
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Reidar Berge

Path planning for a telescopic
boom lift robot

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland
Co-supervisor: Jørn Sandvik Nilsson
June 2022

M
as

te
r’s

 th
es

is

Reidar Berge

Path planning for a telescopic
boom lift robot

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland
Co-supervisor: Jørn Sandvik Nilsson
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Path planning for a telescopic
boom lift robot

Reidar Berge

Supervisor: Lars Struen Imsland
Co-supervisor: Jørn Sandvik Nilsson

Master’s thesis in Cybernetics and Robotics
Norwegian University of Science and Technology

May 2022

Abstract

This thesis present five different algorithms for path planning for a telescopic
boom lift robot. The boom lift is cleaning a 2-dimensional surface with a smal-
ler robot arm mounted to the lift basket. The smaller robot arm has a working
area of circle in 2D, called a washing circle. The main task for this thesis is to find
the shortest possible path between these washing circles. The circles has to be
visited in a specific order, from top to bottom. The evaluation metrics for the path
are computation time and euclidean length of the path. The algorithms tested are
genetic algorithm(GA), nearest neighbour(NN) with 2-opt and solving TSP as ILP.
The two last algorithms are modifications of NN and TSP ILP to suit the specified
problem in this thesis better. The improved version of TSP ILP has a pre-procession
of data, to reduce variables in the optimization problem. The algorithms are tested
on two different example jobs. The best performing algorithms on these tests are
the modified NN and pre-processed optimization.

i

Sammendrag

Denne oppgaven presenterer fem ulike algoritmer for en teleskopisk bom lift.
Liften vasker en to dimensjonal overflate med en mindre robot arm montert på
liften. Robotarmen har et arbeidsområde på en sirkel. Hovedproblemet i denne
oppgaven er å finne korteste vei mellom disse sirklene. Sirklene må bli besøkt
i en bestemt rekkefølge, fra bunnen til toppen. Vurderingskriteriene for algorit-
mene er beregningstid og distanse på løsningen. Algoritmene som er testet er
genetisk algoritme(GA), nærmeste nabo(NN) med 2-opt og løse det som et op-
timaliseringsproblem(ILP). Dei to siste algoritmene er forbedring av NN og ILP,
for å fungere bedre med problemet i denne oppgaven. Den forbedrede ILP red-
userer antall variabler. Algoritmene er testet på to forskjellige problemer. Dei best
fungerende algoritmene er forbedrede versjoner av NN og ILP.

ii

Preface

This thesis is written as a master thesis at the Cybernetics and Robotics study
program at Norwegian University of Science and Technology (NTNU), written in
collaboration with nLink. The work is continuation of of my project thesis. The
work presented in this thesis is performed from januar to early june 2022, by me
independently. I want to thank my supervisors Professor Lars Struen Imsland and
Jørn Sandvik Nilsson, from nLink.

iii

Contents

Abstract . i
Sammendrag . ii
Preface . iii
Contents . iv
Figures . vi
Tables . viii
1 Introduction . 1

1.1 Motivation . 1
1.2 Overview . 1
1.3 The robot . 1

1.3.1 Position system . 2
1.3.2 Working principle . 2

1.4 Problem Specification . 2
1.4.1 Workspace . 2

1.5 Motion planning . 4
1.5.1 Generating washing circles . 4
1.5.2 Generating path visiting washing circles 4
1.5.3 Evaluation metric of path . 4

2 Background Theory . 6
2.1 General optimization formulation . 6

2.1.1 Integer linear programming . 6
2.2 Traveling Salesman Problem . 6

2.2.1 Mathematical Formulation of the Symmetric TSP 7
2.3 Traveling Salesman Problem algorithms 8

2.3.1 Nearest neighbour . 8
2.3.2 Genetic algorithm . 8
2.3.3 2-opt . 9

3 Software . 10
3.1 Shapely . 10
3.2 NumPy . 10
3.3 Matplotlib . 10
3.4 SciPy . 10
3.5 Pyomo . 10
3.6 Gurobi . 11

iv

Contents v

4 System Implementation . 12
4.1 Generating washing circles . 12

4.1.1 Remove circles from no-go areas 12
4.2 Ordering washing circles . 14

4.2.1 Representation of distance between washing circles as graph 14
4.2.2 Nearest neighbour implementation 14
4.2.3 2-opt implementation . 15
4.2.4 Modified nearest neighbour . 15
4.2.5 Genetic algorithm . 16
4.2.6 Solve MTZ as ILP . 19
4.2.7 Pre-processing of graph . 20

5 Result . 25
5.1 Test case 1 . 25
5.2 Test case 2 . 29

6 Discussion . 31
7 Conclusion . 32
Bibliography . 33

Figures

1.1 nLink telescopic boom lift robot. 2
1.2 Example building, with building surface and washing circles simu-

lated by nLink. 3
1.3 Example washing surface with washing circles, provided by nLink. . 3
1.4 Two different path of visiting washing circles, fig 1.4a is valid and

fig 1.4b is illustrating an invalid path. 5

2.1 GA crossover or between two parents. The bold letter has the same
placement in upper parent and child. The underlined characters has
same order in lower parent and child. Figure inspired by [10]. . . . 8

2.2 Example of mutation, two characters are swapped. Figure inspired
by [10]. 9

2.3 Example of 2-opt algorithm with valid swap of edges. 9

4.1 Step of covering polygon with circles and remove circles inside no-
go area. 13

4.2 Illustration of four circles with all possible direction between, the
cost of ci, j is equal to c j,i , hence it a symmetric graph. 14

4.3 Step of prepossession of washing circles before calculation of graph.
. 21

4.4 Arrows illustration euclidean distance between washing circles, to
avoid visiting in wrong direction, the distance in opposite of arrow
direction is set to INF. 24

5.1 Pre-processing algorithm on test case 1, one of the best performing
algorithms on this test. 25

5.2 Modified NN algorithm in test case 1, generates the shortest path
of all algorithms tested. 26

5.3 GA algorithm on test case 1 is not finding a valid solution. 26
5.4 NN with 2-opt algorithm on test case 1, the path is visiting washing

circles from above, hence it is an invalid path. 27
5.5 A path generated solving TSP as ILP on test 1. The calculation takes

53 seconds, way longer than the other algorithms tested. 27

vi

Figures vii

5.6 Pre-processing algorithm on test case 2, is the second best perform-
ing algorithm on both computational time and length of path. . . . 29

5.7 The modified NN is the best performing algorithm on test case 2.
The path looks natural by human eye. 29

5.8 NN with 2-opt on test 2, is not generating a valid path. Because the
path is going downwards on the left side. 30

Tables

4.1 Graph of distance between washing circles illustrated in 4.2, rep-
resented as matrix. 14

4.2 Graph for four washing circles represented as matrix 15

5.1 Table presenting result from the first test 28
5.2 Table presenting result from the secound test 30

viii

Chapter 1

Introduction

1.1 Motivation

Today a lot of work is done manually at construction cites. nLink[1] is a company
that work with automating construction task. Earlier nLink has developed a robot
for drilling holes in ceiling in corporation with Hilti, the Hilti Jaibot[2]. nLink is
now developing a robot designed to perform work on building surfaces. The first
application is cleaning building surfaces with pressure washers. This thesis is on
the project, with focus on path planning of cleaning building surface efficient. This
section is based on [3].

1.2 Overview

This master thesis is a continuation of the project report [3] by Berge. The report
present algorithms for generating stops for the robot. The goal for this thesis is
find the shortest possible path between these stops. The stops has to be visited in
a specific order, from bottom to top.

In Section 1.3 are the robot presented in more detail, and further descrip-
tion of the problem is in Section 1.4. Relevant background theory is presented
in Chapter 2. In Chapter 3 are software used presented. The implementation of
algorithms is presented in Chapter 4. Chapter 5 shows the result from testing
the algorithms. The discussion and conclusion of the report are in Chapter 6 and
Chapter 7.

1.3 The robot

This section is strongly based on [3]. The robot used is a boom lift with a smaller
high precision industrial robot mounted on the basket. The industrial robot is
produced by Universal Robots[4]. Figure 1.1 is an illustration of the robot. The
boom lift has very low precision and no precise position system integrated. Only
fault safe functions, to avoid rollover and keep the man basket horizontal.

1

Chapter 1: Introduction 2

Figure 1.1: nLink telescopic boom lift robot.

1.3.1 Position system

For accurate position of the lift a Hilti PLT 300 is used[5]. It is a laser distance
measurement tool. The building wall is measured with the laser tool, and estim-
ated as a 2D-polygon. The robot position is estimated using the tool, with Prism
from Hilti mounted on the lift[6]. Prism is a reflector that can be detected by the
laser tool. Which can be used to determine accurate position of the robot.

1.3.2 Working principle

The working principle of the robot is to keep the boom lift stationary and let
the industrial robot perform work within reach. Then move the boom lift to next
point, where the industrial robot perform a new work. The working area of the
industrial robot arm is a sphere with origin in the arm’s first joint. The intersection
between the surface and sphere is a circle. Hereafter called washing circle. It is
assumed the circle has constant radius. Hence the distance from robots first joint
to surface must be constant. Figure 1.3 illustrates a building surface with washing
circles marked.

1.4 Problem Specification

This section first present the workspace of the robot. Then naming for variable and
areas are described and illustrated. Last is the evaluation metric for algorithms.

1.4.1 Workspace

The workspace is the area to wash, it contain vertices of a 2D-polygon. The work-
space can include no-go areas, like windows or balconies. These are also repres-
ented as 2D-polygons. The workspace is called washing surface.

Chapter 1: Introduction 3

(a) Building facade is measured with Hilti Plt
300 and estimated to polygon.

(b) 3D-model of robot and surface to
wash

Figure 1.2: Example building, with building surface and washing circles simu-
lated by nLink.

Figure 1.3: Example washing surface with washing circles, provided by nLink.

Chapter 1: Introduction 4

1.5 Motion planning

The evaluation metrics is to find shortest possible path for the robot.

1.5.1 Generating washing circles

In [3] Berge present different algorithms for generating washings circles. The al-
gorithms cover a washing surface with circles in an optimum way. According to
this report, the best performing algorithm is covering the washing surface with
circles placed in a hexagon pattern. I this thesis this algorithm will be used to
generate washing circles. Due to it simplicity and fast computing time.

1.5.2 Generating path visiting washing circles

After determining washing circles, the robot needs to know the order to visit them.
There are rules for which order to visit circles. It has to be from bottom to top.
The reason to wash from bottom to top is to let the washing water flow in wet
part of wall, to avoid marks on the wall. Fig 1.4a illustrates a valid path and Fig
1.4b an invalid path.

1.5.3 Evaluation metric of path

The speed of the boom robot between washing circles is not possible to determine
accurate, because there are many joints with different limits and velocities. How-
ever would a shortest possible path most likely give the fastest path for the robot.
The path should also look natural by human eye. This problem can be formulated
as euclidean distance travel salesman problem(TSP). To guarantee the path to
visit washing circles in correct order there has to be done some modifications to
the algorithms.

Chapter 1: Introduction 5

(a) Valid path for visiting washing circles, circles are visited in bottom to top order.

(b) Invalid path, the path visit a circles above before circles lying under.

Figure 1.4: Two different path of visiting washing circles, fig 1.4a is valid and fig
1.4b is illustrating an invalid path.

Chapter 2

Background Theory

This chapter presents relevant background theory. Some information about gen-
eral optimization problem, which can be used to solve TSP. Formulating TSP as an
optimization and algorithms for solving TSP are also presented.

2.1 General optimization formulation

In [7] a general optimization problem is described, which can be rewritten as
follow

min
x∈Rn

f (x) subject to
ci(x) = 0, i ∈ E
ci(x)≥ 0, i ∈ I (2.1)

Where f is the objective function, x is the vector of variables and ci are con-
straints. E and I are the sets of equality and inequality constraints.

2.1.1 Integer linear programming

Integer linear program (ILP) is optimization problem where the objective function
and constraints are linear. In [8] ILP is formulated, which can be rewritten as

min c⊤x subject to

Ax = b

x ≥ 0

x ∈ Zn

(2.2)

where A is m b y n matrix, and x is n-dimensional column vector. b is m-
dimensional column vector. x is also positive integer. c is an n-dimensional row
vector.

2.2 Traveling Salesman Problem

Traveling salesman problem(TSP) is a combinatorial problem optimization prob-
lem. The problem has been studied for decades, and has roots back to 19. cen-

6

Chapter 2: Background Theory 7

tury[9]. The problem is simple to define but hard to solve. Given a set of cities and
distance between them. What is the shortest possible route visiting every city once
and returning to the start city[10]? According to [11] TSP is a NP-hard problem.
Which means there is no algorithm that can solve the problem in polynomial time.

If the distance from city A to B is equal to B to A, the problem is symmet-
rical. On the other hand, if distance A to B is not equal to B to A, the problem is
asymmetrical. In this thesis it is focusing the asymmetrical TSP.

2.2.1 Mathematical Formulation of the Symmetric TSP

The TSP can be formulated mathematical as an ILP, in this thesis the Miller–Tucker–Zemlin
(MTZ) is used. The paper presenting this formulation was published in April
1960[12]. The formulation can be rewritten to match the notation of this report
as follow

min
n
∑

i=1

n
∑

j ̸=i, j=1

ci j x i j : (2.3a)

x i j ∈ {0, 1} i, j = 1, . . . , n (2.3b)

ui ∈ Z i = 2, . . . , n (2.3c)
n
∑

i=1,i ̸= j

x i j = 1 j = 1, . . . , n (2.3d)

n
∑

j=1, j ̸=i

x i j = 1 i = 1, . . . , n (2.3e)

ui − u j + nx i j ≤ n− 2 2≤ i ̸= j ≤ n (2.3f)

1≤ ui ≤ n− 1 2≤ i ≤ n (2.3g)

ci, j is the cost between city i and j. x i, j decides which edges are part of the
solution. x i, j = 1 means that ci, j is part of the solution, when x i, j = 0 is ci, j not part
of the solution. ui is a dummy variable keeping the order cities are entered. The
constraints 2.3d and 2.3e require that every city is entered and left once. Contraint
2.3f and 2.3g eliminates sub tours and keep the solution to a Hamiltonian circle.

Chapter 2: Background Theory 8

2.3 Traveling Salesman Problem algorithms

2.3.1 Nearest neighbour

The nearest neighbour (NN) algorithm solve TSP with a basic technique. A ran-
dom starting vertex on the graph is chosen, from this the algorithm take a greedy
decision. The next vertex has shortest distance from the current, and also has to be
unvisted. This is repeated until every vertex is visited, then the algorithm return
to starting point. The computation time of NN algorithm is O(n2)[13], however it
always provide a valid result without subtours.

2.3.2 Genetic algorithm

The genetic algorithm(GA) is a metaheuristic algorithm, that can solve many dif-
ferent problems[14]. The algorithm use natural selection, with survival of the
fittest and evolution of a population. The population contains individuals with
different genetic material. The focus in this thesis will be on using GA to solve
TSP. When solving TSP with GA each individual contain a list of cities, the list is
equal to a path. These individuals are generated random, and multiple individuals
forms a population. The population is evolved using crossover and mutations.

Crossover is when the genes from two random parents are combined to form a
child, in TSP is that the path from two parents are combined. One implementation
is two remove some random cities from one parent. A path in TSP should always
contain every city once, so these cities have to be put back in a different order. The
order is determined by the other parent. The removed cities is put back in same
order, as they appear in the second parent. In Figure 2.1 is crossover between two
parents illustrated.

A B C D E F G

G B A C F E D

A B G D C F E

Parents

Child

Figure 2.1: GA crossover or between two parents. The bold letter has the same
placement in upper parent and child. The underlined characters has same order
in lower parent and child. Figure inspired by [10].

Mutation is when the genetic material in an individual is changed though
random events. Mutation on TSP is when two random cities change order on a
individual[10]. Figure 2.2 illustrates mutation on a individual.

Chapter 2: Background Theory 9

A B C D E

A D C B E

Figure 2.2: Example of mutation, two characters are swapped. Figure inspired
by [10].

The next generation is created using crossover and mutation, which lead to
an increased population. To select the next generation a fitness function is used.
A fitness function calculate a value based on the genetic material, the distance of
the path in TSP. A lower fitness value is better, so the distance is inverted. Based
on the fitness function is the best individuals selected, after each generation.

The evolution of the individuals is either running a given number of genera-
tion or to the improvement between generation is below a set value. The fittest
individual is the best performing, and chosen as the solution.

2.3.3 2-opt

The 2-opt algorithm is a tour improvement algorithm [15]. The algorithm improve
an existing tour by trying to reordering two edges. If this change give a shorter
tour it is kept. This is repeated until every valid combination is tried after last time
reordering two edges. Hence the algorithm run until no improvement is made on
the tour. Figure 2.3 illustrates a valid swap of edges for 2-opt algorithm.

Swap

Figure 2.3: Example of 2-opt algorithm with valid swap of edges.

Chapter 3

Software

This chapter give a brief introduction to programming packages used in this thesis.
All algorithms are implemented in Python. This section is partially based on [3].

3.1 Shapely

Shapely[16] are a geometry Python library used for manipulation and analysis of
geometric objects in 2D. In this thesis it is used to represent washing surfaces,
washing circles and paths. The results in this thesis is plotted using Shapely.

3.2 NumPy

Numpy[17] is a open source library that provides array, maatrix and linear algebra
operation.

3.3 Matplotlib

Matplotlib[18] is a open source Python library used for plotting figures in Python.

3.4 SciPy

SciPy[19] is a Python package for mathematics, science, and engineering. It provide
common algorithms for minimizing of constrained and unconstrained objective
functions.

3.5 Pyomo

Pyomo[20] is open-source based Python package for solving and formulating op-
timization problems. Pyomo support different solvers, and is used to solve TSP as
ILP in this thesis.

10

Chapter 3: Software 11

3.6 Gurobi

Gurobi[21] is a solver for optimization problems, which provide a own language
for defining optimization problems. Gurobi also provide bindings to Pyhon and
other common programing languages[22]. In this thesis Gurobi is used to solve
optimization problems defined in Pyomo.

Chapter 4

System Implementation

This section presents implementation of algorithms to solve path planning for
boom lift. Which is solved as a traveling salesman problem.

4.1 Generating washing circles

In [3] Berge present different algorithms for covering a polygon with circles of
uniform size. However the report do not present any solution to remove circles
from no-go areas inside polygons.

4.1.1 Remove circles from no-go areas

The polygon is filled with circles using algorithms presented in [3]. First step is
to remove circles completely inside no-go areas removed. Next step is to remove
circles partially inside no-go area. This is done by removing one circle at the time,
and check if the whole polygon is still covered. If the whole polygon is still covered,
the circle is removed. If not the circle is kept as washing circle. This is repeated
for every circle partially covering the no-go area. The implementation of this al-
gorithm is heavily based on Shapely, which provide manipulation and analysis of
2D-objects.

12

Chapter 4: System Implementation 13

(a) Polygon is filled with circles, using algorithms from Berge[3]

(b) Circles completely inside no-go area are removed.

(c) Circles partially inside no-go area are removed, but polygon is still
completely covered by circles.

Figure 4.1: Step of covering polygon with circles and remove circles inside no-go
area.

Chapter 4: System Implementation 14

4.2 Ordering washing circles

4.2.1 Representation of distance between washing circles as graph

The algorithms that solve TSP-problems need the distance between cities to com-
pute the optimum solution. This can be represented as a nxn matrix, where n is
the number of cities. Algorithm 5 implements calculation of graph.

Tab 4.1 show the distance between the four washing circles illustrated in Fig.
4.2. The circle number is added to both figure and table to improve readability.

Figure 4.2: Illustration of four circles with all possible direction between, the cost
of ci, j is equal to c j,i , hence it a symmetric graph.

0 1 2 3
0 0 5 4.5 7.2
1 5 0 8 4.1
2 4.5 8 0 8
3 7.2 4.1 8 0

Table 4.1: Graph of distance between washing circles illustrated in 4.2, repres-
ented as matrix.

4.2.2 Nearest neighbour implementation

The NN algorithm takes local greedy choice as the next position in the path. The
next step is the one with minimum cost to add to the path. The starting point
for the algorithm is lowest washing circles, from then it takes a greedy choice to

Chapter 4: System Implementation 15

0 1 2 3
0 4 4 4 4
1 4 4 4 4
2 4 4 4 4
3 4 4 4 4

Table 4.2: Graph for four washing circles represented as matrix

choose the rest of the path. There is boolean variable storing information about
each washing circle is visited or not. When searching for the next, only washing
circles with that is not visited jet are possible to visit next. This is to avoid visiting
the same washing circles multiple times. The NN algorithm is implemented in
Algorithm 1.

Algorithm 1 standard NN algorithm.
1: function STANDARD_NN(G)
2: visi ted ← [False, False, ..., False]
3: nex t ← f ind_lowest_W C(washing_circles)
4: path← []
5: path.append(nex t)
6: visi ted[nex t]← True
7: while not every washing_circles visited do
8: nex t = f ind_closest(nex t, graph, visi ted)
9: visi ted[nex t]← True

10: path.append(nex t)
11: end while
12: return path
13: end function

4.2.3 2-opt implementation

The 2-opt algorithm is a tour improvement algorithm as stated in Section 2.3.3.
In this section the implementation of the algorithm is presented. The algorithm
are swapping two edges at time as illustrated at Figure 2.3. If the path is shorter
after swapping the edges, it is saved. Otherwise the old path is kept. This is tried
for every possible combination of swapping two edges until no improvement is
made on the path. In Algorithm 2 is this implemented.

4.2.4 Modified nearest neighbour

The NN algorithm presented in 2.3.1 can be modified to solve the TSP of vis-
iting order of washing circles presented in 1.5.2. The modification improve the
performance of the algorithm.

There has to be added some extra constraints to the original NN algorithms
to provide a result satisfy the requirements presented in 1.5.2. There are two
requirements, start at the bottom and visit the circles below has to be visited first.

Chapter 4: System Implementation 16

Algorithm 2 2-opt algorithm.
1: function 2-OPT(G)
2: path← standard_NN(G)
3: graph← calc_graph(washing_circles)
4: star t ing_circle← f ind_lowest_circle(washing_circles)
5: path_improved ← True
6: path_cost ← calc_path_leng th(G, path)
7: while tour_improved do
8: path_improved ← False
9: for i in 1 : leng th(path)− 2 do

10: for j in (i + 1) : leng th(path) do
11: temp_path← 2_opt_swap(path, i, j)
12: temp_path_cost ← calc_path_leng th(G, temp_path)
13: if temp_tour_cost < tour_cost then
14: path_cost ← temp_path_cost
15: path_improved ← True
16: end if
17: end for
18: end for
19: end while
20: return path
21: end function

Algorithm 3 Calculation of path length.
1: function CALC_PATH_LENGTH(G, path)
2: leng th← 0
3: for l in 1 : leng th(path)− 1 do
4: temp← G[path[l], path[l + 1]]
5: leng th← leng th+ temp
6: end for
7: return leng th
8: end function

The starting point for the algorithm is the lowest lying washing circles. It then
take local greedy decision to choose next washing circle. To satisfy the require-
ments presented in 1.5.2 a constraint is added.

At every iteration it is checked which washing circles is possible to visit next,
without breaking the requirements presented 1.5.2. This information is saved as
a binary variable. The next is the one with shortest euclidean distance from last
washing circle, that satisfy these requirements. In Algorithm 4 is this implemented.

4.2.5 Genetic algorithm

The first step in genetic algorithm is to generate a random population of indi-
vidual. Each individual is in this case a path. The evolution of the individuals is
in this implementation set to run a given number of generation. In each gener-
ation is first the fitness of each individual calculated, the euclidean distance of
the path. The fittest path is kept, until next generation. Next step is crossover and
mutation. The crossover is choosing two individuals, and crossing over genes. Fig-

Chapter 4: System Implementation 17

Algorithm 4 Modified NN algorithm.
1: function NNmodi f ied(washing_circles)
2: graph← calc_graph(washing_circles)
3: visi ted ← [False, False, ..., False]
4: nex t ← f ind_lowest_W C(washing_circles)
5: path← []
6: path.append(nex t)
7: visi ted[nex t]← True
8: while not every washing_circles visited do
9: valid_to_visi t ← f ind_allowed(washing_circles, visi ted)

10: nex t = f ind_closest(nex t, graph, valid_to_visi t)
11: visi ted[nex t]← True
12: path.append(nex t)
13: end while
14: return path
15: end function

Algorithm 5 Calculation of graph.
1: function CALC_GRAPH(washing_circles)
2: graph← zeros(washing_circles.shape[0], washing_circles.shape[0])
3: for i in d_samples do
4: for j in d_samples do
5: area_washed ← compute_area_washed(d, h, o f f set, washing_circles)
6: x ← washing_circles[i][0]−washing_circles[j][0]
7: y ← washing_circles[i][1]−washing_circles[j][1]
8: graph[i, j]← hypot(x , y)
9: end for

10: end for
11: return graph
12: end function

ure 2.1 illustrated crossover. The next step is mutation, which is performed on the
crossovered individuals. Part of the individuals is randomly changed, like in Fig-
ure 2.2. After a given number of generation is the fittest individual selected and
returned. This is the shortest path found by the algorithm.

Chapter 4: System Implementation 18

Algorithm 6 Genetic algorithm.
1: function GA(G, pop_size, generations)
2: pop← []
3: f i tness← []
4: for i in 1 : pop_size do
5: pop.append(generate_random_path(G))
6: end for
7: for j in 1 : generations do
8: for j in 1 : leng th(pop) do
9: ind_1← pop[random(0, leng th(pop))]

10: ind_2← pop[random(0, leng th(pop))]
11: ind_1, ind_2← crossover(ind_1, ind_2)
12: ind_1, ind_2← mutate(ind_1, ind_2)
13: pop.append(ind_1)
14: pop.append(ind_2)
15: end for
16: for j in (i + 1) : leng th(path) do
17: f i tness← get_ f i tness(pop)
18: end for
19: pop← keep_ f i t test(pop)
20: end for
21: path← get_ f i t test_individual(pop)
22: return path
23: end function

Chapter 4: System Implementation 19

4.2.6 Solve MTZ as ILP

In Algortithm 7 is TSP solved as an optimization problem using the formulation
by MTZ presented in Section 2.2.1. The optimization problem is implemented
in Pyomo a optimization framework for Python. The solver used is Gurobi, which
provide solvers for ILP problems[20]. The solver finds a tour that create a Hamilto-
nian cycle. To create a path according to the specification in Section 4.2 the edge
from top to bottom are removed before the path is returned. To always get a edge
from top to bottom are the distance set to zero from top washing circles to the
lowest. The algorithm return a path visiting every washing circle once, starting at
bottom and ending at the top. When calculating the graph, the horizontal distance
is multiplied by a factor. To get a path starting at the bottom and ending at the
top, which satisfy the requirements in Section 4.2.

Algorithm 7 optimization euclidean algorithm.
1: function OPTIMAL_EUCLIDEANTSP(G)
2: sol ← Solveoptin2.3
3: path← ex t ract_tour_ f rom_sol
4: path← remove_ed ge_top_bot tom(path)
5: return path
6: end function

Chapter 4: System Implementation 20

4.2.7 Pre-processing of graph

The algorithm presented in 4.2.6 gives a huge amount of variables when solving
the optimization problem with many washing circles. This can be reduced with
some pre-procession of the graph. The main idea is to reduce the number of wash-
ing circles, by assuming it is naturally to visit nearby circles. Which causes lower
number of variables.

The circles generated is assumed lies on horizontal lines, however they are not
sorted from the algorithm determining the placement. This is done in Algorithm
9 and illustrated in Figure 4.3a.

The next step is to split the lines where the circles is not intersection each other
on same line. This is areas of the washing surface where there are no go areas,
for examples windows or other obstacles. In Algorithm 10 is this preformed and
illustrated in Figure 4.3b.

Now each line segment consist of continuous overlapping circles that lies on
a horizontal line. The end circles from each line is extracted, which is used to
calculate the graph. Algorithm 11 extract the end circles as illustrated in Figure
4.3c. When calculating the graph only the end circles illustrated in Figure 4.3c are
used. First is all distances calculated as euclidean distance using Pythagoras. The
distance between end circles on same line segment is set to zero.

To guarantee the algorithm to find a valid path, visiting washing circles in
correct order, it is necessary to adjust the graph. The circles has to be visited in a
bottom to top order. In Figure 4.4 all possible next stops on the path are illustrated
with arrows. It is illegal to go to a washing circle below, hence there is no arrow
pointing downwards. The distance in direction of the arrows is set to euclidean
distance. In the opposite direction the distance is set to In f , because it is an invalid
step.

To determine the optimum path the algorithm presented in Section 4.2.6 is
used. Solving TSP as an ILP with the MTZ formulation with Algorithm 7.

Algorithm 8 optimization reduce circles algorithm.
1: function REDUCE_CIRCLES(washing_circles)
2: l ines← f ind_l ines(washing_circles)
3: spl i t ted_l ines← spl i t_l ines(l ines)
4: graph← calc_graph(washing_circles)
5: path← optimal_Eucl ideanTSP(graph)
6: return path
7: end function

Chapter 4: System Implementation 21

(a) Find horizontal lines of washing circles.

(b) Split lines on blank areas, e.g. no-go-areas

(c) Extract end of lines, the distance between end of lines is set to zero
in the graph.

Figure 4.3: Step of prepossession of washing circles before calculation of graph.

Chapter 4: System Implementation 22

Algorithm 9 Find horizontal lines of washing circles.
1: function FIND_LINES(washing_circles)
2: l ines← []
3: temp_l ine← []
4: number_o f _wc← len(washing_circles)
5: earl iery ← []
6: for i← 0 to number_o f _wc do
7: Sum← Sum+ Ak

8: if washing_circles[i][1]inearl ier_y then
9: True

10: else
11: earl ier_y.append((washing_circles[i])
12: for i← 0 to number_o f _wc do
13: if earlier_y[-1] == washing_circles[j][1] then
14: temp_l ine.append(j)
15: end if
16: l ines.append(temp_l ine)
17: temp_l ine← []
18: end for
19: end if
20: end for
21: return l ines
22: end function

Algorithm 10 Spit lines at no-go areas.
1: function SPLIT_LINES(washing_circles, lines)
2: spl i t ted_l ines← []
3: temp_l ine← []
4: for jinl ines do
5: for kinrange(leng th(j)) do
6: cur rent_wc← wc[k]
7: nex t_wc← wc[k+ 1]
8: d ← distancebetweencurrentandnex twc
9: if d > radius ∗ 1.8spl i t l ine then

10: spl i t ted_l ines.append(temp_l ine)
11: temp_l ine← []
12: temp_l ine.append(k+ 1)
13: else
14: temp_l ine.append(k+ 1)
15: end if
16: end for
17: end for
18: spl i t ted_l ines.append(temp_l ine)
19: return spl i t ted_l ines
20: end function

Chapter 4: System Implementation 23

Algorithm 11 Extract end circles from lines.
1: function EXTRACT_END_OF_LINES(splitted_lines, wc)
2: end_circles← []
3: for j in spl i t ted_l ines do
4: if length(j) == 1 then
5: end_circles.append([j[0]])
6: else
7: end_circles.append([j[0], j[−1]])
8: end if
9: end for

10: return end_circles
11: end function

Algorithm 12 Calculation of graph .
1: function CALC_GRAPH(washing_circles, end_cirles)
2: spl i t ted_l ines← []
3: temp_l ine← []
4: number_o f _circles← leng th(end_cir les)
5: for iinnumber_o f _circles do
6: for jinnumber_o f _circles do
7: if i == j then
8: graph[i, j]← In f
9: else

10: graph[i, j]← distance(number_o f _circles[i], number_o f _circles[j])
11: end if
12: end for
13: end for
14: graph← set_distance_between_circles_on_same_l ine_to_zero(graph)
15: graph← set_distance_to_l ines_below_to_In f (graph)
16: return graph
17: end function

Chapter 4: System Implementation 24

0.8

Figure 4.4: Arrows illustration euclidean distance between washing circles, to
avoid visiting in wrong direction, the distance in opposite of arrow direction is
set to INF.

Chapter 5

Result

The five algorithms presented in Chapter 4 is tested on two different test cases. The
first is a convex washing surface. The second test is concave polygon containing a
no-go area. To determine position of washing circles is the algorithm presented in
Berge[3] used, the best performing one is chosen. This algorithm fill the washing
area with circles in a hexagon pattern and remove circle outside. To remove circles
from no-go area the algorithm presented in Section 4.1.1 is used.

5.1 Test case 1

Figure 5.1: Pre-processing algorithm on test case 1, one of the best performing
algorithms on this test.

25

Chapter 5: Result 26

Figure 5.2: Modified NN algorithm in test case 1, generates the shortest path of
all algorithms tested.

Figure 5.3: GA algorithm on test case 1 is not finding a valid solution.

In table 5.1 are the result from the first test compared. The best performing
algorithms is the modified NN and pre-processed optimization. The standard TSP
optimization perform well on distance, but has longer computation time. This
long computation time is due to the high number of variables in the optimization

Chapter 5: Result 27

Figure 5.4: NN with 2-opt algorithm on test case 1, the path is visiting washing
circles from above, hence it is an invalid path.

Figure 5.5: A path generated solving TSP as ILP on test 1. The calculation takes
53 seconds, way longer than the other algorithms tested.

problem. In this case the algorithm has 132 points, while the pre-processed only
has 31 points. Both are solved as ILP with the same algorithm.

The GA in Fig 5.3 are not finding a valid solution. It seems that the algorithm

Chapter 5: Result 28

Algorithms Distance tcomp

Modified NN 236 0.15s
GA Not valid -
Opt 239 53

NN with 2-opt Not valid 239
Prepossess opt 240 0.215s

Table 5.1: Table presenting result from the first test

has problem finding a better solution because the difference in distance between
washing circles is so small. Which gives a small number of improvement between
generation.

The standard NN with 2-opt does not find a valid path. The 2-opt has low
improvement of the path, because only two edges are tried swapped at time. To get
path similar to the best performing algorithms multiple edges has to be swapped
at same iteration.

Chapter 5: Result 29

5.2 Test case 2

Figure 5.6: Pre-processing algorithm on test case 2, is the second best performing
algorithm on both computational time and length of path.

Figure 5.7: The modified NN is the best performing algorithm on test case 2. The
path looks natural by human eye.

Chapter 5: Result 30

Figure 5.8: NN with 2-opt on test 2, is not generating a valid path. Because the
path is going downwards on the left side.

Algorithms Distance tcomp

Modified NN 205 0.12s
GA Not valid
Opt Not valid

NN with 2-opt Not valid
Preprocess opt 215 0.23s

Table 5.2: Table presenting result from the secound test

In table 5.2 are the result presented for test 2. Only two of the algorithms are
giving a valid result. The best performing algorithms in test 2 are pre-processed
opt and modified NN. Which also had the best performance in the first test.

According to Table 5.2 the computation time is very low for both. However
the distance for the modified NN algorithm is slightly shorter. In Figure 5.6 and
Figure 5.7 are the path for these two algorithms. The reason why modified NN
find a shorter path, is because pre-processed opt has to follow a whole line of
circles when first entered. The path from pre-processed opt is crossing the no-go
area, because it can not takes part of circles over the no-go area like the modified
NN. It has to visit every on same line segment when first entered, and every below
has to be visited first as well. This lead to a slightly longer path in this case.

The GA algorithm suffer from the same problems that in the first test case.
The standard opt solved as ILP is not finding a valid path, it use very long time to
compute.

Chapter 6

Discussion

This section discuss the result from Section 5
The GA is the worst performing algorithm, it is never finding a valid solution. It

has very long computational time, since it is evolving through a lot of generations
with multiple individuals. There is most likely many stops on the path with similar
distance between, which gives low difference between individuals. When some of
the genes are swapped between generations, there are too many possible path that
can be good. Finding the optimal solution with a sort of random search are not
the best for this problem. On the other hand it can maybe be possible to modify
the algorithm to value different parameters when calculating fitness. Not only the
length of the path, but also how well it scores on visiting washing circles in correct
order.

The NN with 2-opt and opt algorithm are only standard solution for solving
TSP. They are part of the thesis to show how standard implementation perform
compared to more specialized algorithms. The standard algorithms has not extra
constraint, so they are not finding a valid solution at every test. The standard
opt algorithm suffer especially from high number of variables, which causes long
computational time compared to the other algorithms.

The modified NN is an improved version of the standard NN, to work better
with the problem in this thesis. When generating the path, from bottom to top,
the next step is always valid. According to the requirements specified in section
1.4. This gives a valid path, and in the test cases in this thesis it has performed
best of all algorithms.

The pre-processes opt algorithm are an improvement of the opt algorithm.
Where the graph is simplified and only contains end of lines of washing circles.
Instead of every washing circle. Invalid path segments are set to infinity in the
graph. This give a significant lower number of variables in the when solving TSP
as an optimization problem. Which leads to low computation time. This algorithm
is performing slightly worse than modified NN, but way better than the rest of
algorithms tested in this thesis.

31

Chapter 7

Conclusion

This thesis has implemented five different algorithms for finding a valid path
between washing circles, for a telescopic boom lift robot. These algorithms solve
travel salesman problem in 2D. There are some extra constraint on which order
the washing circles are visited. The circles has to be visited from top to bottom.

The path planning algorithms are implemented in 2D. This algorithms can be
modified to work in 3D, the modified NN are easiest to do this with.

The GA, standard NN and opt are performing worse, and are not finding a
valid solution to every test. The GA is performing worst and never finding a valid
path.

Further work can be a direction with more complex surfaces in 3D. This thesis
has only focused on finding path in 2D, however the algorithms can most likely be
modified to work in 3D. The modified NN and pre-processed optimized are most
likely best suited for further work.

Thus it concluded that the modified NN algorithm and pre-pocessed optimiza-
tion are performing best. They has both the shortest computation time and finding
the shortest path among all algorithm tested in this thesis. The path provided from
these algorithm also looks like a natural choice for human eye.

32

Bibliography

[1] Nlink, 6.12.2021. [Online]. Available: https://www.nlinkrobotics.com/.

[2] Hilti jaibot, 9.12.2021. [Online]. Available: https://www.hilti.com/
content/hilti/W1/US/en/engineering/industry-and-trade-solutions/
construction-automation/jaibot.html.

[3] R. Berge, ‘Path planning for a telescopic boom lift robot,’ Specialization Pro-
ject Report, Norwegian University of Science and Technology, Department
of Engineering Cybernetics, 2021.

[4] Universal robots, 6.10.2021. [Online]. Available: https://www.universal-
robots.com/.

[5] Hilti plt 300 layout tool, 4.12.2021. [Online]. Available: https://www.
hilti.com/c/CLS_MEA_TOOL_INSERT_7127/CLS_CONSTRUCTION_TOTAL_
STATIONS_7127/r4728599.

[6] Hilti prism poa 25, 4.12.2021. [Online]. Available: https://www.hilti.
com/c/CLS_MEA_TOOL_INSERT_7127/CLS_ACC_MEASURING_TOOL_AND_
SCANNER_7127/CLS_RECEIVER_TGT_PLATE_REFLECTOR_7127/2115937.

[7] J. Nocedal and S. J. Wright, Numerical Optimization, Second Edition, 2nd ed.
Springer, 2006.

[8] L. A. Wolsey, Integer Programming. John Wiley Sons, 1998.

[9] R. J. W. Norman Biggs E. Keith Lloyd, Combinatorial Optimization. Claren-
don Press, 1976.

[10] J.-Y. Potvin, ‘Genetic algorithms for the traveling salesman problem,’ Annals
of Operations Research, no. 63, 1996. [Online]. Available: https://www.
inf.tu- dresden.de/content/institutes/ki/cl/study/summer14/
pssai/slides/GA_for_TSP.pdf.

[11] B. Korte and J. Vygen, Combinatorial Optimization. Springer Berlin Heidel-
berg, 2018. [Online]. Available: https://doi.org/10.1007/978-3-662-
56039-6.

[12] C. E. Miller, A. W. Tucker and R. A. Zemlin, ‘Integer programming formu-
lation of traveling salesman problems,’ vol. 7, no. 4, 1960.

33

https://www.nlinkrobotics.com/
https://www.hilti.com/content/hilti/W1/US/en/engineering/industry-and-trade-solutions/construction-automation/jaibot.html
https://www.hilti.com/content/hilti/W1/US/en/engineering/industry-and-trade-solutions/construction-automation/jaibot.html
https://www.hilti.com/content/hilti/W1/US/en/engineering/industry-and-trade-solutions/construction-automation/jaibot.html
https://www.universal-robots.com/
https://www.universal-robots.com/
https://www.hilti.com/c/CLS_MEA_TOOL_INSERT_7127/CLS_CONSTRUCTION_TOTAL_STATIONS_7127/r4728599
https://www.hilti.com/c/CLS_MEA_TOOL_INSERT_7127/CLS_CONSTRUCTION_TOTAL_STATIONS_7127/r4728599
https://www.hilti.com/c/CLS_MEA_TOOL_INSERT_7127/CLS_CONSTRUCTION_TOTAL_STATIONS_7127/r4728599
https://www.hilti.com/c/CLS_MEA_TOOL_INSERT_7127/CLS_ACC_MEASURING_TOOL_AND_SCANNER_7127/CLS_RECEIVER_TGT_PLATE_REFLECTOR_7127/2115937
https://www.hilti.com/c/CLS_MEA_TOOL_INSERT_7127/CLS_ACC_MEASURING_TOOL_AND_SCANNER_7127/CLS_RECEIVER_TGT_PLATE_REFLECTOR_7127/2115937
https://www.hilti.com/c/CLS_MEA_TOOL_INSERT_7127/CLS_ACC_MEASURING_TOOL_AND_SCANNER_7127/CLS_RECEIVER_TGT_PLATE_REFLECTOR_7127/2115937
https://www.inf.tu-dresden.de/content/institutes/ki/cl/study/summer14/pssai/slides/GA_for_TSP.pdf
https://www.inf.tu-dresden.de/content/institutes/ki/cl/study/summer14/pssai/slides/GA_for_TSP.pdf
https://www.inf.tu-dresden.de/content/institutes/ki/cl/study/summer14/pssai/slides/GA_for_TSP.pdf
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-3-662-56039-6

Bibliography 34

[13] D. S. Johnson and L. A. McGeoch, “The traveling salesman problem: A case
study in local optimization,” in Local Search in Combinatorial Optimization.
E. H. L. Aarts, J. K. Lenstra, Eds. John Wiley and Sons, 1997.

[14] C. Blum and A. Roli, ‘Metaheuristics in combinatorial optimization: Over-
view and conceptual comparison,’ ACM Comput. Surv., vol. 35, no. 3, 2003.
[Online]. Available: https://doi.org/10.1145/937503.937505.

[15] G. A. Croes, ‘A method for solving traveling-salesman problems,’ Operations
Research, vol. 6, no. 6, 1958. [Online]. Available: http://www.jstor.org/
stable/167074.

[16] S. G. et al, Manipulation and analysis of geometric objects in the cartesian
plane, 6.10.2021. [Online]. Available: https://github.com/Toblerity/
Shapely.

[17] Numpy, 6.10.2021. [Online]. Available: https://numpy.org/.

[18] Matplotlib is a comprehensive library for creating static, animated, and in-
teractive visualizations in python. 6.10.2021. [Online]. Available: https:
//matplotlib.org/.

[19] Scipy is a python-based ecosystem of open-source software for mathematics,
science, and engineering, 6.10.2021. [Online]. Available: https://www.
scipy.org/.

[20] Pyomo, 28.04.2022. [Online]. Available: http://www.pyomo.org/about.

[21] Gurobi, 28.04.2022. [Online]. Available: https://www.gurobi.com/.

[22] Gurobi python, 28.04.2022. [Online]. Available: https://www.gurobi.
com/documentation/9.5/quickstart_mac/cs_grbpy_the_gurobi_
python.html.

https://doi.org/10.1145/937503.937505
http://www.jstor.org/stable/167074
http://www.jstor.org/stable/167074
https://github.com/Toblerity/Shapely
https://github.com/Toblerity/Shapely
https://numpy.org/
https://matplotlib.org/
https://matplotlib.org/
https://www.scipy.org/
https://www.scipy.org/
http://www.pyomo.org/about
https://www.gurobi.com/
https://www.gurobi.com/documentation/9.5/quickstart_mac/cs_grbpy_the_gurobi_python.html
https://www.gurobi.com/documentation/9.5/quickstart_mac/cs_grbpy_the_gurobi_python.html
https://www.gurobi.com/documentation/9.5/quickstart_mac/cs_grbpy_the_gurobi_python.html

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Reidar Berge

Path planning for a telescopic
boom lift robot

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland
Co-supervisor: Jørn Sandvik Nilsson
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Introduction
	Motivation
	Overview
	The robot
	Position system
	Working principle

	Problem Specification
	Workspace

	Motion planning
	Generating washing circles
	Generating path visiting washing circles
	Evaluation metric of path

	Background Theory
	General optimization formulation
	Integer linear programming

	Traveling Salesman Problem
	Mathematical Formulation of the Symmetric TSP

	Traveling Salesman Problem algorithms
	Nearest neighbour
	Genetic algorithm
	2-opt

	Software
	Shapely
	NumPy
	Matplotlib
	SciPy
	Pyomo
	Gurobi

	System Implementation
	Generating washing circles
	Remove circles from no-go areas

	Ordering washing circles
	Representation of distance between washing circles as graph
	Nearest neighbour implementation
	2-opt implementation
	Modified nearest neighbour
	Genetic algorithm
	Solve MTZ as ILP
	Pre-processing of graph

	Result
	Test case 1
	Test case 2

	Discussion
	Conclusion
	Bibliography

