biased algorithms or decision models. Especially when these
biases can not be detected and therefore not be addressed nor accounted for.

Explainable AI (XAI) aims to produce ML models and techniques to
address this problem without reducing the predictive effectiveness (Barredo
Arrieta et al., 2020). The goals are therefore to create ML models that (1)
are explainable while maintaining a high level of prediction accuracy, and (2)
enables humans to trust and understand the emerging generation of ML and
AI (Barredo Arrieta et al., 2020). In part, this is related to increasing model
interpretability.

2.2.2 Interpretability
Interpretability is the degree to which a human can understand the cause of
a decision (Biran & Cotton, 2017). This is important as in general, humans
are hesitant to utilize techniques that are not directly interpretable, tractable
and trustworthy (Barredo Arrieta et al., 2020). For instance, Oxborough et al.
(2018) found that 67% of business leaders believes that AI and automation
will impact negatively on stakeholders trust levels in their industry in the
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next five years. There is also a trade-off between predictive performance and
transparency in a model (Došilović et al., 2018), meaning that a sole focus on
performance will increase the opaqueness of the systems. Though performance
is important for bankruptcy predication as small performances increases can
lead to great increases in profitability (Stein, 2005), an improvement in the
understanding of a system can lead to corrections of its deficiencies. Therefore,
taking interpretability into consideration in the development of ML models,
can improve its applicability and reduce the ethical challenges described in
Section 2.2.1, mainly for 3 reasons (Barredo Arrieta et al., 2020):

• Interpretability helps ensure impartiality in decision making. This
encompasses detecting, and correcting from bias in the training of the
model

• Interpretability helps in highlighting potential adverse perturbations,
and consequently robustness.

• Interpretability can act as insurance that only relevant and significant
variables are used to produce the output. This means that interpretabil-
ity helps ensure casuality in the model reasoning.

Methods for machine learning interpretability are often grouped into two
categories, namely: intrinsic interpretability and post-hoc interpretability,
depending on the time when the interpretability is obtained. Intrinsic
interpretability refers to machine learning models that are self-explanatory,
meaning they are interpretable due to their simple structure. Some of these
models include simple decision trees, rule-based models and linear models
(Molnar, 2022, Chapter 3.2). Post-hoc interpretability on the other hand,
refers to the application of interpretation methods after model training. This
therefore requires creating a second model to provide an explanation of the
existing model (Du et al., 2019). Due to the lack of intrinsic interpetability
of most deep learning methods, post-hoc interpretability methods are needed.
In general, there are two types post-hoc explanations: global and local
explanation models.

The idea behind post-hoc global explanation is that a machine learning
model through training automatically learn useful patterns, and store this
knowledge in the structure and parameters of the model (Du et al., 2019).
The goal of a post-hoc global explanation model is therefore to access this
knowledge, and reveal the learned model behaviour. Hence, global explanation
models give insight into the general logic used by the model for making
predictions (Demajo et al., 2020). Managers and decision makers are interested
in using bankruptcy prediction models as management tools. Therefore, they
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require the model to give insight into the general logic of the model, meaning
general importance of features, and their effect on model predictions. In such
a manner, the model can be used to give valuable insight into their financial
situation, and work as a guideline for which aspect of their business needs
improvement. This in turn ensures better allocation of company resources.
Post-hoc local explanation models focus on identifying the impact of each
specific input feature on a specific model prediction. Customers and companies
applying for loans are mostly interested in the reason behind why their loan
application was denied, meaning they want to know the model reasoning of a
specific prediction (Demajo et al., 2020). Moreover, company managers and
decision makers can leverage local explanations to evaluate their financial
situation and consequently make more informed decisions. Therefore, local
explanations are preferred in this context.

As mentioned in Section 2.1.2, for financial institutions such as banks,
will their main concern be model accuracy, rather than interpretability. A
reason for this is that they are the ones taking on most of the risk when it
comes to issuing credit. Misclassifying a bankrupt company as healthy (type
I error) is the most costly for investors and creditors as the debt will not be
reimbursed, while classifying a healthy company as bankrupt (type II error)
can lead to lost earnings in terms of interest (du Jardin, 2015; Lohmann
& Ohliger, 2019; Stein, 2005; Trinkle & Baldwin, 2007). While a model
cannot eliminate both errors, a small percentage improvement in accuracy can
materially impact the lending institution’s profit (Trinkle & Baldwin, 2007).
However, as previously stated, improvements of interpretability may lead to
corrections of model deficiencies. Hence, increased interpretability may also
improve model performance and trustworthiness, consequently facilitating
adoption for financial institutions. Additionally, financial institutions may
desire to give their customers and clients explainable reasons for loan denial,
increasing customer trust and loyalty.

For the company stakeholders, all these considerations can be narrowed
down to three questions, formulated by Bracke et al. (2019).

• What drove the explanations more generally?

• Which features with what effect mattered in individual predictions?

• How does the model work, and can it be easily explained?
When evaluating the interpretability of deep neural networks for bankruptcy
prediction, these questions should be addressed. Note that these questions
were originally created for default risk prediction, but are still highly relevant
for bankruptcy prediction models. Additionally, these questions have been
slightly modified for our use.
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2.2.3 Interpretability methods
To increase the interpretability of black box models, several method have been
proposed, This includes LIME, DeepLIFT, Layer-Wise relevance propagation,
classic Shapley value estimation, and SHAP. In this section we will briefly
introduce two of the most popular ones, namely the Local interpretable model-
agnostic explanations (LIME) and the Shapley additive explanations (SHAP)
of Lundberg and Lee (2017).

Local interpretable model- agnostic explanations

LIME is a post-hoc local explanation method aiming to provide explanations
of any machine learning model. As the name suggest, the method focuses
on local interpretations used to explain individual predictions (Molnar, 2022,
Chapter 3.2). Instead of trying to understand the entire model at once,
the method tweak the inputs of specific instances to see by how much the
prediction changes. If the change is minuscule, the variable may not be an
important predictor for that particular instance. Oppositely, if the difference
is significant, the variable is of importance for the prediction. LIME has been
proven to offer good approximations of the predictions locally. However, these
approximations do not necessarily apply globally.

Shapley additive explanations

Shapley additive explanations (SHAP) was presented by Lundberg and Lee
(2017) and is a unified (from six different models) framework for interpreting
predictions of complex models. It came into fruition to address the problem of
knowing how the distinct explanation models are related and when the different
methods are preferred over another. SHAP quantifies the contribution each
feature have on the prediction by the means of Shapley values from coalition
game theory, providing a strong theoretical foundation to the framework
(Molnar, 2022, Chapter 9.6). Unlike the LIME-framework, SHAP is also fit
to provide global explanations for a model. In this thesis we will make use of
the SHAP framework for model interpretations. A more detailed description
of the SHAP and its capabilities is provided in Section 3.2.2.

2.3 The imbalanced dataset problem
Rare events are difficult to detect due to their infrequency. Nevertheless,
misclassification of rare events can be costly (Haixiang et al., 2017). In the
case of bankruptcy prediction, misclassification may lead to capital loss and
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even contagion effects. Further, the consequences may not only be individual,
but cause a downward spiral for the whole economy, impacting related firms,
employment and economic welfare (Veganzones & Séverin, 2018).

Veganzones and Séverin (2018) states that when a model is trained on
data with a class imbalance ratio of 4:1 or higher, the models capability of
predicting bankruptcy is at risk. In real world bankruptcy prediction this ratio
of non-bankrupt to bankrupt companies can be as low as 100:1 or even 1000:1
(Veganzones & Séverin, 2018; Zhou, 2013). In the dataset utilized in this
thesis, the proportion of bankrupt companies is 0.5665%, meaning it is highly
imbalanced. Therefore, a major concern regarding our data characteristics is
the imbalanced class distribution.

The main reasons why data imbalance causes decreased machine learning
model performance, concerns the loss function of the classification algorithm
(Kim et al., 2015). A widely used loss function named binary cross-entropy
concerns arithmetic accuracy. This is the ratio of the number of correctly
classified instances over the number of total instances. In other words,
the objective of the models becomes to maximize the classification rate.
Consequently, in the presence of greatly imbalanced data, the classifier tends
to learn how to predict the majority class, rather than the minority class
because the cost of making errors favour the majority class. To elaborate, lets
give an example. If the class imbalance ratio is 100:1 and the model changes the
decision boundary to correctly classify one more observation of the minority
class, chances are that at least two or more majority class observations gets
misclassified. Given an arithmetic loss function, this will result in a higher cost
for the model than the other option of correctly classifying the two majority
class observations while continuing to misclassify the minority. Consequently,
if the model has to choose between the two options, it will favour the latter as
it comes with a lower cost. In other words, the cost of making errors favour
the majority class because the minority class has a lower prior probability and
consequently a lower error cost. Even though a classification model trained
like this can acquire higher prediction accuracy’s than those also trying to
consider the minority class, this seemingly good performance can be argued
as being meaningless when the true error cost of the minority class is higher
than it should be based on the data distribution, often being the case for
bankruptcy prediction (Wang & Japkowicz, 2010). Because of this, arithmetic
accuracy loss functions and metrics can be considered unfit for imbalanced
datasets.

In the case of bankruptcy prediction, the problem of finding the correct
decision boundary can be enhanced by two factors. Most models utilizes
financial data as independent variables, as they give information about a
firms financial situation, and have proven important considerations for the
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classification. Still, financial data can be manipulated, which may lead to
distorted data where failing firms (minority) may invade the boundary of
the non-failing firms (majority) reducing model performance (Veganzones &
Séverin, 2018). Furthermore, firms with seemingly similar financial situations
may not have the same fate, as companies may delay or even avoid bankruptcy
if their environment is growing enough to support a resource-deficient firm,
and proper managerial actions are taken (D’Aveni, 1989).

Several methods to solve this class imbalance issue have been proposed
in the literature (Haixiang et al., 2017). They can generally be categorized
into two strategic approaches: preprocessing and cost-sensitive learning.
Preprocessing includes resampling, feature selection and feature extraction
methods, of which there are several. Resampling methods include undersam-
pling, oversampling and hybridsampling. These methods work by artificially
altering the data to balance the dataset. Undersampling methods use all of the
minority instances, and extract samples of the majority instances to balance
the data. Oversampling is the opposite, and means increasing the number
minority class instances to that (or close to that) of the majority class. This
can be done by either duplicating minority instances, or artificially create new
ones that mimic the original observations. Hybridsampling is a combination
of the two methods, both increasing the number of minority instances and
reducing the number of majority observations. In the case of financial distress
estimation and prediction, Zmijewski (1984) illustrates the problems related
to training bankruptcy prediction models on artificially balanced or changed
data. He shows that changing the data introduces significant bias into the
model. Therefore, resampling methods have significant drawbacks. Feature
selection is often separated as another issue for imbalanced learning. However,
in imbalanced scenarios there is a risk that the minority class is discarded as
noise by the model. Removing irrelevant features has been shown to reduce
the risk of treating minority samples as noise, and can therefore also be
utilized for dealing with imbalanced data (Yijing et al., 2016).

The second strategy for dealing with class imbalance is cost-sensitive
learning. This strategy works by assuming a higher cost of misclassification
for the minority class than the majority class, and thereby making the model
pay more attention to correctly classifying the minority class. This cost is
usually specified in a cost matrix (Haixiang et al., 2017). Still, this way of
dealing with imbalance is much less popular than resampling methods. The
main reason, and this methods premier drawback, is the difficulty of setting
the actual values of the cost matrix (Krawczyk et al., 2014). In most cases,
the true cost of misclassification is not known from the data, and can not
be given by an expert. Be that as it may, some strategies to deal with this
issue have been proposed. López et al. (2015) suggests setting the majority
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class weight to 1, and the minority class penalty cost equal to the imbalanced
ratio. Another similar method is suggested on the Tensorflow web page
(“Classification on imbalanced data”, 2022), and is presented in Section 3.4.
Though cost-sensitive learning strategies do not necessarily alter the data, it
still introduces bias into the model by assuming values for the cost matrix.

As the dataset utilized in this thesis is severely imbalanced, we need to
utilize a strategy to deal with the imbalanced data problem. One of the
objectives of this thesis is to train on realistic bankruptcy data for increased
practical application, meaning resampling methods that alter the data is
unfit for our purpose. Motivated by the statements of Zmijewski (1984) we
therefore in this thesis focus on a cost-sensitive learning method presented in
Section 3.4.

2.4 Neglect of the time dimension in
bankruptcy prediction

Classical statistical prediction models often ignore the fact that companies
change over time by only using one single observation (one annual account)
in the estimation sample. This can both cause problems and limitations when
predicting bankruptcy. The main assumption that consecutive annual account
are independent, repeated measurements, are not met when only using one
single observation in the prediction model. In fact, the observations are not
entirely independent and it may be worthwhile to model this relationship
(Balcaen & Ooghe, 2006).

The initial problem in this context relates to the fact that looking at one
annual account, and the choice of when to observe it, may introduce bias to
the model (Mensah, 1984; Shumway, 2001). For example, it may be possible
for a model to classify a relatively healthy business that is suffering from a
temporarily adverse situation as bankrupt.

Furthermore, a model that only use observations one year prior to failure
should be restricted to only predict bankruptcy one year in the future (t + 1),
because such a model is likely to become unreliable for long-term failure
predictions (Lane et al., 1986). The omission of the time dimension will
then limit the usefulness of the model when financial institutions often are
interested in the ability of a predicting more than one year ahead at the time.
With the use of annual accounts two, three or four years prior to bankruptcy,
the model are considered to have some ability to predict whether a company
will go bankrupt or not in the years, t + 2, t + 3 or t + 4 (Deakin, 1972).
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Finally, as previously outlined, the failure of a company is not a sudden
or unexpected event and the fact that classic statistical models do treat
company failure as a steady state rather than a process will result in serious
drawbacks (Laitinen, 1993; Laitinen & Kankaanpaa, 1999). Company failure
is a result of bad performance over a period of time and can be seen as
a failure process of different phases, where each phase is characterized by
a specific development of the variables. The relative importance of each
prediction variable for the detection of bankruptcy is then not constant over
time (Daubie & Meskens, 2002). Moreover, in practice there are a wide
variety of failure paths which classic statistical failure prediction models do
not consider possible and this may cause serious consequences (Laitinen et al.,
2014). This because the relative importance of the variables and the accuracy
of the predictions are dependent by the frequency of occurrence of both the
different kinds of failure paths and the different phases of the failure process
that are in the sample of failing firms.

2.4.1 Sequential data

Since bankruptcy is not a static event, we need to consider the time dimension
when modeling bankruptcy prediction. Usually this is done by splitting the
in-sample and out-of-sample data by years, where the model is trained on
a set of prior accounting years, validated on the next years, and tested on
a set of withheld accounting years, usually the last couple of data periods
(k-fold cross validation for instance). However, many bankruptcy prediction
models use one-period financial statements to avoid model complexity, even
though financial failure are not generally caused by one bad year, but as
mentioned previously, usually the result of inadequate decision making over
several periods (Campbell et al., 2008; Kim et al., 2020). A solution to this is
utilizing sequential accounting data. This enables the model to understand the
development of a company and its financial situation over time. Additionally,
this reduces the chance of the model classifying a company suffering from a
temporary bad situation as bankrupt. Therefore, Kim et al. (2020) suggest
similarly to Shumway (2001), that multi-period sequential models are more
appropriate for bankruptcy prediction, and mentions RNNs as an example.
However, complex models able to process sequential data such as RNNs, often
suffer from the problems related to interpretability presented in Section 2.2.2.
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2.5 Previous work
In this section, previous work in regards the theoretical background is
presented. This includes an overview of literature concerning machine learning
and deep learning methods for bankruptcy prediction, before we further
introduce previous research using different strategies to account for the black
box problem and the imbalanced dataset problem. Finally, previous literature
utilizing time sensitive modeling is presented.

2.5.1 Bankruptcy prediction methods
Researchers have utilized and researched several different statistical models
and machine learning techniques for bankruptcy prediction over the years.
However, as this thesis concerns the use of deep neural networks for bankruptcy
prediction, no extensive description will be given regarding other methods.
Still, we give a brief overview of research into the most used statistical and
machine learning methods, as this relates to the adoption of deep neural
networks in practice. This overview is followed by previous work in regards
to deep learning for bankruptcy prediction.

Statistical and machine learning methods

Going back more than 50 years discriminant analysis (Altman, 1968) and
logistic regression (Ohlson, 1980) were utilized to predict bankruptcy. Even
neural network models for bankruptcy prediction came to fruition as early as
the 90s (Odom & Sharda, 1990). According to Shi and Li (2019b) these are
still the most researched methods.

However, many other models have also been researched. As for the
statistical models, Shumway (2001) forecasted bankruptcy using a hazard
model. He argued that static one-period models were inappropriate for
bankruptcy prediction due to the fact that they do not take the time dimension
into consideration. Multivariate discriminant analysis have also been a popular
choice for forecasting bankruptcy.

When it comes to machine learning and artificial intelligence models,
Support vector machines, decision trees and rough sets have also been popular
(Alaka et al., 2018; Shi & Li, 2019b). Other models such as Adaboost, k-
nearest neighbors and random forests have also been subject for investigation
and experimentation for bankruptcy prediction (Shi & Li, 2019b).

Lastly, Norges Bank have since 2001 been using the SEBRA-model
(Bernhardsen, 2007) to predict bankruptcies among Norwegian corporations,
where they use a general additive modeling method. This is a linear model
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where the target variable is the sum of non-linear combinations of independent
variables. A in-depth description of the model can be found in Eklund et al.
(2001).

Deep learning methods

As stated by Qu et al. (2019) there has been a lack of research into the
application of deep learning methods in finance and management. Still,
some deep learning methods has been utilized for bankruptcy prediction in
recent years. Alexandropoulos et al. (2019) created a deep fully connected
feed-forward neural network for bankruptcy prediction with financial ratios
as features. They compared the results to other methods such as logistic
regression and found the deep learning model outperformed the rest based on
AUC.

Hosaka (2019) employs a CNN for bankruptcy prediction. Firstly,
the author calculates financial ratios and all combinations of correlation
coefficients from financial statements. Thereafter an image is created using
the financial ratios and a Monte Carlo simulation, that in turn can be analyzed
by the CNN-model.

Recurrent neural networks (RNN) has also been put to use for bankruptcy
prediction. The study of Kim et al. (2021) utilizes combined quarterly
accounting and daily market data to test two RNNs, being traditional RNN
and a LSTM network, against three benchmark methodologies: logistic
regression, random forest, and support vector machines. The authors conclude,
on the basis that the traditional RNN and LSTM network outperform the
benchmark models with AUCs of respectively 0.7286 and 0.6707, that machine
learning methodologies with the ability to pick up and process sequential
data outperform models without this ability.

Moen (2020) constructed a traditional RNN network and a LSTM network
trained on a previous version of the same dataset used in this thesis. The
networks used a sequence of four accounting years, and 30 features. He found
the networks to have good predictive performance, with the LSTM network
performing slightly better than the traditional RNN network, with AUCs of
0.8836 and 0.8795 respectively. However, the LSTM network achieved a higher
Brier score then the traditional RNN, with a score of 0.1295 compared to
0.1261, meaning the LSTM network was less confident in its predictions. He
also found the traditional RNN and LSTM network to have higher predictive
performance than logistic regression and tree-based models. His LSTM
network consisted of one LSTM layer and two fully connected layers, all
with 10 nodes. He found no substantial improvements when exploring more
advanced architectures.
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Other studies of RNNs for bankruptcy include the work of Jang et al. (2021)
and Vochozka et al. (2020). The former focused on bankruptcy prediction of
construction contractors. The three models that predicted bankruptcy within
one, two and three years achieved an accuracy of 98%, 95.3% and 93%. The
latter predicted the future development of manufacturing companies.

A combination of RNN and CNN, recurrent convolutional neural network
(R-CNN) has also been used to predict bankruptcy (Becerra-Vicario et al.,
2020). They use a deep R-CNN model to predict bankruptcy over a three year
period in the restaurant industry. This method was proven to be effective on
time series data.

Though this literature have generally found deep learning methods to
have high predictive performance, the models often lack transparency into
the decision process. For instance, Kim et al. (2021) expresses concern that
his RNN and LSTM network cannot clearly indicate the importance of each
individual explanatory variable as a consequence of model complexity and
the black box problem. Therefore, to apply such models in practice, this issue
needs to be addressed.

2.5.2 Interpretability of bankruptcy prediction models
Some methods to increase interpretability of machine learning models for
bankruptcy prediction have been utilized in previous literature. These are
mainly the LIME and the SHAP framework briefly described in Section 2.2.3.

Park et al. (2021) utilized LIME to explain the feature importance for
each data point of their XGBoost and LightGBM models. They found that
feature importance can be meaningfully extracted by using LIME, and that
the possibility of observing the important features can be used as a basis for
choosing eligibility requirements, and the fair treatment of loan applications.
The LIME algorithm was also found to be effective in explaining deep neural
network, and provided complementary interpretability to the decision tree
model in the study of Chou (2019).

SHAP has been used to increase interpretability of deep learning models
for bankruptcy prediction by Moen (2020) in his master thesis. Further,
Jang et al. (2021) also used SHAP to interpret and measure feature impact
of their LSTM-model for predicting bankruptcy in the constructor industry.
Moreover, SHAP was utilized by Schalck and Yankol-Schalck (2021) to extract
both local and global explanations of their XGBoost model for bankruptcy
prediction amongst French SMEs. They state that their findings support
practical applications for managers, financial institutions, and policy makers
where the SHAP framework sucessfully increased model interpretability.

Though, SHAP and LIME are some of the most used methods to interpret
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machine learning models, are their use in bankruptcy prediction literature
still scarce. However, they have been successfully utilized in other fields
of research. Park and Yang (2022) found SHAP to be a helpful tool to
interpret the prediction of growth rates and economic crisis, while Parsa
et al. (2020) used the SHAP framework for both global and local explanations
when predicting the probability of car accidents on highways. Further, SHAP
has also been utilized in the field of medicine, Janizek et al. (2018) used
the framework to interpret their tree-based models for predicting optimal
drug combination to treat cancer patients. Additionally, Yang et al. (2022)
used SHAP for increased interpretability of a LSTM network for forecasting
tuberculosis incidents.

2.5.3 Feature effects on bankruptcy risk
There is no shortage of previous research regarding accounting-based predictor
variables and their effects on bankruptcy risk. Still, no extensive overview
of this literature will be presented in this section. However, to evaluate the
trustworthiness of the SHAP framework, we need to compare our findings
to previous work. Therefore, this section provides previously found feature
effects used for comparisons in Section 6.2.

Firstly, Cultrera and Brédart (2016) found lower values of financial ratios
such as profitability and liquidity increased bankruptcy probability, but did
not find significant impact on model prediction from their solvency variable.
However, Brîndescu (2016) concludes that companies with higher solvency
have lower bankruptcy risk.

Dielman and Oppenheimer (1984) notes that changes in dividends policy
can say a lot about a firm’s prospects, indicating what the company leadership
believes in regard to the financial situation. Specifically, a reduction of
dividend payout may be an indicator of financial distress. Murekefu (2012)
further found a strong positive relationship between company performance
and dividend payout, noting that one of the major factors influencing dividend
policy is profitability. This is backed by Kanakriyah (2020) who found that
dividend policy had significant impact on company performance, and claim
that dividend-payout ratio and dividend yield had significant influence on
company performance prediction.

Salim and Yadav (2012) finds that a high ratio of total debt to total
assets has a negative impact on performance measurements such as return
on assets and return on equity. This is supported by Modina and Pietrovito
(2014) who further found that high level of debt, limited supply of capital and
high interest expenses is associated with higher risk of bankruptcy. However,
Ogachi et al. (2020) found the opposite relation between debt ratio and
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bankruptcy probability. This illustrates the problem stated by Filipe et al.
(2016), that feature effects often differs between data.

2.5.4 Data balancing
In this section, literature utilizing different data balancing strategies and
methods are presented. First, previous research using resampling methods
are presented, followed by cost-sensitive learning, and lastly, feature selection.

Resampling methods

In the case of under-sampling for bankruptcy prediction using deep neural
networks, both Moen (2020) and Pelja and Wahlstrøm (2021) used matched
under-sampling to obtain data with an equal amount of bankrupt and non-
bankrupt observations, with the apparent drawbacks of wasting data and
producing strong biases through the data distribution shift (Moen, 2020).

Over-sampling techniques have also been popular to address data
imbalance in deep neural networks for bankruptcy prediction. Notably, the
resampling techniques synthetic minority oversampling technique (SMOTE)
and adaptive synthetic sampling approach (ADASYN) have been applied in
the literature (Aljawazneh et al., 2021; Jang et al., 2021; Kim et al., 2021).
SMOTE creates artificial data points based on the original data. Similarly,
ADASYN also generate synthetic data, but also consider the distribution of
the original data points. Aljawazneh et al. (2021) also tested and compared
the hybrid approaches SMOTE-tomek and SMOTE-ENN with other SMOTE
variants. They conclude that SMOTE-ENN proved the mutual superior
balancing technique according to their chosen metrics.

Cost-sensitive learning

Different cost-sensitive learning strategies have been tried out to combat the
imbalanced dataset problem for bankruptcy prediction, though it is much less
popular than resampling methods. Chen et al. (2011) proposes an evolutionary
algorithm approach to cost-sensitive bankruptcy prediction using a neural
network, proving the method effective on real-life data.

Moreover, Ghatasheh et al. (2020) utilized cost-sensitive ensemble methods
for bankruptcy prediction. The ensemble methods include AdaBoost, Bagging
and random forest. They conclude that the random forest algorithms utilizing
the proposed cost-sensitive learning strategy achieved competitive predictive
performance.
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Le et al. (2019) state that both oversampling and cost-sensitive learning
techniques are viable options to deal with the class imbalance issue, and
improves predictive performance of bankruptcy prediction models. However,
they further state that a combination of the approaches produces even better
results, and proposes a hybrid approach combining SMOTE-ENN and a
cluster-based boosting algorithm. They conclude that the method outperform
other existing balancing strategies for bankruptcy prediction on the Korean
market.

To the best of our knowledge, a cost-sensitive learning method have not
exclusively been used to address the imbalanced data problem for deep neural
networks for bankruptcy prediction.

Feature selection

Some methods have been used for feature selection in the bankruptcy
prediction literature. Paraschiv et al. (2021) used a wrapper method, that
created new subsets by sequentially adding and removing features in order
to evaluate their fit to the model. Further, Kou et al. (2021) utilized a two-
stage multiobjective feature selection method, that selects the top k features
by their relevance, before the method, much like the wrapper method of
Paraschiv et al. (2021), finds an optimal feature subset that optimizes model
performance.

In recent years, SHAP and Shapley values have been used for feature
selection, with the added benefit of being more interpretable than other
methods (Fryer et al., 2021; Marcílio & Eler, 2020; Xiaomao et al., 2019).
In the domain of bankruptcy prediction, Xiaomao et al. (2019) found that
the method discovered all influential features, and further state that the
SHAP framework performed just as well as other more common feature
selection methods. Likewise, Marcílio and Eler (2020) conclude that from
their experiments, the SHAP framework for feature selection proved superior
to other methods. However, Fryer et al. (2021) questions this use of the SHAP
framework, and state that the properties of SHAP “do not in general provide
any guarantee that the Shapley value is suited to feature selection, and may,
in some cases, imply the opposite”. A description of the SHAP properties can
be found in Section 3.2.1.

2.5.5 Time sensitive modeling for bankruptcy
prediction

In this section we present previous work regarding machine learning
incorporating the time dimension for bankruptcy prediction. In terms of deep
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neural networks, RNNs and LSTM networks are able to utilize sequential data
for bankruptcy prediction. Kim et al. (2021) incorporates sequential data
for their RNN and LSTM network, leading to better predictive performance
than their benchmark methods. Moreover, Moen (2020) uses sequential
accounting data to predict bankruptcy using both a traditional RNN and a
LSTM network. Others have also tried incorporating time-series variables to
account for the issue of bankruptcy not being a steady state. This include
Campbell et al. (2008) who explored the time-series variation of variables
for bankruptcy prediction, and Duan et al. (2012) who created a forward
intensity model for bankruptcy prediction.

In spite of the problems discussed in Section 2.4, studies incorporating
sequential data into machine learning for bankruptcy prediction remain rather
scarce (Kim et al., 2021). In this thesis, to not neglect the time dimension
in bankruptcy prediction, we use LSTM networks to process sequential
accounting data to predict bankruptcy probabilities.

2.6 Summary of theoretical background and
previous work

In this chapter we have presented the theoretical background and previous
work regarding bankruptcy prediction. First, bankruptcy prediction is
an important topic for company stakeholders, wanting to use bankruptcy
prediction models for better decision making. Deep learning methods
have been proven to have superior predictive performance compared to
traditional machine learning methods, but are often criticized for their lack
of interpretability, which have reduced their use for bankruptcy prediction in
practice. Furthermore, bankruptcy data often suffers from imbalanced class
distributions, as bankruptcy is a rare event. Therefore, to train bankruptcy
prediction models, it is often necessary to employ data balancing strategies
that introduce significant bias to the model. Moreover, simpler machine
learning methods often neglect the time dimension in bankruptcy prediction,
and treats bankruptcy as a steady state. Therefore, Kim et al. (2020) argues
that models capable of processing sequential data, such as RNNs, are more
appropriate for bankruptcy prediction.
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Methods for bankruptcy
prediction and model evaluation

As presented in section 2.5.1, several statistical and machine learning methods
have been used for bankruptcy prediction. This chapter will describe the
background of the chosen models, encompassing an introduction to neural
networks, RNNs and LSTM networks. Furthermore, methods for increased
model interpretability is presented. Lastly, we describe the evaluation metrics
AUC and Brier score, and introduce a cost-sensitive learning strategy. Note
that all figures are created by the authors if not otherwise specified.

3.1 Deep learning methods
This section encompasses the deep learning methods utilized in this thesis.
First, an introduction to neural networks and its aspects are presented.
Thereafter follows a description of RNNs and LSTM networks.

3.1.1 Neural networks
Neural networks are machine learning models partly conceptualized by drawing
inspiration from our understanding of the brain (Chollet, 2018). As mentioned
in Section 2.1.3 the most basic form of neural networks are fully connected
feed-forward neural networks. The structure consists of three types of layers
of interconnected computational neurons, being the input layer, one or more
hidden layers, and an output layer. Each connection is given a weight creating
a web of weighted information flow between the nodes of each layer. When an
input node is activated, it transmits its information to the connected nodes in
the next layer, where the receiving nodes sums up the weighted inputs linearly,
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before applying a non-linear transformation to create its own output to be
further transmitted to the next layer of neurons (Laitinen & Kankaanpaa,
1999). This process repeats until the information has arrived in the output
layer where the final weighted summation and non-linear transformation takes
place, creating the model prediction. The structure of a fully connected
feed-forward neural network is depicted in Figure 3.1.

Figure 3.1: The structure of a fully connected feed-forward neural network with three
hidden layers of five, three and three nodes respectively.

The model prediction is then compared to the actual target value through
a loss function that computes a score describing how far off the prediction
was from the true value. This score is fed through an optimizer which in
turn implements the backpropagation algorithm. This algorithm assigns
adjustments to the weights of each connection to reduce the loss score by
making the model generate predictions that are closer to the target value.
Repeating this process results in model training, where the weights are
adjusted to minimize the loss function. This cycle is depicted in Figure 3.2.

3.1.2 Loss function
The loss function (or the objective function) is the quantity to be minimized
(or maximized) during training. Therefore, choosing the correct loss function
is essential when training neural networks as it represents the degree of success
for the chosen task. Consequently, if the loss function does not fully correlate
with the success of the task, the model may end up doing undesirable things
(Chollet, 2018).
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Figure 3.2: The training process of neural networks. The output of the neural network
is compared to the true value of the observation, before calculating the loss score.
Thereafter, the weights are adjusted to decrease the loss score of the next iteration.

When it comes to problems like classification tasks, by far the most used
loss function is binary cross-entropy. This loss function compares each of the
predicted output probabilities to the true class value, and subsequently gives
the model a score (log loss) based on how well it has predicted:

L = 1
N

N∑
i=1

−(yilog(pi) + (1 − yi)log(1 − pi)) (3.1)

where N is the number of data points, yi is class 1 (bankrupt), and pi is the
probability of class 1.

Though binary cross-entropy is the most used loss function for binary
classification, the method carries significant drawbacks when it comes to real
world classification problems. As discussed in Section 2.3, arithmetic accuracy
metrics such as cross entropy can be misleading when the class distribution
is imbalanced, as is typically when it comes to bankruptcy prediction. Yan
et al. (2003) proposes a solution by maximizing AUC directly through an
approximation of the Wilcoxon-Mann-Whitney statistic. Still, as we could
not find a pre-existing implementation of this loss function for Tensorflow
or Keras, and considered an implementation from scratch outside the scope
of the thesis, binary cross-entropy was used. This despite the fact that this
function does not necessarily fully correlate to the success of the task.

3.1.3 Optimizer
The optimizer determines how the network weights are to be updated based on
the loss function through a method called stochastic gradient descent (SGD)
and back propagation (Chollet, 2018). Without going into to much detail,
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SGD is a probabilistic version of regular gradient descent, where probabilistic
refer to the inclusion of some randomness. This randomness comes from
the random batches of data used in the calculation of the gradient instead
of including the entire dataset, thus greatly reducing the time it takes for
the model to converge. Therefore, SGD is more suitable for large datasets.
Though this random sampling is the methods greatest advantage, it also
means greater variance.

Multiple built in optimizers can be found in the Keras library, such as
RMSProp, AdaGrad, AdaMax and Adam. However, our focus will be on the
Adam algorithm. The name comes from adaptive moment estimation, and
was designed to fuse the advantages of AdaGrad and RMSProp, two other
popular optimizer options. A description for the algorithm can be found in
Kingma and Ba (2017).

3.1.4 Activation functions
As described in Section 3.1.1 a receiving node sums up weighted inputs, before
adding non-linearity to create its own output. This is the job of the activation
function, that additionally through this process also decides whether or not
the neuron should be activated and thereby send information further into the
network. There are many activation functions to choose from, but the most
commonly used for binary classification tasks are sigmoid (σ) and hyperbolic
tangent (tanh) as both transforms the output logistically. Still, rectified
linear unit (ReLU ) and softmax have also been incorporated for deep neural
networks for bankruptcy prediction (Alexandropoulos et al., 2019; Kim et al.,
2021).

The sigmoid function is a smooth differentiable approximation of a
threshold unit, and compresses the inputs into the range (0, 1). It is therefore
widely used in output layers for binary classification tasks when the goal is
not direct prediction, but rather to give probabilities for an observation being
a specific class (Zhang et al., 2021).

σ(x) = 1
1 + exp(−x) (3.2)

Similarly to the sigmoid function, the hyperbolic tangent compresses the
inputs, though into the range (−1, 1).

tanh(x) = 1 − exp(−2x)
1 + exp(−2x) (3.3)

Without going into to much detail, the main reason why tanh often is preferred
as activation functions for hidden layers is that tanh exhibit point symmetry
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around the origin, meaning it is more likely to produce outputs that on average
is close to zero. This in turn often means faster learning and convergence
(Buttou et al., 2012). This is the same argument as for normalization of data
for neural networks.

3.1.5 Neural network challenges
Neural networks are known to be notoriously difficult to train (Hastie et al.,
2009). This section provides a overview of the challenges in training deep
neural networks. Firstly, deep neural networks are particularly data hungry.
Even training a neural network for simple tasks often require large amounts of
training data (Aggarwal, 2018). Additionally, the performance of deep neural
networks highly depends on the chosen hyperparameters and architecture
(Zhang et al., 2019). However, finding the correct hyperparameters and
structure is challenging. Moreover, due to model complexity, neural networks
have a tendency to overfit the data, trying to find the global minimum of
the training set, rather than the best solution for the out-of-sample data.
Several methods to combat this issue have been utilized, where early-stopping
algorithms and dropout layers have been popular. Additionally, the loss
function often have many local minima, meaning the starting weights have
great impact on which minimum point the model finds. Input scaling also
have significant impact on the model solution. Therefore, when optimizing
neural networks, best practice is to standardize all inputs since this also
determines the weight scaling (Hastie et al., 2009).

3.1.6 Recurrent neural networks
As discussed in Section 2.4, when predicting bankruptcy, the time distribution
of the data needs to be addressed. This means including a temporal dimension
to the data, and thereby assuming some relationship between previous data
and future data. Traditional neural networks such as fully connected neural
networks have no memory, and process each input independently (Chollet,
2018). In order to process sequential or temporal series of data, the entire
sequence needs to be shown to the network at once. Consequently, the entire
sequence has to be transformed into a single data point (vector). Alternatively,
other types of neural networks can be utilized, like the RNNs used in this
thesis.

RNNs introduces a recurrent layer into the model. This layer processes
sequences of data by going through the elements and calculating a hidden
state ht containing information about what it has seen so far (Chollet, 2018).
This state is calculated by the input of the current time step, together with
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the hidden state of the previous timestep ht−1:

ht = ϕ(xtWxh + ht−1Whh + bh) (3.4)

where xt ∈ Rn×d is a mini batch of inputs at time step t with batch size n
and d inputs, Wxh ∈ Rd×h is the weight of the mini batches with h number of
hidden units, Whh ∈ Rh×h is a weight describing how the new hidden state
should use the information stored in the previous hidden state, bh ∈ R1×h is
the bias, and ϕ is the activation function of the hidden layer. An illustration
of the process of a RNN can be found in Figure 3.3

Figure 3.3: An illustration of how a RNN uses the previous hidden state to create the
next hidden state, in addition to an output y of the current time step.

The biggest issue regarding RNNs is retaining long-term dependencies.
Though RNNs do retain some information between time-steps, due to the
vanishing gradient problem, inputs introduced to the model many time-steps
before becomes small and consequently “forgotten” by the model.

3.1.7 Long short-term memory networks
Long short-term memory (LSTM) networks was introduced by Hochreiter and
Schmidhuber (1997) as an answer to the vanishing gradient problem for RNN.
LSTM networks therefore seek to retain long-term dependencies across time
steps by introducing a memory cell ct which together with the hidden state
ht control the flow of information. This section gives a conceptual description
of LSTM networks inspired by Zhang et al. (2021). A deeper dive into the
mathematics can be found in Hochreiter and Schmidhuber (1997).

The base idea is using the memory cell ct to scale the hidden state ht

output at every time step t. The memory cell is controlled by three gates:
the Forget gate Ft ∈ Rn×h, the Input gate It ∈ Rn×h and the Output gate
Ot ∈ Rn×h. The forget gate controls what information to remove form the
cell state, whereas the Input gate determines both what and how much new
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information needs to be stored. The Output gate produces the cell output.
Each gate has their own set of weights for both the previous hidden state ht−1
and the input xt. The gate outputs at each time step t are linear combinations
of the input, the previous hidden state, and their respective set of trainable
weights W transformed by a sigmoid activation function σ resulting in values
in the range (0, 1). The gates are calculated through the following equations:

It = σ(xtWxi + ht−1Whi + bI),
Ft = σ(xtWxf + ht−1Whf + bF ),
Ot = σ(xtWxo + ht−1Who + bO)

(3.5)

where Wxi, Wxf , Wxo ∈ Rd×h are the weight parameters for the input xt for
each gate, Whi, Whf , Who ∈ Rh×h are the weights for the previous hidden state
for each gate, bI , bF , bO ∈ R1×h are the biases, and σ is the sigmoid activation
function.

Next, a candidate memory cell C̃t ∈ Rn×h creates a set of new candidate
values to be added to the cell state. Though the computation is similar to
the gate functions in (3.5), the linear combination is transformed through a
hyperbolic tangent activation function, resulting in values in the range (−1, 1).

C̃t = tanh(xtWxc + ht−1Whc + bC̃) (3.6)

To create the new cell state ct ∈ Rn×h, we first multiply the old cell state
ct−1 by Ft using element wise multiplication denoted ⊙, removing undesired
information from the previous state. Additionally, we add new information
by multiplying the candidate values C̃t with the input gate It, resulting in
the following equation:

ct = Ft ⊙ ct−1 + It ⊙ C̃t (3.7)

Lastly, the new hidden state ht ∈ Rn×h is computed by multiplying the
Output gate with the hyperbolic tangent of the new cell state ensuring that
the values of ht remains in the range (−1, 1):

ht = Ot ⊙ tanh(ct) (3.8)

The whole process of the LSTM cell is illustrated in Figure 3.4.
Because of the LSTM network structure, the inputs are required to be

sequences of data. Therefore, the input to the LSTM layers must be three-
dimensional in the form of {sample, time-step, features}. Sample is the amount
of observations sent into the LSTM network. Time-step is the sequence length
of the observations. Lastly, features are the amount of features used to describe
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Figure 3.4: The LSTM cell, illustrating the process of how the cell state and hidden
state are calculated.

the input data. Consequently, when validating and testing on out-of-sample
data, they are also required to be of the same structure. This puts some
restrictions on the training and test splitting that is discussed in 4.2. Still,
this method enables the use of sequential data for bankruptcy prediction.

3.2 Methods for increased interpretability
The ability to correctly interpret a prediction model’s output is essential as it
builds user trust, supports understanding of the process being modeled, and
provides insight into how a model may be improved (Lundberg & Lee, 2017).
It also facilitates its use in practice as discussed in Section 2.2.2. The academic
literature provides several methods for increased interpretability of complex
black box models (LIME, DeepLIFT, Layer-Wise Relevance Propagation,
Classic Shapley Value Estimation, SHAP). In this thesis the main focus will
be the use of SHAP for interpreting deep learning bankruptcy prediction
models. At the the center of SHAP we find Shapley Values.

3.2.1 Shapley values
The Shapley values stem from coalitions game theory, where the feature value
of a data instance act as players in coalition (Molnar, 2022, Chapter 9.6).
The core concept is to give each player (feature) a value representing how
much they contribute to the expected gain, relative to what the expected
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gain would have been if the player did not participate. In other terms, the
Shapley value is the average marginal contribution of a feature value across all
possible coalitions, and indicate how to fairly distribute the prediction among
the features (players) and consequently the impact each feature has on the
output. The values therefore offer a way of observing the feature importance
and effect of model outputs.

For the classic Shapley value estimation let all feature subsets S ⊆ F ,
where F is the set of all features. Let fS∪{i} denote a model trained with
the feature i present, while another model fS is trained with the feature
withheld. To evaluate the features effect, the predictions from both models
are compared to the input on the feature subset. Additionally, since the effect
of withholding a feature depends on the other features in the model, the
comparison is done for all possible subsets, where the Shapley value is the
weighted average of all the differences. The Shapley value is calculated from
the following equation:

ϕi =
∑

S⊆F \{i}

|S|!(|F | − |S| − 1)!
|F |! [fS∪{i}(xS∪{i}) − fS(xS)] (3.9)

where xS represents the value of the input features in the set.
The Shapley value is the only feature attribution method that satisfy

all properties that define a fair payout: efficiency, symmetry, dummy
and additivity (Molnar, 2022, Chapter 9.5). Efficiency means that the
contributions of all features must together add up to the difference of
prediction and the average. The symmetry property describes that two
feature contributions should be the same if their contribution across all
possible coalitions is equal. Further, the dummy property state that if a
feature does not change the predicted value, the Shapley value should be
zero. Additivity means that when averaging all feature Shapley values across
all individual coalitions you get the combined Shapley value of the model.
Because Shapley values satisfy these properties, it has a strong theoretical
foundation.
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3.2.2 Shapley additive explanations
Shapley additive explanations (SHAP) was presented by Lundberg and Lee
(2017) and a framework for explaining predictions of black box models. The
base idea of SHAP is constructing a simplified explanation model defined as
any interpretable approximation of the original model. SHAP specifies the
explanation model g as:

g(z′) = ϕ0 +
M∑

i=1
ϕiz

′
i (3.10)

where z′ ∈ {0, 1}M is the simplified inputs that map the original inputs. For
a more extensive description see Lundberg and Lee (2017).

SHAP feature effect and importance

The calculated SHAP value represents a specific feature’s influence on the
model prediction. Therefore, we interpret the feature effect on model
prediction by using the SHAP value. To interpret the local feature importance
in SHAP, we observe the absolute Shapley value of a feature for the
prediction. The greater the value, the higher feature importance. This
enables interpretations of magnitude of impact for each feature on a specific
prediction.

SHAP also allows for global interpretations, meaning the framework also
gives insight into the general logic of the model. As Shapley values are locally
calculated, we average the absolute values per feature across the data by
means of equation 3.11, consequently creating global explanations of feature
importance based on the theoretically solid foundation of Shapley values.

1
n

Ij =
n∑

i=1
|ϕ(i)

j | (3.11)

It is important to note that the Shapley value is not the average difference in
predicted value after removing that feature from the model. The interpretation
is rather the contribution of a feature value to the difference between the
actual prediction and the average prediction, given the current set of feature
values (Molnar, 2022, Chapter 9.6).
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3.2.3 Deep SHAP
Deep SHAP is an approximation of SHAP values used for interpreting
deep models and are included in the Python SHAP-package. Deep SHAP
transforms SHAP values for smaller parts of the network into values for
the entire network. The mathematical and theoretical justification for this
can be found in Lundberg and Lee (2017). However, such an algorithm can
be computationally intensive based on the number of data samples used.
Therefore, even though there are no rule of thumb regarding the sample size
(Molnar, 2022, Chapter 9.6), the deep SHAP documentation state that a
sample size of 1000 is “a very good estimate of the expected values” (Lundberg,
2018a).

3.2.4 Disadvantages of SHAP
Though SHAP has many advantages over other methods with similar goals, it
also comes with some disadvantages. Firstly, the calculation of Shapley values
and consequently SHAP is slow. This comes from the substantial amount of
possible coalitions of features when the feature set is large. Therefore, for
real-world problems only approximations of Shapley values can be calculated
in a feasable amount of time. This is done by sampling coalitions and limiting
the number of iterations (Molnar, 2022, Chapter 9.6).

Another disadvantage is demonstrated by Slack et al. (2020). They claim
that it is possible to create intentionally misleading interpretations based
on SHAP. This can severely impact the applicability of SHAP as a model
interpreter for complex bankruptcy prediction models in the real world.

3.3 Model evaluation
In machine and deep learning, performance measures are essential to be
able to evaluate and compare the prediction models overall quality and
performance. This is typically done by utilizing a set of evaluation metrics,
composed of single score values, making it easy and intuitive to compare model
performance. As mentioned in Section 2.3, arithmetic accuracy metrics is
unfit for bankruptcy prediction when the data is highly imbalanced. Another
popular metric is F-score. However, this requires specifying a predefined
threshold value for when a prediction is bankrupt or not. As we want to
interpret the model output as probability of bankruptcy, this is not a good
fit for our purpose. Still, evaluation metrics such as AUC and Brier score do
not require a threshold value, therefore being a better fit for our thesis.
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3.3.1 AUC
In binary classification problems, the evaluation and performance of classifiers
are often measured using the Area under the receiver operator characteristic
curve (AUC). The AUC of a classification function f expresses how good
f is capable of distinguishing between classes or that the probability for a
randomly selected positive example gets a higher score by f than a randomly
selected negative example. The higher the AUC score is, the better f is at
predicting the classes correctly.

The receiver operator characteristic (ROC) curve for a binary classification
problem plots sensitivity (the true positive rate) as a function of 1−specificity
(the false positive rate). By setting a decision threshold in the range from
(0, 1), the output of the predictive function f can be translated into a binary
classification making up the ROC curve. If the predicted output is below the
threshold, the prediction is 0, otherwise, 1 is predicted. Depending on the
threshold, there is a trade-off between sensitivity (failed firms that have been
correctly classified) and specificity (healthy firms that have been correctly
classified). If the threshold is low, sensitivity of the 1-class is high and
specificity is low. On the other hand, if the threshold is high, sensitivity is
low, while specificity is high (He & Garcia, 2009).

Sensitivity = True Positive
True Positive + False Negative (3.12)

1 − Specificity = False Positive
False Positive + True Negative (3.13)

For a random classification the ROC curve will have a linear slope
stretching from origin to (1, 1) and an AUC of 0.5, implying that a AUC
above this is an improvement of pure guessing. The ROC curve is depicted
in Figure 3.5 with 1−specificity on the x−axis and sensitivity on the y−axis.
The AUC is then calculated as the total area under the curve, and is in the
range of (0, 1).

3.3.2 Brier score
A popular metric to evaluate the overall goodness-of-fit of binary and
categorical values is the Brier score. It is a measure of the calibration of a
set of probabilistic predictions, meaning how well the estimated probabilities
of failure match the actual failure/non-failure observation. It is calculated
as the mean squared error between each binary outcome and its predicted
probability (Fenlon et al., 2018).
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Figure 3.5: An illustrative ROC curve with an AUC greater than 0.5. The x-axis is
1−Specificity (false positive rate), and the y-axis is sensitivity (true positive rate).

Brier score =
∑N

i=1(Yi − pi)2

N
(3.14)

where N is the total number of observations in the test set, Yi is the actual
outcome of record i (0 or 1), and pi is the predicted probability of record i.

The Brier scores lies in the range (1, 0), were a perfect model will receive
a score of 0, while a model that keeps predicting probabilities close to 0.5
will receive a high Brier score. However, even with a high Brier score, the
model can correctly classify all instances if the prediction probabilities are at
the correct side of the threshold value. Therefore, the Brier score is useful to
measure how confident the model is in making its probability estimates. This
is still true even when no threshold value is specified.

3.4 Cost-sensitive learning
Cost-sensitive learning is a strategy for dealing with class imbalance by
assuming a higher cost of misclassification for the minority class. However,
as the true cost of misclassification is hard to find, and can not necessarily be
given by an expert, the problem is finding a feasible value for the cost. Though
some solutions have been suggested in the literature, no definitive answer
to this problem for bankruptcy prediction have been found. Still, we will
base our classification cost calculation on the suggestions from the Tensorflow
web page “Classification on imbalanced data” (2022) as this method proved
effective.
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By changing the class weights in the neural network we can make the
model pay more attention to correctly classifying a specific class:

Weight0 = 1
Obs0

∗ Total
2

Weight1 = 1
Obs1

∗ Total
2

(3.15)

where Weight0 denotes the weight of non-bankruptcy, while Weight1 is the
weight of a bankruptcy observation. Obsx denotes the amount of observations
for the specific class, and Total is the total number of observations. Note that
this calculation is done based on the training set individually for each model
and results in a classification cost similarly to having a 50/50 balance in the
datasets.
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Method

In this section, we describe the chosen method of this thesis. To begin
with, we present the data and the preprocessing. Further, we describe the
splitting of training, validation and testset, before detailing the data balancing
strategy. Thereafter, the implementation of the LSTM networks and the
baseline neural networks are described. Finally, the model evaluation metrics
and the implementation of the SHAP framework are presented.

4.1 Data

This thesis utilize a dataset of all unconsolidated annual financial statements
of Norwegian private and public liability companies from the accounting
years 2006 – 2019, as described by Wahlstrøm (2022). We will further in this
section introduce our target variable and features, before describing the data
preprocessing.

4.1.1 Target variable

To determine whether a company went bankrupt or not we used the
dichotomous variable bankruptfs as our target variable. The bankruptcy
target variable is one if the financial statement is the last financial statement
of the underlying company and the company has filed for bankruptcy in
accordance to the variable konkursdato. Otherwise it is categorized as non-
bankrupt, i.e. zero (Wahlstrøm, 2022).
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4.1.2 Features
Our data set consisted of 281 accounting items from the companies’ financial
statements as well as some other company related data. The full list of
accounting items are available in Wahlstrøm (2022). As the foundation for
our bankruptcy prediction models, we used a set of 156 accounting based
features, assembled by (Paraschiv et al., 2021) based on the original accounting
items. The full list of features can be found in Appendix D.

Of our 156 input variables, only five were non-ratios. Three were
log transformed accounting items being age in years, total assets
and financial expenses, while the other two were dummy variables:
one if paid-in equity is less than total equity and one if total
liability exceeds total assets.

4.1.3 Data exclusion
In accordance with the project task, only small and medium-sized companies
(SME) were included in the dataset. SMEs are defined in the EU
recommendation 2003/361 either by staff head count, total turnover or balance
sheet total. In line with the EU, Paraschiv et al. (2021) and Moen (2020),
we define a company as SME if total turnover does not exceed EUR 50
millions, or total assets does not exceed EUR 43 millions. Additionally,
the lower bound total assets was set to EUR 2 millions to exclude micro
companies, with the added benefit of reducing data error and outlier problems,
of which accounting data from small firms are susceptible (Paraschiv et al.,
2021). Moreover, we only include public and private companies with the
organizational forms ASA or AS, as they are required to report their financial
statements to the Norwegian authorities, ensuring better data quality. We also
excluded companies in the industries of “Financial and insurance activities”,
“Real estate activities”, “Electricity and gas supply”, and “Water supply,
sewage, waste”, following the prior literature (Mansi et al., 2010; Moen, 2020;
Paraschiv et al., 2021).

4.1.4 Missing values and outliers
The accounting data used for creating the financial ratios do not contain any
missing values, as missing values only mean that no value for the specific
accounting item was given (Wahlstrøm, 2022). Therefore, the value is zero.
To reduce the effects of outliers or recording errors, we take inspiration from
previous literature (Chava & Jarrow, 2004; Moen, 2020; Paraschiv et al.,
2021; Shumway, 2001; Tian & Yu, 2017; Tian et al., 2015) and winsorize
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all accounting based financial ratios on the 5th and 95th percentile. This
means changing the value of each outlier to that of the nearest inlier, in our
case the 5th or 95th percentile value for each feature. As our original feature
set is large, many observations may be outliers in just a small amount of
features, meaning a trimming scheme may discard good observations based
solely on one feature being an outlier. Winsorizing was therefore chosen as
the preferred method for protection against outliers, as it does not discard
data.

4.1.5 Feature scaling
The range of values for the features in bankruptcy data can vary a lot
depending on the company in question. Prediction methods, including neural
networks requires the feature values to be normalized in order to feed the
network with data ranging in the same interval for each input node (Angelini
et al., 2008). To do this, a common approach is to use min-max scaling,
monotonically transforming the feature values into a given range of (0, 1),
where the highest feature value become one, and the lowest become zero (Bao
et al., 2019).

4.1.6 Data structure
The inclusion of sequential data in the networks meant the data had to be
restructured in such a way that it consisted of sequences of feature values for
X amount of accounting years (time-steps) for individual companies. This
also meant introducing some considerable restrictions on our data. Firstly, we
required that each company had X amount of accounting years (depending
on the sequence length) included in the data, meaning that for the models
requiring four sequential accounting years, companies that only sent inn three
annual accounts was not included. This also meant that potential bankruptcy
observations of companies that started to report their financial statements
to the Norwegian authorities 3 years or less prior to a bankruptcy was lost.
The implications of this for the training and test splitting is described in
Section 4.2.

4.1.7 Feature correlation
As discussed in Section 4.1.1, we started with a set of 156 features. However,
as a consequence of the exhaustive list of features, some were highly correlated.
Still, as mentioned in Section 2.1.3, deep learning methodologies can recognize
high-level nuances and patterns, meaning a features can have valuable input
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on the model prediction even with high levels of correlation. However, all fully
correlated features should be removed before model training. Still, we also
need to consider the nature of accounting data, and that even an accounting
error of 1 NOK will result in the Pearson correlation coefficient not being
exactly ±1. We calculated the correlation coefficient for all possible pairs of
features, before removing all features with at least one coefficient of ±0.99.
This resulted in a feature set consisting of 144 variables.

4.1.8 SHAP for feature selection
Feature selection is considered an important step of bankruptcy prediction,
to avoid using redundant and irrelevant variables. We selected a subset of
30 features from our set of 144 variables using the SHAP framework. This
was based on the top 30 features ordered by the feature contribution to the
model prediction. The choice of 30 features was motivated by Paraschiv et al.
(2021) who found model performance to even out as the number of features
start to approach 30. Still, as stated in 2.5.4, the properties of Shapley values
do not guarantee its suitability for a feature selection tool. Still, we utilized
the method as it is increasingly prevalent in the literature, and we found the
approach feasible for out purpose.

4.1.9 Key assumptions
Throughout this thesis, some assumptions regarding the data of the financial
statements are made. First of all, we assume that the financial statements in
our dataset are reported correctly, which may not always be true (e.g., because
of entry errors or fraud). Further, we do not take changes in macro economical
and other external factors into consideration, assuming homogeneity over time
which may be unrealistic, especially as our time period included the financial
crisis of 2007–2008. Additionally, when the denominator for a financial ratio
is zero, we assume the value of the feature to be zero in accordance with
(Paraschiv et al., 2021).

4.2 The splitting of training and test set
When it comes to bankruptcy prediction, the training, validation and test
splitting scheme needs to consider the temporally distributed data to avoid
time-leakage. This means training on previous data to predict the future.
Methods such as k-fold cross validation enables such considerations. However,
such a training scheme was deemed challenging due to the data structure

44



4.2. The splitting of training and test set

described in Section 4.1.6, as it restricted the data too much when sequences
of accounting data was created.

The solution was splitting the training, validation and test set by
organization, while also keeping the accounting years partly separated.
Concretely, the training set received 52.5% of the organizations, the validation
set 17.5%, and the test set the last 30%. Further, the training and validation
sets received the observations for their respective organizations from the
accounting years 2006–2015, while the test set received data from 2015–2019.
Though this means that 2015 is a common accounting year for both the
training and test set, because of the data structure and the use of sequential
data, this was deemed feasible. Please note that such a splitting scheme has
to the best of our knowledge not been done before. This solution is depicted
in Figure 4.1.

Figure 4.1: A visualization of the training, validation and test set split. Note that the
training and model validation happened in the same time-period, while the testing was
kept separate

Since we create networks able to process different lengths of sequences,
we also had to create four groups of training, validation and test sets. These
groups contain data of different sequence lengths ranging from one accounting
year, to four. This results in differing amounts of observations between the
sets of each group, as depicted in Table 4.1. Consequently, this also resulted in
varying amounts of bankruptcy observations in each group and set, presented
in Table 4.2. Note that the group names depicts the sequence lengths, and
that 1-year do not contain a sequence of accounting data.

Table 4.1:
The amount of observations for the training, validation and test sets for each group

Observations 4-years 3-years 2-years 1-year
Train 33763 42761 53725 84032

Validation 11218 14410 18045 27994
Test 6116 10271 15548 25375
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Table 4.2: The amount of bankruptcy observations for each training,
validation and test set. Note that the name indicate the sequence length of the data

Bankrupt 4-years 3-years 2-years 1-year
Train 126 186 251 502

Validation 56 60 90 180
Test 24 34 61 121

4.3 Data balancing
As discussed, strategies to overcome the imbalanced dataset issue often
comes with many drawbacks, especially in regards to increased model bias
(Zmijewski, 1984). This is also true for cost-sensitive learning (Vo et al.,
2019). Though resampling methods are common for deep neural networks
for bankruptcy prediction, to our knowledge, the previous literature has not
exclusively utilized a cost-sensitive learning strategy to deal with this issue
in the domain. Still, this method allows for training on more realistic data
compared to resampling methods, suggesting a better fit for our purpose.
Therefore, we explored and used a cost-sensitive learning strategy to overcome
the data imbalance in this thesis based on the method presented in 3.4.

Individual class weights were calculated for dealing with the class imbalance
issue for each of the training sets as the number of bankrupt and non-bankrupt
observations differed between the sets. These weights were calculated by
means of equation 3.15 and are depicted in Table 4.3.

Table 4.3: The class weights used for training each model using
a specific training set. Note that the name indicate the sequence length of the data

Class weight 4-years 3-years 2-years 1-year
Non-bankrupt 0.5019 0.5022 0.5023 0.5030

Bankrupt 133.9762 114.9489 107.0219 83.6972

The differences in class weights stem from the variance in class distribution
between the training sets for each group of sets depicted in Table 4.1 and
Table 4.2.
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4.4 Neural networks implementation
This section encompasses how the neural networks utilized in this thesis was
implemented. We start by describing the implementation of the LSTM
networks, before we present how the baseline neural networks used for
comparison purposes were implemented.

4.4.1 LSTM implementation
The use of a recurrent neural networks was motivated by the addition of
the time dimension to the model, and more specifically its ability to process
sequential data. Moreover, LSTM was the preferred choice motivated by the
challenges of traditional RNNs (Section 3.1.6) and the recommendations of
Chollet (2018).

As previously outlined in Section 3.1.5 the performance of neural networks
greatly depend on the architecture and hyperparameters. When constructing
the models for this thesis, inspiration was taken from multiple sources, mainly
Chollet (2018), Zhang et al. (2021) and previous work on deep LSTM networks
for bankruptcy prediction (Jang et al., 2021; Kim et al., 2021; Moen, 2020;
Vochozka et al., 2020). All neural networks was implemented using the Keras
library in Python with the default parameters if not otherwise specified.

In order to consider the impact of including longer sequences of accounting
data, four separate LSTM networks were created. The first utilized a sequence
of four accounting years and all 144 features (after correcting for correlations),
and was used for feature selection. The last three LSTM networks all
used the feature subset created from feature selection, while processing
different sequences lengths of accounting data, being four, three and two years
respectively. The networks were trained on the groups of training, validation
and test sets with the corresponding sequence length.

All LSTM networks had the same basic architecture, consisting of an
input layer, two hidden LSTM layers, a flatten layer, one dense layer, followed
by a dropout and an output layer. As for the nodes in each layer, the input
layer consisted of nodes equal to the number of features. The first and second
LSTM layer consisted of 20 and 10 nodes respectively, followed by another
10 nodes in the dense layer. The output layer consisted of 1 node, as is
recommended for binary classification tasks. Other architectures was also
considered, among others the architecture of Moen (2020). Still, in contrast
to his findings, our architectural experimentation found an inclusion of two
LSTM layers had a positive impact model performance. As discussed in
Section 3.1.5, a notable issue of neural networks is its tendency to overfit.
To counteract this a dropout layer of 0.1 was introduced. Visualizations of
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the two architectures, where the difference is the amount of input nodes, are
presented in Figures 4.2 and 4.3

Figure 4.2: A visualization of the architecture of the neural network with 144 features.
Note that the flatten and dropout layers are not represented

Figure 4.3: A visualization of the architecture of the neural networks with 30 features.
Note that the flatten and dropout layers are not represented

The LSTM networks were trained using the binary cross-entropy loss
function, despite the considerable drawbacks discussed in Section 3.1.2.
ADAM (SGD) was chosen as the optimizer algorithm, with a learning rate of
0.00025 and a batch size of 32. This is the same setup as Moen (2020), which
we also found during testing to be reasonable values.

The activation function for all hidden layers was set to tanh as it was the
recommended sigmoidian function for hidden layers by Buttou et al. (2012).
Still, Zhang et al. (2021) mentions that ReLU is another popular option, and
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was therefore also tested. In the output layer, the sigmoid activation function
was used to enable the output to be interpreted as probabilities of bankruptcy.

The model containing all features used for feature selection, was trained for
30 epochs, as it was deemed sufficient for model training, while not overfitting
on the training data. Meanwhile for the models containing the 30 selected
features, 20 epochs was used as overfitting happened earlier. Alternative ways
of reducing overfitting was also considered in addition to the dropout layer,
mainly an early stopping condition. However, as this condition is based on
the validation loss no longer improving (Chollet, 2018), and since the chosen
loss function did not fully correlate to the success of the task (Section 3.1.2)
consequently resulting in rather erratic validation losses, this method deemed
unfit for our purpose.

4.4.2 Baseline neural networks implementation
In order to better evaluate the performance of the LSTM networks, we further
developed two additonal deep neural networks as baseline models. The first is
a traditional RNN trained on the same data as the LSTM network utilizing a
sequence of four accounting years and the feature subset. In the Keras library
a traditional RNN layer is called a “SimpleRNN” layer. The second is a
deep fully connected feed-forward network, not capable of utilizing sequential
data. In the Keras Python package, a fully connected layer is called a “dense”
layer. When naming the neural neural networks (Section 4.4.3) we use the
terminology from Keras, and refer to the traditional RNN as SimpleRNN and
the fully connected feed-forward network as densely connected network. Both
baseline networks have the same basic architecture as the LSTM networks,
but with slight differences. For the SimpleRNN we switched the two LSTM
layers for SimpleRNN layers. Likewise, for the densely connected network
the two LSTM layers was changed to dense layers, and the flatten layer
removed. All other parameters was kept equal to the LSTM networks using
the feature subset. The SimpleRNN used the training validation and test
sets with four sequential years. The densely connected network used the sets
without sequential data.

4.4.3 The naming of the networks
When naming the six networks created in this thesis, we wanted the names to
clearly illustrate the differences between the networks for better readability.
These differences come from three aspects: the network type, the sequence
length and the amount of features used by the network. The networks are
therefore named in the following way: TypeSeq_Feat, where Type denotes the
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network type (i.e., LSTM, SimpleRNN or Dense), Seq denotes the sequence
length (between 1 and 4), and Feat denotes the number of features (either all
or 30). The names of all networks together with a description are presented
in Table 4.4.

Table 4.4: Network names
Name Description
LSTM4_all The LSTM network using a sequence of four

accounting years and all features.
LSTM4_30 The LSTM network using a sequence of four

accounting years and the feature subset.
LSTM3_30 The LSTM network using a sequence of three

accounting years and the feature subset.
LSTM2_30 The LSTM network using a sequence of two

accounting years and the feature subset.
SimpleRNN4_30 The traditional RNN using a sequence of four

accounting years and the feature subset.
Dense1_30 The densely connected network using the feature

subset. Note that this type of network is not
capable of using sequences of accounting data

4.5 Model evaluations
As mentioned in Section 2.3 our dataset is affected by severe imbalance,
making common evaluation metrics such as accuracy inappropriate to use.
To overcome this issue, AUC were utilized seen as an immune metric to class
imbalance (Fawcett, 2006) and frequently used in research of bankruptcy
prediction(Veganzones & Séverin, 2018). Jones (2017) notes that one of the
benefits of the ROC curve is its visualization ability, making it easier for
practitioners to determine the cutoff threshold balancing the sensitivity and
specificity mentioned in Section 3.3.1, to manage the credit risk in accordance
to the bank’s risk and credit policy. To get an overview over the two types
of errors can be of great value for practitioners since classifying a failing
company as healthy is significantly more costly, than predicting a healthy
company as failing (du Jardin, 2015; Lohmann & Ohliger, 2019; Stein, 2005).
Still, note that no threshold value is set in this thesis.

As an addition to AUC, we made use of the Brier score. This is particularly
useful when comparing models with almost identical value of the other
evaluation metrics, as the Brier score tells how confident the model is
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in making its probability estimates as discussed in 3.3.2. Since some our
models performed relatively the same with respect to the AUC score, it was
appropriate to include Brier scores.

4.6 SHAP implementation
The implementation of the SHAP framework was done through the SHAP
Python package (Lundberg, 2018b). Deep SHAP was used to calculate the
approximate SHAP values for all models. To reduce computing time, we
use a sample of 1000 observations from the training set. From there we
can evaluate general feature effects and global feature importance through
the SHAP summary plot and SHAP bar plot. For the local interpretations
we generate SHAP waterfall plots, illustrating both effect and importance
for each feature for a individual prediction. Note that other visualization
methods are available through the SHAP Python package, such as force plot
and decision plot. However, when using 30 features, we found the waterfall
plot to be the best and most informative option.

It is important to note that as the models utilize sequential data, we
calculate SHAP values for each features for all time-steps, consequently
generating a way of observing the importance and effect of a feature over
time. However, the global ranking based on impact magnitude of the features
are based on the average across time steps. Further, no SHAP analysis of
the SimpleRNN4_30 nor Dense1_30 were implemented, as the models were
created as baseline models to evaluate the predictive performance of the
LSTM networks compared to other deep neural networks for bankruptcy
prediction.
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Results

In this chapter, the results of the analysis based on the methodology in
chapter 4 are presented. Firstly, the performance of the neural networks
based on the evaluation metrics are presented. This is followed by the results
regarding SHAP. The discussion of the results is found in Chapter 6. For
feature selection we chose a subset of 30 features based on the average
magnitude of impact on model prediction from the SHAP analysis of
LSTM4_all. The top 30 features are depicted in Figure 5.1.

Figure 5.1: SHAP table for LSTM4_all. Note that all features are scaled between 0
and 100. The darker the color, the higher the feature magnitude of impact compared
to the other features.
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5.1 Evaluation metrics and predictive
performance

In this section the AUC and Brier score for each model is presented to
evaluate the predictive performance of our models. We further compare
the performance of the LSTM networks utilizing different sequence lengths,
before comparing their performance with the baseline neural networks
SimpleRNN4_30 and Dense1_30.

Table 5.1: AUC and Brier score for each model
Model AUC Brier score

LSTM4_all 0.9288 0.0477
LSTM4_30 0.9118 0.1313
LSTM3_30 0.8963 0.1052
LSTM2_30 0.8893 0.1051

SimpleRNN4_30 0.8962 0.0959
Dense1_30 0.8799 0.1377

Comparison of LSTM networks

We start by comparing the performance of the LSTM networks. From
Table 5.1 we see a trend that for each sequential year omitted in the LSTM
networks, the AUC gets slightly lower. The LSTM4_all network is overall the
best performing with an AUC of 0.9288 and a Brier score of 0.0477. There
is a marginal disimprovement of the AUC (1.83%) between the LSTM4_all
network and LSTM4_30, indicating that using the feature subset reduces
model performance. Additionally, there is a significant disimprovement in
Brier score with an increase of 175.26%, indicating that when introducing the
feature subset, the network become less confident in it’s prediction.

Comparing the LSTM networks using the feature subset and different
sequence lengths allows us to learn more about how additional time steps
impact the predictive power of the LSTM networks. From Table 5.1 we see
that the LSTM4_30 network has the superior AUC score of 0.9118 compared
to the other LSTM networks using the feature subset. Comparing LSTM4_30
and LSTM3_30 we see a decrease of 1.70% in predictive performance in terms
of AUC. However, there is a reduction of 19.88% in Brier score, meaning the
LSTM3_30 is more confident in its predictions. Further, when omitting an
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additional time step, the performance based on AUC is reduced by 0.78%
(between LSTM3_30 and LSTM2_30). Still, we observe no significant changes
in Brier score between the two models. Together, this indicate that when
more time steps are available to the LSTM networks, the performance is
enhanced. On the other hand, in the case of Brier score, when reducing time
steps, the networks become more confident in their predictions. This may be
a consequence of smaller training sets for the networks with longer sequences.

Comparison of the LSTM networks with the baseline neural
networks

Next, we compare the performance of the LSTM networks with the
baseline neural networks. We start by comparing the LSTM4_30 and the
SimpleRNN4_30, as they have equal sequence lengths, and are therefore trained
on the same data, making them the most comparable. As is evident from
Table 5.1, the LSTM4_30 network outperform the SimpleRNN4_30 in respect
to AUC. When replacing the two LSTM layers with simpler traditional RNN
layers, the AUC is reduced by 1.71%. This imply that the more advanced
structure of the LSTM cell captures the sequential accounting information
better, leading to improved predictive performance compared to traditional
RNN cells. However, we observe that the SimpleRNN4_30 is significantly more
confident in its predictions with a lower Brier score.

Furthermore, we observe that the performance of the LSTM3_30 network
and the SimpleRNN4_30 are comparable, both in terms of AUC and Brier score.
However, the SimpleRNN4_30 perform better than LSTM2_30 for bankruptcy
prediction. This indicates that the sequence length is more influential on
RNN performance, than the increased complexity and long-term capabilities
of the LSTM cell, at least when the sequence length is short.

All the LSTM networks have higher predictive performance than Dense1_30
in temrs of our metrics. Notably, the introduction of sequences of four
accounting years in the LSTM4_all and LSTM4_30 lead to an increase of AUC
by 5.56% and 3.63% respectively compared to Dense1_30. This despite the
amount of training data being significantly higher for the densely connected
network. Moreover, the two LSTM networks are both more confident in
their predictions. Still, the difference in Brier score between LSTM4_30 and
Dense1_30 is not substantial, only decreasing by 4.65%. However, we see that
the more accounting years omitted from the sequences of financial statements,
the closer the performance of the LSTM networks are to the Dense1_30
network. Notably, the increase of AUC for the LSTM2_30 is only 1.07%
compared to Dense1_30. These findings suggest, in line with our expectations,
that networks capable of processing sequential accounting data are better
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and more appropriate for predicting bankruptcy than models neglecting the
time dimension.

Comparison to previous work

We will now compare the predictive performance of our LSTM networks with
previous literature in the domain. However, as stated in Section 3.1.5, neural
networks are notoriously data hungry, meaning comparing the predictive
performance with previous work using different data can be problematic. Still,
as Moen (2020) used a previous version of the same dataset utilized in this
thesis and approximately the same feature set, it is feasible to compare our
findings. Moen (2020) achieved an out-of-sample AUC of 0.8836 and a Brier
score of 0.1295 for his LSTM network using a sequence of four accounting
years. Comparing this to our similar LSTM4_30 (same amount of features and
sequence length) network we see that our model achieved a higher AUC score
of 0.9118. meaning an increase of 3.19% compared to the LSTM network of
Moen (2020). However, we also see that his model has a slightly lower Brier
score compared to our network.

ROC curve

By looking at the ROC curve in Figure 5.2 we can visually see the distribution
of the sensitivity (true positive rate) and 1− specificity (false positive rate)
are rather close to each other for every model. However, the plot also depicts
that the overall performance of the LSTM networks increases when including
more time-steps and more features. Further, the plot illustrates that the
performance of Dense1_30 is lower than the other models.

Probability distribution

Figure 5.3 depicts the prediction probability distribution for all models. It
shows heavy tails for the lowest probabilities for the LSTM networks and
the SimpleRNN4_30, where the LSTM4_all network have the heaviest tail in
the lower intervals. This difference in distribution is natural when the model
is so confident in its predictions (Brier score), and the fact that the actual
amount of bankrupt companies is very low in the dataset. Still, for the other
LSTM networks and the SimpleRNN4_30 the probability distributions are
comparable. The plot also depicts that the predicted probability distribution
for the Dense1_30 differs significantly from the other networks, not having the
same clear tail in the lower intervals. The amount of predicted probabilities
decline almost linearly with increased predicted probabilities. This may
indicate that the RNN and LSTM networks adapt better to the true data
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Figure 5.2: ROC curve and AUC for all models. The x-axis is 1−Specificity (false
positive rate), and the y-axis is sensitivity (true positive rate). The plot depicts that the
overall performance of the LSTM networks increases when including more time-steps
and more features. It also shows that the LSTM networks outperform the densely
connected neural network.
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distribution, and therefore achieve lower Brier scores. Still, this has not
resulted in a large reductions in predictive performance in terms of AUC.

Figure 5.3: The prediction probability distribution for all models. It shows heavy tails
on the lower intervals for the LSTM networks and the RNN.

Summary of predictive performance

To summarize we generally see that LSTM networks utilizing sequential
accounting data perform better compared the baseline neural networks.
Furthermore, we observe that for each time step omitted from the LSTM
networks, the performance is reduced. Therefore, our findings indicate that
LSTM networks with longer sequences of accounting data is to be preferred
for bankruptcy prediction based solely on predictive performance. Still, for
increased real world adoption of LSTM networks, we need to evaluate the
model interpretability.
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5.2 SHAP for global explanations
This section concerns the results from the SHAP evaluation for global
explanations. First, we present the results regarding SHAP for impact
magnitude, followed by SHAP for general feature effects. We have
implemented the SHAP framework for increased interpretability of all LSTM
networks, and will compare the findings of each LSTM network. Still, in
this section, only the figures concerning the LSTM4_30 will be presented.
The rest can be found in Appendix A, B and C. The implications of SHAP
for increased model interpretability and consequently industry adoption is
discussed in Section 6.4.

5.2.1 SHAP for global impact magnitude
Through equation 3.11 on page 36 we generate the average feature magnitude,
and sort by feature importance, generating the SHAP bar plot in Figure
5.4. Note that as mentioned in Section 4.6 we generate the average SHAP
magnitude for each time step, though the ordering is based on the average
across time.

Figure 5.4 shows the average magnitude of SHAP values for all time steps
in the LSTM4_30 network. The plot shows that Dividends / Net income
is the most important feature for predicting bankruptcy. Additionally,
Total liabilities / Total assets and Effective tax rate have high
average impact on model prediction. Further, this plot clearly indicate that
generally, the impact of a feature on the model prediction is reduced across
time. Notably, features from more than two years prior to the last accounting
year in the sequence have considerably less impact on model prediction in
relation to the two latest years. For instance, Dividends / Net income from
the last two years (Yt and Yt−1) have considerably greater impact on the model
than Yt−2 and Yt−3. This means that the LSTM4_30 network have learned that
the dividends payed in relation to net income more than two years ago have
severely less impact on whether the company goes bankrupt or not compared
to the last two years. Intuitively, these findings make sense. Still, some
features of Yt−1 have higher impact on model prediction than other features of
Yt. Notably, the SHAP analysis indicate that Dividends / Net income
in Yt−1 have greater impact on the model prediction than for instance
Inventory / Current assets in the latest accounting year (Yt).
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Figure 5.4: The SHAP bar plot for the LSTM4_30 network. We observe that the
feature impact magnitude generally decreases for each time step, where the features of
Yt generally have the most impact on model prediction.
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SHAP table for global feature impact magnitude

Figure 5.5 provides an alternative visualisation to the SHAP bar plot for the
LSTM4_30 network, and also shows the magnitude of impact for each feature
for each year. The average feature magnitude is also depicted. Note that the
SHAP values are standardized between 0 and 100, and that a darker color
indicate a higher SHAP value.

Figure 5.5: Table visualizing SHAP magnitude of importance for LSTM4_30. Note
that the SHAP values are standardized between 0 and 100, and a darker color indicate
higher SHAP value.

Figure 5.5 depict a general pattern of lower values for each subsequent
time step. This pattern is consistent for all models. Still, we see that
some of the variables would have been ranked differently if only the first
time step (accounting year) was utilized. For instance, Effective tax rate
have a higher average magnitude of impact than Short term liquidity
/ Current assets due to generally higher SHAP magnitudes for the later
time steps, even though the magnitude for Yt is lower. Further, we see that
Operating profit / Paid-in capital for Yt−1 has lower impact on model
prediction than for Yt−2 and Yt−3. Therefore, we observe some discrepancies
from the general pattern.
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Comparison of global feature impact between the LSTM networks

Generally, we observe that feature ranking for the models utilizing the feature
subset are comparable, whereas the three most important features are all
common. Moreover, Dividends / Net income is the upmost feature for all
LSTM networks. Further, Return on capital employed resides towards
the bottom for all models. However, there are some differences. Notably
Short term liquidity / Total asset resides higher for the models with
less time steps, being the LSTM3_30 network and the LSTM2_30 network.
This may indicate that when including longer sequences of accounting data,
short term liquidity seem less influential on bankruptcy probability.

5.2.2 SHAP for global feature effects
A SHAP summary plot describes how each feature influence the model
prediction, ordered by average absolute SHAP value and hence feature
importance. Each dot represents a SHAP value for a feature and an
observation of that specific feature. The color indicate the feature value,
where blue means low and red means high. The x-axis measure the SHAP
value, where a negative value reduces the bankruptcy probability, while a
positive increases the predicted bankruptcy risk. The plot therefore provide
a view of how each feature generally impact the model prediction, or in
other words, the feature effect. Figure 5.6 is the SHAP summary plot for
the LSTM4_30 network. Note that all interpretations of feature effects is in
relation to the other companies in the dataset.

As mentioned in Section 5.2.1, according to the SHAP analysis of the
LSTM4_30 network, Dividends / Net income is the most important feature
for predicting bankruptcy. From Figure 5.6 we see that a high feature value
is often accompanied by lower (negative) SHAP values. This indicate that a
company paying a big percentage of their net income as dividends have a lower
probability of bankruptcy, meanwhile a company paying smaller percentages
of their net income as dividends have a higher probability of bankruptcy.

We observe that a high Total liabilities / Total assets (debt ratio)
generally increases the predicted bankruptcy probability. This means that the
LSTM4_30 network have found a general pattern between higher debt ratio and
bankruptcy probability. Furthermore, we see that a company with low average
interest rate (Interest expenses / Total liabilities) compared to the
other companies in the dataset, generally have a lower bankruptcy probability.
Oppositely, a high average interest rate increases the chance of bankruptcy
according to the SHAP analysis. Interestingly, we also see that a higher
Effective tax rate reduces the probability of bankruptcy. At first glance,
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Figure 5.6: The SHAP summary plot for the LSTM4_30 network. The plot depicts the
relationship between feature values and impact on model prediction. In other words,
the general feature effect.
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this relationship seem counter-intuitive. A discussion and our interpretation
of this feature is found in Section 6.2.1.

Figure 5.6 also indicate that the model have found low feature values to
generally have lower impact on model prediction, and is therefore often
associated with lower SHAP value magnitude. Nevertheless, the plot
illustrates that the model have generally found consistent feature effects
across the board, were the plot show rather clear relationships between
SHAP values and feature values for each individual variable. However, for
Total revenues / Fixed assets this is not the case. We observe that the
effect of a high feature value is associated with both increased and decreased
bankruptcy probability, indicating that the model have not found a clear
pattern of effect for the feature. For the other LSTM networks this feature
have a more distinct effect, where a higher feature value is associated with
reduced bankrupt risk.

Comparison of feature effects between LSTM networks

To increase trustworthiness of the deep LSTM networks, we compare the
individual SHAP summary plots for each LSTM network to evaluate whether
the learned behavior of each model is consistent. Generally the feature
effects are consistent across the individual models. However, we observe some
exceptions. Notably the general effect of Sales / Current assets for both
the LSTM3_30 and the LSTM2_30 networks are opposite of the two other LSTM
networks. Moreover, regarding the LSTM2_30 network, a similar observation
can be seen for Interest expenses / Total liabilities. The SHAP
analysis for the network indicated a relation were a high effective interest rate
reduces bankruptcy probability, which is the opposite effect compared to the
other LSTM networks.

5.3 SHAP for local explanations
So far, the results has concerned SHAP as a global explanation tool. Still,
as explained in Section 3.2.2, SHAP is fundamentally a local explanation
framework with the ability to give insight into the general logic of the model.
The following results will therefore concern SHAP for local explanations to
demonstrate how the framework enables interpretations of specific predictions
for individual companies. We start by presenting a firm with a neutral
predicted bankruptcy risk, before presenting two more companies with both
high and low predicted bankruptcy probability from the LSTM4_30 network.

64



5.3. SHAP for local explanations

Neutral bankruptcy risk firm

Figure 5.7 depict the feature impact magnitude and effect for a specific
prediction from the LSTM4_30 network. Note that the coloring of the waterfall
plot is unrelated to the coloring of the summary plot. The colors strictly
depict the sign of the SHAP values, where a positive SHAP value increases
bankruptcy probability, while a negative have the opposite effect. The x-axis
of the waterfall plot depicts the bankruptcy probability, while the y-axis
depict the features ranked in descending order by magnitude of impact on
the predicted probability of bankruptcy. By stacking the features on top of
each other in this way, are we able to see the model’s decision process for
the specific prediction. We thereby interpret the plot by looking at both the
feature impact magnitude, and the effect on the prediction for each feature.
This enables a decision maker to understand what parts of their company are
their greatest liabilities and strengths, and what decisions need to be made
to reduce bankruptcy risk. A further discussion of the implications of local
explanations for both decision makers, managers and financial institutions is
found in Section 6.4.

Figure 5.7: SHAP waterfall plot for illustrating feature contributions for the prediction
of one individual observation from LSTM4_30 with a predicted bankruptcy probability
of 0.501. Note that year t − 0 is equal to year t.

The predicted probability of bankruptcy, f(x), for this instance is 0.501,
were the expected/average probability E[f(x)] is 0.264 and the sum of all
feature effects is the difference in prediction of 0.237. This means that
the LSTM4_30 network believes that there is an almost equal chance of the
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company going bankrupt or not. The feature with the greatest influence on
this individual prediction is EBIT / Interest expensest−0 with an impact
of −0.08, follow by Dividends / Net income t−0. Interestingly, we see that
Effective tax ratet−1 have a greater impact on this specific prediction than
the same feature for t − 0. However, we also see that features from the last
accounting year t − 0 generally have the greatest impact magnitude. Lastly,
the combined sum of all other features across all time steps not depicted in
the figure are 0.16.

Table 5.2: Values and expected values for the features in Figure 5.7
Feature Value Expected value

EBIT/Interest expensest−0 0.2970 0.0945
Dividends/Net incomet−0 0 0.1605

Current assets/Total equityt−0 0.7551 0.1889
Total liabilities/Total assetst−0 0.8932 0.5795

Short term liquidity/Current assetst−0 0 0.2814
Pretax profit/Capital employedt−0 0.4883 0.3223

Interest expenses/Total liabilitiest−0 0.0015 0.2520
Cost of goods/Salest−0 0 0.3807
Effective tax ratet−1 0 0.6019

Table 5.2 shows the scaled value of the features with the most impact
for the individual prediction seen in Figure 5.7. By comparing the feature
value to their expected value, are we able analyse whether or not the impacts
for this observations are in line with the global explanations of feature
effects presented in Section 5.2.2. We see that the value for the feature
EBIT / Interest expensest−0 (interest coverage ratio) is much higher than
the average, and influence the model prediction towards lower bankruptcy risk.
This may indicate that the LSTM4_30 believes this specific company earns
enough to cover its interest expenses, and therefore reduces the predicted
bankruptcy probability based on this feature value. Our analysis of the SHAP
summary plot in Figure 5.6 also indicated the same relationship. Therefore,
this feature effect seem consistent with our global interpretations.

Dividends / Net incomet−0 has the opposite effect, and increases the
predicted bankruptcy probability for this company. The value for this feature
for this company is 0, and is therefore lower than the expected value of 0.1605.
Compared to the general effects from Section 5.2.2, this relationship is also
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consistent. The same can be said for the rest of the features, all having the
same effect as the general effect indicated from Figure 5.6.

High bankruptcy risk firm

To further illustrate the SHAP frameworks ability to give local explanations of
an individual firm, we present a prediction from the LSTM4_30 network with
a predicted probability of bankruptcy of 0.823. This means that the model
predicts the firm to have high bankruptcy risk. From Figure 5.3 we observe
that the most influential feature is Accounts payable / Total assetst−0,
directing the model to increase the predicted bankrupt probability of the firm.
This is in line with the general feature effect in Figure 5.6.

Figure 5.8: SHAP waterfall plot for illustrating feature contributions for the prediction
of one individual observation from LSTM4_30 with a predicted bankruptcy probability
of 0.823. Note that year t − 0 is equal to year t.

Moreover, we see that the firm has a high debt ratio (Total liabilities
/ Total assetst−0) increasing the predicted bankruptcy probability similarly
to the neutral risk firm presented previously in this section. We also observe
that Inventory / Current assetst−0 influences the model prediction to-
wards lower bankruptcy probability as the feature value is high compared
to other companies. Furthermore, Table 5.3 shows that the firm has a high
Cost of goods / Salest−0, indicating a low contribution margin. The high
value of this features increases the bankruptcy probability for this specific
prediction, in line with the general logic of the model.
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Table 5.3: Values and expected values for the features in Figure 5.8
Feature Value Expected value

Accounts payable/Total assetst−0 1 0.2528
Effective tax ratet−0 0.0486 0.5856

Dividends/Net incomet−0 0 0.1605
Total liabilities/Total assetst−0 0.9149 0.5795
Current assets/Total equityt−0 0.8481 0.1889
Total expenses/Total assetst−0 0.7892 0.3515

Inventory/Current assetst−0 1 0.2216
Short term liquidity/Current assetst−0 0.00264 0.2814

Cost of good/Salest−0 0.9828 0.3807

Low bankruptcy risk firm

Lastly, we present an individual firm with a low risk of bankruptcy according
the LSTM4_30 network. This company has a very low probability of
bankruptcy of only 0.038. From Figure 5.9 we observe that the feature
Dividends / Net incomet−0,t−1 have a substantial influence on the networks
prediction, reducing the risk of bankruptcy with a greater magnitude of impact
than the sum of all other features combined. Further, from Table 5.4 we can
see that both these features have a value of 1, meaning the dividend payout to
net income ratio have been very high for this company for the past two years
compared to the other companies in the dataset. That Dividends / Net
income have the greatest impact on this observation coincides with Figure 5.6
both in terms impact magnitude and feature effect. Further, the LSTM4_30
network found the features Effective tax rate and Total liabilities
/ Total assets for both t − 0 and t − 1 to be influential. In comparison,
the high bankruptcy risk firm only found these features to have influence in
t − 0.
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Figure 5.9: SHAP waterfall plot for illustrating feature contributions for the prediction
of one individual observation from LSTM4_30 with a predicted bankruptcy probability
of 0.038. Note that year t − 0 is equal to year t.

Table 5.4: Values and expected values for the features in Figure 5.9
Feature Value Expected value

Dividends/Net incomet−0 1 0.1605
Dividend/Net incomet−1 1 0.1548

Effective tax ratet−0 0.0576 0.5856
Total liabilities/Total assetst−0 0.2825 0.5795
Total expenses/Total assetst−0 0.0050 0.3515

Accounts payable/Total assetst−0 0.0019 0.2528
Sales/Current assetst−0 0.2413 0.3545

Total liabilities/Total assetst−1 0.0160 0.5851
Effective tax ratet−1 0.0897 0.6019
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Discussion

In this chapter we discuss our findings, both regarding the predictive
performance and the SHAP framework. We further present the limitations of
the thesis, followed by a discussion concerning real-world implications of our
findings.

6.1 Predictive performance
This section concerns the predictive performance of the LSTM networks.
The findings presented in 5.1 suggest that there are differences in model
performance between different sets of variables, time-steps and network types.
These differences between the models can stem from multiple factors.

As presented in Section 2.3, feature selection have proven to increase model
performance, by reducing the chance of the model disregarding minority
samples as noise. However, in our case, the network using all features
(LSTM4_all) both have higher predictive performance (AUC) and confidence
(Brier score) compared to the LSTM4_30 network. This is in contradiction to
the findings of Moen (2020). However, the difference between model AUCs is
not massive, and partly confirm the findings of Paraschiv et al. (2021) that the
model performance starts to flatten out after 25-30 features. Still, in our case,
the feature selection did not increased model performance. One reason may
be our use of SHAP for feature selection, even though the SHAP properties
do not necessarily guarantee its suitability for such use. This means that we
may not have found the optimal feature subset.

Nevertheless, the LSTM neural networks constructed in this thesis
performs well according to the chosen metrics, even though the loss function
does not fully correlate with the objective (Section 3.1.2). Despite the SHAP
analysis indicating a strong reduction of feature importance across time steps
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for the LSTM networks, the inclusion of longer sequences of accounting data
enables the models to perform better for bankruptcy prediction. This is also
in spite that the amount of training data is reduced when the number of
time steps is increased. However, using longer sequences of accounting data
increase the Brier score after feature selection, meaning the LSTM networks
lose some confidence in their predictions. A possible cause is that the amount
of training data is increased when reducing sequence lengths. Together with
the fact that neural networks are data-hungry, the increase of training data
may reduce the variance in prediction, and making the model more assured.
Still, there are no substantial changes in Brier score from including two or
three years of accounting data, indicating that the reduction of time steps
and increase of training data influenced the model by a similar magnitude.

Moreover, we see that the LSTM networks perform better than the two
baseline deep neural networks being the SimpleRNN4_30 and the Dense1_30.
Firstly, a comparison of the SimpleRNN4_30 and the LSTM4_30 network shows
a higher predictive performance for the LSTM network. This indicate that
the addition of a cell state in the more complex LSTM cell enables the model
to take better advantage of the four-year sequences of accounting data, in
line with statements of Chollet (2018). Additionally, all LSTM networks
outperform the Dense1_30 network, even though the amount of training data
are significantly reduced. This is in line with the claims of Kim et al. (2020,
2021) who suggest that models utilizing sequential data are more suitable for
bankruptcy prediction.

We achieved a high AUC for our LSTM4_30 network compared to the
similar LSTM network of Moen (2020). The variation of AUC may stem
from the differences in architecture of our respective models. Moen (2020)
introduced only one LSTM layer into his network, whereas we found during
testing that including two LSTM layers increased performance. This indicate
that the more complex structure of our the LSTM networks enables the
models to perform better for bankruptcy prediction, and that the addition of
one more LSTM layer enables the network to better create representations
for the input data. As stated in Section 5.1, compering the performance
of our LSTM networks to other previous works within the domain can be
problematic. Though Kim et al. (2021) only achieved and AUC of 0.68 for
his LSTM network, and we, for our best performing network achieved an
AUC of 0.9288, these results are not comparable. Most likely, our superior
performance is not a consequence of a more optimized model, but rather the
amount of training data, which is a very important aspect for complex neural
networks. Nevertheless, we have proven that LSTM networks are indeed well
suited for bankruptcy prediction. Additionally, we have shown that they
outperform the baseline neural networks formed in our thesis by a small
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margin depending on sequence length, answering our first research question:
“To what extent can LSTM networks using sequential accounting data produce
superior predictive performance compared to other neural network models for
bankruptcy prediction?”.

6.2 SHAP explanations
In this section we first discuss the global explanations of SHAP, focusing
on comparing the learned behaviour of LSTM4_30 with economic theory.
Thereafter, we discuss our findings regarding SHAP for local explanations.

6.2.1 Global explanations
In order to utilize the SHAP framework to enhance applications of deep
LSTM networks in a real world, the trustworthiness of the results need to be
discussed. Therefore, we need to compare the general feature effects found
by the models with economic theory, previous literature, and to some extent
intuition. In doing so, we evaluate whether the model reasoning is sound,
and consequently trustworthy. Note that not all features are discussed, only
the features with the highest impact on bankruptcy prediction and other
noteworthy findings. Additionally, as previously stated the SHAP analysis
was done solely on the LSTM networks. Therefore, all statements in this
sections only concern the LSTM networks.

The analysis in Section 5.2.1, indicated that the most important feature
for predicting bankruptcy found by our models is Dividends / Net income,
though the feature impact is significantly reduced for the accounting years
three and four years prior to the latest financial statement. As stated in
Section 2.5.3, Dielman and Oppenheimer (1984) claim that a company’s
dividends decisions could be of great importance in recognizing financial
distress of the company. Further, Murekefu (2012) found a strong positive
relationship between dividends payout and firm performance, indicating
reduced risk of bankruptcy. This is also backed by Kanakriyah (2020). The
relationship found by the model therefore seem trustworthy. Still, it should
be noted, that this feature should partly be looked at as a profitability feature.
Dividends is a distribution of profits to company shareholders. Therefore,
if the company does not have any (or low) profits in the accounting year,
more often than not, especially for SMEs, they will not pay any dividends.
It is therefore feasible to assume that the LSTM networks have found this
relationship, and that the feature indicate profitability of the company an
addition to how the managers believe the financial situation to be.
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Furthermore, Total liabilities / Total assets also have high SHAP
magnitude for all models. Our LSTM networks have found that a higher debt
ratio increases the probability of bankruptcy. This is supported by Salim and
Yadav (2012) who found a higher debt ratio had a negative relationship with
firm performance. Additionally Modina and Pietrovito (2014) found a negative
relationship between debt ratio and financial distress. These findings seem
intuitive, as a company with a high debt ratio are more vulnerable to volatile
cash flows. Therefore, the learned behaviour of the networks concerning this
feature seem trustworthy. Still, Ogachi et al. (2020) observed the opposite
relationship between debt ratio and the risk of bankruptcy, meaning there
are some inconsistencies regarding the effect of debt ratio on bankruptcy
probability. Our models also found a relation between high effective interest
rate and increased bankruptcy probability. However, the reverse relationship
was not necessarily as clear, where our findings suggest that a low average
interest rate does not necessarily indicate a lower bankruptcy risk. Still, it is
reasonable to assume that it is preferable to have cheaper loans, rather than
expensive ones. A high value of this feature may also indicate that a company
needed to take on more short-term (and therefore expensive) loans to keep
the business running, at least if the debt ratio is similar to other companies
with a lower effective interest rate.

Effective tax rate is also a feature with considerable impact on model
prediction for all LSTM networks. The networks have found that a high
effective tax rate reduces the probability of bankruptcy. At first glance, this
relationship seem a little odd. However, as companies with zero or negative
profits all will have an effective tax rate of zero, this relationship with higher
bankruptcy probability seem to hold true. Note that therefore this variable
should be interpreted as a profitability variable, rather than a means of tax-
increase argumentation. This relationship was also found by Moen (2020), for
his logistic regression and CatBoost models. Still, this variable can therefore
be rather misleading, and we argue that such variables are not necessarily
fit for bankruptcy prediction models when intuitive interpretability is of
importance.

Though we generally find the learned behaviour of the models to be
consistent across all LSTM networks, and supported by economic theory
and intuition, do some feature effects deviate from this. The LSTM3_30 and
LSTM2_30 networks have the opposite feature effect for Sales / Current
assets in relation to the two other LSTM networks. This learned behaviour
is not necessarily consistent with economic theory, as it indicates that a
higher value is associated with higher probability of bankruptcy, even though
a higher value generally means that the business is generating revenue more
efficiently. Furthermore, for the LSTM4_all network, both a higher Fixed
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assets / Total equity and Current assets / Total equity results in
higher bankruptcy probability. As these variables naturally have a negative
correlation, this is inconsistent. However, for the LSTM networks using the
feature subset, this relationship disappeared, meaning feature selection may
increase consistency. Though these inconsistencies are rare, these findings
may still, to some extent, reduce the trustworthiness of our LSTM networks.

Furthermore, some variables did not have clear effects. Notably,
the learned behaviour regarding Inventory / Current assets for the
LSTM4_all network was inconsistent. A high value was associated with
both lower and higher bankruptcy probabilities. The same can be said for
Total revenues / Fixed assets in the LSTM4_30 network.

Additionally, we observe that generally high feature values often have
greater impact on model prediction than lower values, being the case for both
increased and decreased bankruptcy probability. A reason for this may be our
assumption that all missing values is an observation of zero. Though this given
correct accounting practices is true, when many companies do not have any
value for the accounting item, the features utilizing said item automatically
become zero. For instance, broadcasting companies do not necessarily have
any inventory nor cost of goods, meaning a low value in Inventory / Cost
of goods is natural. Therefore, as this feature do not relate to these types of
companies, generating a value of zero, a model trained using this feature may
not find a pattern between low values and bankruptcy probability. Another
example is Dividends / Net income, the most influential feature for all
LSTM networks. Many, especially SMEs, do not pay any dividends. This may
be a reason for why the LSTM networks have found lower values of the feature
to not have the same magnitude of impact on model prediction compared
to a high value of the feature. Therefore, it may be more appropriate to
choose more widely comparable features, or specializing models to predict
bankruptcy in specific industries.

6.2.2 Local explanations
To analyse the SHAP frameworks local explanation abilities, we analysed three
individual predictions from the LSTM4_30 network. Generally we observe
that the feature effect in conjunction with the feature value is consistent
between the individual predictions. Moreover, we see that some of the
features with the greatest impact magnitude is the same across all three
predictions, notably Dividends / Net income and Total liabilities /
Total assets. However, some differences between the individual cases
are also depicted. For instance, the most influential feature for the
neutral bankruptcy risk firm depicted in Figure 5.7, is EBIT / Interest
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expensest−0, which is not represented in the top features for the other two
companies. This illustrates that the LSTM4_30 network is able to formulate
individual evaluations based on feature value for specific companies. Further,
by comparing the specific feature effects combined with feature value of a
individual predictions with the SHAP summary plot, can we evaluate whether
the decision process is consistent with our understanding of the general logic
of the the LSTM4_30 network. For all three individual predictions presented
in this thesis, this seem to be the case, indicating trustworthiness of the
networks predictions.

The insight into the decision process of the LSTM4_30 network for the
neutral firm, can be leveraged by company decision makers to make better
decisions going forward. To reduce the probability of bankruptcy, we see
from Figure 5.7 combined with the Table 5.2, that the company should
prioritize increasing their percentage of dividends payout (an explanation for
this recommendation can be found in Section 6.2). Moreover, we see that
the company has a high ratio of current assets to total equity, increasing
the financial distress. The managers could therefore, to reduce the risk of
bankruptcy, increase the company equity. This will also reduce the debt
ratio, and further enhance the financial stability of the company, and reduce
bankruptcy risk according to the SHAP analysis and the LSTM4_30 network.

For the high bankruptcy risk firm presented in Section 5.3, we observed
that a high value of Inventory / Current assetst−0 reduced predicted
bankruptcy probability. This is interesting, as having a large inventory
is usually expensive. Still, this may indicate that the LSTM4_30 network
have found the company to have potential future income from sales. This
feature effect is consistent with the general model logic, though it may not be
consistent with economic theory, as assuming the model have found potential
for future income by this variable may be a stretch to far. We also observe
from Table 5.3 that the high risk firm has a high Cost of goods / Salest−0,
indicating a low contribution margin. A low value of this features increases
the bankruptcy probability and therefore seem intuitive. However, it should
be noted that a low contribution margin does not necessarily indicate the
products/business to be unprofitable. Some industries have naturally higher
cost-of-goods, but low fixed expenses. Therefore, contribution margin should
only be compared to companies in the same industry. This may also explain
why there are some discrepancies in the SHAP summary plot in Figure 5.6.
Still, we argue that we in this thesis have demonstrated the SHAP frameworks
capabilities for local explanations, and therefore its usefulness as a decision
making tool.
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6.3 Limitations
In order to discuss the real-world applicability of deep neural networks for
bankruptcy prediction based on the finding in this thesis, our limitations need
to be highlighted.

Firstly, as presented in Section 2.3, Fryer et al. (2021) suggests that the
SHAP framework is not necessarily fit for feature selection. Therefore, the
features selection in this thesis may not accurately depict the true most
influential features for bankruptcy prediction. Additionally, no corrections in
regards to correlations between variables are built into the SHAP framework.
Because of this, the impact magnitude of more general key figures such as
liquidity or profitability may be spread across similar features. Consequently,
even though the sum of all profitability features may result in high impact
magnitude, this may not necessarily be represented by our feature subset, nor
be intuitively depicted from the SHAP analysis. Therefore, even though all
approximately fully correlated features were removed before feature selection,
this is a major drawback, and can to some extent explain the differences in
feature impact magnitude between the LSTM network containing all features
and the models using the subset. This also taking into consideration the lower
amount of features to distribute feature importance upon. Further, Balcaen
and Ooghe (2006) argues that there are significant differences in the best
predictor variables between data samples and countries. This further indicate
that the feature impact magnitude and feature effects described in this thesis
can not be generalized outside the population of Norwegian public SMEs.
Nevertheless, the feature effects described by our SHAP analysis generally
seem consistent with economic theory and previous literature.

To reduce the imbalanced dataset problem, a cost-sensitive learning
strategy was implemented. However, as discussed in Section 2.3 the true
cost of misclassification is hard, or even impossible to be sure of. Therefore,
making assumptions regarding the cost of misclassification can be considered
a limitation of the methodology of this thesis, as it may have introduced
undetected bias into the networks.

No extensive individual hyperparameter tuning for each specific model were
implemented. Consequently, as most of the hyperparameter testing happened
in regards to the LSTM4_all network, it is conceivable that the parameters
better fit this model than the rest, resulting in reduced performance for the
other LSTM networks. This can also explain why the performance decreased
after feature selection, even though removing noise from the model is said to
increase performance. This is also true for the two models constructed for
comparison purposes.

The prediction horizon also needs to be considered. The inclusion of
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sequential data speaks to the possibility of prediction bankruptcy over multiple
years. However, this thesis have predicted in a one year horizon, even
though financial institutions and other stakeholders often seek the bankruptcy
probability in the span of multiple years.

During data preprocessing we winzorized the features to protect against
outliers while not removing observations. As all feature values above the
95th percentile was set to the percentile value, we end up with an abnormal
amount of features with a value of 1 after standardization. This may reduce
the trustworthiness of the SHAP analysis, especially in regards to local
explanations and the interpretation of individual predictions in this thesis.

Because of the splitting scheme presented in 4.2, some considerations
needs to be addressed regarding the time-leakage. Though the training and
validation sets did not include the same companies, and thereby not the same
data, they did contain the same accounting years. This meant that during
training, the model was evaluated on the same time period as the training.
Consequently, as we tried to find the correct amount of epochs to train the
model based on the performance on the validation set, we may also have
overfitted the networks for predicting bankruptcy for that specific period of
time.

6.4 Real-world implications
The main reason for the lack of adoption of deep neural networks for
bankruptcy prediction in practice is the lack of opacity and consequently
interpretability and trustworthiness of deep neural networks. The goal of
this thesis was therefore to train deep neural networks in a realistic setting
using an imbalanced dataset and sequential data, while utilizing the SHAP
framework to increase interpretability and consequently enhance real-world
applicability. This part of the discussion will therefore examine if the SHAP
framework enables real-world applications of deep recurrent neural networks
for bankruptcy prediction. Therefore, this section is partly an extension of
Section 6.2 combined with Section 6.3.

The specific criteria for adoption of deep neural networks in the bankruptcy
prediction domain is not necessarily clear, except that they need to be
accurate and interpretable. Additionally, it is reasonable to assume that
financial institutions and other company stakeholders such as business leaders
and employees have different focuses and preferences when it comes to
model interpretability and predictive performance. However, the predictive
performance of a model is undoubtedly important, as increased performance
also enables better and more informed decision making. Consequently,
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adoption of high performance bankruptcy prediction tools, such as the LSTM
networks created in this thesis, is something financial institutions and company
stakeholders looking to use the model as a management tool also are interested
in.

Using the SHAP framework, we have gained insight into the behaviour
of the networks, being the main issue in regards to the moral hazards of
opaque machine learning systems for practical use. This include the learned
general logic, encompassing the feature importance across the time dimension,
feature effects and magnitude of impact, and local explanations for individual
predictions. Insight into the learned behaviour of the networks enables
financial institutions to better understand the models and how the financial
development of a firm affects the prediction. By analysing the feature effects,
banks can gain insight on whether or not the output is trustworthy. From our
analysis, the behaviour of the LSTM networks are generally consistent with
economic theory and intuition. This greatly increases the trustworthiness
of our deep LSTM neural networks for bankruptcy prediction through the
SHAP analysis.

As for managers and decision makers, insight into a model’s logic facilitates
its use as a managerial tool. Mainly, it enables managers to illuminate issues
in regards to their business, and make better and more informed decisions
to reduce potential financial distress. This can be done by examining the
impact of key features learned by the deep neural network, and further
evaluate how these features influence bankruptcy probabilities. The managers
can subsequently compare their own situation to the learned behaviour and
correct their own deficiencies while ensuring efficient use of their companies
scarce resources. As SHAP drastically increases interpretability of general
model logic, it enables such considerations. Moreover, the local explanation
capabilities of the SHAP framework enables managers and decision makers
to understand what decisions need to be made specifically for their company.

The SHAP frameworks local explanations, are also preferred for companies
applying for loans wanting to know why their application was denied.
Moreover, a loan officer could utilize the local explanation to validate whether
the model prediction is justified (Demajo et al., 2020). Furthermore, from a
financial institution perspective, utilizing SHAP for individual explanations
can with this in mind increase customer trust and loyalty. However, it should
be noted that it is possible to create intentionally misleading interpretations of
SHAP, as demonstrated by Slack et al. (2020). Therefore, financial institutions
need to be transparent in their use of SHAP for model interpretations.

From the discussion in this section, we can evaluate whether the use of
SHAP on deep LSTM networks provides sufficient answers to the questions
about interpretability presented in Section 2.2.2. The conclusions are based
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on a comparison with the explainability of logistic regression models often
used for bankruptcy prediction and known to be interpretable.

Our experiments suggest that the SHAP framework enables global
explainability. Therefore, in regards to the question “What drove the
explanations more generally?”, we have demonstrated that SHAP enables such
considerations. Moreover, we have demonstrated that the SHAP framework
also facilitates local explanations, also answering the second question “Which
features with what effect mattered in individual predictions?”. Still, SHAP does
not reduce model complexity, even though the interpretability is enhanced.
Therefore, the third question “How does the model work, and can it be easily
explained?”, in terms of computations, algorithms and inner workings still
remain challenging. However, as the SHAP framework increases both local
and global interpretability, our analysis suggest that it facilitates adoption
of deep LSTM neural networks for bankruptcy prediction in the domain,
answering our second research question: “How can the SHAP framework
increase interpretability of deep recurrent neural networks for bankruptcy
prediction, and to what extent can this facilitate the adoption of deep learning
for bankruptcy prediction in the financial services sector?”.
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Conclusion

The objective of this thesis was to discuss and utilize the SHAP framework
to increase model interpretability and enhance real-world applications of
deep neural networks for bankruptcy prediction. To achieve this we
constructed deep LSTM networks capable of using sequential accounting data
to predict bankruptcy probabilities for Norwegian SMEs. A cost-sensitive
learning strategy was implemented to handle the imbalanced dataset problem.
Moreover, we analyzed the predictive performance of the LSTM networks
using AUC and Brier score, comparing them to a traditional RNN and a fully
connected feed-forward neural network to answer our first research question:
“To what extent can LSTM networks using sequential accounting data produce
superior predictive performance compared to other neural network models for
bankruptcy prediction?”. Further, we discuss whether the learned behaviour
of the model appears trustworthy by comparing SHAP feature effects with
economic theory and intuition. Lastly, we discuss the real-world implication
of our analysis to answer our second research question: “How can the SHAP
framework increase interpretability of deep recurrent neural networks for
bankruptcy prediction, and to what extent can this facilitate the adoption of
deep learning for bankruptcy prediction in the financial services sector?”.

The out-of-sample performance of the deep LSTM networks were high
compared to the fully connected feed-forward neural network. The LSTM
network using a sequence of four accounting years and 144 features, obtained
an AUC and a Brier score of 0.9288 and 0.0477 respectively. This was an
increase of 5.56% in AUC and a decrease of 65.36% in Brier score compared
to the fully connected feed-forward neural network. The performance of the
LSTM networks steadily decreased when fewer time steps were available to
the networks. This indicates that models with longer sequences of data indeed
are better at predicting bankruptcy, and therefore may be preferable to other
models strictly concerning predictive performance. Still, the analysis also
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identified that data from the last two accounting years in the sequence have
higher influence on model prediction compared to the first two years. Moreover,
when comparing our similarly structured LSTM network and traditional RNN,
we see that the inclusion of LSTM cells increased the networks capabilities
of remembering long-term dependencies, results in an increase of AUC by
1.74%. Though the performance increases were not substantial, our findings
suggest that deep LSTM networks produce superior predictive performance
compared to other neural networks for bankruptcy prediction.

Contrary to the standard practice in the domain of deep learning for
bankruptcy prediction, a cost-sensitive learning strategy was implemented.
We found the method to be a feasible alternative to resampling methods.

Lastly, we utilized and discussed the SHAP framework capabilities of
increasing interpretability of the deep LSTM networks. We used SHAP
for global explanations, and found the learned behavior of the model to
be generally consistent with economic theory and intuition, increasing the
trustworthiness of the LSTM networks predictions. We further evaluated the
SHAP framework for local explanations. Our findings suggest that SHAP
enables interpretations of both the features impact magnitude, and their
effects on specific predictions from LSTM networks. However, SHAP do
not reduce the complexity of LSTM networks. Therefore, explaining how
LSTM networks work remain challenging. Still, on the basis that the SHAP
framework enables both global and local explanations, the findings of this
thesis suggest that the SHAP framework is a viable tool for reducing the
black box problem, and facilitates adoption of deep recurrent neural networks
for bankruptcy prediction in the financial services sector.

7.1 Future work
In section 6.3 we highlighted the limitations and considerations regarding
our thesis. This section will consist of future work to address these issues in
regards to bankruptcy prediction as a whole, and for applying deep learning
methods for bankruptcy prediction in the real-world.

As mentioned, training neural network models for binary classification
tasks when the class distribution is severely skewed is difficult. One reason for
this is that the loss function usually maximizes classification rate (Section 2.3),
and not other metrics such as AUC that is immune to class imbalance.
Therefore, an application of the Mann-Whitney-Wilcoxon statistic as a loss
function for neural networks for bankruptcy prediction could reduce the
need to address the imbalanced dataset issue in other ways, consequently
reducing the induced bias from these strategies and further promote real-world
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application.
In this thesis we only used a one-year prediction horizon, even though the

use of sequential data speaks to the possibility of prediction bankruptcy over
multiple years. Therefore, enlarging the predictive horizon is also something
to be considered for future work, as company stakeholders are often interested
in the bankruptcy probability over multiple periods. This also speaks to a
continuation of utilizing sequential data for bankruptcy prediction.

In this thesis, we used data from companies across multiple industries.
This means the LSTM networks tried to discover patterns between companies
that are not necessarily comparable. For instance, contribution margins differ
significantly between areas of business. Therefore, we argue that specializing
deep neural networks for predictions within specific industries may be more
appropriate. This will also enable the use of market specific variables, that
may increase predictive performance.

There is a lack of studies regarding the criteria of bankruptcy prediction
models for both financial institutions and company stakeholders. A qualitative
analysis regrading their needs and wants could provide valuable insight into
their specific requirements for adopting new bankruptcy prediction methods.
This could provide guidelines for the continued development of explainable
deep neural networks for bankruptcy prediction, and further facilitate its
adoption in the real world.
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Appendix A

SHAP summary plots

The SHAP summary plots for the LSTM4_all network, the LSTM3_30 network
and the LSTM2_30.

Figure A.1: The SHAP summary plot for LSTM4_all
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Appendix A. SHAP summary plots

Figure A.2: The SHAP summary plot for LSTM3_30
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Figure A.3: The SHAP summary plot for LSTM2_30
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Appendix B

SHAP Bar plots

The SHAP bar plots for the LSTM4_all network, the LSTM3_30 network and
the LSTM2_30.

Figure B.1: The SHAP bar plot for LSTM4_all
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Appendix B. SHAP Bar plots

Figure B.2: The SHAP bar plot for LSTM3_30
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Figure B.3: The SHAP bar plot for LSTM2_30
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Appendix B. SHAP Bar plots

104



Appendix C

SHAP tables

The SHAP tables for the LSTM3_30 network and the LSTM2_30.

Figure C.1: SHAP table for LSTM3_30
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Appendix C. SHAP tables

Figure C.2: SHAP table for LSTM2_30
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Appendix D

List of all features

The list of all features used in the neural networks for this thesis.

Table D.1: List of all features
Number Feature

1 (inventory + accounts receivables) / total equity
2 (long-term liability + total equity) / fixed assets
3 account receivable / sales
4 quick assets / current liabilities
5 (quick assets / current liabilities) *

(operating profits / interest expenses)
6 net income / total equity
7 EBITDA / total liabilities
8 total equity / total liabilities
9 short-term liquidity as a percentage of the capital employed
10 short-term liquidity / sales
11 short-term liquidity / current liabilities
12 short-term liquidity / total assets
13 sales / current assets
14 current assets / total equity
15 current assets / sales
16 current assets / total assets (net liquid assets / total assets)
17 current liabilities / current assets
18 current liabilities / total equity
19 current liabilities / total liabilities
20 current liabilities / sales

Continued on next page
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Appendix D. List of all features

Number Feature
21 total liabilities / total assets
22 accounts receivable / accounts payable
23 operating profit / (operating profit - interest expense)
24 EBIT / total assets
25 EBITDA / interest expense
26 effective tax rate
27 total equity / total assets
28 total equity / long-term liabilities
29 sales / total equity
30 pre-tax profit / capital employed
31 financial expenses / sales
32 EBIT / sales
33 sales / fixed assets
34 fixed assets / total assets
35 fixed assets / total equity
36 intangibles / total assets
37 interest expenses / total revenues
38 interest-bearing debt / total equity
39 inventory / current liability
40 inventory / working capital
41 investment turnover (sales / (total equity + total liabilities))
42 total liabilities / total equity
43 long-term liability / current assets
44 net income / stockholders equity (return on shareholder’s equity)
45 net income / sales
46 (total revenues - sales) / total revenues
47 total equity / fixed assets
48 total equity / sales
49 no-credit interval
50 dummy; one if total liability exceeds total assets
51 operating expenses / sales
52 short-term liquidity / total liabilities
53 operating profit / total revenues
54 operating profit / paid-in capital
55 operation asset / total asset

Continued on next page
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Number Feature
56 personnel costs / added value
57 pre-tax net profit / paid-in capital (ordinary income / stockholder’s equity)
58 net income / total revenues
59 profits / net working capital
60 quick assets / sales
61 quick assets /total assets
62 earnings after tax and interest charge / net capital employed
63 current liabilities / earnings before tax and interest charge
64 retained earnings / sales
65 retained earnings / total assets
66 return on debt (earnings / total liabilities)
67 net income / total assets
68 total revenues / fixed assets
69 total revenues / total assets
70 total revenues / net working capital
71 sales / total assets
72 total assets / total revenues
73 total expenses / total assets
74 total revenues / total expenses
75 working capital / current liabilities
76 working capital / sales
77 working capital / total assets
78 working capital / total equity
79 dummy; one if paid-in equity is less than total equity
80 working capital / total revenues
81 accounts payable / total assets
82 public taxes payable / total assets
83 EBIT / total liabilities
84 (non-interest expenses - salary) / total assets
85 (share holders equity + total revenues) / total assets
86 sales / working capital
87 short-term liquidity / current assets
88 cost of goods sold / inventory

Continued on next page
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Appendix D. List of all features

Number Feature
89 cost of goods / sales
90 (current assets - short-term liquidity) / total assets
91 current assets / common shareholder’s equity
92 current liabilities / total assets
93 dividends / net income
94 working capital / long-term liabilities
95 working capital / operational expenditure
96 EBIT / total tangible assets
97 financial expenses / sales
98 fixed assets / (stockholder’s equity + long-term liabilities)
99 (sales - cost of goods sold) / sales
100 income gearing
101 intangible assets / sales
102 interest expenses / total liabilities
103 interest expenses / total expenses
104 interest income / interest expenses
105 interest income / total assets
106 inventory / cost of goods
107 inventory / current assets
108 inventory / sales
109 long-term liabilities / total equity
110 long-term liabilities / total assets
111 sales / tangible assets
112 net income / gross profit
113 net income / total capitalization
114 net quick assets / inventory
115 total equity / (total equity + long-term liabilities)
116 non-interest expenses / operating profit
117 total revenues / sales
118 ordinary income / total equity
119 ordinary income / ordinary expenses
120 pre-tax profit / sales
121 pre-tax profit / total assets
122 owners equity / total assets
123 payable / current liabilities

Continued on next page
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Number Feature
124 payables / inventories
125 retained earnings / inventory
126 retained earnings / tangible assets
127 return on capital employed
128 return on net fixed assets
129 salary / total assets
130 sales / short-term liquidity
131 sales / inventories
132 sales / receivables
133 sales / total tangible assets
134 interest bearing debt / total liabilities
135 share of labour costs
136 (short-term assets - total liabilities) / total assets
137 solvency ratio
138 sales / stock holders equity
139 (total revenues + interest income) / total expenses
140 interest expenses / total assets
141 operating expenses / total assets
142 tales / assets employed
143 EBITDA / total assets
144 operating profit / total assets
145 operating profit / sales
146 (current liabilities - short-term liquidity) / total assets
147 accounts payable / sales
148 retained earnings / current liabilities
149 (total equity - intangible assets) /

(total assets - intangible assets - short-term liquidity)
150 EBIT / interest expenses
151 accounts receivables / total liabilities
152 profit before tax/current liabilities
153 current assets/total liabilities
154 log(age in years)
155 log(total assets)
156 log(financial expenses)
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