
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Even Stephansen Kjemsås

The Riemannian Frank–Wolfe
Algorithm

Master’s thesis in Applied Physics and Mathematics
Supervisor: Ronny Bergmann
July 2022

M
as

te
r’s

 th
es

is

Even Stephansen Kjemsås

The Riemannian Frank–Wolfe
Algorithm

Master’s thesis in Applied Physics and Mathematics
Supervisor: Ronny Bergmann
July 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

The Frank–Wolfe method is an iterative optimization algorithm commonly used to solve
constrained convex optimization problems. Based on simplifying the problem to a linear
subproblem, which is solved in each iteration, the algorithm is especially useful in cases
where this subproblem can be solved in closed form.

While the Frank–Wolfe algorithm was originally formulated for solving problems
in Euclidean space, it can often be beneficial to work with problems on manifolds.
Sometimes the constraints of a Euclidean problem actually constrain the solution to lie
on a manifold, and in other cases the data or the domain of the objective function may
already be defined on the manifold.

In this thesis we study convex problems on manifold domains where, in addition
to the manifold constraint, we also have further constraints on the solution. We work
with a generalization of the classical Frank–Wolfe algorithm to Riemannian space, and
examine how it differs from the Euclidean version – especially with regard to how the
subproblem is no longer linear, and thus requires more sophisticated techniques to solve.

Our main contribution lies in implementing the algorithm as a general solver for
problems on arbitrary Riemannian manifolds, using the interface provided by Manopt.jl,
a Julia package for manifold optimization. We test the implementation numerically on
the manifold of symmetric positive-definite matrices, but we note that the performance
of the algorithm is not as good as we expected.

Sammendrag

Frank–Wolfe-algoritmen er en iterativ optimeringsalgoritme for å løse betingede opti-
meringsproblemer. Metoden er basert p̊a å forenkle problemet til et lineært delproblem
som løses i hver iterasjon, og fungerer spesielt bra n̊ar delproblemet har en løsning p̊a
lukket form.

Algoritmen ble opprinnelig utviklet for å løse problemer i euklidske rom, men det kan
ofte være nyttig å jobbe med problemer p̊a mangfoldigheter. I noen tilfeller er løsningen
til et euklidisk problem begrenset til å ligge p̊a en mangfoldighet, og i andre tilfeller er
dataene eller domenet til objektivfunksjonen allerede definert p̊a mangfoldigheten.

I denne oppgaven studerer vi konvekse problemer p̊a mangfoldigheter, hvor vi i
tillegg til mangfoldighetsbetingelsen ogs̊a har ytterligere betingelser p̊a løsningen. Vi
ser p̊a en generalisering av den klassiske Frank–Wolfe-algoritmen til riemannske rom,
og undersøker hvordan den skiller seg fra den euklidiske versjonen – spesielt med tanke
p̊a hvordan delproblemet ikke lenger er lineært, og dermed m̊a løses med mer avanserte
teknikker.

V̊art hovedbidrag ligger i å implementere algoritmen som en generell løser for proble-
mer p̊a vilk̊arlige riemannske mangfoldigheter, ved å bruke grensesnittet til Manopt.jl,
et Julia-bibliotek for optimering p̊a mangfoldigheter. Vi tester implementasjonen v̊ar
p̊a den symmetriske positivt bestemte matrisemangfoldigheten, men vi merker oss at
ytelsen til algoritmen ikke er s̊a god som forventet.

Preface

This thesis concludes my six years as a student in the applied physics and mathematics
programme at NTNU. While there have been both ups and downs, it has been an
incredible experience, and I am grateful for all the people who have contributed to that.

Nothing quite prepares you for the work that goes into writing a thesis – for the
countless hours spent debugging code, and the late nights trying to figure out why that
one proof doesn’t check out. Nor is there anything that will prepare you for how fast
the months fly by; at some point you suddenly go from having nearly all the time in
the world on your hands, to not seeing how on earth you could possibly finish the thing
in time. And yet, in the end, everything usually works out after all.

I would like to thank my supervisor, Ronny Bergmann, for our many insightful
discussions and his helpful feedback, as well as for his near-endless patience in teaching
me about differential geometry. It has been challenging at times, navigating through
this unfamiliar branch of mathematics, but in the end it has been a fascinating journey.

Even Stephansen Kjems̊as
July 2022
Trondheim

Contents

1 Introduction 1
1.1 The Frank–Wolfe algorithm . 2
1.2 Our contribution . 3

2 Background 5
2.1 A brief introduction to manifolds . 5
2.2 Optimization basics . 10
2.3 Manifold optimization . 11
2.4 The Riemannian geometry of the SPD manifold 13
2.5 The Riemannian geometry of SO(n) . 14

3 The Frank–Wolfe algorithm on Rn 17
3.1 Euclidean Frank–Wolfe . 17
3.2 Convergence of Euclidean Frank–Wolfe 19

4 The Frank–Wolfe algorithm on M 21
4.1 Riemannian Frank–Wolfe . 21
4.2 The Riemannian oracle . 22

4.2.1 Gradient-based subsolver methods 23
4.2.2 Derivation of the SPD Riemannian oracle 24
4.2.3 Derivation of the SO(n) Riemannian oracle 26

5 Convergence of Riemannian Frank–Wolfe 29
5.1 Global convergence . 29
5.2 Optimum in the interior of C: Linear convergence 32
5.3 Convergence when solving the subproblem approximately 35

6 Numerical results 39
6.1 Implementation details . 39
6.2 Computing the Riemannian centroid of SPD matrices 42

7 Closing remarks 47

Bibliography 49

Chapter 1

Introduction

Starting with the development of linear programming in the middle of the 20th century
– just as electronic computers were becoming capable of applying these techniques in
practice – mathematical optimization has seen an increasing number of useful applica-
tions and developments in the past few decades [1]. Although this work was initially
limited to problems on Euclidean domains, there has since been an increased interest
in optimization in non-Euclidean space. Recently, the efforts towards generalizing Eu-
clidean optimization techniques to Riemannian manifolds have intensified – in part due
to the wide variety of successful applications that have emerged, within fields such as
machine learning, robotics and signal processing [2]. In addition to the theoretical de-
velopments, a large effort has also gone into the computational aspects of adapting the
familiar and well-tried algorithms to work on manifolds: particularly with the Manopt
projects – aiming to implement general solvers for Riemannian optimization problems
in Matlab[3], Python [4] and Julia [5].

We consider mathematical optimization problems on some Riemannian manifold
M, where the goal is to find the extremal values of a given cost function f : M → R,
possibly subject to some constraint on the solution. The basic optimization problem on
manifolds is formulated as

arg min
p∈M

f(p).

Note that by choosing M = Rd as our manifold, we are back in the Euclidean setting,
and thus this can be viewed as a generalization of the classical case. In many cases, we
will also want to constrain the solution to being within a given region of the manifold.
In the constrained case, we additionally restrict our search for a solution to some subset
C ⊆ M – called the feasible set – and look for the point in C which is closest to a
solution of the unconstrained problem:

arg min
p∈C

f(p).

Although many optimization problems on manifolds can technically be solved by
embedding the manifold in Rn and using techniques for constrained Euclidean opti-
mization, there can be a lot to gain from working natively on the manifold. Working
directly on the manifold instead of embedding it into a higher-dimensional space –
if such an embedding is even available – allows us to exploit the underlying geomet-
ric structure of the manifold, possibly resulting in better performance [6]. Further, it

2

reduces the dimensionality of the problem, which can also affect the ease of finding a so-
lution. Working with manifolds can also have considerable benefits when working with
constrained Euclidean optimization problems. In fact, many common constraints in Eu-
clidean optimization – such a requiring the solution to be a point on the n-dimensional
sphere surface, or a symmetric positive-definite matrix – can be viewed as unconstrained
problems on the appropriate manifold.

While this does take care of certain classes of constraints for Euclidean problems,
only working with unconstrained problems on manifolds severely limits the scope of
the applications we can handle. We often want to solve problems that are not only
defined on a manifold, but where we have additional restrictions on the space of feasible
points.Just like in the Euclidean setting, constrained optimization on manifolds is –
in general – more difficult than in the unconstrained case, and thus requires more
sophisticated techniques to handle.

A property shared by several methods that have been developed for constrained
manifold optimization, like projected gradient descent [7] or proximal gradient meth-
ods [8], is that they rely on projecting the iterates onto the feasible set at each iteration.
In some cases, these projections can be quite costly operations, making such projection-
based algorithms less suitable for these types of problems [9].

1.1 The Frank–Wolfe algorithm

The Frank–Wolfe algorithm – also known as the conditional gradient method – for con-
strained optimization in Euclidean space was developed in 1956 by Marguerite Frank
and Philip Wolfe [10]. Originally formulated for solving quadratic problems on poly-
hedral domains, it can be adapted to solve arbitrary constrained, convex optimization
problems. The algorithm marks a historical tipping point in the field of optimization
– being one of the first of its kind, able to tackle general constrained convex optimiza-
tion [11].

The Frank–Wolfe algorithm is an iterative algorithm based on simplifying the prob-
lem to a linear subproblem on the form

arg min
z∈C

⟨∇f(x), z⟩,

constrained to the same feasible set as the original problem. In each iteration of the
algorithm, the main task is to compute this subproblem, which gives the next point to
move towards. The next step is then taken along a straight line between the current
iterate and the solution to the subproblem. Since we don’t want to do any projection
back to the feasible set, an important assumption for using the algorithm is therefore
that the feasible set is convex.

The method assumes access to a linear oracle that is able to output the solution
to the subproblem at a given iteration. For many problems, there exist closed-form
solutions to the subproblem, which means that the oracle can be implemented in a very
efficient manner. Even when this is not the case, the oracle can still be implemented by
solving the subproblem with e.g. the simplex method.

Since the subproblem is solved with the same constraint as the main problem, each
new iterate – chosen along a line between the current iterate and the subproblem solution
– will always stay within the feasible set. This is the main advantage of Frank–Wolfe:
Since we can guarantee that each iterate will be within the feasible set, there is no need
to project back to the feasible set at any point. Thus, the algorithm is able to efficiently

CHAPTER 1. INTRODUCTION 3

solve problems even when these projections are expensive to do, as long as we have
access to an oracle. The drawback is that the algorithm converges at a quite slow rate,
O(1/k) in the number of iterations k, which makes it less useful in cases where we can
easily project onto the feasible set, and hence use a faster algorithm. In the Riemannian
setting there are, however, many problems where projecting onto the constraint set is
expensive [9] – making algorithms that don’t require projections very useful.

In 2017 Melanie Weber and Suvrit Sra [12] published a paper (with a new and con-
siderably expanded revision from 2021 [9]) in which they expanded the algorithm to
work in the Riemannian setting. In addition to demonstrating the algorithm on various
example problems, they also proved that the Riemannian Frank–Wolfe algorithm re-
tained all the desirable properties of the Euclidean version – including the convergence
(albeit still slow) of the algorithm. Just like in the Euclidean setting, the Rieman-
nian algorithm requires access to an oracle that can solve the subproblem, and a large
part of their work concerns examples of practical settings where such an oracle can be
implemented efficiently.

1.2 Our contribution

Our work expands on the work by Weber and Sra by implementing the Frank–Wolfe al-
gorithm as a general-purpose solver for constrained Riemannian optimization problems.
The algorithm is implemented in Julia using the framework provided by Manopt.jl [5].
Whereas Weber and Sra have implemented the algorithm for the specific problems they
have considered, our implementation can be used with arbitrary manifolds and cost
functions, as long as the user has access to the appropriate oracle. We also extend
the algorithm to working with iterative solvers for the subproblem, for cases where a
closed-form oracle either isn’t available or can’t be implemented in an efficient manner.

The remainder of the thesis is structured as follows:
Chapter 2 contains a brief presentation of some background matter necessary for

working with optimization on manifolds. This lets us properly define all the concepts
we work with in the rest of the thesis, and also serves the purpose of fixing and clarifying
our notation. This includes an introduction to manifolds and related concepts, and a
short summary of optimization in Euclidean space and on manifolds. Additionally, we
briefly present some useful notions from the Riemannian geometry of the manifold of
symmetric positive-definite matrices, Pn, and the special orthogonal group, SO(n).

The main body of the thesis begins in chapter 3, where we introduce the Euclidean
Frank–Wolfe algorithm and its properties. This lets us introduce the algorithm in a
familiar setting, before moving it into the realm of manifolds in the next chapter. We
also provide a summary of the well-established convergence properties of the algorithm.

The Riemannian Frank–Wolfe algorithm is introduced in chapter 4, and we provide
some motivation for how it is derived, as a generalization of the Euclidean algorithm.
Further, we discuss the differences when using the algorithm on Riemannian manifolds,
in particular with regard to solving the subproblem. We show how the subproblem can
be solved iteratively with gradient-based optimization methods, and we also provide
closed-form solutions for example problems in Pn and SO(n).

Chapter 5 contains proofs of the convergence of the algorithm, verifying that the
most important convergence properties of the Euclidean algorithm carry over to the Rie-
mannian setting. We provide proofs for the global convergence of Riemannian Frank–
Wolfe, both when the subproblem is solved exactly and when it is only solved approxi-
mately. Further, we show that the algorithm converges linearly in the special case where

4

the solution is located strictly in the interior of the constraint set.
In chapter 6, we discuss in detail how we have implemented the algorithm. We

also provide a numerical demonstration on the manifold of symmetric positive-definite
matrices, comparing the performance of different variations of the algorithm.

Finally, in chapter 7, we give a summary of our work, and provide a brief outlook
on further work on the topic.

Chapter 2

Background

2.1 A brief introduction to manifolds

This preliminary section is meant to give the reader a brief introduction to manifolds, by
introducing the necessary concepts required to work with optimization in the Rieman-
nian setting. In addition to providing a short summary of Riemannian optimization,
it also lets us fix the notation we are going to use in the rest of the thesis. We de-
fine several important notions that we will use in the rest of the thesis, starting with
what a manifold is, and continuing with curves, tangents, differentials, inner products,
geodesics and the exponential and logarithmic maps.

For a more thorough overview of Riemannian geometry and manifold optimization,
we refer to one of the many textbooks on the subject – for instance the books by
Absil, Mahony and Sepulchre [13], do Carmo [14] or Boumal [2]. The contents of this
first section has, for the most part, been adapted from these books. Note that I also
wrote a very similar preliminary section for my Industrial Mathematics Specialization
Project (TMA4500), titled Convolutions on Manifolds for Deep Learning. Since this
project isn’t published, we do not formally cite it here, but we note that this section
will necessarily have some overlap with that work.

Manifolds

A manifold M is a topological space of dimension d that is second-countable, Hausdorff
and locally homeomorphic to Rd. That is, all pairs of distinct points on M have
disjoint neighbourhoods, its topology has a countable basis, and for each point p on the
manifold, there exists a neighbourhood that is homeomorphic to an open subset of Rd.
Informally, we can say that manifolds locally resemble Rd. We note especially that Rn

is a manifold, and thus everything defined in this section also applies to this space. We
will use the convention of x, y, . . . to denote points in euclidean space, and p, q, . . . to
denote manifold points.

Charts and atlases

A chart of a manifold M is a bijective map ϕ from a subset U ⊂M to an open subset
of Rd, denoted (U, ϕ). An atlas of M is a disjoint union of charts (Uα, ϕα) that covers
M, that is,

⋃
α Uα =M. Thus, the manifold can be described locally by a single chart,

and globally by the atlas of charts.

6

Additionally, in order for the manifold to be differentiable, we require that the transi-
tion between charts in the atlas is smooth in the Euclidean sense, i.e. C∞ differentiable.
Thus, for any two overlapping charts, Uα ∩ Uβ ̸= ∅, the sets ϕα(Uα ∩ Uβ) := Rα and
ϕβ(Uα ∩ Uβ) := Rβ must be open sets in Rd, and the change of coordinates

ϕβ ◦ ϕ−1
α = ϕβ

(
ϕ−1
α (x)

)
: Rα → Rβ

should be smooth. In the following, we will work only with differentiable manifolds.
A mapping between two manifolds f : M → N is called smooth if, for all charts

(U, ϕ), with ϕ : U → R ⊆ Rd, the function

f ◦ ϕ−1 : R→ V ⊆ N

is smooth in the Euclidean sense. We let C∞(M) denote the set of real-valued smooth
functions on M.

Curves and tangent vectors

A curve on a manifold M is a smooth mapping γ : [0, T] → M.The choice of T is
arbitrary – leading only to a different scaling – but we will mostly use T = 1, so that
the curve maps the interval [0, 1] to the manifold.

At each point p on the manifold, we define a set of tangent vectors. Consider any
curve γ starting at p, i.e. γ(0) = p. A tangent vector X at p is the linear operator
γ̇ : C∞(M)→ R such that, for any function f ∈ C∞(M),

γ̇(0)f =

(
d

dt
(f ◦ γ)

)
(0).

As we can construct a curve passing through a point in any direction (since the manifold
is locally homeomorphic to Rd), and we can give the curve arbitrary velocity (by choos-
ing an appropriate value for T), there exist tangent vectors with arbitrary orientation
and magnitude. We denote tangent vectors by X,Y,

Further, we can define the tangent space TpM at p ∈ M. This is a vector space of
the same dimension as M, containing its tangent vectors at p. The disjoint union of
all tangent vectors at every point of M is also a manifold, called the tangent bundle,
TM =

⋃
p TpM.

A vector field is a smooth function ξ : M → TM that assigns a tangent vector
X ∈ TpM to each point p ∈ M. We describe the action of a vector field ξ on a
(smooth) function f as (ξf)(p) = Df [ξ(p)](p), so that ξf : M→ R.

Differentials

Let f : M → N be a smooth mapping between two manifolds M and N , and let
X ∈ TpM be a tangent vector at the point p ∈ M, defined by a curve γ such that
γ(0) = p. The differential, or directional derivative, of f at p along X is the linear map
Dpf [X] : TpM→ Tf(p)N defined by

Dpf(p)[X] =
d

dt
f
(
γ(t)

)∣∣∣∣
t=0

= (f ◦ γ)′(0).

Next, we define the adjoint differential operator, (Dpf)∗ : Tf(p)M → TpM, as the
operator fulfilling [15]

⟨Dpf(p)[X], Y ⟩f(p) = ⟨X, (Dpf)∗(p)[Y]⟩f(p), X, Y ∈ Tf(p)M.

CHAPTER 2. BACKGROUND 7

The familiar chain rule for differentiation in Euclidean space has an analouge on
manifolds [16]. Let g : M → M and h : M → M be two functions on a manifold M,
and let f : M→M be their composition,

f(p) = (g ◦ h)(p) = g
(
h(p)

)
.

Further, let p ∈M and X ∈ TpM. Then the differential Dpf(p)[X] is given by

Dpf(p)[X] = Dh(p)g(q)
[
Dph(p)[X]

]
,

where the outer differential on the right-hand side is evaluated at q = h(p).

The Riemannian metric and distances

We can also introduce a notion of distance on the tangent space: the Riemannian
metric on TpM. This is an inner product, i.e. a bilinear, symmetric positive-definite
form, ⟨·, ·⟩p : TpM×TpM→ R, varying smoothly with p. That is, for any two smooth
vector fields ξ, η on M, the function g(p) = ⟨ξ(p), η(p)⟩p is smooth. The Riemannian
metric induces a norm on the tangent space,

||X||p =
√
⟨X,X⟩p.

We sometimes omit the subscript if it is clear from context which tangent space we are
considering. If every tangent space TpM can be endowed with a Riemannian metric,
we say that M is a Riemannian manifold.

We can define a notion of distance on Riemannian manifolds, dist : M×M → R,
as the length of the shortest curve joining two points p and q:

dist(p, q) = inf L(γ),

where L(γ) is the length of the curve γ : [0, T]→M, defined as

L(γ) =

∫ T

0

||γ̇(t)||p dt.

We define an (open) ball of radius ρ around p ∈ M as the subset Bρ(p) ⊆ M such
that

Bρ(p) = {q ∈M | dist(p, q) < ρ}.

Affine connections

A note on the notation used in this definition: The nabla symbol ∇ is often used in
the literature to represent affine connections, while we will usually prefer to use it to
represent the Euclidean gradient on a vector space. In keeping with Absil et al. and
do Carmo, we have used the symbol to represent affine connections in this section.
However, as we don’t directly use affine connections in the rest of the thesis, there is
little risk of ambiguity, and so in later sections ∇ will mean the Eucldiean gradient
unless otherwise noted.

Denoting by X(M) the set of all smooth vector fields onM, an affine connection on

M is a bilinear mapping ∇ : X(M)×X(M)→ X(M), denoted (η, ξ)
∇−→ ∇ηξ, satisfying

the following:

1. Linearity in η (over real-valued functions): ∇fη+gχξ = f∇ηξ + g∇χξ

8

2. Linearity in ξ (over scalars): ∇η(a · ξ + b · ζ) = a∇ηξ + b∇ηζ

3. Product rule (Leibniz’ law): ∇η(fξ) = (ηf)ξ + f∇ηξ,

where η, χ, ξ, ζ are vector fields onM, f, g are smooth, real-valued functions onM and
a, b ∈ R. For a given affine connection ∇, the vector field ∇ηξ is called the covariant
derivative of ξ with respect to η.

Given two vector fields η, ξ on M, their Lie bracket is defined as

[η, ξ]f = η(ξf)− ξ(ηf).

On Riemannian manifolds there exists a (unique) preferred affine connection, called
the Levi-Civita connection, which satisfies two important properties: First, it is sym-
metric, meaning that it satisfies

∇ηξ −∇ξη = [η, ξ] ∀η, ξ ∈ X(M).

Second, it preserves the Riemannian metric, so that

χ⟨η, ξ⟩p = ⟨∇χη, ξ⟩p + ⟨η,∇χξ⟩p.

Let γ : [0, 1] → M be a smooth curve on M. We define the induced covariant
derivative (iinduced by ∇) as the (unique) operator D

dt
: X(γ)→ X(γ) satisfying

1. D
dt

(a · ξ + b · ζ) = a D
dt
ξ + b D

dt
ζ

2. D
dt

(fξ) = f ′ξ + f D
dt
ξ

3. D
dt

(η ◦ γ)(t) = ∇γ̇(t)η,

and we define the acceleration vector field on γ as

D2

dt2
γ =

D

dt

(
dγ

dt

)
=

D

dt
γ̇.

Parallel transport

Given an affine connection ∇ onM, a vector field ξ along a curve γ is called parallel if
it satisfies D

dt
ξ = 0 for any t. Given some real value t0 such that γ(t0) = p and tangent

vector X ∈ TpM, there exists a unique parallel vector field ξ along γ satisfying

ξ(γ(t0)) = ξ(p) = X.

As the vector field is parallel, the vectors ξ(γ(t)) remain unchanged along the curve.
The operation P γ

t←t0
sending the vector field from ξ(γ(t0)) to ξ(γ(t)) along γ is called

parallel transport. We will sometimes leave out the curve in the notation, denoting it
just Pt←t0 .

Whereas in Euclidean space, moving a vector in TpM from p to q along a given
path γa will always have the same result as moving it along another path γb, this is not
necessarily the case on a manifold. The vector may be rotated along the path, and thus
parallel transport is path-dependent.

CHAPTER 2. BACKGROUND 9

Geodesics and the exponential and logarithmic maps

A geodesic is a generalization of the notion of a straight line between two points p and
q. LetM be a manifold endowed with an affine connection ∇. For two points p, q ∈M,
define a curve γ : [0, T]→M such that γ(0) = p and γ(T) = q. γ is a geodesic if it has
zero acceleration for all t ∈ [0, T], that is,

D

dt

(
dγ

dt

)
=

D

dt
γ̇ = 0

Further, a shortest geodesic between p and q is the geodesic connecting the two
points that minimizes the distance between them. Note that the shortest geodesic is
not necessarily unique – there may be more than one shortest path (take e.g. the north
and south poles of the sphere S2). However, for points sufficiently close, a unique
shortest geodesic exists.

When defining a (shortest) geodesic by the two points it connects, we will use the
convention that t ∈ [0, 1], i.e. T = 1. Thus, given two points p, q ∈ M, we denote a
geodesic γ connecting the two points, with γ(0) = p and γ(1) = q, by γp→q. Then the
point located at ”distance” t ∈ (0, 1) from p to q is denoted γp→q(t).

We now define the exponential map on the manifold, Expp : TpM→M, mapping a
vector X in the tangent space at p to a new point on the manifold.

Given a tangent vector X ∈ TpM, there exists a unique geodesic γ : [0, T]→M (for
some T), such that γ(0) = p and γ̇(0) = X. Then the exponential map is defined as

Expp(X) = γ(1).

In other words, Expp X follows the geodesic from p in the direction of X for a ”distance”
of unit length. When, for every point p ∈ M, the exponential map is defined on the
entire tangent space TpM, we say that M is geodesically complete. That is, for any
geodesic γ starting at p, γ(t) is defined for any value of t ∈ R. In fact, geodesic
completeness coincides with the notion of completeness for M (with the Riemannian
distance) as a metric space [13].

We can also define the logarithmic map, which is the inverse of the exponential:

Logp q = X ⇐⇒ expp X = q,

i.e. the logarithmic map at p takes a manifold point q and returns the tangent vector
X ∈ TpM such that Expp X = q. Note that the logarithmic map is not always uniquely
defined, but there exists a neighbourhood of p where X has an inverse – i.e. for any q
in the neighbourhood, there exists a unique tangent vector X such that Logp q = X .
This neighbourhood is called the injectivity radius of p. The injectivity radius of the
manifold itself is the infimum of the injectivity radii at every point p ∈M.

Hadamard manifolds

We use the sectional curvature of a Riemannian manifold with demension d > 1 to
describe the infinitesimal geometry of the manifold.

For any three points p, q, r ∈M, we define a geodesic triangle as a triangle constining
of three geodesics

γp→q, γp→r, γr→q

10

connecting the three points. A comparison triangle is a corresponding triangle in R2

with vertices p̄, q̄, r̄ such that its sides have the same length as these geodesics, that is,

dist(p, q) = ||q̄ − p̄||, dist(p, r) = ||r̄ − p̄||, dist(q, r) = ||r̄ − q̄||.

Let u = γp→q(tu) and v = γp→r(tv), tu, tv ∈ [0, 1], be points on two of the geodesics.
We say thatM has nonpostitive sectional curvature if, for every such geodesic triangle
and points u, v, with corresponding points ū, v̄ on its comparison triangle,

dist(u, v) ≤ ||ū− v̄||.

A manifold with nonpositive sectional curvature is called a CAT(0) manifold, mean-
ing that its sectional curvature is upper bounded at 0. A Riemannian manifold that
is geodescially complete, simply connected and has nonpositive sectional curvature is
called a Hadamard manifold [17].

2.2 Optimization basics

We now introduce a few basic concepts from optimization on Rn. For a more com-
prehensive introduction to this topic, we refer to e.g. the textbooks by Boyd and
Vandenberghe[18] or Nocedal and Wright[19]. Although we describe these concepts in
an Euclidean setting, much of it is also applicable (or very similar) in the Riemannian
setting. Anything for which this is not the case will be further detailed in section 2.3.

Problems, solutions and constraints

An optimization problem is partially defined by its objective function f : Rn → R, or
cost function, which is the function we want to find the extrema of. The convention is to
solve optimization problems as minimization problems; if we instead wish to maximize
the function f , we can simply minimize its negative, −f . A general (constrained)
optimization problem in Rn is formulated as

arg min
x∈C

f(x). (2.1)

For any given problem, we denote the optimal solution (or just solution) by x∗. If
the problem has more than one optimal solution, we usually don’t care which one we
find. In such cases, by a slight abuse of notation we will refer to the set of optimal
solutions as the solution x∗.

For a given cost function f , we say that an iterate xk is an ϵ-approximate solution
of problem (2.1) if

f(xk)− f(x∗) ≤ ϵ.

For constrained optimization problems, we define the feasible set, or constraint set,
C ⊆ Rn in which we want to look for a solution. If the solution is not contained in the
feasible set, we seek the point in C which gives the best possible function value. We can
use the same formulation when considering unconstrained problems: we just replace C
by Rn.

The constraints are often given on the form

gi(p) ≤ 0

hj(p) = 0,
(2.2)

CHAPTER 2. BACKGROUND 11

for a given set of indices i = 1, . . . , N and j = 1, . . . ,M . Thus, C is defined to be the
set of points satisfying the (in)equalities in (2.2) for all these indices.

In Euclidean space, a constraint set C ∈ Rn compact if and only if it is closed and
bounded. This is important to ensure that the solution is actually reachable within a
finite number of steps.

Convexity

The set S ⊆ Rn is said to be convex if, for all x, y ∈ S, then any point z ∈ Rn satisfying

z = ηx + (1− η)y, ∀η ∈ [0, 1],

is also in S. In other words, any point z on a line segment between two points x, y ∈ S
is also in S. The term ηx + (1− η)y is known as a convex combination of x and y

Similarly, a function f : Rn → R is said to be convex if, for any x, y ∈ Rn,

f (ηx + (1− η)y) ≤ ηf(x) + (1− η)f(y), ∀η ∈ [0, 1]. (2.3)

That is, the line segment (in Rn+1) going from
(
x, f(x)

)
to
(
y, f(y)

)
lies above the

graph of f [18].

Optimality and search directions

Consider the problem (2.1). If the constraint set C and objective function f are convex
and x∗ is a local optimum, then x∗ is also a global optimum [19]. Additionally,

⟨∇f(x∗), y − x∗⟩ ≥ 0 ∀y ∈ C. (2.4)

In other words, if x is the current iterate of the algorithm, and there exists some y ∈ C
such that

⟨∇f(x), y − x⟩ < 0,

then x is not an optimum of the function. This means that there must be some direction
d = y−x we can move towards in which the value of the objective function is lower. If,
additionally, we can move in this direction without leaving the feasible set, we call it a
feasible descent direction. Further, if C is convex, all points on the line from x to y will
be contained in C, so there must be a feasible descent direction.

2.3 Manifold optimization

This section provides an introduction to some important concepts relating to Rieman-
nian optimization. For a more extensive treatment of this subject we refer to the books
by Absil et al. [13] and Boumal [2]. For convenience, we repeat the general formulation
of a constrained Riemannian optimization problem:

arg min
p∈C

f(p). (2.5)

We again denote the cost function by f , but now it maps from M to R. Riemannian
constraints work in the same way as they do in Euclidean space, and again we can
return to the unconstrained case by replacing C by M. Note that we denote manifold
points by p, q, · · · ∈ M, as opposed to x, y, · · · ∈ Rn. Unlike in Rn, we now have
to make a distinction between points and tangent vectors, so these will be denoted
X,Y, · · · ∈ TpM.

12

The Riemannian gradient

While the familiar Euclidean gradient is defined for functions on manifolds (embedded
in Euclidean space), the Euclidean gradient at point p will, in general, not be in the
tangent space TpM. For a function f : M→ R, we can instead define the Riemannian
gradient grad f(p) as the tangent vector at p that satisfies [16]

⟨grad f(p), X⟩p = Dpf(p)[X] ∀X ∈ TpM.

If M is embedded in some Euclidean space Rn, the Riemannian gradient at p is the
orthogonal projection of the Euclidean gradient onto TpM [2]. If there may be some
ambiguity regarding which point p we are taking the gradient with respect to, we will
sometimes use a subscript gradp to clarify this, but in most cases this should be clear
from the context.

Lipschitz smoothness

In later sections, we will sometimes need the cost function to satisfy a certain notion
of smoothness [9]. A function f : M→ R is said to have L-Lipschitz gradients if there
exists a constant L such that for any p, q ∈ C we have

|| grad f(q)− Pq←p grad f(p)|| ≤ L · d(p, q), ∀p, q ∈M. (2.6)

For a given constant L, we say that a function satisfying (2.6) is L-smooth. An equivalent
definition of Lipschitz continuity that we will also use is

f(q)− f(p) ≤
〈
grad f(p),Logp(q)

〉
p

+
L

2
d(p, q)2 ∀p, q ∈M. (2.7)

(Geodesic) convexity

In the Riemannian setting, we can define a similar notion of convexity as for Euclidean
domains [2]. A subset S ⊆M is said to be geodesically convex if, for every set of points
p, q ∈ S, there exists a geodesic segment γ : [0, 1]→M such that γ(0) = p, γ(1) = q and
γ(t) ∈ S for all t ∈ [0, 1]. That is, for any geodesic connecting two points in S, every
point on the geodesic segment between the two points is also within S. When working
in the Riemannian setting, we will often refer to geodesic convexity as just convexity
when there is no risk of ambiguity.

We can now define geodesic convexity for functions. Consider a geodesically convex
subset, S ⊆ M, and a function f : S → R. Given two points p, q ∈ S with a geodesic
γp→q connecting them, define g : [0, 1]→ R such that

g(t) = (f ◦ γp→q) (t) = f (γp→q(t)) .

The function f is said to be geodesically convex on S if, for any choice of points p, q ∈ S,
g satisfies the Euclidean definition of convexity (2.3).

An equivalent definition of a geodesically convex function on S ⊆M, which we will
more often make use of, is [9]

f(q)− f(p) ≥ ⟨X,Logp(q)⟩p ∀p, q ∈ S, X ∈ TpM. (2.8)

Further, f is µ-strongly geodesically convex if it satisfies

f(q)− f(p) ≥ ⟨X,Logp(q)⟩p +
µ

2
d(p, q)2 ∀p, q ∈ S, X ∈ TpM. (2.9)

For Hadamard manifolds, the notions of geodesic convexity and µ-strong geodesic con-
vexity are equivalent [2].

CHAPTER 2. BACKGROUND 13

Optimality

Consider the problem (2.5). Assume the constraint set C and the objective function f
are both geodesically convex. If p∗ is a local optimum for the problem, then p∗ is also
a global optimum. Further, the following inequality holds [9]:〈

grad f(p∗),Logp∗(q)
〉
p∗
≥ 0 ∀q ∈ C. (2.10)

Just like in the Euclidean case, if p is the current iterate of the algorithm, and there
exists some q ∈ C such that 〈

grad f(p),Logp(q)
〉
p∗

< 0,

then p is not an optimum of the function. Due to the convexity of C, this again means
that there must be a feasible descent direction.

Finally, we also introduce the notion of compactness in the general (non-Euclidean)
setting. A collection of subsets A of a set S ⊆ M is said to cover S if the union of all
its elements is equal to S,

S =
⋃
α∈A

.

The covering is called open if all its elements are open subsets of S. A set S ⊆ M is
compact if every open covering of S contains a finite subcollection F that also covers S:

S =
⋃
ϕ∈F

.

In Euclidean space, this is in fact equivalent to the subset S ⊆ Rn being closed and
bounded, and – just like in the Euclidean case – compactness is important to ensure
that the solution is reachable within a finite number of steps [2].

2.4 The Riemannian geometry of the SPD manifold

In this section, which is adapted from Weber and Sra [9] and Persch [15], we briefly pro-
vide some background on the Riemannian geometry of the manifold of n×n symmetric
positive-definite (SPD) matrices, which we will use in our numerical demonstrations.
We denote this manifold by Pn. Formally, we have

Pn = {p ∈ Rn×n | p = pT, ATpA > 0 ∀A ∈ Rn}.

Although we will restrict our attention to SPD matrices, we note that these results also
generalize to Hermitian positive-definite (HPD) matrices.

The tangent space at a point p ∈ Pn is identified with the (Euclidean) space of
symmetric matrices of size n× n, denoted Sym(n):

TpPn = {p1/2Ap1/2 | A ∈ Sym(n)}.

Note that when p = I (the identity), the tangent space is equal to Sym(n). Since
the tangent space vectors are also matrices, of the same size as the manifold points,
multiplying manifold points and tangent vectors (through regular matrix multiplication)
is a well-defined operation.

14

We define a partial ordering on Pn. Given two symmetric positive-definite matrices p
and q, we say that p ⪯ q (or p ≺ q) if q−p is positive semi-definite (respectively positive-
definite). A positive-definite interval from p to q is then defined as {r ∈ Pn | p ⪯ r ⪯ q}.

As our Riemannian metric on Pn we use the affine invariant metric, for which the
inner product on Pn is given by

⟨X,Y ⟩p = tr
(
p−1Xp−1Y

)
.

Denoting by || · ||F the Frobenius norm, the corresponding Riemannian distance is then

dist(p, q) = || log
(
p−1/2qp−1/2

)
||F .

A geodesic γp→q on Pn between p and q is given by

γ(t) = p1/2
(
p−1/2qp−1/2)tp1/2.

Further, the exponential and logarithmic maps are given by

Expp X = p1/2 exp
(
p−1/2Xp−1/2

)
p1/2,

Logp q = p1/2 log
(
p−1/2qp−1/2

)
p1/2,

where exp and log denote the standard matrix exponential and logarithm.
Finally, the Riemannian gradient of a function f : Pn → R is defined as

grad f(p) = p
(
∇f(p) +∇f(p)T

)
p,

where ∇ denotes the Euclidean gradient.
We will also need the following result, provided by Bhatia [20]:

Lemma 2.1. Let p, q ∈ Pn. Let λ↓(p), λ↑(p) denote the vectors of the eigenvalues of p
in decreasing (respectively increasing) order, and let · denote the elementwise product.
Then

λ↓(p) · λ↑(q) ≤ λ(AB) ≤ λ↓(p) · λ↓(q.

Further, if p, q are symmetric, we have〈
λ↓(p), λ↑(q)

〉
≤ tr (pq) ≤

〈
λ↓(p), λ↓(q)

〉
,

with equality if the matrix product pq is symmetric.

2.5 The Riemannian geometry of SO(n)

This section, which we have adapted from Persch [15], provides a brief introduction
to the Riemannian geometry of the manifold known as the special orthogonal group,
M = SO(n), consisting of n × n rotation matrices – that is, orthogonal matrices with
determinant 1:

SO(n) = {p ∈ Rn×n | pTp = ppT = I, det p = 1}.

The tangent space at p is given by the space of n× n skew-symmetric matrices:

TpSO(n) = {pX | p ∈ SO(n), X ∈ Rn×n, X = −XT}.

CHAPTER 2. BACKGROUND 15

Just like on Pn, manifold points and tangent vectors are both n×n matrices, and thus
multiplying them is a well-defined operation.

The Riemannian metric we use on this manifold is given by

⟨X,Y ⟩p = tr
(
pTq
)
.

Further, the exponential and logarithmic maps are given by

Expp X = p exp(X)

Logp q = p log(q)

where exp and log denote the standard matrix exponential and logarithm.

Chapter 3

The Frank–Wolfe algorithm on Rn

3.1 Euclidean Frank–Wolfe

The Frank–Wolfe algorithm, first developed by Marguerite Frank and Philip Wolfe in
1956 [10], is an optimization algorithm for solving constrained problems with convex
constraints. Although we are mainly interested in working with the Riemannian version
of the algorithm – which we will introduce later – it is convenient to introduce it first
in the more familiar Euclidean setting. This lets us explain the basic workings of the
algorithm and the motivation behind it, before moving on to the specifics of adapting
it to and using it on manifolds later.

The algorithm takes as input an objective function f : Rn → R, a convex set of
constraints C and a starting point x0 ∈ C. We also require that C is compact, to ensure
that the problem has a solution. Additionally, one needs to be able to compute the
gradient ∇f of the objective function. The algorithm is displayed in Algorithm 1.

Algorithm 1 Euclidean Frank–Wolfe on Rn

1: Input: Objective function f : Rn → R, constraint set C ⊆ Rn, initial point x0 ∈ C
2: for k = 0, 1, · · · do
3: zk ← arg minz∈C⟨∇f(xk), z⟩
4: αk ← 2

k+2

5: xk+1 ← (1− αk)xk + αkzk
6: end for

The idea behind the algorithm is that of reducing the problem to solving another,
simpler subproblem on the same constraint set. This is done by taking a linear approx-
imation of the objective function, minimizing this in order to find a search direction,
and then taking a short step in this direction. Consider the linearization of the function
f : Rn → R around a given point xk ∈ Rn, given by

f(z) ≈ f(xk) + ⟨∇f(x), z − xk⟩. (3.1)

By minimizing this approximation of the original cost function, the problem is reduced
to a linear, convex problem. Technically, the linear subproblem we now want to solve is

arg min
z∈C

f(xk) + ⟨∇f(xk), z − xk⟩.

18

However, the inner product is linear, so

f(xk) + ⟨∇f(xk), z − xk⟩ = f(xk) + ⟨∇f(xk), z⟩ − ⟨∇f(xk), xk⟩.

Since both the terms f(xk) and −⟨∇f(xk), xk⟩ are constant for a given xk, they do not
affect the minimum, and can thus be dropped from the computation. The remaining
term ⟨∇f(xk), z⟩ now matches that in line 3 of Algorithm 1.

On its own, this procedure gives us a sequence of iterates converging to the solution
of the linear approximation of the original problem – it doesn’t actually solve the original
problem (unless the solutions happen to coincide). The key to the Frank–Wolfe algo-
rithm lies in the next two steps of the algorithm: taking ever-decreasing steps between
the current iterate and the solution to the subproblem. Instead of jumping straight to
the solution of the subproblem at each iteration of the algorithm loop, we solve the
subproblem in order to determine a search direction for our next step.

As long as the optimality condition (2.4) isn’t satisfied, i.e.

⟨∇f(xk), z − xk⟩ < 0,

there must be a feasible descent direction from the current iterate xk. Thus, unless we
have already found the solution, the minimal value of the subproblem must be negative.
This means that by minimizing the subproblem, we are finding the search direction
d = z − xk that is the most negatively correlated with the gradient – i.e. the direction
from xk where the objective function decreases most quickly. Finally, in line 5 of the
algorithm we take a step of size αk in this direction, following a straight line from the
current iterate.

Note that it is not actually necessary to use the stepsize αk = 2/(k + 2) given
in Algorithm 1. Other ways to determine the stepsize can be used, such as a line
search, or even an exact minimization, although this requires a slightly more expensive
computation. The given stepsize has been found to give good results with minimal
computational overhead, as well as providing a guarantee for the convergence of the
algorithm [9].

A critical aspect of this algorithm is the fact that the constraint set is convex. Since
we are only taking steps along straight lines between points in the set, the iterates
will always stay within the constraints. This avoids the need to project back to the
feasible set with each iteration, replacing it instead with a linear minimization. As
linear minimizations are generally simpler than projections, this can have a significant
effect on the cost of computation [21].

For many problems, the subproblem can even be solved in closed form. This means
that the optimization problem in line 3 is reduced to consulting a linear minimization
oracle, which returns the minimizer of ⟨∇f(xk), z − xk⟩ over C. It is assumed that the
constraints only need to be accessed indirectly, through the oracle. The Frank–Wolfe
algorithm is particularly well suited to problems where this is the case: When the oracle
can be computed efficiently, each iteration of the algorithm can be computed in just
three simple, closed-form steps [22]. Note that since the subproblem is linear, it is never
necessary to solve it using iterative methods. Even if there isn’t a closed-form solution,
linear problems can always be solved very efficiently using e.g. the simplex method or
interior-point methods [18].

CHAPTER 3. THE FRANK–WOLFE ALGORITHM ON RN 19

3.2 Convergence of Euclidean Frank–Wolfe

The great disadvantage of the Frank–Wolfe method is that it only converges at a sublin-
ear rate: Frank and Wolfe established that there exists a constant β > 0 and an integer
K such that for all k > K,

f(xk)− f(x∗) ≤ β

k
.

Thus, the worst-case convergence rate is O(1/k) in the number of iterations k [10, 23].
Given some additional assumptions on the problem – which usually hold in practical

problems – there is also a tight lower bound on how fast the algorithm can converge, as
shown by Canon and Cullum [24]. Assuming that the optimum x∗ of the problem lies
on the boundary of C and xk stays on the interior of C for infinitely many iterations k,
if xk is an ϵ-approximate solution, it holds that for any ϵ > 0 and stepsize αk > 0,

f(xk)− f(x∗) ≥ αk

k1+ϵ

for an infinite number of k.
The worst-case convergence rate O(1/k) cannot, in general, be improved upon. This

is due to something described in the literature as the zig-zagging phenomenon[22, 24].
When the solution is located on the boundary of C, the search directions computed
at each iteration can start to alternate back and forth between different vertices of C,
causing the slow convergence rate [25].

However, for certain types of problems, faster rates can be attained. In particular,
when the solution lies in the interior of the constraint set, a linear convergence rate is
attained [26] – i.e. for some positive constant C < 1 we have

f(xk+1)− f(x∗) ≤ C
(
f(xk)− f(x∗)

)
.

Thus, the main practical consideration when using Frank–Wolfe is whether comput-
ing a linear minimization is significantly cheaper than computing a projection onto the
feasible set. That is, for a given constraint set C, is it cheaper to compute

arg min
x∈C

⟨x, y⟩ or arg min
x∈C

||x− y||?

If computing the subproblem is more costly than projecting onto the feasible set, the
Frank–Wolfe algorithm’s slow rate of convergence puts it at a disadvantage against
faster, projection-based algorithms. Thus, for less complicated constraints it is usually
preferable to use an algorithm with a faster rate of convergence, such as projected
gradient descent [19]. Especially in the unconstrained case, where we don’t have to do
any projections at all, using a simpler algorithm is better.

The Frank–Wolfe algorithm is most useful when projecting onto the feasible set
incurs a significant computational cost. However, there are many problems where
projecting onto the constraint set can be computationally expensive: Combettes and
Pokutta [21] provide several examples of such sets, which commonly appear as con-
straints in optimization problems.

Chapter 4

The Frank–Wolfe algorithm on M

4.1 Riemannian Frank–Wolfe

We are now ready to introduce the Riemannian Frank–Wolfe algorithm, which gen-
eralizes the classical Frank–Wolfe algorithm to work on Riemannian manifolds. The
algorithm is displayed in Algorithm 2. This version of the algorithm was first devel-
oped by Weber and Sra in 2017 [12]. The idea behind it is that the general, high-level
concept of the Euclidean algorithm is equally valid in the Riemannian setting, and thus
the algorithm can be adapted to working on manifolds simply by replacing the vector
space operations with their more general manifold counterparts.

The algorithm takes the same input as the Euclidean version: a cost function f ,
a constraint set C and a starting point p0 ∈ C. The main difference is that the cost
function is now defined on the manifold, f : M→ R, and the constraint set is a subset
of the manifold, C ⊆ M. We require that the manifold M is geodesically complete, to
ensure that the exponential map is defined on the entire manifold. Further, we assume
that both the constraint set C and the objective function f are geodesically convex. The
first assumption ensures that the iterates stay within the constraints, and the second
ensures that any local solution is also the global solution – and thus that the algorithm
converges to the solution.

Algorithm 2 Riemannian Frank–Wolfe on M
1: Input: Objective function f : M→ R, constraint set C ⊆M, initial point p0 ∈ C
2: for k = 0, 1, · · · do
3: qk ← arg minq∈C⟨grad f(pk),Logpk

q⟩pk
4: αk ← 2

k+2

5: pk+1 ← γpk→qk (αk)
6: end for

The main loop of Riemannian algorithm is very similar to the Euclidean one, and
we refer to section 3.1 for details about its general operation. In summary, at each
iteration we solve the subproblem to find a search direction, and as long as the optimality
condition (2.10) isn’t satisfied, i.e.

⟨∇f(pk),Logpk
q⟩pk < 0,

22

there is a feasible descent direction for the problem. Thus, due to the convexity of C,
we can move in this direction to find a better objective value.

Since working with arbitrary manifolds requires a slightly more general approach
than in the Euclidean setting, we have to make a few adjustments to the algorithm.
The first change is in the subproblem in line 3,

arg min
q∈C

⟨grad f(pk),Logpk
q⟩pk . (4.1)

Since we are now working on a manifold, the inner product ⟨·, ·⟩pk is defined on the
tangent space TpkM – thus we need to ensure that its arguments are in the tangent
space. In general, the Euclidean gradient ∇f(pk) in the first argument is not in the
tangent space at pk, so we need to replace it by the Riemannian gradient.

In Euclidean space we do not have to make a distinction between points and tangent
vectors in the inner product. This allowed us to take the difference between the two
points (z−xk), and use the linearity of the inner product to get rid of the term containing
xk. This is not possible in general Riemannian spaces, which means that we need to
keep the entire subtraction term ⟨∇f(xk), z − xk⟩ from equation (3.1) in mind when
adapting this step to work on manifolds. Thus, in order to get a proper tangent vector
for the second argument, we replace the subtraction by the corresponding manifold
operation: the logarithmic map with base point pk, applied to q.

The second important change is in line 5:

pk+1 ← γpk→qk (αk).

We have to ensure that we stay on the manifold, so instead of taking a step along
a straight line from pk to q – as we could in Rn – we have to take the step along a
geodesic connecting the two points. Thus, we must now compute the geodesic γpk→qk ,
with γpk→qk (0) = pk and γpk→qk (1) = q, and take a step of size αk along this geodesic.

Since both the logarithm and the geodesic are generalizations of their corresponding
Euclidean operations, we see that choosingM = Rn returns the original Euclidean algo-
rithm. Note that while the changes are straightforward in theory, this is not necessarily
the case in practice. Whereas the simple additions, subtractions and scalar multipli-
cations used in the Euclidean algorithm have relatively little computational overhead,
computing the logarithmic map or geodesic may require more demanding computations,
depending on the manifold.

4.2 The Riemannian oracle

A significant difference from the Euclidean setting is that the subproblem is no longer
linear, due to the use of the nonlinear logarithmic map in the inner product. In fact,
we can’t even guarantee that the Riemannian subproblem is convex [9]. This means
that the subproblem can be much more difficult to solve than in the Euclidean case.
However, many problems do still have a closed-form solution for the subproblem, and
the idea of a solution oracle is still valid in the Riemannian setting. These oracles
generally involve more complicated computations than in the Euclidean case, and thus
the question of what is more difficult – calling the oracle or projecting onto the feasible
set – is even more important in the Riemannian setting.

Even in cases where we do not have a closed-form solution to the subproblem, the
Frank–Wolfe algorithm can still be used, but the subproblem now has to be solved

CHAPTER 4. THE FRANK–WOLFE ALGORITHM ON M 23

iteratively, using a different optimization algorithm – which we will refer to as the
subsolver.

However, we have now essentially replaced one constrained problem with another,
trading the original problem (solved by Frank–Wolfe) for the subproblem (solved by the
subsolver) – which even has to be solved every iteration. Thus an important question is
whether using this method to solve the subproblem is any more efficient than just using
it to solve the original problem directly. While it’s difficult to say anything about this
in general, as it depends on the form of the problem, one can hope that the linearization
simplifies the problem enough that it can be solved more efficiently by the subsolver.

One problem is the fact that we are still dealing with the same constraint set, which
means that if it was difficult to use projection-based methods on the original problem,
we will have the same issue with the subproblem. Thus, we will ideally want to use
another projection-free method to solve the subproblem, for instance the augmented
Lagrangian method or the exact penalty method, as discussed by Liu and Boumal [27].

4.2.1 Gradient-based subsolver methods

Although we could use any constrained Riemannian optimization method to solve the
subproblem, many common optimization methods are – like Frank–Wolfe – gradient-
based. Thus, in order to apply these to the subproblem we need a closed form expression
for the gradient of the subproblem cost,

gradq g(q) = gradq⟨gradpk
f(pk),Logpk

(q)⟩pk ,

where we note that gradpk
f(pk) denotes the Riemannian gradient of the cost f with

respect to its argument, (pre)evaluated at the point pk. To derive this gradient we
follow the approach used by Pfaue [28], who solves a similar problem when deriving
KKT conditions for smooth manifolds.

We consider a composition of two functions,

h : M→ TpkM h(q) = Logpk
(q) Dqh : TqM→ Th(q)(TpkM) ∼= TpkM,

j : TpkM→ R j(X) =
〈
gradpk

f(pk), X
〉
pk

DXj : TX(TpkM) ∼= TpkM→ R,

so that

g(q) =
(
j ◦ h

)
(q) = j

(
h(q)

)
= ⟨grad f(pk),Logpk

(q)⟩pk .

We can now use the chain rule to derive an expression for the gradient of g. By the
definition of the gradient, for any Y ∈ T qM,

⟨gradq g(q), Y ⟩q = ⟨gradq(j ◦ h)(q), Y ⟩q
= Dq(j ◦ h)(q)[Y]

= Dh(q)j(q)
[
Dqh(q)[Y]

]
= ⟨gradq j(X), Dqh(q)[Y]⟩TpkM.

We can now use the adjoint differential operator to isolate Y in the second argument
of the inner product:

⟨gradq g(q), Y ⟩q = ⟨gradq j(X), Dqh(q)[Y]⟩TpkM.

=
〈
(Dqh)∗(h(q))

[
gradq j(X)

]
, Y
〉
q
.

24

This, finally, means that

gradq g(q) = (Dqh)∗(q)
[

gradY j(X)
]

The first argument of the inner product j(X) is the gradient of the main cost function,
grad f(p), evaluated at the current iterate pk. This term is independent of the variable
X we want to optimize over – it is essentially a generic vector in the tangent space
TpkM. Thus, the gradient of j(X) is simply

gradX j(X) = gradX

〈
gradpk

f(pk), X
〉
pk

= X,

and the gradient of g is

grad g(q) = (Dqh)∗(h(q))
[

gradY j(X)
]

= (Dqh)∗(Z)[X]

= (Dq Logpk
)∗(Z)[X],

where Z = h(q) = Logpk
(q) ∈ TpkM is the tangent vector the adjoint differential is

evaluated at.
We will not need to go any further than this for our implementation, as the adjoint of

the differential of the logarithm is already implemented natively in Manopt.jl. However,
for the sake of completeness we include a brief description of the closed-form expression
for the adjoint. For a complete treatment of this, see Persch [15].

From the definition of the adjoint differential, we have

(Dqh)∗(q)[X] =

d∑
l=1

⟨X,Ξl(T)⟩TqM αlΞl(0),

where {Ξ1(t), · · · ,Ξd(t)} is an orthonormal basis of Th(q)(TqM) ∼= TqM, parallel trans-
ported along the geodesic γq→pk – i.e. Ξl(t) is the l-th basic vector transported from
γq→pk (0) = q to γq→pk (t).

The coefficients αl correspond to the eigenvalues λl of the basis. For the function
h(q) = logpk

(q), the parameter T = 1 and the following coefficients αl are provided by
Persch [15] (Lemma 2.3):

αl =

√
−λl

sinh(
√
−λl)

, λl < 0,

1, λl = 0,√
λl

sinh(
√

λl)
, λl > 0.

4.2.2 Derivation of the SPD Riemannian oracle

Weber and Sra [9] derive a Riemannian oracle for the manifold of SPD matrices Pn. We
provide a slightly adapted version of this derivation here, showing that the subproblem
in this case admits a closed-form solution. For a brief overview of the Riemannian
geometry of Pn, we refer back to section 2.4.

We consider an objective function f : Pn → R, and a constraint set consisting of a
positive-definite interval:

C = {p | L ⪯ p ⪯ U}.

CHAPTER 4. THE FRANK–WOLFE ALGORITHM ON M 25

Then the subproblem (4.1) has the form

arg min
L⪯q⪯U

〈
grad f(pk),Logp q

〉
. (4.2)

The inner product in equation (4.2) can be rewritten as〈
grad f(p),Logp q

〉
=
〈

grad f(p), p1/2 log
(
p−1/2qp−1/2

)
p1/2

〉
=
〈
p−1/2 grad f(p)p−1/2, log

(
p−1/2qp−1/2

)〉
= tr

(
p−1

(
p−1/2 grad f(p)p−1/2

)
p−1 log

(
p−1/2qp−1/2

))
= tr

(
p−3/2 grad f(p)p−3/2 log

(
p−1/2qp−1/2

))
= tr (G log(r)) ,

where G = p−3/2 grad f(p)p−3/2 and r = p−1/2qp−1/2. We now have a minimization
problem over r, with the following transformed constraints:

L′ ⪯ r ⪯ U ′,

L′ = p−1/2Lp−1/2,

U ′ = p−1/2Up−1/2.

By diagonalizing G as G = QDQT and letting s = QTrQ, we have

tr (G log(r)) = tr
(
QDQT log(r)

)
= tr

(
DQT log(r)Q

)
= tr (D log(s)) .

The result is, again, a new minimization problem, this time over s. It follows that the
constraints are transformed in the same way as r:

L′′ ⪯ s ⪯ U ′′,

L′′ = QTL′Q
(

= QTp−1/2Lp−1/2Q,
)

U ′′ = QTU ′Q
(

= QTp−1/2Up−1/2Q.
)

By performing the Cholesky decomposition U ′′ − L′′ = PTP and letting R =
(PT)−1(s− L′′)P−1 we can again rewrite the constraint as

0 ⪯ s− L′′ ⪯ U ′′ − L′′

=⇒ 0 ⪯ (PT)−1(s− L′′)P−1 ⪯ (PT)−1(PTP)P−1

=⇒ 0 ⪯ R ⪯ I.

From the definition of R, we now get

s = PTRP + L′′,

and thus the subproblem (4.2) finally turns into

arg min
0⪯R⪯I

tr
(
D log(PTRP + L′′)

)
.

26

Since the trace is equal to the sum of eigenvalues, minimizing the trace is equivalent
to minimizing the sum of eigenvalues. From Lemma 2.1 we have

tr
(
D log(PTRP + L′′)

)
=
〈
λ↓(D), λ↓

(
log(PTRP + L′′)

)〉
,

where the inner product here denotes the regular Euclidean dot product. Since D is
diagonal, its elements are equal to its eigenvalues:

λ↓(D)j = Dii,

where the j’s are some permutation of 1, · · · , n. Thus, in order to minimize the inner
product of eigenvalues, we need to minimize the eigenvalues of log(PTRP + L′′) cor-
responding to positive elements of D, and maximize those corresponding to negative
elements of D.

Now, without loss of generality, we assume that R is diagonal. Since 0 ⪯ R ⪯ I,
we must then have 0 ≤ Rii ≤ 1. Due to the fact that both the matrix logarithm and
the map R 7→ PPTRP +L′′ are operator monotone, the minimum is hence achieved by
setting

Rii =

{
0 if Dii ≥ 0
1 if Dii < 0

.

Thus, the optimal point for the subproblem is given by

q = p1/2rp1/2

= p1/2Q
(
PTRP + L′′

)
QTp1/2

= p1/2Q
(
PT[−sgn(D)]+P + L′′

)
QTp1/2.

4.2.3 Derivation of the SO(n) Riemannian oracle

To illustrate another setting where a Riemannian oracle is available, we now derive a
Riemannian oracle for unconstrained problems on SO(n). The contents of this section
are again adapted from Weber and Sra [9]. For a brief overview of the Riemannian
geometry of SO(n), we refer back to section 2.5.

We consider the objective function f : SO(n)→ R, so that the subproblem (4.1) has
the form

arg min
q∈SO(n)

⟨grad f(p),Logp q⟩ = arg min
p∈SO(n)

⟨grad f(p), p log(pTq)⟩

= arg min
q∈SO(n)

tr
(

grad f(p)Tp log(pTq)
)

= arg min
q∈SO(n)

tr
(
G log(pTq)

)
,

(4.3)

where we denote G = grad f(p)Tp. Taking the singular value decomposition G = UDV ∗,
such that U and V are unitary, we have

tr
(
G log(pTq)

)
= tr

(
UDV ∗ log(pTq)

)
= tr

(
DV ∗ log(pTq)U

)
= tr

(
D log(V ∗pTqU)

)
= tr (D log(W)) ,

CHAPTER 4. THE FRANK–WOLFE ALGORITHM ON M 27

where W = V ∗pTqU . Note that the inner product in (4.3) is negative as long as there
is a feasible descent direction, which means that

tr (D log(W)) = ⟨grad f(p),Logp q⟩
= −|⟨grad f(p),Logp q⟩|
= −| tr (D log(W)) |

Hence, noting that D is diagonal, it follows from the Cauchy–Schwarz inequality and
the definition of the inner product that

tr (D log(W)) = −| tr (D log(W)) |

= −|⟨DT, log(W)⟩p|
≥ −⟨D,D⟩p⟨log(W), log(W)⟩p

= − tr
(
DTD

)
tr
(

log(W)T log(W)
)

= − tr
(
D2)(∑

i

σi(log(W))

)1/2

.

where σi(log(W)) are the singular values of log(W). Now, D depends only on the
gradient, which is constant for given p. Thus, in order to minimize tr (D log(W)),
we need to maximize the sum of singular values of W . Further, W is an orthogonal
matrix, meaning it has all singular values σi(W) = 1. Thus, the right hand side can be
minimized by setting W = I, and we get

I = W = V ∗pTqU.

Thus, the linear oracle is given by

q = pV U∗.

Chapter 5

Convergence of Riemannian Frank–Wolfe

5.1 Global convergence

In this section, we will prove that the Riemannian version of the Frank–Wolfe algorithm
converges at the same rate as the Euclidean version. In general, it is not possible to
guarantee anything better than sublinear convergence, although with a certain assump-
tion on the optimum – namely that it is located strictly in the interior of the constraint
set – the algorithm achieves linear convergence. The proofs in this chapter are mostly
adapted from the work by Weber and Sra [9], although we expand on some of the
techniques they have used, going into greater detail.

In order to prove the convergence of the algorithm, we have to make a few assump-
tions about the objective function f . First, we require that it is sufficiently smooth –
that is, it has a locally Lipschitz continuous gradient on the constraint set C, as given
by (2.6):

||∇f(x)− Pq←p∇f(q)|| ≤ L · d(p, q), ∀p, q ∈M.

Further, we assume that f is geodesically convex on C, satisfying (2.8):

f(q)− f(p) ≥ ⟨X,Logp(q)⟩p ∀p, q ∈ C, ∀X ∈ TpM.

With these assumptions we will prove the following theorem, showing the conver-
gence rate of the Riemannian Frank–Wolfe algorithm:

Theorem 5.1. LetM be a Riemannian manifold, C ⊆M a geodesically convex subset,
and let f : M→ R be geodesically convex and have a locally Lipschitz continuous gradi-
ent on C. Then, for some constant Cf , the sequence of iterates produced by Algorithm
2 satisfies

f(pk)− f(p∗) ≤ 2Cf

k + 2
.

The curvature constant Cf

We begin by introducing the curvature constant, Cf , introduced in the Riemannian set-
ting by Weber and Sra [9]. This Riemannian version is adapted from a similar constant
that has been used in convergence proofs for the Euclidean Frank–Wolfe algorithm [22,
29].

30

Definition 5.2. Let M be a Riemannian manifold, C ⊆ M, and let f : M→ R have
locally Lipschitz continuous gradients. Let p, q, r ∈ C and η ∈ [0, 1], where r = γp→q(η)
– i.e. r lies on a geodesic from p to q. We define the curvature constant Cf of f on C as

Cf := sup
p,q,r∈C

2

η2

[
f(r)− f(p)− ⟨grad f(p), Logp(r)⟩p

]
.

To motivate the definition of this constant, consider the linear approximation of the
objective function f around p, evaluated at the point r = γp→q(η):

f(r) ≈ f(p) +
〈
grad f(p),Logp(r)

〉
p
.

If the curvature constant is bounded, then the deviation of f(r) from the linearization
of f at p,

f(r)− f(p)− ⟨grad f(p), Logp(r)⟩p
is bounded. Thus, in a sense, Cf gives us a bound on the ”nonlinearity” of f along any
geodesic γp→q on M. For instance, we see that for a linear function f , Cf = 0 [29].

The weighting factor 2/η2 is motivated by the following, which relates the curvature
constant to the Lipschitz bound:

Consider the diameter of the constraint set, given by diam(C) = supp,q∈C d(p, q). If
f : M→ R is L-smooth on C, then the curvature constant Cf satisfies the bound

Cf ≤ Ldiam(C)2.

To show this, let p, q, r ∈ C, η ∈ (0, 1) and again r = γp→q(η). This means that

d(p, r) = η · d(p, q) =⇒ 1

η2
d(p, r)2 = d(p, q)2.

Using the Lipschitz smoothness of f from (2.7) – which is equivalent to our assumption
of (2.6) – we have

f(r)− f(p)−
〈
grad f(p),Logp(r)

〉
p
≤ L

2
d(p, r)2.

This, in turn, means that

Cf = sup
p,q,r∈C

2

η2

(
f(r)− f(p)− ⟨grad f(p), Logp(r)⟩p

)
≤ sup

p,q,r∈C
L · 1

η2
d(p, r)2

= L · sup
p,q∈C

d(p, q)2

= Ldiam(C)2.

Lipschitz bound

We can now redefine the Lipschitz inequality (2.7) using the curvature constant:

Lemma 5.1. Let M be a Riemannian manifold, C ⊆ M, and let f : M → R have
locally Lipschitz continuous gradients. For any two points p, q ∈ C, let η ∈ [0, 1], and
let r = γp→q(η). Finally, let the curvature constant Cf be defined as in Definition 5.2.
Then

f(r) ≤ f(p) + η
〈
grad f(p),Logp(q)

〉
+

1

2
Cfη

2. (5.1)

CHAPTER 5. CONVERGENCE OF RIEMANNIAN FRANK–WOLFE 31

To show this, note that the definition of Cf implies that, for any choice of two points
p, q ∈M,

Cf ≥
2

η2

(
f(r)− f(p)− ⟨grad f(p), Logp(r)⟩p

)
,

and thus we have

f(r) ≤ f(p) +
〈
grad f(p),Logp(r)

〉
+

1

2
Cfη

2. (5.2)

Further, the fact that r = γp→q(η) means that

Logp(r) = η Logp(q),

and we have 〈
grad f(p),Logp(r)

〉
=
〈
grad f(p), η Logp(q)

〉
= η

〈
grad f(p),Logp(q)

〉
.

Finally, inserting this into inequality (5.2) yields

f(r) ≤ f(p) + η
〈
grad f(p),Logp(q)

〉
+

1

2
Cfη

2.

Stepsize

The following result shows that our choice of stepsize produces a decreasing sequence.
Let (Ak) be a nonnegative sequence satisfying

Ak+1 ≤ (1− αk)Ak +
1

2
α2
kCf , (5.3)

where 0 < αk ≤ 1 is a parameter (the stepsize) depending on k. Then, if we let
αk = 2

k+2
, the sequence satisfies

Ak ≤
2Cf

k + 2
. (5.4)

We show this by induction. For the base case, we have k = 0 and αk = 1, and thus

A1 ≤ 0 ·A0 +
1

2
Cf ≤

2

3
Cf =

2Cf

1 + 2
.

Now assume the induction hypothesis holds, i.e. Ak ≤
2Cf

k+2
. Then

Ak+1 ≤ (1− αk)Ak +
1

2
α2
kCf

≤ k

k + 2

2Cf

k + 2
+

1

2

4

(k + 2)2
Cf

= 2Cf

(
k

(k + 2)2
+

1

(k + 2)2

)
=

2Cf

k + 3

(
(k + 1)(k + 3)

(k + 2)2

)
=

2Cf

k + 3

(
(k2 + 3k) + (k + 3)

k2 + 4k + 4

)
=

2Cf

k + 3

(
k2 + 4k + 3

k2 + 4k + 4

)
<

2Cf

(k + 1) + 2
.

32

Global convergence rate

Finally, we can show the global convergence rate of the algorithm. Let the stepsize
αk = 2

k+2
, and let p∗ be a minimum of the cost function f . Then the sequence of

iterates generated by Algorithm 2 satisfies

f(pk)− f(p∗) = O(1/k).

To show this, note first that qk is—by definition—the minimizer of the subproblem in
line 3 of the algorithm, so we have〈

grad f(pk),Logpk
(qk)

〉
≤
〈
grad f(pk),Logpk

(p∗)
〉
.

From the Lipschitz bound (5.1), with p = pk, q = qk and r = pk+1 = γpk→qk (αk), as
well as the step size αk serving the role of η, we therefore have

f(pk+1)− f(p∗) ≤
(
f(pk) + αk

〈
grad f(pk),Logpk

(qk)
〉

+
1

2
Cfα

2
k

)
− f(p∗)

≤
(
f(pk)− f(p∗)

)
+ αk

〈
grad f(pk),Logpk

(p∗)
〉

+
1

2
Cfα

2
k.

(5.5)

Now, using the geodesic convexity defined in equation (2.8), we have

⟨grad f(pk), Logp(p∗)⟩p ≤ f(p∗)− f(pk),

which means that(
f(pk)− f(p∗)

)
+ αk

〈
grad f(pk),Logpk

(p∗)
〉
≤
(
f(pk)− f(p∗)

)
+ αk

(
f(p∗)− f(pk)

)
=
(
f(pk)− f(p∗)

)
− αk

(
f(pk)− f(p∗)

)
= (1− αk)

(
f(pk)− f(p∗)

)
.

Inserted into equation (5.5) this yields

f(pk+1)− f(p∗) ≤ (1− αk)
(
f(pk)− f(p∗)

)
+

1

2
Cfα

2
k.

We now see that setting Ak+1 = f(pk+1) − f(p∗) in inequality (5.4) satisfies the re-
quirement (5.3), and we get the desired O(1/k) convergence rate, proving Theorem
5.1:

f(pk)− f(p∗) ≤ 2Cf

k + 2
.

5.2 Optimum in the interior of C: Linear convergence

When the solution is located on the boundary of the feasible set, the Riemannian
Frank–Wolfe algorithm suffers from the same zig-zagging phenomenon as the Euclidean
algorithm [9]. However, just like in the Euclidean case, the Riemannian Frank–Wolfe
algorithm converges linearly when the optimal solution lies in the interior of the con-
straint set. The only caveat is that we need to make the additional assumption that,
for some µ, the cost function f is µ-strongly convex, satisfying (2.9):

f(q)− f(p) ≥ ⟨X,Logp(q)⟩p +
µ

2
d(p, q)2 ∀p, q ∈ S, X ∈ TpM.

CHAPTER 5. CONVERGENCE OF RIEMANNIAN FRANK–WOLFE 33

Theorem 5.3. Let M be a Riemannian manifold, C ⊆ M a geodesically convex sub-
set, and let f : M → R be µ-strongly geodesically convex and have a locally Lipschitz
continuous gradient on C. Assume that there exists some ρ such that the minimizer p∗

of f lies within a ball of radius ρ, Bρ(p∗), strictly inside C. Then it is possible to choose
a stepsize αk so that the sequence of iterates produced by Algorithm 2 satisfies

f(pk+1)− f(p∗) ≤
(

1− 3

4

ρ2µ

Cf

)(
f(pk)− f(p∗)

)
.

We now prove theorem 5.3. We follow a strategy based on the one used by Garber
and Hazan [30] for the Euclidean case and by Weber and Sra [9] for their Riemannian
proof. At each iteration of algorithm 2, we compute the point qk in the constraint set
C satisfying

qk = arg min
q∈C

⟨grad f(pk),Logpk
(q)⟩

that is, the point lying in the direction of steepest descent in the tangent space TpkM.
Let

Wk = arg max
Z∈TpkM, ||Z||≤1

⟨grad f(pk), Z⟩,

be a vector in the direction of steepest ascent, limited to be of magnitude at most 1 –
it thus points in the opposite direction of the minimizer of the subproblem, qk. Note
that if we have found the direction of steepest ascent, we can always increase the value
of the inner product by choosing a longer vector, which means that in practice Wk will
always have magnitude exactly equal to 1. Hence this vector is in fact just the gradient
(which, by definition, is a vector of steepest ascent), normalized, i.e.

Wk =
grad f(pk)

|| grad f(pk)|| .

If we choose p0 in the interior of C, every subsequent point produced by the algorithm
will also be in the interior, due to the following: Since C is convex, any point on
the geodesic between pk and qk is in C. Thus, as long as the stepsize αk < 1, then
pk+1 = γpk→qk (αk) can not be on the boundary—even if qk is. This means that there
exists some minimum radius ρ such that for every point pk produced by the algorithm
(including, in the limit as k →∞, p∗, as established by Theorem 5.1),

Bρ(pk) ⊂ C.

If we now take a point

pρ = Exppk
(ρWk),

then pρ ∈ Bρ(pk) ⊂ C, since ||Wk|| ≤ 1. It then holds that

⟨grad f(pk),−Logpk
(pρ)⟩ = −⟨grad f(pk),Logpk

(
Exppk

(ρWk)
)
⟩

= −⟨grad f(pk), ρWk⟩

= −
〈

grad f(pk), ρ
grad f(pk)

|| grad f(pk)||

〉
= −ρ ⟨grad f(pk), grad f(pk)⟩

|| grad f(pk)||
= −ρ · || grad f(pk)||.

(5.6)

34

For ease of notation, we define the error in the solution at step k as ∆k = f(pk) −
f(p∗). From the Lipschitz bound (5.1) we have

f(pk+1)− f(pk) ≤ αk⟨grad f(pk),Logpk
(qk)⟩+

Cf

2
α2
k.

It follows that
∆k+1 = f(pk+1)− f(p∗)

= f(pk)− f(p∗) +
(
f(pk+1)− f(pk)

)
= ∆k +

(
f(pk+1)− f(pk)

)
≤ ∆k + αk⟨grad f(pk),Logpk

(qk)⟩+
Cf

2
α2
k.

(5.7)

We now consider the inner product in (5.7). Note first that −Logpk
(pρ) = Logp(rρ),

for some point rρ in the opposite direction of pρ from pk. Now, qk is – by definition –
the point that minimizes ⟨grad f(pk),Logpk

(qk)⟩, so we have

⟨grad f(pk),Logpk
(qk)⟩ ≤ ⟨grad f(pk),Logpk

(rρ)⟩
= ⟨grad f(pk),−Logpk

(pρ)⟩.
= −ρ · || grad f(pk)||,

where the last equality follows from (5.6). Inserted into equation (5.7), this yields

∆k+1 ≤ ∆k − αk · ρ · || grad f(pk)||+ Cf

2
α2
k. (5.8)

Denoting the optimal value of the objective function f by f∗, µ-strong convexity im-
plies the following Riemannian extension of the Polyak- Lojasiewicz (PL) inequality [9]:

1

2
|| grad f(p)||2 ≥ µ ·

(
f(p)− f∗

)
∀p ∈ C,

which in our case implies

−|| grad f(pk)|| ≤ −
√

2µ
√

f(pk)− f(p∗) = −
√

2µ
√

∆k.

Inserting this into equation (5.8), we get

∆k+1 ≤ ∆k − αk · ρ ·
√

2µ
√

∆k +
Cf

2
α2
k. (5.9)

Finally, by setting the algorithm step size to

αk =
ρ
√
µ∆k√
2Cf

,

we get the desired bound:

∆k+1 ≤
(

1− 3

4

ρ2µ

Cf

)
∆k.

Note that this choice of stepsize αk requires knowing the current error ∆k, and
hence also the optimal value f∗ – which is generally not available. However, this bound
provides a theoretical guarantee that the algorithm converges, and we can still get the
same rate of convergence by using a slightly worse stepsize [9].

CHAPTER 5. CONVERGENCE OF RIEMANNIAN FRANK–WOLFE 35

We remark that our bound contains a slightly different constant than the one ob-
tained by Weber and Sra. There seems to be a slight mistake in their proof, when
inserting the stepsize into (5.9). The bound obtained by Weber and Sra is essentially
the same as the one obtained in the Euclidean case by Garber and Hazan, but they use
slightly different forms of the PL inequality in their proofs. The error seems to come
from the fact that whereas Weber and Sra use a factor

√
2µ in (5.9), Garber and Hazan

instead have a factor
√

µ/2, resulting in a different constant factor in the final bound.
We note that this is a very minor error, and that it does not affect the main result,
namely that the algorithm converges linearly. Further, one could still obtain the same
constant factor as them, by setting the stepsize to

αk =
(

2 +
√

3
) ρ
√
µ∆k√
2Cf

.

5.3 Convergence when solving the subproblem approximately

As we have noted in section 4.2, a Riemannian oracle for the subproblem is not always
available. In that case, we can’t guarantee that the subproblem will be solved exactly,
as we will usually have to solve it by e.g. an iterative method. While this is likely to
result in worse performance, we can show that the algorithm still converges. In fact, it
converges at the same (asymptotic) rate as when a closed-form oracle is used. Weber
and Sra [9] provide a proof of the convergence of the Riemannian Frank–Wolfe algorithm
when the subproblem is solved only approximately, which we have adapted here.

We first introduce a notion of computational accuracy: For δ ≥ 0 and a stepsize
0 < η ≤ 1 we say that q is a δ-approximate linear minimizer of the subproblem 4.1 if

〈
grad f(pk),Logpk

(q)
〉
≤ min

q′∈C

〈
grad f(pk),Logpk

(q′)
〉

+ δ
1

2
Cfη.

The following theorem then provides the convergence guarantee of the Riemannian
Frank–Wolfe algorithm when the subproblem is only solved approximately:

Theorem 5.4. Let M be a Riemannian manifold, C ⊆ M a geodesically convex sub-
set, and let f : M → R be geodesically convex and have a locally Lipschitz continuous
gradient on C. Let the Riemannian oracle in the subproblem of line 3 of Algorithm 2 be
solved to an accuracy of δ ≥ 0. Then the sequence of iterates produced by the algorithm
satisfies

f(pk)− f(p∗) ≤ (1 + δ)
2Cf

k + 2
.

We begin by proving an intermediate result, namely that

f(pk+1) ≤ f(pk)− αk

(
f(pk)− f(p∗)

)
(1 + δ)

1

2
Cfα

2
k

Once again, we let p, q, r ∈ C and η ∈ [0, 1], where r = γp→q(η), so r lies on a geodesic
between p and q. Also, let q be a δ-approximate linear minimizer of the subproblem

36

and p∗ be the optimal solution of the main problem 2.5. By definition, we then have

〈
grad f(p),Logp(q)

〉
≤ min

q′∈C

〈
grad f(p),Logp(q′)

〉
+ δ

1

2
Cfη

≤
〈
grad f(p),Logp(p∗)

〉
+ δ

1

2
Cfη

≤ f(p∗)− f(p) + δ
1

2
Cfη

= − (f(p)− f(p∗)) + δ
1

2
Cfη,

where the inequality in the second-to-last line follows from the convexity (2.8) of f .

Replacing η by αk, and letting p = pk, q = qk and r = pk+1 – where qk is now a
δ-approximate solution of the subproblem – the Lipschitz bound (5.1) then gives

f(pk+1) ≤ f(pk) + αk

〈
grad f(pk),Logpk

(qk)
〉

+
1

2
Cfα

2
k

≤ f(pk) + αk

((
f(pk)− f(p∗)

)
+ δ

1

2
Cfαk

)
+

1

2
Cfα

2
k

≤ f(pk)− αk

(
f(pk)− f(p∗)

)
+ δ

1

2
Cfα

2
k +

1

2
Cfα

2
k

= f(pk)− αk

(
f(pk)− f(p∗)

)
+ (1 + δ)

1

2
Cfα

2
k,

Again using the notation ∆k = f(pk)− f(p∗), we thus have

∆k+1 = f(pk+1)− f(p∗)

≤
(
f(pk)− αk

(
f(pk)− f(p∗)

)
+ (1 + δ)

1

2
Cfα

2
k

)
− f(p∗)

=
(
f(pk)− f(p∗)

)
− αk

(
f(pk)− f(p∗)

)
+ (1 + δ)

1

2
Cfα

2
k

= (1− αk)∆k + (1 + δ)
1

2
Cfαk

Convergence of the sequence ∆k

In a similar fashion as in the proof of global convergence in section 5.1, we now have a
sequence (∆k), with

∆k+1 ≤ (1− αk)∆k + (1 + δ)
1

2
α2
kCf .

We will now show that by letting αk = 2
k+2

, this sequence satisfies

∆k ≤ (1 + δ)
2Cf

k + 2
.

The proof is again by induction: For the base case, we have k = 0 and αk = 1, and thus

∆1 ≤ 0 ·∆0 + (1 + δ)
1

2
Cf ≤

2

3
(1 + δ)Cf = (1 + δ)

2Cf

1 + 2
.

CHAPTER 5. CONVERGENCE OF RIEMANNIAN FRANK–WOLFE 37

Now assume the induction hypothesis holds, i.e. ∆k ≤ (1 + δ)
2Cf

k+2
. Then

∆k+1 ≤ (1− αk)∆k + (1 + δ)
1

2
α2
kCf

≤ k

k + 2
(1 + δ)

2Cf

k + 2
+ (1 + δ)

1

2

4

(k + 2)2
Cf

= (1 + δ)2Cf

(
k

(k + 2)2
+

1

(k + 2)2

)
= (1 + δ)

2Cf

k + 3

(
(k + 1)(k + 3)

(k + 2)2

)
= (1 + δ)

2Cf

k + 3

(
(k2 + 3k) + (k + 3)

k2 + 4k + 4

)
= (1 + δ)

2Cf

k + 3

(
k2 + 4k + 3

k2 + 4k + 4

)
< (1 + δ)

2Cf

(k + 1) + 2
.

Thus the algorithm converges at a rate of O(1/k) even when an approximate sub-
problem solver is used. Note especially that if δ = 0, we get the same result as in
section 5.1.

Chapter 6

Numerical results

In this chapter, we cover the practical aspects of the Riemannian Frank–Wolfe algo-
rithm. The predominant effort of our work has gone into implementing the Riemannian
Frank–Wolfe algorithm, and we discuss in detail how we have implemented two different
versions of the solver: one using a Riemannian oracle, and one using a subsolver. We
then perform some numerical experiments, demonstrating how the solvers perform in
practice and how they compare to each other.

6.1 Implementation details

All our code is implemented in the Julia programming language [31]. The Riemannian
Frank–Wolfe algorithm is implemented in the style of the Manopt.jl [5] framework, in
order to work with the existing features of the framework and be as general-purpose as
possible. Manopt.jl is built upon a general interface for working programmatically with
manifolds, provided by Manifolds.jl and ManifoldsBase.jl [32]. To ensure reproducibility
of our results, we provide here the version numbers for the software packages that have
been used in the development of the code, as well as in the experiments described in
this section:

� Julia: Version 1.6.2

� Manopt.jl : v0.3.26

� Manifolds.jl : v0.8.3

� ManifoldsBase.jl : v0.13.8

The Manifolds.jl interface

Briefly, the Manifolds.jl and ManifoldsBase.jl packages provide an interface for working
with general manifolds in the Julia language. The ManifoldsBase.jl interface facilitates
implementing generic methods that work independently of specific manifolds, by pro-
viding access to common manifold properties such as tangent spaces, geodesics and the
exponential map. Various classes of manifolds are already implemented in Manifolds.jl,
and since they all use the same interface it is easy to write code that works on arbitrary
manifolds.

40

The Manopt.jl package is based on the interface provided by ManifoldsBase.jl, which
allows for writing generic optimization algorithms that work on arbitrary manifolds
and objective functions. The high-level interface simply requires a function call of the
desired optimization method, giving the manifold, objective function and other required
parameters as arguments. Other parameters, such as step sizes and stopping criteria,
can also be specified as optional arguments – otherwise they use the default values of
the given method. Manopt.jl provides general implementations of parameters like step
sizes and stopping criteria, which are meant to work for every optimization method
implemented into the framework. Further, it also allows easily recording various values,
such as iterates, cost function values or stepsizes, during runtime. As an example, a
very basic function call to the gradient descent algorithm could look like

gradient descent(M, F, gradF).

Implementing the Frank–Wolfe algorithm in Manopt.jl

On a lower level, a Manopt.jl solver takes its input arguments and sets up two objects:
a problem and an options object. The problem object stores the constant parameters of
the solver, such as the objective function, while the options store transitory variables
like the current iterate and stepsize. These objects are specialized for the given method,
so in the case of the Frank–Wolfe algorithm we have implemented the AbstractFrank-

WolfeProblem and AbstractFrankWolfeOptions abstract types. These are subtypes
of the AbstractGradientProblem and AbstractGradientOptions types, allowing us to
use their previously implemented functionality for working with gradients. The Frank–
Wolfe types are further subdivided into specific structs for the oracle and subsolver
cases, as we have implemented the high-level interface for the two variants in separate
functions.

When the problem and options objects are set up, the solver runs the function solve,
which runs the main loop of the algorithm until the given stopping criteria is reached
(or the default, if none are provided). The actions of solve is split into two main
subroutines: initialize solver!, which performs the required initialization steps for
the algorithm, and step solver!, which computes each iteration of the loop. (Note the
exclamation marks, which in the Julia language signify functions that change one or
more of their input arguments.)

Our implementation of the Frank–Wolfe method is built upon this foundation. As
the method does not require any particular initialization steps, initialize solver!

just returns immediately. It is step solver! that does all the heavy lifting of the algo-
rithm, implementing lines 3 through 5 of Algorithm 2. Using Julia’s multiple dispatch
capabilities, the implementation of step solver is split into separate functions for the
oracle and subsolver versions of the algorithm, depending on the type of its arguments
– that is, the problem and options. This allows us to share most of the code used by
the solver between the two implementations.

Both versions of the algorithm share a common subroutine for the geodesic step in
line 5, and the stepsize in line 4 is handled (by default) by the built-in Decreasing-

Stepsize. When running the algorithm, it is also possible to choose any of the other
stepsizes implemented into Manopt.jl, such as ArmijoLinesearch. Thus, the main
difference in the implementation of the two variants of the algorithm lies in how they
handle the subproblem.

CHAPTER 6. NUMERICAL RESULTS 41

Riemannian Frank–Wolfe with oracle

As it is the black-box Riemannian oracle that carries the main computational burden
of this form of the Frank–Wolfe algorithm, the implementation of the oracle-based
algorithm is fairly simple. The main high-level call to the Frank–Wolfe solver takes in
as a (required) argument a function providing the oracle, which is then passed on to
the FrankWolfeOracleProblem object. Since we assume that the oracle only returns
points that satisfy the constraints, this version of the solver doesn’t need to handle the
constraints directly.

When step solver! is called at each iteration, it first computes the gradient of the
cost function at the current iterate pk. This is then passed on to the oracle function,
which computes its (closed-form) solution to the subproblem. Finally, this is input to
the geodesic step subroutine, which computes the next iterate.

Riemannian Frank–Wolfe with subsolver

As the Frank–Wolfe algorithm is among the first algorithms in the Manopt framework
to use a subsolver in the implementation, we had to find a good solution for how to
achieve this, while still staying compatible with the rest of the interface. In the subsolver
implementation, the high-level Frank–Wolfe call takes as input a problem and an options
object, corresponding to the analogous objects that would be created internally when
calling the high-level function for the solver method to be used on the subproblem.

As these objects are not meant to be part of the high-level interface of Manopt.jl, we
have also created a helper function that sets up these objects for the user. We remark
that this solution is not perfect, as users of the high-level interface should, ideally, not
be required to deal with these low-level features at all. Thus, while our implementation
works well enough as a proof of concept, this is something that should be addressed in
further development.

The function also takes the constraint functions, in the form of vector-valued func-
tions representing inequality and equality constraints, as well as their gradients. These
are then passed on to the subsolver. Once the subsolver has been setup, the rest of the
work is done by step solver!. Again, it starts by computing the gradient of the cost
function at the current iterate pk, which it then uses to generate the cost function for
the subproblem at the current step:

g(q) = ⟨grad f(pk),Logpk
(q)⟩pk .

Next, the gradient of g is computed as in section 4.2. This is done with a call to
the built-in Manopt.jl function adjoint differential log argument. The sub-problem
cost function and its gradient is passed on to the subsolver problem, along with the
current iterate. Then the solve function is called on the subsolver problem and options
in order to retrieve the minimizer of the subsolver. Finally, the geodesic step subroutine
is called in order to compute the next iterate.

The fake oracle

Instead of implementing the subsolver-based algorithm as a separate solver, we could
also just use the oracle version, and provide it with a so-called fake oracle – a function
that serves the same purpose as a Riemannian oracle, but instead of providing a closed-
form solution, it uses an iterative solver to solve the subproblem. However, one would
imagine that a native implementation of the subsolver could be more efficient, as it works

42

on the subproblem directly – hence avoiding the computational overhead of calling the
high-level interface of the internal solver.

In order to test whether having two different variants of the Frank–Wolfe algorithm
is actually necessary, we also test this hybrid approach where we use a fake oracle. If the
internal solver of the fake oracle is given the exact same parameters as the subsolver,
the iterates produced should be the same. Note that this is indeed the case in our
implementation as well – the iterates are identical to those of the subsolver. The question
is then whether the native subsolver implementation is able to compute the iterates more
efficiently, generating the same sequence of iterates in a shorter amount of time.

6.2 Computing the Riemannian centroid of SPD matrices

In our numerical demonstration we consider a problem on the manifold of symmetric
positive-definite (SPD) matrices of size n× n, denoted Pn. This problem is one of the
examples studied by Weber and Sra [9], and we use the same approach as them in our
demonstration. The class of problems we will consider is

arg min
p∈C

f(p), (6.1)

where the constraint set is on the form

C = {p ∈ Pn | L ⪯ p ⪯ U}.

This constraint set, a positive-definite interval (see section 2.4), is geodesically convex,
but does not admit easy projections [9]. We will further assume that L ≺ U , since
otherwise we would already have the solution p = L = U .

The specific example problem we consider is that of finding the (weighted) geometric
matrix mean, also known as the Riemannian centroid. While this is a simple problem
for real numbers, due to the noncommutativity of matrices there does not exist a closed-
form solution in the matrix case. However, we can instead view this as the optimization
problem

arg min
p∈Pn

m∑
i=1

wi dist(p, si)
2, (6.2)

where {wi} is a set of m weights, and {si} is a set of m data matrices. We assume
that not all the data matrices are equal, as otherwise the problem is not particularly
interesting. This problem, when the matrices considered are symmetric positive-definite,
is in fact geodesically convex [33].

The objective function f(p) =
∑m

i=1 wi dist(p, si)
2 is thus a weighted sum of squared

distances. Bhatia [34] shows that if g(p) = dist(p, q)2, then grad g(p) = p−1 log(pq−1).
It follows that

grad f(p) =

m∑
i=1

wip
−1 log(ps−1

i).

One can also show that the following inequality, well-known from the real numbers,
also holds in the matrix case [34]. Let H,G,A denote the harmonic, geometric and
arithmetic means, respectively, with H and A given by

H =

(
m∑
i=1

wis
−1
i

)−1

, A =

m∑
i=1

wisi.

CHAPTER 6. NUMERICAL RESULTS 43

Then it holds that

H ⪯ G ⪯ A.

Thus, it makes sense to impose this as our constraints, i.e. C = {p ∈ Pn | H ⪯ p ⪯ A}.
Note that this is, in some sense, not a true constraint – we have merely found a set
that we know to contain the true solution, and hence limit our search to this set. Thus,
this could just as well be solved as an unconstrained problem, as the constraints do not
place any additional restrictions on the solution.

This means that the problem (6.1) does not really demonstrate the constrained op-
timization capabilities of the Riemannian Frank–Wolfe algorithm; in fact, we could just
as well use an algorithm for unconstrained Riemannian optimization, like gradient de-
scent. It does, however, provide a nice demonstration of how the Frank–Wolfe algorithm
can be used to solve optimization problems by using a Riemannian oracle.

Experimental setup

We will now compare the performance of the different Frank–Wolfe variants on the
problem (6.1). We solve the problem with the method using a Riemannian oracle and
with the subsolver variant, and we also compare against using the oracle-based solver
with an iterative fake oracle subsolver. As a performance baseline, we compare these
methods against the gradient descent solver in Manopt.jl.

We generate random data on the SPD manifold by first generating a random point
p ∈ Pn. We then generate a set of m tangent vectors Xi ∈ TpPn, using a Gaussian
distribution with standard deviation σ. For each i = 1, · · · ,m, we then have si =
Expp(Xi). Thus, given that m is large enough (and σ is not too large relative to p),
we would expect that the (unweighted) geometric mean of the points coincides with the
base point p. We compute this true mean using the built-in mean function in manopt.
We solve the minimization problem (6.2), with equal weights wi = 1/m, so the problem
simplifies to

arg min
H⪯p⪯A

f(p) =
1

m

m∑
i=1

dist(p, si)
2. (6.3)

In most experiments, and unless otherwise noted, we initialize the solvers with a
random point on Pn.

In the oracle solver, we use the Riemannian oracle derived in section 4.2.2. To
avoid errors caused by numerical inaccuracies, we symmetrize the oracle output at each
function call, q ← 1

2
(q + qT).

In the subsolver implementation, we use a gradient descent solver to solve the sub-
problem. Internally, this solver uses a decreasing stepsize, starting at β0 = 0.5, with
βk+1 = 0.9βk, and stops when either the norm of the subproblem gradient reaches
below a certain threshold, ||(Dq Logpk

)∗(Z)[X]||pk < 10−9, or when a maximum of 10
iterations have been reached. We also use the same setup for the internal solver of the
fake oracle.

For the gradient descent solver, we have used a constant stepsize α = 1. We also
tested it with a line search, but in our experiments this seems to give worse results for
this problem.

We use the same stopping criterion for all the methods. The algorithm terminates
once the error in the cost function, evaluated at the current iterate, reaches below a
certain threshold τ :

∆k = f(pk)− f(p∗) < τ.

44

Results and analysis

Table 6.1: Convergence times for the various solvers when used to minimize problem
(6.3), with σ = 0.1.

m 50 500

n 6 12 18 6 12 18

Frank Wolfe (oracle) 1.48 s 3.50 s 6.05 s 29.48 s 59.34 s 143.40 s
Frank Wolfe (subsolver) 2.88 s 19.56 s 95.76 s 5.49 s 27.56 s 106.27 s

Frank Wolfe (fake oracle) 2.22 s 17.37 s 75.83 s 4.57 s 24.80 s 107.64 s
Gradient descent 0.93 s 1.55 s 2.19 s 4.93 s 9.06 s 20.67 s

Table 6.1 shows the time for the algorithms to converge for σ = 0.1, n = 6, 12, 18,
and for two different sizes of datasets, m = 50, 500, initialized to a random point in
Pn. Figure 6.1 shows the convergence of the iterates when running the solvers with
n = 6, 12, 18, m = 500 and σ = 0.1, 0.5, to a convergence threshold of τ = 10−6. The
convergence plots for m = 50 are almost identical, so we show them only for m = 500.
Note that since the iterates produced by the fake oracle are the same as those produced
by the subsolver, we do not include it in the iteration plots.

The first thing we note from table 6.1 is that the runtime difference between the
subsolver and the fake oracle seems to be negligible, with differences usually on the
order of at most a second. Only for larger n does the difference seem to become more
prominent, however, and the fake oracle actually performs significantly better than
the subsolver in some cases. This is somewhat surprising, as we expected that the
subsolver implementation would perhaps be slightly more efficient than running the
same computation, indirectly, through the oracle implementation.

We note also that the oracle solver usually doesn’t reach the desired convergence
threshold within the 50 iterations shown in the plots, whereas the other solvers usually
converge quite quickly. However, the iterates don’t tell the whole story: Compared to
gradient descent, and especially to the other Frank–Wolfe solvers, the Riemannian oracle
version of Frank–Wolfe actually computes its iterations significantly faster – taking
roughly half the time to perform the same amount of iterations as gradient descent. This
is perhaps not so surprising: The Riemannian oracle performs a quite efficient matrix
computation once per iteration, whereas the subsolvers perform a gradient descent
internally each time; one would expect that the iterations would take longer, but that
the algorithm then converges in fewer iterations.

On the smaller datasets (m = 50), the oracle outperforms the subsolver algorithms;
especially for larger problem dimensions n, the oracle is much faster. However, when
the dataset gets larger, this difference seems to even out. In some cases, particularly
for small n and larger m and σ, the fake oracle even outperforms gradient descent.

Table 6.2 shows the number of iterations and the time required for each of the solvers
to converge, for σ = 0.4, 0.8, 1.2, with n = 12 and m = 250. We notice that while the
other solvers seem largely unaffected by the change in variance of the dataset, the oracle
solver performs increasingly worse as σ increases. This can also be seen from figure 6.1,
where the behaviour of the oracle iterates changes much more prominently than that of
the other solvers. Seeing as using the same oracle-based solver implementation with the
fake oracle performs (at least) on par with the subsolver-based version in every case,
we conclude that these differences must be because of the Riemannian oracle.

CHAPTER 6. NUMERICAL RESULTS 45

Table 6.2: Time and number of iterations required for the solvers to converge, with
n = 12 and m = 250.

Time Iterations

σ 0.4 0.8 1.2 0.4 0.8 1.2

Frank Wolfe (oracle) 11.88 s 13.69 s 25.74 s 68 70 127
Frank Wolfe (subsolver) 3.96 s 2.30 s 4.76 s 4 2 3

Frank Wolfe (fake oracle) 3.74 s 2.31 s 3.08 s 4 2 3
Gradient descent 1.62 s 2.05 s 3.19 s 5 6 8

The only way the oracle depends (directly) on the data is through the upper and
lower boundary matrices, H and A. When σ is small, the entire dataset is clustered
close together, which means that the positive-definite interval bounded by H and A is
small. This effect is further compounded if the dataset is large. Thus it appears that
the performance of the oracle is highly dependent on how far apart these bounding
matrices are.

In most of our experiments, with the exception of those where we use very low
values of σ, the oracle-based solver exhibits a noticeable zig-zagging behaviour. While
this would be expected in the general, constrained case, it is somewhat surprising for
this problem, which is essentially unconstrained – and for which the solution is on the
interior of C, anyway. Notably, with a similar setup, Weber and Sra [9] achieve good
performance with the Riemannian oracle. We are not sure what causes this, but we
assume the problem lies in the oracle itself.

Finally, we remark that he initialization of the solvers seems to make a difference
in the performance. When initialized to a random point, both gradient descent and
the subsolvers (which, we note, uses gradient descent internally) usually outperform
the oracle-based Frank–Wolfe solver. However, when we initialize the algorithms to
the harmonic-arithmetic mean 1

2
(A + H) – which Weber and Sra [9] note is a good

approximation for the geometric mean, thus providing a initial point fairly close to the
solution – the oracle-based solver converges in around the same time as with a random
point, while the other methods perform considerably worse. This could be caused by
our choice of parameters for the gradient descent method (including the ones used in
the subsolvers), which may not be appropriate for that initialization. However, while
the oracle solver manages to retain its performance with this choice of starting point, it
still does not perform on the same level as gradient descent initialized with a random
point.

46

k
0 20 40

f
(p
k
)
¡
f
(p

¤)

0.0

0.2

0.4

0.6

0.8

n=6, m=500, σ=0.1

Solver

GD
FW (oracle)
FW (subsolver)

k
0 20 40

f
(p
k
)
¡
f
(p

¤)

0

1

2

n=6, m=500, σ=0.5

Solver

GD
FW (oracle)
FW (subsolver)

k
0 20 40

f
(p
k
)
¡
f
(p

¤)

0.0

0.2

0.4

0.6

0.8

n=12, m=500, σ=0.1

Solver

GD
FW (oracle)
FW (subsolver)

k
0 20 40

f
(p
k
)
¡
f
(p

¤)

0

5

10

n=12, m=500, σ=0.5

Solver

GD
FW (oracle)
FW (subsolver)

k
0 20 40

f
(p
k
)
¡
f
(p

¤)

0.0

0.5

1.0

n=18, m=500, σ=0.1

Solver

GD
FW (oracle)
FW (subsolver)

k
0 20 40

f
(p
k
)
¡
f
(p

¤)

0

10

20

30

n=18, m=500, σ=0.5

Solver

GD
FW (oracle)
FW (subsolver)

Figure 6.1: Plots showing the convergence of the iterates when the solvers are applied
to problem (6.3). We use the parameters n = 6, 12, 18, m = 500 and σ = 0.1, 0.5.

Chapter 7

Closing remarks

As we have demonstrated in chapter 6, the Riemannian Frank–Wolfe provides adequate
performance, although the results for the oracle-based solver on the Riemannian cen-
troid problem on Pn were not as good as expected. This seems to be caused by the
Riemannian oracle we used; in particular, the oracle for this problem seems to be highly
dependent on the variance in the data . For this solver to be of practical use, we need
access to an efficient Riemannian oracle, but the implementation of the solver itself
seems to work as it should. In the future, more work could be done to explore which
classes of problems admit efficient closed-form solutions to the Riemannian subprob-
lem, for use with the oracle-based solver, and if these can perform more competitively
against established methods.

We also discovered, somewhat surprisingly, that running the oracle solver with a
subsolver-based fake oracle seems to outperform the native subsolver algorithm, at
least in the specific setting we looked at. While the difference between the performance
of the two implementations isn’t too large, it could be worth looking more into this to
see if both the Riemannian oracle case and the subsolver case could actually be handled
by the oracle implementation.

We note that this essentially unconstrained problem of finding matrix centroids is
not a setting where we expect Frank–Wolfe to outperform simpler methods like gradient
descent. Unfortunately, we were unable to test the subsolver algorithm on a true con-
strained problem, as we did not have a constrained Riemannian solver that would work
as a subsolver in our implementation. However, based on the results from our experi-
ments on Pn, we imagine that the subsolver algorithm could also perform satisfactorily
on certain constrained problems.

The next step will naturally be to get these methods fully integrated into the
Manopt.jl framework and make them available for users of the package. While we
have developed working implementations of both the subsolver- and oracle-based algo-
rithms, there are still some improvements that can be made, in particular with regard
to making the subsolver more user-friendly.

Since the Euclidean Frank–Wolfe algorithm was first introduced in 1956, many vari-
ations have been developed in order to improve the performance of the algorithm. A
logical next step would be to try adapting these methods to work on manifolds as
well, and to investigate whether these improvements carry into the Riemannian set-
ting. Among the most common variants are the away-step [26], pairwise [35] and fully-
corrective [36] Frank–Wolfe methods, but other variations have also been proposed [22,

48

25, 29, 37]. Some of these variants even achieve global linear convergence rates, un-
der certain assumptions. A fairly straightforward way to improve upon the standard
Riemannian Frank–Wolfe algorithm would be to use more sophisticated techniques for
choosing the stepsize. Although we have not gone beyond the simple decreasing stepsize
recommended by Weber and Sra, many adaptive stepsize strategies are mentioned in
the literature [22, 29, 38].

While the Frank–Wolfe algorithm cannot solve nonconvex problems directly, it can
be used to find their stationary points. Although we have chosen to limit our scope to
convex problems in this thesis, we note that Weber and Sra [9] also discuss applying the
algorithm to nonconvex problems. This has been more thoroughly studied by Lacoste-
Julien [39] in the Euclidean setting. Weber and Sra have also developed a stochastic
version of the Riemannian algorithm [40], which works on nonconvex problems.

The work in this thesis represents some early steps in constrained convex opti-
mization on manifolds, building primarily upon the initial work by Weber and Sra [9].
By implementing the Riemannian Frank–Wolfe algorithm into the general-purpose Rie-
mannian optimization framework provided by Manopt.jl, and hence making it accessible
(eventually) in a publicly available software package, we hope that our work may be of
some use to others working in the field of constrained Riemannian optimization.

Bibliography

[1] Ding-Zhu Du, Panos M. Pardalos, and Weili Wu. ≪History of optimization≫. In:
Encyclopedia of Optimization. Ed. by Christodoulos A. Floudas and Panos M.
Pardalos. Boston, MA: Springer US, 2009, pp. 1538–1542. isbn: 978-0-387-74759-
0. doi: 10.1007/978-0-387-74759-0_268.

[2] Nicolas Boumal. An introduction to optimization on smooth manifolds. To appear
with Cambridge University Press. Apr. 2022. url: http://www.nicolasboumal.
net/book.

[3] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. ≪Manopt, a Matlab Toolbox
for Optimization on Manifolds≫. In: Journal of Machine Learning Research 15.42
(2014), pp. 1455–1459. url: https://www.manopt.org.

[4] James Townsend, Niklas Koep, and Sebastian Weichwald. ≪Pymanopt: A Python
Toolbox for Optimization on Manifolds using Automatic Differentiation≫. In:
Journal of Machine Learning Research 17.137 (2016), pp. 1–5. url: http://

jmlr.org/papers/v17/16-177.html.

[5] Ronny Bergmann. ≪Manopt.jl: Optimization on Manifolds in Julia≫. In: Journal
of Open Source Software 7.70 (2022), p. 3866. doi: 10.21105/joss.03866.

[6] Wolfgang Ring and Benedikt Wirth. ≪Optimization Methods on Riemannian
Manifolds and Their Application to Shape Space≫. In: SIAM Journal on Op-
timization 22.2 (2012), pp. 596–627. doi: 10.1137/11082885X. url: https://
doi.org/10.1137/11082885X.

[7] Adrian Hauswirth, Saverio Bolognani, Gabriela Hug, and Florian Dörfler. ≪Pro-
jected gradient descent on Riemannian manifolds with applications to online
power system optimization≫. In: 2016 54th Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton). 2016, pp. 225–232. doi: 10.1109/
ALLERTON.2016.7852234.

[8] Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, and Tong Zhang. ≪Proximal
Gradient Method for Nonsmooth Optimization over the Stiefel Manifold≫. In:
(Nov. 2018). arXiv: 1811.00980 [math.OC].

[9] Melanie Weber and Suvrit Sra. Riemannian Optimization via Frank-Wolfe Meth-
ods. Nov. 2021. arXiv: 1710.10770 [math.OC].

[10] Marguerite Frank and Philip Wolfe. ≪An algorithm for quadratic programming≫.
In: Naval Research Logistics Quarterly 3.1-2 (1956), pp. 95–110. doi: https :

//doi.org/10.1002/nav.3800030109. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/nav.3800030109.

https://doi.org/10.1007/978-0-387-74759-0_268
http://www.nicolasboumal.net/book
http://www.nicolasboumal.net/book
https://www.manopt.org
http://jmlr.org/papers/v17/16-177.html
http://jmlr.org/papers/v17/16-177.html
https://doi.org/10.21105/joss.03866
https://doi.org/10.1137/11082885X
https://doi.org/10.1137/11082885X
https://doi.org/10.1137/11082885X
https://doi.org/10.1109/ALLERTON.2016.7852234
https://doi.org/10.1109/ALLERTON.2016.7852234
https://arxiv.org/abs/1811.00980
https://arxiv.org/abs/1710.10770
https://doi.org/https://doi.org/10.1002/nav.3800030109
https://doi.org/https://doi.org/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800030109

50

[11] J J O’Connor and E F Robertson. MacTutor History of Mathematics: Marguerite
Josephine Straus Frank. Nov. 2020. url: https://mathshistory.st-andrews.
ac.uk/Biographies/Frank_Marguerite/.

[12] Melanie Weber and Suvrit Sra. ≪Frank-Wolfe methods for geodesically convex
optimization with application to the matrix geometric mean≫. In: (Oct. 2017).
arXiv: 1710.10770 [math.OC].

[13] P.A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix
Manifolds. Princeton University Press, 2009. isbn: 9781400830244.

[14] Manfredo do Carmo. Riemannian Geometry. Mathematics: Theory and Applica-
tions. Birkhäuser Boston, 1992. isbn: 9780817634902.

[15] Johannes Persch. ≪Optimization Methods for Manifold-Valued Image Process-
ing≫. PhD thesis. Technische Universität Kaiserslautern, Feb. 2018.

[16] Ronny Bergmann and Pierre-Yves Gousenbourger. ≪A variational model for data
fitting on manifolds by minimizing the acceleration of a Bézier curve≫. In: (July
2018). doi: 10.3389/fams.2018.00059. arXiv: 1807.10090 [math.NA].

[17] Miroslav Bačák. Convex Analysis and Optimization in Hadamard Spaces. De
Gruyter Series in Nonlinear Analysis and Applications. De Gruyter, 2014. isbn:
9783110391084.

[18] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004. doi: 10.1017/CBO9780511804441.

[19] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 2006. isbn: 978-
0387-30303-1.

[20] Rajendra Bhatia. Matrix Analysis. 1997.

[21] Cyrille W. Combettes and Sebastian Pokutta. Complexity of Linear Minimization
and Projection on Some Sets. 2021. doi: 10.48550/ARXIV.2101.10040. url:
https://arxiv.org/abs/2101.10040.

[22] Simon Lacoste-Julien and Martin Jaggi. ≪On the Global Linear Convergence
of Frank-Wolfe Optimization Variants≫. In: (Nov. 2015). arXiv: 1511 . 05932

[math.OC].

[23] Evgeny S. Levitin and Boris T. Polyak. ≪Constrained minimization methods≫.
In: Ussr Computational Mathematics and Mathematical Physics 6 (1966), pp. 1–
50.

[24] M. D. Canon and C. D. Cullum. ≪A Tight Upper Bound on the Rate of Conver-
gence of the Frank-Wolfe Algorithm≫. In: SIAM Journal on Control 6.4 (1968),
pp. 509–516. doi: 10.1137/0306032.

[25] Zhaoyue Chen, Mokhwa Lee, and Yifan Sun. ≪Continuous Time Frank-Wolfe
Does Not Zig-Zag, But Multistep Methods Do Not Accelerate≫. In: (June 2021).
arXiv: 2106.05753 [math.OC].

[26] Jacques Guélat and Patrice Marcotte. ≪Some comments on Wolfe’s ‘away step’≫.
In: Mathematical Programming 35 (1986), pp. 110–119.

[27] Changshuo Liu and Nicolas Boumal. Simple algorithms for optimization on Rie-
mannian manifolds with constraints. 2019. doi: 10.48550/ARXIV.1901.10000.
url: https://arxiv.org/abs/1901.10000.

https://mathshistory.st-andrews.ac.uk/Biographies/Frank_Marguerite/
https://mathshistory.st-andrews.ac.uk/Biographies/Frank_Marguerite/
https://arxiv.org/abs/1710.10770
https://doi.org/10.3389/fams.2018.00059
https://arxiv.org/abs/1807.10090
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.48550/ARXIV.2101.10040
https://arxiv.org/abs/2101.10040
https://arxiv.org/abs/1511.05932
https://arxiv.org/abs/1511.05932
https://doi.org/10.1137/0306032
https://arxiv.org/abs/2106.05753
https://doi.org/10.48550/ARXIV.1901.10000
https://arxiv.org/abs/1901.10000

BIBLIOGRAPHY 51

[28] Jan-Philipp Pfaue. ≪Constrained optimization on Riemannian manifolds using
geodesic polygonal sets≫. Bachelor’s Thesis. Technische Universität Chemnitz,
Jan. 2022.

[29] Martin Jaggi. ≪Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimiza-
tion≫. In: Proceedings of the 30th International Conference on Machine Learning.
Ed. by Sanjoy Dasgupta and David McAllester. Vol. 28. Proceedings of Machine
Learning Research 1. Atlanta, Georgia, USA: PMLR, June 2013, pp. 427–435.
url: https://proceedings.mlr.press/v28/jaggi13.html.

[30] Dan Garber and Elad Hazan. ≪Faster Rates for the Frank-Wolfe Method over
Strongly-Convex Sets≫. In: (June 2014). arXiv: 1406.1305 [math.OC].

[31] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. ≪Julia: A fresh
approach to numerical computing≫. In: SIAM Review 59.1 (2017), pp. 65–98. doi:
10.1137/141000671. url: https://epubs.siam.org/doi/10.1137/141000671.

[32] Seth D. Axen, Mateusz Baran, Ronny Bergmann, and Krzysztof Rzecki. Man-
ifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds. 2021.
arXiv: 2106.08777.

[33] Miklós Pálfia. ≪Operator means of probability measures and generalized Karcher
equations≫. In: Advances in Mathematics 289 (2016), pp. 951–1007. issn: 0001-
8708. doi: https://doi.org/10.1016/j.aim.2015.11.019. url: https:

//www.sciencedirect.com/science/article/pii/S000187081500479X.

[34] R. Bhatia. Positive Definite Matrices. Princeton Series in Applied Mathematics.
Princeton University Press, 2007. isbn: 9781400827787.

[35] B. F. Mitchell, V. F. Dem’yanov, and V. N. Malozemov. ≪Finding the Point of
a Polyhedron Closest to the Origin≫. In: Siam Journal on Control 12 (1974),
pp. 19–26.

[36] Charles A. Holloway. ≪An extension of the frank and Wolfe method of feasible
directions≫. In: Mathematical Programming 6 (1974), pp. 14–27.

[37] J.C Dunn and S Harshbarger. ≪Conditional gradient algorithms with open loop
step size rules≫. In: Journal of Mathematical Analysis and Applications 62.2
(1978), pp. 432–444. issn: 0022-247X. doi: https://doi.org/10.1016/0022-
247X(78)90137-3. url: https://www.sciencedirect.com/science/article/
pii/0022247X78901373.

[38] Fabian Pedregosa, Geoffrey Negiar, Armin Askari, and Martin Jaggi. ≪Linearly
Convergent Frank-Wolfe with Backtracking Line-Search≫. In: Proceedings of the
23rd International Conference on Artificial Intelligence and Statistics (AISTATS)
2020 (June 2018). arXiv: 1806.05123 [math.OC].

[39] Simon Lacoste-Julien. ≪Convergence Rate of Frank-Wolfe for Non-Convex Objec-
tives≫. In: (July 2016). arXiv: 1607.00345 [math.OC].

[40] Melanie Weber and Suvrit Sra. ≪Projection-free nonconvex stochastic optimiza-
tion on Riemannian manifolds≫. In: (Oct. 2019). arXiv: 1910.04194 [math.OC].

https://proceedings.mlr.press/v28/jaggi13.html
https://arxiv.org/abs/1406.1305
https://doi.org/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://arxiv.org/abs/2106.08777
https://doi.org/https://doi.org/10.1016/j.aim.2015.11.019
https://www.sciencedirect.com/science/article/pii/S000187081500479X
https://www.sciencedirect.com/science/article/pii/S000187081500479X
https://doi.org/https://doi.org/10.1016/0022-247X(78)90137-3
https://doi.org/https://doi.org/10.1016/0022-247X(78)90137-3
https://www.sciencedirect.com/science/article/pii/0022247X78901373
https://www.sciencedirect.com/science/article/pii/0022247X78901373
https://arxiv.org/abs/1806.05123
https://arxiv.org/abs/1607.00345
https://arxiv.org/abs/1910.04194

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Even Stephansen Kjemsås

The Riemannian Frank–Wolfe
Algorithm

Master’s thesis in Applied Physics and Mathematics
Supervisor: Ronny Bergmann
July 2022

M
as

te
r’s

 th
es

is

	1 Introduction
	1.1 The Frank–Wolfe algorithm
	1.2 Our contribution

	2 Background
	2.1 A brief introduction to manifolds
	2.2 Optimization basics
	2.3 Manifold optimization
	2.4 The Riemannian geometry of the SPD manifold
	2.5 The Riemannian geometry of SO(n)

	3 The Frank–Wolfe algorithm on Rn
	3.1 Euclidean Frank–Wolfe
	3.2 Convergence of Euclidean Frank–Wolfe

	4 The Frank–Wolfe algorithm on M
	4.1 Riemannian Frank–Wolfe
	4.2 The Riemannian oracle
	4.2.1 Gradient-based subsolver methods
	4.2.2 Derivation of the SPD Riemannian oracle
	4.2.3 Derivation of the SO(n) Riemannian oracle

	5 Convergence of Riemannian Frank–Wolfe
	5.1 Global convergence
	5.2 Optimum in the interior of C: Linear convergence
	5.3 Convergence when solving the subproblem approximately

	6 Numerical results
	6.1 Implementation details
	6.2 Computing the Riemannian centroid of SPD matrices

	7 Closing remarks
	Bibliography

