
H
yperparam

eter O
ptim

ization for N
eural N

etw
ork-based Virtual Flow

 M
etering

Knut Vågnes Eriksen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Knut Vågnes Eriksen

Hyperparameter Optimization for
Neural Network-based Virtual Flow
Metering

An industrial case study

Master’s thesis in Cybernetics and Robotics
Supervisor: Bjarne Andre Grimstad
Co-supervisor: Lars Struen Imsland and Maurício Bezerra de Souza
Júnior
June 2022

M
as

te
r’s

 th
es

is

Knut Vågnes Eriksen

Hyperparameter Optimization for
Neural Network-based Virtual Flow
Metering

An industrial case study

Master’s thesis in Cybernetics and Robotics
Supervisor: Bjarne Andre Grimstad
Co-supervisor: Lars Struen Imsland and Maurício Bezerra de Souza
Júnior
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This work is a continuation of the specialization project report done by the candidate
in the course TTK4550 Engineering Cybernetics, Specialization Project.

This work, and the specialization report, is written in collaboration with the Nor-
wegian company Solution Seeker AS(ORG:911 576 236). Solution Seeker provided
access to their machine learning model, dataset, and cloud resources. A special
thanks to Bruna, Dani, Gui, Kevinho, Kristoffer, Rafa, and Tor Istvan from Solu-
tion Seeker for taking time out of their schedule to discuss and aid with various
small tasks to facilitate this project.

i

Først en stor takk til Bjarne, Lars og Mauricio for god veiledning og rask respons
på det som har dukket opp gjennom denne prosessen.

Så en stor obrigado til Lars, Mauricio og Solution Seeker for muligheten til å skrive
denne oppgaven fra Brasil, og spesielt Bruna, Dani, Gui, Kevinho, og Rafa for et
flott opphold i Rio de Janeiro.

Til slutt en takk til alle som har støttet, muntret og utfordret meg gjennom disse
tjuefire-og-et-halvt årene.

Saúde!

iii

Sammendrag

Hyperparametere er parameterne som kontrollerer hvordan en maskin-
læringsalgoritme lærer, og hyperparameteroptimalisering er prosessen
med å optimalisere disse parameterne. Riktig valg av hyperparameter
verdier er avgjørende for å oppnå tilfredsstillende resultater, og optim-
alisering av dem kan heve ytelsen til en algoritme betydelig. Dess-
verre finnes det ingen generell hyperparameteroptimaliseringsalgoritme
som alltid presterer bedre enn de andre. Solution Seeker har utviklet
en datadrevet virtuell strømningsmåler, en maskinlæringsalgoritme som
estimerer den totale strømmen av vann, olje og gass gjennom et rør.
Dette arbeidet identifiserer egnede hyperparameteroptimaliseringsalgor-
itmer håndtilpasset denne virtuelle flytmåleren, og gir Solution Seeker en
bedriftsspesifikk guide til hyperparameteroptimalisering, for forhåpent-
ligvis å danne et konkurransefortrinn for virksomheten.

Interessante algoritmer er identifisert gjennom en litteraturgjennomgang
av eksisterende hyperparameteroptimaliseringsalgoritmer sentrert rundt
dype nevrale nettverk. Egnetheten til disse algoritmene blir deretter
diskutert i sammenheng med den virtuelle strømningsmåleren gjennom
en omfattende case studie om hyperparameteroptimalisering av den vir-
tuell strømningsmåleren innenfor et begrenset tids- og kostnadsbudsjett.
Resultatene fra case studiet støtter bruken av en modellbasert hyper-
parameteroptimaliseringsalgoritme, muligens i kombinasjon med en en-
kel multifidelity-teknikk.

v

Abstract

Hyperparameters are the parameters that control how a machine learn-
ing algorithm learns, and Hyperparameter Optimization (HPO) is the
process of optimizing these parameters. Appropriately selecting the val-
ues of hyperparameters is paramount for achieving satisfying results,
and optimizing them can significantly excel the performance of an al-
gorithm. Unfortunately, there exists no general HPO-algorithm that
outperforms the other. Solution Seeker has developed a data-driven vir-
tual flow meter (VFM), a machine learning algorithm that estimates
the total flow of water, oil & gas through a pipe. This work identifies
suitable HPO-algorithms hand-tailored to this VFM, and provides Solu-
tion Seeker with a company-specific guide to HPO, to hopefully help the
business gain a competitive advantage.

Interesting algorithms are identified through a literature review of exist-
ing HPO-algorithms centred around deep neural networks. The fitness
of these algorithms is then discussed in the context of the VFM through
an extensive case study on hyperparameter optimization of the VFM
within a restricted time and cost budget. The case study results support
the use of a model-based HPO-algorithm, possibly in combination with
a simple multi-fidelity (MF) technique.

vii

Table of Contents

List of Figures x

List of Tables xi

List of Algorithms xi

Source Code xi

Nomenclature xiv

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives and research questions . 3
1.3 Outline . 4

2 Background 5
2.1 Literature review . 5
2.2 A note on performance comparison and takeaways 10

3 Theory 13
3.1 Machine Learning . 13
3.2 Neural Networks . 15

3.2.1 The structure of a Neural Network 15
3.2.2 Training of a Neural Network 19
3.2.3 Weight initialization . 23
3.2.4 Regularization . 24
3.2.5 Residual blocks . 25

3.3 Hyperparameter optimization . 26
3.3.1 Problem statement . 27
3.3.2 Bayesian Optimization . 28
3.3.3 Multi-Fidelity Optimization 31
3.3.4 BOHB . 35
3.3.5 Exploration vs. Exploitation 36
3.3.6 Robustness of hyperparameters 37

4 Case description 39
4.1 Case Context . 39
4.2 Dataset and Preprocessing . 40
4.3 Structure . 44
4.4 Training and Regularization . 45

viii

Table of Contents

5 Method 49
5.1 Identifying Interesting Hyperparameters 49
5.2 Selecting HPO Algorithm . 51
5.3 Experiment . 54

5.3.1 Hypothesis . 55
5.4 Implementation . 55

6 Results 57
6.1 Final solutions . 57
6.2 Runtime performance . 59
6.3 Robustness and configuration space 66

7 Discussion 73
7.1 H1 . 73
7.2 H2 . 73

7.2.1 Early stopping aspects . 74
7.3 H3 . 75
7.4 Robustness and configuration space 76

8 Conclusion 81
8.1 Suggestions for future work . 81

8.1.1 Different HPO-algorithms . 81
8.1.2 Appropriate regularization . 81
8.1.3 Configuration space . 82
8.1.4 Early stopping . 82

Bibliography 83

Appendix 89
A Google Compute Engine setup . 89
B Python implementation of the experiment 89
C Hyperparameter scatter plots . 93

ix

List of Figures

2.1 Grid Search vs Random Search . 6
2.2 Overview of popular HPO-algorithms 10

3.1 Underfitting/Overfitting vs Capacity 15
3.3 Neural Network illustration . 16
3.4 Deep Feed-Forward Neural Network illustration 17
3.6 Backwards propagation . 20
3.7 Gradient Descent Variants . 22
3.8 Good local minima . 23
3.9 Learning rate . 23
3.10 Residual block . 26
3.11 AutoML chain . 27
3.12 BO-TPE illustration . 31
3.13 Median Stopping Rule . 32
3.14 Successive Halving . 34

4.1 Oil & Gas production process . 39
4.2 Training and validation loss with original and cleaned dataset 42
4.3 Identifying well-specific outliers . 43
4.5 Rectified Linear Unit function . 45

6.1 Distribution of top percentile configurations found by method 58
6.2 Average cumulative minimum for all methods 60
6.3 Cumulative minimum for RS . 61
6.4 Cumulative minimum for RS-MSR 62
6.5 Cumulative minimum for BO . 63
6.6 Cumulative minimum for BO-MSR 64
6.7 Number of early stopped trials . 66
6.8 Robustness of the five best configurations 67
6.9 Distribution of top percentile configurations by depth 68
6.10 Distribution of depth in the top 15 percentile 68
6.11 Hyperparameter vs loss for all trials 69
6.12 Hyperparameter vs loss for RS . 69
6.13 Hyperparameter vs loss for RS-MSR 70
6.14 Hyperparameter vs loss for BO . 70
6.15 Hyperparameter vs loss for BO-MSR 71

7.1 KDE illustration of hyperparameter values sampled in experiment . . 77

C.1 Hyperparameter vs loss for individual runs of RS 94

x

C.2 Hyperparameter vs loss for individual runs of RS-MSR 95
C.3 Hyperparameter vs loss for individual runs of BO 96
C.4 Hyperparameter vs loss for individual runs of BO-MSR 97

List of Tables

3.1 Dataset example . 13

4.1 Case dataset . 41

5.1 Identified hyperparameters . 51
5.2 Selected HPO-algorithms . 54

6.1 Best loss found throughout experiment 58
6.2 RS-MSR: Stopped trials . 65
6.3 BO-MSR: Stopped trials . 65
6.4 Earliest stopped trials . 66
6.5 Five best configurations . 67

List of Algorithms

1 Sequential Model Based Optimization 28
2 Best Arm Problem for Multi-armed Bandits 33
3 Successive Halving . 33
4 Hyperband . 35
5 BOHB sampler . 36

Source Code

1 Python implementation of RS . 89
2 Python implementation of RS-MSR 90
3 Python implementation of BO . 91
4 Python implementation of BO-MSR 92

xi

Nomenclature
Abbreviations

AutoML Automated Machine Learning

BGD Batch Gradient Descent

BO Bayesian Optimization

BOHB Bayesian Optimization Hyperband

CI Confidence Interval

EI Expected Improvement

GA Genetic Algorithm

GP Gaussian Process

GS Grid Search

HPO Hyperparameter Optimization

KDE Kernel Density Estimation

MBGD Mini-Batch Gradient Descent

MF Multi-Fidelity

MSE Mean Square Error

MSR Median Stopping Rule

MTL Multitask Learning

NAS Neural Architecture Search

PSO Particle Swarm Optimization

ReLU Rectified Linear Unit

RS Random Search

SGD Stochastich Gradient Descent

SMAC Sequential Model-Based Algorithm Configuaration

SMBO Sequential Model-Based Optimization

TPE Tree-structured Parzen Estimator

VFM Virtual Flow Meter

xiii

Nomenclature

Case legends

CHK Choke opening

FGAS Fraction of gas to total flow

FOIL Fraction of oil to total flow

NC NeuralCompass

PDC Pressure downstream choke

PWH Pressure Well Head

QGL How much gas lift has been used while producing

QTOT Total flow rate

TWH Temperature Well Head

Symbols

α Learning rate

β Momentum parameter

Λ Overall hyperparameter configuration space

λ A vector of hyperparamters

λ∗ The optimal vector of hyperparameters

κ Parameter norm penalty weight

Λn Domain of the n-th hyperperameter

A Machine learning algorithm

Aλ Machine learning algorithm A instantiated with hyperparamters λ

∇θJ(θ) Gradient of J with respect to θ

Ω(θ) Parameter norm penalty function

a Activation function

V (·) Validation loss

J Cost function

xiv

1 | Introduction

Machine learning has recently been applied to many industrial applications and is
achieving ever-increasing better results. Part of the success is due to the increased
and simplified gathering of data, increased computational power and accelerated
hardware, as well as developments in deep learning architectures. However, during
the last couple of years, progress in state-of-the-art performance has shifted from be-
ing caused by development in learning algorithms to something that rather extracts
optimal behaviour of existing algorithms: Hyperparameter optimization.

Hyperparameter optimization has traditionally been dominated by expert manual
tuning. However, the recently highlighted importance of optimal hyperparameter
configuration has sparked a great scientific interest in automating hyperparameter
selection. Not only is HPO directly applicable to extract the best possible behaviour
of an already industrially applied model, but it is also crucial to be able to fairly
compare the performance of two different models, as a suboptimal set of hyperpara-
meters would give a false impression of the model’s ability.

A major challenge with automated hyperparameter optimization is that there exists
no single ideal optimization algorithm, and different HPO-methods perform different
depending on the learning algorithm being optimized, the size of the dataset, and the
resources available. The selection of an adequate optimization algorithm is therefore
paramount for achieving optimal results.

This work identifies promising HPO-algorithms for optimizing the hyperparameters
of a deep residual neural network used for regression analysis, and compares their
performance through an industrial case study to provide practitioners with insight
and a custom guide on how to tune their models in production, and fairly evaluate
models in development.

This work is a continuation of the candidate’s work in the course TTK4550 Engin-
eering Cybernetics, Specialization Project, where the candidate familiarized himself
with hyperparameter optimization and different HPO software programs.

1

1.1. Motivation

1.1 Motivation

Solution Seeker is a Norwegian deep-tech Software-as-a-Service company that uses
artificial intelligence to utilize sensor data in a novel fashion. One of the tools they
provide is a virtual flow meter, which is used to estimate the total flow of water, oil
& gas through a production pipe.

Knowledge of flow rate is key to an optimal petroleum production process, but, much
like hyperparameter optimization, no field, well or production process is similar.
Therefore, flow-rate sensors are often, to some degree, specially engineered for the
specific installation, rendering them as costly instruments. In addition, deep-sea
instalments are in itself difficult, and repairments even so. The intricate physics of
multiphase flow also requires simplifications and assumptions to allow for feasible
measurements and calculations, and as Thorn et al. (2012) summarizes, ‘measuring
it[the flow rate] remains one of the greatest challenges of petroleum production’.

The poor generality and high cost of the instruments have therefore sparked interest
in developing simpler ways of measuring the flow rate. A virtual flow meter is one
of the proposed techniques to do so. A VFM is a machine learning algorithm, that
utilizes historical data of flow rates and other measurements such as temperature
and pressure, to fit a model that can estimate the flow rate. It can be used in both
a historical context, to estimate flow rate in periods when other measurements for
some reason were unavailable, or for live estimation during production.

Solution Seeker is one of the world’s first businesses to provide a VFM as a Software-
as-a-Service solution. However, as a developing business, time is a limited resource,
and properly formalizing hyperparameter optimization has up until the start of
this work not been given any proper resources. By allocating more resources to
this topic, we believe that Solution Seeker can gain a competitive advantage by 1)
Improving the performance of models already in production, 2) Aiding and speeding
up the research on new models, and 3) Reducing time spent on manually tuning
hyperparameters.

This work aims thus to advance the performance of the VFM, but also pave the way
for a company-specific guide to hyperparameter optimization and build a robust
foundation for it, which the company can continue to develop to accelerate the
performance of existing and new models.

2

1.2. Objectives and research questions

1.2 Objectives and research questions

The following objectives were defined to aid Solution Seeker with gaining a compet-
itive advantage:

• The primary objective of this work is to identify promising HPO-algorithms
for a deep residual neural network used for regression analysis, understand the
theory of the identified methods, and perform an extensive case study of the
methods on the VFM to acquire knowledge and insight into the suitability of
the different methods.

• The secondary object of this work is to provide Solution Seeker with a company-
specific guide to hyperparameter optimization.

To meet these objectives, the following research questions were established:

1. How do a restricted time and cost budget affect the selection of HPO-algorithm?

2. Which aspects of the VFM are especially interesting for selecting an appropri-
ate HPO-algorithm?

3. Does the VFM have any particular hyperparameters, and if so, are they espe-
cially interesting to optimize?

3

1.3. Outline

1.3 Outline

Chapter 1 introduces this work. The motivation for the work is given in Section 1.1,
and the objectives and research questions are stated in Section 1.2. Section 1.3
describes the outline of the report.

Chapter 2 provides the necessary background for this work. First, a literature review
of existing HPO-algorithms for neural networks is given Section 2.1. The literature
review is written in a conceptual way to promote understanding of the concepts of
the different methods, rather than diving into their theoretical world. Then a brief
note on the difficulties of comparing different HPO-algorithms is given in Section 2.2.

Chapter 3 explains the theory needed to understand the case study and analyse the
results. In Section 3.1, the basic concepts of machine learning are introduced, before
a more thorough explanation of neural networks is presented in Section 3.2. Finally,
in Section 3.3, the problem of hyperparameter optimization is formally defined.
Then, the theory behind a selection of HPO-algorithms is explained. At last, the
section discusses two important aspects of HPO: The exploitation-exploration trade-
off and the robustness of a hyperparameter configuration.

Chapter 4 describes the neural network used in the case. First, Section 4.1 provides
some brief context for the case. In Section 4.2 the dataset used is described, before
Section 4.3 describes the structure of the neural network, and Section 4.4 describes
the training and regularization of the network.

Chapter 5 shows the method used to perform the case study, and forms a guide
to HPO for Solution Seeker. In Section 5.1 interesting hyperparameters of the
neural network are identified. Then, in Section 5.2, the selection of HPO-algorithms
is explained. Section 5.3 describes how the experiment of the case was designed,
along with the hypothesis for the experiment. In Section 5.4 it is described how
the experiment was programmatically implemented. The code is made available for
Solution Seeker, but not to the public due to proprietary reasons.

Chapter 6 presents the results of the experiment, and Chapter 7 discusses them.
Finally, a conclusion, and suggestions for future works are given in Chapter 8.

4

2 | Background

2.1 Literature review

Many hyperparameter optimization algorithms have been proposed with different
rates of success. This section gives a brief review of the most popular algorithms
in use today and highlights some advantages and disadvantages of the methods. In
addition, a brief review of multi-fidelity techniques and their connection to HPO is
given. The algorithms chosen to be explored in-depth in this work were selected on
the background of this review and the works referenced in it. For a more thorough
explanation of the different methods, please see the referenced material. An overview
of different HPO-algorithms and MF techniques is given in Figure 2.2.

Hyperparameter optimization algorithms generally have four desired qualities that
are used to evaluate the performance (Falkner et al., 2018a; Feurer and Hutter,
2019):

1. Strong Anytime Performance: Since training neural networks is compu-
tationally exhaustive, both in terms of computational time and computational
power, the optimization algorithm should be able to provide good hyperpara-
meter configurations within a reasonably small budget.

2. Strong Final Performance: When the optimization algorithm is given a
reasonably large budget, it should be converging towards a globally optimal
solution.

3. Scalability: The algorithm should be able to handle a large search space,
since a neural network has many hyperparameters. It should also be feasible
for the algorithm to sample many configurations when training the neural
network is inexpensive. Finally, the algorithm should also be able to utilize
parallel resources.

4. Flexibility: Since hyperparameters can be, e.g., real-valued, integer, categor-
ical, or conditional, the algorithm should be able to handle all types of these
hyperparameter domains.

Model-free

Model-free optimization algorithms are algorithms that do not model the response
of the objective function. Grid search (GS) is the most basic of these methods. It
consists of defining a set of hyperparameters, and possible values for these hyper-
parameters, and then performing a full factorial experiment. Although simple, this

5

2.1. Literature review

method is inefficient, and Random search (RS) was empirically, and theoretically,
proven by Bergstra and Bengio (2012) to be more efficient for hyperparameter op-
timization than GS. Instead of performing a full factorial experiment as GS does,
RS rather draws hyperparameters from a predefined probability distribution. This
allows RS to effectively be able to search over more of the important hyperparamet-
ers than GS since not all hyperparameters have the same significance (Figure 2.1).
Ever since this important contribution, random search has because of its simple
non-assuming nature been used as the comparison ground for several state-of-the-
art performing HPO-algorithms. Random search is in addition scalable since there
is no connection between trials, and flexible since no assumptions are made, and
can handle all types of hyperparameter domains. Both GS and RS will eventually
find the optimal solution, as all possible configurations, in the end, will have been
tested. However, arriving at this optimal solution may require many unnecessary
evaluations, yielding a poor anytime performance and average final performance.

U
n
im

p
o
rt

a
n
t

p
a
ra

m
e
te

r

Important parameter

U
n
im

p
o
rt

a
n
t

p
a
ra

m
e
te

r

Important parameter

Grid search Random search

Figure 2.1: Grid Search vs Random Search. The illustration shows how random search
effectively can sample more of the important hyperparameters. Adapted from Bergstra
and Bengio (2012).

Another set of model-free HPO-algorithms is the metaheuristic algorithms. There
exist various metaheuristic algorithms (see e.g., Glover and Kochenberger (2003)
and Talbi (2009)), but particularly two methods are popular with HPO: 1) Genetic
Algorithm (GA), and 2) Particle Swarm Optimization (PSO).

The genetic algorithm (Dan, 2013) is based on pairing individuals, dubbed chromo-
somes. A chromosome is a string, in which parts represent the hyperparameters, and
which value is the candidate’s value for the hyperparameter. The population of chro-
mosomes is generated randomly, and then the individuals’ fitness is evaluated before
individuals are paired in favour of the fittest. The evaluation and pairing repeat un-
til the algorithm reaches a converging criterion, or it times out. One advantage of
GA is that it supports all types of hyperparameter domains. Its complexity is also
average, scaling at a squared factor with the number of samples (Yang and Shami,
2020). In addition, GA is easy to parallelize (Feurer and Hutter, 2019). However,

6

2.1. Literature review

GA introduces extra hyperparameters, such as the initial size of the population,
how to calculate the fitness, and how to pair different individuals, rendering it less
desirable for deep learning models that already have a large set of hyperparameters.
There’s also no guarantee for a strong anytime or final performance.

Particle swarm optimization (Kennedy and Eberhart, 1995) consists of a group
(swarm) of individuals (particles). Each particle searches for the optimal solution
by moving around in the search space. The movement of a particle is influenced
by both its own best-known position, and the swarm’s overall best-known position.
The exchange of information is expected to move the swarm towards an optimal
solution. PSO also supports all types of hyperparameter domains, and its complexity
is low, scaling log-linear with the number of samples (Yang and Shami, 2020). It
is also easy to parallelize (Feurer and Hutter, 2019). PSO does however require
proper initialization to reach a global optimum (Yang and Shami, 2020), and as
with GA, there is no guarantee for a strong anytime or final performance, although
it empirically has achieved good results (Yang and Shami, 2020).

Model-based

None of the algorithms mentioned so far has come with any strong final performance
guarantees. Model-based algorithms attempt to provide this desideratum by mod-
elling the response surface of the objective function to make informed choices for
where to sample next. These methods are specially designed for optimizing expens-
ive black-box functions, such as a neural network. Particularly, the use of sequential
model-based optimization (SMBO) algorithms (Hutter, Hoos et al., 2011) has been
popularized and extensively researched during the last ten plus years. The authors
used SMBO for general algorithm configuration and obtained state-of-the-art per-
formance for the commercial mixed-integer programming solver CPLEX (Wikipedia
contributors, 2022b), as well as the Boolean satisfiability problem (Wikipedia con-
tributors, 2022a). An SMBO algorithm essentially consists of two main components:
1) A surrogate model to model the objective function, and 2) An acquisition func-
tion to determine where to sample next. Although there exist different acquisition
functions, the main difference between SMBO algorithms lies with the surrogate
model.

Bayesian optimization (BO) (Brochu et al., 2010; Shahriari et al., 2015) is one
especially popular SMBO algorithm that has been used to obtain state-of-the-art
performance on different datasets for deep learning applications (Snoek et al., 2012;
Bergstra, Yamins et al., 2013; Mendoza et al., 2016). BO utilizes Bayes’ theorem to
model the objective function as a posterior distribution. There exist different ways
of obtaining this posterior, but the three most popular used today are: 1) Gaussian
processes, 2) Random forests, and 3) Tree-structured Parzen estimators.

Gaussian process (GP) (Williams and Rasmussen, 2006) is a standard surrogate
model used in Bayesian optimization. A Gaussian process prior is used to model
the posterior probability distribution of the response of the objective function to
gain knowledge on where it would be wise to sample next. GPs have traditionally
been popular because of their ‘expressiveness, smooth and well-calibrated uncertainty

7

2.1. Literature review

estimates, and closed-form computability of the predictive distribution’ (Feurer and
Hutter, 2019). Although BO-GP is efficient and has shown strong final performance
(Bergstra, Bardenet et al., 2011; Snoek et al., 2012; Li et al., 2017; Falkner et al.,
2018a; Klein and Hutter, 2019), its application to hyperparameter optimization of
deep learning models suffers from mainly two limitations: 1) It is not scalable, as it
scales cubically with the number of samples, and 2) It is not flexible, as it assumes
continuous real-valued hyperparameters, and does not natively support any other
hyperparameter domains.

Random forests (Breiman, 2001) are a popular alternative surrogate model used with
BO. Proposed by Hutter, Hoos et al. (2011) as Sequential Model-Based Algorithm
Configuration (SMAC), it uses an ensemble of regression trees to model the objective
function’s posterior probability distribution. Therefore, SMAC can easily handle all
hyperparameter domains. They also scale much better than GPs with the number
of samples, scaling at a log-linear complexity due to the tree structure (Yang and
Shami, 2020). The first versions of the AutoML frameworks Auto-WEKA (Thornton
et al., 2013) and Auto-sklearn (Feurer, Klein et al., 2019) both used SMAC to ob-
tain state-of-the-art AutoML performance. However, using random forests may have
some undesired effects compared to GPs. Far away from sampled data, predictions
made by random forests can be identical, which might result in a poor acquisition of
new hyperparameter configurations. Gaussian processes, however, fall back on their
prior, which by design produce more uncertain predictions, which again is more de-
sirable in the exploitation-exploration trade-off context. Furthermore, the response
surface obtained using random forests is discontinuous and non-differentiable, ren-
dering the use of gradient-based optimization methods infeasible (Shahriari et al.,
2015).

The final alternative surrogate model is the use of a Tree-structured Parzen Estim-
ator (TPE), proposed by Bergstra, Bardenet et al. (2011). Instead of modelling the
posterior distribution directly, as GPs and SMAC do, the TPE models two density
functions for the likelihood of a hyperparameter being either good or bad. It does
so by dividing the observations into two categories, good and bad, and then uses
two simple one-dimensional Parzen estimators (kernel-density estimators) to model
the two density functions. It models the density functions for each hyperparameter
individually, and then selects hyperparameter configurations from a tree structure,
which again allows the algorithm to handle all types of hyperparameter domains.
In addition, the TPE also scales log-linear with the number of samples (Yang and
Shami, 2020), and have shown great results from optimizing neural networks with
large conditional configuration spaces (Feurer and Hutter, 2019).

Multi-fidelity

The three BO algorithms all have a strong final performance, but none of them
provides a strong anytime performance. Multi-fidelity optimization is a set of tech-
niques that tries to overcome this challenge by probing the performance of the neural
network without using the entire resource pool. That is, these techniques try to eval-
uate the performance of a partially trained network. To determine what partially
refers to, one must first define a budget. With neural networks, the budget is often

8

2.1. Literature review

either only using a subset of the training data (Klein, Falkner et al., 2017), or train-
ing for the full amount of training iterations (Kandasamy et al., 2017). The idea
is that by using low fidelity approximations, one can quickly approximate the final
performance of the model to determine whether the model should be given more
resources, or if the training should be discontinued and new hyperparameter config-
urations should be evaluated instead. This allows for a strong anytime performance.

Modelling learning curves (MLC) is one multi-fidelity technique that models the
learning curve of a configuration, to estimate whether the training of the candidate
configuration should be terminated early. There exist different ways of modelling
learning curves (Kohavi and John, 1995; Provost et al., 1999), but the general idea
is that if it is not predicted that the current model will perform better than the
so-far best-performing model, the training of the current model is terminated, and
a new configuration of hyperparameters to evaluate is selected. Modelling learning
curves might not be that efficient in itself, but when combined with Bayesian op-
timization, it can significantly improve the optimization performance compared to
vanilla Bayesian optimization (Elshawi et al., 2019; Feurer and Hutter, 2019). E.g.,
Domhan et al. (2015) used learning curve modelling to speed up the state-of-the-art
optimization of a deep neural network on the CIFAR-10 dataset by a factor of two.

Another set of multi-fidelity algorithms is the Bandit-based algorithms, casting the
HPO-problem as a multi-armed bandit problem (Mahajan and Teneketzis, 2008).
Particularly the two methods Successive Halving (SH) and Hyperband (HB) have
shown great results in optimizing the hyperparameters of deep learning models
(Elshawi et al., 2019; Feurer and Hutter, 2019).

Successive Halving (Karnin et al., 2013; Jamieson and Talwalkar, 2016) consists of
uniformly allocating a budget to a set of random hyperparameter configurations.
Then each configuration is trained within the limitations of the budget and the per-
formance is evaluated. The poor performing half is then dropped, and the budget
of the well-performing half is doubled. This is repeated until the best performing
configuration is left, and a new set of randomly selected hyperparameter configura-
tions to perform Successive Halving on are drawn. Successive Halving is an efficient
approach, but the budget allocation is a major challenge, where one for a given
budget has to decide between sampling many configurations on a smaller part of the
budget, or a few configurations on a larger part of the budget (Elshawi et al., 2019;
Feurer and Hutter, 2019; Yang and Shami, 2020).

Hyperband (Li et al., 2017) was proposed as an extension of Successive Halving
to solve the challenge of the number of configurations vs budget size. The method
calculates a varying number of configurations, and thus also a varying partial budget
size, and uses Successive Halving as an inner routine on these configurations to search
for the optimal solution. Hyperband has shown great success for deep learning
models and has outperformed random search and vanilla Bayesian optimization (Li
et al., 2017; Elshawi et al., 2019; Feurer and Hutter, 2019).

However, Hyperband still constructs new configurations at random and does not
utilize the information obtained from testing previous configurations. This limits
Hyperband’s final performance. Falkner et al. (2018a) then proposed a method,
BOHB, that combines Hyperband and Bayesian optimization, with a multivariate

9

2.2. A note on performance comparison and takeaways

adaption of the TPE as the surrogate model, in an attempt to meet all desired
qualities stated at the beginning of this section. The surrogate model is repeatedly
used to suggest new hyperparameter configurations, which Hyperband then again
is run on. BOHB outperformed both Hyperband and Bayesian optimization on
several deep learning applications. Particularly, BOHB achieved state-of-the-art
performance for a feed-forward neural network on average over 6 OpenML datasets
for computer vision on a large continuous and conditional configuration space.

HPO

Black-box

GA
Model-free

Multi-fidelity

PSO

HB

SH

Model-based

RS

GS

MLC

BO

BOHB

Bandit-based

Early-stopping

Figure 2.2: Overview of popular HPO-algorithms and multi-fidelity techniques. HPO
algorithms are shaded green with a solid line, and MF techniques are shaded blue with a
dashed line. BOHB attempts to combine the two approaches. Adapted from Elshawi et al.
(2019)

2.2 A note on performance comparison and takeaways

Comparing performances between different HPO-algorithms is a difficult science. It
requires extreme amounts of computational power to obtain a statistically robust
result, and the optimization algorithms’ performances depend highly upon several
factors, including, but not limited to:

• Which machine learning algorithm is being used.

• Aspects of the dataset, such as its size and cleanliness.

• The resources available.

• The different domains in the hyperparameter configuration space.

Attempting to benchmark the performance of different HPO-algorithms Klein and
Hutter (2019) used four UCI datasets for regression on a purely categorical config-
uration space and found that BOHB achieved a strong anytime performance, while

10

2.2. A note on performance comparison and takeaways

BO-TPE achieved a strong final performance. Extending HPO to Neural Architec-
ture Search, (NAS) a field closely related to HPO, Ying et al. (2019) experimented
with 403k unique architectures trained on the CIFAR-10 dataset. They found that
BOHB and SMAC achieved stronger final performance than BO-TPE, while BO-
TPE achieved stronger anytime performance than both BOHB and SMAC.

As far as a general recommendation goes, BOHB is recommended as the go-to
method for HPO (if multiple fidelities are applicable) by two of the most cited HPO
reviews (Feurer and Hutter, 2019; Yang and Shami, 2020) published after BOHB
was introduced, and SMAC and BO-TPE are both recommended as alternative
methods for HPO of neural networks by the same two reviews if multiple fidelities
are not applicable.

Although these recent benchmarks and recommendations indicate some favouring
of certain optimization algorithms, there exists no HPO-algorithm that will always
perform better than the others. The choice of optimization algorithm has to be
tailored to fit your problem at hand.

11

3 | Theory

This chapter provides the theory needed to understand the case study. First, a
gentle introduction to the basic concepts of machine learning are given in Section 3.1.
Then (residual) neural networks, the machine learning algorithm of interest in this
work, is explained to a greater extent in Section 3.2. Then, finally, hyperparameter
optimization is explained in Section 3.3. Both Sections 3.1 and 3.2 are based on
Goodfellow et al. (2016).

3.1 Machine Learning

Machine learning, or a machine learning algorithm, is simply an algorithm that
automatically is able to discover unknown patterns in data. The data consists of
several examples, where each example consists of one or more features. A neural
network, and the model-based optimization methods, are both a form of a supervised
learning algorithm. These algorithms are algorithms that attempt to learn the
output, or the target, of corresponding features. For example, given how open a
valve is along with the downstream and upstream pressure as features, a supervised
learning algorithm could try to learn the target flow rate through the valve. A typical
dataset for a supervised machine learning algorithm is illustrated in Table 3.1.

Table 3.1: Dataset example. The table illustrates the differences between examples,
features, and targets.

Example # Feature 1 Feature 2 · · · Feature m Target

1 · · · · · · ·
2 · · · · · · ·
...

...
...

...
...

...
n · · · · · · ·

The process of learning how to recognize patterns is called training. When training,
a part of the dataset is extracted into a training set. The learning algorithm will
try to fit the input features of an example in the training set, to the output target
of the same example. The difference between the target in the training set, and the
model’s output, is referred to as the training error. After the training is finished, the
fitness of the model is evaluated. Evaluating the fitness of a model is done by testing
the model on a test set, which consists of examples not used when training. The
testing itself is done by feeding the model features from the test set, and comparing
the model’s output to the targets in the test set. The difference between the target
in the test set, and the model’s output, is referred to as the test error.

13

3.1. Machine Learning

The reason behind splitting the data into a training and test set is to be able
to say something about the model’s performance on unseen data. This translates
to evaluating the model’s ability to recognize patterns, rather than just memorize
previously seen data. The test error is defined as the expected value of the error on
new input. If the model was to be deployed in the real world, where all future data
is currently unseen, the test error would tell us what error to expect on that unseen
data. What differentiates machine learning from standard optimization, is that by
minimizing the training error, we also expect to minimize the test error.

The reason behind the expectation stems from the theory that all data in the dataset
is generated by the same data generating process, which is a probability distribu-
tion over data sets. We assume that all examples in the dataset are independent of
each other and that all examples are identically distributed, drawn from the same
probability distribution. Thus, the data generating process can be described as a
probability distribution over a single example, called the data generating distribu-
tion, which again allows us to expect that minimizing the training error should also
minimize the test error as all data comes from the same probability distribution.

Unfortunately, that is not the case in the real world, and practice shows that the test
error is greater than or equal to the training error. The goal of a machine learning
algorithm is to obtain a low test error, but since the test error cannot be controlled
directly, we are left with two means to achieve that goal:

1. Make the training error small.

2. Make the gap between training and test error small.

The gap between the training and test error is also referred to as the generalization
gap. From these means arise two central challenges of machine learning:

• Underfitting, which occurs when the training error is not small enough, and,

• Overfitting, which occurs when the generalization gap is too large.

The patterns that the machine learning algorithm tries to learn, can be looked at as
a function from features to target. The model’s capacity is its ability to fit a wide
variety of functions, and by controlling the model’s capacity, one can control the
model’s likelihood to underfit or overfit. Too low capacity might lead to underfitting,
while too high capacity might lead to overfitting. A typical relationship between
underfitting, overfitting, and capacity is given in Figure 3.1.

As stated earlier, we wish to obtain as low a test error as possible. A simple solution
would be to train different models and select the one with the lowest test error.
However, this process would lead to data leakage, where the data in the test set is
no longer unseen, and it therefore cannot be used to say anything about the model’s
real-world performance. In fact, by selecting the model with the lowest test error
we would in reality be minimizing the error of the entire dataset, and not only the
training set.

14

3.2. Neural Networks

Er
ro

r

Capacity

Underfitting Overfitting

Generalization gap

Optimal Capacity

Training error
Test error

Figure 3.1: Underfitting/Overfitting vs Capacity. A too low capacity might lead to
underfitting, while a too high capacity might lead to overfitting. The goal is to find an
optimal capacity. Adapted from Goodfellow et al. (2016).

To avoid the problem of data leakage, the dataset is often split into a third part,
the validation set, which is left unseen during training. Validation is performed just
like testing, and the validation error is calculated the same way as the training and
test error. Furthermore, since the validation set is left unseen during training, the
validation error is a reasonable estimate of the training error. Rewriting the simple
solution from above, after training the multiple models, the model with the lowest
validation error is selected. Then that model is further trained on the validation
set before the test error is calculated. This leaves the test set unseen, and as such
avoid the data leakage problem. This rewritten simple solution is in essence what
hyperparameter optimization, and this work, is about.

As stated in the introduction of this section, there exist several machine learning
algorithms that train and behave in different ways. This work focuses on a residual
neural network, and how these networks are structured, behave and train is discussed
in Section 3.2.

3.2 Neural Networks

3.2.1 The structure of a Neural Network

A neural network is built up of neurons. A simplified way of looking at a neuron is to
consider it as a placeholder for a number (Figure 3.2). This number, 4.3 in the case
of Figure 3.2, is referred to as the activation of the neuron. To begin with, consider
the activation as a simple on/off switch, where an activation less than or equal to
zero means off, and an activation greater than zero means on. An activated neuron
can be thought of as a neuron that believes it is making the correct prediction, while

15

3.2. Neural Networks

a deactivated neuron can be looked at as a neuron that believes that it is not making
the correct prediction.

4.3

Neuron

Figure 3.2: Illustration of a neuron with its activation.

These neurons make up the foundation of a neural network and are grouped in
layers, as illustrated in Figure 3.3. The input layer is the first layer of the network
and receives the input features from the dataset. We wish to use all features at hand,
and thus, the size of the input layer is equal to the number of features in the dataset.
The output layer is the final layer of the network. The output layer is responsible
for driving the model’s output towards the targets in the dataset. Therefore, the
size of this layer is equal to the number of targets in the dataset. A hidden layer is
any layer between the input and output layer, and it is called hidden because it is
not directly associated with any feature or target in the dataset. The network itself
must learn how to use these hidden layers to reach the desired target. The size and
structure of these layers are a design choice. The total number of layers makes up
the depth of the model, and the number of neurons in each layer is the width of that
layer.

x z ŷ

Hidden
layer

Input
layer

Output
layer

Figure 3.3: Simple illustration of a neural network with one input layer, one hidden layer
and one output layer.

Continuing with the flow rate example from Section 3.1, with three features and
one target, a possible neural network designed to solve this problem could look like
the network illustrated in Figure 3.4, where the size of the hidden layers are chosen
purely for illustrative purposes. This network furthermore has two hidden layers
and is therefore also called a Deep Neural Network. A deep neural network is any
neural network that has two or more hidden layers.

The term network implies that there is some sort of connection between multiple
neurons. Notice in Figure 3.4 how each neuron in one layer, is connected to each
neurone in the next layer. A layer whose neurons are all connected to each neurone in
the next layer is referred to as a fully connected layer. Furthermore, all connections
in the network flow forward as a directed acyclic graph, from the input layer to
the output layer. A network with this feature is called a feed forward network.
The network utilizes these connections to pass information, the different neurons’
activation, from one layer to another. As mentioned earlier, the neurons express
some sort of belief, or some sort of opinion. And just as humans are able to decide
how much to believe in another human’s opinion, these neurons also need to be able
to decide how much they value the input from another neuron.

16

3.2. Neural Networks

x1Input 1

x2Input 2

x3Input 3

z11

z12

z13

z14

z21

z22

z23

z24

ŷ Output

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 3.4: Simple illustration of a Deep Feed-Forward Neural Network with one input
layer, two hidden layers and one output layer. The network is called deep because it has
two or more hidden layers, and it is called feed forward since all connections flow forwards
in a directed acyclic graph.

Therefore, a connection between a neuron nL−1
i , in layer L − 1, and nL

j , in layer
L, has its own associated weight, wL

ij, as illustrated in Figure 3.5. The receiving
neuron then calculates the weighted sum of all its inputs, to reach its own opinion,
or activation:

zLj =
I∑

i=1

zL−1
i ∗ wL

ij,

where zLj is the activation neuron j in layer L, zL−1
i is the activation neuron i in

layer L− 1, wL
ij is the weighted connection between the corresponding neurons, and

I is the number of neurons in layer L− 1.

In addition to the weighted sum, a bias is added to add some sense of meaningfulness
to the activation, i.e., to be able to say that e.g., the activation is only meaningful if
the weighted sum is above a certain threshold. Adding this bias yields the following
activation:

zLj = bLj +
I∑

i=1

zL−1
i ∗ wL

ij, (3.1)

where again zLj is the activation neuron j in layer L, zL−1
i is the activation neuron

i in layer L− 1, wL
ij is the weighted connection between the corresponding neurons,

bLj is the bias of neuron j in layer L, and I is the number of neurons in layer L− 1.

17

3.2. Neural Networks

zL−1
1

zL−1
2

zL−1
3

zL1

wL
11

wL
21

wL
31

Figure 3.5: Weighted connections from layer L− 1 to layer L, with arbitrary activation
values zli.

The weighted sum of Equation 3.1 is a linear transformation, and thus we can express
the activation of an entire layer as a matrix-vector equation:

zL0
zL1
...
zLj

︸ ︷︷ ︸
zL

=

wL

00 wL
01 · · · wL

0j

wL
10 wL

11 · · · wL
1j

...
...

wL
i0 wL

01 · · · wL
ij

︸ ︷︷ ︸

W
L

zL−1
0

zL−1
1
...

zL−1
j

︸ ︷︷ ︸
zL−1

+

bL0
bL1
...
zLi

︸ ︷︷ ︸
b

L

(3.2)

From Equation 3.2 it is clear to see that the activation of the output layer is just a
linear transformation of the input, illustrated below according to Figure 3.4

z1 = W 1x+ b1

z2 = W 2z1 + b2 = W 2(W 1x+ b1) + b2

ŷ = W yz2 + by = W y

(
W 2(W 1x+ b1) + b2

)
+ by

(3.3)

Although this linear transformation might be able to recognize some patterns, it
is not able to express any nonlinearity. Since the goal of a neural network is to
be able to predict values of real-world processes, which are mostly nonlinear, some
nonlinearity has to be introduced to Equation 3.3. We introduce the nonlinear-
ity by adding a nonlinear activation function, a, that wraps the weighted sum of
Equation 3.1 as such:

zLj = a

(
bLj +

I∑
i=1

zL−1
i ∗ wL

ij

)
(3.4)

18

3.2. Neural Networks

The output of the neural network can thus be written as a composite mapping of
the activation function in the different layers from the input x:

ŷ = (ay ◦ a2 ◦ a1)(x)

= ay
(
W ya2

(
W 2a1(W 1x+ b1) + b2

)
+ by

)
(3.5)

where al is the activation function in layer l.

3.2.2 Training of a Neural Network

Simply put, a neural network trains by tweaking its weights and biases, or learn-
ing parameters, until it reaches a satisfying point. It does so by using a forward-
backwards propagation scheme. Forward propagation is what is described in Equa-
tion 3.5, where an input is given to the network, and the activations of the neurons
are propagated through the layers until the output layer makes the final estimation
and a training loss can be calculated.

As stated in Section 3.1, the goal of the training process is to minimize the training
loss, such that the test loss also will be minimized. To perform any minimization at
all, a metric to measure the training loss must be defined. This metric is obtained
with the use of a cost function, J(θ;x,y), that measures the difference between the
expected outputs, y, and the network’s outputs to the corresponding inputs x, for
a set of learning parameters θ, and yields a scalar cost.

The cost represents how wrong the networks’ prediction was, or in other words,
how wrong the learning parameters were. Backward propagation then refers to
the method of how these weights and biases are updated based on the response of
the cost function. In particular, a neural network propagates the cost backwards
(Figure 3.6), from the output layer to the input layer, and uses gradient descent to
update the learning parameters to minimize the cost function:

θk+1 = θk − α∇θJ(θk;x,y), (3.6)

where the learning parameters θ = (wL
i , b

L
i), α is the step length in the gradient

descent method, or in ML-terms the learning rate, ∇θJ(θ;x,y) is the gradient of
J with respect to θ, and k in subscript refers to an arbitrary iteration. In machine
learning terms, the gradient descent method is referred to as the optimizer.

Since J is some function of y, which by generalizing Equation 3.5 to

y = (aL ◦ aL−1 ◦ aL−2 ◦ · · · ◦ a0)(x) (3.7)

is a function of all activations of weights and biases in the network, it is clear to
see that the gradient ∇θJ(θ;x,y) is also dependent on all activations of weights
and biases in the network. The gradient, therefore, tells us how the change of a
single weight or bias would influence the cost. This information is then again used
to update the learning parameters of the network to step closer to a minimum of

19

3.2. Neural Networks

the cost function. Exactly how the gradient is calculated can be seen in Goodfellow
et al. (2016, Chapter 6.5).

x1

x2

x3

z11

z12

z13

z14

z21

z22

z23

z24

y1 Cost

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 3.6: Illustration of backwards propagation for the network depicted in Figure 3.4.

Equation 3.7 explains how the output is obtained for a single training example.
Usually, with neural networks, a dataset would have, at least, tens of thousands
of training examples. A single training iteration, or an epoch in ML terms, refers
to when the entire training set has been propagated forwards, then backwards and
the weights and biases have been updated. For a dataset with n training examples,
the batch gradient descent (BGD), would for a single epoch require calculating the
average gradient of all training examples before taking a single step:

θk+1 = θk −
α

n

n∑
i=1

∇θJi(θ;x,y). (3.8)

Although the step would be quite a good step, it is too computationally expensive
for large datasets, as the entire training set would have to be loaded into memory.
Stochastic Gradient Descent (SGD), however, uses a single training example to ap-
proximate the gradient:

1

n

n∑
i=1

∇θJi(θ;x,y) ≈ ∇θJi(θ;x,y). (3.9)

By selecting examples from the dataset uniformly at random, the SGD uses an
unbiased estimation of the full gradient:

Ei∼U(1,n)[∇θJi(θ;x,y)] =
n∑

i=1

∇θJi(θ;x,y) = ∇θJ(θ;x,y)

For a single epoch, SGD results in more gradient descent steps, as a single step is
taken for every example in the training set. Each step taken by SGD is also noisier
than with batch gradient descent, as SGD uses an approximation of the gradient.
Since more steps are taken, the computational time of SGD is also higher than for
batch gradient descent. It is in turn however less computationally expensive to use
SGD, as only one training example has to be loaded into memory at once.

20

3.2. Neural Networks

Mini-batch gradient descent (MBGD) is a method that aims to compromise between
SGD and BGD. Instead of using either all the training examples or a single example,
MBGD uses a subset of the examples, a mini-batch, j ∈ (1, . . . , n), to approximate
the gradient:

1

n

n∑
i=1

∇θJi(θ;x,y) ≈ ∇θJj(θ;x,y). (3.10)

Which again is an unbiased estimate of the gradient:

Ej∼U(1,n)[∇θJj(θ;x,y)] =
n∑

i=1

∇θJi(θ;x,y) = ∇θJ(θ;x,y)

An illustrative comparison between SGD, BGD and MBGD is given in Figure 3.7.

Taking a step back to look at the cost function itself, it is as stated a function of
the output of the neural network, which again is a composite function of nonlinear
functions. This mapping results in the cost function being a non-convex functional,
which means that the gradient descent might not always converge towards the global
minimum. However, ‘experts now suspect that, for sufficiently large neural networks,
most local minima have a low cost function value, and that it is not important to find
a true global minimum rather than to find a point in parameter space that has low
but not minimal cost ’ (Goodfellow et al., 2016). This idea is illustrated in Figure 3.8.

An important part of the gradient descent method not yet discussed is the learning
rate α of Equation 3.6. One might consider the gradient to be a linear approxim-
ation to the non-linear non-convex cost function. For a relatively non-linear cost
function, the approximation might be good in some area around where the gradient
is evaluated. If the cost function is highly non-linear, on the other hand, the area
where the approximation is good decreases. The learning rate controls the size of the
step to make sure that the learning parameters aren’t moved too much out of that
good area. A too high learning rate can result in too rapid learning, as the network
might not be able to effectively gradually decrease the loss, and it might overshoot a
good local minimum. A too low learning rate can result in too slow learning, where
the network uses too much time to converge on a good local minimum, converges on
a poor local minimum, or might not converge at all. Essentially, a too high learning
rate believes too much in the linear approximation, while a too low learning rate
believes too little in the linear approximation. A figurative illustration of the effect
the learning rate has is given in Figure 3.9.

21

3.2. Neural Networks

+

(a) Batch Gradient Descent

+

(b) Mini-batch Gradient Descent

+

(c) Stochastic Gradient Descent

Figure 3.7: Illustration of different gradient descent variants: BGD (a) uses fewer steps
with low variance, while SGD (c) uses more steps with high variance. MBGD (b) is a
compromise between the other two.

22

3.2. Neural Networks

Global minimum

Band of good
local minima

Bad local minimum

Figure 3.8: Most local minima of a neural network’s cost function are good. The goal
of minimizing is to arrive at one of these good local minima, instead of necessarily finding
the global minimum. Adapted from Goodfellow et al. (2016).

Too low Adequate Too high

Figure 3.9: Too low a learning rate (left) can lead to slow convergence or no convergence
at all. Too high a learning rate (right) can skip a good local minimum. An adequate
learning rate (centre) is somewhere in between.Adapted from Goodfellow et al. (2016).

3.2.3 Weight initialization

One interesting aspect of using GD methods is that they require an initial starting
point, i.e., an initial set of weights and biases. The starting point can highly affect
the training process, and might even more or less single-handedly determine the final
performance of the network. Thus, properly initializing the learning parameters is
important to achieve satisfying results.

Not much is yet understood about how exactly the parameter initialization affects
the performance of the model. Thus, most initialization techniques are simple and
‘based on achieving some nice properties when the network is initialized’ (Goodfellow
et al., 2016).

One property that is known with certainty to be important is to break the symmetry

23

3.2. Neural Networks

between different units; ‘If two hidden units with the same activation function are
connected to the same inputs, then these units must have different initial parameters.
If they have the same initial parameters, then a deterministic learning algorithm
applied to a deterministic cost and model will constantly update both of these units
in the same way.’ (Goodfellow et al., 2016).

There exist different ways of breaking the symmetry, but a computationally effect-
ive, simple and the most used method is to draw initial parameters at random from
a Gaussian or uniform distribution. To simplify the process, the biases are often
initialized to a constant value, such that only the initial weights are randomly se-
lected, and hence the name weight initialization. The constant value is furthermore
often set to zero, so as to not propose any assumptions on the network.

The mean of the Gaussian or uniform distribution is also for the same reason often
set to zero. The variance, or bounds, however, varies based on which initialization
technique is used. The choice of technique often depends upon which activation
function is being used. That is mainly because different activation functions have
different derivative behaviour. Kumar (2017) provides a great overview of initializa-
tion techniques for different activation functions. For more on weight initialization,
please see Goodfellow et al. (2016, Section 8.4).

3.2.4 Regularization

The goal as stated in Section 3.1 was to minimize the training loss, in order to also
minimize the test loss. Section 3.2.2 discussed how the training loss is minimized.
Regularization are techniques used to reduce the test error by other means than
directly reducing the training error. In other words, regularization tries to move the
model’s capacity from the overfitting regime, toward the optimal capacity.

There exists several ways of regularizing a deep neural network (Goodfellow et al.,
2016, Chapter 7), but the regularization technique used in this work is parameter
norm penalties. Parameter norm penalties works by adding a norm penalty, Ω(θ),
to the cost function:

J̃(θ;x,y) = J(θ;x,y) + κΩ(θ), (3.11)

where J̃ is the regularized cost function, κ is a parameter that weights the penalty
function. A high κ will result in high regularization, while a smaller κ results in
lesser regularization.

When the regularized cost function is minimized, it will along with the original cost
function J also decrease some measure of the size of the learning parameters, θ.
Particularly, what the norm penalty does is that it is penalizing the large weights of
the neural network. This is penalization is used to avoid some weights dominating
the gradient, and thus influencing the step direction superiorly. Regularizing a
network often leads to a network with lower test error than the same network without
regularization would achieve.

24

3.2. Neural Networks

3.2.5 Residual blocks

The universal approximation theorem states that a feed-forward network of a single
hidden layer with a suitable activation function and a linear output layer is sufficient
to represent any continuous function on a compact domain to any desired accuracy
(Goodfellow et al., 2016; Lu et al., 2017). Consider an extreme example where
every possible input feature is known. A wide enough network would then be able
to memorize every possible corresponding target. This is not useful for any practical
application, as the true data generation process is not known, and practice shows
that these networks tend to overfit.

The idea of using multiple layers is that each layer can learn different abstractions
of the pattern from feature to target. Increasing the number of layers often reduces
the number of neurons required to represent the desired pattern, and can reduce the
test error. However, simply stacking more and more layers on top of each other leads
to the degradation problem, where the introduction of more hidden layers saturates
the training loss before it eventually starts increasing. Thus, an increase in test loss
is not due to overfitting, but to the training going in the wrong direction.

The residual block Figure 3.10 was introduced by He et al. (2016) to address the
degradation problem. Consider a shallower net and a deeper net that consists of
the shallower net plus some more added layers, where the added layers are identity
mapping (f(x) = x). The deeper net should then produce no higher training loss
than the shallower net. However, that is not the case in practice.

Let H(x) denote the original desired underlying mapping. Instead of adding layers
to fit H(x), the authors rather proposed to let the added layers approximate the
residual F(x) = H(x)−x, which recasts the original mapping to H(x) = F(x)+x.
The latter equation is realized by the use of skip connections, that allows information
to jump over layers, as illustrated in Figure 3.10.

With this reformulation, and assuming that the identity mappings are optimal, the
problem of finding the optimal network simply reduces to driving the weights of
the layers in the residual block to zero. In practice, it is unlikely that the identity
mappings are optimal, but the authors showed that it might reasonable to assume
that the optimal is closer to an identity mapping than to a zero mapping. It should
thus be easier to learn with the residual mapping F(x), rather than the original
desired underlying mapping H(x).

25

3.3. Hyperparameter optimization

Fully connected

Fully connected

Fully connected

Fully connected

Figure 3.10: Example of a regular block (left) and a residual block (right). The curved
edge from the input to the addition signifies a skip connection. g(·) is the activation
function. Note that H(x), and thus also F(x), can have many different designs. Adapted
from He et al. (2016)

3.3 Hyperparameter optimization

Section 3.2.2 introduced how the training error is minimized, and Section 3.2.4
described a technique to alter the training process to make the generalization gap
smaller. The goal of this work is to control the training process such that we
achieve both a low training loss and a small generalization gap. This work does so
by optimizing the hyperparameters of the model.

A hyperparameter is a parameter that is used to control the training of a machine
learning model. These are parameters that are decided beforehand, and opposite
to the learning parameters, are not updated throughout the training. The depth
of the network, the width of a layer, the learning rate, the activation function, the
mini-batch size, and the norm penalty are all examples of different hyperparameters.

The definition of a hyperparameter is quite loose, and there are several other “para-
meters” that also contribute to the behaviour of the learning process. A parameter
could, e.g., be whether to use residual blocks or not in the architectural design of the
network, which certainly would affect the training. However, such an architectural
design parameter is not a hyperparameter but is instead a part of another interesting
machine learning topic called neural architecture search (Elsken et al., 2019), which
aims to find the best-suited model architecture.

Stretching it even further, by looking at the dataset, which certainly also affects the
training, one could define parameters for this as well. E.g., removing examples with
features that lie outside some factor of the interquartile range for that feature, or
selecting to use only a subset of all features. By incorporating this data cleaning and
feature selection, respectively, we are approaching another interesting topic called
automated machine learning (Auto ML) (Hutter, Kotthoff et al., 2019), which aims
to automate the entire machine learning process.

26

3.3. Hyperparameter optimization

With hyperparameter optimization, the goal is to extract the optimal out of a selec-
ted architecture, where data has been preprocessed and features are already selected.
Figure 3.11 illustrates this relationship.

Auto ML Preprocessing data Feature selection NAS HPO

Figure 3.11: HPO in the AutoML chain. HPO aims to extract the maximum out of a
model that already exists.

3.3.1 Problem statement

Rewriting the problem definition from Feurer and Hutter (2019):

Definition 3.1 (Hyperparameter optimization):
Let A denote a machine learning algorithm with N hyperparameters.

We denote the domain of the n-th hyperparameter by Λn, and the overall hyperpara-
meter configuration space as Λ = Λ1 × Λ2 × . . .ΛN .

A vector of hyperparameters is denoted by λ ∈ Λ, and A with its hyperparameters
instantiated to λ is denoted by Aλ.

Given a dataset D, our goal is to find

λ∗ = argminλ∈Λ E(Dtrain,Dvalid)∼D [V (Aλ, Dtrain, Dvalid)],

where V (Aλ, Dtrain, Dvalid) validates the loss of a model generated by algorithm A
with hyperparameters λ on training set Dtrain and evaluated on validation set Dvalid.

The objective is thus a black-box functional from hyperparameters λ to valida-
tion loss V (Aλ, Dtrain, Dvalid), where no convexity can be assumed on the response
surface. For simplicity, we will shorten the objective as f(λ), and denote the cor-
responding validation loss as v, such that v = f(λ).

The only way to obtain accurate information about the objective is to sample the
response. By sampling, we mean training the neural network with its hyperparamet-
ers instantiated to some value, and calculating the validation loss. Appropriately
limiting the size of the configuration space is therefore paramount to achieving sat-
isfying results with any HPO algorithm. Consider, e.g., a configuration space of
five hyperparameters, where each hyperparameter can take on a modest 10 unique
values. The configuration space thus have a total of 100, 000 possible configurations.
If it takes 30 minutes to train the model, it would take approximately 6 years to
test every configuration, if they were to be run sequentially on one machine.

Furthermore, the unique values hyperparameters can take on may come from dif-
ferent domains. For example, the learning rate can be real-valued, the depth can

27

3.3. Hyperparameter optimization

be integer-valued, and which activation function to use can be categorical. It can
also exist conditional relationships between hyperparameters, such as which width a
layer should have, if the layer exists. Therefore, the unique values a hyperparameter
can take on are often much greater than 10, highlighting again the importance of
limiting the configuration space.

Another technique used to make hyperparameter optimization more feasible is to
make informative decisions based on information from previous trials, such as Bayesian
optimization does.

3.3.2 Bayesian Optimization

Bayesian optimization (Brochu et al., 2010; Shahriari et al., 2015) is a sequential
model-based optimization (Hutter, Hoos et al., 2011) algorithm designed for global,
expensive black-box optimization. An SMBO algorithm consists of two main com-
ponents:

1. A surrogate, M , that models the response surface of the objective.

2. An acquisition function, u, that based on the surrogate decides where to sample
next.

The idea behind SMBO is that by minimizing the surrogate, one also minimizes the
true objective. SMBO does so by iteratively sampling and building up the surrogate.
The acquisition function acts as a broker that decides where it is clever to sample
next. Pseudocode for generic SMBO is given in Algorithm 1.

Algorithm 1 Pseudocode for Sequential Model Based Optimization. Adapted from
Bergstra, Bardenet et al. (2011)
Require: M0, T , a, f
1: H ← ∅, M0 ← ∅
2: for t← 1 to T do
3: λ

′ ← argminλ u(λ,Mt−1) ▷ Acquisition function
4: Train A

λ
′ and evaluate v = f(λ

′
)

5: H ← H ∪ (λ
′
, v)

6: Fit a new model Mt to H ▷ Surrogate model
7: end for
8: return H

The acquisition function used by the selected optimization algorithms in this work
is the Expected Improvement (EI) criteria, which maximizes how much improvement
one can expect to achieve from some threshold v∗:

EIv∗(λ) :=

∫ ∞

−∞
max (v∗ − v, 0) pM(v | λ)dy (3.12)

28

3.3. Hyperparameter optimization

Since sampling the objective is expensive, constructing a good surrogate model
within relatively few samples is important. Bayesian optimization does so in a
particularly effective fashion. As the name suggests, it builds the surrogate as a
posterior distribution using Bayes’ rule:

M = p(v|λ) ∝ p(v) × p(λ | v)
M = posterior ∝ prior× likelihood

Whereas e.g., Bayesian optimization with Gaussian Processes (Williams and Rasmussen,
2006) models the posterior directly, the selected HPO algorithms of this work use
the tree-structured Parzen estimator, which instead models the likelihood.

Tree-structured Parzen Estimator

The tree-structured Parzen estimator was proposed by Bergstra, Bardenet et al.
(2011), and this section is mainly inspired by their work.

Let us first consider the tree part. The authors consider the HPO problem as a
problem of ‘optimizing a loss function over a graph-structured configuration space’,
but restrict themselves to a tree-structured graph. The configuration space is tree-
structured, in ‘the sense that some leaf variables are only well-defined when node
variables take particular values.’ E.g., which width a layer should have (leaf), if the
layer exists (node).

The authors further define a configuration space by a ‘generative process for draw-
ing valid samples’. That is, first choose if the layer should exist, then choose the
width of that layer. The TPE then models the likelihood p(λ | v) by ‘transforming
that generative process, replacing the distributions of the configuration prior with
non-parametric densities.’ The densities are obtained by using kernel density estim-
ation (KDE), or Parzen-window estimation, which is where the TPE gets its Parzen
estimator part from.

Kernel density estimation is a non-parametric way of estimating the probability
density function from observed data. The TPE does so by stacking Gaussian kernels
(or Gaussian distributions) with mean corresponding to the value of the observed
hyperparameter, and standard deviation equal to the maximum distance to the left
and right neighbour of the observation, limited to some threshold.

The TPE splits the samples into two categories. One category, ℓ, where v = f(λ) is
less than some threshold v∗, and one category, g, containing all the other samples.
It then models p(λ | v) by modelling one density for each category:

p(λ | v) =

{
ℓ(λ) if v < v∗

g(λ) if v ≥ v∗
(3.13)

v∗ is chosen such that p(v < v∗) = γ, where, γ is some quantile of the observed
samples v. The authors further show that by this construction, the EI criteria can
be written as

29

3.3. Hyperparameter optimization

EIv∗(λ) =

∫ v∗

−∞
(v∗ − v) p(v | λ)dv

=

∫ v∗

−∞
(v∗ − v)

p(λ | v)p(v)
p(λ)

dv

∝
(
γ +

g(λ)

ℓ(λ)
(1− γ)

)−1

(3.14)

Equation 3.14 shows that the expected improvement tries to maximize the probab-
ility of a hyperparameter being in ℓ, while minimizing the probability of the same
hyperparameter being in g. BO-TPE utilizes this by first drawing many samples
from ℓ and then evaluating them according g(λ)/ℓ(λ). Equation 3.14 also shows
that no specific model for p(v) is needed. An illustration of the relationship from
samples, to categories, to density and utility, is given in Figure 3.12.

An important aspect of the TPE is that it uses multiple 1-dimensional estimators.
I.e., it models only the probability density function of a single hyperparameter being
in ℓ or g, and does not model any covariance with any other hyperparameter. So,
with the generative process used to select the next candidate of hyperparameters to
sample, it would first decide an appropriate value for λ1, and then decide a value for
λ2 completely disregarding the value of λ1 (if there is not a conditional relationship
between λ1 and λ2).

Whether the use of multiple univariate density estimators is an advantage or disad-
vantage is unclear. E.g., Klein and Hutter (2019) attributes the superior perform-
ance of BO-TPE over similar methods to the use of univariate KDEs, while Ying
et al. (2019) attributes the inferior performance of the BO-TPE to the same reason.

30

3.3. Hyperparameter optimization

Va
lid

ai
to

n
lo

ss
Category

g
l

De
ns

ity

Category
g
l

Hyperparameter

Ut
ilit

y

Figure 3.12: BO-TPE illustration. Top: Samples are split into two categories. Middle:
KDE of data from the two categories. Black dots illustrate samples. Bottom: Expected
improvement at the sampled points. The star indicates the highest expected improvement.
The next hyperparameter configuration will use the hyperparameter value of that point.

3.3.3 Multi-Fidelity Optimization

The BO-TPE algorithm (and most other vanilla SMBO algorithms) only evaluates
a model’s performance after the net has reached some convergence criterion. For a
given model there could be several, simultaneous, criteria, such as e.g., the training
or validation loss not decreasing for some epochs, a fixed number of epochs have
passed or an amount of wall-clock time has passed.

With multi-fidelity optimization, the question asked is: ‘Can we identify and ter-
minate poor-performing hyperparameter settings early in a principled online fashion
to speed up hyperparameter optimization?’ (Jamieson and Talwalkar, 2016)

31

3.3. Hyperparameter optimization

Early stopping

Early stopping is one technique that tries to answer the multi-fidelity question and
involves stopping the training process before the model reaches one of its conver-
gence criteria. In this work, we will use a predefined fixed number of epochs as the
convergence criteria, also referred to as the budget.

Given a budget, one must decide some way if the model should be given the full
budget, or if it should be early stopped. This decision is referred to as a stopping rule.
One simple, yet effective, non-parametric stopping rule is the median stopping rule
(Golovin et al., 2017, Section 3.2.2). The median stopping rule (MSR) stops a trial, if
the trial’s best-observed validation loss is strictly less than the median of the running
average of previous trials up until similar points in time. By using the median to
compare, the MSR is fairly robust to outliers, as a horribly bad configuration would
not affect the median any more than a moderately bad configuration would. See
Figure 3.13 for illustration. Combining the median stopping rule with SMBO is
trivial.

0% 100%

Budget

Va
lid

at
io

n
lo

ss

Median
Trial
Trial's minimum

Figure 3.13: Median Stopping Rule. The trial is stopped after its best-observed validation
loss is strictly less than the median up until similar points in time. This can lead to allowing
the trial to continue, even though its loss is higher than the median, as the figure illustrates.

Bandit based approaches

Bandit based hyperparameter optimization approaches try to answer the multi-
fidelity question by casting the HPO problem as an instance of ‘non-stochastic best-
arm identification’ (Jamieson and Talwalkar, 2016). The general best arm problem
for multi-armed bandits is given in Algorithm 2.

In the context of hyperparameter optimization, each arm corresponds to a fixed hy-
perparameter configuration, pulling an arm corresponds to a fixed number of epochs,
and the loss corresponds to the validation loss. At each step, the algorithm only ob-
serves hyperparameter configuration It, and the goal is to choose a hyperparameter
configuration Jt such that Jt has the lowest validation loss.

32

3.3. Hyperparameter optimization

Algorithm 2 Best Arm Problem for Multi-armed Bandits. li,k denotes the loss
observed on the kth pull of the ith arm. Adapted from Jamieson and Talwalkar
(2016)
Require: n arms
1: Ti ← 1 ∀ i ∈ [n]
2: t← 1
3: repeat
4: Algorithm chooses an index It ∈ [n]
5: Loss lIt,TIt

is revealed
6: TIt ← TIt + 1
7: Algorithm outputs a recommendation Jt ∈ [n]
8: t← t+ 1
9: until External stop signal received

Successive Halving

To answer the multi-fidelity question, Jamieson and Talwalkar (2016) proposed a
solution using the Successive Halving method from Karnin et al. (2013): Uniformly
allocate a given budget to a set of arms for a predefined number of epochs. Then,
evaluate the arms’ performance, stop the worst performance half, double the budget
of the good performing half, and repeat until just one arm is left. An illustration of
Successive halving algorithm is given in Figure 3.14. Pseudocode for the algorithm
is given in Algorithm 3

Algorithm 3 Successive Halving. Adapted from Jamieson and Talwalkar (2016)
Require: Budget B, n number of configurations
1: s0 ← getHyperparameterConfigurations(n)
2: smax ← ⌈log2(n)⌉
3: for k = 0, 1, . . . , smax − 1 do
4: rk ← ⌊ B

|sk|smax
⌋

5: L← sample(s, rk) ∀s ∈ sk
6: sk+1 ← topHalf(sk, L)
7: end for
8: return Configuration with the smallest intermediate loss seen so far.

• getHyperparameterConfigurations(n) - Returns n hyperparameter configura-
tions drawn random uniformly from the hyperparameter configuration space.

• sample(s, r) - Trains the model with hyperparameter configuration t for r
epochs and returns the validation loss observed after r epochs.

• topHalf(s, L) - Returns the top half performing configurations from s, based
on the corresponding losses L.

33

3.3. Hyperparameter optimization

0% 12.5% 25% 50% 100%

Budget

Va
lid

at
io

n
lo

ss

Figure 3.14: Successive Halving, illustrated with 8 configurations. Budgets are doubled
when half of the configurations are stopped. Only one configuration is allowed to use the
full budget.

There is one major challenge of the Successive halving algorithm, namely the size of
the budget vs the number of configurations. For a given budget B, Successive Halv-
ing allocates on average B/n resources to the configurations. Thus, the algorithm
requires choosing whether a few configurations with a larger budget on average or
many configurations with a smaller budget on average should be considered. There
is no general solution to this trade-off.

Hyperband

Hyperband (Li et al., 2017) addresses the trade-off problem by considering multiple
numbers of arms n for a given budget B. Pseudocode for the Hyperband algorithm is
given in Algorithm 4. The input R is the maximum resources a single configuration
can be given, and η determines the proportion of trials discarded in each iteration
of Successive Halving. The default value of η is 3, which means that two-thirds of
the trials are discarded in every iteration of Successive Halving.

The algorithm consists of an outer loop (lines 4-6) and an inner loop (lines 8-11).
The outer loop calculates different values of the number of configurations to sample,
n, and the minimum number of resources, r, allocated to each configuration. Each
run of the outer loop is called a bracket.

Each bracket invokes a single run of Successive Halving with fixed values n and r,
and uses approximately B total resources. The brackets are run in an order that
favours exploring first, i.e., running many hyperparameter configurations with a
small average budget per trial. Each bracket reduces n by approximately a factor
of η until the final bracket, where each trial is given R resources. The total number
of resources used in a single execution of Hyperband is (smax + 1)B. Thus, for a
given budget, Hyperband does approximately smax + 1 more work than Successive
Halving for a single value of n. The authors recommend repeating the algorithm
indefinitely.

34

3.3. Hyperparameter optimization

Algorithm 4 Hyperband. Adapted from Li et al. (2017)
Require: R, η
1: smax ← ⌊logη(R)⌋
2: B ← (smax + 1)R
3: for s = smax, smax − 1, . . . , 0 do
4: n← ⌈B

R
ηs

(s+1)
⌉

5: r ← Rη−s

6: T ← getHyperparameterConfigurations(n) ▷ Start Successive Halving
7: for i = 0, . . . , s do
8: ni ← ⌊nη−i⌋
9: ri ← rηi

10: L← sample(t, ri) ∀t ∈ T
11: T ← topK(T, L, ⌊ni/η⌋)
12: end for ▷ End Successive Halving
13: end for
14: return Configuration with the smallest intermediate loss seen so far.

• getHyperparameterConfigurations(n) - Returns n hyperparameter configura-
tions drawn random uniformly from the hyperparameter configuration space.

• sample(t, r) - Trains the model with hyperparameter configuration t for r
epochs and returns the validation loss observed after r epochs.

• topK(T, L, k) - Returns the k top performing configurations from T, based on
the corresponding losses L.

3.3.4 BOHB

There is one major disadvantage to both Successive Halving and Hyperband - They
draw hyperparameter configurations at random. The BOHB (Falkner et al., 2018a)
algorithm proposes a solution to this challenge. BOHB uses Hyperband as its frame,
but instead of sampling randomly, it uses an adaptation of the TPE to leverage
previous observations. By doing so, the algorithm is able to combine multi-fidelity
optimization with SMBO.

The major difference between the KDE BOHB uses and the TPE is that instead of
using multiple univariate density estimators, BOHB uses a single multidimensional
KDE to ‘better handle interaction effects’ between hyperparameters. By doing so,
BOHB aims to capture dependencies between hyperparameters, which practice has
shown exists (Goodfellow et al., 2016; Feurer and Hutter, 2019; Klein and Hutter,
2019). To distinguish between the two KDEs, we will refer to the originally proposed
one (Section 3.3.2) as the univariate TPE and the one proposed by BOHB as the
multivariate TPE. For more details on the multivariate TPE, please see Falkner
et al. (2018b, Section D).

A challenge with building the surrogate model is that the Hyperband algorithm
evaluates the objective at different budgets. At first, many samples evaluated at

35

3.3. Hyperparameter optimization

small budgets will be available, and as the optimization progresses, more samples
evaluated at larger budgets will be observed. BOHB accounts for this by effectively
building a model for each intermediate budget ri used in the Successive Halving
runs.

However, the goal of the optimization is to minimize the validation loss with the
full budget available. Thus, BOHB only uses the model for the largest budget with
at least Nmin observations (line 4). As the optimization progresses, conclusions
are drawn from incrementally higher fidelities and avoid (potentially) misleading
conclusions drawn from lower fidelities. BOHB sets Nmin to equal the number of
hyperparameters being optimized plus one.

Line 1 in Algorithm 5 samples uniformly at random a constant fraction ρ of config-
urations to ensure that BOHB keeps the theoretical guarantees of Hyperband. Line
4 of Algorithm 5 initializes the algorithm with Nmin + 2 random configurations.

Algorithm 5 BOHB sampler. Adapted from Falkner et al. (2018a)
Require: Observations D, fractions of random runs ρ, percentile q, number of

configurations Ns, minimum number of observations to build a model Nmin

1: if rand() < ρ then
2: return random configuration
3: end if
4: b← argmax{Db : |Db| ≥ Nmin + 2}
5: if b = ∅ then
6: return random configuration
7: end if
8: Fit multivariate TPE
9: Draw Ns configurations from surrogate model

10: return configuration with the highest expected improvement

3.3.5 Exploration vs. Exploitation

An important aspect of any optimization, and particularly SMBO, is the exploitation-
exploration trade-off ; Do we wish to sample hyperparameter configurations that are
expected to slightly improve the validation loss (exploitation), or do we wish to
sample configurations that might drastically improve the validation loss but also
might not improve it at all (exploration)?

With the expected improvement criteria as proposed in Equation 3.14, there is no
particular way to control this trade-off. Adding a trade-off parameter could be done,
but this would only in turn introduce yet another hyperparameter, and is therefore
often left out.

The trade-off is however affected by the uncertainty in the surrogate model used,
which with both the univariate and multivariate TPE corresponds to the standard
deviation, or bandwidth, of the KDEs. With few samples, the distance between
neighbours is higher, and thus the bandwidth is higher. This in turn means that at
the beginning of the optimization process, hyperparameters are less good/bad in a

36

3.3. Hyperparameter optimization

larger part of the configuration space, and as the number of samples increases, they
become better/worse in a smaller part of the configuration space.

3.3.6 Robustness of hyperparameters

As Definition 3.1 states: Given a dataset D, our goal is to find

λ∗ = argminλ∈Λ E(Dtrain,Dvalid)∼D [V (Aλ, Dtrain, Dvalid)]. However, this λ∗ might not
be the best configuration in the sense that it might not be robust.

First, the dataset D will change as more data is sampled. Generally, more data
should lead to better training loss and generalization. However, the HPO is run
with a fixed dataset, and it might just be that λ∗ performed especially well for
exactly this D.

Furthermore, there are some stochastic processes involved in training a neural net-
work. First, the weights are initialized at random. That gives different starting
points for the gradient descent algorithm. One configuration might work excel-
lent from one starting point, while it might perform terribly from another point.
Secondly, the examples in the mini-batches are sampled at random in each epoch.
That also influences how the GD method is able to converge.

When selecting a hyperparameter configuration, we want it to be robust to these
changes in data and stochastic processes. For a given hyperparameter configuration
λ1, with validation loss f(λ1) = v1, we expect reasonably close neighbours of λ1 to
achieve a similar loss to v1. However, the dataset used, and the stochastic processes
involved might affect this expectation. As mentioned earlier, it might be that λ∗

was just the result of a lucky combination of hyperparameters and random samples.

One advantage of the model-based algorithms, not mentioned so far, is that they are
somewhat able to model the robustness as well. If one trial finds f(λ1) = v1 to per-
form well, the acquisition function will at one point most likely sample neighbours
of λ1. If these neighbours perform poorly, either because the hyperparameter con-
figuration is different from λ1, or because of the stochastic processes, the surrogate
will model this neighbourhood as a bad-performing neighbourhood. Configurations
sampled later on will therefore more likely come from outside the neighbourhood of
λ1, and thus the robustness of the hyperparameter configuration is incorporated in
the surrogate model.

37

4 | Case description

This chapter describes the case and the neural network used in the case. First, a brief
introduction of the oil & gas production process is given to provide some context,
but the explanation is kept short since understanding the production process is not
essential to this work. Then, the dataset used, the structure of the neural network,
and particularities of the training and regularization of the network are described.

4.1 Case Context

The residual neural network that is to be optimized is used as a Virtual Flow Meter
in oil & gas production. A virtual flow meter is a computational device that based
on sensor input estimates the total flow of water, oil, and gas through a production
pipe. A simple illustration of the production process is given in Figure 4.1. As
illustrated in the figure, all three materials are pumped up from the reservoir, and
go through a choke valve that is controlled by an operator, before it flows to a
separator that separates the materials from each other.

PWH denotes the pressure at the wellhead, or the upstream pressure. TWH denotes
the temperature at the wellhead, or the upstream temperature. CHK denotes the
opening of the choke valve. PDC denotes the pressure downstream the choke. QGL
denotes how much gas lift has been used while producing. FGAS denotes the fraction
of gas to total flow. FOIL denotes the fraction of oil to total flow. QTOT denotes
the total flow rate.

The VFM is called NeuralCompass (NC), and the rest of this chapter describes the
foundations of the NC.

PWH
TWH PDCCHK

Fr
om

 re
se

rv
oi

r

To separator

FGAS
FOIL
QGL

QTOT

Figure 4.1: Water, oil, and gas is pumped up from the reservoir, goes through an operator-
controlled choke valve, and are led to a separator. Adapted from Grimstad (2020).

39

4.2. Dataset and Preprocessing

4.2 Dataset and Preprocessing

Solution Seeker has acquired data from multiple wells, in multiple fields, by multiple
instruments. This proposes a challenge, as measurements are different between wells
and fields. In addition, since it is assumed that all data comes from the same data
generating process, using data from different wells might lead to learning difficulties.
The company has developed a learning algorithm and method for preprocessing the
data such that a neural network can learn from data across different wells and fields.

Solution Seeker’s preprocessing does some automatic cleaning of the dataset and
removes some faulty examples. In addition, it performs scaling of the features and
targets to appropriate ranges. The features and targets are however not normalized
nor standardized. Pre-experimentation with NeuralCompass’ standard hyperpara-
meters showed that some further data cleaning was needed. With the original data
set provided by Solution Seeker, a typical training with standard hyperparameters
would like the blue line in Figure 4.2a with avalanches in the training loss. A cor-
responding typical validation would look like the blue line in Figure 4.2b, with quite
noisy validation loss.

First, it must be stated that by using different hyperparameters, the training and
validation loss depicted in Figure 4.2 would look different, and could result in some-
thing more similar to the expected exponential decay. However, as the standard
hyperparameters have achieved good results before with similar datasets, the NC
should not be performing as poorly as it does with this dataset. Figure 4.2 illus-
trates that the network is not learning anything at all, and the loss comes down to
randomness. Correcting that behaviour was the first goal of the data cleaning.

The blue line in Figure 4.2b shows on average some exponential decay, but through-
out the training process the noise is loud, and some very large spikes are present.
This makes it difficult to use any sort of model-based optimization algorithm, multi-
fidelity technique or metaheuristic algorithm from the literature review (Section 2.1).
For the model-based, if the surrogate model is fit with a sample where validation loss
is at a spike, it would give a false impression of the performance of the hyperpara-
meter configuration under evaluation. For the multi-fidelity techniques, comparing
two trials, where at least one validation loss is at a spike, would also lead to an
unfair comparison, which might lead to the wrong trial being terminated. For the
metaheuristic algorithms, any sort of fitness measured could be misleading as well.
In addition, spikes and loud noise in the validation loss might indicate that the net-
work is only memorizing the training set, and not generalizing as is desired. Thus,
the second goal of the data cleaning was to reduce the noise and remove the spikes
from the validation loss.

While attempting to achieve the two goals as described above, it was also desired
to remove as few examples as possible. Therefore, first, all examples with features
or targets that indicated that a well was either not producing, or in the process of
stopping production, were removed. Outliers for specific wells were then identified
by using box plots, as illustrated in Figure 4.3a. Before removing the identified
outliers, it was manually investigated if the outlier could be a natural outlier, i.e., the

40

4.2. Dataset and Preprocessing

outlier could be an accurate measurement, by comparing the identified outlier with
examples with similar features from the same well. If the outlier could be a natural
outlier, the corresponding example was not removed. Removing the outlier shown in
Figure 4.3a results in a more informative set of targets, shown in Figure 4.3b. After
outliers from specific wells were removed, all wells with less than 25 total examples
were removed. This process was repeated by removing the most extreme outliers at
first and gradually removing less extreme outliers, to find a suiting trade-off between
the smoothness of the loss functions, and the number of examples. After cleaning
the original data set, a typical training with standard hyperparameters would like
the orange line in Figure 4.2a. A corresponding typical validation would look like
the orange line in Figure 4.2b. The number of examples in the original and cleaned
dataset, and the number of examples removed, is given in Table 4.1. The table also
shows how the dataset is split into a training, validation and test set.

As stated in Section 3.3, the goal of hyperparameter optimization is to extract the
optimal out of a selected architecture, where data has been preprocessed and features
are already selected. In other words – there are many predefined constraints.

Other aspects of the dataset, such as, e.g., how many wells and fields there are in it,
differences between fields, wells within the same field, and wells from different fields,
if the data has been anonymized, which instruments that were used for measure-
ment, the ranges for the different features and target, when the different examples
were sampled etc are therefore not particularly relevant for the hyperparameter
optimization in itself, because they fall within those predefined constraints.

Nevertheless, it should be stated that changing the preprocessing and feature se-
lection might also improve the performance of the neural network, as well as the
performance of the HPO-algorithms. However, it falls outside the scope of this
work.

Table 4.1: Overview of the dataset used in the case, and how it is split into a training,
validation, and test set. The numbers correspond to the number of examples, except the
bottom row, which is given in per cent.

Total Training Validation Test
Original 80138 62252 13761 4125
Clean 79356 61690 13574 4092

Removed 782 562 187 33
Removed[%] 0.976 0.903 1.359 0.800

41

4.2. Dataset and Preprocessing

0 1000 2000 3000 4000 5000

Epoch
0

10

20

30

40

50

60

70

Lo
ss

Original
Clean

(a) Training loss.

0 1000 2000 3000 4000 5000

Epoch
2

4

6

8

10

12

14

16

18

Lo
ss

Original
Clean

(b) Validation loss.

Figure 4.2: Training and validation loss with original and cleaned dataset. The blue
line illustrates the typical development of loss with the standard hyperparameters on the
original dataset, and the orange line illustrates the typical development of loss with the
standard hyperparameters on the cleaned dataset. Cleaning the data resulted in a signi-
ficantly better and smoother training and validation loss.

42

4.2. Dataset and Preprocessing

Training Validation Test
0

250

500

750

1000

1250

1500

1750

(a) Original data.

Training Validation Test

5

10

15

20

25

30

35

(b) Cleaned data.

Figure 4.3: Box plots of the target in the training, validation, and test set. Whiskers
extend to 1.5 × IQR, and outliers are drawn as diamonds. The grey solid horizontal
line marks the median. Notice the different y-scale between (a) and (b). Removing the
extreme outlier in the training set in (a) results in the new distribution in (b).

43

4.3. Structure

4.3 Structure

As mentioned in Section 4.2, the data set comes from multiple wells, in multiple
fields, and is measured by multiple instruments. The production process of each
well is unique, and thus the data obtained for each well is also unique. However, the
overall process (Figure 4.1) is still the same, and it is therefore assumed that the
data from each well comes from somewhat similar distributions. The NC utilizes
Multitask learning (MTL) (Ruder, 2017) in a comparable – but not identical – way
of Sandnes et al. (2021) to improve ‘generalization by leveraging the domain-specific
information in the training signals of related tasks ’ (Caruana, 1997). In this context,
task refers to wells, where each well is a unique task.

The NC uses 7 features from the data set: PWH, TWH, CHK, PDC, FGAS, FOIL
and QGL as described in Section 4.1. To accommodate for MTL, task-specific
learning parameters are used alongside the features. Consider, e.g., when a single
example is forward propagated through the network. This single example, obviously,
only comes from a single well. At the input layer, a set of task-specific learning
parameters are added in parallel with the features. These parameters are deactivated
if the example does not come from the corresponding task, and are otherwise equal
to a normal learning parameter. Thus, when the cost is backwards propagated, the
task-specific learning parameters are updated.

By adding the task-specific learning parameters, the NC can learn a generalized
production process by tweaking the general learning parameters, and take task-
specific information into account by tweaking the task-specific parameters. In other
words, the task-specific learning parameters provide some context to the training and
are thus referred to as context parameters. Exactly how these context parameters
are added is beyond the scope of this work. The input layer of the NC has a width
equal to the number of features, plus the number of context parameters.

The hidden layers of the network are residual blocks as described in Section 3.2.5.
Note that the residual blocks are specially designed, and do not necessarily look
like the one in Figure 3.10. Each residual block in the NC consists of multiple fully
connected layers with equal widths. The width of the network thus refers to the
width of these fully connected layers. The depth of the network is determined by
the number of residual blocks used.

The NC further uses QTOT as described in Section 4.1 as the target. The output
layer thus maps the activation from the last residual block to a single flow rate
estimation ŷ. A simple illustration of the NC with three residual blocks is given in
Figure 4.4.

44

4.4. Training and Regularization

xFeatures

cContext
R1 R2 R3 ŷ Output

Residual
1

Residual
2

Residual
3

Input
layer

Output
layer

Figure 4.4: Illustrative structure of the NeuralCompass, showing how the context-specific
learning parameters and residual blocks are used.

4.4 Training and Regularization

Activation function

The fully connected layers in the residual blocks use the Rectified Linear Unit
(ReLU) activation function (Nair and G. E. Hinton, 2010): a(x) = max{0, x}.
There exists many other activation functions (Nwankpa et al., 2018), but the de-
fault recommendation is to use the rectified linear unit function: Goodfellow et al.
(2016) describes why: ‘These units are easy to optimize because they are so similar
to linear units. The only difference between a linear unit and a rectified linear unit
is that a rectified linear unit outputs zero across half its domain. This makes the de-
rivatives through a rectified linear unit remain large whenever the unit is active. The
gradients are not only large, but also consistent. The second derivative of the recti-
fying operation is 0 almost everywhere, and the derivative of the rectifying operation
is 1 everywhere that the unit is active. This means that the gradient direction is far
more useful for learning than it would be with activation functions that introduce
second-order effects.’ ReLU is illustrated in Figure 4.5.

The output layer uses a linear activation function, which simply applies a linear
transformation to the incoming data: ŷ = Az + b. Thus, a single estimation of the
total flow rate is produced.

−3 −2 −1 1 2 3
−1

1

2

3

x

a(x)

Figure 4.5: Rectified Linear Unit activation function.

45

4.4. Training and Regularization

Weight initialization

The NC uses an adaptation of He-initialization (He et al., 2015) since the neurones in
the hidden layers of the network use the ReLU activation function. He-initialization
was specially designed for the ReLU activation function and its derivate properties.
For a given layer, it draws weights from a Gaussian distribution:

∼ N (0,
gain2

N
),

where N is the number of inputs to the layer. The gain is set to
√
2 for the nodes

in the layers that use the ReLU activation function, and 1 for the nodes in the
output layer since the activation function is a linear transformation. These values
are standard values. The weights are furthermore scaled to maintain unit variance
throughout the network, i.e., if all features are standard normal distributed, then
the output of the initialized model will also be standard normal distributed.

Optimizer

Section 3.2.2 introduced the standard gradient descent optimization method, along
with the stochastic and mini-batch versions of it. There exist different versions of the
gradient descent optimizer (Ruder, 2016), and the NC uses Adam (Kingma and Ba,
2014) as its optimizer. The name Adam comes from adaptive moment estimation,
and combines the use of momentum and adaptive learning rates.

Momentum simply introduces a short term memory of previous steps, which allows
the algorithm to build inertia in some direction in the search space, in order to
overcome noisy gradients and avoid local minima:

mk+1 = βmk +∇θJ(θk;x,y)

θk+1 = θk −αkmk+1,
(4.1)

where β is the momentum parameter. Setting β = 0 results in standard gradient
descent. See Goh (2017) for a beautiful interactive explanation of why and how
momentum works.

Adaptive learning rates is a technique that adapts the learning rate individually for
each learning parameter as the training goes on. Adam finds its adaptive learning
rate inspiration from RMSProp (G. Hinton et al., 2012), which individually adapts
the learning rates of all model learning parameters by scaling them inversely to
an exponentially weighted moving average of the square root of the sum of their
historical squared values within a defined window. With Adam, you then have a
defined maximum learning rate, αmax, for all learning parameters, and individually
adapted learning rates in α, such that the learning rate at step k, αk, is maximum
αmax.

By combining an adaptation of RMSProp with momentum, Adam is regarded as a
reasonably good go-to optimizer, recommended by e.g., Ruder (2016). Practice has

46

4.4. Training and Regularization

also shown that Adam is ‘fairly robust to the choice of hyperparameters’ (Goodfellow
et al., 2016), but there is no consensus on which optimizer is the best.

Learning rate scheduler

The NC also uses a learning rate scheduler. Learning rate scheduling is somewhat
similar to an adaptive learning rate, only that it affects all parameters similarly
instead of individually. Combining Adam with a learning rate scheduler is the same
as saying that the maximum learning rate for all parameters, αmax, is adjusted by
the scheduler throughout the training. The individual learning rates at step k, αk,
can therefore be lower if the optimizer decides so.

The NC uses a so-called stepping learning rate scheduler, which reduces the learning
rate by a factor every time the training reaches a predefined milestone. The mile-
stones were defined as every 100th epoch starting from and including the 4000th
epoch, and the factor was set to 0.6. The reason behind using the learning rate
scheduler in the late stage of the training is to stabilize the training and valida-
tion loss, and to hopefully allow the optimizer to close in on a good local minimum
without limiting the training too much.

Cost function

The NC derives its cost function from the theory of maximum likelihood estimation
(MLE), which is a way of estimating the parameters of a probability distribution
given some observed data. In other words, MLE wishes to maximize the probability
of the learning parameters θ describing the true data generating distribution, given
the examples observed in the data set:

θMLE = argmax
θ

p(x;θ)

For a linear regression problem, such as predicting the flow rate from a set of features,
it can be shown that (Goodfellow et al., 2016) maximizing the likelihood yields the
same estimate of the optimal parameters θ as minimizing the mean squared error
(MSE):

MSE =
1

n

n∑
i=1

||ŷi − yi||2

By adding a L2 parameter norm penalty, or weight decay, κΩ(θ) = κ||w||22 to the
MSE function we arrive at the cost function

J(θ;x,y) =
1

n

n∑
i=1

||ŷi − yi||2 + κ||w||22, (4.2)

where n is the number of examples.

47

4.4. Training and Regularization

It can also be shown that this is equal to performing a maximum a posteriori (MAP)
point estimate

θMAP = argmax
θ

p(θ | x) = argmax
θ

log p(x | θ) + log p(θ),

with a zero-mean Gaussian prior on the weights (Goodfellow et al., 2016).

Since the NC performs multitask learning as explained in Section 4.3, the cost
function in Equation 4.2 has to be updated slightly:

J(θ;x,y) =
1

n

k∑
i=1

||ŷi − yi||2 + κshared||wshared||22 + κspecific||wi
specific||22, (4.3)

where n are the total number of examples, k are the different tasks, wshared de-
notes the shared weights, wi

specific denotes the task-specific weights for task i, and
κshared and κspecific donates the norm penalty of the shared and task-specific weights
respectively.

48

5 | Method

This chapter describes the method used to perform the case study, and indirectly
forms a guide to HPO for Solution Seeker. First interesting hyperparameters of
the NC are identified before the selection of HPO-algorithms is discussed. Then
the experiment design is explained, before the implementation of the experiment is
described.

5.1 Identifying Interesting Hyperparameters

The NC has many hyperparameters, and limiting the configuration space is as de-
scribed in Section 3.3.1 paramount for a satisfying result. Consider, e.g., which
optimizer to use as a hyperparameter. The popular machine learning framework
PyTorch (Paszke et al., 2019) offers 13 different optimizers, and just Adam has its
own 6 hyperparameters. Limiting the configuration space is as described earlier key,
and this section describes why the hyperparameters chosen to be optimized in this
work were chosen. A summary is given in Table 5.1.

The learning rate

The learning rate is widely recognized as one of the most – if not the most – import-
ant hyperparameter (Goodfellow et al., 2016; Klein and Hutter, 2019). Goodfellow
et al. (2016) even writes; ‘If you have time to tune only one hyperparameter, tune
the learning rate’. Hence, the learning rate was chosen as the first interesting hy-
perparameter. Adam uses a standard learning rate of 1 × 10−3, and the NC has
previously been trained with a learning rate of 1 × 10−4. It was chosen to set the
lower limit of the learning rate at 1 × 10−6, and the upper at 1 × 10−2, each cor-
responding to respectively decreasing and increasing the learning rate by a factor of
100 from NC’s standard.

The learning rate belongs to R+, but sampling it uniformly at random within the
defined limits is not effective. That is because the learning rate has a multiplicative
effect on the gradient descent (Equation 3.6). Changing the learning rate by a delta
of 1 × 10−3 of a model originally trained with α = 1 × 10−1 would result in a very
small difference, but it for a model originally trained with α = 1×10−4 would have a
great effect. It was therefore decided to sample the learning rate from a logarithmic
uniform distribution (log uniform), to take the multiplicative factor into account.

49

5.1. Identifying Interesting Hyperparameters

Capacity and regularization

Secondly, the connection between capacity, regularization, and overfitting & under-
fitting was identified as an interesting aspect to optimize. This was motived by
the following statement from Goodfellow et al. (2016) ‘Controlling the complexity
[capacity] of the model is not a simple matter of finding the model of the right size,
with the right number of parameters. Instead, we might find – and indeed in practical
deep learning scenarios, we almost always do find – that the best fitting model (in the
sense of minimizing generalization error) is a large model that has been regularized
appropriately.’

There were several ways that these relationships could be altered; Changing the
depth, the width, the weight penalization parameters, adding different norm penalty
terms, adapting other regularization strategies, changing the structure of the residual
blocks, etc. To again limit the configuration space, it was decided to use the depth
as a variation of capacity, and the weight penalty parameters in Equation 4.3 as
ways of optimizing the regularization.

The NC used a depth of five residual blocks, and the upper limit was set to five, and
the lower limit was set to two, yielding a difference of ± three blocks. The depth
was chosen uniformly at random from within this range.

The weight penalization parameters belong to R+ and have a multiplicative effect
just like the learning rate. Thus, it was decided to also sample these from a log
uniform distribution. Both parameters were originally set to 1 × 10−9. The lower
limit was decided to be 1 × 10−10, to have some decrease available. It was not set
any lower, as any change below 1 × 10−10 would be insignificant. The upper limit
was set to 1× 10−3 to allow for strong regularization. The limits were set equal for
both parameters.

Multitask specific

Since the neural network performs multitask learning, it was finally decided to exper-
iment with the number of context parameters to see how they affect the training. The
NC originally used 20 context parameters per task, and it was decided to draw para-
meters uniformly at random from the following set: {1, 2, 3, 4, 6, 8, 11, 14, 17, 20, 25, 30}.
The set was designed to simulate a semi-logarithmic scale while skipping some steps
to further limit the configuration space. In addition, tuning on weight penalty para-
meter for the context-specific parameters, κspecific, is also an interesting multitask
specific aspect, further justifying that choice.

A summary of all selected hyperparameters and their range and distribution is given
in Table 5.1.

50

5.2. Selecting HPO Algorithm

Table 5.1: Identified hyperparameters and their defined range, distribution and standard
value.

Hyperparameter Range Distribution Standard value

Learning rate [10−6, 10−2] Log uniform 10−4

Depth {2, 3, 4, 5, 6, 7, 8} Uniform 5
κshared [10−10, 10−2] Log uniform 10−9

κspecific [10−10, 10−2] Log uniform 10−9

Context parameters {1, 2, 3, 4, 6, 8, 11,
14, 17, 20, 25, 30} Uniform 20

5.2 Selecting HPO Algorithm

It was desired to try at least three different HPO algorithms to compare their per-
formance, one baseline model and at least two challengers. This section explains
how and why the selected algorithms were chosen.

Before discussing how the selected HPO-algorithms were chosen, it is important
to mention the available hardware. Solution Seeker provided access to a machine
setup with 4 CPUs with a total of 15 GB memory, and one NVIDIA Tesla T4 GPU,
through the Google Cloud Platform. See Appendix A for more details.

Observations

As mentioned in Section 2.1, to achieve a good result, it is cardinal to choose an
appropriate optimization algorithm for your case. Through pre-trials and experi-
mentation, the following was observed regarding the NC:

i. Training for the standard 5000 epochs took around 30 minutes on the provided
hardware with standard hyperparameters.

ii. Although it is difficult to say what a big configuration space is, the chosen
configuration space is at least not small.

iii. There are no real parallel resources available, as only one GPU is available.

iv. The validation loss is still a bit noisy, even after cleaning the data. The learning
rate scheduler reduces the noise over the last 4000 epochs.

v. The configuration space contains both continuous and integer categorical hy-
perparameter domains.

Item i. underlines that validating a trial is expensive and that validating many trials
would take many hours. This speaks in favour of a model-based algorithm, which, if
successful, should be able to make smart acquisitions and steer away from the poor

51

5.2. Selecting HPO Algorithm

performing configurations. It also speaks in favour of using multi-fidelity techniques,
as they are designed exactly for this purpose.

Item ii. simply does not disfavour or favour any algorithm.

Item iii. disfavours the bandit-based and the metaheuristic algorithms, as their
capability is greatly reduced when trials are forced to run sequentially. E.g., a
standard run of Hyperband would yield 2187 trials running in parallel for 2 epochs.
Starting and pausing all of these trials on the same GPU would yield a massive
overhead.

Item iv. disfavours the metaheuristic and model-based algorithms as well as the
multi-fidelity techniques, because these algorithms make decisions based on the val-
idation loss, as explained in Section 4.2.

Item v. disfavours the use of a Gaussian process-based surrogate model, as these do
not natively support integer hyperparameters.

Choosing algorithms

First, the use of metaheuristic algorithms was quickly ruled out as no parallel re-
courses were available, and because they provide no guarantees for any strong final
performance. Nevertheless, a model-free method was desired as a baseline algorithm.
It was therefore decided to use the vanilla random search as the baseline algorithm,
because of its non-assuming simple nature.

For the first challenger, random search combined with the median stopping rule was
chosen to investigate the effect of using multi-fidelity techniques. This was desired
because of Item i., and the MSR was intended to speed up the termination of bad
performing trials to be able to sample more configurations. Although the bandit-
based algorithms Successive Halving and Hyperband have shown better anytime
and final performance than random search, they were ruled out due to the lack of
parallel resources.

Items i. and iii. all speak in favour of a model-based optimization algorithm,
i.e., Bayesian optimization with either Gaussian processes, random forests or tree-
structured Parzen estimator, or BOHB. BO-GP was then ruled out because of
Item v.. Although BOHB is regarded as a general, well-suited HPO algorithm,
it still relies on the Hyperband algorithm. Again, due to the lack of parallel re-
sources, BOHB was therefore deemed less suited for this case. This leaves SMAC
and BO-TPE as the most likely well-suited HPO algorithms.

For further challengers, it was as explained above therefore desired to use either BO-
TPE or SMAC. In addition to investigating the performance of a model-free method
with a model-based method, several other aspects of HPO could be explored:

• SMAC vs BO-TPE.

• The effect of multi-fidelity techniques.

52

5.2. Selecting HPO Algorithm

• Comparing different multi-fidelity techniques for one SMBO algorithm.

• Using the univariate TPE or the multidimensional TPE.

BO-TPE obtained a stronger final performance than SMAC on datasets that are
more similar to our application in Klein and Hutter (2019), and having to start
somewhere, it was therefore chosen to not compare SMAC and BO-TPE. In other
words, BO-TPE was chosen as the preferred algorithm. Investigating the perform-
ance of different multi-fidelity techniques was furthermore not desired due to the
lack of parallel resources.

This left the choice between either investigating the effect of multi-fidelity optimiz-
ation by running one optimization process with vanilla BO-TPE and another with
some early-stopping technique, or running one process with the univariate TPE and
one with the multivariate TPE.

Looking at the latter option first. Intuitively, it makes sense that there are dependen-
cies between hyperparameters. Literature also shows this (Goodfellow et al., 2016),
as e.g., deeper models often require stronger regularization than shallower models.
Unfortunately, there does not, to the best of our knowledge, exist much literature
comparing the univariate TPE to the multivariate one. Preferred Networks, the
company that makes the HPO-framework Optuna (Akiba et al., 2019) compared
in Hiroyuki (2020) the performance between the two methods on the benchmark
in Klein and Hutter (2019) when they updated their library to also include the
multivariate estimator. Hiroyuki (2020) reported that the multivariate TPE out-
performed the univariate one. Klein and Hutter (2019) furthermore reported on the
importance of hyperparameter pairs in their findings and showed that some pairs
were far more important than others. Furthermore, our configuration space is fairly
similar to the one BOHB (Falkner et al., 2018a) used, where the multivariate estim-
ator outperformed the univariate one. It was therefore believed that the multivariate
estimator would suit this case better.

Looking at the first option, combining BO-TPE (or any other SMBO method) with
early stopping, we can compare both vanilla random search with vanilla BO-TPE,
and random search with early stopping and BO-TPE with early stopping. In ad-
dition, combining BO-TPE with early stopping results in an interesting question;
Since some trials are early stopped, the surrogate model will be partly built by
intermediate results. How will this affect the acquisition and convergence of the
optimization algorithm? This is furthermore interesting in the sense of performing
hyperparameter optimization within a restricted time budget, as the goal of early
stopping is to speed up the convergence of the optimization. This is in accordance
with the primary object of this work.

Based on these two considerations, it was decided to use the multivariate TPE
instead of the univariate, and investigate the effect of combining the BO algorithm
with early stopping. Again, the MSR was chosen as the multi-fidelity technique.

53

5.3. Experiment

5.3 Experiment

The following HPO algorithms were as described in Section 5.2 chosen:

Table 5.2: Selected HPO-algorithms

Abbreviation Algorithm

RS Vanilla random search.
RS-MSR Random search with median stopping rule.
BO Vanilla multivariate BO-TPE.
BO-MSR Multivariate BO-TPE with median stopping rule.

The network was allowed to train for at most 5000 epochs, with a mini-batch size
of 2048 examples.

All algorithms were given the standard hyperparameters as the first trial to run.
Both BO and BO-MS3 were initialized with an additional 9 random configurations
before the surrogate model was used to suggest configurations. This was done to
initialize the surrogate model with varying samples throughout the configuration
space.

The MSR was implemented with a grace period of 2500 epochs, such that trials
could at the earliest be stopped after 2500 epochs. A minimum number of 50 trials
were required before the first trial could be stopped. The same MSR was used in
RS-MSR and BO-MS3.

The validation loss was measured with the average mean square error between the
prediction and target for all examples in the validation set of the 10 latest epochs:

v =
1

10

E∑
e=E−9

(
1

N

N∑
n=1

(yen − ŷen)
2

)
, (5.1)

where E is the last epoch, N is the number of examples in the validation set, yen is
the target for example n in epoch e, and ŷen is the prediction for example n in epoch
e.

This was done to smoothen the validation loss a bit further, and implies that both the
surrogate model and early stopping, were based on this metric. This was done such
that the early stopping and surrogate models partly constructed with early-stopped
samples would not be influenced as much by the noise in the loss. Furthermore,
it was expected that the difference between the MSE at trial E and the loss of
Equation 5.1 would be quite small in the ultimate stages of training because of the
learning rate scheduler. Note that this in turn also means that the running average
used to get the mean in the MSR is also based on the validation loss of Equation 5.1.
For the first nine epochs, the average was calculated up until the number of epochs
passed.

54

5.4. Implementation

Computational budget

Part of the primary objective of this work is to perform hyperparameter optimization
within a restricted budget, both time and money-wise.

Originally, it was desired to run each method for at least 200 trials, to be able to
cover the configuration space enough. One trial used around 30 minutes, which with
200 trials corresponds to approximately 4 days and 4 hours. To account for other
aspects, such as writing experiment data to logs, interruptions that might occur,
and other unknowns, another 5 hours were added to the experiment. Thus, each
method was limited to run for 4 days and 9 hours.

To fit within Solution Seeker’s expense budget, each experiment was method to run
3 times, and one computer was made available for each method. Thus, the total
run time would be approximately 13 days. Running each method 3 times also gives
some indication of performance variance for the different algorithms. This fits with
the objective of this work, which was not to find the best configuration, but rather
to acquire knowledge and insight into the suitability of the different methods. It was
considered running the experiment more times, but the costs of obtaining a more
statistically robust result were deemed too high.

5.3.1 Hypothesis

Based on the literature, theory and selected methods, the following hypothesis was
formed for the experiment:

H1: All methods should find better-performing hyperparameters than the standard
hyperparameters.

H2: Adding early stopping to a method should yield better anytime and final per-
formance than the same method without early stopping.

H3: Vanilla multivariate BO-TPE should have better final performance, and sim-
ilar or better anytime performance, than vanilla random search. Similarly,
Multivariate BO-TPE with MSR should have better final performance, and
similar or better anytime performance, than random search with MSR.

5.4 Implementation

The neural network itself was implemented in PyTorch (Paszke et al., 2019) and
was provided by Solution Seeker. One major modification was made to speed up
the training process: The network was adapted to use PyTorch’s Automatic Mixed
Precision, which leverages Tensor Cores to significantly speed up training. It does so
by using mixed precision for different operations, and by so accelerating throughput
while maintaining accuracy. The width of the fully connected layers in the residual

55

5.4. Implementation

blocks was altered to be a multiple of 8 to accommodate for the use of automatic
mixed precision.

The hyperparameter optimization was realized through Ray Tune (Liaw et al., 2018).
It was desired to use Ray Tune as the author was confident with the library, and
because a variety of HPO algorithms are available if new methods are to be explored
in further works. RS and RS-MSR were performed using Tune’s BasicVariantGen-
erator. BO and BO-MSR were realized through Tune’s OptunaSearch and Optuna’s
TPESampler (Akiba et al., 2019). The standard values of the TPESampler were
used. The MSR was implemented using Tune’s MedianStoppingRule. A quick over-
view of the Python implementation of the selected algorithms (Table 5.2) is given
in Appendix B. The specific python implementation is straightforward, and we refer
the reader to Liaw et al. (2018), Akiba et al. (2019) and Paszke et al. (2019) for
introduction to the aforementioned libraries.

The experiment was ultimately deployed with Docker (Merkel, 2014), to make it
easy to develop locally and run remotely. It also allowed for an easy way of letting
processes run on the remote machine without requiring SSH-connection. The ex-
periment was as mentioned run on the Google Cloud Platform with the hardware
configuration given in Appendix A.

56

6 | Results

This chapter presents the results of the experiment.

The loss refers to the loss used in the optimization process, Equation 5.1, which is
the average validation loss over the final 10 epochs. This was done to smoothen the
validation loss a bit, as described in Section 5.3.

The average loss of the standard hyperparameters was obtained from the first trial
of each run of each method, as these trials as mentioned all used the standard
hyperparameters. The average was calculated to be 2.46, and is referred to as v̄.
This number will be used as a benchmark. ∆ signifies the improvement, i.e., the
decrease in loss, from v̄.

6.1 Final solutions

The best loss found from each run of each method, and the corresponding improve-
ment from v̄, ∆ is given in Table 6.1. The table also show at which trial the loss was
found at, along with what wall clock time since the run was started it was found at.
The average loss and ∆ of each method are also given in Table 6.1. The best run is
highlighted in bold text, and the best average is highlighted in italics.

As can be seen from Table 6.1, BO was able to find both the best individual score
and also obtained the best average. The best score was found after 193 trials, or
after 3 days, 17 hours and 50 minutes, corresponding to about 86% of the allowed
time. The best loss obtained was 1.44, corresponding to a ∆ of 1.03 or around 42%
lower than v̄. The best average was 1.53, corresponding to a ∆ of 0.94 or around
38% lower than v̄. The worst average belongs to RS, with an average loss of 1.64,
corresponding to a ∆ of 0.82 or around 33%. Every run of every method was able
to improve from v̄.

57

6.1. Final solutions

Table 6.1: Results of experiment. The table shows the best loss found at each run for
every method and the corresponding average. ∆ is the improvement from the average of the
12 initial runs with standard hyperparameters (2.46). ∆[%] shows the same improvement
in per cent. Finally, the trial and wall clock time that the best configuration was found
at is shown. The best configuration is highlighted in bold text, and the best average is
highlighted in italics.

Method Run Loss ∆ ∆[%] At trial After wall clock time

RS

1 1.52 0.95 38.45 110 2 days, 8 hours, 48 minutes
2 1.63 0.84 34.07 73 1 day, 13 hours, 23 minutes
3 1.79 0.68 27.60 43 20 hours, 12 minutes
AVG 1.64 0.82 33.37

RS-MSR

1 1.53 0.94 38.15 12 5 hours, 40 minutes
2 1.59 0.88 35.62 190 3 days, 16 hours, 9 minutes
3 1.69 0.78 31.50 182 3 days, 7 hours, 52 minutes
AVG 1.60 0.87 35.09

BO

1 1.44 1.03 41.55 193 3 days, 17 hours, 50 minutes
2 1.53 0.94 38.01 238 4 days, 7 hours, 53 minutes
3 1.62 0.85 34.51 93 1 day, 21 hours, 37 minutes
AVG 1.53 0.94 38.02

BO-MSR

1 1.57 0.90 36.48 181 4 days, 4 hours, 10 minutes
2 1.55 0.92 37.40 113 2 days, 9 hours, 52 minutes
3 1.62 0.85 34.26 107 2 days, 3 hours, 11 minutes
AVG 1.58 0.89 36.04

Figure 6.1 shows which methods found the configurations in the top 1, 5 and 15
percentile out of the total, 2588 trials. BO was able to find the most configurations
in all percentiles, thus finding most of the best and most of the good configurations.
RS, RS-MSR and BO-MSR performed fairly similar.

Top 1%
Loss < 1.69

Top 5%
Loss 1.88

Top 15%
Loss < 2.05

Percentile

0.0%

10.0%

20.0%

30.0%

40.0%

Di
st

rib
ut

io
n

23%

14%
19%

12%

21% 21%

46%
42%

35%

19%
23% 25%

RS
RS-MSR
BO
BO-MSR

Figure 6.1: The plot shows which methods found the configurations in the top 1, 5 and
15 percentile out of the total, 2588 trials. Especially BO was able to find many good
configurations.

58

6.2. Runtime performance

6.2 Runtime performance

Performance bottleneck

As you can see from Figures 6.3 and 6.4, RS-MSR was only able to run a few more
trials than RS within the defined time window, even though as Table 6.2 shows,
at least 80 trials were early stopped in each run. Furthermore, BO-MSR ran fewer
trials than BO, as can be seen from Figures 6.5 and 6.6, even though at least 20
trials were early stopped in each run as shown in Table 6.3.

Based on this, the specific implementation of the MSR used in this experiment was
deemed a performance bottleneck. As of 16th June 2022 it is not exactly clear why
this bottleneck occurred. It might be because of Tune’s implementation of the MSR
and scheduling in general, how pausing and possibly continuing each epoch affects
the efficiency of the GPU, or other unknown variables.

Nevertheless, it is still possible to get some insight into the effect of early stopping.

Runtime performance

The average cumulative minimum of each method is given in Figure 6.2, and the
cumulative minimum of each run for each method, along with the 90% confidence
interval around the mean, is given in Figures 6.3 to 6.6. As the figures show, all
methods were on average able to quickly improve from v̄ as can be seen in Figure 6.2.
Each run was also able to improve quickly from v̄ as can be seen in Figures 6.3 to 6.6.

Figure 6.2 shows that both the any-time and final performance for the average of each
method is fairly similar, with a slightly better final performance of BO. Figures 6.3
to 6.6 shows that the confidence intervals (CI) of BO and BO-MSR are much smaller
than the CI of RS and RS-MSR for the majority of the time.

Figures 6.3 and 6.4 shows that both RS and RS-MSR made large steps at the
beginning of the run, but no significant improvements were observed in the later
stages. Figures 6.5 and 6.6 shows that both BO and BO-MSR also made large
steps in the beginning, but their development is a bit more incremental than the
avalanches observed for RS and RS-MSR.

59

6.2. Runtime performance

104 105

Wall clock time [s]
1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

RS
RS-MSR
BO
BO-MSR

0 25 50 75 100 125 150 175 200 225 250

Trial
1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

RS
RS-MSR
BO
BO-MSR

Figure 6.2: Average cumulative minimum for all methods. The orange vertical line marks
where BO and BO-MSR stopped sampling randomly. There is no significant difference
between any of the methods when it comes to both anytime and final performance.

60

6.2. Runtime performance

104 105

Wall clock time [s]
1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Individual runs
Mean
90% Confidence

0 50 100 150 200 250

Trial
1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Individual runs
Mean
90% Confidence

Figure 6.3: Cumulative minimum for RS. The orange vertical line marks where BO and
BO-MSR stopped sampling randomly. The confidence interval stretches out from the mean
and is only shown where all three runs were still sampling. One run was able to find a
relatively good configuration quite fast, resulting in an initially large confidence interval,
and remains quite large throughout. No significant improvements were found after around
8× 104 seconds, or 50 trials.

61

6.2. Runtime performance

104 105

Wall clock time [s]
1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Individual runs
Mean
90% Confidence

0 50 100 150 200 250

Trial
1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Individual runs
Mean
90% Confidence

Figure 6.4: Cumulative minimum for RS-MSR. The orange vertical line marks where BO
and BO-MSR stopped sampling randomly. The confidence interval stretches out from the
mean and is only shown where all three runs were still sampling. All three runs evolve quite
similar up until around 2× 104 seconds, or 10 trials, where one run improved significantly.
That results in a large CI, which reduces a bit towards the end.

62

6.2. Runtime performance

104 105

Wall clock time [s]
1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Individual runs
Mean
90% Confidence

0 50 100 150 200 250

Trial
1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Individual runs
Mean
90% Confidence

Figure 6.5: Cumulative minimum for BO. The orange vertical line marks where BO
and BO-MSR stopped sampling randomly. The confidence interval stretches out from the
mean and is only shown where all three runs were still sampling. All three runs evolve quite
similar throughout. The largest improvements happen up until around 8 × 104 seconds,
or 50 trials, with some minor improvements later on. The confidence interval is relatively
small throughout.

63

6.2. Runtime performance

104 105

Wall clock time [s]
1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Individual runs
Mean
90% Confidence

0 50 100 150 200 250

Trial
1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Individual runs
Mean
90% Confidence

Figure 6.6: Cumulative minimum for BO-MSR. The orange vertical line marks where BO
and BO-MSR stopped sampling randomly. The confidence interval stretches out from the
mean and is only shown where all three runs were still sampling. All three runs evolve quite
similar throughout. The largest improvements happen up until around 8× 104 seconds, or
50 trials, with some minor improvements later on. The confidence interval is a bit varying
up until around 8× 104 seconds, or 50 trials, and is relatively small after that.

64

6.2. Runtime performance

The performance bottleneck made it as mentioned difficult to interpret the results.
However, some insight can still be extracted. How many trials stopped at each
epoch for RS-MSR and BO-MSR is given in Tables 6.2 and 6.3 respectively, and the
distribution of which epoch the trials were stopped at is illustrated in Figure 6.7.
The trial number of the first trial stopped in each run of RS-MSR and BO-MSR is
given in Table 6.4.

Comparing the individual plots of Figure 6.2, the results show that the trial per
wall time ratio affects the anytime and final performance of the methods, as you can
see BO-MSR “catching up” with BO some time after BO improves, while they on a
trial basis perform similarly. Furthermore, Figures 6.5 and 6.6 show that BO has a
slightly smaller confidence interval than BO-MSR for the majority of the time. RS
and RS-MSR performed quite similar, both trial per wall time-wise, and regarding
the confidence interval.

Tables 6.2 and 6.3 show that RS-MSR stopped a significant amount of more trials
than BO-MSR. On average, RS-MSR stopped around 37% of the total trials, or
47% if you subtract the fifty initial trials. BO-MSR only stopped around 14% of
the total trials, or 19% if you subtract the fifty initial trials. Tables 6.2 and 6.3 also
show that the vast majority of trials were stopped at the earliest epoch possible, as
illustrated in Figure 6.7. Table 6.4 further shows that the first trials stopped were
stopped quite soon after the required 50 trials had trained on the full budget.

Table 6.2: The table show how many trials were stopped at each epoch for the individual
runs of RS-MSR. Most of the trials were stopped at the earliest epoch possible.

Run
Epoch 2500 2501 2502 2522 2541 2724 2819 4250

1 73 5 1 0 1 0 0 1
2 73 8 0 0 0 1 0 0
3 86 6 0 1 0 0 1 0

Table 6.3: The table show how many trials were stopped at each epoch for the individual
runs of BO-MSR. Most of the trials were stopped at the earliest epoch possible.

Run
Epoch 2500 2501 2505 2506 2516 2523 2565 2614

1 23 2 0 0 0 1 1 0
2 18 3 0 0 0 0 0 0
3 34 4 1 1 1 0 0 1

65

6.3. Robustness and configuration space

2500 2501 After 2501
Epoch

0%

20%

40%

60%

80%

Pe
rc

en
t o

f s
to

pp
ed

 tr
ia

ls

90%

7%
2%

83%

10% 7%

RS-MSR
BO-MSR

Figure 6.7: Number of early stopped trials for RS-MSR and BO-MSR. The vast majority
of terminated trials are terminated as soon as possible, and only a fraction of trials is
allowed to continue from the first possible termination point.

Table 6.4: The table shows the earliest stopped trial for the individual runs of RS-MSR
and BO-MSR. In all cases, the first stopped trial happened quite quickly after the required
50 trials had been trained to completion.

Run RS-MSR BO-MSR

1 52 62
2 52 52
3 51 59

6.3 Robustness and configuration space

The hyperparameter values of the five best configurations are given in Table 6.5,
along with the corresponding loss and which method that found the configuration.
To investigate the robustness of these configurations, each configuration was run an
additional six times (because of the expense budget) after the experiment, yielding
a total of 7 runs for each configuration. A mean and standard deviation for the
resulting loss of each configuration was calculated from these seven runs and is
also given in Table 6.5. The second-best configuration found in the experiment,
B2, resulted in both the smallest mean and standard deviation. The largest mean
resulted from the fifth-best configuration, B5, and the largest standard deviation
came from the best configuration, B1.

The distribution of the loss for each of the five best configurations is given in the
form of a box plot in Figure 6.8. The original loss found by B1, B4 and B5 are
all marked as outliers. B2 is the only configuration in which all 7 runs managed to
improve from v̄.

Interestingly, the top five configurations were all less complex than the standard
NC. Investigating this a bit further by plotting the distribution of shallower or not
shallower configurations in the top 1, 5 and 15 percentile of all trials, one can see in
Figure 6.9 that almost two thirds of the configurations were shallower, and therefore

66

6.3. Robustness and configuration space

Table 6.5: The table shows the five best configurations found in the experiment, their
corresponding loss and which method found them. Each configuration was run an addi-
tional six times to calculate a mean and standard deviation for the loss.

ID Loss Mean STD Learning rate κshared κspecific Context Depth Method

B1 1.44 2.13 0.36 2.020E-03 8.396E-07 5.061E-09 8 4 BO
B2 1.52 1.98 0.28 2.122E-04 4.465E-08 2.864E-08 2 2 RS
B3 1.53 2.03 0.31 6.251E-04 2.141E-06 3.631E-05 25 2 RS
B4 1.53 2.08 0.31 2.536E-03 8.466E-05 1.596E-10 1 3 RS-MSR
B5 1.53 2.18 0.32 5.155E-03 2.482E-08 6.372E-05 2 3 BO

B1 B2 B3 B4 B5
Config

1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Figure 6.8: Box plot of the result of running the five best configurations an additional
six times. The median is shown with a grey horizontal line, and the mean is shown as a
black triangle. The grey diamond marks outliers, and the whiskers extend to 1.5× IQR.
The black dashed line shows v̄. B2 has the lowest mean, while B3 has the lowest median.
B2 is the only configuration in which all 7 runs managed to improve from v̄. The original
loss found by B1, B4 and B5 are all marked as outliers.

also less complex, than the standard NC in the percentiles. The figure also shows
that around half of all trials were shallower than the standard NC.

Continuing to investigate this discovery, one can see in Figure 6.10 the distribution
of depth in the top 15 percentile. The figure shows a clear trend between depth
and number of configurations in the percentile: The shallower the net, the more
configurations.

Scatter plots of hyperparameter values and corresponding loss for all trials are given
in Figure 6.11, per method in Figures 6.12 to 6.15, and per run per method in
Figures C.1 to C.4. Figure 6.11 show that only the learning rate seems to have
a well-defined region of well-performing values. The region is fairly consistent per
method and for each run as well. The learning rate of B1 to B4 is around, or
slightly to the right of, the centre of this region. The learning rate of B5 seems
to be closer to the upper limit of the region. Comparing Figures 6.12 and 6.13 to
Figures 6.14 and 6.15, it is also clear that the model-based methods sampled more
hyperparameter configurations within the well-defined region.

Figure 6.14 shows that BO in addition also favoured larger values of κspecifc and

67

6.3. Robustness and configuration space

slightly favoured smaller values of κshared. Figure 6.15 shows that BO-MSR favoured
either small or large values for κspecifc. Figures C.3 and C.4 also illustrates which
regions the multivariate TPE favoured in the individual runs for BO and BO-MSR,
respectively.

Top 1%
Loss < 1.69

Top 5%
Loss 1.88

Top 15%
Loss < 2.05

Total

Percentile

0%

10%

20%

30%

40%

50%

60%

Di
st

rib
ut

io
n

61.5% 63.1% 62.5%

50.2%
38.5% 36.9% 37.5%

49.8%

Depth
< 5

5

Figure 6.9: Sea green shows the distribution of configurations that were shallower (< 5),
and petroleum shows the distribution of configurations that were deeper or equal (≥ 5),
than the standard NC, in the top 1, 5 and 15 percentile. The distribution for the total,
2588 trials is also shown. Half of all trials were shallower, while around two-thirds of the
trials in the top 1, 5 and 15 percentile were shallower.

2 3 4 5 6 7 8
Depth

0%

5%

10%

15%

20%

25%

Di
st

rib
ut

io
n

25.7%
21.3%

15.4%
12.1%

9.0% 9.8%
6.7%

Figure 6.10: Distribution of depth in the top 15 percentile. The plot shows a clear trend:
The shallower the net, the more configurations.

68

6.3. Robustness and configuration space

10 5 10 3

Learning rate

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

10 9 10 7 10 5 10 3

shared

10 9 10 7 10 5 10 3

specific
2 4 6 8

Depth
0 10 20 30

Context parameters

Figure 6.11: Scatter plot of hyperparameters from all trials and corresponding loss. Trials
with loss greater than 5 are left out for illustrative purposes. Only the learning rate seems
to have a clear region of good and bad performing values.

10 5 10 3

Learning rate

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

10 9 10 7 10 5 10 3

shared

10 9 10 7 10 5 10 3

specific
2 4 6 8

Depth
0 10 20 30

Context parameters

Figure 6.12: Scatter plot of hyperparameters from all trials of RS and corresponding
loss. Trials with loss greater than 5 are left out for illustrative purposes. Only the learning
rate seems to have a clear region of good and bad performing values.

69

6.3. Robustness and configuration space

10 5 10 3

Learning rate

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

10 9 10 7 10 5 10 3

shared

10 9 10 7 10 5 10 3

specific
2 4 6 8

Depth
0 10 20 30

Context parameters

Figure 6.13: Scatter plot of hyperparameters from all trials of RS-MSR and corresponding
loss. Trials with loss greater than 5 are left out for illustrative purposes. Only the learning
rate seems to have a clear region of good and bad performing values.

10 5 10 3

Learning rate

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

10 9 10 7 10 5 10 3

shared

10 9 10 7 10 5 10 3

specific
2 4 6 8

Depth
0 10 20 30

Context parameters

Figure 6.14: Scatter plot of hyperparameters from all trials of BO and corresponding
loss. Trials with loss greater than 5 are left out for illustrative purposes. The learning
rate seems to have a clear region of good and bad performing values, and the acquisition
function acquired many κspecifc with higher values, and slightly more κshared with smaller
values.

70

6.3. Robustness and configuration space

10 5 10 3

Learning rate

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

10 9 10 7 10 5 10 3

shared

10 9 10 7 10 5 10 3

specific
2 4 6 8

Depth
0 10 20 30

Context parameters

Figure 6.15: Scatter plot of hyperparameters from all trials of BO-MSR and correspond-
ing loss. Trials with loss greater than 5 are left out for illustrative purposes. Only the
learning rate seems to have a clear region of good and bad performing values, and the
acquisition function seemed to somewhat favour either small or large values of κspecific.

71

7 | Discussion

This chapter discusses the demonstrated results in Chapter 6. The discussion is
structured after the hypothesis defined in Section 5.3.1, before the robustness and
the configuration space is discussed in the end.

7.1 H1

The results support H1, as they show that all methods were able to improve from
v̄. This was just as expected, since no extensive HPO had yet been performed
on the NC. The results also showed how quickly each run of each method was
able to improve from v̄. Running a single experiment overnight for 15 hours, or
5.4 × 104 seconds, while you’re away from work between 17:00 and 08:00, showed
significant improvement. A simple random search could thus have already improved
the performance of the NC without much effort. This underlines the effectiveness
of automated HPO.

7.2 H2

Regarding H2, it is difficult to either confirm or reject the hypothesis because of the
bottleneck. However, the idea behind using early stopping is to be able to sample
more trials per wall time. The results also showed that this ratio is key.

Looking first at the effect of adding early stopping to random search; RS vs. RS-
MSR. The results of Table 6.2 show that RS-MSR stopped a significant amount of
trials. On average, it stopped around 37% of the total trials, or 47% if you subtract
the fifty initial trials. By stopping this significant amount of trials, RS-MSR was
able to make up for the performance bottleneck and was in the end able to sample
a few more trials than RS. The results show that RS-MSR obtained a lower mean
and smaller confidence interval towards the end. This partly supports H2, since
lower mean and smaller CI towards the end speaks for a better final performance
for RS-MSR.

H2 is furthermore supported by the percentile distribution shown in Figure 6.1.
We attribute the fact that RS found more configurations in the top 1% to the fact
that this percentile only contains 26 samples. RS-MSR outperformed RS in the
top 5 and 15%, which indicates that RS-MSR was able to terminate bad-performing
trials early, which allowed for sampling of more, well-performing, trials. Terminating
bad-performing trials early means that the algorithm can find well-performing trials

73

7.2. H2

earlier, which again speaks for a better anytime performance for RS.

Looking then at the effect of adding early stopping to BO-TPE by comparing BO
and BO-MSR. The cumulative minimum over time in Figure 6.2 seem to show that
BO-MSR is catching up with BO some time after BO improves. By looking at the
cumulative minimum per trial in the same figure, the results indicate that BO and
BO-MSR are performing similarly. This indicates that the early stopping did not
affect the KDE in any negative way, and that BO-MSR was able to make as smart
acquisitions as BO with partially early terminated samples.

Furthermore, the results of Table 6.3 show that BO-MSR did not stop close to near
as many trials as RS-MSR. In fact, BO-MSR only stopped around 14% of the total
trials, or 19% if you subtract the fifty initial trials. As such, BO-MSR was not
able to make up for the performance bottleneck like RS-MSR was. The similar
performance per trial, and the catching up phenomenon, however, indicates that H2
is true. Based on this, and that the early stopping did not seem to negatively affect
the KDE, we believe that – if the performance bottleneck had not been present –
BO-MSR would have outperformed BO.

We attribute the differences in the distribution of configurations from each method
in the top 5, 10, and 15 percentiles (Figure 6.1) to two reasons; 1) BO sampled
a significant amount of more configuration than BO-MSR, and thus already had
a larger share of the pool, and 2) By having more samples, BO also had more
information to base its acquisitions on.

7.2.1 Early stopping aspects

Disregarding the performance bottleneck, there are several aspects that affected the
early stopping, and it is difficult to estimate their influence on the final results.

First, what would have happened if the number of minimum epochs required before
allowing termination was different? The results showed that the vast majority of
the early-stopped trials were terminated as early as possible, and if not, very soon
after. Could the required number of epochs then have been lowered, and in that
case, how would that affect the TPE? One possible outcome is that by stopping
too early, the samples used to build the KDE could be too misleading, which would
negatively affect the acquisition.

On the other hand, what would have happened if the required minimum number of
epochs was higher? Just as in Aesop’s The Tortoise and the Hare, maybe some early
stopped trials would have found the best final performance if they had been allowed
to run to the finish line? This is especially interesting considering the learning
rate scheduler kicking in after 4000 epochs, and that the early stopped trials never
reached this part of the algorithm. For the model-free methods, it is difficult to say
anything about this, as all configurations were sampled at random. For the model-
based, however, we assume that as the optimization goes on, the surrogate model
should be able to find some well-performing regions, and are searching for the local
minima of these regions. Since BO and BO-MSR performed similarly per trial, we

74

7.3. H3

believe that we at least did not stop the trials too early. Nevertheless, this does not
exclude the possibility of a tortoise among many hares.

Secondly, the number of minimum required trials could have been changed. Table 6.4
showed that the first terminated trials were stopped soon after the minimum required
samples. By lowering the minimum required number of samples, would the median
still have been representative in the early stages of the optimization? If we assume
that the loss v = f(λ) is normally distributed, reducing the minimum number of
required trials by, e.g., 50% would then not have resulted in that much a larger
confidence interval. The minimum required samples could thus probably have been
reduced, at least a bit. On the other hand, reducing the minimum number of
required samples could have affected the TPE, as possibly even fewer samples could
have been trained to completion.

In contrast, it could also have been possible to increase the minimum number of
required samples. However, considering how early the first trials were stopped, we
believe that the minimum of required samples was at least not too small. This is also
supported by the fact that BO and BO-MSR performed similarly per trial, and as
such increasing the minimum number of required samples would not have resulted in
significant improvements for the KDE. Interactions between the minimum required
epochs, and the minimum required samples could also have been considered – but
that would result in too many what-ifs.

A final factor affecting the early stopping is the calculation of the loss (Equation 5.1).
Does using the average over the last ten epochs result in a too smooth loss? Con-
sidering that at time t, the MSR 1) Uses the best-observed loss up until t for the
current trial, and 2) The median is obtained from the running average up until time
t of the completed trials, we believe no. We believe so because 1) If the loss of a trial
had a sudden fall in t, and in t+1 jumped back up to where it was in t−1, then that
sudden fall would have affected the stopping rule too much, as the best-observed
loss up until that point in time is used, and 2) the running average at of [0, t] is
smoother than the average of [t−10, t], for t > 10, and much smoother for t >> 10.

7.3 H3

The results of Table 6.1 showed that the final mean of BO was lower than the mean
of RS, and Figures 6.2, 6.3 and 6.5 shows that the mean of RS and BO develop
similar throughout the experiment, but the confidence interval of BO is significantly
smaller than that of RS. The results, therefore, indicate that BO has better anytime
and final performance than RS.

The same can be said about BO-MSR vs RS-MSR, even though RS-MSR achieved
the most trials per wall time, and BO-MSR the fewest. The results of Table 6.1
showed that the final mean of BO-MSR was lower than the mean of RS-MSR, and
Figures 6.2, 6.4 and 6.6 shows that the mean of RS-MSR and BO-MSR develop
similar throughout the experiment, but the confidence interval of BO-MSR is signi-
ficantly smaller than that of RS-MSR. The results, therefore, indicate that BO-MSR

75

7.4. Robustness and configuration space

has better anytime and final performance than RS-MSR. Both these statements sup-
port H3.

H3 is further supported by the percentile plots of Figure 6.1. BO and BO-MSR con-
sistently outperform RS and RS-MSR, respectively, in all shown percentiles. This
means that the model-based methods are able to find more well-performing hyper-
parameter configurations than the model-free methods, suggesting both a stronger
anytime and final performance.

However, the development over time between BO and RS (we only look at these
configurations to be able to disregard the performance bottleneck), was more similar
than expected. This prompts the question; Was the surrogate able to model the
response surface well enough?

One aspect that certainly affects the surrogate’s modelling ability, is the size of the
configuration space to the allowed time ratio. It is difficult to say anything about
this from the results in this particular case. However, increasing the ratio, by either
decreasing the size of the configuration space or increasing the allowed time, results
in either samples that better cover the configuration space, or more samples. Either
way, this should allow the surrogate to better model the response surface.

The scatter plot of Figure 6.11 shows that only the learning rate seems to have
a well-defined region of well-performing values. That might have difficultated the
response surface modelling. This concept is illustrated in Figure 7.1. The plot
shows the division into the two categories, ℓ and g, for the learning rate, κshared, and
κspecific from all 2588 configurations of the experiment, along with a univariate KDE
for the three hyperparameters. Compared to Figure 3.12, the KDE of Figure 7.1
does not provide much clarity about good and bad hyperparameter values.

The multivariate TPE was used in the experiment, but the point still stands. Ima-
gine, if possible, that both the scatter and KDE-plot is a six-dimensional hypercube,
where five of the dimensions are the hyperparameters, and the last dimension is
either the loss or the density estimation. If the density estimate then looks anything
close to what, e.g., the density estimate of κspecific in Figure 7.1, then it makes
sense that the acquisition function was not able to locate any well-performing local
minima.

On the other hand, what would have happened if the univariate TPE had been
used? Look at the learning rate in Figure 7.1 for example. The univariate TPE
might have been able to optimize this parameter better, since it uses one KDE for
each hyperparameter. Then again, with no covariance modelled, it might also have
been more difficult for the univariate TPE to model the other hyperparameters.

7.4 Robustness and configuration space

The results in Table 6.5 and Figure 6.8 indicates that none of the five best configura-
tions were robust. The best loss found by B1, B4 and B5 in the original experiment,
all fell outside 1.5 × the IQR, while the loss found by B2 and B3 in the original

76

7.4. Robustness and configuration space

10 5 10 4 10 3
Lo

ss

Category
g
l

10 5 10 4 10 3

Learning rate

De
ns

ity

Category
g
l

10 9 10 8 10 7 10 6 10 5 10 4

Lo
ss

Category
g
l

10 9 10 8 10 7 10 6 10 5 10 4

shared

De
ns

ity

Category
g
l

10 9 10 8 10 7 10 6 10 5 10 4

Lo
ss

Category
g
l

10 9 10 8 10 7 10 6 10 5 10 4

specific

De
ns

ity

Category
g
l

Figure 7.1: Scatter plot of the learning rate, κshared, and κspecific from all 2588 config-
urations of the experiment, equal to Figure 6.11. The samples have been split into two
categories, ℓ and g. Below the scatter plot is a univariate KDE for each of the categories.

77

7.4. Robustness and configuration space

experiment is at the endpoint of the bottom whiskers. The mean for each configura-
tion was also found to be significantly higher than the loss found in the experiment.
Considering the small values, the standard deviation in each configuration was also
quite high.

B1, B4 and B5 are arguably the least robust configurations, because of their high
mean, median and standard deviation. B2 and B3 are more similar, but B3 has a
higher mean and STD, in addition to an observation above v̄, which renders it less
robust. That leaves B2 as the most robust hyperparameter configuration, out of the
top five configurations.

Table 6.5 showed that the top five configurations were all less complex than the
standard NC. In addition, Figure 6.9 showed that around two thirds of the config-
urations in the top 1, 5 and 15 percentile were shallower than the NC. Figure 6.10
furthermore showed that, in this case study, the shallower the net, the more config-
urations in the well-performing percentile. This is somewhat contradictory to what
was expected, since practise have shown that large models that have been regu-
larized appropriately tends to work best. However, what defines large, and what
defines appropriately, are of course case specific.

These results might therefore indicate that the allowed regularization in this exper-
iment was not appropriate enough for the deeper models. They might also indicate
that the standard NC was too complex. Finally, they might also just underline
the fact that deeper models are more difficult to train, even with residual blocks,
explained as the degradation problem in Section 3.2.5.

Nevertheless, the shallowness might have affected the robustness of the top five con-
figurations, as they, in addition to being shallow, also used quite weak regularization.
The shallow weak-regularized networks might be more prone to stochasticities in
the learning algorithm, as they have fewer and less regularized learning parameters.
Thus, deeper and heavier regularized networks might be more robust.

Considering the scatter plots of Figures 6.11 to 6.15, 7.1 and C.1 to C.4, a natural
question to ask is if the configuration space could have been further limited. Con-
sidering the well-defined region of the learning rate, increasing the lower bound to
around 10−5 could probably have been done without affecting the performance of
the methods negatively.

Regarding the other hyperparameters, it is difficult to say. One thing that could
have been done with the regularization parameters, κshared and κspecific, was to
allow for either strong or weak regularization, by splitting their range into e.g:
{[10−10, 10−7], [10−5, 10−2]}. This is sort of contradictory to the out-take from Good-
fellow et al. (2016) in Section 5.1 which stated ‘that the best fitting model (in the
sense of minimizing generalization error) is a large model that has been regular-
ized appropriately’. Beforehand, it was uncertain what appropriately would mean,
but considering that neither BO nor BO-MSR either favoured values of κshared and
κspecific in the middle of our defined range, and that no general well-performing
region could be identified, we could probably have decreased the size of the config-
uration space by splitting the range into a weak and strong part. In addition, if a
majority of the well-performing configurations had κshared and κspecific close to the

78

7.4. Robustness and configuration space

middle, another, smaller, experiment with only the middle range could have been
run after.

Another way of decreasing the configuration space could also have been to use
fewer hyperparameters. Given that only the learning rate seems to have a well-
defined region of well-performing hyperparameters, an interesting possibility would
have been to only optimize this hyperparameter and keep everything else fixed.
On one hand, this could lead to worse single-experiment results, as we exclude
many possible configurations, but on the other hand it might lead to more robust
configurations. With a smaller configuration space, the surrogate should be able
to model the response of the objective function better, which should increase the
robustness effect described in Section 3.3.6.

Another aspect with the configuration space is the hyperparameters that were chosen
to be optimized, or rather the ones that were not chosen. Interesting hyperparamet-
ers such as which optimizer to use, the number of epochs, mini-batch size or different
activation functions could also have been considered. How increasing the configur-
ation space, or replacing one or more of the chosen hyperparameters with one or
more of these hyperparameters, would have affected the optimization is impossible
to say anything informative about. However, given that BO was less superior to RS
than expected, and that the top five configurations were not that robust, optimizing
other parameters is rendered an interesting topic for future work.

79

8 | Conclusion

The case study demonstrated one way of how one can take special considerations,
such as a restricted time and cost budget and key aspects of machine learning
algorithms, into account when selecting a hyperparameter optimization algorithm
and which hyperparameters to optimize. Furthermore, the results of the case study
showed that:

• All identified HPO-algorithms found solutions that were significantly better
than the benchmark v̄. They all also quickly improved from the benchmark.

• Out of the identified HPO-algorithms, BO performed the best. However, based
on the results, we believe BO with the median stopping rule would have per-
formed best if the performance bottleneck had not been present.

• None of the top five configurations were particularly robust, but out of the
five, B2 was the most robust.

• The results are generally in line with the theory, and mostly support the
hypothesis defined in Section 5.3.1.

8.1 Suggestions for future work

8.1.1 Different HPO-algorithms

BO did not outperform RS as much as expected, which might have been because
of difficulties with modelling the response surface. Other SMBO methods, such as
SMAC or BO with the univariate TPE, could therefore be more suited to this case
than BO with multivariate TPE. Difficulties with modelling the response surface
might also speak in favour of model-free methods, such as the population-based
methods. Appropriately selecting the HPO-algorithm is as described paramount
for achieving satisfying results. Although the selection of BO and BO-MSR were
justified, other methods might be more suitable. Since the evaluation of HPO-
algorithms is mostly based on empirical results, experimenting with different HPO-
algorithms should be investigated in future works.

8.1.2 Appropriate regularization

The top five configurations were not particularly robust, and most of the top-
performing configurations were shallower than the standard NC. One reason for

81

8.1. Suggestions for future work

that might have been that we did not allow for appropriate regularization of the
deeper models. Practice have shown that large and properly regularized networks
tends to perform better than shallower networks. Therefore, experimenting with
other means of regularization should be investigated in future works, to possibly
improve anytime and final performance.

8.1.3 Configuration space

The similar performance of BO and RS, and lack of robustness in the top five con-
figurations, could also be because of a poorly selected configuration space. Limiting
the configuration space is key for the model-based methods to effectively acquire
well-performing configurations. Therefore, experimenting with smaller ranges and
optimizing fewer hyperparameters should be investigated. Furthermore, many in-
teresting hyperparameters were not optimized in this work. With only the learning
rate having a well-defined region of well-performing values, other hyperparameters
might have been better to optimize. It should therefore also be experimented with
optimizing other hyperparameters.

8.1.4 Early stopping

The early stopping did not seem to affect the KDE negatively, and (disregarding the
bottleneck) early stopping more aggressively could therefore yield greater speed-up.
Therefore, it should be experimented with requiring fewer full-budget trials, and/or
fewer epochs. It should also be investigated if other multi-fidelity techniques, that
are feasible to use within the expense budget, are more appropriate than the median
stopping rule.

82

Bibliography

Akiba, Takuya et al. (2019). ‘Optuna: A Next-generation Hyperparameter Optim-
ization Framework’. In: Proceedings of the 25rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

Bergstra, James, Rémi Bardenet et al. (2011). ‘Algorithms for hyper-parameter op-
timization’. In: Advances in neural information processing systems 24.

Bergstra, James and Yoshua Bengio (2012). ‘Random search for hyper-parameter
optimization.’ In: Journal of machine learning research 13.2.

Bergstra, James, Daniel Yamins and David Cox (June 2013). ‘Making a Science
of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for
Vision Architectures’. In: Proceedings of the 30th International Conference on
Machine Learning. Ed. by Sanjoy Dasgupta and David McAllester. Vol. 28.
Proceedings of Machine Learning Research 1. Atlanta, Georgia, USA: PMLR,
pp. 115–123. url: https://proceedings.mlr.press/v28/bergstra13.html.

Breiman, Leo (2001). ‘Random forests’. In: Machine learning 45.1, pp. 5–32.

Brochu, Eric, Vlad M Cora and Nando De Freitas (2010). ‘A tutorial on Bayesian
optimization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning’. In: arXiv preprint arXiv:1012.2599.

Caruana, Rich (1997). ‘Multitask learning’. In: Machine learning 28.1, pp. 41–75.

Dan, Simon (2013). Evolutionary Optimization Algorithms. Wiley. isbn: 9780470937419.
url: https ://search.ebscohost .com/login .aspx?direct=true&db=nlebk&AN=
597827&site=ehost-live.

Domhan, Tobias, Jost Tobias Springenberg and Frank Hutter (2015). ‘Speeding up
automatic hyperparameter optimization of deep neural networks by extrapol-
ation of learning curves’. In: Twenty-fourth international joint conference on
artificial intelligence.

Elshawi, Radwa, Mohamed Maher and Sherif Sakr (2019). Automated Machine
Learning: State-of-The-Art and Open Challenges. arXiv: 1906.02287 [cs.LG].

Elsken, Thomas, Jan Hendrik Metzen and Frank Hutter (2019). ‘Neural architecture
search: A survey’. In: The Journal of Machine Learning Research 20.1, pp. 1997–
2017.

Falkner, Stefan, Aaron Klein and Frank Hutter (July 2018a). ‘BOHB: Robust and
Efficient Hyperparameter Optimization at Scale’. In: Proceedings of the 35th
International Conference on Machine Learning. Ed. by Jennifer Dy and Andreas
Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 1437–
1446. url: https://proceedings.mlr.press/v80/falkner18a.html.

83

https://proceedings.mlr.press/v28/bergstra13.html
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=597827&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=597827&site=ehost-live
https://arxiv.org/abs/1906.02287
https://proceedings.mlr.press/v80/falkner18a.html

Bibliography

Falkner, Stefan, Aaron Klein and Frank Hutter (July 2018b). Supplementary ma-
terial for: BOHB: Robust and Efficient Hyperparameter Optimization at Scale.
url: http://proceedings.mlr.press/v80/falkner18a/falkner18a-supp.pdf.

Feurer, Matthias and Frank Hutter (2019). ‘Hyperparameter Optimization’. In:
Automated Machine Learning: Methods, Systems, Challenges. Ed. by Frank Hut-
ter, Lars Kotthoff and Joaquin Vanschoren. Cham: Springer International Pub-
lishing, pp. 3–33. isbn: 978-3-030-05318-5. doi: 10.1007/978-3-030-05318-5_1.
url: https://doi.org/10.1007/978-3-030-05318-5_1.

Feurer, Matthias, Aaron Klein et al. (2019). ‘Auto-sklearn: Efficient and Robust
Automated Machine Learning’. In: Automated Machine Learning: Methods, Sys-
tems, Challenges. Ed. by Frank Hutter, Lars Kotthoff and Joaquin Vanschoren.
Cham: Springer International Publishing, pp. 113–134. isbn: 978-3-030-05318-5.
doi: 10.1007/978-3-030-05318-5_1. url: https://doi.org/10.1007/978-3-030-
05318-5_1.

Glover, Fred W and Gary A Kochenberger (2003). Handbook of Metaheuristics.
Vol. 57. Springer Science & Business Media. isbn: 1-4020-7263-5. url: https :
//doi.org/10.1007/b101874.

Goh, Gabriel (2017). ‘Why Momentum Really Works’. In: Distill. doi: 10.23915/
distill.00006. url: http://distill.pub/2017/momentum.

Golovin, Daniel et al. (2017). ‘Google vizier: A service for black-box optimization’.
In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 1487–1495.

Goodfellow, Ian, Yoshua Bengio and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Grimstad, Bjarne (2020). TTK28-Courseware. https : / / github . com / bgrimstad /
TTK28-Courseware.

He, Kaiming et al. (2015). Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification. doi: 10 . 48550/ARXIV . 1502 . 01852.
url: https://arxiv.org/abs/1502.01852.

— (June 2016). ‘Deep Residual Learning for Image Recognition’. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Hinton, Geoffrey, Nitish Srivastava and Kevin Swersky (2012). ‘Neural networks for
machine learning lecture 6a overview of mini-batch gradient descent’. In: Cited
on 14.8, p. 2.

Hiroyuki, Vincent Yamazaki (2020). “Multivariate” TPE Makes Optuna Even More
Powerful. https://tech.preferred.jp/en/blog/multivariate-tpe-makes-optuna-even-
more-powerful/. [Online; accessed 16-May-2022].

Hutter, Frank, Holger H Hoos and Kevin Leyton-Brown (2011). ‘Sequential model-
based optimization for general algorithm configuration’. In: International con-
ference on learning and intelligent optimization. Springer, pp. 507–523.

84

http://proceedings.mlr.press/v80/falkner18a/falkner18a-supp.pdf
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/b101874
https://doi.org/10.1007/b101874
https://doi.org/10.23915/distill.00006
https://doi.org/10.23915/distill.00006
http://distill.pub/2017/momentum
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/bgrimstad/TTK28-Courseware
https://github.com/bgrimstad/TTK28-Courseware
https://doi.org/10.48550/ARXIV.1502.01852
https://arxiv.org/abs/1502.01852
https://tech.preferred.jp/en/blog/multivariate-tpe-makes-optuna-even-more-powerful/
https://tech.preferred.jp/en/blog/multivariate-tpe-makes-optuna-even-more-powerful/

Bibliography

Hutter, Frank, Lars Kotthoff and Joaquin Vanschoren (2019). Automated machine
learning: methods, systems, challenges. Springer Nature.

Jamieson, Kevin and Ameet Talwalkar (May 2016). ‘Non-stochastic Best Arm Iden-
tification and Hyperparameter Optimization’. In: Proceedings of the 19th In-
ternational Conference on Artificial Intelligence and Statistics. Ed. by Arthur
Gretton and Christian C. Robert. Vol. 51. Proceedings of Machine Learning Re-
search. Cadiz, Spain: PMLR, pp. 240–248. url: https://proceedings.mlr.press/
v51/jamieson16.html.

Kandasamy, Kirthevasan et al. (Aug. 2017). ‘Multi-fidelity Bayesian Optimisation
with Continuous Approximations’. In: Proceedings of the 34th International Con-
ference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70.
Proceedings of Machine Learning Research. PMLR, pp. 1799–1808. url: https:
//proceedings.mlr.press/v70/kandasamy17a.html.

Karnin, Zohar, Tomer Koren and Oren Somekh (2013). ‘Almost optimal explora-
tion in multi-armed bandits’. In: International Conference on Machine Learning.
PMLR, pp. 1238–1246.

Kennedy, J. and R. Eberhart (1995). ‘Particle swarm optimization’. In: Proceedings
of ICNN’95 - International Conference on Neural Networks. Vol. 4, 1942–1948
vol.4. doi: 10.1109/ICNN.1995.488968.

Kingma, Diederik P and Jimmy Ba (2014). ‘Adam: A method for stochastic optim-
ization’. In: arXiv preprint arXiv:1412.6980.

Klein, Aaron, Stefan Falkner et al. (2017). ‘Fast bayesian hyperparameter optim-
ization on large datasets’. In: Electronic Journal of Statistics 11.2, pp. 4945–
4968.

Klein, Aaron and Frank Hutter (2019). Tabular Benchmarks for Joint Architecture
and Hyperparameter Optimization. arXiv: 1905.04970 [cs.LG].

Kohavi, Ron and George H. John (1995). ‘Automatic Parameter Selection by Min-
imizing Estimated Error’. In: Machine Learning Proceedings 1995. Ed. by Ar-
mand Prieditis and Stuart Russell. San Francisco (CA): Morgan Kaufmann,
pp. 304–312. isbn: 978-1-55860-377-6. doi: https://doi.org/10.1016/B978-1-
55860-377-6.50045-1. url: https://www.sciencedirect.com/science/article/pii/
B9781558603776500451.

Kumar, Siddharth Krishna (2017). On weight initialization in deep neural networks.
doi: 10.48550/ARXIV.1704.08863. url: https://arxiv.org/abs/1704.08863.

Li, Lisha et al. (2017). ‘Hyperband: A novel bandit-based approach to hyperpara-
meter optimization’. In: The Journal of Machine Learning Research 18.1, pp. 6765–
6816.

Liaw, Richard et al. (2018). ‘Tune: A Research Platform for Distributed Model
Selection and Training’. In: arXiv preprint arXiv:1807.05118.

Lu, Zhou et al. (2017). ‘The expressive power of neural networks: A view from the
width’. In: Advances in neural information processing systems 30.

85

https://proceedings.mlr.press/v51/jamieson16.html
https://proceedings.mlr.press/v51/jamieson16.html
https://proceedings.mlr.press/v70/kandasamy17a.html
https://proceedings.mlr.press/v70/kandasamy17a.html
https://doi.org/10.1109/ICNN.1995.488968
https://arxiv.org/abs/1905.04970
https://doi.org/https://doi.org/10.1016/B978-1-55860-377-6.50045-1
https://doi.org/https://doi.org/10.1016/B978-1-55860-377-6.50045-1
https://www.sciencedirect.com/science/article/pii/B9781558603776500451
https://www.sciencedirect.com/science/article/pii/B9781558603776500451
https://doi.org/10.48550/ARXIV.1704.08863
https://arxiv.org/abs/1704.08863

Bibliography

Mahajan, Aditya and Demosthenis Teneketzis (2008). ‘Multi-armed bandit prob-
lems’. In: Foundations and applications of sensor management. Springer, pp. 121–
151.

Mendoza, Hector et al. (June 2016). ‘Towards Automatically-Tuned Neural Net-
works’. In: Proceedings of the Workshop on Automatic Machine Learning. Ed.
by Frank Hutter, Lars Kotthoff and Joaquin Vanschoren. Vol. 64. Proceedings
of Machine Learning Research. New York, New York, USA: PMLR, pp. 58–65.
url: https://proceedings.mlr.press/v64/mendoza_towards_2016.html.

Merkel, Dirk (2014). ‘Docker: lightweight linux containers for consistent development
and deployment’. In: Linux journal 2014.239, p. 2.

Nair, Vinod and Geoffrey E Hinton (2010). ‘Rectified linear units improve restricted
boltzmann machines’. In: Icml.

Nwankpa, Chigozie et al. (2018). ‘Activation functions: Comparison of trends in
practice and research for deep learning’. In: arXiv preprint arXiv:1811.03378.

Paszke, Adam et al. (2019). ‘PyTorch: An Imperative Style, High-Performance Deep
Learning Library’. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., pp. 8024–8035. url: http :
//papers.neurips.cc/paper/9015-pytorch-an- imperative- style-high-performance-
deep-learning-library.pdf.

Provost, Foster, David Jensen and Tim Oates (1999). ‘Efficient progressive sampling’.
In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 23–32.

Ruder, Sebastian (2016). ‘An overview of gradient descent optimization algorithms’.
In: arXiv preprint arXiv:1609.04747.

— (2017). ‘An overview of multi-task learning in deep neural networks’. In: arXiv
preprint arXiv:1706.05098.

Sandnes, Anders T., Bjarne Grimstad and Odd Kolbjørnsen (2021). ‘Multi-task
learning for virtual flow metering’. In: Knowledge-Based Systems 232, p. 107458.
issn: 0950-7051. doi: https : / /doi . org /10 . 1016/ j . knosys . 2021 . 107458. url:
https://www.sciencedirect.com/science/article/pii/S0950705121007206.

Shahriari, Bobak et al. (2015). ‘Taking the human out of the loop: A review of
Bayesian optimization’. In: Proceedings of the IEEE 104.1, pp. 148–175.

Snoek, Jasper, Hugo Larochelle and Ryan P Adams (2012). ‘Practical bayesian op-
timization of machine learning algorithms’. In: Advances in neural information
processing systems 25.

Talbi, El-Ghazali (2009). Metaheuristics: from design to implementation. Vol. 74.
John Wiley & Sons.

Thorn, R, G A Johansen and B T Hjertaker (Oct. 2012). ‘Three-phase flow meas-
urement in the petroleum industry’. In: Measurement Science and Technology
24.1, p. 012003. doi: 10.1088/0957-0233/24/1/012003. url: https://doi.org/10.
1088/0957-0233/24/1/012003.

86

https://proceedings.mlr.press/v64/mendoza_towards_2016.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107458
https://www.sciencedirect.com/science/article/pii/S0950705121007206
https://doi.org/10.1088/0957-0233/24/1/012003
https://doi.org/10.1088/0957-0233/24/1/012003
https://doi.org/10.1088/0957-0233/24/1/012003

Bibliography

Thornton, Chris et al. (2013). ‘Auto-WEKA: Combined Selection and Hyperpara-
meter Optimization of Classification Algorithms’. In: KDD ’13. Chicago, Illinois,
USA: Association for Computing Machinery, pp. 847–855. isbn: 9781450321747.
doi: 10.1145/2487575.2487629. url: https://doi.org/10.1145/2487575.2487629.

Wikipedia contributors (2022a). Boolean satisfiability problem — Wikipedia, The
Free Encyclopedia. https : / / en . wikipedia . org / w / index . php ? title = Boolean _
satisfiability_problem&oldid=1064645537. [Online; accessed 15-February-2022].

— (2022b). CPLEX — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/
w/index.php?title=CPLEX&oldid=1064098947. [Online; accessed 15-February-
2022].

Williams, Christopher K and Carl Edward Rasmussen (2006). Gaussian processes
for machine learning. Vol. 2. 3. MIT press Cambridge, MA.

Yang, Li and Abdallah Shami (2020). ‘On hyperparameter optimization of machine
learning algorithms: Theory and practice’. In: Neurocomputing 415, pp. 295–316.

Ying, Chris et al. (June 2019). ‘NAS-Bench-101: Towards Reproducible Neural Ar-
chitecture Search’. In: Proceedings of the 36th International Conference on Ma-
chine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, pp. 7105–7114. url: https:
//proceedings.mlr.press/v97/ying19a.html.

87

https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2487575.2487629
https://en.wikipedia.org/w/index.php?title=Boolean_satisfiability_problem&oldid=1064645537
https://en.wikipedia.org/w/index.php?title=Boolean_satisfiability_problem&oldid=1064645537
https://en.wikipedia.org/w/index.php?title=CPLEX&oldid=1064098947
https://en.wikipedia.org/w/index.php?title=CPLEX&oldid=1064098947
https://proceedings.mlr.press/v97/ying19a.html
https://proceedings.mlr.press/v97/ying19a.html

Appendix

A Google Compute Engine setup

Series: N1
Machine type: n1-standard-4
CPU platform: Automatic
GPU type: NVIDIA Tesla K80
Disk image: c2-deeplearning-pytorch-1-11-cu113-v20220316-debian-10
Persistent memory: 100 GB

B Python implementation of the experiment

1 from ray import tune
2 from ray.tune.suggest.basic_variant import BasicVariantGenerator
3

4 # max_concurrent=1 ensures a completely sequential run, i.e. only one trial is run at a time
5 search_alg = BasicVariantGenerator(
6 constant_grid_search=False,
7 points_to_evaluate=initial_configs,
8 max_concurrent=1
9)

10

11 tune.run(
12 search_alg=search_alg,
13)

Listing 1: Python implementation of RS.

89

B. Python implementation of the experiment

1 from ray import tune
2 from ray.tune.schedulers import MedianStoppingRule
3 from ray.tune.suggest.basic_variant import BasicVariantGenerator
4

5 scheduler = MedianStoppingRule(
6 time_attr="training_iterations",
7 grace_period=2500,
8 min_samples_required=50,
9)

10

11 # max_concurrent=1 ensures a completely sequential run, i.e. only one trial is run at a time
12 search_alg = BasicVariantGenerator(
13 constant_grid_search=False,
14 points_to_evaluate=initial_configs,
15 max_concurrent=1
16)
17

18 tune.run(
19 search_alg=search_alg,
20 scheduler=scheduler,
21)

Listing 2: Python implementation of RS-MSR.

90

B. Python implementation of the experiment

1 from optuna.samplers import TPESampler
2 from ray import tune
3 from ray.tune.suggest.optuna import OptunaSearch
4

5 sampler = TPESampler(
6 multivariate=True,
7)
8

9 search_alg = OptunaSearch(
10 sampler=sampler,
11 points_to_evaluate=initial_configs
12)
13

14 # This ensures a completely sequential run, i.e. only one trial is run at a time
15 search_alg = tune.suggest.ConcurrencyLimiter(
16 search_alg,
17 max_concurrent=1
18)
19

20 tune.run(
21 search_alg=search_alg,
22)

Listing 3: Python implementation of BO.

91

B. Python implementation of the experiment

1 from optuna.samplers import TPESampler
2 from ray import tune
3 from ray.tune.schedulers import MedianStoppingRule
4 from ray.tune.suggest.optuna import OptunaSearch
5

6 sampler = TPESampler(
7 multivariate=True,
8)
9

10 search_alg = OptunaSearch(
11 sampler=sampler,
12 points_to_evaluate=initial_configs
13)
14

15 # This ensures a completely sequential run, i.e. only one trial is run at a time
16 search_alg = tune.suggest.ConcurrencyLimiter(
17 search_alg,
18 max_concurrent=1
19)
20

21 scheduler = MedianStoppingRule(
22 time_attr="training_iterations,
23 grace_period=2500,
24 min_samples_required=50,
25)
26

27 tune.run(
28 search_alg=search_alg,
29 scheduler=scheduler,
30)

Listing 4: Python implementation of BO-MSR.

92

C. Hyperparameter scatter plots

C Hyperparameter scatter plots

Continues on next page due to large figure size.

93

C. Hyperparameter scatter plots

10 6 10 5 10 4 10 3 10 2

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Run 1

10 6 10 5 10 4 10 3 10 2

Learning rate

Run 2

10 6 10 5 10 4 10 3 10 2

Run 3

10 9 10 7 10 5 10 3

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

10 9 10 7 10 5 10 3

shared

10 9 10 7 10 5 10 3

10 9 10 7 10 5 10 3

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

10 9 10 7 10 5 10 3

specific
10 9 10 7 10 5 10 3

0 10 20 30
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

0 10 20 30

Context parameters
0 10 20 30

2 4 6 8
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

2 4 6 8

Depth
2 4 6 8

Figure C.1: Scatter plot of hyperparameters from individual runs of RS and correspond-
ing loss. Trials with loss greater than 5 are left out for illustrative purposes. Only the
learning rate seems to have a clear region of good and bad performing values.

94

C. Hyperparameter scatter plots

10 6 10 5 10 4 10 3 10 2

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Run 1

10 6 10 5 10 4 10 3 10 2

Learning rate

Run 2

10 6 10 5 10 4 10 3 10 2

Run 3

10 9 10 7 10 5 10 3

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

10 9 10 7 10 5 10 3

shared

10 9 10 7 10 5 10 3

10 9 10 7 10 5 10 3

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

10 9 10 7 10 5 10 3

specific
10 9 10 7 10 5 10 3

0 10 20 30
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

0 10 20 30

Context parameters
0 10 20 30

2 4 6 8
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

2 4 6 8

Depth
2 4 6 8

Figure C.2: Scatter plot of hyperparameters from individual runs of RS-MSR and cor-
responding loss. Trials with loss greater than 5 are left out for illustrative purposes. Only
the learning rate seems to have a clear region of good and bad performing values.

95

C. Hyperparameter scatter plots

10 5 10 4 10 3 10 2

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Run 1

10 6 10 5 10 4 10 3 10 2

Learning rate

Run 2

10 5 10 4 10 3 10 2

Run 3

10 9 10 7 10 5

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

10 9 10 7 10 5 10 3

shared

10 9 10 7 10 5 10 3

10 9 10 7 10 5 10 3

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

10 9 10 7 10 5 10 3

specific
10 8 10 6 10 4

0 10 20 30

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

0 10 20 30

Context parameters
0 10 20 30

2 4 6 8

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

2 4 6 8

Depth
2 4 6 8

Figure C.3: Scatter plot of hyperparameters from individual runs of BO and correspond-
ing loss. Trials with loss greater than 5 are left out for illustrative purposes. Only the
learning rate seems to have a clear region of good and bad performing values. Notice how
each run favours to sample hyperparameters from different regions of the configuration
space, especially κshared and κspecifc.

96

C. Hyperparameter scatter plots

10 6 10 5 10 4 10 3 10 2
1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

Run 1

10 6 10 5 10 4 10 3 10 2

Learning rate

Run 2

10 6 10 5 10 4 10 3 10 2

Run 3

10 9 10 7 10 5 10 3
1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

10 9 10 7 10 5 10 3

shared

10 9 10 7 10 5 10 3

10 9 10 7 10 5 10 3
1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

10 9 10 7 10 5

specific
10 8 10 6 10 4

0 10 20 30
1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

0 10 20 30

Context parameters
0 10 20 30

2 4 6 8
1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

2 4 6 8

Depth
2 4 6 8

Figure C.4: Scatter plot of hyperparameters from individual runs of BO-MSR and cor-
responding loss. Trials with loss greater than 5 are left out for illustrative purposes. Only
the learning rate seems to have a clear region of good and bad performing values. Notice
how each run favours to sample hyperparameters from different regions of the configuration
space, especially κspecifc.

97

H
yperparam

eter O
ptim

ization for N
eural N

etw
ork-based Virtual Flow

 M
etering

Knut Vågnes Eriksen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Knut Vågnes Eriksen

Hyperparameter Optimization for
Neural Network-based Virtual Flow
Metering

An industrial case study

Master’s thesis in Cybernetics and Robotics
Supervisor: Bjarne Andre Grimstad
Co-supervisor: Lars Struen Imsland and Maurício Bezerra de Souza
Júnior
June 2022

M
as

te
r’s

 th
es

is

	List of Figures
	List of Tables
	List of Algorithms
	Source Code
	Nomenclature
	Introduction
	Motivation
	Objectives and research questions
	Outline

	Background
	Literature review
	A note on performance comparison and takeaways

	Theory
	Machine Learning
	Neural Networks
	The structure of a Neural Network
	Training of a Neural Network
	Weight initialization
	Regularization
	Residual blocks

	Hyperparameter optimization
	Problem statement
	Bayesian Optimization
	Multi-Fidelity Optimization
	BOHB
	Exploration vs. Exploitation
	Robustness of hyperparameters

	Case description
	Case Context
	Dataset and Preprocessing
	Structure
	Training and Regularization

	Method
	Identifying Interesting Hyperparameters
	Selecting HPO Algorithm
	Experiment
	Hypothesis

	Implementation

	Results
	Final solutions
	Runtime performance
	Robustness and configuration space

	Discussion
	H1
	H2
	Early stopping aspects

	H3
	Robustness and configuration space

	Conclusion
	Suggestions for future work
	Different HPO-algorithms
	Appropriate regularization
	Configuration space
	Early stopping

	Bibliography
	Appendix
	Google Compute Engine setup
	Python implementation of the experiment
	Hyperparameter scatter plots

