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Abstract

Obstructive sleep apnea is a medical issue caused by collapse of the upper airways restricting oxygen supply
during sleep, leading to increased mortality and decreased quality of life. Currently, surgical treatment exists,
but there is no way to know the exact outcome of surgery. The VirtuOSA project is a collaboration between
St. Olav’s University Hospital, NTNU, and SINTEF to develop a CFD tool to predict the outcome of surgical
treatment. For the CFD analysis to be accurate, it has to account for the deformation of the upper airways. The
fluid-solid interface is essential when modeling the deformations, and an accurate interface tracking method is
needed to get good results.

The present work aims at giving a basic understanding of interface tracking methods and investigates the possib-
ility of using the level set method in combination with the ghost point immersed boundary method to track the
deformations of the upper airways. The level set method is chosen specifically for the properties that combine
well with the ghost point immersed boundary method, allowing it to assign values at the ghost points seam-
lessly. The end goal is to find a suitable interface tracking method that may be used in the further development
of the VirtuOSA project.

The three-dimensional particle level set method has been implemented and is tested for benchmark problems.
Extending the standard level set method to the particle level set method showed a significant improvement
in mass conservation with little extra CPU time needed. At the same time, it keeps the properties that made
the level set method suitable for combination with the ghost point immersed boundary method. The order of
convergence is low compared to the order of the numerical schemes used to solve the governing equations. A
possible future outlook is to improve the order of convergence, either by tuning the method further or using
different numerical schemes.

The present results show that the particle level set method may be tested in the full Navier-Stokes solver to see
if it can be used for tracking the deformations of the upper airways in the CFD tool developed in the VirtuOSA
project.
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Sammendrag

Obstruktiv søvnapné er et medisinsk problem forårsaket av kollaps i de øvre luftveiene som begrenser oksygen-
tilførselen under søvn, som fører til økt dødelighet og senket livskvalitet. For øyeblikket finnes det kirurgiske
behandlinger, men ingen måte å vite nøyaktig utfall av operasjonen. VirtuOSA prosjektet er et samarbeid
mellom St. Olavs Universitetssykehus, NTNU, og SINTEF med formål å utvikle et CFD-verktøy som kan
predikere utfallet av en operasjon. For at CFD-analysen skal være nøyaktig må den ta hensyn til deformas-
joner i de øvre luftveiene. Fluid-solid-grensen er essensiell når man modellerer deformasjoner, og en nøyaktig
grensesporingsmetode er nødvendig for å få gode resultater.

Denne oppgaven har som mål å gi grunnleggende forståelse av grensesporingsmetoder og undersøke muligheten
for å bruke level set-metoden kombinert med immersed boundary-metoden for å følge deformasjonene i de
øvre luftveiene. Level set-metoden er valgt fordi den kombinerer godt med ghost point immersed boundary-
metoden, og tillater tilegning av verdier i ghost-punktene direkte. Det endelige målet er å finne en passende
grensesporingsmetode som kan brukes i den videre utviklingen av VirtuOSA prosjektet.

Den tredimensjonale particle level set-metoden har blitt implementert og testet for to test-caser. Utvidelsen
av standard level set-metoden til particle level set-metoden har vist stor forbedring i massebevarelse med lite
ekstra CPU-tid. Samtidig beholdes egenskapene som gjorde level set-metoden passende for kombinasjon med
ghost point immersed boundary-metoden. Konvergensorden for metoden er lav sammenlignet med orden på de
numeriske skjemaene som er brukt for å løse de gjeldende ligningene. En mulig framtidig forbedring vil være
å øke konvergensorden, enten ved å finjustere metoden, eller ved å bruke andre numeriske skjemaer.

De nåværende resultatene viser at particle level set-metoden er klar for å testes i den fulle Navier-Stokes-
løseren for å se om den kan brukes til å følge deformasjonene i de øvre luftveiene i CFD-verktøyet som utvikles
i VirtuOSA prosjektet.
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Chapter 1

Introduction

1.1 Obstructive Sleep Apnea
Obstructive sleep apnea (OSA) is a problem that affects 2-4 % of the population and is caused by a collapse
in the upper airways while sleeping [1]. Deformations in the upper airways restrict the airflow and may cause
heavy snoring. If the deformation is severe, the upper airways will collapse and cause a lack of oxygen supply.
The severity of the disease is categorized based on how many apneas the patient develops on average during
one hour of sleep, where an apnea is defined as the complete stop of airflow for at least 10 seconds. If a patient
has an average of five or more apneas per hour of sleep, the patient is diagnosed with OSA [1]. OSA has shown
to be more common among men and people over the age of 50 years [2]. The largest risk factors for developing
OSA are obesity and high Body Mass Index (BMI). More details of the worldwide prevalence of OSA can be
found in the article by Benjafield et al. [3].

The reduced sleep results in tiredness, while the lack of oxygen can lead to an increased chance of heart failure
and stroke, increased mortality, and decreased quality of life [4]. Temporary treatment by wearing a nasal or
oronasal mask while sleeping has shown positive results by applying pressure to the upper airways [5]. Surgical
treatments have been tried in the past, but there is vast uncertainty related to effectiveness and no way to predict
the outcome of the surgery. In some cases, surgery has shown significant improvement for the patients, but
many cases show no improvement, and there are even cases where surgery has worsened the condition [6].

1.2 VirtuOSA
The VirtuOSA project is a collaboration between St. Olav’s University Hospital, NTNU, and SINTEF, trying
to use Computational Fluid Dynamics (CFD) to conduct virtual surgery of the upper airways [8]. The pro-
ject consists of specialists in ENT surgery, computational fluid dynamics, and structural engineering, with the
primary goal to gain a better understanding of OSA and to create a diagnostic tool to help predict the outcome
of the surgical treatment [6]. The project has created four work packages to incorporate the different scientific
fields. Of these work packages, work package three is of particular interest to the present work, as it covers
mathematical modeling of the fluid-structure interactions (FSI). Work package three aims at developing an FSI
model to be used for calibration of the three-dimensional CFD model to be developed in work package four.
The Ph.D. thesis by Moxness [6] gives further information on VirtuOSA and the goals of the different work
packages.

For the CFD model to be accurate, it has to account for the deformations of the upper airways. There are many
challenges when modeling deforming interfaces. Many of these challenges occur at the interface between two
fluids or the fluid-solid interface because of the interplay between the different substances. Interactions between
the substances may be caused by forces from one substance affecting the other, chemical reactions, or diffusion
between the substances at the interface. All of these interactions affect the position of the interface, which

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The different parts of the upper airways in the sagittal plane [7].

is why accurate interface tracking is an essential and challenging topic for problems with deformations. It is
impossible to conduct a good CFD analysis without knowing the interface’s position, as the wrong properties
and equations may be used and solved for the wrong fluid or solid.

1.3 Outline of Master’s Thesis
The present work gives an overview of the immersed boundary method for fluid-structure interactions and vari-
ous interface tracking methods. However, the main goals have been developing and testing the level set method
for interface tracking when the velocity field is prescribed and verifying the implementation against benchmark
problems. Further, compatibility between the level set method and the ghost point immersed boundary method
is investigated. The investigation aims to provide a tool for tracking the deformation in the upper airways as a
part of the VirtuOSA project.

The structure of the remaining chapters is as follows. Chapter 2 aims to give a short review of relevant topics for
the present work, starting with CFD in medicine in section 2.1, before reviewing interface tracking in section
2.2, and explaining the immersed boundary method in section 2.3.

The governing equations for the level set method are introduced in chapter 3. The chapter starts with the
equations for the standard level set method in section 3.1, before explaining the particle level set method in
section 3.2, and how it combines with the ghost point immersed boundary method in section 3.3.

Chapter 4 explains how the equations given in chapter 3 are discretized before introducing three measures of
errors in section 4.6.

The test cases applied to the level set method are showcased and discussed in chapter 5, where section 5.1
is devoted to a sphere deformed in the two-dimensional velocity field, and section 5.2 is devoted to a sphere
deformed in the three-dimensional velocity field.

Finally, the conclusions and a future outlook are presented in chapter 6.

The three-dimensional level set method implemented in C++ can be found in the appendix and on GitHub at
https://github.com/marcussommersel/LSM3D.

The present work is a continuation of the project work by Sommersel in the autumn of 2021 [9]. Hence certain

https://github.com/marcussommersel/LSM3D
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parts of the article are similar. The main difference is the extension into three dimensions and using a different
interface tracking method to improve the results. However, the goal and the reason behind the present work
have stayed the same.
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Chapter 2

Literature review

2.1 CFD in medicine
Computational Fluid Dynamics (CFD) has had wide use in engineering for many decades, but in recent years
the use of CFD has gained interest in other fields as well [10]. The use of CFD in medicine and biomechanics
has proved useful and, in some cases, enables the treatment of diseases that were previously not treatable. CFD
is primarily applied in cardiovascular medicine, although other areas of medicine, i.e., respiratory medicine, are
extending its use. The use of CFD enables detailed characterization and computations of metrics that cannot
be measured directly [11]. The development of CFD models into clinical tools helps treat the patients with less
invasive methods, which may ease the load on the patients. The ability to see the outcome of surgery before the
procedure itself may reduce the cost of unnecessary treatment. Running different disease scenarios through a
CFD model may also help predict the optimal treatment plan for individual patients. When modeling a complex
coupled system such as the respiratory or cardiovascular systems, the fluid flow and solid tissue interact. An
efficient and effective approach to fluid-structure interactions is essential [12].

2.2 Interface Tracking
Fluid-structure interactions (FSI) are essential in many engineering applications [13]. These applications come
in a wide range, and among them are many mechanical problems like the flutter of wings, wind-turbine ap-
plications, and airplane response mechanisms. However, they are also important in biomechanics, like blood
flow through the heart and airflow through the upper airways. To account for FSI in a numerical model, it is
important to know the exact location of the fluid-solid interface. There are many ways to do interface tracking
numerically, and three different classes of methods are often used: front tracking methods, volume of fluid
methods, and level set methods.

2.2.1 Front Tracking Methods

The term "Front Tracking" was first introduced in 1967 by Richtmyer and Morton [14], although the method
was not implemented before 1981 in the work by Glimm et al. [15]. In front tracking methods, marker points
are defined on the interface, and the front is advected with the flow [16]. The front is not only the marker
points, but also information about the connectivity of the points, and sometimes the description of the physics
at the interface. The interface can then be found by connecting these marker points. The method’s accuracy
depends on the number of marker points used to represent the interface and the interpolation method used to
reconstruct the interface. The placement of these marker points is crucial, as more points are needed in regions
of more significant interface curvature than in regions with a flatter interface. The placement of the marker
points changes as the interface is stretched or compressed, as the stretched region can be lacking points, and the
compressed region may be overflowing with points. Adding and removing marker points is therefore necessary.
When extending front tracking methods to three dimensions, the complexity increases significantly, and having

5



6 CHAPTER 2. LITERATURE REVIEW

a proper data structure to describe the front is essential. The mass conservation for front tracking methods
varies and depends on the method used to advect the flow and the method used to reconstruct the interface. For
further reading on front tracking methods, the reader is directed towards chapter 6 in the book by Tryggvason
et al. [16].

2.2.2 Volume of Fluid Methods

The Volume of Fluid (VOF) method was introduced in the 1981 paper by Hirt and Nichols [17]. For a flow with
two different fluids, the volume of fluid method defines a color function [16]. This color function uses one of
the fluids as a reference, and its value in a particular cell represents how much of the total cell volume is filled
with the reference fluid. If it occupies the entire cell, the color function has a value of 1, while if the cell is filled
with the other fluid, it has a value of 0. This exact procedure can also be used for fluid-solid problems, where
either the fluid or the solid would be used as a reference. An algorithm to reconstruct the interface is necessary
for the volume of fluid method, as the interface is not directly available from the values of the color function
in the cells. The volume of fluid method has good mass conservation, and the extension to three dimensions is
straightforward, although not as easy as the level set method introduced in section 2.2.3. Chapter 5 in the book
by Tryggvason et al. [16] presents the volume of fluid method further, including some interface reconstruction
algorithms.

2.2.3 Level Set Methods

The Level Set Method (LSM) was introduced by Osher and Sethian in 1988 [18]. Level set methods initialize
a scalar field in the entire computational domain, where the interface between two fluids or the fluid-solid
interface is set to a specific scalar value [19]. The contour at this value, or level, gives the interface. Usually,
the scalar field is constructed from a signed distance function with reference to the interface, and the interface
can be found at the zero-contour. The level set function can be visualized in two dimensions as a deforming
three-dimensional body. An intersection at a certain height would give a two-dimensional domain where the
boundary of this domain is equal to the interface. The level set function is advected with the velocity field,
and the three-dimensional body is deformed, but the interface can still be found from the intersection at the
same height. One of the positive sides of the level set method is its ability to handle splitting bodies. If the
interface deforms and splits apart, the interface can still be found from the zero-level set. The signed distance
properties of the level set method will deteriorate as the method is iterated forward in time. In 1994, Sussmann
et al. introduced periodic reinitialization of the level set method to restore the signed distance field [20]. For
information on the standard level set method, the book by Osher and Fedkiw [19] and the book by Sethian [21]
are advised, as well as a recent review of level set methods by Gibou et al. [22] and the references therein.

The standard level set method suffers from poor mass conservation. Previous work has shown methods to
improve mass conservation [23], [24], [25], [26]. In [23], Russo and Smereka noticed that the reinitialization
equation, eq. (3.3), would move the interface location, and implementing the exact interface location would
improve the mass conservation. The method was second-order accurate, and in [24] Chéné et al. extended the
method to fourth-order accuracy. Hartmann et al. [25] obtained better accuracy by replacing the reinitialization
equation with a higher-order constrained reinitialization (HCR). Methods combining the volume of fluid and
level set method, which conserve the total volume by construction, have also been implemented [27] [28].
However, these methods become more complicated than the level set method in three spatial dimensions.

The present work has tested both the higher-order reinitialization methods of Russo and Smereka [23], and the
particle level set method by Enright et al. [26]. Early testing showed favorable results with the particle level set
method. The particle level set method places particles in a band around the interface. These particles are then
advected with the local velocity independently of each other and the level set function. If one of the particles
at some point crosses the interface, it indicates the level set method may have found a wrong solution, leading
to an incorrect interface. The particles that have incorrectly crossed the interface are then used to rebuild the
scalar field to correct the wrong solution.
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The present work implements the particle level set method introduced in section 3.2. A level set method is
favored because it gives easy extension to three dimensions and because the interface can always be found from
the zero-contour. Since the level set method has shown poor mass conservation, the particle level set method is
implemented to combat this flaw. In addition, the level set method works well with the Ghost Point Immersed
Boundary Method (GPIBM), as shown in section 3.3, which is one of the main requirements for the possibility
of incorporation with the VirtuOSA project.

2.3 Immersed Boundary Method
The standard in CFD analysis when simulating FSI is to use body-fitted grids. These grids are dependent
on the problem and change as the simulations go on. The need to do re-meshing for simulations undergoing
large deformations can be computationally expensive, and further problems may occur as grids of different
regions overlap each other. Other methods with constant grids have been developed to alleviate the problems
occurring with body-fitted grids and re-meshing. One of these methods is the immersed boundary method
(IBM) introduced by Peskin [29]. The IBM utilizes a fixed background grid to solve the governing equations
by introducing fictive body forces or locally allocating flow values to approximate the boundary conditions at
the fluid-solid interface. Although re-meshing is no longer a problem, the results are less accurate. Different
IBMs can be classified as either sharp or diffuse interface methods [13]. The diffuse IBMs smear the immersed
boundaries to the surrounding grid nodes, which can be done by applying smeared delta functions to fictitious
body forces. The sharp IBMs do not smear the interface to the surrounding grid nodes and may cut the nodes
at the interface creating a local unstructured grid, or they may apply jump conditions at the interface. Many
different IBMs are available, and the keen reader is directed towards the article by Sotiropoulos and Yang [13]
and the references therein.

2.3.1 Ghost Point Immersed Boundary Method

The computational domain is divided into fluid and solid domains in fluid-structure interactions. The Navier-
Stokes equations are used to determine how the fluid flow behaves, while a corresponding set of equations are
used to govern the behavior of the solid. All points in the fluid domain are denoted as fluid points, and all
points in the solid domain are denoted as solid points. To solve the Navier-Stokes equations for one fluid point,
it needs to consider the fluid properties of the points next to it. However, some of the points next to the fluid
points at the interface between the fluid and solid domain are solid points, which means they do not have fluid
properties. The Ghost Point Immersed Boundary Method (GPIBM) introduced by Tseng and Ferziger [30]
solves this problem by defining a set of ghost points to be the solid points next to the interface. These ghost
points have no physical meaning, but they are artificially extending the fluid domain into the solid domain,
which means there are enough fluid points to solve the governing equations for all real fluid points. The layout
is easier to see in Figure 2.1. To use the ghost points, they need to be assigned fluid properties, which is done by
applying different boundary conditions at the interface. By drawing a line from the ghost point to the interface
parallel to the normal vector at the interface, the correct boundary condition can be found for each ghost point.
The interception of this line with the interface is called the boundary intercept. A point in the fluid domain
is also needed to enforce the boundary conditions. The image point is defined by extending the line from the
ghost point to the boundary intercept with the same length. Two examples of boundary conditions are given
below to show how the GPIBM is used.

Neumann boundary conditions for a flow variable U at the fluid-solid interface, i.e.,

∂U(xBI)

∂n
= UnBI , (2.1)

where xBI , the body intercept, is the intersection of the fluid-solid interface and the line between the ghost
point xGP and image point xIP , are approximated by

UIP − UGP

|xIP − xGP |
= UnBI , (2.2)
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Figure 2.1: Representation of the GPIBM showing the interface, a ghost point, the respective boundary intercept and
image point, and the fluid points next to the image point. Consider the inside of the circle as the solid domain, and the
outside of the circle as the fluid domain.

yielding an equation to determine UGP [31].

Dirichlet boundary conditions for a flow variable U at the fluid-solid interface, i.e.,

U(xBI) = UBI , (2.3)

are approximated by
1

2
(UIP + UGP ) = UBI , (2.4)

yielding an equation to determine UGP [31].

These two boundary conditions allow the assignment of values at the ghost points to uphold the boundary
conditions. The goal is to find the values at the ghost points. The values at the boundary intercept are given,
and the values at image points can be found by interpolating the values at the fluid points next to it. What
remains is finding the position of the image point and the interface.



Chapter 3

Governing Equations for the Level Set
Method

3.1 Standard Level Set Method
The level set equation for an externally created velocity field u is

ϕt + u ·∇ϕ = 0 (3.1)

where ϕ is the level set variable [19]. Often, including the present work, a signed distance function with
reference to the interface location is used for ϕ. A region Ω is defined where Ω− is inside the region, Ω+ is
outside the region, and ∂Ω is the boundary of the region [19]. The signed distance function is defined for the
whole computational domain. The value of the signed distance function is the shortest distance to ∂Ω, where
values within Ω− are negative, values within Ω+ are positive, and values on ∂Ω are zero. This can be defined
as

ϕ(x) =


min(|x− xI |) if x ∈ Ω+,

−min(|x− xI |) if x ∈ Ω−, and
0 if x ∈ δΩ

(3.2)

where xI are all points on ∂Ω. An example of a signed distance function in one dimension can be seen in
Figure 3.1.

The signed distance function does not retain its signed distance properties through evolution in time. This may
be caused by distorted solutions leading to very large or small gradients around the interface [23]. In addition,
the level set solution is prone to jumps at the interface when interfaces merge [20]. To fix the signed distance
function, regular reinitialization is applied to the signed distance field. Reinitialization is done by keeping the
interface location fixed. At the same time, the rest of the field is iterated a number of pseudo time steps forward
in pseudo time to fulfill |∇ϕ| = 1, which is what characterizes a signed distance field. The reinitialization
equation is defined as [19]

ϕτ + S(ϕ0)(|∇ϕ| − 1) = 0 (3.3)

where τ is an artificial time. The S(x) term is a sign function.

The present work uses a sign function defined as

9
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Figure 3.1: One-dimensional level set method with a signed distance function. In the one-dimensional case the different
domains are defined as lines, and the interface is points between the domains.

S(ϕ0) =


1 if ϕ0(x) > 0,
−1 if ϕ0(x) < 0, and
0 if ϕ0(x) = 0,

(3.4)

where ϕ0(x) is the level set function before the first pseudo time step. Other sign functions can also be used,
and a common choice is [19]

S(ϕ) =
ϕ√

ϕ2 + |∇ϕ|2∆x2
, (3.5)

where the sign function is updated for each pseudo time step.

3.2 Particle Level Set Method
The particle level set method utilizes a set of independently advected marker particles to correct the interface
when the level set method computes a wrong solution [26]. The initial scalar field is used to initialize a band
of particles on both sides of the interface. There are two sets of particles, defined to be positive and negative
particles. The particles are placed in every cell with at least one corner within three cell widths from the
interface. This can be found from the signed distance function as wherever |ϕ| < 3max(∆x,∆y,∆z). In three
dimensions, 128 particles are seeded by placing them randomly distributed in each cell, where half of them are
positive, and the other half are negative. The number of particles of each type is set to 41 in one-dimensional
flows, 42 in two-dimensional flows, and 43 in three-dimensional flows [26].

After each particle is seeded, it is attracted to the the correct side of the interface. Positive particles are attracted
to the ϕ ≥ 0 side of the interface, and the negative particles to the ϕ < 0 side of the interface. The attraction is
done by randomly picking a distance from the interface, ϕgoal, within a band of bmin ≤ ϕgoal ≤ bmax for positive
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particles, and within −bmax ≤ ϕgoal ≤ −bmin for negative particles, where bmin = 0.1min(∆x,∆y,∆z) and
bmax = 3.0min(∆x,∆y,∆z). The attraction step is done with

xnew = xp + λ (ϕgoal − ϕ(xp))N(xp), (3.6)

where xp is the coordinates of the particle, N is the normal vector to the interface, λ = 1, and the local values
of ϕ and N are found by trilinear interpolation. The unit normal vector can be found from the scalar field and
is defined as

N =
∇ϕ

|∇ϕ|
. (3.7)

The attraction step is used to gain a smoother distribution in the direction normal to the interface [26].

The trilinear interpolation is an extension from line interpolation in one dimension and bilinear interpolation in
two dimensions. The interpolation starts by finding the correct point on each axis of the cell

xd =
x− x0
x1 − x0

, (3.8)

yd =
y − y0
y1 − y0

, (3.9)

and

zd =
z − z0
z1 − z0

, (3.10)

where x, y and z is the coordinate of the interpolated value, and x0, x1, y0, y1, z0 and z1 are the cell boundaries
with x0 < x1, y0 < y1 and z0 < z1. By first interpolating along the x-axis, the corresponding values are found
from

c00 = c000(1− xd) + c100xd, (3.11)

c01 = c001(1− xd) + c101xd, (3.12)

c10 = c010(1− xd) + c110xd, (3.13)

and

c11 = c011(1− xd) + c111xd, (3.14)

where cijk denote the values at (xi, yj , zk). Interpolation across the y-axis gives the values

c0 = c00(1− yd) + c10yd, (3.15)

and

c1 = c01(1− yd) + c11yd, (3.16)



12 CHAPTER 3. GOVERNING EQUATIONS FOR THE LEVEL SET METHOD

before interpolation along the z-axis gives the value at (x, y, z) by

c = c0(1− zd) + c1zd. (3.17)

If the particle is not within the correct band, λ is halved, and xp = xnew is used along with the new local values
ϕ(xp) and N(xp) to find the new particle location with eq. (3.6). This process is repeated a maximum of 15
times, and if the particle is still not within the correct band, it is deleted. If the particle is in the correct band,
the new coordinates of the particle are saved, and xp = xnew. The particle is then assigned a radius set by

rp =


rmax if spϕ(xp) > rmax

spϕ(xp) if rmin ≤ spϕ(xp) ≤ rmax

rmin if spϕ(xp) < rmin,

(3.18)

where rmin = 0.1min(∆x,∆y,∆z), rmax = 0.5min(∆x,∆y,∆z), and sp = 1 for positive particles and
sp = −1 for negative particles.

At each time step, the particles are advected with the external velocity field independently of each other and the
level set method. The advection is governed by

dxp

dt
= u(xp), (3.19)

where u(xp) is the local velocity.

After both the level set equation (3.1) and the particle advection equation (3.19) are moved forward in time,
the particles are used to correct the interface. All particles on the wrong side of the interface with more than
their radius, i.e. if ϕ(xp) < −rp for positive particles and ϕ(xp) > rp for negative particles, are denoted as
escaped particles. The escaped positive particles are tasked with rebuilding the ϕ > 0 region, while the escaped
negative particles are tasked with rebuilding the ϕ < 0 region. An escaped particle indicates an error in at least
one of the eight corner values for the cell containing the escaped particle. The particles can generate their own
local level set functions, where the zero level set gives the surface of the particles. This local level set function
is defined as

ϕp(x) = sp · (rp − |x− xp|). (3.20)

As the particles escape, equation (3.20) may be used to predict the value of the global level set variable and may
be used to rebuild the signed distance field. The escaped particles predict the values of ϕ at each cell corner by
applying equation (3.20) to all eight corners of the cell. The ϕp value at a cell corner represents the distance
from the corner to the particle surface. An example in two dimensions is seen in Figure 3.2, showing an escaped
positive particle in a grid cell, the current interface found by the level set method, the correct interface, and the
distances ϕp and ϕ. The particle would never physically cross the correct interface, which means the actual
length from the corner to the correct interface location is maximum ϕp for the escaped particle in Figure 3.2.
The predicted value at the corner, ϕp, is checked with the global value of the corner, ϕ, and two new parameters
are defined; ϕ+ to rebuild the positive region and ϕ− to rebuild the negative region, where

ϕ+ = max (ϕp, ϕ), (3.21)

and
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Current interface location

Correct interface location

Figure 3.2: Figure of the correction step in the particle level set method in two dimensions. The red positive particle has
escaped the interface, and is inside a grid cell. ϕp is the distance from a cell corner to the particle, while ϕ is the distance
from a cell corner to the interface found by the standard level set method. The correct interface location is marked by the
dashed line.

ϕ− = min (ϕp, ϕ). (3.22)

The correct value is set at the corner by applying

ϕ =

{
ϕ+ if |ϕ+| ≤ |ϕ−|
ϕ− if |ϕ+| > |ϕ−|,

(3.23)

as it gives priority to the values closer to the interface. Once the values of ϕ are set on all corners of the cell, the
radius is updated with Eq. (3.18). The particle radius is small close to the interface to determine if the particle
escapes more accurately. The same procedure is repeated for all the particles.

After the particles are advected multiple times, or there are large deformations at the interface, the particles
may need to be reseeded. Reseeding includes deleting particles that no longer provide valuable information
and inserting new particles in cells with few remaining particles. The reseeding algorithms used in [26] are
more complex than in the present work. The more straightforward methods used here are due to time restric-
tions, and more complex methods were not prioritized because the implemented methods showed promising
results. However, readers are encouraged to read the original article [26] to get further insight into the reseeding
algorithms available. In the present work, the deletion of unnecessary particles is coupled with the correction
step, and all particles with |ϕ(xp)| − rp > bmax, meaning they are entirely outside the band around the inter-
face, are deleted. The insertion of new particles is done after the correction step, eq. (3.23), after a number of
iterations depending on the test case. It is done by finding how many particles are left in the cells and simply
inserting the missing amount from each cell’s previously defined number of particles. In addition to periodic
reseeding, Enright et al. [26] also suggest reseeding when the interface has undergone a certain amount of
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compression or stretching.

3.3 Combining the Level Set Method with the Immersed Boundary Method
The end goal of the present work is to find an interface tracking algorithm that can be implemented in combin-
ation with the GPIBM. For the interface tracking method to be effective, it needs to identify whether a point is
in the fluid or solid region, which is found from the sign of the signed distance function in the level set method,
and find the image points for the GPIBM. This can be done with the level set method, as the normal vector
from the ghost points to the interface points in the same direction as the gradient of the level set method and
can easily be identified.

The normal vector defined in equation 3.7 can be used together with the value of the signed distance function
at the ghost points to find the closest points on the interface [19]. By doubling this distance, the location of the
image points seen in Figure 2.1 can be found from

xIP = x− 2ϕ(x, y, z)
∂ϕ(x, y, z)

∂x
, (3.24)

yIP = y − 2ϕ(x, y, z)
∂ϕ(x, y, z)

∂y
, (3.25)

and

zIP = z − 2ϕ(x, y, z)
∂ϕ(x, y, z)

∂z
, (3.26)

where (x, y, z) is the position of the ghost point, and |∇ϕ| = 1 was used. This enables the use of the boundary
conditions directly after the flow variables at xIP have been interpolated, as explained in section 2.3.1.

3.4 Marching Cubes Algorithm
The interface can be found from the zero-contour. Hence an algorithm to find contours in the scalar field is
needed. The present work utilizes the marching cubes algorithm [32]. The algorithm divides the domain into
cubes with the grid points at the corners. The algorithm finds cubes where the values at the corner are on
different sides of the reference value, which indicates the interface is crossing between these corners. There
are 256 different configurations the interface may cross each cube, but accounting for symmetries, the number
of unique configurations reduces to 14. After the algorithm has found which sides are crossed by the interface,
the crossing point on the side is found from linear interpolation of the values at the corners. Higher-order
interpolation schemes have been tested, but they showed no significant improvements [32]. This procedure is
repeated for the rest of the domain. The implementation of the marching cubes algorithm is done with the help
of the Python library scikit-image [33].
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Discretization of the Level Set Method

Finite difference schemes are used to solve the level set equation (3.1), the reinitialization equation (3.3), and
the advection of the particles (3.19). Different schemes are used to discretize the equations according to the
accuracy needed. High accuracy is needed for both the level set equation and the reinitialization equation. The
temporal discretization in these equations is approximated with a total variation diminishing (TVD) Runge-
Kutta (RK) method, while the spatial derivatives are approximated with a weighted essentially non-oscillating
(WENO) scheme and the Godunov scheme for the level set equation and the reinitialization equation respect-
ively, as suggested by Osher and Fedkiw [19]. For the temporal derivative in the advection of the particles in
equation (3.19), Euler’s scheme is used because it gave good initial results. The velocity in equation (3.19) is
found through trilinear interpolation of the given externally created velocity field. The trilinear interpolation is
introduced in section 3.2. The descriptions of the WENO scheme, TVD RK scheme, and Godunov’s scheme
below follows the presentation by Osher and Fedkiw [19].

4.1 WENO Method
The weighted essentially non-oscillating (WENO) scheme is used because it handles discontinuities in the
derivatives automatically [19]. These discontinuities can occur at places in the flow where the distance to the
interface is equal in more than one direction, causing a kink in the signed distance function. The WENO scheme
is fifth-order accurate in smooth regions of the flow and third-order accurate in other parts of the flow.

To approximate ϕx in axϕx, where the advection velocity is defined as ax = u in (3.1) and ϕx = ∂ϕ
∂x , the

WENO scheme uses a backward difference for a positive velocity, ax > 0, and a forward difference for a
negative velocity, ax < 0. The scheme uses three approximations of ϕx defined as

ϕ1
x =

v1
3

− 7v2
6

+
11v3
6

, (4.1)

ϕ2
x = −v2

6
+

5v3
6

+
v4
3
, (4.2)

and

ϕ3
x =

v3
3

+
5v4
6

− v5
6

(4.3)

where v1 = D−ϕi−2, v2 = D−ϕi−1, v3 = D−ϕi, v4 = D−ϕi+1 and v5 = D−ϕi+2 is defined for a backward
difference, and v1 = D+ϕi+2, v2 = D+ϕi+1, v3 = D+ϕi, v4 = D+ϕi−1 and v5 = D+ϕi−2 for a forward
difference, where

D−ϕi =
ϕi − ϕi−1

∆x
, (4.4)

15
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and
D+ϕi =

ϕi+1 − ϕi

∆x
. (4.5)

The three ϕi
x terms are weighted and summed to yield the WENO approximation

ϕx = ω1ϕ
1
x + ω2ϕ

2
x + ω3ϕ

3
x, (4.6)

using
ω1 =

α1

α1 + α2 + α3
, (4.7)

ω2 =
α2

α1 + α2 + α3
, (4.8)

and
ω3 =

α3

α1 + α2 + α3
(4.9)

as weights. In smooth regions of the flow the optimal weights are observed as ω1 = 0.1, ω2 = 0.6, and
ω3 = 0.3. For non-smooth regions of the flow the scheme defines

α1 =
0.1

(S1 + ϵ)2
, (4.10)

α2 =
0.6

(S2 + ϵ)2
, (4.11)

and
α3 =

0.3

(S3 + ϵ)2
(4.12)

utilizing the smoothness indicators

S1 =
13

12
(v1 − 2v2 + v3)

2 +
1

4
(v1 − 4v2 + 3v3)

2, (4.13)

S2 =
13

12
(v2 − 2v3 + v4)

2 +
1

4
(v2 − v4)

2, (4.14)

and
S3 =

13

12
(v3 − 2v4 + v5)

2 +
1

4
(3v3 − 4v4 + v5)

2 (4.15)

to estimate the smoothness of ϕi. ϵ = 10−6 max(v21, v
2
2, v

2
3, v

2
4, v

2
5) + 10−99, where the first term is a

scaling term and the second term is included to avoid division by zero. The same procedure is followed when
approximating ϕy in ayϕy and ϕz in azϕz , where ay = v and az = w in (3.1), and ϕy = ∂ϕ

∂y and ϕz =
∂ϕ
∂z .

4.2 TVD Runge-Kutta Method
For the temporal discretization, the third-order accurate total variation diminishing (TVD) Runge-Kutta (RK)
method is chosen to achieve third-order accuracy [34].

The first step of the third-order accurate TVD RK is doing a forward Euler step

ϕn+1 − ϕn

∆t
+ un ·∇ϕn = 0, (4.16)

followed by a second Euler step

ϕn+2 − ϕn+1

∆t
+ un+1 ·∇ϕn+1 = 0. (4.17)
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A weighted average is used

ϕn+ 1
2 =

3

4
ϕn +

1

4
ϕn+2 (4.18)

to obtain an approximation for tn + 0.5∆t. A third Euler step is used

ϕn+ 3
2 − ϕn+ 1

2

∆t
+ un+ 1

2 ·∇ϕn+ 1
2 = 0 (4.19)

followed by a final averaging step

ϕn+1 =
1

3
ϕn +

2

3
ϕn+ 3

2 (4.20)

to obtain an approximation for ϕn+1.

4.3 Godunov’s Scheme
The reinitialization equation (3.3) is discretized with the TVD RK method presented in section 4.2 for the time
derivative and the Godunov scheme for the spatial derivative [19].

In the reinitialization equation, the sign function (3.4) is used as the advection velocity. ϕx, ϕy, and ϕz are
found by taking the square root of the compact form of Godunov’s scheme by Rouy and Tourin [35]

ϕ2
x ≈

{
max(max(ϕ−

x , 0)
2,min(ϕ+

x , 0)
2) when ax > 0, and

max(min(ϕ−
x , 0)

2,max(ϕ+
x , 0)

2) when ax < 0,
(4.21)

where ϕ−
x = D−ϕ and ϕ+

x = D+ϕ as in equations (4.4) and (4.5). The same procedure is followed for ϕ2
y and

ϕ2
z .

4.4 CFL Number
Courant-Friedrichs-Lewy (CFL) condition is used in numerical simulations to ensure the stability of the scheme.
The CFL condition is enforced by defining the CFL number

CFL = ∆tmax
(
|u|
∆x

+
|v|
∆y

+
|w|
∆z

)
, (4.22)

where 0 ≤ CFL ≤ 1 usually ensures stability [19]. The maximum in eq. (4.22) is taken over all grid points and
all time steps.

4.5 Boundary Conditions
The regular reinitialization of the signed distance field and the fact that the interface is kept far away from
the boundary of the domain make it possible to assign a wide range of boundary conditions at the domain’s
boundary. In the present work, the boundary conditions for the level set equation (3.1) are set by extrapolation.
As the WENO scheme uses the three neighboring points on either side of the current node, the extrapolation is
done for the three outer nodes at each boundary. The extrapolation is given as

ϕ3,j,k = ϕ4,j,k − (ϕ5,j,k − ϕ4,j,k), (4.23)

ϕ2,j,k = ϕ3,j,k − (ϕ4,j,k − ϕ3,j,k), (4.24)

and
ϕ1,j,k = ϕ2,j,k − (ϕ3,j,k − ϕ2,j,k) (4.25)

in the x-direction,
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ϕi,3,k = ϕi,4,k − (ϕi,5,k − ϕi,4,k), (4.26)

ϕi,2,k = ϕi,3,k − (ϕi,4,k − ϕi,3,k), (4.27)

and
ϕi,1,k = ϕi,2,k − (ϕi,3,k − ϕi,2,k) (4.28)

in the y-direction, and

ϕi,j,3 = ϕi,j,4 − (ϕi,j,5 − ϕi,j,4), (4.29)

ϕi,j,2 = ϕi,j,3 − (ϕi,j,4 − ϕi,j,3), (4.30)

and
ϕi,j,1 = ϕi,j,2 − (ϕi,j,3 − ϕi,j,2) (4.31)

in the z-direction, where the 1 index is the outermost grid point for all sides of the domain.

4.6 Measures of Error
Three different error measures are implemented to find the error of the particle level set method. The first
method is to find the volume change from the initial scalar field to the scalar field at final time. The volume of
the Ω− region can be found from [19]

V =

∫
Ω
(1− H̃(ϕ(x)))dx dy dz, (4.32)

where H̃(ϕ) is a smeared-out Heaviside function defined as [19]

H̃(ϕ) =


0 ifϕ < −ϵ
1
2 + ϕ

2ϵ +
1
2π sin

(
πϕ
ϵ

)
if − ϵ ≤ ϕ ≤ ϵ

1 if ϵ < ϕ,

(4.33)

where ϵ is the bandwidth of the numerical smearing, and is set to ϵ = 1.5∆x.

The discrete version of equation (4.32) is

V =

m∑
i=1, j=1, k=1

(1− H̃(ϕi,j,k))∆x∆y∆z, (4.34)

where i=1, j=1, k=1 denote the first indices in each direction, and m grid points in each dimension are assumed.

The interface error and average volume error introduced in [36] are also used to measure the error. Both of
these error estimates use another variant of the Heaviside function where H(x) ≡ 1 for x < 0, and H(x) ≡ 0
otherwise. The interface error is slightly adapted for 3D and is defined as

Ierror =
1

A

∫
Ω
|H(ϕexpect)−H(ϕcompute)| dx dy dz, (4.35)

where ϕexpect is the initial signed distance field for the test case, ϕcompute is the signed distance field at the time
the error is measured, A is the surface area at the initial time, and Ω is the entire domain. The surface area can
be found from [19]
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A =

∫
Ω
δ(ϕ(x))|∇ϕ(x)| dx dy dz, (4.36)

where δ(ϕ) is defined as

δ(ϕ) =


0 ifϕ < −ϵ
1
2ϵ +

1
2ϵcos

(
πϕ
ϵ

)
if − ϵ ≤ ϕ ≤ ϵ

0 if ϵ < ϕ,

(4.37)

The discretized form of (4.35) can be written as

Interface error =
m∑

i=1,j=1,k=1

1

A
|H(ϕexpect, ijk)−H(ϕcompute, ijk)|∆x∆y∆z, (4.38)

where H(ϕijk) is the Heaviside function applied to ϕijk, and (4.36) is discretized as

A =

m∑
i=1, j=1, k=1

δ(ϕi,j,k)

∣∣∣∣∣∣
√(

∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
∣∣∣∣∣∣ ∆x∆y∆z, (4.39)

and ∂ϕ
∂x , ∂ϕ

∂y and ∂ϕ
∂z are discretized with second-order central differencing.

The average volume error is defined as

Merror =

∫ tf

t=0

|M(t)−M(0)|
tf

dt (4.40)

where tf is the time the error is measured, and

M(t) =

∫
Ω
|H(ϕ(x, y, z, t)))|dx dy dz. (4.41)

The discretized form of equation (4.41) can be written as

Mn =

m∑
i=1,j=1,k=1

|H(ϕ)nijk|∆x∆y∆z, (4.42)

where n is the current time step. The discretized version (4.40) follows as

Average volume error =
tf∑

n=1

|Mn −M0|
tf

∆t. (4.43)

The order of convergence is shown in Table 5.2, and is defined as

p =
ln(err(∆x)/err(∆x/2))

ln (2)
(4.44)

where err(∆x) is the error at grid spacing ∆x.
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Chapter 5

Results

The simulations in the present work are done at a CFL number of 0.9, which ensures the stability of the
numerical methods. The time step is then found from eq. (4.22). The tests are conducted on an n× n× n grid,
where n is the number of grid cells in each spatial direction. To see the order of convergence of the method, the
grid size is halved for each simulation, where the coarsest grid uses n = 50, and the finest uses n = 400. The
reinitialization equation (3.3) is solved every time step with 5 pseudo time steps. The pseudo time step size is
set to ∆τ = 0.5∆x as suggested in [19]. Particle reseeding is done every 100 time steps. These parameters
are kept constant and were chosen because they seemed to give the best results for the test case explained in
section 5.2. However, other parameters may show better results depending on the test case. During simple
testing with a sphere advected with u = 1, v = 1, and w = 1, less frequent reinitialization also showed good
results, indicating more reinitialization may be needed in velocity fields with large deformations.

5.1 Sphere in two-dimensional vortex velocity field
This test case consists of a sphere of radius 0.15 in a unit cube of [0, 1]×[0, 1]×[0, 1], where the center is initially
placed at (0.5, 0.75, 0.5), with the signed distance with reference to the sphere surface as the initial condition
for the scalar field as explained in section 3.1. The initial sphere is shown in Figure 5.1. The externally created
velocity field was introduced by Morgan and Waltz [37] and is given by

u = sin(πx) cos(πy) cos(πt/T ), (5.1)

v = − cos(πx) sin(πy) cos(πt/T ), (5.2)

and
w = 0, (5.3)

where T = 10 and is the total time of the deformation. The velocity field ensures the initial sphere is deformed
in the x − y plane. The cosine term ensures the velocity field is reversed after t = 1/2T , and the interface is
deformed back to the initial sphere at t = T . The maximum deformations at t = 1/2T in the x− y and y − z
planes for n = 400 are shown in Figure 5.2. As the initial and final interface are supposed to be identical, the
error can be found from the measures introduced in section 4.6.

Figure 5.3 shows the first and final time step of the deformation at four different grid sizes. The approximation
of the initial volume is best for the finest grid. The error measures in Table 5.1 also show decreasing errors for
increasing number of grid nodes. The maximum deformations at t = 1/2T for n = 50, n = 100, and n = 200
are shown in Figure 5.4. All grids manage to keep the interface without creating droplets that separate from the
main structure.
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Figure 5.1: Initial sphere in two-dimensional velocity field in the x−y plane for a 400×400×400 grid. The same shape
should be found at t = T .
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Figure 5.2: Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the two-dimensional velocity field with n = 400.
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(a) 50× 50× 50, t = T

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(b) 100× 100× 100, t = T
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(c) 200× 200× 200, t = T
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(d) 400× 400× 400, t = T

Figure 5.3: Domains where ϕ(x, T ) ≤ 0 for the sphere in the two-dimensional velocity field at four different grid
resolutions in the x− y plane.
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(c) x− y plane, n = 100
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Figure 5.4: Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the two-dimensional velocity field with n = 50,
n = 100, and n = 200.
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Table 5.1: Error for two-dimensional vortex test. Procedure is explained in section 4.6.

n Interface error p Average volume error p Volume change [%]
50 6.84E-2

0.95
1.12E-3

0.59
23.77

100 3.54E-2
1.01

7.40E-4
0.86

13.95
200 1.76E-2

1.02
4.06E-4

0.93
7.44

400 8.67E-3 2.13E-4 3.82

The order of convergence for the sphere in the two-dimensional vortex test is shown in Table 5.1. The order
of convergence for the interface error, eq. (4.35), is stable at around 1.0, while the order of convergence for
the average volume error, eq (4.40), varies. The order of convergence for the average volume error starts low
and increases towards 1.0 as the grids are refined. The volume is overshot for all the grid sizes but decreases
towards the initial volume as more grid nodes are used. Morgan et al. [37] saw first-order convergence for the
same test case.

5.2 Sphere in three-dimensional vortex velocity field
The test case was introduced by LeVeque [38] and consists of a sphere of radius 0.15 in a unit cube of [0, 1]×
[0, 1]× [0, 1], where the center is initially placed at (0.35, 0.35, 0.35). The initial condition for the scalar field is
the signed distance with reference to the sphere surface as explained in section 3.1. The velocity field is given
by

u = 2 sin2(πx) sin(2πy) sin(2πz) cos(πt/T ), (5.4)

v = − sin(2πx) sin2(πy) sin(2πz) cos(πt/T ), (5.5)

and
w = − sin(2πx) sin(2πy) sin2(πz) cos(πt/T ), (5.6)

where T = 3. The velocity field deforms the initial sphere seen in Figure 5.5 in both the x − y plane and the
x−z plane. The cosine term ensures the velocity field is reversed after t = 1/2T , and the interface is deformed
back to the initial sphere at t = T . The maximum deformations in the x− y and x− z planes for n = 400 are
shown in Figure 5.6. As the initial and final interface are supposed to be identical, the error can be found from
the measures introduced in section 4.6.

Figure 5.7 shows the deformation’s first and final time step at four different grid sizes. The finer grids clearly
show a better match with the initial interface. Compared with the error measures in Table 5.2, this is also true
for both the interface error and the average volume error, as they both decrease at finer grids. However, that is
not the case for the volume change, as the coarsest grid shows the second best volume conservation. Although,
by looking at Figure 5.7(a), the shape of the interface is far off compared to the finer grids.

Figure 5.8 shows the maximum deformation in both the x − y and x − z planes for n = 50, n = 100,
and n = 200. It is evident that there are less separated droplets from the main structures for the finer grids
at t = 1/2T when the interface is stretched. None of these droplets are shown in Figure 5.6, showing the
deformations at t = 1/2T for n = 400.

The order of convergence is given in Table 5.2. For the interface error, the order of convergence is approximately
stable at around 1.0. The order of convergence for the average volume error is slightly more changing but seems
to stabilize around 1.5. The relatively large difference in order of convergence between n = 50 and n = 100
to n = 100 and n = 200 may be explained by n = 50 being too coarse to give a good approximation of the
interface.
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Figure 5.5: Initial sphere in three-dimensional velocity field for a 400×400×400 grid. The same shape should be found
at t = T .
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Figure 5.6: Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the three-dimensional velocity field with n = 400.
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(b) 100× 100× 100, t = T
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(c) 200× 200× 200, t = T
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Figure 5.7: Domains where ϕ(x, T ) ≤ 0 for the sphere in the three-dimensional velocity field at four different grid
resolutions.
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(c) x− y plane, n = 100
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(e) x− y plane, n = 200
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Figure 5.8: Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the three-dimensional velocity field with n = 50,
n = 100, and n = 200.
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Table 5.2: Error for three-dimensional vortex test. Procedure is explained in section 4.6.

n Interface error p Average volume error p Volume change [%]
50 2.82E-2

0.97
2.02E-3

1.88
-0.73

100 1.43E-2
1.01

5.50E-4
1.46

1.43
200 7.11E-3

1.02
1.99E-4

1.51
1.06

400 3.50E-3 7.00E-5 0.62

The order of convergence is at the same size as for Enright et al. [26], who observed an order of convergence
in the region between 1 and 1.5. Note that the order of convergence calculated for Enright et al. [26] is for the
two-dimensional vortex test, and no order of convergence was calculated for the three-dimensional test case.
First-order convergence was also seen in the two-dimensional standard level set method implementation by
Sommersel [9]. The same test case was also run for the standard level set method at grids up to the size of
n = 400, where the entire volume was lost before t = 1/2T . The CPU times for the tests with the standard
level set method are shown in Table 5.3(c). The CPU times for the particle level set method in Table 5.3(b)
shows an increase of 70.5 %, 42.6 %, 19.0 %, and 24.5 %, compared to the standard level set method in Table
5.3(c) with grid sizes of n = 50, n = 100, n = 200, and n = 400 respectively. Considering the massive
improvement in mass conservation, extending the standard level set method to the particle level set method is
worth the extra work.

5.3 CPU time
All tests are run on a computer with a clock rate of 1.4 GHz, with an 11th Gen Intel Core i7-11700T processor
with 16 CPUs and 32 GB RAM. The elapsed time and number of time steps for each run are given in Table
5.3. Further optimization of the code is possible and may lead to shorter tun times. The CPU times presented
in Table 5.3 are meant as a pointer for the code as it is, and changing the parameters explained at the start of
chapter 5 may lead to better results and shorter run times.
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Table 5.3: CPU time and number of time steps for all test cases at different grid sizes.

(a) Two-dimensional vortex test with the particle level set method.

n CPU time [s] Number of time steps
50 65 546

100 921 1100
200 14078 2212
400 224277 4434

(b) Three-dimensional vortex test with the particle level set method.

n CPU time [s] Number of time steps
50 75 404

100 1038 818
200 13865 1644
400 223832 3298

(c) Three-dimensional vortex test with the standard level set method.

n CPU time [s] Number of time steps
50 44 404

100 728 818
200 11655 1644
400 179808 3298



Chapter 6

Conclusions and Outlook

The three-dimensional particle level set method has been implemented, and the possibility of using this ap-
proach in the VirtuOSA project has been investigated. The conclusion is that the level set method can track
the fluid-solid interface in the upper airways for OSA patients with the GPIBM, as is needed in the VirtuOSA
project. The properties of the signed distance function explained in section 3.3 are a big bonus when computing
the values at the ghost points to satisfy the correct boundary conditions. These properties are the main reasons
the level set method has been preferred over methods like the volume of fluid method and front tracking method
in the present study. Implementing the particle level set method has significantly improved the poor mass con-
servation of the standard level set method. By comparing the the CPU times in Table 5.3(b) and Table 5.3(c)
an average of 21.8 % longer CPU times are seen for the two finest grids. Considering that the standard level
set method lost all volume for the finest grid with n = 400, while the particle level set method saw a volume
change of 23.77 % for the coarsest grid with n = 50, this extra CPU time is worthwhile.

An order of convergence in the region between 0.9 and 1.5 is seen, which is low compared to the WENO
method, which is fifth-order accurate in smooth regions and at least third-order accurate elsewhere. The reason
behind the low order for the particle level set method may be the low order method used to advect the particle
advection equation (3.19), or low order in the implemented trilinear interpolation method introduced in section
3.2. Experimenting with different alternatives to these methods may be the focus of future work and may lead
to an increase in the order of convergence. The possibility of combining the particle level set method with other
methods, i.e., the different modifications to the reinitialization equation as discussed in section 2.2.3, may also
increase the order of the method even further.

The low order of convergence is slightly worrying. Lower-order methods may give the same results and be
computationally cheaper. Further code optimization is possible and will be a case to consider before possible
implementation in the VirtuOSA project. Changing when particles are reseeded for the particle level set method
may be more efficient and give better results. Nevertheless, the results from the particle level set method are a
significant improvement compared to the standard level set method. The easy implementation with the GPIBM
shows that the particle level set method is a candidate to consider when choosing the final front tracking method.
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Appendix A

LSM3D

The following appendix includes code for the implemented particle level set method. The main computations
are programmed in C++, while the post-processing is programmed in Python. The complete code is also found
on GitHub at https://github.com/marcussommersel/LSM3D.
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A.1 main.cpp
This file contains the main structure of the particle level set method and reinitialization. The computation of
the different measures of error from section 4.6 are also included.



1   #include <vector>
2   #include <iostream>
3   #include <ctime>
4   #include <chrono>
5   #include <fstream>
6   #include "initialization.h"
7   #include "schemes.h"
8   #include "vectorUtilities.h"
9   #include "particleLSM.h"

10   #include "testCases.h"
11   using namespace std;
12   
13   int main(){
14   
15   // start of setup.
16   chrono::steady_clock::time_point startTime = chrono::steady_clock::now();
17   
18   cout << "Program start." << endl;
19   
20   // grid nodes in each spatial direction
21   const int m = 200; // x-direction
22   const int n = 200; // y-direction
23   const int p = 200; // z-direction
24   
25   // size of domain
26   const double xStart = 0.0;
27   const double xEnd = 1.0;
28   const double yStart = 0.0;
29   const double yEnd = 1.0;
30   const double zStart = 0.0;
31   const double zEnd = 1.0;
32   
33   // vector of nodes in each direction
34   vector<double> x = linspace(xStart, xEnd, m);
35   vector<double> y = linspace(yStart, yEnd, n);
36   vector<double> z = linspace(zStart, zEnd, p);
37   
38   // grid spacing in each direction
39   double dx = x[1] - x[0];
40   double dy = y[1] - y[0];
41   double dz = z[1] - z[0];
42   
43   // varius parameters that may be changed
44   double dtau = 0.5*dx; // size of pseudo-time step
45   bool doReinit = true; // true if reinitialization should be done
46   bool doParticle = false; // true if particles should be used for level set method
47   bool saveParticles = false; // true if particles should be saved for plotting
48   int nParticles = 64; // number of particles of each type (positive and negative) 

in each cell
49   int reinitFreq = 1; // how often reinitialization should be conducted
50   int reinitSteps = 5; // how many pseudo-time steps should be done
51   int plotFreq = 20000; // how often signed distance field is saved, not including 

first and last time step
52   int reseedFreq = 100; // how often particles are reseeded
53   int itmax = 20000; // maximum number of iterations
54   double CFL = 0.9; // CFL-number
55   bool halfplot = true; // true if signed distance field should be saved at 0.5 t/T
56   
57   // The three implemented test cases
58   string testcase = "vortex";
59   // string testcase = "sheared";
60   // string testcase = "simple";
61   string savePath = "figures/";
62   
63   Point c;
64   double r;
65   double T;
66   if (testcase == "vortex"){
67   c = Point(0.35,0.35,0.35);
68   r = 0.15;
69   T = 3.0;
70   } else if (testcase == "sheared"){
71   c = Point(0.5,0.75,0.5);



72   r = 0.15;
73   T = 10.0;
74   } else if (testcase == "simple"){
75   c = Point(0.35,0.35,0.35);
76   r = 0.15;
77   T = 0.4;
78   }
79   
80   vector<double> phi;
81   
82   // initial signed distance field
83   signedDistanceField(phi, x, y, z, r, c, m, n, p);
84   
85   // measures of error
86   double initialVolume = volume(phi, dx, dy, dz);
87   vector<double> phi0 = phi;
88   double MError0 = massError(phi, dx, dy, dz, m, n, p);
89   double MError = 0;
90   
91   vector<string> plotTimes;
92   vector<string> plotTimesParticle;
93   
94   // save signed distance field
95   saveScalarField(savePath + to_string(0.000000) + ".txt", phi, x, y, z, m, n, p);
96   plotTimes.push_back(to_string(0.000000));
97   
98   // parameters used in particle level set method
99   vector<Particle> particles;

100   double rmin = 0.1*min(dx, min(dy, dz));
101   double rmax = 0.5*max(dx, max(dy, dz));
102   double bmin = rmin;
103   double bmax = 3.0*max(dx, max(dy, dz));
104   
105   // initializing particles
106   cout << "Initializing particles." << endl;
107   if (doParticle){
108   Derivative norm = normal(phi, dx, dy, dz, m, n, p);
109   for (int k = 0; k < p; ++k){
110   for (int j = 0; j < n; ++j){
111   for (int i = 0; i < m; ++i){
112   if (abs(phi[i + j*n + k*p*p]) < 3*max(dx, max(dy,dz))){
113   vector<Particle> newParticles = initializeParticles(x[i], y[j

], z[k], dx, dy, dz, x, y, z, phi, norm, m, n, p, nParticles);
114   particles.insert(particles.end(), newParticles.begin(),

newParticles.end());
115   }
116   }
117   }
118   }
119   
120   cout << "Initialization finished." << endl;
121   
122   if (saveParticles){
123   plotParticles(savePath + to_string(0.000000) + "particle.txt" , particles

);
124   plotTimesParticle.push_back(to_string(0.000000) + "particle");
125   }
126   }
127   
128   vector<double> ax;
129   vector<double> ay;
130   vector<double> az;
131   
132   double t = 0;
133   
134   // initial velocity field
135   if (testcase == "vortex"){
136   Velocity a = vortexVelocity(m, n, p, x, y, z, t, T);
137   ax = a.x;
138   ay = a.y;
139   az = a.z;
140   } else if (testcase == "sheared"){
141   Velocity a = shearedSphereVelocity(m, n, p, x, y, z, t, T);



142   ax = a.x;
143   ay = a.y;
144   az = a.z;
145   } else if (testcase == "simple"){
146   Velocity a = simpleVelocity(m, n, p);
147   ax = a.x;
148   ay = a.y;
149   az = a.z;
150   }
151   
152   double dtmax = CFL/(vectorMax(vectorAbs(ax)/dx + vectorAbs(ay)/dy + vectorAbs(az)/

dz)); // max time step
153   double dt;
154   int numIt = 0;
155   
156   cout << "Setup complete." << endl;
157   chrono::steady_clock::time_point currentTime = chrono::steady_clock::now();
158   cout << "Elapsed time: " << (chrono::duration_cast<chrono::seconds>(currentTime -

startTime).count()) << " s." << endl << endl;
159   
160   // main iteration loop
161   for (int it = 1; it < itmax; ++it){
162   
163   // statement to make sure loop has one iteration at 0.5 t/T
164   if (t < 0.5*T){
165   dt = min(dtmax, 0.5*T - t);
166   } else if (t >= 0.5*T){
167   dt = min(dtmax, T - t);
168   }
169   
170   t += dt;
171   
172   // advection of level set method
173   TVDRK3_weno(phi, ax, ay, az, m, n, p, dx, dy, dz, dt);
174   
175   // advection of particles
176   if (doParticle){
177   for (int a = 0; a < particles.size(); ++a){
178   
179   int i = (int)(particles[a].x/dx);
180   int j = (int)(particles[a].y/dy);
181   int k = (int)(particles[a].z/dz);
182   
183   double Up = trilinearInterpolation(particles[a].x, particles[a].y,

particles[a].z,
184   x[i], x[i+1], y[j], y[j+1], z[k], z[k+1],
185   ax[i+j*n+k*p*p],
186   ax[(i+1)+j*n+k*p*p],
187   ax[(i+1)+(j+1)*n+k*p*p],
188   ax[i+(j+1)*n+k*p*p],
189   ax[i+j*n+(k+1)*p*p],
190   ax[(i+1)+j*n+(k+1)*p*p],
191   ax[(i+1)+(j+1)*n+(k+1)*p*p],
192   ax[i+(j+1)*n+(k+1)*p*p]);
193   
194   double Vp = trilinearInterpolation(particles[a].x, particles[a].y,

particles[a].z,
195   x[i], x[i+1], y[j], y[j+1], z[k], z[k+1],
196   ay[i+j*n+k*p*p],
197   ay[(i+1)+j*n+k*p*p],
198   ay[(i+1)+(j+1)*n+k*p*p],
199   ay[i+(j+1)*n+k*p*p],
200   ay[i+j*n+(k+1)*p*p],
201   ay[(i+1)+j*n+(k+1)*p*p],
202   ay[(i+1)+(j+1)*n+(k+1)*p*p],
203   ay[i+(j+1)*n+(k+1)*p*p]);
204   
205   double Wp = trilinearInterpolation(particles[a].x, particles[a].y,

particles[a].z,
206   x[i], x[i+1], y[j], y[j+1], z[k], z[k+1],
207   az[i+j*n+k*p*p],
208   az[(i+1)+j*n+k*p*p],
209   az[(i+1)+(j+1)*n+k*p*p],



210   az[i+(j+1)*n+k*p*p],
211   az[i+j*n+(k+1)*p*p],
212   az[(i+1)+j*n+(k+1)*p*p],
213   az[(i+1)+(j+1)*n+(k+1)*p*p],
214   az[i+(j+1)*n+(k+1)*p*p]);
215   
216   particles[a].x = particles[a].x + dt*Up;
217   particles[a].y = particles[a].y + dt*Vp;
218   particles[a].z = particles[a].z + dt*Wp;
219   
220   i = (int)(particles[a].x/dx);
221   j = (int)(particles[a].y/dy);
222   k = (int)(particles[a].z/dz);
223   
224   double phip = trilinearInterpolation(particles[a].x, particles[a].y,

particles[a].z,
225   x[i], x[i+1], y[j], y[j+1], z[k], z[k+1],
226   phi[i+j*n+k*p*p],
227   phi[(i+1)+j*n+k*p*p],
228   phi[(i+1)+(j+1)*n+k*p*p],
229   phi[i+(j+1)*n+k*p*p],
230   phi[i+j*n+(k+1)*p*p],
231   phi[(i+1)+j*n+(k+1)*p*p],
232   phi[(i+1)+(j+1)*n+(k+1)*p*p],
233   phi[i+(j+1)*n+(k+1)*p*p]);
234   
235   // delete particles
236   if (abs(phip) - particles[a].r > bmax){
237   particles.erase(particles.begin() + a);
238   }
239   // interface correction
240   else if ((phip < 0 && particles[a].positive) || (phip > 0 && !

particles[a].positive) && (abs(phip) > particles[a].r)){
241   
242   vector<double> phiCorrected =
243   correctInterface(particles[a], x[i], x[i+1], y[j], y[j+1], z[k

], z[k+1],
244   phi[(i)+(j)*n+(k)*p*p],
245   phi[(i+1)+(j)*n+(k)*p*p],
246   phi[(i+1)+(j+1)*n+(k)*p*p],
247   phi[(i)+(j+1)*n+(k)*p*p],
248   phi[(i)+(j)*n+(k+1)*p*p],
249   phi[(i+1)+(j)*n+(k+1)*p*p],
250   phi[(i+1)+(j+1)*n+(k+1)*p*p],
251   phi[(i)+(j+1)*n+(k+1)*p*p],
252   phip);
253   
254   phi[(i)+(j)*n+(k)*p*p] = phiCorrected[0];
255   phi[(i+1)+(j)*n+(k)*p*p] = phiCorrected[1];
256   phi[(i+1)+(j+1)*n+(k)*p*p] = phiCorrected[2];
257   phi[(i)+(j+1)*n+(k)*p*p] = phiCorrected[3];
258   phi[(i)+(j)*n+(k+1)*p*p] = phiCorrected[4];
259   phi[(i+1)+(j)*n+(k+1)*p*p] = phiCorrected[5];
260   phi[(i+1)+(j+1)*n+(k+1)*p*p] = phiCorrected[6];
261   phi[(i)+(j+1)*n+(k+1)*p*p] = phiCorrected[7];
262   
263   }
264   
265   phip = trilinearInterpolation(particles[a].x, particles[a].y,

particles[a].z,
266   x[i], x[i+1], y[j], y[j+1], z[k], z[k+1],
267   phi[i+j*n+k*p*p],
268   phi[(i+1)+j*n+k*p*p],
269   phi[(i+1)+(j+1)*n+k*p*p],
270   phi[i+(j+1)*n+k*p*p],
271   phi[i+j*n+(k+1)*p*p],
272   phi[(i+1)+j*n+(k+1)*p*p],
273   phi[(i+1)+(j+1)*n+(k+1)*p*p],
274   phi[i+(j+1)*n+(k+1)*p*p]);
275   
276   // adjust radius
277   if (sign(phip)*phip > rmax){
278   particles[a].r = rmax;



279   } else if (sign(phip)*phip < rmin){
280   particles[a].r = rmin;
281   } else {
282   particles[a].r = sign(phip)*phip;
283   }
284   
285   }
286   
287   // initialize new particles
288   if (it%reseedFreq == 0 && it != 0){
289   vector<int> cellx;
290   vector<int> celly;
291   vector<int> cellz;
292   vector<int> cellParticles;
293   cellx.push_back((int)(particles[0].x/dx));
294   celly.push_back((int)(particles[0].y/dy));
295   cellz.push_back((int)(particles[0].z/dz));
296   cellParticles.push_back(1);
297   
298   bool found = false;
299   for (int a = 1; a < particles.size(); ++a){
300   for (int b = 0; b < cellx.size(); ++b){
301   if ((int)(particles[a].x/dx) == cellx[b] && (int)(particles[a

].y/dy) == celly[b] && (int)(particles[a].z/dz) == cellz[b]){
302   cellParticles[b] += 1;
303   if (cellParticles[b] > nParticles){
304   particles.erase(particles.begin() + a);
305   a -= 1;
306   }
307   found = true;
308   break;
309   }
310   }
311   if (!found){
312   cellx.push_back((int)(particles[a].x/dx));
313   celly.push_back((int)(particles[a].y/dy));
314   cellz.push_back((int)(particles[a].z/dz));
315   cellParticles.push_back(1);
316   found = false;
317   }
318   }
319   
320   Derivative norm = normal(phi, dx, dy, dz, m, n, p);
321   for (int a = 0; a < cellx.size(); ++a){
322   int num = nParticles - cellParticles[a];
323   if (num > 0){
324   vector<Particle> newParticles = initializeParticles(x[cellx[a

]], y[celly[a]], z[cellz[a]], dx, dy, dz, x, y, z, phi, norm,
m, n, p, num);

325   particles.insert(particles.end(), newParticles.begin(),
newParticles.end());

326   }
327   }
328   }
329   }
330   
331   // reinitialization loop
332   if (doReinit && (it%reinitFreq == 0)){
333   vector<double> phi0 = phi;
334   for (int i = 0; i < reinitSteps - 1; ++i){
335   // euler_godunov_reinit(phi, m, n, p, dx, dy, dz, dtau, phi0);
336   TVDRK3_godunov_reinit(phi, m, n, p, dx, dy, dz, dtau, phi0);
337   }
338   }
339   
340   // mass error
341   MError += abs(massError(phi, dx, dy, dz, m, n, p) - MError0)*dt;
342   
343   // printing to console
344   if (it%10 == 0){
345   cout << "Iteration: " << it << endl;
346   chrono::steady_clock::time_point currentTime = chrono::steady_clock::now

();



347   cout << "Elapsed time: " << (chrono::duration_cast<chrono::seconds>(
currentTime - startTime).count()) << " s." << endl;

348   cout << "t = " << t << endl;
349   }
350   if (it%plotFreq == 0){
351   cout << "Saving scalar field." << endl;
352   saveScalarField(savePath + to_string(t) + ".txt", phi, x, y, z, m, n, p);
353   plotTimes.push_back(to_string(t));
354   
355   if (doParticle && saveParticles){
356   plotParticles(savePath + to_string(t) + "particle.txt" , particles);
357   plotTimesParticle.push_back(to_string(t) + "particle");
358   }
359   cout << "Done saving." << endl;
360   }
361   
362   // plotting at 0.5 t/T
363   if (t/T == 0.5 && halfplot){
364   cout << "Saving scalar field." << endl;
365   saveScalarField(savePath + to_string(t) + ".txt", phi, x, y, z, m, n, p);
366   plotTimes.push_back(to_string(t));
367   cout << "Done saving." << endl;
368   }
369   
370   // finish iterations if t = T
371   if (t == T){
372   numIt = it;
373   break;
374   }
375   
376   // find velocity for next time step
377   if (testcase == "vortex"){
378   Velocity a = vortexVelocity(m, n, p, x, y, z, t, T);
379   ax = a.x;
380   ay = a.y;
381   az = a.z;
382   } else if (testcase == "sheared"){
383   Velocity a = shearedSphereVelocity(m, n, p, x, y, z, t, T);
384   ax = a.x;
385   ay = a.y;
386   az = a.z;
387   } else if (testcase == "simple"){
388   Velocity a = simpleVelocity(m, n, p);
389   ax = a.x;
390   ay = a.y;
391   az = a.z;
392   }
393   
394   }
395   
396   // writing last time step to console
397   {
398   cout << "Iteration: " << numIt << endl;
399   chrono::steady_clock::time_point currentTime = chrono::steady_clock::now();
400   cout << "Elapsed time: " << (chrono::duration_cast<chrono::seconds>(

currentTime - startTime).count()) << " s." << endl;
401   cout << "t = " << t << endl;
402   }
403   
404   // error measures
405   double endVolume = volume(phi, dx, dy, dz);
406   double volumeChange = 100*(endVolume-initialVolume)/initialVolume;
407   double L1Error = interfaceError(phi0, phi, dx, dy, dz, m, n, p);
408   MError = MError/t;
409   
410   // saving of signed distance field for final time step
411   saveScalarField(savePath + to_string(T) + ".txt", phi, x, y, z, m, n, p);
412   plotTimes.push_back(to_string(T));
413   
414   if (doParticle && saveParticles){
415   plotParticles(savePath + to_string(t) + "particle.txt" , particles);
416   plotTimesParticle.push_back(to_string(t) + "particle");
417   }



418   
419   {
420   ofstream file;
421   file.open(savePath + "plotTimes.txt");
422   if (!file.is_open()){cerr << "could not open file." << endl;}
423   for (int i = 0; i < plotTimes.size(); ++i){
424   file << plotTimes[i] << endl;
425   }
426   file.close();
427   }
428   
429   if (doParticle && saveParticles){
430   ofstream file;
431   file.open(savePath + "plotTimesParticle.txt");
432   if (!file.is_open()){cerr << "could not open file." << endl;}
433   for (int i = 0; i < plotTimesParticle.size(); ++i){
434   file << plotTimesParticle[i] << endl;
435   }
436   file.close();
437   }
438   
439   // printing log to file
440   {
441   ofstream file;
442   file.open(savePath + "log.txt");
443   if (!file.is_open()){cerr << "could not open file." << endl;}
444   file << "Iterations: " << numIt << endl;
445   chrono::steady_clock::time_point currentTime = chrono::steady_clock::now();
446   file << "Elapsed time: " << (chrono::duration_cast<chrono::seconds>(

currentTime - startTime).count()) << " s." << endl;
447   file << "Initial volume: " << initialVolume << endl;
448   file << "End volume: " << endVolume << endl;
449   file << "Volume change: " << volumeChange << " %" << endl;
450   file << "Interface error: " << L1Error << endl;
451   file << "Average area error: " << MError << endl;
452   file.close();
453   }
454   
455   return 0;
456   }
457   
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A.2 initialization.h and initialization.cpp
These files contain code to create the initial signed distance field with reference from a sphere surface and a
function to save the signed distance field to a .txt-file. initialization.h is given first and contains the header file,
while initialization.cpp contains the whole implementation.



1   #pragma once
2   
3   #include <vector>
4   #include <iostream>
5   #include <array>
6   #include <cmath>
7   #include <fstream>
8   using namespace std;
9   

10   #define PI 3.14159265
11   
12   // class for a 3D point
13   class Point
14   {
15   public:
16   double x;
17   double y;
18   double z;
19   Point(double x1, double y1, double z1){x = x1; y = y1; z = z1;}
20   Point(){x = 0; y = 0; z = 0;}
21   Point operator+(Point const &p);
22   void operator=(Point const &p);
23   };
24   
25   // returns length between two points
26   double length(Point const &p0, Point const &p1);
27   
28   // check if a point is within a sphere of center c and radius r
29   bool isInsideSphere(double r, Point c, Point p);
30   
31   // returns the signed distance from a point to the surface of a sphere of center c and 

radius r
32   double signedDistanceSphere(double r, Point c, Point p);
33   
34   // generates a signed distance field for all points in [xmin, xmax] * [ymin, ymax] * 

[zmin, zmax] with reference to a sphere of center c and radius r
35   void signedDistanceField(vector<double> &arr, vector<double> x, vector<double> y, vector<

double> z, double r, Point c, int M, int N, int P);
36   
37   // returns a vector of n indexes with equally spaced values from start to end
38   vector<double> linspace(double start, double end, int n);
39   
40   // saves a signed distance field to .txt-file
41   void saveScalarField(string filename, vector<double> const &arr, vector<double> x, vector

<double> y, vector<double> z, int M, int N, int P);
42   



1   #include "initialization.h"
2   
3   // addition of two points
4   Point Point::operator+(Point const &p){
5   Point temp;
6   temp.x = x + p.x;
7   temp.y = y + p.y;
8   temp.z = z + p.z;
9   return temp;

10   }
11   
12   // a point is assigned the same coordinates as another point
13   void Point::operator=(Point const &p){
14   x = p.x;
15   y = p.y;
16   z = p.z;
17   }
18   
19   // returns length between two points
20   double length(Point const &p0, Point const &p1){
21   return sqrt((p0.x - p1.x)*(p0.x - p1.x) + (p0.y - p1.y)*(p0.y - p1.y) + (p0.z - p1.z

)*(p0.z - p1.z));
22   }
23   
24   // check if a point is within a sphere of center c and radius r
25   bool isInsideSphere(double r, Point c, Point p){
26   if ((length(c, p) - r) < 0){
27   return true;
28   } else {
29   return false;
30   }
31   }
32   
33   // returns the signed distance from a point to the surface of a sphere of center c and 

radius r
34   double signedDistanceSphere(double r, Point c, Point p){
35   
36   if (isInsideSphere(r, c, p)){
37   return -(r - length(p, c));
38   }
39   return length(p, c) - r;
40   }
41   
42   
43   // generates a signed distance field for all points in [xmin, xmax] * [ymin, ymax] * 

[zmin, zmax] with reference to a sphere of center c and radius r
44   void signedDistanceField(vector<double> &arr, vector<double> x, vector<double> y, vector<

double> z, double r, Point c, int M, int N, int P){ // Fix
45   for (int k = 0; k < P; ++k){
46   for (int j = 0; j < N; ++j){
47   for (int i = 0; i < M; ++i){
48   arr.push_back(signedDistanceSphere(r, c, Point(x[i], y[j], z[k])));
49   }
50   }
51   }
52   }
53   
54   // returns a vector of n indexes with equally spaced values from start to end
55   vector<double> linspace(double start, double end, int n){
56   
57   vector<double> vec;
58   
59   if (n == 0) {
60   return vec;
61   }
62   if (n == 1) {
63   vec.push_back(start);
64   return vec;
65   }



66   
67   double dx = (end - start)/(n - 1);
68   
69   for(int i = 0; i < n - 1; ++i){
70   vec.push_back(start + dx * i);
71   }
72   vec.push_back(end);
73   
74   return vec;
75   }
76   
77   // saves a signed distance field to .txt-file
78   void saveScalarField(string filename, vector<double> const &arr, vector<double> x, vector

<double> y, vector<double> z, int M, int N, int P){
79   ofstream file;
80   file.open(filename);
81   if (!file.is_open()){cerr << "could not open file." << endl;}
82   
83   file << M << "," << N << "," << P << endl;
84   int count = 0;
85   for (int k = 0; k < P; ++k){
86   for (int j = 0; j < N; ++j){
87   for (int i = 0; i < M; ++i){
88   file << x[i] << "," << y[j] << "," << z[k] << "," << arr[count] << "," <<

endl;
89   ++count;
90   }
91   }
92   }
93   file.close();
94   }
95   
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A.3 particleLSM.h and particleLSM.cpp
These files contain code to set up the particles in the particle level set method, use these particles to correct the
interface, and a function to save the particle coordinates to a .txt-file. particleLSM.h is given first and contains
the header file, while particleLSM.cpp contains the whole implementation.



1   #pragma once
2   #include <vector>
3   #include <random>
4   #include "initialization.h"
5   #include "schemes.h"
6   
7   // particle class with coordinates, radius and a bool, where true is a positive 

particle, and false is a negative particle
8   class Particle
9   {

10   public:
11   double x;
12   double y;
13   double z;
14   double r;
15   bool positive;
16   Particle(double x1, double y1, double z1){x = x1; y = y1; z = z1;}
17   Particle(){x = 0; y = 0; z = 0;}
18   Particle(double x1, double y1, double z1, double r1, bool pos){x = x1; y = y1; z = z1

; r = r1; positive = pos;}
19   };
20   
21   // initializes particles in a cell where (x0, y0, z0) are the coordinates of the cell 

closest ot origo.
22   // dx, dy, dz are the grid spacing. X, Y, Z are all grid nodes in the computational 

domain.
23   // phi is the signed distance field. normal is the normal-vector. M, N, P is the number 

of grid nodes in each direction.
24   // numParticles are the number of particles of each type to be initialized in the cell.
25   vector<Particle> initializeParticles(double x0, double y0, double z0, double dx, double

dy, double dz,
26   vector<double> &X, vector<double> &Y, vector<double> &Z, vector<double> &phi,

Derivative &normal,
27   int M, int N, int P, int numParticles);
28   
29   // returns the corrected values of the signed distance field for each corner of the 

cells.
30   // the xi, yj, zk values are the coordinates of the corners of the cell, where x0 < x1, 

y0 < y1, z0 < z1.
31   // the phiijk are the values of the signed distance fiield at (i,j,k)
32   vector<double> correctInterface(Particle p, double x0, double x1, double y0, double y1,

double z0, double z1,
33   double phi000, double phi100, double phi110, double phi010, double phi001, double

phi101, double phi111, double phi011, double phip);
34   
35   // returns the interpolated value at (x, y, z)
36   // the xi, yj, zk values are the coordinates of the corners of the cell, where x0 < x1, 

y0 < y1, z0 < z1.
37   // the phiijk are the values of the signed distance fiield at (i,j,k)
38   double trilinearInterpolation(double x, double y, double z, double x0, double x1, double

y0, double y1, double z0, double z1,
39   double c000, double c100, double c110, double c010, double c001, double c101, double

c111, double c011);
40   
41   // returns the normal vectors Nx, Ny, Nz for the signed distance field
42   Derivative normal(vector<double> &arr, double dx, double dy, double dz, double M, double

N, double P);
43   
44   // saves the coordinates of all the particles to a .txt-files
45   void plotParticles(string filename, vector<Particle> particles);
46   



1   #include "particleLSM.h"
2   
3   // initializes particles in a cell where (x0, y0, z0) are the coordinates of the cell 

closest ot origo.
4   // dx, dy, dz are the grid spacing. X, Y, Z are all grid nodes in the computational 

domain.
5   // phi is the signed distance field. normal is the normal-vector. M, N, P is the number 

of grid nodes in each direction.
6   // numParticles are the number of particles of each type to be initialized in the cell.
7   vector<Particle> initializeParticles(double x0, double y0, double z0, double dx, double

dy, double dz,
8   vector<double> &X, vector<double> &Y, vector<double> &Z, vector<double> &phi,

Derivative &normal,
9   int M, int N, int P, int numParticles){

10   
11   vector<Particle> particles;
12   std::random_device rd; // obtain a random number from hardware
13   std::mt19937 gen(rd()); // seed the generator
14   std::uniform_int_distribution<> distr(0, 100); // define the range
15   double rmin = 0.1*min(dx, min(dy, dz)); // minimum particle radius
16   double rmax = 0.5*max(dx, max(dy, dz)); // maximum particle radius
17   double bmin = rmin;
18   double bmax = 3.0*max(dx, max(dy, dz));
19   double lambda = 1.0;
20   double itmax = 15; // max iterations in the attraction step
21   for (int p = 0; p < numParticles*2; ++p){
22   int positive = p%2; // even negative, odd positive
23   
24   // random coordinate in a cell
25   double x = x0 + dx*distr(gen)/100.0;
26   double y = y0 + dy*distr(gen)/100.0;
27   double z = z0 + dz*distr(gen)/100.0;
28   double phip;
29   
30   // index position of the particle
31   int i = (int)(x/dx);
32   int j = (int)(y/dy);
33   int k = (int)(z/dz);
34   
35   if (i < 0 || j < 0 || k < 0 || i >= M || j >= N || k >= P){continue;}
36   
37   phip = trilinearInterpolation(x, y, z, X[i], X[i+1], Y[j], Y[j+1], Z[k], Z[k+1],
38   phi[i+j*N+k*P*P],
39   phi[i+1+j*N+k*P*P],
40   phi[i+1+(j+1)*N+k*P*P],
41   phi[i+(j+1)*N+k*P*P],
42   phi[i+j*N+(k+1)*P*P],
43   phi[i+1+j*N+(k+1)*P*P],
44   phi[i+1+(j+1)*N+(k+1)*P*P],
45   phi[i+(j+1)*N+(k+1)*P*P]);
46   
47   double phiGoal = positive*(bmin + (bmax - bmin)*distr(gen)/100.0) - (1-positive

)*(bmin + (bmax - bmin)*distr(gen)/100.0);
48   
49   // attraction step
50   for (int it = 0; it < itmax; ++it){
51   
52   double Nxp = trilinearInterpolation(x, y, z, X[i], X[i+1], Y[j], Y[j+1], Z[k

], Z[k+1],
53   normal.x[i+j*N+k*P*P],
54   normal.x[i+1+j*N+k*P*P],
55   normal.x[i+1+(j+1)*N+k*P*P],
56   normal.x[i+(j+1)*N+k*P*P],
57   normal.x[i+j*N+(k+1)*P*P],
58   normal.x[i+1+j*N+(k+1)*P*P],
59   normal.x[i+1+(j+1)*N+(k+1)*P*P],
60   normal.x[i+(j+1)*N+(k+1)*P*P]);
61   x = x + lambda*(phiGoal - phip)*Nxp;
62   



63   double Nyp = trilinearInterpolation(x, y, z, X[i], X[i+1], Y[j], Y[j+1], Z[k
], Z[k+1],

64   normal.y[i+j*N+k*P*P],
65   normal.y[i+1+j*N+k*P*P],
66   normal.y[i+1+(j+1)*N+k*P*P],
67   normal.y[i+(j+1)*N+k*P*P],
68   normal.y[i+j*N+(k+1)*P*P],
69   normal.y[i+1+j*N+(k+1)*P*P],
70   normal.y[i+1+(j+1)*N+(k+1)*P*P],
71   normal.y[i+(j+1)*N+(k+1)*P*P]);
72   y = y + lambda*(phiGoal - phip)*Nyp;
73   
74   double Nzp = trilinearInterpolation(x, y, z, X[i], X[i+1], Y[j], Y[j+1], Z[k

], Z[k+1],
75   normal.z[i+j*N+k*P*P],
76   normal.z[i+1+j*N+k*P*P],
77   normal.z[i+1+(j+1)*N+k*P*P],
78   normal.z[i+(j+1)*N+k*P*P],
79   normal.z[i+j*N+(k+1)*P*P],
80   normal.z[i+1+j*N+(k+1)*P*P],
81   normal.z[i+1+(j+1)*N+(k+1)*P*P],
82   normal.z[i+(j+1)*N+(k+1)*P*P]);
83   z = z + lambda*(phiGoal - phip)*Nzp;
84   
85   i = (int)(x/dx);
86   j = (int)(y/dy);
87   k = (int)(z/dz);
88   
89   if (i < 0 || j < 0 || k < 0 || i >= M || j >= N || k >= P){break;}
90   
91   phip = trilinearInterpolation(x, y, z, X[i], X[i+1], Y[j], Y[j+1], Z[k], Z[k+

1],
92   phi[i+j*N+k*P*P],
93   phi[i+1+j*N+k*P*P],
94   phi[i+1+(j+1)*N+k*P*P],
95   phi[i+(j+1)*N+k*P*P],
96   phi[i+j*N+(k+1)*P*P],
97   phi[i+1+j*N+(k+1)*P*P],
98   phi[i+1+(j+1)*N+(k+1)*P*P],
99   phi[i+(j+1)*N+(k+1)*P*P]);

100   
101   if ((positive && (phip >= bmin && phip <= bmax)) || (!positive && (phip <= -

bmin && phip >= -bmax))){
102   double r;
103   if (sign(phip)*phip > rmax){
104   r = rmax;
105   } else if (sign(phip)*phip < rmin){
106   r = rmin;
107   } else {
108   r = sign(phip)*phip;
109   }
110   particles.push_back(Particle(x, y, z, r, positive));
111   break;
112   } else {
113   lambda = lambda/2.0;
114   }
115   }
116   }
117   return particles;
118   }
119   
120   // returns the corrected values of the signed distance field for each corner of the 

cells.
121   // the xi, yj, zk values are the coordinates of the corners of the cell, where x0 < x1, 

y0 < y1, z0 < z1.
122   // the phiijk are the values of the signed distance fiield at (i,j,k)
123   vector<double> correctInterface(Particle p, double x0, double x1, double y0, double y1,

double z0, double z1,
124   double phi000, double phi100, double phi110, double phi010, double phi001, double



phi101, double phi111, double phi011, double phip){
125   
126   // distance from particle surface to cell corners
127   double phip000 = sign(phip)*(p.r - sqrt(pow(x0 - p.x, 2) + pow(y0 - p.y, 2) + pow(z0

- p.z, 2)));
128   double phip100 = sign(phip)*(p.r - sqrt(pow(x1 - p.x, 2) + pow(y0 - p.y, 2) + pow(z0

- p.z, 2)));
129   double phip110 = sign(phip)*(p.r - sqrt(pow(x1 - p.x, 2) + pow(y1 - p.y, 2) + pow(z0

- p.z, 2)));
130   double phip010 = sign(phip)*(p.r - sqrt(pow(x0 - p.x, 2) + pow(y1 - p.y, 2) + pow(z0

- p.z, 2)));
131   double phip001 = sign(phip)*(p.r - sqrt(pow(x0 - p.x, 2) + pow(y0 - p.y, 2) + pow(z1

- p.z, 2)));
132   double phip101 = sign(phip)*(p.r - sqrt(pow(x1 - p.x, 2) + pow(y0 - p.y, 2) + pow(z1

- p.z, 2)));
133   double phip111 = sign(phip)*(p.r - sqrt(pow(x1 - p.x, 2) + pow(y1 - p.y, 2) + pow(z1

- p.z, 2)));
134   double phip011 = sign(phip)*(p.r - sqrt(pow(x0 - p.x, 2) + pow(y1 - p.y, 2) + pow(z1

- p.z, 2)));
135   
136   vector<double> phi_p;
137   vector<double> phi_m;
138   vector<double> phi;
139   
140   phi_p.push_back(max(phi000, phip000));
141   phi_p.push_back(max(phi100, phip100));
142   phi_p.push_back(max(phi110, phip110));
143   phi_p.push_back(max(phi010, phip010));
144   phi_p.push_back(max(phi001, phip001));
145   phi_p.push_back(max(phi101, phip101));
146   phi_p.push_back(max(phi111, phip111));
147   phi_p.push_back(max(phi011, phip011));
148   
149   phi_m.push_back(min(phi000, phip000));
150   phi_m.push_back(min(phi100, phip100));
151   phi_m.push_back(min(phi110, phip110));
152   phi_m.push_back(min(phi010, phip010));
153   phi_m.push_back(min(phi001, phip001));
154   phi_m.push_back(min(phi101, phip101));
155   phi_m.push_back(min(phi111, phip111));
156   phi_m.push_back(min(phi011, phip011));
157   
158   for (int i = 0; i < phi_p.size(); ++i){
159   if (abs(phi_p[i]) <= abs(phi_m[i])){
160   phi.push_back(phi_p[i]);
161   } else if (abs(phi_p[i]) > abs(phi_m[i])){
162   phi.push_back(phi_m[i]);
163   }
164   }
165   return phi;
166   }
167   
168   // returns the interpolated value at (x, y, z)
169   // the xi, yj, zk values are the coordinates of the corners of the cell, where x0 < x1, 

y0 < y1, z0 < z1.
170   // the phiijk are the values of the signed distance fiield at (i,j,k)
171   double trilinearInterpolation(double x, double y, double z, double x0, double x1, double

y0, double y1, double z0, double z1,
172   double c000, double c100, double c110, double c010, double c001, double c101, double

c111, double c011){
173   
174   double xd = (x - x0)/(x1 - x0);
175   double yd = (y - y0)/(y1 - y0);
176   double zd = (z - z0)/(z1 - z0);
177   
178   double c00 = c000*(1 - xd) + c100*xd;
179   double c01 = c001*(1 - xd) + c101*xd;
180   double c10 = c010*(1 - xd) + c110*xd;
181   double c11 = c011*(1 - xd) + c111*xd;



182   
183   double c0 = c00*(1 - yd) + c10*yd;
184   double c1 = c01*(1 - yd) + c11*yd;
185   
186   return c0*(1 - zd) + c1*zd;
187   }
188   
189   // returns the normal vectors Nx, Ny, Nz for the signed distance field
190   Derivative normal(vector<double> &arr, double dx, double dy, double dz, double M, double

N, double P){
191   vector<double> Nx;
192   vector<double> Ny;
193   vector<double> Nz;
194   for (int k = 0; k < P; ++k){
195   for (int j = 0; j < N; ++j){
196   for (int i = 0; i < M; ++i){
197   if (i==0 || i==(M-1) || j==0 || j==(N-1) || k==0 || k==(P-1)){
198   Nx.push_back(0);
199   Ny.push_back(0);
200   Nz.push_back(0);
201   continue;
202   }
203   double phix = (arr[(i+1)+j*N+k*P*P] - arr[(i-1)+j*N+k*P*P])/(2*dx);
204   if (phix == 0){
205   phix = (arr[(i+1)+j*N+k*P*P] - arr[i+j*N+k*P*P])/(dx);
206   }
207   double phiy = (arr[i+(j+1)*N+k*P*P] - arr[i+(j-1)*N+k*P*P])/(2*dy);
208   if (phiy == 0){
209   phiy = (arr[i+(j+1)*N+k*P*P] - arr[i+j*N+k*P*P])/(dy);
210   }
211   double phiz = (arr[i+j*N+(k+1)*P*P] - arr[i+j*N+(k-1)*P*P])/(2*dz);
212   if (phiz == 0){
213   phiz = (arr[i+j*N+(k+1)*P*P] - arr[i+j*N+k*P*P])/(dz);
214   }
215   Nx.push_back(phix/abs(phix));
216   Ny.push_back(phiy/abs(phiy));
217   Nz.push_back(phiz/abs(phiz));
218   }
219   }
220   }
221   return Derivative{Nx, Ny, Nz};
222   }
223   
224   // saves the coordinates of all the particles to a .txt-files
225   void plotParticles(string filename, vector<Particle> particles){
226   ofstream file;
227   file.open(filename);
228   if (!file.is_open()){cerr << "could not open file." << endl;}
229   
230   int count = 0;
231   for (int i = 0; i < particles.size(); ++i){
232   file << particles[i].x << "," << particles[i].y << "," << particles[i].z << ","

<< endl;
233   }
234   file.close();
235   }
236   
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A.4 schemes.h and schemes.cpp
These files contain all the numerical schemes used in the implemented particle level set method. schemes.h is
given first and contains the header file, while schemes.cpp contains the whole implementation.



1   #pragma once
2   
3   #include <vector>
4   #include <array>
5   #include <tuple>
6   #include <functional>
7   #include <cmath>
8   #include "vectorUtilities.h"
9   

10   using namespace std;
11   
12   // a deriative vector with a value in each direction in 3D
13   struct Derivative {
14   vector<double> x;
15   vector<double> y;
16   vector<double> z;
17   };
18   
19   // first-order upwind scheme
20   Derivative upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int N, int P, double dx, double dy, double dz);
21   
22   // WENO scheme. Third-order accurate and fifth-order accurate in smooth regions
23   Derivative weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double>

AZ, int M, int const N, int const P, double dx, double dy, double dz);
24   
25   // Godunov scheme used for the reinitialization equation
26   Derivative godunov(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int const N, int const P, double dx, double dy, double dz);
27   
28   // first-order explicit Euler scheme used with the upwind scheme
29   void euler_upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int N, int P, double dx, double dy, double dz, double dt);
30   
31   // third-order TVDRK scheme used with the upwind scheme
32   void TVDRK3_upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int N, int P, double dx, double dy, double dz, double dt);
33   
34   // third-order TVDRK scheme used with the WENO scheme
35   void TVDRK3_weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double

> AZ, int M, int N, int P, double dx, double dy, double dz, double dt);
36   
37   // first-order explicit Euler scheme used with the weno scheme
38   void euler_weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double>

AZ, int M, int N, int P, double dx, double dy, double dz, double dt);
39   
40   // third-order TVDRK scheme used with the Godunov scheme to solve the reinitialization 

equation
41   void TVDRK3_godunov_reinit(vector<double> &phi, int M, int N, int P, double dx, double dy

, double dz, double dt, vector<double> phi0);
42   
43   // first-order explicit Euler scheme used with the Godunov scheme to solve the 

reinitialization equation
44   void euler_godunov_reinit(vector<double> &phi, int M, int N, int P, double dx, double dy,

double dz, double dt, const vector<double> &phi0);
45   
46   // sign function that returns 1 for a positive value, -1 for a negative value, and 0 for 

a value of 0
47   int sign(double num);
48   



1   #include "schemes.h"
2   
3   // first-order upwind scheme
4   Derivative upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int N, int P, double dx, double dy, double dz){
5   
6   vector<double> phix;
7   vector<double> phiy;
8   vector<double> phiz;
9   

10   for (int k = 0; k < P; ++k){
11   for (int j = 0; j < N; ++j){
12   for (int i = 0; i < M; ++i){
13   
14   if (i==0 || i==M-1 || j==0 || j==N-1 || k==0 || k==P-1){
15   phix.push_back(0);
16   phiy.push_back(0);
17   phiz.push_back(0);
18   continue;
19   }
20   
21   if (AX[i + j*N + k*P*P] >= 0){
22   phix.push_back((phi[i + j*N + k*P*P] - phi[(i - 1) + j*N + k*P*P])/dx

);
23   } else if (AX[i + j*N + k*P*P] < 0){
24   phix.push_back((phi[(i + 1) + j*N + k*P*P] - phi[i + j*N + k*P*P])/dx

);
25   }
26   
27   if (AY[i + j*N + k*P*P] >= 0){
28   phiy.push_back((phi[i + j*N + k*P*P] - phi[i + (j - 1)*N + k*P*P])/dy

);
29   } else if (AY[i + j*N + k*P*P] < 0){
30   phiy.push_back((phi[i + (j + 1)*N + k*P*P] - phi[i + j*N + k*P*P])/dy

);
31   }
32   
33   if (AZ[i + j*N + k*P*P] >= 0){
34   phiz.push_back((phi[i + j*N + k*P*P] - phi[i + j*N + (k - 1)*P*P])/dz

);
35   } else if (AZ[i + j*N + k*P*P] < 0){
36   phiz.push_back((phi[i + j*N + (k + 1)*P*P] - phi[i + j*N + k*P*P])/dz

);
37   }
38   }
39   }
40   }
41   cout << AX.size() << " " << AY.size() << " " << AZ.size() << endl;
42   return Derivative{phix, phiy, phiz};
43   }
44   
45   // WENO scheme. Third-order accurate and fifth-order accurate in smooth regions
46   Derivative weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double>

AZ, int M, int const N, int const P, double dx, double dy, double dz){
47   
48   vector<double> phix;
49   vector<double> phiy;
50   vector<double> phiz;
51   
52   for (int k = 0; k < P; ++k){
53   for (int j = 0; j < N; ++j){
54   for (int i = 0; i < M; ++i){
55   if (i == 0 || i == 1 || i==2 || i==(M-3) || i == (M-2) || i == (M-1)){
56   phix.push_back(0);
57   phiy.push_back(0);
58   phiz.push_back(0);
59   continue;
60   }
61   if (j == 0 || j == 1 || j==2 || j==(N-3) || j == (N-2) || j == (N-1)){



62   phix.push_back(0);
63   phiy.push_back(0);
64   phiz.push_back(0);
65   continue;
66   }
67   if (k == 0 || k == 1 || k==2 || k==(P-3) || k == (P-2) || k == (P-1)){
68   phix.push_back(0);
69   phiy.push_back(0);
70   phiz.push_back(0);
71   continue;
72   }
73   
74   double v1;
75   double v2;
76   double v3;
77   double v4;
78   double v5;
79   
80   {
81   if (AX[i + j*N + k*P*P] >= 0){
82   v1 = (phi[(i-2) + j*N + k*P*P] - phi[(i-3) + j*N + k*P*P])/dx;
83   v2 = (phi[(i-1) + j*N + k*P*P] - phi[(i-2) + j*N + k*P*P])/dx;
84   v3 = (phi[(i) + j*N + k*P*P] - phi[(i-1) + j*N + k*P*P])/dx;
85   v4 = (phi[(i+1) + j*N + k*P*P] - phi[(i) + j*N + k*P*P])/dx;
86   v5 = (phi[(i+2) + j*N + k*P*P] - phi[(i+1) + j*N + k*P*P])/dx;
87   } else if (AX[i + j*N + k*P*P] < 0){
88   v1 = (phi[(i-1) + j*N + k*P*P] - phi[(i-2) + j*N + k*P*P])/dx;
89   v2 = (phi[(i) + j*N + k*P*P] - phi[(i-1) + j*N + k*P*P])/dx;
90   v3 = (phi[(i+1) + j*N + k*P*P] - phi[(i) + j*N + k*P*P])/dx;
91   v4 = (phi[(i+2) + j*N + k*P*P] - phi[(i+1) + j*N + k*P*P])/dx;
92   v5 = (phi[(i+3) + j*N + k*P*P] - phi[(i+2) + j*N + k*P*P])/dx;
93   }
94   double S1 = 13/12*(v1 - 2*v2 + v3)*(v1 - 2*v2 + v3) + 1/4*(v1 - 4*v2 + v3

)*(v1 - 4*v2 + v3);
95   double S2 = 13/12*(v2 - 2*v3 + v4)*(v2 - 2*v3 + v4) + 1/4*(v2 - v4)*(v2 -

v4);
96   double S3 = 13/12*(v3 - 2*v4 + v5)*(v3 - 2*v4 + v5) + 1/4*(3*v3 - 4*v4 +

v5)*(3*v3 - 4*v4 + v5);
97   
98   double epsilon = pow(10, -6)*max(max(max(max(v1*v1, v2*v2), v3*v3), v4*v4

), v5*v5) + pow(10, -99);
99   

100   double alpha1 = 0.1/((S1 + epsilon)*(S1 + epsilon));
101   double alpha2 = 0.6/((S2 + epsilon)*(S2 + epsilon));
102   double alpha3 = 0.3/((S3 + epsilon)*(S3 + epsilon));
103   
104   double omega1 = alpha1/(alpha1 + alpha2 + alpha3);
105   double omega2 = alpha2/(alpha1 + alpha2 + alpha3);
106   double omega3 = alpha3/(alpha1 + alpha2 + alpha3);
107   
108   double phix1 = v1/3 - 7*v2/6 + 11*v3/6;
109   double phix2 = -v2/6 + 5*v3/6 + v4/3;
110   double phix3 = v3/3 + 5*v4/6 - v5/6;
111   
112   phix.push_back(omega1*phix1 + omega2*phix2 + omega3*phix3);
113   }
114   
115   {
116   if (AY[i + j*N + k*P*P] >= 0){
117   v1 = (phi[i + (j-2)*N + k*P*P] - phi[i + (j-3)*N + k*P*P])/dy;
118   v2 = (phi[i + (j-1)*N + k*P*P] - phi[i + (j-2)*N + k*P*P])/dy;
119   v3 = (phi[i + j*N + k*P*P] - phi[i + (j-1)*N + k*P*P])/dy;
120   v4 = (phi[i + (j+1)*N + k*P*P] - phi[i + j*N + k*P*P])/dy;
121   v5 = (phi[i + (j+2)*N + k*P*P] - phi[i + (j+1)*N + k*P*P])/dy;
122   } else if (AY[i + j*N + k*P*P] < 0){
123   v1 = (phi[i + (j-1)*N + k*P*P] - phi[i + (j-2)*N + k*P*P])/dy;
124   v2 = (phi[i + j*N + k*P*P] - phi[i + (j-1)*N + k*P*P])/dy;
125   v3 = (phi[i + (j+1)*N + k*P*P] - phi[i + j*N + k*P*P])/dy;
126   v4 = (phi[i + (j+2)*N + k*P*P] - phi[i + (j+1)*N + k*P*P])/dy;



127   v5 = (phi[i + (j+3)*N + k*P*P] - phi[i + (j+2)*N + k*P*P])/dy;
128   }
129   double S1 = 13/12*(v1 - 2*v2 + v3)*(v1 - 2*v2 + v3) + 1/4*(v1 - 4*v2 + v3

)*(v1 - 4*v2 + v3);
130   double S2 = 13/12*(v2 - 2*v3 + v4)*(v2 - 2*v3 + v4) + 1/4*(v2 - v4)*(v2 -

v4);
131   double S3 = 13/12*(v3 - 2*v4 + v5)*(v3 - 2*v4 + v5) + 1/4*(3*v3 - 4*v4 +

v5)*(3*v3 - 4*v4 + v5);
132   
133   double epsilon = pow(10, -6)*max(max(max(max(v1*v1, v2*v2), v3*v3), v4*v4

), v5*v5) + pow(10, -99);
134   
135   double alpha1 = 0.1/((S1 + epsilon)*(S1 + epsilon));
136   double alpha2 = 0.6/((S2 + epsilon)*(S2 + epsilon));
137   double alpha3 = 0.3/((S3 + epsilon)*(S3 + epsilon));
138   
139   double omega1 = alpha1/(alpha1 + alpha2 + alpha3);
140   double omega2 = alpha2/(alpha1 + alpha2 + alpha3);
141   double omega3 = alpha3/(alpha1 + alpha2 + alpha3);
142   
143   double phiy1 = v1/3 - 7*v2/6 + 11*v3/6;
144   double phiy2 = -v2/6 + 5*v3/6 + v4/3;
145   double phiy3 = v3/3 + 5*v4/6 - v5/6;
146   
147   phiy.push_back(omega1*phiy1 + omega2*phiy2 + omega3*phiy3);
148   
149   }
150   
151   {
152   if (AZ[i + j*N + k*P*P] >= 0){
153   v1 = (phi[i + j*N + (k-2)*P*P] - phi[i + j*N + (k-3)*P*P])/dz;
154   v2 = (phi[i + j*N + (k-1)*P*P] - phi[i + j*N + (k-2)*P*P])/dz;
155   v3 = (phi[i + j*N + k*P*P] - phi[i + j*N + (k-1)*P*P])/dz;
156   v4 = (phi[i + j*N + (k+1)*P*P] - phi[i + j*N + k*P*P])/dz;
157   v5 = (phi[i + j*N + (k+2)*P*P] - phi[i + j*N + (k+1)*P*P])/dz;
158   } else if (AZ[i + j*N + k*P*P] < 0){
159   v1 = (phi[i + j*N + (k-1)*P*P] - phi[i + j*N + (k-2)*P*P])/dz;
160   v2 = (phi[i + j*N + k*P*P] - phi[i + j*N + (k-1)*P*P])/dz;
161   v3 = (phi[i + j*N + (k+1)*P*P] - phi[i + j*N + k*P*P])/dz;
162   v4 = (phi[i + j*N + (k+2)*P*P] - phi[i + j*N + (k+1)*P*P])/dz;
163   v5 = (phi[i + j*N + (k+3)*P*P] - phi[i + j*N + (k+2)*P*P])/dz;
164   }
165   double S1 = 13/12*(v1 - 2*v2 + v3)*(v1 - 2*v2 + v3) + 1/4*(v1 - 4*v2 + v3

)*(v1 - 4*v2 + v3);
166   double S2 = 13/12*(v2 - 2*v3 + v4)*(v2 - 2*v3 + v4) + 1/4*(v2 - v4)*(v2 -

v4);
167   double S3 = 13/12*(v3 - 2*v4 + v5)*(v3 - 2*v4 + v5) + 1/4*(3*v3 - 4*v4 +

v5)*(3*v3 - 4*v4 + v5);
168   
169   double epsilon = pow(10, -6)*max(max(max(max(v1*v1, v2*v2), v3*v3), v4*v4

), v5*v5) + pow(10, -99);
170   
171   double alpha1 = 0.1/((S1 + epsilon)*(S1 + epsilon));
172   double alpha2 = 0.6/((S2 + epsilon)*(S2 + epsilon));
173   double alpha3 = 0.3/((S3 + epsilon)*(S3 + epsilon));
174   
175   double omega1 = alpha1/(alpha1 + alpha2 + alpha3);
176   double omega2 = alpha2/(alpha1 + alpha2 + alpha3);
177   double omega3 = alpha3/(alpha1 + alpha2 + alpha3);
178   
179   double phiz1 = v1/3 - 7*v2/6 + 11*v3/6;
180   double phiz2 = -v2/6 + 5*v3/6 + v4/3;
181   double phiz3 = v3/3 + 5*v4/6 - v5/6;
182   
183   phiz.push_back(omega1*phiz1 + omega2*phiz2 + omega3*phiz3);
184   }
185   }
186   }
187   }



188   return Derivative{phix, phiy, phiz};
189   }
190   
191   // Godunov scheme used for the reinitialization equation
192   Derivative godunov(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int const N, int const P, double dx, double dy, double dz){
193   
194   vector<double> phix;
195   vector<double> phiy;
196   vector<double> phiz;
197   
198   for (int k = 0; k < P; ++k){
199   for (int j = 0; j < N; ++j){
200   for (int i = 0; i < M; ++i){
201   
202   if (i == 0 || i == (M-1) || j == 0 || j == (N-1) || k == 0 || k == (P-1)

){
203   phix.push_back(1.0);
204   phiy.push_back(1.0);
205   phiz.push_back(1.0);
206   continue;
207   }
208   
209   double phix_m = (phi[i + j*N + k*P*P] - phi[(i-1) + j*N + k*P*P])/dx;
210   double phix_p = (phi[(i+1) + j*N + k*P*P] - phi[i + j*N + k*P*P])/dx;
211   
212   double phiy_m = (phi[i + j*N + k*P*P] - phi[i + (j-1)*N + k*P*P])/dy;
213   double phiy_p = (phi[i + (j+1)*N + k*P*P] - phi[i + j*N + k*P*P])/dy;
214   
215   double phiz_m = (phi[i + j*N + k*P*P] - phi[i + j*N + (k-1)*P*P])/dz;
216   double phiz_p = (phi[i + j*N + (k+1)*P*P] - phi[i + j*N + k*P*P])/dz;
217   
218   if (AX[i + j*N + k*P*P] >= 0){
219   phix.push_back(sqrt(max(max(phix_m, 0.0)*max(phix_m, 0.0), min(phix_p

, 0.0)*min(phix_p, 0.0))));
220   } else if (AX[i + j*N + k*P*P] < 0){
221   phix.push_back(sqrt(max(min(phix_m, 0.0)*min(phix_m, 0.0), max(phix_p

, 0.0)*max(phix_p, 0.0))));
222   }
223   
224   if (AY[i + j*N + k*P*P] >= 0){
225   phiy.push_back(sqrt(max(max(phiy_m, 0.0)*max(phiy_m, 0.0), min(phiy_p

, 0.0)*min(phiy_p, 0.0))));
226   } else if (AY[i + j*N + k*P*P] < 0){
227   phiy.push_back(sqrt(max(min(phiy_m, 0.0)*min(phiy_m, 0.0), max(phiy_p

, 0.0)*max(phiy_p, 0.0))));
228   }
229   
230   if (AZ[i + j*N + k*P*P] >= 0){
231   phiz.push_back(sqrt(max(max(phiz_m, 0.0)*max(phiz_m, 0.0), min(phiz_p

, 0.0)*min(phiz_p, 0.0))));
232   } else if (AZ[i + j*N + k*P*P] < 0){
233   phiz.push_back(sqrt(max(min(phiz_m, 0.0)*min(phiz_m, 0.0), max(phiz_p

, 0.0)*max(phiz_p, 0.0))));
234   }
235   }
236   }
237   }
238   return Derivative{phix, phiy, phiz};
239   }
240   
241   // first-order explicit Euler scheme used with the upwind scheme
242   void euler_upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int N, int P, double dx, double dy, double dz, double dt){
243   auto [phix, phiy, phiz] = upwind(phi, AX, AY, AZ, M, N, P, dx, dy, dz);
244   phi = phi - dt*(AX*phix + AY*phiy + AZ*phiz);
245   }
246   
247   // third-order TVDRK scheme used with the upwind scheme



248   void TVDRK3_upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<
double> AZ, int M, int N, int P, double dx, double dy, double dz, double dt){

249   
250   vector<double> n1;
251   vector<double> n2;
252   vector<double> n3_2;
253   
254   {
255   auto [phix, phiy, phiz] = upwind(phi, AX, AY, AZ, M, N, P, dx, dy, dz);
256   n1 = phi - dt*(AX*phix + AY*phiy + AZ*phiz);
257   }
258   
259   {
260   auto [phix, phiy, phiz] = upwind(n1, AX, AY, AZ, M, N, P, dx, dy, dz);
261   n2 = n1 - dt*(AX*phix + AY*phiy + AZ*phiz);
262   }
263   
264   vector<double> n1_2 = 3/4*phi + 1/4*n2;
265   
266   {
267   auto [phix, phiy, phiz] = upwind(n1_2, AX, AY, AZ, M, N, P, dx, dy, dz);
268   n3_2 = n1_2 - dt*(AX*phix + AY*phiy + AZ*phiz);
269   }
270   
271   phi = 1/3*phi + 2/3*n3_2;
272   
273   }
274   
275   // third-order TVDRK scheme used with the WENO scheme
276   void TVDRK3_weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double

> AZ, int M, int N, int P, double dx, double dy, double dz, double dt){
277   
278   {
279   vector<double> n1;
280   vector<double> n2;
281   vector<double> n3_2;
282   
283   {
284   auto [phix, phiy, phiz] = weno(phi, AX, AY, AZ, M, N, P, dx, dy, dz);
285   n1 = phi - dt*(AX*phix + AY*phiy + AZ*phiz);
286   }
287   
288   {
289   auto [phix, phiy, phiz] = weno(n1, AX, AY, AZ, M, N, P, dx, dy, dz);
290   n2 = n1 - dt*(AX*phix + AY*phiy + AZ*phiz);
291   }
292   
293   vector<double> n1_2 = 3.0/4*phi + 1.0/4*n2;
294   
295   {
296   auto [phix, phiy, phiz] = weno(n1_2, AX, AY, AZ, M, N, P, dx, dy, dz);
297   n3_2 = n1_2 - dt*(AX*phix + AY*phiy + AZ*phiz);
298   }
299   
300   phi = 1.0/3*phi + 2.0/3*n3_2;
301   
302   }
303   
304   for(int i = 0; i < M; ++i){
305   for (int j = 0; j < N; ++j){
306   phi[2 + i*N + j*P*P] = phi[3 + i*N + j*P*P] - (phi[4 + i*N + j*P*P] - phi[3 +

i*N + j*P*P]);
307   phi[1 + i*N + j*P*P] = phi[2 + i*N + j*P*P] - (phi[3 + i*N + j*P*P] - phi[2 +

i*N + j*P*P]);
308   phi[0 + i*N + j*P*P] = phi[1 + i*N + j*P*P] - (phi[2 + i*N + j*P*P] - phi[1 +

i*N + j*P*P]);
309   phi[(M-3) + i*N + j*P*P] = phi[(M-4) + i*N + j*P*P] - (phi[(M-5) + i*N + j*P*

P] - phi[(M-4) + i*N + j*P*P]);
310   phi[(M-2) + i*N + j*P*P] = phi[(M-3) + i*N + j*P*P] - (phi[(M-4) + i*N + j*P*



P] - phi[(M-3) + i*N + j*P*P]);
311   phi[(M-1) + i*N + j*P*P] = phi[(M-2) + i*N + j*P*P] - (phi[(M-3) + i*N + j*P*

P] - phi[(M-2) + i*N + j*P*P]);
312   
313   phi[j + (2)*N + i*P*P] = phi[j + (3)*N + i*P*P] - (phi[j + (4)*N + i*P*P] -

phi[j + (3)*N + i*P*P]);
314   phi[j + (1)*N + i*P*P] = phi[j + (2)*N + i*P*P] - (phi[j + (3)*N + i*P*P] -

phi[j + (2)*N + i*P*P]);
315   phi[j + (0)*N + i*P*P] = phi[j + (1)*N + i*P*P] - (phi[j + (2)*N + i*P*P] -

phi[j + (1)*N + i*P*P]);
316   phi[j + (N-3)*N + i*P*P] = phi[j + (N-4)*N + i*P*P] - (phi[j + (N-5)*N + i*P*

P] - phi[j + (N-4)*N + i*P*P]);
317   phi[j + (N-2)*N + i*P*P] = phi[j + (N-3)*N + i*P*P] - (phi[j + (N-4)*N + i*P*

P] - phi[j + (N-3)*N + i*P*P]);
318   phi[j + (N-1)*N + i*P*P] = phi[j + (N-2)*N + i*P*P] - (phi[j + (N-3)*N + i*P*

P] - phi[j + (N-2)*N + i*P*P]);
319   
320   phi[j + i*N + (2)*P*P] = phi[j + i*N + (3)*P*P] - (phi[j + i*N + (4)*P*P] -

phi[j + i*N + (3)*P*P]);
321   phi[j + i*N + (1)*P*P] = phi[j + i*N + (2)*P*P] - (phi[j + i*N + (3)*P*P] -

phi[j + i*N + (2)*P*P]);
322   phi[j + i*N + (0)*P*P] = phi[j + i*N + (1)*P*P] - (phi[j + i*N + (2)*P*P] -

phi[j + i*N + (1)*P*P]);
323   phi[j + i*N + (N-3)*P*P] = phi[j + i*N + (N-4)*P*P] - (phi[j + i*N + (N-5)*P*

P] - phi[j + i*N + (N-4)*P*P]);
324   phi[j + i*N + (N-2)*P*P] = phi[j + i*N + (N-3)*P*P] - (phi[j + i*N + (N-4)*P*

P] - phi[j + i*N + (N-3)*P*P]);
325   phi[j + i*N + (N-1)*P*P] = phi[j + i*N + (N-2)*P*P] - (phi[j + i*N + (N-3)*P*

P] - phi[j + i*N + (N-2)*P*P]);
326   
327   }
328   }
329   }
330   
331   // first-order explicit Euler scheme used with the weno scheme
332   void euler_weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double>

AZ, int M, int N, int P, double dx, double dy, double dz, double dt){
333   auto [phix, phiy, phiz] = weno(phi, AX, AY, AZ, M, N, P, dx, dy, dz);
334   phi = phi - dt*(AX*phix + AY*phiy + AZ*phiz);
335   
336   for(int i = 0; i < M; ++i){
337   for (int j = 0; j < N; ++j){
338   phi[2 + i*N + j*P*P] = phi[3 + i*N + j*P*P] - (phi[4 + i*N + j*P*P] - phi[3 +

i*N + j*P*P]);
339   phi[1 + i*N + j*P*P] = phi[2 + i*N + j*P*P] - (phi[3 + i*N + j*P*P] - phi[2 +

i*N + j*P*P]);
340   phi[0 + i*N + j*P*P] = phi[1 + i*N + j*P*P] - (phi[2 + i*N + j*P*P] - phi[1 +

i*N + j*P*P]);
341   phi[(M-3) + i*N + j*P*P] = phi[(M-4) + i*N - j*P*P] + (phi[(M-5) + i*N + j*P*

P] - phi[(M-4) + i*N + j*P*P]);
342   phi[(M-2) + i*N + j*P*P] = phi[(M-3) + i*N - j*P*P] + (phi[(M-4) + i*N + j*P*

P] - phi[(M-3) + i*N + j*P*P]);
343   phi[(M-1) + i*N + j*P*P] = phi[(M-2) + i*N - j*P*P] + (phi[(M-3) + i*N + j*P*

P] - phi[(M-2) + i*N + j*P*P]);
344   
345   phi[j + (2)*N + i*P*P] = phi[j + (3)*N + i*P*P] - (phi[j + (4)*N + i*P*P] -

phi[j + (3)*N + i*P*P]);
346   phi[j + (1)*N + i*P*P] = phi[j + (2)*N + i*P*P] - (phi[j + (3)*N + i*P*P] -

phi[j + (2)*N + i*P*P]);
347   phi[j + (0)*N + i*P*P] = phi[j + (1)*N + i*P*P] - (phi[j + (2)*N + i*P*P] -

phi[j + (1)*N + i*P*P]);
348   phi[j + (N-3)*N + i*P*P] = phi[j + (N-4)*N + i*P*P] - (phi[j + (N-5)*N + i*P*

P] - phi[j + (N-4)*N + i*P*P]);
349   phi[j + (N-2)*N + i*P*P] = phi[j + (N-3)*N + i*P*P] - (phi[j + (N-4)*N + i*P*

P] - phi[j + (N-3)*N + i*P*P]);
350   phi[j + (N-1)*N + i*P*P] = phi[j + (N-2)*N + i*P*P] - (phi[j + (N-3)*N + i*P*

P] - phi[j + (N-2)*N + i*P*P]);
351   
352   phi[j + i*N + (2)*P*P] = phi[j + i*N + (3)*P*P] - (phi[j + i*N + (4)*P*P] -



phi[j + i*N + (3)*P*P]);
353   phi[j + i*N + (1)*P*P] = phi[j + i*N + (2)*P*P] - (phi[j + i*N + (3)*P*P] -

phi[j + i*N + (2)*P*P]);
354   phi[j + i*N + (0)*P*P] = phi[j + i*N + (1)*P*P] - (phi[j + i*N + (2)*P*P] -

phi[j + i*N + (1)*P*P]);
355   phi[j + i*N + (N-3)*P*P] = phi[j + i*N + (N-4)*P*P] - (phi[j + i*N + (N-5)*P*

P] - phi[j + i*N + (N-4)*P*P]);
356   phi[j + i*N + (N-2)*P*P] = phi[j + i*N + (N-3)*P*P] - (phi[j + i*N + (N-4)*P*

P] - phi[j + i*N + (N-3)*P*P]);
357   phi[j + i*N + (N-1)*P*P] = phi[j + i*N + (N-2)*P*P] - (phi[j + i*N + (N-3)*P*

P] - phi[j + i*N + (N-2)*P*P]);
358   }
359   }
360   }
361   
362   // third-order TVDRK scheme used with the Godunov scheme to solve the reinitialization 

equation
363   void TVDRK3_godunov_reinit(vector<double> &phi, int M, int N, int P, double dx, double dy

, double dz, double dt, vector<double> phi0){
364   
365   vector<double> n1;
366   vector<double> n2;
367   vector<double> n3_2;
368   
369   for (int k = 0; k < P; ++k){
370   for (int j = 0; j < N; ++j){
371   for (int i = 0; i < M; ++i){
372   if (i==0 || i==(M-1) || i==1 || i==M-2 || i==2 || i==M-3 || j==0 || j==(N

-1) || j==1 || j==N-2 || j==2 || j==N-3 || k==0 || k==(P-1) || k==1 || k
==P-2 || k==2 || k==P-3){

373   n1.push_back(phi[i+j*N+k*P*P]);
374   continue;
375   }
376   
377   double a = (phi[i+j*N+k*P*P]-phi[(i-1)+j*N+k*P*P])/dx;
378   double b = (phi[(i+1)+j*N+k*P*P]-phi[i+j*N+k*P*P])/dx;
379   double c = (phi[i+j*N+k*P*P]-phi[i+(j-1)*N+k*P*P])/dy;
380   double d = (phi[i+(j+1)*N+k*P*P]-phi[i+j*N+k*P*P])/dy;
381   double e = (phi[i+j*N+k*P*P]-phi[i+j*N+(k-1)*P*P])/dz;
382   double f = (phi[i+j*N+(k+1)*P*P]-phi[i+j*N+k*P*P])/dz;
383   
384   double G;
385   if (phi0[i+j*N+k*P*P] > 0){
386   G = sqrt(max(max(a,0.0)*max(a,0.0), min(b,0.0)*min(b,0.0))
387   + max(max(c,0.0)*max(c,0.0), min(d,0.0)*min(d,0.0))
388   + max(max(e,0.0)*max(e,0.0), min(f,0.0)*min(f,0.0))) - 1;
389   } else if (phi0[i+j*N+k*P*P] < 0){
390   G = sqrt(max(min(a,0.0)*min(a,0.0), max(b,0.0)*max(b,0.0))
391   + max(min(c,0.0)*min(c,0.0), max(d,0.0)*max(d,0.0))
392   + max(min(e,0.0)*min(e,0.0), max(f,0.0)*max(f,0.0))) - 1;
393   }
394   n1.push_back(phi[i + j*N + k*P*P] - dt*sign(phi0[i+j*N+k*P*P])*G);
395   }
396   }
397   }
398   
399   for (int k = 0; k < P; ++k){
400   for (int j = 0; j < N; ++j){
401   for (int i = 0; i < M; ++i){
402   if (i==0 || i==(M-1) || i==1 || i==M-2 || i==2 || i==M-3 || j==0 || j==(N

-1) || j==1 || j==N-2 || j==2 || j==N-3 || k==0 || k==(P-1) || k==1 || k
==P-2 || k==2 || k==P-3){

403   n2.push_back(n1[i+j*N+k*P*P]);
404   continue;
405   }
406   
407   double a = (n1[i+j*N+k*P*P]-n1[(i-1)+j*N+k*P*P])/dx;
408   double b = (n1[(i+1)+j*N+k*P*P]-n1[i+j*N+k*P*P])/dx;
409   double c = (n1[i+j*N+k*P*P]-n1[i+(j-1)*N+k*P*P])/dy;



410   double d = (n1[i+(j+1)*N+k*P*P]-n1[i+j*N+k*P*P])/dy;
411   double e = (n1[i+j*N+k*P*P]-n1[i+j*N+(k-1)*P*P])/dz;
412   double f = (n1[i+j*N+(k+1)*P*P]-n1[i+j*N+k*P*P])/dz;
413   
414   double G;
415   if (phi0[i+j*N+k*P*P] > 0){
416   G = sqrt(max(max(a,0.0)*max(a,0.0), min(b,0.0)*min(b,0.0))
417   + max(max(c,0.0)*max(c,0.0), min(d,0.0)*min(d,0.0))
418   + max(max(e,0.0)*max(e,0.0), min(f,0.0)*min(f,0.0))) - 1;
419   } else if (phi0[i+j*N+k*P*P] < 0){
420   G = sqrt(max(min(a,0.0)*min(a,0.0), max(b,0.0)*max(b,0.0))
421   + max(min(c,0.0)*min(c,0.0), max(d,0.0)*max(d,0.0))
422   + max(min(e,0.0)*min(e,0.0), max(f,0.0)*max(f,0.0))) - 1;
423   }
424   n2.push_back(n1[i + j*N + k*P*P] - dt*sign(phi0[i+j*N+k*P*P])*G);
425   }
426   }
427   }
428   
429   vector<double> n1_2 = (3.0/4*phi + 1.0/4*n2);
430   
431   for (int k = 0; k < P; ++k){
432   for (int j = 0; j < N; ++j){
433   for (int i = 0; i < M; ++i){
434   if (i==0 || i==(M-1) || i==1 || i==M-2 || i==2 || i==M-3 || j==0 || j==(N

-1) || j==1 || j==N-2 || j==2 || j==N-3 || k==0 || k==(P-1) || k==1 || k
==P-2 || k==2 || k==P-3){

435   n3_2.push_back(n1_2[i+j*N+k*P*P]);
436   continue;
437   }
438   
439   double a = (n1_2[i+j*N+k*P*P]-n1_2[(i-1)+j*N+k*P*P])/dx;
440   double b = (n1_2[(i+1)+j*N+k*P*P]-n1_2[i+j*N+k*P*P])/dx;
441   double c = (n1_2[i+j*N+k*P*P]-n1_2[i+(j-1)*N+k*P*P])/dy;
442   double d = (n1_2[i+(j+1)*N+k*P*P]-n1_2[i+j*N+k*P*P])/dy;
443   double e = (n1_2[i+j*N+k*P*P]-n1_2[i+j*N+(k-1)*P*P])/dz;
444   double f = (n1_2[i+j*N+(k+1)*P*P]-n1_2[i+j*N+k*P*P])/dz;
445   
446   double G;
447   if (phi0[i+j*N+k*P*P] > 0){
448   G = sqrt(max(max(a,0.0)*max(a,0.0), min(b,0.0)*min(b,0.0))
449   + max(max(c,0.0)*max(c,0.0), min(d,0.0)*min(d,0.0))
450   + max(max(e,0.0)*max(e,0.0), min(f,0.0)*min(f,0.0))) - 1;
451   } else if (phi0[i+j*N+k*P*P] < 0){
452   G = sqrt(max(min(a,0.0)*min(a,0.0), max(b,0.0)*max(b,0.0))
453   + max(min(c,0.0)*min(c,0.0), max(d,0.0)*max(d,0.0))
454   + max(min(e,0.0)*min(e,0.0), max(f,0.0)*max(f,0.0))) - 1;
455   }
456   n3_2.push_back(n1_2[i + j*N + k*P*P] - dt*sign(phi0[i+j*N+k*P*P])*G);
457   }
458   }
459   }
460   
461   phi = 1.0/3*phi + 2.0/3*n3_2;
462   
463   }
464   
465   // first-order explicit Euler scheme used with the Godunov scheme to solve the 

reinitialization equation
466   void euler_godunov_reinit(vector<double> &phi, int M, int N, int P, double dx, double dy,

double dz, double dt, const vector<double> &phi0){
467   vector<double> phiNew;
468   for (int k = 0; k < P; ++k){
469   for (int j = 0; j < N; ++j){
470   for (int i = 0; i < M; ++i){
471   if (i==0 || i==(M-1) || i==1 || i==M-2 || i==2 || i==M-3 || j==0 || j==(N

-1) || j==1 || j==N-2 || j==2 || j==N-3 || k==0 || k==(P-1) || k==1 || k
==P-2 || k==2 || k==P-3){

472   phiNew.push_back(phi[i+j*N+k*P*P]);



473   continue;
474   }
475   
476   double a = (phi[i+j*N+k*P*P]-phi[(i-1)+j*N+k*P*P])/dx;
477   double b = (phi[(i+1)+j*N+k*P*P]-phi[i+j*N+k*P*P])/dx;
478   double c = (phi[i+j*N+k*P*P]-phi[i+(j-1)*N+k*P*P])/dy;
479   double d = (phi[i+(j+1)*N+k*P*P]-phi[i+j*N+k*P*P])/dy;
480   double e = (phi[i+j*N+k*P*P]-phi[i+j*N+(k-1)*P*P])/dz;
481   double f = (phi[i+j*N+(k+1)*P*P]-phi[i+j*N+k*P*P])/dz;
482   
483   double G;
484   if (phi0[i+j*N+k*P*P] > 0){
485   G = sqrt(max(max(a,0.0)*max(a,0.0), min(b,0.0)*min(b,0.0))
486   + max(max(c,0.0)*max(c,0.0), min(d,0.0)*min(d,0.0))
487   + max(max(e,0.0)*max(e,0.0), min(f,0.0)*min(f,0.0))) - 1;
488   } else if (phi0[i+j*N+k*P*P] < 0){
489   G = sqrt(max(min(a,0.0)*min(a,0.0), max(b,0.0)*max(b,0.0))
490   + max(min(c,0.0)*min(c,0.0), max(d,0.0)*max(d,0.0))
491   + max(min(e,0.0)*min(e,0.0), max(f,0.0)*max(f,0.0))) - 1;
492   }
493   phiNew.push_back(phi[i + j*N + k*P*P] - dt*sign(phi0[i+j*N+k*P*P])*G);
494   }
495   }
496   }
497   phi = phiNew;
498   }
499   
500   // sign function that returns 1 for a positive value, -1 for a negative value, and 0 for 

a value of 0
501   int sign(double num){
502   int res;
503   if (num < 0){
504   res = -1;
505   } else if (num > 0){
506   res = 1;
507   } else if (num == 0){
508   res = 0;
509   }
510   return res;
511   }
512   
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A.5 testCases.h and testCases.cpp
These files contain code to generate the velocity fields and the computation of the error measures introduced
in section 4.6. testCases.h is given first and contains the header file, while testCases.cpp contains the whole
implementation.



1   #pragma once
2   
3   #include <vector>
4   #include <tuple>
5   #include <cmath>
6   
7   #include "initialization.h"
8   #include "schemes.h"
9   

10   using namespace std;
11   
12   #define PI 3.14159265
13   
14   // velocity vector with one value for each direction in 3D
15   struct Velocity {
16   vector<double> x;
17   vector<double> y;
18   vector<double> z;
19   };
20   
21   // velocity field for deformation in 3D. Taken from LeVeque (1996)
22   Velocity vortexVelocity(int M, int N, int P, vector<double> X, vector<double> Y, vector<

double> Z, double t, double T);
23   
24   // velocity field for deformation in 2D. Taken from Morgan and Waltz (2017)
25   Velocity shearedSphereVelocity(int M, int N, int P, vector<double> X, vector<double> Y,

vector<double> Z, double t, double T);
26   
27   // simple velocity field with u = v = w = 1 for all grid nodes
28   Velocity simpleVelocity(int M, int N, int P);
29   
30   // returns the volume of the domain bounded by the zero contour in a signed distance 

field
31   double volume(vector<double> &phi, double dx, double dy, double dz);
32   
33   // returns the surface area of the domain bounded by the zero contour in a signed 

distance field
34   double surfaceArea(vector<double> &phi, double dx, double dy, double dz, double M, double

N, double P);
35   
36   // error measure of the interface error
37   double interfaceError(vector<double> &phi0, vector<double> &phi, double dx, double dy,

double dz, double M, double N, double P);
38   
39   // error measure of the average mass error
40   double massError(vector<double> &phi, double dx, double dy, double dz, double M, double N

, double P);
41   



1   #include "testCases.h"
2   
3   // velocity field for deformation in 3D. Taken from LeVeque (1996)
4   Velocity vortexVelocity(int M, int N, int P, vector<double> X, vector<double> Y, vector<

double> Z, double t, double T){
5   
6   vector<double> U;
7   vector<double> V;
8   vector<double> W;
9   

10   for (int k = 0; k < P; ++k){
11   for (int j = 0; j < N; ++j){
12   for (int i = 0; i < M; ++i){
13   U.push_back(2*sin(PI*X[i])*sin(PI*X[i])*sin(2*PI*Y[j])*sin(2*PI*Z[k])*cos

(PI*t/T));
14   V.push_back(-sin(2*PI*X[i])*sin(PI*Y[j])*sin(PI*Y[j])*sin(2*PI*Z[k])*cos(

PI*t/T));
15   W.push_back(-sin(2*PI*X[i])*sin(2*PI*Y[j])*sin(PI*Z[k])*sin(PI*Z[k])*cos(

PI*t/T));
16   }
17   }
18   }
19   return Velocity {U, V, W};
20   }
21   
22   // velocity field for deformation in 2D. Taken from Morgan and Waltz (2017)
23   Velocity shearedSphereVelocity(int M, int N, int P, vector<double> X, vector<double> Y,

vector<double> Z, double t, double T){
24   
25   vector<double> U;
26   vector<double> V;
27   vector<double> W;
28   
29   for (int k = 0; k < P; ++k){
30   for (int j = 0; j < N; ++j){
31   for (int i = 0; i < M; ++i){
32   U.push_back(sin(PI*X[i])*cos(PI*Y[j])*cos(PI*t/T));
33   V.push_back(-cos(PI*X[i])*sin(PI*Y[j])*cos(PI*t/T));
34   W.push_back(0.0);
35   }
36   }
37   }
38   return Velocity {U, V, W};
39   }
40   
41   // simple velocity field with u = v = w = 1 for all grid nodes
42   Velocity simpleVelocity(int M, int N, int P){
43   vector<double> U = linspace(1, 1, M*N*P);
44   vector<double> V = linspace(1, 1, M*N*P);
45   vector<double> W = linspace(1, 1, M*N*P);
46   return Velocity {U, V, W};
47   }
48   
49   // returns the volume of the domain bounded by the zero contour in a signed distance 

field
50   double volume(vector<double> &phi, double dx, double dy, double dz){
51   double epsilon = 1.5*dx;
52   double V = 0;
53   for (int i = 0; i < phi.size(); ++i){
54   double H;
55   if (phi[i] < -epsilon){
56   H = 0.0;
57   } else if (-epsilon <= phi[i] && phi[i] <= epsilon){
58   H = 0.5 + phi[i]/(2*epsilon) + 1/(2*PI)*sin(PI*phi[i]/epsilon);
59   } else if (epsilon < phi[i]){
60   H = 1.0;
61   }
62   V += (1-H)*dx*dy*dz;
63   }



64   return V;
65   }
66   
67   // returns the surface area of the domain bounded by the zero contour in a signed 

distance field
68   double surfaceArea(vector<double> &phi, double dx, double dy, double dz, double M, double

N, double P){
69   double A = 0;
70   double epsilon = 1.5*dx;
71   double phix;
72   double phiy;
73   double phiz;
74   for (int k = 0; k < P; ++k){
75   for (int j = 0; j < N; ++j){
76   for (int i = 0; i < M; ++i){
77   if (i==0 || i==(M-1) || j==0 || j==(N-1) || k==0 || k==(P-1)){
78   continue;
79   }
80   double phix = (phi[(i+1)+j*N+k*P*P] - phi[(i-1)+j*N+k*P*P])/(2*dx);
81   if (phix == 0){
82   phix = (phi[(i+1)+j*N+k*P*P] - phi[i+j*N+k*P*P])/(dx);
83   }
84   double phiy = (phi[i+(j+1)*N+k*P*P] - phi[i+(j-1)*N+k*P*P])/(2*dy);
85   if (phiy == 0){
86   phiy = (phi[i+(j+1)*N+k*P*P] - phi[i+j*N+k*P*P])/(dy);
87   }
88   double phiz = (phi[i+j*N+(k+1)*P*P] - phi[i+j*N+(k-1)*P*P])/(2*dz);
89   if (phiz == 0){
90   phiz = (phi[i+j*N+(k+1)*P*P] - phi[i+j*N+k*P*P])/(dz);
91   }
92   double sigma;
93   if (phi[i + j*N + k*P*P] < -epsilon){
94   sigma = 0.0;
95   } else if (-epsilon <= phi[i + j*N + k*P*P] && phi[i + j*N + k*P*P] <=

epsilon){
96   sigma = (1/(2*epsilon) + 1/(2*epsilon)*cos(phi[i + j*N + k*P*P]*PI/

epsilon));
97   } else if (epsilon < phi[i + j*N + k*P*P]){
98   sigma = 0.0;
99   }

100   A += (sigma)*sqrt(phix*phix + phiy*phiy + phiz*phiz)*dx*dy*dz;
101   }
102   }
103   }
104   return A;
105   }
106   
107   // error measure of the interface error
108   double interfaceError(vector<double> &phi0, vector<double> &phi, double dx, double dy,

double dz, double M, double N, double P){
109   double epsilon = 1.5*dx;
110   double A = surfaceArea(phi0, dx, dy, dz, M, N, P);
111   double L1 = 0;
112   for (int k = 0; k < P; ++k){
113   for (int j = 0; j < N; ++j){
114   for (int i = 0; i < M; ++i){
115   L1 += abs(1.0*(phi0[i + j*N + k*P*P] < 0) - 1.0*(phi[i + j*N + k*P*P] < 0

))*dx*dy*dz;
116   }
117   }
118   }
119   return L1/A;
120   }
121   
122   // error measure of the average mass error
123   double massError(vector<double> &phi, double dx, double dy, double dz, double M, double N

, double P){
124   double error = 0;
125   for (int k = 0; k < P; ++k){



126   for (int j = 0; j < N; ++j){
127   for (int i = 0; i < M; ++i){
128   error += abs(1.0*(phi[i + j*N + k*P*P] < 0))*dx*dy*dz;
129   }
130   }
131   }
132   return error;
133   }
134   
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A.6 vectorUtilities.h and vectorUtilities.cpp
These files contain code used for various vector operations. vectorUtilities.h is given first and contains the
header file, while vectorUtilities.cpp contains the whole implementation.



1   #pragma once
2   
3   #include <vector>
4   #include <iostream>
5   #include <cmath>
6   #include <limits>
7   using namespace std;
8   
9   // multiplies the elements of two vectors

10   vector<double> operator*(vector<double> const &vec1, vector<double> const &vec2);
11   
12   // divides the elements of one vector with another vector
13   vector<double> operator/(vector<double> const &vec1, vector<double> const &vec2);
14   
15   // adds the elements of two vectors
16   vector<double> operator+(vector<double> const &vec1, vector<double> const &vec2);
17   
18   // multiplies the elements of a vector with a scalar
19   vector<double> operator*(double const &scalar, vector<double> const &vec);
20   
21   // multiplies the elements of a vector with a scalar
22   vector<double> operator*(vector<double> const &vec, double const &scalar);
23   
24   // divides the elements of a vector with a scalar
25   vector<double> operator/(vector<double> const &vec, double const &scalar);
26   
27   // divides a scalar with the elements of a vector
28   vector<double> operator/(double const &scalar, vector<double> const &vec);
29   
30   // subtracts the elements of one vector with another vector
31   vector<double> operator-(vector<double> const &vec1, vector<double> const &vec2);
32   
33   // adds the elements of a vector with a scalar
34   vector<double> operator+(vector<double> const &vec, double const &scalar);
35   
36   // adds the elements of a vector with a scalar
37   vector<double> operator+(double const &scalar, vector<double> const &vec);
38   
39   // subtracts the elements of a vector with a scalar
40   vector<double> operator-(vector<double> const &vec, double const &scalar);
41   
42   // subtracts a scalar with the elements of a vector
43   vector<double> operator-(double const &scalar, vector<double> const &vec);
44   
45   // takes the absolute value of all elements of a vector
46   vector<double> vectorAbs(vector<double> const &vec);
47   
48   // returns the maximum value of all elements in a vector
49   double vectorMax(vector<double> const &vec);
50   
51   // takes the square root of all elements of a vector
52   vector<double> vectorSqrt(vector<double> const &vec);
53   



1   #include "vectorUtilities.h"
2   
3   // multiplies the elements of two vectors
4   vector<double> operator*(vector<double> const &vec1, vector<double> const &vec2){
5   vector<double> res;
6   if (vec1.size() != vec2.size()){
7   cerr << "Vectors multiplication with different sized vectors." << endl;
8   }
9   for (int i = 0; i < vec1.size(); ++i){

10   res.push_back(vec1[i]*vec2[i]);
11   }
12   return res;
13   }
14   
15   // divides the elements of one vector with another vector
16   vector<double> operator/(vector<double> const &vec1, vector<double> const &vec2){
17   vector<double> res;
18   if (vec1.size() != vec2.size()){
19   cerr << "Vectors division with different sized vectors." << endl;
20   }
21   for (int i = 0; i < vec1.size(); ++i){
22   res.push_back(vec1[i]/vec2[i]);
23   }
24   return res;
25   }
26   
27   // adds the elements of two vectors
28   vector<double> operator+(vector<double> const &vec1, vector<double> const &vec2){
29   vector<double> res;
30   if (vec1.size() != vec2.size()){
31   cerr << "Vectors addition with different sized vectors." << endl;
32   }
33   for (int i = 0; i < vec1.size(); ++i){
34   res.push_back(vec1[i] + vec2[i]);
35   }
36   return res;
37   }
38   
39   // multiplies the elements of a vector with a scalar
40   vector<double> operator*(double const &scalar, vector<double> const &vec){
41   vector<double> res;
42   for (int i = 0; i < vec.size(); ++i){
43   res.push_back(scalar*vec[i]);
44   }
45   return res;
46   }
47   
48   // multiplies the elements of a vector with a scalar
49   vector<double> operator*(vector<double> const &vec, double const &scalar){
50   vector<double> res;
51   for (int i = 0; i < vec.size(); ++i){
52   res.push_back(vec[i]*scalar);
53   }
54   return res;
55   }
56   
57   // divides the elements of a vector with a scalar
58   vector<double> operator/(vector<double> const &vec, double const &scalar){
59   vector<double> res;
60   for (int i = 0; i < vec.size(); ++i){
61   res.push_back(vec[i]/scalar);
62   }
63   return res;
64   }
65   
66   // divides a scalar with the elements of a vector
67   vector<double> operator/(double const &scalar, vector<double> const &vec){
68   vector<double> res;
69   for (int i = 0; i < vec.size(); ++i){



70   res.push_back(scalar/vec[i]);
71   }
72   return res;
73   }
74   
75   // subtracts the elements of one vector with another vector
76   vector<double> operator-(vector<double> const &vec1, vector<double> const &vec2){
77   vector<double> res;
78   if (vec1.size() != vec2.size()){
79   cerr << "Vectors subtraction with different sized vectors." << endl;
80   }
81   for (int i = 0; i < vec1.size(); ++i){
82   res.push_back(vec1[i] - vec2[i]);
83   }
84   return res;
85   }
86   
87   // adds the elements of a vector with a scalar
88   vector<double> operator+(vector<double> const &vec, double const &scalar){
89   vector<double> res;
90   for (int i = 0; i < vec.size(); ++i){
91   res.push_back(vec[i]+scalar);
92   }
93   return res;
94   }
95   
96   // adds the elements of a vector with a scalar
97   vector<double> operator+(double const &scalar, vector<double> const &vec){
98   vector<double> res;
99   for (int i = 0; i < vec.size(); ++i){

100   res.push_back(scalar + vec[i]);
101   }
102   return res;
103   }
104   
105   // subtracts the elements of a vector with a scalar
106   vector<double> operator-(vector<double> const &vec, double const &scalar){
107   vector<double> res;
108   for (int i = 0; i < vec.size(); ++i){
109   res.push_back(vec[i]-scalar);
110   }
111   return res;
112   }
113   
114   // subtracts a scalar with the elements of a vector
115   vector<double> operator-(double const &scalar, vector<double> const &vec){
116   vector<double> res;
117   for (int i = 0; i < vec.size(); ++i){
118   res.push_back(scalar - vec[i]);
119   }
120   return res;
121   }
122   
123   // takes the absolute value of all elements of a vector
124   vector<double> vectorAbs(vector<double> const &vec){
125   vector<double> res;
126   for (unsigned int i = 0; i < vec.size(); ++i){
127   if (vec[i] < 0){
128   res.push_back(-vec[i]);
129   } else {
130   res.push_back(vec[i]);
131   }
132   }
133   return res;
134   }
135   
136   // returns the maximum value of all elements in a vector
137   double vectorMax(vector<double> const &vec){
138   double max = numeric_limits<double>::lowest();



139   for (unsigned int i = 0; i < vec.size(); ++i){
140   if (isfinite(vec[i]) && (vec[i] > max)){
141   max = vec[i];
142   }
143   }
144   return max;
145   }
146   
147   // takes the square root of all elements of a vector
148   vector<double> vectorSqrt(vector<double> const &vec){
149   vector<double> res;
150   for (unsigned int i = 0; i < vec.size(); ++i){
151   res.push_back(sqrt(vec[i]));
152   }
153   return res;
154   }
155   
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A.7 plotter.py
This file contains the Python code to find the interface with the marching cubes algorithm using the scikit-image
Python library, and also code to plot the interface and the particles used in the particle level set method.



1   from matplotlib import projections
2   import matplotlib.pyplot as plt
3   import numpy as np
4   from skimage import measure # scikit-image library
5   from mpl_toolkits.mplot3d.art3d import Poly3DCollection
6   
7   # reads a .txt-file and returns the signed distance field and the number of nodes in 

each direction
8   def readFile(filename):
9   f = open(filename)

10   
11   firstLine = f.readlines()[0].split(',')
12   f.close()
13   m = int(firstLine[0])
14   n = int(firstLine[1])
15   p = int(firstLine[2])
16   
17   f = open(filename)
18   phi = np.zeros((m,n,p))
19   lines = f.readlines()[1:]
20   count = 0
21   for k in range(p):
22   for j in range(n):
23   for i in range(m):
24   phi[i,j,k] = float(lines[count].split(',')[3])
25   count += 1
26   return phi, m, n, p
27   
28   # takes a signed distance field and the number of nodes in each direction
29   # uses the marching cubes algorithm to find the zero-contour and plots this contour
30   def getSurface(volume, m, n, p, level=0, plot=True, filename='fig'):
31   verts, faces, normals, values = measure.marching_cubes(volume, level) # marching 

cubes algorithm
32   size = max(m, n, p)
33   if plot:
34   fig = plt.figure()
35   ax = fig.add_subplot(projection='3d')
36   ax.set_box_aspect([1,1,1])
37   mesh = Poly3DCollection(verts[faces]/size)
38   mesh.set_edgecolor('k')
39   ax.add_collection3d(mesh)
40   plt.tight_layout()
41   ax.set_xlim(0, 1)
42   ax.set_ylim(0, 1)
43   ax.set_zlim(0, 1)
44   ax.view_init(elev=0., azim=0)
45   ax.set_xlabel('x', fontsize=14, style='italic')
46   ax.set_ylabel('y', fontsize=14, style='italic')
47   ax.set_zlabel('z', fontsize=14, style='italic')
48   plt.savefig(filename + '.pdf', dpi=900, format='pdf',bbox_inches='tight')
49   plt.close()
50   
51   # plots the particles from the particle level set method
52   def plotParticle(filename):
53   f = open(filename + '.txt')
54   
55   x = []
56   y = []
57   z = []
58   
59   for line in f.readlines():
60   parsedLine = line.split(',')
61   x.append(float(parsedLine[0]))
62   y.append(float(parsedLine[1]))
63   z.append(float(parsedLine[2]))
64   
65   fig = plt.figure()



66   ax = fig.add_subplot(projection='3d')
67   ax.scatter(x,y,z)
68   plt.xlabel('x', fontsize=14, style='italic')
69   plt.ylabel('y', fontsize=14, style='italic')
70   plt.savefig(filename + '.pdf', dpi=900, format='pdf',bbox_inches='tight')
71   plt.close()
72   
73   # main function for plotting
74   def main():
75   plt.rcParams['font.family'] = 'serif'
76   plt.rcParams['font.serif'] = ['Times New Roman']
77   path = 'figures/'
78   
79   f = open(path + 'plotTimes.txt')
80   # plots signed distance field for all time steps recorded in plotTimes.txt
81   for line in f.readlines():
82   phi, m, n, p = readFile(path + line[:-1] + '.txt')
83   getSurface(phi, m, n, p, 0, True, path + line[:-1])
84   
85   g = open(path + 'plotTimesParticle.txt')
86   # plots particles for all time steps recorded in plotTimesParticle.txt
87   for line in g.readlines():
88   plotParticle(line[:-1])
89   
90   if __name__=='__main__':
91   main()
92   
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