
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f E

ne
rg

y
an

d
Pr

oc
es

s
En

gi
ne

er
in

g

Marcus Sommersel

Interface Tracking for 3D Immersed
Boundary Method in Biofluid
Dynamics

Master’s thesis in Mechanical Engineering
Supervisor: Bernhard Müller
June 2022

M
as

te
r’s

 th
es

is

Marcus Sommersel

Interface Tracking for 3D Immersed
Boundary Method in Biofluid Dynamics

Master’s thesis in Mechanical Engineering
Supervisor: Bernhard Müller
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Energy and Process Engineering

Page 1 of 2

Norwegian University Department of Energy

of Science and Technology and Process Engineering

EPT-M-2022

MASTER THESIS

for

 Student Marcus Sommersel

Spring 2022

Interface Tracking for 3D Immersed Boundary Method in Biofluid Dynamics

Grensesnittsporing for 3D immersed boundary-metode i biofluiddynamikk

Background and objective

The prediction of fluid-structure interaction (FSI) is not only important for flutter of wings and

for flow-induced vibrations in power plants, but also for the flapping motion of the soft palate in

the human pharynx. During sleep, the soft palate can make contact with the pharynx wall and

lead to obstructive sleep apnea (OSA). Also the sound generated by FSI, e.g. FSI of the inhaled

air and the soft palate causing snoring, can be of interest. Because of its great importance for

public health, OSA is investigated in a larger interdisciplinary research project entitled “Virtual

Surgery in the Upper Airways - New Solutions to Obstructive Sleep Apnea Treatment

(VirtuOSA)”, which is funded by the Research Council of Norway.

The objective of the master thesis is to develop, implement and test a method to track the fluid-

solid interface for a 3D immersed boundary method (IBM) in biofluid dynamics. The IBM will

be used in VirtuOSA to simulate FSI in the upper airways of OSA patients. For testing the

interface tracking method, the velocity will be prescribed. Efficient ways of identifying the

Cartesian grid points adjacent to marker points on the interface will be investigated. Those

Cartesian grid points adjacent to interface marker points identified as solid points will serve as

ghost points in our existing IBM for FSI. Fluid velocity, pressure and temperature will be

assigned at the ghost points such that the boundary conditions at the fluid-solid interface are

approximated. Thus, the compressible Navier-Stokes equations can be easily solved at the fluid

points even for complex moving fluid-solid interfaces without the need for any grid generation.

The 3D interface tracking method is to be verified for benchmark problems. The master thesis

will be a part of VirtuOSA.

The following tasks are to be considered:

1. to check the literature for efficient 3D interface tracking methods,

2. to develop, implement and test an efficient interface tracking method in 3D,

3. to verify the 3D interface tracking method for benchmark problems,

4. to investigate the identification of fluid and solid Cartesian grid points adjacent to

interface marker points and the assignment of proper fluid values at ghost points.

-- ” --

Page 2 of 2

Within 14 days of receiving the written text on the master thesis, the candidate shall submit a

research plan for his project to his supervisor.

When the thesis is evaluated, emphasis is put on processing of the results, and that they are

presented in tabular and/or graphic form in a clear manner, and that they are analyzed carefully.

The thesis should be formulated as a research report with summary in English, conclusion,

literature references, table of contents etc. During the preparation of the text, the candidate

should make an effort to produce a well-structured and easily readable report. In order to ease the

evaluation of the thesis, it is important that the cross-references are correct. In the making of the

report, strong emphasis should be placed on both a thorough discussion of the results and an

orderly presentation.

The candidate is requested to initiate and keep close contact with his academic supervisor

throughout the working period. The candidate must follow the rules and regulations of NTNU as

well as possible directions given by the Department of Energy and Process Engineering.

Risk assessment of the candidate's work shall be carried out, in cooperation with the supervisor,

according to the department's procedures. The risk assessment must be documented and included

as part of the final report. Events related to the candidate's work adversely affecting the health,

safety or security, must be documented and included as part of the final report. If the

documentation on risk assessment represents a large number of pages, the full version is to be

submitted electronically to the supervisor and an excerpt is included in the report. Those who

have a theoretical exercise only need to check this and fill out page 1 of the form provided by the

Department of Energy and Process Engineering.

Pursuant to “Regulations concerning the supplementary provisions to the technology study

program/Master of Science” at NTNU §20, the Department reserves the permission to utilize all

the results and data for teaching and research purposes as well as in future publications.

The master's thesis is to be submitted in NTNU’s examination system Inspera Assessment by

15:00 h on June 11, 2022.

 Work to be done in lab

 Field work

Department of Energy and Process Engineering, January 10, 2022

Bernhard Müller

Academic Supervisor

Abstract

Obstructive sleep apnea is a medical issue caused by collapse of the upper airways restricting oxygen supply
during sleep, leading to increased mortality and decreased quality of life. Currently, surgical treatment exists,
but there is no way to know the exact outcome of surgery. The VirtuOSA project is a collaboration between
St. Olav’s University Hospital, NTNU, and SINTEF to develop a CFD tool to predict the outcome of surgical
treatment. For the CFD analysis to be accurate, it has to account for the deformation of the upper airways. The
fluid-solid interface is essential when modeling the deformations, and an accurate interface tracking method is
needed to get good results.

The present work aims at giving a basic understanding of interface tracking methods and investigates the possib-
ility of using the level set method in combination with the ghost point immersed boundary method to track the
deformations of the upper airways. The level set method is chosen specifically for the properties that combine
well with the ghost point immersed boundary method, allowing it to assign values at the ghost points seam-
lessly. The end goal is to find a suitable interface tracking method that may be used in the further development
of the VirtuOSA project.

The three-dimensional particle level set method has been implemented and is tested for benchmark problems.
Extending the standard level set method to the particle level set method showed a significant improvement
in mass conservation with little extra CPU time needed. At the same time, it keeps the properties that made
the level set method suitable for combination with the ghost point immersed boundary method. The order of
convergence is low compared to the order of the numerical schemes used to solve the governing equations. A
possible future outlook is to improve the order of convergence, either by tuning the method further or using
different numerical schemes.

The present results show that the particle level set method may be tested in the full Navier-Stokes solver to see
if it can be used for tracking the deformations of the upper airways in the CFD tool developed in the VirtuOSA
project.

iii

iv

Sammendrag

Obstruktiv søvnapné er et medisinsk problem forårsaket av kollaps i de øvre luftveiene som begrenser oksygen-
tilførselen under søvn, som fører til økt dødelighet og senket livskvalitet. For øyeblikket finnes det kirurgiske
behandlinger, men ingen måte å vite nøyaktig utfall av operasjonen. VirtuOSA prosjektet er et samarbeid
mellom St. Olavs Universitetssykehus, NTNU, og SINTEF med formål å utvikle et CFD-verktøy som kan
predikere utfallet av en operasjon. For at CFD-analysen skal være nøyaktig må den ta hensyn til deformas-
joner i de øvre luftveiene. Fluid-solid-grensen er essensiell når man modellerer deformasjoner, og en nøyaktig
grensesporingsmetode er nødvendig for å få gode resultater.

Denne oppgaven har som mål å gi grunnleggende forståelse av grensesporingsmetoder og undersøke muligheten
for å bruke level set-metoden kombinert med immersed boundary-metoden for å følge deformasjonene i de
øvre luftveiene. Level set-metoden er valgt fordi den kombinerer godt med ghost point immersed boundary-
metoden, og tillater tilegning av verdier i ghost-punktene direkte. Det endelige målet er å finne en passende
grensesporingsmetode som kan brukes i den videre utviklingen av VirtuOSA prosjektet.

Den tredimensjonale particle level set-metoden har blitt implementert og testet for to test-caser. Utvidelsen
av standard level set-metoden til particle level set-metoden har vist stor forbedring i massebevarelse med lite
ekstra CPU-tid. Samtidig beholdes egenskapene som gjorde level set-metoden passende for kombinasjon med
ghost point immersed boundary-metoden. Konvergensorden for metoden er lav sammenlignet med orden på de
numeriske skjemaene som er brukt for å løse de gjeldende ligningene. En mulig framtidig forbedring vil være
å øke konvergensorden, enten ved å finjustere metoden, eller ved å bruke andre numeriske skjemaer.

De nåværende resultatene viser at particle level set-metoden er klar for å testes i den fulle Navier-Stokes-
løseren for å se om den kan brukes til å følge deformasjonene i de øvre luftveiene i CFD-verktøyet som utvikles
i VirtuOSA prosjektet.

v

vi

Acknowledgements

I want to give a special thanks to my supervisor Bernhard Müller and Ph.D. candidate Frederik Kristoffersen
for being great help and discussion partners during the work with my master’s thesis and my project work last
semester. I would also like to thank my friends and family for their great support during my five years as a
student in Trondheim.

vii

viii

Contents

1 Introduction 1

1.1 Obstructive Sleep Apnea . 1

1.2 VirtuOSA . 1

1.3 Outline of Master’s Thesis . 2

2 Literature review 5

2.1 CFD in medicine . 5

2.2 Interface Tracking . 5

2.2.1 Front Tracking Methods . 5

2.2.2 Volume of Fluid Methods . 6

2.2.3 Level Set Methods . 6

2.3 Immersed Boundary Method . 7

2.3.1 Ghost Point Immersed Boundary Method . 7

3 Governing Equations for the Level Set Method 9

3.1 Standard Level Set Method . 9

3.2 Particle Level Set Method . 10

3.3 Combining the Level Set Method with the Immersed Boundary Method 14

3.4 Marching Cubes Algorithm . 14

4 Discretization of the Level Set Method 15

4.1 WENO Method . 15

4.2 TVD Runge-Kutta Method . 16

4.3 Godunov’s Scheme . 17

4.4 CFL Number . 17

ix

x CONTENTS

4.5 Boundary Conditions . 17

4.6 Measures of Error . 18

5 Results 21

5.1 Sphere in two-dimensional vortex velocity field . 21

5.2 Sphere in three-dimensional vortex velocity field . 25

5.3 CPU time . 29

6 Conclusions and Outlook 31

Appendices 37

A LSM3D 39

A.1 main.cpp . 41

A.2 initialization.h and initialization.cpp . 49

A.3 particleLSM.h and particleLSM.cpp . 53

A.4 schemes.h and schemes.cpp . 59

A.5 testCases.h and testCases.cpp . 71

A.6 vectorUtilities.h and vectorUtilities.cpp . 77

A.7 plotter.py . 83

List of Tables

5.1 Error for two-dimensional vortex test. Procedure is explained in section 4.6. 25

5.2 Error for three-dimensional vortex test. Procedure is explained in section 4.6. 29

5.3 CPU time and number of time steps for all test cases at different grid sizes. 30

xi

xii LIST OF TABLES

List of Figures

1.1 The different parts of the upper airways in the sagittal plane [7]. 2

2.1 Representation of the GPIBM showing the interface, a ghost point, the respective boundary
intercept and image point, and the fluid points next to the image point. Consider the inside of
the circle as the solid domain, and the outside of the circle as the fluid domain. 8

3.1 One-dimensional level set method with a signed distance function. In the one-dimensional case
the different domains are defined as lines, and the interface is points between the domains. . . 10

3.2 Figure of the correction step in the particle level set method in two dimensions. The red positive
particle has escaped the interface, and is inside a grid cell. ϕp is the distance from a cell corner
to the particle, while ϕ is the distance from a cell corner to the interface found by the standard
level set method. The correct interface location is marked by the dashed line. 13

5.1 Initial sphere in two-dimensional velocity field in the x− y plane for a 400× 400× 400 grid.
The same shape should be found at t = T . 22

5.2 Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the two-dimensional velocity field
with n = 400. 22

5.3 Domains where ϕ(x, T) ≤ 0 for the sphere in the two-dimensional velocity field at four differ-
ent grid resolutions in the x− y plane. 23

5.4 Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the two-dimensional velocity field
with n = 50, n = 100, and n = 200. 24

5.5 Initial sphere in three-dimensional velocity field for a 400 × 400 × 400 grid. The same shape
should be found at t = T . 26

5.6 Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the three-dimensional velocity field
with n = 400. 26

5.7 Domains where ϕ(x, T) ≤ 0 for the sphere in the three-dimensional velocity field at four
different grid resolutions. 27

5.8 Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the three-dimensional velocity field
with n = 50, n = 100, and n = 200. 28

xiii

xiv LIST OF FIGURES

Nomenclature

∇ Nabla operator

N Normal vector

u Velocity vector

x Position vector

xp Particle position vector

∆τ Pseudo time step used during reinitialization

∆t Time step

∆x Step size in x-direction

∆y Step size in y-direction

∆z Step size in z-direction

ϕ Level set method variable

τ Pseudo time used during reinitialization

BI Boundary intercept

GP Ghost point

IP Image point

n Grid points in x-, y- and z-direction, creating an n× n× n grid

p Order of convergence

rp Radius of the particle

S(ϕ) Sign function of ϕ

sp Sign of the particle

T End time, used in the test cases

t Time

xv

xvi NOMENCLATURE

u Velocity in x-direction

v Velocity in y-direction

w Velocity in z-direction

x Position in x-direction

y Position in y-direction

z Position in z-direction

δΩ Boundary of domain

Ω+ Outside domain

Ω− Inside domain

CFD Computational fluid dynamics

CFL Courant-Friedrichs-Lewy, CFL number

FSI Fluid-structure interactions

GPIBM Ghost point immersed boundary method

IBM Immersed boundary method

LSM Level set method

OSA Obstructive sleep apnea

RK Runge-Kutta

TVD Total variation diminishing

VOF Volume of fluid method

WENO Weighted essentially non-oscillating

Chapter 1

Introduction

1.1 Obstructive Sleep Apnea
Obstructive sleep apnea (OSA) is a problem that affects 2-4 % of the population and is caused by a collapse
in the upper airways while sleeping [1]. Deformations in the upper airways restrict the airflow and may cause
heavy snoring. If the deformation is severe, the upper airways will collapse and cause a lack of oxygen supply.
The severity of the disease is categorized based on how many apneas the patient develops on average during
one hour of sleep, where an apnea is defined as the complete stop of airflow for at least 10 seconds. If a patient
has an average of five or more apneas per hour of sleep, the patient is diagnosed with OSA [1]. OSA has shown
to be more common among men and people over the age of 50 years [2]. The largest risk factors for developing
OSA are obesity and high Body Mass Index (BMI). More details of the worldwide prevalence of OSA can be
found in the article by Benjafield et al. [3].

The reduced sleep results in tiredness, while the lack of oxygen can lead to an increased chance of heart failure
and stroke, increased mortality, and decreased quality of life [4]. Temporary treatment by wearing a nasal or
oronasal mask while sleeping has shown positive results by applying pressure to the upper airways [5]. Surgical
treatments have been tried in the past, but there is vast uncertainty related to effectiveness and no way to predict
the outcome of the surgery. In some cases, surgery has shown significant improvement for the patients, but
many cases show no improvement, and there are even cases where surgery has worsened the condition [6].

1.2 VirtuOSA
The VirtuOSA project is a collaboration between St. Olav’s University Hospital, NTNU, and SINTEF, trying
to use Computational Fluid Dynamics (CFD) to conduct virtual surgery of the upper airways [8]. The pro-
ject consists of specialists in ENT surgery, computational fluid dynamics, and structural engineering, with the
primary goal to gain a better understanding of OSA and to create a diagnostic tool to help predict the outcome
of the surgical treatment [6]. The project has created four work packages to incorporate the different scientific
fields. Of these work packages, work package three is of particular interest to the present work, as it covers
mathematical modeling of the fluid-structure interactions (FSI). Work package three aims at developing an FSI
model to be used for calibration of the three-dimensional CFD model to be developed in work package four.
The Ph.D. thesis by Moxness [6] gives further information on VirtuOSA and the goals of the different work
packages.

For the CFD model to be accurate, it has to account for the deformations of the upper airways. There are many
challenges when modeling deforming interfaces. Many of these challenges occur at the interface between two
fluids or the fluid-solid interface because of the interplay between the different substances. Interactions between
the substances may be caused by forces from one substance affecting the other, chemical reactions, or diffusion
between the substances at the interface. All of these interactions affect the position of the interface, which

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The different parts of the upper airways in the sagittal plane [7].

is why accurate interface tracking is an essential and challenging topic for problems with deformations. It is
impossible to conduct a good CFD analysis without knowing the interface’s position, as the wrong properties
and equations may be used and solved for the wrong fluid or solid.

1.3 Outline of Master’s Thesis
The present work gives an overview of the immersed boundary method for fluid-structure interactions and vari-
ous interface tracking methods. However, the main goals have been developing and testing the level set method
for interface tracking when the velocity field is prescribed and verifying the implementation against benchmark
problems. Further, compatibility between the level set method and the ghost point immersed boundary method
is investigated. The investigation aims to provide a tool for tracking the deformation in the upper airways as a
part of the VirtuOSA project.

The structure of the remaining chapters is as follows. Chapter 2 aims to give a short review of relevant topics for
the present work, starting with CFD in medicine in section 2.1, before reviewing interface tracking in section
2.2, and explaining the immersed boundary method in section 2.3.

The governing equations for the level set method are introduced in chapter 3. The chapter starts with the
equations for the standard level set method in section 3.1, before explaining the particle level set method in
section 3.2, and how it combines with the ghost point immersed boundary method in section 3.3.

Chapter 4 explains how the equations given in chapter 3 are discretized before introducing three measures of
errors in section 4.6.

The test cases applied to the level set method are showcased and discussed in chapter 5, where section 5.1
is devoted to a sphere deformed in the two-dimensional velocity field, and section 5.2 is devoted to a sphere
deformed in the three-dimensional velocity field.

Finally, the conclusions and a future outlook are presented in chapter 6.

The three-dimensional level set method implemented in C++ can be found in the appendix and on GitHub at
https://github.com/marcussommersel/LSM3D.

The present work is a continuation of the project work by Sommersel in the autumn of 2021 [9]. Hence certain

https://github.com/marcussommersel/LSM3D

1.3. OUTLINE OF MASTER’S THESIS 3

parts of the article are similar. The main difference is the extension into three dimensions and using a different
interface tracking method to improve the results. However, the goal and the reason behind the present work
have stayed the same.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Literature review

2.1 CFD in medicine
Computational Fluid Dynamics (CFD) has had wide use in engineering for many decades, but in recent years
the use of CFD has gained interest in other fields as well [10]. The use of CFD in medicine and biomechanics
has proved useful and, in some cases, enables the treatment of diseases that were previously not treatable. CFD
is primarily applied in cardiovascular medicine, although other areas of medicine, i.e., respiratory medicine, are
extending its use. The use of CFD enables detailed characterization and computations of metrics that cannot
be measured directly [11]. The development of CFD models into clinical tools helps treat the patients with less
invasive methods, which may ease the load on the patients. The ability to see the outcome of surgery before the
procedure itself may reduce the cost of unnecessary treatment. Running different disease scenarios through a
CFD model may also help predict the optimal treatment plan for individual patients. When modeling a complex
coupled system such as the respiratory or cardiovascular systems, the fluid flow and solid tissue interact. An
efficient and effective approach to fluid-structure interactions is essential [12].

2.2 Interface Tracking
Fluid-structure interactions (FSI) are essential in many engineering applications [13]. These applications come
in a wide range, and among them are many mechanical problems like the flutter of wings, wind-turbine ap-
plications, and airplane response mechanisms. However, they are also important in biomechanics, like blood
flow through the heart and airflow through the upper airways. To account for FSI in a numerical model, it is
important to know the exact location of the fluid-solid interface. There are many ways to do interface tracking
numerically, and three different classes of methods are often used: front tracking methods, volume of fluid
methods, and level set methods.

2.2.1 Front Tracking Methods

The term "Front Tracking" was first introduced in 1967 by Richtmyer and Morton [14], although the method
was not implemented before 1981 in the work by Glimm et al. [15]. In front tracking methods, marker points
are defined on the interface, and the front is advected with the flow [16]. The front is not only the marker
points, but also information about the connectivity of the points, and sometimes the description of the physics
at the interface. The interface can then be found by connecting these marker points. The method’s accuracy
depends on the number of marker points used to represent the interface and the interpolation method used to
reconstruct the interface. The placement of these marker points is crucial, as more points are needed in regions
of more significant interface curvature than in regions with a flatter interface. The placement of the marker
points changes as the interface is stretched or compressed, as the stretched region can be lacking points, and the
compressed region may be overflowing with points. Adding and removing marker points is therefore necessary.
When extending front tracking methods to three dimensions, the complexity increases significantly, and having

5

6 CHAPTER 2. LITERATURE REVIEW

a proper data structure to describe the front is essential. The mass conservation for front tracking methods
varies and depends on the method used to advect the flow and the method used to reconstruct the interface. For
further reading on front tracking methods, the reader is directed towards chapter 6 in the book by Tryggvason
et al. [16].

2.2.2 Volume of Fluid Methods

The Volume of Fluid (VOF) method was introduced in the 1981 paper by Hirt and Nichols [17]. For a flow with
two different fluids, the volume of fluid method defines a color function [16]. This color function uses one of
the fluids as a reference, and its value in a particular cell represents how much of the total cell volume is filled
with the reference fluid. If it occupies the entire cell, the color function has a value of 1, while if the cell is filled
with the other fluid, it has a value of 0. This exact procedure can also be used for fluid-solid problems, where
either the fluid or the solid would be used as a reference. An algorithm to reconstruct the interface is necessary
for the volume of fluid method, as the interface is not directly available from the values of the color function
in the cells. The volume of fluid method has good mass conservation, and the extension to three dimensions is
straightforward, although not as easy as the level set method introduced in section 2.2.3. Chapter 5 in the book
by Tryggvason et al. [16] presents the volume of fluid method further, including some interface reconstruction
algorithms.

2.2.3 Level Set Methods

The Level Set Method (LSM) was introduced by Osher and Sethian in 1988 [18]. Level set methods initialize
a scalar field in the entire computational domain, where the interface between two fluids or the fluid-solid
interface is set to a specific scalar value [19]. The contour at this value, or level, gives the interface. Usually,
the scalar field is constructed from a signed distance function with reference to the interface, and the interface
can be found at the zero-contour. The level set function can be visualized in two dimensions as a deforming
three-dimensional body. An intersection at a certain height would give a two-dimensional domain where the
boundary of this domain is equal to the interface. The level set function is advected with the velocity field,
and the three-dimensional body is deformed, but the interface can still be found from the intersection at the
same height. One of the positive sides of the level set method is its ability to handle splitting bodies. If the
interface deforms and splits apart, the interface can still be found from the zero-level set. The signed distance
properties of the level set method will deteriorate as the method is iterated forward in time. In 1994, Sussmann
et al. introduced periodic reinitialization of the level set method to restore the signed distance field [20]. For
information on the standard level set method, the book by Osher and Fedkiw [19] and the book by Sethian [21]
are advised, as well as a recent review of level set methods by Gibou et al. [22] and the references therein.

The standard level set method suffers from poor mass conservation. Previous work has shown methods to
improve mass conservation [23], [24], [25], [26]. In [23], Russo and Smereka noticed that the reinitialization
equation, eq. (3.3), would move the interface location, and implementing the exact interface location would
improve the mass conservation. The method was second-order accurate, and in [24] Chéné et al. extended the
method to fourth-order accuracy. Hartmann et al. [25] obtained better accuracy by replacing the reinitialization
equation with a higher-order constrained reinitialization (HCR). Methods combining the volume of fluid and
level set method, which conserve the total volume by construction, have also been implemented [27] [28].
However, these methods become more complicated than the level set method in three spatial dimensions.

The present work has tested both the higher-order reinitialization methods of Russo and Smereka [23], and the
particle level set method by Enright et al. [26]. Early testing showed favorable results with the particle level set
method. The particle level set method places particles in a band around the interface. These particles are then
advected with the local velocity independently of each other and the level set function. If one of the particles
at some point crosses the interface, it indicates the level set method may have found a wrong solution, leading
to an incorrect interface. The particles that have incorrectly crossed the interface are then used to rebuild the
scalar field to correct the wrong solution.

2.3. IMMERSED BOUNDARY METHOD 7

The present work implements the particle level set method introduced in section 3.2. A level set method is
favored because it gives easy extension to three dimensions and because the interface can always be found from
the zero-contour. Since the level set method has shown poor mass conservation, the particle level set method is
implemented to combat this flaw. In addition, the level set method works well with the Ghost Point Immersed
Boundary Method (GPIBM), as shown in section 3.3, which is one of the main requirements for the possibility
of incorporation with the VirtuOSA project.

2.3 Immersed Boundary Method
The standard in CFD analysis when simulating FSI is to use body-fitted grids. These grids are dependent
on the problem and change as the simulations go on. The need to do re-meshing for simulations undergoing
large deformations can be computationally expensive, and further problems may occur as grids of different
regions overlap each other. Other methods with constant grids have been developed to alleviate the problems
occurring with body-fitted grids and re-meshing. One of these methods is the immersed boundary method
(IBM) introduced by Peskin [29]. The IBM utilizes a fixed background grid to solve the governing equations
by introducing fictive body forces or locally allocating flow values to approximate the boundary conditions at
the fluid-solid interface. Although re-meshing is no longer a problem, the results are less accurate. Different
IBMs can be classified as either sharp or diffuse interface methods [13]. The diffuse IBMs smear the immersed
boundaries to the surrounding grid nodes, which can be done by applying smeared delta functions to fictitious
body forces. The sharp IBMs do not smear the interface to the surrounding grid nodes and may cut the nodes
at the interface creating a local unstructured grid, or they may apply jump conditions at the interface. Many
different IBMs are available, and the keen reader is directed towards the article by Sotiropoulos and Yang [13]
and the references therein.

2.3.1 Ghost Point Immersed Boundary Method

The computational domain is divided into fluid and solid domains in fluid-structure interactions. The Navier-
Stokes equations are used to determine how the fluid flow behaves, while a corresponding set of equations are
used to govern the behavior of the solid. All points in the fluid domain are denoted as fluid points, and all
points in the solid domain are denoted as solid points. To solve the Navier-Stokes equations for one fluid point,
it needs to consider the fluid properties of the points next to it. However, some of the points next to the fluid
points at the interface between the fluid and solid domain are solid points, which means they do not have fluid
properties. The Ghost Point Immersed Boundary Method (GPIBM) introduced by Tseng and Ferziger [30]
solves this problem by defining a set of ghost points to be the solid points next to the interface. These ghost
points have no physical meaning, but they are artificially extending the fluid domain into the solid domain,
which means there are enough fluid points to solve the governing equations for all real fluid points. The layout
is easier to see in Figure 2.1. To use the ghost points, they need to be assigned fluid properties, which is done by
applying different boundary conditions at the interface. By drawing a line from the ghost point to the interface
parallel to the normal vector at the interface, the correct boundary condition can be found for each ghost point.
The interception of this line with the interface is called the boundary intercept. A point in the fluid domain
is also needed to enforce the boundary conditions. The image point is defined by extending the line from the
ghost point to the boundary intercept with the same length. Two examples of boundary conditions are given
below to show how the GPIBM is used.

Neumann boundary conditions for a flow variable U at the fluid-solid interface, i.e.,

∂U(xBI)

∂n
= UnBI , (2.1)

where xBI , the body intercept, is the intersection of the fluid-solid interface and the line between the ghost
point xGP and image point xIP , are approximated by

UIP − UGP

|xIP − xGP |
= UnBI , (2.2)

8 CHAPTER 2. LITERATURE REVIEW

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

Interface
Ghost point
Fluid point
Boundary intercept
Image point

Figure 2.1: Representation of the GPIBM showing the interface, a ghost point, the respective boundary intercept and
image point, and the fluid points next to the image point. Consider the inside of the circle as the solid domain, and the
outside of the circle as the fluid domain.

yielding an equation to determine UGP [31].

Dirichlet boundary conditions for a flow variable U at the fluid-solid interface, i.e.,

U(xBI) = UBI , (2.3)

are approximated by
1

2
(UIP + UGP) = UBI , (2.4)

yielding an equation to determine UGP [31].

These two boundary conditions allow the assignment of values at the ghost points to uphold the boundary
conditions. The goal is to find the values at the ghost points. The values at the boundary intercept are given,
and the values at image points can be found by interpolating the values at the fluid points next to it. What
remains is finding the position of the image point and the interface.

Chapter 3

Governing Equations for the Level Set
Method

3.1 Standard Level Set Method
The level set equation for an externally created velocity field u is

ϕt + u ·∇ϕ = 0 (3.1)

where ϕ is the level set variable [19]. Often, including the present work, a signed distance function with
reference to the interface location is used for ϕ. A region Ω is defined where Ω− is inside the region, Ω+ is
outside the region, and ∂Ω is the boundary of the region [19]. The signed distance function is defined for the
whole computational domain. The value of the signed distance function is the shortest distance to ∂Ω, where
values within Ω− are negative, values within Ω+ are positive, and values on ∂Ω are zero. This can be defined
as

ϕ(x) =


min(|x− xI |) if x ∈ Ω+,

−min(|x− xI |) if x ∈ Ω−, and
0 if x ∈ δΩ

(3.2)

where xI are all points on ∂Ω. An example of a signed distance function in one dimension can be seen in
Figure 3.1.

The signed distance function does not retain its signed distance properties through evolution in time. This may
be caused by distorted solutions leading to very large or small gradients around the interface [23]. In addition,
the level set solution is prone to jumps at the interface when interfaces merge [20]. To fix the signed distance
function, regular reinitialization is applied to the signed distance field. Reinitialization is done by keeping the
interface location fixed. At the same time, the rest of the field is iterated a number of pseudo time steps forward
in pseudo time to fulfill |∇ϕ| = 1, which is what characterizes a signed distance field. The reinitialization
equation is defined as [19]

ϕτ + S(ϕ0)(|∇ϕ| − 1) = 0 (3.3)

where τ is an artificial time. The S(x) term is a sign function.

The present work uses a sign function defined as

9

10 CHAPTER 3. GOVERNING EQUATIONS FOR THE LEVEL SET METHOD

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.1

0.0

0.1

0.2
(x

)
Signed distance function
Interface
Fluid domain
Solid domain

Figure 3.1: One-dimensional level set method with a signed distance function. In the one-dimensional case the different
domains are defined as lines, and the interface is points between the domains.

S(ϕ0) =


1 if ϕ0(x) > 0,
−1 if ϕ0(x) < 0, and
0 if ϕ0(x) = 0,

(3.4)

where ϕ0(x) is the level set function before the first pseudo time step. Other sign functions can also be used,
and a common choice is [19]

S(ϕ) =
ϕ√

ϕ2 + |∇ϕ|2∆x2
, (3.5)

where the sign function is updated for each pseudo time step.

3.2 Particle Level Set Method
The particle level set method utilizes a set of independently advected marker particles to correct the interface
when the level set method computes a wrong solution [26]. The initial scalar field is used to initialize a band
of particles on both sides of the interface. There are two sets of particles, defined to be positive and negative
particles. The particles are placed in every cell with at least one corner within three cell widths from the
interface. This can be found from the signed distance function as wherever |ϕ| < 3max(∆x,∆y,∆z). In three
dimensions, 128 particles are seeded by placing them randomly distributed in each cell, where half of them are
positive, and the other half are negative. The number of particles of each type is set to 41 in one-dimensional
flows, 42 in two-dimensional flows, and 43 in three-dimensional flows [26].

After each particle is seeded, it is attracted to the the correct side of the interface. Positive particles are attracted
to the ϕ ≥ 0 side of the interface, and the negative particles to the ϕ < 0 side of the interface. The attraction is
done by randomly picking a distance from the interface, ϕgoal, within a band of bmin ≤ ϕgoal ≤ bmax for positive

3.2. PARTICLE LEVEL SET METHOD 11

particles, and within −bmax ≤ ϕgoal ≤ −bmin for negative particles, where bmin = 0.1min(∆x,∆y,∆z) and
bmax = 3.0min(∆x,∆y,∆z). The attraction step is done with

xnew = xp + λ (ϕgoal − ϕ(xp))N(xp), (3.6)

where xp is the coordinates of the particle, N is the normal vector to the interface, λ = 1, and the local values
of ϕ and N are found by trilinear interpolation. The unit normal vector can be found from the scalar field and
is defined as

N =
∇ϕ

|∇ϕ|
. (3.7)

The attraction step is used to gain a smoother distribution in the direction normal to the interface [26].

The trilinear interpolation is an extension from line interpolation in one dimension and bilinear interpolation in
two dimensions. The interpolation starts by finding the correct point on each axis of the cell

xd =
x− x0
x1 − x0

, (3.8)

yd =
y − y0
y1 − y0

, (3.9)

and

zd =
z − z0
z1 − z0

, (3.10)

where x, y and z is the coordinate of the interpolated value, and x0, x1, y0, y1, z0 and z1 are the cell boundaries
with x0 < x1, y0 < y1 and z0 < z1. By first interpolating along the x-axis, the corresponding values are found
from

c00 = c000(1− xd) + c100xd, (3.11)

c01 = c001(1− xd) + c101xd, (3.12)

c10 = c010(1− xd) + c110xd, (3.13)

and

c11 = c011(1− xd) + c111xd, (3.14)

where cijk denote the values at (xi, yj , zk). Interpolation across the y-axis gives the values

c0 = c00(1− yd) + c10yd, (3.15)

and

c1 = c01(1− yd) + c11yd, (3.16)

12 CHAPTER 3. GOVERNING EQUATIONS FOR THE LEVEL SET METHOD

before interpolation along the z-axis gives the value at (x, y, z) by

c = c0(1− zd) + c1zd. (3.17)

If the particle is not within the correct band, λ is halved, and xp = xnew is used along with the new local values
ϕ(xp) and N(xp) to find the new particle location with eq. (3.6). This process is repeated a maximum of 15
times, and if the particle is still not within the correct band, it is deleted. If the particle is in the correct band,
the new coordinates of the particle are saved, and xp = xnew. The particle is then assigned a radius set by

rp =


rmax if spϕ(xp) > rmax

spϕ(xp) if rmin ≤ spϕ(xp) ≤ rmax

rmin if spϕ(xp) < rmin,

(3.18)

where rmin = 0.1min(∆x,∆y,∆z), rmax = 0.5min(∆x,∆y,∆z), and sp = 1 for positive particles and
sp = −1 for negative particles.

At each time step, the particles are advected with the external velocity field independently of each other and the
level set method. The advection is governed by

dxp

dt
= u(xp), (3.19)

where u(xp) is the local velocity.

After both the level set equation (3.1) and the particle advection equation (3.19) are moved forward in time,
the particles are used to correct the interface. All particles on the wrong side of the interface with more than
their radius, i.e. if ϕ(xp) < −rp for positive particles and ϕ(xp) > rp for negative particles, are denoted as
escaped particles. The escaped positive particles are tasked with rebuilding the ϕ > 0 region, while the escaped
negative particles are tasked with rebuilding the ϕ < 0 region. An escaped particle indicates an error in at least
one of the eight corner values for the cell containing the escaped particle. The particles can generate their own
local level set functions, where the zero level set gives the surface of the particles. This local level set function
is defined as

ϕp(x) = sp · (rp − |x− xp|). (3.20)

As the particles escape, equation (3.20) may be used to predict the value of the global level set variable and may
be used to rebuild the signed distance field. The escaped particles predict the values of ϕ at each cell corner by
applying equation (3.20) to all eight corners of the cell. The ϕp value at a cell corner represents the distance
from the corner to the particle surface. An example in two dimensions is seen in Figure 3.2, showing an escaped
positive particle in a grid cell, the current interface found by the level set method, the correct interface, and the
distances ϕp and ϕ. The particle would never physically cross the correct interface, which means the actual
length from the corner to the correct interface location is maximum ϕp for the escaped particle in Figure 3.2.
The predicted value at the corner, ϕp, is checked with the global value of the corner, ϕ, and two new parameters
are defined; ϕ+ to rebuild the positive region and ϕ− to rebuild the negative region, where

ϕ+ = max (ϕp, ϕ), (3.21)

and

3.2. PARTICLE LEVEL SET METHOD 13

Current interface location

Correct interface location

Figure 3.2: Figure of the correction step in the particle level set method in two dimensions. The red positive particle has
escaped the interface, and is inside a grid cell. ϕp is the distance from a cell corner to the particle, while ϕ is the distance
from a cell corner to the interface found by the standard level set method. The correct interface location is marked by the
dashed line.

ϕ− = min (ϕp, ϕ). (3.22)

The correct value is set at the corner by applying

ϕ =

{
ϕ+ if |ϕ+| ≤ |ϕ−|
ϕ− if |ϕ+| > |ϕ−|,

(3.23)

as it gives priority to the values closer to the interface. Once the values of ϕ are set on all corners of the cell, the
radius is updated with Eq. (3.18). The particle radius is small close to the interface to determine if the particle
escapes more accurately. The same procedure is repeated for all the particles.

After the particles are advected multiple times, or there are large deformations at the interface, the particles
may need to be reseeded. Reseeding includes deleting particles that no longer provide valuable information
and inserting new particles in cells with few remaining particles. The reseeding algorithms used in [26] are
more complex than in the present work. The more straightforward methods used here are due to time restric-
tions, and more complex methods were not prioritized because the implemented methods showed promising
results. However, readers are encouraged to read the original article [26] to get further insight into the reseeding
algorithms available. In the present work, the deletion of unnecessary particles is coupled with the correction
step, and all particles with |ϕ(xp)| − rp > bmax, meaning they are entirely outside the band around the inter-
face, are deleted. The insertion of new particles is done after the correction step, eq. (3.23), after a number of
iterations depending on the test case. It is done by finding how many particles are left in the cells and simply
inserting the missing amount from each cell’s previously defined number of particles. In addition to periodic
reseeding, Enright et al. [26] also suggest reseeding when the interface has undergone a certain amount of

14 CHAPTER 3. GOVERNING EQUATIONS FOR THE LEVEL SET METHOD

compression or stretching.

3.3 Combining the Level Set Method with the Immersed Boundary Method
The end goal of the present work is to find an interface tracking algorithm that can be implemented in combin-
ation with the GPIBM. For the interface tracking method to be effective, it needs to identify whether a point is
in the fluid or solid region, which is found from the sign of the signed distance function in the level set method,
and find the image points for the GPIBM. This can be done with the level set method, as the normal vector
from the ghost points to the interface points in the same direction as the gradient of the level set method and
can easily be identified.

The normal vector defined in equation 3.7 can be used together with the value of the signed distance function
at the ghost points to find the closest points on the interface [19]. By doubling this distance, the location of the
image points seen in Figure 2.1 can be found from

xIP = x− 2ϕ(x, y, z)
∂ϕ(x, y, z)

∂x
, (3.24)

yIP = y − 2ϕ(x, y, z)
∂ϕ(x, y, z)

∂y
, (3.25)

and

zIP = z − 2ϕ(x, y, z)
∂ϕ(x, y, z)

∂z
, (3.26)

where (x, y, z) is the position of the ghost point, and |∇ϕ| = 1 was used. This enables the use of the boundary
conditions directly after the flow variables at xIP have been interpolated, as explained in section 2.3.1.

3.4 Marching Cubes Algorithm
The interface can be found from the zero-contour. Hence an algorithm to find contours in the scalar field is
needed. The present work utilizes the marching cubes algorithm [32]. The algorithm divides the domain into
cubes with the grid points at the corners. The algorithm finds cubes where the values at the corner are on
different sides of the reference value, which indicates the interface is crossing between these corners. There
are 256 different configurations the interface may cross each cube, but accounting for symmetries, the number
of unique configurations reduces to 14. After the algorithm has found which sides are crossed by the interface,
the crossing point on the side is found from linear interpolation of the values at the corners. Higher-order
interpolation schemes have been tested, but they showed no significant improvements [32]. This procedure is
repeated for the rest of the domain. The implementation of the marching cubes algorithm is done with the help
of the Python library scikit-image [33].

Chapter 4

Discretization of the Level Set Method

Finite difference schemes are used to solve the level set equation (3.1), the reinitialization equation (3.3), and
the advection of the particles (3.19). Different schemes are used to discretize the equations according to the
accuracy needed. High accuracy is needed for both the level set equation and the reinitialization equation. The
temporal discretization in these equations is approximated with a total variation diminishing (TVD) Runge-
Kutta (RK) method, while the spatial derivatives are approximated with a weighted essentially non-oscillating
(WENO) scheme and the Godunov scheme for the level set equation and the reinitialization equation respect-
ively, as suggested by Osher and Fedkiw [19]. For the temporal derivative in the advection of the particles in
equation (3.19), Euler’s scheme is used because it gave good initial results. The velocity in equation (3.19) is
found through trilinear interpolation of the given externally created velocity field. The trilinear interpolation is
introduced in section 3.2. The descriptions of the WENO scheme, TVD RK scheme, and Godunov’s scheme
below follows the presentation by Osher and Fedkiw [19].

4.1 WENO Method
The weighted essentially non-oscillating (WENO) scheme is used because it handles discontinuities in the
derivatives automatically [19]. These discontinuities can occur at places in the flow where the distance to the
interface is equal in more than one direction, causing a kink in the signed distance function. The WENO scheme
is fifth-order accurate in smooth regions of the flow and third-order accurate in other parts of the flow.

To approximate ϕx in axϕx, where the advection velocity is defined as ax = u in (3.1) and ϕx = ∂ϕ
∂x , the

WENO scheme uses a backward difference for a positive velocity, ax > 0, and a forward difference for a
negative velocity, ax < 0. The scheme uses three approximations of ϕx defined as

ϕ1
x =

v1
3

− 7v2
6

+
11v3
6

, (4.1)

ϕ2
x = −v2

6
+

5v3
6

+
v4
3
, (4.2)

and

ϕ3
x =

v3
3

+
5v4
6

− v5
6

(4.3)

where v1 = D−ϕi−2, v2 = D−ϕi−1, v3 = D−ϕi, v4 = D−ϕi+1 and v5 = D−ϕi+2 is defined for a backward
difference, and v1 = D+ϕi+2, v2 = D+ϕi+1, v3 = D+ϕi, v4 = D+ϕi−1 and v5 = D+ϕi−2 for a forward
difference, where

D−ϕi =
ϕi − ϕi−1

∆x
, (4.4)

15

16 CHAPTER 4. DISCRETIZATION OF THE LEVEL SET METHOD

and
D+ϕi =

ϕi+1 − ϕi

∆x
. (4.5)

The three ϕi
x terms are weighted and summed to yield the WENO approximation

ϕx = ω1ϕ
1
x + ω2ϕ

2
x + ω3ϕ

3
x, (4.6)

using
ω1 =

α1

α1 + α2 + α3
, (4.7)

ω2 =
α2

α1 + α2 + α3
, (4.8)

and
ω3 =

α3

α1 + α2 + α3
(4.9)

as weights. In smooth regions of the flow the optimal weights are observed as ω1 = 0.1, ω2 = 0.6, and
ω3 = 0.3. For non-smooth regions of the flow the scheme defines

α1 =
0.1

(S1 + ϵ)2
, (4.10)

α2 =
0.6

(S2 + ϵ)2
, (4.11)

and
α3 =

0.3

(S3 + ϵ)2
(4.12)

utilizing the smoothness indicators

S1 =
13

12
(v1 − 2v2 + v3)

2 +
1

4
(v1 − 4v2 + 3v3)

2, (4.13)

S2 =
13

12
(v2 − 2v3 + v4)

2 +
1

4
(v2 − v4)

2, (4.14)

and
S3 =

13

12
(v3 − 2v4 + v5)

2 +
1

4
(3v3 − 4v4 + v5)

2 (4.15)

to estimate the smoothness of ϕi. ϵ = 10−6 max(v21, v
2
2, v

2
3, v

2
4, v

2
5) + 10−99, where the first term is a

scaling term and the second term is included to avoid division by zero. The same procedure is followed when
approximating ϕy in ayϕy and ϕz in azϕz , where ay = v and az = w in (3.1), and ϕy = ∂ϕ

∂y and ϕz =
∂ϕ
∂z .

4.2 TVD Runge-Kutta Method
For the temporal discretization, the third-order accurate total variation diminishing (TVD) Runge-Kutta (RK)
method is chosen to achieve third-order accuracy [34].

The first step of the third-order accurate TVD RK is doing a forward Euler step

ϕn+1 − ϕn

∆t
+ un ·∇ϕn = 0, (4.16)

followed by a second Euler step

ϕn+2 − ϕn+1

∆t
+ un+1 ·∇ϕn+1 = 0. (4.17)

4.3. GODUNOV’S SCHEME 17

A weighted average is used

ϕn+ 1
2 =

3

4
ϕn +

1

4
ϕn+2 (4.18)

to obtain an approximation for tn + 0.5∆t. A third Euler step is used

ϕn+ 3
2 − ϕn+ 1

2

∆t
+ un+ 1

2 ·∇ϕn+ 1
2 = 0 (4.19)

followed by a final averaging step

ϕn+1 =
1

3
ϕn +

2

3
ϕn+ 3

2 (4.20)

to obtain an approximation for ϕn+1.

4.3 Godunov’s Scheme
The reinitialization equation (3.3) is discretized with the TVD RK method presented in section 4.2 for the time
derivative and the Godunov scheme for the spatial derivative [19].

In the reinitialization equation, the sign function (3.4) is used as the advection velocity. ϕx, ϕy, and ϕz are
found by taking the square root of the compact form of Godunov’s scheme by Rouy and Tourin [35]

ϕ2
x ≈

{
max(max(ϕ−

x , 0)
2,min(ϕ+

x , 0)
2) when ax > 0, and

max(min(ϕ−
x , 0)

2,max(ϕ+
x , 0)

2) when ax < 0,
(4.21)

where ϕ−
x = D−ϕ and ϕ+

x = D+ϕ as in equations (4.4) and (4.5). The same procedure is followed for ϕ2
y and

ϕ2
z .

4.4 CFL Number
Courant-Friedrichs-Lewy (CFL) condition is used in numerical simulations to ensure the stability of the scheme.
The CFL condition is enforced by defining the CFL number

CFL = ∆tmax
(
|u|
∆x

+
|v|
∆y

+
|w|
∆z

)
, (4.22)

where 0 ≤ CFL ≤ 1 usually ensures stability [19]. The maximum in eq. (4.22) is taken over all grid points and
all time steps.

4.5 Boundary Conditions
The regular reinitialization of the signed distance field and the fact that the interface is kept far away from
the boundary of the domain make it possible to assign a wide range of boundary conditions at the domain’s
boundary. In the present work, the boundary conditions for the level set equation (3.1) are set by extrapolation.
As the WENO scheme uses the three neighboring points on either side of the current node, the extrapolation is
done for the three outer nodes at each boundary. The extrapolation is given as

ϕ3,j,k = ϕ4,j,k − (ϕ5,j,k − ϕ4,j,k), (4.23)

ϕ2,j,k = ϕ3,j,k − (ϕ4,j,k − ϕ3,j,k), (4.24)

and
ϕ1,j,k = ϕ2,j,k − (ϕ3,j,k − ϕ2,j,k) (4.25)

in the x-direction,

18 CHAPTER 4. DISCRETIZATION OF THE LEVEL SET METHOD

ϕi,3,k = ϕi,4,k − (ϕi,5,k − ϕi,4,k), (4.26)

ϕi,2,k = ϕi,3,k − (ϕi,4,k − ϕi,3,k), (4.27)

and
ϕi,1,k = ϕi,2,k − (ϕi,3,k − ϕi,2,k) (4.28)

in the y-direction, and

ϕi,j,3 = ϕi,j,4 − (ϕi,j,5 − ϕi,j,4), (4.29)

ϕi,j,2 = ϕi,j,3 − (ϕi,j,4 − ϕi,j,3), (4.30)

and
ϕi,j,1 = ϕi,j,2 − (ϕi,j,3 − ϕi,j,2) (4.31)

in the z-direction, where the 1 index is the outermost grid point for all sides of the domain.

4.6 Measures of Error
Three different error measures are implemented to find the error of the particle level set method. The first
method is to find the volume change from the initial scalar field to the scalar field at final time. The volume of
the Ω− region can be found from [19]

V =

∫
Ω
(1− H̃(ϕ(x)))dx dy dz, (4.32)

where H̃(ϕ) is a smeared-out Heaviside function defined as [19]

H̃(ϕ) =


0 ifϕ < −ϵ
1
2 + ϕ

2ϵ +
1
2π sin

(
πϕ
ϵ

)
if − ϵ ≤ ϕ ≤ ϵ

1 if ϵ < ϕ,

(4.33)

where ϵ is the bandwidth of the numerical smearing, and is set to ϵ = 1.5∆x.

The discrete version of equation (4.32) is

V =

m∑
i=1, j=1, k=1

(1− H̃(ϕi,j,k))∆x∆y∆z, (4.34)

where i=1, j=1, k=1 denote the first indices in each direction, and m grid points in each dimension are assumed.

The interface error and average volume error introduced in [36] are also used to measure the error. Both of
these error estimates use another variant of the Heaviside function where H(x) ≡ 1 for x < 0, and H(x) ≡ 0
otherwise. The interface error is slightly adapted for 3D and is defined as

Ierror =
1

A

∫
Ω
|H(ϕexpect)−H(ϕcompute)| dx dy dz, (4.35)

where ϕexpect is the initial signed distance field for the test case, ϕcompute is the signed distance field at the time
the error is measured, A is the surface area at the initial time, and Ω is the entire domain. The surface area can
be found from [19]

4.6. MEASURES OF ERROR 19

A =

∫
Ω
δ(ϕ(x))|∇ϕ(x)| dx dy dz, (4.36)

where δ(ϕ) is defined as

δ(ϕ) =


0 ifϕ < −ϵ
1
2ϵ +

1
2ϵcos

(
πϕ
ϵ

)
if − ϵ ≤ ϕ ≤ ϵ

0 if ϵ < ϕ,

(4.37)

The discretized form of (4.35) can be written as

Interface error =
m∑

i=1,j=1,k=1

1

A
|H(ϕexpect, ijk)−H(ϕcompute, ijk)|∆x∆y∆z, (4.38)

where H(ϕijk) is the Heaviside function applied to ϕijk, and (4.36) is discretized as

A =

m∑
i=1, j=1, k=1

δ(ϕi,j,k)

∣∣∣∣∣∣
√(

∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
∣∣∣∣∣∣ ∆x∆y∆z, (4.39)

and ∂ϕ
∂x , ∂ϕ

∂y and ∂ϕ
∂z are discretized with second-order central differencing.

The average volume error is defined as

Merror =

∫ tf

t=0

|M(t)−M(0)|
tf

dt (4.40)

where tf is the time the error is measured, and

M(t) =

∫
Ω
|H(ϕ(x, y, z, t)))|dx dy dz. (4.41)

The discretized form of equation (4.41) can be written as

Mn =

m∑
i=1,j=1,k=1

|H(ϕ)nijk|∆x∆y∆z, (4.42)

where n is the current time step. The discretized version (4.40) follows as

Average volume error =
tf∑

n=1

|Mn −M0|
tf

∆t. (4.43)

The order of convergence is shown in Table 5.2, and is defined as

p =
ln(err(∆x)/err(∆x/2))

ln (2)
(4.44)

where err(∆x) is the error at grid spacing ∆x.

20 CHAPTER 4. DISCRETIZATION OF THE LEVEL SET METHOD

Chapter 5

Results

The simulations in the present work are done at a CFL number of 0.9, which ensures the stability of the
numerical methods. The time step is then found from eq. (4.22). The tests are conducted on an n× n× n grid,
where n is the number of grid cells in each spatial direction. To see the order of convergence of the method, the
grid size is halved for each simulation, where the coarsest grid uses n = 50, and the finest uses n = 400. The
reinitialization equation (3.3) is solved every time step with 5 pseudo time steps. The pseudo time step size is
set to ∆τ = 0.5∆x as suggested in [19]. Particle reseeding is done every 100 time steps. These parameters
are kept constant and were chosen because they seemed to give the best results for the test case explained in
section 5.2. However, other parameters may show better results depending on the test case. During simple
testing with a sphere advected with u = 1, v = 1, and w = 1, less frequent reinitialization also showed good
results, indicating more reinitialization may be needed in velocity fields with large deformations.

5.1 Sphere in two-dimensional vortex velocity field
This test case consists of a sphere of radius 0.15 in a unit cube of [0, 1]×[0, 1]×[0, 1], where the center is initially
placed at (0.5, 0.75, 0.5), with the signed distance with reference to the sphere surface as the initial condition
for the scalar field as explained in section 3.1. The initial sphere is shown in Figure 5.1. The externally created
velocity field was introduced by Morgan and Waltz [37] and is given by

u = sin(πx) cos(πy) cos(πt/T), (5.1)

v = − cos(πx) sin(πy) cos(πt/T), (5.2)

and
w = 0, (5.3)

where T = 10 and is the total time of the deformation. The velocity field ensures the initial sphere is deformed
in the x − y plane. The cosine term ensures the velocity field is reversed after t = 1/2T , and the interface is
deformed back to the initial sphere at t = T . The maximum deformations at t = 1/2T in the x− y and y − z
planes for n = 400 are shown in Figure 5.2. As the initial and final interface are supposed to be identical, the
error can be found from the measures introduced in section 4.6.

Figure 5.3 shows the first and final time step of the deformation at four different grid sizes. The approximation
of the initial volume is best for the finest grid. The error measures in Table 5.1 also show decreasing errors for
increasing number of grid nodes. The maximum deformations at t = 1/2T for n = 50, n = 100, and n = 200
are shown in Figure 5.4. All grids manage to keep the interface without creating droplets that separate from the
main structure.

21

22 CHAPTER 5. RESULTS

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

Figure 5.1: Initial sphere in two-dimensional velocity field in the x−y plane for a 400×400×400 grid. The same shape
should be found at t = T .

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(a) x− y plane

x
0.00.20.40.60.81.0

y
0.0 0.2 0.4 0.6 0.8 1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(b) y − z plane

Figure 5.2: Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the two-dimensional velocity field with n = 400.

5.1. SPHERE IN TWO-DIMENSIONAL VORTEX VELOCITY FIELD 23

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(a) 50× 50× 50, t = T

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(b) 100× 100× 100, t = T

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(c) 200× 200× 200, t = T

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(d) 400× 400× 400, t = T

Figure 5.3: Domains where ϕ(x, T) ≤ 0 for the sphere in the two-dimensional velocity field at four different grid
resolutions in the x− y plane.

24 CHAPTER 5. RESULTS

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(a) x− y plane, n = 50

x
0.00.20.40.60.81.0

y
0.0 0.2 0.4 0.6 0.8 1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(b) y − z plane, n = 50

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(c) x− y plane, n = 100

x
0.00.20.40.60.81.0

y
0.0 0.2 0.4 0.6 0.8 1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(d) y − z plane, n = 100

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(e) x− y plane, n = 200

x
0.00.20.40.60.81.0

y
0.0 0.2 0.4 0.6 0.8 1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(f) y − z plane, n = 200

Figure 5.4: Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the two-dimensional velocity field with n = 50,
n = 100, and n = 200.

5.2. SPHERE IN THREE-DIMENSIONAL VORTEX VELOCITY FIELD 25

Table 5.1: Error for two-dimensional vortex test. Procedure is explained in section 4.6.

n Interface error p Average volume error p Volume change [%]
50 6.84E-2

0.95
1.12E-3

0.59
23.77

100 3.54E-2
1.01

7.40E-4
0.86

13.95
200 1.76E-2

1.02
4.06E-4

0.93
7.44

400 8.67E-3 2.13E-4 3.82

The order of convergence for the sphere in the two-dimensional vortex test is shown in Table 5.1. The order
of convergence for the interface error, eq. (4.35), is stable at around 1.0, while the order of convergence for
the average volume error, eq (4.40), varies. The order of convergence for the average volume error starts low
and increases towards 1.0 as the grids are refined. The volume is overshot for all the grid sizes but decreases
towards the initial volume as more grid nodes are used. Morgan et al. [37] saw first-order convergence for the
same test case.

5.2 Sphere in three-dimensional vortex velocity field
The test case was introduced by LeVeque [38] and consists of a sphere of radius 0.15 in a unit cube of [0, 1]×
[0, 1]× [0, 1], where the center is initially placed at (0.35, 0.35, 0.35). The initial condition for the scalar field is
the signed distance with reference to the sphere surface as explained in section 3.1. The velocity field is given
by

u = 2 sin2(πx) sin(2πy) sin(2πz) cos(πt/T), (5.4)

v = − sin(2πx) sin2(πy) sin(2πz) cos(πt/T), (5.5)

and
w = − sin(2πx) sin(2πy) sin2(πz) cos(πt/T), (5.6)

where T = 3. The velocity field deforms the initial sphere seen in Figure 5.5 in both the x − y plane and the
x−z plane. The cosine term ensures the velocity field is reversed after t = 1/2T , and the interface is deformed
back to the initial sphere at t = T . The maximum deformations in the x− y and x− z planes for n = 400 are
shown in Figure 5.6. As the initial and final interface are supposed to be identical, the error can be found from
the measures introduced in section 4.6.

Figure 5.7 shows the deformation’s first and final time step at four different grid sizes. The finer grids clearly
show a better match with the initial interface. Compared with the error measures in Table 5.2, this is also true
for both the interface error and the average volume error, as they both decrease at finer grids. However, that is
not the case for the volume change, as the coarsest grid shows the second best volume conservation. Although,
by looking at Figure 5.7(a), the shape of the interface is far off compared to the finer grids.

Figure 5.8 shows the maximum deformation in both the x − y and x − z planes for n = 50, n = 100,
and n = 200. It is evident that there are less separated droplets from the main structures for the finer grids
at t = 1/2T when the interface is stretched. None of these droplets are shown in Figure 5.6, showing the
deformations at t = 1/2T for n = 400.

The order of convergence is given in Table 5.2. For the interface error, the order of convergence is approximately
stable at around 1.0. The order of convergence for the average volume error is slightly more changing but seems
to stabilize around 1.5. The relatively large difference in order of convergence between n = 50 and n = 100
to n = 100 and n = 200 may be explained by n = 50 being too coarse to give a good approximation of the
interface.

26 CHAPTER 5. RESULTS

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0
0.2
0.4
0.6
0.8
1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.5: Initial sphere in three-dimensional velocity field for a 400×400×400 grid. The same shape should be found
at t = T .

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(a) x− y plane

x
0.0 0.2 0.4 0.6 0.8 1.0 y0.00.20.40.60.81.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(b) x− z plane

Figure 5.6: Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the three-dimensional velocity field with n = 400.

5.2. SPHERE IN THREE-DIMENSIONAL VORTEX VELOCITY FIELD 27

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0
0.2
0.4
0.6
0.8
1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(a) 50× 50× 50, t = T

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0
0.2
0.4
0.6
0.8
1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(b) 100× 100× 100, t = T

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0
0.2
0.4
0.6
0.8
1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(c) 200× 200× 200, t = T

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0
0.2
0.4
0.6
0.8
1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(d) 400× 400× 400, t = T

Figure 5.7: Domains where ϕ(x, T) ≤ 0 for the sphere in the three-dimensional velocity field at four different grid
resolutions.

28 CHAPTER 5. RESULTS

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(a) x− y plane, n = 50

x
0.0 0.2 0.4 0.6 0.8 1.0 y0.00.20.40.60.81.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(b) x− z plane, n = 50

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(c) x− y plane, n = 100

x
0.0 0.2 0.4 0.6 0.8 1.0 y0.00.20.40.60.81.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(d) x− z plane, n = 100

x
0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

z
0.00.20.40.60.81.0

(e) x− y plane, n = 200

x
0.0 0.2 0.4 0.6 0.8 1.0 y0.00.20.40.60.81.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(f) x− z plane, n = 200

Figure 5.8: Domains where ϕ(x, t) ≤ 0 at t = 1/2T for the sphere in the three-dimensional velocity field with n = 50,
n = 100, and n = 200.

5.3. CPU TIME 29

Table 5.2: Error for three-dimensional vortex test. Procedure is explained in section 4.6.

n Interface error p Average volume error p Volume change [%]
50 2.82E-2

0.97
2.02E-3

1.88
-0.73

100 1.43E-2
1.01

5.50E-4
1.46

1.43
200 7.11E-3

1.02
1.99E-4

1.51
1.06

400 3.50E-3 7.00E-5 0.62

The order of convergence is at the same size as for Enright et al. [26], who observed an order of convergence
in the region between 1 and 1.5. Note that the order of convergence calculated for Enright et al. [26] is for the
two-dimensional vortex test, and no order of convergence was calculated for the three-dimensional test case.
First-order convergence was also seen in the two-dimensional standard level set method implementation by
Sommersel [9]. The same test case was also run for the standard level set method at grids up to the size of
n = 400, where the entire volume was lost before t = 1/2T . The CPU times for the tests with the standard
level set method are shown in Table 5.3(c). The CPU times for the particle level set method in Table 5.3(b)
shows an increase of 70.5 %, 42.6 %, 19.0 %, and 24.5 %, compared to the standard level set method in Table
5.3(c) with grid sizes of n = 50, n = 100, n = 200, and n = 400 respectively. Considering the massive
improvement in mass conservation, extending the standard level set method to the particle level set method is
worth the extra work.

5.3 CPU time
All tests are run on a computer with a clock rate of 1.4 GHz, with an 11th Gen Intel Core i7-11700T processor
with 16 CPUs and 32 GB RAM. The elapsed time and number of time steps for each run are given in Table
5.3. Further optimization of the code is possible and may lead to shorter tun times. The CPU times presented
in Table 5.3 are meant as a pointer for the code as it is, and changing the parameters explained at the start of
chapter 5 may lead to better results and shorter run times.

30 CHAPTER 5. RESULTS

Table 5.3: CPU time and number of time steps for all test cases at different grid sizes.

(a) Two-dimensional vortex test with the particle level set method.

n CPU time [s] Number of time steps
50 65 546

100 921 1100
200 14078 2212
400 224277 4434

(b) Three-dimensional vortex test with the particle level set method.

n CPU time [s] Number of time steps
50 75 404

100 1038 818
200 13865 1644
400 223832 3298

(c) Three-dimensional vortex test with the standard level set method.

n CPU time [s] Number of time steps
50 44 404

100 728 818
200 11655 1644
400 179808 3298

Chapter 6

Conclusions and Outlook

The three-dimensional particle level set method has been implemented, and the possibility of using this ap-
proach in the VirtuOSA project has been investigated. The conclusion is that the level set method can track
the fluid-solid interface in the upper airways for OSA patients with the GPIBM, as is needed in the VirtuOSA
project. The properties of the signed distance function explained in section 3.3 are a big bonus when computing
the values at the ghost points to satisfy the correct boundary conditions. These properties are the main reasons
the level set method has been preferred over methods like the volume of fluid method and front tracking method
in the present study. Implementing the particle level set method has significantly improved the poor mass con-
servation of the standard level set method. By comparing the the CPU times in Table 5.3(b) and Table 5.3(c)
an average of 21.8 % longer CPU times are seen for the two finest grids. Considering that the standard level
set method lost all volume for the finest grid with n = 400, while the particle level set method saw a volume
change of 23.77 % for the coarsest grid with n = 50, this extra CPU time is worthwhile.

An order of convergence in the region between 0.9 and 1.5 is seen, which is low compared to the WENO
method, which is fifth-order accurate in smooth regions and at least third-order accurate elsewhere. The reason
behind the low order for the particle level set method may be the low order method used to advect the particle
advection equation (3.19), or low order in the implemented trilinear interpolation method introduced in section
3.2. Experimenting with different alternatives to these methods may be the focus of future work and may lead
to an increase in the order of convergence. The possibility of combining the particle level set method with other
methods, i.e., the different modifications to the reinitialization equation as discussed in section 2.2.3, may also
increase the order of the method even further.

The low order of convergence is slightly worrying. Lower-order methods may give the same results and be
computationally cheaper. Further code optimization is possible and will be a case to consider before possible
implementation in the VirtuOSA project. Changing when particles are reseeded for the particle level set method
may be more efficient and give better results. Nevertheless, the results from the particle level set method are a
significant improvement compared to the standard level set method. The easy implementation with the GPIBM
shows that the particle level set method is a candidate to consider when choosing the final front tracking method.

31

32 CHAPTER 6. CONCLUSIONS AND OUTLOOK

Bibliography

[1] Terry Young, Mari Palta, Jerome Dempsey, James Skatrud, Steven Weber and Safwan Badr. ‘The Occur-
rence of Sleep-Disordered Breathing among Middle-Aged Adults’. In: New England Journal of Medicine
328.17 (1993). PMID: 8464434, pp. 1230–1235. DOI: 10.1056/NEJM199304293281704.

[2] Amy S. Jordan, David G. McSharry and Atul Malhotra. ‘Adult obstructive sleep apnoea’. In: The Lancet
383.9918 (2014), pp. 736–747. ISSN: 0140-6736. DOI: 10.1016/S0140-6736(13)60734-5.

[3] Adam V. Benjafield, Najib T. Ayas, Peter R. Eastwood, Raphael Heinzer, Mary S. M. Ip, Mary J. Morrell,
Carlos M. Nunez, Sanjay R. Patel, Thomas Penzel, Jean-Louis Pépin, Paul E. Peppard, Sanjeev Sinha,
Sergio Tufik, Kate Valentine and Atul Malhotra. ‘Estimation of the global prevalence and burden of
obstructive sleep apnoea: a literature-based analysis’. In: The Lancet Respiratory Medicine 7.8 (2019),
pp. 687–698. ISSN: 2213-2600. DOI: 10.1016/S2213-2600(19)30198-5.

[4] T. Douglas Bradley and John S. Floras. ‘Obstructive sleep apnoea and its cardiovascular consequences’.
In: The Lancet 373.9657 (2009), pp. 82–93. ISSN: 0140-6736. DOI: 10.1016/S0140- 6736(08)
61622-0.

[5] Lucia Spicuzza, Daniela Caruso and Giuseppe Di Maria. ‘Obstructive sleep apnoea syndrome and its
management’. In: Therapeutic Advances in Chronic Disease 6.5 (2015). PMID: 26336596, pp. 273–285.
DOI: 10.1177/2040622315590318.

[6] Mads Henrik Strand Moxness. The Influence of the Nasal Airway in Obstructive Sleep Apnea. PhD thesis,
NTNU, June 2018. URL: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2560447.

[7] Blausen.com staff. ‘Medical gallery of Blausen Medical 2014’. In: WikiJournal of Medicine 1 (2) (2014).
ISSN: 2002-4436. DOI: 10.15347/wjm/2014.010.

[8] Sverre Gullikstad Johnsen. VirtuOSA - Virtuell Kirurgi i de Øvre Luftveiene – Nye Løsninger for Behand-
ling av Obstruktiv Søvnapne. SINTEF, Jan. 2021. URL: https://www.sintef.no/prosjekter/
2020/virtuosa/.

[9] Marcus Sommersel. Interface Tracking for Immersed Boundary Method in Biofluid Dynamics. Project
Work, NTNU, 2021.

[10] Luke Reid. ‘An Introduction to Biomedical Computational Fluid Dynamics’. In: Biomedical Visualisa-
tion: Volume 10. Ed. by Paul M. Rea. Cham: Springer International Publishing, 2021, pp. 205–222. ISBN:
978-3-030-76951-2. DOI: 10.1007/978-3-030-76951-2_10.

[11] Paul D. Morris, Andrew Narracott, Hendrik von Tengg-Kobligk, Daniel Alejandro Silva Soto, Sarah
Hsiao, Angela Lungu, Paul Evans, Neil W. Bressloff, Patricia V. Lawford, D. Rodney Hose and Julian P.
Gunn. ‘Computational fluid dynamics modelling in cardiovascular medicine’. In: Heart 102.1 (2016),
pp. 18–28. ISSN: 1355-6037. DOI: 10.1136/heartjnl-2015-308044.

33

https://doi.org/10.1056/NEJM199304293281704
https://doi.org/10.1016/S0140-6736(13)60734-5
https://doi.org/10.1016/S2213-2600(19)30198-5
https://doi.org/10.1016/S0140-6736(08)61622-0
https://doi.org/10.1016/S0140-6736(08)61622-0
https://doi.org/10.1177/2040622315590318
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2560447
https://doi.org/10.15347/wjm/2014.010
https://www.sintef.no/prosjekter/2020/virtuosa/
https://www.sintef.no/prosjekter/2020/virtuosa/
https://doi.org/10.1007/978-3-030-76951-2_10
https://doi.org/10.1136/heartjnl-2015-308044

34 BIBLIOGRAPHY

[12] S. S. Khalafvand, E. Y. K. Ng and L. Zhong. ‘CFD simulation of flow through heart: a perspect-
ive review’. In: Computer Methods in Biomechanics and Biomedical Engineering 14.1 (2011). PMID:
21271418, pp. 113–132. DOI: 10.1080/10255842.2010.493515.

[13] Fotis Sotiropoulos and Xiaolei Yang. ‘Immersed boundary methods for simulating fluid–structure inter-
action’. In: Progress in Aerospace Sciences 65 (2014), pp. 1–21. ISSN: 0376-0421. DOI: 10.1016/j.
paerosci.2013.09.003.

[14] Richtmyer and Morton. Difference Methods for Initial Value Problems. Interscience Publishers, 1967.

[15] J. Glimm, E. Isaacson, D. Marchesin and O. McBryan. ‘Front tracking for hyperbolic systems’. In:
Advances in Applied Mathematics 2.1 (1981), pp. 91–119. ISSN: 0196-8858. DOI: 10.1016/0196-
8858(81)90040-3.

[16] Grétar Tryggvason, Ruben Scardovelli and Stéphane Zaleski. Direct Numerical Simulations of Gas–Liquid
Multiphase Flows. Cambridge University Press, 2011. DOI: 10.1017/CBO9780511975264.

[17] C. W. Hirt and B. D. Nichols. ‘Volume of fluid (VOF) method for the dynamics of free boundaries’. In:
Journal of Computational Physics 39.1 (1981), pp. 201–225. ISSN: 0021-9991. DOI: 10.1016/0021-
9991(81)90145-5.

[18] Stanley Osher and James A. Sethian. ‘Fronts propagating with curvature-dependent speed: Algorithms
based on Hamilton-Jacobi formulations’. In: Journal of Computational Physics 79.1 (1988), pp. 12–49.
ISSN: 0021-9991. DOI: 10.1016/0021-9991(88)90002-2.

[19] Stanley Osher and Ronald Fedkiw. The Level Set Methods and Dynamic Implicit Surfaces. Springer,
2003. ISBN: 978-0-387-95482-0. DOI: 10.1007/b98879.

[20] Mark Sussman, Peter Smereka and Stanley Osher. ‘A Level Set Approach for Computing Solutions to
Incompressible Two-Phase Flow’. In: Journal of Computational Physics 114.1 (1994), pp. 146–159.
ISSN: 0021-9991. DOI: 10.1006/jcph.1994.1155.

[21] J. A. Sethian. Level set methods and fast marching methods. Cambridge University Press, 1999.

[22] Frederic Gibou, Ronald Fedkiw and Stanley Osher. ‘A review of level-set methods and some recent
applications’. In: Journal of Computational Physics 353 (2018), pp. 82–109. ISSN: 0021-9991. DOI:
10.1016/j.jcp.2017.10.006.

[23] Giovanni Russo and Peter Smereka. ‘A Remark on Computing Distance Functions’. In: Journal of Com-
putational Physics 163.1 (2000), pp. 51–67. ISSN: 0021-9991. DOI: 10.1006/jcph.2000.6553.

[24] Antoine du Chéné, Chohong Min and Frédéric Gibou. ‘Second-Order Accurate Computation of Curvatures
in a Level Set Framework Using Novel High-Order Reinitialization Schemes’. In: Journal of Scientific
Computing 35 (2008), pp. 114–131. DOI: 10.1007/s10915-007-9177-1.

[25] Daniel Hartmann, Matthias Meinke and Wolfgang Schröder. ‘The constrained reinitialization equation
for level set methods’. In: Journal of Computational Physics 229.5 (2010), pp. 1514–1535. ISSN: 0021-
9991. DOI: 10.1016/j.jcp.2009.10.042.

[26] Douglas Enright, Ronald Fedkiw, Joel Ferziger and Ian Mitchell. ‘A Hybrid Particle Level Set Method
for Improved Interface Capturing’. In: Journal of Computational Physics 183.1 (2002), pp. 83–116.
ISSN: 0021-9991. DOI: 10.1006/jcph.2002.7166.

[27] Mark Sussman and Elbridge Gerry Puckett. ‘A Coupled Level Set and Volume-of-Fluid Method for Com-
puting 3D and Axisymmetric Incompressible Two-Phase Flows’. In: Journal of Computational Physics
162.2 (2000), pp. 301–337. ISSN: 0021-9991. DOI: 10.1006/jcph.2000.6537.

[28] Xiaofeng Yang, Ashley J. James, John Lowengrub, Xiaoming Zheng and Vittorio Cristini. ‘An adapt-
ive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids’. In:
Journal of Computational Physics 217.2 (2006), pp. 364–394. ISSN: 0021-9991. DOI: 10.1016/j.
jcp.2006.01.007.

https://doi.org/10.1080/10255842.2010.493515
https://doi.org/10.1016/j.paerosci.2013.09.003
https://doi.org/10.1016/j.paerosci.2013.09.003
https://doi.org/10.1016/0196-8858(81)90040-3
https://doi.org/10.1016/0196-8858(81)90040-3
https://doi.org/10.1017/CBO9780511975264
https://doi.org/10.1016/0021-9991(81)90145-5
https://doi.org/10.1016/0021-9991(81)90145-5
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1007/b98879
https://doi.org/10.1006/jcph.1994.1155
https://doi.org/10.1016/j.jcp.2017.10.006
https://doi.org/10.1006/jcph.2000.6553
https://doi.org/10.1007/s10915-007-9177-1
https://doi.org/10.1016/j.jcp.2009.10.042
https://doi.org/10.1006/jcph.2002.7166
https://doi.org/10.1006/jcph.2000.6537
https://doi.org/10.1016/j.jcp.2006.01.007
https://doi.org/10.1016/j.jcp.2006.01.007

BIBLIOGRAPHY 35

[29] Charles S. Peskin. ‘Flow patterns around heart valves: A numerical method’. In: Journal of Computa-
tional Physics 10.2 (1972), pp. 252–271. ISSN: 0021-9991. DOI: 10.1016/0021-9991(72)90065-4.

[30] Yu-Heng Tseng and Joel H. Ferziger. ‘A ghost-cell immersed boundary method for flow in complex
geometry’. In: Journal of Computational Physics 192.2 (2003), pp. 593–623. ISSN: 0021-9991. DOI:
10.1016/j.jcp.2003.07.024.

[31] R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas and A. von Loebbecke. ‘A versatile sharp
interface immersed boundary method for incompressible flows with complex boundaries’. In: Journal
of Computational Physics 227.10 (2008), pp. 4825–4852. ISSN: 0021-9991. DOI: 10.1016/j.jcp.
2008.01.028.

[32] William E. Lorensen and Harvey E. Cline. ‘Marching Cubes: A High Resolution 3D Surface Construc-
tion Algorithm’. In: Computer Graphics 21 (Aug. 1987), pp. 163–169. DOI: 10.1145/37401.37422.

[33] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D.
Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu and the scikit-image contributors. ‘scikit-image:
image processing in Python’. In: PeerJ 2 (June 2014), e453. ISSN: 2167-8359. DOI: 10.7717/peerj.
453.

[34] Chi-Wang Shu and Stanley Osher. ‘Efficient implementation of essentially non-oscillatory shock-capturing
schemes’. In: Journal of Computational Physics 77.2 (1988), pp. 439–471. ISSN: 0021-9991. DOI: 10.
1016/0021-9991(88)90177-5.

[35] Elisabeth Rouy and Agnès Tourin. ‘A Viscosity Solutions Approach to Shape-From-Shading’. In: SIAM
Journal on Numerical Analysis 29.3 (1992), pp. 867–884. ISSN: 00361429. URL: http://www.jstor.
org/stable/2158283.

[36] Mark Sussman and Emad Fatemi. ‘An Efficient, Interface-Preserving Level Set Redistancing Algorithm
and Its Application to Interfacial Incompressible Fluid Flow’. In: SIAM Journal on Scientific Computing
20.4 (1999), pp. 1165–1191. DOI: 10.1137/S1064827596298245.

[37] Nathaniel R. Morgan and Jacob I. Waltz. ‘3D level set methods for evolving fronts on tetrahedral meshes
with adaptive mesh refinement’. In: Journal of Computational Physics 336 (2017), pp. 492–512. ISSN:
0021-9991. DOI: 10.1016/j.jcp.2017.02.030.

[38] Randall J. LeVeque. ‘High-Resolution Conservative Algorithms for Advection in Incompressible Flow’.
In: SIAM Journal on Numerical Analysis 33.2 (1996), pp. 627–665. DOI: 10.1137/0733033.

https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/j.jcp.2003.07.024
https://doi.org/10.1016/j.jcp.2008.01.028
https://doi.org/10.1016/j.jcp.2008.01.028
https://doi.org/10.1145/37401.37422
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1016/0021-9991(88)90177-5
http://www.jstor.org/stable/2158283
http://www.jstor.org/stable/2158283
https://doi.org/10.1137/S1064827596298245
https://doi.org/10.1016/j.jcp.2017.02.030
https://doi.org/10.1137/0733033

36 BIBLIOGRAPHY

Appendices

37

Appendix A

LSM3D

The following appendix includes code for the implemented particle level set method. The main computations
are programmed in C++, while the post-processing is programmed in Python. The complete code is also found
on GitHub at https://github.com/marcussommersel/LSM3D.

39

https://github.com/marcussommersel/LSM3D

40 APPENDIX A. LSM3D

A.1. MAIN.CPP 41

A.1 main.cpp
This file contains the main structure of the particle level set method and reinitialization. The computation of
the different measures of error from section 4.6 are also included.

1 #include <vector>
2 #include <iostream>
3 #include <ctime>
4 #include <chrono>
5 #include <fstream>
6 #include "initialization.h"
7 #include "schemes.h"
8 #include "vectorUtilities.h"
9 #include "particleLSM.h"

10 #include "testCases.h"
11 using namespace std;
12
13 int main(){
14
15 // start of setup.
16 chrono::steady_clock::time_point startTime = chrono::steady_clock::now();
17
18 cout << "Program start." << endl;
19
20 // grid nodes in each spatial direction
21 const int m = 200; // x-direction
22 const int n = 200; // y-direction
23 const int p = 200; // z-direction
24
25 // size of domain
26 const double xStart = 0.0;
27 const double xEnd = 1.0;
28 const double yStart = 0.0;
29 const double yEnd = 1.0;
30 const double zStart = 0.0;
31 const double zEnd = 1.0;
32
33 // vector of nodes in each direction
34 vector<double> x = linspace(xStart, xEnd, m);
35 vector<double> y = linspace(yStart, yEnd, n);
36 vector<double> z = linspace(zStart, zEnd, p);
37
38 // grid spacing in each direction
39 double dx = x[1] - x[0];
40 double dy = y[1] - y[0];
41 double dz = z[1] - z[0];
42
43 // varius parameters that may be changed
44 double dtau = 0.5*dx; // size of pseudo-time step
45 bool doReinit = true; // true if reinitialization should be done
46 bool doParticle = false; // true if particles should be used for level set method
47 bool saveParticles = false; // true if particles should be saved for plotting
48 int nParticles = 64; // number of particles of each type (positive and negative)

in each cell
49 int reinitFreq = 1; // how often reinitialization should be conducted
50 int reinitSteps = 5; // how many pseudo-time steps should be done
51 int plotFreq = 20000; // how often signed distance field is saved, not including

first and last time step
52 int reseedFreq = 100; // how often particles are reseeded
53 int itmax = 20000; // maximum number of iterations
54 double CFL = 0.9; // CFL-number
55 bool halfplot = true; // true if signed distance field should be saved at 0.5 t/T
56
57 // The three implemented test cases
58 string testcase = "vortex";
59 // string testcase = "sheared";
60 // string testcase = "simple";
61 string savePath = "figures/";
62
63 Point c;
64 double r;
65 double T;
66 if (testcase == "vortex"){
67 c = Point(0.35,0.35,0.35);
68 r = 0.15;
69 T = 3.0;
70 } else if (testcase == "sheared"){
71 c = Point(0.5,0.75,0.5);

72 r = 0.15;
73 T = 10.0;
74 } else if (testcase == "simple"){
75 c = Point(0.35,0.35,0.35);
76 r = 0.15;
77 T = 0.4;
78 }
79
80 vector<double> phi;
81
82 // initial signed distance field
83 signedDistanceField(phi, x, y, z, r, c, m, n, p);
84
85 // measures of error
86 double initialVolume = volume(phi, dx, dy, dz);
87 vector<double> phi0 = phi;
88 double MError0 = massError(phi, dx, dy, dz, m, n, p);
89 double MError = 0;
90
91 vector<string> plotTimes;
92 vector<string> plotTimesParticle;
93
94 // save signed distance field
95 saveScalarField(savePath + to_string(0.000000) + ".txt", phi, x, y, z, m, n, p);
96 plotTimes.push_back(to_string(0.000000));
97
98 // parameters used in particle level set method
99 vector<Particle> particles;

100 double rmin = 0.1*min(dx, min(dy, dz));
101 double rmax = 0.5*max(dx, max(dy, dz));
102 double bmin = rmin;
103 double bmax = 3.0*max(dx, max(dy, dz));
104
105 // initializing particles
106 cout << "Initializing particles." << endl;
107 if (doParticle){
108 Derivative norm = normal(phi, dx, dy, dz, m, n, p);
109 for (int k = 0; k < p; ++k){
110 for (int j = 0; j < n; ++j){
111 for (int i = 0; i < m; ++i){
112 if (abs(phi[i + j*n + k*p*p]) < 3*max(dx, max(dy,dz))){
113 vector<Particle> newParticles = initializeParticles(x[i], y[j

], z[k], dx, dy, dz, x, y, z, phi, norm, m, n, p, nParticles);
114 particles.insert(particles.end(), newParticles.begin(),

newParticles.end());
115 }
116 }
117 }
118 }
119
120 cout << "Initialization finished." << endl;
121
122 if (saveParticles){
123 plotParticles(savePath + to_string(0.000000) + "particle.txt" , particles

);
124 plotTimesParticle.push_back(to_string(0.000000) + "particle");
125 }
126 }
127
128 vector<double> ax;
129 vector<double> ay;
130 vector<double> az;
131
132 double t = 0;
133
134 // initial velocity field
135 if (testcase == "vortex"){
136 Velocity a = vortexVelocity(m, n, p, x, y, z, t, T);
137 ax = a.x;
138 ay = a.y;
139 az = a.z;
140 } else if (testcase == "sheared"){
141 Velocity a = shearedSphereVelocity(m, n, p, x, y, z, t, T);

142 ax = a.x;
143 ay = a.y;
144 az = a.z;
145 } else if (testcase == "simple"){
146 Velocity a = simpleVelocity(m, n, p);
147 ax = a.x;
148 ay = a.y;
149 az = a.z;
150 }
151
152 double dtmax = CFL/(vectorMax(vectorAbs(ax)/dx + vectorAbs(ay)/dy + vectorAbs(az)/

dz)); // max time step
153 double dt;
154 int numIt = 0;
155
156 cout << "Setup complete." << endl;
157 chrono::steady_clock::time_point currentTime = chrono::steady_clock::now();
158 cout << "Elapsed time: " << (chrono::duration_cast<chrono::seconds>(currentTime -

startTime).count()) << " s." << endl << endl;
159
160 // main iteration loop
161 for (int it = 1; it < itmax; ++it){
162
163 // statement to make sure loop has one iteration at 0.5 t/T
164 if (t < 0.5*T){
165 dt = min(dtmax, 0.5*T - t);
166 } else if (t >= 0.5*T){
167 dt = min(dtmax, T - t);
168 }
169
170 t += dt;
171
172 // advection of level set method
173 TVDRK3_weno(phi, ax, ay, az, m, n, p, dx, dy, dz, dt);
174
175 // advection of particles
176 if (doParticle){
177 for (int a = 0; a < particles.size(); ++a){
178
179 int i = (int)(particles[a].x/dx);
180 int j = (int)(particles[a].y/dy);
181 int k = (int)(particles[a].z/dz);
182
183 double Up = trilinearInterpolation(particles[a].x, particles[a].y,

particles[a].z,
184 x[i], x[i+1], y[j], y[j+1], z[k], z[k+1],
185 ax[i+j*n+k*p*p],
186 ax[(i+1)+j*n+k*p*p],
187 ax[(i+1)+(j+1)*n+k*p*p],
188 ax[i+(j+1)*n+k*p*p],
189 ax[i+j*n+(k+1)*p*p],
190 ax[(i+1)+j*n+(k+1)*p*p],
191 ax[(i+1)+(j+1)*n+(k+1)*p*p],
192 ax[i+(j+1)*n+(k+1)*p*p]);
193
194 double Vp = trilinearInterpolation(particles[a].x, particles[a].y,

particles[a].z,
195 x[i], x[i+1], y[j], y[j+1], z[k], z[k+1],
196 ay[i+j*n+k*p*p],
197 ay[(i+1)+j*n+k*p*p],
198 ay[(i+1)+(j+1)*n+k*p*p],
199 ay[i+(j+1)*n+k*p*p],
200 ay[i+j*n+(k+1)*p*p],
201 ay[(i+1)+j*n+(k+1)*p*p],
202 ay[(i+1)+(j+1)*n+(k+1)*p*p],
203 ay[i+(j+1)*n+(k+1)*p*p]);
204
205 double Wp = trilinearInterpolation(particles[a].x, particles[a].y,

particles[a].z,
206 x[i], x[i+1], y[j], y[j+1], z[k], z[k+1],
207 az[i+j*n+k*p*p],
208 az[(i+1)+j*n+k*p*p],
209 az[(i+1)+(j+1)*n+k*p*p],

210 az[i+(j+1)*n+k*p*p],
211 az[i+j*n+(k+1)*p*p],
212 az[(i+1)+j*n+(k+1)*p*p],
213 az[(i+1)+(j+1)*n+(k+1)*p*p],
214 az[i+(j+1)*n+(k+1)*p*p]);
215
216 particles[a].x = particles[a].x + dt*Up;
217 particles[a].y = particles[a].y + dt*Vp;
218 particles[a].z = particles[a].z + dt*Wp;
219
220 i = (int)(particles[a].x/dx);
221 j = (int)(particles[a].y/dy);
222 k = (int)(particles[a].z/dz);
223
224 double phip = trilinearInterpolation(particles[a].x, particles[a].y,

particles[a].z,
225 x[i], x[i+1], y[j], y[j+1], z[k], z[k+1],
226 phi[i+j*n+k*p*p],
227 phi[(i+1)+j*n+k*p*p],
228 phi[(i+1)+(j+1)*n+k*p*p],
229 phi[i+(j+1)*n+k*p*p],
230 phi[i+j*n+(k+1)*p*p],
231 phi[(i+1)+j*n+(k+1)*p*p],
232 phi[(i+1)+(j+1)*n+(k+1)*p*p],
233 phi[i+(j+1)*n+(k+1)*p*p]);
234
235 // delete particles
236 if (abs(phip) - particles[a].r > bmax){
237 particles.erase(particles.begin() + a);
238 }
239 // interface correction
240 else if ((phip < 0 && particles[a].positive) || (phip > 0 && !

particles[a].positive) && (abs(phip) > particles[a].r)){
241
242 vector<double> phiCorrected =
243 correctInterface(particles[a], x[i], x[i+1], y[j], y[j+1], z[k

], z[k+1],
244 phi[(i)+(j)*n+(k)*p*p],
245 phi[(i+1)+(j)*n+(k)*p*p],
246 phi[(i+1)+(j+1)*n+(k)*p*p],
247 phi[(i)+(j+1)*n+(k)*p*p],
248 phi[(i)+(j)*n+(k+1)*p*p],
249 phi[(i+1)+(j)*n+(k+1)*p*p],
250 phi[(i+1)+(j+1)*n+(k+1)*p*p],
251 phi[(i)+(j+1)*n+(k+1)*p*p],
252 phip);
253
254 phi[(i)+(j)*n+(k)*p*p] = phiCorrected[0];
255 phi[(i+1)+(j)*n+(k)*p*p] = phiCorrected[1];
256 phi[(i+1)+(j+1)*n+(k)*p*p] = phiCorrected[2];
257 phi[(i)+(j+1)*n+(k)*p*p] = phiCorrected[3];
258 phi[(i)+(j)*n+(k+1)*p*p] = phiCorrected[4];
259 phi[(i+1)+(j)*n+(k+1)*p*p] = phiCorrected[5];
260 phi[(i+1)+(j+1)*n+(k+1)*p*p] = phiCorrected[6];
261 phi[(i)+(j+1)*n+(k+1)*p*p] = phiCorrected[7];
262
263 }
264
265 phip = trilinearInterpolation(particles[a].x, particles[a].y,

particles[a].z,
266 x[i], x[i+1], y[j], y[j+1], z[k], z[k+1],
267 phi[i+j*n+k*p*p],
268 phi[(i+1)+j*n+k*p*p],
269 phi[(i+1)+(j+1)*n+k*p*p],
270 phi[i+(j+1)*n+k*p*p],
271 phi[i+j*n+(k+1)*p*p],
272 phi[(i+1)+j*n+(k+1)*p*p],
273 phi[(i+1)+(j+1)*n+(k+1)*p*p],
274 phi[i+(j+1)*n+(k+1)*p*p]);
275
276 // adjust radius
277 if (sign(phip)*phip > rmax){
278 particles[a].r = rmax;

279 } else if (sign(phip)*phip < rmin){
280 particles[a].r = rmin;
281 } else {
282 particles[a].r = sign(phip)*phip;
283 }
284
285 }
286
287 // initialize new particles
288 if (it%reseedFreq == 0 && it != 0){
289 vector<int> cellx;
290 vector<int> celly;
291 vector<int> cellz;
292 vector<int> cellParticles;
293 cellx.push_back((int)(particles[0].x/dx));
294 celly.push_back((int)(particles[0].y/dy));
295 cellz.push_back((int)(particles[0].z/dz));
296 cellParticles.push_back(1);
297
298 bool found = false;
299 for (int a = 1; a < particles.size(); ++a){
300 for (int b = 0; b < cellx.size(); ++b){
301 if ((int)(particles[a].x/dx) == cellx[b] && (int)(particles[a

].y/dy) == celly[b] && (int)(particles[a].z/dz) == cellz[b]){
302 cellParticles[b] += 1;
303 if (cellParticles[b] > nParticles){
304 particles.erase(particles.begin() + a);
305 a -= 1;
306 }
307 found = true;
308 break;
309 }
310 }
311 if (!found){
312 cellx.push_back((int)(particles[a].x/dx));
313 celly.push_back((int)(particles[a].y/dy));
314 cellz.push_back((int)(particles[a].z/dz));
315 cellParticles.push_back(1);
316 found = false;
317 }
318 }
319
320 Derivative norm = normal(phi, dx, dy, dz, m, n, p);
321 for (int a = 0; a < cellx.size(); ++a){
322 int num = nParticles - cellParticles[a];
323 if (num > 0){
324 vector<Particle> newParticles = initializeParticles(x[cellx[a

]], y[celly[a]], z[cellz[a]], dx, dy, dz, x, y, z, phi, norm,
m, n, p, num);

325 particles.insert(particles.end(), newParticles.begin(),
newParticles.end());

326 }
327 }
328 }
329 }
330
331 // reinitialization loop
332 if (doReinit && (it%reinitFreq == 0)){
333 vector<double> phi0 = phi;
334 for (int i = 0; i < reinitSteps - 1; ++i){
335 // euler_godunov_reinit(phi, m, n, p, dx, dy, dz, dtau, phi0);
336 TVDRK3_godunov_reinit(phi, m, n, p, dx, dy, dz, dtau, phi0);
337 }
338 }
339
340 // mass error
341 MError += abs(massError(phi, dx, dy, dz, m, n, p) - MError0)*dt;
342
343 // printing to console
344 if (it%10 == 0){
345 cout << "Iteration: " << it << endl;
346 chrono::steady_clock::time_point currentTime = chrono::steady_clock::now

();

347 cout << "Elapsed time: " << (chrono::duration_cast<chrono::seconds>(
currentTime - startTime).count()) << " s." << endl;

348 cout << "t = " << t << endl;
349 }
350 if (it%plotFreq == 0){
351 cout << "Saving scalar field." << endl;
352 saveScalarField(savePath + to_string(t) + ".txt", phi, x, y, z, m, n, p);
353 plotTimes.push_back(to_string(t));
354
355 if (doParticle && saveParticles){
356 plotParticles(savePath + to_string(t) + "particle.txt" , particles);
357 plotTimesParticle.push_back(to_string(t) + "particle");
358 }
359 cout << "Done saving." << endl;
360 }
361
362 // plotting at 0.5 t/T
363 if (t/T == 0.5 && halfplot){
364 cout << "Saving scalar field." << endl;
365 saveScalarField(savePath + to_string(t) + ".txt", phi, x, y, z, m, n, p);
366 plotTimes.push_back(to_string(t));
367 cout << "Done saving." << endl;
368 }
369
370 // finish iterations if t = T
371 if (t == T){
372 numIt = it;
373 break;
374 }
375
376 // find velocity for next time step
377 if (testcase == "vortex"){
378 Velocity a = vortexVelocity(m, n, p, x, y, z, t, T);
379 ax = a.x;
380 ay = a.y;
381 az = a.z;
382 } else if (testcase == "sheared"){
383 Velocity a = shearedSphereVelocity(m, n, p, x, y, z, t, T);
384 ax = a.x;
385 ay = a.y;
386 az = a.z;
387 } else if (testcase == "simple"){
388 Velocity a = simpleVelocity(m, n, p);
389 ax = a.x;
390 ay = a.y;
391 az = a.z;
392 }
393
394 }
395
396 // writing last time step to console
397 {
398 cout << "Iteration: " << numIt << endl;
399 chrono::steady_clock::time_point currentTime = chrono::steady_clock::now();
400 cout << "Elapsed time: " << (chrono::duration_cast<chrono::seconds>(

currentTime - startTime).count()) << " s." << endl;
401 cout << "t = " << t << endl;
402 }
403
404 // error measures
405 double endVolume = volume(phi, dx, dy, dz);
406 double volumeChange = 100*(endVolume-initialVolume)/initialVolume;
407 double L1Error = interfaceError(phi0, phi, dx, dy, dz, m, n, p);
408 MError = MError/t;
409
410 // saving of signed distance field for final time step
411 saveScalarField(savePath + to_string(T) + ".txt", phi, x, y, z, m, n, p);
412 plotTimes.push_back(to_string(T));
413
414 if (doParticle && saveParticles){
415 plotParticles(savePath + to_string(t) + "particle.txt" , particles);
416 plotTimesParticle.push_back(to_string(t) + "particle");
417 }

418
419 {
420 ofstream file;
421 file.open(savePath + "plotTimes.txt");
422 if (!file.is_open()){cerr << "could not open file." << endl;}
423 for (int i = 0; i < plotTimes.size(); ++i){
424 file << plotTimes[i] << endl;
425 }
426 file.close();
427 }
428
429 if (doParticle && saveParticles){
430 ofstream file;
431 file.open(savePath + "plotTimesParticle.txt");
432 if (!file.is_open()){cerr << "could not open file." << endl;}
433 for (int i = 0; i < plotTimesParticle.size(); ++i){
434 file << plotTimesParticle[i] << endl;
435 }
436 file.close();
437 }
438
439 // printing log to file
440 {
441 ofstream file;
442 file.open(savePath + "log.txt");
443 if (!file.is_open()){cerr << "could not open file." << endl;}
444 file << "Iterations: " << numIt << endl;
445 chrono::steady_clock::time_point currentTime = chrono::steady_clock::now();
446 file << "Elapsed time: " << (chrono::duration_cast<chrono::seconds>(

currentTime - startTime).count()) << " s." << endl;
447 file << "Initial volume: " << initialVolume << endl;
448 file << "End volume: " << endVolume << endl;
449 file << "Volume change: " << volumeChange << " %" << endl;
450 file << "Interface error: " << L1Error << endl;
451 file << "Average area error: " << MError << endl;
452 file.close();
453 }
454
455 return 0;
456 }
457

A.2. INITIALIZATION.H AND INITIALIZATION.CPP 49

A.2 initialization.h and initialization.cpp
These files contain code to create the initial signed distance field with reference from a sphere surface and a
function to save the signed distance field to a .txt-file. initialization.h is given first and contains the header file,
while initialization.cpp contains the whole implementation.

1 #pragma once
2
3 #include <vector>
4 #include <iostream>
5 #include <array>
6 #include <cmath>
7 #include <fstream>
8 using namespace std;
9

10 #define PI 3.14159265
11
12 // class for a 3D point
13 class Point
14 {
15 public:
16 double x;
17 double y;
18 double z;
19 Point(double x1, double y1, double z1){x = x1; y = y1; z = z1;}
20 Point(){x = 0; y = 0; z = 0;}
21 Point operator+(Point const &p);
22 void operator=(Point const &p);
23 };
24
25 // returns length between two points
26 double length(Point const &p0, Point const &p1);
27
28 // check if a point is within a sphere of center c and radius r
29 bool isInsideSphere(double r, Point c, Point p);
30
31 // returns the signed distance from a point to the surface of a sphere of center c and

radius r
32 double signedDistanceSphere(double r, Point c, Point p);
33
34 // generates a signed distance field for all points in [xmin, xmax] * [ymin, ymax] *

[zmin, zmax] with reference to a sphere of center c and radius r
35 void signedDistanceField(vector<double> &arr, vector<double> x, vector<double> y, vector<

double> z, double r, Point c, int M, int N, int P);
36
37 // returns a vector of n indexes with equally spaced values from start to end
38 vector<double> linspace(double start, double end, int n);
39
40 // saves a signed distance field to .txt-file
41 void saveScalarField(string filename, vector<double> const &arr, vector<double> x, vector

<double> y, vector<double> z, int M, int N, int P);
42

1 #include "initialization.h"
2
3 // addition of two points
4 Point Point::operator+(Point const &p){
5 Point temp;
6 temp.x = x + p.x;
7 temp.y = y + p.y;
8 temp.z = z + p.z;
9 return temp;

10 }
11
12 // a point is assigned the same coordinates as another point
13 void Point::operator=(Point const &p){
14 x = p.x;
15 y = p.y;
16 z = p.z;
17 }
18
19 // returns length between two points
20 double length(Point const &p0, Point const &p1){
21 return sqrt((p0.x - p1.x)*(p0.x - p1.x) + (p0.y - p1.y)*(p0.y - p1.y) + (p0.z - p1.z

)*(p0.z - p1.z));
22 }
23
24 // check if a point is within a sphere of center c and radius r
25 bool isInsideSphere(double r, Point c, Point p){
26 if ((length(c, p) - r) < 0){
27 return true;
28 } else {
29 return false;
30 }
31 }
32
33 // returns the signed distance from a point to the surface of a sphere of center c and

radius r
34 double signedDistanceSphere(double r, Point c, Point p){
35
36 if (isInsideSphere(r, c, p)){
37 return -(r - length(p, c));
38 }
39 return length(p, c) - r;
40 }
41
42
43 // generates a signed distance field for all points in [xmin, xmax] * [ymin, ymax] *

[zmin, zmax] with reference to a sphere of center c and radius r
44 void signedDistanceField(vector<double> &arr, vector<double> x, vector<double> y, vector<

double> z, double r, Point c, int M, int N, int P){ // Fix
45 for (int k = 0; k < P; ++k){
46 for (int j = 0; j < N; ++j){
47 for (int i = 0; i < M; ++i){
48 arr.push_back(signedDistanceSphere(r, c, Point(x[i], y[j], z[k])));
49 }
50 }
51 }
52 }
53
54 // returns a vector of n indexes with equally spaced values from start to end
55 vector<double> linspace(double start, double end, int n){
56
57 vector<double> vec;
58
59 if (n == 0) {
60 return vec;
61 }
62 if (n == 1) {
63 vec.push_back(start);
64 return vec;
65 }

66
67 double dx = (end - start)/(n - 1);
68
69 for(int i = 0; i < n - 1; ++i){
70 vec.push_back(start + dx * i);
71 }
72 vec.push_back(end);
73
74 return vec;
75 }
76
77 // saves a signed distance field to .txt-file
78 void saveScalarField(string filename, vector<double> const &arr, vector<double> x, vector

<double> y, vector<double> z, int M, int N, int P){
79 ofstream file;
80 file.open(filename);
81 if (!file.is_open()){cerr << "could not open file." << endl;}
82
83 file << M << "," << N << "," << P << endl;
84 int count = 0;
85 for (int k = 0; k < P; ++k){
86 for (int j = 0; j < N; ++j){
87 for (int i = 0; i < M; ++i){
88 file << x[i] << "," << y[j] << "," << z[k] << "," << arr[count] << "," <<

endl;
89 ++count;
90 }
91 }
92 }
93 file.close();
94 }
95

A.3. PARTICLELSM.H AND PARTICLELSM.CPP 53

A.3 particleLSM.h and particleLSM.cpp
These files contain code to set up the particles in the particle level set method, use these particles to correct the
interface, and a function to save the particle coordinates to a .txt-file. particleLSM.h is given first and contains
the header file, while particleLSM.cpp contains the whole implementation.

1 #pragma once
2 #include <vector>
3 #include <random>
4 #include "initialization.h"
5 #include "schemes.h"
6
7 // particle class with coordinates, radius and a bool, where true is a positive

particle, and false is a negative particle
8 class Particle
9 {

10 public:
11 double x;
12 double y;
13 double z;
14 double r;
15 bool positive;
16 Particle(double x1, double y1, double z1){x = x1; y = y1; z = z1;}
17 Particle(){x = 0; y = 0; z = 0;}
18 Particle(double x1, double y1, double z1, double r1, bool pos){x = x1; y = y1; z = z1

; r = r1; positive = pos;}
19 };
20
21 // initializes particles in a cell where (x0, y0, z0) are the coordinates of the cell

closest ot origo.
22 // dx, dy, dz are the grid spacing. X, Y, Z are all grid nodes in the computational

domain.
23 // phi is the signed distance field. normal is the normal-vector. M, N, P is the number

of grid nodes in each direction.
24 // numParticles are the number of particles of each type to be initialized in the cell.
25 vector<Particle> initializeParticles(double x0, double y0, double z0, double dx, double

dy, double dz,
26 vector<double> &X, vector<double> &Y, vector<double> &Z, vector<double> &phi,

Derivative &normal,
27 int M, int N, int P, int numParticles);
28
29 // returns the corrected values of the signed distance field for each corner of the

cells.
30 // the xi, yj, zk values are the coordinates of the corners of the cell, where x0 < x1,

y0 < y1, z0 < z1.
31 // the phiijk are the values of the signed distance fiield at (i,j,k)
32 vector<double> correctInterface(Particle p, double x0, double x1, double y0, double y1,

double z0, double z1,
33 double phi000, double phi100, double phi110, double phi010, double phi001, double

phi101, double phi111, double phi011, double phip);
34
35 // returns the interpolated value at (x, y, z)
36 // the xi, yj, zk values are the coordinates of the corners of the cell, where x0 < x1,

y0 < y1, z0 < z1.
37 // the phiijk are the values of the signed distance fiield at (i,j,k)
38 double trilinearInterpolation(double x, double y, double z, double x0, double x1, double

y0, double y1, double z0, double z1,
39 double c000, double c100, double c110, double c010, double c001, double c101, double

c111, double c011);
40
41 // returns the normal vectors Nx, Ny, Nz for the signed distance field
42 Derivative normal(vector<double> &arr, double dx, double dy, double dz, double M, double

N, double P);
43
44 // saves the coordinates of all the particles to a .txt-files
45 void plotParticles(string filename, vector<Particle> particles);
46

1 #include "particleLSM.h"
2
3 // initializes particles in a cell where (x0, y0, z0) are the coordinates of the cell

closest ot origo.
4 // dx, dy, dz are the grid spacing. X, Y, Z are all grid nodes in the computational

domain.
5 // phi is the signed distance field. normal is the normal-vector. M, N, P is the number

of grid nodes in each direction.
6 // numParticles are the number of particles of each type to be initialized in the cell.
7 vector<Particle> initializeParticles(double x0, double y0, double z0, double dx, double

dy, double dz,
8 vector<double> &X, vector<double> &Y, vector<double> &Z, vector<double> &phi,

Derivative &normal,
9 int M, int N, int P, int numParticles){

10
11 vector<Particle> particles;
12 std::random_device rd; // obtain a random number from hardware
13 std::mt19937 gen(rd()); // seed the generator
14 std::uniform_int_distribution<> distr(0, 100); // define the range
15 double rmin = 0.1*min(dx, min(dy, dz)); // minimum particle radius
16 double rmax = 0.5*max(dx, max(dy, dz)); // maximum particle radius
17 double bmin = rmin;
18 double bmax = 3.0*max(dx, max(dy, dz));
19 double lambda = 1.0;
20 double itmax = 15; // max iterations in the attraction step
21 for (int p = 0; p < numParticles*2; ++p){
22 int positive = p%2; // even negative, odd positive
23
24 // random coordinate in a cell
25 double x = x0 + dx*distr(gen)/100.0;
26 double y = y0 + dy*distr(gen)/100.0;
27 double z = z0 + dz*distr(gen)/100.0;
28 double phip;
29
30 // index position of the particle
31 int i = (int)(x/dx);
32 int j = (int)(y/dy);
33 int k = (int)(z/dz);
34
35 if (i < 0 || j < 0 || k < 0 || i >= M || j >= N || k >= P){continue;}
36
37 phip = trilinearInterpolation(x, y, z, X[i], X[i+1], Y[j], Y[j+1], Z[k], Z[k+1],
38 phi[i+j*N+k*P*P],
39 phi[i+1+j*N+k*P*P],
40 phi[i+1+(j+1)*N+k*P*P],
41 phi[i+(j+1)*N+k*P*P],
42 phi[i+j*N+(k+1)*P*P],
43 phi[i+1+j*N+(k+1)*P*P],
44 phi[i+1+(j+1)*N+(k+1)*P*P],
45 phi[i+(j+1)*N+(k+1)*P*P]);
46
47 double phiGoal = positive*(bmin + (bmax - bmin)*distr(gen)/100.0) - (1-positive

)*(bmin + (bmax - bmin)*distr(gen)/100.0);
48
49 // attraction step
50 for (int it = 0; it < itmax; ++it){
51
52 double Nxp = trilinearInterpolation(x, y, z, X[i], X[i+1], Y[j], Y[j+1], Z[k

], Z[k+1],
53 normal.x[i+j*N+k*P*P],
54 normal.x[i+1+j*N+k*P*P],
55 normal.x[i+1+(j+1)*N+k*P*P],
56 normal.x[i+(j+1)*N+k*P*P],
57 normal.x[i+j*N+(k+1)*P*P],
58 normal.x[i+1+j*N+(k+1)*P*P],
59 normal.x[i+1+(j+1)*N+(k+1)*P*P],
60 normal.x[i+(j+1)*N+(k+1)*P*P]);
61 x = x + lambda*(phiGoal - phip)*Nxp;
62

63 double Nyp = trilinearInterpolation(x, y, z, X[i], X[i+1], Y[j], Y[j+1], Z[k
], Z[k+1],

64 normal.y[i+j*N+k*P*P],
65 normal.y[i+1+j*N+k*P*P],
66 normal.y[i+1+(j+1)*N+k*P*P],
67 normal.y[i+(j+1)*N+k*P*P],
68 normal.y[i+j*N+(k+1)*P*P],
69 normal.y[i+1+j*N+(k+1)*P*P],
70 normal.y[i+1+(j+1)*N+(k+1)*P*P],
71 normal.y[i+(j+1)*N+(k+1)*P*P]);
72 y = y + lambda*(phiGoal - phip)*Nyp;
73
74 double Nzp = trilinearInterpolation(x, y, z, X[i], X[i+1], Y[j], Y[j+1], Z[k

], Z[k+1],
75 normal.z[i+j*N+k*P*P],
76 normal.z[i+1+j*N+k*P*P],
77 normal.z[i+1+(j+1)*N+k*P*P],
78 normal.z[i+(j+1)*N+k*P*P],
79 normal.z[i+j*N+(k+1)*P*P],
80 normal.z[i+1+j*N+(k+1)*P*P],
81 normal.z[i+1+(j+1)*N+(k+1)*P*P],
82 normal.z[i+(j+1)*N+(k+1)*P*P]);
83 z = z + lambda*(phiGoal - phip)*Nzp;
84
85 i = (int)(x/dx);
86 j = (int)(y/dy);
87 k = (int)(z/dz);
88
89 if (i < 0 || j < 0 || k < 0 || i >= M || j >= N || k >= P){break;}
90
91 phip = trilinearInterpolation(x, y, z, X[i], X[i+1], Y[j], Y[j+1], Z[k], Z[k+

1],
92 phi[i+j*N+k*P*P],
93 phi[i+1+j*N+k*P*P],
94 phi[i+1+(j+1)*N+k*P*P],
95 phi[i+(j+1)*N+k*P*P],
96 phi[i+j*N+(k+1)*P*P],
97 phi[i+1+j*N+(k+1)*P*P],
98 phi[i+1+(j+1)*N+(k+1)*P*P],
99 phi[i+(j+1)*N+(k+1)*P*P]);

100
101 if ((positive && (phip >= bmin && phip <= bmax)) || (!positive && (phip <= -

bmin && phip >= -bmax))){
102 double r;
103 if (sign(phip)*phip > rmax){
104 r = rmax;
105 } else if (sign(phip)*phip < rmin){
106 r = rmin;
107 } else {
108 r = sign(phip)*phip;
109 }
110 particles.push_back(Particle(x, y, z, r, positive));
111 break;
112 } else {
113 lambda = lambda/2.0;
114 }
115 }
116 }
117 return particles;
118 }
119
120 // returns the corrected values of the signed distance field for each corner of the

cells.
121 // the xi, yj, zk values are the coordinates of the corners of the cell, where x0 < x1,

y0 < y1, z0 < z1.
122 // the phiijk are the values of the signed distance fiield at (i,j,k)
123 vector<double> correctInterface(Particle p, double x0, double x1, double y0, double y1,

double z0, double z1,
124 double phi000, double phi100, double phi110, double phi010, double phi001, double

phi101, double phi111, double phi011, double phip){
125
126 // distance from particle surface to cell corners
127 double phip000 = sign(phip)*(p.r - sqrt(pow(x0 - p.x, 2) + pow(y0 - p.y, 2) + pow(z0

- p.z, 2)));
128 double phip100 = sign(phip)*(p.r - sqrt(pow(x1 - p.x, 2) + pow(y0 - p.y, 2) + pow(z0

- p.z, 2)));
129 double phip110 = sign(phip)*(p.r - sqrt(pow(x1 - p.x, 2) + pow(y1 - p.y, 2) + pow(z0

- p.z, 2)));
130 double phip010 = sign(phip)*(p.r - sqrt(pow(x0 - p.x, 2) + pow(y1 - p.y, 2) + pow(z0

- p.z, 2)));
131 double phip001 = sign(phip)*(p.r - sqrt(pow(x0 - p.x, 2) + pow(y0 - p.y, 2) + pow(z1

- p.z, 2)));
132 double phip101 = sign(phip)*(p.r - sqrt(pow(x1 - p.x, 2) + pow(y0 - p.y, 2) + pow(z1

- p.z, 2)));
133 double phip111 = sign(phip)*(p.r - sqrt(pow(x1 - p.x, 2) + pow(y1 - p.y, 2) + pow(z1

- p.z, 2)));
134 double phip011 = sign(phip)*(p.r - sqrt(pow(x0 - p.x, 2) + pow(y1 - p.y, 2) + pow(z1

- p.z, 2)));
135
136 vector<double> phi_p;
137 vector<double> phi_m;
138 vector<double> phi;
139
140 phi_p.push_back(max(phi000, phip000));
141 phi_p.push_back(max(phi100, phip100));
142 phi_p.push_back(max(phi110, phip110));
143 phi_p.push_back(max(phi010, phip010));
144 phi_p.push_back(max(phi001, phip001));
145 phi_p.push_back(max(phi101, phip101));
146 phi_p.push_back(max(phi111, phip111));
147 phi_p.push_back(max(phi011, phip011));
148
149 phi_m.push_back(min(phi000, phip000));
150 phi_m.push_back(min(phi100, phip100));
151 phi_m.push_back(min(phi110, phip110));
152 phi_m.push_back(min(phi010, phip010));
153 phi_m.push_back(min(phi001, phip001));
154 phi_m.push_back(min(phi101, phip101));
155 phi_m.push_back(min(phi111, phip111));
156 phi_m.push_back(min(phi011, phip011));
157
158 for (int i = 0; i < phi_p.size(); ++i){
159 if (abs(phi_p[i]) <= abs(phi_m[i])){
160 phi.push_back(phi_p[i]);
161 } else if (abs(phi_p[i]) > abs(phi_m[i])){
162 phi.push_back(phi_m[i]);
163 }
164 }
165 return phi;
166 }
167
168 // returns the interpolated value at (x, y, z)
169 // the xi, yj, zk values are the coordinates of the corners of the cell, where x0 < x1,

y0 < y1, z0 < z1.
170 // the phiijk are the values of the signed distance fiield at (i,j,k)
171 double trilinearInterpolation(double x, double y, double z, double x0, double x1, double

y0, double y1, double z0, double z1,
172 double c000, double c100, double c110, double c010, double c001, double c101, double

c111, double c011){
173
174 double xd = (x - x0)/(x1 - x0);
175 double yd = (y - y0)/(y1 - y0);
176 double zd = (z - z0)/(z1 - z0);
177
178 double c00 = c000*(1 - xd) + c100*xd;
179 double c01 = c001*(1 - xd) + c101*xd;
180 double c10 = c010*(1 - xd) + c110*xd;
181 double c11 = c011*(1 - xd) + c111*xd;

182
183 double c0 = c00*(1 - yd) + c10*yd;
184 double c1 = c01*(1 - yd) + c11*yd;
185
186 return c0*(1 - zd) + c1*zd;
187 }
188
189 // returns the normal vectors Nx, Ny, Nz for the signed distance field
190 Derivative normal(vector<double> &arr, double dx, double dy, double dz, double M, double

N, double P){
191 vector<double> Nx;
192 vector<double> Ny;
193 vector<double> Nz;
194 for (int k = 0; k < P; ++k){
195 for (int j = 0; j < N; ++j){
196 for (int i = 0; i < M; ++i){
197 if (i==0 || i==(M-1) || j==0 || j==(N-1) || k==0 || k==(P-1)){
198 Nx.push_back(0);
199 Ny.push_back(0);
200 Nz.push_back(0);
201 continue;
202 }
203 double phix = (arr[(i+1)+j*N+k*P*P] - arr[(i-1)+j*N+k*P*P])/(2*dx);
204 if (phix == 0){
205 phix = (arr[(i+1)+j*N+k*P*P] - arr[i+j*N+k*P*P])/(dx);
206 }
207 double phiy = (arr[i+(j+1)*N+k*P*P] - arr[i+(j-1)*N+k*P*P])/(2*dy);
208 if (phiy == 0){
209 phiy = (arr[i+(j+1)*N+k*P*P] - arr[i+j*N+k*P*P])/(dy);
210 }
211 double phiz = (arr[i+j*N+(k+1)*P*P] - arr[i+j*N+(k-1)*P*P])/(2*dz);
212 if (phiz == 0){
213 phiz = (arr[i+j*N+(k+1)*P*P] - arr[i+j*N+k*P*P])/(dz);
214 }
215 Nx.push_back(phix/abs(phix));
216 Ny.push_back(phiy/abs(phiy));
217 Nz.push_back(phiz/abs(phiz));
218 }
219 }
220 }
221 return Derivative{Nx, Ny, Nz};
222 }
223
224 // saves the coordinates of all the particles to a .txt-files
225 void plotParticles(string filename, vector<Particle> particles){
226 ofstream file;
227 file.open(filename);
228 if (!file.is_open()){cerr << "could not open file." << endl;}
229
230 int count = 0;
231 for (int i = 0; i < particles.size(); ++i){
232 file << particles[i].x << "," << particles[i].y << "," << particles[i].z << ","

<< endl;
233 }
234 file.close();
235 }
236

A.4. SCHEMES.H AND SCHEMES.CPP 59

A.4 schemes.h and schemes.cpp
These files contain all the numerical schemes used in the implemented particle level set method. schemes.h is
given first and contains the header file, while schemes.cpp contains the whole implementation.

1 #pragma once
2
3 #include <vector>
4 #include <array>
5 #include <tuple>
6 #include <functional>
7 #include <cmath>
8 #include "vectorUtilities.h"
9

10 using namespace std;
11
12 // a deriative vector with a value in each direction in 3D
13 struct Derivative {
14 vector<double> x;
15 vector<double> y;
16 vector<double> z;
17 };
18
19 // first-order upwind scheme
20 Derivative upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int N, int P, double dx, double dy, double dz);
21
22 // WENO scheme. Third-order accurate and fifth-order accurate in smooth regions
23 Derivative weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double>

AZ, int M, int const N, int const P, double dx, double dy, double dz);
24
25 // Godunov scheme used for the reinitialization equation
26 Derivative godunov(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int const N, int const P, double dx, double dy, double dz);
27
28 // first-order explicit Euler scheme used with the upwind scheme
29 void euler_upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int N, int P, double dx, double dy, double dz, double dt);
30
31 // third-order TVDRK scheme used with the upwind scheme
32 void TVDRK3_upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int N, int P, double dx, double dy, double dz, double dt);
33
34 // third-order TVDRK scheme used with the WENO scheme
35 void TVDRK3_weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double

> AZ, int M, int N, int P, double dx, double dy, double dz, double dt);
36
37 // first-order explicit Euler scheme used with the weno scheme
38 void euler_weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double>

AZ, int M, int N, int P, double dx, double dy, double dz, double dt);
39
40 // third-order TVDRK scheme used with the Godunov scheme to solve the reinitialization

equation
41 void TVDRK3_godunov_reinit(vector<double> &phi, int M, int N, int P, double dx, double dy

, double dz, double dt, vector<double> phi0);
42
43 // first-order explicit Euler scheme used with the Godunov scheme to solve the

reinitialization equation
44 void euler_godunov_reinit(vector<double> &phi, int M, int N, int P, double dx, double dy,

double dz, double dt, const vector<double> &phi0);
45
46 // sign function that returns 1 for a positive value, -1 for a negative value, and 0 for

a value of 0
47 int sign(double num);
48

1 #include "schemes.h"
2
3 // first-order upwind scheme
4 Derivative upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int N, int P, double dx, double dy, double dz){
5
6 vector<double> phix;
7 vector<double> phiy;
8 vector<double> phiz;
9

10 for (int k = 0; k < P; ++k){
11 for (int j = 0; j < N; ++j){
12 for (int i = 0; i < M; ++i){
13
14 if (i==0 || i==M-1 || j==0 || j==N-1 || k==0 || k==P-1){
15 phix.push_back(0);
16 phiy.push_back(0);
17 phiz.push_back(0);
18 continue;
19 }
20
21 if (AX[i + j*N + k*P*P] >= 0){
22 phix.push_back((phi[i + j*N + k*P*P] - phi[(i - 1) + j*N + k*P*P])/dx

);
23 } else if (AX[i + j*N + k*P*P] < 0){
24 phix.push_back((phi[(i + 1) + j*N + k*P*P] - phi[i + j*N + k*P*P])/dx

);
25 }
26
27 if (AY[i + j*N + k*P*P] >= 0){
28 phiy.push_back((phi[i + j*N + k*P*P] - phi[i + (j - 1)*N + k*P*P])/dy

);
29 } else if (AY[i + j*N + k*P*P] < 0){
30 phiy.push_back((phi[i + (j + 1)*N + k*P*P] - phi[i + j*N + k*P*P])/dy

);
31 }
32
33 if (AZ[i + j*N + k*P*P] >= 0){
34 phiz.push_back((phi[i + j*N + k*P*P] - phi[i + j*N + (k - 1)*P*P])/dz

);
35 } else if (AZ[i + j*N + k*P*P] < 0){
36 phiz.push_back((phi[i + j*N + (k + 1)*P*P] - phi[i + j*N + k*P*P])/dz

);
37 }
38 }
39 }
40 }
41 cout << AX.size() << " " << AY.size() << " " << AZ.size() << endl;
42 return Derivative{phix, phiy, phiz};
43 }
44
45 // WENO scheme. Third-order accurate and fifth-order accurate in smooth regions
46 Derivative weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double>

AZ, int M, int const N, int const P, double dx, double dy, double dz){
47
48 vector<double> phix;
49 vector<double> phiy;
50 vector<double> phiz;
51
52 for (int k = 0; k < P; ++k){
53 for (int j = 0; j < N; ++j){
54 for (int i = 0; i < M; ++i){
55 if (i == 0 || i == 1 || i==2 || i==(M-3) || i == (M-2) || i == (M-1)){
56 phix.push_back(0);
57 phiy.push_back(0);
58 phiz.push_back(0);
59 continue;
60 }
61 if (j == 0 || j == 1 || j==2 || j==(N-3) || j == (N-2) || j == (N-1)){

62 phix.push_back(0);
63 phiy.push_back(0);
64 phiz.push_back(0);
65 continue;
66 }
67 if (k == 0 || k == 1 || k==2 || k==(P-3) || k == (P-2) || k == (P-1)){
68 phix.push_back(0);
69 phiy.push_back(0);
70 phiz.push_back(0);
71 continue;
72 }
73
74 double v1;
75 double v2;
76 double v3;
77 double v4;
78 double v5;
79
80 {
81 if (AX[i + j*N + k*P*P] >= 0){
82 v1 = (phi[(i-2) + j*N + k*P*P] - phi[(i-3) + j*N + k*P*P])/dx;
83 v2 = (phi[(i-1) + j*N + k*P*P] - phi[(i-2) + j*N + k*P*P])/dx;
84 v3 = (phi[(i) + j*N + k*P*P] - phi[(i-1) + j*N + k*P*P])/dx;
85 v4 = (phi[(i+1) + j*N + k*P*P] - phi[(i) + j*N + k*P*P])/dx;
86 v5 = (phi[(i+2) + j*N + k*P*P] - phi[(i+1) + j*N + k*P*P])/dx;
87 } else if (AX[i + j*N + k*P*P] < 0){
88 v1 = (phi[(i-1) + j*N + k*P*P] - phi[(i-2) + j*N + k*P*P])/dx;
89 v2 = (phi[(i) + j*N + k*P*P] - phi[(i-1) + j*N + k*P*P])/dx;
90 v3 = (phi[(i+1) + j*N + k*P*P] - phi[(i) + j*N + k*P*P])/dx;
91 v4 = (phi[(i+2) + j*N + k*P*P] - phi[(i+1) + j*N + k*P*P])/dx;
92 v5 = (phi[(i+3) + j*N + k*P*P] - phi[(i+2) + j*N + k*P*P])/dx;
93 }
94 double S1 = 13/12*(v1 - 2*v2 + v3)*(v1 - 2*v2 + v3) + 1/4*(v1 - 4*v2 + v3

)*(v1 - 4*v2 + v3);
95 double S2 = 13/12*(v2 - 2*v3 + v4)*(v2 - 2*v3 + v4) + 1/4*(v2 - v4)*(v2 -

v4);
96 double S3 = 13/12*(v3 - 2*v4 + v5)*(v3 - 2*v4 + v5) + 1/4*(3*v3 - 4*v4 +

v5)*(3*v3 - 4*v4 + v5);
97
98 double epsilon = pow(10, -6)*max(max(max(max(v1*v1, v2*v2), v3*v3), v4*v4

), v5*v5) + pow(10, -99);
99

100 double alpha1 = 0.1/((S1 + epsilon)*(S1 + epsilon));
101 double alpha2 = 0.6/((S2 + epsilon)*(S2 + epsilon));
102 double alpha3 = 0.3/((S3 + epsilon)*(S3 + epsilon));
103
104 double omega1 = alpha1/(alpha1 + alpha2 + alpha3);
105 double omega2 = alpha2/(alpha1 + alpha2 + alpha3);
106 double omega3 = alpha3/(alpha1 + alpha2 + alpha3);
107
108 double phix1 = v1/3 - 7*v2/6 + 11*v3/6;
109 double phix2 = -v2/6 + 5*v3/6 + v4/3;
110 double phix3 = v3/3 + 5*v4/6 - v5/6;
111
112 phix.push_back(omega1*phix1 + omega2*phix2 + omega3*phix3);
113 }
114
115 {
116 if (AY[i + j*N + k*P*P] >= 0){
117 v1 = (phi[i + (j-2)*N + k*P*P] - phi[i + (j-3)*N + k*P*P])/dy;
118 v2 = (phi[i + (j-1)*N + k*P*P] - phi[i + (j-2)*N + k*P*P])/dy;
119 v3 = (phi[i + j*N + k*P*P] - phi[i + (j-1)*N + k*P*P])/dy;
120 v4 = (phi[i + (j+1)*N + k*P*P] - phi[i + j*N + k*P*P])/dy;
121 v5 = (phi[i + (j+2)*N + k*P*P] - phi[i + (j+1)*N + k*P*P])/dy;
122 } else if (AY[i + j*N + k*P*P] < 0){
123 v1 = (phi[i + (j-1)*N + k*P*P] - phi[i + (j-2)*N + k*P*P])/dy;
124 v2 = (phi[i + j*N + k*P*P] - phi[i + (j-1)*N + k*P*P])/dy;
125 v3 = (phi[i + (j+1)*N + k*P*P] - phi[i + j*N + k*P*P])/dy;
126 v4 = (phi[i + (j+2)*N + k*P*P] - phi[i + (j+1)*N + k*P*P])/dy;

127 v5 = (phi[i + (j+3)*N + k*P*P] - phi[i + (j+2)*N + k*P*P])/dy;
128 }
129 double S1 = 13/12*(v1 - 2*v2 + v3)*(v1 - 2*v2 + v3) + 1/4*(v1 - 4*v2 + v3

)*(v1 - 4*v2 + v3);
130 double S2 = 13/12*(v2 - 2*v3 + v4)*(v2 - 2*v3 + v4) + 1/4*(v2 - v4)*(v2 -

v4);
131 double S3 = 13/12*(v3 - 2*v4 + v5)*(v3 - 2*v4 + v5) + 1/4*(3*v3 - 4*v4 +

v5)*(3*v3 - 4*v4 + v5);
132
133 double epsilon = pow(10, -6)*max(max(max(max(v1*v1, v2*v2), v3*v3), v4*v4

), v5*v5) + pow(10, -99);
134
135 double alpha1 = 0.1/((S1 + epsilon)*(S1 + epsilon));
136 double alpha2 = 0.6/((S2 + epsilon)*(S2 + epsilon));
137 double alpha3 = 0.3/((S3 + epsilon)*(S3 + epsilon));
138
139 double omega1 = alpha1/(alpha1 + alpha2 + alpha3);
140 double omega2 = alpha2/(alpha1 + alpha2 + alpha3);
141 double omega3 = alpha3/(alpha1 + alpha2 + alpha3);
142
143 double phiy1 = v1/3 - 7*v2/6 + 11*v3/6;
144 double phiy2 = -v2/6 + 5*v3/6 + v4/3;
145 double phiy3 = v3/3 + 5*v4/6 - v5/6;
146
147 phiy.push_back(omega1*phiy1 + omega2*phiy2 + omega3*phiy3);
148
149 }
150
151 {
152 if (AZ[i + j*N + k*P*P] >= 0){
153 v1 = (phi[i + j*N + (k-2)*P*P] - phi[i + j*N + (k-3)*P*P])/dz;
154 v2 = (phi[i + j*N + (k-1)*P*P] - phi[i + j*N + (k-2)*P*P])/dz;
155 v3 = (phi[i + j*N + k*P*P] - phi[i + j*N + (k-1)*P*P])/dz;
156 v4 = (phi[i + j*N + (k+1)*P*P] - phi[i + j*N + k*P*P])/dz;
157 v5 = (phi[i + j*N + (k+2)*P*P] - phi[i + j*N + (k+1)*P*P])/dz;
158 } else if (AZ[i + j*N + k*P*P] < 0){
159 v1 = (phi[i + j*N + (k-1)*P*P] - phi[i + j*N + (k-2)*P*P])/dz;
160 v2 = (phi[i + j*N + k*P*P] - phi[i + j*N + (k-1)*P*P])/dz;
161 v3 = (phi[i + j*N + (k+1)*P*P] - phi[i + j*N + k*P*P])/dz;
162 v4 = (phi[i + j*N + (k+2)*P*P] - phi[i + j*N + (k+1)*P*P])/dz;
163 v5 = (phi[i + j*N + (k+3)*P*P] - phi[i + j*N + (k+2)*P*P])/dz;
164 }
165 double S1 = 13/12*(v1 - 2*v2 + v3)*(v1 - 2*v2 + v3) + 1/4*(v1 - 4*v2 + v3

)*(v1 - 4*v2 + v3);
166 double S2 = 13/12*(v2 - 2*v3 + v4)*(v2 - 2*v3 + v4) + 1/4*(v2 - v4)*(v2 -

v4);
167 double S3 = 13/12*(v3 - 2*v4 + v5)*(v3 - 2*v4 + v5) + 1/4*(3*v3 - 4*v4 +

v5)*(3*v3 - 4*v4 + v5);
168
169 double epsilon = pow(10, -6)*max(max(max(max(v1*v1, v2*v2), v3*v3), v4*v4

), v5*v5) + pow(10, -99);
170
171 double alpha1 = 0.1/((S1 + epsilon)*(S1 + epsilon));
172 double alpha2 = 0.6/((S2 + epsilon)*(S2 + epsilon));
173 double alpha3 = 0.3/((S3 + epsilon)*(S3 + epsilon));
174
175 double omega1 = alpha1/(alpha1 + alpha2 + alpha3);
176 double omega2 = alpha2/(alpha1 + alpha2 + alpha3);
177 double omega3 = alpha3/(alpha1 + alpha2 + alpha3);
178
179 double phiz1 = v1/3 - 7*v2/6 + 11*v3/6;
180 double phiz2 = -v2/6 + 5*v3/6 + v4/3;
181 double phiz3 = v3/3 + 5*v4/6 - v5/6;
182
183 phiz.push_back(omega1*phiz1 + omega2*phiz2 + omega3*phiz3);
184 }
185 }
186 }
187 }

188 return Derivative{phix, phiy, phiz};
189 }
190
191 // Godunov scheme used for the reinitialization equation
192 Derivative godunov(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int const N, int const P, double dx, double dy, double dz){
193
194 vector<double> phix;
195 vector<double> phiy;
196 vector<double> phiz;
197
198 for (int k = 0; k < P; ++k){
199 for (int j = 0; j < N; ++j){
200 for (int i = 0; i < M; ++i){
201
202 if (i == 0 || i == (M-1) || j == 0 || j == (N-1) || k == 0 || k == (P-1)

){
203 phix.push_back(1.0);
204 phiy.push_back(1.0);
205 phiz.push_back(1.0);
206 continue;
207 }
208
209 double phix_m = (phi[i + j*N + k*P*P] - phi[(i-1) + j*N + k*P*P])/dx;
210 double phix_p = (phi[(i+1) + j*N + k*P*P] - phi[i + j*N + k*P*P])/dx;
211
212 double phiy_m = (phi[i + j*N + k*P*P] - phi[i + (j-1)*N + k*P*P])/dy;
213 double phiy_p = (phi[i + (j+1)*N + k*P*P] - phi[i + j*N + k*P*P])/dy;
214
215 double phiz_m = (phi[i + j*N + k*P*P] - phi[i + j*N + (k-1)*P*P])/dz;
216 double phiz_p = (phi[i + j*N + (k+1)*P*P] - phi[i + j*N + k*P*P])/dz;
217
218 if (AX[i + j*N + k*P*P] >= 0){
219 phix.push_back(sqrt(max(max(phix_m, 0.0)*max(phix_m, 0.0), min(phix_p

, 0.0)*min(phix_p, 0.0))));
220 } else if (AX[i + j*N + k*P*P] < 0){
221 phix.push_back(sqrt(max(min(phix_m, 0.0)*min(phix_m, 0.0), max(phix_p

, 0.0)*max(phix_p, 0.0))));
222 }
223
224 if (AY[i + j*N + k*P*P] >= 0){
225 phiy.push_back(sqrt(max(max(phiy_m, 0.0)*max(phiy_m, 0.0), min(phiy_p

, 0.0)*min(phiy_p, 0.0))));
226 } else if (AY[i + j*N + k*P*P] < 0){
227 phiy.push_back(sqrt(max(min(phiy_m, 0.0)*min(phiy_m, 0.0), max(phiy_p

, 0.0)*max(phiy_p, 0.0))));
228 }
229
230 if (AZ[i + j*N + k*P*P] >= 0){
231 phiz.push_back(sqrt(max(max(phiz_m, 0.0)*max(phiz_m, 0.0), min(phiz_p

, 0.0)*min(phiz_p, 0.0))));
232 } else if (AZ[i + j*N + k*P*P] < 0){
233 phiz.push_back(sqrt(max(min(phiz_m, 0.0)*min(phiz_m, 0.0), max(phiz_p

, 0.0)*max(phiz_p, 0.0))));
234 }
235 }
236 }
237 }
238 return Derivative{phix, phiy, phiz};
239 }
240
241 // first-order explicit Euler scheme used with the upwind scheme
242 void euler_upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<

double> AZ, int M, int N, int P, double dx, double dy, double dz, double dt){
243 auto [phix, phiy, phiz] = upwind(phi, AX, AY, AZ, M, N, P, dx, dy, dz);
244 phi = phi - dt*(AX*phix + AY*phiy + AZ*phiz);
245 }
246
247 // third-order TVDRK scheme used with the upwind scheme

248 void TVDRK3_upwind(vector<double> &phi, vector<double> AX, vector<double> AY, vector<
double> AZ, int M, int N, int P, double dx, double dy, double dz, double dt){

249
250 vector<double> n1;
251 vector<double> n2;
252 vector<double> n3_2;
253
254 {
255 auto [phix, phiy, phiz] = upwind(phi, AX, AY, AZ, M, N, P, dx, dy, dz);
256 n1 = phi - dt*(AX*phix + AY*phiy + AZ*phiz);
257 }
258
259 {
260 auto [phix, phiy, phiz] = upwind(n1, AX, AY, AZ, M, N, P, dx, dy, dz);
261 n2 = n1 - dt*(AX*phix + AY*phiy + AZ*phiz);
262 }
263
264 vector<double> n1_2 = 3/4*phi + 1/4*n2;
265
266 {
267 auto [phix, phiy, phiz] = upwind(n1_2, AX, AY, AZ, M, N, P, dx, dy, dz);
268 n3_2 = n1_2 - dt*(AX*phix + AY*phiy + AZ*phiz);
269 }
270
271 phi = 1/3*phi + 2/3*n3_2;
272
273 }
274
275 // third-order TVDRK scheme used with the WENO scheme
276 void TVDRK3_weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double

> AZ, int M, int N, int P, double dx, double dy, double dz, double dt){
277
278 {
279 vector<double> n1;
280 vector<double> n2;
281 vector<double> n3_2;
282
283 {
284 auto [phix, phiy, phiz] = weno(phi, AX, AY, AZ, M, N, P, dx, dy, dz);
285 n1 = phi - dt*(AX*phix + AY*phiy + AZ*phiz);
286 }
287
288 {
289 auto [phix, phiy, phiz] = weno(n1, AX, AY, AZ, M, N, P, dx, dy, dz);
290 n2 = n1 - dt*(AX*phix + AY*phiy + AZ*phiz);
291 }
292
293 vector<double> n1_2 = 3.0/4*phi + 1.0/4*n2;
294
295 {
296 auto [phix, phiy, phiz] = weno(n1_2, AX, AY, AZ, M, N, P, dx, dy, dz);
297 n3_2 = n1_2 - dt*(AX*phix + AY*phiy + AZ*phiz);
298 }
299
300 phi = 1.0/3*phi + 2.0/3*n3_2;
301
302 }
303
304 for(int i = 0; i < M; ++i){
305 for (int j = 0; j < N; ++j){
306 phi[2 + i*N + j*P*P] = phi[3 + i*N + j*P*P] - (phi[4 + i*N + j*P*P] - phi[3 +

i*N + j*P*P]);
307 phi[1 + i*N + j*P*P] = phi[2 + i*N + j*P*P] - (phi[3 + i*N + j*P*P] - phi[2 +

i*N + j*P*P]);
308 phi[0 + i*N + j*P*P] = phi[1 + i*N + j*P*P] - (phi[2 + i*N + j*P*P] - phi[1 +

i*N + j*P*P]);
309 phi[(M-3) + i*N + j*P*P] = phi[(M-4) + i*N + j*P*P] - (phi[(M-5) + i*N + j*P*

P] - phi[(M-4) + i*N + j*P*P]);
310 phi[(M-2) + i*N + j*P*P] = phi[(M-3) + i*N + j*P*P] - (phi[(M-4) + i*N + j*P*

P] - phi[(M-3) + i*N + j*P*P]);
311 phi[(M-1) + i*N + j*P*P] = phi[(M-2) + i*N + j*P*P] - (phi[(M-3) + i*N + j*P*

P] - phi[(M-2) + i*N + j*P*P]);
312
313 phi[j + (2)*N + i*P*P] = phi[j + (3)*N + i*P*P] - (phi[j + (4)*N + i*P*P] -

phi[j + (3)*N + i*P*P]);
314 phi[j + (1)*N + i*P*P] = phi[j + (2)*N + i*P*P] - (phi[j + (3)*N + i*P*P] -

phi[j + (2)*N + i*P*P]);
315 phi[j + (0)*N + i*P*P] = phi[j + (1)*N + i*P*P] - (phi[j + (2)*N + i*P*P] -

phi[j + (1)*N + i*P*P]);
316 phi[j + (N-3)*N + i*P*P] = phi[j + (N-4)*N + i*P*P] - (phi[j + (N-5)*N + i*P*

P] - phi[j + (N-4)*N + i*P*P]);
317 phi[j + (N-2)*N + i*P*P] = phi[j + (N-3)*N + i*P*P] - (phi[j + (N-4)*N + i*P*

P] - phi[j + (N-3)*N + i*P*P]);
318 phi[j + (N-1)*N + i*P*P] = phi[j + (N-2)*N + i*P*P] - (phi[j + (N-3)*N + i*P*

P] - phi[j + (N-2)*N + i*P*P]);
319
320 phi[j + i*N + (2)*P*P] = phi[j + i*N + (3)*P*P] - (phi[j + i*N + (4)*P*P] -

phi[j + i*N + (3)*P*P]);
321 phi[j + i*N + (1)*P*P] = phi[j + i*N + (2)*P*P] - (phi[j + i*N + (3)*P*P] -

phi[j + i*N + (2)*P*P]);
322 phi[j + i*N + (0)*P*P] = phi[j + i*N + (1)*P*P] - (phi[j + i*N + (2)*P*P] -

phi[j + i*N + (1)*P*P]);
323 phi[j + i*N + (N-3)*P*P] = phi[j + i*N + (N-4)*P*P] - (phi[j + i*N + (N-5)*P*

P] - phi[j + i*N + (N-4)*P*P]);
324 phi[j + i*N + (N-2)*P*P] = phi[j + i*N + (N-3)*P*P] - (phi[j + i*N + (N-4)*P*

P] - phi[j + i*N + (N-3)*P*P]);
325 phi[j + i*N + (N-1)*P*P] = phi[j + i*N + (N-2)*P*P] - (phi[j + i*N + (N-3)*P*

P] - phi[j + i*N + (N-2)*P*P]);
326
327 }
328 }
329 }
330
331 // first-order explicit Euler scheme used with the weno scheme
332 void euler_weno(vector<double> &phi, vector<double> AX, vector<double> AY, vector<double>

AZ, int M, int N, int P, double dx, double dy, double dz, double dt){
333 auto [phix, phiy, phiz] = weno(phi, AX, AY, AZ, M, N, P, dx, dy, dz);
334 phi = phi - dt*(AX*phix + AY*phiy + AZ*phiz);
335
336 for(int i = 0; i < M; ++i){
337 for (int j = 0; j < N; ++j){
338 phi[2 + i*N + j*P*P] = phi[3 + i*N + j*P*P] - (phi[4 + i*N + j*P*P] - phi[3 +

i*N + j*P*P]);
339 phi[1 + i*N + j*P*P] = phi[2 + i*N + j*P*P] - (phi[3 + i*N + j*P*P] - phi[2 +

i*N + j*P*P]);
340 phi[0 + i*N + j*P*P] = phi[1 + i*N + j*P*P] - (phi[2 + i*N + j*P*P] - phi[1 +

i*N + j*P*P]);
341 phi[(M-3) + i*N + j*P*P] = phi[(M-4) + i*N - j*P*P] + (phi[(M-5) + i*N + j*P*

P] - phi[(M-4) + i*N + j*P*P]);
342 phi[(M-2) + i*N + j*P*P] = phi[(M-3) + i*N - j*P*P] + (phi[(M-4) + i*N + j*P*

P] - phi[(M-3) + i*N + j*P*P]);
343 phi[(M-1) + i*N + j*P*P] = phi[(M-2) + i*N - j*P*P] + (phi[(M-3) + i*N + j*P*

P] - phi[(M-2) + i*N + j*P*P]);
344
345 phi[j + (2)*N + i*P*P] = phi[j + (3)*N + i*P*P] - (phi[j + (4)*N + i*P*P] -

phi[j + (3)*N + i*P*P]);
346 phi[j + (1)*N + i*P*P] = phi[j + (2)*N + i*P*P] - (phi[j + (3)*N + i*P*P] -

phi[j + (2)*N + i*P*P]);
347 phi[j + (0)*N + i*P*P] = phi[j + (1)*N + i*P*P] - (phi[j + (2)*N + i*P*P] -

phi[j + (1)*N + i*P*P]);
348 phi[j + (N-3)*N + i*P*P] = phi[j + (N-4)*N + i*P*P] - (phi[j + (N-5)*N + i*P*

P] - phi[j + (N-4)*N + i*P*P]);
349 phi[j + (N-2)*N + i*P*P] = phi[j + (N-3)*N + i*P*P] - (phi[j + (N-4)*N + i*P*

P] - phi[j + (N-3)*N + i*P*P]);
350 phi[j + (N-1)*N + i*P*P] = phi[j + (N-2)*N + i*P*P] - (phi[j + (N-3)*N + i*P*

P] - phi[j + (N-2)*N + i*P*P]);
351
352 phi[j + i*N + (2)*P*P] = phi[j + i*N + (3)*P*P] - (phi[j + i*N + (4)*P*P] -

phi[j + i*N + (3)*P*P]);
353 phi[j + i*N + (1)*P*P] = phi[j + i*N + (2)*P*P] - (phi[j + i*N + (3)*P*P] -

phi[j + i*N + (2)*P*P]);
354 phi[j + i*N + (0)*P*P] = phi[j + i*N + (1)*P*P] - (phi[j + i*N + (2)*P*P] -

phi[j + i*N + (1)*P*P]);
355 phi[j + i*N + (N-3)*P*P] = phi[j + i*N + (N-4)*P*P] - (phi[j + i*N + (N-5)*P*

P] - phi[j + i*N + (N-4)*P*P]);
356 phi[j + i*N + (N-2)*P*P] = phi[j + i*N + (N-3)*P*P] - (phi[j + i*N + (N-4)*P*

P] - phi[j + i*N + (N-3)*P*P]);
357 phi[j + i*N + (N-1)*P*P] = phi[j + i*N + (N-2)*P*P] - (phi[j + i*N + (N-3)*P*

P] - phi[j + i*N + (N-2)*P*P]);
358 }
359 }
360 }
361
362 // third-order TVDRK scheme used with the Godunov scheme to solve the reinitialization

equation
363 void TVDRK3_godunov_reinit(vector<double> &phi, int M, int N, int P, double dx, double dy

, double dz, double dt, vector<double> phi0){
364
365 vector<double> n1;
366 vector<double> n2;
367 vector<double> n3_2;
368
369 for (int k = 0; k < P; ++k){
370 for (int j = 0; j < N; ++j){
371 for (int i = 0; i < M; ++i){
372 if (i==0 || i==(M-1) || i==1 || i==M-2 || i==2 || i==M-3 || j==0 || j==(N

-1) || j==1 || j==N-2 || j==2 || j==N-3 || k==0 || k==(P-1) || k==1 || k
==P-2 || k==2 || k==P-3){

373 n1.push_back(phi[i+j*N+k*P*P]);
374 continue;
375 }
376
377 double a = (phi[i+j*N+k*P*P]-phi[(i-1)+j*N+k*P*P])/dx;
378 double b = (phi[(i+1)+j*N+k*P*P]-phi[i+j*N+k*P*P])/dx;
379 double c = (phi[i+j*N+k*P*P]-phi[i+(j-1)*N+k*P*P])/dy;
380 double d = (phi[i+(j+1)*N+k*P*P]-phi[i+j*N+k*P*P])/dy;
381 double e = (phi[i+j*N+k*P*P]-phi[i+j*N+(k-1)*P*P])/dz;
382 double f = (phi[i+j*N+(k+1)*P*P]-phi[i+j*N+k*P*P])/dz;
383
384 double G;
385 if (phi0[i+j*N+k*P*P] > 0){
386 G = sqrt(max(max(a,0.0)*max(a,0.0), min(b,0.0)*min(b,0.0))
387 + max(max(c,0.0)*max(c,0.0), min(d,0.0)*min(d,0.0))
388 + max(max(e,0.0)*max(e,0.0), min(f,0.0)*min(f,0.0))) - 1;
389 } else if (phi0[i+j*N+k*P*P] < 0){
390 G = sqrt(max(min(a,0.0)*min(a,0.0), max(b,0.0)*max(b,0.0))
391 + max(min(c,0.0)*min(c,0.0), max(d,0.0)*max(d,0.0))
392 + max(min(e,0.0)*min(e,0.0), max(f,0.0)*max(f,0.0))) - 1;
393 }
394 n1.push_back(phi[i + j*N + k*P*P] - dt*sign(phi0[i+j*N+k*P*P])*G);
395 }
396 }
397 }
398
399 for (int k = 0; k < P; ++k){
400 for (int j = 0; j < N; ++j){
401 for (int i = 0; i < M; ++i){
402 if (i==0 || i==(M-1) || i==1 || i==M-2 || i==2 || i==M-3 || j==0 || j==(N

-1) || j==1 || j==N-2 || j==2 || j==N-3 || k==0 || k==(P-1) || k==1 || k
==P-2 || k==2 || k==P-3){

403 n2.push_back(n1[i+j*N+k*P*P]);
404 continue;
405 }
406
407 double a = (n1[i+j*N+k*P*P]-n1[(i-1)+j*N+k*P*P])/dx;
408 double b = (n1[(i+1)+j*N+k*P*P]-n1[i+j*N+k*P*P])/dx;
409 double c = (n1[i+j*N+k*P*P]-n1[i+(j-1)*N+k*P*P])/dy;

410 double d = (n1[i+(j+1)*N+k*P*P]-n1[i+j*N+k*P*P])/dy;
411 double e = (n1[i+j*N+k*P*P]-n1[i+j*N+(k-1)*P*P])/dz;
412 double f = (n1[i+j*N+(k+1)*P*P]-n1[i+j*N+k*P*P])/dz;
413
414 double G;
415 if (phi0[i+j*N+k*P*P] > 0){
416 G = sqrt(max(max(a,0.0)*max(a,0.0), min(b,0.0)*min(b,0.0))
417 + max(max(c,0.0)*max(c,0.0), min(d,0.0)*min(d,0.0))
418 + max(max(e,0.0)*max(e,0.0), min(f,0.0)*min(f,0.0))) - 1;
419 } else if (phi0[i+j*N+k*P*P] < 0){
420 G = sqrt(max(min(a,0.0)*min(a,0.0), max(b,0.0)*max(b,0.0))
421 + max(min(c,0.0)*min(c,0.0), max(d,0.0)*max(d,0.0))
422 + max(min(e,0.0)*min(e,0.0), max(f,0.0)*max(f,0.0))) - 1;
423 }
424 n2.push_back(n1[i + j*N + k*P*P] - dt*sign(phi0[i+j*N+k*P*P])*G);
425 }
426 }
427 }
428
429 vector<double> n1_2 = (3.0/4*phi + 1.0/4*n2);
430
431 for (int k = 0; k < P; ++k){
432 for (int j = 0; j < N; ++j){
433 for (int i = 0; i < M; ++i){
434 if (i==0 || i==(M-1) || i==1 || i==M-2 || i==2 || i==M-3 || j==0 || j==(N

-1) || j==1 || j==N-2 || j==2 || j==N-3 || k==0 || k==(P-1) || k==1 || k
==P-2 || k==2 || k==P-3){

435 n3_2.push_back(n1_2[i+j*N+k*P*P]);
436 continue;
437 }
438
439 double a = (n1_2[i+j*N+k*P*P]-n1_2[(i-1)+j*N+k*P*P])/dx;
440 double b = (n1_2[(i+1)+j*N+k*P*P]-n1_2[i+j*N+k*P*P])/dx;
441 double c = (n1_2[i+j*N+k*P*P]-n1_2[i+(j-1)*N+k*P*P])/dy;
442 double d = (n1_2[i+(j+1)*N+k*P*P]-n1_2[i+j*N+k*P*P])/dy;
443 double e = (n1_2[i+j*N+k*P*P]-n1_2[i+j*N+(k-1)*P*P])/dz;
444 double f = (n1_2[i+j*N+(k+1)*P*P]-n1_2[i+j*N+k*P*P])/dz;
445
446 double G;
447 if (phi0[i+j*N+k*P*P] > 0){
448 G = sqrt(max(max(a,0.0)*max(a,0.0), min(b,0.0)*min(b,0.0))
449 + max(max(c,0.0)*max(c,0.0), min(d,0.0)*min(d,0.0))
450 + max(max(e,0.0)*max(e,0.0), min(f,0.0)*min(f,0.0))) - 1;
451 } else if (phi0[i+j*N+k*P*P] < 0){
452 G = sqrt(max(min(a,0.0)*min(a,0.0), max(b,0.0)*max(b,0.0))
453 + max(min(c,0.0)*min(c,0.0), max(d,0.0)*max(d,0.0))
454 + max(min(e,0.0)*min(e,0.0), max(f,0.0)*max(f,0.0))) - 1;
455 }
456 n3_2.push_back(n1_2[i + j*N + k*P*P] - dt*sign(phi0[i+j*N+k*P*P])*G);
457 }
458 }
459 }
460
461 phi = 1.0/3*phi + 2.0/3*n3_2;
462
463 }
464
465 // first-order explicit Euler scheme used with the Godunov scheme to solve the

reinitialization equation
466 void euler_godunov_reinit(vector<double> &phi, int M, int N, int P, double dx, double dy,

double dz, double dt, const vector<double> &phi0){
467 vector<double> phiNew;
468 for (int k = 0; k < P; ++k){
469 for (int j = 0; j < N; ++j){
470 for (int i = 0; i < M; ++i){
471 if (i==0 || i==(M-1) || i==1 || i==M-2 || i==2 || i==M-3 || j==0 || j==(N

-1) || j==1 || j==N-2 || j==2 || j==N-3 || k==0 || k==(P-1) || k==1 || k
==P-2 || k==2 || k==P-3){

472 phiNew.push_back(phi[i+j*N+k*P*P]);

473 continue;
474 }
475
476 double a = (phi[i+j*N+k*P*P]-phi[(i-1)+j*N+k*P*P])/dx;
477 double b = (phi[(i+1)+j*N+k*P*P]-phi[i+j*N+k*P*P])/dx;
478 double c = (phi[i+j*N+k*P*P]-phi[i+(j-1)*N+k*P*P])/dy;
479 double d = (phi[i+(j+1)*N+k*P*P]-phi[i+j*N+k*P*P])/dy;
480 double e = (phi[i+j*N+k*P*P]-phi[i+j*N+(k-1)*P*P])/dz;
481 double f = (phi[i+j*N+(k+1)*P*P]-phi[i+j*N+k*P*P])/dz;
482
483 double G;
484 if (phi0[i+j*N+k*P*P] > 0){
485 G = sqrt(max(max(a,0.0)*max(a,0.0), min(b,0.0)*min(b,0.0))
486 + max(max(c,0.0)*max(c,0.0), min(d,0.0)*min(d,0.0))
487 + max(max(e,0.0)*max(e,0.0), min(f,0.0)*min(f,0.0))) - 1;
488 } else if (phi0[i+j*N+k*P*P] < 0){
489 G = sqrt(max(min(a,0.0)*min(a,0.0), max(b,0.0)*max(b,0.0))
490 + max(min(c,0.0)*min(c,0.0), max(d,0.0)*max(d,0.0))
491 + max(min(e,0.0)*min(e,0.0), max(f,0.0)*max(f,0.0))) - 1;
492 }
493 phiNew.push_back(phi[i + j*N + k*P*P] - dt*sign(phi0[i+j*N+k*P*P])*G);
494 }
495 }
496 }
497 phi = phiNew;
498 }
499
500 // sign function that returns 1 for a positive value, -1 for a negative value, and 0 for

a value of 0
501 int sign(double num){
502 int res;
503 if (num < 0){
504 res = -1;
505 } else if (num > 0){
506 res = 1;
507 } else if (num == 0){
508 res = 0;
509 }
510 return res;
511 }
512

70 APPENDIX A. LSM3D

A.5. TESTCASES.H AND TESTCASES.CPP 71

A.5 testCases.h and testCases.cpp
These files contain code to generate the velocity fields and the computation of the error measures introduced
in section 4.6. testCases.h is given first and contains the header file, while testCases.cpp contains the whole
implementation.

1 #pragma once
2
3 #include <vector>
4 #include <tuple>
5 #include <cmath>
6
7 #include "initialization.h"
8 #include "schemes.h"
9

10 using namespace std;
11
12 #define PI 3.14159265
13
14 // velocity vector with one value for each direction in 3D
15 struct Velocity {
16 vector<double> x;
17 vector<double> y;
18 vector<double> z;
19 };
20
21 // velocity field for deformation in 3D. Taken from LeVeque (1996)
22 Velocity vortexVelocity(int M, int N, int P, vector<double> X, vector<double> Y, vector<

double> Z, double t, double T);
23
24 // velocity field for deformation in 2D. Taken from Morgan and Waltz (2017)
25 Velocity shearedSphereVelocity(int M, int N, int P, vector<double> X, vector<double> Y,

vector<double> Z, double t, double T);
26
27 // simple velocity field with u = v = w = 1 for all grid nodes
28 Velocity simpleVelocity(int M, int N, int P);
29
30 // returns the volume of the domain bounded by the zero contour in a signed distance

field
31 double volume(vector<double> &phi, double dx, double dy, double dz);
32
33 // returns the surface area of the domain bounded by the zero contour in a signed

distance field
34 double surfaceArea(vector<double> &phi, double dx, double dy, double dz, double M, double

N, double P);
35
36 // error measure of the interface error
37 double interfaceError(vector<double> &phi0, vector<double> &phi, double dx, double dy,

double dz, double M, double N, double P);
38
39 // error measure of the average mass error
40 double massError(vector<double> &phi, double dx, double dy, double dz, double M, double N

, double P);
41

1 #include "testCases.h"
2
3 // velocity field for deformation in 3D. Taken from LeVeque (1996)
4 Velocity vortexVelocity(int M, int N, int P, vector<double> X, vector<double> Y, vector<

double> Z, double t, double T){
5
6 vector<double> U;
7 vector<double> V;
8 vector<double> W;
9

10 for (int k = 0; k < P; ++k){
11 for (int j = 0; j < N; ++j){
12 for (int i = 0; i < M; ++i){
13 U.push_back(2*sin(PI*X[i])*sin(PI*X[i])*sin(2*PI*Y[j])*sin(2*PI*Z[k])*cos

(PI*t/T));
14 V.push_back(-sin(2*PI*X[i])*sin(PI*Y[j])*sin(PI*Y[j])*sin(2*PI*Z[k])*cos(

PI*t/T));
15 W.push_back(-sin(2*PI*X[i])*sin(2*PI*Y[j])*sin(PI*Z[k])*sin(PI*Z[k])*cos(

PI*t/T));
16 }
17 }
18 }
19 return Velocity {U, V, W};
20 }
21
22 // velocity field for deformation in 2D. Taken from Morgan and Waltz (2017)
23 Velocity shearedSphereVelocity(int M, int N, int P, vector<double> X, vector<double> Y,

vector<double> Z, double t, double T){
24
25 vector<double> U;
26 vector<double> V;
27 vector<double> W;
28
29 for (int k = 0; k < P; ++k){
30 for (int j = 0; j < N; ++j){
31 for (int i = 0; i < M; ++i){
32 U.push_back(sin(PI*X[i])*cos(PI*Y[j])*cos(PI*t/T));
33 V.push_back(-cos(PI*X[i])*sin(PI*Y[j])*cos(PI*t/T));
34 W.push_back(0.0);
35 }
36 }
37 }
38 return Velocity {U, V, W};
39 }
40
41 // simple velocity field with u = v = w = 1 for all grid nodes
42 Velocity simpleVelocity(int M, int N, int P){
43 vector<double> U = linspace(1, 1, M*N*P);
44 vector<double> V = linspace(1, 1, M*N*P);
45 vector<double> W = linspace(1, 1, M*N*P);
46 return Velocity {U, V, W};
47 }
48
49 // returns the volume of the domain bounded by the zero contour in a signed distance

field
50 double volume(vector<double> &phi, double dx, double dy, double dz){
51 double epsilon = 1.5*dx;
52 double V = 0;
53 for (int i = 0; i < phi.size(); ++i){
54 double H;
55 if (phi[i] < -epsilon){
56 H = 0.0;
57 } else if (-epsilon <= phi[i] && phi[i] <= epsilon){
58 H = 0.5 + phi[i]/(2*epsilon) + 1/(2*PI)*sin(PI*phi[i]/epsilon);
59 } else if (epsilon < phi[i]){
60 H = 1.0;
61 }
62 V += (1-H)*dx*dy*dz;
63 }

64 return V;
65 }
66
67 // returns the surface area of the domain bounded by the zero contour in a signed

distance field
68 double surfaceArea(vector<double> &phi, double dx, double dy, double dz, double M, double

N, double P){
69 double A = 0;
70 double epsilon = 1.5*dx;
71 double phix;
72 double phiy;
73 double phiz;
74 for (int k = 0; k < P; ++k){
75 for (int j = 0; j < N; ++j){
76 for (int i = 0; i < M; ++i){
77 if (i==0 || i==(M-1) || j==0 || j==(N-1) || k==0 || k==(P-1)){
78 continue;
79 }
80 double phix = (phi[(i+1)+j*N+k*P*P] - phi[(i-1)+j*N+k*P*P])/(2*dx);
81 if (phix == 0){
82 phix = (phi[(i+1)+j*N+k*P*P] - phi[i+j*N+k*P*P])/(dx);
83 }
84 double phiy = (phi[i+(j+1)*N+k*P*P] - phi[i+(j-1)*N+k*P*P])/(2*dy);
85 if (phiy == 0){
86 phiy = (phi[i+(j+1)*N+k*P*P] - phi[i+j*N+k*P*P])/(dy);
87 }
88 double phiz = (phi[i+j*N+(k+1)*P*P] - phi[i+j*N+(k-1)*P*P])/(2*dz);
89 if (phiz == 0){
90 phiz = (phi[i+j*N+(k+1)*P*P] - phi[i+j*N+k*P*P])/(dz);
91 }
92 double sigma;
93 if (phi[i + j*N + k*P*P] < -epsilon){
94 sigma = 0.0;
95 } else if (-epsilon <= phi[i + j*N + k*P*P] && phi[i + j*N + k*P*P] <=

epsilon){
96 sigma = (1/(2*epsilon) + 1/(2*epsilon)*cos(phi[i + j*N + k*P*P]*PI/

epsilon));
97 } else if (epsilon < phi[i + j*N + k*P*P]){
98 sigma = 0.0;
99 }

100 A += (sigma)*sqrt(phix*phix + phiy*phiy + phiz*phiz)*dx*dy*dz;
101 }
102 }
103 }
104 return A;
105 }
106
107 // error measure of the interface error
108 double interfaceError(vector<double> &phi0, vector<double> &phi, double dx, double dy,

double dz, double M, double N, double P){
109 double epsilon = 1.5*dx;
110 double A = surfaceArea(phi0, dx, dy, dz, M, N, P);
111 double L1 = 0;
112 for (int k = 0; k < P; ++k){
113 for (int j = 0; j < N; ++j){
114 for (int i = 0; i < M; ++i){
115 L1 += abs(1.0*(phi0[i + j*N + k*P*P] < 0) - 1.0*(phi[i + j*N + k*P*P] < 0

))*dx*dy*dz;
116 }
117 }
118 }
119 return L1/A;
120 }
121
122 // error measure of the average mass error
123 double massError(vector<double> &phi, double dx, double dy, double dz, double M, double N

, double P){
124 double error = 0;
125 for (int k = 0; k < P; ++k){

126 for (int j = 0; j < N; ++j){
127 for (int i = 0; i < M; ++i){
128 error += abs(1.0*(phi[i + j*N + k*P*P] < 0))*dx*dy*dz;
129 }
130 }
131 }
132 return error;
133 }
134

76 APPENDIX A. LSM3D

A.6. VECTORUTILITIES.H AND VECTORUTILITIES.CPP 77

A.6 vectorUtilities.h and vectorUtilities.cpp
These files contain code used for various vector operations. vectorUtilities.h is given first and contains the
header file, while vectorUtilities.cpp contains the whole implementation.

1 #pragma once
2
3 #include <vector>
4 #include <iostream>
5 #include <cmath>
6 #include <limits>
7 using namespace std;
8
9 // multiplies the elements of two vectors

10 vector<double> operator*(vector<double> const &vec1, vector<double> const &vec2);
11
12 // divides the elements of one vector with another vector
13 vector<double> operator/(vector<double> const &vec1, vector<double> const &vec2);
14
15 // adds the elements of two vectors
16 vector<double> operator+(vector<double> const &vec1, vector<double> const &vec2);
17
18 // multiplies the elements of a vector with a scalar
19 vector<double> operator*(double const &scalar, vector<double> const &vec);
20
21 // multiplies the elements of a vector with a scalar
22 vector<double> operator*(vector<double> const &vec, double const &scalar);
23
24 // divides the elements of a vector with a scalar
25 vector<double> operator/(vector<double> const &vec, double const &scalar);
26
27 // divides a scalar with the elements of a vector
28 vector<double> operator/(double const &scalar, vector<double> const &vec);
29
30 // subtracts the elements of one vector with another vector
31 vector<double> operator-(vector<double> const &vec1, vector<double> const &vec2);
32
33 // adds the elements of a vector with a scalar
34 vector<double> operator+(vector<double> const &vec, double const &scalar);
35
36 // adds the elements of a vector with a scalar
37 vector<double> operator+(double const &scalar, vector<double> const &vec);
38
39 // subtracts the elements of a vector with a scalar
40 vector<double> operator-(vector<double> const &vec, double const &scalar);
41
42 // subtracts a scalar with the elements of a vector
43 vector<double> operator-(double const &scalar, vector<double> const &vec);
44
45 // takes the absolute value of all elements of a vector
46 vector<double> vectorAbs(vector<double> const &vec);
47
48 // returns the maximum value of all elements in a vector
49 double vectorMax(vector<double> const &vec);
50
51 // takes the square root of all elements of a vector
52 vector<double> vectorSqrt(vector<double> const &vec);
53

1 #include "vectorUtilities.h"
2
3 // multiplies the elements of two vectors
4 vector<double> operator*(vector<double> const &vec1, vector<double> const &vec2){
5 vector<double> res;
6 if (vec1.size() != vec2.size()){
7 cerr << "Vectors multiplication with different sized vectors." << endl;
8 }
9 for (int i = 0; i < vec1.size(); ++i){

10 res.push_back(vec1[i]*vec2[i]);
11 }
12 return res;
13 }
14
15 // divides the elements of one vector with another vector
16 vector<double> operator/(vector<double> const &vec1, vector<double> const &vec2){
17 vector<double> res;
18 if (vec1.size() != vec2.size()){
19 cerr << "Vectors division with different sized vectors." << endl;
20 }
21 for (int i = 0; i < vec1.size(); ++i){
22 res.push_back(vec1[i]/vec2[i]);
23 }
24 return res;
25 }
26
27 // adds the elements of two vectors
28 vector<double> operator+(vector<double> const &vec1, vector<double> const &vec2){
29 vector<double> res;
30 if (vec1.size() != vec2.size()){
31 cerr << "Vectors addition with different sized vectors." << endl;
32 }
33 for (int i = 0; i < vec1.size(); ++i){
34 res.push_back(vec1[i] + vec2[i]);
35 }
36 return res;
37 }
38
39 // multiplies the elements of a vector with a scalar
40 vector<double> operator*(double const &scalar, vector<double> const &vec){
41 vector<double> res;
42 for (int i = 0; i < vec.size(); ++i){
43 res.push_back(scalar*vec[i]);
44 }
45 return res;
46 }
47
48 // multiplies the elements of a vector with a scalar
49 vector<double> operator*(vector<double> const &vec, double const &scalar){
50 vector<double> res;
51 for (int i = 0; i < vec.size(); ++i){
52 res.push_back(vec[i]*scalar);
53 }
54 return res;
55 }
56
57 // divides the elements of a vector with a scalar
58 vector<double> operator/(vector<double> const &vec, double const &scalar){
59 vector<double> res;
60 for (int i = 0; i < vec.size(); ++i){
61 res.push_back(vec[i]/scalar);
62 }
63 return res;
64 }
65
66 // divides a scalar with the elements of a vector
67 vector<double> operator/(double const &scalar, vector<double> const &vec){
68 vector<double> res;
69 for (int i = 0; i < vec.size(); ++i){

70 res.push_back(scalar/vec[i]);
71 }
72 return res;
73 }
74
75 // subtracts the elements of one vector with another vector
76 vector<double> operator-(vector<double> const &vec1, vector<double> const &vec2){
77 vector<double> res;
78 if (vec1.size() != vec2.size()){
79 cerr << "Vectors subtraction with different sized vectors." << endl;
80 }
81 for (int i = 0; i < vec1.size(); ++i){
82 res.push_back(vec1[i] - vec2[i]);
83 }
84 return res;
85 }
86
87 // adds the elements of a vector with a scalar
88 vector<double> operator+(vector<double> const &vec, double const &scalar){
89 vector<double> res;
90 for (int i = 0; i < vec.size(); ++i){
91 res.push_back(vec[i]+scalar);
92 }
93 return res;
94 }
95
96 // adds the elements of a vector with a scalar
97 vector<double> operator+(double const &scalar, vector<double> const &vec){
98 vector<double> res;
99 for (int i = 0; i < vec.size(); ++i){

100 res.push_back(scalar + vec[i]);
101 }
102 return res;
103 }
104
105 // subtracts the elements of a vector with a scalar
106 vector<double> operator-(vector<double> const &vec, double const &scalar){
107 vector<double> res;
108 for (int i = 0; i < vec.size(); ++i){
109 res.push_back(vec[i]-scalar);
110 }
111 return res;
112 }
113
114 // subtracts a scalar with the elements of a vector
115 vector<double> operator-(double const &scalar, vector<double> const &vec){
116 vector<double> res;
117 for (int i = 0; i < vec.size(); ++i){
118 res.push_back(scalar - vec[i]);
119 }
120 return res;
121 }
122
123 // takes the absolute value of all elements of a vector
124 vector<double> vectorAbs(vector<double> const &vec){
125 vector<double> res;
126 for (unsigned int i = 0; i < vec.size(); ++i){
127 if (vec[i] < 0){
128 res.push_back(-vec[i]);
129 } else {
130 res.push_back(vec[i]);
131 }
132 }
133 return res;
134 }
135
136 // returns the maximum value of all elements in a vector
137 double vectorMax(vector<double> const &vec){
138 double max = numeric_limits<double>::lowest();

139 for (unsigned int i = 0; i < vec.size(); ++i){
140 if (isfinite(vec[i]) && (vec[i] > max)){
141 max = vec[i];
142 }
143 }
144 return max;
145 }
146
147 // takes the square root of all elements of a vector
148 vector<double> vectorSqrt(vector<double> const &vec){
149 vector<double> res;
150 for (unsigned int i = 0; i < vec.size(); ++i){
151 res.push_back(sqrt(vec[i]));
152 }
153 return res;
154 }
155

82 APPENDIX A. LSM3D

A.7. PLOTTER.PY 83

A.7 plotter.py
This file contains the Python code to find the interface with the marching cubes algorithm using the scikit-image
Python library, and also code to plot the interface and the particles used in the particle level set method.

1 from matplotlib import projections
2 import matplotlib.pyplot as plt
3 import numpy as np
4 from skimage import measure # scikit-image library
5 from mpl_toolkits.mplot3d.art3d import Poly3DCollection
6
7 # reads a .txt-file and returns the signed distance field and the number of nodes in

each direction
8 def readFile(filename):
9 f = open(filename)

10
11 firstLine = f.readlines()[0].split(',')
12 f.close()
13 m = int(firstLine[0])
14 n = int(firstLine[1])
15 p = int(firstLine[2])
16
17 f = open(filename)
18 phi = np.zeros((m,n,p))
19 lines = f.readlines()[1:]
20 count = 0
21 for k in range(p):
22 for j in range(n):
23 for i in range(m):
24 phi[i,j,k] = float(lines[count].split(',')[3])
25 count += 1
26 return phi, m, n, p
27
28 # takes a signed distance field and the number of nodes in each direction
29 # uses the marching cubes algorithm to find the zero-contour and plots this contour
30 def getSurface(volume, m, n, p, level=0, plot=True, filename='fig'):
31 verts, faces, normals, values = measure.marching_cubes(volume, level) # marching

cubes algorithm
32 size = max(m, n, p)
33 if plot:
34 fig = plt.figure()
35 ax = fig.add_subplot(projection='3d')
36 ax.set_box_aspect([1,1,1])
37 mesh = Poly3DCollection(verts[faces]/size)
38 mesh.set_edgecolor('k')
39 ax.add_collection3d(mesh)
40 plt.tight_layout()
41 ax.set_xlim(0, 1)
42 ax.set_ylim(0, 1)
43 ax.set_zlim(0, 1)
44 ax.view_init(elev=0., azim=0)
45 ax.set_xlabel('x', fontsize=14, style='italic')
46 ax.set_ylabel('y', fontsize=14, style='italic')
47 ax.set_zlabel('z', fontsize=14, style='italic')
48 plt.savefig(filename + '.pdf', dpi=900, format='pdf',bbox_inches='tight')
49 plt.close()
50
51 # plots the particles from the particle level set method
52 def plotParticle(filename):
53 f = open(filename + '.txt')
54
55 x = []
56 y = []
57 z = []
58
59 for line in f.readlines():
60 parsedLine = line.split(',')
61 x.append(float(parsedLine[0]))
62 y.append(float(parsedLine[1]))
63 z.append(float(parsedLine[2]))
64
65 fig = plt.figure()

66 ax = fig.add_subplot(projection='3d')
67 ax.scatter(x,y,z)
68 plt.xlabel('x', fontsize=14, style='italic')
69 plt.ylabel('y', fontsize=14, style='italic')
70 plt.savefig(filename + '.pdf', dpi=900, format='pdf',bbox_inches='tight')
71 plt.close()
72
73 # main function for plotting
74 def main():
75 plt.rcParams['font.family'] = 'serif'
76 plt.rcParams['font.serif'] = ['Times New Roman']
77 path = 'figures/'
78
79 f = open(path + 'plotTimes.txt')
80 # plots signed distance field for all time steps recorded in plotTimes.txt
81 for line in f.readlines():
82 phi, m, n, p = readFile(path + line[:-1] + '.txt')
83 getSurface(phi, m, n, p, 0, True, path + line[:-1])
84
85 g = open(path + 'plotTimesParticle.txt')
86 # plots particles for all time steps recorded in plotTimesParticle.txt
87 for line in g.readlines():
88 plotParticle(line[:-1])
89
90 if __name__=='__main__':
91 main()
92

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f E

ne
rg

y
an

d
Pr

oc
es

s
En

gi
ne

er
in

g

Marcus Sommersel

Interface Tracking for 3D Immersed
Boundary Method in Biofluid
Dynamics

Master’s thesis in Mechanical Engineering
Supervisor: Bernhard Müller
June 2022

M
as

te
r’s

 th
es

is

	Introduction
	Obstructive Sleep Apnea
	VirtuOSA
	Outline of Master's Thesis

	Literature review
	CFD in medicine
	Interface Tracking
	Front Tracking Methods
	Volume of Fluid Methods
	Level Set Methods

	Immersed Boundary Method
	Ghost Point Immersed Boundary Method

	Governing Equations for the Level Set Method
	Standard Level Set Method
	Particle Level Set Method
	Combining the Level Set Method with the Immersed Boundary Method
	Marching Cubes Algorithm

	Discretization of the Level Set Method
	WENO Method
	TVD Runge-Kutta Method
	Godunov's Scheme
	CFL Number
	Boundary Conditions
	Measures of Error

	Results
	Sphere in two-dimensional vortex velocity field
	Sphere in three-dimensional vortex velocity field
	CPU time

	Conclusions and Outlook
	Appendices
	LSM3D
	main.cpp
	initialization.h and initialization.cpp
	particleLSM.h and particleLSM.cpp
	schemes.h and schemes.cpp
	testCases.h and testCases.cpp
	vectorUtilities.h and vectorUtilities.cpp
	plotter.py

