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Abstract

Breast cancer is the most commonly diagnosed cancer worldwide with more than 2 millions of new
cases each year, and this number is only expected to rise. Breast cancers lacking the expression of
the estrogen and progesterone receptors, and lacking amplification of the human epidermal growth
factor receptor 2 are called ”triple negative”. Triple negative breast cancer is considered as the most
aggressive form of breast cancer, and is extremely difficult to cure. While other forms of breast
cancer can be treated quite efficiently by hormonal therapy, chemotherapy, surgery, or radiotherapy,
triple negative breast cancers do not respond well to treatments and have poor prognoses. With
the emergence of high-throughput sequencing techniques, the high molecular heterogeneity among
triple negative cases can be more precisely characterised, setting the stage for the development of
personalized treatments. Scientific studies recently suggested the use of new therapies including
combinations of existing drugs, therefore, clinical trials are underway. However, exploring more
and more possibilities for drug combinations can hardly be achieved through clinical trials, which
are highly time-consuming and costly. In silico simulations are promising techniques to identify
new target candidates in diseases with unmet clinical needs and relieve the burden on clinical trials.
In this project, a Boolean network representing the altered signalling processes of triple negative
breast cancer was built following a middle-out modelling approach, and was calibrated on mRNA
expression data of four different cell lines. Multi-omics and pathway enrichment analyses were
performed on triple negative breast cancer data to reveal the individual biological entities that
are altered in triple negative cases compared to normal samples, and link them to underlying
altered functions by pathway over-representation analysis. In silico drug synergy predictions were
performed on the network to assess its ability to predict observed synergies and eventually find
new promising drug combinations.
We found that the model had a limited predictive power when calibrated on mRNA expression
data of three triple negative cell lines. Despite multiple steps to find the best parameters to run
the synergy predictions, the results remained poor and led us to think that topological issues could
have been introduced during the building of the model, and that the calibration data were not
adapted to translate the dynamics of TNBC.
We suggest that those areas can be further investigated to improve the TNBC model. Notably, the
refinement of the pathways that were modified during the calibration phase could be of considerable
help.
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1 Theoretical Background

1.1 Cancers and Their Mechanisms

Cancer development is a highly complex process. Animal bodies are composed of thousands of
billions of cells which live in harmony and cooperation to sustain the basic biological functions
necessary to the survival of the whole organism. However, in their lifetime, these cells undergo
mutations in their genome, and even though a large part of these mutations are harmless to the
balance of the organism, some of them can alter the behaviour of one cell, and lead to the develop-
ment of cancer by giving it a selective advantage over normal cells. Cancer cells are usually defined
as cells that are able to grow and divide despite the absence of growth or proliferation signals, and
are able to invade other tissues than the tissue in which they arose [1]. These two properties are
facilitated by what were characterised as ”the hallmarks of cancer”.
The hallmarks of cancer correspond to capabilities attributed to cancer cells that, for example, en-
able them to proliferate uncontrollably whereas their division and proliferation should just balance
other cell’s death. Figure 1 shows the well-known representation of the ten hallmarks of cancer as
defined by Hanahan et al. (2011) [2]. In 2000, Hanahan et al. already defined six cancer hallmarks
which are now well accepted and further characterised [3]. The sustained proliferation of cancer
cells is due to their capacity of triggering growth signals which will act in a positive-regulatory
loop to trigger the growth and proliferation of the cancer cells themselves. Cancer cells are also
able to bypass the mechanisms that are supposed to negatively regulate their proliferation (with
molecules such as growth suppressors) and the mechanisms that lead to apoptosis by disrupting the
activity of molecules involved in different steps of these processes. Furthermore, the shortening of
the telomeres, the extremities of the DNA strands, is crucial to impose a limit to the proliferation
capacity of a cell: cancer cells express a high level of telomerase, the enzyme responsible for the
addition of telomere segments at the end of the DNA strands, which makes them able to infinitely
replicate. The angiogenic capacity of tumours is also remarkably enhanced compared to normal
situation where the angiogenic process in adults is only used in cases of wound healing or child
bearing. This increased vascular activity participates to the feeding of cancer cells which need
oxygen and nutrients and are thus, able to be autonomous. As a sixth hallmark, Hanahan et al.
defined the capacity of cancer cells to change their shape and lose their bindings to the extracellular
matrix (ECM), enabling them to invade other tissues and develop metastasis. In 2011, two new
hallmarks have been added to this list, namely the deregulation of cellular energetics, enabling the
modification of the cell’s metabolism to sustain the tumour’s needs, and the evasion of the immune
destruction (cancer cells are able to bypass the effect of immune cells). Two additional features
of cancer cells were added to this map of hallmarks, for being facilitators of the development
of the eight other hallmarks: genome instability and mutations to which cancer cells are prone,
and the tumour-inflammatory response which promotes tumorigenesis by infiltrating tumours and
providing essential molecules to it [2].
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Figure 1: The ten hallmarks of cancer and drugs commonly used to target them. Retrieved from
[2].

1.2 Cancers Worldwide

It is not only the complexity, but also the incidence of cancers that make it a global concern.
Cancer is one of the leading causes of mortality in most countries worldwide. In 2020, it was
estimated that 19.3 million new cancer cases arose, against 12 millions in 2012, and this number
is expected to increase by 47% in 2040 compared to 2020 (for a total of 28.4 million new cases per
year) [4, 5]. The expected increasing incidence of cancers worldwide, but especially in developing
countries, is explained by the economic development of these countries which will lead to the
emergence of new lifestyle and social habits, and also by the growing global population. In 2020,
it was estimated that almost ten millions of persons died because of cancer, the most deadly type
being lung cancer. Additionally, 22.8% of cancer cases and 19.6% of cancer deaths occur in Europe,
while it only represents 9.7% of the world’s population [4].

In 2020, female breast cancer represented 11.7% (2.3 million new cases) of all the diagnosed cancer
cases, and was therefore the most commonly diagnosed cancer type, followed by lung cancer (11.4%
of total cases) [4]. However, the mortality rate of lung cancer is higher than for breast cancer
(18% and 6.9%, respectively). The incidence rate of breast cancer is 88% higher in developed
countries than in developing countries, but the mortality rate is 17% higher in developing countries.
These figures can be explained by the prevalence of risk factors in developed countries, such as a
higher alcohol intake and the lack of physical activity, the advanced age at the first child’s birth,
or the intake of oral contraceptives. Also, the number of cases in developing countries can be
underestimated due to a lower rate of mammography screening. The high rate of mortality in
developing countries is mainly due to later-stage detection and more difficult access to treatment
[4, 6].

1.3 Triple Negative Breast Cancer

Breast cancers can be classified according to the expression status of three protein receptors: the
estrogen receptor (ER), the progesterone receptor (PR), and the human epidermal growth factor
receptor 2 (HER2 or ERBB2) [7]. Additionally, differences in the gene expression patterns of
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breast cancer cases enabled to define several subtypes [8]: First, the basal-like which are ER and
PR negative (ER- and PR-), and positive either for keratins 5/6 or 17 (or both), by immunohisto-
chemical (IHC) staining. These markers are characteristic of basal cells, which explains the name
of this subtype. We also have the luminal-like which are ER+ or PR+ (or both) and positive for
keratin 8/18. Luminal-like can be either HER2 positive of negative (Luminal A or Luminal B),
and are named like this since they exert a luminal phenotype. Basal and luminal cells are epithelial
cells, in opposition to mesenchymal cells. Some tumours can be classified into an ERBB2-enriched
subtype and show high expression of specific genes of the ERBB2 family and low expression of ER
and PR, and ER associated genes. The last type described by Perou et al. (2000) is the normal
breast like subtype, gathering gene expression patterns from basal epithelial, adipose, and luminal
epithelial cells. This gave rise to the widely-known PAM50 classification [8].

Triple negative breast cancers (TNBC) are defined by the absence of ER and PR, and the lack of
amplification of ERBB2 by IHC or fluorescent in situ hybridization (FISH) [9]. TNBC represent
from 10% to 20% of all breast cancer cases [10], and if a majority of TNBC can be classified
as basal-like (50% to 75%), they can also belong to the Luminal A or B subtypes, to the newly
defined Claudin-low subtype, or, surprisingly, to the ERBB2-enriched subtype (which is not defined
by a high expression of ERBB2, but of a subset of specific genes). The Claudin-low subtype is
characterised by low expression of claudin genes, which are responsible for cells’ tight junctions
(for example the cadherins), and a triple negative IHC status of the ER, PR, and ERBB2 [11].
According to several studies, TNBC is more frequent in black or hispanic women under the age of
40 than non-TNBC [10, 12]. Also, TNBC patients have worse overall-survival (OS) than patient
with non-TNBC with a median OS of 18 months according to some studies [12, 13].

1.3.1 Molecular Heterogeneity of TNBC

The mutational profile of breast cancer has been extensively studied, and it has been shown that
the prevalence of BRCA (Breast Cancer genes) mutations is higher in TNBC than in non-TNBC,
with up to 15.6% of patients with BRCA1 mutations [14, 15, 16]. BRCA genes are well known for
their involvement in hereditary breast cancers and are classified as risk factors as women carrying a
mutation in one of those genes have an increased chance of developing breast cancer in their lifetime
[10]. Furthermore, women carrying germline mutations in BRCA genes and BARD1, PALB2,
and RAD51 would have an increased risk of developing TNBC [17]. Additionally, copy number
alterations (CNAs) have been found in PARK2, RB1, PTEN, and EGFR genes, and frequently
mutated genes have been identified, including TP53, PIK3CA, USH2A, MYO3D, PTEN, and RB1
[18]. However, Shah et al. (2012) and many others also found a high mutational and expression
heterogeneity in TNBC and emphasize the need of considering further subtypes in order to develop
treatments that would increase the prognosis of TNBC patients [10, 19].

Indeed, to be able to further characterise the molecular biology of TNBC, classifications criteria
have been defined. A well-known classification has been made by Lehmann et al., implying the
existence of six transcriptional subtypes first [20], and the refinement of these six subtypes into
four subtypes later [21]. TNBC cases could thus be classified into the basal-like 1 (BL1), basal-
like 2 (BL2), luminal androgen receptor (LAR), or mesenchymal (M) subtypes, depending on
several features such as the age at diagnosis, the histopathology, the tumour grade, and the spatial
progression of the disease. High expression of cell cycle, cell division, proliferation, and DNA
damage response genes, mRNA and pathways is characteristic of BL1 cases. They were found
to have the highest pathological complete response (pCR) to neoadjuvant therapy (41%) and the
highest OS compared to the other TNBC subtypes. On the other hand, BL2 uniquely show high
activity of growth factor signalling pathways such as the epidermal growth factor (EGF) or Wnt/β-
catenin. The LAR subtype is characterised by a high expression of genes involved in hormonally
regulated pathways such as the androgen and estrogen metabolism. Analysis of the androgen
receptor (AR) revealed that its level was high both at the trancriptomic and proteomic level in
this subtype compared to non-LAR TNBC. Also, the LAR TNBC show a tendency to metastasize
to bones and have unique globular histology. Finally, the M subtypes uniquely express higher
levels of epithelial-to-mesenchymal transition (EMT) pathways such as the Rho signalling, and
differentiation pathways, and have a tendency to metastasize to the lungs. Overall, it seems that
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the BL1, BL2, and M cases are a majority of basal-like breast cancer as described above, while
LAR cases are more of the ERBB2-enriched subtype [20, 21].
This classification further proves the high heterogeneity of this disease and gives tools to study
TNBC in more details.

1.3.2 Current Treatments and Chemotherapy Resistance

Since TNBC do not express ER, PR and lack amplification of ERBB2, they cannot benefit from
the hormonal and anti-HER2 therapies commonly used in other breast cancers [10]. Currently,
the standard of care (SOC) for TNBC patients is chemotherapy. For newly diagnosed cases, a
combination of chemotherapy with neoadjuvant therapy and surgery is commonly used. However,
for advanced cases, chemotherapy remains largely inefficient, with a median progression-free sur-
vival (PFS) of 1.7 to 3.7 months and an OS of ten to 13 months [22]. Advanced cases can benefit
from single agent platinum or taxane-based chemotherapy, but overall, the rate of relapse and
metastasized TNBC is higher than in non-TNBC, recalling once again the urgent need of finding
more personalized and targeted therapies.
Recently, new treatments have been approved by the Food and Drug Administration (FDA),
namely atezolizumab and nab-paclitaxel (paclitaxel combined with albumin) in the case of un-
treated metastatic TNBC positive for PD-L1 [23]. Indeed, some TNBC cases show a positive
expression of the programmed cell death ligand PD-L1 [21], and the combination of an anti-PD-L1
antibody and a mitotic inhibitor significantly improved their median PFS and OS [23]. Another
drug, pembrolizumab, is still undergoing clinical trials, but shows promising results as a PD-L1
inhibitor [24].
Additionally, two PARP inhibitors are FDA-approved and used as single-agents in the case of
patients with germline mutation of BRCA. On one side, Olaparib is used for patient with ERBB2
loss, at a metastatic stage, and with germline BRCA mutation. It improves the median PFS and
reduces the risk of disease progression or death [25]. On the other side, Talazoparib increases the
PFS for patients with advanced stage and a germline mutation in BRCA [26].
All-in-all, these results suggest that targeted therapies could improve the prognosis of TNBC pa-
tients, given that we are able to classify them in relevant subtypes, according to their molecular
profiles or other clinical features. This is the aim of precision and personalized medicine.

1.4 Multi-Omics Integration Towards Precision and Personalized Medi-
cine

It has been almost two decades now since scientists have been able to fully sequence the human
genome [27]. Since then, huge advances in sequencing techniques, and especially the emergence of
high-throughput new generation sequencing (HT-NGS) techniques have led to the production of
massive amounts of biological data, the so-called ”omics”. As a consequence, bioinformatic tools
and strategies have been developed to handle these data and detect genomic variations, which
among other applications, helped scientists further understand the complexity of human diseases
[28]. HT-NGS enable to perform accurate genome sequencing much faster and at a much lower
cost than the first generation sequencing techniques [29]. High-throughput technologies have not
only been able to produce genomic data to help understand the genetic variants, but also new
types of omics covering almost all the layers of compounds of an organism.
While DNA-sequencing provides information on the genome, and especially on single nucleotide
variations (SNVs) and structural variations (SVs) present in a sample, RNA-sequencing provides
information on the transcriptome, and therefore, on the genes that are transcribed into RNA.
This represents the transition from DNA to RNA in the central dogma of molecular biology [1].
Transcriptomics comprise quantitative information on both coding and non-coding RNAs, such
as long non-coding RNAs and microRNAs, which are now widely studied for their involvement
in many abnormally functioning biological processes. Epigenomics data are tightly correlated to
transcriptomics, since they relate the epigenetic variations affecting DNA (such as methylation),
playing a key role in the transcription of genes. Proteomics, as the name suggests, offer an overview
of the proteins that are finally translated (i.e. the translation of mRNA into proteins in the central
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dogma), how they interact, and how they are modified after their translation (phosphorylation
or ubiquitination for instance). This is key information to understand how the proteins’ activity
impacts biological phenotypes through their signalling, transport, and interaction with their en-
vironment [30].
This addition of layers to the knowledge of scientists has brought an important challenge to tackle:
if it is important to understand the individual role of genes, proteins, or events driving their expres-
sion or activity, it is fundamental to handle the problem at a system’s level as well, and combine
the data types to leverage more knowledge on their interactions and role in diseases. Major dis-
coveries have been done by combining multiple omics, and the scientific community is continuously
developing new tools and methods to improve the use of these data [31, 32, 33, 34, 35].
Focusing on breast cancer, studies showed the evident need of integrating multi-omics to identify
cancer-driver genes, or new therapeutic targets. For instance, Mertins et al. (2016) showed the
correlation between recurrent somatic mutations in breast cancer and the elevated expression of
several proteins, and they observed clusters of cases sharing similar proteomic expression patterns
[36]. Also, the methylation of CpG islands is known to be involved in the repression of cancer
genes, especially when located in the promoter regions of tumour suppressors [37]. Esteller et
al. (2000) showed the correlation between the hypermethylation of the promoter regions of the
BRCA1 gene and its loss in breast cancers [38].

1.5 Systems Biology

Systems level understanding has existed for many years before the emergence of omics data and is
commonly used in biological sciences, and applied to ecology, population biology, and evolutionary
studies. Systems biology comes as a powerful method to understand the behaviour of an entire
system, each part of this system being able to influence the others. As an example, large-scale
metabolic networks already existed in the 1970s [39]. This method is somehow opposed to re-
ductionism, that claims that a complex system can be understood by studying its different parts
separately. Both methods have their advantages, and using them both can be complementary,
that is why they are not totally opposed. René Descartes (1596-1650) was a strong defender of
reductionism, contrary to Ludwig von Bertallanfy (1901-1972), who is considered as the father of
general systems theory in the 1940s. In molecular biology, reductionism tackles the genes and not
the pathways for example, but it is also important to understand that an organism needs to be
studied as a whole in order to draw conclusions on its dynamic behaviour [40]. Now that systems
biology theories are well-established and progress in molecular biology has been made, especially
in recombinant technologies and high-throughput sequencing, systems biology is emerging as a
remarkably interesting tool in this particular field. [39]. Indeed, biological processes at the origin
of life can be described as subparts of a network regulated by cis-regulatory elements and tran-
scription factors acting together on the control of gene expression and signalling events. Genetic
or environmental perturbations can modify these interactions, and eventually lead to a disease
state if the network is not robust enough to circumvent these modifications [41]. Theories about
systems biology are widely established and studied all around the world by many scientists such
as Hiroaki Kitano, the head of the Systems Biology Institute. According to H. Kitano, systems
biology research is composed of four major domains: Genomics, computation, analyses, and tech-
nologies. These domains complete each other for the creation of a realistic model, the simulation of
its behaviours and predictions based on this model [42]. In the same perspective, T. Ideker defines
the four steps of systems biology to build a robust, reliable, and realistic model. The first step is to
define all the components of the system, their interactions, the general dynamic of the system, and
to build a first model. The second step is about designing an experiment expected to emphasize
the role of the components and their functions when they are put together. From this experiment,
one should be able to compare what was expected and what was observed, and then to design new
experiments on the model, which will respectively compose the third and fourth steps of systems
biology [43]. Those four steps will be followed in this project.
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1.6 The Role of P4 Medicine in Cancer Treatment

Systems biology unveils new key components at all levels of an organism: in diseases, it helps
uncover the dissimilarities between the individuals, and before being able to implement individual
medicine, it helps decomposing the diseases into subgroups that are characterised in more details
than before, and share a larger part of their molecular profile [41]. New biomarkers are discovered
by clustering patients together in smaller groups, as for example in TNBC (see section 1.3.1),
which helps finding more targetable or responsive elements than the ones currently targeted by
treatments. Further mapping of the diversity of diseases such as cancer brings us closer to being able
of predicting the exact outcome of a treatment on a patient, only by knowing its genetic profile
(which is becoming easier with HT-NGS). Adapting the treatment to each patient to minimise
the risk of relapse or progression of the disease is one of the main goals of predictive, preventive,
personalized, and participatory (P4) medicine. Some scientists predicted already ten years ago that
the P4 medicine will be possible through the improvement of systems biology theories, integrative
tools using all levels of biological data, and new measurements techniques, that will be used on a
regular basis on each individual [44]. Today, if the efforts are largely focused on the treatment of
diseases, the main goal of P4 medicine is still to completely change the structure of the medical
system, which consists in treating the disease once symptoms are present, into a system that
enables the ”maintenance of wellness” [45].

1.7 Biological Networks

1.7.1 Network Science and Biological Networks

Network science is a relatively new field of research accounting for the complexity of diverse types
of systems. In theory, the interacting components of any system can be wired to each other in
what we call a network, and can be described by mathematical tools and used to study the be-
haviour the system. The emergence of this scientific field has been eased by the Internet which is
a powerful tool to store all the data relative to a network. Network types can range from social
interactions (e.g. friendships in a high school), to the mapping of the power grid of a country,
including neural and gene interactions networks. All these networks are made of components (the
nodes) interacting through wires (the edges), and can simply be translated to graphs. The graph
theory is then used to describe the topological properties of the nodes or of the network as a whole.
For example, the degree of a node is its number of neighbours, and this property can be generalized
to the network through its average degree, or the degree distribution. The latter is an essential
measure to assess the robustness of a network, that is, its ability to circumvent perturbations
without losing its general dynamic. Indeed, if most nodes of a network have a low degree, and that
only a few (which we call hubs) have a high degree, the network’s integrity would be threatened by
a perturbation targeting his hubs, since they interact with most of the other nodes. On the other
hand, a network with a normal degree distribution (following a Poisson’s distribution, for which
most of the nodes have the same degree) would be affected to a lower extent by a perturbation,
but it would be equally affected by any perturbation. These two types of networks are respectively
called scale-free and random [46].
The robustness of a cellular network is particularly crucial to maintain the basic biological func-
tions of life, and it has been observed that most of the cellular networks are scale-free (e.g., the
transcription regulatory networks of Saccharomyces cerevisiae and of Escherichia coli). In these
networks, the hubs were also found to be essential genes [47].
Today, many scientists focus on developing biological networks to answer the challenges of P4
medicine. Many types of network can be mapped according to the nature of their nodes and edges.
For example, the nodes can represent genes, proteins, complexes or metabolites, and the edges
can represent protein-protein interactions (PPI), protein-metabolite interactions, or any type of
regulatory relationship into a gene regulatory network [35, 47]. The integration of multi-omics
data into biological networks is now commonly used to cover a wide range of genomic events in-
volved in the emergence and the development of diseases [33, 48]. Several methods and tools have
been developed to then study these networks and uncover valuable biological information, with
the aims of discovering new molecular mechanisms, characterise further diseases, and help relieve
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the pre-clinical screening burden by finding new potential drugs [33, 35]. In particular, methods
such as pathway enrichment analysis, module identification, or marker prioritization have been
developed based on the network topology or on the significance of the nodes, in order to highlight
key regulatory processes [35, 49]. Other measures based on the static or dynamic properties of
biological networks such as the speed of information relayed by a node, the quantity of information
flowing through an edge [50], or the relevance of a node in the dynamic of the network [51] showed
that the most important features of a complex model can be identified and eventually given more
weight in the calibration of simulation steps.

1.7.2 Logical Modelling of Biological Networks

Biological networks can be formally represented as abstract circuits of components together playing
on the activity of each others. In a logical model, at time t, a discrete value is assigned to each
component, which corresponds to their state. The state of a node x is function of logical equations,
which depends on other components’ state, and on the nature of the interaction of these components
with x. There can be positive or negative interactions, and they can be weighted depending on the
level of regulation that its regulators exert on it [52]. In biological network, and especially in gene
regulatory networks, the activity or presence of a molecular compound of the system is represented
by its state.
A simplified logical formalism is the Boolean formalism. In Boolean Networks (BN), the states of
the components can only take two values: 0 if they are inactive or not present in the system at
time t, or 1 if they are active. The logical functions become Boolean equations using the Boolean
algebra to describe the control that the regulators of node x exert on it. The Boolean algebra
basically describes which combination of the positive or negative regulators should be active or
not for x to be active, by using the logical connectives AND, OR, and NOT [53]. However, while
Boolean models only consider binary states of activity, multi-level logical models in general offer
the possibility of multiple discrete states which are particularly relevant to represent the influence
of a regulatory component over another, and both formalisms are used to study biological networks
[52].
The topology of a logical network is the same as the topology of the corresponding biological
network: the difference resides in the dynamic of the model, which can be qualitatively studied
in logical model. State transition graphs represent every possible global state that can be taken
by the system (=2n possible combinations for a system made of n components), and the possible
transitions from a global state to another. Many properties of the system can be seen in this graph,
such as stable states or attractors. In biology, the stable states of a system are usually reached
when a lasting, stable situation is reached. They can be fix points, or cyclic attractors, where the
system transits between a set of possible global states [52], and they are of particular interest in
cancers. Indeed, multiple genomic events would modify the topology of a normally functioning
cellular network to create new attractors, trapping the tumour cells into an unhealthy cycle [54].
Compelling examples of logical networks representing cancer systems indicate that it is a promising
area of systems biology. Also, principles mentioned in Section 1.7.1, such as the identification of
high-influence nodes to eventually reduce the size of the system of interest are often applied to
logical models [50, 55, 56, 57]. Various contexts have been explored using logical modelling, such
as the modelling of differentiation processes [55] or drug combination discovery [57, 58]. Breast
cancer models have been developed too, and used to assess the sensitivity and robustness of the
models to many drugs [50, 59].

1.7.3 CASCADE 2.0 as a Starting Point for the TNBC Model

Another compelling example of the use of the logical formalism in systems biology is CASCADE
2.0. CASCADE 2.0 is a manually-curated logical model representing cancer signalling pathways.
It was itself extended from CASCADE 1.0, a gene regulatory network representative of adeno-
carcinoma, in the aim of representing the most important cancer signalling pathways [58, 60].
CASCADE 2.0 contains 11 pathways, namely NFκB signalling, PI3K-Akt signalling, signalling by
Rho GTPases, signalling by RTKs, Apoptosis, Cell cycle, JAK-STAT signalling, MAPK signalling,
TGFβ signalling, Wnt signalling, and mTOR signalling. 144 nodes and 367 edges were present in
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the first version of this network, which was later refined based on the results of dynamical analyses
that they performed.
The extension process of CASCADE 1.0 to CASCADE 2.0 aimed at constructing a model covering
the signalling processes in which the targets of 18 small-molecule inhibitors are involved. Using
baseline activity data of cell lines from different cancer types, they converted this Prior Knowledge
Network (PKN) into a Boolean network that fits the observed activity of the nodes in each cell
line, and perturbed this model by inhibiting the targets of the 18 drugs. It resulted in a significant
number of true positive predictions and few false negatives, which is promising to reduce the panel
of preclinical drug screening to discover new drug synergies. Later, they refined the network by
improving the topology of the pathways responsible for the false negative predictions, and they
ran new drug synergy predictions by calibrating only the most influential nodes of the network.
The influence of a node was calculated based on its capacity to change the synergy predictions or
create a complex attractor when switching its state to active or inactive. The predictions based on
only a subset of calibrated nodes resulted in equal or higher number of true positives, and equal
or lower number of false positives and false negatives [58].

In the wave of CASCADE 2.0, the CASCADE 3.0 model was built by extension to represent
colorectal adenocarcinoma through major signalling pathways. The extension effort was based
on a middle-out modelling method, combining both multi-omics data integration and literature
mining. CASCADE 3.0 construction was based on the over-represented pathways in a list of
genomically and transcriptionally altered genes, and on a large literature curation focused on the
known altered pathways in colorectal adenocarcinoma [61]. This effort resulted in a network of
183 nodes and 603 edges, with the addition of signalling pathways such as Notch, Hedgehog, and
Hippo, and the completion of some modules of CASCADE 2.0. Drug synergy predictions were
improved using CASCADE 3.0 rather than CASCADE 2.0 for one colorectal adenocarcinoma cell
line, and were more mitigated for another one. Surprisingly, CASCADE 3.0 performed well on
non-colorectal, epithelial cell lines used as calibration data in Niederdofer et al. (2020). CASCADE
3.0 is thus considered as an interesting reference to extend existing models by middle-out modelling
into more specific models.

1.8 Objectives

The general objectives of the project include:

1. The development of a logical model that allows accurate representation and system behaviour
prediction for TNBC

2. The deployment of a middle-out modelling approach, starting from CASCADE 2.0, and
extending it to a TNBC model

3. The calibration and testing of the model against existing data specific to TNBC

4. The prediction of new drug combinations which could be potentially considered as treatment
candidates

Additionally, this project aimed to answer the following questions:

• Can multi-omics data leverage enough relevant biological information at the individual entity
level to enable the discovery of key altered pathways in TNBC?

• Can we identify typical parameters for the pipeline which optimise the prediction power of
the TNBC model?

• Do TNBC cell lines produce Boolean models which behave in different ways?

Objective 2. was motivated by the previous successful extension of CASCADE 2.0 into a colorectal
cancer model by middle-out modelling. This project enabled the construction of a CASCADE
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2.0-family model, extended for TNBC, which we will commonly designate as the TNBC model.
Objective 3. was handled with the use of mRNA expression data of TNBC cell lines for the
calibration, allowing the construction of cell line-specific models. Those models were expected to
display similar behaviour to their respective cell line. The comparison of the steady states of the
model with the experimental cell line data was done by computation of a fitness score, enabling us
to assess the quality of the model topology. Additionally, the predictive power of the model was
tested by the introduction of perturbations imitating the effects of drug combinations that were
already experimentally assessed. Objective 4. would be valuable if the models were able to provide
correct predictions on existing data specific to TNBC.
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2 Methods

AGithub repository was created to store the necessary files to reproduce the bioinformatics analyses
performed throughout this Master’s thesis. The repository can be found following this link: TNBC
repository. The name of the files of interest will be mentioned along the report.

2.1 Workflow Overview

The goal of this Master’s thesis was to develop a Boolean model representing the main signalling
pathways involved in Triple Negative Breast Cancer (TNBC), and be able to correctly predict
known drug synergies and possibly predict new ones, by in silico perturbation of the system. The
challenge here was that TNBC cases are known to have highly heterogeneous molecular profiles,
making it hard to find an appropriate treatment for most of the patients [1, 10]. Indeed, we built a
gene regulatory Boolean model of TNBC, and the synergy predictions were then performed using
cell lines-specific data, in order to calibrate the state of the genes accordingly to the molecular
profile of different cell-lines.
The TNBC model was built by extension of an existing model: CASCADE 2.0 [58]. CASCADE
2.0 is a generic logical model representing the main signalling pathways in cancer. It contains 144
nodes and 367 edges, which represent 11 cancer signalling pathways. The list of nodes composing
the pathways is not exhaustive, but they contain the most important signalling genes in order to
respect the dynamic of the cancer processes, as identified by Niederdofer et al. (2020). The nodes
of CASCADE 2.0 either represent the protein product of a gene and are named by their HUGO
gene symbol, or they are genes, family of proteins, or complexes. These three types of nodes are
annotated with ” g”, ” f” or ” c” respectively. This model was efficiently used to predict drug syn-
ergies on different cell lines from gastric adenocarcinoma, colorectal, and prostate cancers, and was
indeed considered as a basis for a CASCADE 2.0-family model for TNBC. The same convention
of annotation as in CASCADE 2.0 were used in the TNBC model.
A middle-out modelling approach was used to identify the relevant pathways that needed to be
added to CASCADE 2.0. This approach was used in Tsirvouli et al. (2020) [61], and was proven
effective to extend CASCADE 2.0 to a colorectal cancer model. The middle-out approach included
a top-down step during which we analysed different types of omics data to identify genes that
were either differentially expressed, differentially methylated, frequently mutated, or abnormally
duplicated or deleted. These genes were enriched against pathway databases to find out which
processes were affected in TNBC cases, and add those which were not represented in CASCADE
2.0. Additionally, we identified the pathways that were already known to be abnormally regulated
in TNBC, by literature curation. The bottom-up modelling step consisted in the completion and
the detailed study of these general processes at the components and interactions level. To be
able to handle the quantity of information contained in the model, and to run simulations in an
acceptable time, the size of the network needed to be constrained, and only the most important
pathways were added.
CASCADE 2.0 was then extended with new pathways composed of the main nodes and interac-
tions retrieved from pathway and interaction databases, but also in the literature. At this step, the
model was a gene regulatory network giving information about the nature of the causal interactions
between different genes, proteins, or complexes, which we call a Prior Knowledge Network (PKN).
The next step was to convert this PKN into a Boolean network, based on RNA expression data of
TNBC cases. Several sets of Boolean equations ruling the network were generated so that the dy-
namic of the resulting networks would fit these RNA expression data. The final step was to predict
drug synergies of two-drug combinations on these different models, and assess the performance of
the models in predicting True Positive (TP) and True Negative (TN) synergies.

2.2 Omics Data Resources

The Genomic Data Commons (GDC) is a project from the National Cancer Institute (NCI) which
aims to make cancer genomic data accessible for the scientists worldwide. Indeed, the development
of high-throughput sequencing produces a massive range of data, and the GDC resources provide
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an easy access to large extent genomic consortia such as The Cancer Genome Atlas (TCGA) [62].
TCGA is a program orchestrated by the NCI and the National Human Genome Research Institute.
33 cancer types have been profiled and analysed by the TCGA Research Network. Breast cancer
was covered in TCGA Pan-Cancer analysis, along with 11 other cancer types. six types of omics
data were measured for these 12 cancer types: mutation, copy number, gene expression, DNA
methylation, microRNA, reverse-phase proteomic arrays, and clinical data [63]. The omics data
used in this project were mainly retrieved from the GDC data portal and belong to the TCGA-
BRCA project, unless stated otherwise.

2.3 Bioinformatics Resources and Statistical Testing

In this project, R was mainly used for the bioinformatics analyses [64]. R is a programming
language for statistical analyses which can be used on RStudio, an Integrated Development Envir-
onment (IDE) [65]. Bioconductor packages were used to analyse data [66]. The code used for the
different omics data analyses, the enrichment analyses, and to trace most of the plots related to it
can be found on the Github in the file TNBC data analysis pipeline v2.R.
When performing statistical tests, it is important to assess the relevance of the results. The ”null
hypothesis” is commonly defined as the absence of significant difference between two sets of ob-
servations that we wanted to prove different. For instance, a true null hypothesis in a clinical
trial would mean that there is no difference between the drug tested and the control test [67].
The p-value of an observation enable to evaluate if the probability of the event described as ”the
null hypothesis is true” is low enough to reject it. p-value are necessary in findings that will
lead to decision-making such as marketing of drugs that were deemed efficient, in the way that it
is a ”safety” threshold, and it can be taken really low to increase the reliability of the product.
However, it is necessary to consider it carefully and keep in mind that this is a probability, and
we cannot conclude from a p-value that a result is true or false. It is advised to consider other
significance measures such as confidence interval or the confidence of the tools used in the study
to assess the significance of statistical tests [68].
Furthermore, when performing multiple tests of the probability that the null hypothesis is true,
the chances to get false results can be high. For instance, performing 100 tests and considering
that a p-value lower than 0.05 is enough to reject the null hypothesis could lead to five false pos-
itive results, among the results that were supposed significant [69]. To take the multiple testing
into account, it is relevant to adjust the p-value with the False Discovery Rate (FDR), which is
defined by Glickman et al. as ”the expected fraction of tests declared statistically significant in
which the null hypothesis is actually true” [70]. A widely-used method to decrease the FDR in
multiple testing is the Benjamini-Hochberg (BH) procedure [69], which uses the p-value ranking
of the multiple tests and correct them with the ratio of the FDR and the total number of tests.
In this project, the significance of the statistical tests performed in the omics analyses, and in the
enrichment analyses was assessed using the BH procedure to calculate the FDR-corrected p-value
(also referred as q-value in some tools).
In parallel, other bioinformatics tools such as GISTIC and MutSigCV, and public knowledge data-
bases have been used to conduct the analyses and will be described in more details in the following
sections. A summary of all the tools used and their version can be found in Appendix A.

2.4 Multi-Omics Analysis

2.4.1 TCGA Data Retrieval

Triple Negative Breast Cancer (TNBC) sample data were retrieved from the BRCA project of
TCGA using the list of barcodes provided by Jiang et al. [71]. These barcodes were selected
based on the Immunohistochemistry (IHC) status of the estrogen receptor (ER), progesterone
receptor (PR), and the human epidermal growth factor 2 (HER2). A total of 173 patient’s barcodes
corresponded to a TNBC in the GDC data portal repository (and are available in Appendix B
and here in the tnbc id.csv file). However, the number of available cases for each data type was
varying, as shown in Table 1.

11

https://github.com/adiatch/Master-s-project-TNBC-modelling
https://github.com/adiatch/Master-s-project-TNBC-modelling


Table 1: Availability of TNBC cases from the TCGA-BRCA project in each data type of the
GDC Data Portal. Gene expr.: gene expression; Seq. Reads: sequencing reads; Masked SNV:
masked single nucleotide variation; Masked CNS: masked copy number segment; DNA Meth.:
DNA methylation; Protein Expr.: protein expression; Bio: biospecimen.

Gene expr. Seq. Reads Masked SNV Masked CNS DNA Meth. Protein Expr. Clinical Bio
173 173 157 173 173 144 173 173

2.4.2 Differential Expression Analysis

Gene expression data of the 173 TNBC cases were analysed using RStudio and the TCGAbio-
links Bioconductor, a package dedicated to the analysis of TCGA data [72]. A total of 286 gene
expression samples were selected based on their TCGA sample barcode which matched the pa-
tients barcodes mentioned above, including 173 breast invasive carcinoma samples and 113 nor-
mal tissue samples. The samples barcodes for the gene expression are available here in the
samples barcodes TNBC gene expr.csv file The samples were then pre-processed by removing
samples with a Spearman correlation lower than 0.6, and the mRNA transcripts were normalised
to adjust for within-lane gene-specific effects and between-lane distributional differences. Indeed,
RNA-sequencing read counts are known to be biased by the genes’ lengths, but also by the GC-
content of the target sequence and by the sequencing depth, which is the amount of sequences
generated from a lane. To overcome these biases, it is crucial to normalise the transcripts within
the same lane (i.e., within-lane normalisation) and between replicate lanes (i.e., between-lane
normalisation) [73]. After normalisation, we considered that the expression levels were correctly
processed to be subjected to further analyses. A Differential Expression Analysis (DEA) was per-
formed between the normal samples and the tumour samples groups, respectively named ”Solid
Tissue Normal” and ”Primary solid tumour” in the TCGA database. An FDR-adjusted p-value
of less than 0.05 and an absolute logFC higher than 2 were necessary for a gene to be considered
significantly differentially expressed.

2.4.3 Somatic Copy Number-Alterations

Genes affected by Somatic Copy Number-Alterations (SCNAs) were also identified. SCNAs are
very common in cancers, but they also are very complex processes and should be carefully taken
into consideration in multi-omics analyses. In one hand, somatic alterations can be ”passenger”
alterations and are not responsible for the development of cancer. In the other hand, SCNAs can
be ”driver” alterations, and are thought to occur at a higher frequency among cancer samples. The
driver mutations are powerful tools to identify underlying mechanisms of cancers. Furthermore,
one or a few genes affected by SCNAs could counterbalance the effect of SCNAs observed on
thousands of other genes, the total effect of these alterations becoming neutral [74, 75].
GISTIC is an algorithm from the GenePattern platform that has been designed to tackle these
two challenges. The algorithm is divided in several steps, and was revised into a better version,
named GISTIC 2.0. The first step defines the segmented SCNAs profile of each cancer sample,
removing the copy number variations occurring in the germline before proceeding to the next
steps. As the segments can describe overlapping regions of the genome, the algorithm successively
divides them into the most likely set of individual SCNAs based on their probability of occurrence.
Then, it estimates the background frequency of each aberration and identifies the most significantly
frequently altered genomic regions compared to the background frequency. These identified regions
can get a high score because they are close to an altered gene, thus, GISTIC 2.0 decomposes the
SCNAs into its different peaks and assess their significance to identify the final set of regions with
significant SCNAs.
The ”masked” copy number segment of 173 TNBC tumor samples from the TCGA-BRCA cohort
were directly retrieved using the TCGAbiolinks package, meaning that the germline CNVs were
already removed. Indeed, the GDC Masked Somatic Aggregation workflow removes all columns
and variants that could be germline mutations, in order to protect the anonymity of the data. A
file containing the segmented data for all the samples was created, and given as an input to the
GISTIC tool. The parameters used to run the algorithm were left to their default value, except

12

https://github.com/adiatch/Master-s-project-TNBC-modelling


a few that are given in Table 2. The results from the GISTIC analysis were read and visualised
using the Maftools R bioconductor.

Table 2: Parameters used to run GISTIC 2.0 algorithm

Reference genome GRCh38
Amplification threshold 0.1

Deletion threshold 0.1
q-value threshold 0.05

2.4.4 Frequently Mutated Genes

Single nucleotide variations are other genetic somatic alterations known to be responsible for the
development of cancers through the disruption of biological processes, giving rise to the hallmarks
of cancer [2]. The emergence of large genome sequencing projects such as TCGA provides access
to more and more samples, which were expected to provide knowledge on new mutational cancer-
driver events. However, it seems that screening the mutation profile of an increasing number of
samples leads to the discovery of a high number of false positives. Lawrence et al. (2013) suggested
that this was due to making the assumptions that the average mutation frequency is constant in
all genes, whereas it can be in fact highly heterogeneous, with some genes carrying an average
number of mutations much higher than others. MutSigCV was developed to take into account this
mutational heterogeneity and was used to find the recurrently mutated genes in TNBC [76].
A Mutation Annotation Format (MAF) file containing mutation data from the TCGA-BRCA
cohort harmonized against GRCh38 was queried using TCGAbiolinks and filtered based on their
TNBC barcodes. This MAF file contained mutation data of 24,612 genes among 157 different
tumour samples. MutSigCV was then used to identify genes with recurrent somatic mutations
in TNBC patients from the TCGA-BRCA cohort. Analysis and visualisation modules from the
Maftools R bioconductor were used to prepare the MAF file for the MutSigCV analysis, and to
visualise the results given by the latter. MutSigCV was run locally on the GenePattern server.
The full human exome coverage file, the covariates table file, and the mutation type dictionary
file provided on the platform were used as input parameters along with the MAF file previously
described.

2.4.5 Differentially Methylated Genes

Methylation data are becoming widely used in omics analyses since heterogeneous levels of DNA
methylation have been observed in cancers cells compared to normal tissue cells [77]. Methylation
is an epigenetic event consisting in the binding of a methyl group to the carbon 5 of cytosines most
often located just before a guanine, called a CpG site. In mammals, approximately 70% of the
CpG sites are methylated [78]. When promoter regions of genes are methylated, the expression of
these genes is usually lowered, since it inhibits the binding of proteins required for the initiation of
transcription [77, 79]. Many studies have found a clear correlation between the expression of cancer
genes (e.g., low expression of tumour genes, or high expression of oncogenes) and the methylation
level of their promoter region [80, 81].
Using the TCGAbiolinks bioconductor, we obtained 192 methylation data samples of 173 cases
including 16 Solid Tissue Normal, one Metastatic, and 175 Primary solid tumour samples. The
samples barcodes are available here in the samples barcodes TNBC met data.csv file The data
were obtained from the Illumina Infinium HumanMethylation450 platform. A Differentially Methyl-
ated Regions (DMR) analysis was performed using an FDR-adjusted p-value lower than 0.05 and
a DNA methylation difference threshold of 0.25. The level of methylation was calculated using
the beta-values, a measure ranging from 0.0 to 1.0 and roughly corresponding to the ratio of
methylation events in a CpG island [82].
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2.5 List of Affected Genes

In order to perform an Enrichment Analysis (EA) on the results of the multi-omics analyses, a list
of affected genes needed to be constituted. Each individual omics analysis produced a list of genes
that were significantly affected in the context of TNBC. Several lists of genes were compiled to run
different EA and compare their results. First, a gene list was compiled from the results of each
omics analysis, except for the recurrently mutated genes. Then, a gene list was compiled using the
union of the genes resulting from the DEA and from the DMR (later referred to as DEA ∪ DMR).
As mentioned above, it is interesting to compare the methylation level of the promoter regions of
the genes, and their expression level. A gene list containing the union of the genes from the DEA,
the SCNA analysis, and the DMR was built and analysed (DEA ∪ SCNA ∪ DMR). Lastly, we
added the genes found to be recurrently mutated to form a list containing all the genes that were
found altered in at least one type of omics. The lists can be found here in the gene lists EA
folder.

2.6 Pathway Enrichment Analysis

A pathway Enrichment Analysis was conducted to identify the molecular and biological processes
affected in TNBC. Indeed, the affected genes highlighted by the multi-omics analyses and consti-
tuting our gene lists are involved in many biological functions. The goal of the EA is to find the
most over-represented pathways among these lists, which would then be considered as abnormally
regulated in the context of TNBC.
The genes lists were enriched against two different pathway databases, Reactome and the Kyoto
Encyclopedia of Genes and Genomes (KEGG), in order to find the biological processes affected
in TNBC [83, 84]. The R bioconductors ReactomePA and clusterProfiler provide functions for
pathway over-representation analysis (ORA) against Reactome and KEGG databases, respectively
[85, 86].
Pathway ORA are a common type of analyses which determine whether the gene list of interest
contains more genes associated to a pathway than what would be expected by chance. To assess
if a pathway P is over-represented in a gene list G, these tools calculate the ratio between the
number of genes in G associated with P over the total number of genes in G. Then they calculate
the ratio of genes in the reference genome associated with P over the total number of genes of the
genome. If the first ratio is greater than the second one, then P is over-represented in the gene
list. What differs between KEGG and Reactome is the association of the genes with the pathways
contained in the database: since there are no clear definition of what a pathway is, the same gene
can be associated to different pathways depending on the database.
The enrichKEGG and enrichPathway functions were applied on the different gene lists. Pathways
with an FDR-adjusted p-value lower than 0.05 were considered significantly over-represented. An
EA was performed on each of the lists described above and the results were manually checked
on the Reactome Pathway Browser or on KEGG pathway database and compared to each other,
in order to select the ones that were related to cancer. As we chose to keep CASCADE 2.0 as
the basis of the model, and to extend it, the pathways found in the EA were also compared to
CASCADE 2.0.

2.7 Literature Mining

Simultaneously to the Enrichment Analyses, literature related to TNBC was curated, in order to
gain more knowledge about the relevant pathways to add in the model. The PubMed database [87]
was used to retrieve scientific papers or reviews concerning TNBC-specific pathways. First, the
literature was used to confirm that CASCADE 2.0 represented pathways that are altered in TNBC.
The literature was also used to support the results from the EA: if a cancer-related pathway found
to be over-represented in the EA was also known to be abnormally regulated in TNBC, it would
very likely be selected for modelling. Finally, the literature was used to discover new pathways
that were not necessarily over-represented in the altered gene lists, and that were not present in
CASCADE 2.0. Pathways that were often mentioned to be abnormally functioning in the context

14

https://github.com/adiatch/Master-s-project-TNBC-modelling


of TNBC were automatically selected for the modelling part.

2.8 Gene Regulatory Network Building - The TNBC Model

The gene regulatory network was built on GINsim, using CASCADE 2.0 as a base. GINsim 3.0
(Gene Interaction Network simulation) is a software used to model and perform static and dynamic
analyses on gene regulatory networks. The user can add new nodes and directed edges to a network,
annotate it, and define logical rules for each node of the network. Many network analyses can be
performed directly from GINsim, such as the computation of the state transition graph or a stable
states analysis [88]. CASCADE 2.0 was imported to GINsim, and the model was extended from
there. New pathways were added only if they were:

• Over-represented in the lists of altered genes AND documented as important/altered path-
ways in the context of TNBC

• Strongly documented as important/altered pathways in the context of TNBC

The nodes and interactions composing the new modules were curated using knowledge and pathway
databases and the scientific literature. Reactome, KEGG, and SIGNOR were mainly used to
retrieve information about the nodes composing the modules [84, 85]. The genes, proteins, and
complexes mentioned in the literature as members of the newly added pathways were added to the
network only if they respected one of these conditions:

• There was strong literature evidence mentioning the nodes as important/up-regulated/down-
regulated/mutated in TNBC

• The nodes were highlighted in the pathway EA and at least in two papers related to TNBC

• The nodes were annotated in one of the pathway databases used, and there was strong
evidence showing that they are involved in TNBC

The reader should be aware that the genes, proteins, and complexes composing the TNBC model
will sometimes wrongly be called ”genes” for simplification.

SIGNOR 2.0, standing for SIGnaling Network Open Resource, is a manually-annotated database
gathering information about the logical interactions between biological entities, in the form of
positive or negative, and directed edges. SIGNOR also offers manually curated pathway graphs.
The nature of each interaction is annotated with the mechanism of action of the regulator entity
on the target entity, and with the effect of this mechanism on the target, if these information were
given in the scientific evidence that they used to curate it. A confidence score is attributed to each
reported interaction and is calculated based on four features. First, the number of publications
in which they report this interaction. Second, the occurrence of this interaction in the SIGNOR
annotated pathways. Third, the occurrence of this interaction in a Reactome file containing the
protein-protein interactions for humans. And finally, the occurrence of the target entity in the
UniProtKB webpage of the regulator entity. This score ranges between 0 and 1, and the closer it
is to 1, the more evidences there are about this interactions [89]. SIGNOR is the main knowledge
database that was used to curate the causal interactions between the added nodes.

Some general rules were used to consider that an edge should be added to the module:

• The edge is referenced on SIGNOR with a score above 0.5 AND is not reported in a specific
cell type or disease (except for TNBC)

• The edge is referenced on SIGNOR AND clearly mentioned in at least two papers

• If the edge is not referenced on SIGNOR, the edge should be strongly supported by the
literature AND be important in the dynamic of TNBC
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• The edge should be relevant for the dynamic of the network (e.g. it should not be redundant
with another existing edge)

• The edge should not be reported both as positive and negative on SIGNOR. Such edges were
ignored

No logical rules were defined at this step for the added nodes, since they should be defined later in
the project. The network was later visualised with Cytoscape, a software developed to enable the
visualisation of biological networks, integrate a wide range of information from large interaction
databases, and compute biological and mathematical features of the network [90]. Cytoscape was
used to display the network into specific layouts, and to analyse the network’s properties. The
nodes were clustered by modules, using the Group Attributes Layout. Cytoscape offers an analysis
tool named Network Analyzer, providing several network measures, especially relevant for the
comparison and the characterisation of networks. This plugin allows the user to understand what
type of network they are using, its general organization and structure, but also the properties
inherent to each node of the network. The degree and betweenness centrality of each node were
computer using the NetworkAnalyzer, as well as the average degree and the clustering coefficient
of the network.
The degree of a node is the number of nearest neighbors it has, or in other words, the number of
nodes it is interacting with. In oriented networks, we distinguish incoming edges and out-going
edges of a node, which means that we can calculate an ”Indegree” and an ”Outdegree”. By
definition, the average degree of a network is the sum of the degrees of its nodes divided by the
number of nodes it contains.
The betweenness centrality of node A denotes the number of shortest path going through node A,
the shortest path being the minimum number of nodes one has to pass through to go from a node
B to node C. A node with a high betweenness centrality is called ”a bridge”, refering to the fact
that if we remove this node, a lot of paths are disrupted and longest paths will be used to go from
one node to another.
Lastly, the clustering coefficient of node A is proportional to the number of interactions between
the nearest neighbors of A. It reveals if A and its neighbors form a cluster or not. The clustering
coefficient of a network ranges between 0 and 1, and the closer it is to 1, the better the nodes are
forming clusters [47].
These measures were computed on the PKN considered as a directed network, and they were
compared to the measures related to CASCADE 2.0.

2.9 Generation of Boolean Models and Drug Synergy Predictions

The gene regulatory network was further studied using the Druglogics pipeline [91]. This pipeline
is composed of two modules, Gitsbe and Drabme.

Gitsbe is a module aiming to transform a PKN into a Boolean network, by generating logical
rules that fit an expected behaviour. Indeed, the PKN is a model representing only the causal
relationship between two genes/proteins/complexes. It does not include the fact that the activity
of the nodes are inter-dependent to several other nodes, which can be translated through Boolean
rules.
Gitsbe necessitates several input files to function. A SIF file containing the network’s topology
will be used as a base: this file is the one that one wants to transform into a Boolean network. At
this point, it only contains simple activation or inhibitory edges. The model outputs file is also
necessary to specify to the algorithm which nodes’ states should be considered to calculate the
resulting phenotype of the model. In this project, we considered that the dynamic of the model
could either be ”pro-apoptosis”, or ”anti-apoptosis”, and the output nodes were genes that were
leading either to apoptosis or to cell survival. Thus, the steady state of these nodes were used
to calculate a global output response. Lastly, a configuration file specifying the options used to
run the pipeline needs to be given as input. Some of these options are, for example, the number
of simulations, generations, and the population per generation, or the tool used to compute the
attractors of the models. They will be explained in further details later.
Gitsbe functions as a genetic algorithm, which means that it reproduces the principles of natural
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evolution: the best models of a generation will be selected to create the models of the next one.
During the first generation, Gitsbe first creates several basic Boolean models where each node’s
state is ruled by a default equation (the number of models generated is specified by the ”population”
parameter):

A = (B ∨ C) ∧ ¬(D ∨ E) (1)

Where B and C activate A, and D and E inhibit it. In other words, at least one of A’s activators and
none of its inhibitors should be active for A to be active. The algorithm modifies these rules with
a certain number of mutations specified by the user, in order to find the best model’s dynamic to
fit ”training” data. These training data correspond to the expected behaviour of the model under
certain conditions. Under unperturbed conditions, one can either calibrate the steady states of
some (or all) nodes of the network, or they can leave it unspecified and ask for a global output
response between 0 and 1.
If one chooses to calibrate the state of some nodes, the algorithm will try to produce a model that
has the closest steady states from these calibration data, which is quantified by the fitness score.
In our case, the use of a global output response would be relevant to simulate the death of cancer
cells (global output set to 0), or the proliferation of cancer cells (global output set to 1).
It is also possible to perturb the network’s dynamic by forcing the state of some nodes (for example
forcing it to 0 for a gene knock-out or to 1 for a knock-in).
After having calculated the fitness score of each model of the first generation, the algorithm selects
the best ones and exchange their logical rules to generate models for the next generation. This
is iteratively repeated until a fitness threshold or the maximum number of generations is reached,
and called a ”simulation”. In the end, a given number of the best models of the last generation
are saved.
The user can choose the number N of simulations to run, and the whole process described above
is repeated for N simulations.
The resulting files from Gitsbe are all the best models (i.e. the ones with the best fitness score)
from all the simulations.

After having produced several boolean models with Gitsbe, Drabme can be used to predict drug
synergies on this set of ”best” models. Drabme is the second module of the pipeline. It is made
to test the effect of drug combinations on the dynamic of the models. It takes as input files the
best models produced by Gitsbe (in .gitsbe format), along with a file containing all the drugs to
be tested and their targets. Based on this file, the algorithm will be able to modify the state
of the drug targets to 0 or 1 according to the action of the drugs, and assess their effects. In
the configuration file mentioned above, the synergy score used to assess the effect of the drug
combinations can be set either to ”hsa” or to ”bliss” depending on which synergy metrics is used.
With these two metrics, a drug combination is considered synergistic when the viability of the
model is lowered compared to the viability of the model when the effects of the separate drugs are
added. The viability of the model is calculated using the global output response of the perturbed
model, indeed the model outputs file mentioned above will be required. The combination size (i.e.
the number of drugs combined) also needs to be specified in the configuration file.
In this project, only two-drugs combinations were tested. To calculate the synergy score of a
combination of drug A and drug B, Drabme first perturbs the model using drug A (i.e. by forcing
the state of the drug A’s target(s) to 0 or 1 accordingly to the action of drug A) and calculates the
global output response of all the best models provided by Gitsbe under perturbation A. It then
perturbs the models with drug B, and calculates the global outputs. Finally, it perturbs the model
with both drugs A and B (i.e. by forcing both the state of drug A’s and drug B’s targets to 0 or
1 accordingly to the action of drug A and B). Depending on the score metrics used, the synergy
score from the combination of drug A and B is calculated based on the global output responses of
the models under these three perturbations. All the files necessary to reproduce the simulations
are available here.

2.9.1 Training Data Retrieval

Four well-studied TNBC cell-lines data were used to train the algorithm. These data were RNA-
sequencing data obtained from the Cancer Cell-Line Encyclopedia (CCLE). The expression profile

17

https://github.com/adiatch/Master-s-project-TNBC-modelling


of 41,717 gene probes was found for the following cell-lines: MDA-MB-231, MDA-MB-453, HS-
578T, and BT-549. Following the PAM50 subtypes, MDA-MB-231, HS-578T, and BT549 belong
to the basal-like subtype, meaning that they exert a basal phenotype, while MDA-MB-453 belong
to the luminal-B subtype [8, 92]. In the TNBC subtypes defined by Lehmann et al. (2011),
MDA-MB-231 and HS-578T are together classified as mesenchymal-stem-like whereas BT549 is
classified as mesenchymal, and MDA-MB-453 as luminal-androgen-receptor. Differences in their
RNA expression profiles are expected considering the heterogeneity of TNBC.

We only kept the expression of genes that were present in the network as training data, and
averaged each gene expression among their probes, which ended in four lists of expression data of
184 genes. By cell-line, their expression values were then scaled from 0 to 1 using the equation:

xi,scaled =
xmax − xi

xmax − xmin
(2)

Where xi,scaled is the scaled expression of gene xi, and xmax and xmin are respectively the max-
imum and the minimum expression of all the genes in the cell line.

In a first step, all the nodes for which we had an expression value were calibrated on these scaled
expression data (184 nodes). The training data of the 184 nodes for the four CCLE cell lines are
available here: training files → training CCLE full name.tab.

Another set of expression data was used to investigate the influence of the training file on the results
of the pipeline. These data were RNA-sequencing data from the TNBC cases of the TCGA-BRCA
project. TCGAbiolinks was used to perform hierarchical clustering of these samples with the RNA
expression of the four cell lines previously used, based on the Euclidean distance of the expression
profile of 184 genes of our model. The aim of this step was to select the TCGA samples that
clustered with the CCLE cell lines, use these samples as training data, and predict drug combina-
tions that were observed synergistic for the CCLE cell lines.
Separately, the TCGA and CCLE data were normalised using counts per million, they were then
scaled between 0 and 1, and finally, in order to get closer to Boolean states and investigating if
the fitting score of the models could be improved, the values strictly higher than 0.5 were set to 1,
and the values equal or below 0.5 were set to 0. The expression values of the genes were averaged
across the samples of a same cluster, and then scaled between 0 and 1. Then, the variance of
each gene across all the samples was computed, and we clustered the samples based on the discret-
ised expression of the top 1,000 variable genes. In this case as well, 184 genes of the model were
calibrated using the binary TCGA expression data, which are available here: training files →
training TCGA full.tab.

Previous observations on several models developed by the Druglogics group, including CASCADE
3.0 [61], showed that calibrating the model with a smaller number of nodes improves the predictive
performance. Also, there is ongoing work from the group on optimizing the calibration parameters,
and especially on the use of a metric, the Determinative Power (DP) of the nodes, to assess the
topological importance of the nodes of a network. The DP has been shown very promising to
improve the prediction performance of some models from the group, and we decided to investigate
whether it could have the same effect on the TNBC model.
The DP is a metric based on the topology of Boolean networks, and does not account for the
state of the nodes, but for the quantity of information flowing through the nodes. The DP can
be calculated for each node, based on the information provided by its regulators, and it unveils
the quantity of information that can be deduced from its state regarding the other nodes of the
network. Then, this is a static measure giving information on the dynamic of the network [56, 93].
The DP of the nodes of the network was calculated using the script provided by Weidner et al.
(2021) [51], and using the topology of the first model generated by Gitsbe. This model uses the
equation 1 for all the nodes.

Finally, rather than using calibration data to train the models, it is possible to train them on
what is called a random proliferative training data profile. This situation corresponds to an un-
perturbed model (we are not calibrating the state of any node), left in a proliferative dynamic.

18

https://github.com/adiatch/Master-s-project-TNBC-modelling
https://github.com/adiatch/Master-s-project-TNBC-modelling


The global output is expected to be equal to 1, which translates the fact that if we leave cancer
cells unperturbed, they keep proliferate. Following the workflow shown in the tutorial relative
to the DrugLogics pipeline [91], the prediction results from the random models are then used to
normalise the calibrated models predictions. It is expected that the normalization of the calib-
rated predictions with the random proliferative predictions increases the prediction performances
in terms of ROC-AUC.

2.9.2 Generation of Logical Equations with Gitsbe

In this project, some parameters remained unchanged and the most important ones are summarized
in Table 3. Other parameters such as the number of simulations and the type and number of
mutations were modified and their influence will be discussed in the Results and Discussion part
(3).

Table 3: Parameters used to run Gitsbe simulations

Attractor tool Nr of generations Population Nr of best models saved
BioLQM 20 20 3

The configuration file allows the user to run the simulation on the raw PKN, but also on a network
where the ”input” or ”output” nodes were removed. The input nodes are the ones which do not
have incoming edges, and the output nodes do not have outgoing edges. Input nodes do not have
a defined logical function since they have no regulators and represent external signals [52]. We
removed them from the PKN to run the simulations.

The model outputs file used in this project was always the same. CASP8, CASP9, and FOXO f
were the nodes contributing to the ”pro-apoptosis” phenotype, thus they all had a weight of -1,
whereas RSK f, CCND1, and MYC were the nodes contributing to ”anti-apoptosis” with a positive
weight of one each (see Appendix C). The state of these nodes were therefore used to calculate the
global output response of the model and assess, for example, the effect of a perturbation.

2.9.3 Synergy Data Retrieval and Drug Targets

Synergy data were used to generate a list of drugs to test two-drugs combinations on the generated
models. These synergies were obtained from several drug synergy repositories depending on the
availability of such data on the four used cell lines. As explained above, Drabme can calculate both
an HSA synergy score, or a BLISS synergy score, based on the global response of the perturbed
model. Indeed, both HSA scores and BLISS scores were retrieved from SynergxDB, DrugComb, and
DrugCombDB, when they were available [94, 95, 96]. These databases contain drug combination
information on different datasets, therefore, we needed to combine them to find drug synergies for
all of our cell lines.

To create the drug panel file for Drabme predictions for each of the cell line, we needed to specify
the drugs and targets that we wanted to test. One file per cell line needed to be created, since the
combinations found in the synergy databases were specifically tested on one cell line. The tested
drugs to include in this file should act on nodes of the model, indeed, some of the synergies found
could possibly be excluded of the analysis if it was not targeting our nodes. To create this file, it
was necessary to know the targets of each drug involved in the synergistic combinations tested on
the four cell lines.
DrugBank is a database gathering extensive information about drugs, their molecular properties
(structure, weight, formula), their targets, and the nature and mechanism of their action [97].
These information are available for drugs approved by the Food and Drugs Administration (FDA-
approved), and for drugs that are in the process of approval as well. The complete database was
downloaded and searched using R and the drugbankR Bioconductor. The tested drugs were queried
along with their targets and their action (inhibition or activation), and only the drugs acting on
nodes of our network were selected for synergy predictions. The drug panel files were then created
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and contain the drugs acting synergistically for their respective cell line and targeting nodes of the
models. They are displayed in Appendix D.

To predict drug synergies when using TCGA-calibration RNA expression data as mentioned in
Section 2.9.1, we needed to adjust the drug panel. Indeed, the drug panels contained drugs that
were observed synergistic for the four CCLE cell lines. The observed synergies differ from one
CCLE cell line to another, indeed we could not assume that they would be observed in TCGA
samples. The choice of the composition of the drug panel used in this case will be detailed in the
Results and Discussion part 3. All the files necessary to reproduce the simulations are available
here.

2.9.4 Drug Synergy Analysis with Drabme

Drabme produces several output files, including a so-called ”Ensemble-wise synergies” file which
provides the average synergy score of each drug combination tested, across all the best models
provided by Gitsbe (or in a .gitsbe format). This score is calculated either as an HSA score or a
BLISS score. Other files are also produced by Drabme, but were not used for further analyses and
will not be described here.
To assess the performance of the predictions, we calculated the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC). This metric is used to assess the performance of a binary test
(here, Drabme classifies the combinations as synergistic or not), by comparing its True Positive
Rate (TPR) and its False Positive Rate (FPR) at different values. The TPR, also called sensitivity,
can be calculated with the following equation:

TPR =
TP

TP + FN
(3)

Where TP stands for True Positive, and FN for False Negative. The sensitivity highlights how
accurate is the model for predicting true synergies (it is the number of true synergies that were
correctly predicted divided by the total number of synergies observed). On the other hand, the
FPR can be calculated as follows:

FPR =
FP

FP + TN
(4)

Where FP stands for False Positive, and TN for True Negative. This is the number of wrongly
predicted synergies divided by the total number of non-synergistic combinations. The ROC curve is
obtained when plotting the TPR on the y-axis, and the FPR on the x-axis, and will give information
on the usefulness of the prediction: if the curve is of equation y=x, then the prediction is random,
and does not predict more TP than FP. If the prediction is efficient and Drabme is able to predict
more TP than FP, then the AUC of the ROC curve will be higher than 0.5.

In this project, the AUC of the ROC curves of all the predictions were traced and compared to each
other, in order to find the best performing cell lines or parameters used to generate and calibrate the
models. The code used to trace the ROC plots is available here in the Drabme performances.R
file.
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3 Results and Discussion

3.1 Multi-Omics Data Analyses

As highlighted by multiple studies, the integration of multi-omics in the study of complex diseases
such as TNBC is necessary to understand the interplay of different types of molecules in the
regulation of the cancer processes, and be able to represent it at the systems biology level [80, 48].
In this study, we integrated transcriptomics, epigenomics, and genomics data from TNBC patients,
and we attempted to link the results provided by the analyses to general biological processes (or
pathways), in order to draw the molecular story of this disease into a biological network.
Among the 271 different TNBC patients included in the TCGA-BRCA study, 270 were females and
only one was male, 228 were below 70 years old, 196 were white, 57 were black or african-american,
ten were asian, and seven were of unknown ethnicity [62].

3.1.1 Differentially Expressed Genes

The first omics analysis performed was a Differential Expression Analysis (DEA) between solid
tissue tumour samples and normal tissue samples. All the gene expression samples from the
TCGA-BRCA project were first queried and prepared into an R object, and were then explored,
pre-processed, and analysed using functions of the TCGAbiolinks package. The pre-processing
step was performed using the TCGAanalyze-Preprocessing function which plots the Array-Array
Intensity Correlation (AAIC) matrix along with a boxplot of correlation samples by samples (fig.2).
A Spearman correlation threshold of 0.6 was applied, but no sample with a lower correlation than
0.6 was detected, which means that no outliers needed to be removed from the data. This step
involved the 1222 BRCA samples, since the filtering based on the TCGA barcodes was done at a
later stage.

Figure 2: Array-Array Intensity Correlation (AAIC) matrix and boxplot of correlation samples by
samples of the TCGA-BRCA gene expression samples.

Before transforming further these BRCA samples, we filtered them based on their barcode. A list
of TNBC patients’ barcodes from the TCGA-BRCA study was provided in Jiang et al. (2016),
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thus we only selected these patients [71]. To ensure the quality of the analysis, the data were
normalised using within-lane normalisation and between-lane normalisation, as mentioned in the
Methods. The result of the normalisation is displayed as boxplots in Figure 3.

Figure 3: Boxplot of the mRNA transcripts read counts before and after within-lane and between-
lane normalisation. These boxplots show the dispersion of the reads for each sample before and
after normalisation. The box represents the interquartile range, meaning that half of the data are
comprised in this range (i.e. from the first quartile to the third). Outside this box, the dotted line
represent the lowest and highest value for each sample.

The DEA was performed on 17,394 genes among the 286 tumour and normal samples. The list of
the samples’ barcodes can be found on the Github in the samples barcodes TNBC gene expr.csv
file. Using an absolute logFC lower than 2 and a FDR threshold of 0.05, we identified 2,262
DEGs, which were represented in a volcano plot (fig.4). We found 1,520 over-expressed genes (i.e.,
with a logFC≥ −2) and 753 under-expressed genes (i.e., with a logFC≤ −2), respectively. The
list of these genes along with their logFC and FDR value can be found in the Github in the
DEGs with logFC value.csv file.

Figure 4: Volcano plot of the Differentially Expressed Genes (DEGs). The dashed lines represent
the FDR threshold of 0.05 and the logFC threshold of 2. The blue and the red dots represent the
down-regulated genes (logFC≤ −2) and the up-regulated (logFC≥ 2) genes, while the black plots
represent the non-significantly differentially expressed genes.

To verify our findings, we compared the 2,262 DEGs from our analysis to the findings of Wang
et Guda (2016). They analysed the gene expression profile of 55 TNBC samples from TCGA
microarrays and found 1,800 significantly over-expressed genes compared to the paired normal
samples using the same logFC and FDR thresholds as we did [80]. Among the 2,262 DEGs that
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we found, 1,520 were over-expressed genes (i.e., with a logFC≤0), and 196 were common to the
list of over-expressed genes of Wang et Guda (2016). This represents an overlap of approximately
13%, which is low, but not surprising since the two analyses were run on a different number of
samples, and that most comparisons of gene expressions obtained through RNA sequencing and
microarrays are usually done on subsets of the same size [98].
The total number of DEGs that we found is quite large and could not be analysed by checking all
the genes one by one. To reduce this number, we could have chosen more stringent thresholds for
the significance (FDR value) and the differential measure (logFC). However, the next steps of the
project involved enrichment analysis of these genes, which can be performed on a large gene list,
thus it was not necessary to be too stringent. Furthermore the logFC and FDR thresholds were
chosen based on the value that we found in most scientific studies that we encountered involving
DEA. Furthermore, Wang et Guda (2016) classified the genes resulting from their omics analyses
into levels of hyperactivation, the first level being the DEGs, and the following levels being the
genes belonging to level one and being hyperactivated in another omics type (i.e a gene with high
copy number, low methylation, or target of miRNA found with low expression in TNBC). This
is translating the fact that they based the hyperactivated status of a gene on its RNA expression
before considering further omics types [80]. Thus, based on the proven relevance of gene expression
data integration into many multi-omics-based models, we decided to keep all those DEGs [99] .
In our results, nine micro RNAs (miRNAs) were found differentially expressed (three were under-
expressed, six were over-expressed), including three that were earlier reported in the literature:
miR-155, miR-497, and miR-497 [100, 101]. miRNAs are small non-coding RNAs which target
specific mRNA and control their expression in the genome of eukaryotic organisms [1]. Except the
fact that we included the miRNAs in the next step of our multi-omics analysis, no specific attention
has been brought to it. However, specific miRNA expression patterns have been highlighted in
different types of cancer, and it is now clear that some of them function as oncogenes or tumour
suppressor through their regulatory activity, and could be interesting prognostic factors or even
treatment targets [102].

3.1.2 Somatic Copy-Number Alterations

As a second omics analysis, we searched for significantly amplified or deleted regions of the gen-
ome, referred to as SCNAs. Copy Nunmber Variation (CNV) profiles of 174 tumour samples
from TCGA-BRCA were available and retrieved with the TCGAbiolinks bioconductor. GISTIC
provided several results files. The first file of interest contains all the data about the aberrant re-
gions, and the name of the samples that are significantly amplified or deleted in the corresponding
regions. Two other important files contain the amplified and the deletion peaks, respectively with
the genes contained in these regions. Lastly, it provided a file with the scores of the identified
amplifications and deletions. FDR-corrected p-value and information about the amplitude of the
peaks and the frequency of aberrations are provided in this file. Functions of Maftools were used
to read the files of interest and to display the significantly altered cytobands as a function of the
number of samples in which this region is altered, and the number of genes it contains (Fig.5). A
chromplot of the altered regions is represented in Appendix E.
1,062 genes were found located in significantly amplified or deleted regions and were considered for
further analysis. The full results are available on the Github repository in the GISTIC results
folder.

23

https://github.com/adiatch/Master-s-project-TNBC-modelling


Figure 5: Bubble plot of the significantly amplified or deleted chromosomal regions (cytobands) in
the TCGA-BRCA TNBC samples. The red and the blue dots represent the amplified and deleted
regions, respectively, and their size is inversely proportional to the FDR. The five named dots
represent the five locus which had the most significant alteration in terms of q-value.

Among these 1,062 genes, RB1 and PTEN were found in amplified regions, and EGFR was found
in a significantly deleted region, confirming the results observed by Shah et al. (2012) [18].
Figure 5 and Appendix E highlight the same five loci, respectively for their high p-value, and
for their high G-score, a score calculated by Gistic and based on the amplification or deletion
peak and the frequency of alterations across the samples. These 5 peaks include two loci that
were identified significantly amplified, and three others that were found significantly deleted. All
of these regions were previously identified as altered in other studies concerning breast cancer.
1q21.3 was found significantly amplified in 10 to 30% of breast primary tumours, and in more
than 70% of recurrent cases. Indeed, 1q21.3 would be amplified in tumour infiltrating cells (TICs),
which are characteristic of tumour heterogeneity and enhance resistance to treatments and relapse.
1q21.3 amplification was shown responsible for the enhanced phosphorylation of IRAK1, a protein
involved in tumour recurrence [103]. 8q24.21, another locus significantly amplified in many samples,
is known to contain mostly long non-coding RNAs (lnRNAs) and miRNAs, and only a few protein-
coding genes. Some lnRNAs contained in this locus (PCAT1, CCAT1, CCAT2) are known to be
involved in breast cancer progression which suggests a correlation between the amplification of
this locus and their abnormal activity in this type of cancer [104]. The most important protein-
coding gene it contains is the oncogene MYC, which is thought to be a key target gene in breast
cancer, and especially in TNBC because of its over-expression in many cases [105, 106]. We found
that 10q23.3 was significantly deleted across the tumour samples. This locus codes for PTEN, a
tumour suppressor known to be mutated in many cancers. Deletion of this locus has been observed
in several cancer types, and loss of heterozygosity of the 10p23 region was observed in 40% of
invasive carcinomas, suggesting that it plays a role in tumour progression [107, 108]. Similarly, the
significant deletion of the 8p23.2 locus in the TNBC samples agree with the literature, since this
locus was found deleted in 55% of primary breast tumours. This locus particularly codes for the
gene CSMD1, a known tumour suppressor [109]. Lastly, the 19p13.3 locus was found significantly
deleted as well, agreeing with previous results where this locus was found with allele loss in breast
cancers, and especially in hereditary breast cancers. It is coding for genes that are thought to be
tumor suppressor [110, 111]. These results agree with the scientific literature and confirm that the
analysis of SCNAs gives important insights into the mutational profile of TNBC.
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3.1.3 Frequently Mutated Genes

The third omics analysis conducted in this study highlighted the most frequently mutated genes
in the TNBC samples. 157 TNBC samples with Simple Nucleotide Variation (SNV) data were
retrieved from the TCGA-BRCA repository. They were all female samples. A MAF file was
prepared using Maftools, and used for further analysis on MutSigCV. The algorithm of MutSigCV
takes into account the mutational heterogeneity in cancers and returns the most frequently mutated
genes compared to the gene-specific background mutation rate. Surprisingly, only three genes were
identified as significantly mutated across all the patients’ samples, namely TP53, PIK3CA, and
PTEN, with a FDR-corrected p-value lower than 0.05. They respectively had a mutation frequency
among all 157 samples of 87.3%, 15.9%, and 7.6%. repository in the MutSigCV results folder.
The previous study using the CASCADE 3.0 colorectal cancer model have found between 6 and
55 significant results using MutSigCV [61], however, using the same tool, Jiang et al. (2016) only
found TP53 as recurrent somatic mutation in TNBC [71]. Furthermore, it was already known
that TP53, PIK3CA, and PTEN were frequently mutated in TNBC [18, 112]. Shah et al. (2012)
additionally reported USH2A and MYO3D among the most frequently mutated genes, with an even
higher frequency than PTEN. Divergence in the methods for the detection of frequently mutated
genes could explain these differences.

3.1.4 Differentially Methylated Regions

The last omics data analysis performed was a Differentially Methylated Regions (DMR) ana-
lysis, which highlighted the most significantly hypo-methylated or hyper-methylated regions of
the genome of the TNBC patients compared to the group of normal samples. Using the function
TCGAanalyze DMC, we identified 255 significantly differentially methylated CpG islands, includ-
ing 100 hyper-methylated and 155 hypo-methylated regions. The probes’ names were converted
to Gene Symbols corresponding to the gene encoded in these regions, resulting in a total of 88
hyper-methylated genes and 115 hypo-methylated genes. The detailed results of this analysis are
available in the Github repository in the DMR results.csv file. These regions are represented
as a volcano plot in Figure 6.
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Figure 6: Volcano plot of the Differentially Methylated Regions (DMR). The dashed lines represent
the threshold of beta-value and the logarithmic value of the FDR-corrected p-value threshold used
to identify the DMR.

Basal-like breast cancers, which are a majority of TNBC, are known to have low levels of methyla-
tion, compared to the other breast cancer subtypes [7, 113]. However, we would have expected an
hypermethylation of BRCA1 promoter region since it has been observed in several TNBC cases,
leading to an epigenetic silencing of the BRCA1 gene [71]. It was not found significantly differen-
tially methylated in our study.
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3.2 Composition of the Gene Lists Used for the Enrichment Analysis

The omics analyses previously described gave rise to lists of aberrant genes in TNBC. The number
of genes resulting from each of these analyses is summarized in Table 4. Different gene lists were
used to perform pathway Enrichment Analyses (EA). As described in 2.5, we performed a separate
EA on each of the gene lists made of the results from the DEA, the SCNA analysis, and the DMR
analysis. They respectively contained 2260, 2062, and 203 gene names. The list of the DEGs
and the differentially methylated genes contained 2426 genes, and 37 genes were found in common
between the two separate lists. The list composed of the genes from the DEA, the DMR analysis,
and the SCNA analysis contained 4304 distinct genes, and 184 were found in common between
each separate lists. The last list, which additionally included the RMGs contained 4307 genes.
The different lists of genes used for the EA can be found in Github in the gene lists EA folder.

Table 4: Number of genes identified in each of the omics analysis performed. These genes were
later used for pathway enrichment.

Omics Analysis Number of Genes
Differentially Expressed Genes 2260
Amplified or Deleted Genes 2062

Differentially Methylated Genes 203
Recurrently Mutated Genes 3

As it was done in Wang et Guda (2005), we could have built gene lists based on the number of omics
analyses in which the genes were highlighted [114]. For example, we could have selected the genes
that were differentially expressed and altered in at least one of the other types of omics. However,
doing so would have restricted the list to 210 genes, and the limited mapping of the entities
by Reactome and KEGG databases would have restricted this number even more. Furthermore,
Tsirvouli et al. (2020) used an approach where all the genes that were found in either of the omics
analyses were used for enrichment against a pathway database, so we decided to apply the same
method in this project [61].

3.3 Identification of Over-Represented Pathways

The Enrichment Analysis performed on the gene lists described above provided a large number of
results with an FDR≤0.05 which were thus considered significantly over-represented and needed to
be filtered. Indeed, Reactome provided much more results than KEGG in most of the analyses, as
shown in Table 5. These results needed to be manually checked in a pre-selection step, in order to
remove those which were not related to cancer. The final selection of the pathways composing the
model was done by combining the knowledge resulting both from the EA and from the literature
mining. These two processes were done simultaneously, and the reasons why some pathways found
in the EA were discarded or selected will mostly be given in the literature mining part (3.4).

Table 5: Number of significantly over-represented pathways identified in each of the gene lists
(FDR≤0.05).

Gene list Reactome KEGG
DEA 173 29
SCNA 6 32
DMR 2 1

DEA ∪ DMR 165 30
DEA ∪ SCNA ∪ DMR 189 52

DEA ∪ SCNA ∪ DMR ∪ RMG 207 51

The enrichment analysis of the differentially methylated genes did not give a lot of significant
results (FDR≤0.05) compared to the other gene lists (”Neuroactive ligand-receptor interaction”
against KEGG, ”Class A/1 (Rhodopsin-like receptors)” and ”Peptide ligand-binding receptors”
against Reactome).
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This is a surprising result since several studies agree on the fact that TNBC cases show extensive
hypo-methylation, which is directly linked to the high activity of some genes involved in the immune
system and revealing the presence of tumour infiltrating lymphocytes for example [7, 115]. Another
study showed that differentially methylated genes in TNBC that were negatively correlated to the
expression of differentially expressed genes were enriched in several important cancer pathways
such as angiogenesis, extracellular matrix organization, inflammatory response and cell adhesion.
However, the identification of the DMR was done using different statistical methods than us, and
they also used another pathway EA tool [116].
These results suggest that there might be important differences in the way differentially methylated
genes are identified, which would lead to important variations in the results of following analyses.

3.3.1 Results of the Enrichment Analysis against KEGG

KEGG provided a reasonable amount of results compared to Reactome, but a pre-selection step
was still required to remove the pathways that were not related to cancer. As we wanted to build
a model constrained in size, we also needed to identify the pathways which contained the most
important genes. Pathways such as ”Alcoholism”, or ”Systemic lupus erythematosus” had low
q-value but were considered irrelevant for the modelling part as they were not signalling processes
involved in cancer. Most of the pathways present in CASCADE 2.0 were over-represented in at
least one of the gene lists (data not shown).
Table 6 only displays the pathways that were found enriched in our analysis and that were selected
during the literature curation as new modules. The extensive results are not shown for practical
reasons, but Appendix F shows plots of the 30 over-represented pathways with the lowest q-value
for each EA against KEGG. The DEGs were enriched in genes involved in cAMP signalling and
in cell cycle, two pathways already present in CASCADE 2.0.
The list resulting from the SCNA was enriched in MAPK cascade, p53 signalling, and PI3K/Akt
signalling genes, three pathways present in CASCADE 2.0. The VEGFR and the cPLA2 signalling
cascades were also shown to be over-represented in this gene set.
The EA indicated that the differentially methylated genes were enriched in ”neuroactive ligand-
binding interaction” genes, which was not selected for the modelling part since it included many
receptors and their ligands. These individual receptors are not interacting with each other, and
the pathway itself is not directly known as a main actor of cancer, even though it is not excluded
that it could be involved in some cancers. However, for practical reasons, it was not selected for
the following steps of the modelling. To see if more results could be obtained from the DMR, an
EA was performed on both DEA and DMR results. It was enriched in cAMP signalling and in cell
cycle, two pathways that were also over-represented in the DEGs gene set.
We then combined the genes resulting from the DEA, the DMR analysis, and the SCNA analysis,
and performed an EA on the 4,307 genes of this list. This was repeated on the same list to which
we added the three recurrently mutated genes found by the MutSigCV algorithm, TP53, PTEN,
and PIK3CA. The results were the same: cAMP signalling, cell cycle, MAPK cascade, p53 and
PI3K/Akt signalling were over-represented and present in CASCADE 2.0. No new pathways were
highlighted in these two EA.

Table 6: Pathways identified by the Enrichment Analyses of the different gene lists against KEGG

Gene list cAMP Cell Cycle cPLA2 MAPK PI3K/Akt p53 VEGFR
DEA
SCNA
DMR
DEA+DMR
DEA+SCNA
+DMR
DEA+SCNA
+
DMR+RMG

Overall, the EA against KEGG mostly highlighted that the lists were enriched in genes involved
in cAMP, MAPK, PI3K/Akt, p53, VEGFR, and cPLA2 signalling, and cell cycle. Most of these
pathways are already present in CASCADE 2.0 and will be kept in the model. cPLA2 and VEGFR
signalling were only over-represented in the SCNAs gene list, but will be studied later in the

27



literature review.
These findings show that the individual omics alterations of TNBC cases, when taken together,
bring up the same functional alterations than what is represented in CASCADE 2.0. It is also
bringing up new pathways that can be further studied to extend CASCADE 2.0 in a TNBC-specific
model.

3.3.2 Results of the Enrichment Analysis against Reactome

The same analyses were conducted against Reactome, and resulted in much more significantly
over-represented pathways than with KEGG. Indeed, the pathway names in Reactome often refer
to sub-processes of larger pathways, and many results were redundant. Several pathways were
considered relevant in the cancer context but will be referred as only one because they are overall
forming one more general pathway. For example, ”DNA Double Strand Break Response” and
”DNA Double Strand Break Repair” were named ”DNA repair”.
Similarly, Table 7 only displays the pathways that were found enriched in our analysis and that
were selected during the literature curation as new modules. The extensive results are not shown
for practical reasons, but Appendix G shows plots of the 30 over-represented pathways with the
lowest q-value for each EA against Reactome. The DEGs were enriched in several relevant path-
ways, including in cell cycle, matrix remodelling, and Rho GTPases signalling which are present
in CASCADE 2.0, but also in Notch, FGFR and BRCA signalling and DNA repair.
Surprisingly, the EA of the SCNA genes against Reactome did not provide a lot of significant
results compared to the other gene lists. This list was enriched in pathways related to glycerophos-
pholipids biosynthesis. The genes involved in this process are part of the arachidonic acid-derived
signalling cascade, such as cPLA2.
Similarly to the EA against KEGG, the list of differentially methylated genes was enriched in two
pathways involving G protein-coupled receptors which were not considered in the following steps.
The list combining the DEGs and the differentially methylated genes was enriched in the same
pathways than the DEGs alone, along with PI3K/Akt signalling genes.
The EA on all the aberrant genes except the RMGs showed that they were enriched in cell cycle,
matrix remodelling, PI3K/Akt, and Rho GTPases signalling, which are already present in CAS-
CADE. However, BRCA signalling and DNA repair, Notch, cPLA2 and FGFR signalling were also
over-represented.
Performing an EA on all the aberrant genes (including the RMGs) gave additional results: apop-
tosis, cell adhesion, p53 and RTKs signalling were over-represented too.

Overall, similarly to the EA against KEGG, most of the pathways found over-represented are
already included in CASCADE 2.0: apoptosis, cell adhesion, cell cycle, matrix remodelling,
PI3K/Akt, p53, Rho GTPases, and RTKs signalling. This suggests that EA is a powerful tool
to leverage knowledge at a functional level in cancer models. However, some pathways were high-
lighted by Reactome and not by KEGG: BRCA signalling and DNA repair, cPLA2, FGFR, and
Notch signalling could, among others, be considered as new modules for the TNBC model. A
combination of several pathway enrichment tools could enable us to complete the results and thus,
reveal a wider range of abnormally functioning pathways in diseases.

Table 7: Pathways identified by the Enrichment Analyses of the different gene lists against Re-
actome

Gene
list

Apopt-
osis

BRCA
/DNA
repair

Cell ad-
hesion

Cell
Cycle

cPLA2 FGFR
Matrix
remod-
elling

Notch
PI3K
/ Akt

p53
Rho
GT-
Pases

RTKs

DEA
SCNA
DMR
DEA+
DMR
DEA+
SCNA+
DMR
DEA+
SCNA+
DMR+
RMG
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3.4 Identification of Pathways in the Literature

Scientific literature related to breast cancer and especially to TNBC helped identify a number of
pathways known to be abnormally regulated in the context of TNBC.
The literature curation confirmed that all of the pathways already present in CASCADE 2.0 are
also known to be involved in TNBC mechanisms, and often targeted by therapies.

For instance, cell cycle genes are often found affected in TNBC or in Basal-like breast cancer, and
have an impact not only on cell cycle, but also on the cytoskeleton with the organization of the
centrosomes, of the chromosomes, and of the mitotic spindles [117]. Notably, various kinases have
been found to be implied in the misregulation of the cell cycle, and have an impact on tumour
growth and metastasis through the control of the cytoskeleton and the Epithelial to Mesenchymal
Transition (EMT) [118, 119, 120, 121]. Cell cycle genes are also closely related to apoptosis, a
pathway that is largely represented in CASCADE 2.0 [122, 123]. Genes such as MDM2, RB1,
MYC, EP300, and cyclins were clearly identified as key genes in the misregulation of the cell
cycle in TNBC, and were already present in CASCADE 2.0 [124, 125, 126, 127]. Examples of
cell cycle genes potentially targeted by therapies are PLK1, the Aurora kinases A and B, and the
cAMP-response element-binding binding protein (CREBBP) along with Beta-catenin and FOXM1
[128, 120, 123]. Overall, these elements concerning affected cell cycle genes, and their effects on
tumour growth, EMT and proliferation, as well as apoptosis, confirmed that the cell cycle, matrix
remodelling, and apoptosis pathways are central to tumour progression of TNBC, and that some
genes are specific to TNBC cases and would need to be added to the model.

Other pathways present in CASCADE 2.0 such as PI3K/Akt-mTOR, MAPK cascade, WNT, and
TGFβ signalling were often mentioned in the literature concerning TNBC. These pathways were
not extensively investigated - and except for a few new genes, not extended - since CASCADE
2.0 was considered as a generic cancer model, with proven efficiency to describe cancer models,
and that we decided that we would not remove any of its components. However, it is important
to mention that several models of TNBC took these pathways into account, as in Tognetti et al.
(2021) or in Narrandes et al. (2018) [117, 50]. Therefore, these studies highlight that the PI3K/Akt-
mTOR signalling elements are among the most central ones and that the incidence of mutations
of genes such as PIK3CA and PTEN (member of the PI3K/Akt signalling) is higher in TNBC
than in other breast cancers, making it key therapeutic targets for the future of TNBC, as already
suggested in other studies [129, 130]. The MAPK signalling cascade was found hyperactivated in
a subset of TNBC cases [131] and genes of the MAPK cascade have been found hyperactivated in
TNBC compared to other breast cancer subtypes [80]. The WNT pathway and its receptors, the
TGFβ, NF-κB, and Jak/STAT signalling pathways are also misregulated in TNBC, and constitute
potential targets for treatment [117, 129, 131].

FGFR Signalling: One of the pathways frequently mentioned in the literature is the Fibroblast
Growth Factor Receptors (FGFR) signalling cascade. FGFR is a family of four Receptor
Tyrosine Kinases (RTKs), named FGFR1, FGFR2, FGFR3, and FGFR4. RTKs signalling is
a pathway that is partly represented in CASCADE2.0, but no FGFR is included. It has been
shown that a large number of alterations and mutations in these receptors are responsible for
the abnormal regulation of the signalling cascade triggered by the RTKs, and participate to
carcinogenesis [132]. Specifically, the binding of FGFR’s ligands triggers a panel of signalling
cascade involved in developmental processes as well as in physiological processes in adults.
Furthermore, FGFR alterations have been observed in different cancers, and this family of
receptors is strongly considered for therapy [133]. In TNBC specifically, FGFR2 was shown
to be amplified in 4% of the cases while it was never amplified in other breast cancer subtypes
[134]. In the case of FGFR1, it is amplified in 10% of all breast cancer cases, and especially
in luminal breast cancer [135]. However, it is amplified in the TNBC cell line CAL120 too
[136]. Some TNBC cell lines also have high expression of FGFR1, which was shown to be
linked to the Overall Survival (OS) of TNBC patients, cases with lower expression having
better prognosis than the others [137]. In another study, FGFR3 was shown to be highly
expressed and phosphorylated in cell lines harboring a FGFR3-TACC3 gene fusion, and could
therefore be targeted for therapy in these cases [138]. Furthermore, TNBC cell lines showed a
high sensitivity to FGFR inhibitors [136], which makes it a key therapeutic target for TNBC
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treatments.

cPLA2 Signalling: Eicosanoids are a family of lipid Signalling molecules principally derived
from the metabolism of arachidonic acid (AA) [139]. Phospholipase A2s (PLA2s), includ-
ing calcium-dependent PLA2 (cPLA2), are responsible for the release of AA into the cyto-
plasm, which can trigger the synthesis of different types of eicosanoids: prostaglandins and
thromboxanes (called the prostanoids) are synthesized through the cyclo-oxygenase (COX1
and COX2) pathway, hydroxyeicosatetraenoic acids (HETEs) and leukotrienes through the
lipoxygenase (LOX5, LOX12, and LOX15) pathways, and epoxygenated fatty acids (EETs)
through the cytochrome P450 pathway [140, 141, 142]. COX1 and COX2 are responsible
for the synthesis of prostanoids such as PGE2 or TXA2. Indeed, cPLA2 helps release AA
from its membrane, which is then being metabolized into prostanoids. The production of
these molecules is followed by their release from the cell, where they can act on biological
processes by binding to their associated receptors such as EP1 to EP4 and TP for PGE2 and
TXA2, respectively. Specifically, cAMP and Ca2+ production is enhanced under the activa-
tion of these receptors. On the other hand, lipoxygenases are responsible for the production
of HETEs and leukotrienes through the same kind of mechanisms. The main receptors of
HETEs and leukotrienes are BLT1 and GPR31. The most well characterised LOX path-
way is the one triggered by LOX5, but LOX12 and LOX15 have been shown to have an
important role in cancer development as well. [142]. In breast cancer especially, it has been
showed that the overexpression of COX2 is responsible for tumour development and meta-
stasis. PGE2 is reported to bind particularly to EP2, EP3, and EP4, which would lead to
an over-production of cAMP and activation of SRC and EGFR, which activate Signalling
molecules of the MAPK, PI3K/Akt, and ERK cascades, pathways promoting cell survival,
proliferation, and migration [143]. Basal-like and TNBC cases show a tendency to overex-
press cPLA2, and this overexpression would lead to a low rate of relapse-free survival [144].
Also, in TNBC, the activation of BLT1, the receptor of LTB4, would enhance cell migration,
and LOX inhibition would block it [145]. Overall, the cPLA2 signalling pathway represent
a potential therapeutic target, both at the level of cPLA2, AA-derived molecules, or their
receptors, and could be considered for addition in CASCADE2.0.

EGFR Signalling The Epidermal Growth Factor Receptor (EGFR) is a member of the RTKs,
and more precisely, a member of the subfamily of c-erbB along with HER2. Its signalling
is triggered by the binding of one of its numerous ligands to its extracellular binding sites
[146]. EGFR, also referred to as HER or ERBB1, is able to form heterodimers with HER2
(ERBB2) and ERBB3, which results in a wider range of possibilities for the regulation of
their downstream targets. The main downstream targets of EGFR activation are PLCγ
and the MAPK family, PI3K, and Signal Transducer and Activator of Transcription (STAT)
genes [146, 147]. EGFR signalling is known to be altered in many cancers, promoting cellular
growth and proliferation, preventing apoptosis, and also for being an important prognostic
factor in different types of cancers [148]. It has been shown that EGFR is overexpressed in
TNBC cases compared to non-TNBC, but that the rate of EGFR-overexpressing cases varies
widely between the studies [15]. Gene copy number of the EGFR would also be altered in
TNBC cases, being high in 33% of them, and significantly correlated with a poor disease-free
survival [149]. Targeting EGFR in TNBC therapy is a promising strategy which is still under
investigation. Several FDA-approved-drugs such as Erlotinib and Lapatinib inhibit EGFR
[129].

BRCA Signalling/DNA Repair 5 to 10% of breast cancer cases are due to inherited factors,
among which 52% would result from a mutation in BRCA1, and 35% from a mutation in
BRCA2 [150]. Both genes play a role in DNA damage response and transcription of genes
involved in DNA repair, cell cycle, and apoptosis. More precisely, BRCA1 and BRCA2 are
thought to form a complex with Rad51 to regulate DNA Double-Strand Break (DSB) repair
and Homologous Recombination (HR). BRCA1 is also involved in cell cycle checkpoints and
transcription mechanisms as it interacts with p53 and other cell cycle regulators such as
p21. The G2/M transition of the cell cycle would be regulated by BRCA1 as well. Indeed,
the phosphorylation of BRCA1 by ATM and the activation of checkpoint kinases such as
CHK1, are thought to be essential steps to trigger cell cycle checkpoints and detect DNA
damages [122]. In TNBC, the prevalence of BRCA1 mutations was shown to be higher than
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in non-TNBC, with approximately 70% of breast cancers with BRCA1 mutations showing a
triple-negative profile [15, 129]. The mutations in BRCAs lead to deficiency in HR, which
can be used for a treatment based on synthetic lethality: Polyadenosine diphosphate-ribose
polymerase (PARP) is a protein that recognizes Single-Strand Breaks (SSB) of DNA, and
triggers its repair by Base Excision Repair (BER). The inhibition of this protein blocks the
repair of SSB, leading to more abnormalities in DNA, which, combined to the HR deficiency
due to BRCA mutations, leads to cell death [151]. Currently, Olaparib and Talazoparib are
PARP inhibitors used to treat TNBC [152].

VEGFR Signalling The Vascular Endothelial Growth Factor (VEGF) Receptor 2 (VEGFR2),
or Kinase-Insert-Domain-Containing Receptor (KDR), is a member of the RTK family, and
the main receptor for the ligands VEGF. VEGFR2, referred to as VEGFR in this report, is
activated through binding of its ligands, and has fundamental vascular functions. It is re-
sponsible for vasculogenesis, angiogenesis, and differentiation of endothelial cell progenitors,
but it also has a role in major physiological functions such as survival, proliferation, and
differentiation. Therefore, it is implied in many diseases, and especially cancers, as its abnor-
mal regulation can impact all of these processes [153]. Breast cancers progression would be
partly due to VEGF expression, with an Overall Survival (OS) inversely correlated to VEGF
expression, and a lower response to treatment for the cases with high expression. Especially,
it has been found that the levels of VEGF is higher in TNBC and basal-like breast cancer
than in the non-basal-like and non-TNBC, and that the microvascular density, thought to be
a prognostic factor in breast cancer, is higher as well [154]. Targeting of VEGFR signalling
is indeed investigated for TNBC treatment with the use of bevacizumab as a neoadjuvant,
for example [155]. However, more investigations need to be done, but the VEGFR pathway
remains a promising target.

Notch, Hippo, and Hedgehog Signalling The Notch, Hippo, and Hedgehog signalling path-
ways are not present in CASCADE 2.0, but they were added to CASCADE 3.0 as they were
identified as misregulated pathways in colorectal cancer, and in cancer in general as well.
These three pathways were documented in several papers concerning TNBC. The Notch
pathway is a signalling cascade resulting from the potential binding of five ligands, DLL1,
DLL3, DLL4 and Jagged1-2 to the Notch receptors. Notch1-Notch4 are single-pass trans-
membrane receptors, which, when activated, trigger the transcription of their target genes
[1]. Notch signalling has a central role in cell fate decision and cell death, in tissue develop-
ment and cell proliferation, and therefore, is involved in the development of cancers when it
is misregulated. Notch signalling is involved in the maintenance of mammary cancer stem
cells and has been found hyperactive in breast cancers in general, but Notch1/3/4 receptors
have been found specifically overexpressed in TNBC. Mutations in Notch1 and Notch3 would
lead to an hyperactivation of Notch signalling and its downstream targets such as NF-κB
or Akt-mTOR. Notch3 would also be amplified in TNBC compare to other breast cancer
subtypes [156, 157]. Overall, Notch signalling seems to play a key role in TNBC tumorigen-
esis, is hyperactivated because of alterations, and its downstream targets are key signalling
components in cancer.
Similarly, the Hippo pathway has been found hyperactivated in TNBC [131, 158, 159]. The
Hippo signalling is a kinase cascade leading to the inactivation of YAP/TAZ, cofactors in-
volved in the transcription of genes in control of cell growth, cell proliferation, and cell death
[160]. Alterations in the behaviour of Hippo genes and their upstream regulators would pro-
voke a high signalling activity, thus promoting tumour growth and progression of TNBC.
Lastly, the Hedgehog signalling pathway has been shown to be involved in breast cancer, and
some of its members are specifically altered in TNBC. It is a signalling cascade triggered
by the binding of three ligands (Sonic, Desert, and Indian Hedgehog, respectively referred
to as SHH, DHH, IHH) to the receptors PTCH1 and SMO, which subsequently activate the
glioma-associated oncogenes GLI which regulate the transcription of cancer promoter genes.
It is especially involved in embryogenesis, stem cell renewal and tissue repair and promotes
metastasis in the context of cancers [129, 161]. Studies have found that the expression of
SHH, PTCH and SMO were prognostic factors of TNBC, and that, overall, the Hedgehog
signalling pathway was upregulated in TNBC more than in other breast cancer subtypes
[162, 163].
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3.5 Composition of the Prior Knowledge Network - the TNBC Model

The goal was to extend CASCADE 2.0 with new modules, to build a gene regulatory network
representing the signalling processes involved in TNBC. The literature curation highlighted the im-
portance of the pathways from CASCADE 2.0. Many of these pathways were also over-represented
in the lists of altered genes from 3.3. For instance, the cell cycle, the MAPK cascade, the PI3K/Akt,
and the Rho GTPases signalling were both over-represented, and present in CASCADE 2.0. All
the pathways and nodes from CASCADE 2.0 were kept for the modelling, and the same topology
was respected, except for a few exceptions. Indeed, CASCADE 2.0 included some genes annotated
with ” g”, and their protein product (e.g, PTEN g and PTEN). The genes were often either only
regulating the activity of their gene product, or only an intermediate between two nodes (e.g,
their activity was regulated by one other node, and they were regulating the activity of their gene
product). The impact of such nodes on the dynamic of a boolean network is low and we decided
to remove them.
Overall, the middle-out modelling approach revealed eight new pathways that were selected and ad-
ded to the model. The DNA repair and Notch pathways were highlighted both in the EA and in the
literature curation. Furthermore, they are present in CASCADE 3.0 as colorectal cancer-specific
pathways [61]. Besides this, Hippo and Hedgehog signalling, two pathways from CASCADE 3.0
were documented as important altered processes in TNBC. As a consequence, they were slightly
modified in order to be more specific to TNBC, and were added to the PKN. Here, the literature
was used to find the most important genes composing these pathways in the context of TNBC,
and SIGNOR was retrieved to build the topology of the modules.
Four other new modules, namely cPLA2, EGFR, FGFR, and VEGFR were composed using mainly
SIGNOR and the literature about TNBC.
Furthermore, the progesterone and estrogen receptors with their ligands, and the human epidermal
growth factor HER2 were added to a module named ”Receptors”. As we tried to constrain the size
of the model, some interactions of the new modules that could be simplified without impacting the
general dynamic of the network were modified, the nodes with only one incoming and one outgoing
edges were removed, and if a node was not reported in the literature as being altered in most
cancer types or in TNBC, and was not a central node of the module, it was generally removed.

Initially, CASCADE 2.0 contained 11 modules, 144 nodes and 367 edges. The resulting PKN,
which we named the TNBC model, contains 20 modules, 221 nodes and 716 edges. The names
of all the modules of the PKN, the number of nodes it contains, in which analyses they were
highlighted, and the sources used to build them are summarized in Table 8.

The gene regulatory network was built and visualised on GINsim. We attributed a color to each
module and the nodes were colored according to the module to which they belong. It was then
exported to a format that could be read by Cytoscape, because it provided more layouts than
GINsim and enabled us to compute some topological properties of the network. The general
topological properties of the network are summarized in Table 9. As a comparison, CASCADE
2.0 has a lower average degree (5.0) and clustering coefficient (0.043), and slightly higher diameter
(13) and average path length (5.6).

We searched how many altered genes from the omics data analyses resulted in our network. In total,
without taking into account the genes with synonym names, 52 genes resulting from the combined
omics analyses ended up in the TNBC model. The name of these genes and their topological
properties are displayed in Table 10, and they are sorted by decreasing degree and decreasing
betweenness centrality. The average degree of these nodes is 7.1, which is higher than the average
degree of the network. Most of the nodes were already represented in CASCADE 2.0, but new
and central nodes are present as well, such as the estrogen and progesterone receptors ESR1 and
PGR, the epidermal growth factor receptor EGFR, the fibroblast growth factor receptor FGFR,
the vascular endothelial growth factor family of genes VEGF f, BRCA2, or the PARP family of
genes.

Name Module Degree Betweenness Centrality
TP53 Cell cycle 22 5.603
MYC Cell cycle 18 5.9975
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Continuation of Table 10
Name Module Degree Betweenness Centrality
ESR1 receptor 15 9.9636

PIK3CA PI3K/Akt 13 15.475
SMAD2 TGFB 13 1.6258
DVL f WNT 12 3.8308

CSNK1D E HIPPO 12 0.9252
LRP f WNT 11 3.5625
IKBKB NFKB 11 3.5042
EGFR EGFR 11 0.3241
PTEN PI3K/Akt 10 4.3569
BIRC f Apoptosis 10 3.9562
PRKCD MAPK cascade 10 3.3665
CDC25A Cell cycle 10 2.6611
PLK1 Cell cycle 10 1.6808
CHEK1 DNA repair/BRCA 9 1.8349
RHOA Rho GTPases 8 2.1093
FOS MAPK cascade 8 1.9776

CASP3 Apoptosis 7 9.2462
RB1 Cell cycle 7 5.4097

CASP9 Apoptosis 7 3.666
S6K f MAPK cascade 7 0.5639
SKI TGFB 7 0.5074

cPLA2a cPLA2 6 4.8241
DUSP1 MAPK cascade 6 4.0068
VEGF f VEGFR 6 2.2758
GRB2 MAPK cascade 6 1.3551
STK f HIPPO 6 0.9367
RAS f MAPK cascade 5 1.514
CASP8 Apoptosis 5 1.4795
MMP f MAPK cascade 5 1.2981
EGR1 MAPK cascade 5 1.2314

TGFBR2 TGFB 5 0.7239
AURKA Cell cycle 5 0.518
CCNE1 Cell cycle 5 0.2689
AURKB Cell cycle 5 0.1902
VEGFR2 VEGFR 4 2.6992
FZD f WNT 4 1.2347

CDKN2A Cell cycle 4 0.9764
SRF Rho GTPases 4 0.7944
E2F1 Cell cycle 4 0.137

CCNB1 Cell cycle 3 1.1614
FGFR FGFR 3 0.9446
RAD51 DNA repair/BRCA 3 0.9097
PGR receptor 3 0.8637

BRCA2 DNA repair/BRCA 3 0.4864
cAMP PI3K/Akt 3 0.3402
PARP f Cell cycle 3 0.2159
CREBBP Cell cycle 3 0.2077
MAP3K4 MAPK cascade 2 0.3094
DLL1 3 NOTCH 2 0.0253
FGF f FGFR 1 0

As seen in Table 10, the results of the omics analyses highlighted 52 nodes that were eventually
represented in different pathways of the TNBC models. These nodes have an average degree higher
than the average degree of the network, suggesting that omics data analyses are able to unveil nodes
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Table 8: Modules present in the TNBC model. Their size is the number of nodes that were
attributed to the pathway. The analysis describes in which of the enrichment analysis (EA) or
literature curation steps (or both) the pathway was highlighted. The source is the main source(s)
used to build the pathway at a component’s scale.

Module Size Analysis Source

Apoptosis 15 EA ; Literature CASCADE 2/3

Cell cycle 19 EA ; Literature CASCADE 2/3

cPLA2 signalling 17 EA ; Literature Literature

DNA repair/BRCA signalling 12 EA ; Literature CASCADE 3 ; Literature

EGFR signalling 3 Literature Literature ; SIGNOR

FGFR signalling 4 EA ; Literature Literature

HIPPO signalling 3 Literature CASCADE 3

Hedgehog signalling 4 Literature CASCADE 3

Jak/STAT signalling 8 None CASCADE 2

MAPK signalling 43 EA ; Literature CASCADE 2/3

mTOR signalling 5 Literature CASCADE 2

NF-κB signalling 8 Literature CASCADE 2/3

Notch signalling 9 EA ; Literature CASCADE 3 ; Literature ; SIGNOR

PI3K/Akt signalling 8 EA ; Literature CASCADE 2 ; Literature

Rho GTPases signalling 11 EA ; Literature CASCADE 2

RTKs signalling 8 EA ; Literature CASCADE 2

TGFβ signalling 16 EA ; Literature CASCADE 2

VEGFR signalling 5 EA ; Literature Literature, SIGNOR

WNT signalling 16 EA ; Literature CASCADE 2

Table 9: Topological properties of the PKN

Nodes Edges Average degree Diameter Charact. path length Clustering coefficient
221 716 6.3 12 4.9 0.076

that are somehow important in the dynamic of the network.

An exhaustive list of the nodes of the network, the pathway they belong to, along with topological
parameters is given on theGithub repository in the node measures PKN.csv file. A visualisation
of the PKN is displayed in Figure 7. It is represented as a directed network, and the edges can
either be activating or inhibitory. The different modules can be distinguished by their color.

As seen in Section 3.3 and 3.4, the results from the EA revealed pathways that were often known
in the literature as being altered in TNBC. This suggests that an EA is a reliable statistical tool to
unveil the most important pathways underlying a disease. Thus, if further extension steps of the
model should be done, it would be interesting to investigate the results of the EA that we did not
consider in this work. Several pathways were recurrent in the significant results of the EA, such
as the the Calcium, IL17, or PPAR signalling pathways, and could probably bring new insights
into the dynamic of the model. Additionally, we omitted the modelling of the androgen receptor
(AR) which has been revealed by various studies as a key over-expressed receptor in TNBC cases
of the LAR subtype [15, 19, 20]. However, addition of new pathways would end up in an even
larger network, and reduction or refinement steps could be done in order to keep the network
in a reasonable size. For example, GINsim allows the reduction of Boolean models by removing
iteratively the nodes that the user wants to possibly remove. From there, the user can compare
the expected dynamic of the system with the dynamic of the reduced model, and conclude on the
usefulness of the removed node(s) [52, 164].
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Figure 7: Representation of the Prior Knowledge Network (PKN) - the TNBC model. The edges
are directed and colored in green if activating, in red if inhibitory. The ten modules on top of the
figure with the light green module on the left of the third row are the ones from CASCADE 2.0,
possibly completed with new nodes. The nine new modules correspond to the following colors:
DNA repair/BRCA signalling is in light purple, cPLA2 signalling is in light pink, EGFR signalling
is in light blue/green, VEGFR signalling is in fuschia, Notch signalling is in green, Hippo signalling
is in dark purple, Hedgehog signalling is in marine blue, the receptors are in light green, and FGFR
signalling is in purple. The two light blue rectangular nodes are the phenotype nodes Pro-survival
and Anti-survival.

3.6 Conversion of the Prior Knowledge Network into a Boolean Network

3.6.1 Training of the Models on Data from TNBC Cell Lines

The PKN was transformed into a Boolean network using Gitsbe, which in practice produces several
different Boolean networks that could fit the reality. The four cell lines used to train the model
are expected to produce different dynamic behaviours since their RNA expression data differ from
each other. As detailed in Section 2.9.1, the RNA expression data of the four cell lines were scaled
to values between 0 and 1 to be adapted to Gistic. A heatmap of the scaled RNA expression
data of 184 genes represented in the model is displayed in Figure 8. Hierarchical clustering has
been applied to the cell lines, and we can see that MDA-MB-231 and MDA-MB-453 are clustering
together on one side, and BT549 and HS-578T on the other side. Clusters of genes also have been
formed, and we clearly see three groups of genes that have a high, medium, or low expression.
However, differences in the expression of some genes between the four cell lines remain.

35



Figure 8: Heatmap of the RNA expression of 184 genes of the network in the four cell lines from
CCLE.

In order to be aware of which genes should play a role in the differentiation of the dynamics
of the models trained on the four cell lines, we investigated which genes had the most vari-
able expression across them. The full results can be found in the Github repository in the
variance RNAexpr training.csv file, and the top ten genes with the highest variance are listed
below:

• TWIST1: is a gene attributed to the MAPK signalling cascade and is positively regulated
by ERK f and JNK f in the model. It was added by extension to the model, during the
literature curation phase.

• DKK1: is present in the model under the gene family DKK f.

• CDH2: is a newly added gene from the WNT module.

• TP53: was already present in CASCADE 2.0, and was found to be the most frequently
mutated genes in the TNBC omics data analyses.

• CDKN2A: was added by extension of the cell cycle module.

• JAG1: is present in the NOTCH pathway, and it was merged with JAG2 as they were
contributing to the same dynamics. It was present in CASCADE 3.0.

• LIMK2: is a node from CASCADE 2.0, belonging to the Rho GTPases pathway.

• FOS: is involved in MAPK signalling node from CASCADE 2.0.

• STAT1: is present in CASCADE 2.0 along with its family members STAT2 and STAT3.
They are part of the Jak/STAT signalling module.

• PTPN6: is part of the MAPK module from CASCADE 2.0.
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We also investigated the state of ESR1, PGR, and HER2 (ERBB2) in the RNA expression data.
The scaled expression value of these nodes in the four cell lines are listed in Table 11. However, if
we expect a low protein expression of these receptors, we do not necessarily expect their mRNA
levels to be low.
The scaled expression level of ESR1 is lower than 0.2 in all the cell lines, and the scaled expres-
sion level of PGR is even lower than 0.1 in all the cell lines. If we consider that a low level of
expression is below 0.5, then these genes are weakly expressed in these four TNBC cell lines. The
ERBB2 receptor also has low levels of scaled expression in all the cell lines, but we noticed that
its expression in MDA-MB-453 was more than twice higher than in the other cell lines (0.414).
As for the frequently mutated genes, TP53 is the least expressed in MDA-MB-453 (0.086), and the
most highly expressed in BT549 (0.590), while PTEN and PIK3CA both have levels of expression
ranging from approximately 0.200 to 0.350 in the four cell lines.

Table 11: Expression status of relevant nodes in the CCLE data of the four cell lines used to train
the models. The expression ranges from 0 to 1 because of the transformation applied and described
in 2.9.1.

Gene name MDA-MB-231 MDA-MB-453 HS-578T BT549

ESR1 0.109 0.087 0.048 0.050

PGR 0.065 0.098 0.027 0.013

ERBB2 0.197 0.414 0.201 0.155

TP53 0.429 0.086 0.435 0.590

PTEN 0.352 0.340 0.273 0.205

PIK3CA 0.249 0.287 0.310 0.205

The mRNA levels of the three receptors remain low in the four cell lines (≤0.5). This is correct to
train the models, since we expect them to be inactive in the steady-states. We will discuss later
of the resulting nodes’ states obtained after training of the models (see section 3.8.4).
TP53 is reported as mutated in all the cell lines except MDA-MB-453 in Neve et al. (2006) and
most mutations affecting TP53 are missense mutations where there is a loss of function of the
protein [165, 166]. Indeed, using RNA expression data of TP53 could be erroneous in this case,
since the functionality of the protein as a tumour suppressor might be more important for the final
dynamic of the model, and it is not reflected in the training data.
PTEN is also a tumour suppressor with loss of function mutations in many cancers, and especially
in TNBC. It is also thought that epigenetic silencing of the promoter regions of PTEN could lead
to loss of activity of the PTEN protein, and thus, to lower its tumour suppressor activity [167].
PTEN would be mutated in MDA-MB-453 and in BT549 [20].
PIK3CA is the catalytic subunit p110α of PI3K, and is an oncogene upstream of the PI3K/Akt
signalling pathway. The mutations affecting PIK3CA are activating mutations, and lead to an
over-activation of the PI3K/Akt pathway in TNBC [168].
These observations both on PTEN and PIK3CA show that their protein activity in the four cell
lines studied could be respectively lower and higher than what we observe for their RNA expression.
We will discuss later about their local state in the trained models, and verify if they match the
biological reality.
To improve this bias, we could try to train the models by forcing the state of these proteins to 0
or 1, according to their expected state. Other differences in the mutational profile of the cell lines
could be introduced in the model, for instance, MDA-MB-231 has mutations in KRAS, BRAF,
and CDKN2A which could be reported in the simulations, and BT549 has mutations in RB1 [20].

3.6.2 Training of the Models on TCGA Data

The hierarchical clustering of the 173 TCGA-BRCA TNBC samples with the four cell lines’ data
from the CCLE was performed based on the 1000 most variable genes across all the cell lines,
and we chose to form two clusters. The four CCLE cell lines were clustered together in a group
with 88 TCGA samples. The code to obtain those results can be found on the Github repository
in the clustering TCGA CCLE.R file. From this clustering, we note that the CCLE cell lines
cluster together before clustering with any other TCGA sample, meaning that the closest samples
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to any of these cell lines are the other CCLE cell lines. These findings will be discussed below.
The 88 selected TCGA samples were then used to train the models in another set of simulations.
Similarly to the CCLE cell lines, we plotted a heatmap of the RNA expression values from the
TCGA samples for 184 genes of our model, which is displayed in Figure 9. This time, the training
data were discretised, therefore we can only see the active or inactive status of the genes in the
samples. However, we can clearly see two clusters of genes that are either active or inactive in
all of the samples. Other genes have a more mitigated activation status across all the samples,
sometimes being active, and sometimes inactive, showing the heterogeneity of TNBC cases.

Figure 9: Heatmap of the RNA expression of 184 genes of the network in 88 TCGA samples which
clustered with the four CCLE cell lines.

The discretisation of the data was motivated by previous findings in the Druglogics group: it has
been observed that using boolean states to train a model in the pipeline enabled the generation of
models with better fitting scores, and with better prediction performances [61].

3.7 Drug Synergy Predictions

The pipeline was run with many different configuration and input parameters. As highlighted by
the results of the predictions on CASCADE 2.0 [58], no more than 150 simulations need to be run
to obtain good performance results.

3.7.1 Tested Drugs and Their Targets

The panel of drugs tested with Drabme was specific to each cell line. The drugs involved in
synergistic combinations were retrieved from Synergx, DrugComb, and DrugCombDB, and their
targets and effect on their targets were retrieved from DrugBank, as explained in section 2.9.3.
Appendix D summarizes the tested drugs, their effect, and their targets for each of the cell lines.
Several drugs target several nodes of the network, which was possible to specify in the input files
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of Drabme. For example, Tamoxifen inhibits ESR1, PRKCA and PRKCD, which were then forced
to 0 for the predictions. Also, several drugs have the same effect on the same targets in the context
of the TNBC model (e.g. Nilotinib and Imatinib, or Fulvestrant and Tamoxifen).
MDA-MB-453 is not included and was not considered for further analyses, since we could not find
any synergistic drug combinations targeting nodes of the model for this cell line. In the remaining
parts of this section, we will not talk about MDA-MB-453 anymore, and we will refer to MDA-
MB-231, HS-578T and BT549 as the three CCLE cell lines.
In total, 253 combinations were tested for MDA-MB-231, and among them 52 were observed syn-
ergistic based on the BLISS score. For HS-578T, 210 combinations were tested among which 102
were observed synergistic based on the BLISS score. And finally, 231 combinations were tested
for BT549, and 76 were observed synergistic based on the BLISS score. The lists of observed
synergistic combinations (based on the BLISS score) for each of the cell line can be found on the
Github repository: observed synergies → observed synergies bliss name.tab.

In general, the cell lines showed different synergies (see drugpanel in Appendix D), but one part of
those synergies was common to all. We looked for the combinations that were observed synergistic
across all the cell lines. We found that 18 synergy combinations were common to all of them, and
11 drugs were needed to test all of these combinations. The 18 combinations common to the four
CCLE cell lines are displayed in Table 12

Table 12: Synergistic drug combinations observed for the three CCLE cell lines

Drug A Drug B Targets

Paclitaxel Lapatinib BCL2 ; EGFR ; ERBB2

Celecoxib Paclitaxel PDPK1 ; BCL2

Dasatinib Fulvestrant ABL1 ; SRC ; ESR1

Vismodegib Vandetanib SMO ; EGFR

Vismodegib Celecoxib SMO ; PDPK1

Ruxolitinib Paclitaxel JAK f ; BCL2

Axitinib Paclitaxel VEGFR2 ; BCL2

Vismodegib Paclitaxel SMO ; BCL2

Vandetanib Paclitaxel EGFR ; BCL2

Vemurafenib Paclitaxel RAF f ; BCL2

Vismodegib Ruxolitinib SMO ; JAK f

Vandetanib Ruxolitinib EGFR ; JAK f

Vemurafenib Dasatinib RAF f ; ABL1 ; SRC

Vandetanib Dasatinib EGFR ; ABL1 ; SRC

Ruxolitinib Dasatinib JAK f ; ABL1 ; SRC

Vismodegib Fulvestrant SMO ; ESR1

Vemurafenib Nilotinib RAF f ; ABL1

Vandetanib Nilotinib EGFR ; ABL1

3.7.2 Relevance of Using TCGA Samples for Drug Synergy Predictions

The clustering of samples based on their gene expression profile is commonly used to find sub-
groups of patients with the same expression profiles, and for which we can find specific biomarkers
that could be treatment targets [101, 169]. Indeed, the clustering of TCGA samples and CCLE
cell lines revealed that certain cell lines had a more similar expression profile to certain groups of
TCGA patients. From this observation, we hypothesized that this subset of TCGA patients would
likely respond to drug perturbations in the same way as the four CCLE cell lines did. Thus, to run
predictions on the models calibrated on the expression data of this subset of TCGA patients, we
reduced the drug panel to the drugs present in Table 12. Reducing the drug panel to drugs that
were synergistic in all the CCLE cell lines reduces the risk of testing drug combinations that are
efficient only in one specific cell line, and maximizes our chances that the TCGA patients respond
to it.
However, it is important to note that the use of cell lines to build cancer models is controversial.
It is true that it was found that breast cancer cell lines generally represent quite well the tran-
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scriptomic profile of breast cancer patients (e.g., TCGA-BRCA samples). But it was also found
that some important differences remain [92, 170]. Indeed, since cell lines are cultured in vitro,
they do not account for all the events happening in vivo and the environment of the tumour cells.
On the other hand, TCGA samples are composed of tumour cells, but also of the cells in their
environment such as immune cells, fibroblasts or epithelial cells, and the ratio of tumour cells over
the other types of cells is called the ”tumour purity” [171]. This particularity makes TCGA data
analyses account for the genomic features of not only the tumour cells, but also of the tumour
micro-environment, contrary to cell lines which are cultivated without this environment. Vincent
et al. (2015) noted that this could lead to a forced epithelial-to-mesenchymal transition in the
culture of the cell lines, thus losing the epithelial features of the cells. They also found that 99% of
the genes that were usually up-regulated in cancer stromal cells (compared to malignant cells) were
significantly down-regulated in the breast cancer cell lines from CCLE, proving the importance of
the tumour micro-environment in the expression of some groups of genes and on the biological pro-
cesses they lead. This could explain the findings mentioned in section 3.6.2: there are fundamental
differences between the expression of subsets of genes in in vitro cultured cell lines and patients
samples, thus CCLE cell lines cluster together before clustering with any other TCGA sample.
Additionally, Jiang et al. (2016) found that the mutational and the protein expression profiles of
most breast cancer cell lines correlated poorly with the TCGA-BRCA data [92].
These results are contrasted by the fact that Vincent et al. (2015) also found that the basal/ER-
breast cancer cell lines were more representative of the TCGA-BRCA basal/ER- tumours than
the luminal/ER+ cell lines are of the luminal/ER+ TCGA-BRCA data. This is interesting for us
since, according to the PAM50 classification, MDA-MB-231, HS-578T and BT549 are classified as
basal-like, while MDA-MB-453 is classified as luminal B [92, 170]. Thus, MDA-MB-231, HS-578T
and BT549 would be more likely to represent the TCGA samples (for which the majority is basal-
like and ER-).
These findings provide reasonable evidence to assume that building logical models calibrated on
TCGA samples could provide good fitness scores, since TCGA patients’ samples are more repres-
entative of TNBC. However, predicting synergies on a subset of TCGA samples that clustered well
with the four CCLE cell lines could lead to wrong results because of the assumptions that TCGA
data will respond in the same way as CCLE cell lines.

3.7.3 Specificity of the Drug Panels

The drugs selected for the in silico predictions were observed synergistic in the CCLE cell lines.
However, we have used drugs such as Sorafenib to target RAF f, VEGFR2, and FGFR. Sorafenib
is known to be an inhibitor of the RAF/MEK/ERK pathway, or the MAPK/ERK pathway [172],
but it has been shown to be targeting other molecules such as VEGFR2/3 or the platelet-derived
growth factor β [173]. We searched the International Centre for Kinase profiling database which
provides information on the effects of some kinase inhibitors [174]. We observe that, administered
at a fixed concentration, Sorafenib will inhibit the activity of many molecules to a certain extent,
the most efficiently inhibited being ERK8 (93% of activity inhibited). It is also inhibiting the
activity of other molecules such as Src (56% of activity inhibited), or JNK2 (35% of activity
inhibited), which is not represented in the predictions. Indeed, these inconsistencies rely on the
fact that the model is limited in size, contrary to in vivo or in vitro experiments where the cells
and most of their components are present and affected by the drugs.

3.8 Optimization of Gitsbe and Drabme Results

This section provides the results of several runs of the DrugLogics pipeline on the TNBC model
[91]. The results of the pipeline can be influenced by some user-defined parameters. We did a series
of optimization steps to select which parameters were the best for the TNBC model. The first
subsections detail the results obtained with the variation of one main parameter of the pipeline,
such as the number of simulations, the number of calibrated nodes, or the origin of the calibration
data (CCLE or TCGA). Then, we summarize the results of the best predictions for each cell line
and the parameters that we used to obtain them. Lastly, we compare the predictions on the TNBC
model with the predictions run on CASCADE 2.0.
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The results of this section were obtained with the introduction of 40 topology mutations and no
balance mutations, as it was shown for CASCADE 2.0 that a combination of both types of muta-
tions led to less performing predictions. Finally, the BLISS score was used as the main synergy
metric. Other results obtained with different types of mutations and another synergy metric will
be mentioned later in this report and are presented in the Appendices.
We computed the accuracy of the predictions for each run, and the best runs are the ones which
obtained the highest ROC-AUC. As detailed in Section 2.9.4, the ROC curve plots the True Posit-
ive Rate (TPR) as a function of the False Positive Rate (FPR). A ROC-AUC of 1 shows that the
model is able to perfectly categorize the combinations as synergistic or not. An AUC of 0.5 shows
that the model provides random predictions, and is not able to differentiate between synergistic or
non-synergistic combinations. If the AUC is lower than 0.5, the model is classifying some of the
combinations in the opposite category. Indeed, we expect our predictions to lead to ROC-AUC
higher than 0.5.

3.8.1 Evolution of the Performance with an Increasing Number of Simulations

Observations from the DrugLogics group on the simulations ran on CASCADE 1.0 and CASCADE
2.0 led to think that performing no more than 150 simulations with Gitsbe and using 450 models
for the synergy predictions was leading to the best performances. For example, CASCADE 2.0
trained on the AGS cell line data provided a ROC-AUC of 0.721 with 50 simulations, 0.712 with
100 simulations, 0.731 with 150 simulations, and it dropped at an AUC of 0.715 for 200 simulations
[58].
In this section, we aim to explore if there would generally be a preferred number of simulations for
the TNBC model as well, and we compare the results of predictions on the three CCLE cell lines
ran in the exact same conditions, except the number of simulations which varies between 25, 50,
and 150.
When running Gitsbe, the user can choose the number of models that Gitsbe will save after every
simulation. The models saved are the ones with the best fitness score of the simulation, and will
be used as a starting point in the next simulations to build the new models. This is the principle
of a genetic algorithm which mimics natural evolution processes. Thus, by increasing the number
of simulations, we allow Gitsbe to apply more variations to the models to make it evolve and to
improve it further. We expect that a number of simulations close to 150 would provide the best
results, as observed for CASCADE 2.0.
Here, the calibration was done on 184 nodes of the model.
We also compare these results to the results of predictions on models trained with unperturbed
conditions, also called random proliferative training. As this training mode is supposed to repro-
duce the dynamic of cancers, which is ”if we do not perturb the system, it keeps proliferating”, we
wanted to see if it could produce better results when we normalize the calibrated results with the
random results as it sometimes did with CASCADE 2.0 [58, 91]. For each cell line, we decided to
run random proliferative-trained predictions by using the number of simulations that gave the best
results for the corresponding cell line, and normalize the best results with random proliferative
predictions.

Figure 10a shows the predictions performances of the TNBC model on the MDA-MB-231 cell line
data. We observe that the highest AUC was obtained for 25 simulations. The random proliferative
training gave the same performances than calibrated models, and the calibrated-normalized models
did not significantly improve the predictions, but did not worsen it either. In the case of MDA-
MB-231, increasing the number of simulations did not improve the results, but it produced lower
AUC-ROC. Only the runs of 25 simulations allowed an AUC over 0.5, and thus, performed better
than random predictions.

For the case of HS-578T, using 25 simulations and therefore 75 models for the predictions was
also the best option, and increasing the number of simulations (and selected models) lowered the
prediction performances. However, the AUC for this cell line were below 0.5, as Figure 10b shows.
Here, contrary to the predictions on MDA-MB-231 data, the calibrated-normalized predictions
provided a slightly higher AUC-ROC (0.5) than for the models calibrated on HS-578T CCLE
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data.

Lastly, Figure 10c shows the results of the same investigation for the performances of BT549
models. As it was observed before, performing 25 simulations and using the 75 best models to
predict drug synergies was the most efficient option (AUC-ROC of approximately 0.54), and the
normalization slightly improved these results with a ROC-AUC of 0.586. Overall, this cell line
obtained better results than the previous ones, even though we also observe that the AUC of the
ROC curves decreases with an increasing number of simulations, and that using 150 simulations
gave an AUC lower than 0.5. The random proliferative-trained models had the worst AUC, but
helped improving the predictions when used for normalization.

Overall, we observe that models using HS-578T have poorer prediction performances than MDA-
MB-231 and BT549 under these conditions. Surprisingly, we did not observe an increase in the
performances of the models to predict drug synergies when the number of simulations increased,
as it was observed for CASCADE 2.0. The best predictions are thus obtained by running 25 simu-
lations, and the calibrated and calibrated-normalized gave approximately the same performances.
However, the performances remain low compared to the predictions of Niederdofer et al. (2020),
and we decided to make other parameters vary to optimize the performances. When running fur-
ther analyses, we prioritized predictions using 25 simulations.
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(a) ROC curves for the simulations on MDA-MB-231

(b) ROC curves for the simulations on HS-578T

(c) ROC curves for the simulations on BT549

Figure 10: Evolution of the prediction performances in terms of ROC-AUC for an increasing
number of simulations using the three CCLE cell lines calibration and synergy data
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3.8.2 Evolution of the Performances and Calibration on Best Determinative Power
Nodes

One important parameter on which we could play is the number, and the nature of the nodes that
are calibrated during the generation of the Boolean models. As explained in section 2.9.1, we tried
to calibrate less nodes, by choosing the most influential ones. We used the Determinative Power
(DP) of the nodes, and calibrated only the 10%, 25%, and 50% for which we had RNA expression
data and which had the best DP. We also plotted the ROC curve corresponding to the predictions
on the models calibrated on 184 nodes, which represents 90% of the total number of nodes. Figure
11 gathers the results of simulations performed on the different cell lines. As mentioned earlier,
we are now running 25 simulations, therefore the predictions are based on the 75 best models
extracted from the 25 simulations.

The results corresponding to MDA-MB-231 are displayed in Figure 11a. The highest AUC (ap-
proximately 0.59) was obtained by calibrating the 25% of nodes with the best DP.

In agreement with what we observed in section 3.8.1, the results on HS-578T were still very low,
as shown in Figure 11b. The AUC of two ROC were comparable (approximately 0.49) and were
obtained by calibration of 25% of the nodes with the best DP and 90% of the nodes without
distinction based on their DP.

Concerning BT549, the best results were obtained with 90% and 10% of calibration (approximately
0.54 and 0.53 respectively).

Overall, we do not observe a drop in the AUC value when we calibrate more than 50% nodes,
as it was expected. We generally observe good results with 90% of calibrated nodes, and 25%
calibration gave good results for MDA-MB-231 and HS-578T.

44



(a) ROC curves for the simulations on MDA-MB-231.

(b) ROC curves for the simulations on HS-578T.

(c) ROC curves for the simulations on BT549.

Figure 11: Graphs of the evolution of the performance of the synergy predictions in terms of ROC-
AUC with an increasing number of calibrated nodes. Each graph shows the ROC curves for the
drug synergy predictions on models calibrated with the 10%, 25%, 50%, and 90% of nodes having
the best Determinative Power
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As seen in Figure 11, the calibration of less, but more determinant nodes can improve the predic-
tions in some cases. In other cases, such as for BT549 models, it did not improve it. However, the
AUC only slightly vary when the number of calibrated nodes vary, and it would be necessary to
run more predictions to deduce the effects of calibration on each of these cell lines.

3.8.3 Comparison of Prediction Performances With TCGA Calibration Data

Additionally, the TNBC model was trained on TCGA-BRCA data. This set of TCGA samples
was part of the samples used in the omics analysis (2.4.1). These samples were considered relevant
calibration data to enable drug synergy predictions that were comparable to what we did with the
CCLE cell line data. Indeed, this set of samples clustered well with the four TNBC cell lines, as
discussed in section 3.7.2.

The subset of TCGA samples was normalised using counts-per-million, the expression values were
then scaled between 0 and 1 (0 for the gene with the lowest expression, and 1 for the gene with the
higher expression), and these scaled-expression values were discretised: value lower or equal to 0.5
were set to 0, and values higher than 0.5 were set to 1. The same general parameters were used
to generate the models and the predictions (40 topology mutations, Bliss synergy score), but the
panel of drugs tested only contained 11 drugs, all involved in combinations observed across the four
CCLE cell lines. Figure 12 shows the evolution of the prediction performances with the number
of simulations. In agreement with what we observed for the models trained on CCLE data, the
best AUC-ROC is obtained by running 25 simulations. However, we observe here that the scores
are lower than 0.5. The normalization of the calibrated predictions provided lower performances
in terms of ROC-AUC (0.393), while the random proliferative models outperformed the others
(0.484). As a comparison, the best predictive results obtained in these conditions using BT549
CCLE data and drug synergies gave an AUC of 0.54 and 0.59 for calibrated-normalized predictions
(fig. 14).

Figure 12: Evolution of the prediction performances in terms of ROC-AUC of models trained on
TCGA-BRCA data with an increasing number of simulations.

Similarly to the previous work on the CCLE cell lines’ models, we trained fewer nodes of the TNBC
model on the TCGA RNA expression data. In five different runs, we chose the 10%, 25%, 50%
nodes with the highest DP, another one where we trained all the nodes for which we have TCGA
RNA expression data (which represent 90% of the network), and finally, we trained the network
on random proliferative data. The ROC curves of these simulations are displayed in Figure 13.
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As previously observed, the best scores were obtained with 10 or 25% of the best DP-nodes cal-
ibration. Surprisingly, random proliferative training again provided the best score out of all these
attempts, whereas the calibrated-normalized predictions gave poor performances (0.393 of ROC-
AUC).

Figure 13: Evolution of the prediction performances of models trained on TCGA-BRCA data with
an increasing number of calibrated nodes.

As seen in Figure 13, the performances obtained in this round of simulations are lower than the
performances of models calibrated with data from the TNBC cell lines. The reason for this is likely
to be related to the fact that we trained the model on TCGA data, and predicted combinations
observed on CCLE data. Even if the TCGA samples are more representative of TNBC and its
micro-environment than the CCLE cell lines (see section 3.7.2), it is very likely that the drug
panel used for the predictions is coupled to the cell lines, and thus, that the synergies observed are
specific to the cell lines. The low number of common drug synergies observed between the CCLE
cell lines also shows that the cell lines themselves do not respond in the same way in many cases.
If basal/ER- cell lines are more representative of the TCGA-BRCA samples, it is probably not
enough to conclude that the same drug synergies will be observed across all of them [170].
Vincent et al. (2015) observed that the average gene expression of all the CCLE breast cancer cell
lines has a higher correlation to the gene expression of each individual breast cancer subtypes from
TCGA [170]. It could be interesting to average the expression of the CCLE cell lines that we used,
and use it instead of TCGA data to predict the 18 common drug synergies observed across these
cell lines.

3.8.4 Best Predictive Results

In this section, we will highlight the best predictions that we obtained for each cell line, using the
basic parameters stated in section 3.7. Even though some parameters remained unchanged, we
tried to find the best parameterization for each cell line, meaning that the best results for one cell
line were probably obtained with slightly different parameters than for another one. For the best
performing runs of the pipeline, we looked at the average fitness score of the best models selected
for synergy predictions:

• MDA-MB-231 data-calibrated best models have an average fitness score of 0.59

• HS-578T data-calibrated best models have an average fitness score of 0.59
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• BT549 data-calibrated best models have an average fitness score of 0.57.

Interestingly, the average fitness score does not vary significantly between the cell lines. Across the
simulations run by the Druglogics group, it has been observed that the fitness score of the models
is improved by the discretisation of the training data. Indeed, the fitness score is calculated based
on the difference between the state of a node in its steady state (active or inactive, translated by 1
or 0), and its state in the training file. If the states of the nodes in the training file are continuous
values ranging from 0 to 1, it is very likely that there will be a high difference (on a scale from 0
to 1) with the steady states of the nodes.
We performed new predictions using the same general parameters as in most of the previous
predictions (25 simulations, 40 topology mutations, calibration of 184 nodes), except that we
discretised the training data to two different states: 0 if the continuous values were lower than 0.5
or 1 if not. Then, we compared the fitness scores of the different predictions by tracing the plot of
the evolution of the fitness score across the generations (see Appendix I). We observe no significant
improvement in the fitness score of the models when using discretised data, suggesting that the
fitness score remains low for other possible reasons such as that the topology of the network does
not translate well the dynamics of TNBC, or that the training data are not adapted. This will be
further discussed later.

We investigated the steady states of some very important nodes of the network: the breast cancer-
specific receptors ESR1, PGR, and ERBB2 are expected to be inactive in TNBC, and the three
most frequently mutated genes TP53, PTEN, and PIK3CA are expected to be active for the latter,
and inactive for the two others. Their activity is important in the dynamic of the network, and
their local states reflect the ability of the network to represent the signalling events of TNBC.
Table 13 summarizes the ratio of activation of these nodes across all the best models for each cell
line.
The receptors are expected to be inactive in TNBC. Here, we observe that they are mostly active,
except for PGR which tends to be less active (active in less than 50% of the best models) in HS-
578T and BT549 models. ESR1 and ERBB2 are also less active in BT549 models (active in 40%
and 49% of the models, respectively). TP53 and PTEN tend to be inactive in all cell line-models,
but PIK3CA is activated in most of them. Overall, compared to the other cell lines, the activity
of these nodes remains lower in BT549 models.

Table 13: Rate of activity of the breast cancer-specific receptors, the frequently mutated genes,
and the phenotypic nodes in the best models selected for the predictions

Node
Activity in
MDA-MB-231
models (%)

Activity in HS-
578T models
(%)

Activity in
BT549 models
(%)

ESR1 96 92 40

PGR 79 43 24

ERBB2 67 64 49

TP53 19 40 33

PIK3CA 93 99 79

PTEN 8 4 19

The main characteristic of TNBC is the absence of the ER (ESR1), PR (PGR), and HER2 (ERBB2)
receptors when detected by IHC, that is, the absence of the protein. As seen in section 3.6.1, the
training data were able to represent this since the mRNA expression level of the corresponding
genes were low. However, it seems like it was not translated through the dynamic of the models, as
the steady-states of the receptors are active in a majority of them, except in BT549 models. It is
surprising since the expression of these receptors were very close both in BT549 and in HS-578T,
especially for ESR1 (0.050 and 0.048, respectively), and that it is eventually active in 92% and
40% of the HS-578T and BT549 models, respectively.
This could be explained by differences in the mRNA expression of other nodes of the network,
which influence the expression of ESR1. To counteract this effect, we tried simulations in which
the three receptors’ states were forced to 0. The ROC curve of the predictions is displayed in
Appendix J. The AUC obtained is 0.46, indeed it has no predictive benefits to force the receptors’
states to 0.
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As for the frequently mutated genes, we previously mentioned that TP53 and PTEN were tumour
suppressor genes that usually had loss of function mutations in TNBC, whereas PIK3CA had an
increased activity. The states of these nodes in most of the best models are in agreement with
these characteristics.

The fitness scores obtained for these models and the steady states of ESR1, PGR, and ERBB2
are somewhat disappointing results. Further investigation should be done on the relevance of the
calibration data used in this study.
CASCADE 2.0 was trained on protein activity data, unlike the TNBC model which we trained
on mRNA expression data. Indeed, Niederdofer et al. (2020) used both protein activity data
generated by a pathway activity inference algorithm, and protein activity observations extracted
from the literature. Combining two different types of calibration data, they observed that it
reduced the chances to use incorrect protein activity data, and that it was beneficial to the models’
performances.
These results suggest that the use of mRNA calibration data could induce erroneous dynamics in
the system, and that the use of proteomics data would be strongly preferred to infer the expected
signalling processes of TNBC.

We computed the ROC curve for each of these predictions (fig. 14). Also, for each cell line,
we analysed the effect of the topology mutations included during the simulations. We looked at
the modules that were the most affected by these mutations. A barplot representing the average
number of mutations per module across the best models selected from the predictions is displayed
along with the ROC curves in Figure 14.

The ROC curve and especially the AUC-ROC show if the model is able to correctly predict synergies
and not wrongly predict synergistic combinations that are in reality, not synergistic. As we can see
in Figure 14, the AUC-ROC is higher than 0.5 for MDA-MB-231 (0.59) and for BT549 (0.54), but
slightly lower for HS-578T (0.49). This is what we generally observed in all the other predictions
that we ran: HS-578T is less performing than the two other cell lines, and the predictions are
generally worse than what could be expected by chance.
The best predictions for MDA-MB-231 and HS-578T were obtained in the same conditions, which
were the calibration of only 25% of the network’s nodes on the respective cell line’s CCLE RNA
expression data. These nodes were selected based on their Determinative Power (DP) as detailed
in section 2.9.1. As for BT549, the best predictions were obtained by calibration of 184 nodes of
the model on BT549 CCLE RNA expression data. This is the only cell line for which we observed
that normalizing the calibrated predictions improved the predictions performances. The 184 nodes
are the genes of the model for which we had expression data, they were not selected based on any
network’s property. All of these predictions involved 25 simulations, and 75 best selected models.
Besides the ROC curves, the barplots reveal the tendency of a module of being modified or even
dismissed during the introduction of the mutations. We accounted for the size of each module
by dividing the total amount of modified equations by the size of the module. Here, we observe
that the Apoptosis module is the most modified one, closely followed by the DNA repair/BRCA,
Cell Cycle, cPLA2, EGFR, and Hedgehog modules. Overall, the modules are affected in a similar
fashion for the three cell lines. Overall, the least modified modules are TGFβ, VEGFR and
WNT, with less than 5% of modifications. Interestingly, TGFβ was the most dismissed module in
CASCADE 2.0, along with MAPK.

If the predictions made with the MDA-MB-231 and BT549 models are slightly positive, they
remain generally low. HS-578T provided overall bad results. There does not seem to be reasonable
biological evidence to this, and HS-578T might require other parameters to perform better. Other
simulations’ results can be found in Appendix K, in which we introduced the use of balance
mutations, alone or in combination with topology mutations too. Balance mutations can change
the equation of the nodes by changing the impact of their regulators on them (e.g., it can change
an ”AND” relationship to an ”OR”). We also ran simulations using the HSA score as a drug
synergy metric. The best AUC that we could obtain for HS-578T was by using a combination of
three balance mutations with 40 topology mutations, and the HSA score (the observed synergy
files were modified to account for the observed synergies based on HSA score, and can be found
on the Github repository: observed synergies → observed synergies hsa name.tab). The best
AUC obtained is 0.61, which is significantly higher than what we previously obtained.
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ROC curve of the best predictions on
MDA-MB-231 data, obtained with 25

simulations and training the models on the
25% best DP-nodes.

Barplot of the pathways affected by the
topology mutations in the best MDA-MB-231

models.

ROC curve of the best predictions on HS-578T
data. Obtained in the same condition as for

MDA-MB-231.

Barplot of the pathways affected by the
topology mutations in the best HS-578T

models.

ROC curve of the best predictions on BT549
data. It was obtained by running 25
simulations on 184 calibrated nodes

Barplot of the pathways affected by the
topology mutations in the best BT549 models.

Figure 14: Best predictive results for each of the CCLE cell line. On the left, the ROC curve of
the prediction. On the right, the barplot of the pathways affected by the topology mutations in
the best models. The y-axis is the average rate of mutations that were applied to a module across
the best models.

We also improved the results of MDA-MB-231 and BT549 models by using a combination of three
balance mutations and topology mutations (40 and 20, respectively), and by computing the HSA
score. The ROC curves are displayed in Appendix M and Appendix L, respectively. For MDA-
MB-231, the AUC was 0.62, and for BT-549, the best AUC was 0.57. Other predictions on BT549
outperformed the previous results as well, by using varying number of simulations and mutations.
These results are close from the ones that we previously obtained, but they still outperformed it.
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More investigations could be done using the HSA score and introducing balance mutations.

3.8.5 Prediction Performances with CASCADE 2.0

As the prediction performances of the the TNBC model remain poor, we tried to run predictions
on CASCADE 2.0. Figure 15 shows the ROC curves and their respective AUC for predictions on
CASCADE 2.0 where 116 nodes were calibrated on the respective cell line data. These predictions
were run on the 75 best models generated across 25 simulations, using the same parameters as we
used for the TNBC model (40 topology mutations and using the BLISS score as synergy metric).
For the three cell lines, the predictions obtained an AUC-ROC≥0.5, and this score was higher
for HS-578T and BT549 (0.52 and 0.59, respectively) than the best predictions run on the TNBC
model using similar parameters (0.49 and 0.54, respectively). However, the AUC remain close
between CASCADE 2.0 and the TNBC model predictions.

Figure 15: Performance of the predictions on CASCADE 2.0 using CCLE data calibration.

We also computed the average fitness score of the best models for each cell line predictions run on
CASCADE 2.0. MDA-MB-231 and HS-578T both obtained a score of 0.58, and BT549 obtained
a score of 0.59, which is similar to what we obtained for the predictions on the TNBC model. As
a comparison, the fitness scores obtained on CASCADE 2.0 using the AGS cell line as calibration
could reach more than 0.8.
The prediction performances of CASCADE 2.0 are poor compared to what we expected given the
good results obtained on four cell lines in Niederdofer et al. (2020). However, a notable difference
in our predictions is the type of calibration data used. As mentioned in Section 3.8.4, CASCADE
2.0 performed well when calibrated on protein activity data, whereas we calibrated it on mRNA
expression data from the three CCLE cell lines.

3.8.6 Predictive Performances of the TNBC Model

In Section 3.7, we first investigated the performances of the TNBC model by predicting drug syn-
ergies based on three CCLE cell lines calibration data. With a varying number of simulations and
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calibrated nodes, we observed that the models surprisingly tend to perform better when trained
over 25 simulations, while we expected better performances with more simulations (from 50 to
150). The number of calibrated nodes, contrary to what we expected from previous work in our
group, would not play a determinant role even though improvements were observed when calib-
rating 25% or less of the best DP nodes. A reason for this could be that the determinative power
of the nodes is calculated based on the logical equations ruling the network, and that we used the
default network (where each equation is in the form of equation 1) as a reference for the DP. The
inconsistency of this measure is that the topology of the network has been changed through the
simulations by introducing mutations. Indeed, the DP of the nodes could have been calculated
again for each network.
As we tried to improve the predictions by using TCGA calibration data, which are supposedly
more representative of TNBC tumours, we observed a decrease in the AUC of the ROC curves of
the different rounds of predictions. Indeed, the prediction of synergies usually observed in TNBC
cell lines are probably not appropriate considering the conditions in which the cell lines are cul-
tured. The CCLE cell lines most likely do not account for the tumour micro-environment as the
TCGA samples do, and lead to an epithelial-to-mesenchymal transition. This could be a major
difference since most of the TNBC tumours are basal-like and luminal-like, two subtypes exerting
phenotypes of epithelial cells [8, 92, 170]. A strong hypothesis from Vincent et al. (2015) would
be to use the average value of the mRNA expression of the CCLE cell lines as training data, since
they could represent better the heterogeneity of the disease.
Overall, even for the best predictive models, we observed that their fitness score remain low com-
pared to what has been observed for CASCADE 2.0 and the AGS cell line, and that the states
of ESR1, PR, and HER2 were mostly active, which is not representative of their state in TNBC.
However, forcing the receptors to their inactive state did not improve the predictions, as shown in
Appendix J. Discretisation of the training data as it was done for the predictions of CASCADE
2.0 on the AGS cell line did not significantly improve the fitness of the models or the predictions
either as shown in AppendixI. As we observed through the barplots of topology mutations, some
pathways are preferentially modified. Among them, the DNA repair/BRCA pathway, the cPLA2,
the EGFR, or the Hedgehog signalling cascades were added to CASCADE 2.0, suggesting that
their topology does not account for the dynamic of the events in TNBC. The apoptosis and cell
cycle pathways were also among the most frequently modified ones, whereas they were almost
completely made of nodes and interactions already present in CASCADE 2.0, which could mirror
inconsistencies in these modules regarding the events in TNBC, and could explain why CASCADE
2.0 did not perform well on the TNBC cell lines as seen in Section 3.8.5.
Furthermore, we observed that HS-578T models usually have lower performances than the other
CCLE cell lines. Since HS-578T is classified as basal-like in the PAM50 subtypes, and as mesenchymal-
like in Lehmann et al. (2016) classification, exactly like MDA-MB-231 and BT549, there is no clear
reason that leads us to think that the topology of the network poorly represents it compared to
the others.
Also, the RNA expression data used for the training of the models do not account for other types
of genetic events such as epigenetic silencing or other post-transcriptional modifications which can
widely vary between the cell lines, and may indicate underlying cellular phenomenon specific to
HS-578T cell line [20, 175].
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4 Conclusion

The aim of this project was to investigate whether we could develop a logical model that allows
accurate representation and system behaviour predictions of the signalling events of triple negative
breast cancer (TNBC).
The TNBC model was developed in a pathway-centric manner using modelling methods that have
a proven scientific value. Integration of multi-omics data into disease models is widely used today
and allows the identification of individual aberrations, but most importantly of more complex pro-
cesses involving different layers of the genome. Indeed, tumours are caused by the emergence of
somatic mutations, which we studied through two types of data: single nucleotide variation and
somatic copy number variation of TNBC patients. Both give precious, but limited information on
the resulting dynamics leading the development steps of a cancer, from the emergence of the first
tumour cells to the formation of metastases. Systems biology relies on the overlay and linkage of
many components of a system to unveil underlying processes specific to the disease context.
The middle-out modelling approach deployed to build the TNBC model enabled the definition
of modules representing sets of genes, proteins, and complexes that are highly related to spe-
cific signalling pathways. In addition to the mutation data, we integrated gene expression and
methylation data of TNBC patients to conduct a top-down analysis. We leveraged alterations
from the individual omics types first, and assessed the pathways related to these alterations in
an over-representation analysis. A literature curation was conducted in parallel in order to verify
the findings of the top-down analysis, and to proceed to the bottom-up approach. Indeed, the
bottom-up step consisted in the addition of missing components of the pathway-modules based on
previous literature findings focused on TNBC.
The resulting model is classified as a CASCADE 2.0-family model, extended for TNBC. It is
composed of 20 pathway-modules, 221 nodes and 716 edges. As we tried to limit the size of the
network, the nodes and edges were kept only if they were considered central in the dynamics of the
pathways. A good proportion of these nodes (52/221, approximately 23%) were found altered in
the omics data, suggesting that key components of the signalling events of TNBC can be leveraged
through multi-omics analyses. The pathway Enrichment Analysis (EA) also gave reliable results
since most of the pathways found in CASCADE 2.0 were over-represented in the altered genes of
the TNBC samples too. Other cancer-related pathways that were not present in CASCADE 2.0
but over-represented in the EA often proved to be specifically misregulated in TNBC during the
literature curation phase, showing the reliability of EA for unveiling new key pathways to extend
existing models.

Using the DrugLogics pipeline [91], the Prior Knowledge Network (PKN) was converted into logical
models to account for the dynamic ruling the activity of its nodes, and was used in in silico drug
synergy predictions with the ambition of being able to correctly predict true synergies, and even
new ones.
The TNBC model was transformed into several cell line-specific logical models using mRNA ex-
pression data of three TNBC cell lines. The generation of Boolean models with the DrugLogics
pipeline was done by calibration of the states of the PKN on the mRNA expression data. This
iterative process produced the best possible fitting models, which can be assessed by computing
the fitness score of the resulting Boolean models. The fitness score of the best predictive models
produced throughout this project remained low for all the cell lines compared to the observations
of Niederdofer et al. (2020) concerning CASCADE 2.0 [58]. We tried to improve this fitness score
by discretising the calibration data as it was suggested in previous studies of the group, in vain. We
also observed that key nodes such as the estrogen receptor (ESR1), progesterone receptor (PGR),
and the human epidermal growth factor receptor 2 (ERBB2) do not respect the characteristics
of TNBC cases, because their stable states show them active in most models, while they should
be inactive. It reflects that the dynamic of the model cannot be further improved by the genetic
algorithm to match the biological reality.
We explain it through several possible weaknesses of the project, the first one being that the to-
pology of the network might cause a blockage in the network, making it impossible to better fit
the calibration data. However, the introduction of topology mutations during the mutation phase
of Gitsbe should have solved this issue. A second hypothesis is that the mRNA expression data
of CCLE cell lines are not representative of real TNBC cases. This could have been handled by
the use of calibration data retrieved from TCGA, but the difficulty with those data layed on the
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fact that the drug synergies listed by drug synergy databases were specific to the TNBC cell lines,
and not to TNBC patients in general. A last hypothesis to improve the dynamic of the Boolean
models is that protein activity data would be strongly preferred over mRNA expression data to
train the TNBC model. Indeed, mRNA play an important role in transcriptional processes, but
what primes in the dynamic of the cells is the activity of the proteins, which is regulated by many
post-transcriptional processes, not reflected in the mRNA expression. Thus, the dynamic of the
models could certainly be improved by directly using a combination of inferred or literature-based
protein activity data as it was done for CASCADE 2.0 [58].

Despite our efforts to find the best possible parameters to generate the cell line-specific models
and predict drug synergies, the prediction performances of the TNBC model generally remained
disappointing. The HS-578T cell line typically showed the poorest performances in terms of Area
Under the Receiver Operating Characteristic Curve (ROC-AUC). The HS-578T models most often
misclassified more combinations than it successfully did. On the other hand, MDA-MB-231 and
BT549 provided positive results under certain conditions, but no biological reason was found to
explain that they outperformed HS-578T models. However, we do not exclude the hypothesis that
complex transcriptional or post-transcriptional processes could happen in HS-578T, whereas they
are not reported in the mRNA data used for the calibration of the models.

Areas of improvement for the models probably lie in the refinement of the pathway-modules. Typ-
ically, the combinations that were misclassified could be investigated, as it was done in Niederdofer
et al. (2020), and the functional processes affected by these drugs should be carefully revised in
order to improve the topology of the network. To further improve the topology of the network,
the pathways mostly affected by the introduction of topology mutations should also be revised.
Indeed, the topology mutations were applied by the algorithm in order to improve the fitness score
of the model, which could reveal weaknesses in the network building process. Additionally, efforts
should be made in the calibration of the network with protein activity data.
From these three axes of improvements, the Boolean models should better represent the biological
reality and dynamics of TNBC, and more investigation could be done on what parameters used by
the DrugLogics pipeline provide the best results. We found that 25 simulations generally optimised
the prediction performances, and that calibrating a fraction of the nodes with the best determin-
ative power did not have the expected effect on the ROC-AUC, which is not in agreement with
the previous findings of our group. Additionally, the normalization of calibrated predictions with
the scores obtained by the random proliferative models did not significantly improve the predictive
power of the models, as it was expected. Other efforts in the optimisation of the pipeline could
be to investigate the use of the HSA score instead of BLISS, since we saw on a few results that it
could improve our predictions.
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[47] Albert-László Barabási and Zoltán N. Oltvai. ‘Network biology: understanding the cell’s
functional organization’. en. In: Nature Reviews Genetics 5.2 (Feb. 2004), pp. 101–113. issn:
1471-0056, 1471-0064. doi: 10.1038/nrg1272. url: http://www.nature.com/articles/nrg1272
(visited on 23rd Apr. 2022).

[48] B Dutta et al. ‘A network-based, integrative study to identify core biological pathways
that drive breast cancer clinical subtypes’. en. In: British Journal of Cancer 106.6 (Mar.
2012), pp. 1107–1116. issn: 0007-0920, 1532-1827. doi: 10.1038/bjc.2011.584. url: http:
//www.nature.com/articles/bjc2011584 (visited on 14th Mar. 2021).

[49] T. Ideker et al. ‘Discovering regulatory and signalling circuits in molecular interaction net-
works’. en. In: Bioinformatics 18.Suppl 1 (July 2002), S233–S240. issn: 1367-4803, 1460-
2059. doi: 10 . 1093 / bioinformatics / 18 . suppl 1 . S233. url: https : / / academic . oup . com/
bioinformatics/article-lookup/doi/10.1093/bioinformatics/18.suppl 1.S233 (visited on 3rd May
2022).

[50] Marco Tognetti et al. ‘Deciphering the signaling network of breast cancer improves drug
sensitivity prediction’. en. In: Cell Systems 12.5 (May 2021), 401–418.e12. issn: 24054712.
doi: 10 . 1016 / j . cels . 2021 . 04 . 002. url: https : / / linkinghub . elsevier . com / retrieve / pii /
S2405471221001113 (visited on 23rd May 2021).

[51] Felix M Weidner et al. ‘Capturing dynamic relevance in Boolean networks using graph the-
oretical measures’. en. In: Bioinformatics 37.20 (Oct. 2021). Ed. by Janet Kelso, pp. 3530–
3537. issn: 1367-4803, 1460-2059. doi: 10 . 1093 / bioinformatics / btab277. url: https : / /
academic.oup.com/bioinformatics/article/37/20/3530/6275260 (visited on 8th Apr. 2022).
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[128] Iris Alejandra Garćıa et al. ‘Therapeutic opportunities for PLK1 inhibitors: Spotlight on
BRCA1-deficiency and triple negative breast cancers’. en. In:Mutation Research/Fundamental
and Molecular Mechanisms of Mutagenesis 821 (May 2020), p. 111693. issn: 00275107.
doi: 10.1016/j.mrfmmm.2020.111693. url: https://linkinghub.elsevier.com/retrieve/pii/
S0027510719301265 (visited on 27th Oct. 2021).

[129] Mauricio A. Medina et al. ‘Triple-Negative Breast Cancer: A Review of Conventional and
Advanced Therapeutic Strategies’. en. In: International Journal of Environmental Research
and Public Health 17.6 (Mar. 2020), p. 2078. issn: 1660-4601. doi: 10.3390/ijerph17062078.
url: https://www.mdpi.com/1660-4601/17/6/2078 (visited on 6th Sept. 2021).

[130] Mohammad A. Khan et al. ‘PI3K/AKT/mTOR pathway inhibitors in triple-negative breast
cancer: a review on drug discovery and future challenges’. en. In: Drug Discovery Today
24.11 (Nov. 2019), pp. 2181–2191. issn: 13596446. doi: 10.1016/j.drudis.2019.09.001. url:
https://linkinghub.elsevier.com/retrieve/pii/S1359644619303459 (visited on 5th Nov. 2021).

[131] Yin He et al. ‘Classification of triple-negative breast cancers based on Immunogenomic
profiling’. en. In: Journal of Experimental & Clinical Cancer Research 37.1 (Dec. 2018),
p. 327. issn: 1756-9966. doi: 10.1186/s13046-018-1002-1. url: https://jeccr.biomedcentral.
com/articles/10.1186/s13046-018-1002-1 (visited on 18th Jan. 2022).

[132] Mark A. Lemmon and Joseph Schlessinger. ‘Cell Signaling by Receptor Tyrosine Kinases’.
en. In: Cell 141.7 (June 2010), pp. 1117–1134. issn: 00928674. doi: 10.1016/j.cell.2010.
06.011. url: https://linkinghub.elsevier.com/retrieve/pii/S0092867410006653 (visited on
15th Apr. 2022).

[133] Ellen Margrethe Haugsten et al. ‘Roles of Fibroblast Growth Factor Receptors in Carcino-
genesis’. en. In: Molecular Cancer Research 8.11 (Nov. 2010), pp. 1439–1452. issn: 1541-
7786, 1557-3125. doi: 10.1158/1541-7786.MCR-10-0168. url: http://mcr.aacrjournals.org/
lookup/doi/10.1158/1541-7786.MCR-10-0168 (visited on 15th Apr. 2022).

[134] N Turner et al. ‘Integrative molecular profiling of triple negative breast cancers identifies
amplicon drivers and potential therapeutic targets’. en. In: Oncogene 29.14 (Apr. 2010),
pp. 2013–2023. issn: 0950-9232, 1476-5594. doi: 10.1038/onc.2009.489. url: https://www.
nature.com/articles/onc2009489 (visited on 15th Apr. 2022).

64

https://doi.org/10.1111/j.1349-7006.2004.tb02195.x
https://doi.org/10.1111/j.1349-7006.2004.tb02195.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.2004.tb02195.x
https://doi.org/10.3390/cancers10120525
http://www.mdpi.com/2072-6694/10/12/525
https://doi.org/10.1186/s13058-018-1094-8
https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-018-1094-8
https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-018-1094-8
https://doi.org/10.4161/15384101.2014.967118
http://www.tandfonline.com/doi/full/10.4161/15384101.2014.967118
http://www.tandfonline.com/doi/full/10.4161/15384101.2014.967118
https://doi.org/10.1186/s12885-020-07573-y
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-020-07573-y
https://doi.org/10.1186/s12885-019-5290-4
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-019-5290-4
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-019-5290-4
https://doi.org/10.1016/j.mrfmmm.2020.111693
https://linkinghub.elsevier.com/retrieve/pii/S0027510719301265
https://linkinghub.elsevier.com/retrieve/pii/S0027510719301265
https://doi.org/10.3390/ijerph17062078
https://www.mdpi.com/1660-4601/17/6/2078
https://doi.org/10.1016/j.drudis.2019.09.001
https://linkinghub.elsevier.com/retrieve/pii/S1359644619303459
https://doi.org/10.1186/s13046-018-1002-1
https://jeccr.biomedcentral.com/articles/10.1186/s13046-018-1002-1
https://jeccr.biomedcentral.com/articles/10.1186/s13046-018-1002-1
https://doi.org/10.1016/j.cell.2010.06.011
https://doi.org/10.1016/j.cell.2010.06.011
https://linkinghub.elsevier.com/retrieve/pii/S0092867410006653
https://doi.org/10.1158/1541-7786.MCR-10-0168
http://mcr.aacrjournals.org/lookup/doi/10.1158/1541-7786.MCR-10-0168
http://mcr.aacrjournals.org/lookup/doi/10.1158/1541-7786.MCR-10-0168
https://doi.org/10.1038/onc.2009.489
https://www.nature.com/articles/onc2009489
https://www.nature.com/articles/onc2009489


[135] Nicholas Turner et al. ‘FGFR1 Amplification Drives Endocrine Therapy Resistance and Is a
Therapeutic Target in Breast Cancer’. en. In: Cancer Research 70.5 (Mar. 2010), pp. 2085–
2094. issn: 0008-5472, 1538-7445. doi: 10 . 1158 / 0008 - 5472 . CAN - 09 - 3746. url: http :
//cancerres .aacrjournals .org/ lookup/doi/10 .1158/0008- 5472 .CAN- 09- 3746 (visited on
18th Oct. 2021).

[136] Rachel Sharpe et al. ‘FGFR Signaling Promotes the Growth of Triple-Negative and Basal-
Like Breast Cancer Cell Lines Both In Vitro and In Vivo’. en. In: Clinical Cancer Research
17.16 (Aug. 2011), pp. 5275–5286. issn: 1078-0432, 1557-3265. doi: 10.1158/1078-0432.CCR-
10-2727. url: http://clincancerres.aacrjournals.org/lookup/doi/10.1158/1078-0432.CCR-10-
2727 (visited on 18th Oct. 2021).

[137] Chee Leong Cheng et al. ‘Expression of FGFR1 is an independent prognostic factor in
triple-negative breast cancer’. en. In: Breast Cancer Research and Treatment 151.1 (May
2015), pp. 99–111. issn: 0167-6806, 1573-7217. doi: 10 .1007/ s10549 - 015 - 3371 - x. url:
http://link.springer.com/10.1007/s10549-015-3371-x (visited on 18th Oct. 2021).

[138] Nicole J. Chew et al. ‘FGFR3 signaling and function in triple negative breast cancer’.
en. In: Cell Communication and Signaling 18.1 (Dec. 2020), p. 13. issn: 1478-811X. doi:
10.1186/s12964-019-0486-4. url: https://biosignaling.biomedcentral.com/articles/10.1186/
s12964-019-0486-4 (visited on 16th Sept. 2021).

[139] Amber M. Johnson, Emily K. Kleczko and Raphael A. Nemenoff. ‘Eicosanoids in Can-
cer: New Roles in Immunoregulation’. en. In: Frontiers in Pharmacology 11 (Nov. 2020),
p. 595498. issn: 1663-9812. doi: 10.3389/fphar.2020.595498. url: https://www.frontiersin.
org/articles/10.3389/fphar.2020.595498/full (visited on 11th Oct. 2021).

[140] W L Smith. ‘The eicosanoids and their biochemical mechanisms of action’. en. In: Bio-
chemical Journal 259.2 (Apr. 1989), pp. 315–324. issn: 0264-6021, 1470-8728. doi: 10 .
1042/bj2590315. url: https://portlandpress.com/biochemj/article/259/2/315/24577/The-
eicosanoids-and-their-biochemical-mechanisms (visited on 15th Apr. 2022).

[141] Francesco Caiazza, Brian J. Harvey and Warren Thomas. ‘Cytosolic Phospholipase A2
Activation Correlates with HER2 Overexpression and Mediates Estrogen-Dependent Breast
Cancer Cell Growth’. en. In: Molecular Endocrinology 24.5 (May 2010), pp. 953–968. issn:
0888-8809, 1944-9917. doi: 10.1210/me.2009-0293. url: https://academic.oup.com/mend/
article/24/5/953/2706140 (visited on 21st Apr. 2021).

[142] Renata Nascimento Gomes, Souza Felipe da Costa and Alison Colquhoun. ‘Eicosanoids and
cancer’. eng. In: Clinics (Sao Paulo, Brazil) 73.suppl 1 (Aug. 2018), e530s. issn: 1980-5322.
doi: 10.6061/clinics/2018/e530s.

[143] Mousumi Majumder et al. ‘EP4 as a Therapeutic Target for Aggressive Human Breast
Cancer’. en. In: International Journal of Molecular Sciences 19.4 (Mar. 2018), p. 1019. issn:
1422-0067. doi: 10.3390/ijms19041019. url: http://www.mdpi.com/1422-0067/19/4/1019
(visited on 7th Oct. 2021).

[144] Michael G. Chiorazzo et al. ‘Detection and Differentiation of Breast Cancer Sub-Types using
a cPLA2 Activatable Fluorophore’. eng. In: Scientific Reports 9.1 (Apr. 2019), p. 6122. issn:
2045-2322. doi: 10.1038/s41598-019-41626-y.

[145] Atasi De Chatterjee et al. ‘Arachidonic Acid Induces the Migration of MDA-MB-231 Cells
by Activating Raft-associated Leukotriene B4 Receptors’. en. In: Clinical Cancer Drugs 5.1
(Nov. 2018), pp. 28–41. issn: 2212697X. doi: 10.2174/2212697X05666180418145601. url:
http://www.eurekaselect.com/161381/article (visited on 11th Oct. 2021).

[146] Suzanne A. Eccles. ‘The epidermal growth factor receptor/Erb-B/HER family in normal
and malignant breast biology’. en. In: The International Journal of Developmental Biology
55.7-8-9 (2011), pp. 685–696. issn: 0214-6282. doi: 10 . 1387 / ijdb . 113396se. url: http :
//www.intjdevbiol.com/paper.php?doi=113396se (visited on 18th Apr. 2022).

[147] Alan Wells. EGF receptor. eng. 1999. (Visited on 2nd Nov. 2021).

[148] R.I Nicholson, J.M.W Gee and M.E Harper. ‘EGFR and cancer prognosis’. en. In: European
Journal of Cancer 37 (Sept. 2001), pp. 9–15. issn: 09598049. doi: 10.1016/S0959-8049(01)
00231-3. url: https://linkinghub.elsevier.com/retrieve/pii/S0959804901002313 (visited on
18th Apr. 2022).

65

https://doi.org/10.1158/0008-5472.CAN-09-3746
http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-09-3746
http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-09-3746
https://doi.org/10.1158/1078-0432.CCR-10-2727
https://doi.org/10.1158/1078-0432.CCR-10-2727
http://clincancerres.aacrjournals.org/lookup/doi/10.1158/1078-0432.CCR-10-2727
http://clincancerres.aacrjournals.org/lookup/doi/10.1158/1078-0432.CCR-10-2727
https://doi.org/10.1007/s10549-015-3371-x
http://link.springer.com/10.1007/s10549-015-3371-x
https://doi.org/10.1186/s12964-019-0486-4
https://biosignaling.biomedcentral.com/articles/10.1186/s12964-019-0486-4
https://biosignaling.biomedcentral.com/articles/10.1186/s12964-019-0486-4
https://doi.org/10.3389/fphar.2020.595498
https://www.frontiersin.org/articles/10.3389/fphar.2020.595498/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.595498/full
https://doi.org/10.1042/bj2590315
https://doi.org/10.1042/bj2590315
https://portlandpress.com/biochemj/article/259/2/315/24577/The-eicosanoids-and-their-biochemical-mechanisms
https://portlandpress.com/biochemj/article/259/2/315/24577/The-eicosanoids-and-their-biochemical-mechanisms
https://doi.org/10.1210/me.2009-0293
https://academic.oup.com/mend/article/24/5/953/2706140
https://academic.oup.com/mend/article/24/5/953/2706140
https://doi.org/10.6061/clinics/2018/e530s
https://doi.org/10.3390/ijms19041019
http://www.mdpi.com/1422-0067/19/4/1019
https://doi.org/10.1038/s41598-019-41626-y
https://doi.org/10.2174/2212697X05666180418145601
http://www.eurekaselect.com/161381/article
https://doi.org/10.1387/ijdb.113396se
http://www.intjdevbiol.com/paper.php?doi=113396se
http://www.intjdevbiol.com/paper.php?doi=113396se
https://doi.org/10.1016/S0959-8049(01)00231-3
https://doi.org/10.1016/S0959-8049(01)00231-3
https://linkinghub.elsevier.com/retrieve/pii/S0959804901002313


[149] Heae Surng Park et al. ‘High EGFR gene copy number predicts poor outcome in triple-
negative breast cancer’. en. In: Modern Pathology 27.9 (Sept. 2014), pp. 1212–1222. issn:
0893-3952, 1530-0285. doi: 10.1038/modpathol.2013.251. url: http://www.nature.com/
articles/modpathol2013251 (visited on 2nd Nov. 2021).

[150] D. Ford et al. ‘Genetic Heterogeneity and Penetrance Analysis of the BRCA1 and BRCA2
Genes in Breast Cancer Families’. en. In: The American Journal of Human Genetics 62.3
(Mar. 1998), pp. 676–689. issn: 00029297. doi: 10.1086/301749. url: https://linkinghub.
elsevier.com/retrieve/pii/S0002929707638488 (visited on 18th Apr. 2022).

[151] Jill J. J. Geenen et al. ‘PARP Inhibitors in the Treatment of Triple-Negative Breast Cancer’.
en. In: Clinical Pharmacokinetics 57.4 (Apr. 2018), pp. 427–437. issn: 0312-5963, 1179-1926.
doi: 10.1007/s40262-017-0587-4. url: http://link.springer.com/10.1007/s40262-017-0587-4
(visited on 1st Dec. 2021).

[152] Xupeng Bai et al. ‘Triple-negative breast cancer therapeutic resistance: Where is the Achilles’
heel?’ en. In: Cancer Letters 497 (Jan. 2021), pp. 100–111. issn: 03043835. doi: 10.1016/
j.canlet.2020.10.016. url: https://linkinghub.elsevier.com/retrieve/pii/S0304383520305425
(visited on 26th Oct. 2021).

[153] I. Zachary. ‘VEGF signalling: integration and multi-tasking in endothelial cell biology’.
en. In: Biochemical Society Transactions 31.6 (Dec. 2003), pp. 1171–1177. issn: 0300-5127,
1470-8752. doi: 10 .1042/bst0311171. url: https ://portlandpress . com/biochemsoctrans/
article / 31 / 6 / 1171 / 64507 /VEGF - signalling - integration - and - multitasking - in (visited on
1st Nov. 2021).

[154] Domenico Ribatti et al. ‘Angiogenesis and Antiangiogenesis in Triple-Negative Breast can-
cer’. en. In: Translational Oncology 9.5 (Oct. 2016), pp. 453–457. issn: 19365233. doi: 10.
1016/j.tranon.2016.07.002. url: https://linkinghub.elsevier.com/retrieve/pii/S1936523316300717
(visited on 19th Apr. 2022).

[155] Gagan K. Gupta et al. ‘Perspectives on Triple-Negative Breast Cancer: Current Treatment
Strategies, Unmet Needs, and Potential Targets for Future Therapies’. en. In: Cancers
12.9 (Aug. 2020), p. 2392. issn: 2072-6694. doi: 10 . 3390/ cancers12092392. url: https :
//www.mdpi.com/2072-6694/12/9/2392 (visited on 1st Nov. 2021).

[156] M. V. Giuli et al. ‘Notch Signaling Activation as a Hallmark for Triple-Negative Breast
Cancer Subtype’. en. In: Journal of Oncology 2019 (July 2019), pp. 1–15. issn: 1687-8450,
1687-8469. doi: 10.1155/2019/8707053. url: https://www.hindawi.com/journals/jo/2019/
8707053/ (visited on 17th Nov. 2021).

[157] Fokhrul Hossain et al. ‘Notch Signaling Regulates Mitochondrial Metabolism and NF-B
Activity in Triple-Negative Breast Cancer Cells via IKK-Dependent Non-canonical Path-
ways’. en. In: Frontiers in Oncology 8 (Dec. 2018), p. 575. issn: 2234-943X. doi: 10.3389/
fonc.2018.00575. url: https://www.frontiersin.org/article/10.3389/fonc.2018.00575/full
(visited on 17th Nov. 2021).

[158] Jianmin Zhang et al. ‘Genetic variations in the Hippo signaling pathway and breast cancer
risk in African American women in the AMBER Consortium’. en. In: Carcinogenesis 37.10
(Oct. 2016), pp. 951–956. issn: 0143-3334, 1460-2180. doi: 10.1093/carcin/bgw077. url:
https://academic.oup.com/carcin/article- lookup/doi/10.1093/carcin/bgw077 (visited on
21st Apr. 2022).

[159] Damiano Cosimo Rigiracciolo et al. ‘IGF-1/IGF-1R/FAK/YAP Transduction Signaling
Prompts Growth Effects in Triple-Negative Breast Cancer (TNBC) Cells’. en. In: Cells
9.4 (Apr. 2020), p. 1010. issn: 2073-4409. doi: 10.3390/cells9041010. url: https://www.
mdpi.com/2073-4409/9/4/1010 (visited on 24th Jan. 2022).

[160] Zhonghao Wang et al. ‘Regulation of Hippo signaling and triple negative breast cancer
progression by an ubiquitin ligase RNF187’. en. In: Oncogenesis 9.3 (Mar. 2020), p. 36. issn:
2157-9024. doi: 10.1038/s41389-020-0220-5. url: http://www.nature.com/articles/s41389-
020-0220-5 (visited on 24th Jan. 2022).

[161] Rosamaria Lappano, Yves Jacquot and Marcello Maggiolini. ‘GPCR Modulation in Breast
Cancer’. en. In: International Journal of Molecular Sciences 19.12 (Dec. 2018), p. 3840. issn:
1422-0067. doi: 10.3390/ijms19123840. url: http://www.mdpi.com/1422-0067/19/12/3840
(visited on 16th Sept. 2021).

66

https://doi.org/10.1038/modpathol.2013.251
http://www.nature.com/articles/modpathol2013251
http://www.nature.com/articles/modpathol2013251
https://doi.org/10.1086/301749
https://linkinghub.elsevier.com/retrieve/pii/S0002929707638488
https://linkinghub.elsevier.com/retrieve/pii/S0002929707638488
https://doi.org/10.1007/s40262-017-0587-4
http://link.springer.com/10.1007/s40262-017-0587-4
https://doi.org/10.1016/j.canlet.2020.10.016
https://doi.org/10.1016/j.canlet.2020.10.016
https://linkinghub.elsevier.com/retrieve/pii/S0304383520305425
https://doi.org/10.1042/bst0311171
https://portlandpress.com/biochemsoctrans/article/31/6/1171/64507/VEGF-signalling-integration-and-multitasking-in
https://portlandpress.com/biochemsoctrans/article/31/6/1171/64507/VEGF-signalling-integration-and-multitasking-in
https://doi.org/10.1016/j.tranon.2016.07.002
https://doi.org/10.1016/j.tranon.2016.07.002
https://linkinghub.elsevier.com/retrieve/pii/S1936523316300717
https://doi.org/10.3390/cancers12092392
https://www.mdpi.com/2072-6694/12/9/2392
https://www.mdpi.com/2072-6694/12/9/2392
https://doi.org/10.1155/2019/8707053
https://www.hindawi.com/journals/jo/2019/8707053/
https://www.hindawi.com/journals/jo/2019/8707053/
https://doi.org/10.3389/fonc.2018.00575
https://doi.org/10.3389/fonc.2018.00575
https://www.frontiersin.org/article/10.3389/fonc.2018.00575/full
https://doi.org/10.1093/carcin/bgw077
https://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgw077
https://doi.org/10.3390/cells9041010
https://www.mdpi.com/2073-4409/9/4/1010
https://www.mdpi.com/2073-4409/9/4/1010
https://doi.org/10.1038/s41389-020-0220-5
http://www.nature.com/articles/s41389-020-0220-5
http://www.nature.com/articles/s41389-020-0220-5
https://doi.org/10.3390/ijms19123840
http://www.mdpi.com/1422-0067/19/12/3840
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Appendix

A Versions of the Bioinformatics Tools Used

Versions of the bioinformatics tools used in the project

Tool Version
R 4.1.3

RStudio 1.4.1103
Bioconductor 3.13

Gistic 2.0
MutSigCV 1.3.5
Reactome 79 ; 80
KEGG 99.1 ; 100-102.0
GINsim 3.0

Cytoscape 3.9.0
SIGNOR 2.0
DrugBank 5.0

DrugCombDB 1.0
Synergx 1.0

DrugComb 1.5

B TCGA Barcodes of the TNBC Patients

173 TNBC patient’s barcodes from TCGA-BRCA project available on the GDC repository

TCGA-A1-A0SK TCGA-AN-A0FJ TCGA-BH-A0B9 TCGA-E2-A1LH
TCGA-A1-A0SO TCGA-AN-A0FL TCGA-BH-A0BG TCGA-E2-A1LI
TCGA-A1-A0SP TCGA-AN-A0FX TCGA-BH-A0BL TCGA-E2-A1LK
TCGA-A2-A04P TCGA-AN-A0G0 TCGA-BH-A0E0 TCGA-E2-A1LL
TCGA-A2-A04T TCGA-AN-A0XU TCGA-BH-A0E6 TCGA-E2-A1LS
TCGA-A2-A04U TCGA-AO-A03U TCGA-BH-A0WA TCGA-E2-A573
TCGA-A2-A0CM TCGA-AO-A0J2 TCGA-BH-A18G TCGA-E2-A574
TCGA-A2-A0D0 TCGA-AO-A0J4 TCGA-BH-A18Q TCGA-E9-A1N8
TCGA-A2-A0D2 TCGA-AO-A0J6 TCGA-BH-A18T TCGA-E9-A1ND
TCGA-A2-A0EQ TCGA-AO-A124 TCGA-BH-A18V TCGA-E9-A1RH
TCGA-A2-A0SX TCGA-AO-A128 TCGA-BH-A1EW TCGA-E9-A22G
TCGA-A2-A0T0 TCGA-AO-A129 TCGA-BH-A1F6 TCGA-E9-A244
TCGA-A2-A0T2 TCGA-AO-A12F TCGA-BH-A1FC TCGA-E9-A5FL
TCGA-A2-A0YM TCGA-D8-A1JG TCGA-BH-A42U TCGA-EW-A1OV
TCGA-A2-A1G6 TCGA-AO-A1KR TCGA-C8-A12K TCGA-EW-A1OW
TCGA-A2-A3XS TCGA-AQ-A04J TCGA-C8-A12V TCGA-EW-A1P1
TCGA-A2-A3XT TCGA-AQ-A54N TCGA-C8-A131 TCGA-EW-A1P4
TCGA-A2-A3XU TCGA-AR-A0TP TCGA-C8-A134 TCGA-EW-A1P7
TCGA-A2-A3XX TCGA-AR-A0TS TCGA-C8-A1HJ TCGA-EW-A1P8
TCGA-A2-A3XY TCGA-AR-A0U4 TCGA-C8-A26X TCGA-EW-A1PB
TCGA-A7-A0CE TCGA-AR-A1AH TCGA-C8-A26Y TCGA-EW-A1PH
TCGA-A7-A0DA TCGA-AR-A1AI TCGA-C8-A27B TCGA-GI-A2C9
TCGA-A7-A26F TCGA-AR-A1AJ TCGA-C8-A3M7 TCGA-GM-A2DB
TCGA-A7-A26G TCGA-AR-A1AO TCGA-D8-A13Z TCGA-GM-A2DD
TCGA-A7-A26I TCGA-AR-A1AQ TCGA-D8-A142 TCGA-GM-A2DF
TCGA-A7-A4SD TCGA-AR-A1AR TCGA-D8-A143 TCGA-GM-A2DH
TCGA-A7-A4SE TCGA-AR-A1AY TCGA-D8-A147 TCGA-GM-A2DI
TCGA-A7-A5ZV TCGA-AR-A256 TCGA-D8-A1JF TCGA-GM-A3XL
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TCGA-A7-A6VV TCGA-AR-A2LH TCGA-D8-A1JL TCGA-HN-A2NL
TCGA-A7-A6VW TCGA-AR-A2LR TCGA-D8-A1XK TCGA-LL-A5YO
TCGA-A7-A6VY TCGA-AR-A5QQ TCGA-D8-A1XQ TCGA-LL-A73Y
TCGA-A8-A07C TCGA-B6-A0I2 TCGA-D8-A27F TCGA-LL-A740
TCGA-A8-A07O TCGA-B6-A0I6 TCGA-D8-A27H TCGA-OL-A5D6
TCGA-A8-A07R TCGA-B6-A0IE TCGA-D8-A27M TCGA-OL-A5D7
TCGA-A8-A08R TCGA-B6-A0IQ TCGA-E2-A14N TCGA-OL-A5RW
TCGA-AC-A2BK TCGA-B6-A0RE TCGA-E2-A14R TCGA-OL-A66I
TCGA-AC-A2QH TCGA-B6-A0RS TCGA-E2-A150 TCGA-OL-A66P
TCGA-AC-A2QJ TCGA-B6-A0RT TCGA-E2-A158 TCGA-OL-A6VO
TCGA-AC-A6IW TCGA-B6-A0RU TCGA-E2-A159 TCGA-OL-A97C
TCGA-AC-A8OQ TCGA-B6-A0WX TCGA-E2-A1AZ TCGA-PL-A8LV
TCGA-AN-A04D TCGA-B6-A402 TCGA-E2-A1B6 TCGA-PL-A8LZ
TCGA-AN-A0AL TCGA-BH-A0AV TCGA-E2-A1L7 TCGA-S3-AA10
TCGA-AN-A0AR TCGA-BH-A0B3 TCGA-E2-A1LG TCGA-S3-AA15
TCGA-AN-A0AT

C Model Outputs

Model outputs used to compute the global output response of the models in unperturbed conditions,
or after perturbation.

Name Weight
CASP8 -1
CASP9 -1
FOXO f -1
RSK f 1
CCND1 1
MYC 1

D Drug Panels of the CCLE Cell Lines

Drugs tested for each cell line, their activation or inhibitory effect, and their targets.

MDA-MB-231 HS-578T BT549
Drug Effect Targets Drug Effect Targets Drug Effect Targets

Nilotinib inhibits ABL1 Nilotinib inhibits ABL1 Nilotinib inhibits ABL1
Imatinib inhibits ABL1 Imatinib inhibits ABL1 Imatinib inhibits ABL1

Dasatinib inhibits
ABL1
SRC

Dasatinib inhibits
ABL1
SRC

Dasatinib inhibits
ABL1
SRC

Paclitaxel inhibits BCL2 Paclitaxel inhibits BCL2 Paclitaxel inhibits BCL2

Lapatinib inhibits
EGFR
ERBB2

Lapatinib inhibits
EGFR
ERBB2

Lapatinib inhibits
EGFR
ERBB2

Erlotinib inhibits EGFR Erlotinib inhibits EGFR Erlotinib inhibits EGFR
Vandetanib inhibits EGFR Vandetanib inhibits EGFR Vandetanib inhibits EGFR

Tamoxifen inhibits
ESR1
PRKCA
PRKCD

Tamoxifen inhibits
ESR1
PRKCA
PRKCD

Tamoxifen inhibits
ESR1
PRKCA
PRKCD

Fulvestrant inhibits ESR1 Fulvestrant inhibits ESR1 Fulvestrant inhibits ESR1
Raloxifene activates ESR1 Raloxifene activates ESR1 Raloxifene activates ESR1

Pazopanib inhibits
VEGFR2
FGF f

Pazopanib inhibits
VEGFR2
FGF f

Pazopanib inhibits
VEGFR2
FGF f

Sorafenib inhibits
VEGFR2
FGFR
RAF f

Sorafenib inhibits
VEGFR2
FGFR
RAF f

Sorafenib inhibits
VEGFR2
FGFR
RAF f

Thalidomide inhibits NFKB f Thalidomide inhibits NFKB f Thalidomide inhibits NFKB f
Ruxolitinib inhibits JAK f Ruxolitinib inhibits JAK f Ruxolitinib inhibits JAK f
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Celecoxib inhibits PDPK1 Celecoxib inhibits PDPK1 Celecoxib inhibits PDPK1
Vemurafenib inhibits RAF f Vemurafenib inhibits RAF f Vemurafenib inhibits RAF f
Vismodegib inhibits SMO Vismodegib inhibits SMO Vismodegib inhibits SMO
Sunitinib inhibits VEGFR2 Sunitinib inhibits VEGFR2 Sunitinib inhibits VEGFR2
Gefitinib inhibits EGFR Gefitinib inhibits EGFR Cabozantinib inhibits VEGFR2

Afatinib inhibits
EGFR ;
ERBB2

Topotecan inhibits TOP1 Topotecan inhibits TOP1

Axitinib inhibits VEGFR2 Axitinib inhibits VEGFR2 Axitinib inhibits VEGFR2
Sonidegib inhibits SMO Sonidegib inhibits SMO
Alisertib inhibits AURKA

E Chromplot of the Somatic Copy Number Alterations

Chromplot of the significantly amplified and deleted regions of the genome. The y-axis represents
the G-score associated to each peak. The G-score is calculated based on the amplitude of the
aberration and its frequency across the samples.
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F Most Over-Represented Pathways Against KEGG

Dotplots of the 30 top over-represented pathways obtained by enrichment analysis against KEGG
database. On the y-axis, the pathways are represented. The x-axis correspond to the ratio of genes
that belong to the pathway of interest over the total number of genes in the corresponding gene
list. The size of the dots represent the FDR-adjusted p-value.

Results of the EA on DEGs against KEGG

Results of the EA on DMGs against KEGG
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Results of the EA on DEGs and DMGs against KEGG

Results of the EA on SCNAs against KEGG
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Results of the EA on DEGs and DMGs and SCNAs against KEGG

Results of the EA on all altered genes against KEGG
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G Most Over-Represented Pathways Against Reactome

Dotplots of the 30 top over-represented pathways obtained by enrichment analysis against Re-
actome database. On the y-axis, the pathways are represented. The x-axis correspond to the ratio
of genes that belong to the pathway of interest over the total number of genes in the corresponding
gene list. The size of the dots represent the FDR-adjusted p-value.

Results of the EA on DEGs against Reactome

Results of the EA on DMGs against Reactome
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Results of the EA on DEGs and DMGs against Reactome

Results of the EA on SCNAs against Reactome
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Results of the EA on DEGs and DMGs and SCNAs against Reactome

Results of the EA on all altered genes against Reactome
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H Nodes of the TNBC Model and Their Topological Measures

Nodes of the PKN and their topological properties. Each node was classified in one pathway
according to the pathway databases and literature used, but it can be ambiguous sometimes, and
the composition of a pathway can vary from one study to another, or from one database to another.

name Module EdgeCount Indegree Outdegree
Betweenness
Centrality

Omic
node

BAD Apoptosis 6 4 2 0.4537 NO

BAK1 Apoptosis 6 4 2 0.8863 NO

BAX Apoptosis 5 3 2 0.8863 NO

BCL2 Apoptosis 7 4 3 0.6820 NO

BID Apoptosis 6 3 3 0.3406 NO

BIRC f Apoptosis 10 7 3 3.9562 YES

CASP3 Apoptosis 7 3 4 9.2462 YES

CASP8 Apoptosis 5 2 3 1.4795 YES

CASP9 Apoptosis 7 5 2 3.6660 YES

CFLAR Apoptosis 4 3 1 0.2597 NO

CREB Apoptosis 14 10 4 2.0004 NO

CYCS Apoptosis 4 3 1 1.1199 NO

DIABLO Apoptosis 6 4 2 2.2287 NO

FOXO f Apoptosis 10 8 2 1.9905 NO

MCL1 Apoptosis 7 5 2 0.6004 NO

AURKA Cell cycle 5 1 4 0.5180 YES

AURKB Cell cycle 5 2 3 0.1902 YES

CBPp300 c Cell cycle 6 3 3 1.5703 NO

CCNB1 Cell cycle 3 1 2 1.1614 YES

CCND1 Cell cycle 18 13 5 13.1642 NO

CCNE1 Cell cycle 5 4 1 0.2689 YES

CDC25A Cell cycle 10 8 2 2.6611 YES

CDKN1A Cell cycle 11 8 3 4.8084 NO

CDKN2A Cell cycle 4 1 3 0.9764 YES

CREBBP Cell cycle 3 1 2 0.2077 YES

E2F1 Cell cycle 4 2 2 0.1370 YES

EP300 Cell cycle 8 4 4 2.1570 NO

MDM2 Cell cycle 14 12 2 0.9194 NO

MYC Cell cycle 18 10 8 5.9975 YES

PARP f Cell cycle 3 2 1 0.2159 YES

PLK1 Cell cycle 10 4 6 1.6808 YES

RB1 Cell cycle 7 5 2 5.4097 YES

SKP2 Cell cycle 5 3 2 2.3372 NO

TP53 Cell cycle 22 13 9 5.6030 YES

AA cPLA2 7 1 6 4.4640 NO

ALOX12 cPLA2 2 1 1 0.0999 NO

ALOX15 cPLA2 1 0 1 0.0000 NO

ALOX5 cPLA2 1 0 1 0.0000 NO

BLT1 cPLA2 3 2 1 0.3719 NO

Ca2 cPLA2 7 3 4 0.5883 NO

COX1 2 cPLA2 3 2 1 0.3547 NO

cPLA2a cPLA2 6 5 1 4.8241 YES

EP1 2 3 4 cPLA2 4 1 3 0.7313 NO

GPR31 cPLA2 3 1 2 0.3093 NO

HETE12 cPLA2 4 2 2 0.9497 NO

HETE15 cPLA2 5 2 3 0.8710 NO

LTB4 cPLA2 4 3 1 0.3854 NO

MNK1 cPLA2 3 2 1 0.3117 NO

PGE2 cPLA2 4 3 1 1.0957 NO

TP cPLA2 2 1 1 0.1028 NO

TXA2 cPLA2 2 1 1 0.5178 NO
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Continuation of Appendix B

name Module EdgeCount Indegree Outdegree
Betweenness
Centrality

Omic
node

ABL1
DNA re-
pair/BRCA

6 2 4 5.6010 NO

ATM
DNA re-
pair/BRCA

15 3 12 3.9430 NO

ATR
DNA re-
pair/BRCA

10 2 8 3.2609 NO

BARD1
DNA re-
pair/BRCA

1 0 1 0.0000 NO

BRCA1
DNA re-
pair/BRCA

14 9 5 13.9395 NO

BRCA1
BARD1 c

DNA re-
pair/BRCA

3 2 1 0.8848 NO

BRCA2
DNA re-
pair/BRCA

3 2 1 0.4864 YES

CHEK1
DNA re-
pair/BRCA

9 3 6 1.8349 YES

CHEK2
DNA re-
pair/BRCA

7 3 4 0.1725 NO

PALB2
DNA re-
pair/BRCA

3 0 3 0.0000 NO

RAD51
DNA re-
pair/BRCA

3 2 1 0.9097 YES

TOP1
DNA re-
pair/BRCA

2 1 1 0.1577 NO

CBLB EGFR 1 0 1 0.0000 NO

EGF EGFR 1 0 1 0.0000 NO

EGFR EGFR 11 4 7 0.3241 YES

FGF f FGFR 1 0 1 0.0000 YES

FGFR FGFR 3 2 1 0.9446 YES

FRS2 FGFR 3 1 2 0.9484 NO

HSPG FGFR 1 0 1 0.0000 NO

HH Hedgehog 1 0 1 0.0000 NO

GLI f Hedgehog 6 4 2 2.9109 NO

PTCH1 Hedgehog 3 2 1 0.8547 NO

SMO Hedgehog 3 2 1 1.4884 NO

CSNK1D E HIPPO 12 2 10 0.9252
YES (only
CSNK1D)

STK f HIPPO 6 3 3 0.9367 YES

YAP TAZ HIPPO 12 4 8 2.1273 NO

ISGF3 c Jak/STAT 2 2 0 0.0000 NO

JAK f Jak/STAT 8 4 4 2.0768 NO

PIAS1 Jak/STAT 4 1 3 0.0499 NO

SOCS1 Jak/STAT 3 1 2 0.8726 NO

SRC Jak/STAT 16 6 10 7.4399 NO

STAT1 Jak/STAT 9 6 3 2.3459 NO

STAT2 Jak/STAT 2 1 1 0.0268 NO

STAT3 Jak/STAT 15 10 5 4.4042 NO

AP1 c
MAPK cas-
cade

9 7 2 3.1242 NO

ATF2
MAPK cas-
cade

4 3 1 0.0644 NO

CDC42
MAPK cas-
cade

3 2 1 1.0074 NO

CSK
MAPK cas-
cade

2 1 1 0.0000 NO

DUSP1
MAPK cas-
cade

6 4 2 4.0068 YES
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Continuation of Appendix B

name Module EdgeCount Indegree Outdegree
Betweenness
Centrality

Omic
node

DUSP6
MAPK cas-
cade

4 2 2 0.4026 NO

EGR1
MAPK cas-
cade

5 3 2 1.2314 YES

ERK f
MAPK cas-
cade

34 5 29 12.5941 NO

FOS
MAPK cas-
cade

8 5 3 1.9776 YES

GAB f
MAPK cas-
cade

6 4 2 1.9780 NO

GRAP2
MAPK cas-
cade

3 1 2 0.2470 NO

GRB2
MAPK cas-
cade

6 4 2 1.3551 YES

ITCH
MAPK cas-
cade

5 1 4 0.4143 NO

JNK f
MAPK cas-
cade

15 4 11 3.1145 NO

JUN
MAPK cas-
cade

4 2 2 0.1587 NO

MAP2K3
MAPK cas-
cade

3 2 1 0.6549 NO

MAP2K4
MAPK cas-
cade

7 5 2 1.2047 NO

MAP2K7
MAPK cas-
cade

4 3 1 0.4174 NO

MAP3K1
MAPK cas-
cade

3 1 2 0.1067 NO

MAP3K11
MAPK cas-
cade

2 1 1 0.3094 NO

MAP3K4
MAPK cas-
cade

2 1 1 0.3094 YES

MAP3K5
MAPK cas-
cade

2 1 1 0.5935 NO

MAP3K8
MAPK cas-
cade

2 1 1 0.1926 NO

MAPK14
MAPK cas-
cade

20 3 17 5.1659 NO

MAPK8
-IP3

MAPK cas-
cade

4 1 3 0.7418 NO

MAPKA
-PK2

MAPK cas-
cade

6 1 5 0.6820 NO

MEK f
MAPK cas-
cade

6 4 2 1.2237 NO

MMP f
MAPK cas-
cade

5 4 1 1.2981 YES

MSK f
MAPK cas-
cade

6 2 4 0.2082 NO

PAK1
MAPK cas-
cade

9 2 7 3.5622 NO

PLCG1
MAPK cas-
cade

6 2 4 1.5686 NO

PPM1A
MAPK cas-
cade

6 1 5 1.1006 NO

PRKACA
MAPK cas-
cade

12 3 9 4.1990 NO

PRKCA
MAPK cas-
cade

8 4 4 1.5084 NO

80



Continuation of Appendix B

name Module EdgeCount Indegree Outdegree
Betweenness
Centrality

Omic
node

PRKCD
MAPK cas-
cade

10 5 5 3.3665 YES

PTPN11
MAPK cas-
cade

9 3 6 2.8133 NO

PTPN6
MAPK cas-
cade

3 2 1 0.5006 NO

RAC f
MAPK cas-
cade

11 6 5 5.2450 NO

RAF f
MAPK cas-
cade

9 5 4 1.6119 NO

RAS f
MAPK cas-
cade

5 3 2 1.5140 YES

RSK f
MAPK cas-
cade

11 2 9 0.4976 NO

S6K f
MAPK cas-
cade

7 2 5 0.5639 YES

TWIST1
MAPK cas-
cade

7 2 5 0.8110 NO

AKT1S1 mTOR 2 1 1 0.0000 NO

mTORC1 c mTOR 8 4 4 1.1242 NO

mTORC2 c mTOR 6 3 3 1.3347 NO

RHEB mTOR 3 1 2 0.2301 NO

TSC f mTOR 7 5 2 1.2786 NO

CHUK NFKB 7 3 4 2.0440 NO

IKBKB NFKB 11 4 7 3.5042 YES

IRAK1 NFKB 4 2 2 1.1561 NO

MAP3K7 NFKB 7 2 5 1.6131 NO

NFKB f NFKB 16 8 8 10.1381 NO

REL f NFKB 7 5 2 1.3836 NO

TAB f NFKB 3 2 1 0.3580 NO

TRAF6 NFKB 5 2 3 1.9332 NO

DLL1 3 NOTCH 2 1 1 0.0253
YES
(DLL3)

HES1 NOTCH 8 4 4 1.1214 NO

HEY1 NOTCH 2 1 1 0.0000 NO

HIF1A NOTCH 7 6 1 0.2690 NO

JAG1 2 NOTCH 3 2 1 0.0668 NO

MIB1 NOTCH 2 0 2 0.0000 NO

NOTCH f NOTCH 14 8 6 4.6014 NO

RBPJ NOTCH 7 5 2 0.1920 NO

SNAI f NOTCH 8 4 4 1.0656 NO

Anti -
survival

Phenotype 3 3 0 0.0000 NO

Prosurvival Phenotype 3 3 0 0.0000 NO

AKT f PI3K/Akt 30 8 22 18.2698 NO

cAMP PI3K/Akt 3 2 1 0.3402 YES

GSK3 f PI3K/Akt 24 8 16 5.8081 NO

IRS1 PI3K/Akt 4 3 1 0.3821 NO

PDPK1 PI3K/Akt 7 1 6 1.3565 NO

PIK3CA PI3K/Akt 13 7 6 15.4750 YES

PIP3 PI3K/Akt 4 3 1 0.4042 NO

PTEN PI3K/Akt 10 5 5 4.3569 YES

ESR1 receptor 15 12 3 9.9636 YES

Estrogens receptor 1 0 1 0.0000 NO

HER2 receptor 7 4 3 0.6545 NO

PGR receptor 3 2 1 0.8637 YES

Progest
-erones

receptor 1 0 1 0.0000 NO
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Continuation of Appendix B

name Module EdgeCount Indegree Outdegree
Betweenness
Centrality

Omic
node

ARHGAP -
24

Rho GT-
Pases

3 1 2 0.3594 NO

CFL f
Rho GT-
Pases

3 2 1 0.7211 NO

DAAM1
Rho GT-
Pases

2 1 1 0.0638 NO

LIMK1
Rho GT-
Pases

3 2 1 0.3371 NO

LIMK2
Rho GT-
Pases

3 2 1 0.3182 NO

PARD6A
Rho GT-
Pases

5 3 2 1.2072 NO

RHOA
Rho GT-
Pases

8 7 1 2.1093 YES

RND3
Rho GT-
Pases

2 1 1 0.0483 NO

ROCK1
Rho GT-
Pases

9 2 7 4.9318 NO

SRF
Rho GT-
Pases

4 3 1 0.7944 YES

TIAM1
Rho GT-
Pases

2 1 1 0.2046 NO

ILK RTKs 3 2 1 0.7722 NO

ILR f RTKs 6 2 4 2.2904 NO

LIF RTKs 2 1 1 0.2220 NO

RTPK f RTKs 10 4 6 4.9895 NO

SHC1 RTKs 9 8 1 0.4128 NO

SOS1 RTKs 4 3 1 0.2438 NO

SYK RTKs 4 2 2 1.4807 NO

VAV1 RTKs 2 1 1 0.4722 NO

ACVR1 TGFB 5 1 4 0.2134 NO

BMPR2 TGFB 3 2 1 0.5013 NO

PPP1CA TGFB 9 2 7 4.0884 NO

SKI TGFB 7 1 6 0.5074 YES

SMAD1 TGFB 10 8 2 1.4506 NO

SMAD2 TGFB 13 9 4 1.6258 YES

SMAD3 TGFB 17 12 5 2.2962 NO

SMAD4 TGFB 13 10 3 1.0097 NO

SMAD5 TGFB 4 3 1 0.0028 NO

SMAD6 TGFB 7 3 4 0.5498 NO

SMAD7 TGFB 14 8 6 6.0307 NO

SMURF1 TGFB 8 1 7 0.8142 NO

SMURF2 TGFB 7 1 6 0.7046 NO

TGFB1 TGFB 5 3 2 0.9564 NO

TGFBR1 TGFB 10 5 5 2.0618 NO

TGFBR2 TGFB 5 3 2 0.7239 YES

HIC1 VEGFR 2 0 2 0.0000 NO

PTK2 VEGFR 9 6 3 1.1879 NO

TLR5 VEGFR 1 0 1 0.0000 NO

VEGF f VEGFR 6 5 1 2.2758 YES

VEGFR2 VEGFR 4 1 3 2.6992 YES

APC WNT 6 5 1 0.1993 NO

AXIN1 WNT 10 6 4 2.1368 NO

BTRC WNT 6 4 2 0.8371 NO

CDH1 WNT 5 3 2 0.3800 NO

CDH2 WNT 3 2 1 0.3570 NO

CK1 f WNT 3 1 2 0.1264 NO

CSNK1A1 WNT 9 1 8 1.4043 NO
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Continuation of Appendix B

name Module EdgeCount Indegree Outdegree
Betweenness
Centrality

Omic
node

CTNNB1 WNT 11 8 3 3.2706 NO

DKK f WNT 3 2 1 0.7962 NO

DVL f WNT 12 5 7 3.8308
YES
(DVL1)

FZD f WNT 4 1 3 1.2347 YES

LEF1 WNT 4 2 2 0.4384 NO

LRP f WNT 11 7 4 3.5625 YES

NLK WNT 3 1 2 0.0722 NO

SFRP1 WNT 2 1 1 1.1290 NO

TCF7 f WNT 6 2 4 1.0908 NO

End of Appendix B
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I Fitness Evolution of the Cell Line-Specific Models

Comparison of the fitness evolution across the generations of the models trained on continuous
(left) and binary data (right) of the CCLE cell lines

Fitness evolution of the models trained on
continuous MDA-MB-231 data

Fitness evolution of the models trained on binary
MDA-MB-231 data

Fitness evolution of the models trained on
continuous HS-578T data

Fitness evolution of the models trained on binary
HS-578T data

Fitness evolution of the models trained on
continuous BT549 data

Fitness evolution of the models trained on binary
BT549 data
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J Prediction Performances of MDA-MB-231 Models with the TNBC-
Receptors Forced Inactive

ROC curve of the predictions run on MDA-MB-231-calibrated models, with the ER, PR and HER2
receptors set to 0.

K Prediction Performances of HS-578T Models Using the HSA Synergy
Metric

ROC curves of the predictions run on HS-578T-calibrated models. The parameters were: 25
simulations, calibration of 184 nodes. The synergy score was calculated with the HSA metric.
Different types of mutations were introduced between the two predictions.

ROC curve obtained by combining 3 balance
mutations to 40 topology mutations

ROC curve obtained by introducing only 3 balance
mutations

85



L Prediction Performances of BT549 Models Using the HSA Synergy
Metric

ROC curves of the predictions run on BT549-calibrated models. 184 nodes were calibrated. The
synergy score was calculated with the HSA metric. Different number of simulations were run, and
different types of mutations were introduced between the two predictions.

ROC curve obtained by combining 3 balance
mutations to 20 topology mutations, in 25

simulations

ROC curve obtained by combining 3 balance
mutations to 20 topology mutations, in 50

simulations

ROC curve obtained by using only 40 topology
mutations, in 25 simulations

ROC curve obtained by combining 3 balance
mutations to 40 topology mutations, in 25

simulations
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M Prediction Performances of MDA-MB-231 Models Using the HSA
Synergy Metric and a Combination of Topology and Balance Muta-
tions.

ROC curve of the predictions run on MDA-MB-231-calibrated models. The parameters used were:
25 simulations, 3 balance mutations combined with 40 topology mutations. The synergy score was
calculated with the HSA metric.
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