
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

Thomas Solli Koløen

TDD and Machine Learning of SEPTIC
MPC application

Master’s thesis in Cybernetics and robotics
Supervisor: Lars Struen Imsland
June 2022

M
as

te
r’s

 th
es

is

Thomas Solli Koløen

TDD and Machine Learning of SEPTIC
MPC application

Master’s thesis in Cybernetics and robotics
Supervisor: Lars Struen Imsland
June 2022

Norwegian University of Science and Technology

Acknowledge

I would like to express my great gratitude to the inspiring supervisors from Equinor,
John-Morten Godhavn, Pål Kittilsen and Einar S.Idsø. Throughout the master thesis
they have helped and challenged me, and at all time been available for me.

I would like to further express my gratitude to my supervisor at NTNU, Lars Struen
Imsland, for excellent support.

20.06.2022 Thomas Solli Koløen

i

Abstract

In autumn 2021, the specialization project [1] successfully implemented functionality
with the use of TDD with Equinor’s in-house MPC application called SEPTIC. The
master thesis takes the specialization project further, investigating how more com-
plex functionality and system dynamics can be developed with TDD. The test setup
from the specialization project was used, and a sequence involving system dynamics
was chosen to be developed with TDD.

The sequence was successfully implemented with the use of TDD. It was found
that sequences in SEPTIC are pretty tedious to code, and a suggestion for Equinor
to implement SR latch function in their configuration file, would make the imple-
mentation of the sequence much less tedious. In addition, TDD of system dynamics
was successfully developed. An essential contribution of this is a step_until() func-
tion, and accessing simulation from ring buffer in SEPTIC. These two contributed to
complete control of the simulation by stopping the simulation when a certain wanted
value is achieved, and further accessing simulation to test the system dynamics in
pytest.

A machine learning algorithm with LSTM cells was made. It was trained using
a training dataset where the choke opening is between 15%− 100%. The ML model
performed well on new unseen data on the test dataset and accurately predicted
steady-state oil rates. A model which is trained in all areas of operation would be
preferable, but this would be at the expense of the model’s performance. A gain
scheduler was further implemented in SEPTIC. The gain scheduler uses calculated
gains from the Machine learning (ML) model and further interpolates datasets of
gains to a gain function. Implementation of the gain scheduler showed slightly better
performance reaching set-point a bit faster. A possible implementation of a running
ML algorithm along with SEPTIC was discussed. Further, one of the advantages of
having an ML algorithm running beside SEPTIC to predict gain would be that the
ML model would capture changes in system dynamics over time and always be up
to date, setting the correct gain at all times.

ii

Abstrakt

Høsten 2021 fordypningsprosjektet [1] implementerte med hell, funksjonalitet i Equi-
nor’s MPC SEPTIC ved å ta i bruk TDD. Masteroppgaven tar dette funnet videre, og
ser på hvordan kompleks funksjonalitet som involverer testing av system dynamikk
kan videre bli utviklet med TDD metodologien. Testoppsettet fra fordypningsoppga-
ven ble valgt å gjenbruke, og en sekvens som involverer testing av system dynamikk
ble valgt som basis, for å se på muligheten å utvikle system dynamikk ved hjelp av
TDD.

Sekvensen ble vellykket implementert ved hjelp av TDD. Det ble vist at imple-
mentering av sekvens i SEPTIC congig fil, kan være kronglete, og det ble gjort et
funn eller forslag til Equinor om å legge til SR latch som en funksjon i config fi-
len deres. Slik funksjon ville gjort koden svært mye enklere og mindre kronglete å
implementere sekvenser. I tillegg ble system dynamikk vellykket utviklet ved hjelp
av TDD. En sentral del av dette var step_until() funksjonen og muligheten for å
hente ut simuleringsverdier fra ring buffer. De to bidro til fullstendig kontroll over
simulering ved å stoppe simulering når en viss ønsket verdi er oppnådd, og deretter
hente ut simuleringsverdier for videre testing av system dynamikk i pytest.

En ML algoritme med LSTM celler ble laget. Den ble trent opp a av en trening
datasett hvor ventilåpningen var mellom 15%−100%. ML modellen viste god ytelse
på ny usett data på test datasettet, og nøyaktig predikerte steady-state olje rate.
En modell som er trent på hele arbeidsområde til ventilen ville vært foretrukket,
men dette ville gått på bekostning av modellen sin predikasjons evne. En gain sche-
duler ble videre implementert i SEPTIC. Gain scheduleren bruker kalkulerte gains
fra predikasjon fra ML modellen, og videre interpolerer datasettene av gains til en
gain funksjon. Implementasjon av en gain schdeuler viste litt bedre ytelse når den
ble brukt i simulering sammenheng, den nådde steady-state olje rate litt tidligere.
Videre vil en av fordelene av en ML algoritme som kjører på siden av SEPTIC til
å predikere gains, være at ML modellen vil fange endringer i system dynamikk over
tid, og alltid vær oppdatert med å sette korrekt gain til alle tider.

iii

CONTENTS

Contents
Acknowledge i

Abstract ii

Abstrakt iii

Acronyms vii

List Of Figures vii

List of Listings viii

1 Introduction 1

2 Background 3
2.1 Model Predictive Control . 3
2.2 SEPTIC . 5

2.2.1 XV’s . 7
2.2.2 SEPTIC MPC Solver . 9
2.2.3 Model Representation . 10
2.2.4 Calc . 11

2.3 Test Driven Development . 12
2.3.1 Pytest . 13

2.4 FMU . 14
2.5 OPC . 14
2.6 antiSEPTIC . 15
2.7 Oil well . 18
2.8 Test setup . 19
2.9 Machine learning . 20

2.9.1 Feedforward Neural Networks . 22
2.9.2 Recurrent Neural Network . 24
2.9.3 LSTM . 24
2.9.4 Training loop . 25
2.9.5 TensorFlow . 25

3 Sequence 26
3.1 Sequence implementation . 26

3.1.1 Well Off . 27
3.1.2 Well Closed . 29
3.1.3 Well Kick Off . 31
3.1.4 Full Sequence Implementation . 33

3.2 Simulation . 33

iv

CONTENTS

4 Machine Learning of System Dynamics 35
4.1 Learning problem . 35
4.2 Dataset . 35

4.2.1 Training set . 36
4.2.2 Test set . 37
4.2.3 Convert data . 38
4.2.4 Data prepossessing . 38

4.3 Create and Train a Machine Learning Model 40
4.4 Evaluation of model . 42
4.5 Gain scheduling implementation in SEPTIC 45
4.6 Simulation on sequence . 47

5 Discussion 48
5.1 Sequence Improvement . 48
5.2 TDD of system dynamics . 48
5.3 Machine learning of system dynamics . 49

6 Conclusion 51

References 52

A Appendix A: Python code 54
A.1 step_until.py . 54
A.2 conftest.py . 54
A.3 test_sequence.py . 55
A.4 test_testSet.py . 60
A.5 Convert_Data.py . 61
A.6 ReadWriteFile.py . 62

B Appendix B: SEPTIC configuration files 62
B.1 WellKickOff calc . 62
B.2 Well Sequence calc . 64
B.3 SinglWell.cnfg . 68

C Appendix C: Machine Learning python code 84
C.1 ML_import.py . 84

v

Acronyms

Acronyms

Notation Description
APC Advanced Process Control.

BHP Bottom Hole Pressure.

CSV comma-separated values.
CV Control Variable.

DV Disturbance Variable.

EV Evaluated Variable.

FFNN Feedforward Neural Network.
FMI Functional Mock-up Interface.
FMU Functional Mock-up Unit.

GUI Graphical User Interface.

HMI Human Machine Interface.

LSTM Long short-term memory.

MAE Mean Absolute Error.
MIMO Multiple-input and Multiple-output.
ML Machine learning.
MPC Model Predictive Control.
MSE Mean Square Error.
MV Manipulated Variable.

NLP Nonlinear Program.
NMPC Nonlinear Model Predictive Control.

OLE Object Linking and Embedding.
OPC Open Platform Communication.

PID Proportional–Integral–Derivative.
PLC Programmable Logic Controller.

QP Quadratic Program.

ReLU Rectified Linear Unit.
RNN Recurrent Neural Network.
RTO Real Time Optimization.

vi

Notation Description
RUI Remote User Interface.

SEPTIC Statoil Estimation and Prediction Tool for
Identification and Control.

SISO Single-input and Single-output.
SR set-reset.

TDD Test-Driven Development.
TV Trend Variable.

UA Unified Architecture.

WHP Well Head Pressure.

List of Figures
1 Illustration of the MPC principle Source: Figure 4.1 from [4] 5
2 The graphical user interface of Statoil Estimation and Prediction Tool for

Identification and Control (SEPTIC) . 6
3 Illustration of hierarchy of objects in SEPTIC 7
4 Illustration of SEPTIC-notation . 8
5 Screenshot from SEPTIC Graphical User Interface (GUI) of an Manipu-

lated Variable (MV) . 8
6 Screenshot from SEPTIC GUI of an Control Variable (CV) 9
7 Screenshot from SEPTIC user interface for experimental model representation 11
8 Implementation of a Calc in a configuration file 11
9 Test-Driven Development (TDD) methodology cycle 12
10 Typical OPC communication topology . 15
11 Illustration of how antiSEPTIC can be incorporated in a test setup with

pytest and SEPTIC . 15
12 Illustration of an oil well process . 18
13 Step responses of a choke . 19
14 Test setup Illustration . 20
15 How a neuron looks like mathematically 22
16 Illustration of a Feedforward Neural Network 23
17 LSTM cell structure . 24
18 Illustration of the sequence . 26
19 The methodology for sequence implementation 27
20 Plot of Choke and OilRate . 34
21 Plot of the wellstate . 34
22 Training dataset . 37
23 Test dataset . 38
24 Evaluation plot of training set . 43
25 Evaluation plot of test set . 44

LISTINGS

26 Plot of the gain function . 46
27 Simulation with and without gain scheduler 47
28 Illustration of the architecture of a ML model implementation 50

Listings
1 Code that shows how to access members in SEPTIC 16
2 Code showing how to access OPC tag’s . 17
3 Well Off unit test . 27
4 Well Off calc . 28
5 Well Closed unit test . 29
6 Well Closed calc . 30
7 Well Kick Off unit test . 32
8 Training set python code . 36
9 Data sequence conversion code . 39
10 MinMaxScaler python code . 39
11 Read training set, scale it and create sequences out of it 40
12 Python code for creating a ML model . 40
13 Python code for training model . 41
14 SEPTIC config file for gain scheduling . 45
15 Code for IsWellClosed calc . 48
16 Code for IsWellClosed calc with a potential set-reset (SR) latch 48
17 step_until.py . 54
18 conftest.py . 54
19 test_sequence.py . 55
20 test_testSet.py . 60
21 Convert_Data.py . 61
22 ReadWriteFile.py . 62
23 Well Kick Off calc . 62
24 Well Sequence calc . 64
25 SEPTIC configuration file . 68
26 ML_import.py . 84

viii

1 INTRODUCTION

1 Introduction
The master thesis is in cooperation with Equinor. Equinor is a Norwegian energy com-
pany operating internationally in around 30 countries worldwide. Equinor’s portfolio of
projects encompasses oil and gas, renewable, and low-carbon solutions [2]. The master
thesis origins from the Rotvoll office in Trondheim. The Rotvoll office is in charge of the
implementation and development of Equinor’s in-house Model Predictive Control (MPC)
called SEPTIC.

In the autumn of 2021, a specialization project investigated the possibilities of developing
SEPTIC with TDD. The specialization project successfully implemented functionality to
SEPTIC with TDD, but it remained unsolved wherever it can be used to develop the
system dynamics, it discussed the possibility of such. The master thesis is an extension
of the specialization project, and such will investigate further in practice how system dy-
namics can be developed.

SEPTIC is an in-house MPC, used in offshore oil production and oil refineries [3]. From
1996 to today, SEPTIC has been developed to improve performance and functionality.
It is a robust and well-developed application, where functionality needed has been devel-
oped throughout the years. However, some functionality can be more cumbersome to add
than others, one of which is sequences. There is possibility to add a sequence to SEPTIC
through various calculation modules in SEPTIC. However, the implementation is tedious
and requires some experience with SEPTIC. A method to implement sequence in SEPTIC
would be beneficial for more robust, more straightforward, and faster implementation in
SEPTIC. A startup and close sequence requires both developments of functionality and
system dynamics. It would be good use as a basis for further exploration of the use of
system dynamics development with TDD on SEPTIC, and at the same time, look into
how the sequence implementation can be improved.

As implied in the name, Model Predictive Control uses a system model to predict the
system’s future behavior for controlling the system. A precise system model is a crucial
ingredient for MPC to work optimally. The closer the model is to the actual system, the
closer will the control inputs calculated at first be the right. In total, a good model gives
better performance.

A model in SEPTIC is found by doing a experimental Single-input and Single-output
(SISO) step response. But such model requires linearity through the whole operation
area, but the linearity isn’t true for the relation between choke position and oil rate.
SEPTIC can deal with such non-linearity by doing gain-scheduling on the step-response
model. Gain scheduling has shown to to deal with non-linearity behaviour satisfactorily
[3]. Calculation of the gains is typically done by doing step-responses through the whole
area of operation, afterwards calculate the different gains. The thesis will look into how
a ML algorithm can be used to learn the system dynamics of the system and use it in a
running SEPTIC application, to automatically calculate the gains.

1

1 INTRODUCTION

The system chosen to use in the thesis is a single oil well simulated as a dymola model
in SEPTIC. The test environment is inherited from the specialization project but slightly
modified from a three oil well application, to a single oil well application. Sections 2.7
and 2.8 describes the system and test environment completely. The system is limited to a
simple SISO system, even though the dymola model has support for an additional control
input (gas lift rate). Gas lift-rate will be held to a constant value through all simulations,
therefore only affecting the oil rate will be the opening of the choke.

The intention of the thesis is to look into how system dynamics can be developed with
TDD by implementing a running sequence. When a running sequence is up and running,
the thesis will look into how a ML algorithm can be used to learn the system dynamics of
a simulation. Afterwards use the ML-model to calculate gains for the gain scheduler, and
implement the gain scheduler, and run a complete simulation with the gain scheduler on
the sequence implemented earlier, and compare with a non-gain-scheduled simulation.

Section 2 describes some relevant background and theory used in rest of the thesis, while
section 3 uses this theory to create a sequence which is developed by the use of TDD,
while section 4 creates a ML algorithm and gain scheduler. In section 5 the results from
sections 3 and 4 is discussed, and at last section 6 makes up a conclusion.

2

2 BACKGROUND

2 Background
This chapter presents relevant background and theory to test out TDD methodology and
assemble a test environment for SEPTIC.

2.1 Model Predictive Control

MPC is an advance control approach that falls within the Advanced Process Control
(APC) branch. The benefit of MPC is that it optimizes the present time slot while
also taking into account how the system develops in the future. MPC works by making
a mathematically model of the process, and then predict the system, to look how the
process unfolds itself. The prediction is done through solving a finite open-loop control
problem. The initial control input from the solution of the control problem is then used as
control inputs to the actuators at each sampling instant [4]. All together MPC can open
a valve, and achieve a optimal state before the controller gets feedback from the process [5].

MPC-controller is one of the most advanced controller techniques, it can can control
a Multiple-input and Multiple-output (MIMO) system. Whereas a traditionally Propor-
tional–Integral–Derivative (PID) controller is limited to a SISO system. In addition to
control a MIMO system, the MPC can tune actuators and responses related to each-other,
to achieve desired performance. For instance a system with two actuators and two states,
one state is more valued to reach it desired set-point rather than the other. MPC can
tune such the favoured state will have better response than the other. Actuators can also
be tuned, such it can use less or more “energy” in the control inputs. A MPC requires
to predict how the system behaves in the futures, while PID computes it’s control input
based upon the error between actual value and the set-point. This yields a higher compu-
tation effort for a MPC compared to a PID. MPC can handle constraints such as limiting
the responses, actuators and rate of change in actuators, constraint cannot be found in a
PID controller.

The optimizing prediction problem is formulated in a finite horizon open loop control.
Such problem consists of a objective function, equality constraints and inequality con-
straints. Solution of such is done with a Quadratic Program (QP) solver over a time
horizon from t = 0 to t = N . This problem is linear, but can be adapted to a nonlinear
system with a Nonlinear Program (NLP) solver. Equations (1) and (2) formulates this
problem mathematically.

f(z) = min
u

N−1∑
t=0

xTdevQxdev + uTdevRudev +∆uTR∆∆u (1)

3

2 BACKGROUND

where

xdev = xt+1 − xreft+1

udev = ut+1 − ureft+1

∆u = ut − ut−1

Q ≻ 0

R ≻ 0

∆R ≻ 0

subject to

xt+1 = Atxt +Btut (2a)
xlow ≤ xt ≤ xhigh (2b)
umin < ut < umax (2c)

∆umin < ∆u < ∆umax (2d)

Equation (2a) is an equality constraint which constraints the optimizing problem to a
model of the system to predict on. Limiting the process state, control input and rate of
change in control input, is done through eqs. (2b) to (2d). These constraints are used
to set boundaries to decrease wear of actuators, decrease the possibility of the system to
operate at the limit and to reflect limitation in the real system.

The objective function eq. (1) consist of three terms, first term are the states taken
into consideration. Here the Q matrix penalize the deviation between reference trajec-
tory, and also penalizes between the states. A easy way to tune the Q-matrix is by make
it diagonal, and set lower value for those states which is favourable, and higher values for
less favourable states. Then the optimizing algorithm will find it to cost “less” to minimize
the favourable state. The second term tunes how the control input affects the system.
Tuning of the control input is done in relation to each-other and how aggressively control
inputs used. Small values of R gives more aggressively control input, and contrary higher
values of R, the controller is more reluctant to aggressively control input. Same as with
the Q matrix, the R matrix is chosen diagonal. To favor one control input over the other,
a higher value in the R matrix for the favoured control input must be chosen. The last
term penalizes rate of change in control input. As with the other matrices, the R∆ is
chosen diagonal, and controls the rate of change in the control input. As earlier it can be
chosen in relation to each-other and lower value of R∆ in diagonal allows for higher rate
of change in the system, and contrary.

In addition to the tuning matrices Q, R and R∆, there is a possibility to use “control
input blocking” in the formulation of the open loop problem. In short term, control
blocking is to use same control input over several time steps with different length of
blocking length. Example a blocking with the number [1 2 4 8] will have a time horizon
of 15, but only four control inputs, as it will first have a control input for one time step,
then one control input for two time steps and so on. Using control input blocking has

4

2 BACKGROUND

shown to reduce run-time and computational effort [4].

Figure 1: Illustration of the MPC principle
Source: Figure 4.1 from [4]

2.2 SEPTIC

Equinor’s in-house software for MPC, Real Time Optimization (RTO), dynamic process
simulation for simpler case studies, and off- and on-line parameter estimation in first prin-
ciple based process models is known as SEPTIC. It has been developed since 1996, and
is widely used in Equinor’s process plant such as refineries and offshore production and
processes. SEPTIC has been shown to provide more precise production, lower emissions,
and reduced operator loads [3].

SEPTIC is an object oriented software developed in C++. SEPTIC has a GUI and a
Remote User Interface (RUI) interaction. Some feature of the GUI are support for plot-
ting of variables, set-point changes, activation of the MPC, generating and modeling of
experimental models and online tuning.

A SEPTIC application is made through a SEPTIC configuration file which is read at
initialisation [3]. The configuration file is object oriented, and consist of different types

5

2 BACKGROUND

Figure 2: The graphical user interface of SEPTIC

of object. The most common and relevant object in SEPTIC are listed as followed:

• System: Must always be present in the configuration file, and appears only once.
It controls all the calculations in the SEPTIC application. Has global parameters
available for all application objects.

• Proc: Runs a process based upon which object implemented. Most common “Proc”
object are FMUProc:, SopcProc and MasterTcip Which can be translated to Func-
tional Mock-up Unit (FMU) support for process simulation, communication with a
Open Platform Communication (OPC) server and RUI interface.

• Appl: There exist four type of application objects, the two most used “ ‘Appl”-
object are SmpcAppl: and DmmyAppl. SmpcAppl is the application which consists
of the MPC with the experimental model. DmmyAppl are used for data acquisition
and computation. Both “Appl” objects has XV-object attached and used for either
computation in MPC or data processing.

• XV: Used as a children in the objects described above, will be thoroughly described
in section 2.2.1.

6

2 BACKGROUND

To illustrate the layout and the hierarchy of how the objects are used in a configuration
file, fig. 3 illustrates a typically configuration file.

Figure 3: Illustration of hierarchy of objects in SEPTIC

2.2.1 XV’s

XV is a collective term for the different variable objects used for data acquisition and data
processing in SEPTIC. XV is a children object used in a application object. There exist
five types of XV object that consist of different data members. They are as followed:

• Manipulated Variable (MV): Defined as the control input.

• Control Variable (CV): The measured state or response of the system.

• Disturbance Variable (DV): The past measured disturbance and/or estimated
disturbance.

• Evaluated Variable (EV): Value calculated/written inside SEPTIC, can be send
out from SEPTIC through OPC.

7

2 BACKGROUND

• Trend Variable (TV): Values that can be read from an external source for instance
from a OPC-tag or a read only variable inside SEPTIC.

How the notation is used in a process, are illustrated in fig. 4.

Figure 4: Illustration of SEPTIC-notation

The tuning parameters and data members in SEPTIC are dependent of which XV used.
A screenshot of the MV GUI tuning parameters are shown in fig. 5. The MV has a High
and Low constraints and a ideal value (Iv). MaxUp and MaxDown sets constraints on
the max change of rate per sample in movement of the actuator, MovePenalty penalizes
movement of actuator. IvPrio sets a priority of the ideal value in the steady-state solver,
and IvROC sets the ramping of move per sample towards ideal value. Fulf penalizes de-
viation from ideal value. Blocking is a hidden tuning parameter configurable in config file.

Figure 5: Screenshot from SEPTIC GUI of an MV

8

2 BACKGROUND

In compliant with the MV, a CV has High and Low limit, but has a set-point (SetPnt)
the MPC control against. HighPrio, LowPrio and SetPntPrio sets priority of the control
targets in steady-state solver. Whereas HighPenalty and LowPenalty penalizes breaking
of the high and low limits. Fulf penalizes deviation from set-point. There are two 1.order
low-pass filter BiasTfilt and BiasTpred. BiasTfilt sets the time constant of the filter for
model against process measurement, while BiasTpred sets the time constant of the filter
for bias predication.

Figure 6: Screenshot from SEPTIC GUI of an CV

In addition to the object specific data members specified, there are some common data
member, applicable for all XV’s, most mentioned worthy are:

• Meas : Measured plant value

• Mode: Sets the desired state of the variable. Mode set to ACTIVE, the MPC
application will take the variable object into consideration in the computation, while
set to Off the XV is not used in the MPC application computation.

• Span: Scaling of variables. For instance used in tuning variables such as Fulf and
MovePenalty.

• MaxChg : Maximum allowance of change per time, in central control target such
as High, Low and SetPnt. Inhibits rapid changes in control targets for smoother
transition.

• GrpMask : Defines different membership of XV’s in sub applications. Allows group-
ing for XV, such that multiple system processes can be controlled with the same
MPC application.

2.2.2 SEPTIC MPC Solver

SEPTIC sets up following finite horizon control problem:

min
u

N−1∑
t=0

(y − yref)TQy(y − yref) + (u− uiv)TQu(u− uiv) + ∆uTP∆u+ αTAα (3)

9

2 BACKGROUND

subject to

y =M(y, u, d, v) (4a)
ylow − αl ≤ y ≤ yhigh + αh (4b)

umin < ut < umax (4c)
∆umin < ∆u < ∆umax (4d)

Experimental SISO step response models are used to find the system model (y =M(y, u, d, v)).
The CV’s prediction horizon is computed automatically from the step-response models,
giving the CV sufficient time to achieve steady-state [3].The constraints and tuning pa-
rameters found in XV’s can be translated and found in eqs. (3) and (4). The MPC solvers
control priorities are as followed:

1. MV rate of change.

2. MV high/low limits.

3. CV hard constraints.

4. CV soft constraints, CV set-points, MV ideal values: Priority level 1

5. CV soft constraints, CV set-points, MV ideal values: Priority level 2

6. CV soft constraints, CV set-points, MV ideal values: Priority level n

2.2.3 Model Representation

A model of the system is done through SISO step response models. They are easy to
build, understand and maintain [3]. They are linearly and based upon superposition
principle, but represent the process dynamics sufficient for the use [3]. SEPTIC has ded-
icated functionality for auto-generating of experimental models. The model editor can
generate, change and activate models while online on the controller. The models gener-
ated are saved as a file, and read at initialisation, such that the models doesn’t vanish [3].

For a system which is non-linear, SEPTIC can use a non-linear model and Nonlinear
Model Predictive Control (NMPC).However, gain-scheduling is an approach that seems
to compensate for the non-linearity sufficient [3]. For generating a gain-scheduler, one use
a calc to generate and change the experimental model’s gain, based upon a graph of cal-
culated gains. The graph is calculated based upon experimental results of step responses
from the whole working area of the actuators. As the actuator works at different working
areas, the calc will calculate different gains from the position of the actuator, and then
set different gains on the experimental model.

10

2 BACKGROUND

Figure 7: Screenshot from SEPTIC user interface for experimental model representation

2.2.4 Calc

A “Calc” allows to freely compute, calculate and program SEPTIC as wanted. A calc is
used in a DmmyAppl, it consists of XV’s to calculate from and a CalcModl. The CalcModl
consist again of CalcPvr object, which is where the calculation is done. To write to a EV,
a CalcPvr must be defined inside the DmmyAppl, the CalcPvr and EV must be defined
with the same variable name. In SEPTIC there is only EV’s that can be written to from
a CalcPvr. But the CalcPvr can use all XV and other data members available in it’s
algorithm calculation.

Figure 8: Implementation of a Calc in a configuration file

11

2 BACKGROUND

2.3 Test Driven Development

TDD is a software development methodology in which a test case is written before the
code is implemented. The TDD methodology is straightforward and can be summarized
in three steps:

Figure 9: TDD methodology cycle

1. Red: Write the function’s simplest unit test case and make sure it fails.

2. Green: To pass the unit test, implement the function in the code.

3. Refactor: Clean up and simplify the code as much as feasible..

Why should developers utilize the TDD technique? Wouldn’t developing unit test cases
be more work? It appears to generate even more work effort, but TDD guarantees that
the code is kept to a bare minimum, which implies a simpler, better and smarter code. In
addition, to the fact that software is always thoroughly tested after being implemented.
Therefore testing is much less work afterward.

Typically, a developer would write spaghetti code to implement the specs, and then test
the code with an integration test. It either succeeds or fails the integration test, but if it
fails, there’s no way of knowing where in the code it went wrong [6]. It might be an error
with a function or integration. TDD eliminates this uncertainty by testing and checking
the function before implementing it, and then testing the implementation again. Overall,
this makes it simple to locate the error in the code [6].

Different testing methodologies are given below, with TDD being under the developer
tests branch:

12

2 BACKGROUND

• Developer tests: Unit tests are run automatically before or after functionality is
implemented.

• Unit testing: An automatic and/or manual test of a specific application unit.

• Integration testing: Tests involving two or more units operating together are
performed manually and/or automatically..

Although TDD, unit testing, and developer testing appear to be fairly similar, there are
several key distinctions. In simple words, unit testing and developer testing are tests of
a single piece of code that is separated from the rest of the system. Isn’t this the same
thing as TDD? Yes, it is correct. The aim, though, is what sets them apart. The purpose
of unit testing and developer testing is to see if the code works as expected. TDD, on the
other hand, is primarily intended to be used as a technique to build software rather than
to test it.

Writing unit tests before implementing functionality alters the developer’s programming
style. As a result, the code is more testable, readable, and intuitive. This is because the
programmer is urged to isolate the functionality of the code into classes and functions in
order to test it by using the fewest unit tests feasible.

2.3.1 Pytest

Pytest is a robust testing framework for developing small unit tests in Python while also
supporting extensive functional testing for applications and libraries [7].Test fixtures in
the pytest package allow you to configure the test environment before running the test.
The fixture enables the tests to run consistently and generate reproducible findings [8].
Fixtures are provided by Pytest and may be found in the conftest.py file. The test can
always call fixtures in conftest.py as long as the unit tests are in the same folder. Some
features of fixtures, according to the pytest website are [8]:

• Fixtures have explicit names and are activated by declaring their use from test
functions, modules, classes or whole projects.

• Fixtures are implemented in a modular manner, as each fixture name triggers a
fixture function which can use other fixtures.

• Fixture management scales from simple unit to complex functional testing, allowing
to parameterize fixtures and tests according to configuration and component options,
or to re-use fixtures across function, class, module or whole test session scopes

• Teardown logic can be easily, and safely managed, no matter how many fixtures are
used, without the need to carefully handle errors by hand or micromanage the order
that cleanup steps are added.

A unit test is generally composed of one or more asserts statements. The statement
determines if the observed behavior matches the predicted behavior. The test will fail if
such behaviors do not match. Making a unit test with too few assert statements can lead

13

2 BACKGROUND

to the test not covering all it should. However, don’t use too many asserts statements, as
this can complicate the unit test.

Even though implementing a unit test should reduce implementation problems, there
is no assurance that you will write faultless code. There may be some logic missing from
the unit test. The unit test may pass, but the code itself contains flaws, giving the im-
pression that perhaps the code is of poor quality. Such consideration must the developer
take into consideration, and have a reasonable coverage of what to include in unit tests.

2.4 FMU

FMU is a program that implements the Functional Mock-up Interface (FMI). FMI estab-
lishes a set of standards for model interchange across simulation and modeling software.
The standard specifies a C interface that can be implemented by an executable FMU
[9]. Models from Open Modelica may be used by other modeling and simulation sys-
tems thanks to the interface. In our scenario, the processes are modelled in Dymola and
assembled into an FMU, which SEPTIC utilizes to simulate the process.

2.5 OPC

OPC is a widely used industrial automation communication protocol standard. It was
designed to act as a "middle man" for Windows-based software and process control de-
vices such as Programmable Logic Controller (PLC). The standard was originally called
as Object Linking and Embedding (OLE) for Process Control (OPC) and was only for
Windows operating systems when it was first released in 1996. It is now known as OPC
classic. OPC classic has its own specification definitions for process data (OPC DA),
alarms (OPC AE), and historical data (OPC HDA) [10].

In 2008, the OPC Foundation deemed the OPC classic protocol obsolete and developed
the OPC Unified Architecture (UA). OPC UA is a platform-agnostic service-oriented ar-
chitecture that combines all of the capability of OPC Classic specifications into a single
framework while also allowing for much more [11]. As illustrated in fig. 10, a typical OPC
configuration comprises of a PLC and an OPC client coupled to an OPC server. Both
the PLC and the OPC client will be able to read and write values to the OPC server,
allowing software applications to communicate with industrial controllers.

14

2 BACKGROUND

Figure 10: Typical OPC communication topology

2.6 antiSEPTIC

Equinor’s software antiSEPTIC, is a testing framework for SEPTIC. It is a recently built
framework that consists of a set of classes and functions that can be easily integrated
with pytest. It can be used for testing of functionality, TDD and simulation. The test
framework gives complete control of simulation and accessing data in both OPC server
and SEPTIC. Figure 11 illustrates how the antiSEPTIC framework is typically used in a
complete test environment setting.

Figure 11: Illustration of how antiSEPTIC can be incorporated in a test setup with pytest
and SEPTIC

There are five types of objects of importance, they are as followed:

15

2 BACKGROUND

SEPTICMaster: Initialize, start, and stop a SEPTIC master instance with this class.
The parameters “cnfgfile” point to the SEPTIC config file, “qtseptic” to the SEPTIC exe-
cutable file, “rundir” to the SEPTIC run directory, and “affinity” to the SEPTIC instance’s
CPU affinity. The functions of the class are:

• start(): If SEPTIC isn’t already executing, start a new SEPTIC master instance
with "cnfgfile" as configuration file.

• stop(): Terminate the master SEPTIC instance.

SEPTICClient: Creates a SEPTIC client that uses the RUI protocol to connect with a
SEPTIC master. The class allows you to read/write data that the OPC-server normally
does not allow. The functions of the class are:

• connect(host, port): With the specified host and port specifications, connects to a
SEPTIC MasterTcip.

• flush(): Reads all messages but will not treat them.

• read(): Read a single message if available.

• readall(): Reads and processes all unprocessed messages.

As mentioned in section 2.2, SEPTIC is built in an object oriented matter, with a hier-
achy. antiSEPTIC adopts this hierarchy and creates objects similar to the one in SEPTIC
in python. SEPTIC sends an initial message with the build of how the SEPTIC objects
are built up. The SEPTICClient object reads this initial message with the read() func-
tion, and auto generates python objects of the SEPTIC hierarchy. Reading and writing
to SEPTIC object members is done through accessing members in the SEPTICClient
object, as shown in listing 1

Listing 1: Code that shows how to access members in SEPTIC
ReadValue=rui.appl["SystemCalcs"]["Output"].Meas # Read value
rui.appl["Well"]["Oilrate"].Mode=3 # Write value

OPCServer: Initialize, run, and stop an OPC server with this class. The parameters
“cfgfile” point to the OPC server’s “taglist” file, “opcserver” to the OPC server executable
file, and “affinity” to the OPC server instance’s CPU affinity. The functions of the class
are:

• start(): If an OPC server instance with the same “taglist” is not already running,
start a new one.

• stop(): Terminate the OPC server.

16

2 BACKGROUND

OPCClient: A class for interacting with an OPC server. It generates a client to con-
nect to the OPC server and includes several support functions for controlling it. The
arguments “scheduletag” (tagname for SopcProc.Scheduletag, default to "time"), “pul-
stag” (tagname for SopcProc.Pulstag, default to "Heartbeat"), and “steplen” (how many
seconds to increase “scheduletag” when calling the step()-function) are used to initialize
the object. The functions of the class are:

• connect(opc_server, opc_host, timeout): Attempts to connect to the OPC server
using the specified parameters until the timeout parameter is exceeded.

• step(numsteps, timeout): Increases the “ScheduleTag” on the OPC server to perform
SEPTIC stepping.

The OPCClient class also has the ability to read and write to OPC server tags. The
OPCClient object includes members of all tags in the OPC server, and reading/writing
them is as simple as accessing the members of the OPCClient object, as shown in listing 2.

Listing 2: Code showing how to access OPC tag’s
Input=opc["Input"] # Read value of the "Input" tag on the OPC server
opc["Input"]=Input+1 # Increase "Input" tag with value of 1 on the OPC server

Directors: There are two classes in this package: DirectorSingle and DirectorMainSim.
Both classes handle OPCClient and SEPTICClient cooperation, making it easier to com-
plete a step. To put it another way, while using opc.step(), one must also use RUI.read()
to read an auto-generated calculation message sent from SEPTIC to RUI. As a result, the
director class will do an opc.read() and an opc.step() for each step called in director.step().
The distinction between DirectorSingle and DirectorMainSim is that DirectorSingle only
take care of one SEPTIC instance, whereas DirectorMainSim take cares of two. The
functions of both classes are the same, and are as followed:

• step(numsteps,timeout): Attempts to complete the number of steps specified in
“numsteps”.

• bootstrap(): Steps for a long enough period such that SEPTIC can write to the OPC
server.

17

2 BACKGROUND

2.7 Oil well

An oil well was chosen as the process to be regulated by SEPTIC. Figure 12 depicts the
process inputs and outputs for an oil well. There are two actuators regulating the flow
and pressure margin across the system. The production choke and gas lift choke are the
actuators, with the production choke being set by an opening between 0% and 100% and
the gas-lift choke being set by a gas lift rate [Sm3

hr
]. Oil rate[Sm3

hr
], Well Head Pressure

(WHP) [bar], and Bottom Hole Pressure (BHP) [bar] are the measured outputs.

Gas-lifting is an artificial-lift technique in which gas is introduced to lower BHP. The de-
crease in BHP pressure might facilitate production or allow for higher production rates.
The main valve controlling the opening (flow) flowing through the well is the produc-
tion choke. In accordance to Bernoulli’s principle [12], a faster moving fluid will give a
decrease in pressure. And vice versa an increase in pressure yield an increase of fluid
velocity. In order for the well to produce, there must be sufficient pressure margin over
the production choke, such that the fluid moves. A fully opening of the production choke
will give a decrease in pressure, and increase in flow through the well. But if there i
no pressure there will not me any fluid flowing through the well. Such the gas lift rate
choke, enables to pressurise the well such that fluid flowing through the well can travel
with a faster velocity and with enough pressure margin. The two input variables allow
you to establish a desired oil rate with the opening, while the gas-lift guarantees a neces-
sary pressure margin over the production choke while also allowing you to control the flow.

Figure 12: Illustration of an oil well process

The relation between choke opening and oil rate is nonlinear. A step response in the
lower region of the choke produces a large reaction in oil rate, but a step response in
the higher working area of the choke produces a significantly lesser response in oil rate.

18

2 BACKGROUND

As illustrated in fig. 13, the delta step size are the same (5%), but steady-state gain are
higher for the choke opening 15− 20 compared to 30− 35.

0 10 20 30 40 50 60 70

N sample

280

300

320

340
Oilrate

Choke: 15% - 20%

Choke: 30% - 35%

0 10 20 30 40 50 60 70

N sample

0

10

20

30

40

%

Choke opening

Choke: 15% - 20%

Choke: 30% - 35%

Figure 13: Step responses of a choke

2.8 Test setup

The test environment is inherited from the specialization project [1], but slightly modified.
The modification includes a configuration file which includes one oil well instead of a three
well. The modification are simple, the procedure are the same as section 3.1.1 in [1], but
template duplication are only done once instead of three. When it comes to the pytest
setup, it includes the same files as section 3.2.1 in [1], but the three well FMU file, is
exchanged with a single well FMU file. A illustration of the test setup is shown in fig. 14.
The configuration file is found in appendix B.3, and conftest file setting up the fixtures is
found in appendix A.2.

19

2 BACKGROUND

Figure 14: Test setup Illustration

2.9 Machine learning

To understand what a Machine Learning (ML) algorithm is, one must understand the
purpose of it. The main purpose of a ML-algorithm is to learn from data. But what
does that says in reality, well Mitchell came with a definition “A computer program is
said to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience
E.” [13]. To get a grasp of what Mitchell meant, one can look at a chess of game and set
up following learning problem:

• Task T : Playing chess.

• Performance measure P : How many of games won.

• Training experience E : Playing chess matches against itself, with experience on
how chess movement affects the game.

Here a ML-algorithm that learns to play chess, might improve to play chess with per-
formance measure of how often it wins games, by obtaining experience through playing
matches against itself. Such it will improve playing chess for each time playing a game,
and learn from each experience.

A task is not to learn something, but the learning itself is obtaining the ability to per-
form the task. For example a autonomous boat. The task is to drive the boat, you can
solve it by manually program the boat to drive to the other side of the dock. But a ML-
algorithm’s task is to do the same task in terms of processing an example, and improve
the task based upon the example with a performance measure. The most common tasks
solved by ML are:

20

2 BACKGROUND

• Regression: Predict a numerical value y given a data point x. It creates a functions
which maps f : Rm −→ R such that y = f(x)

• Classification: Predicts which type of category the input k belongs to. It produces
a function f : Rm −→ {1, ..., k}, which assigns x to a class y = f(x)

• Structured output: Any task where output is a vector, with important relation-
ship between the different elements. Example is segmentation of a images, where it
assigns every pixel to specific category. The category is quite versatile and includes
machine translation and transcription.

• Machine Translation: Input consists of a input sequence of symbols, which is
then translated into another language.

• Transcription: Is the task to observe a unstructured representation of some data,
and transcribe it into textual format. Example an image of handwritten letters, the
program is asked to return the handwritten letters in ASCII code for instance.

To evaluate how good the ML algorithm performs, a quantitative measure of performance
is needed. Typically the performance is related to the task, such the task itself will carry
out the performance measure. For a classification task, the performance of the model is
carried out from the accuracy of the model. E.g how good it predicts the correct output
of a given examples. For regression problems, the system itself produces an output which
the ML algorithm shall mimic. A performance measure of a regression task, is called
a loss function. It finds a measure of performance between predicted value and actual
value, two common loss function are Mean Square Error (MSE) and Mean Absolute Error
(MAE).

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (5)

MAE =
1

n

n∑
i=1

|yi − ŷi| (6)

where

ŷi is the predicted value
yi is the measured value

n is the the number of predictions

But for a regression task, it might not be useful to have a performance measure on
already trained data, as the model is specialized to mimic it’s trained data well.
Therefore one should have separate test dataset, which differs from the training dataset.
Such it measure how well the model performs on new data.

A ML algorithm can be categorised into two types of learning, supervised and

21

2 BACKGROUND

unsupervised. They differ in the amount of experience they are permitted to gain during
the learning process. For unsupervised, the ML learning algorithm doesn’t know
anything about it’s features, e.g there are no label. The learning algorithm must learn
useful properties of the structure of the dataset in order to perform it’s task. Supervised
learning has the properties of knowing something about from where the data comes
from, hence data are labeled.

There are some basic terms in ML which are important to learn, they are as followed:

• Overfitting: When your model fits exactly against it’s training data. [14].

• Underfitting: Underfitting is when a model can’t both model the training data
and generalize to new data[14].

• Generalization: How well the ML model behaves on new unseen data [14].

• Regularization: Different techniques for using a bigger model for reducing
generalization. It reduces overfitting and can also lead to faster optimization of the
model and better overall performance [15]. These techniques can be
“Earlystopping”, “Dropout” or a regularization term in cost function.

2.9.1 Feedforward Neural Networks

Artificial neural networks (nets) are a type of machine learning model influenced by
research on mammalian central nervous system [16]. A network is made up of numerous
layers of connected neurons [16], as illustrated in fig. 16.

Figure 15: How a neuron looks like mathematically

An artificial neuron, is a mathematically representation based on a model of biological
neurons. Each neuron receives inputs (features), weights them individually with a bias,
and sums them via a linear or nonlinear activation function [17].

22

2 BACKGROUND

Figure 16: Illustration of a Feedforward Neural Network

There exist two types of activation functions, linear and nonlinear. For feed forward
neural networks typically used function are nonlinear functions. The default nonlinear
activation function is Rectified Linear Unit (ReLU)[18]. The activation function is
widely used, for it’s ability to make a nonlinear function out of an output of a linear
transformation [18]. Equation (7) describes the ReLU function mathematically. The
output is it’s input, if the input is greater or equal to zero, else if the input is less than
zero, it will output zero.

ψ(Z) =

{
0, for z < 0
z, for z ≥ 0

}
(7)

23

2 BACKGROUND

2.9.2 Recurrent Neural Network

A Recurrent Neural Network (RNN) is a sophisticated deep learning model that has
shown amazing achievements during the previous five years. It uses a sophisticated
memory-based architecture to generate predictions on sequential data [19]. Unlike
Feedforward Neural Network (FFNN)’s, where information travels in a single path from
layer to layer, RNN’s feed the output from the previous time stamp together with the
input from the current time stamp into the RNN cell, influencing the current state of
the model [20]. Equation (8) explains the mathematics behind a single RNN cell.

ht = tanh(W [ht−1,xt] + b) (8)

W is the weight matrix, b is the bias matrix, ht and ht−1 are hidden state at current and
previous time-step. The tanh scales the cell to fall between −1 to +1. For RNN cells,
the most used activation function is the sigmoid function. A neural network containing
RNN cells, can be difficult when sequence input is to large, this is due to vanishing and
exploding gradients when trained by back-propagation[20].

2.9.3 LSTM

To overcome the vanishing and exploding gradients problem of RNN cells, Hochreiter
and Schmidhuber [21] proposed Long short-term memory (LSTM). A LSTM cell
consists of forget gate, output gate, input gate and update gates. The forget gate
determines what to forget from prior memory units, the input gate determines what the
neuron will accept, update cell updates the cell, and the output gate is in charge of
generating new long-term memories. These four ingredients make sure that it allows for
accepting long-term memory, short-term memory, input sequence, and it generates new
long-term memory, short-term memory and output sequence at a given time.

Figure 17: LSTM cell structure

24

2 BACKGROUND

2.9.4 Training loop

All neural networks must be trained in order to be a machine learning algorithm. The
neural network must be learned such that the weights and biases are adjusted. For a
regression problem the weights and biases are adjusted, such that it maps a function
y = f(x) to reassemble some measured values as close as possible. The adjustment
(learning) of these weights are done through a optimization problem [18]. A deep neural
network has the nonlinear property, meaning training it with a loss function causes it to
be nonconvex. Such training of them is done with iterative, gradient-based optimizers
that drive the cost function to a low number. For a nonconvex loss function there are no
guarantee for convergence, and is sensitive for initial values on weights and biases.
Therefore a good measure is to initialize weights to a small value, and biases to zero
[18]. To compute the cost function, the MSE is widely used for regression problems. A
basic batch gradient descent algorithm are as followed, first define a cost function
(J(θ)). Then loop through each batches (B) in the dataset, forwards pass to compute
the cost function as followed:

J(θ) =
1

|B|
∑
i∈B

(yi − fθ(xi))2 (9)

A backward pass to compute the gradient:

∂J

∂θ
(10)

update the parameters with:

θ ← θ − α∂J
∂θ

(11)

This is done over several epochs, an epoch is one pass through with the whole dataset.

2.9.5 TensorFlow

TensorFlow is an open-source python library, for use in numerical computation, to make
machine learning models fast and easy. The framework is created by Google Brain team,
it uses python as a front-end API for building applications, while executing those
applications in high-performance C++ [22]. TensorFlow’s most important feature for
machine learning development is abstraction. The developer may focus on the
overarching logic of the program rather than the small details of developing algorithms
or finding out correct methods to hook the result of one function to the input of
another. TensorFlow handles all this details behind the hood. While you still can
abstract a lot away, there is still flexibility for the developer to dive deeper, for instance
customizing your own training loop [23].

25

3 SEQUENCE

3 Sequence
First task of the thesis is to implement a sequence. The process to control is as
described in section 2.7 an oil well, but limits to a SISO system which controls the choke
and oil rate. In SEPTIC notation, the choke is a MV while the oil rate is a CV.The
sequence takes care of starting up the well, regulate it to setpoint, shut the well down
and a well off mode. The sequence is converted into a state machine, with different

Figure 18: Illustration of the sequence

“Wellstates” which it can be in. Every states illustrated in fig. 18 has a number which
represent the state. At all time it can only be into one state at a time. It can only go
between the states described in fig. 18, but as an exception it can jump to and from the
manual mode “Well Off” state and jump back into any of the states back again,
illustrated with dotted lines. The well off state are always active if either the mode of
the MPC application are set to “off” or one of the CV “OilRate” or MV “Choke” mode
are set to “off”. The transition requirement to change from one state to another are
illustrated with arrows with description of the transition criteria. Inside each state there
are some system dynamics criteria which must be fulfilled, and configuration of these
criterion’s must be tested with pytest. For properly testing how system dynamics can be
used with the TDD methodology, some tests must be written before implementation in
SEPTIC configuration file. Here it includes both testing of functionality and testing of
dynamic of the system.

3.1 Sequence implementation

In accordance to the TDD methodology, one must first write the smallest unit test and
make sure it fails, then write code such that the unit test pass. The way to go is to first
write a unit test which includes only one state with it’s transitions well state criteria.

26

3 SEQUENCE

And extend further with more tests, and when more functionality are added, the
previous tests should/can fail, as new states are added. Such there are loop, where one
must always check that previous tests passes. Figure 19 illustrates how to include new

Figure 19: The methodology for sequence implementation

functionality in SEPTIC with TDD. The first loop through, is to write a unit test for
the well off state. Then implement the well off state in SEPTIC configuration file such it
passes the unit test. The next iteration, is to write a unit test for the well closed state.
Then again implement the functionality in SEPTIC configuration file. But it’s
important to be aware of that the new functionality can interfere with the previous
implemented well off stage, therefore a adaptation in the well off state may needed, such
that both the unit tests of well off state and well closed state passes. Therefore for each
iteration it’s important to check previous unit tests such that new functionality doesn’t
interfere with previous implemented functionality.

To not to bore with too much details of each iterations, a demonstration of the first three
iterations are shown. Then you will be showed all of the unit tests and the final SEPTIC
configuration file. The rest of the well states are implemented with the same principle,
therefore too much details around how they are implemented are not necessary.

3.1.1 Well Off

Listing 3 is a unit test created before any implementation in SEPTIC configuration file
are done. To summarize, it check that if both the choke and MPC application are in
“off” mode, and check if the “WellState” is set to −1.

Listing 3: Well Off unit test

27

3 SEQUENCE

def test_WellOff(opc, rui, director, director2):
WellOff=-1
set mpc to "off" mode
opc["Allowactive"]=0
set Choke to "off" mode
rui.appl["SingleWell"]["Choke"].Mode=0
step to update values in SEPTIC
director.step(1)
Check that the wellstate is in "welloff" state
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellOff

The implementation of the well off state, are simple. It includes a “DmmyAppl” called
“StartUpCalc”, two variables which is calculated in a “CalcPvr” called “TransWellClosed”
and “WellState” and a constant which specify which number the well off state represent
(−1). “TranWellOff” is the variable specifying the condition of transition to which the
“WellState” shall change to “WellOff” state. The calculation of “TransWellClosed” is
done through a built in “ ‘getfinalstatus()” function. It will get the final status of the
choke, it is 3 if both the choke and MPC application are set to “Active”. Such the well
will be off if the “getfinalstatus(choke)” is not 3, implied with the “not” function
surrounding the “getfinalstatus()”. At last it will update the “WellState” variable with
“−1” if the “TransWellOff” is active.

Listing 4: Well Off calc
DmmyAppl: StartUpCalc

Text1= "Calc to start up well"
Text2= ""
Nstep= 1
PlotMax= 25
MasterOn= ON
DesMode= ACTIVE

Evr: TransWellClosed Meas= 0
Evr: WellOffState Meas= -1
Evr: WellState Meas= 0

CalcModl: Calc
Text1= ""
Text2= ""

CalcPvr: TransWellOff
Text1= ""
Text2= ""
Alg= "not(getfinalstatus(Choke)==3)"

CalcPvr: WellState
Text1= ""

28

3 SEQUENCE

Text2= ""
Alg= " TransWellOff*WellOffState"

3.1.2 Well Closed

The second state to implement in the sequence is the “Well Closed” state. As earlier, a
unit test to test the “Well Closed” state are written. Listing 5 is the unit test, it should
be quite self-explanatory. First obtain a stable flow, with some initial value for the
choke and gaslift rate. Then close the well carefully by slowing decreasing the choke to
zero. Check if the choke is indeed closed and there is now flow going through the well.
As the well is still in “WellOff” mode, check that the well state isn’t changed when the
well is closed. But when activating it, the wellstate should change from “WellOff” to
“WellClosed” state, as included at the bottom of listing 5.

Listing 5: Well Closed unit test
def test_WellClosed(opc, rui, director, director2):

WellClosed=1

Set inital value to choke and gasliftrate
rui.appl["SingleWell"]["Choke"].Deas=20
rui.appl["SingleWell"]["GasLiftRate"].Deas=10000

#obtain stable flow
director.step(800)

check that the well is open
assert rui.appl["SingleWell"]["OilRate"].Meas>0
assert rui.appl["SingleWell"]["Choke"].Meas>0

Close the well down
for x in range(21):

rui.appl["SingleWell"]["Choke"].Deas=20-x #Shut the well down
director.step(25)

step sufficient amount of time such that the system is stable
director.step(125)

check that well is closed
assert rui.appl["SingleWell"]["OilRate"].Meas<0.5
assert rui.appl["SingleWell"]["Choke"].Meas<0.5
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellOff

Set MPC and choke to active and setpoint to 0
opc["Allowactive"]=1
rui.appl["SingleWell"]["Choke"].Mode=3
rui.appl["SingleWell"]["OilRate"].SetPnt=0
director.step(10)

29

3 SEQUENCE

Check wellstate is in closed state
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellClosed

The configuration which includes the “Well Closed” state, is shown in listing 6. Same as
the previous, it includes a transition state “TransWellClosed”, which check if the choke is
closed and if there are roughly no flow of oil trough the well. A constant which includes
what number the state are included as “WellOffState”, in addition to calculation to
check if the well is closed (“IsWellClosed variable”). The “IsWellClosed” check if there
are no transition to “WellOff” state, and sets the “IsWellClosed” state if it’s transition
are active or if the “WellState” already are in “WellClosed” state. Such creating similar
to a SR latch, in combination with “WellState” calculation.

The only which can reset the “WellState” from being “WellClosed” is the “TransWellOff”
which suppress the set condition in the “and” gates in “IsWellClosed”. This is necessary,
since both the transition variable may be active, but only one state is allowed to be
active, such the “WellOff” will always be active if it’s transition is active. But the
“IsWellClosed” are only allowed to be active if the well state is not in “WellOff” state
and “TransWellClosed” is true.

Listing 6: Well Closed calc
DmmyAppl: StartUpCalc

Text1= "Calc to start up well"
Text2= ""
Nstep= 1
PlotMax= 25
MasterOn= ON
DesMode= ACTIVE

Evr: TransWellClosed Meas= 0
Evr: WellOffState Meas= -1

Evr: WellState Meas= 0

Evr: WellClosedState Meas= 1
Evr: IsWellClosed
Evr: TransWellOff Meas= 0

CalcModl: Calc
Text1= ""
Text2= ""

//------------- Transitions---------------------------
CalcPvr: TransWellOff

Text1= ""
Text2= ""
Alg= "not(getfinalstatus(Choke)==3)"

30

3 SEQUENCE

CalcPvr: TransWellClosed
Text1= ""
Text2= ""
Alg= "and(OilRate<0.5,Choke<0.5)"

// ---------------------Calculation of WellState--------

CalcPvr: IsWellClosed
Text1= ""
Text2= ""
Alg= "or(and(TransWellClosed, not(TransWellOff)),

and(WellState==WellClosedState,not(TransWellOff)))"

CalcPvr: WellState
Text1= ""
Text2= ""
Alg= " TransWellOff*WellOffState+IsWellClosed*WellClosedState"

3.1.3 Well Kick Off

The well kick off state, differs from the previously implemented states, as it includes
system dynamics testing. Listing 7 is the unit test of the “Kick Off” state, the test differ
from previous unit tests as it includes uncertainty of how many steps to simulate. In
this example, the test shall includes to check if the choke goes above the minimum choke
opening of Zmin, but how many steps needed in order for the choke to be opened to
Zmin can vary. Such a function that handles this uncertainty was made. It is called
step_until, it can be later included in the director class, but as for now it is made in a
separate class, and sent to the unit test through the conftest file as an object called
“director2”, not interfering with the director class.

The function takes the parameter appl, xvr, criteria, comperator and the optional
parameters value="Meas" and maxsteps=1000. The first two parameters (appl and xvr)
specify path to the XV object in SEPTIC, in addition to the value parameter which
specify which member of the XV it shall use, default value is “meas”, but can be changed
to for example “Mode”. The criteria and comperator parameter specifies the criteria
which the value from SEPTIC shall be compared with. The comperator parameter is
inherited from the operator module, such the comperator can be set to any comperator
as wanted. To specify the comperator to equal, simply set the comperator to operator.eq,
or to set it to greater or equal, set it to operator.ge. The maxstep parameter specify the
maximum number of steps, when the condition of the step until is not met. The function
returns number of steps stepped, the code of this class are added in appendix A.1.

To test the dynamics of the system, first must the system be simulated, and then

31

3 SEQUENCE

extract the dataset of the simulation. There are three ways of extracting these values
from SEPTIC.

1. Convert a auto generate .dta file from SEPTIC to a readable format for python.

2. For each step, read simulation value and add it to an array.

3. As simulation values are stored in a ring-buffer, simulate the amount of time
wanted, then retrieve simulation by accessing the ring buffer.

A sensible choice here would be item 3, as access and editing of data is easy to do while
the unit test is running. Listing 7 is a unit test for “WellKickOff” state. In addition to
check if the “WellState” is in right state with the right transition criteria, it checks the
rate of change in choke. It simulate the system with the step_until() function, to reach
the minimum choke opening value of 10% .Then accessing the ring buffer of the
simulated choke opening values, and maps it into a list . Then check if the maximum
value of the numerically computed derivative of the choke opening, is less than
maximum allowed rate of change in choke.

Listing 7: Well Kick Off unit test
def test_WellKickOff(opc, rui, director, director2):

Specify minimum choke opening and rate of change of Choke opening
Zmin=10
deltaZmaxUp=0.1

Set OilRate setpoint to 290
rui.appl["SingleWell"]["OilRate"].SetPnt=290
Step until Wellstate equals WellKickOffState
N_step=director2.step_until("StartUpCalc", "WellState", WellKickOff,

comparator=operator.eq)
#Check that Wellstate are indeed in WellKickOff state
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellKickOff

Step until the choke reaches it’s minimum choke value of Zmin
N_step=director2.step_until("SingleWell", "Choke", Zmin,

comparator=operator.ge)
Check if the choke has reached it’s minimum choke value of Zmin
assert rui.appl["SingleWell"]["Choke"].Meas>=Zmin

extract the simulated choke values from septic
Z=list(map(itemgetter(0), rui.appl["SingleWell"]["Choke"].Meas[-N_step:]))
compute the rate of change of the choke numerically
deltaZ=np.gradient(Z)
#Check that the rate of change isn’t above maximum allowed rate of change
assert round(max(deltaZ),2)<=deltaZmaxUp

Appendix B.1 is the result of the configuration file for the “WellKickOff” state. It
follows same principle as previously implemented states, with a transition and a
“IsWellKickOff” state. Previous implementation has been modified, in order for the

32

3 SEQUENCE

sequence to progress to next state. It includes reset of previous state
(not(TransKickOff) in IsWellClosed), when transition of the next state is active. There
are also logic, setting boundaries for minimum and maximum choke opening.

The unit test listing 7 includes testing of tuning parameters in SEPTIC, more specific
the maximum allowed rate of change of choke opening. To specify the maximum allowed
rate of change in SEPTIC, a tuning parameter in the configuration file must be set.
More specific the “MaxUp” in the choke must be set to “0.1”. And as a result the three
unit tests all together passes with the modification done. Indicating a successfully
implementation of a sequence with system dynamics tests included.

3.1.4 Full Sequence Implementation

The rest of the sequence is implemented with the same principle as the three other well
states. First a unit test of the well state is written, then implement in SEPTIC
configuration file. For each implementation, modification of previous states must be
slightly modified for it to incorporate the new state. Appendix A.3 is all of the unit test
for the sequence, and appendix B.2 is the SEPTIC configuration calc which implements
the sequence.

The “WellRampUp” state is a very interesting state, the ∆Qmaxup condition in the state,
requires the unit test to test system dynamics. As seen in the implementation of the
“WellKickOff” state, a tuning variable had to be modified such it met requirement of
maximum rate of change in choke. But the maximum allowed rate of change in oil rate,
hasn’t got any direct variable setting it. It must be tuned indirectly, by tuning
parameters in the choke and oil rate. The tuning parameters is fulf, movePnlty and
maxUp for MV’s and fulf for CV’s, in addition to priority number for MIMO system.

3.2 Simulation

Figures 20 and 21 is the simulation of the sequence. The sequence is simulated with the
sequence unit tests attached in appendix A.3. Figure 20 shows how the oil rate and
choke opening plays out throughout the different sequence states. Figure 21 plots the
state the sequence is in. It shows, the sequence is successfully implemented. It goes
through the different states as specified in fig. 18. Not all transitions is tested in this
sequence, transition to and from “WellOff” is not tested to all states, only to
“WellClosed”. Another state which also almost every state can go to is the “WellClosed”,
the unit tests only tests going from “WellShutdown” but misses to check if it can go from
“WellKickOff” and “WellRampUp” to “WellShutdown”. Such the test is a bit deficient in
terms for checking all transitions.

33

3 SEQUENCE

600 800 1000 1200 1400 1600 1800 2000

N sample

0

100

200

300

400
Oilrate

OilRate

600 800 1000 1200 1400 1600 1800 2000

N sample

0

5

10

15

20

%

Choke opening

Choke

Figure 20: Plot of Choke and OilRate

600 800 1000 1200 1400 1600 1800 2000

N sample

-2

-1

0

1

2

3

4

5

6

V
a

lu
e

Well state

WellState

WellKickOff

WellShutdown

WellTargetControl

WellRampUp

WellOff

WellClosed WellClosed

Figure 21: Plot of the wellstate

34

4 MACHINE LEARNING OF SYSTEM DYNAMICS

4 Machine Learning of System Dynamics
The second thing to look into was learning of system dynamics with use of machine
learning. The main goal is not to learn the system dynamics flawless, but learn the
steady-state gain between the oil rate and choke opening. Further a gain scheduling calc
shall be implemented, using the ML model as basis for calculating a gain function with
choke as input parameter.

4.1 Learning problem

The very first ingredient of a ML algorithm is to define the learning problem. The ML
algorithm’s task, is to learn the steady-state oil rate from the choke opening. This
translate to a regression problem mapping the choke opening to a oil rate. The model
shall generate a function y = f(x). The input of the model is choke opening and output
is oil rate. A naturally performance measure is therefore the real measured oil rate. The
training experience is gained from a simulation of the oil well process, containing
different choke opening values from 0%− 100% and the measured output of oil rate.

4.2 Dataset

In a ML algorithm, it is really important to find a good dataset to train and test on.
The training set must be well defined, and have sufficient amount of training sample. At
first, a training set consisting of stepping the choke 5% from 0% to 100% was made.
However, when the dataset was evaluated, it found it somewhat non-linear in the region
0%− 15%. Including this region in the training set, would give bad generalization of the
rest of the working area when the model is trained. Therefore it was made a decision to
not include this region in the training set, and only focus on 15%− 100%.

Addition to this, a initialisation of the well is necessary. Because stepping the well up
and down 15%− 100%, will give different steady-state behaviour for the same choke
opening when going down compared to going up, which is not favourable and quite
unpredictable. Therefore the choke must be initialized first by stepping 15% to 100%
and back to 15%. Then perform same stepping procedure again which the training set is
contained. This ensures reliability for the model such that same choke opening will
produce the same steady-state behaviour in oil rate everywhere.

The test set is made in order to check how good representation the model are on any
given similar data. A typically pitfall in ML algorithm is overfitting the model on the
training set, e.g be too specialized on training set. Such when any new data are given to
the model, it would perform bad, but perform very well on the training set. A common
strategy is to extract 10% of the training set to the test set. But since the training set is
quite uniform in terms of stepping 5% each time. A test set including different stepping
length near 5% is favourable, for looking how well the model is generalized into other
stepping lengths.

35

4 MACHINE LEARNING OF SYSTEM DYNAMICS

4.2.1 Training set

To save time, the same test environment as section 3 is used to generate the training set.
A “unit test” which doesn’t check any thing is created with the wanted simulation.
Listing 8 is the code for creating the training set, and fig. 22 is plot of the training set.
The choke goes from 15% to 100% and back, with stepping length of 5% and sufficient
amount of simulation time to reach steady-state.

Listing 8: Training set python code
def test_step15to100(opc, director, rui):

choke=15
time=200

rui.appl["SingleWell"]["Choke"].Deas=0
director.step(500)
rui.appl["SingleWell"]["Choke"].Deas=choke
director.step(350)

#initialise the well
#step 15 to 100
for choke in range(15,105,5):

rui.appl["SingleWell"]["Choke"].Deas=choke
director.step(time)

step 100 to 15
for choke in range(100,10,-5):

rui.appl["SingleWell"]["Choke"].Deas=choke
director.step(time)

create the dataset
#step 15 to 100
for choke in range(15,105,5):

rui.appl["SingleWell"]["Choke"].Deas=choke
director.step(time)

step 100 to 15
for choke in range(100,10,-5):

rui.appl["SingleWell"]["Choke"].Deas=choke
director.step(time)

36

4 MACHINE LEARNING OF SYSTEM DYNAMICS

0 1000 2000 3000 4000 5000 6000 7000

N sample

270

280

290

300

310

320

330

340
Oilrate

OilRate

0 1000 2000 3000 4000 5000 6000 7000

N sample

0

20

40

60

80

100

%

Choke opening

Choke

Figure 22: Training dataset

4.2.2 Test set

The test set is generated in the same matter as the training set, with a unit test not
checking anything. Appendix A.4 is the python file generating the data, while fig. 23 is
plotting of the test set. It includes stepping in the region of 5%, to not go too far from
the training set, such the test set has roughly same distribution.

37

4 MACHINE LEARNING OF SYSTEM DYNAMICS

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N sample

280

290

300

310

320

330

340
Oilrate

OilRate

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N sample

10

20

30

40

50

60

%

Choke opening

Choke

Figure 23: Test dataset

4.2.3 Convert data

When the test and training set simulation is done, a way of accessing the data is
necessary to create a ML model. SEPTIC creates a auto-generated .dta file, this file
contains simulation of almost every state in SEPTIC. But the format is limited and it
can’t be directly read in python, and must be converted to a readable format. In data
science a common file format is comma-separated values (CSV), and thereby chosen to
be converted to. Appendix A.5 is the python script which converts the data to .csv file.
The approach is to copy the auto-generated .dta file, save it as a .txt file. Set the .txt
path in the “Convert_Data.py” script and convert it. The script has also the ability to
specify the number of sample to skip in the beginning.

4.2.4 Data prepossessing

As LSTM neural networks demands sequential data, some data prepossessing of the
data must be done first. Conversion is done by defining a sequence length, then for each
data point in the dataset, the sequence contains the next data of the length of sequence
length. For better understanding let’s look at a dataset containing following, with

38

4 MACHINE LEARNING OF SYSTEM DYNAMICS

sequence length of 3:

[2, 4, 6, 8, 10] (12)

The sequence’s of eq. (12) will then be:

[2, 4, 6] (13)
[4, 6, 8] (14)
[6.8, 10] (15)

Two types of “create_sequence” is made, one for creating sequential data for only
features, and one for creating sequential data for both features and output. Listing 9 is
the python code which creates the sequential data.

Listing 9: Data sequence conversion code
import numpy as np
def create_sequence(Xd, Yd, sequence_length=250):

X=[]
Y=[]
for i in range(sequence_length,len(Xd)):

X.append(Xd[i-sequence_length:i,:])
Y.append(Yd[i])

return np.array(X), np.array(Y)

def create_single_sequence(Xd, sequence_length=250):
X=[]
for i in range(sequence_length,len(Xd)):

X.append(Xd[i-sequence_length:i,:])
return np.array(X)

Since RNN’s are sensitive to time series data fluctuations and catching patterns in time
series data, the data must be normalized before being fed to the neural network. To
normalize the data, a “MinMaxscaler” is created to scale the values between −1 and 1.
Equation (16) scales the value x with a max value of xmax and minimum value of xmin,
the normalized scaled value is equal to xn, eq. (17) descales the values other way around.

xn = 2
x− xmin

xmax − xmin

− 1 (16)

x =
(xn + 1)(xmax − xmin)

2
+ xmin (17)

Listing 10: MinMaxScaler python code
import numpy as np
def MinMaxScale(data, min=0, max=100):

data_scaled=[]

39

4 MACHINE LEARNING OF SYSTEM DYNAMICS

for value in data:
x=2*((value-min)/(max-min))-1
data_scaled.append(x)

data_scaled=np.array(data_scaled)
return data_scaled.reshape(len(data_scaled),1)

def MinMaxDeScale(data, min=0, max=100):
data_descaled=[]
for value in data:

x=0.5*((value+1)*(max-min))+min
data_descaled.append(x)

data_descaled=np.array(data_descaled)
return data_descaled.reshape(len(data_descaled),1)

When all functionality which scales and create sequences out of the data is finished, one
must implemented it with the data made earlier. Listing 11 is does this, before the code
is executed, a import of different packages and functions are executed attached in
appendix C.1.

Listing 11: Read training set, scale it and create sequences out of it
read training set
train_df = pd.read_csv(’TrainingDataset.csv’, index_col=False)

Scale training set
train_x=MinMaxScale(train_df[’Choke’], min=0, max=100)
train_y=MinMaxScale(train_df[’OilRate’], min=0, max=max(train_df[’OilRate’]))

Create sequences out of the scaled training dataset
sequence_length=250
sequence_X, sequence_Y= create_sequence(train_x,train_y,

sequence_length=sequence_length)

4.3 Create and Train a Machine Learning Model

To create the model, one use the python interface to tensorflow named keras. The
interface initialize, creates and train a ML effortlessly. Listing 12 is the final model
created, but has been changed throughout the training phase. One of the main
hyperparameters in ML model is the number of layers and the number of neurons in
each layer. There are no exact rule of how many layers or neuron one should have, and
the model in listing 12 is carefully adjusted after numerous of trials and errors during
training phase. The regularization techniques used are “EarlyStopping” and “Dropout”
with a rate of 0.1. “EarlyStopping” stops the training if there are no improvement in loss
function, such avoiding to train too much and overfitting the model to the training data.
“Dropout” is a technique where random rate of nodes is excluded or ignored in each
training stage.

40

4 MACHINE LEARNING OF SYSTEM DYNAMICS

Listing 12: Python code for creating a ML model
input parameters to input layer
timesteps=sequence_X.shape[1]
data_dim=sequence_X.shape[2]
#initialize model
model= Sequential()
add LSTM with 100 LSTM cells
model.add(LSTM(units=100, return_sequences=True, input_shape=(timesteps,

data_dim)))
add dropout with dropout rate 0.1
model.add(Dropout(0.1))

model.add(LSTM(units=50,return_sequences=True))
model.add(Dropout(0.1))

model.add(LSTM(units=50,return_sequences=True))
model.add(Dropout(0.1))

model.add(LSTM(units=50,return_sequences=True))
model.add(Dropout(0.1))

model.add(LSTM(units=100))
model.add(Dropout(0.1))

model.add(Dense(units=1,activation=’relu’)) # Output layer

Some hyperparameters must be configured to train the model. These are the choice of
optimizer algorithm, associated learning rate parameters, and choice of loss function.
The “Adam” algorithm is chosen as optimizer, as it is very robust with regards of choice
of hyperparameters. The parameters can often be set to default and in generally perform
well, though learning rate can sometimes differ from default values [18]. The loss
function used is the MSE, as it’s the most common for regression problems. The number
of epochs chosen is five, the number is chosen after experimental training, and looking
on how fast and how many epochs the model needs to be trained for getting sufficient
performance on the model. Listing 13 is the code which defines loss function, optimizer
and trains the model with the specified hyperparameters. Initialization of the weights is
chosen random from a uniform distribution bounded between ±

√
6

inputs+outputs
, and the

biases are set to zero. The recurrent weight matrix is initialized as a orthogonal matrix.
The output activation function is tanh-function and the recurrent activation function is
a sigmoid-function. All of the initialization and activation functions is default values
from keras, and is found in the keras API documentation [24].

Listing 13: Python code for training model
optimizer adam
opt=’adam’
loss function mean square error

41

4 MACHINE LEARNING OF SYSTEM DYNAMICS

lossfun=’mse’
#Configure the model for training with loss function and optimizer algorithm
model.compile(optimizer=opt, loss=lossfun, metrics=[’acc’])

add earlystopping
es= EarlyStopping(monitor=’loss’, mode=’min’, verbose=1, patience=2)
#train model with feature sequences generated, 5 epochs and earlystopping
history=model.fit(sequence_X, sequence_Y, epochs=5, callbacks=[es], verbose=1,

workers=4,use_multiprocessing=True)
save model for later use
model.save(’model_scaled.h5’)

4.4 Evaluation of model

During training it is important to evaluate the model. Evaluation can be done through
the quantitative analysis by calculating the MSE value between the model and the
prediction made by the model. The MSE value is used in training to evaluate if a
training of model is improved in relation to previously trained models. For the final
model the MSE value is 8.69. It is also a nice practice to plot the predicted values and
measured values, during training and evaluation to see in wich parts the model dosen’t
fit the training data. Figure 24 is the plot of the prediction versus the measured oil rate.
The prediction seems to predict steady-state oil rate fairly well, but miss to model the
overshoot. But since the model shall be used to predict stedy state gain, all dynamics is
not necessary to be modelled, the most important is its ability to predict correct
steady-state oil rate.

When one is happy with how well the model fits the training set. The model must be
evaluated on the test data, to look into how good the model is generalized on new
unseen data. Figure 25 is the plot of the predicted and measured oil rate for the test
dataset. The model predicts the steady-state oil rate very well, and it looks like the
model is generalizing sufficient enough. In matter in fact, the MSE value is 6.74 for the
test set, indicating a better score for the test set compared to the training set.

42

4 MACHINE LEARNING OF SYSTEM DYNAMICS

0 1000 2000 3000 4000 5000 6000 7000

N sample

270

280

290

300

310

320

330

340

Oilrate

Measured OilRate

Predicted OilRate

0 1000 2000 3000 4000 5000 6000 7000

N sample

10

20

30

40

50

60

70

80

90

100

%

Choke opening

Choke

Figure 24: Evaluation plot of training set

43

4 MACHINE LEARNING OF SYSTEM DYNAMICS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N sample

270

280

290

300

310

320

330

340

Oilrate

Measured OilRate

Predicted OilRate

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N sample

15

20

25

30

35

40

45

50

55

60

%

Choke opening

Choke

Figure 25: Evaluation plot of test set

44

4 MACHINE LEARNING OF SYSTEM DYNAMICS

4.5 Gain scheduling implementation in SEPTIC

To create a gain scheduler in SEPTIC, one first define a new calc. Then define a gain
function, based upon calculated gains from the ML model implemented earlier. The
gains are calculated with the following formula:

Kgain =
∆OilRate

∆Choke
(18)

To make a gain function, SEPTIC has a function called “intpoltype1” which is linear
interpolation between a set of data points. Linear interpolation creates a function with a
straight line between the data points, to approximate the value in between.

Generation of theses data points is done with a python script, which uses the ML model
to approximate the gain. The ∆Choke in eq. (18) is set to a constant value of 5%. Since
the model isn’t learned on choke value lower than 15%, a approximation of the gain
between 0%− 15% is done by, setting ∆Choke = 15 and read the oil rate of the ML
model at 15% choke opening. Since the oil rate is 0 at 0% choke opening. The gain
would be the oil rate at 15% divided by 15. The rest of the gains are calculated with a
for loop with step of 5 and goes from 15− 100. The for loop automatically read
∆OilRate and divides it by 5 to generates the gain.

Listing 14 is the configuration code in SEPTIC which implements the gain scheduler.
There is two EV’s, the “Gain” EV is the one which creates a gain function with the
“intpoltype1” function, and “GainScheduler” sets the gain of the model in SEPTIC. The
“intpoltype1” takes the “x” argument Choke, pair of Xn, Yn and return the interpolated
gain value based upon the “x” argument. The gains are created between two values of
choke opening, the gain is therefore the average over the two choke opening values. Take
for instance the gain between 15%− 20% is 3.46, but the pair in the interpolation would
be (17.5, 3.46). Figure 26 is a plot of the gain function. The function starts at higher
values and grows closer and closer to zero, very similar to a exponential function.

Listing 14: SEPTIC config file for gain scheduling
DmmyAppl: ModelGainCalc

Text1= "Calc to update gain in experimental model"
Text2= ""
Nstep= 1

PlotMax= 25
MasterOn= ON
DesMode= ACTIVE

Tvr: Apply

Evr: Gain
Evr: GainScheduler

CalcModl: ModGain
Text1= ""

45

4 MACHINE LEARNING OF SYSTEM DYNAMICS

Text2= ""

CalcPvr: Gain
Text1= ""
Text2= ""
Alg= "intpoltype1(Choke,7.5,19.25,17.5,3.46,

22.5,2.134,27.5,1.35, 32.5,0.886,37.5,0.603,42.5,
0.424,47.5,0.306,52.5,0.226,57.5,
0.170,62.5,0.129,67.5,0.100, 72.5,0.0778,77.5,0.0607,
82.5,0.0475,87.5,0.0371, 92.5,0.0289,97.5,0.0224)"

CalcPvr: GainScheduler
Text1= ""
Text2= ""
Alg= "modgain(OilRate,Choke,Gain,Apply)"

0 10 20 30 40 50 60 70 80 90 100

Choke opening

0

2

4

6

8

10

12

14

16

18

20

G
a
in

Gain function

Gain

Figure 26: Plot of the gain function

46

4 MACHINE LEARNING OF SYSTEM DYNAMICS

4.6 Simulation on sequence

To test the gain scheduler implemented in section 4.5 to check if the gain scheduler gave
any performance improvements.The sequence going from well closed to well target state
was simulated. Figure 27 is the plot of the simulation with and without a gain
scheduler. The two plots are pretty similar, but the simulation with gain scheduler gave
a slighter better performance, reaching the set-point of 335Sm3

hr
quicker than the

simulation without a gain scheduler.

0 100 200 300 400 500 600 700

N sample

0

50

100

150

200

250

300

350

400
Oilrate

With gain scheduler

Without gain scheduler

0 100 200 300 400 500 600 700

N sample

-10

0

10

20

30

40

50

60

%

Choke opening

With gain scheduler

Without gain scheduler

X 297

Y 334.905

X 297

Y 334.549

Figure 27: Simulation with and without gain scheduler

47

5 DISCUSSION

5 Discussion
This section discusses the results from sections 3 and 4.

5.1 Sequence Improvement

In sections 3.1 and 3.2 a running sequence starting, running and closing a well was
implemented. It was implemented with the use of TDD methodology. The
implementation in SEPTIC was quite convoluted to write and understand, with many
variables to assign. The implementation included a state machine, where each state was
checked by creating similar to a SR latch. The SR latch was created by using confusing
amounts of “or” and “and” gates. A much neither way would be if Equinor made a SR
latch function in SEPTIC config. The function would lessen the SEPTIC config code, as
the transition into the state would set the state, and the transition out of the state
resets the state. Implementing such function in SEPTIC would demand small effort, but
make huge difference when implementing a sequence, with regards to writing and
reading the code. Listing 15 shows how the state originally was implemented, while
listing 16 shows how implementation with a potentially SR latch would be. Obviously
listing 16 demands much less code to write, and is so much easier to understand.

Listing 15: Code for IsWellClosed calc
CalcPvr: IsWellClosed

Text1= ""
Text2= ""
Alg= "or(and(TransWellClosed, not(TransWellOff), not(TransKickOff)),

and(WellState==WellClosedState,not(TransWellOff),
not(TransKickOff)))"

Listing 16: Code for IsWellClosed calc with a potential SR latch
CalcPvr: IsWellClosed

Text1= ""
Text2= ""
Alg="srlatch(TransWellClosed, or(TransWellOff,TransKickOff))"

5.2 TDD of system dynamics

The sequence in section 3.1 was implemented with the use of TDD methodology. The
unit tests didn’t just test functionality, it simulated and tested system dynamics in
SEPTIC. A key factor for testing system dynamics is to have the step_until() function,
which gives flexibility for the programmer to extract exact simulation to pytest for
further investigate and test the simulation in an array.

As for the result, it was only tested rate of change of choke and oil rate. The maximum
rate of change in choke could easily be set by a specific tuning variable in the SEPTIC
config. Therefore instead of producing simulation and calculate the derivative of the

48

5 DISCUSSION

choke, a much faster way would be to check through RUI that the “maxup” for choke
was set to correct value. But this method would be impossible for the maximum rate of
change of oil rate, as oil rate is determined by tuning variables for both choke, oil rate,
and for a more common MIMO system gas lift rate and other CV’s influencing the
control targets in the MPC.

Further it seems possible to extend the testing capabilities to test overshoot, rise time
and peak time and others system response parameters, as these are simple mathematics
when the simulation is available. What is left out for further work in regards to TDD of
system dynamics, is to extend the MPC to MIMO system, and completely test complex
system dynamics parameters such as overshoot and rate of change influencing multiple
CV’s and MV’s. Such system would be harder to test and development with TDD, as
there is a lot of tuning parameters influencing the response of the system. Because of
this, one of the main advantages of TDD namely pin pointing where in the code the test
fails disappears, as there might be a couple of possibilities of tuning variables which can
affect the system dynamics, making the unit test to pass.

5.3 Machine learning of system dynamics

The ML model made in section 4 managed to learn the steady-state oil rate quite well.
The evaluation of the model on the test dataset, showed that the model generalized very
well. But even though there are some conceptual flaws with the ML model. The
stepping of the training dataset is set to a fixed length 5%, a more random input
sequence of the training set might generalized the ML model even better. And the
decision to not include 0%− 15% choke opening, because of the highly unpredictable
non-linear behaviour of the oil rate , makes the ML model useless for this range. The
model should include the whole range of operation of the choke, such that the ML model
can be used for something useful through the whole operation area. But on the other
hand, the decision to not include this operation area gave a much better ML model,
which can be used to something useful. While a ML model with the whole range of the
choke would predict worse than a ML model not including this operation area.

A ML model with more features correlated to the oil rate would give the ML model
better performance. As more features would make the ML model found more
relationships to the oil rate. The added features can be the pressure measurement BHP
and WHP. They are influenced as a direct consequence of the oil rate, but unfortunately
they are also affected by the choke. Therefore making a prediction of the oil rate based
upon choke, BHP and WHP would be hard as the BHP and WHP isn’t fixed and are
changing as the choke changes.

The ML model idea were first designed as an idea to run a ML algorithm besides of the
SEPTIC application. It would be trained and predict steady-state gain while SEPTIC
were running. As the model is trained now, it’s not trained on live running values from
SEPTIC MPC controller, but on step responses. Because of this, a evaluation on the
ML model with values from the MPC controller in SEPTIC would be good to do. The

49

5 DISCUSSION

might be a good idea to train the ML model on both data from step responses and data
from control of the MPC in SEPTIC.

The implementation of the gain scheduling in SEPTIC were not implemented as first
wanted. The wanted idea was instead of having a gain function to set the gain of the
model, a OPC-tag sets the gain using predictions from a running ML model in python.
But this idea fell apart, since the OPC client object in antiSEPTIC demanded 32-bit
python, while tensorflow and the ML model demanded 64 bit python. This means that
you can’t make predictions on the ML model while in the same time have a OPC client
running.

A possible implementation of a ML model with SEPTIC would look something like
fig. 28. Here it is a ML server, the server could be the tensorflow’s serving functionality.
A OPC client which connects to the OPC server and makes request through the
TCP/IP communication protocol to the ML server. Such architecture makes sure that
commuication to/from SEPTIC is done through OPC communication, as this is the
prefer communication for Equinor to and from SEPTIC. The benefit of having a ML
model running and trained online with SEPTIC is the fact the ML model would get
better and better with more run time on SEPTIC. In addition would the ML model
detect changes of system dynamics over time, always be up to date on the gain scheduler.

Figure 28: Illustration of the architecture of a ML model implementation

50

6 CONCLUSION

6 Conclusion
The goal of the master thesis was to look into how system dynamics could be developed
with TDD. In section 3 a complex sequence were implemented with TDD including
testing of some system dynamics. The testing of the system dynamics were successfully,
it is important that the developer knows how the simulation plays out and have
completely control of where in the simulation one tests the system dynamics. The
function step_until gives completely control of simulation while testing. All in total it is
concluded with it is possible to develop system dynamics with TDD in SEPTIC.

The ML model developed in section 4 successfully modelled the steady-state behaviour
between the choke opening and the oil rate. The model generalized very good around
5% step lengths, but the model lacks modeling of choke opening between 0%− 15% but
in contrast it models very well in the rest of the operating area. A model with modeling
the whole operation area would be preferable, and could maybe achieved by better ML
model, this can be seen as further work for later. A gain scheduling is implemented,
using the ML model as basis for calculating a gain function. A better implementation,
were a running along with SEPTIC would be preferable, as the machine learning model
would be trained and be better as more run time of the well progress. In addition would
the machine learning model detect gain differences through the years as the oil well
system dynamics may change over years. A possible implementation of a running ML
model is proposed in fig. 28.

51

REFERENCES

References
[1] Thomas Solli Koløen. Test driven development of industrial MPC application.

Tech. rep. NTNU, Dec. 2021.
[2] Equinor. Energy. url: https://www.equinor.com/energy. (downloaded:

02.05.2022).
[3] Stig Strand and Jan Sagli. “MPC in Statoil-advantages with in-house technology.”

In: International Symposium on Advanced Control of Chemical Processes
(ADCHEM) 37 (Jan. 2003).

[4] Bjarne Foss and Tor Aksel N Heirung. “Merging optimization and control.” In:
Lecture Notes (2013).

[5] HUGO RYVIK. Supermodell mot fremtiden. url:
https://www.tu.no/artikler/supermodell-mot-fremtiden/268926.
(downloaded: 13.05.2022).

[6] Siddharta Govindaraj. Test-Driven Python Development. Community Experience
Distilled. Packt Publishing, 2015. url: https://search.ebscohost.com/login.
aspx?direct=true&db=nlebk&AN=986718&site=ehost-live.

[7] pytest. pytest: helps you write better programs. url:
https://docs.pytest.org/en/6.2.x/. (downloaded: 08.12.2021).

[8] pytest. pytest fixtures: explicit, modular, scalable. url:
https://docs.pytest.org/en/6.2.x/fixture.html. (downloaded: 08.12.2021).

[9] Wolfram. Functional Mock-up Interface (FMI). url:
https://reference.wolfram.com/system-modeler/UserGuide/
ModelCenterFunctionalMockupInterface.html#192378648. (downloaded:
07.12.2021).

[10] OPC Foundation. What is OPC. url:
https://opcfoundation.org/about/what-is-opc/. (downloaded: 15.11.2021).

[11] OPC Foundation. Unified Architecture. url:
https://opcfoundation.org/about/opc-technologies/opc-ua/. (downloaded:
15.11.2021).

[12] Kristin Seter. Bernoulli-effekten. url: https://snl.no/Bernoulli-effekten.
(downloaded: 25.05.2022).

[13] Tom M. Mitchell. Machine learning, International Edition. McGraw-Hill Series in
Computer Science. McGraw-Hill, 1997. url:
https://www.worldcat.org/oclc/61321007.

[14] Jason Brownlee. Overfitting and Underfitting With Machine Learning Algorithms.
url: https://machinelearningmastery.com/overfitting-and-underfitting-
with-machine-learning-algorithms/. (downloaded: 28.05.2022).

[15] Jason Brownlee. How to avoid overfitting in DeepLearning Neural Networks. url:
https://machinelearningmastery.com/introduction-to-regularization-
to-reduce-overfitting-and-improve-generalization-error/. (downloaded:
31.05.2022).

52

https://www.equinor.com/energy
https://www.tu.no/artikler/supermodell-mot-fremtiden/268926
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=986718&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=986718&site=ehost-live
https://docs.pytest.org/en/6.2.x/
https://docs.pytest.org/en/6.2.x/fixture.html
https://reference.wolfram.com/system-modeler/UserGuide/ModelCenterFunctionalMockupInterface.html#192378648
https://reference.wolfram.com/system-modeler/UserGuide/ModelCenterFunctionalMockupInterface.html#192378648
https://opcfoundation.org/about/what-is-opc/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://snl.no/Bernoulli-effekten
https://www.worldcat.org/oclc/61321007
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/

REFERENCES

[16] Antonio Gulli. Deep Learning with Keras. Packt Publishing, 2017. url:
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=
1510480&site=ehost-live&scope=site.

[17] Simplilearn. What is Perceptron: A Beginners Guide for Perceptron. url: https:
//www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron.
(downloaded: 23.05.2022).

[18] Goodfellow Ian, Bengio Yoshua, and Courville Aaron. Deep Learning. Adaptive
Computation and Machine Learning. The MIT Press, 2016. url:
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=
2565107&site=ehost-live&scope=site.

[19] Kostadinov Simeon. Recurrent Neural Networks with Python Quick Start Guide :
Sequential Learning and Language Modeling with TensorFlow. Packt Publishing,
2018. url: https://search.ebscohost.com/login.aspx?direct=true&db=
nlebk&AN=1950552&site=ehost-live&scope=site.

[20] K.E. ArunKumar et al. “Forecasting of COVID-19 using deep layer Recurrent
Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long
Short-Term Memory (LSTM) cells.” In: Chaos, Solitons & Fractals 146 (2021),
p. 110861. url:
https://www.sciencedirect.com/science/article/pii/S0960077921002149.

[21] Sepp Hochreiter and JÃ¼rgen Schmidhuber. “Long Short-Term Memory.” In:
Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. eprint:
https://direct.mit.edu/neco/article-
pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf. url:
https://doi.org/10.1162/neco.1997.9.8.1735.

[22] Serdar Yegulalp. What is TensorFlow? The machine learning library explained.
url: https://www.infoworld.com/article/3278008/what-is-tensorflow-
the-machine-learning-library-explained.html. (downloaded: 20.05.2022).

[23] TensorFlow. Effective Tensorflow 2. url:
https://www.tensorflow.org/guide/effective_tf2. (downloaded: 21.05.2022).

[24] Keras. Keras API References. url: https://keras.io/api/. (downloaded:
1.06.2022).

53

https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1510480&site=ehost-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1510480&site=ehost-live&scope=site
https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2565107&site=ehost-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2565107&site=ehost-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1950552&site=ehost-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1950552&site=ehost-live&scope=site
https://www.sciencedirect.com/science/article/pii/S0960077921002149
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-learning-library-explained.html
https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-learning-library-explained.html
https://www.tensorflow.org/guide/effective_tf2
https://keras.io/api/

A APPENDIX A: PYTHON CODE

A Appendix A: Python code

A.1 step_until.py

Listing 17: step_until.py
class stepUntil:

def __init__(self, director, rui):
self.rui=rui
self.director=director

def step_until(self, appl, xvr, criteria, comparator, value="Meas",
maxstep=1000):

N_step=maxstep

for i in range(maxstep):
if (comparator(getattr(self.rui.appl[appl][xvr], value), criteria)):

N_step=i
break

else:
self.director.step(1)

return N_step

A.2 conftest.py

Listing 18: conftest.py
import time

import pytest

from antiseptic.opc import OPCClient, OPCServer
from antiseptic.septic import SEPTICClient, SEPTICMaster
from antiseptic.director import DirectorSingle
from antiseptic.septicbase.septicobject import SepticObject
from functions import *

@pytest.fixture(scope="module")
def opc():

s = OPCServer(
cfgfile=r"taglist.txt",

opcserver=r"c:\appl\opcserver\bin\statoilopcserver.exe",
)

54

A APPENDIX A: PYTHON CODE

s.start()
time.sleep(1)
c = OPCClient(scheduletag="Time", pulstag="Heartbeat", steplen=10)
c.connect("Statoil.OPC.Server")
yield c
#c.close()
#s.stop() # Kill the OPC server when test finishes

@pytest.fixture(scope="module")
def main(opc):

s = SEPTICMaster(
qtseptic=r"c:\appl\septic\bin\QtSepticFMU.exe",
cnfgfile=r"C:\appl\septic\Setup\Single_Well_config\SingleWell.cnfg",
rundir=r"rundir",

)
s.start()
yield s
#s.stop() # Kill the SEPTIC application when test finishes

@pytest.fixture(scope="module")
def rui(main):

if not main.reused:
time.sleep(20)

c = SEPTICClient()
c.connect("127.0.0.1", 12030)
time.sleep(1)
c.read() # Read INIT msg and initialize rui.appl
yield c

@pytest.fixture(scope="module", autouse=True)
def director(opc,rui):

d = DirectorSingle(opc, main=(rui,
r"C:\appl\septic\Setup\Single_Well_config\SingleWell.cnfg"))

d.bootstrap(minutes=6)
opc["Allowactive"]=0
d.step()
yield d

@pytest.fixture(scope="module", autouse=True)
def director2(rui,director):

s=step(director=director,rui=rui)
yield s

A.3 test_sequence.py

55

A APPENDIX A: PYTHON CODE

Listing 19: test_sequence.py
import pytest
from functions import stepUntil
from matplotlib import pyplot as plt
import numpy as np
import operator
from operator import itemgetter

WellOff=-1
WellClosed=1
WellKickOff=2
WellRampUp=3
WellTarget=4
WellShutdown=5

def test_WellOff(opc, rui, director):
set mpc to "off" mode
opc["Allowactive"]=0
set Choke to "off" mode
rui.appl["SingleWell"]["Choke"].Mode=0
step to update values in SEPTIC
director.step(1)
Check that the wellstate is in "welloff" state
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellOff

def test_WellClosed(opc, rui, director, director2):

Set inital value to choke and gasliftrate
rui.appl["SingleWell"]["Choke"].Deas=20
rui.appl["SingleWell"]["GasLiftRate"].Deas=10000

#obtain stable flow
director.step(80)

check that the well is open
assert rui.appl["SingleWell"]["OilRate"].Meas>0
assert rui.appl["SingleWell"]["Choke"].Meas>0

#Close the well down
for x in range(21):

rui.appl["SingleWell"]["Choke"].Deas=20-x #Shut the well down
director.step(25)

step sufficient amount of time such that the system is stable
director.step(125)
check that well is closed and the wellstate is still in WellOff

56

A APPENDIX A: PYTHON CODE

assert rui.appl["SingleWell"]["OilRate"].Meas<0.1
assert rui.appl["SingleWell"]["Choke"].Meas==0
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellOff
Set MPC and choke to active and setpoint to 0
opc["Allowactive"]=1
rui.appl["SingleWell"]["Choke"].Mode=3
rui.appl["SingleWell"]["OilRate"].SetPnt=0
director.step(100)
Check wellstate is in closed state
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellClosed

def test_WellKickOff(opc, rui, director, director2):
Specify minimum choke opening and rate of change of Choke opening
Zmin=10
deltaZmaxUp=0.1

Set OilRate setpoint to 290
rui.appl["SingleWell"]["OilRate"].SetPnt=290
Step until Wellstate equals WellKickOffState
N_step=director2.step_until("StartUpCalc", "WellState", WellKickOff,

comparator=operator.eq)
#Check that Wellstate is indeed in WellKickOff state
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellKickOff

Step until the choke reaches it’s minimum choke value of Zmin
N_step=director2.step_until("SingleWell", "Choke", Zmin,

comparator=operator.ge)
Check if the choke has reached it’s minimum choke value of Zmin
assert rui.appl["SingleWell"]["Choke"].Meas>=Zmin

extract the simulated choke values from septic
Z=list(map(itemgetter(0), rui.appl["SingleWell"]["Choke"].Meas[-N_step:]))
compute the rate of change of the choke numerically
deltaZ=np.gradient(Z)
#Check that the rate of change isn’t above maximum allowed rate of change
assert round(max(deltaZ),2)<=deltaZmaxUp

def test_WellRampUp(opc, rui, director, director2):
Specify minimum and maximum choke opening, maximum rate of change of

Choke opening

57

A APPENDIX A: PYTHON CODE

and maximum allowed rate of change in OilRate
Zmin=10
Zmax=100
deltaZmaxUp=0.1
deltaQoilMaxUp=7

#Step untilWellstate reaches WellRampUp state
N_step= director2.step_until("StartUpCalc", "WellState", WellRampUp,

comparator=operator.eq)
#Check that Wellstate is indeed in WellRampUp state
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellRampUp

#simulate the whole ramp up state to check conditions
N_step= director2.step_until("StartUpCalc", "WellState", WellTarget,

comparator=operator.eq)

extract simulated choke and oilrate values from septic
Z=list(map(itemgetter(0), rui.appl["SingleWell"]["Choke"].Meas[-N_step:]))
Qoil=list(map(itemgetter(0),

rui.appl["SingleWell"]["OilRate"].Meas[-N_step:]))

compute the rate of change numerically
deltaZ=np.gradient(Z)
deltaQoil=np.gradient(Qoil)

#Check the rate of change isn’t above maximum allowed rate of change
assert round(max(deltaQoil),2)<=deltaQoilMaxUp
assert round(max(deltaZ),2)<=deltaZmaxUp

check if choke is not above or under the boundaries of the choke
assert ((round(min(Z),2)>=Zmin)and(round(max(Z),2)<=Zmax))

def test_WellTargetControl(opc, rui, director, director2):
Specify minimum and maximum choke opening
Zmin=10
Zmax=100
deadband=0.5

#Check that Wellstate is indeed in WellRampUp state
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellTarget
step in WellTarget control to get some values in welltarget
director.step(200)

extract choke and oilrate values from simulation in welltarger
Z=list(map(itemgetter(0), rui.appl["SingleWell"]["Choke"].Meas[-200:]))
Qoil=list(map(itemgetter(0), rui.appl["SingleWell"]["OilRate"].Meas[-200:]))

58

A APPENDIX A: PYTHON CODE

check if choke is not above or under the boundaries of the choke
assert ((round(min(Z),2)>=Zmin)and(round(max(Z),2)<=Zmax))
check if oilrate is not above or under the deadband conition
for x in Qoil: assert ((round(x,2)>290-deadband) and

(round(x,2)<290+deadband))

Check transition of states from targetcontrol to rampup and back
rui.appl["SingleWell"]["OilRate"].SetPnt=305
N_step= director2.step_until("StartUpCalc", "WellState", WellRampUp,

comparator=operator.eq)
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellRampUp

N_step= director2.step_until("StartUpCalc", "WellState", WellTarget,
comparator=operator.eq)

assert rui.appl["StartUpCalc"]["WellState"].Meas==WellTarget
director.step(200)

def test_Shutdown(opc, rui, director, director2):
Specify maximum down rate of change of Choke opening
and maximum allowed down rate of change in OilRate
deltaZmaxDn=0.1
deltaQoilDn=7

set Shutdown condition
rui.appl["SingleWell"]["OilRate"].SetPnt=0.5
step until wellshutdown state is reached
N_step=director2.step_until("StartUpCalc", "WellState", WellShutdown,

comparator=operator.eq)
check if the wellstate is indeed wellshutdown
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellShutdown

Step to WellClosed state, such it can test the system dynamics condition
in well shutdown state

N_step= director2.step_until("StartUpCalc", "WellState", WellClosed,
comparator=operator.eq)

#extract choke opening and oilrate from SEPTIC
Z=list(map(itemgetter(0), rui.appl["SingleWell"]["Choke"].Meas[-N_step:]))
Qoil=list(map(itemgetter(0),

rui.appl["SingleWell"]["OilRate"].Meas[-N_step:]))

compute the rate of change numerically
deltaZ=np.gradient(Z)

59

A APPENDIX A: PYTHON CODE

deltaQoil=np.gradient(Qoil)

Check rate of change conditions
assert -round(max(deltaQoil),2)<=deltaQoilDn
assert -round(max(deltaZ),2)<=deltaZmaxDn

check if the well is indeed closed
assert rui.appl["StartUpCalc"]["WellState"].Meas==WellClosed
director.step(100)

A.4 test_testSet.py

Listing 20: test_testSet.py
def test_testSet(opc, director, rui):

choke=15
time=300
rui.appl["SingleWell"]["Choke"].Deas=choke
#obtain stable flow
director.step(500)

initialize the process by step up and down from 0% to 100% and back to 15%
for choke in range(15,105,5):

rui.appl["SingleWell"]["Choke"].Deas=choke
director.step(time)

for choke in range(100,10,-5):
rui.appl["SingleWell"]["Choke"].Deas=choke
director.step(time)

generate test simulation
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=20
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=24
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=28
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=24
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=27
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=32
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=37
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=33

60

A APPENDIX A: PYTHON CODE

director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=37
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=41
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=47
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=40
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=45
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=50
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=56
director.step(time)
rui.appl["SingleWell"]["Choke"].Deas=52
director.step(time)

A.5 Convert_Data.py

Listing 21: Convert_Data.py
from ReadWriteFile import read_from_file, write_to_file

RawData=[]
RawData=read_from_file(file="MySystem_1.txt")
for x in range(3): # delete the three first lines

del RawData[0]
RawData.remove("\n")
attributes="," # inital data to be stored from file
data=[]

Skip=0 # sample to skip
for count,x in enumerate(RawData):

if "Col_" in x :
word=x.split()
if (word[1]=="N.sample"):

continue
else:

attributes+=word[1]+","
elif count<(Skip+len(attributes.split(","))-2):

continue
else:

line=""
splitData=x.split()
for i in splitData:

line+=i+","

61

B APPENDIX B: SEPTIC CONFIGURATION FILES

line=line[:-1]
data.append(line)

attributes=attributes[:-1]
data.insert(0, attributes)
write_to_file(data,False,"data_set.csv")

A.6 ReadWriteFile.py

Listing 22: ReadWriteFile.py
import operator

def write_to_file(string, append=False, file="log.txt"):
if append: mode="a+"
else: mode="w+"

f= open(file,mode)
if isinstance(string, list):

for x in string:
f.write(x+"\n")

else : f.write(string+"\n")
f.close()

def read_from_file(file="tests/MySystem_1.txt"):
#content=[]
f = open(file,’r’)
content=f.readlines()
f.close()
return content

B Appendix B: SEPTIC configuration files

B.1 WellKickOff calc

Listing 23: Well Kick Off calc
DmmyAppl: StartUpCalc

Text1= "Calc to start up well"
Text2= ""
Nstep= 1
PlotMax= 25
MasterOn= ON
DesMode= ACTIVE

62

B APPENDIX B: SEPTIC CONFIGURATION FILES

Evr: WellState Meas= 0

Evr: TransWellClosed Meas= 0
Evr: WellOffState Meas= -1

Evr: WellClosedState Meas= 1
Evr: IsWellClosed
Evr: TransWellOff Meas= 0

Evr: TransKickOff Meas= 0
Evr: WellKickOffState Meas= 2
Evr: IsWellKickOff

Evr: ChokeSetLow
Evr: ChokeSetHigh
Evr: ChokeLow
Evr: ChokeHigh

Evr: ChokeLowKickOff Meas= 10
Evr: ChokeHighKickOff Meas= 11

CalcModl: Calc
Text1= ""
Text2= ""

//------------- Transitions---------------------------
CalcPvr: TransWellOff

Text1= ""
Text2= ""
Alg= "not(getfinalstatus(Choke)==3)"

CalcPvr: TransWellClosed
Text1= ""
Text2= ""
Alg= "and(OilRate<0.5,Choke<0.5)"

CalcPvr: TransKickOff
Text1= ""
Text2= ""
Alg= "and(OilRate.SetPnt>0.5,OilRate<0.5)"

// ---------------------Calculation of WellState--------

CalcPvr: IsWellClosed
Text1= ""
Text2= ""

63

B APPENDIX B: SEPTIC CONFIGURATION FILES

Alg= "or(and(TransWellClosed, not(TransWellOff), not(TransKickOff)),
and(WellState==WellClosedState,not(TransWellOff),
not(TransKickOff)))"

CalcPvr: IsWellKickOff
Text1= ""
Text2= ""
Alg= "or(and(TransKickOff not(TransWellOff)),

and(WellState==WellKickOffState, not(TransWellOff)))"

CalcPvr: WellState
Text1= ""
Text2= ""
Alg= "TransWellOff*WellOffState+IsWellClosed*WellClosedState+

IsWellKickOff*WellKickOffState"

//--------------------------Calculation of Choke high and low
CalcPvr: ChokeLow

Text1= ""
Text2= ""
Alg= "if(WellState==WellKickOffState,ChokeLowKickOff,0)"

CalcPvr: ChokeHigh
Text1= ""
Text2= ""
Alg= "if(WellState==WellKickOffState,ChokeHighKickOff,100)"

//----------------Set low and high on Choke
CalcPvr: ChokeSetLow

Text1= ""
Text2= ""
Alg= "setlow(Choke,ChokeLow)"

CalcPvr: ChokeSetHigh
Text1= ""
Text2= ""
Alg= "sethigh(Choke,ChokeHigh)"

B.2 Well Sequence calc

Listing 24: Well Sequence calc
DmmyAppl: StartUpCalc

Text1= "Calc to start up well"
Text2= ""
Nstep= 1

64

B APPENDIX B: SEPTIC CONFIGURATION FILES

PlotMax= 25
MasterOn= ON
DesMode= ACTIVE

Evr: TransWellClosed Meas= 0
Evr: TransKickOff Meas= 0
Evr: TransRampUp Meas= 0
Evr: TransTargetControl Meas= 0
Evr: TransShutdown Meas= 0
Evr: TransWellOff Meas= 0

Evr: WellState Meas= 0
Evr: WellOffState Meas= -1
Evr: WellClosedState Meas= 1
Evr: WellKickOffState Meas= 2
Evr: WellRampUpState Meas= 3
Evr: WellTargetControlState Meas= 4
Evr: WellShutdownState Meas= 5

Evr: IsWellKickOff
Evr: IsWellRampUp
Evr: IsWellClosed
Evr: IsWellTargetControl
Evr: IsWellShutdown

Evr: ChokeSetLow
Evr: ChokeSetHigh

Evr: ChokeLow Meas= 0
Evr: ChokeHigh Meas= 100

Evr: ChokeLowKickOff Meas= 10
Evr: ChokeHighKickOff Meas= 11

Evr: ChokeLowWellClosed Meas= 0
Evr: ChokeHighWellClosed Meas= 100

Evr: ChokeLowWellShutdown Meas= 0
Evr: ChokeHighWellShutdown Meas= 100

Evr: ChokeLowWellRampUp Meas= 10
Evr: ChokeHighWellRampUp Meas= 100

Evr: ChokeLowWellTargetControl Meas= 10
Evr: ChokeHighWellTargetControl Meas= 100

Evr: QoilMin Meas= 180

65

B APPENDIX B: SEPTIC CONFIGURATION FILES

Evr: Deadband Meas= 0.5
Evr: OilPred

CalcModl: Calc
Text1= ""
Text2= ""

//------------------Transitions---------------------------------
CalcPvr: TransWellOff

Text1= ""
Text2= ""
Alg= "not(getfinalstatus(Choke)==3)"

CalcPvr: TransShutdown
Text1= ""
Text2= ""
Alg= "and(OilRate.SetPnt<=0.5, OilRate>=0.5, Choke>=0.5)"

CalcPvr: TransWellClosed
Text1= ""
Text2= ""
Alg= "and(OilRate<0.5,Choke<0.5)"

CalcPvr: TransKickOff
Text1= ""
Text2= ""
Alg= "and(OilRate.SetPnt>0.5,OilRate<0.5)"

CalcPvr: TransRampUp
Text1= ""
Text2= ""
Alg= "and((Choke>=ChokeLowKickOff), OilRate>=QoilMin)"
//

CalcPvr: TransTargetControl
Text1= ""
Text2= ""
Alg= "and((abs(OilRate-getssval(OilRate)))<Deadband,

TransRampUp)"
CalcPvr: Tull

Text1= ""
Text2= ""
Alg= "(abs(OilRate-getssval(OilRate)))"

//------------------------Calculation of WellState---------

CalcPvr: IsWellClosed
Text1= ""
Text2= ""

66

B APPENDIX B: SEPTIC CONFIGURATION FILES

Alg= "or(and(TransWellClosed, not(TransKickOff),
not(TransWellOff)),
and(WellState==WellClosedState,not(TransKickOff),not(TransWellOff)))"

CalcPvr: IsWellShutdown
Text1= ""
Text2= ""
Alg= "or(and(TransShutdown, not(TransWellOff),

not(TransWellClosed)),and(WellState==WellShutdownState,not(TransWellOff),
not(TransWellClosed)))"

CalcPvr: IsWellKickOff
Text1= ""
Text2= ""
Alg= "or(and(TransKickOff, not(TransRampUp),

not(TransWellOff), not(IsWellShutdown)),
and(WellState==WellKickOffState, not(TransRampUp),
not(TransWellOff), not(IsWellShutdown)))"

CalcPvr: IsWellRampUp
Text1= ""
Text2= ""
Alg= "or(and(TransRampUp,not(TransTargetControl),

not(TransWellOff), not(IsWellShutdown)),
and(WellState==WellRampUpState, not(TransTargetControl),
not(TransWellOff), not(IsWellShutdown)))"

CalcPvr: IsWellTargetControl
Text1= ""
Text2= ""
Alg= "or(and(TransTargetControl,not(TransShutdown),

not(TransWellOff), not(IsWellShutdown)),
and(WellState==WellTargetControlState,
not(TransShutdown), not(TransWellOff),
not(IsWellShutdown)))"

CalcPvr: WellState
Text1= ""
Text2= ""
Alg= "

TransWellOff*WellOffState+IsWellClosed*WellClosedState+
IsWellKickOff*WellKickOffState+IsWellRampUp*WellRampUpState+
IsWellTargetControl*WellTargetControlState+
IsWellShutdown*WellShutdownState"

//--------------------------Calculation of Choke high and low
CalcPvr: ChokeLow

67

B APPENDIX B: SEPTIC CONFIGURATION FILES

Text1= ""
Text2= ""
Alg= "if(WellState==WellClosedState,ChokeLowWellClosed,0)+

if(WellState==WellKickOffState, ChokeLowKickOff,0)+
if(WellState==WellRampUpState, ChokeLowWellRampUp,0)+i
f(WellState==WellTargetControlState,
ChokeLowWellTargetControl,0)+
if(WellState==WellShutdownState,
ChokeLowWellShutdown,0)+if(WellState>5,10,0)"

CalcPvr: ChokeHigh
Text1= ""
Text2= ""
Alg= "if(WellState==WellClosedState,

ChokeHighWellClosed,0)+if(WellState==WellKickOffState,
ChokeHighKickOff,0)+if(WellState==WellRampUpState,
ChokeHighWellRampUp,0)+if(WellState==WellTargetControlState,
ChokeHighWellTargetControl,0)+if(WellState==WellShutdownState,
ChokeHighWellShutdown,0)+if(WellState>5,100,0)"

//----------------Set low and high on Choke
CalcPvr: ChokeSetLow

Text1= ""
Text2= ""
Alg= "setlow(Choke,ChokeLow)"

CalcPvr: ChokeSetHigh
Text1= ""
Text2= ""
Alg= "sethigh(Choke,ChokeHigh)"

B.3 SinglWell.cnfg

Listing 25: SEPTIC configuration file
System: MySystem

Text1= "SEPTIC test application"
Text2= ""
Nsecs= 10

PlotMax= 10
Nhist= 25920
Npred= 360
Nmodl= 180
Nxupd= 1
ClipOn= OFF

ChngLogOn= OFF

68

B APPENDIX B: SEPTIC CONFIGURATION FILES

WdwDx= 800
WdwDy= 400
Xline= 0
Xback= 0.7
Grps= 5

"Process1" "Calctable" "Free" "Free" "Free"
GrpLock= 0000
Xgroup= 0001

MaxLogon= ROOT
RootPwd= ""
MngrPwd= ""
OperPwd= ""
UserPwd= ""

Terr= 0
DebugNR= 25920
DebugOn= 11111111
Zname= 225
Zhilo= 275
Zstate= 225
Zopen= 225
Zfont= 275
Zline= 275

FontSize= -1
InitialGroup= -1

ShowText1WithName= ON
MinXPos= 0
MinYPos= 0
MaxXPos= 0
MaxYPos= 0

InitScreen= -1
InitXPos= -1
InitYPos= -1
InitWidth= -1
InitHeight= -1

MinimizeByHide= OFF
HideCloseButton= OFF
OPCSampleTimeOffset= 0

SopcProc: SingleWell
Text1= "TestSopcProc antiSEPTIC"
Text2= ""
Site= AIM_AIMGUI

ServName= "Statoil.OPC.Server"
ServNode= "SERVNODE"

RealTimeFac= 1
ProcTag= ""

69

B APPENDIX B: SEPTIC CONFIGURATION FILES

AllowActiveTag= "AllowActive"
StatusTag= "NotUsed"
DesModeTag= "DUMMY_TAG"

PulsTag= "Heartbeat"
LoopcheckWriteTag= "DUMMY_TAG"
LoopcheckReadTag= "DUMMY_TAG"
ServFactorTag= "DUMMY_TAG"

CPUTimeTag= "DUMMY_TAG"
IdTag= ""

ScheduleTag= "Time"
RunSec= -1

RequestRate= -1
BadCountLimit= 0
SampleAgeLimit= -1
BlockWritingIfBad= OFF

WriteGroups= 1
WriteGroupPause= 10

SopcTvr: Apply
Text1= ""
Text2= ""
TvrTag= ""
MeasTag= "Apply"

NotValidTag= "NotUsed"
Text1Tag= ""

Scale= 1
Offset= 0

FMUProc: SingleWell_FMU
Text1= "FMU containing 1 Well"
Text2= ""

FMUname= "SingleWell.fmu"

// FMU for well 1...
SubrXvr: Choke

Text1= "Choke position"
Text2= " "
DtaIx= "u[1]"
Init= 0

SubrXvr: GasLiftRate
Text1= "Gas lift rate"
Text2= " "

70

B APPENDIX B: SEPTIC CONFIGURATION FILES

DtaIx= "u[2]"
Init= 0

SubrXvr: TopsidePressure
Text1= "Inlet pressure at topside separator"
Text2= " "
DtaIx= "u[3]"
Init= 0

SubrXvr: GasRate
Text1= ""
Text2= " "
DtaIx= "y[1]"
Init= 0

SubrXvr: OilRate
Text1= "Oil Rate"
Text2= " "
DtaIx= "y[2]"
Init= 0

SubrXvr: WaterRate
Text1= ""
Text2= " "
DtaIx= "y[3]"
Init= 0

SubrXvr: GasLiftRatePV
Text1= ""
Text2= " "
DtaIx= "y[4]"
Init= 0

SubrXvr: BHP
Text1= "Bottom hole pressure"
Text2= " "
DtaIx= "y[5]"
Init= 182

SubrXvr: WHP
Text1= "Well head pressure"
Text2= " "
DtaIx= "y[6]"
Init= 26

SubrXvr: DCP
Text1= ""
Text2= " "

71

B APPENDIX B: SEPTIC CONFIGURATION FILES

DtaIx= "y[7]"
Init= 16

SubrXvr: PGL
Text1= ""
Text2= " "
DtaIx= "y[8]"
Init= 166

SubrXvr: ChokePV
Text1= ""
Text2= " "
DtaIx= "y[9]"
Init= 0

SubrXvr: GOR
Text1= ""
Text2= " "
DtaIx= "y[10]"
Init= 29

SubrXvr: Velocity
Text1= "DSC velocity"
Text2= " "
DtaIx= "y[11]"
Init= 2.76

MasterTcip: MyApplication
MasterPort= 12030
WriteHosts= 1 "127.0.0.1"

DmmyAppl: StartUpCalc
Text1= "Calc to start up well"
Text2= ""
Nstep= 1

PlotMax= 25
MasterOn= ON
DesMode= ACTIVE

Evr: TransWellClosed Meas= 0
Evr: TransKickOff Meas= 0
Evr: TransRampUp Meas= 0
Evr: TransTargetControl Meas= 0
Evr: TransShutdown Meas= 0
Evr: TransWellOff Meas= 0

Evr: WellState Meas= 0

72

B APPENDIX B: SEPTIC CONFIGURATION FILES

Evr: WellOffState Meas= -1
Evr: WellClosedState Meas= 1
Evr: WellKickOffState Meas= 2
Evr: WellRampUpState Meas= 3
Evr: WellTargetControlState Meas= 4
Evr: WellShutdownState Meas= 5

Evr: IsWellKickOff
Evr: IsWellRampUp
Evr: IsWellClosed
Evr: IsWellTargetControl
Evr: IsWellShutdown

Evr: ChokeSetLow
Evr: ChokeSetHigh

Evr: ChokeLow Meas= 0
Evr: ChokeHigh Meas= 100

Evr: ChokeLowKickOff Meas= 10
Evr: ChokeHighKickOff Meas= 11

Evr: ChokeLowWellClosed Meas= 0
Evr: ChokeHighWellClosed Meas= 100

Evr: ChokeLowWellShutdown Meas= 0
Evr: ChokeHighWellShutdown Meas= 100

Evr: ChokeLowWellRampUp Meas= 10
Evr: ChokeHighWellRampUp Meas= 100

Evr: ChokeLowWellTargetControl Meas= 10
Evr: ChokeHighWellTargetControl Meas= 100

Evr: QoilMin Meas= 180
Evr: Deadband Meas= 0.5
Evr: OilPred

CalcModl: Calc
Text1= ""
Text2= ""

//------------------Transitions---------------------------------
CalcPvr: TransWellOff

Text1= ""
Text2= ""
Alg= "not(getfinalstatus(Choke)==3)"

73

B APPENDIX B: SEPTIC CONFIGURATION FILES

CalcPvr: TransShutdown
Text1= ""
Text2= ""
Alg= "and(OilRate.SetPnt<=0.5, OilRate>=0.5, Choke>=0.5)"

CalcPvr: TransWellClosed
Text1= ""
Text2= ""
Alg= "and(OilRate<0.5,Choke<0.5)"

CalcPvr: TransKickOff
Text1= ""
Text2= ""
Alg= "OilRate.SetPnt>0.5"

CalcPvr: TransRampUp
Text1= ""
Text2= ""
Alg= "and((Choke>=ChokeLowKickOff), OilRate>=QoilMin)"
//

CalcPvr: TransTargetControl
Text1= ""
Text2= ""
Alg= "and((abs(OilRate-getssval(OilRate)))<Deadband,

TransRampUp)"

//------------------------Calculation of WellState---------

CalcPvr: IsWellClosed
Text1= ""
Text2= ""
Alg= "or(and(TransWellClosed, not(TransKickOff),

not(TransWellOff)), and(WellState==WellClosedState,
not(TransKickOff),not(TransWellOff)))"

CalcPvr: IsWellShutdown
Text1= ""
Text2= ""
Alg= "or(and(TransShutdown, not(TransWellOff),

not(TransWellClosed)), and(WellState==WellShutdownState,
not(TransWellOff), not(TransWellClosed)))"

CalcPvr: IsWellKickOff
Text1= ""
Text2= ""

74

B APPENDIX B: SEPTIC CONFIGURATION FILES

Alg= "or(and(TransKickOff, not(TransRampUp),
not(TransWellOff), not(IsWellShutdown)),
and(WellState==WellKickOffState, not(TransRampUp),
not(TransWellOff), not(IsWellShutdown)))"

CalcPvr: IsWellRampUp
Text1= ""
Text2= ""
Alg= "or(and(TransRampUp,not(TransTargetControl),

not(TransWellOff), not(IsWellShutdown)),
and(WellState==WellRampUpState, not(TransTargetControl),
not(TransWellOff), not(IsWellShutdown)))"

CalcPvr: IsWellTargetControl
Text1= ""
Text2= ""
Alg= "or(and(TransTargetControl,not(TransShutdown),

not(TransWellOff), not(IsWellShutdown)),
and(WellState==WellTargetControlState,
not(TransShutdown), not(TransWellOff),
not(IsWellShutdown)))"

CalcPvr: WellState
Text1= ""
Text2= ""
Alg= "TransWellOff*WellOffState+IsWellClosed*WellClosedState

+IsWellKickOff*WellKickOffState+IsWellRampUp*WellRampUpState
+ IsWellTargetControl*WellTargetControlState+
IsWellShutdown*WellShutdownState"

//--------------------------Calculation of Choke high and low
CalcPvr: ChokeLow

Text1= ""
Text2= ""
Alg= "if(WellState==WellClosedState,ChokeLowWellClosed,0)+

if(WellState==WellKickOffState,ChokeLowKickOff,0)+
if(WellState==WellRampUpState,ChokeLowWellRampUp,0)+
if(WellState==WellTargetControlState,
ChokeLowWellTargetControl,0)+
if(WellState==WellShutdownState,ChokeLowWellShutdown,0)+
if(WellState>5,10,0)"

CalcPvr: ChokeHigh
Text1= ""
Text2= ""
Alg= "if(WellState==WellClosedState,ChokeHighWellClosed,0)+

if(WellState==WellKickOffState,ChokeHighKickOff,0)+
if(WellState==WellRampUpState,ChokeHighWellRampUp,0)+

75

B APPENDIX B: SEPTIC CONFIGURATION FILES

if(WellState==WellTargetControlState,
ChokeHighWellTargetControl,0)+
if(WellState==WellShutdownState,ChokeHighWellShutdown,0)+
if(WellState>5,100,0)"

//----------------Set low and high on Choke
CalcPvr: ChokeSetLow

Text1= ""
Text2= ""
Alg= "setlow(Choke,ChokeLow)"

CalcPvr: ChokeSetHigh
Text1= ""
Text2= ""
Alg= "sethigh(Choke,ChokeHigh)"

// SMPC for well...
SmpcAppl: SingleWell

Text1= "MIMO MPC for Well 1 of Cvr: Oil Rate, WHP and BHP with Mvr:
Choke and GasLiftRate"

Text2= ""
Npred= 360
Nstep= 1

PlotMax= 25
Nhorz= 360
Nstart= 0

MasterOn= ON
DesMode= TRACKING
FailMax= 0
PriceOn= ON

PriceScale= 1
IterOpt= OFF

IterNewSens= OFF
IterQpMax= 10

IterLineMax= 0
DoStdSolve= ON

SteadySolver= QP
MajItLim= 200
MajPrint= 0

ObjConPrint= OFF
VerifyGrads= OFF

FuncPrec= 9.9999999e-009
FeTol= 9.9999997e-006

OptimTol= 1e-006
FdifIntv= 0.001

MaxSeconds= 10
LmPrio= 100

76

B APPENDIX B: SEPTIC CONFIGURATION FILES

MaxPrioSQP= 100
UnConstrnd= OFF
OpenFlag= OPTMVR
UpdFilt= 0
RelPert= 0.050000001
FeasTol= 1e-007

EachParam= OFF
LinErrorLim= 1000
ColdStart= OFF
SimOptimal= OFF
PrintSens= 0
SensLimSS= 1e-006
SensLimDyn= 1e-006

// SMPC for well1}...
Cvr: WHP

Text1= "Well head pressure"
Text2= ""
Mode= TRACKING
Auto= OFF

PlotMax= 80
PlotMin= 10
PlotSpan= -1
PlotGrp= 0000000000000000000000000000000

Nfix= 1
MaxChg= -1
Unit= "bar"
Meas= 19.3

GrpMask= 0000000000000000000000100000000
GrpType= 0000000000000000000000000000000

Span= 1
SetPntOn= 0
HighOff= 25
LowOff= 17

SetPntPrio= 2
HighPrio= 2
LowPrio= 1

HighBackOff= 0
LowBackOff= 0

Fulf= 1
HighPnlty= 1
LowPnlty= 10
HighLimit= 1000
LowLimit= 1000
RelxParam= 3 1 30 80

FulfReScale= 0.001
SetpTref= 0

77

B APPENDIX B: SEPTIC CONFIGURATION FILES

BiasTfilt= 0
BiasTpred= 0
ConsTfilt= -1

Integ= 0
TransformType= NOTRANS

BadCntLim= 0
DesHorz= 0
Neval= 5
EvalDT= 0

KeepTargets= OFF
MeasValidation= ON
MeasHighLimit= 100000
MeasLowLimit= -10

LockHL= OFF
LockSP= OFF
LockLL= OFF

UseFactorWeight= 0

Cvr: OilRate
Text1= "Oil Rate"
Text2= ""
Mode= ACTIVE
Auto= OFF

PlotMax= 420
PlotMin= -5
PlotSpan= -1
PlotGrp= 0000000000000000000000000000000

Nfix= 1
MaxChg= -1
Unit= "Sm3/hr"
Meas= 19.3

GrpMask= 0000000000000000000000100000000
GrpType= 0000000000000000000000000000000

Span= 1
SetPntOn= 0
HighOff= 25
LowOff= 17

SetPntPrio= 1
HighPrio= 2
LowPrio= 1

HighBackOff= 0
LowBackOff= 0

Fulf= 4
HighPnlty= 1
LowPnlty= 10
HighLimit= 1000
LowLimit= 1000
RelxParam= 3 1 30 80

78

B APPENDIX B: SEPTIC CONFIGURATION FILES

FulfReScale= 0.001
SetpTref= 0
BiasTfilt= 0
BiasTpred= 0
ConsTfilt= -1

Integ= 0
TransformType= NOTRANS

BadCntLim= 0
DesHorz= 0
Neval= 5
EvalDT= 0

KeepTargets= OFF
MeasValidation= ON
MeasHighLimit= 100000
MeasLowLimit= -10

LockHL= OFF
LockSP= OFF
LockLL= OFF

UseFactorWeight= 0
Cvr: BHP

Text1= "Bottom hole pressure"
Text2= ""
Mode= TRACKING
Auto= OFF

PlotMax= 190
PlotMin= 165
PlotSpan= -1
PlotGrp= 0000000000000000000000000000000

Nfix= 1
MaxChg= -1
Unit= "bar"
Meas= 183.44604

GrpMask= 0000000000000000000000100000000
GrpType= 0000000000000000000000000000000

Span= 1
SetPntOn= 0
HighOff= 185
LowOff= 155

SetPntPrio= 2
HighPrio= 2
LowPrio= 2

HighBackOff= 0
LowBackOff= 0

Fulf= 1
HighPnlty= 1
LowPnlty= 1
HighLimit= 1000
LowLimit= 1000

79

B APPENDIX B: SEPTIC CONFIGURATION FILES

RelxParam= 3 1 30 80
FulfReScale= 0.001

SetpTref= 0
BiasTfilt= 0
BiasTpred= 0
ConsTfilt= -1

Integ= 0
TransformType= NOTRANS

BadCntLim= 0
DesHorz= 0
Neval= 5
EvalDT= 0

KeepTargets= OFF
MeasValidation= ON
MeasHighLimit= 100000
MeasLowLimit= -10

LockHL= OFF
LockSP= OFF
LockLL= OFF

UseFactorWeight= 0

Mvr: Choke
Text1= "Choke position"
Text2= ""
Mode= TRACKING
Auto= OFF

PlotMax= 100
PlotMin= 0
PlotSpan= -1
PlotGrp= 0000000000000000000000000000000

Nfix= 2
MaxChg= -0.0099999998
Unit= "%"
Meas= 0

GrpMask= 0000000000000000000000100000000
GrpType= 0000000000000000000000100000000

Span= 1.00
HighOn= 100
LowOn= 0

ProcessValue= 0.99962002
IvOff= 1
MaxUp= 0.1
MaxDn= -0.1

MovePnlty= 8
IvRoc= 1
IvPrio= 99
Fulf= 1

FulfReScale= 0

80

B APPENDIX B: SEPTIC CONFIGURATION FILES

Price= 0
Blocking= 9 1 2 4 8 16 32 64 128 256

MeasValidation= ON
MeasHighLimit= 105
MeasLowLimit= -5

LockHL= OFF
LockIV= OFF
LockLL= OFF

UseFactorWeight= 0

Mvr: GasLiftRate
Text1= "Gas lift rate"
Text2= ""
Mode= TRACKING
Auto= OFF

PlotMax= 15000
PlotMin= 0
PlotSpan= -1
PlotGrp= 0000000000000000000000000000000

Nfix= 0
MaxChg= -1
Unit= "Sm3/hr"
Meas= 0

GrpMask= 0000000000000000000000100000000
GrpType= 0000000000000000000000000000000

Span= 100
HighOn= 15000
LowOn= 0

ProcessValue= 293.70999
IvOff= 0
MaxUp= 1000
MaxDn= -1000

MovePnlty= 1
IvRoc= 1
IvPrio= 99
Fulf= 100

FulfReScale= 0
Price= 0

Blocking= 9 1 2 4 8 16 32 64 128 256
MeasValidation= ON
MeasHighLimit= 105
MeasLowLimit= -5

LockHL= OFF
LockIV= OFF
LockLL= OFF

UseFactorWeight= 0

Dvr: TopsidePressure

81

B APPENDIX B: SEPTIC CONFIGURATION FILES

Text1= "Inlet pressure at topside separator"
Text2= ""
Mode= TRACKING

PlotMax= 100
PlotMin= 0
PlotGrp= 0000000000000000000000000000000
XvrMnu= 00000000
Nfix= 1
Unit= "bar"
Meas= 13

GrpMask= 00000000
GrpType= 00000000

Span= 1.0

Tvr: GasRate
Text1= "Gas Rate"
Text2= ""

PlotMax= 36000
PlotMin= 10000
PlotGrp= 0000000000000000000000000000000
XvrMnu= 00000000
Nfix= 0
Unit= "Sm3/hr"
Meas= 16987

GrpMask= 00000000
GrpType= 00000000

Span= 10

ExprModl: model1

DisplayGroup: Process
GroupNo= 1
Locked= OFF
Rows= 2
Cols= 3
xGrid= OFF
yGrid= OFF
xAxis= OFF
yAxis= ON

Autoscale= OFF
Spanscale= OFF
HistSize= -1

XvrPlot: OilRate
Row= 1

82

B APPENDIX B: SEPTIC CONFIGURATION FILES

Col= 1

XvrPlot: WHP
Row= 1
Col= 2

XvrPlot: BHP
Row= 1
Col= 3

XvrPlot: Choke
Row= 2
Col= 1

XvrPlot: GasLiftRate
Row= 2
Col= 2

CalcTable: Calc
Row= 2
Col= 3

RowSize= 1
ColSize= 1

DmmyAppl: ModelGainCalc
Text1= "Calc to update gain in experimental model"
Text2= ""
Nstep= 1

PlotMax= 25
MasterOn= ON
DesMode= ACTIVE

Tvr: Apply

Evr: Gain
Evr: GainScheduler
CalcModl: ModGain

Text1= ""
Text2= ""

CalcPvr: Gain
Text1= ""
Text2= ""
Alg= "intpoltype1(Choke,7.5,19.25,17.5,3.46, 22.5,2.134,

27.5,1.35, 32.5,0.886,37.5,0.603,42.5,
0.424,47.5,0.306,52.5,0.226,57.5,

83

C APPENDIX C: MACHINE LEARNING PYTHON CODE

0.170,62.5,0.129,67.5,0.100, 72.5,0.0778,77.5,0.0607,
82.5,0.0475,87.5,0.0371, 92.5,0.0289,97.5,0.0224)"

CalcPvr: GainScheduler
Text1= ""
Text2= ""
Alg= "modgain(OilRate,Choke,Gain,Apply)"

C Appendix C: Machine Learning python code

C.1 ML_import.py

Listing 26: ML_import.py
import different packages and functions
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import keras
from numpy.random import seed
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout
from keras.callbacks import EarlyStopping
from keras.models import load_model
from keras import layers
from keras import metrics
from MinMaxScaler import MinMaxScale, MinMaxDeScale

84

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

Thomas Solli Koløen

TDD and Machine Learning of SEPTIC
MPC application

Master’s thesis in Cybernetics and robotics
Supervisor: Lars Struen Imsland
June 2022

M
as

te
r’s

 th
es

is

	Acknowledge
	Abstract
	Abstrakt
	Acronyms
	List Of Figures
	List of Listings
	Introduction
	Background
	Model Predictive Control
	SEPTIC
	XV's
	SEPTIC MPC Solver
	Model Representation
	Calc

	Test Driven Development
	Pytest

	FMU
	OPC
	antiSEPTIC
	Oil well
	Test setup
	Machine learning
	Feedforward Neural Networks
	Recurrent Neural Network
	LSTM
	Training loop
	TensorFlow

	Sequence
	Sequence implementation
	Well Off
	Well Closed
	Well Kick Off
	Full Sequence Implementation

	Simulation

	Machine Learning of System Dynamics
	Learning problem
	Dataset
	Training set
	Test set
	Convert data
	Data prepossessing

	Create and Train a Machine Learning Model
	Evaluation of model
	Gain scheduling implementation in SEPTIC
	Simulation on sequence

	Discussion
	Sequence Improvement
	TDD of system dynamics
	Machine learning of system dynamics

	Conclusion
	References
	Appendix A: Python code
	step_until.py
	conftest.py
	test_sequence.py
	test_testSet.py
	Convert_Data.py
	ReadWriteFile.py

	Appendix B: SEPTIC configuration files
	WellKickOff calc
	Well Sequence calc
	SinglWell.cnfg

	Appendix C: Machine Learning python code
	ML_import.py

