
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

Erik Thallaug Fagerli

Model Predictive Control for Path
Following of an Autonomous Student
Car

Model Predictive Control for Longitudinal and
Lateral Path Following of an Energy Efficient
Autonomous Student Car

Master’s thesis in Industrial Cybernetics
Supervisor: Thor Inge Fossen
June 2022

M
as

te
r’s

 th
es

is





Erik Thallaug Fagerli

Model Predictive Control for Path
Following of an Autonomous Student
Car

Model Predictive Control for Longitudinal and Lateral
Path Following of an Energy Efficient Autonomous
Student Car

Master’s thesis in Industrial Cybernetics
Supervisor: Thor Inge Fossen
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Abstract

DNV FuelFighter has been a part of the competition Shell Eco-Marathon since
2008. The competition revolves around creating the most energy-efficient car.
In 2018 Shell Eco-Marathon launched their first autonomous competition where
each team needed to create an autonomous car. DNV FuelFighter decided in 2020
that they wanted to compete in the autonomous competition. For an autonomous
car to work, several subsystems need to work together. One of the subsystems is
the control system. Here the vehicle needs to decide what angle and velocity it
should have to reach its destination.

This thesis focuses on the car’s control system, where a longitudinal and lat-
eral controller is developed and implemented. DNV Fuelfighters autonomous car
must manage to follow a given path while being energy efficient and following
a reference velocity. A Model Predictive Controller (MPC) has been developed to
achieve this. The MPC will give the optimal steering angle and velocity such that
the different criteria are fulfilled. Two MPCs have been developed to compare en-
ergy efficiency, one that includes the energy criteria (Energy MPC) and one that
does not (Non-Energy MPC).

The model used to describe the vehicle is a combination of both kinematic
and dynamic bicycle models, where the dynamic model is used for longitudinal
control and the kinematic model is used for lateral control.

Two scenarios were tested to compare the two MPCs, where performance, en-
ergy efficiency, and computational load were the criteria. The results showed that
both MPCs managed to follow the given path, but the Energy MPC saved around
12% energy. However, this came with the cost of reduced velocity. The Energy
MPC was then implemented with ROS and Gazebo and simulated under a more
realistic environment. The result from this simulation showed good performance
from the Energy MPC.

i





Sammendrag

Siden 2008 har DNV FuelFighter vært en del av konkurransen Shell Eco-Marathon.
Konkurransen dreier seg om å lage den mest energieffektive bilen. I 2018 lanserte
Shell Eco-Marathon sin første autonome konkurranse. 2020 var det første året
DNV FuelFighter bestemte seg for å konkurrere i den autonome konkurransen. For
å lage en autonom bil, må flere delsystemer fungere sammen. Et av delsystemene
er kontrollsystemet. Her må kjøretøyet bestemme hvilken vinkel og hastighet den
skal ha for å nå målet.

Denne oppgaven fokuserer på kontrollsystemet til bilen, hvor en langsgående
og lateral kontrollsystem er utviklet slik at den får DNV Fuelfighters autonome bil
til å følge en gitt vei samtidig som at den er energieffektiv og følger en referanse-
hastighet. For å oppnå dette er det utviklet en Model Predictive Controller (MPC).
MPCen vil gi optimal styrevinkel og hastighet slik at de ulike kriteriene er oppfylt.
For å sammenligne energieffektivitet er det utviklet to MPCer, en som inkluderer
energikriteriet (Energy MPC) og en som ikke gjør det (Non-Energy MPC).

Modellen som brukes for å beskrive kjøretøyet er en kombinasjon av både
kinematisk og dynamisk sykkelmodell hvor den dynamiske modellen brukes for
langsgående kontroll og den kinematiske modellen brukes for lateral kontroll.

For å sammenligne de to MPCene ble to scenarier testet hvor ytelse, energief-
fektivitet og beregningstid ble evaluert. Resultatene viste at begge MPC-ene klarte
å følge den gitte banen, men Energy MPC-en sparte rundt 12% energi. Dette kom
med kostnadene at den kjørte med redusert hastighet. Energy MPCen ble deretter
implementert sammen med ROS og Gazebo og simulert under et mer realistisk
miljø. Resultatet fra denne simuleringen viste at MPCen hadde fortsatt god ytelse.

iii





Preface

This thesis represents my work throughout the year 2021/2022 as part of DNV
FuelFighter The thesis is based of the previous years specialization project [1]
where an Adaptive Model Predictive Control (AMPC) was tested with a dynamic
bicycle model. The model used in this thesis is a combination of both kinematic
and dynamic bicycle model, and the AMPC has been converted to a non-linear
MPC. I want to give a huge thanks to DNV FuelFighter, especially the autonomous
group, for allowing me to be a part of the team and contribute to DNV FuelFighter’s
first autonomous car. Unfortunately, due to unforeseen circumstances, I will not
be able to participate in the autonomous competition held in France, but I am con-
fident that the team will represent NTNU well. I hope my work will be a stepping
stone for future members and be used to develop the system further.

I would also like to thank Thor Inge Fossen for being my supervisor. Thor
I. Fossen had helped shape my thesis and always been available when I needed
guidance. Lastly, I would like to thank my friends and family for trusting in me
and giving me the motivation I needed to push through.

v





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Code Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Shell Eco Marathon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 DNV FuelFighter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Vehicle Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Longitudinal Vehicle Dynamics . . . . . . . . . . . . . . . . . . 7
2.1.2 Kinematic Bicycle Model . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Kinematic Model of Lateral Motion . . . . . . . . . . . . . . . . 10

2.2 Model summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Control System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 The Advantages of MPC . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 MPC solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 MPC - Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Minimization Variables . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 ACADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Implementation with ROS and Gazebo . . . . . . . . . . . . . . . . . . 24

4.2.1 Path Representation . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



viii :

4.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.1 Straight-Line Path Following . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Sinus Wave Path following . . . . . . . . . . . . . . . . . . . . . 28

5.2 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Computational Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Performance in Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 Straight-line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.2 Sinus Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Energy Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Computational Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4 Performance in Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2.1 Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2.2 Testing on FuelFighter 5 . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A FuelFighter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.3 Mid Level Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.4 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B Tuning Weighting Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



Figures

1.1 Schematic: Autonomous driving (source: [13]) . . . . . . . . . . . . . 5
1.2 Schematic: Parking maneuverability (source: [13]) . . . . . . . . . . 5
1.3 Schematic: Obstacle avoidance (source: [13]) . . . . . . . . . . . . . 5

2.1 Longitudinal forces acting on the car . . . . . . . . . . . . . . . . . . . 8
2.2 Flowchart of the hardware that controls longitudinal dynamics . . . 9
2.3 Bicycle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 MPC strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Path and state response after tuning Q, R, and E. The MPC is fol-

lowing a straight-line path. . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Computation time of different solvers, averaged over 10 runs (source:
[24]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Flowchart of which nodes publish and subscribe to each other in ROS 25
4.3 Trajectory of vehicle simulated in gazebo. The green line represents

the path track and the blue line represents the third-order polyno-
mial. Here it is shown that the polynomial does not fit the track
when curves are introduced. . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Path following of straight-line using Energy MPC . . . . . . . . . . . . 30
5.2 States of car when driving a straight-line using Energy MPC . . . . . 30
5.3 Inputs of car when driving straight-line and using Energy MPC . . . 31
5.4 Path following of straight-line using Non-Energy MPC . . . . . . . . 31
5.5 States of car when driving a straight-line using Non-Energy MPC . . 32
5.6 Inputs of car when driving straight-line and using Non-Energy MPC 32
5.7 Path following of sinus wave using Energy MPC . . . . . . . . . . . . 33
5.8 States of the car when following a sinus wave using Energy MPC . . 33
5.9 Inputs of the car when following a sinus wave using Energy MPC . 34
5.10 Trajectory following of sinus wave using non-energy MPC . . . . . . 34
5.11 States of the car when following a sinus wave using Non-Energy MPC 35
5.12 Inputs of the car when following a sinus wave using Non-Energy

MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.13 Energy usage between Energy MPC and Non-Energy MPC when

following straight-line trajectory . . . . . . . . . . . . . . . . . . . . . . 36

ix



x :

5.14 Energy usage between Energy MPC and Non-Energy MPC when
following a sinus wave trajectory . . . . . . . . . . . . . . . . . . . . . 36

5.15 Computational load of both Energy MPC and Non-Energy MPC when
following straight-line trajectory . . . . . . . . . . . . . . . . . . . . . . 36

5.16 Computational load of Energy MPC and Non-Energy MPC when
following a sinus wave trajectory . . . . . . . . . . . . . . . . . . . . . 37

5.17 Path the car wants to follow in when simulated in Gazebo . . . . . . 37

A.1 Flowchart of the autonomous system . . . . . . . . . . . . . . . . . . . 52

B.1 Path following of Energy MPC when tuning Q = diag(100,100, 100),
R= diag(1, 1), E = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B.2 Path of the car after changing E = 0.001 . . . . . . . . . . . . . . . . . 54
B.3 Path of the car after final tuning of weights for Non-Energy MPC.

Q = diag(5, 35,10), R= diag(1, 1) . . . . . . . . . . . . . . . . . . . . . 55



Tables

4.1 Vehicle parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Energy consumption of the two MPC’s when used at both scenarios 28
5.2 Average computational time the different MPC’s use at both scenarios 29

xi





Code Listings

5.1 Calculating computational load . . . . . . . . . . . . . . . . . . . . . . 29

C.1 energyBicycleModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
C.2 costFnc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
C.3 ocpSolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
C.4 main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii





Chapter 1

Introduction

The usage of automation has become a central part of our environment. With the
help of autonomous robots, jobs revolving around mundane, time-consuming, and
dangerous tasks have been replaced with robots. Automation has led to increased
interest in robotics, and one of the fields that have seen tremendous interest is
automation in the vehicle industry [2]. Autonomous Ground Vehicles (AGV) are
one of the fields rising in popularity and will also be the main focus of this paper.

As autonomous cars are becoming a more significant part of society’s infra-
structure, competitions around the globe are being held to see who can produce
the best autonomous car. One of these competitions is the "Shell Eco-marathon".
Shell Eco-marathon is a global academic program focused on energy optimization
of cars [3] and, as of 2018, created an autonomous competition. The student or-
ganization DNV FuelFighter [4] intends to compete in this competition this year.
DNV FuelFighter consists of several subgroups, such as mechanical, electrical,
software, and design, and as of 2020, created the subgroup autonomous. The
autonomous group focuses on the autonomous part of the vehicle, with the com-
bination of ROS (Robot Operating System, [5]), sensor, perception, path planning,
and control.

For a vehicle to drive autonomously, it must know what steering angle and
velocity it must output for the vehicle to reach the given goal. One way to achieve
this is by using Model Predictive Control (MPC). MPC is an advanced control
technique used for multi-variable control problems [6]. The use of MPC to control
autonomous cars is something that has been researched quite thoroughly and will
be discussed in Section 1.5 and Chapter 2.

1.1 Shell Eco Marathon

As mentioned earlier, Shell Eco-Marathon is a global academic program that fo-
cuses on energy optimization. The competitions are arranged all over the world.
The autonomous competition will be held from the 3rd to the 6th of July in Nog-
aro, France. The competition consists of four different challenges, where each
team can score up to 25 points for each challenge. The challenges are:

1



2 :

• Driving Autonomously
• Parking Maneuverability
• Obstacle Avoidance
• Business Presentation

Schematics of the different challenges are shown in Figure 1.1 - 1.3. It is import-
ant to note that the schematics do not represent the final challenge and track
layouts but indicate what to expect at each challenge. The first challenge consists
of driving around a track. The goal is to drive around the track without hitting the
borders, there will be no extra points for energy efficiency, but the car’s perform-
ance will be evaluated. The second challenge is parking maneuverability. The track
will contain multiple marked squares where only one of the squares is possible to
park in. The goal is to find that square and park inside of it. The third challenge is
obstacle avoidance. Here the car must drive between different obstacles without
touching them. The last challenge is a business presentation. The judges will be
looking at how well the autonomous car performed at the other competitions, the
quality of the autonomous system, finances, and the consideration of energy ef-
ficiency. The team with the most points after the four competitions will receive a
prize of 2500 euros.

Before the car is allowed to compete, it must first pass a test where the judges
inspect the car and make sure that it follows the guidelines given.

DNV Fuelfighter also participates in a manned car competition. Here the only
goal is to be as energy-efficient as possible around a particular track. This year the
manned car competition will be held in Assen, Netherlands. This report will not
further detail this competition since the report only focuses on the autonomous
car.

1.2 DNV FuelFighter

DNV FuelFighter is a student organization that has been part of the Shell Eco
Marathon competition since 2008. The team has consistently preformed well in
these competitions and plans to also do it this year. The autonomous group was
first created in 2020, but due to Covid-19, they did not have the opportunity to
compete. This is the first year the autonomous group will be able to test their
autonomous car. Since the group is fairly new their main goal is to make the car
drive autonomously without a big consideration of energy efficiency. To achieve
this several parts need to work together. This is all explained in Appendix A. The
goal of the autonomous group is to complete each of the different challenges in
a safe and efficient manor. To achieve this the controllers demand accuracy and
robustness. For the car to achieve this it is crucial to research both longitudinal
and lateral control that allows the car to reach its goal. With the help of MPC,
DNV FuelFighter believe that this can be accomplished. The MPC will embedded
into the car FuelFighter 5.



Chapter 1: Introduction 3

1.3 Key Contributions

This thesis is a contribution to DNV Fuelfighter’s autonomous vehicle. The follow-
ing contributions have been made:

• Literature study on vehicle models and MPCs
• Development and implementation of the kinematic bicycle model in Python
• Development and implementation of two MPC controllers, one that includes

energy minimization and one that does not.
• Implementation and testing in Python and Gazebo
• Discussion of the performance of the two MPCs

1.4 Problem formulation

This thesis aims to create an MPC for longitudinal and lateral path-following with
multiple objectives. The objective of the MPC is to track a given path given, follow
a reference velocity and minimize energy consumption. The MPC will the named
Energy MPC. To validate energy minimization, an MPC will be implemented that
focuses only on following a given path and reference velocity but does not focus
on energy minimization. This MPC will be called Non-Energy MPC.

Some assumptions have to be made such that the scope of the thesis narrows
down. The assumptions made through this thesis are

• No prior knowledge of the whole track the car will drive
• Limited CPU usage
• Limited turning radius and speed
• Limited sensors
• Low velocity

1.5 Related Work

The use of MPC to control both lateral and longitudinal movement of vehicles has
already been researched. A study done by [7] compared the use of a kinematic and
dynamic model in combination with MPC to see the effectiveness of each model
when under the influence of windy roads. The paper concludes that kinematic
models are better suited for lower speeds, but trajectory tracking errors increase at
higher speeds. For higher speeds, the dynamic model works better. A study done by
[8] compared the performance of a kinematic model vs. a nine degrees-of-freedom
model when it came to trajectory planning. It concluded that the kinematic model
was valid under a certain lateral acceleration and at high acceleration; a more
valid model should be implemented.

A paper done by [9] showed how energy consumption could be reduced by in-
tegrating it into the cost function of an MPC. They compared their MPC with a PID
and showed that it could save up to 1.27% energy when following natural meas-
ured road conditions. [10] showed even better results in energy savings when



4 :

they compared two different MPCs, a sports mode MPC that focused on reaching
the goal as fast as possible and an energy savings MPC that focused on minim-
izing energy consumption. They concluded that the energy-saving MPC used, in
the best case, 48% less energy than the sport mode MPC. A study done by [11]
showed that economic MPC could be used to minimize energy consumption. The
paper shows that economic MPC can be used to solve real-time iterations with
minimal time. [12] introduced the idea of how multiple vehicles can coordinate
together to minimize energy consumption in an intersection.

1.6 Structure of the report

Vehicle Modelling

This chapter gives insight into how the vehicle model is created. This model is used
to describe how the autonomous vehicle behaves. The model is used to describe
lateral and longitudinal behavior.

Control System Design

Theory about MPC is introduced, and how energy efficiency is incorporated into
the MPC. The problem formulation is presented with the necessary constraints
and minimization variables.

Implementation

An overview of the software and framework used to solve and simulate the MPC
is presented. Further implementation in a more realistic environment and the al-
gorithm used to describe path representation is introduced. Lastly, the parameters
used to describe the vehicle are shown.

Results

Here the results of the MPC will be discussed. Three different scenarios will be
tested.

• straight-line driving,
• sinus wave path, and
• path in Gazebo.

Straight-line and sinus waves will be tested twice, once with Energy MPC and once
with Non-Energy MPC. These will indicate the performance, energy consumption,
and computational load of the two MPCs. The Energy MPC will be the only one
simulated in the Gazebo.



Chapter 1: Introduction 5

Discussion

Performance, energy consumption, and computational load of the two MPCs will
be discussed.

Conclusion and Future Work

A conclusion of the MPCs performance will be presented, and lastly, a discussion
of what can be further implemented to enhance the performance of the MPC.

Figure 1.1: Schematic: Autonomous driving (source: [13])

Figure 1.2: Schematic: Parking maneuverability (source: [13])

Figure 1.3: Schematic: Obstacle avoidance (source: [13])





Chapter 2

Vehicle Modelling

How a vehicle is modeled can significantly impact how the system behaves. In
this chapter, the theory behind how the vehicle model is structured is presented
in Section 2.1. In this section, the different equations used to describe the vehicle
are presented. A summary of the vehicle model is presented in Section 2.2.

2.1 Vehicle Model

There are many ways of describing how a vehicle behaves. The two most common
ways are the kinematic model and dynamic model. The kinematic model describes
the motion of the vehicle based purely on the geometric relationships governing
the system. In contrast, the dynamic model describes the motion of the vehicle
with respect to forces and motion [14]. When describing the motion of a vehicle,
it is common to separate longitudinal motion and lateral motion.

2.1.1 Longitudinal Vehicle Dynamics

Looking at the external forces that affect the vehicle in Figure 2.1, the forces can
be categorized into; aerodynamic drag forces, gravitational forces, longitudinal
tire forces, and rolling resistance forces, as shown in Figure 2.1. Describing these
forces is Newton’s second law. The force balance law yields

mẍ = Fx f + Fx r − Faero − Rx f − Rx r −mg sin (θ ) (2.1)

where

• Fx f is the longitudinal forces of the front tires
• Fx r is the longitudinal forces of the rear tires
• Faero is the aerodynamic drag forces
• Rx f is the rolling resistance force of the front tires
• Rx r is the rolling resistance force of the rear tires
• m is the mass of the vehicle
• g is the acceleration due to gravity

7



8 :

Figure 2.1: Longitudinal forces acting on the car

• θ is the angle of inclination

The aerodynamic drag force can be further expressed as

Faero =
1
2
ρCdA f (v + vwind)

2 (2.2)

where

• ρ is the density of the air
• Cd is the aerodynamic drag coefficient
• A f is the frontal area of the vehicle
• v is the longitudinal velocity of the vehicle
• vwind is the longitudinal velocity of the wind (positive when headwind and

negative when tailwind)

Every parameter except Cd can easily be obtained. One way to obtain Cd is by
using a coast down test. In this test there no throttle or angle inputs and assuming
θ = 0 and vwind = 0. The force balance equation can thus be expressed as

−m
dVx

d t
=

1
2
ρA f Cd v2 + Rx (2.3)

This equation can be solved for Cd . A detailed explanation of how to calculate Cd
can be found in [14].

The longitudinal tire forces Fx f and Fx r are friction forces from the ground
acting on the tires. Experimental results have shown that the tire forces depend on
slip ratio, normal load on the tire, and the friction coefficient of the tire-road inter-
face. For simplicity’s sake, this paper will assume that these forces are minuscule,
and the longitudinal tire forces on the driving wheels only depend on the driv-
eline dynamics. The driveline components usually consist of an engine, a torque
converter, transmission, final drive, and wheels for a conventional car. However,
in our case, the motors are connected to the wheels, called in-wheel motors. A



Chapter 2: Vehicle Modelling 9

ThrottleMPC 0-255 valueTeensy AmpMotor Controller TorqueMotors

Figure 2.2: Flowchart of the hardware that controls longitudinal dynamics

flowchart of the total driveline components are shown in Figure 2.2. Here it is
shown that the throttle input is connected to a Teensy [15]. The Teensy converts
the throttle input into a 0-255 value. This value is then sent into a motor con-
troller, which then turns the 0-255 value into amps and is then sent to the motor.
The motor is connected to the wheels via gears. The motors used in FuelFighter
5 are two DC motors [16]. With this information, it is possible to describe the
tire forces of the vehicle with the throttle as input. Torque can be expressed with
either respect to force or respect to effect.

T = F · r (2.4)

T =
P
ω

(2.5)

where F is tire force, r is radius of the wheel, P is effect, and ω is the angular
velocity. P and ω can be further expressed as

P = V · I (2.6)

ω=
2π · Nout

60
, (2.7)

where V is voltage input, I is current input, Nout is rpm (rotations per minute).
It is important to note that Nout is the rotation of the wheel and not the motor.
To convert the rpm of the wheels to the rpm of the motor, the gear ratio between
them must be acquired. The equation for this is

Nout =
Nin

G
(2.8)

where Nin is the rpm of the motor and G is the gear ratio. Nin can then be converted
back to ω by using (2.7). ω can also be expressed as

ω=
v
r

(2.9)

where v is the velocity of the car. Lastly, the input current needs to be described
as a function of throttle input. After talking with the electrical subgroup, they
informed that the motor-controller current is proportional with the input. Thus
meaning that the input current can be described as

I = K · throt t le (2.10)



10 :

where K is a constant. By inserting (2.4), (2.6), (2.7), 2.9, (2.8), and (2.10) into
(2.5) the equation to describe tire force becomes

F =
V · K · throt t le · r

v · G
, v > 0 (2.11)

One thing that is important to note with (2.11) is that if the velocity is zero the
equation is not defined. To counteract this a constant, ε is placed in the denom-
inator. The final expression for tire force is

F =
V · K · throt t le · r

v · G ·m+ ε
ε > 0 (2.12)

By inserting (2.12) into (2.1) and considering the assumption that the rolling res-
istance, wind speed and angle of inclination is negligible, the longitudinal forces
is expressed as

mẍ =
V · K · throt t le · r

v · G ·m+ ε
−

1
2
ρCdA f v2. (2.13)

The assumptions that rolling resistance and angle of inclination are negligible can
be made based on the assumptions made in Section 1.4.

2.1.2 Kinematic Bicycle Model

As mentioned earlier, the kinematic model describes the motion of a vehicle based
purely on the geometric relationships governing the system. Figure 2.3. depicts
a vehicle model where the two front and rear wheels are combined to create a
bicycle model. The angle of the front wheel is represented by δ and it is assumed
that the angle of the rear wheel is always zero. The distance between the center of
gravity (CG) and the front and rear wheels are l f and lr . The velocity is v, and the
angle of the velocity is β . This angle is called the slip angle.ψ is the heading angle
of the vehicle. Using a bicycle model compared to a 4-wheeled model is that the
simplification makes it less computational heavy, but still a fairly accurate model
describing the motions. This is shown in [17].

2.1.3 Kinematic Model of Lateral Motion

Under the assumption that the velocity vector in the front and rear wheels point
in the direction of the wheels’ orientation, the kinematic model shown above is
valid. The front wheel makes an angle δ, while the rear wheel is assumed to have
an angle of zero. This assumption assumes that the "slip angle" β is equal to zero.
The slip angle of a tire is the angle between the orientation of the tire and the
orientation of the velocity vector. When the vehicle is traveling straight ahead,
the orientation of the wheel and the velocity vector are the same, thus meaning
that the slip angle is equal to zero. The assumption that the slip angle is small
can be used when the vehicle is traveling at low speeds (less than 5 m/s). This is
a reasonable assumption because the lateral force generated by the tires is small



Chapter 2: Vehicle Modelling 11

CG

Figure 2.3: Bicycle model

when driving at low speeds. This is further proven from (2.14) which shows that
the lateral forces are low when the velocity is low.

F =
mv2

r
(2.14)

By applying the sine rule to the front triangle, we get the expression

sin (δ− β)
l f

=
sin (π2 −δ)

R
. (2.15)

(2.15) can be extended to

sin (δ) cos (β)− sin (β) cos (δ)
l f

=
cos (δ)

R
. (2.16)

By multiplying (2.16) with
l f

cos (δ) we get

tan (δ) cos (δ)− sin (β) =
l f

R
. (2.17)

This procedure is also done with the rear wheels

sin (β)− tan (δr) cos (β) =
lr

R
. (2.18)

Adding (2.17) and (2.18) results in



12 :

(tan (δ)− tan (δr)) cos (β) =
lr + l f

R
. (2.19)

Under the assumptions that the radius of the path of the vehicle changes slowly,
the rate of change in orientation (ψ̇) is equal to the angular velocity

ψ̇=
v
R

(2.20)

By inserting (2.19) into (2.20), (2.20) can be rewritten as

ψ̇=
v cos (β)
l f + lr

(tan (δ)− tan (δr)) (2.21)

The overall equations for lateral motion become

Ẋ = v cos(ψ+ β) (2.22)

Ẏ = v sin (ψ+ β) (2.23)

ψ̇=
v cos (β)
l f + lr

(tan (δ)− tan (δr)) (2.24)

The model described above assumes that there is an input v,δ and δr . This is
not the case in this thesis, as it is assumed that the orientation of the rear wheel
is always assumed to be zero, and because of low speeds, the slip angle is also
assumed to be zero. With these assumptions, (2.22) - (2.24) become

Ẋ = v cos(ψ) (2.25)

Ẏ = v sin(ψ) (2.26)

ψ̇=
v

l f + lr
tan(δ) (2.27)

2.2 Model summary

The model describing the car was first introduced in section 2.1. Here the non-
linear model was introduced, and the formulation of the different states was
shown. To summarize, the non-linear model is expressed as







Ẋ
Ẏ
ψ̇

Ẍ






=









v cos (ψ)
v sin (ψ)
v

l f +lr
tan(δ)

V ·K ·throt t le·r
v·G·m+ε −

1
2ρCdA f v2









. (2.28)

One problem with this formulation is there can not be set constraints on the
change in input, δ̇ and ˙throt t le. To handle this problem, the inputs can be change



Chapter 2: Vehicle Modelling 13

to the δ̇ and ˙throt t le and two new states are introduced δ and throt t le. This
means that the model changes to

















Ẋ
Ẏ
ψ̇

Ẍ
δ̇
˙throt t le

















=

















v cos (ψ)
v sin (ψ)
v

l f +lr
tan(δ)

V ·K ·throt t le·r
v·G·m+ε −

1
2ρCdA f v2

δ̇
˙throt t le

















. (2.29)

With this there can now be set limitations on both δ̇ and ˙throt t le. This is ex-
plained further in Section 3.1.2.





Chapter 3

Control System Design

In this chapter an introduction to what Model Predictive Control is presented in
Section 3.1.2. The computation of the energy efficiency term is presented in Sec-
tion 3.8. The MPC problem formulation used in this thesis is described in Section
3.3, where the objective function, constraints and tuning parameters are persen-
ted.

3.1 Model Predictive Control

Model predictive control is a control technique that is used for multi-variable con-
trol problems [18]. The first usage of MPC can be traced back to the 1960s, but it
had its first breakthrough in the 1980s [6]. The concept of how the MPC works is
that the MPC predicts future output values based on a process model. A prediction
is made at each time step. Figure 3.1 shows an example of how a single input MPC
works. At sampling instant k, the MPC calculates a set of future inputs such that
future outputs ŷ reach the desired target.

3.1.1 The Advantages of MPC

MPC is a type of control that is of open nature. This means that it applies to many
different kinds of research fields such as process industry, robots, clinical anes-
thesia, and many more [19]. Some of the advantages of using MPC to control an
autonomous vehicle are that it can handle constraints, and it is easy to change con-
trol objectives. This makes it favorable where an increase in complexity of either
the objective function or prediction model is needed without changing the entire
system. This is useful in student competitions such as the Shell Eco-marathon,
where existing teams want to develop previous team’s work without changing
the entire system. The MPC is also practical when unpredictable events happen.
Since the MPC predicts future outputs at every time-step, if the vehicle’s position
were to change due to unknown circumstances suddenly, the MPC will change its
predicted output such that this is handled.

15



16 :

Figure 3.1: MPC strategy

3.1.2 General Formulation

There exist many different types of MPC algorithms, but what they all have com-
mon elements. These elements are:

• Prediction model
• Objective function
• Constraints

The MPC can be represented as an optimization problem formulated in

min J(x , u) (3.1a)

subject to ci(x) = 0, i ∈ E (3.1b)

ci(x)≥ 0, i ∈ I (3.1c)

where J(x , u) is the optimization problem and ci(x) are the constraints.

Prediction Model

The purpose of the prediction model is to capture the necessary mechanisms of
the process such that predictions of future outputs can be calculated. It is import-
ant to use a prediction model that captures the dynamics of the system and at the
same time is able to be computed in real-time. The two main ways to represent
prediction models are linear- and non-linear models. Linear models have the ad-
vantage of reducing computation load but may not capture the system’s dynamics
in non-linear territories. This thesis uses a non-linear prediction model since it is



Chapter 3: Control System Design 17

necessary to capture all dynamics, and it is later proven that the computational
load is still satisfactory. The state-space representation of the non-linear prediction
model is of the form

ẋk+1 = g(x(k), u(k)) (3.2)

y(k) = h(x(k), u(k)) (3.3)

where x denotes the states of the system, u the control, and y the output [20].
The subscripts in (3.2) and (3.3) indicate that the state-space model is a discrete
time-step model.

Objective Function

Objective functions for MPCs are often formulated as a quadratic cost function
where the constraints and objective function are linear. This leads to a Quad-
ratic Programming (QP) problem. However, in instances where the problem is a
Non-Linear Problem (NLP), Sequential Quadratic Programming (SQP) has been
developed to handle these types of problems [21]. The idea of SQP is to model the
NLP at a given approximate solution xk by a QP subproblem. The solution of the
subproblem is then used to find a better approximation of xk+1. This is iterated
such that a sequence of approximations is made so that x will eventually converge
to the solution x∗. The quadratic subproblems will have the form

(rk)dx +
1
2

d⊤x Bkdx (3.4)

where rk is the gradient of J and Bk is the Hessian of J . Details on how to solve
QP’s will not be explained in this thesis, however there exist many algorithms for
solving these problems.

Constraints

Constraints are often used when there are boundaries to what the physical system
can do. These constraints are implemented into the MPC such that they are taken
into account when finding the optimal input. It is often desirable to constrain the
input and states of the system such that they do not go under or over a specific
value.

x low ≤ x ≤ xhigh (3.5a)

ulow ≤ x ≤ uhigh (3.5b)

x is the states of the system and is bounded within a lower and upper value. The
same applies for the input u. To ensure no rapid movements in the input u, it is
common to also set a constraint in the change in input



18 :

u̇low ≤∆u≤ u̇high. (3.6)

This is the reason why the state-space system presented in Section 2.2 changed
its inputs from del ta and throt t le to δ̇ and ˙throt t le.

3.1.3 MPC solver

To solve the QP subproblem, there are many numerical solvers. The one used in
this thesis is High-Performance Interior-Point (HPIPM). HPIPM is an open-source
C-coded framework for QP problems [22]. From [22], it is shown that HPIPM is
a fast solver that can solve many different types of QP problems. A fast solver
is important when looking at real-time situations. If the solver uses too much
computational load, the optimal trajectory calculated at a certain time-step will
not align with the physical vehicle’s time-step. This will result in unstable behavior
when testing the MPC with real hardware.

3.2 Energy Efficiency

As mentioned in Section 1.4, one of the MPC’s goals is to focus on energy effi-
ciency. There are several ways to do this. One way is to model the powertrain and
optimize for efficiency. This requires an accurate description of the powertrain,
which may not be easy to acquire. Another method describes energy consump-
tion as an equation consisting of motor torque and angular velocity. This thesis
uses the latter method since this is the simplest method and will show acceptable
behavior. The motor torque is expressed as

Tm =
r
G
(ma+mgCr +

1
2
ρCdAv2), (3.7)

where

• Tm is the motor torque,
• r is the radius of the wheels,
• G is the total reduction ratio,
• m is the mass of the vehicle,
• g is the gravitational constant,
• Cr is the rolling resistance,
• ρ is the air density,
• Cd is the drag coefficient,
• A is the frontal area,
• v is the longitudinal velocity.

(3.7) considers only the longitudinal forces. The reason for not including lateral
forces is that these forces play a significantly less role in terms of energy con-
sumption. Using (3.7), the input energy can be calculated by integrating the input
power as shown in (3.8)



Chapter 3: Control System Design 19

E =
∫ t f

0

Tmω d t (3.8)

where ω is angular velocity and t f is the final time. By adding this term to the
cost function J , the MPC will also focus on energy minimization.

3.3 MPC - Problem Formulation

There are mainly two objectives for the MPC. The first objective is to follow a given
path and the second objective is to do this in an energy-efficient manner. To follow
the given path, the car must ensure that the error between the vehicle’s location
and trajectory is zero. This is called cross-track error. In addition to keeping the
cross-track error as zero, the angle between the car and the trajectory must also
be zero. This is called heading error. As long as these two errors are zero, the
vehicle will follow the trajectory. Since the trajectory is described as a function
of x , as long as the y-value of the car and trajectory are equal at all times, the
cross-track error will be zero. For the heading error to be zero, the heading angle
of the trajectory and the car must be equal. The heading angle of the trajectory
can be computed by taking the tangent of the derivative

ψre f = arctan
d yre f

d x
. (3.9)

The equations for cross-track error and heading error become

ec te = yre f − ycar (3.10)

eψ =ψre f −ψcar (3.11)

The second objective is to include the energy equation (3.8). If only these two
objectives are used in the MPC, what will happen is that when the car’s cross-track
error and heading error become zero, the car will not want to move anymore. The
reason for this is because of the second objective. Now that the first objective has
been secured, the second objective will be energy efficiency. The MPC will then
tell the car to lose all its velocity since the MPC will conclude that this is the most
energy-efficient state, something that makes sense. A non-moving car will lose the
least amount of energy. To counteract this, a third objective will be introduced,
and that is to follow a reference velocity. By adding this as an objective, the car will
always try to have a certain velocity. The cost function for the MPC thus becomes

J =
N
∑

k=0

||yre f − yk||2Q +
N−1
∑

k=0

||uk||2R +
N
∑

k=0

||Tmω||2E (3.12)

where the two first sum terms regulate the cost of outputs and inputs and the last
sum term regulate the energy output. The weights Q, R and E determine which of



20 :

the different sum terms should be prioritized. By introducing large weight on the
weights on the first two terms, the MPC focuses more on minimizing the output
and input and vice versa. This means that different behaviors can be obtained by
changing the weights of Q, R and E.

3.3.1 Constraints

Certain constraints have to be implemented to ensure limitations in both states
and inputs. The car can not have a steering angle higher than 0.57 radians. The
throttle input can also not be higher than the value one as this is seen as the
maximum throttle. The derivative of throttle and the steering rotation speed is also
limited to ensure smooth behavior. The physical limitations can be summarized
as

−0.57 rad≤ δ ≤ 0.57 rad

−0.8 rad/s≤ δ̇ ≤ 0.8 rad/s

−1 ≤ throt t le ≤ 1

−0.33 ≤ ˙throt t le ≤ 0.33

3.3.2 Minimization Variables

There are not all outputs that are necessary to minimize. As mentioned earlier,
the three main objectives of the MPC are to minimize the cross-track error and
heading error, minimize the energy usage and follow a reference trajectory. This
means that the variables that are most interesting to tune are y = [ec te epsi v]⊤

and Tmω.

3.3.3 Tuning

The weighting matrices Q, R, and E determine the performance of the MPC. Q
tunes the variables ec te, eψ and v. R tunes the inputs δ̇ and ˙throt t le and E tunes
the energy usage Tmω. Finding the optimal weights is a trial and error process,
and the whole process of finding satisfactory weights can be found in Appendix B
The final tuning weight matrices values are

Q =





5 0 0
0 35 0
0 0 10



 , R=

�

1 0
0 1

�

, E = 0.001 (3.13)

With these weights, the car follows a flat line trajectory smooth and fast, as shown
in Figure 3.2. There is also no sudden change in inputs. These weights represent
the weights used for the Energy MPC. The Non-Energy MPC does not have any
weight on E on uses only Q and R



Chapter 3: Control System Design 21

Q =





5 0 0
0 35 0
0 0 10



 , R=

�

1 0
0 1

�

(3.14)

0 25 50 75 100 125
X [m]

0.0

0.5

1.0

Y 
[m

]

Path following
Reference path
Actual path

0 10 20 30
Time [s] 

0.2

0.1

0.0

An
gl

e 
[ra

d]

Heading angle
psi

0 10 20 30
Time [s] 

0.4

0.2

0.0

An
gl

e 
[ra

d]

Angle of wheels

delta

0 10 20 30
Time [s]

0.0

0.2

0.4
In

pu
t

Throttle

0 10 20 30
Time [s] 

0

2

4

Ve
lo

cit
y 

[m
/s

]

Velocity

Velocity of car
Referance velocity

Path and States

Figure 3.2: Path and state response after tuning Q, R, and E. The MPC is following
a straight-line path.





Chapter 4

Implementation

When the vehicle is modelled and the MPC formulation is defined. The next step is
to implement them into a simulation environment. The framework used to simu-
late the system is described in Section 4.1. The system will further be implemented
in ROS and Gazebo. This is described in Section 4.2. To implement it into ROS and
Gazebo, a path representation must be implemented. This is presented in Section
4.2.1. Lastly the values of each parameter describing the vehicle is introduced in
Section 4.3.

4.1 ACADOS

The MPC is implemented using the programming language Python [23] with the
combination of the framework ACADOS [24]. ACADOS is an open-source optim-
ization framework that includes a variety of optimization methods. The library
is written in C code and can be used in Python and MATLAB. Compared to other
optimization frameworks, ACADOS is reasonably fast, as shown in Figure 4.1. An-
other advantage is that ACADOS has built-in c-code generation, making it easy to
convert the Python code into c-code.

The Python code consist mainly of four different functions:

• energyBicycleModel, describing the model of the system.
• costFnc, introducing the cost function J(x).
• ocpSolver, including constraints, Q, R, E values, solver method and integra-

tion types.
• main, solves the cost function at each iteration and updates the inputs and

states at each iteration.

The code can be found in Appendix C. With these four functions, the optimization
problem can be solved and simulated.

23



24 :

Figure 4.1: Computation time of different solvers, averaged over 10 runs (source:
[24]).

4.2 Implementation with ROS and Gazebo

To connect the different subsystems described in Appendix A, Robotic Operating
System (ROS) is used. ROS is an open-source software library that helps build
robot applications [5]. ROS makes it easy to connect different subsystems together
by publishing and subscribing to different nodes. Figure 4.2 shows an example of a
flowchart of the different nodes. Here the MPC node subscribes to different nodes
to receive data such as the state of the car and the path it wants to follow. The
MPC then publishes the optimal velocity and steering angle, which the Gazebo
subscribes to.

Gazebo is a free, open-source simulation environment where different parts
of the system can be connected to see how they work in a simulated environment
[25]. By adding a model of FuelFighter 5 into Gazebo and the different sensors
attached to the car, a realistic simulation of the car’s behavior can be simulated.
This is necessary to see which of the algorithms work as intended or not. In this
thesis, Gazebo is used for visual simulation to better understand how the MPC
works with the car.

4.2.1 Path Representation

A third-order polynomial is used to describe this path to describe the path the
vehicle wants to follow in Gazebo. Many different algorithms exist to create smooth
polynomials, but this is not within the scope of this thesis. For time-saving and



Chapter 4: Implementation 25

ease in complexity, the code used to create the third-order polynomial is inspired
by https://gist.github.com/ksjgh/4d5050d0e9afc5fdb5908734335138d0. Us-
ing a third-order polynomial versus cubic splines is that the third-order polynomial
manages to describe the trajectory at a satisfactory level, and the computation is
much less demanding than cubic splines. The disadvantage with a third-order
polynomial is that at sharp corners and long look-ahead distance such as that
shown in Figure 4.3 the polynomial is less satisfactory. From Figure 4.3 the green
line represents the actual path the car should follow, and the blue line represents
the polynomial created to follow the green line. The figure shows that the poly-
nomial fits the green line reasonably well, but the two lines stray away from each
other at a further distance. However, this is not a significant problem if the green
and blue lines align close to the car.

4.3 Parameters

The parameters used to describe the car can be found in Table 4.1. These values
are fairly accurate as they have been gathered through data collection.

Figure 4.2: Flowchart of which nodes publish and subscribe to each other in ROS

https://gist.github.com/ksjgh/4d5050d0e9afc5fdb5908734335138d0


26 :

Figure 4.3: Trajectory of vehicle simulated in gazebo. The green line represents
the path track and the blue line represents the third-order polynomial. Here it is
shown that the polynomial does not fit the track when curves are introduced.

Parameter Value Description
m 70 [kg] Mass of the car
r 0.225 [m] Radius of the wheels
l f 1.32 [m] Distance between CG and front wheel
lr 1.32 [m] Distance between CG and rear wheel
G 0.05 Gear ratio
V 48 [V] Voltage of batteries
Cd 0.218 Drag coefficient
ρ 1.2 [kg/m3] Air density
A f 1 [m2] Frontal area of car
Cr 0.0015 Rolling resistance
g 9.81 [m/s2] Gravity constant
K 3.2 Constant

Table 4.1: Vehicle parameters



Chapter 5

Results

This chapter presents the results that are obtained by looking at three different
categories,

• performance results,
• energy efficiency, and
• computational load.

The Energy MPC and Non-Energy MPC will be compared and see how they
behave in each category. The performance result looks at if the MPC’s manage
to follow the given path and how the states and inputs behave during the path
following. The Energy efficiency category is used to see how much energy each
MPC spends during the simulation. Lastly, computational load is compared. The
algorithm must solve the problem fast when using real hardware since slow com-
putation can lead to stability issues.

The Energy MPC will be simulated in Gazebo, and a more advanced scenario
will be simulated. This is for both visualizations and to see how the Energy MPC’s
performance when combined with ROS and Gazebo.

5.1 Performance

Two scenarios are conducted for testing the performance of between the two
MPC’s,

• straight-line, and
• sinus wave function.

These two experiments will validate the effectiveness of the MPC.

5.1.1 Straight-Line Path Following

The experiment for straight-line driving is experimented with with an initial cross-
track error, ec te = 1m. The reference velocity the car wants to follow is v = 5m/s.

27



28 :

Straight-line path using Energy MPC

The path of the car using the energy MPC is shown in Figure 5.1. The states of car
are shown in Figure 5.2 and the inputs of the car are shown in Figure 5.3.

Straight-line path using Non-Energy MPC

The path of the car using the non-energy MPC is shown in Figure 5.4. The states
of the car are shown in Figure 5.5 and the inputs are shown in Figure 5.6.

5.1.2 Sinus Wave Path following

The sinus wave path is given by the function y(x) = 10sin x
10 . The car starts with

a ec te = 0. The reference velocity the MPC’s track is vre f = 5m/s.

Sinues wave path using Energy MPC

The path of the car is shown in Figure 5.7. The states of the car is shown in Figure
5.8, and the inputs are shown in Figure 5.9.

Sinus wave path using Non-Energy MPC

The path of the car is shown in Figure 5.10. The states of the car is shown in Figure
5.11, and the inputs are shown in Figure 5.12.

5.2 Energy Efficiency

To measure the energy efficiency in both the Energy MPC and the Non-Energy
MPC, the energy at each time-step is calculated using (3.8). The sum is added.
Since the two different MPC’s do not end at the same position, The two MPC’s
will be compared after the car has driven 50 meters in the longitudinal direction.
The trajectories that will be used are the same ones that have been used earlier.
Figure 5.13 shows two plots, one with the energy usage of the Energy MPC and
another with the Non-Energy MPC when following a straight-line trajectory. Fig-
ure 5.14 shows Energy MPC and the Non-Energy MPC when following a sinus
wave trajectory. A summary of the total energy used can be found in Table 5.1

Path Controller Energy Usage [Joule]
Straight-line Energy MPC 940
Straight-line Non-Energy MPC 1079
Sinus wave Energy MPC 991
Sinus wave Non-Energy MPC 1124

Table 5.1: Energy consumption of the two MPC’s when used at both scenarios



Chapter 5: Results 29

5.3 Computational Load

The computational load is calculated using the Python library time. The compu-
tational load is only calculated when the MPC problem is solved.

Code listing 5.1: Calculating computational load

start = time.time()
solver_status = ocp_solver.solve() # Solve the ocp at current iteration
t = time.time() - start

The load is calculated for both the Energy MPC and Non-Energy MPC after
100 iterations. The computational load for both straight-line trajectory and sinus
wave trajectory are used and is shown in Figure 5.15 and Figure 5.16. A table
showing the average time used for each MPC at each path is shown in Table 5.2

Path Controller Average time [ms]
Straight-line Energy MPC 0.89
Straight-line Non-Energy MPC 0.49
Sinus wave Energy MPC 0.99
Sinus wave Non-Energy MPC 0.82

Table 5.2: Average computational time the different MPC’s use at both scenarios

5.4 Performance in Gazebo

The path the Energy MPC wants to follow is shown in Figure 5.17. Since Gazebo
is a visualization tool, a video better explains how the MPC behaves in Gazebo.
The link to the video is https://www.youtube.com/watch?v=A63OOu0kKXw&ab_
channel=ErikFagerli. The video shows two simulations of the Energy MPC, where
the first one shows the simulation with a prediction horizon N = 20 and the other
shows with a prediction horizon N = 40. The green line represents the track the
vehicle wants to follow, the blue line is the third-order polynomial, and the red
line is the trajectory of the MPC. Only the first two turns are shown in the videos
since that is all that is necessary to determine the behavior of the MPC.

https://www.youtube.com/watch?v=A63OOu0kKXw&ab_channel=ErikFagerli
https://www.youtube.com/watch?v=A63OOu0kKXw&ab_channel=ErikFagerli


30 :

0 20 40 60 80 100 120
X [m]

0.0

0.2

0.4

0.6

0.8

1.0

Y 
[m

]
Path Following

Reference path
Actual path

Figure 5.1: Path following of straight-line using Energy MPC

0 10 20 30
Time [s] 

0.20

0.15

0.10

0.05

0.00

An
gl

e 
[ra

d]

Heading angle

psi

0 10 20 30
Time [s] 

0.4

0.3

0.2

0.1

0.0

0.1

An
gl

e 
[ra

d]

Angle of wheels
delta

0 10 20 30
Time [s]

0.0

0.1

0.2

0.3

0.4

In
pu

t

Throttle

0 10 20 30
Time [s] 

0

1

2

3

4

5

Ve
lo

cit
y 

[m
/s

]

Velocity

Velocity of car
Referance velocity

States

Figure 5.2: States of car when driving a straight-line using Energy MPC



Chapter 5: Results 31

0 10 20 30
Time [s]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

An
gl

e 
ra

te
 [r

ad
/s

]
Steering angle rate

delta_dot
upper bound
lower bound

0 10 20 30
Time [s]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

In
pu

t r
at

e 
[1

/s
]

Throttle rate
throttle_dot
upper bound
lower bound

Inputs

Figure 5.3: Inputs of car when driving straight-line and using Energy MPC

0 20 40 60 80 100 120 140
X [m]

0.0

0.2

0.4

0.6

0.8

1.0

Y 
[m

]

Path Following
Reference path
Actual path

Figure 5.4: Path following of straight-line using Non-Energy MPC



32 :

0 10 20 30
Time [s] 

0.20

0.15

0.10

0.05

0.00
An

gl
e 

[ra
d]

Heading angle

psi

0 10 20 30
Time [s] 

0.4

0.3

0.2

0.1

0.0

0.1

An
gl

e 
[ra

d]

Angle of wheels
delta

0 10 20 30
Time [s]

0.0

0.2

0.4

0.6

In
pu

t

Throttle

0 10 20 30
Time [s] 

0

1

2

3

4

5

Ve
lo

cit
y 

[m
/s

]

Velocity

Velocity of car
Referance velocity

States

Figure 5.5: States of car when driving a straight-line using Non-Energy MPC

0 10 20 30
Time [s]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

An
gl

e 
ra

te
 [r

ad
/s

]

Steering angle rate
delta_dot
upper bound
lower bound

0 10 20 30
Time [s]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

In
pu

t r
at

e 
[1

/s
]

Throttle rate
throttle_dot
upper bound
lower bound

Inputs

Figure 5.6: Inputs of car when driving straight-line and using Non-Energy MPC



Chapter 5: Results 33

0 20 40 60 80 100
X [m]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y 
[m

]
Path Following

Reference path
Actual path

Figure 5.7: Path following of sinus wave using Energy MPC

0 10 20 30
Time [s] 

0.5

0.0

0.5

1.0

An
gl

e 
[ra

d]

Heading angle
psi

0 10 20 30
Time [s] 

0.2

0.0

0.2

0.4

0.6

An
gl

e 
[ra

d]

Angle of wheels
delta

0 10 20 30
Time [s]

0.0

0.1

0.2

0.3

0.4

In
pu

t

Throttle

0 10 20 30
Time [s] 

0

1

2

3

4

5

Ve
lo

cit
y 

[m
/s

]

Velocity

Velocity of car
Referance velocity

States

Figure 5.8: States of the car when following a sinus wave using Energy MPC



34 :

0 10 20 30
Time [s]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
An

gl
e 

ra
te

 [r
ad

/s
]

Steering angle rate
delta_dot
upper bound
lower bound

0 10 20 30
Time [s]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

In
pu

t r
at

e 
[1

/s
]

Throttle rate
throttle_dot
upper bound
lower bound

Inputs

Figure 5.9: Inputs of the car when following a sinus wave using Energy MPC

0 20 40 60 80 100 120
X [m]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y 
[m

]

Path Following

Reference path
Actual path

Figure 5.10: Trajectory following of sinus wave using non-energy MPC



Chapter 5: Results 35

0 10 20 30
Time [s] 

0.5

0.0

0.5

1.0
An

gl
e 

[ra
d]

Heading angle
psi

0 10 20 30
Time [s] 

0.2

0.0

0.2

0.4

0.6

An
gl

e 
[ra

d]

Angle of wheels
delta

0 10 20 30
Time [s]

0.0

0.2

0.4

0.6

In
pu

t

Throttle

0 10 20 30
Time [s] 

0

1

2

3

4

5

Ve
lo

cit
y 

[m
/s

]

Velocity

Velocity of car
Referance velocity

States

Figure 5.11: States of the car when following a sinus wave using Non-Energy
MPC

0 10 20 30
Time [s]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

An
gl

e 
ra

te
 [r

ad
/s

]

Steering angle rate
delta_dot
upper bound
lower bound

0 10 20 30
Time [s]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

In
pu

t r
at

e 
[1

/s
]

Throttle rate
throttle_dot
upper bound
lower bound

Inputs

Figure 5.12: Inputs of the car when following a sinus wave using Non-Energy
MPC



36 :

0 10 20 30 40 50
Longitudinal distance [m]

0

200

400

600

800

En
er

gy
 [J

ou
le

]
Energy Used

Energy

(a) Energy MPC

0 10 20 30 40 50
Longitudinal distance [m]

0

200

400

600

800

1000

En
er

gy
 [J

ou
le

]

Energy Used
Energy

(b) Non-Energy MPC

Figure 5.13: Energy usage between Energy MPC and Non-Energy MPC when
following straight-line trajectory

0 10 20 30 40 50
Longitudinal distance [m]

0

200

400

600

800

1000

En
er

gy
 [J

ou
le

]

Energy Used
Energy

(a) Energy MPC

0 10 20 30 40 50
Longitudinal distance [m]

0

200

400

600

800

1000

En
er

gy
 [J

ou
le

]

Energy Used
Energy

(b) Non-Energy MPC

Figure 5.14: Energy usage between Energy MPC and Non-Energy MPC when
following a sinus wave trajectory

0 25 50 75 100 125 150 175 200
Iteration

0.001

0.002

0.003

0.004

0.005

0.006

Ti
m

e 
[s

]

Computational Load
Time

(a) Computational load of Energy MPC

0 25 50 75 100 125 150 175 200
Iteration

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Ti
m

e 
[s

]

Computational Load
Time

(b) Computational load of Non-Energy MPC

Figure 5.15: Computational load of both Energy MPC and Non-Energy MPC when
following straight-line trajectory



Chapter 5: Results 37

0 25 50 75 100 125 150 175 200
Iteration

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Ti
m

e 
[s

]

Computational Load
Time

(a) Computational load of Energy MPC

0 25 50 75 100 125 150 175 200
Iteration

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Ti
m

e 
[s

]

Computational Load
Time

(b) Computational load of Non-Energy MPC

Figure 5.16: Computational load of Energy MPC and Non-Energy MPC when
following a sinus wave trajectory

Figure 5.17: Path the car wants to follow in when simulated in Gazebo





Chapter 6

Discussion

The results presented in Chapter 5 will be discussed. The performance of both En-
ergy MPC and the Non-Energy MPC will be discussed in Section 6.1. The amount
of energy used by each MPC will be discussed in Section 6.2, the computational
load is discussed in Section 6.3, and the performance of the Energy MPC in Gazebo
is discussed in Section 6.4.

6.1 Performance

6.1.1 Straight-line

The performance of the Energy MPC is shown in Figure 5.1. The MPC has a ec te =
1m and eψ = 0. The figure shows that the MPC converges to the reference path
fast. The states of the car are shown in Figure 5.2. There is no sudden movement in
the states, and the velocity reached is 4.8m/s. The Energy MPC does not manage
to climb to 5m/s because of the energy term. The energy term wants to keep the
velocity low since this is more favorable for reducing energy usage. Figure 5.3
show the inputs of the system. Here it can be observed that inputs are within the
constraints as expected.

The performance of the Non-Energy MPC has similar results as the Energy
MPC in terms of performance. The main difference is that the Non-Energy MPC
follows the reference velocity of 5m/s. In Figure 5.5 it is shown that the velocity
overshoots a little before stabilizing at 5m/s. This is most likely due to the tun-
ing of the Q and R. Since the velocity is higher, the distance traveled will also be
greater when following the path; something can be seen when comparing Figure
5.4 to Figure 5.1. The inputs of the Non-Energy MPC are also within the con-
straints, but the throttle rate is more aggressive than the Energy MPC.

6.1.2 Sinus Wave

For the path following of the sinus wave function f (x) = 10sin( x
10) both the En-

ergy MPC and Non-Energy MPC start with a ec te = 0 and eψ = 0. Figure 5.7 shows

39



40 :

the path following the Energy MPC. The MPC deviates from the path initially but
converges to the path quickly. The velocity does not manage to converge to the
reference velocity vre f = 5m/s as shown in Figure 5.8. The reason for this is the
same as the straight-line experiment. Figure 5.9 shows the inputs of the system,
and the steering rate and throttle rate only show sudden change when it is trying
to converge to the path trajectory. The control inputs are smooth when the MPC
has aligned itself with the path.

The Non-Energy MPC has a similar behavior as the Energy MPC. The main
difference is the input of the vehicle, as shown in Figure 5.12. The control inputs
are more aggressive. The reason for this is that the Non-Energy MPC prioritizes
reaching vre f . This leads to the inputs being more aggressive.

6.2 Energy Usage

In Section 5.2, the energy usage of both the Energy MPC and Non-Energy MPC
were calculated. The energy usage was calculated for both the straight-line and
sinus wave experiments. Figure 5.13 and 5.14 show the energy used with both the
Energy MPC and the Non-Energy MPC after driving 50 meters. The total amount
of energy used after 50 meters can be found in Table 5.1. The table shows that
the Energy MPC uses less energy, approximately 139 Joule less when following
a straight-line path and 133 Joule less when following a sinus wave. The Energy
MPC uses 13% and 12% less energy. Compared to the research done by [10],
which achieved up to 50% less energy, it seems like the Energy MPC is worse
than [10]MPC. However, in [10], the velocity of the vehicle was way lower when
running energy mode compared to sport mode. Since the Energy MPC and Non-
Energy MPC velocity are fairly similar, the energy output will be close. If the weight
of E were to be adjusted to focus more on energy efficiency, there would be a
bigger difference in energy usage between the MPCs, but it would come at the
cost of a slower-moving car.

6.3 Computational Load

Computational load is important to focus on since if the MPC problem is too com-
putational heavy, the real-life system will reach a new state before the MPC is
solved. This will result in unstable behavior and is undesirable. The computa-
tional load of both the Energy MPC and Non-Energy MPC can be found in Figure
5.15 and 5.16. Figure 5.15 shows the amount of time each iteration uses to solve
the MPC problem when the car follows a straight-line path, while Figure 5.16
shows the computational load when the car follows a sinus wave. The computa-
tional load of both experiments is summarized in Table 5.2. From the figures and
the table, it is seen that the Non-Energy MPC uses less time to solve the problem
compared to the Energy MPC. This makes sense since the Energy MPC has to con-
sider the energy term. This term is nonlinear and thus leads to more computation.



Chapter 6: Discussion 41

Nevertheless, both the MPCs solve the problem at a satisfying rate.

6.4 Performance in Gazebo

From the video presented in Section 5.4, the Energy MPC behaves satisfactorily
when the horizon is N = 20. The car does not deviate from its path, and no sharp
movements are made. However, when the horizon is changed to N = 40, the
MPC does not manage to follow the given path. In the first turn, it manages to
follow the path, but in the second turn, the MPC does not manage to solve the
problem and destabilizes. This happens because the MPC does not manage to find
the optimal path to follow. It is most likely due to the sharp turn. When the car
enters a sharp turn, the generated third-order polynomial starts to vary a lot and
becomes a complex trajectory to follow. When the car first destabilizes, it becomes
difficult to correct itself. This means that when implementing the algorithm into
hardware, N needs to also be tuned so that the vehicle does not drift away from
the path.





Chapter 7

Conclusion and Future Work

Throughout this thesis, a controller for both longitudinal and lateral path follow-
ing has been designed and implemented. The multi-objective MPC focused on
path following, energy efficiency and following a referance velocity. Energy effi-
ciency was evaluated by comparing it to another MPC that did not focus on energy
usage. The MPC was implemented in Python using the framework ACADOS and
the solver HPIPM. The algorithm was then later extended to work together with
ROS and Gazebo. The conclusion of the thesis is presented in Section 7.1. Further
work that can be done to improve the MPC is presented in Section 7.2.

7.1 Conclusion

This thesis has tested an Energy MPC and Non-Energy MPC in different scenarios.
To test the MPC’s, a vehicle model had to be implemented, then the MPC’s cost
function, and constraints had to be decided. The two MPC’s have been tested in
performance, energy usage, and computational load. The Energy MPC performs
well when following a straight-line path; even with an initial cross-track error, the
MPC converges quickly to the given reference path. When following a sinus wave,
the Energy MPC also converges quickly to the reference path and follows the path
through the whole simulation. The Non-Energy MPC shows similar results as the
Energy MPC, but with more aggressive inputs.

Calculating the energy usage of both the Energy MPC and the Non-Energy
MPC showed that the Energy MPC used less energy in both scenarios. This is due
to the energy cost term. The downside is that the MPC has a more challenging
time following the velocity trajectory.

The computational load showed that the Non-Energy MPC used less time to
solve the MPC problem. This is expected since the Non-Energy MPC did not in-
clude the energy term, thus making the MPC a less computational-heavy problem.
Even though Energy MPC had a higher computational load, it is still within ac-
ceptable execution time.

Lastly, the Energy MPC was implemented with ROS and Gazebo and simulated
in a more realistic scenario. The results showed that Energy MPC followed the

43



44 :

given path without deviating. However, with an increased prediction horizon N ,
the MPC had difficulties following the path at sharp turns and ended with the
MPC not being able to solve the problem.

Depending on what FuelFighter wants to prioritize, both MPC’s work. If en-
ergy efficiency wants to be prioritized, the Energy MPC works well. However, if
a certain velocity wants to be achieved, the Non-Energy MPC suits better. Both
MPC’s show satisfactory performance levels in terms of path following.

7.2 Future Work

Even though both MPC’s perform well in this thesis, it does not mean they will
perform as intended in a more realistic environment. Many features can be im-
plemented to improve the performance further, and some are mentioned in the
following section.

7.2.1 Additional Features

Path-Parametric Reformulation

By changing the vehicle model so that it is transformed from time-dependent
vehicle kinematics to track-dependent (spatial) kinematics [26], new constraints
can be introduced, such as road bounds. This makes it so that the vehicle can
more easily cut corners if needed, thus using less time to reach the destination
and saving energy.

Linearization

The vehicle model is, as of now, a non-linear model. These models are more com-
putational heavy. A way to decrease computational load is to linearize the model.
This can be done by using a small-angle approximation. The downside is that the
model is only valid at small angles. A way to counteract this is to use Adaptive
Model Predictive Control (AMPC) [27]. The advantage of AMPC is that it linear-
izes the model at different operating points instead of only one. This makes it
so that the linearized model is more accurate. The downside is that it is more
computational heavy than just linearizing in one operating point.

System Identification

An accurate way of describing a physical model is to make a system identification.
System identification is a method of building dynamic models from input-output
data [28]. The disadvantage with this is that in many cases, the model becomes
highly non-linear, which can drastically increase computation.



Chapter 7: Conclusion and Future Work 45

7.2.2 Testing on FuelFighter 5

After the MPC algorithm has been converted to c-code and integrated fully with
the different subsystems in ROS, the MPC needs to be tested on the physical car. It
is not expected that everything goes smoothly from the start, and tuning different
variables such as the weighting matrices Q, R, E, and the prediction horizon N
may need to be done for the car to run more smoothly.





Bibliography

[1] E. Fagerli, Adaptive model predictive control and path planning for an autonom-
ous car, Specialization project, 2021.

[2] R. Bishop, ‘A survey of intelligent vehicle applications worldwide,’ in Pro-
ceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511),
2000, pp. 25–30. DOI: 10.1109/IVS.2000.898313.

[3] S. Eco, Shell eco-marathon: Brilliant minds coming together to help build a
lower carbon world. [Online]. Available: https://www.makethefuture.
shell/en-gb/shell-eco-marathon, (accessed: 30.09.2021).

[4] FuelFighter, History. [Online]. Available: https://www.fuelfighter.no/
history, (accessed: 30.09.2021).

[5] Ros, https://www.ros.org/, (accessed: 2021-12-14).

[6] M. Morari and J. H. Lee, ‘Model predictive control: Past, present and future,’
Computers Chemical Engineering, vol. 23, no. 4, pp. 667–682, 1999, ISSN:
0098-1354. DOI: https://doi.org/10.1016/S0098-1354(98)00301-9.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0098135498003019.

[7] J. Kong, M. Pfeiffer, G. Schildbach and F. Borrelli, ‘Kinematic and dynamic
vehicle models for autonomous driving control design,’ Jun. 2015, pp. 1094–
1099. DOI: 10.1109/IVS.2015.7225830.

[8] P. Polack, F. Altché, B. d’Andréa-Novel and A. de La Fortelle, ‘The kinematic
bicycle model: A consistent model for planning feasible trajectories for
autonomous vehicles?’ In 2017 IEEE Intelligent Vehicles Symposium (IV),
2017, pp. 812–818. DOI: 10.1109/IVS.2017.7995816.

[9] D.-m. Wu, Y. Li, C.-q. Du, H.-t. Ding, Y. Li, X.-b. Yang and X.-y. Lu, ‘Fast ve-
locity trajectory planning and control algorithm of intelligent 4wd electric
vehicle for energy saving using time-based mpc,’ IET Intelligent Transport
Systems, vol. 13, no. 1, pp. 153–159, 2019.

[10] M. A. Daoud, M. Osman, M. W. Mehrez and W. W. Melek, ‘Path-following
and adjustable driving behavior of autonomous vehicles using dual-objective
nonlinear mpc,’ in 2019 IEEE International Conference on Vehicular Electron-
ics and Safety (ICVES), 2019, pp. 1–6. DOI: 10.1109/ICVES.2019.8906412.

47

https://doi.org/10.1109/IVS.2000.898313
https://www.makethefuture.shell/en-gb/shell-eco-marathon
https://www.makethefuture.shell/en-gb/shell-eco-marathon
https://www.fuelfighter.no/history
https://www.fuelfighter.no/history
https://www.ros.org/
https://doi.org/https://doi.org/10.1016/S0098-1354(98)00301-9
https://www.sciencedirect.com/science/article/pii/S0098135498003019
https://www.sciencedirect.com/science/article/pii/S0098135498003019
https://doi.org/10.1109/IVS.2015.7225830
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/ICVES.2019.8906412


48 :

[11] M. Zanon, ‘A gauss–newton-like hessian approximation for economic nmpc,’
IEEE Transactions on Automatic Control, vol. 66, no. 9, pp. 4206–4213,
2021. DOI: 10.1109/TAC.2020.3034868.

[12] R. Hult, M. Zanon, S. Gros and P. Falcone, ‘Energy-optimal coordination of
autonomous vehicles at intersections,’ in 2018 European Control Conference
(ECC), 2018, pp. 602–607. DOI: 10.23919/ECC.2018.8550367.

[13] Autonomous urban concept competition, https : / / drive . google . com /
file/d/1i5ua_YHscRT5DcKQqTfDh61PQPWzxyDb/view?fbclid=IwAR17R0xsburO0Nz5zwHfosj-
X9IGyt1oIk3dGhttNpvOhpErhaPaKOcPNyE, Accessed: 2022-06-05.

[14] R. Rajamani, in Vehicle Dynamics and Control, 2012, pp. 25–30. DOI: https:
//doi.org/10.1007/978-1-4614-1433-9.

[15] Teensy usb development board, https://www.pjrc.com/teensy/index.
html, Accessed: 2022-05-13.

[16] Maxongroup, Re 50, Accessed: 13-05-2022.

[17] P. Polack, F. Altché, B. d’Andréa-Novel and A. de La Fortelle, ‘The kinematic
bicycle model: A consistent model for planning feasible trajectories for
autonomous vehicles?’ In 2017 IEEE Intelligent Vehicles Symposium (IV),
2017, pp. 812–818. DOI: 10.1109/IVS.2017.7995816.

[18] D. E. Seborg, D. A. Mellichamp and T. F. Edgar, Process Dynamics and Con-
trol, Third, ser. Wylie Series in Chemical Engineering. John Wiley & Sons,
2011, ISBN: 9780470646106. [Online]. Available: http://www.worldcat.
org/isbn/9780470646106.

[19] C. B. E.F. Camacho, in Model Predictive Control, 2007. DOI: https://doi.
org/10.1007/978-0-85729-398-5.

[20] H. Nijmeijer and A. van der Schaft, ‘Discrete-time nonlinear control sys-
tems,’ in Nonlinear Dynamical Control Systems. New York, NY: Springer
New York, 1990, pp. 399–421, ISBN: 978-1-4757-2101-0. DOI: 10.1007/
978-1-4757-2101-0_14. [Online]. Available: https://doi.org/10.1007/
978-1-4757-2101-0_14.

[21] P. T. Boggs and J. W. Tolle, ‘Sequential quadratic programming,’ Acta Nu-
merica, vol. 4, pp. 1–51, 1995.

[22] G. Frison and M. Diehl, ‘Hpipm: A high-performance quadratic program-
ming framework for model predictive control,’ IFAC-PapersOnLine, vol. 53,
no. 2, pp. 6563–6569, 2020, 21st IFAC World Congress, ISSN: 2405-8963.
DOI: https://doi.org/10.1016/j.ifacol.2020.12.073. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S2405896320303293.

[23] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009, ISBN: 1441412697.

https://doi.org/10.1109/TAC.2020.3034868
https://doi.org/10.23919/ECC.2018.8550367
https://drive.google.com/file/d/1i5ua_YHscRT5DcKQqTfDh61PQPWzxyDb/view?fbclid=IwAR17R0xsburO0Nz5zwHfosj-X9IGyt1oIk3dGhttNpvOhpErhaPaKOcPNyE
https://drive.google.com/file/d/1i5ua_YHscRT5DcKQqTfDh61PQPWzxyDb/view?fbclid=IwAR17R0xsburO0Nz5zwHfosj-X9IGyt1oIk3dGhttNpvOhpErhaPaKOcPNyE
https://drive.google.com/file/d/1i5ua_YHscRT5DcKQqTfDh61PQPWzxyDb/view?fbclid=IwAR17R0xsburO0Nz5zwHfosj-X9IGyt1oIk3dGhttNpvOhpErhaPaKOcPNyE
https://doi.org/https://doi.org/10.1007/978-1-4614-1433-9
https://doi.org/https://doi.org/10.1007/978-1-4614-1433-9
https://www.pjrc.com/teensy/index.html
https://www.pjrc.com/teensy/index.html
https://doi.org/10.1109/IVS.2017.7995816
http://www.worldcat.org/isbn/9780470646106
http://www.worldcat.org/isbn/9780470646106
https://doi.org/https://doi.org/10.1007/978-0-85729-398-5
https://doi.org/https://doi.org/10.1007/978-0-85729-398-5
https://doi.org/10.1007/978-1-4757-2101-0_14
https://doi.org/10.1007/978-1-4757-2101-0_14
https://doi.org/10.1007/978-1-4757-2101-0_14
https://doi.org/10.1007/978-1-4757-2101-0_14
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.073
https://www.sciencedirect.com/science/article/pii/S2405896320303293
https://www.sciencedirect.com/science/article/pii/S2405896320303293


Bibliography 49

[24] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zan-
elli, B. Novoselnik, T. Albin, R. Quirynen and M. Diehl, ‘Acados – a modular
open-source framework for fast embedded optimal control,’ Mathematical
Programming Computation, Oct. 2021, ISSN: 1867-2957. [Online]. Avail-
able: https://doi.org/10.1007/s12532-021-00208-8.

[25] Gazebo, https://gazebosim.org/home, Accessed: 2022-05-31.

[26] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli and M.
Diehl, ‘An auto-generated nonlinear mpc algorithm for real-time obstacle
avoidance of ground vehicles,’ in 2013 European Control Conference (ECC),
2013, pp. 4136–4141. DOI: 10.23919/ECC.2013.6669836.

[27] M. Bujarbaruah, X. Zhang, E. Tseng and F. Borrelli, ‘Adaptive mpc for autonom-
ous lane keeping,’ Feb. 2018.

[28] L. Ljung, ‘Perspectives on system identification,’ Annual Reviews in Control,
vol. 34, no. 1, pp. 1–12, 2010, ISSN: 1367-5788. DOI: https://doi.org/
10.1016/j.arcontrol.2009.12.001. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1367578810000027.

[29] VectorNav, Vn-300, https://www.vectornav.com/products/detail/vn-
300, Accessed: 23-05-2022.

[30] Stereolabs, Zed 2, https://www.stereolabs.com/zed-2/, Accessed: 23-
05-2022.

[31] Re 50, https://www.maxongroup.com/medias/sys_master/root/8881624973342/
EN-21-152.pdf, Accessed: 2022-05-25.

https://doi.org/10.1007/s12532-021-00208-8
https://gazebosim.org/home
https://doi.org/10.23919/ECC.2013.6669836
https://doi.org/https://doi.org/10.1016/j.arcontrol.2009.12.001
https://doi.org/https://doi.org/10.1016/j.arcontrol.2009.12.001
https://www.sciencedirect.com/science/article/pii/S1367578810000027
https://www.sciencedirect.com/science/article/pii/S1367578810000027
https://www.vectornav.com/products/detail/vn-300
https://www.vectornav.com/products/detail/vn-300
https://www.stereolabs.com/zed-2/
https://www.maxongroup.com/medias/sys_master/root/8881624973342/EN-21-152.pdf
https://www.maxongroup.com/medias/sys_master/root/8881624973342/EN-21-152.pdf




Appendix A

FuelFighter 5

FuelFighter 5 was created in 2019 but reconfigured in 2021. The car was originally
used for the manned competitions, but it was decided it was going to be used for
the autonomous competition this year. To reconfigure the car, several parts needed
to be introduced to the system. Figure A.1 shows the pipeline of the autonomous
system. Additional sensors needed to be added to the car, as well as actuators and
new software.

A.1 Sensors

The sensors used in FuelFighter 5 are

• an Inertial Navigation System (INS),
• a Light Detection and Ranging (LiDAR) and
• a camera (ZED 2).

The INS is used to give a good estimate of the different states of the car. The INS
used is a VN-300 [29]. The VN-300 is a high-performance Dual Antenna GNSS-
Aided Inertial Navigation System capable of estimating with high accuracy posi-
tion, velocity, and orientation.

LiDAR is a sensoring method that uses light to detect surroundings. The amount
of time for the light to bounce back into the LiDAR can be used to determine
the distance between different objects. LiDAR is good at detecting objects but
struggles with detecting lines. To handle this, a camera is used to detect the lines.
The camera used is a ZED 2 [30]. ZED 2 is a highly advanced camera used to
create 3D images of the surroundings. With both LiDAR and ZED 2, both objects
and lines can easily be detected.

A.2 Perception

The information gathered from the different sensors is fed into the Simultaneous
Localization and Mapping (SLAM) module. This is used to create a map of the

51



52 :

environment around the car, which depicts where the different obstacles and lines
are. The obstacle and lines detected from LiDAR and ZED 2 are also used with the
combination of software to create a goal or trajectory the car wants to follow.

A.3 Mid Level Controller

The MPC outputs both throttle value and steering angle. These two values are
sent to a teensy [15]. The teensy takes the two values and converts them to 0-255
values. These values are then either sent to a motor controller or directly to the
actuator. The motor controller used in the car is a custom-made motor controller
that DNV FuelFighter has developed. It takes in the 0-255 values and converts
them into amp-signals. The amp signals are then sent to the motors.

A.4 Controllers

There are three parts of the vehicle that needs to be controlled;

• The steering wheel,
• the brakes, and
• the wheels

The steering wheel is controlled using a stepper motor. This motor turns the steer-
ing wheel with precise movement. This is important since over-or under-steering
may cause failure. To control the brakes, a linear actuator is used. The linear ac-
tuator pushes down the brakes depending on how much the car needs to slow
down. Finally, the motors used to spin the wheels are two DC motors [31].

LIDAR

Camera

Odemetry

Sensors Perception

SLAM

Object detection

Goal Creation

Path
Planning

MPC

Mid Level
Controller

Teensy

Motor Controller

Controllers

Actuators

Motors

Figure A.1: Flowchart of the autonomous system



Appendix B

Tuning Weighting Matrices

The determine the weighting matrices Q, R, and E, an experiment using a straight-
line path has be conducted. The initial cross-track error is set to 1m and vre f =
5m/s. Start by testing the weighting matrices

Q =





100 0 0
0 100 0
0 0 100



 , R=

�

1 0
0 1

�

, E = 1. (B.1)

This results in Figure B.1. From a glance at the plot, the results look satisfactory,
but the average velocity was 1.4m/s, which is way to slow. Decreasing E to 0.001
results in Figure B.2. The average velocity is now 4.4m/s, which is satisfactory. The
problem now is that the system is underdamped. To fix this the weighting matrices
Q needs to be tuned. This is a tidies process that follow the same procedure as
when tuning E. The final values are shown in (3.13). The same values are used
for the Non-Energy MPC except that E = 0. This gives the result shown in Figure
B.3.

53



54 :

0 5 10 15 20
X [m]

0.0

0.2

0.4

0.6

0.8

1.0
Y 

[m
]

Path Following
Reference path
Actual path

Figure B.1: Path following of Energy MPC when tuning Q = diag(100, 100,100),
R= diag(1,1), E = 1

0 10 20 30 40 50 60
X [m]

0.0

0.2

0.4

0.6

0.8

1.0

Y 
[m

]

Path Following
Reference path
Actual path

Figure B.2: Path of the car after changing E = 0.001



Chapter B: Tuning Weighting Matrices 55

0 10 20 30 40 50 60
X [m]

0.0

0.2

0.4

0.6

0.8

1.0

Y 
[m

]

Path Following
Reference path
Actual path

Figure B.3: Path of the car after final tuning of weights for Non-Energy MPC.
Q = diag(5,35, 10), R= diag(1,1)





Appendix C

Code

Code listing C.1: energyBicycleModel

def energyBicycleModel(params):

modelName = "BicycleModel" # Name of model

# Constants

r = params["radius"] # Wheel radius [m]
l = params["wheelbase"] # Distance between front wheel and rear wheel [m]
G = params["gear_ratio"] # Gear ratio
m = params["mass_car"]# Mass of car [kg]
V = params["voltage"] # Voltage
Cd = params["drag_coefficient"] # Drag coefficient
rho = params["air_resistance"]# Air resistance [kg/ m ]
A = params["frontal_area"]# Frontal area [ m ]

# States

x1 = SX.sym("x1") # X-position
y1 = SX.sym("y1") # Y-position
psi = SX.sym("psi") # Angle of car
v = SX.sym("v") # Velocity of car
delta = SX.sym("delta") # Steering angle
throttle = SX.sym("throttle") # Throttle

x = vertcat(x1, y1, psi, v, delta, throttle)

# Input

delta_dot = SX.sym("delta_dot") # Steering angle derivative
throttle_dot = SX.sym("throttle_dot") # Throttle derivative

u = vertcat(delta_dot, throttle_dot)

x1Dot = SX.sym("x1_dot")
y1Dot = SX.sym("y1_dot")
psiDot = SX.sym("psi_dot")
a = SX.sym("a")
delta_dot_state = SX.sym("delta_dot_state")
throttle_dot_state = SX.sym("throttle_dot_state")

57



58 :

xDot = vertcat(x1Dot, y1Dot, psiDot, a, delta_dot_state, throttle_dot_state)

f_expl = vertcat(
v * (cos(psi)), # x_dot
v * (sin(psi)), # y_dot
v * tan(delta)/l, # psi_dot
V * 3.2 * throttle * r / (v * G * m + 1) - (1/2*(rho*Cd*A*(v)**2) / m), # a
delta_dot,
throttle_dot

)
#Parameters used in describing third-order polynomial
p = vertcat(SX.sym("coeff_0"), SX.sym("coeff_1"), SX.sym("coeff_2"),

SX.sym("coeff_3"))

f_impl = xDot - f_expl
model = AcadosModel() # Class containing all information of the model

# Add the respective states, inputs and so on to the different model
model.name = modelName
model.f_expl_expr = f_expl
model.f_impl_expr = f_impl
model.xdot = xDot
model.x = x
model.u = u
model.p = p

return model

Code listing C.2: costFnc

def costFnc(model):

# Opem yaml file with different constants
with open("../params/mpc.yaml", "r") as paramFile:

params = yaml.safe_load(paramFile)

r = params["radius"] # Radius of wheel [m]
m = params["mass_car"] # Mass of vehicle [kg]
Cr = params["rolling_resistance"] # Rolling resistance
Cd = params["drag_coefficient"] # Drag coefficient
rho = params["air_resistance"] # Air resistance [kg/ m ]
A = params["frontal_area"] # Frontal area [ m ]
g = params["gravity_constant"]# Gravity constant [m/ s ]
G = params["total_reduction_ratio"]# Total reduction ratio

# Define what is going to be in cost function
x1 = model.x[0]
y1 = model.x[1]
psi = model.x[2]
v = model.x[3]
delta = model.x[4]
throttle = model.x[5]

delta_dot = model.u[0]
throttle_dot = model.u[1]

a = model.f_expl_expr[3]

coeffs = model.p



Chapter C: Code 59

Tm = r/G * (m*a + m*g*Cr + 1/2*rho*Cd*A*(v)**2) # Torque

energy = Tm * v/r # Energy equation

# Different paths to test

# Sinusfunction
#yPath = 10*sin(x1/30)
#pathYaw = atan(1/3*cos(x1/30))

# Third-order polynomial
#yPath = coeffs[3]*x1**3 + coeffs[2]*x1**2 + coeffs[1]*x1 + coeffs[0]
#pathYaw = atan(3*coeffs[3]*x1*x1 + 2*coeffs[2]*x1 + coeffs[1])

# Straight line
yPath = 0
pathYaw = 0

# Cross-track error and heading error
epsi = psi - pathYaw
cte = yPath - y1

# What variables we want to minimize
return vertcat(cte, epsi, v, delta, throttle, delta_dot, throttle_dot, energy)

Code listing C.3: ocpSolver

def ocpSolver():
# Open params file
with open("../params/mpc.yaml", "r") as paramFile:

params = yaml.safe_load(paramFile)

# Create render arguments
ocp = AcadosOcp()

# export model
ocp.model = energyBicycleModel.energyBicycleModel(params)

# Set dimensions
nx = ocp.model.x.size()[0]
nu = ocp.model.u.size()[0]
ny = nx + nu

N = params["mpc_N"] # Number of steps
dt = params["mpc_dt"] # Time steps
Tf = N*dt

ocp.dims.N = N

# Constraints
deltaMax = params["max_steering_angle"]
deltaDotMax = params["max_steering_rotation_speed"]

throttleMin = 0
throttleMax = params["throttle_max"]
throttleDotMax = params["throttle_dot_max"]

ocp.constraints.constr_type = "BGH"



60 :

ocp.constraints.lbx = np.array([-deltaMax, throttleMin]) # Lower bound on state
ocp.constraints.ubx = np.array([deltaMax, throttleMax]) # Upper bound on state
ocp.constraints.idxbx = np.array([4, 5])
ocp.constraints.lbu = np.array([-deltaDotMax, -throttleDotMax]) # Lower bound on input
ocp.constraints.ubu = np.array([deltaDotMax, throttleDotMax]) # Upper bound on input
ocp.constraints.idxbu = np.array([0, 1])

x0 = np.array([0, 0, 0, 0, 0, 0])
ocp.constraints.x0 = x0

param = np.array([0, 0, 0, 0])
ocp.parameter_values = param

# Cost

ocp.cost.cost_type = "NONLINEAR_LS"
ocp.cost.yref = np.array([0, 0, 5, 0, 0, 0, 0, 0]) # Reference the different
# variables in cost function should follow
ocp.model.cost_y_expr = energyBicycleModel.costFnc(ocp.model)
ocp.cost.W = np.diag([5, 35, 10, 0, 0, 1, 1, 0.01]) # Weigths when in Energy mode
#ocp.cost.W = np.diag([5, 35, 10, 0, 0, 1, 1, 0]) # Weights when not in Energy mode

# Set QP solver and integration
ocp.solver_options.tf = Tf
ocp.solver_options.qp_solver_cond_N = N
ocp.solver_options.qp_solver = "FULL_CONDENSING_HPIPM"
#"PARTIAL_CONDENSING_HPIPM" #"FULL_CONDENSING_QPOASES"
ocp.solver_options.nlp_solver_type = "SQP"
ocp.solver_options.hessian_approx = "GAUSS_NEWTON"
ocp.solver_options.integrator_type = "ERK"
# ocp.solver_options.sim_method_num_stages = 4
# ocp.solver_options.sim_method_num_steps = 3

# Create json file
ocp_solver = AcadosOcpSolver(ocp, ’acados_ocp_’ + ocp.model.name + ’.json’)

return ocp_solver

Code listing C.4: main

def main():
ocp_solver = energyMPC.ocpSolver()
ocp_integrator = AcadosSimSolver(ocp_solver.acados_ocp, ’acados_ocp_’ +
ocp_solver.acados_ocp.model.name + ’.json’)
Nsim = 100 # Number of iterations
nx = ocp_solver.acados_ocp.model.x.size()[0]
nu = ocp_solver.acados_ocp.model.u.size()[0]
ny = nx + nu
N = ocp_solver.acados_ocp.solver_options.qp_solver_cond_N
Tf = ocp_solver.acados_ocp.solver_options.tf #Prediction horizon

simX = np.ndarray((Nsim, nx))
simU = np.ndarray((Nsim, nu))

x0 = np.array([0, 1, 0, 0, 0, 0]) # Initial state
x_cur = x0
simX[0,:] = x0

computation = []
time_solve = 0



Chapter C: Code 61

for i in range(Nsim):

ocp_solver.set(0, "lbx", x_cur)
ocp_solver.set(0, "ubx", x_cur)

start = time.time()
solver_status = ocp_solver.solve() # Solve the ocp at current iteration
t = time.time() - start
computation.append(t)
print(f’time:␣{t*1000:.2f}[ms],␣iter:␣{i}’) #Calculate time it takes to solve iteration
time_solve += t

if solver_status != 0:
print(f’solver␣error:␣{solver_status}’)
# raise Exception(f’solver error: {solver_status}’)

simU[i, :] = ocp_solver.get(0, "u")

ocp_integrator.set("x", x_cur)
ocp_integrator.set("u", simU[i, :])

integrator_status = ocp_integrator.solve()

if integrator_status != 0:
raise Exception(f’integrator␣error:␣{integrator_status}’)

x_cur = ocp_integrator.get("x")
simX[i, :] = x_cur

print(f’avg.␣time:␣{time_solve/Nsim*1000}[ms]’)
print("Average␣speed:{}m/s".format(np.average(simX[:, 3])))

# Plots

t = np.linspace(0.0, Nsim * Tf / N, Nsim + 1)
t_2 = np.linspace(0.0, Nsim * Tf / N, Nsim)

plt.figure("Figure␣1")
plotFnc.states(t_2, simX, simU)

plt.figure("Figure␣2")
plotFnc.computationalLoad(Nsim, computation)

plt.figure("Figure␣3")
plotFnc.energyPlot(t, simX)
plt.show()

main()



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

Erik Thallaug Fagerli

Model Predictive Control for Path
Following of an Autonomous Student
Car

Model Predictive Control for Longitudinal and
Lateral Path Following of an Energy Efficient
Autonomous Student Car

Master’s thesis in Industrial Cybernetics
Supervisor: Thor Inge Fossen
June 2022

M
as

te
r’s

 th
es

is


	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Shell Eco Marathon
	DNV FuelFighter
	Key Contributions
	Problem formulation
	Related Work
	Structure of the report

	Vehicle Modelling
	Vehicle Model
	Longitudinal Vehicle Dynamics
	Kinematic Bicycle Model
	Kinematic Model of Lateral Motion

	Model summary

	Control System Design
	Model Predictive Control
	The Advantages of MPC
	General Formulation
	MPC solver

	Energy Efficiency
	MPC - Problem Formulation
	Constraints
	Minimization Variables
	Tuning


	Implementation
	ACADOS
	Implementation with ROS and Gazebo
	Path Representation

	Parameters

	Results
	Performance
	Straight-Line Path Following
	Sinus Wave Path following

	Energy Efficiency
	Computational Load
	Performance in Gazebo

	Discussion
	Performance
	Straight-line
	Sinus Wave

	Energy Usage
	Computational Load
	Performance in Gazebo

	Conclusion and Future Work
	Conclusion
	Future Work
	Additional Features
	Testing on FuelFighter 5


	Bibliography
	FuelFighter 5
	Sensors
	Perception
	Mid Level Controller
	Controllers

	Tuning Weighting Matrices
	Code

