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Preface

This thesis concludes my work in the spring of 2022 for my Master of Technology.
The thesis summarizes my findings on how to apply computational geometry and
optimization theory for obstacle avoidance and docking of autonomous surface ves-
sels. The work has been done at the Department of Engineering Cybernetics at the
Norwegian University of Science and Technology under the supervision of Anasta-
sios Lekkas.

The recent years’ advancements in autonomous docking of surface vehicles are my
research’s motivation. Promising results from optimization-based docking inspired
me to investigate simultaneous obstacle avoidance and docking of an autonomous
surface vessel (ASV). The thesis is a continuation of my project report (Ødven
(2021)) and is greatly inspired by the work of Martinsen et al. (2019) and Bitar
et al. (2019).

The main contribution of this thesis is docking an ASV while avoiding both static
and dynamic obstacles. We propose two successful methodologies utilizing com-
putational geometry and optimization theory to create feasible obstacle-free dock-
ing trajectories. The main tool was Python for programming and simulation pur-
poses. Various open-source libraries have been used to ease the implementation,
this includes NumPy (Oliphant (2021)), Matplotlib (matplotlib development team
(2021)), SciPy (sciPy community (2021)) and Shapely (Gillies (2021)). The opti-
mal control problem was implemented with the use of CasADi (Andersson et al.
(2021)) with a linear solver from HSL (2022). Some relevant material from MSS
toolbox (Fossen (2021)) were rewritten for Python.

I would like to thank my supervisor, Anastasios Lekkas, for his non-stop energy and
engaging discussions. A lot of my work would not have come to life without his
creativity and insight into marine autonomy. I would like to thank Andreas Bell
Martinsen for co-authoring a paper during the spring and for his interesting work
throughout the years which serves as a foundation for the implementations in this
thesis. I would also like to thank my friends for our great lunches throughout the
semester, keeping up the motivation. My partner, Emilie Hope, and my family for
being supportive and helpful throughout my education.

02.06.2022
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Abstract

Autonomous systems will likely have a significant impact on our next-generation
modern society and replace humans in a variety of today’s tasks. Automatic docking
of autonomous surface vehicles (ASVs) is no different. Overcoming challenges like
low-speed maneuvering, environmental forces, and traffic requires sophisticated
systems. Optimization-based methods have shown promising results over the re-
cent years. However, they are still limited when dealing with non-convex harbor
configurations and obstacles, as this adds the significant challenge of non-convex
constraints.

This thesis presents two methods, A and B, that successfully dock an ASV in real-
time while avoiding static and dynamic obstacles obstructing the direct path to
the quay. We propose a novel tangential decomposition of a non-convex harbor
area into convex polygons for method A. The decomposition leads to the A* search
finding the optimal obstacle-free sequence of polygons connecting the initial pose
to the dock pose. Finally, a switch-based optimization problem computes a feasible,
obstacle-free path to the dock. For method B, we propose a constrained Delaunay
triangulation into a medial axis-based road map connecting the initial pose to the
dock pose. Then, search and waypoint reducing algorithms compute an initial guess
that warm-starts an optimization problem to find an obstacle-free trajectory.

From our results, computational geometry seems promising when pairing it with
optimization-based approaches. We maintain the benefits of optimization-based
methods with respect to vehicle kinematics and dynamics, actuator, and spatial
constraints. Additionally, this combination helps our proposed methods avoid lo-
cal optima and successfully dock in obstacle obstructed harbor environments.
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Sammendrag

Autonome system vil sannsynligvis ha stor innvirkning på vårt neste-generasjons
moderne samfunn og ersatte mennesker i en rekke av dagens oppgaver. Automatisk
dokking av autonome overflatefartøy er intet unntak. Å overmanne utfordringer
knyttet til lavhastighetsmanøvrering, miljøkrefter og trafikk krever sofistikerte sys-
temer. Optimeringsbaserte metoder har vist lovende resultater de siste årene. Likevel,
så er de fortsatt begrenset når det gjelder ikke-konvekse havneområder og hin-
dringer, fordi dette gir ekstra utfordringer i form av ikke-konvekse bibetingelser.

I denne avhandlingen presenterer vi to metoder, A og B, som vellykket dokker et au-
tonomt overflatefartøy i sanntid mens det unngår statiske og dynamiske hindringer
som hindrer den naturlige stien til kaien. For metode A foreslår vi en ny tangentiell
dekomponering av et ikke-konvekst havneområde til konvekse polygoner. Dekom-
poneringen fører til at A* algoritmen finner den optimale hindringsfrie sekvensen
av polygoner som forbinder initialposisjonen til sluttposisjonen. Til slutt beregner
et svitsjbasert optimeringsproblem en hindringsfri sti for å gjennomføre presis og
sikker dokking. For metode B foreslår vi en begrenset Delaunay triangulering som
leder til et veikart basert på et topologisk skjelett som forbinder initialposisjonen
med sluttposisjonen. Deretter beregner en søk- og veipunktsreduserende algoritme
et initialgjett til et optimeringsproblem som finner en hindringsfri sti til sluttposisjo-
nen.

Ut fra resultatene i avhandlingen virker beregningsgeometri lovende når det kom-
bineres med optimeringsbaserte tilnærminger. Kombinasjonen lar oss opprettholde
fordelene med optimeringsbaserte tilnærminger med hensyn til fartøyskinematikk
og dynamikk, samt aktuator og romlige bibetingelser. I tillegg hjelper denne kom-
binasjonen våre foreslåtte metoder med å unngå lokale optima og dermed lykkes
med å legge til kai i obstruerte havnemiljøer.
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Chapter 1

Introduction

1.1 Background and motivation

Autonomy will shape our future of technology and most likely replace humans in
many of today’s tasks. When we talk about autonomous systems in terms of tech-
nology, we usually refer to systems manifesting self-governing behavior without
the need for human interaction to complete the task it has been specified to do.
Industrial robots could, for instance, entirely transform the logistics, safety, and
efficiency of the industry. Pin-point accurate surgical robots can execute complex
surgeries and medical procedures (Leonard et al. (2014)). Severely reducing the
risk of missteps and possibly opening up new procedural possibilities that formerly
were considered too dangerous to be performed by a human being. Already, we
can see the autonomous car industry, led by Tesla, providing systems for the next
generation of driver-less cars (Tesla (2022)).

Marine autonomy is a growing field both academically and industrially. Most re-
search focuses on underwater and surface vehicles, and the use cases are vast. Au-
tonomous underwater vehicles are applicable for deep-water exploration, offshore
maintenance, and data collection. Autonomous surface vehicles (ASVs) are often
related to cargo or passenger transportation, remote maintenance operations, and
surveillance.

We can generally break down an ASV operation into three phases. The undocking,
transit, and docking phase. Much research has been conducted on the large, open-
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water transit phase of an ASV operation. Such operations usually mean more open
space to maneuver in and less traffic. The requirements for a system handling a
transit are not as sophisticated as in a docking situation. In order to form a com-
pletely autonomous system, docking is an equally important part of a short-ranged
ASV operation as the transit. Complex requirements might be why docking-related
operations have not seen the same attention until recently.

Docking usually refers to the process of mooring a vessel to a quay or similar struc-
ture. In the literature, docking usually refers to the movement from open waters
to a stationary position along the quay. Small confined harbors paired with moving
traffic and low-speed maneuvering create complex challenges for an autonomous
vessel. We need robust and accurate systems to account for unmodeled vessel dy-
namics, which are more prevalent when maneuvering at low speeds, and traffic-
related challenges.

The harbor is usually the area where a vessel encounters the most amount of traf-
fic. Thus, sophisticated situational awareness and collision avoidance systems are
a necessity. Solving docking-related challenges can lead to benefits like increased
energy optimization, improved safety, and reduced operational costs. Additionally,
it will be one step closer to a fully autonomous system.

Until recently, research on docking has been scarce. Early work used fuzzy logic
control in Rae et al. (1993), artificial neural networks (ANN) in Yamato (1990),
and Shuai et al. (2019). Breivik and Loberg (2011) proposed a two-staged virtual
target-based docking procedure. The interest in automatic docking was seriously set
in motion when Martinsen et al. (2019) demonstrated promising results using non-
linear model predictive control (NMPC) combined with convex spatial constraints
taking the vessel’s hull into account for collision avoidance. Their work led to the
continuation of Bitar et al. (2020), where they used a high-level optimization plan-
ner paired with a low-level DP controller to do full-scale docking. Martinsen et al.
(2020) extended this work even further by accounting for map inaccuracies using
exteroceptive sensors and dynamically updating the convex spatial constraints.

Other, more recent work includes Bergman et al. (2020). They apply a lattice-based
motion planner to warm-start a receding horizon optimization problem. They also
incorporate a safety envelope around the vessel, which is a similar approach to the
convex spatial constraints first presented in Martinsen et al. (2019). Another re-
cent research, like the study by Li et al. (2020) uses a multi-objective optimization
strategy to design an NMPC controller. Their proposed solution eliminates the need
to tune the objective function parameters and outperforms a regular NMPC con-
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troller. Already existing optimization-based techniques on transit can, for instance,
be applied for docking an ASV. In the work of Bitar et al. (2019), they use a warm-
started optimization-based trajectory planner to solve a transit phase going from
A to B while simultaneously avoiding obstacles. Large parts of this thesis can be
viewed as a continuation and adaptation of their work into a docking scenario.

Other techniques apart from optimization-based methods have also been investi-
gated. In the work of Sawada et al. (2020), they propose a novel path-following al-
gorithm and speed controller to perform the docking maneuver. Their proposed so-
lution handles the computational expenses and non-linearity better than optimization-
based methods. Although some studies have been done, more sophisticated control
approaches are not widespread. In the work of Baek and Woo (2022), they use a
model reference adaptive controller showing promising results when dealing with
environmental forces in a docking scenario. Other work investigating more sophis-
ticated control includes the work of Torvund (2020). They investigate non-linear
autonomous docking and path-following control for an underactuated vessel. They
compared a proportional-integral-derivative (PID) controller, a PID sliding mode
controller (PID-SMC), and a super-twisting controller (STC). Their results indi-
cate that more advanced control approaches could benefit path-following purposes.
However, their work focuses more on obstacle avoidance and path-following cross-
track error, not on positional accuracy when doing low-speed maneuvering to reach
a stationary quay position.

In the field of deep learning, Hammervold (2020) and Strand (2020) have done
extensive research on the proximal policy optimization (PPO) and the deep deter-
ministic policy gradient (DDPG) algorithms. They accomplished successful docking
in simulation using both algorithms. However, their studies are limited to achieving
successful low-speed docking in unobstructed harbors and do not account for obsta-
cle avoidance. Work from Cai et al. (2021) investigates a hybrid RL-optimization-
based trajectory planning and obstacle avoidance to solve both transit and docking,
connecting two of the phases. Such hybrid control approaches seem promising for
future control purposes, despite their work not considering obstacle and collision
avoidance for docking in small confined harbor spaces. Bitar et al. (2021)’s work
shows how to connect the three phases of an ASV operation by conditionally switch-
ing between different planning and control approaches.

An issue with many existing docking studies is that they are limited to dynamic
positioning scenarios. They do not consider docking as the event of achieving a
stationary position alongside the quay. When the vessel has to react to the quay and
avoid colliding with it, we limit the vessel’s maneuverability in its approach to the
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quay, which makes a considerably more realistic and challenging docking scenario.
Most optimization-based methods are limited by not having a guarantee for finding
the global optima. In many cases, local optima would still be sufficient. E.g., in an
open-water transit path, the probability of finding a local optimum resulting in an
infeasible solution is not as high as in narrow space maneuvering like a docking
scenario. Thus, local optima might not be sufficient when docking with traffic in a
narrow harbor area.

A few studies, like Martinsen et al. (2019), Bitar et al. (2020), Martinsen et al.
(2020), and Bergman et al. (2020), use convex spatial constraints in the optimiza-
tion for collision avoidance. Their approaches are prone to get stuck in local optima
next to obstacles and never reach the dock pose. Some more recent approaches ad-
dress this challenge. In work by MIY (2022), they successfully use optimal control
when docking a vessel in both complex harbor geometry. A significant limitation
to their solution is the computational expenses where the optimization problem
takes a few days to complete. A continuation of this work led to a warm-started
solution in Rachman et al. (2022), dealing with the real-time feasibility challenges
from MIY (2022). They developed the collision avoidance algorithm to handle both
convex and non-convex harbor configurations. However, none of the methods ad-
dress challenges related to polygonal holes or avoiding the local optima created by
obstacles blocking the path to the dock pose. In the work of Zhou et al. (2022), they
utilize optimization-based techniques to dock a formation of ASVs. Their approach
to collision avoidance is in terms of the formation not colliding with each other,
which shows promising results for more traffic-related challenges dealing with other
moving vessels and cases where united control of an entire fleet is necessary.

1.2 Goal and research questions

This thesis investigates how we can successfully dock while avoiding multiple ob-
stacles, both static and dynamic, using computational geometry and optimization
theory for collision avoidance and guidance purposes. An essential prerequisite for
our approach is the utilization of convex constraints as a safety guarantee for the
vessel.

From this, the following research questions are formulated:

• How can we extend the work from Ødven (2021) to avoid multiple obstacles,
both static and dynamic, and successfully dock a vessel?
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• Can we use other computational geometry concepts and existing techniques
to avoid multiple obstacles, both static and dynamic, and successfully dock a
vessel?

1.3 Contributions

This thesis presents two methods (A and B) that successfully dock a vessel while
avoiding static and dynamic obstacles obstructing the vessel’s path to the dock pose.
Method A is first and foremost an extension of the work from Martinsen et al.
(2019) and a continuation of the work done in the project report (Ødven (2021)).
Bitar et al. (2019) heavily inspired our proposed method B. Our methodologies
are primarily a combination of computational geometry, optimization theory, and
low-level motion control.

The contributions of this thesis are as follows:

• We propose two methodologies that successfully dock while avoiding static
and dynamic obstacles. The methods account for newly discovered obstacles
and can replan and react to previously unknown obstacles.

• We have further developed the method proposed by Ødven (2021). We have
improved the decomposition to incorporate more of the geometric shapes that
emerge from tangential decomposition. Additionally, we implemented an im-
proved switching mechanism to speed up the docking procedure for closed-
loop control.

• For method B, we extend the work from Bitar et al. (2019). The continuation
incorporates constrained Delaunay triangulation decomposition and medial
axis to determine a straight-lined initial guess to warm-start an optimization-
based trajectory generator.

• Both methods incorporate a separated docking control system, with the method-
ologies used as high-level optimization planners combined with a low-level DP
controller.

• A paper on static multi-obstacle avoidance for docking of an ASV (Ødven et al.
(2022)), accepted for the 14th IFAC Conference on Control Applications in
Marine Systems, Robotics and Vehicles.
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1.4 Thesis structure

The rest of the thesis is organized as follows. Chapter 2 presents the relevant theo-
retical background and concepts relevant to the work presented in this thesis. The
chapter introduces computational geometry, marine maneuvering models, motion
control, and optimization theory. Chapter 3 presents a detailed explanation of our
two proposed methodologies for automatic docking of an ASV. We thoroughly ex-
plain how we combine computational geometry, optimization theory, and motion
control into a system able to avoid obstacles and dock an ASV. Chapter 4 presents
simulation results for different scenarios, and Chapter 5 concludes the thesis.
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Chapter 2

Theoretical background

This chapter presents the necessary theoretical background to form a basis for the
rest of the thesis. We introduce concepts related to computational geometry, motion
control, path planning, and optimization theory. This thesis is a continuation of the
work in the project report (Ødven (2021)). Thus, they are built on much of the
same theoretical foundation.

2.1 Computational geometry

Computational geometry is a mathematical field focused on geometric shapes and
their properties in designing and implementing geometric algorithms. The following
section presents the relevant theory related to convex polygons, polygon decompo-
sition, triangulation, and medial axis and how this forms a basis for the thesis’s path
planning and obstacle avoidance.

2.1.1 Convex polygon

A large part of this thesis builds on properties of convexity, more specifically, the
properties of convex polygons. They are advantageous because we can directly im-
plement them as constraints in optimization problems.

To define a convex polygon, we first define a convex set C consisting of points ci
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where i = 1, ..., n and n is the number of points. For C to be convex, any line
segment li,j between two points ci, cj has to be a subset of C.

From our definition of a convex set, we can define a convex polygon as the polygon
enclosing the convex set C. Let us define a set of straight-line segments L con-
necting the points ci. See Figure 2.1.1, where the line segments li,j forms a convex
polygon P .

We can describe P as the solution to the linear inequalities,

Aci ≤ b, where i = 1, ..., s, (2.1.1)

whereA ∈ Rs×2, b ∈ Rs×1, ci ∈ R2 is vertex i’s Cartesian position (x, y), and s is the
number of vertices in P . By formulating P on the linear inequality form (2.1.1),
we can directly include it as an inequality constraint in an optimization problem.

𝒄𝟏

𝒄𝟐

𝒄𝟒 𝒄𝟑

𝒍𝟐,𝟑

𝒍𝟏,𝟐

𝒍𝟑,𝟒

𝒍𝟒,𝟏

Figure 2.1.1: A convex polygon with vertices ci for i = 0, .., 4 and line segments li,j

2.1.2 Polygon decomposition

Polygon decomposition is related to the partition and separation of a polygon into a
set of simpler geometric shapes. The term is a more general term than the broader
known polygon partitioning problem, in which it allows for overlapping subsets.
As we want to capitalize on the convexity of polygons, a decomposition into con-
vex geometric shapes becomes applicable when dealing with non-convex polygons.
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Several methods for decomposing polygons exist in the field of computational ge-
ometry. Triangulation, for instance, serves a purpose where algorithms are usually
fast and straightforward with a guarantee of convexity in terms of triangles. While
more complex algorithms, like the minimum convex partitioning, are usually more
complicated to design.

2.1.3 Delaunay triangulation

Delaunay triangulation (DT) is a computational geometry concept based on the
circumcircles of a set of points. To define Delaunay triangulation, we first define
a set of points S in the plane. The set S lets us define a Delaunay triangulation
DT (S) as the triangulation T of S such that no point in S is inside the circumcircle
of any triangle of DT (S). A Delaunay triangulation does not take any edges into
account when triangulating, only the set of points. Without accounting for edges,
we run into difficulties when dealing with holes in a polygon, where it is necessary
to triangulate based on specific constraints.

Lee (1978) was the first to describe constrained Delaunay triangulation (CDT) as
a generalization of the Delaunay triangulation problem. To define CDT, we first
define a straight-line planar graphG with the same set of points S. The constrained
Delaunay triangulation CDT (G) is such that every edge of G has to be an edge
of CDT (G). For the remaining points, no point can be inside the circumcircle of
any triangle of CDT (G) except when the circumcircle crosses an edge of G. From
the definition; it follows that if G does not have any edges, CDT (G) = DT (S).
However, as long as it exist an edge inG, the solution of CDT (G) will be as accurate
as possible to the solution of DT (S). We can effectively triangulate a polygon with
holes by utilizing CDT as it takes edges into account, as shown in Figure 2.1.2.
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Figure 2.1.2: Constrained Delaunay decomposition of a polygon P (grey stapled line) with
an obstacle as a hole

2.1.4 Voronoi diagram and medial axis

The Voronoi diagram is the dual problem of a Delaunay triangulation. Contrary
to triangulating a set of points S, a Voronoi diagram is a partition of space based
on equidistance. Hence, they are closely connected. In order to define the Voronoi
diagram, let us define a set of points C in the plane. The Voronoi region R of a
point c ∈ C is the set of points as close to c as any other point in C. The Voronoi
diagram is then, V (C) =

⋃
Ri for i = 1, .., n, where n is the number of points in the

set C. Figure 2.1.3 shows a simple example of a Voronoi diagram and its relation
to the dual problem, Delaunay triangulation.

A closely related problem of the Voronoi diagram is the medial axis (MA). MA is
the locus of centers of locally maximal circles inside an object (Chang (2013)).
The medial axis is a subset of the Voronoi diagram of the edges and vertices of
the polygon. For this thesis, we define the medial axis as the edges connecting the
centroids of the triangles, as shown in Figure 2.1.4. The resulting medial axis is
suboptimal because the CDT is not a true Delaunay triangulation.
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𝒄𝟐

𝒄𝟑

𝒄𝟏
DT(C)

V(C)

Figure 2.1.3: A Voronoi diagram and its relation to the Delaunay triangulation

Figure 2.1.4: Medial axis formed by the edges connecting the triangles centriod
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2.2 Vessel model

In order to plan and simulate a docking trajectory for an ASV using optimization
theory, we need to take the vessel’s kinematics and dynamics into account. This
section describes a marine vessel’s kinematics, dynamics, and thrust configuration.

2.2.1 Vessel kinematics and dynamics

We define a vessel’s kinematics and dynamics using a 3 DOF maneuvering model
from Fossen (2011), as shown in Figure 2.2.1. We denote the pose vector η =
[x, y, ψ]> ∈ R2× S as the Cartesian position (x, y) in a North-East-Down (NED) ref-
erence frame and the yaw angle ψ of the vessel. The velocity vector ν = [u, v, r]> ∈
R3 is the surge u, sway v, and yaw rate r. The generalized control forces τ =
[fu, fv, fr]

> ∈ R3 is the force and moment in the surge, sway, and yaw. The model
kinematics and dynamics are as follows,

η̇ = R(ψ)ν, (2.2.1)

Mν̇ + C(ν)ν + D(ν)ν = τ , (2.2.2)

where the inertia matrix M ∈ R3×3, the Coriolis matrix C(ν) ∈ R3×3, the dampen-
ing matrix D(ν) ∈ R3×3. The rotation matrix R ∈ SO(3) is given by,

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (2.2.3)

2.2.2 Thrust configuration

The thrust configuration lets us map the generalized control forces τ to the thrust
forces f as Fossen (2011) formulated,

τ = T (α)f , (2.2.4)

where the thrust configuration matrix T (α) ∈ R3×n, and the thrust force f ∈ Rn.
The thrust configuration matrix for n thrusters is as follows,
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T i(α) =

 cos(αi)
sin(αi)

Lx,i sin(αi) − Ly,i cos(αi)

 , (2.2.5)

where i = 1, ..., n, Lx,i and Ly,i is thruster i’s position in x and y with respect to the
body-fixed CO. The thrust angles α =

[
α1 . . . αn

]> represents the thruster force
angle with respect to the body-fixed surge vector ui of the thruster. Figure 2.2.2
shows a thrust configuration for a vessel with two thrusters.

North

East

𝒙, 𝒚

𝝍

𝒖

𝒗

Figure 2.2.1: 3 DOF surge, sway, yaw vessel model

𝒖

𝒗

α!
𝑢!

𝑢"

𝛼"

Figure 2.2.2: A vessel’s thruster configuration for two thrusters. One azimuth thruster in
the aft of the ship, and one tunnel thruster in the bow
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2.3 Motion control

Motion control in marine systems is a vast topic often referred to as guidance, nav-
igation, and control (GNC) (Fossen (2011)). This thesis will focus on high-level
waypoint-based path planning for trajectory generation as guidance systems. Our
simulations will have both open-loop optimal control and closed-loop dynamic po-
sitioning control as our low-level motion control. This section provides theoretical
background of path planning and low-level motion control concepts.

2.3.1 Path planning

In its most general term, we can describe path planning as reaching a specific goal
state. In terms of marine guidance and motion control, path planning usually refers
to reaching a specific positional state while reacting to the environment. Figure
2.3.1 shows a typical case of path planning, which is to find the shortest collision-
free path from an initial state to a goal state. Several different optimality criteria
exist, where the shortest path is one of the most common. Other criteria could be
traveling in the shortest amount of time, energy efficiency, and account for model
dynamics.

The vast opportunities make path planning a complex topic where one can tailor
solutions to suit various needs. There are, however, some distinctions that allow
us to classify path planning algorithms. In Figure 2.3.1, the environment is static
and fully known, which generally means that nothing in the environment except for
the agent can move. Additionally, we have complete information of the map. The
opposite case is when the environment is dynamic and partially known. Such a case
usually means that the agent has no prior information and that it needs to rely on
sensors to discover and build the map while simultaneously planning a collision-free
path. These two scenarios have very different requirements for computational costs
and the speed of the algorithms. A more computationally efficient algorithm could
be more suitable for a large environment, whereas an accurate algorithm could be
more suitable in smaller complex environments.

In order to serve various requirements, numerous different methods have arisen.
Optimization-based techniques could, for instance, find a path satisfying several
optimality criteria simultaneously. Other techniques such as the versatile search al-
gorithms, Rapidly-Exploring Random Trees, efficiently exploring high-dimensional
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Start

Goal

Figure 2.3.1: Collision free trajectory in a static, fully known environment

space (LaValle (1998)), and the well-known Djikstra and A* star algorithms, find
the shortest path in a discrete, fully known static environment.

The path planning in this thesis will apply various techniques suited to our needs.
We will apply computational geometry to create a decomposed discrete space where
the A* can find the shortest path. Then, optimization-based techniques will further
refine this path by satisfying various constraints.

Waypoint-based path planning

A common approach in marine guidance is using waypoints for path planning. They
are used to indicate a change in the path, usually a directional change, but it could
also be related to speed. A frequent definition of a waypoint is a Cartesian position
(x, y). However, in this thesis, we define it as a pose, ηw,i = [xw,i, yw,i, ψw,i]

>, which
incorporate the heading angle ψ of the vessel. Generating a series of waypoints
allows us to construct a series of valid positional states to reach a goal state and
incorporate guidance laws and low-level motion control to achieve such a state.
Figure 2.3.2 shows how we can solve the scenario in Figure 2.3.1 by generating a
set of waypoints to track.
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Start

Goal

𝜼$,&

𝜼$,'

Figure 2.3.2: Waypoint-based collision-free trajectory in a static, fully known environment

A* search algorithm

The A* search algorithm is, in computer science, a graph traversal algorithm. The
algorithm is recognized as an extension of the Djikstra algorithm by using heuristics
to improve the performance. The A* is a best-first algorithm and determines the
node to explore by choosing the lowest estimated cost to the goal node. If we define
a graph G, the A* algorithm explores each node in G and finds the shortest path
from start to goal.

Let us define the travel cost from the current node c to a node n, as g(n). We define
the heuristic h(n) as the estimate of the cost from node n to the goal node. When
exploring, the A* algorithm chooses the next node n to visit by minimizing the cost
f(n) = g(n) + h(n). The A* is well known for its optimality and speed, and as long
as the heuristic h(n) does not overestimate the travel cost to the goal node, A*
guarantees optimality. I.e., it guarantees to find the shortest path from start to goal.
Additionally, it guarantees completeness, which means that as long as a path exists
from start to goal, the A* finds the shortest.

The time complexity O(bεd) is exponential to the depth d of the solution. We denote
the branching factor as b and the relative heuristic error as ε = h∗−h

h∗ , where h∗ is the
optimal heuristic (Russell and Norvig (2010)). The worst-case complexity for both
time and space is then O(bd). The space complexity is the main drawback of the A*
because it keeps all generated nodes in memory (Russell and Norvig (2010)).
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Algorithm 1 from Sharma et al. (2012) shows the pseudocode for the A* algorithm.

Algorithm 1: A* search algorithm
initialize an empty open and closed list;
append starting node to open;
while open is not empty do

current← node with lowest f();
pop current from open;
append current to closed;
if current = goal then

return;

for each neighbor of current do
if neighbor ∈ closed then

continue;
if neighbor ∈ open and g(current)+distance(current,neighbor) <
g(neigbor) then

pop neighbor from open;
if neighbor ∈ closed and g(current)+distance(current,neighbor) <
g(neigbor) then

pop neighbor from closed;

if neighbor 6∈ open and 6∈ closed then
append neighbor to open;
g(neighbor)← g(current)+distance(current,neighbor);
h(neighbor)← heuristic to goal;
f(neighbor)← g(neighbor) + h(neighbor);

return failure;

2.3.2 Trajectory tracking

Trajectory tracking refers to the objective of forcing a system output y(t) ∈ Rm

to track the desired output yd(t) ∈ Rm (Fossen (2011)). In the context of marine
guidance, we usually separate between path and trajectory. A path usually refers to
a time-independent path, and a trajectory refers to a time-dependent path. Hence,
trajectory tracking is normally a more demanding task for low-level control to track
in comparison to a time-independent path. In order to track the generated time-
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varying reference ηd = [xd, yd, ψd]
> ∈ R2 × S, we need to minimize the tracking

error,

η − ηd =

x− xdy − yd
ψ − ψd

 . (2.3.1)

A common approach in marine guidance is to use path-following methods. Path-
following is more common than trajectory tracking because trajectory tracking sets
requirements for the vessel’s position with respect to time. Thus, increasing the
complexity of low-level motion control because of unmodeled dynamics. Imple-
menting time-varying paths, especially generating them with optimization, could
be beneficial because it allows us to incorporate constraints in the path generation,
e.g., the optimality criteria mentioned in Section 2.3.1. This thesis uses optimiza-
tion and constraints to account for vessel dynamics and obstacles when generating
a reference trajectory for a low-level controller or as the direct control input to a
vessel.

2.3.3 Dynamic positioning systems

Dynamic positioning (DP) usually means controlling a vessel in low-speed situations
and is often used for station-keeping. Environmental forces can considerably impact
the vessel with low speeds, and a DP controller must be robust and compensate
for such unmodeled dynamics. Because of this, a DP controller is advantageous
for docking situations where most of the vessel maneuvering is at low speeds in a
harbor area. Fossen (2011) describes a DP controller as,

τ = −τ̂wind + R>(ψ)τ PID, (2.3.2)

where τ̂wind is an estimate of the wind forces, and τ PID is a proportional-integral-
derivative (PID) controller.

By neglecting the environmental forces and adding a feed-forward term to account
for unmodeled dynamics, we describe the trajectory tracking DP controller from
Bitar et al. (2020) as,

τ = τ ff +R
>(ψ)τ PID, (2.3.3)

where the feed-forward term is,

τ ff = Mν̇ + D(ν)ν, (2.3.4)
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and the PID controller,

τ PID = −Kpη̃ − Kdη̇ − Ki

∫ t

0

η̃(τ)dτ, (2.3.5)

whereKp,Kd, andKi are the proportional, derivative, and integral controller gain.
We also have the state derivative η̇ and the state error η̃ = η − ηd, where ηd is the
desired state.

2.4 Optimal control

Optimal control theory is a branch of mathematical optimization developed to con-
trol dynamic systems while fulfilling optimality criteria formulated in an objective
function and applicable in many industries, from economy to autonomous control
of marine vessels. For this thesis, optimal control is the approach used for trajectory
generation for a DP controller and open-loop control.

2.4.1 Dynamic systems

In general, we can explain a dynamic system as a representation of a state and
how it develops into the immediate future. E.g., a vessel’s position or a water tank’s
temperature. Differential equations are the typical representation of the evolution
of the state over time.

To better highlight how we utilize optimal control in our work, it can be helpful to
classify them based on some properties. It does not exist a hybrid optimization prob-
lem that handles all types of problems well, and the classification of the dynamic
systems helps formulate a solvable problem.

Suppose we consider a state space X. A relevant classification of a dynamic system
is whether the state space is continuous or discrete. First, we define the state as x.
For a continuous state space, x can take values from the real numbers R, like an
ASV’s position in a harbor area. If the same state space were discrete, one would
sample the harbor area into a grid, and the state x could take values from the finite
set of the grid.

We usually split dynamic systems into discrete-time systems and continuous-time
systems. In a discrete-time system, a finite number of points separates any two
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points in time t0 and t1, while in a continuous-time system, an infinite number of
points separates any two points in time t0 and t1. The most common example of
a continuous-time system is physical time, and a sampling of physical time would
form a discrete-time system.

Additionally, we can classify dynamic systems into time-invariant and time-variant
systems. This classification describes whether the system’s state evolution is de-
pendent on the moment of observation. A dynamic system describing the earth’s
thermodynamic response to solar radiance will be a time-variant system because
the earth’s ozone layer will vary based on the moment of observation. However,
most dynamic systems are not dependent on the moment of observation, making
them time-invariant.

In this thesis, we will consider a docking scenario of an ASV, which is a continuous
time-invariant nonlinear system.

2.4.2 Continuous optimal control problems

As we investigate a docking scenario of an ASV, we can define a continuous time-
invariant nonlinear optimal control problem (OCP) without terminal constraints, as
in Kirches et al. (2012),

min
x(·),u(·)

∫ t0+T

t0

L(x(t), u(t)) dt (2.4.1a)

subject to x(t0) = x0, (2.4.1b)

ẋ(t) = f(x(t), u(t)), t ∈ [t0, t0 + T ], (2.4.1c)

h(x(t), u(t)) ≤ 0, t ∈ [t0, t0 + T ]. (2.4.1d)

Where x is the state variables, u is the control variable, L is the integral cost term,
t0 is the initial time, and T is the time horizon. The OCP also has to satisfy initial
constraints (2.4.1b), state dynamics (2.4.1c), and path constraints (2.4.1d).

Numerical solutions of an OCP are usually divided into three groups, namely, state
space, indirect, and direct methods. The state space method is mainly viable for
small state dimension problems because of the curse of dimensionality (Horowitz
et al. (2014)). The indirect and direct methods are more similar and broader in
use. Indirect methods are often very accurate and outperform most other methods
in terms of accuracy, even for high dimensional states. One of the major drawbacks



Chapter 2. Theoretical background 21

is the need to formulate first-order necessary conditions for every problem instance
(Böhme and Frank (2017)), and state constraints can be challenging to implement.
Direct methods discretize the complete system and formulate the entire problem
as finite-dimensional NLP. They tend to be less accurate than indirect methods but
still benefit from being more flexible, numerically stable and handling all types of
constraints well. Thus, making it more viable in a practical scenario.

2.4.3 Direct collocation method

To solve a continuous time-invariant nonlinear optimal control problem, we have
opted for the direct collocation method, which is well known for exploiting the spar-
sity of the optimal control problem (OCP). The direct collocation method discretizes
the state and control inputs onto a grid of discrete-time tk where k = 0, ..., N and N
is the number of steps. Consequently, the OCP is transformed to a finite-dimensional
nonlinear program.

First, we choose a set of tk,i collocation points on each collocation interval [tk, tk+1],
where i = 0, ..., d and d is the number of collocation times. A polynomial pk(t, vk) ∈
Rn approximates the state trajectory xk on the interval [tk, tk+1] where the coeffi-
cients vk ∈ Rnx(d+1). From this, we get a set of collocation equations from Diehl and
Gros (2017),

ck(vk, xk, uk) =


vk,0 − sk

ṗk(tk,1, vk) − f(vk,1, tk,1, uk)
...

ṗk(tk,d, vk) − f(vk,d, tk,d, uk)

 = 0, (2.4.2)

where vk,i ∈ Rnx, i = 0, ..., d, uk is the discretized control and f(vk,i, tk,i, uk) =
f(pk(tk,i, vk), tk,i, uk) for the ODE ẋ = f(x(t), t). In addition to solving the colloca-
tion equations, Diehl and Gros (2017) express that the interval boundaries require
continuity, i.e., we require that

pk(tk+1, vk) − uk+1 = 0, (2.4.3)

holds for k = 0, ..., N .

Discretizing the integral from 2.4.1a leads to
∫ tk+1

tk
Lk(xk, uk) dt. A quadrature for-

mula should approximate the discretized integral using the coefficients vk, with the
resulting approximation defined as lk(vk, xk, uk).
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We end up with a sparse NLP as described by Diehl and Gros (2017),

min
v,x,u

N−1∑
k=0

lk(vk, xk, uk) (2.4.4a)

subject to x0 − x(0) = 0, (2.4.4b)

ck(vk, xk, uk) = 0, k = 0, ..., N − 1, (2.4.4c)

pk(tk+1, vk) − xk+1 = 0, k = 0, ..., N − 1, (2.4.4d)

h(xk, uk) ≤ 0, k = 0, ..., N − 1, (2.4.4e)

where 2.4.4a is the approximated integral term, 2.4.4b is the initial constraints,
2.4.4c is the collocation equations, 2.4.4d is the continuity equations, and 2.4.4e is
the path constraints.
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Chapter 3

Problem description and
methodology

The following chapter will present the problem description and implementation
details on our two methodologies for automatic docking and dynamic and static
obstacle avoidance of an ASV.

3.1 Problem formulation

This thesis considers a vessel with dynamics as described in Chapter 2. A convex
polygonal space of a harbor area, created from map data, encloses the vessel’s initial
pose η0 and dock pose ηd shown as the stapled line in Figure 1a. A variable amount
of obstacles are then placed in different locations to obstruct the direct path to the
dock pose, see Figure 1b. Our methodologies’ goal is to find feasible obstacle-free
docking trajectories in scenarios similar to Figure 1b where obstacles interfere with
the direct path to the dock pose.

First and foremost it is necessary that our methodologies keep the vessel safe and
avoid colliding with obstacles. Secondly, we want to avoid local optima and dock
the vessel correct for all harbor configurations. These objectives leads to several
different challenges related to non-linear optimization, path planning and low-level
motion control.
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𝜼(

𝜼)

(1a) Initial problem where a convex polygon
encloses the initial pose η0 and the dock
pose ηd

𝜼)

𝜼(

(1b) Squared obstacles are placed to obstruct
the vessel’s direct path from the initial pose
η0 to the dock pose ηd

Figure 3.1.1: Initial problem where obstacles obstruct the direct path to the dock pose

3.2 Methodology

3.2.1 Overview

This thesis presents two multi-stage systems for automatic docking of an ASV. Figure
3.2.1 shows the general workflow of the methods.

Method A applies convex spatial constraints in the same manner as in Martinsen
et al. (2019), Bitar et al. (2020), Martinsen et al. (2020), and Ødven (2021). We
decompose the non-convex harbor area into multiple obstacle-free convex polygons.
Thus, we can use the equivalent collision avoidance approach as in the work men-
tioned above. In short, we constrain the vessel to only operate in safe areas that are
created based on the harbor and obstacle geometries. These areas are connected
by overlapping areas so that the vessel can safely travel from the initial pose to the
dock pose.

The framework of method A is that it applies computational geometry for polygon
decomposition, a novel approach we refer to as tangential decomposition. From the
decomposition, we create a graph of neighboring polygons. We then use the A*
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algorithm to find the shortest path to traverse in terms of connected polygons to
reach the dock pose. The A* finds a set of waypoints, which are then used in an
optimization problem to find a feasible collision-free docking trajectory.

The most significant difference between the two methods proposed is that method B
does not create the same convex areas for the vessel to be safe when maneuvering.
Instead, method B constrain the obstacles as unsafe regions and exclude them from
the operational space. For method B, we apply constrained Delaunay triangulation
for polygon decomposition, which allows us to find the medial axis of the obstacle-
free space. We create waypoints with the A* algorithm and form a straight-lined
initial guess to find a docking trajectory from an optimization problem.

Tangential decomposition 
of a non-convex polygon

Constrained Delaunay 
triangulation

A*  medial axis search

Medial axis straight-
lined Initial guess

A* polygon traversal search

Waypoint 
generation

Optimal control 
problem

Method A Method B

Figure 3.2.1: Block diagram showing the general workflow of method A and B

3.2.2 Model dynamics

In the simulations we present in the thesis, we consider two different vessels. A large
tanker model, the Northern Clipper (Fossen et al. (1996)), and a small passenger
ferry, the milliAmpere (Brekke et al. (2022)). Testing our methods with different
scenarios, port geometry, and two different vessel models will help us understand
the robustness and stability of our methodology in a variety of different conditions.
Both vessels are described by the dynamics of a 3 DOF vessel presented in Section
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2.2. For complete details on the models and the parameters used, see appendix A.

milliAmpere

The milliAmpere is an underactuated square-shaped research vessel at the Centre
for Research-based Innovation (SFI) Autoship shown in Figure 3.2.2. For this ves-
sel we will run closed-loop control simulations, and for that reason, we describe
both a planning model and a simulation model of the vessel. We propose a 3 DOF
surge-decoupled model for the simulations, described by Pedersen (2019), where
the matrices M ,C(ν), and D(ν) are given as,

M =

m11 0 0

0 m22 m23

0 m32 m33

 , (3.2.1)

C(ν) =

 0 0 c13(ν)

0 0 c23(ν)

c31(ν) c32(ν) 0

 , (3.2.2)

D(ν) =

d11(ν) 0 0

0 d22(ν) d23(ν)

0 d32(ν) d33(ν)

 . (3.2.3)

The planning model is a simpler diagonalized model of the simulation model dy-
namics, described by Bitar et al. (2020),

SM pν̇p + Cp(νp)νp + Dp(νp)νp = τ p, (3.2.4)

where the matrices are given as,

S =

2.5 0 0

0 2.5 0

0 0 5

 , (3.2.5)
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M p =

m11 0 0

0 m22 0

0 0 m33

 , (3.2.6)

Cp(νp) =

 0 0 −m22vp

0 0 m11up

m22vp −m11up 0

 , (3.2.7)

Dp(νp) =

d11,p(up) 0 0

0 d22,p(vp) 0

0 0 d33,p(rp)

 . (3.2.8)

For the thrust configuration of the MilliAmpere, we make some simplifications from
(2.2.4) where we neglect the azimuth angle α. We want to include control alloca-
tion in the optimization problem, thus giving the thrust configuration as,

τ = Tf , (3.2.9)

where the thrust configuration for two thrusters on the center line of the vessel is,

Tf =

 fx,1 fx,2
fy,1 fy,2

fy,1 Lx,1 fy,2 Lx,2

 , (3.2.10)

fi,j is the force of thruster j in direction i, and Li,j is the position of thruster j with
respect to the body-fixed CO.
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Figure 3.2.2: Vessel model and thrust configuration of milliAmpere. One azimuth thruster
in the front, and one in the aft of the vessel

Northern Clipper

The Northern Clipper is a fully actuated vessel with a more traditional marine hull
shown in Figure 3.2.3. We describe the vessel by a 3 DOF maneuvering model where
a simulation of a DP control mode in Fossen et al. (1996) lead to the dynamics,

Mν̇ +D(ν)ν = τ . (3.2.11)

The inertia matrix M = mNM bis, and dampening matrix D(ν) = m
√

g
L
NDbisN .

The constants m, g, L are the mass, gravitational acceleration, and length of the
ship. The matrices are given by

M bis =

1−Xu̇ 0 0

0 1− Yv̇ xG − Yṙ
0 xG − Yṙ k2z −Nṙ

 , (3.2.12)

Dbis =

−Xu 0 0

0 −Yv xG − Yr
0 −Nv −Nr

 , (3.2.13)
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N =

1 0 0

0 1 0

0 0 L

 . (3.2.14)

The thrust configuration is given as

τ = T (α)F , (3.2.15)

with two azimuth thrusters in the stern and one tunnel thruster in the bow. The
thrust configuration matrix is

T (α) =

 cos(α1) cos(α2) 0
sin(α1) sin(α2) 1

lx,1 sin(α1) − ly,1 cos(α1) lx,2 sin(α2) − ly,2 cos(α2) lx,3

 , (3.2.16)

where αj is the angle of thruster j, and Li,j is the position of thruster j with respect
to the body-fixed CO.

The thrusters also have some physical constraints that we consider in the optimiza-
tion problem. Specifically, it has force saturation (3.2.17a), azimuth angle satura-
tion (3.2.17b), and angular velocity saturation (3.2.17c) (Martinsen et al. (2019)).

fi,min ≤ fi ≤ fi,max, (3.2.17a)

αi,min ≤ αi ≤ αi,max, (3.2.17b)

α̇i,min ≤ α̇i ≤ α̇i,max. (3.2.17c)

The azimuth thrusters have feasible angles from [−80, 260], [−260, 80] degrees. Fig-
ure 3.2.3 shows illegal thruster angles as the red areas. The azimuth thrusters also
have a maximum angular velocity of |α̇| ≤ 2π/30. The thrust force saturation for
the azimuth thrusters is m/30, and for the tunnel thruster, it is ±m/60. Figure 3.2.3
shows the entire thrust configuration.
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Figure 3.2.3: The Northern clipper vessel model and its thrust configuration with two az-
imuth thrusters in the aft of the vessel, and one tunnel thruster in the front.
The red regions mark illegal thruster orientation

3.2.3 Method A

Tangential decomposition of a non-convex polygon

When introducing obstacles in the harbor area, the convex spatial constraints (Mar-
tinsen et al. (2019), Bitar et al. (2020), Martinsen et al. (2020)) are more intricate
and complex to apply as safety guarantee for the vessel.

To take advantage of such convex spatial constraints, we need to decompose the
harbor area into convex polygons of free space. Let us consider a harbor geometry
with the initial convex polygon Ss and an obstacle modeled as a square, as shown
in Figure 4a. To decompose the polygon Ss, we extend the obstacle’s edges with a
line li where i = [top, bottom, right, left]. The line li will intersect the set Ss and
allows us to create new obstacle-free convex sets Sk,s around an obstacle Ok where
k = 1, ..., nk, and nk is the number of obstacles. In the simple case of one obstacle,
we know, for instance, that the set S1,1 will be obstacle-free as long as,

ltop ≥ xj ∈ Ss, (3.2.18)

for every point xj where j = 1, ..., n and n is the number of points in the set Ss. We
show the resulting decomposed set S1,1 in Figure 4b. Using the property of (3.2.18),
we can create all the new regions Sk,s similarly.
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𝕊*

(4a) The harbor geometry with the convex set
Ss enclosing an obstacle
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𝒙𝟒

(4b) The creation of the convex set S1,1 from
the line ltop and set Ss

Figure 3.2.4: A decomposition from an initial harbor geometry and obstacle position

As the ship hulls are modeled as convex polygons and not point masses, we inten-
tionally decompose so that the convex sets Sk,s creates overlapping regions Os1,s2,
shown in Figure 3.2.5. We take advantage of this property when generating way-
points to compute a safe and feasible trajectory.

𝕊&,&

𝕊&,'

𝕆&,'

Figure 3.2.5: The overlapping region O1,2 created by the convex sets S1,2 and S1,1
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The decomposition when dealing with a single obstacle is similar to what we pre-
sented in the project report (Ødven (2021)). For multi-obstacle scenarios, the de-
composition becomes more complex. Thus, we have developed an extension of the
proposed approach from Ødven (2021). Let us consider the case of Figure 3.2.6
and the decomposition around obstacle O3 and line ltop. Using (3.2.18), we can not
guarantee an obstacle-free decomposition in such cases.

To define the multi-obstacle decomposition, let us first define the set D as the center
ci = (ci,x, ci,y) of the obstacles and no as the number of obstacles where ci,y < c3,y.
We can then define the multi-obstacle decomposition using the pseudocode from
Algorithm 2. The algorithm computes a maximum of no+1 different decompositions
corresponding to the tangent ltop, as shown in Figure 3.2.6.

We have designed the decomposition to find the polygons with the largest areas
constrained by the opposite-side tangent of the remaining obstacles. In the case of
Figure 3.2.6, for instance, the opposite-side tangent is the bottom tangent.

The pseudocode of Algorithm 2 is for a specific tangent ltop to provide a more
straightforward explanation. However, the same approach applies to every tangent
of the obstacle.

Algorithm 2: Tangential decomposition (ltop)

R← InitializeEmptyList();
O← SortObstacles(Key = cy ∈ D);
for i = 0 to no do

lbot ← ObstacleTangent(Oi, bottom);
P ← {xj | lbot ≤ xj ≤ ltop,∀xj ∈ S};
while i > 0 do

lleft ← ObstacleTangent(Oi, left);
lright ← ObstacleTangent(Oi, right);
P ← {xj | lleft ≤ xj ≤ lright,∀xj ∈ P};
i← i− 1;

R← Append(P );

return R;
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𝑂3

Figure 3.2.6: The three decompositions S1,1, S1,1, and S1,1 for the line ltop and obstacle O3

Graph and waypoint generation

To find the shortest path to the dock pose, we create a graph of the convex polygons
Sk,s where the edges connecting them are the overlapping polygons Oi,j, shown in
Figure 3.2.7. The A* algorithm then finds the shortest sequence of convex polygons
to traverse. The sequence is from the convex polygon Sk,s, where the initial pose
η0 ⊆ Sk,s, to the convex polygon Sk,d where the dock pose ηd ⊆ Sk,d.

With waypoints, we can partition the optimization problem into less complex prob-
lems where we optimize with respect to waypoints and constrain the optimization to
connected convex polygonal spaces. We define the waypoints ηw,j = [xw,j, yw,j, ψw,j]

>

as the centroid (x, y) of the overlapping polygons Oi,j with a constant heading angle
ψw,j in the direction of travel. Where j = 1, ..., nw and nw is the number of nodes
in the path found by the A*. Figure 3.2.8 shows how each waypoint has a corre-
sponding obstacle-free convex polygon enclosing it. The figure also shows how the
overlapping regions act as a safety zone for safely switching to the next waypoint. To
entice the algorithm to choose paths with larger overlapping areas, we implement
weights on the overlapping areas Oi,j as follows,

1−

∣∣∣∣∣ 3Â(Sb)2

Â(Oi,j) + ε

∣∣∣∣∣, (3.2.19)
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where Â(x) describes the normalized area of a set x with respect to the largest
overlapping area, max(A(Oi,j)). The small constant ε > 0 is to avoid division by
zero. This weight distribution allows negative weight. However, negative weight
implies that the overlapping area is not sufficiently large compared to the area of
the vessel hull, and the overlapping area will therefore be removed as an edge in
the graph. By creating waypoints in such a way, we can ensure the vessel’s safety
while helping avoid local minima in the path to the dock pose.

𝕊!,#

𝕊!,$

𝕊!,%
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𝕆#,% 𝕆%,&

Figure 3.2.7: A graph corresponding to the scenario in Figure 4a, where η0 ⊆ Sk,1 and
ηd ⊆ Sk,3
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Figure 3.2.8: Waypoint defined as the centroid of the overlapping region O1,2

3.2.4 Method B

Constrained Delaunay triangulation and medial axis of obstacle-free space

To overcome the problems of a non-convex harbor area we apply constrained De-
launay triangulation for decomposition. A potential constrained Delaunay triangu-
lation of the case in Figure 3.2.4 is shown in Figure 3.2.9. From the CDT, we get
the medial axis from the lines connecting the centroids of the triangles, illustrated
in Figure 3.2.9. Using the medial axis, we create a set of waypoints or straight-line
segments to plan the path to the dock pose. Using the medial axis is to ensure that
the line segments are equally far from the obstacles as the quay, as this property
makes the medial axis advantageous when planning paths in small spaces, e.g.,
when docking in a tight harbor. However, we do not get an optimal medial axis
when dealing with polygonal holes, as shown in Figure 3.2.9.
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Figure 3.2.9: The CDT and medial axis of a convex polygon enclosing one obstacle

Straight-lined initial guess

Figure 3.2.10 shows the step-by-step process of how we go from a constrained De-
launay triangulation to an initial guess used in an optimization problem. By con-
necting the initial and dock pose to their closest point on the medial axis, we create
line segments connecting the initial pose to the dock pose, as shown in Figure 10a.
The next step is to find the shortest path to the dock pose. We use the A* algo-
rithm on the graph to find the path shown in Figure 10b. As we base the path on
equidistance, it can create a sub-optimal path in terms of motion control of a marine
vessel. It is generally unwanted to have many short-distance waypoints with swift
turning. Because of that, we apply a waypoint-reduction algorithm from Bitar et al.
(2019) and end up with the initial guess shown in Figure 10c. We are not taking
the vessel’s kinematics and dynamics into account for the initial guess and assuming
constant velocity. Thus, the initial guess is uniformly distributed over our optimiza-
tion horizon. The waypoint-reduction algorithm reduces the initial path to a path
with as few waypoints and straight-line segments as possible, and the pseudocode
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is presented in Algorithm 3.

Algorithm 3: Waypoint-reduction algorithm
Procedure REDUCE
i← N∗;
P← InitializePath(p∗i ); while i > 1 do

for j = 1 to i− 1 do
if ¬ Collision(p∗i ,p

∗
j) then

AddPoint(P,p∗j);
i← j;
break;

Ellipse constraint

The medial axis does not consider the ship’s hull, which means that if the vessel
were to follow a path generated by the medial axis, it could collide with obstacles.
As a safety guarantee, we model obstacles as elliptic constraints in the optimization
problem to exclude them from the operational space. First, we describe an ellipse
as,

x− xc
xa

2

+
y − yc
ya

2

≥ 1, (3.2.20)

where xc, yc is the center of the ellipse in the x and y axes, and the elliptic axes
is xa and ya, respectively. From (3.2.20) we can describe a set of inequalities for a
position ηp = [x, y]> similar to Bitar et al. (2019),

− log

[(
x− ox,i
xa,i

)2

+

(
y − oy,i
ya,i

)2

+ ε

]
+ log(1 + ε) ≤ 0, (3.2.21)

where ox,i and oy,i is the obstacle center in Cartesian coordinates (x, y) of obstacle
i, i = 1, .., n, and n is the number of obstacles. To avoid problems with singularity
when x→ ox,i and y → oy,i we add a small constant ε > 0.
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𝜼(

𝜼)

(10a) Connecting the initial η0 and
dock pose ηd to the medial axis

𝜼(

𝜼)

(10b) The A* finds points the optimal
path to traverse

𝜼(

𝜼)

(10c) The initial guess used in the opti-
mization after applying the way-
point reducing algorithm

Figure 3.2.10: Step-by-step from the medial axis to the initial guess used in the optimiza-
tion

3.2.5 Convex spatial constraint

In order to avoid collisions, both methods utilize that a convex polygon can be
described as linear inequalities and use these as inequality constraints in an opti-
mization problem. First, we define a convex polygon Ss enclosing the harbor and
describe Ss as a solution to the linear inequalities,

Avi ≤ b, where i = 1, ..., s, (3.2.22)
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A ∈ Rs×3, b ∈ Rs×1, vi ∈ R2 is vertex i’s Cartesian position (x, y), and s is the
number of vertices.

To take advantage of (3.2.22) for collision avoidance, we define the set Sb as the
convex set describing the vessel’s hull with each vertex as xbi ∈ Vertex(Sb). shown
in Figure 3.2.11. By using (3.2.22) while taking into account the vessel’s hull, we
can describe a set of linear inequalities to include in an optimization problem as,

A

(
R1(ψ)x

b
i +

[
x
y

])
≤ b ∀xbi ∈ Vertex(Sb), (3.2.23)

where R1 is the rotation from the body frame to NED,

R1(ψ) =

[
cosψ − sinψ
sinψ cosψ

]
. (3.2.24)

The matrices A ∈ Rs×3 and b ∈ Rs×1. The vertex xbi ∈ R2 is vertex i’s Cartesian
position (x, y) and [x, y]> is the vessel CO with respect to the North-East-Down
(NED) reference frame. From (3.2.23) we can constrain the vessel to only operate
inside a desired region, as shown in Figure 3.2.11.

𝕊' 𝕊(

Figure 3.2.11: The vessel hull Sb constrained to operate inside the convex set Ss
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Method A

We use (3.2.23) somewhat differently for our two methods. For method A, we im-
plement the same core idea as in the work of Martinsen et al. (2019): using the
linear inequalities as a safety guarantee for the vessel and ensuring that the set Ss
does not include any obstacles or land.

As explained in section 3.2.3, we partition the optimization problem and constrain
it over smaller polygonal spaces. This approach leads to an extended set of the
equations from (3.2.23),

As,j

(
R1(ψ)x

b
i +

[
x
y

])
≤ bs,j ∀xbi ∈ Vertex(Sb), (3.2.25)

where we have a set of linear inequalities for each convex polygon Sk,s we tra-
verse, where j = 0, ..., nw. The inequalities (3.2.25) guarantee the vessel’s safety for
method A and ensure we maneuver in obstacle-free space.

Method B

Figure 3.2.12 shows how a convex spatial constraint and elliptic constraints con-
strain the vessel to operate in obstacle-free space. We model the obstacles as elliptic
constraints in the optimization problem for method B, explained in section 3.2.4.
This approach allows us to use a more straightforward and less computationally ex-
pensive method when creating the set Ss. We define Ss as the largest convex set not
including any land. Hence, the convex polygon Ss only guarantees that we do not
collide with the quay, which means we can directly implement the convex spatial
constraint from (3.2.23).
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𝕊*
𝕊/

Figure 3.2.12: Convex spatial constraint Ss and elliptic constraint marked in red constrain
the vessel Sb to operate in obstacle-free space

3.2.6 Optimal control problem

Both methods use optimization as open-loop control and as a planner for a trajec-
tory tracking DP-controller. The general formulation of the problem is,

min
x,u,s

∫ t0+T

to

{
lm,v(x(t),u(t), s(t))

}
dt, (3.2.26a)

subject to ẋ = f(x(t),u(t)), (3.2.26b)

xmin ≤ x(t) ≤ xmax, (3.2.26c)

umin ≤ u(t) ≤ umax, (3.2.26d)

h(x(t),u(t))− s(t) ≤ 0, (3.2.26e)

s(t) ≥ 0, (3.2.26f)

x(t0) = x0, (3.2.26g)

where lm,v(x(t),u(t), s(t)) is the objective term. The subscripts m = [A,B] and
v = [MAM,NC] denote what method and vessel model we use. The variables x, u,
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and s are the vessel states, control inputs, and slack variables, respectively. The op-
timization problem has to be solved subject to the dynamic (3.2.26b) and physical
constraints (3.2.26c, 3.2.26d) of the vessel models. Additionally, the optimization
must satisfy path(3.2.26e), slack (3.2.26f), and initial constraints (3.2.26g).

milliAmpere

For the milliAmpere model (MAM), we use the objective function developed by
Martinsen et al. (2020). They use a Pseudo-Huber function to have linear penaliza-
tion of the positional error when far away from the dock pose. When closer to the
dock pose, they use a quadratic penalty. According to Gros and Diehl (2013) and
Gros and Zanon (2017), the Pseudo-Huber function improves numerical stability
and has shown better performance for larger positional errors. For our positional
penalization, the Pseudo-Huber function is as follows,

cx,y(η) = δ2

(√
1 +

(x− xd)2 + (y − yd)2
δ2

− 1

)
. (3.2.27)

For the heading, we use a penalty function designed to choose an efficient heading
when the vessel is far from the dock pose and gradually rotate it towards the dock
pose as it approaches (Martinsen et al. (2020)). The heading penalty is,

cψ(η) =
1− cos(ψ − ψd)

2
e−

(x−xd)
2+(y−yd)

2

2δ2 , (3.2.28)

and the objective term lm,MAM is then,

lm,MAM = cx,y(η) + 20cψ(η) + ν
>Qν + u>Ru+ k>s s, (3.2.29)

where Q ∈ R3×3, R ∈ R4×4, and ks ∈ R5 are the weight matrices for the velocity ν,
force f , and slack variables s, respectively.

Northern Clipper

For the Northern Clipper (NC) model, we use the objective term developed by Mar-
tinsen et al. (2019). The objective term is a simple quadratic penalty function where
we penalize positional error, velocity, and force of the thrusters,

cη = ‖η − ηd ‖2Qη + ‖ν ‖
2
Qν

+ ‖f ‖2Rf + k
>
c s, (3.2.30)
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where the matrices Qη ∈ R3×3, Qν ∈ R3×3, Rf ∈ R3×3, and kc ∈ R3 are the
weights for the positional error η − ηd, velocity ν, force f , and slack variables s,
respectively. The Northern Clipper vessel has some physical constraints. Hence, the
objective term also incorporates a penalty on the rank deficiency to avoid singular
thrust configurations (Martinsen et al. (2019)),

cf =
ρ

ε+ det
(
T (α)W−1T>(α)

) , (3.2.31)

where ρ is the maneuverability constant, T is the thrust configuration matrix, W is
the diagonal thrust weight matrix, and ε > 0 is a small constant to avoid singulari-
ties. The objective term lm,NC for the Northern Clipper model is then as follows,

lm,NC = cη + cf . (3.2.32)

Method A

We partition the docking procedure into nw optimization problems for method A.
Therefore, we change the positional error η−ηd in (3.2.27), (3.2.28), and (3.2.30)
to η − ηw,j, where j = 1, .., nw, and solve each problem over a horizon T . At time
t = T , we switch to the subsequent problem and solve a new optimization problem
with the vessel’s current state as initial conditions and the desired pose as ηw,j+1.
The problem formulates as an NLP,

min
x,u,s

∫ t0+T

t0

{
lA,v(x(t),u(t), s(t))

}
dt, (3.2.33a)

subject to ẋ = f(x(t),u(t)), (3.2.33b)

xmin ≤ x(t) ≤ xmax, (3.2.33c)

umin ≤ u(t) ≤ umax, (3.2.33d)

As,j

(
R1(ψ)v

b
i +

[
x
y

])
≤ bs,j, ∀j, ∀vbi ∈ Vertex(Sb), (3.2.33e)

s(t) ≥ 0, (3.2.33f)

x(t0) = x0, (3.2.33g)

where we minimize the objective term (3.2.33a) over the horizon [t0, t0 + T ]. Sub-
ject to the dynamic state constraints (3.2.33b), state constraints (3.2.33c) and
(3.2.33d), spatial constraints (3.2.33e), slack constraints (3.2.33f), and the initial
conditions (3.2.33g).
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Method B

As a result of using an initial guess as a warm-start, we do not partition the op-
timization problem. We optimize the positional error from the current pose to the
dock pose η − ηd, where the desired pose ηd is the dock pose. From this, we can
formulate the problem as below,

min
x,u,s

∫ t0+T

t0

{
lB,v(x(t),u(t), s(t))

}
dt, (3.2.34a)

subject to ẋ = f(x(t),u(t)), (3.2.34b)

xmin ≤ x(t) ≤ xmax, (3.2.34c)

umin ≤ u(t) ≤ umax, (3.2.34d)

As

(
R1(ψ)v

b
i +

[
x
y

])
≤ bs, ∀vbi ∈ Vertex(Sb) (3.2.34e)

− log

[(
v0 − ox,i
xa,i

)2

+

(
v1 − oy,i
y<a, i

)2

+ ε

]
+ log(1 + ε) ≤ 0, ∀vbi ∈ Vertex(Sb),

(3.2.34f)

s(t) ≥ 0, (3.2.34g)

x(t0) = x0. (3.2.34h)

The spatial constraints (3.2.34e) are directly implemented as in (3.2.23), and the
addition of elliptic constraints (3.2.34f) are the changes from method A. Apart
from that, we have dynamic constraints (3.2.34b), state constraints (3.2.34c) and
(3.2.34d), slack constraints (3.2.34g), and the initial conditions (3.2.34h) equiva-
lent to method A.

3.2.7 Closed-loop control

The milliampere vessel use the separated planner and low-level DP controller from
Bitar et al. (2020), as shown in Figure 3.2.13. Using a different planner and sim-
ulation model allows us to simulate a more realistic scenario where our controller
has to account for modeling errors in our planning stage. Further details on why a
separation-based planner and controller is beneficial for control purposes is men-
tioned in Bitar et al. (2020).
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MilliAmpere
Optimization
planner DP controller

𝜼 𝒕 , 𝝂(𝒕)

𝜼𝒑 𝒕 , 𝝂𝒑(𝒕) 𝝉 𝒕

Figure 3.2.13: Block diagram of the separated optimization planner and low-level DP con-
troller

Waypoint switching

We can improve the dock time for method A by applying a waypoint switching
mechanism for closed-loop control. When running open-loop control, we have to
perform all the control steps of the complete docking maneuver before a switch can
occur. However, for closed-loop control, we can apply a switching mechanism. The
switch to the next waypoint occurs whenever we are inside the overlapping region
where our current waypoint is located, as shown in Figure 3.2.14. By switching to
the next waypoint when we have just arrived at the overlapping region, we inter-
fere with the planned path and bypass most of the docking procedure the vessel
enters when closing in on a waypoint. In addition to saving time, a faster switching
mechanism smooths the trajectory and gives a more human-like behavior.

𝜼$,&

𝜼$,'

Figure 3.2.14: The instance where the vessel switches from tracking the waypoint ηw,1 to
tracking the waypoint ηw,2
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Chapter 4

Results and discussion

This chapter presents and discusses the simulation results from various simula-
tion scenarios. We show a collection of diversified scenarios to showcase the two
methods’ strengths and weaknesses. The scenarios consist of open-loop control,
separated optimization planner with closed-loop DP control, and dynamic obstacle
avoidance. We show the methods’ ability to handle vastly different vessel models.
The MilliAmpere is a small under-actuated passenger vessel, and the Northern Clip-
per is a large tanker vessel. We do not describe all simulation and ship parameters
for every scenario. Hence, the full details on parameters are located in Appendix A.

4.1 Open-loop control scenario

This section presents and discusses simulation results for methods A and B in an
identical open-loop control scenario with the Northern Clipper model.

4.1.1 Method A

Method A has a horizon T = 250s where N = 25. Thus, giving the timestep
h = T/N = 10s. Figure 1a shows the planned path with four waypoints, including
the dock pose (orange stapled line). The different colored stapled regions represent
the convex spatial constraints the vessel must satisfy for each partitioned optimiza-
tion problem. These constraints are what guarantee the vessel’s safety when maneu-
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vering. With the proposed solution of the constraints and waypoints, we intend to
help the optimization avoid unwanted local optima. E.g., arrive at a position where
obstacles make the vessel unable to proceed any closer to the dock pose.

Figure 1b shows the successful docking trajectory for method A with the large
Northern Clipper model. At the end of the maneuver, the method showcases suc-
cessful low-speed sway maneuvering to reach the dock pose. The entire problem is
solved in 4.5 seconds, and each partitioned optimization problem in approximately
1.2 seconds. Such fast solution times indicate that the method has real-time feasi-
bility.

The docking maneuver takes about 1000 seconds to perform in simulation, which is
relatively slow. A significant portion comes from the vessel standing still because the
vessel does full stops at every waypoint. Figure 4.1.2 best highlights this stop-and-go
trajectory. The figure shows the states η and ν of the vessel with extended periods
of no positional change and zero velocity. Additionally, the figure shows spikes in
velocity. In a practical sense, the stop-and-go trajectory may seem excessive and
useless. However, we do not consider it to be a significant limiting factor as the
implemented switching mechanism from Section 3.2.7 overcomes the problem in
closed-loop control scenarios.

(1a) Method A’s planned
path. The waypoint and
obstacle-free spatial
constraints generation

(1b) Method A’s trajectory from the
initial pose to the dock pose for
the open-loop control scenario

Figure 4.1.1: Method A’s planned waypoints and executed trajectory for the Northern Clip-
per in the open-loop control scenario
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Figure 4.1.2: The state η and ν of method A’s open-loop control scenario

4.1.2 Method B

This section presents the same scenario for method B, as discussed for method A in
Section 4.1.1. Method B uses a longer horizon of T = 350s where N = 35. Thus,
giving the timestep h = T/N = 10s. Figure 4.1.3 shows the medial axis created from
a constrained Delaunay triangulation. The medial axis provides a set of waypoints
and the A* and waypoint reduction algorithms reduce the path, which leads to the
initial guess in Figure 4a. The initial guess direct methods B’s solution to a very
different trajectory, shown in Figure 4b, than for method A (1b). By comparing the
trajectory of method A (Figure 1b) and method B (Figure 4b), we can see how the
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waypoint generation and initial guess dictates the final solution for the respective
methods.

When performing the docking maneuver, method B has a much smoother trajectory,
as shown in Figure 4.1.5. The smooth trajectory also leads to a substantially faster
dock maneuver of 350 seconds. The computation time of 19 seconds probably re-
flects the complexity of the optimization problem. A travel distance of 400 m before
the vessel is supposed to initiate the low-speed maneuvers and come to a final stop
along the quay creates a numerically complex optimization problem to calculate
while satisfying the spatial and elliptic constraints.

Figure 4.1.3: The medial axis of Method B’s open-loop control scenario

(4a) The initial guess of method B’s
open-loop control scenario

(4b) Method B’s complete trajectory for the
open-loop control scenario

Figure 4.1.4: Method B’s initial guess and executed trajectory for the Northern Clipper in
the open-loop control scenario
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Figure 4.1.5: The state η and ν of method B’s open-loop control scenario

4.2 Closed-loop control scenario

This section presents simulation results and the discussions of both methods in
an identical closed-loop control scenario with the MilliAmpere vessel model. The
optimization and control are separated as explained in Section 3.2.7.
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4.2.1 Method A

This section presents the results for method A in a closed-loop control scenario.
The planning horizon is Tp = 120s where Np = 60. Thus, giving the timestep hp =
Tp/Np = 2s. The simulation and control horizon is Ts = 500s where Ns = 5000,
which gives the timestep hs = Ts/Ns = 0.1s. The planner runs on 0.1Hz, planning a
trajectory every 10 seconds, and the DP controller runs with a frequency of 10Hz.

Figure 4.2.1 shows the planned waypoints and spatial constraints of method A.
A more direct and shorter path would likely be to travel between the two right-
most obstacles. Our proposed method finds the shortest path with respect to the
number of waypoints. Thus, it considers the planned path in 4.2.1 to be optimal.
Figure 4.2.2 shows the vessel’s planned (marked in orange) and executed (marked
in blue) trajectory to the dock pose. Figure 4.2.2 indicates that the vessel has the
same stop-and-go trajectory as in Section 4.1.1 despite using a more efficient way-
point switching mechanism. The proposed use of waypoints and switching makes
it inevitable that the vessel might come to complete stops, and it does not entirely
smooth out the planned path and trajectory. However, the extended periods of no
positional change and zero velocity is completely absent in Figure 4.2.3 compared
to Figure 4.1.2. We can still recognize a slight spike pattern in velocity in Figure
4.2.3. Still, this should not have any negative practical ramifications for docking.

When simulating with a separate planner and controller, method A performs re-
markably better in docking time than in Section 4.1.1, primarily due to the faster
switching. Figure 4.2.3 shows the vessel reaching the dock pose after approximately
280 seconds. With a horizon of 120 seconds and a partition into three optimization
problems, we end up with a reduction of 120 · 3− 280 = 80s for the complete dock-
ing maneuver compared to running open-loop control. The reduction from faster
switching grows with scaling the number of waypoints.

Method A shows excellent real-time performance. The optimization problem has an
average solution time of 0.8s for the entire simulation, which is more than satisfac-
tory for real-time performance where the optimization runs at 0.1Hz.
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Figure 4.2.1: Method A’s planned path. The waypoint and obstacle-free spatial constraints
generation for the closed-loop control scenario

Figure 4.2.2: Method A’s planned and executed trajectory from the initial pose to the dock
pose for the closed-loop control scenario
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Figure 4.2.3: The state η and ν of method A’s closed-loop control scenario

4.2.2 Method B

This section presents the results for method B in the same closed-loop control sce-
nario. We set the simulation horizon to Ts = 300s where Ns = 3000, which gives
the same timestep hs = Ts/Ns = 0.1s. The planner still runs on 0.1Hz, planning a
trajectory every 10 seconds, and the DP controller runs with a frequency of 10Hz.

The initial guess of method B is shown in Figure 4.2.4, choosing a shorter and more
direct path to the dock pose than method A. Figure 4.2.5 shows how the vessel
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accurately follows the planned trajectory (marked in orange) from the initial pose
to the final dock pose. We also see a much smoother trajectory in Figure 4.2.6 than
in Figure 4.2.3.

Using the Pseudo-Huber objective function in the optimization, method B signifi-
cantly improves the computational performance. Such a considerable boost in com-
putational efficiency is likely due to shorter travel distances and linear penalization
when further away from the dock pose. A pseudo-Huber objective function allows
faster computation and more numerical stability when further away from the dock
pose (Gros and Zanon (2017)).

In this closed-loop control scenario, method B solves the optimization problem at
an average of 1.2s. Such fast computation also enables method B for real-time per-
formance, competing with the computational speed of method A. Method B still
outperforms method A in terms of docking speed and human-like behavior, reach-
ing the dock pose approximately 100 seconds earlier. In a practical scenario, docking
in 300 or 200 seconds might not make a significant enough difference in choosing
one method over another. However, the difference between the two methods will
likely increase as we increase the travel time of the vessel. E.g., as we see in Section
4.1.1, the difference in docking time is close to 700 seconds. Such a large disparity
would likely have a bigger influence on which approach is the most suitable.

Figure 4.2.4: The initial guess of method B’s closed-loop control scenario
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Figure 4.2.5: Method B’s planned and executed trajectory from the initial pose to the dock
pose for the closed-loop control scenario

0 50 100 150 200 250 300
t [sec]

0

10

x
x d

 [m
]

0 50 100 150 200 250 300
t [sec]

0

20

y
y d

 [m
]

0 50 100 150 200 250 300
t [sec]

100

0

d [
de

g]

0 50 100 150 200 250 300
t [sec]

0.5

0.0

u 
[m

/s
]

0 50 100 150 200 250 300
t [sec]

0.1
0.0

v 
[m

/s
]

0 50 100 150 200 250 300
t [sec]

0.000

0.025

r [
ra

d/
s]

Figure 4.2.6: The state η and ν of method B’s closed-loop control scenario
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4.3 Partially known map and dynamic obstacle sce-
nario

This section presents results for a Partially known map and dynamic obstacle sce-
nario. Both methods initially plan based on knowledge of two obstacles obstructing
the direct path to the dock pose. We assume the vessel has a sensor that detects
objects at 20m. After some time, the vessel detects a new obstacle that is supposed
to block the initially planned path, forcing the methods to replan a new path. When
the vessel tracks the new path, it will do the second detection of a moving obstacle
and execute a simple stop-and-wait maneuver until the moving obstacle has passed.
This scenario shows how the methods easily pair with more sophisticated collision
avoidance systems and how they have practical viability in real-life scenarios where
it is essential to react to a dynamic environment.

4.3.1 Method A

This section presents the results for method A in a Partially known map and dynamic
obstacle scenario. The planning horizon is Tp = 120s where Np = 60. Thus, giving
the timestep hp = Tp/Np = 2s. The simulation horizon is Ts = 600s and Ns = 6000,
which gives the timestep hs = Ts/Ns = 0.1s. The dynamic obstacle is moving with
a velocity of 1m/s to ensure that the vessel has to do a complete stop and wait for
the obstacle to pass before it can continue the docking procedure.

Figure 4.3.1 shows the initial map and the waypoints planned. Figure 4.3.2 shows
how the detection of a new obstacle (marked in red) forces a replan of the path and
the vessel to do a full turnaround to reach the dock pose.

Figure 4.3.3 shows the vessel’s complete docking trajectory from the initial pose
to the dock pose. Figure 3a shows the planned (marked in orange) and executed
(marked in blue) docking trajectory until the vessel detects the first obstacle. The
vessel is initially planning to maneuver through the area where the new obstacle
appears and has to do a replan and complete turnaround to reach the dock pose.
Figure 3b shows the vessel turning around after detecting the first obstacle and the
resulting planned and executed trajectory until it detects a new, moving obstacle.
At this point in time, the vessel starts to slow down and completely stop until the
moving obstacle has moved out of range. Figure 3b also shows how our method
helps avoid local minima by forcing the vessel to do a complete turnaround with



Chapter 4. Results and discussion 57

a replanned path. Figure 3c shows the vessel’s trajectory until it passes the prior
position of the moving obstacle and successfully avoids the collision. Figure 3d
shows the vessel’s complete planned and executed docking trajectory, successfully
reaching the dock pose.

Figure 4.3.4 shows the state η and ν of the vessel and that it takes the vessel
approximately 350 seconds to dock successfully. This figure highlights well the effect
of the switching mechanism. We recognize the same spike pattern in velocity in
Figure 4.3.4 as in Figure 4.1.2. However, in Figure 4.3.4, we still avoid the extended
periods of no zero velocity, which considerably speeds up the docking procedure.

The computation time still indicates good real-time performance. The average so-
lution time of the optimization is 0.7 seconds, maintaining a good margin to the 10
second planning horizon.

Figure 4.3.1: Method A’s initial planned path for the Partially known map and dynamic
obstacle scenario. Before the first obstacle was detected

Figure 4.3.2: Method A’s replanned path for the Partially known map and dynamic obstacle
scenario. After detecting a new obstacle (marked in red)
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(3a) Method A’s planned and executed trajectory
from the initial pose until the vessel detects
the first obstacle (marked in red)

(3b) Method A’s planned and executed tra-
jectory from the initial pose until the
vessel detects the moving obstacle and
starts slowing down

(3c) Method A’s planned and executed trajec-
tory from the initial pose to the pose where
the vessel is passing the interfering obsta-
cle

(3d) Method A’s planned and executed trajectory
from the initial pose to dock pose with ini-
tially untracked obstacles marked in red

Figure 4.3.3: Method A’s planned and executed trajectory from the initial pose to the dock
pose for the Partially known map and dynamic obstacle scenario
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Figure 4.3.4: The state η and ν of method A in the Partially known map and dynamic
obstacle scenario

4.3.2 Method B

This section presents the results for method B in a Partially known map and dynamic
obstacle scenario. The planning and simulation horizon is similar to Section 4.3.1.
The dynamic obstacle is moving with the same velocity of 1m/s.

Figure 4.3.5 shows the initial guess of the method at time T = 0s. The replanned
path we show in Figure 4.3.6 is when detecting the unknown obstacle (marked in
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red) obstructing the initially planned path to the dock pose. Figure 4.3.7 shows the
planned (marked in orange) and executed (marked in blue) trajectory. Figure 4.3.8
shows the state η and ν.

Figure 7a shows the planned and executed trajectory of the vessel until the vessel
detects the moving obstacle and starts slowing down to stop. One can also see the
vessel’s heading in the initial phase of the trajectory facing in the direction of the
initially planned path before the vessel does a turn and redirects to the replanned
path. Figure 7b shows the planned and executed trajectory until the vessel passes
the prior position of the dynamic obstacle, sufficiently clearing the obstacle. The
darker grey vessel hulls show the pose of the vessel when it stops and waits for the
dynamic obstacle to pass. The complete planned and executed docking trajectory is
shown in Figure 7c, where the vessel successfully reaches the dock pose.

In this scenario, the vessel continues in the same direction but has to make a minor
heading adjustment to track the new path. One could argue that this scenario is
less complex than the one for method A because the vessel does not have to make
any drastic maneuvers to change its course after replanning. However, Figure 4.3.7
shows that method B can account for new information, which is critical for practical
viability. The computational speed of method B still shows good real-time perfor-
mance, with an average solution time of 1.2 seconds for the optimization planning
stage.

Figure 4.3.5: Method B’s initial guess for the Partially known map and dynamic obstacle
scenario. Before the first obstacle was detected
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Figure 4.3.6: Method B’s replanned initial guess for the Partially known map and dynamic
obstacle scenario after detecting the first obstacle (marked in red)

(7a) Method B’s planned and executed trajectory
from the initial pose until the vessel de-
tects the moving obstacle (leftmost marked
in red) and starts slowing down

(7b) Method B’s planned and executed tra-
jectory from the initial pose to the pose
where the vessel is passing the interfering
obstacle¡

(7c) Method B’s planned and executed trajectory
from the initial pose to dock pose with ini-
tially untracked obstacles marked in red

Figure 4.3.7: Method B’s planned and executed trajectory from the initial pose to the dock
pose for the Partially known map and dynamic obstacle scenario
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Figure 4.3.8: The state η and ν of method B in the Partially known map and dynamic
obstacle scenario

4.4 Limitations

In order to better highlight the strength and weaknesses of the two methods, Figure
4.4.1 and Figure 4.4.3 show scenarios where the methods can not find feasible
solutions. Let us consider the scenario of Figure 4.4.1 where method A fails to find
a feasible solution. Initially, the trajectory of method B seems remarkably simple
and easy to execute. The position of the obstacles makes it not as simple to solve
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for method A. Method A finds a decomposition and feasible path. However, the
overlapping areas are too small for the vessel to maneuver and turn within, as
illustrated in Figure 4.4.2. With such a large vessel, the placement of the obstacles
creates a worst-case scenario.

When the vessel can not freely maneuver, the vessel has a considerably higher
chance of achieving undesirable positional states. Undesirable positional states com-
plicate further guidance and control, which ultimately leads to the optimization
not being able to find a feasible solution. The geometry of the harbor and obsta-
cles highly influence the feasibility of method A, which is the method’s advantage
and limitation. The advantage is that the exploitation of the harbor geometry helps
the vessel avoid unwanted local optima docking next to obstacles, which many
optimization-based methods would struggle to avoid. The limitation emerges when
the geometry of the harbor creates a decomposition which leads to an infeasible
optimization problem. Method B shows how effortless the problem in Figure 4.4.1
can be solved. Which also showcases the efficient, smooth, and human-like maneu-
vering one can achieve with method B.

Method B is more susceptible than method A to getting stuck in local optima next to
obstacles and never reaching the dock pose. For instance, in the scenario in Figure
4.4.3, method B finds a local optimum next to an obstacle and never reaches the
dock pose. The vessel stops at a local optimum partly because the initial guess does
not account for the vessel’s hull and warm-starts the optimization with an infeasible
path. However, getting stuck in a local optimum is primarily because we do non-
linear optimization. Thus, it is unavoidable in some cases. Our proposed solution in
Method A is designed to overcome this exact challenge. In many scenarios where
other optimization-based methods fail to find a solution, our proposed method A
will force the vessel to pass specific waypoints and find a feasible solution.
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Figure 4.4.1: Method B’s trajectory of an open-loop scenario where method A does not find
a feasible solution

Figure 4.4.2: Method A’s worst-case scenario where the vessel is unable to turn inside a
decomposed region
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Figure 4.4.3: Method B’s trajectory where the vessel gets stuck in a local optima



66

Chapter 5

Conclusion and future work

Our work presented in this thesis proposes two methods combining computational
geometry with numerical optimal control to do static and dynamic obstacle avoid-
ance and successfully dock a vessel. Both methods show good performance for all
scenarios presented; this includes complex and challenging docking scenarios with
open-loop control, closed-loop control, and a partially-known environment with a
dynamic obstacle. The methods are also demonstrating good performance for two
distinctive vessel models, which showcases their robustness for dealing with chang-
ing model dynamics. The ability to handle environments where all information is
not readily available shows a great deal of robustness and reliability in terms of col-
lision avoidance and safety. They both can successfully replan and track an entirely
new path. Thus, accounting for newly detected obstacles on the fly while keeping
the vessel safe. Additionally, we show that pairing them with more comprehensive
and sophisticated collision avoidance systems is a straightforward task. The ability
to account for new information on the fly combined with real-time computational
feasibility indicates that the methods show promising results for practical use.

Method A utilizes obstacle tangents to do a tangential decomposition of a non-
convex polygon. From the decomposition, we create a graph where the overlapping
areas form the edges connecting the decomposed, convex polygons, and the A*
finds the optimal path of polygons to traverse. Lastly, the optimization finds a feasi-
ble obstacle-free docking trajectory connecting the waypoints. Method B uses con-
strained Delaunay triangulation to form a polygon’s medial axis and create a graph
connecting the medial axis to the initial and dock pose. The A* and waypoint re-
duction algorithm constructs the straight-lined initial guess used for warm-starting
an optimization problem that finds a feasible obstacle-free docking trajectory.
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The decomposition of method A is an extension and improved solution of the work
by Martinsen et al. (2019) and Ødven (2021). We have implemented weights that
prefer larger overlapping areas to help avoid the worst-case scenarios discussed in
Section 4.4. Additionally, we have improved the decomposition to compute the var-
ious convex polygons constrained by the opposite facing tangents instead of finding
just one decomposed polygon. The method still heavily relies on the geometry of
the docking area and obstacles. As shown in Figure 4.4.1, scenarios where the ves-
sel no longer can freely maneuver inside the convex constraints makes it difficult to
find a feasible solution. The problem of too small convex constraints will most likely
increase when scaling the number of obstacles present. The method also tends to
find less optimal solutions from a human perspective. Less optimal solutions from
a human perspective might not be a significant problem in practice, as it is more
important that we can reach the dock pose rather than having the most natural
and efficient path. The extension implemented for method A makes it possible for
our proposed solution to avoid multiple obstacles simultaneously. Additionally, we
show in Chapter 4.3 that it handles map inaccuracies and can account for dynamic
obstacles.

For method B, as stated in Bitar et al. (2019), the optimization will lock onto one
route choice due to it being warm started. Therefore, a reasonable initial guess for
whatever goal one wants to achieve is vital. In our case, the initial guess could
dictate whether the optimization finds a feasible solution or not. E.g., as the initial
guess of method B does not account for the vessel’s hull, the vessel could end up
in a similar situation as in Figure 4.4.3. With a good initial guess, there is still no
guarantee that the optimization avoids local optima and successfully docks.

The complexity of the optimization problem is another factor why the initial guess
is of such importance. Method B has a higher complexity due to more spatial con-
straints, and as we show in Section 4.1.2, the optimization takes quite a while to
compute compared to method A. An initial guess that accounts for vessel dynam-
ics could severely improve the run time. Even though we showed that method B
also was feasible for real-time performance, it is worth noting that improvements
revolving the initial guess could benefit the computation time and counteract the
challenges related to the complexity of the problem. The vessel’s safety is also de-
pendent on the complexity of the optimization. Our optimization problem can guar-
antee that the sampled points of the vessel hull will avoid a collision. In some cases,
e.g., with a sparse sample of the hull we can not guarantee a collision-free trajec-
tory for a large vessel. A denser sample will help solve such problems, but also adds
to the complexity of the optimization.
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The methods showcase different strengths and weaknesses, and as we have discov-
ered throughout the work in this thesis, they complement each other in ways that
might make it efficient to combine the two methods in future work. Method B has
more time-efficient human-like trajectories. Method A tends to avoid local optima
better and perform better in geometrically complex docking scenarios. Thus, a com-
bination where one could exploit the strengths of both methods could be natural to
investigate. The combination could be to merge the two methods and create a hy-
brid approach incorporating both of their strengths. With the computational speed
of the methods, they could even be run as a redundant system. E.g., we would pre-
fer method B as long as it finds a feasible solution and does not get stuck in local
optima. Whenever one of the two occurs, we can make switch to method A.

It could also be natural to investigate improvements for both methods individu-
ally. Future work could include making the decomposition more efficient, leading
to faster computations for method A. Keeping the same tangential decomposition
methodology with triangular obstacle modeling would be interesting to investigate.
That approach could contribute to fewer waypoints and larger overlapping regions
and potentially help minimize the limitations of the methods. For method B, a nat-
ural focus would be the initial guess and how we can alter it to account for the
vessel’s hull and dynamics. Other areas of improvement could be to incorporate
some of the ideas from method A to have better performance when facing scenarios
where the vessel otherwise would not reach the dock pose.
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Appendix A

Simulation and optimization
parameters

The parameters for the MilliAmpere, Northern Clipper and optimization problem
are given in Table A.0.1, Table A.0.2, and Table A.0.3, respectively.

Table A.0.1: MilliAmpere parameters

Parameter Value Parameter Value
Xu −27.632 m11 2389.657
X|u|u −11.064 m22 2533.911
Xuuu −13.965 m23 62.386
Yv −52.947 m32 28.141
Y|v|v −116.486 m33 5068.910
Yvvv −24.313 c13 −m22v −m23r
Y|r|v −1540.383 c23 m11u
Yr 24.735 c31 −c13
Y|v|r 572.141 c32 −c23
Y|r|r −115.457 d11 −Xu −X|u|u|u| −Xuuuu

2

Nv 3.524 d22 −Yv − Y|v|v|v| − Yvvvv2
N|v|v −0.832 d23 −Yr − Y|v|r|v| − Y|r|r|r|
N|r|v 336.827 d32 −Nv −N|v|v|v| −N|r|v|r|
Nr −122.860 d33 −Nr −N|v|r|v| −N|r|r|r| −Nrrrr

2

N|r|r −874.428 d11,p −Xu −X|u|u|up| −Xuuuu
2
p

Nrrr 0 d22,p −Yv − Y|v|v|vp| − Yvvvv2p
N|v|r −121.957 d33,p −Nr −N|r|r|rp|
Lx,1 1.8 Lx,2 −1.8
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Table A.0.2: Northern Clipper parameters

Parameter Value
lx,1 −35
ly,1 7
lx,2 −35
ly,2 −7
lx,3 35
m 6000e3

L 76.2
g 9.81

M bis

1.1274 0 0

0 1.8902 −0.0744
0 −0.0744 0.1278


Dbis

0.0358 0 0

0 0.1183 −0.0124
0 −0.0041 0.0308


N

1 0 0

0 1 0

0 0 L



Table A.0.3: Objective function parameters

Parameter Value
δ 10
Q Diag([0, 200, 100])
R Diag([1e−2, 1e−2, 1e−2, 1e−2])
ks Diag([1e3, 1e3, 1e3, 1e3, 1e3])
Qη Diag([10, 10, 1000])
Qν Diag([0, 0, 0])
Rf Diag([1e−7, 1e−7, 1e−7])
kc [1e3, 1e3, 1e3]>

ρ 1
ε 1e−3

W Diag([1, 1, 1])
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