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Abstract

Hyperparameter Optimization (HPO) has recently been applied to ad-
vance state-of-the-art performances for many Machine Learning (ML)
tasks. One particular HPO method that has gained widespread recog-
nition is Bayesian Optimization (BO) due to its efficient acquisition of
hyperparameters through the use of active modelling of expensive black-
box functions. This modelling is typically done with the use of Gaussian
Processes (GPs) that fits the black-box function as a joint multivariate
Gaussian distribution.

This project explores the theoretical and practical world of HPO, with a
particular focus on BO with GPs, to assist Solution Seeker advance the
performance of their Virtual Flow Meter (VFM). Through a case study,
the applicability of BO with GPs for a Deep Neural Network (DNN)
within a computational budget is investigated, as well as the import-
ance of the size of the hyperparameter configuration space. The results
from the study show promising tendencies, where the BO on average
performed as well as – or better than– a naive comparison method no
matter the given computational budget or size of configuration space.
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1 | Introduction

1.1 Motivation

The use and development of fossil fuels have since their discovery been a key part
of the world’s rapid industrialization and development. Oil and gas accounted for
55.9% of the global energy mix in 2020, whereas hydroelectricity and other renew-
able energy sources only accounted for 12.6% (BP, 2021). Although fossil fuels still
are the primary energy source in the world, oil and gas production has become in-
creasingly more complex throughout the years, drilling deeper and in more remote
places than ever. This field has typically been driven by classical engineering with
fundamentals in mathematics, physics, and chemistry. Over the recent years, this
trend has somewhat changed due to the fourth industrial revolution. With data be-
ing sampled at a rate that we have never seen before, the use of artificial intelligence
has gained an increasing interest in the industry.

Specifically, breakthroughs in machine learning algorithms (MLA), deep learning
and the use of GPU’s for computational power has made artificial intelligence a
powerful and applicable tool. Solution Seeker is a Norwegian company that harvests
the powers of this tool. They have developed the world’s first artificial intelligence
for production optimization in the oil and gas industry (Solution Seeker, 2021), with
use cases extending to test optimization, well monitoring and flow rate predictions.

This exploratory work is done in collaboration with Solution Seeker and focuses on
the latter use case; flow rate prediction. Traditionally, intricate multiphase flow
meters have been used to measure the flow rate. Thorn et al. (2012) highlights some
importance of three-phase flow metering; They describe multiphase flow metering
as a key part in making small petroleum fields cost-effective, reducing pipeline costs
and making the development of new fields robust to fluctuating oil and gas prices.

Designing and building instruments that are capable of measuring multiphase flow is
however a difficult science, as Falcone (2009) summarizes; ‘So far, many alternative
metering systems have been developed, but none of them can be referred to as
generally applicable or universally accurate.’ Because multiphase flow metering is
such a challenging problem, Solution Seeker aims to provide the industry with data-
driven models that can predict the flow rate through measurements that are more
robust and easily obtained.

The company have acquired vast knowledge in designing data-driven models, called
Virtual Flow Meters, for multiphase flow measurement in oil and gas production
(Grimstad et al., 2021). Designing the VFM is one part of the challenge with ML.
Another is extracting the optimal performance from the design. This work targets
the latter problem by the use of hyperparameter optimization.
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1.2. Background

1.2 Background

The problem of HPO can be dated back to at least the 1990s. Kohavi and John
(1995) showed that different hyperparameters led to different results for different
data sets. Recently, HPO has gained an increasing interest in scientific research
with the advancements of deep learning. Bergstra, Bardenet et al. (2011) argues
among other things that the difficulty of selecting good hyperparameters makes it
difficult to reproduce scientific results, and that improved state-of-the-art perform-
ances sometimes are due only to the selection of better hyperparameters rather than
to innovation in machine learning strategies. Feurer and Hutter (2019) highlights
some of the many use cases HPO has, and this work is in itself an example of the
recognition HPO is gaining in the industry.

Manual hyperparameter tuning by experts has been known to improve the perform-
ance of MLA’s. This method is however inefficient, and hyperparameter expertise
gained on one data set in one ML domain is often not transferable to other data
sets and domains. Naive methods such as Grid Search (GS) and Random Search
(RS) have shown good results (Bergstra and Bengio, 2012), but are still not optimal.
They showed by theoretical proof and empirical evidence that for neural networks,
RS found ‘models that are as good or better [than GS] within a small fraction of
the computation time’.

Since resources like computation time, computational power, and money are restric-
ted, HPO is rendered a crucial step in optimizing the learning and performance
of machine learning algorithms. One of the most popular and recognized methods
for HPO is Bayesian optimization (Brochu et al., 2010; Shahriari et al., 2015) with
Gaussian processes (Williams and Rasmussen, 2006). BO has shown great results
recently in many domains. Snoek, Larochelle et al. (2012) obtained state-of-the-art
performance on the object recognition set CIFAR-10. Bergstra, Yamins et al. (2013)
later used BO to optimize convolutional neural networks to obtain new state-of-the-
art performance on CIFAR-10, as well as on a face identification task (PubFig83)
and a face-matching verification task (LFW). Mendoza et al. (2016) used BO to
win two competition data sets against human experts in the ChaLearn AutoML
Challenge (Guyon et al., 2015) using automatically tuned feed-forward neural net-
works. Solution Seeker have identified HPO and BO as an interesting field to further
develop their VFM.
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1.3. Objectives and Research Questions

1.3 Objectives and Research Questions

To assist Solution Seeker in their search for optimal hyperparameters, the following
objectives were defined:

• The primary objective of this work is to form a solid theoretical and prac-
tical foundation within the fields of hyperparameter optimization, Bayesian
optimization and Gaussian processes for machine learning. The experiences
and reflections made through this work will establish the basis for the author’s
upcoming master thesis, which will dive deeper into the world of HPO.

• The secondary objective is to perform a brief software review of available HPO
packages compatible with Python. The goal of the review is to identify well-
tailored software packages to be used during the master thesis, and for further
work at Solution Seeker.

The following research questions were defined to reach the primary objective:

1. Can Bayesian optimization outperform naive hyperparameter optimization
techniques on a deep neural network given a computational budget?

2. What significance does the size of the configuration space have for the result?

The scope of this work is restricted to a simple case study. Answers to the research
questions, results, discussions, and conclusions drawn in this work are thus merely
an indication of the general picture.

3



1.4. Outline

1.4 Outline

Chapter 1 introduces this work. In Section 1.1 the motivation for this work is given.
In Section 1.2 a brief background of HPO with some important recent contributions
are given. In Section 1.3 the objectives of this work are defined, and the research
questions asked to reach the objectives are stated.

Chapter 2 gives the theoretical knowledge needed for this work. In Section 2.1 a
brief introduction to machine learning and deep learning is given. The supervised
learning problem and the term hyperparameter are defined. In Section 2.2 the prob-
lem of hyperparameter optimization is defined, and an introduction to model-free
and model-based hyperparameter optimization is given. Section 2.3 builds on the in-
troduction to model-based HPO and introduces Bayesian optimization. Section 2.4
gives a brief explanation of the surrogate model used for the Bayesian optimization
in this work. In particular, it introduces Gaussian processes, Gaussian Process Re-
gression (GPR) for machine learning, the challenges of scalable Gaussian processes
and nonstationarity, and different covariance functions used to describe the GP. Sec-
tion 2.5 highlights some of the most popular acquisition functions used for Bayesian
optimization, and a small discussion on which acquisition function to use.

Chapter 3 introduces some practical aspects of BO. In Section 3.1 some typical
hyperparameters for deep neural networks are given and their effect explained, along
with recommendations for choosing appropriate configuration spaces. In Section 3.2
a brief software review is conducted.

Chapter 4 explains the case study. In Section 4.1 the case is introduced, and the
data set for the case is described. In Section 4.2 the experiment designed to answer
the research questions is argued for and described. Section 4.3 explains the Python
implementation of the case. Chapter 5 gives the results of the experiment in Sec-
tion 5.1, and discusses them in Section 5.2 Chapter 6 concludes the work in the form
of a summary, along with recommendations for future work.
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2 | Theory

2.1 Intro to Machine Learning and Deep Learning

2.1.1 Machine Learning Basics

Humans tend to seek patterns to obtain an order, but if the scope becomes too vast
we are unable to process the information in a suiting manner. This is where machine
learning comes to play. Kevin P. (2012) defines ML as

A set of methods that can automatically detect patterns in data, and
then use the uncovered patterns to predict future data, or to perform
other kinds of decision-making under uncertainty.

This work uses machine learning for two purposes. First machine learning is used
to fit a model that can predict the total flow rate of water, oil, and gas in a pipe,
then, ML is used to model an uncertain function to optimize the flow rate model.

Machine learning is usually divided into two classes: Supervised - and Unsupervised -
learning. The former class treats problems where the object is to learn patterns
from input to output, while the latter focuses on discovering interesting patterns
solely from an input. This work focuses on the first type. The supervised learning
problem can be defined as follows:

Definition 2.1.1 (Supervised Machine Learning):
Observing a training set D = {(xi, fi), i = 1 : N} where fi = f(xi), and given a test
set X∗ of size N∗ ×D, the goal is to predict the function outputs f ∗ = f(X∗).

Definition 1 mentions a training- and test-set. These two sets come from a common
set, the data set. With supervised learning, the data set consists of multiple inputs
with corresponding labelled outputs. The input-to-output pattern in the data set is
what the MLA tries to learn. A common practice with ML is to at least split this data
set into two parts, a training set used for training, and a test set used for testing.
While training the model to recognize patterns in the training set, the learning
algorithm aims to minimize the training error, which is the error observed between
the model’s prediction and the expected outcome in the training set. The model is
then evaluated on the test set and the test error, which is the error observed between
the model’s predictions and the expected outcome in the test set, is calculated. The
idea behind machine learning, and what makes it different from an optimization
problem, is that by minimizing the training error the test error is also minimized.

5



2.1. Intro to Machine Learning and Deep Learning

The test error is also called the generalization error, which is a measure that tells
us how accurate the model can predict outcome values for unseen data. In other
words, the test error tells us something about how well the model would perform
if it was deployed in the real world, where all future data is currently unseen. The
model’s ability to predict outcomes from unseen data, and not only memorize the
previously seen data, is called generalization. The difference between the test error
and the training error is called the generalization gap.

To justify that minimizing the training error also minimizes the test error, an as-
sumption that is typically referred to as the i.i.d assumption has to be made. The
assumption holds if the samples in the data set are independent of each other, and
that they are identically distributed, i.e. drawn from the same probability distri-
bution. Since the i.i.d assumption is made, one would expect the expected training
error to be equal to the expected test error. This is not the case, however, since the
MLA minimizes the training error, and we would rather thus expect the test error
to be greater or equal to the training error. Based on this, Goodfellow et al., 2016
defines the factors that determine how well a MLA performs to be its ability to:

1. Make the training error small.
2. Make the gap between training and test error small.

These two abilities are analogous to the common ML terms underfitting and over-
fitting. Underfitting happens when the model is not able to make the training error
small enough. Overfitting happens when the gap between training and test error is
too large. None of these properties are desired, and we wish to avoid both. This
can be controlled by the model’s capacity, which loosely is the model’s ability to fit
a wide variety of functions (Goodfellow et al., 2016). An illustration of the relation-
ship between training error, test error, underfitting, overfitting and capacity can be
seen in Fig. 2.1.1.

A simple solution to finding optimal capacity would be to fit the machine learning
model with the training data, evaluate how it performs on the test data, and then
tweak the model, re-fit and re-evaluate until the training error and generalization
gap is satisfying. However, this would lead to what is commonly referred to as data
leakage, which is when data from outside the training set is used to guide the MLA.
In fact, by doing as proposed, the model would be optimized on the training and
the test set, which in turn means that nothing can be said about the test error, as
none of the data in the data set is left unseen.

A popular way of avoiding the problem of data leakage is to split the data set even
further by introducing a validation set, as illustrated in Fig. 2.1.2. Then instead of
tweaking the model based on the test error, it is tweaked based on the validation
error, which is the observed error between the model’s prediction and the expected
output in the validation set. This way the test set is left unseen and a valid estimate
of the test error can be calculated. This work utilizes this technique to optimize the
model’s capacity and is discussed in Section 2.2.2.

6



2.1. Intro to Machine Learning and Deep Learning

To be able to perform the minimization of the training error at all, a learning al-
gorithm that can recognize the patterns which we are looking for needs to be defined:
A learning algorithm is a set of instructions that tries to extract patterns from data
in order to apply what is learnt to new data. There exist many learning algorithms
that serve different purposes, and for a quick introduction to many popular al-
gorithms being used, see Brownlee (2019). As stated at the start of this section, this
work uses ML for two different purposes; The MLA used for the first purpose is a
deep neural network that predicts flow rates, and for the second purpose it uses a
Gaussian process regressor to model a function that is used to optimize the DNN.

To understand how a DNN can learn patterns from a data set, an introduction
to deep learning and neural networks is given in Section 2.1.2. How this neural
network’s capacity is optimized is described in Section 2.2 - 2.5. For further inform-
ation about machine learning, artificial neural networks and deep learning, please
see Kevin P. (2012) and Goodfellow et al. (2016).

Figure 2.1.1: Capacity vs Overfitting & Underfitting. Illustration from Goodfellow et al.
(2016)

Data set

Train Val Test

Figure 2.1.2: Data set separation.
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2.1. Intro to Machine Learning and Deep Learning

2.1.2 Deep Learning and Neural Networks

An artificial neural network (often simply a neural network) is one MLA used for
extracting patterns. It consists of multiple neurons, grouped in layers, that are
connected. The layers are typically divided into three categories, input, hidden and
output. The input and output layer refer to the first and last layer of the network
respectively, while a hidden layer is any layer between the input and the output layer.
Each neuron has its own activation, and each connection between a neuron nL−1

i in
layer L− 1 and nL

j in layer L has its own associated weight (θLij). A conceptual way
to think about the activation of a neuron, is that if e.g. neuron nL−1

i is activated,
it is allowed to pass its weighted connection θLij forward to neuron nL

j , and if it is
not activated, no weights are passed forward. A neuron’s activation is determined
by its associated nonlinear activation function, ζ(·), that determines the output of
the neuron based on its input. This nonlinearity is what allows the neural network
to recognize non-trivial patterns.

Furthermore, a neural network is given the term feed-forward if there are no feedback
connections from one layer to another, and it is called deep if there are two or more
hidden layers. An illustration of a deep feed-forward neural network (DFFNN) can
be seen in Figure 2.1.3. The output, y, of a DFFNN, is a composite mapping of
the activation function in the different layers from the input x. The output of the
network in Fig. 2.1.3 can thus be written as:

y = (ζ3 ◦ ζ2 ◦ ζ1)(x),

where ζ l is the activation function in layer l.

Tweaking θ in the different layers is what allows the neural network to recognize
the patterns in the data set at hand. How these weights are tweaked is controlled
by a forward-backwards-propagation scheme and the use of gradient descent meth-
ods. Forward propagation refers to giving the network an input that is propagated
forwards through the layers of the network and finally produces an output. The
output is then used to calculate the training error, a scalar cost J(θ), by the use
of a cost function J(·). Back-propagation then allows the cost to propagate back-
wards through the network to compute the gradient ∇θJ(θ). The weights are then
updated through gradient descent as follows:

θk+1 = θk − ψ∇θJ(θk), (2.1)

where ψ is the step length, or learning rate in machine learning terms. For more on
back-propagation, please see Goodfellow et al. (2016, Section 6.5) and for gradient
descent, see Goodfellow et al. (2016, Section 4.3) or Ruder (2017).
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2.2. Hyperparameter Optimization

x1Input 1

x2Input 2

x3Input 3

z11

z12

z13

z14

z21

z22

z23

z24

y1 Output 1

y2 Output 2

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 2.1.3: Deep Feed-Forward Neural Network with 3 inputs, 2 hidden layers and 2
outputs. The nodes represent neurons and the vertices represent weighted connections.

2.1.3 Hyperparameters

The number of hidden layers, number of neurons and the step length are examples
of hyperparameters. A hyperparameter is a parameter (or a setting) that is used
to control the learning process and behaviour of a MLA. In contrast to the weights
mentioned in the previous section, these parameters are configured beforehand and
are not learnt or updated throughout the process of training.

Compared to the parameters learnt by the machine learning algorithm that are typ-
ically real-valued between 0 and 1, hyperparameters have many domains. They can
be ‘real-valued (e.g. learning-rate), integer-valued (e.g. number of hidden layers),
binary(e.g. whether to use early stopping or not), categorical (e.g. choice of op-
timizer)’, or conditional (only use this hyperparameter if some condition is true)
(Feurer and Hutter, 2019).

There exist many hyperparameters, and some typical hyperparameters for deep
neural networks are given Section 3.1. To optimize the DNN’s capacity we will
try to select an optimal set of these hyperparameters as described in the following
section.

2.2 Hyperparameter Optimization

Since the hyperparameters are what controls the behaviour of the MLA, it almost
goes without saying that selecting good hyperparameters is crucial for obtaining an
adequate model. Optimization of an objective function f(x) over a compact set D
is often formulated as:

max
x∈D

f(x)

With HPO we are rather concerned with minimizing a function. In particular, we
are interested in minimizing the validation loss of a DNN as a function of the model’s

9



2.2. Hyperparameter Optimization

hyperparameters. Feurer and Hutter (2019) provides a well-written formulation of
the problem rendered here:

Definition 2.2.1 (Hyperparameter optimization):
Let A denote a machine learning algorithm with N hyperparameters. We denote the
domain of the n-th hyperparameter by Λn and the overall hyperparameter configur-
ation space as Λ = Λ1 × Λ2 × . . .ΛN . A vector of hyperparameters is denoted by
λ ∈ Λ, and A with its hyperparameters instantiated to λ is denoted by Aλ.

Given a data set D, our goal is to find

λ∗ = argminλ∈Λ E(Dtrain,Dvalid)∼D [V (L,Aλ, Dtrain, Dvalid)],

where V (L,Aλ, Dtrain, Dvalid) validates the loss of a model generated by algorithm A
with hyperparameters λ on training set Dtrain and evaluated on validation set Dvalid

with cost function L.

The objective is thus a functional from hyperparameters to validation loss. This
problem is considered as black-box optimization, since the exact relationship between
the input (hyperparameters), and the output (validation error) cannot analytically
be expressed. In addition, the response-surface of V (L,Aλ, Dtrain, Dvalid) cannot be
assumed to be convex, and neither that its gradient provide any information. Fur-
thermore, the only way of gathering information about the objective is by sampling
output values, which may be noisy. Sampling output values requires that the neural
network is trained, and its predictions validated. Algorithms for solving these kinds
of black-box optimization problems are typically divided into two categories; model-
free and model-based.

2.2.1 Model-Free Hyperparameter Optimization

Model-Free algorithms are algorithms that do not try to model the black-box func-
tion, but rather just try out different configurations, hoping that one of them results
in a good enough solution. Grid search is the simplest version of these algorithms.
It requires that a set for each hyperparameter in Λ is chosen. Grid search then goes
through every possible combination of these selected sets, in order to try to optimize
λ. This requires

∏N
n=1 |Λn| iterations, which easily can be parallelized since there

is no connection between different iterations. However, parallel processes have to
communicate with each other to avoid selecting the same hyperparameters as other
processes have chosen before. A problem with grid search is that it suffers from the
curse of dimensionality, as the number of iterations grows exponentially with the
number of hyperparameters (Bellman, 2015).

Another drawback with grid search comes from the fact that some hyperparamet-
ers often are more important than others (Kohavi and John, 1995; Bergstra and
Bengio, 2012), and with pre-configured sets of Λ grid search effectively searches
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2.2. Hyperparameter Optimization

over less of the important hyperparameters than actual iterations. An illustration
of this phenomenon is shown in Fig. 2.2.1. Random search is an attempt to solve
this problem. It draws different sets of Λ from a probability distribution, rather
than from a pre-selected set of values. Thus, it evaluates random sets of Λ instead
of pre-configured combinations of Λ1 . . .ΛN . Bergstra and Bengio (2012) showed
that random search performs better than grid search given the same computational
budget. In addition, RS is easier to parallelize than GS because there is no need for
synchronization between processes and each trial is just as independent as with GS.
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Figure 2.2.1: Illustration of grid and random search. The figure illustrates how random
search is able to sample more of the important hyperparameters than grid search is. The
figure was made based on Figure 1 in Bergstra and Bengio (2012).

2.2.2 Model-Based Hyperparameter Optimization

Instead of searching for the solution naively, these algorithms try to model the
objective function in order to make informed choices for where to sample next.
These methods are specifically designed for expensive objective functions, such as a
neural network with many hyperparameters.

In particular, we consider Sequential Model-Based Optimization (SMBO). These
algorithms use a surrogate to model the black-box function based on the inputs
(previously tried sets of hyperparameters), and outputs (the validation loss corres-
ponding to the sets of previously tried hyperparameters). Take e.g. the neural
network that we to perform Bayesian optimization on later. Training the network
is an expensive operation that requires a lot of resources. Thus, we want to limit
the number of times we have to train the network as much as possible. Evaluating
the surrogate on the other hand is cheap, and if necessary we evaluate this function
many times to find an optimal solution. The key idea is that the vector λ∗ that min-
imizes the surrogate M , also optimizes the machine learning algorithm A measured
by the validation function V (·).
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2.3. Bayesian Optimization

To do this the SMBO-algorithm sequentially solves for λ∗ by the use of an acquisition
function, α, trains the machine learning algorithm Aλ∗ , compute the validation loss,
updates the history of sampled values H, fits the surrogate and then again solves
for λ∗. This process is given in the form of pseudo-code in Algorithm 1.

There are two key parts to the SMBO-algorithm. Deciding where to sample next
(step 3 in Algorithm 1) is the first. This is done by choosing an acquisition func-
tion, sometimes referred to as a utility function, and maximizing this utility for the
surrogate model. Different acquisition functions have been proposed, and some of
the most popular ones for BO with GP are described in Section 2.5. The other key
part is how the objective function is modelled (step 6 in Algorithm 1). There are
numerous ways to do this, but this work focuses on using Bayes’ rule, as described
in the following section.

Algorithm 1 Pseudo-code for Sequential Model Based Optimization. Adapted
from Bergstra, Bardenet et al. (2011)
1: H ← ∅
2: for t← 1 to T do
3: λ∗ ← argminλ α(λ,Mt−1)
4: Train Aλ∗ and evaluate V (L,Aλ∗ , Dtrain, Dvalid)
5: H ← H ∪ (λ∗, V (L,Aλ∗ , Dtrain, Dvalid))
6: Fit a new model Mt to H
7: end for
8: return H

2.3 Bayesian Optimization

Bayesian Optimization is a SMBO algorithm that uses Bayes’ rule to model the
objective. Bayes’ rule states that the posterior probability of a model M given
observed data V is proportional to the prior probability of M multiplied by the
likelihood of the observed data V given the model M :

P (M |V ) ∝ P (M)× P (V |M)

posterior ∝ prior × likelihood
(2.2)

The prior distribution expresses the beliefs about the distribution of objective func-
tions before any data is observed, i.e. which objective functions do we think are
plausible? As mentioned before, the objective function is a black box, but we make
some assumptions about it to guide the optimization. Combined with the likeli-
hood, which modifies the beliefs about the prior according to the observed data, we
obtain a posterior distribution. The posterior distribution is the actual distribution
that is used to model the objective, after taking the observed data into account.
Pseudo-code for BO is given in Algorithm 2. An illustration of the BO process is
given in Fig. 2.3.1.
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2.3. Bayesian Optimization

There exists different ways of obtaining the posterior distribution, or rather different
priors you can apply to express the prior beliefs. Since data have to be sampled,
and we often do not know much about the likelihood of the observed data, we
often assume that the observations have a zero-mean Gaussian noise as described in
Section 2.4.2. To be able to use the version of Bayes rule as described in Eq. (2.2),
a conjugate prior has to be used. With a zero-mean Gaussian noise added to the
likelihood, this conjugate prior corresponds to a Gaussian prior. This work focuses
on expressing this prior with a Gaussian process, which is described in the following
section. For more on Bayesian optimization, please see Brochu et al. (2010) and
Shahriari et al. (2015).

Algorithm 2 Pseudo-code for Bayesian Optimization for Machine Learning Al-
gorithms. Adapted from Bergstra, Bardenet et al. (2011)
1: H ← ∅
2: for t← 1 to T do
3: λ∗ ← argminλ α(λ, P (f |Ht−1))
4: Train Aλ∗ and evaluate V (L,Aλ∗ , Dtrain, Dvalid)
5: H ← H ∪ (λ∗, V (L,Aλ∗ , Dtrain, Dvalid))
6: Update posterior distribution P (f |H) ∝ P (f)× P (H|f)
7: end for
8: return H
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Figure 2.3.1: Process of Bayesian optimization illustrated for a 1-d function. Credible
interval shows 2 times STD. The star signifies where the algorithm has decided to sample
next. Notice the dense observations near the minima in Fig. 2.3.1d, and that the acquisition
function has decided that this is the convergence point. The figures were adapted from
Nogueira (2014).
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2.4. Surrogate Model

2.4 Surrogate Model

Gaussian Process Regression is a way of modelling functions using Bayesian statistics
and regression analysis. The method combines Gaussian Processes with Bayesian
inference in an attempt to describe the objective. In this section, a short introduction
to GP and GPR is given, before the issue of scalable GP is discussed and some
popular covariance functions are introduced. Section 2.4.1 and Section 2.4.2 is widely
adapted from Williams and Rasmussen (2006).

2.4.1 Gaussian Processes

Williams and Rasmussen (2006) defines a GP as follows:

A Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution.

In other words, a GP can be seen as a Gaussian distribution over functions, just
as a Gaussian distribution is a distribution over a random variable. Furthermore,
and similar to a Gaussian distribution that is completely specified by its mean and
covariance, the GP (f(x)) is a non-parametric model that is entirely defined by its
mean function; m(x), and covariance function (kernel); κ(x,x′):

f(x) ∼ GP(m(x), κ(x,x′)) (2.3a)
m(x) = E[f(x)] (2.3b)

κ(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (2.3c)

2.4.2 Gaussian Process Regression

A Gaussian process regressor uses Bayes’ rule with a GP prior to obtain a fit posterior
distribution of the objective function. To see how this is done, the supervised
learning problem (Definition 2.1.1) is reformulated to fit the specific problem at
hand:

Definition 2.4.1 (Gaussian Process Regression):
Given a history set H = {(λt, Vt), t = 1 : T} of previous observations where
Vt = V ([L,Aλt , Dtrain, Dvalid]), the goal is to predict the function outputs VT+1.

With traditional Bayesian inference, the goal would be to calculate a probability
distribution of λ for a specific function V . Instead, GPR calculates the probability
distribution of all possible functions that fit the observed data. By placing a Gaus-
sian prior on V as illustrated in Fig. 2.4.1, the goal is to modify these priors to fit
the objective function.
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2.4. Surrogate Model

Target

Figure 2.4.1: Samples from the prior distribution. Randomly selected priors are shown
in light grey, with the target depicted in red. The goal with Gaussian process regression
is to sample data points from the target, such that the posterior (i.e. the modified priors)
eventually fit the target.

Since a GP prior is used, V1:T and VT+1 can by the properties of Eq. (2.3) be modelled
as a joint Gaussian distribution. Defining xt = [L,Aλt , Dtrain, Dvalid] and X t = [xt]
the distribution reads:

[
V1:T
VT+1

]
∼ N

([
m(X)
m(X∗)

]
,

[
K K∗
K⊺

∗ K∗∗

])
, (2.4)

where K = κ(X1:T ,X1:T ) is ZT×T , K∗ = κ(X1:T ,XT+1) is ZT×1, and
K∗∗ = κ(XT+1,XT+1) is Z1×1.

Obtaining the function output VT+1 can be achieved by conditioning (2.4) on the
observations V1:T , which results in the posterior distribution:

p(VT+1|XT+1,X1:T , V1:T ) ∼ N (µT+1,ΣT+1) (2.5a)
µT+1 = m(XT+1) +K∗

⊺K−1(V1:T −m(X1:T )) (2.5b)
ΣT+1 = K∗∗ −K⊺

∗K
−1K∗ (2.5c)

By evaluating the mean, µT+1, and the covariance, ΣT+1, we can predict function
values for VT+1, as was the goal in Definition 2.4.1. The solution provided in (2.5)
assumes data without noise, which is an assumption that in most cases is not applic-
able, as the true function values are often not known and data has to be sampled.
Adding independent identically distributed Gaussian noise ϵ with variance σ2

y yields

y = V (x) + ϵ, ϵ ∼ N (0, σ2
y)
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2.4. Surrogate Model

A popular way of simplifying the posterior calculations, without affecting the cor-
rectness of the model, is by setting the mean function (2.3b) of the prior to 0 by
normalizing the data and centring it around 0. By doing this, we are left with the
following prior:

[
y

VT+1

]
∼ N

(
0,

[
Ky K∗
K⊺

∗ K∗∗

])
(2.6)

where Ky = K + σ2
yI

Again, conditioning Eq. (2.6) on the observations y yields:

p(VT+1|XT+1,X1:T , V1:T ) ∼ N (µT+1,ΣT+1) (2.7a)
µT+1 = K∗

⊺Ky
−1y (2.7b)

ΣT+1 = K∗∗ −K⊺
∗Ky

−1K∗ (2.7c)

An illustration of the progress of GPR trying to fit a target function can be seen in
Fig. 2.4.2. Notice the similarity between Fig. 2.3.1 and 2.4.2. The surrogate model
in Fig. 2.3.1 was indeed a GPR, but while the goal with the optimization was to
find the global minimum of the objective, the GPR tries to fit the entire function.
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Figure 2.4.2: Illustration of the Gaussian Process Regression process. Credible interval
shows 2 times STD. Fig. 2.4.2a shows the posterior distribution after fitting the prior to
eight training points, resulting in an almost unison credible interval except just around the
observations. The final result with almost a non-existing credible interval after fitting the
prior to 1000 training points can be seen in Fig. 2.4.2d. Notice in Fig. 2.4.2d how poor
the prediction is and how large the credible interval is in the area without samples. This
is an illustration of the scalability issue with GPs. The figures were adapted from Orduz
(2019).

18



2.4. Surrogate Model

2.4.3 Covariance Functions

As you can see from Eq. (2.6), the choice of covariance function κ plays an utmost
important part. In fact, with a 0 mean, the kernel is what expresses our prior
beliefs about the function which we wish to estimate. The kernel is constructed
with the assumption that two points that are closer to each other in input space,
have more similar function values than points that are further apart. Furthermore,
it is required that the kernel is positive semidefinite. An explanation of the validity
of covariance functions can be found in Williams and Rasmussen (2006).

The probably most used kernel is the squared exponential kernel :

κse = exp
(
|x− x′|2

2l2

)
, (2.8)

where l defines the characteristic length-scale. This function is infinitely differenti-
able, and thus very smooth. In fact, it is so smooth that some (e.g Williams and
Rasmussen (2006) and Snoek, Larochelle et al. (2012)) have recommended not using
this function, but instead use the Matérn class of covariance functions:

κM =
21−ν

Γ(ν)

(
r
√
2ν

l

)ν

Hν

(
r
√
2ν

l

)
,

where r = |x − x′|, ν and l are positive parameters, Hν(·) is the Bessel function
of order ν and Γ(·) is the Gamma function. Varying ν there are infinite possible
versions of the Matérn covariance function, but half-integer values of ν are the most
popular ones, as the kernel is then a product of a polynomial and an exponential. It
is argued in Williams and Rasmussen (2006) that 1/2 < ν ≤ 7/2 are smart choices
for ν, as for smaller values the process becomes very rough, and for larger values very
hard to distinguish between values of ν. Williams and Rasmussen further suggest
that ν = 3/2 and ν = 5/2 are possibly the most interesting cases for machine
learning:

κM3/2 =

(
1 +

r
√
3

l

)
exp

(
− r
√
3

l

)
(2.9a)

κM5/2 =

(
1 +

r
√
5

l
+

5r2

3l2

)
exp

(
− r
√
5

l

)
(2.9b)

More kernels are discussed in Williams and Rasmussen (2006), but as suggested
there they are not that appropriate for GPR as the kernels described above.
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2.4.4 Challenges with Gaussian Processes

There are two major challenges with GPs: 1) Scalability and 2) Nonstationarity.

Scalability. Gaussian processes’ scalability is limited by two factors. The first
factor is that the hyperparameter configuration space can become too large, or the
neural network too expensive to train. Then the GPR is not able to obtain enough
observations within a reasonable amount of time. The posterior distribution is
therefore not able to model the objective well enough for the acquisition function to
give a valuable result. Thus, restricting the configuration space is essential for an
efficient use of BO with GPs.

The second factor is the matrix inversion of Ky in Eq. (2.7b) and (2.7c). At iteration
T, the inversion requires O(T 3) time. Thus, the time it takes to fit the model grows
at a cubic scale every time a new point is sampled from the objective. This limits
the use of GP’s if obtaining many samples are inexpensive.

Attempts to overcome the challenge of scalability include the use of, but are not
limited to, Tree-structured Parzen Estimators (TPEs) (Bergstra, Bardenet et al.,
2011; Hutter et al., 2011), the use of deep neural networks (Snoek, Rippel et al.,
2015) and Hyperband (Li et al., 2017; Falkner et al., 2018). The scope of these
contributions reach outside the objectives of this work, and we leave the investigation
of these methods for future work.

Nonstationarity. The kernels described in Section 2.4.3 assume that the under-
lying process is stationary, i.e. the covariance between two outputs is invariant to
translation in input space. Hyperparameters have different domains with different
length scales, and in addition, the configuration space that is searched over does
not always follow a uniform distribution (Section 3.1). Input warping is a technique
that is designed to overcome this issue, by replacing each input dimension with a
Beta distribution. Even more special considerations have to be taken into account
when using conditional configuration spaces. The Arc kernel uses a Euclidean dis-
tance space to accommodate the conditional configuration space for GP’s. However,
TPE’s supports the varying length scales of different configuration spaces natively,
which makes it even more interesting for future works. For more on this issue,
please see Shahriari et al. (2015, Chapter V) and Feurer and Hutter (2019, Section
1.3.2.3).

2.5 Acquisition Functions

As mentioned in Section 2.2.2 there are two key aspects to SMBO; The surrogate
model as described in Section 2.4 and the acquisition function to decide where to
sample next. An important aspect of this acquisition function is the exploitation-
exploration trade-off that we are faced with when given a decision-making problem.
Do we want to exploit and continue searching for hyperparameters that we expect

20



2.5. Acquisition Functions

will render a possibly slightly better performing neural network, or do we wish to
explore and test hyperparameters that are unlike the ones we have tried before, in
order to search more globally? In other words, do we wish to acquire points where
the surrogate mean is low, or where the surrogate variance is high? An illustration
of this trade-off can be seen in Fig. 2.5.2.

Generally, there are three acquisition functions used with BO and GPs: 1) Prob-
ability of Improvement, 2) Expected Improvement, and 3) GP Lower Confidence
Bound. These three methods are introduced below. For more information, please
see Jones (2001) and Brochu et al. (2010).

The Probability of Improvement (PI) maximizes the probability of improving from
the current best solution τ = V (x−), where x− = argminx∈H V (x):

PI(x) = P (V (x) ≥ V (x−))

Since a GPR is used as the surrogate, and the posterior therefore is Gaussian, the
probability of improvement is modelled as:

αPI = Φ

(
µ∗ − τ√

Σ∗

)
,

where Φ is the standard normal cumulative distribution function.

This method is pure exploitation and selects points of high certainty that might give
an infinitesimally better result over points that has a large variance but might give
a much better result. A popular way of allowing this method to also explore is to
add a trade-off parameter ω ≥ 0 to maximize the probability of improving at least
ω:

αPI = Φ

(
µ∗ − τ − ω√

Σ∗

)
(2.10)

This allows for some control of the trade-off, but the method still favours exploiting,
as it still selects the point where the probability of improving at least ω is highest.
To overcome this, the method of expected improvement was proposed.

The Expected Improvement (EI) is somewhat similar to PI, except instead of trying
to maximize the probability of improvement, the idea is to maximize how much
improvement we can expect to achieve. The improvement is set to zero if there is
no expected improvement, and it is negative when the prediction is lower than the
best solution found so far. Sampling of the next point is done as follows:

x = argmin
x

E(min{0,µ∗ − τ}|H)

Again, since the posterior follows a Gaussian distribution the expected improvement
is modelled as:

αEI = (µ∗ − τ)Φ
(
µ∗ − τ√

Σ∗

)
+
√

Σ∗ϕ

(
µ∗ − τ√

Σ∗

)
,
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where Φ is the standard normal cumulative distribution function, and ϕ is the stand-
ard normal density function.

As with PI, a trade-off parameter ω ≥ 0 is added to control the exploitation-
exploration trade-off:

αEI = (µ∗ − τ − ω)Φ
(
µ∗ − τ − ω√

Σ∗

)
+
√

Σ∗ϕ

(
µ∗ − τ − ω√

Σ∗

)
(2.11)

The GP Upper Confidence Bound (GP UCB) proposed by Srinivas et al. (2009) is
not improvement based as PI and EI. They proposed to treat the BO problem as
a multi-armed bandit. The GP UCB aims to minimize the instantaneous regret
function that measures the difference between the value of the point we choose to
sample from, and the optimal solution:

r(x) = V (x∗)− V (x)

To do this, they defined the GP UCB as

GP-UCB = µ∗ + βΣ∗,

where β is a tunable hyperparameter. Instead of maximizing, we are interested in
minimizing. Thus, we define the Gaussian Process Lower Confidence Bound (GP
LCB) as:

αLCB = µ∗ − βΣ∗ (2.12)

Techniques for choosing β to achieve optimal regret are described in Srinivas et al.
(2009). An illustration of the UCB and the LCB is shown in Fig. 2.5.1.

f(
x
)

Target Observations Prediction 95% confidence interval

Lower Confidence Bound

Upper Confidence Bound

Figure 2.5.1: Illustration of confidence bounds. Notice the use of a confidence interval
opposite to the credible interval used in other figures. Figure adapted from Nogueira (2014)
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(b) Exploration

Figure 2.5.2: Illustration of Exploitation vs Exploration. The figures were made using
the GP-LCB acquisition function, but the concept applies to all acquisition functions
mentioned in Section 2.5. In Fig. 2.5.2a it is illustrated that with too much exploitation,
the Bayesian optimization converges towards a local minimum. In Fig. 2.5.2b on the other
hand, we explore the areas with high variance too much such that the optimization method
does not converge at all even though the algorithm has data from many samples close to
the global minimum. The goal is to find a balance between these two extremes. Figures
adapted from Nogueira (2014)

2.5.1 What to choose?

None of the proposed acquisition functions consistently provide better performance
than the other. Nevertheless, the EI is generally preferred to PI as it allows for
better control of the exploitation-exploration trade-off. When it comes to EI vs GP
LCB nothing general can be said.

One interesting topic with acquisition functions is the control of the exploitation-
exploration trade-off. Intuitively, one might think that adapting a method where
exploration is preferred in the early stages and exploitation is preferred closer to the
end of the optimization would result in better performance. However, this does not
work well empirically (Brochu et al., 2010).

Another interesting topic is combining the use of different acquisition functions.
E.g. Hoffman et al. (2011) showed that using a hedging strategy for a portfolio
of acquisition functions, their method ‘often performed substantially better – and
almost never worse – than the best performing individual acquisition function’. We
leave the investigation of portfolios of acquisition functions for further work.
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Figure 2.5.3: Comparison of PI, EI, and GP-LCB with different settings for controlling
the exploitation-exploration trade-off. The credible interval shows 2 times STD. The next
best guess is shown with a yellow star.
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3 | Practical Bayesian Optimization

In this chapter, some typical hyperparameters for deep feed-forward neural networks
are introduced, and some considerations that should be taken into account when
selecting which hyperparameters to optimize are highlighted. Then, a brief review
of available HPO software that supports the use of GP in Python is given.

3.1 Typical Hyperparameters

As mentioned earlier, there exist many hyperparameters depending on which learn-
ing algorithm you use. For DFFNNs, we define three categories of hyperparameters:
1) Model Architecture and Complexity, 2) Training and Optimization and 3) Regu-
larization.

3.1.1 Model Architecture and Complexity

These hyperparameters affect the overall structure and complexity of the model. The
number of layers, times the layer width (number of neurons in each layer), gives the
total number of neurons in the network, and hence the complexity. More complex
networks increase the representational capacity of the network and might result in
better performance, but will again e.g. increase training time and memory usage.
These two hyperparameters can also be combined to create different architectures
for the network. Some popular styles are shown in Fig. 3.1.2.

A final model design hyperparameter is the activation function that determines how
the neurons are activated. Generally speaking, we want differentiable non-linear
activation functions to get the most out of the back-propagation algorithm. There
exist many versions of these, and Nwankpa et al. (2018) provides a great summary
for the interested reader. The Rectified Linear Unit (ReLU) function is usually a
smart choice.

3.1.2 Model Training and Optimizer

First, the optimization referred to here is not to be mixed with the Bayesian optim-
ization referred to earlier in this work. The model optimizer refers to the algorithm
that is used to update the weights of the network while training, or in other words,
different gradient descent methods. Ruder (2017, Section 4.10) recommends using
an adaptive learning rate optimizer, as they are generally well-suited. Adaptive
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Moment Estimation (Adam) (Kingma and Ba, 2017) is usually a clever choice.

The cost function which is used to measure the error also has to be selected. Regres-
sion problems, such as the one described in Section 4.1, generally use L2-loss func-
tions on the form ||y′−y||22 (such as Mean Square Error (MSE)) as this corresponds
to the maximum likelihood estimation for a linear regression model (Goodfellow
et al., 2016, Section 5.5). If there are outliers in the data set, an L1-loss functions,
||y′ − y||1, could perform better as outlier errors are not squared and given greater
significance than necessary.

When updating the weights using the selected gradient descent method, the learning
rate also has to be defined. Too low a learning rate might result in slow convergence
and overfitting, while too high might lead to divergent behaviours and underfitting.
A simple illustration can be seen in Fig. 3.1.1. The learning rate is arguably the most
important hyperparameter, as e.g. illustrated by Goodfellow et al. (2016, p.429): ‘If
you have time to tune only one hyperparameter, tune the learning rate.’

Two hyperparameters that greatly affect the time it takes to train a model is the
number of epochs, and the mini-batch size. Epochs refer to the number of times each
training point is passed through the network, while the mini-batch size refers to the
number of training points used to make one step in the gradient descent. As a simple
example, consider a training set of size T = 1000, epochs n = 10, and mini-batch
size b = 50. Training for 1 epoch then requires T/b = 20 gradient descent steps,
and the whole training process requires (T/b) ∗ n = 200 steps. Using a mini-batch
size of n lowers the uncertainty in the gradient by a factor of O(

√
n) but requires

O(n) memory. In other words, larger mini-batches might lead to a better step in
the gradient descent, but in return requires more memory.

A final common technique used to speed up the learning process is called batch
normalization, which refers to standardizing the output of a layer to a Gaussian
distribution with zero mean and unit variance in each batch. Using batch normal-
ization stabilizes the training and can significantly speed up the training process,
as well as introducing some noise that can act as regularization (Goodfellow et al.,
2016, Section 8.7.1).

Figure 3.1.1: Learning rate. Picture from Jordan (2018)

26



3.1. Typical Hyperparameters

3.1.3 Regularization

The final category of hyperparameters is hyperparameters that control the model’s
ability to reduce the possibility of overfitting. Weight regularization refers to adding
a term to the cost function to penalize large model parameters. Drawing the larger
weights closer to the origin results in a more well-informed gradient where no single
parameter influences the step direction superiorly. L2 regularization is again gener-
ally preferred, but L1 has its uses as well. With a general cost function J(·), adding
L2 regularization with regularization parameter η yields:

Ĵ(θ) = J(·) + η||θ||22 (3.1)

Another regularization method is Dropout (Srivastava et al., 2014) that uses samples
from a Bernoulli distribution with a probability ρ of deactivating a neuron. The
probability is referred to as the dropout rate. Dropout is an effective technique that
prevents co-adaptation, which is when different hidden units have highly correlated
behaviour. They propose a dropout rate between 0.2 and 0.5.

A final simple regularization technique that is often used is early stopping. Early
stopping, as the name suggests, refers to stopping the training process before its
pre-scheduled termination. This is done by defining a number of iterations in which
the validation loss has to decrease to continue training. If the validation loss does
not decrease in the said number of iterations, the training is discontinued and the
per-terminated model is the resulting model.

3.1.4 Considerations

One very important aspect of Bayesian hyperparameter optimization is restricting
the configuration space, as explained in Section 2.4.4. Bayesian optimization acts
as a solution to limit the number of times we have to train the neural network, but
we also want to limit the configuration space such that the surrogate model better
can approximate the objective function. This can, to some degree, be achieved by
selecting appropriate distributions from which to draw hyperparameter configura-
tions.

Consider e.g. one neural network trained with learning rate ψ1 = 10−4 and another
trained with learning rate ψ2 = 10−1. Adding a fixed change of ψ = 10−3 would
have almost no effect for the model trained with ψ2, but a huge effect for the model
trained with ψ1. This is because the learning rate has a multiplicative effect on the
gradient descent, as seen in Eq. (2.1). The same applies to the weight regularization
parameter, η, as shown in Eq. (3.1). Thus, one would not prefer to sample learning
rates and regularization parameters from a uniform distribution, but instead, use a
logarithmic uniform distribution to accommodate this multiplicative effect.

Another example is the number of layers and layer width. A change observed from
a model 1 hidden layer to a model with 2 hidden layers can be quite significant. But
the expected change from 256 hidden layers to 257 is not so much. The same logic

27



3.1. Typical Hyperparameters

applies to the layer width as well. Thus, popular choices for these hyperparameters
are powers of 2.

Another consideration to take into account is hyperparameters that we apriori know
do not often work well together. Combining batch normalization and dropout is
a combination that often leads to higher loss and slower convergence. Thus, it is
recommended to only use one of them. This is because the random dropout of
neurons introduces noise into the statistics used to perform batch normalization,
which might have unwanted effects. On the other hand, some hyperparameters have
a strong relation, such as the use of MSE as the cost function with the use of a
L2 regularization term. Combining these two is equal to maximizing the posterior
distribution of the likelihood function of a linear regression model with a Gaussian
prior distribution on the weights (Goodfellow et al., 2016, Section 5.6)

In Table 3.1.1 suggestions for an appropriate configuration space for the hyperpara-
meters mentioned earlier in this section are provided. Keep in mind that these are
general suggestions, and domain knowledge from human experts should be valued
when defining the overall hyperparameter configuration space.
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Figure 3.1.2: Illustration of multiple architecture styles for a deep feed-forward neural
network
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Table 3.1.1: Typical DFFNN hyperparameters. HP = Hyperparameters.

HP Description Configuration space

Model architecture and Model complexity
Number of layers Number of hidden layers. Powers of 2: {2, 4, 8, 16, ...}
Layer width Number of neurons in each layer. Powers of 2: {16, 32, 64, ...}
Activation function How the neurons are activated. Nonlinear

Training and Optimizer
Epochs Number of times each training point is passed through the net-

work.
Batch-size Number of training points passed through each backward

propagation.
Powers of 2: {16, 32, 64, ...}

Learning rate Step length in gradient descent. Loguniform[10−5, 10−1]
Cost function Which function used to calculate the loss between the models

prediction and the actual expected output.
L2

Optimizer Which optimizer to use. Adaptive learning rate
Batch Normalization Wether or not to normalise the input data in each batch. Boolean

Regularization
Weight regularizaition Penalization of models with large weights. Loguniform[10−6, 10−1]
Dropout rate Probability of deactivating neurons. Uniform[0.2, 0.5]
Early stopping Number of epochs to continue training without improving valid-

ation loss
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3.2 Software Review

There is currently a lot of software available for hyperparameter optimization, each
with its own twist and facilitating machine learning models in different programming
languages. Since the neural network which hyperparameters we wish to run Bayesian
optimization on is implemented with PyTorch (Paszke et al., 2019) in Python, the
first requirement for the software is that it must support Python. Some software
also provides the option of using different surrogate models, but since we wish to
use a Gaussian process regressor, the package must at least support this.

In addition to these two requirements, a set of evaluation points was considered
when analysing the different software packages. Most importantly was the ease of
use of the software. Since part of the primary objective of this work is to form
a practical foundation, the entry-level to get started was considered more import-
ant than choosing the most efficient or lightweight software. Thus, the level of
documentation and examples provided by the software provider was considered im-
portant. Furthermore, the flexibility of the software was considered. As mentioned
earlier, many packages provide e.g. different surrogate models, but we also wish to
e.g. be able to select different acquisition functions, kernels and easily control the
exploitation-exploration trade-off. This is important in case we in the future decide
we want to explore other aspects of BO and HPO. Ultimately, since part of the
secondary objective of this work is to review software that Solution Seeker can use
to perform HPO, the maintenance of the software was also considered an important
aspect as they cannot rely on third-party software that might break.

The rest of this chapter gives a short review of different hyperparameter optimization
software that meets the requirements given above.

Bayesian Optimization

Bayesian Optimization is a pure Python implementation of Bayesian global optimiz-
ation with Gaussian processes (Nogueira, 2014). Its documentation is rather sparse
and most of the framework’s features has to be extracted from different examples.
The software is furthermore not very flexible and does not for instance provide built-
in features for conditional, integer or categorical configurations of hyperparameters.
It also only provides a method for maximizing, although changing our minimization
problem to a maximization problem can easily be achieved. In addition, there are
no direct PyTorch integration examples to get started. The software is however easy
to use, and serves as a great introduction to BO with GPR, but based on the last
commit dates (Dec 19, 2020, Jul 13, 2020, as of Nov 18 2021) the package is not
very often maintained.

SciKit Optimize

SciKit Optimize (Head et al., 2021) implements several methods for SMBO, one of
them being Bayesian optimization with GPs. It is well enough documented with
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3.2. Software Review

an intuitive user guide, API reference guide and multiple examples. The software
is a bit more flexible than Bayesian Optimization, with e.g. support for integer
and categorical search spaces, as well as some other optimization functions such as
random search. SciKit Optimize does not provide any direct PyTorch integration
or examples, but with the documentation, it is easy enough to combine the two. A
new version was released in October 2021, and based on commit logs it looks rather
well maintained.

Optuna

Optuna provides a lightweight, versatile, and platform-agnostic architecture (Akiba
et al., 2019) written entirely in Python with few dependencies. It is highly flexible
with support for many optimization functions, as well as integration for many other
software packages such as e.g. SciKit Optimize or BoTorch. It also scales well.
The package is furthermore greatly documented with PyTorch examples and is well
maintained.

Ax

Ax, developed by Facebook, is another platform that provides a lightweight and flex-
ible interface for optimization and provides many out-of-the-box Bayesian optimiz-
ation methods among others. It is easy to use, and the package is well documented
with several examples, including using it with PyTorch. The software is also very
well maintained, with several recent releases.

BoTorch

BoTorch is a library for Bayesian optimization built on top of PyTorch that provides
great modularity and is best used in tandem with Ax (Balandat et al., 2020). Its
Gaussian process regressor is built on GPyTorch (Gardner et al., 2018). Even though
the software is well documented, if you are not familiar with Ax and Bayesian
optimization, BoTorch recommend starting with Ax for an easy-to-use suite. It is
also very well maintained and adapts quickly to PyTorch updates.

Ray Tune

Tune is a Python library for experiment execution and hyperparameter tuning at
any scale (Liaw et al., 2018). Rather than implementing their own search algorithms,
they provide wrappers for open-source optimization packages such as Ax, Optuna,
SciKit Optimize, and many others. This makes Tune extremely flexible. Using
Tune’s wrappers is very easy, and each wrapper comes with its own example and
documentation. Tune’s own features are also very well documented. Furthermore,
Tune integrates great with PyTorch, and they provide several examples to get star-
ted. It is also being maintained well with several recent releases.
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4.1 Case description

This case is designed to fulfil the primary objective of this exploratory work. The
master thesis mentioned concerns hyperparameter optimization for a deep neural
network VFM for oil & gas production. A simplified flow model of the oil pro-
duction process can be seen in Fig. 4.1.1. Understanding the principles behind the
VFM (Grimstad et al., 2021) and the oil & gas production process is not needed to
understand this case or experiment. Hence, no further explanation to these concepts
are given.

The case reflects the thesis problem on a smaller scale. The case involves performing
HPO on a DFFNN on a smaller, but representative, data set for flow rate prediction
in oil and gas production. The DFFNN is in this case used to estimate the total
flow rate in a period where the installed multiphase flow meter was defective.

The data set used to create the neural network is sampled from a real-life imple-
mentation of the production process illustrated in Fig. 4.1.1. The total flow rate
that is to be predicted is a continuous real-valued output. Thus, the problem at
hand is a regression problem. The data set consists of seven types of measurements
described in Table 4.1.1. The first six are used as input features, and the final,
QTOT, as an output label. The data set contains 3099 samples, where each sample
contains one measurement of each of the seven types.

Figure 4.1.1: Simplified Oil & Gas production flow model. Oil, gas, and water is pumped
up from a reservoir, goes through a choke valve that controls the flow, and is led into a
separator that separates the three materials from each other. Figure from Grimstad (2020).
For legend description, see Table 4.1.1.
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Table 4.1.1: Case data set description

Legend Description Type Range

TWH Temperature upstream the choke Feature Scaled between [0, 1]
PWH Preassure upstream the choke Feature Scaled between [0, 1]
CHK Choke opening Feature [0, 1], 0 being closed and 1 being fully opened
PDC Preassure downstream the choke Feature Scaled between [0, 1]
FGAS Fraction of gas to total flow Feature [0, 1]
FOIL Fraction of oil to total flow Feature [0, 1]
QTOT Total flow rate Label R

4.2 Experiment design

This experiment was designed to answer the research questions stated in Section 1.3.
Bayesian optimization is an optimization algorithm that aims to outperform the
naive grid and random search algorithms described in Section 2.2.1. Furthermore,
since RS is proven to outperform grid search if given the same computational budget
(Section 2.2.1), RS was selected as the naive comparison ground.

4.2.1 Hypothesis

Random search allows for searching over more of the important hyperparameters
than grid search. The same logic can somewhat be adapted to compare RS and BO as
well. When optimizing N = 1 hyperparameters, the surrogate model cannot model
any correlation between different hyperparameters (since there is only one). Thus,
the Bayesian optimization model is not able to make an informative assumption on
which hyperparameter affects the validation loss the most and focus on finding an
appropriate value for this parameter. The advantage gained by modelling the black-
box function from hyperparameter to validation loss is therefore expected to be less
when the configuration space is small, and get bigger as the size of the configuration
space increases. From this, the hypothesis for the experiment was formed:

Hypothesis:
Bayesian optimization should at least perform as well as random search
for any size of configuration space, and when the configuration space
reaches a critical size, Bayesian optimization should significantly outper-
form random search.

4.2.2 Method

Data pre-processing

First, a set of 500 consecutive samples was extracted from the data set to a test
set to simulate the period with defective measurements. Then 260 randomly chosen
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points of the remaining data set were extracted to a validation set. The remaining
2399 samples then formed the training set. The split into the three sets is illustrated
in Fig. 4.2.1. No standardization or normalization was applied to the input of the
data set, as all input values were in the range between 0 and 1.
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Figure 4.2.1: Case data set split into training, validation and test set.

Optimization process

This process applies to both the random search and Bayesian optimization.

It was decided to run five different experiments with five different configuration
space sizes to investigate the effect the size of the configuration space had. Each
experiment existed of 15 individual optimizations, where each optimization was given
a budget of 100 trials. Put in other words, for each experiment Algorithm 2 was
run 15 individual times, where T in step 2 was set to 100. The hyperparameters for
the first five trials were selected at random such that the surrogate model had some
observed data before any acquisition was made. For RS, it simply means that for
each experiment, 15 times 100 random hyperparameters within the configuration
space were tried.

Validation loss (step 4 of Algorithm 2) was then reported after the after the training
process had finished in each trial.

Reporting the best validation loss obtained throughout the training process of each
trial was also considered. This was not chosen since the general idea is that longer
training should lead to better performance. By reporting the validation loss from
the best epoch, and thus possibly an early epoch, the BO would not be able to
take full advantage of the training loop since the samples provided to the surrogate
model could possibly have been terminated early. The network’s state was then
stored after each trial was completed.

After every experiment was done, each trial was further trained on the validation
set with the same configuration from the corresponding trial. Then the validation-
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set-trained model of each trial was evaluated on the test set, and test error was
reported. Pseudo-code for the experiment is given in Algorithm 3

Gaussian process design

The selection of covariance function is one of two important decisions that have to
be made when using a GPR as described in Section 2.4.3. Williams and Rasmussen
(2006), which many of the other works referred to base its knowledge on as well,
deemed the squared exponential kernel (Eq. (2.8)) to be too smooth. Thus, a Matérn
kernel with ν = 5/2 (Eq. (2.9b)) was chosen as the covariance function for the
Gaussian process regressor. The Matérn kernel with ν = 3/2 (Eq. (2.9a)) could
have been chosen as well.

The other important choice is the selection of the acquisition function. There exist
no general acquisition function that repeatedly outperforms the others. Since the
experiment was designed to investigate the role of the size of the configuration space,
some exploration was desired in the acquisition function, and purely exploitation ac-
quisition functions, such as PI (Eq. (2.10)), were ruled unfit. Expected improvement
(Eq. (2.11)) was thus chosen as the acquisition function. GP LCB (Eq. (2.12)) could
have been chosen as well. The trade-off parameter ω was chosen to slightly explore
more than to exploit. The value of ω is given in Section 4.3 as it was software
dependant.

Computational budget

Giving a comparable budget to the Bayesian optimization and random search was
important to be able to make a meaningful interpretation of the results. One factor
that had to be taken into account was therefore the parallelizability of the optimiza-
tion methods. This is because the parallel capacity of a computer is highly dependent
on the available hardware. RS is out-of-the-box parallelizable as explained in Sec-
tion 2.2.1, while BO is out-of-the-box sequential. The optimization was therefore
restricted to run on 1 CPU without any multithreading to make a fair comparison
between the methods that are not dependent on the parallel capacity of the com-
puter. Thus, giving the two methods the same amount of trials gives them the same
computational budget. The budget was set to 100 trials as mentioned earlier.

Neural Network Model

The neural network which hyperparameters’ were optimized was implemented in
PyTorch (Gardner et al., 2018) and was adapted from Grimstad (2020). The model
used only fully connected linear layers. Every neurone in the input layer and the
hidden layers used ReLU activation. There was no activation used in the output
layer. All model parameters were initialized using He-weight-initialization, which is
designed for ReLU activation (He et al., 2015). MSE was used as the cost function,
since predicting the flow rate is a regression problem. Furthermore, a L2 penalty
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term was added to the cost function for a regularizing effect. Finally, dropout was
added after every hidden layer. Adam (Kingma and Ba, 2017) was chosen as the
gradient descent optimizer, with a mini-batch size of 64 and training for 100 epochs.
All inputs in the data set were used as features in the input layer of the neural
network.

Hyperparameter- and Configuration Space- Selection

There exists as discussed earlier many hyperparameters, and selecting an appropriate
configuration space is key to extracting the most out of the Bayesian optimization.
This also applies to RS, as it too would be unwise to draw random samples from
apriori highly likely unfit distributions (such as sampling a random learning rate
between 10 and 1000). Furthermore, restricting the search space is also important
for the GPR to be able to model the black-box function.

Learning rate, being probably the most important hyperparameter, was selected as
the first hyperparameter to optimize. Then, experimenting with different complexit-
ies to investigate the impact on the model’s capacity was desired. Thus, the number
of layers and the number of hidden layers were selected as hyperparameter two and
three. Finally, experimenting with the regularization of the network to avoid over-
fitting was desired. Thus, the dropout rate and the L2 penalty were selected as
hyperparameters four and five. The distribution, domain and fixed value for these
hyperparameters are given in Table 4.2.1.

The size of the domains for the chosen hyperparameters were chosen such that the
combination of number of experiments and number of trials for each experiment
could be executed in a reasonable amount of time on the available hardware, and
still represent a thorough optimization process. This aspect also affected the domain
of number of layers and layer width, as wider and deeper nets are more expensive
to train than shallow and slim nets. The domain of the dropout rate extends to 0
to avoid a conditional configuration space. The fixed dropout rate was set to 0.2, as
this was the lower recommended bound and the possible width of the nets in this
case was not that wide. The other fixed values were set around the middle of the
corresponding domain.

Five configuration spaces were selected, following the same logic as the selection of
hyperparameters. The resulting configuration spaces are given in Table 4.2.2. When
a hyperparameter was not included in the configuration space, it was given the fixed
value given in Table 4.2.1.
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Table 4.2.1: Hyperparameter selection

Hyperparameter Distribution Domain Fixed value

Learning rate Logarithmic Uniform [10−5, 10−1] N/A
Number of layers Integer Uniform {2, 4, 6, ..., 10} 6
Layer width Integer Uniform {30, 45, 60, ..., 120} 70
Dropout rate Uniform [0.0, 0.5] 0.2
L2 penalty Logarithmic Uniform [10−6, 10−1] 10−3

Table 4.2.2: Case configuration space selections

Name Hyperparameters

CS1 Learning rate
CS2 Learning rate, and number of layers
CS3 Learning rate, number of layers, and layer width
CS4 Learning rate, number of layers, layer width, and dropout rate
CS5 Learning rate, number of layers, layer width, dropout rate, and L2 penalty

Algorithm 3 Pseudo-code for experiment
1: H ← ∅
2: M← ∅
3: for k ← 1 to 15 do
4: Hk ← ∅
5: Mk ← ∅
6: for t← 1 to 100 do
7: λ∗ ← argminλ αEI(λ, P (f |Hk

t−1))
8: Train Aλ∗ and evaluate V (L,Aλ∗ , Dtrain, Dvalid)
9: Hk ← Hk ∪ (λ∗,V (L,Aλ∗ , Dtrain, Dvalid)

10: Mk ←Mk ∪ Aλ∗

11: Update posterior distribution P (f |Hk) ∝ P (f)× P (Hk|f)
12: end for
13: end for
14: E ← ∅
15: for k ← 1 to 15 do
16: for t← 1 to 100 do
17: TrainMk

t on Dvalid

18: Evaluate test error V (L,Aλ∗ , Dtrain∪valid, Dtest)
19: E ← E ∪ V (L,Aλ∗ , Dtrain∪valid, Dtest)
20: end for
21: end for
22: return E
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4.3 Implementation

Ray Tune was selected as the desired Python library to implement the experiment.
Since Tune provides wrappers for many other different hyperparameter optimiza-
tion methods, learning to use Tune seemed like a clever choice for further works.
Furthermore, adapting the neural network to work with Tune was straightforward.

Tune does not provide a direct method for BO with GPR, but it is possible to achieve
this by using some of the many search algorithms that Tune provides. What this
work considered the simplest way to achieve this was to use the BayesOptSearch that
provides a wrapper for the Bayesian Optimization package (Nogueira, 2014). But as
described in Section 3.2 this library is not very well maintained nor flexible. Thus,
using the SkoptSearch wrapper for SciKit Optimize’s Optimize object seemed a good
choice. However, the configuration space had to be written somewhat different from
the standard Tune way. Thus, the choice fell on using the OptunaSearch wrapper
for Optuna’s Samplers, which again provides an interface called SkoptSampler for
SciKit Optimize’s Optimize class. Although it at first glance might seem a little
intricate, it was quite straightforward to implement as illustrated in Listing 1. The
trade-off parameter was set to 0.05 (xi in Listing 1). 0.01 is the standard value, where
higher values favour more exploration, and lower values favour more exploitation.
The Matérn kernel with ν = 5/2 is the standard kernel used by the Optimizer class.
The class also continuously normalizes the history of previous samples (H) each time
a new sample is taken. See Eriksen (2021) for a complete GitHub repository with
the implementation of the experiment.

1 from ray.tune.suggest.optuna import OptunaSearch
2 from optuna.integration import SkoptSampler
3

4 sampler = SkoptSampler(
5 skopt_kwargs={
6 "base_estimator": "GP",
7 "n_initial_points": 5,
8 "acq_func": "EI",
9 "acq_func_kwargs":{

10 "xi": 0.05
11 }
12 }
13 )
14

15 algorithm = OptunaSearch(sampler=sampler)

Listing 1: Python code for defining Bayesian optimization with Gaussian process regres-
sion in Ray Tune using the OptunaSearch and SkoptSampler interfaces.
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5.1 Results

The results from the experiment are given in Table 5.1.1 and Fig. 5.1.1 - 5.1.6. Only
test errors, E, that improve from the previous trial were saved, such that at trial T,
the reported test error, E ′, is the lowest value obtained to and including T:

E ′
T = min(E1:T−1 , ET )

An illustration of the improvement from trial 1 to 100 of each experiment and a box
plot of the individual experiments is given in Fig. 5.1.2 - 5.1.6. For the improvement
plots (Fig. 5.1.2a - 5.1.6a), the mean is shown with high opacity, and all individual
trials are shown with low opacity and matching colours. Early trials that reach
outside an illustrative meaningful scope are left out. For the box plots (Fig. 5.1.2b
- 5.1.6b) the whiskers extend to points that lie within 1.5 IQRs of the lower and
upper quartile.

Please note that the plots in Fig. 5.1.2 - 5.1.6 are mainly intended to be used to
compare the difference between BO and RS within the corresponding CS. Therefore,
the y-axis in the plots have different ranges. A comparison between the changes in
different configuration spaces can be seen in Fig. 5.1.1.

Table 5.1.1: Experiment results after 100 trials.
CS = Configuration Space. RS = Random Search. BO = Bayesian Optimization.
STD = Standard Deviation. ∆ = Change [%]. Test error is measured in MSE.

Mean Test Error STD of Test Error Best Test Error

CS RS BO ∆ [%] RS BO ∆ [%] RS BO

CS1 32.880 29.973 -8.84 4.808 6.606 +37.39 25.581 16.517
CS2 28.910 28.022 -3.07 5.673 7.078 +24.78 17.495 15.362
CS3 31.096 27.146 -12.70 8.544 6.601 -22.75 18.030 15.721
CS4 2.280 1.218 -46.58 0.968 0.257 -73.42 1.011 0.833
CS5 2.675 1.313 -50.91 0.762 0.271 -64.47 1.495 0.960
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The results show that BO outperformed RS on average in every experiment. Op-
timizing the second-largest configuration space, CS4, resulted in the lowest mean
for both methods. Optimizing the smallest configuration space, CS1, resulted in the
highest mean also for both methods. The most significant improvement is observed
with the largest configuration space, CS5, with a 50.91% lower mean test error. The
least significant improvement is observed with the second smallest configuration
space, CS2, only decreasing the test error by 3.07%.

Bayesian optimization resulted in a lower standard deviation for the three largest
configuration spaces, while the STD was bigger for the two smallest. All percentage-
wise changes in STD were quite significant, with the best improvement found when
optimizing CS4, and the worst decrease found when optimizing CS1. BO obtained
the lowest standard deviation from experiment CS4, whereas RS obtained it from
CS5. Bayesian optimization obtained the biggest standard deviation when optimiz-
ing CS2, and random search from optimizing CS3.

Both methods obtained their lowest test error when optimizing CS4, and the highest
from CS1. The best test error obtained in each experiment was lower for Bayesian
optimization in all cases.

The trial improvement plots in Fig. 5.1.2a - 5.1.6a shows that the mean of the BO
is lower than the mean of the RS throughout the trials for all experiments, except
for the first iterations of CS2 and CS3 in Fig. 5.1.3a and, Fig. 5.1.4a respectively.

50% 40% 30% 20% 10% 0%

CS1
CS2
CS3
CS4
CS5

(a) percentage-wise change of mean test error.
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(b) percentage-wise change of test error STD.

Figure 5.1.1: Change from RS to BO after 100 trials
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(b) Results after 100 trials. BO finds the
best result, and its median and mean are lower.

Figure 5.1.2: Results from optimizing CS1.
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Figure 5.1.3: Results from optimizing CS2.
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5.1. Results
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Figure 5.1.4: Results from optimizing CS3.
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Figure 5.1.5: Results from optimizing CS4.
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Figure 5.1.6: Results from optimizing CS5.

5.2 Discussion

It should be noted that although some significance can be given to the results,
to generalize any of the points discussed in this section to the performance of any
Bayesian optimization method for a general deep feed-forward neural network would
be wrong. Any generalization at all would require more experiments.

5.2.1 A note about high means and standard deviations

The first thing to notice is the high mean obtained in CS1, CS2 and CS3. This is
likely because the dropout rate was set fixed at 0.2, while the number of epochs was
kept at 100 and the maximum possible width was quite shallow. Thus, it is highly
likely that the network was underfitting.

Training the many models that the use of dropout effectively results in could possibly
have resulted in a lower test error mean if the number of epochs and/or layer width
had been increased. Dropping random nodes in the net without allowing the net to
train for sufficient epochs does not allow the training error to be minimized enough,
and the corresponding test error is effected thereafter. Increasing the layer width
reduces the impact that dropping nodes have on the representational capacity of the
network, and the underfitting likely observed could have been reduced.
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5.2. Discussion

The use of dropout can also explain the large standard deviations from CS1, CS2
and CS3. The randomness in the dropout causes a somewhat more random learning
behaviour, which with more epochs or wider layers could have been evened out.

Although more training or more complex networks could have improved the ob-
served errors, it is highly likely that the fixed dropout rate was set too high, causing
too much regularization. This theory is also supported by the resulting best hyper-
parameter configurations from both Bayesian optimization and random search on
CS4 and CS5 given in Table A.7 - A.10. Twenty-eight out of the total 30 individual
BO experiments turned dropout completely off, and the largest dropout rate used
was 0.057, which effectively is zero. In addition, the largest dropout value from the
best trials out of the 30 RS experiments was 0.043, which again effectively is zero.
This highlights the importance of choosing an appropriate configuration space in
accordance with the neural network model.

5.2.2 Performance

Even if the high test errors from CS1-3 can be explained, this makes it difficult to
compare the absolute values of the test error of CS1, CS2 and CS3 with the absolute
values of CS4 and CS5. However, the experiment showed that BO outperformed RS
on average for every configuration space, and the median was in addition lower for
BO than RS in the configuration spaces where outliers were present. This supports
the first part of the hypothesis.

Comparing the percentage-wise change of the means between the methods can
provide some insight into the importance of the configuration space. One possibility
is that the large difference between the percentage-wise change of CS1-3 and CS4-5
is also due to the fixed dropout rate. More likely, it is because SMBO-algorithms
are tailored for expensive objective functions. The small configuration space in CS1,
CS2, and CS3 allow RS to try out enough combinations of hyperparameters to ob-
tain a comparable result to BO. With the growth of the configuration space, the
amount of random possible configurations simply become too many, while the sur-
rogate model of the BO can guide the optimization towards a lower validation error.
This supports the second part of the hypothesis.

Comparing the change in STD provide further insight into the importance of the
configuration space. Again, it is possible that the differences of observed change
in STD is also due to the fixed dropout rate. However, the STD improves for
CS3, which has a fixed dropout rate. Thus, the decrease of STD in CS1 and CS2
could be because the acquisition function favoured too much exploration, causing no
convergence towards any minimum. Another possibility is that it favoured too much
exploitation. The surrogate model is too sure of its posterior distribution because of
the small configuration space, causing the optimization to converge towards different
local minima. Nevertheless, the observed changes in STD also supports the second
part of the hypothesis.

The drop of BO mean from CS4 to CS5 might be an indication of the problem of
scalability with GP (Section 2.4.4) within a computational budget. This theory is
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5.2. Discussion

also supported by the lower standard deviation also obtained in CS4. With the in-
troduction of an extra hyperparameter, the CS becomes too large for the surrogate
to model the black-box function well enough within the computational budget. The
acquisition function is therefore not able to find an as optimal set of hyperparamet-
ers as in CS4 within the allocated number of trials. This does not contradict the
second part of the hypothesis, but do illustrate that when the configuration space
becomes too large, the BO with GP might not be able to significantly outperform
RS. However, the differences between the BO mean and STD of CS4 and CS5 is not
that large, and more experiments are required if this result was to be generalized.

The convergence plots in Fig. 5.1.2a - 5.1.6a illustrates that BO performs at least
as well as RS within the computational budget. The gap between the mean test
error obtained by the two methods seems to be the largest around the quarter
mark of the allowed budget, and somewhat shrink towards the end. This is a clear
indication of the GP being able to fit the objective function early, which allows for
smart acquisitions in the early trials. The slight favour of exploration might have
affected the results a bit, and maybe a lower test error could have been obtained
with standard settings of the acquisition function or even favour more exploitation.

It was stated in Section 4.2.2 that no standardization was applied to the data set.
Applying this would probably have led to lower test errors for both RS and BO. Fur-
thermore, since the validation set was quite small, the use of k-fold cross-validation
could probably have improved the BO process, but would not affect the RS since
no validation was applied to RS. But, if a model was to be selected from the ex-
periment, instead of investigating the development of test error, this model would
have had to be selected based on the validation error to avoid data leakage as ex-
plained in Section 2.1.1. In that case, the use of cross-validation probably would
have improved RS as well.
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6 | Conclusion and further work

In this work, the theory of hyperparameter optimization using Bayesian optimiz-
ation with Gaussian processes was explored. A case study with a hypothesis was
designed and performed to gain practical experience with HPO and to investigate
the applicability of BO with GP on Solution Seeker’s VFM. The results from the
case study support the hypothesis. They indicate that BO is able to outperform a
naive hyperparameter optimization technique on a deep neural network, as the mean
test error of all experiments were lower for BO than RS. The results furthermore
show that BO can perform as well as – or better than – RS within the given com-
putational budget, as the mean of BO performed better than RS from at least the
fourth acquisition for all configuration spaces. They also indicate the importance
of the size of the configuration space. The percentage-wise change of both mean
and STD shows that BO is able to significantly outperform RS when the configur-
ation space grows. The high absolute values of both mean and STD obtained from
the configuration spaces with a fixed dropout rate highlights the importance of the
careful selection of hyperparameters and configuration space design to extract the
most of the BO.

Again, no general conclusion can be drawn from the results of this case study.

For future work, the following tasks are suggested:

• Due to the promising results from the case study, a large scale HPO using BO
with GP should be performed on Solution Seeker’s VFM to extract further
performance from their current design. The use of early stopping with Ray
Tune’s Trial Schedulers should be investigated to speed up the optimization
process.

• Since scalability is one of the biggest challenges with Gaussian processes, fu-
ture work should investigate promising methods to overcome this issue. In
particular, the use of Tree-structured Parzen Estimators (Bergstra, Bardenet
et al., 2011; Hutter et al., 2011), the use of deep neural networks (Snoek,
Rippel et al., 2015) and Hyperband (Li et al., 2017; Falkner et al., 2018)
are interesting topics. TPEs are particularly interesting due to their native
support of different hyperparameter domains.

• As no acquisition function has been shown to be better than the other, invest-
igating the possibility of using a portfolio of acquisition functions instead of
a single function could lead to better results when optimizing a larger neural
network.
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Appendix

A Hyperparameter configuration results

Table A.1: Resulting hyperparameters from running BO on CS1

Learning rate Hidden layers Layer width Dropout rate L2 penalty

0 0.038978 6 70 0.2 0.001
1 0.025517 6 70 0.2 0.001
2 0.014969 6 70 0.2 0.001
3 0.043859 6 70 0.2 0.001
4 0.033565 6 70 0.2 0.001
5 0.042346 6 70 0.2 0.001
6 0.012247 6 70 0.2 0.001
7 0.019587 6 70 0.2 0.001
8 0.026204 6 70 0.2 0.001
9 0.032201 6 70 0.2 0.001
10 0.015655 6 70 0.2 0.001
11 0.011580 6 70 0.2 0.001
12 0.027853 6 70 0.2 0.001
13 0.024381 6 70 0.2 0.001
14 0.008643 6 70 0.2 0.001
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A. Hyperparameter configuration results

Table A.2: Resulting hyperparameters from running RS on CS1

Learning rate Hidden layers Layer width Dropout rate L2 penalty

0 0.061086 6 70 0.2 0.001
1 0.028097 6 70 0.2 0.001
2 0.029203 6 70 0.2 0.001
3 0.058032 6 70 0.2 0.001
4 0.008964 6 70 0.2 0.001
5 0.031935 6 70 0.2 0.001
6 0.039364 6 70 0.2 0.001
7 0.019722 6 70 0.2 0.001
8 0.031454 6 70 0.2 0.001
9 0.015146 6 70 0.2 0.001
10 0.071717 6 70 0.2 0.001
11 0.005265 6 70 0.2 0.001
12 0.054283 6 70 0.2 0.001
13 0.005527 6 70 0.2 0.001
14 0.015418 6 70 0.2 0.001

Table A.3: Resulting hyperparameters from running BO on CS2

Learning rate Hidden layers Layer width Dropout rate L2 penalty

0 0.045386 4 75 0.2 0.001
1 0.033335 6 75 0.2 0.001
2 0.005805 2 75 0.2 0.001
3 0.019245 8 75 0.2 0.001
4 0.066054 4 75 0.2 0.001
5 0.100000 2 75 0.2 0.001
6 0.058739 2 75 0.2 0.001
7 0.100000 2 75 0.2 0.001
8 0.007749 10 75 0.2 0.001
9 0.037568 2 75 0.2 0.001
10 0.008333 2 75 0.2 0.001
11 0.007840 2 75 0.2 0.001
12 0.008795 10 75 0.2 0.001
13 0.016330 2 75 0.2 0.001
14 0.007161 10 75 0.2 0.001
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A. Hyperparameter configuration results

Table A.4: Resulting hyperparameters from running RS on CS2

Learning rate Hidden layers Layer width Dropout rate L2 penalty

0 0.053756 4 75 0.2 0.001
1 0.009623 10 75 0.2 0.001
2 0.020373 4 75 0.2 0.001
3 0.007051 10 75 0.2 0.001
4 0.031699 4 75 0.2 0.001
5 0.023822 8 75 0.2 0.001
6 0.050998 2 75 0.2 0.001
7 0.019950 8 75 0.2 0.001
8 0.076682 4 75 0.2 0.001
9 0.008646 10 75 0.2 0.001
10 0.011217 8 75 0.2 0.001
11 0.043114 4 75 0.2 0.001
12 0.067415 4 75 0.2 0.001
13 0.079420 2 75 0.2 0.001
14 0.062705 4 75 0.2 0.001

Table A.5: Resulting hyperparameters from running BO on CS3

Learning rate Hidden layers Layer width Dropout rate L2 penalty

0 0.017771 2 120 0.2 0.001
1 0.004969 2 120 0.2 0.001
2 0.020326 2 120 0.2 0.001
3 0.026351 4 120 0.2 0.001
4 0.005332 2 120 0.2 0.001
5 0.006563 2 60 0.2 0.001
6 0.017186 8 120 0.2 0.001
7 0.009667 4 120 0.2 0.001
8 0.023909 2 30 0.2 0.001
9 0.100000 2 75 0.2 0.001
10 0.045931 6 75 0.2 0.001
11 0.037802 4 120 0.2 0.001
12 0.100000 2 120 0.2 0.001
13 0.085129 2 105 0.2 0.001
14 0.090691 2 60 0.2 0.001
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A. Hyperparameter configuration results

Table A.6: Resulting hyperparameters from running RS on CS3

Learning rate Hidden layers Layer width Dropout rate L2 penalty

0 0.036954 4 90 0.2 0.001
1 0.038285 4 60 0.2 0.001
2 0.013764 2 75 0.2 0.001
3 0.078412 4 120 0.2 0.001
4 0.035482 4 90 0.2 0.001
5 0.009841 6 105 0.2 0.001
6 0.029415 8 90 0.2 0.001
7 0.018969 2 60 0.2 0.001
8 0.035863 4 105 0.2 0.001
9 0.003153 2 60 0.2 0.001
10 0.049789 2 75 0.2 0.001
11 0.059467 4 90 0.2 0.001
12 0.013808 4 120 0.2 0.001
13 0.027011 2 120 0.2 0.001
14 0.020445 2 75 0.2 0.001

Table A.7: Resulting hyperparameters from running BO on CS4

Learning rate Hidden layers Layer width Dropout rate L2 penalty

0 0.010697 8 30 0.000 0.001
1 0.007768 4 75 0.000 0.001
2 0.100000 2 120 0.000 0.001
3 0.008419 6 120 0.000 0.001
4 0.002887 8 75 0.000 0.001
5 0.023138 4 30 0.000 0.001
6 0.003935 8 120 0.012 0.001
7 0.000396 6 120 0.000 0.001
8 0.000422 10 120 0.000 0.001
9 0.001449 10 120 0.000 0.001
10 0.008395 6 105 0.000 0.001
11 0.006439 4 45 0.000 0.001
12 0.002115 8 120 0.000 0.001
13 0.042398 2 30 0.057 0.001
14 0.037370 2 30 0.000 0.001
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A. Hyperparameter configuration results

Table A.8: Resulting hyperparameters from running RS on CS4

Learning rate Hidden layers Layer width Dropout rate L2 penalty

0 0.004058 2 105 0.024 0.001
1 0.007495 4 45 0.034 0.001
2 0.000620 8 75 0.000 0.001
3 0.003422 4 75 0.013 0.001
4 0.000330 4 105 0.028 0.001
5 0.000274 4 75 0.001 0.001
6 0.000075 8 105 0.001 0.001
7 0.000105 4 90 0.023 0.001
8 0.002494 4 60 0.011 0.001
9 0.009181 10 90 0.021 0.001
10 0.004834 8 105 0.002 0.001
11 0.010717 2 60 0.001 0.001
12 0.020375 4 105 0.010 0.001
13 0.007880 8 90 0.000 0.001
14 0.000560 4 60 0.006 0.001

Table A.9: Resulting hyperparameters from running BO on CS5

Learning rate Hidden layers Layer width Dropout rate L2 penalty

0 0.002221 8 60 0.000 0.000002
1 0.011948 8 120 0.000 0.100000
2 0.002712 4 120 0.000 0.039834
3 0.000701 2 120 0.000 0.001644
4 0.005740 6 60 0.000 0.100000
5 0.032642 2 30 0.000 0.000162
6 0.100000 4 120 0.000 0.000001
7 0.009823 8 30 0.000 0.100000
8 0.005612 4 90 0.000 0.000014
9 0.000841 4 45 0.000 0.000023
10 0.012865 4 120 0.000 0.000001
11 0.100000 2 120 0.000 0.000001
12 0.073330 4 45 0.000 0.000001
13 0.003785 6 105 0.000 0.000001
14 0.008872 8 30 0.000 0.100000
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A. Hyperparameter configuration results

Table A.10: Resulting hyperparameters from running RS on CS5

Learning rate Hidden layers Layer width Dropout rate L2 penalty

0 0.030713 4 90 0.023 0.001856
1 0.033123 4 60 0.043 0.000010
2 0.006402 10 105 0.005 0.005162
3 0.000023 10 60 0.002 0.019217
4 0.000311 6 105 0.010 0.000344
5 0.000045 4 90 0.004 0.000119
6 0.000073 4 105 0.002 0.000001
7 0.000506 8 75 0.007 0.069848
8 0.008674 8 75 0.001 0.000002
9 0.029060 2 90 0.017 0.000001
10 0.085448 6 105 0.004 0.000265
11 0.000395 6 90 0.006 0.000005
12 0.000472 6 75 0.000 0.019245
13 0.000546 8 45 0.003 0.001854
14 0.022547 4 120 0.026 0.000031
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