
Remote Control of Autonomous
Vehicle Through 5G Network With
Integrated Operator-Assistance
System

July 2022

M
as

te
r's

 th
es

is

M
aster's thesis

Alexey Gusev

2022
Alexey Gusev

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f C

om
pu

te
r S

ci
en

ce

Remote Control of Autonomous Vehicle
Through 5G Network With Integrated
Operator-Assistance System

Alexey Gusev

Computer Science
Submission date: July 2022
Supervisor: Gabriel Kiss
Co-supervisor: Frank Lindseth

Norwegian University of Science and Technology
Department of Computer Science

Abstract

The promise of autonomous technology has long been tempting. It has the po-
tential to transform our experience of travel, remove people from high-risk work-
ing environments, help with transport, streamline our industries and more. Self-
driving vehicles are slowly but surely starting to become a reality despite the many
obstacles still to be overcome. Especially in aspects as object detection in bad
weather, full autonomous control, reaction to sudden issues or unpredicted situ-
ation where the vehicle can end up doing harm. In all of those situations it is
important to have a possibility to take manually control over the vehicle in order
to safely bring it back to a normal state or condition. This thesis aims to explore
and determine how to build such an operator-assistance system for real-time re-
mote control of AV, and show the feasibility of it.

Different methods was used when exploring possible implementations of the sys-
tem such as connection, control, object detection, steering, video transmission and
a GUI for the operator. The result was an operator-assistance system build on top
of a Nvidia Drive platform on a full scale electric KIA Niro and a ARM-based Linux
computer, NVIDIA DRIVE AGX Xavier. The connection between operator and the
autonomous vehicle was realized through Wireguard VPN over a 5G cellular net-
work with a specialized 5G-router mounted into the car, in order to minimize
transmission delay and jitter. By further using ROS as a base for controlling and
sending data it was made possible to remote control the AV and transmit video.
In order to integrate an operator-assistant in the future, helping avoid bad man-
euvers, object detection with Yolo5 was tested, implemented and added onto the
received data. All of this was later collected, automated and presented in a graph-
ical interface available for operator.

iii

Sammendrag

Løftet om autonom teknologi har lenge vært fristende. Den har potensial til å
transformere opplevelsen vår av reise, fjerne folk fra høyrisikoarbeidsmiljøer, hjelpe
til med transport, effektivisere bransjene våre og mer. Selvkjørende kjøretøy be-
gynner sakte men sikkert å bli en realitet til tross for de mange hindringene som
fortsatt må overvinnes. Spesielt i aspekter som gjenstandsdeteksjon i dårlig vær,
full autonom kontroll, reaksjon på plutselige problemer eller uforutsette situas-
joner der kjøretøyet kan ende opp med å gjøre skade. I alle disse situasjonene er
det viktig å ha en mulighet til å ta manuell kontroll over kjøretøyet for å trygt
bringe det tilbake til normale omgivelser og tilstand . Dette prosjektet tar sikte på
å utforske og bestemme hvordan man kan bygge et slikt operatørassistansesystem
for sanntids fjernkontroll av autonome kjøretøy, og vise gjennomførbarheten av
det.

Ulike metoder ble brukt under utforskning av mulige implementeringer av systemet;
høyhastighetstilkobling i sanntid, kontroll, objektdeteksjon, styring, video-overføring
og en GUI til bruk for operatøren var blant det som skulle være operativt. Res-
ultatet var et operatørassistansesystem bygget på toppen av en Nvidia Drive-plattform
på en fullskala elektrisk KIA Niro og en ARM-basert Linux datamaskin, NVIDIA
DRIVE AGX Xavier. Forbindelsen mellom operatøren og det autonome kjøretøyet
ble realisert gjennom Wireguard VPN over et 5G mobilnettverk med en spesial-
isert ruter montert i bilen, for å minimere overføringsforsinkelser og jitter. Ved
ytterligere å bruke ROS som en base for å kontrollere og sende data ble det mulig
å fjernstyre bilen og overføre video. For å hjelpe operatøren med å unngå dår-
lige manøvrer, ble objektdeteksjon med Yolo5 implementert og lagt til de mot-
tatte dataene. Alt dette ble senere samlet, automatisert og presentert i et grafisk
grensesnitt tilgjengelig for operatøren.

v

Preface

This specialization project is a part of NAP-lab (NTNU Autonomous Perception
Lab) research group located at the Norwegian University of Science and Techno-
logy (NTNU).

I am thankful to my supervisor Gabriel Kiss and co-superviser Frank Lindseth for
providing invaluable feedback throughout the project and also for giving me ac-
cess to the required resources. A big thanks goes also to "Værnes Garnison" who
let us test the automated vehicle at Værnes airport in Trondheim.

vii

Nomenclature

Acronyms and Abbreviations:

5G Fifth-generation technology standard for broadband cellular networks

CAN Controller Area Network

ESC Electronic Speed Controller

FOV Field Of View

GMSL Gigabit Multimedia Serial Link

I MU Inertial Measurement Unit

LiDAR Light Detection And Ranging Sensor

MQT T Message Queuing Telemetry Transport

NAP − Lab NTNU Autonomous Perception Laboratory

OS Operative System

PI D Proportional Integral Derivative Controller

R/C Radio Control

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping

SSH Secure Shell

V CU Vehicle Control Unit

V PN Virtual private network

Y OLO You Only Look Once (family of compound-scaled object detection models)

ix

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Nomenclature . ix
Contents . xi
Figures . xv
1 Introduction . 1

1.1 Motivation . 1
1.2 Goals and research challenges . 2
1.3 Research Method . 5
1.4 Contribution . 6
1.5 Thesis Overview . 7

2 Background . 9
2.1 Potential and Challenges In Autonomous Driving 9

2.1.1 Potential of Autonomous Vehicles 9
2.1.2 Challenges in Autonomous Driving 9
2.1.3 Possible Solution to The "Dead-Lock" Problem 10
2.1.4 Connection and Communication Between Car and Operator 11

3 Theory . 13
3.1 Autonomous and Cooperative Driving 13
3.2 Next Gen. 5G Cellular Network . 15
3.3 VPN . 17
3.4 Hardware and Architecture of NAPLab Car 17

3.4.1 NAP-Lab car . 17
3.4.2 Lidar . 20
3.4.3 Camera . 21
3.4.4 Vehicle Control Module - Drive Kit 22
3.4.5 Radar and GNSS . 23
3.4.6 Router . 23
3.4.7 Steering Wheel and joystick . 23

3.5 Software . 24
3.5.1 Nvidia Drive SDK - Drive OS and DriveWorks 24
3.5.2 Kivy . 27

xi

xii Alexey Gusev: Remote Control System for Autonomous Vehicles

3.5.3 OpenCV . 28
3.5.4 ROS . 28
3.5.5 WireGaurd VPN . 33

4 Methods . 35
4.1 Connection and Communication Between Car and Operator 35

4.1.1 Peer to Peer(P2P) . 36
4.1.2 VPN . 36
4.1.3 Automated Connection . 39
4.1.4 Architecture Overview . 41

4.2 Vehicle Control System . 45
4.2.1 Drive Kit and CAN bus wiring 45
4.2.2 Utilize CAN Data in ROS . 45
4.2.3 Wired Control Over ROS With Xbox Joystick 46
4.2.4 Vehicle Control Over IP From LAN 48
4.2.5 Vehicle Control Over IP From WAN 49
4.2.6 System Adaption for G29 Steering Wheel and Pedals 50
4.2.7 Steering Control Strategy . 51
4.2.8 Architecture Overview . 54

4.3 Real Time Video Transmission Over IP 56
4.3.1 Obtaining Image Data From the Cameras 56
4.3.2 Compression Algorithm . 56
4.3.3 Video Encoding and Transmission From The Car 58
4.3.4 Video Decoding at Remote . 58
4.3.5 Architecture Overview . 59

4.4 Methods and Algorithms for Real-Time Object Detection 61
4.4.1 Collection and Segmentation of Lidar Data 61
4.4.2 Label Objects on Videos . 61
4.4.3 Object Detection Algorithm . 64

4.5 Graphical User Interface . 65
4.5.1 First Design Phase: Overall Conceptual Design 65
4.5.2 Second Design Phase: Functional Design 67
4.5.3 Visual Design Principles . 67
4.5.4 Implementation and Architecture Overview 71

5 Results . 75
5.1 Stationary and non stationary test execution 75
5.2 The Entire Remote Control System . 76

5.2.1 Implemented features . 76
5.2.2 Tests . 79
5.2.3 Results . 79

5.3 P2P WireGuard VPN Connection Over 5G Cellular Network 82
5.3.1 Tests . 82
5.3.2 Results . 82

5.4 PID Controller and ROS System For Manoeuvring Vehicle Over IP . 83
5.4.1 Tests . 83

Contents xiii

5.4.2 Results . 86
5.5 Video Transmission Over ROS With H.264 Encoding 86

5.5.1 Tests . 86
5.5.2 Results . 88

5.6 GUI Desktop App in Kivy . 89
5.6.1 Tests . 89
5.6.2 Results . 89

5.7 Object Detection With Yolo V5 in Real Time 90
5.7.1 Tests . 90
5.7.2 Results . 90

5.8 Expert Feedback . 96
6 Discussion . 97
7 Conclusion and Future Work . 99

7.1 Conclusion . 99
7.2 Future Work . 100

Bibliography . 101
A Additional Material . 109

Figures

1.1 Feature tree diagram containing the proposed features of the Re-
mote Control System that are desired to be developed. 4

2.1 Illustration showing the correlation between vehicle’s travelled dis-
tance and latency with a driving speed of 60km/h. Source of image
[23] . 12

2.2 Forecast of the number of SAE level 4 and 5 vehicles produced from
2019[25] . 12

3.1 Figure illustrates the different SAE level that categorize the autonomy
state of a vehicle. Source: SAE website[28] 14

3.2 Overview of NAP-Lab car . 18
3.3 Figure illustrates an overview of the trunk area with the moun-

ted equipment. Nvidia Drive on the left, Arcus Router on the right,
GNSS receivers and switch in the back. 18

3.4 Figure illustrates an overview over the architecture of the upgraded
Kia Niro by NAPLab. The Asus router illustrated is old setup, and is
now changed to Arcus 5G router . 19

3.5 A figure showing the different lidars installed. 21
3.6 A figure shows the different cameras. 22
3.7 A figure showing the setup of the remote controllers. 24
3.8 Figure illustrates an overview over the type and placement of the

equipment on the car. Different colors indicate different type of
equipment. 25

3.9 Figure illustrates the field of view of each camera and lidar, with
respect to it placement. Different colors indicate different type of
equipment. 26

3.10 Figure illustrates the stack of Nvidia Drive SDK. Source of image [38] 27
3.11 Figures illustrates ROS workflow and a message example 32

4.1 Illustrates the setup of WireGuard zone, the one in blue. WAN mas-
sages has only access to the WireGuard zone, the router and LAN
more secure to threats. 37

xv

xvi Alexey Gusev: Remote Control System for Autonomous Vehicles

4.2 Illustrates the setup of WireGuard zone port forwarding, the one in
blue. When the any host has connection established with the VPN
zone(wg_zone) only ROS and SSH messages to the specific ports
are possible to use. Giving an additional layer of security. 38

4.3 A figure showing a latency comparison between TCP and UDP tun-
nels in WAN. Source [67] . 39

4.4 Figure is screenshot of the the WireGuard interface setup "wg0" on
the remote machine. This is used in establishing VPN connection
to the WG interface inside the car´s router. (The private key on the
picture is hidden) . 40

4.5 Figure showing a deployment diagram view with only relevant com-
ponents of the remote control system network architecture. 41

4.6 Figure showing a network diagram with only relevant components
of the remote control system network architecture. 42

4.7 Figure showing a logical view network diagram with only relevant
components of the remote control system P2P network architec-
ture. Note that the shown CGN is in bridge mode only for this par-
ticular static IP and that the IP address of remote PC is a logical IP
set by WireGuard, the physical is arbitrary for this view. 43

4.8 Figure showing a sequence diagram view with only relevant com-
ponents for the VPN and SSH connection establishment. The dia-
gram shows also commands during the process. After the connec-
tion is established it is possible to use the connection directly end-
to-end without going through the steps again 44

4.9 Figure illustrates the wiring of Drive Kit into the car, though CAN
bus. Source [68] . 46

4.10 Figure illustrates the wiring of Drive Kit into the car, though CAN
bus. Source [68] . 47

4.11 Figure illustrates plot of respectively from the top; speed, throttle,
brake and steering from the OBD CAN bus, during a short manual
drive with the car According to vehicle internal metrics. 47

4.12 Figure shows a RQT graph of the nodes, topics and their interaction
when the "runJoystickDrive.launch" is run 49

4.13 Summary of Control Strategies for Autonomous Vehicles. [72] . . . 52

4.14 P, PD and PI controller comparison. [72] 53

4.15 Figure illustrates showing how tuning of the different parameters
in a PID controller impact its performance. [73] 53

4.16 Figure showing a RQT graph also called ROS graph, which illus-
trates nodes that subscribes or publishes topics related to the con-
trol part in the full remote control system. The topic "can_frame" is
used for publishing information regarding car status data such as
speed. 54

Figures xvii

4.17 Figure showing a sequence diagram with only relevant compon-
ents regarding ROS nodes used in the remote control process of
the vehicle. The diagram shows an abstraction of only ROS pro-
cesses and assumes that the VPN and SSH connection showed in
Figure 4.8 has already been established. 55

4.18 Figure shows the parameters for camera.gmsl in Nvidia Drive SDK.
Source of image [75] . 56

4.19 Equations for calculating bandwidth usage during video transmis-
sion. [76] . 57

4.20 Figure shows a comparison between codecs. Source of image [76] . 58
4.21 Figure showing a RQT graph also called ROS graph, which illus-

trates nodes that subscribes or publishes topics related to video
transmission in the remote control system. Link 0-4 corresponds
to camera 0-4, and this particular setup shows only 3 cameras are
subscribed and used by the GUI . 59

4.22 Figure shows a sequence diagram with only relevant components
regarding ROS nodes used in the video transmission processes. The
diagram shows an abstraction of only ROS processes and considers
that the VPN and SSH connection showed in Figure 4.8 has already
been established. The diagram also illustrates only one republisher
and one camera being used. In the system, there are four of them
(front, right, left, rear), but they do the exact same thing. 60

4.23 A figure showing the 3D lidar data and the driven route illustrated
through SLAM. 62

4.24 A figure showing the lidar data segmented into 2D space images,
in three variants of visualization. 63

4.25 A figure showing annotation of video with the chosen classes and
labeling. 63

4.26 Figure showing the design of the first Mock-Up of the Remote Con-
trol System as a graphical user interface. 66

4.27 Figure illustrates second version of mock-up, this time with more
functional design and fixes of the issues in the first mock-up. 68

4.28 Figure showing different parts of the GUI. 70
4.29 Figure showing a RQT graph also called ROS graph, which illus-

trates nodes that subscribes and publishes topics related to the re-
mote control system included GUI. Link 0-4 corresponds to camera
0-4. This graph shows the entire system with all nodes, topics and
connections . 73

4.30 Figure showing a RQT graph also called ROS graph, which illus-
trates nodes that subscribes and publishes topics related to the
remote control system without the graphical user interface. This
graph shows all nodes and topics except of the graphical user in-
terface and the connection to it. 74

xviii Alexey Gusev: Remote Control System for Autonomous Vehicles

5.1 Figure showing both the background processes and the app run-
ning. All systems are nominal and the control over the car is estab-
lished. 77

5.2 Figure shows the operator’s setup during test of the system. 78
5.3 Operator’s point of view in the GUI of the remote control system.

Side cameras is changed to front wide cameras. 78
5.4 Figure showing a table with results of ping, total latency, user satis-

faction, usability of the system and total satisfaction of the system
with regard to the connection type. 81

5.5 In this figure there are 2 tables, the upper one showing Connection
latency with or without use of the VPN on both the vehicle com-
puter and the remote computer. The lower table shows connections
speed on both computers during the testing. 84

5.6 Figure shows 4 measurments at two different locations in Trond-
heim with both 4G and 5G in order to compare the connection type
on speed and latecny. 85

5.7 Figure with a table showing the results of testing of the remote
maneuverability. All tests are done using 4G+ and 5G. 87

5.8 The bandwidth used by the video transmission is shown on this
screenshot from the Celerway Arcus router’s interface. 88

5.9 A figure showing the labels predicted by different version of pre-
processing with Yolov3 and Yolov3 Tiny. 93

5.10 A figure showing the labels predicted by different version of pre-
processing, training with Yolov5. 93

5.11 A figure showing the training and validation dataset together with
the results. 94

5.12 A figure showing graphed results of Yolo5 and the predictions labels
on the validation set. 95

5.13 Testing of the implemented object detection with Yolo5, that is em-
bedded into the remote control system as seen on picture. 95

Chapter 1

Introduction

This chapter introduces the project and will briefly cover the thesis’s motivation,
goals and research method. Due to one of the main focuses of this paper being
the use of autonomous vehicles in cities and other public areas, this aspect, its
dependencies and today’s as-is situation are introduced thoroughly. In addition,
the goals and research challenges will be set and discussed.

1.1 Motivation

Self-driving vehicles are slowly but surely starting to become a reality despite
the many obstacles still to be overcome. This means that in the near future, the
world could change in some unexpected ways. It is already observed that many
companies invest big money in their self-driving car projects, such companies as
Waymo(Google), Uber, Tesla Yandex, BMW and Audi, to mention a few.

This technology can be the key to building future cities where our reliance and re-
lationship with vehicles are redefined. In addition, it can lower carbon emissions
and pave the way for more sustainable ways of living. Nevertheless, the biggest
problem for the engineers in the autonomous technology industry is getting the
cars to operate safely and effectively in complex and unpredictable human envir-
onments and bad, snowy weather conditions. As a result, autonomous cars will
inevitably end up in a complex situation where some sensor information is wrong,
limited, or something unreasonable happens on the road, leading the vehicle into
a possible "dead-lock". In this situation, no progress is possible because two or
more competing actions are waiting for the other to finish.

1

2 Alexey Gusev: Remote Control System for Autonomous Vehicles

This paper will concentrate on developing a proof-of-concept solution for the
dead-lock problem on a full-scale vehicle, contributing to the development of AV.
The proposed solution is an integration of a remote control system as an indis-
pensable part of every AV system over the new 5G cellular network for low latency
telemetry and an additional operator-assistance system in order to counteract any
collapse of the system or bad manoeuvres by the operator when burst packet loss
occurs, or operator makes any mistake. With such a system, edge cases and dead-
locks should no longer have to be a limitation or threat for self-driving cars.

1.2 Goals and research challenges

The goals of this thesis are introduced and described in this section. The form-
ation of such questions provides an important driving force for the project. Fur-
thermore, provide clarity as to the goals sought. The later results presented in
chapter 5 will be solely based on goals and research challenges set in this section.
It is worth mentioning that this project combines exploration, different methods,
modern technologies, and knowledge followed by consistent testing into a com-
plete system. This way visualizes in full scale the concept of remote-controlled
cars that later can be used for further research or development. Figure 1.1 also
shows a feature tree diagram with proposed feature to develop and test for the
system.

Goal 1: Explore and show a possible architecture and functionality of
a full-scale autonomous vehicle based on Nvidia Drive Platform

The project will be based on the resources provided by the research group NAPLab,
the Kia Niro with integrated Nvidia Drive Platform, and all necessary sensors for
making the car fully autonomous. A further technical specification is shown in
section 3.4. Knowing the car’s architecture is crucial for further research and de-
velopment.

Goal 2: Explore, build and test a complete system that enables remote
control of an autonomous vehicle as a proof-of-concept solution for oc-
curring edge cases in traffic such as "dead-locks (??).

Nowadays, autonomous cars still need much human support, mainly when a prob-
lem or an unfamiliar situation occurs. A human can always be inside a vehicle
and control the situation if something happens, but what if the vehicle is so small
that it lacks space for a human operator, or the vehicle is made for driving fully
autonomous; no human operator will be by its side. The company Yandex have
been developing autonomous cars and rovers for delivering food for many years.
When a unique situation occurs without the rover detecting what to do, the con-
trol is handed over to a control centre over LTE. Operators can see real-time video
and help the rover out.[1]

Chapter 1: Introduction 3

This technology is used for low speed and will need less latency and higher net-
work speed to work in real-time with a full-scale autonomous car. Therefore, it
will be appropriate to contribute to this area of development and research by ex-
perimenting with a remote-controlled vehicle with the new 5G network.

RC2.1: Ensuring secure communication and data transfer

Teleoperation can control autonomous vehicles when edge cases or the need for
it occurs (2.1.3). However, that requires real-time information about traffic situ-
ations, status and vehicle control to be sent over from the car to the operator.
Therefore, the remote controller must retain all necessary information and data
over a secure, stable, high-performing communication channel (4.1).

RC2.2: Enabling brake, steering and throttle control of a car over IP.

In an autonomous car’s software or hardware stack, there are various parts, all
important for the system to function. However, some are still more dominant, and
a part of the core, like the control system, which is especially crucial for the remote
control system of this thesis [2]. For the operator to remotely control the car, all
vital parts such as steering, brakes and throttle must be done by wire and not
physically in the car. The operator also needs to have a high response time from
the system to control it at high-speed 2.1.4.

RC2.3: Realizing real-time video transmission from an Nvidia Drive
Platform.

Video transmission in real-time is crucial for the operator to manoeuvre the vehicle
remotely. The operator is wholly dependent on the video stream delivered by the
system to entail a high response time in any situation. In the research done by M.
Claypool and D. Finkel [3] any first-person game is both the most sensitive class
of games and the one having the most significant negative impact by increased
latency. The remote control system with a possible user interface can be seen as
similar to a first-person game. Therefore, the system must implement a stable and
high-quality video stream.

RC2.4: Designing GUI for the remote control system, such that an oper-
ator can have reliable control of the vehicle

A graphical user interface plays a vital role for the end-user. Therefore, the design
needs to support and highlight the potential of the remote control system, and GUI
itself needs to be highly functional, aesthetically pleasing and user-friendly. The
aforementioned is essential because of the real-time environment, where stressing
or poorly designed UI plays a critical role in user performance and efficiency and
can entail a bad user experience and, in the worst case, lead to possible accidents
[4].

4 Alexey Gusev: Remote Control System for Autonomous Vehicles

RC2.5: Mapping out methods and algorithms for object detection in real-
time, that later can be available for operator assistance

Operator-assistance system is important as a part of the remote control system to
counteract any system collapse or bad manoeuvres by the operator when burst
packet loss occurs, or the operator makes any mistakes. Object detection sub-
task is one of the most critical prerequisites in many autonomous driving systems
and vehicles. The task allows the car controller to account for obstacles when
considering the diversity of future trajectories to follow and is therefore crucial
for the autonomous navigation [5].

Figure 1.1: Feature tree diagram containing the proposed features of the Remote
Control System that are desired to be developed.

Chapter 1: Introduction 5

1.3 Research Method

This chapter contains a brief account of methodological choices. The thesis is
a qualitative study, a standard research method to use when studying a phe-
nomenon in depth [6]. In this case, the phenomenon is to get insight into an
autonomous vehicle and understand how to control it remotely over IP, as ex-
plained in section 1.2. Most of the thesis is based on a qualitative literature study
- a process of studying various documents to try to answer the overall research
challenge [7]. The paper is also a feasibility and experimental study, which means
that technical aspects of the concept are taken into account and also tested [8].

In addition to previous research papers related to the topic, various databases and
search engines were used to find sources, such as Google Scholar and Oria. The
relevance and credibility of the sources were assessed before use. When obtain-
ing sources, various articles and journals were first assessed for relevance by the
title. Then the summary and the introduction were read so that the source’s rel-
evance concerning the problem could be assessed. If a source was relevant, then
credibility was assessed. Peer-reviewed sources and official reports from large or-
ganizations were considered the most credible. In the absence of such sources, less
credible sources were used, including master’s theses and news articles. Finally,
the information from the most credible source was extracted in case of conflict-
ing information. The project is pervasive and more immense than it is possible
to complete with the available resources, especially in terms of time and human
resources.

Flexible working methods have been used in preparing the concepts before the
experiments. It is about continuous iteration through the project, which means
repeating a particular process several times. This gradual procedure involves un-
dergoing various changes and adaptations along the way. The process is often
divided into several work blocks where one in each block repeats the same activ-
ities, such as planning and analysis [9]. Iterative usage of creative design methods,
such as early prototyping and problem reframing, was a vital tool for innovation
and problem-solving, known as the design thinking process. In order to arrive at a
final working concept, it was relevant to evaluate possible solutions several times
to see what was suitable. This method allowed testing and comparing different
ideas to achieve the best possible result. This study was also experimental, which
means the experimental method was used. It involves manipulating one variable
while studying the others and seeing if any changes are happening simultaneously
and if they have any correlation. This method relies on controlled methods, ran-
dom assignment and the manipulation of variables to test a hypothesis.

This thesis aimed to develop a full-scale product (remote control system) that
could be tested and act as a proof-of-concept. Therefore, the work implies con-
centrating on a fully working concept, targeting a professional end-user. Thus, it
is worth noting that both the methods and results are practical and concentrated
on the entire system functionality and user experience rather than each part’s

6 Alexey Gusev: Remote Control System for Autonomous Vehicles

theory and high-end solutions. In addition, because the system was developed on
an already built vehicle hardware and software stack, the variety of choices and
information was somewhat limited.

1.4 Contribution

This thesis and its experiments construct a system that can remote control a full-
scale car through the 5G cellular network. Much of the technology and theory used
for building the remote control operating system is widely known. Nevertheless,
the system in its entirety is unique and similar projects have rarely been built
before in full scale. The evaluation of the project delivered many good results and
was one of the first of its kind tested in Norway, see chapter 5. By showing the
feasibility of the system and proof-of-concept, the thesis contributes to knowledge
mainly with the following aspects and methods:

• Low latency remote control system through 4G/5G with possibility for fu-
ture operator assistance as a complete and working system
• Local and global data flow through CAN Bus and ROS.
• Object detection with Yolo v3 and v5 in real-time.
• Automated P2P WireGuard VPN connection over 5G and 4G cellular net-

work.
• PID controller for precise by wire manoeuvrability, with Logitech G29 steer-

ing wheel and pedals.
• Automated system of several interconnected ROS nodes and ".launch" files

for remote control of the vehicle over IP.
• Video Transmission with ROS over IP and H.264 compression of 4 GMSL

cameras.
• Desktop app in Kivy displaying real-time data and video streams in a clean

and eye-catching graphical user interface.

Chapter 1: Introduction 7

1.5 Thesis Overview

This section contains a short description of the chapters in this report:

1. Introduction
The introduction to the project covers the motivation, goals and research
method of the thesis. In addition, the goals and research challenges are set
and discussed here.

2. Background Theory
Background theory includes the essential theory and information needed
to understand the project in the different disciplines it crosses. The chapter
also describes the hardware components and the software stack of the NA-
PLab car and the whole system.

3. Methods
This part of the report will present methods to answer and fulfil the goals
in section 1.2. It mainly includes the implementation and discussion of all
parts constituting the remote control system developed for this thesis. In
addition, at the end of every section is an architecture overview with graphs
and diagrams corresponding to each part. All sections together form the
entire remote control system, and it is worth noting that all architectural
overviews have a different level of abstraction of the system.

• Connection and Communication Between Car and Operator
• Vehicle Control System
• Real-Time Video Transmission Over IP
• Object Detection in Real-Time
• Graphical User Interface

4. Results
Results were collected during the development, implementation and test-
ing of all system parts. They are all presented with respect to the goals and
research challenges earlier determined. The Results are also showed in a
video uploaded to Youtube, can be seen here [10].

5. Discussion
Evaluation and discussions of the results from chapter 5, along with sugges-
ted improvements for the system.

6. Conclusion
The conclusion of the project

Chapter 2

Background

This chapter will explain the background for this thesis in-depth, the potential of
autonomous vehicles and their significant vulnerabilities. In addition, a possible
solution for some of the challenges will be proposed.

2.1 Potential and Challenges In Autonomous Driving

2.1.1 Potential of Autonomous Vehicles

The promise of autonomous technology has long been tempting. Potentially it
can transform our experience of travel, remove people from high-risk working
environments, help with transport and streamline our industries. This technology
can be the key to building future cities where our reliance and relationship with
vehicles are redefined. In addition, it can lower carbon emissions and pave the
way for more sustainable ways of living. Only by reducing the time a car uses for
parking search could achieve 5-11% emission reduction, stated by "Brown A [11].
Travel could also become much safer than it is today. According to the World
Health Organization, more than 1.3 million people die each year due to road
traffic incidents, and 94% of crashes involve human error as a contributing factor
[12]. However, for autonomous vehicles to become mainstream, much needs to
be changed, developed and tested. [13]

2.1.2 Challenges in Autonomous Driving

The biggest problem for the engineers in the autonomous technology industry is
getting the cars to safely and effectively operate in complex and unpredictable hu-
man environments. Because not every human driver will behave calmly, serenely
and understandable for the autonomous vehicle. Artificial intelligence software
development for object detection and manoeuvring is also far from finished. [13]

9

10 Alexey Gusev: Remote Control System for Autonomous Vehicles

Another major challenge for fully autonomous vehicles is navigating in bad and es-
pecially snowy weather conditions. Snow can clog the sensors or confound crucial
sensor data. As a result, the vehicle can lose its depth vision, the ability to detect
obstacles or, for example, keep on the right side of the road [14]. Most testing of
driverless cars until now has been in sunny, dry climates, but for the technology to
be helpful in all climates and conditions - that will have to change. A spokesper-
son for Argo, a company backed by Ford, said that their technology will handle a
light rain, but "for heavier rains and snow, there still needs to be advancements in
both hardware and software." [15] It is clear how the winter weather is increasing
the complexity of developing an automation technology and that we need more
testing in ice-weather conditions.

Autonomous cars will inevitably end up in a complex situation where some sensor
information is wrong, limited, or something unreasonable happens on the road,
leading the vehicle to a possible "deadlock". A deadlock is a situation where no
progress is possible because two or more competing actions are waiting for the
other to finish [16]. Such situations where the car cannot make decisions inde-
pendently will need human intervention, which entails a driver taking control of
the vehicle until the car can drive autonomously again. Of course, this is not an
issue when a driver is present in the car, and the driver can take control of the
vehicle when needed. On the other hand, when the car is completely driverless
and fully autonomous, a "deadlock" can inflict everything from a traffic jam to
human injuries and fatal consequences. An example of that can be the incident in
Arizona, where an autonomous Waymo tried to run away from its support crew
after getting stuck in traffic before completely blocking a three-lane highway [17].
This and many other incidents show that an autonomous car these days can not
be wholly left to itself and still needs human support [18]. Waymo is still using
safety drivers for many of its tests in San Francisco, so cracking those parts of the
puzzle can be a significant step in the coming years.

2.1.3 Possible Solution to The "Dead-Lock" Problem

Cooperative driving, where multiple vehicles are automatically and remotely op-
erated through low-latency communication, has recently caught much attention.
That is mainly because of the ongoing build-up around the next-generation cellu-
lar network - 5G[19]. Cooperative driving itself can be defined as "Systems that
provide a collection of sensor information, mediation, and control of wide-spread
multiple vehicles with ultra-low latency" [20]. It starts to be interesting because
5G can offer much lower latency than its predecessor and even more bandwidth
and speed, which will infer a stable cooperative driving system for the first time.
Although self-autonomous vehicles are required to manage cooperative driving
safely, and the system will enable self-autonomous vehicles to acquire sensor
information from peripheral vehicles, it is still somewhat tricky for distributed
control by autonomous driving vehicles, at least in the phase of development, to
achieve cooperative driving in scale.

Chapter 2: Background 11

A possible solution to the deadlock situation as described in subsection 2.1.2 can
be an integration of a remote control system as an indispensable part of every AV
system. By letting a human operator control the car remotely, such edge cases and
deadlocks no longer have to be a limitation or threat for self-driving cars. That
makes integrating self-driving cars onto the roads and into cooperative driving
even before the cars are fully automated, without requiring a safety driver in the
vehicle. It is worth mentioning that to run a car safely over telemetry and with
low network latency, a 5G cellular network would probably be needed.

In addition, an operator-assistance system is suggested as part of the remote con-
trol system, such that any possible mistake made by the operator would not lead
to a fatal accident. An AI should accomplish this assistance with object detection
by helping the operator in all situations and working seamlessly together. For ex-
ample, when burst packet loss occurs, a remote control system tends to collapse or
be interrupted, which can be highly undesirable at high speed. In such cases, the
control would be carefully taken over by the operator’s assistant, waiting for the
situation to stabilize before returning the control to the operator. That leads to re-
mote control of AV through a 5G network with an integrated operator-assistance
system, where AI and operator work together.

In this paper, the remote control will be further defined as the control system by
which external equipment, such as a server or computer, with two-way commu-
nication, collects sensor information from a vehicle and seamlessly controls it.

2.1.4 Connection and Communication Between Car and Operator

Remote-controlled vehicles with teleoperating systems for steering first appeared
around 1900, but they were not commonly used before the 1970s. The applica-
tion for teleoperating vehicles has different purposes, such as inspecting poten-
tially dangerous environments or exploring places hard to reach, such as space or
other planets [21]. However, for these purposes, there is often no need to con-
sider other vehicles; therefore, communication quality and latency is not as crit-
ical as in traffic situations where the reaction time must be as short as possible. As
already discussed in subsection 2.1.3, teleoperation can be used for controlling
autonomous vehicles when edge cases occur. Such telemetry requires real-time
information about traffic situations, status and control of the car. Measurements
done by M. Claypool and D. Finkel in 2014 [3] on the subjective and objective
effects of latency in cloud-based games show that both user performance and
quality of experience degrade linearly with an increase in latency. Therefore, the
remote controller must retain all necessary information and data over a secure,
stable, high-performing communication channel, with latency lower than 50ms
[22] for accurate manoeuvring and satisfying operator experience. Figure 2.1
shows a comparison between the impact of different latency on a car driving at
60 km/h.

12 Alexey Gusev: Remote Control System for Autonomous Vehicles

Figure 2.1: Illustration showing the correlation between vehicle’s travelled dis-
tance and latency with a driving speed of 60km/h. Source of image [23]

Projection and future of driverless cars

Several analysts predict that SAE Level 5 vehicles will only be in great use in a
decade [24]. Global data has forecasted the expected number of cars, SAE levels
4 and 5, to be 2.3 million cars produced by the year 2033/2034 [25], shown in
Figure 2.2. The forecast for 2020 is more conservative than 2019, reflecting the
industry, which has generally had a less optimistic view of the time perspective for
vehicles of level 5 [26]. However, if new challenges related to level 5 emerge, the
current forecast may become even more conservative, and the future with level 5
vehicles may be even further away.

Figure 2.2: Forecast of the number of SAE level 4 and 5 vehicles produced from
2019[25]

Chapter 3

Theory

This chapter will go through the most important theory, information, and termin-
ology needed to understand the project in the different disciplines it crosses. The
theory covered here is closely related to the implementation of the remote con-
trol system developed for the thesis and general knowledge about autonomous
vehicles and subsequent terminology. The chapter also describes hardware com-
ponents and the architecture of the NAPLab car, in addition to the software stack
used in implementing the remote control system. The NAP-lab car will, in this
text, further be referenced as the car and the remote control system as the system
developed for this thesis.

3.1 Autonomous and Cooperative Driving

An autonomous vehicle (AV), also known as a self-driving car, driver-less or ro-
botic car, is a vehicle incorporating vehicular automation, that is, a ground vehicle
capable of perceiving its environment while moving safely with little or no human
input at all, depending on the autonomous level of the agent. By combining vari-
ous sensors, the AV can sense its surroundings; such sensors can be radars, lid-
ars, thermographic cameras, image cameras, odometry, sonar, GNSS and inertial
measurement units. In addition, advanced control and computing systems can
interpret sensory information to identify appropriate navigation paths, relevant
signage and possible obstacles. A self-driving car is usually developed with five
main components in mind, where all of which are equally important to make the
car fully autonomous [27]:

• Computer vision - how the car sees
• Sensor fusion - how the car understands its environment
• Localization - how the car knows its location
• Path planning - how the car plans the most optimal route
• Control - how the car steers the wheel and pedals

13

14 Alexey Gusev: Remote Control System for Autonomous Vehicles

AV is often divided into six levels according to a system developed by SAE Inter-
national (SAE J3016, revised and updated periodically) to categorize the state
of how comprehensive an autonomous agent is. The SAE levels are illustrated in
Figure 3.1 and also roughly described below: [28]:

• Level 0 - no automation
• Level 1 - hands-on/shared control
• Level 2 - hands off
• Level 3 - eyes off
• Level 4 - mind off
• Level 5 - steering wheel optional

Figure 3.1: Figure illustrates the different SAE level that categorize the autonomy
state of a vehicle. Source: SAE website[28]

In order to enable a car to travel without any driver embedded within the vehicle
but still have human control over telemetry, as this project was aiming at, it can
no longer be called a fully autonomous vehicle according to SAE.

Chapter 3: Theory 15

If driving automation systems can perform their functions independently and self-
sufficiently, they may be autonomous. However, if they depend on communication
or cooperation with some outside entities, for example, remote control operat-
ors, they should be considered cooperative rather than autonomous [28]. Back in
2003, professors at Nagoya University [21] discussed the cooperative type of driv-
ing and believed that cooperative driving is the ultimate behaviour in traffic were
not only remote control available but mainly cooperation between cars and agents
on the road. They stated that telematics opens the path to an application domain -
cooperative driving by extending the onboard sensors, permitting communication
intentions, and facilitating road courtesy. This means gathering information and
sharing it with other drivers and operators to adapt to the surrounding traffic and
environmental conditions and obey traffic rules and regulations. According to the
professors, the most important goal of cooperative driving was to increase traffic
safety and flow. [21]. It is important to point out that this can also be used to
describe cooperative systems like the one in this thesis, where the remote control
system should work together with an autonomous system in the vehicle, making
it a cooperative driving system.

3.2 Next Gen. 5G Cellular Network

5G is the fifth generation of the world’s wireless network technology, the des-
cendant of the earlier but still mainly used 4G technology. Shortly speaking, 5G is
a collection of different technologies and updates that delivers ultra-low-latency
with an ultra-reliable and ultra-fast signal with a potential of being 10-100 times
faster than the previous standard. That is achieved using higher spectral efficiency,
operating at frequencies of about 28 GHz and 39GHz, using advanced mobile tech-
nology and newer network architecture, such as Edge Computing. 5G can handle
bandwidth as high as 20 gigabytes per second (Gbps), whereas the previous gen-
eration is limited to speeds of around 100 megabits per second (Mbps). [29][30]

In ways of radio technology, it is still important to notice that 5G is very similar to
its predecessor and uses much of the same methods. Like other cellular networks,
5G networks use a system of cell sites. Transceivers in each cell divide their territ-
ory into different sectors and send encoded data through radio waves. For this to
work, each cell site must be connected to a network backbone, whether done by
wire or with a wireless backhaul connection. On top of that, 5G changes how data
is encoded, offering the carriers more options in terms of airwaves to use. [30]

With this technology, new forms of vehicle-to-vehicle (V2V) communications can
already become available. For example, two cars approaching each other from
different directions would let their onboard computing units determine which
vehicle should yield for the other at the location where their paths cross. With such
communications, vehicle-to-everything (V2X) will also become available; cars will
be able to communicate with objects, pedestrians and traffic management systems
at intersections.

16 Alexey Gusev: Remote Control System for Autonomous Vehicles

Remote control of cars in real-time would also be an easy task and will allow for
great advances in both safety and usability of autonomous cars.
Cars will be able to sense hazards farther ahead and use automated systems to
apply brakes, throttle, steering or, when necessary, let a remote operator take
control of the vehicle seamlessly. [21]

One major drawback of 5G is that it achieves its speed with millimetre waves,
which max out at a few hundred meters and are quickly stopped by obstacles
and even heavy rain. This means the 5G network needs more infrastructure to
cover the cities than the lower band 4G. In addition, the latency of the network
is highly dependent on the processing speed that happens at the base stations or
a central server. If the network uses old methods in the way that data is first sent
to a centralized computing server like in Norway at the time this paper is written,
the latency will still be significantly higher than the one 5G can achieve. Telia and
Telenor are building the 5G cellular network in Norway. Both of them are routing
their data through a server in Oslo, meaning that the signal must travel first to
Oslo and then to where the end-user is located. That process can eat up the low
latency promised by 5G. The result is that the processing needs to be closer to the
end-user, for example, with edge-computing, and not placed far away to minimize
the latency with 5G. [29] [30]

Advantages and disadvantages of 5G summarized:

• Advantages:

◦ Speed
◦ Security
◦ New generation of AI- and machine learning-based services
◦ Capacity
◦ Low latency - 5G will significantly reduce the time it takes for network

devices to respond to commands. Compared with 4G which latency
ranges from approximately 60ms - 98 ms according to [31] and 30ms-
50ms in Norway [29]. 5G can reduce latency to less than 5 ms, but the
ultimate target is to go under 2 ms [19].

• Disadvantages:

◦ Uneven coverage
◦ Need a lot of transceivers(Line of sight)
◦ Need a lot of computing power
◦ Capex/Opex
◦ IOT Security

Chapter 3: Theory 17

3.3 VPN

Since the early start of the World Wide Web, there has been a goal to protect and
encrypt internet browser data. During the 1960s, the US Department of Defense
was involved in projects with encryption of internet communication data, and the
battle for safe browsing is still ongoing. The somewhat old but still the de facto
standard TCP/IP protocol has four levels: Link, network, transport and applica-
tion. At the network level, local networks and devices can be connected to the
universal network – where the risk of exposure is evident. A team from Columbia
University and ATT Bell Labs succeeded in 1993 in creating an early version of
the modern VPN known as swIPe: Software IP encryption protocol. That was the
start of a possible solution to a secure gateway to the World Wide Web.

A VPN establishes a secure connection between a client and the internet, often
called a tunnel. Via the VPN, all data traffic from and to the client is routed through
an encrypted virtual tunnel. This will disguise the client’s IP address for the rest
of the internet, making its actual location invisible to everyone. The VPN tunnel
uses different encryption methods to reduce the risk of data leakage; therefore,
only accessible by the client itself and will be secure against external attacks.
This means that even the user’s Internet Service Provider (ISP) and other third
parties cannot see which websites the user is visiting or what data is sent and
received online. It is like a filter that turns all data into "gibberish", and even if
someone does intercept the stream and get their hands onto the user’s data, it
would be useless as it needs to be decrypted with the client’s private keys (Public-
key cryptography). Without the key, it could take millions of years for a computer
these days to decipher the code with a brute force attack.

3.4 Hardware and Architecture of NAPLab Car

Architecture exploration was done by searching and investigating the document-
ation of the different components and parts, in addition to the car itself. Testing
and exploring the equipment with an experimental research method were also
done. It is worth mentioning that this study will not cover all sensors and parts
in-depth, but primarily those relevant for further research and development based
on the goals from section 1.2. The overview of the whole system is illustrated in
Figure 3.4.

3.4.1 NAP-Lab car

Sensors allow vehicles to see and sense everything on the road and collect vital in-
formation for safe driving. Path-building from one point to another, for example,
is made based on the sensor data, such as location and surroundings. Further-
more, all this information is processed and analyzed by the car’s computer, in real-
time, like an infinite loop. Most of today’s autonomous car manufacturers com-
monly use cameras, radars, and lidars as the three primary sensors in autonomous

18 Alexey Gusev: Remote Control System for Autonomous Vehicles

(a) Front view of NAP-Lab car (b) Rear view of NAP-Lab car

Figure 3.2: Overview of NAP-Lab car

Figure 3.3: Figure illustrates an overview of the trunk area with the mounted
equipment. Nvidia Drive on the left, Arcus Router on the right, GNSS receivers
and switch in the back.

Chapter 3: Theory 19

Figure 3.4: Figure illustrates an overview over the architecture of the upgraded
Kia Niro by NAPLab. The Asus router illustrated is old setup, and is now changed
to Arcus 5G router

20 Alexey Gusev: Remote Control System for Autonomous Vehicles

vehicles[32]. As mentioned, the car used in this study is a Kia Niro, modified by
the research group NAP-Lab. It contains many of the most critical sensors, com-
puters and kits to drive fully autonomous. For the project of making the remote
control system, the most fundamental parts are the image sensor - camera, the
5G router, vehicle control module, the computing unit and the further develop-
ment of the assistance system, the lidar and radar. The reasons behind it and the
discussion of why are described in chapter 4.

3.4.2 Lidar

On the car, three lidars by the company Ouster are present, two of which are
smaller with only 16 channels or beams (OS1-16) and one big with 128 beams
(OS2-128). One of the small lidars is mounted into the front of the car, see Fig-
ure 4.24a, to see the object, especially people coming close to the car. The second
of the two small lidars is located on the rear right side; see Figure 4.24b. This one
will detect people or cars approaching from the right side and behind the vehicle.
Since cars in Norway are driving on the right side of the road, it is more likely that
pedestrians and sidewalks will be to the right of the car, making that side more
important to monitorize. The last, big lidar, is mounted on top of the roof, shown
in Figure 4.24a and has the mission of holding an overview of the surroundings.
With its 128 beams, it is stronger and does collect data with higher resolution.
The range of the lidars can be up to 260 meters for the top one and 50 meters for
the smaller one. [33]

The connection between each of the smaller 16 beams lidar and the heart of this
car’s autonomous system, the Nvidia Drive (AGX Xavier), is set up with a 100Gb
switch. The bigger one OS2-128 beams lidar is connected directly to the Nvidia
AGX unit, as shown Figure 3.4. The data in point cloud packets are sent via UDP
protocol. Incoming packets are handled by the ROS nodes written by the produ-
cer, Ouster. The LiDAR recording format is DriveWorks specific. When using the
recording tool provided by Nvidia, it will create a DW LiDAR recorded file. This
data can be used directly or stored and later analyzed through the Ouster Studio
software.

Chapter 3: Theory 21

(a) Front lidar (b) Right side lidar

(c) Top lidar

Figure 3.5: A figure showing the different lidars installed.

3.4.3 Camera

The Kia Niro is also loaded with cameras. In total, there are 8 GMSL cameras of
two types mounted onto the car: Sekonix Nvidia Drive Camera SF3325 with FOV
60° and SF3324 with FOV 120°, both having a 1928 x 1208 resolution, RGB sensor
with 12-bit depth. They are mounted all around the car in order to cover all points
of view. Three in front, two on each side mirror, pointing in different directions
and one in the back, can be seen in Figure 3.6 and on the ??. The video format
when recording from each of the cameras is h.264. They are connected through
a Fakra port and in separate channels, recording a separate video.

22 Alexey Gusev: Remote Control System for Autonomous Vehicles

(a) Front cameras (b) Side cameras

(c) Rear camera

Figure 3.6: A figure shows the different cameras.

3.4.4 Vehicle Control Module - Drive Kit

Another essential part of an autonomous car is the control and drive unit. The one
that manoeuvres and controls the car’s throttle, brakes and steering. In this car, a
drive kit, OSCC by PolySync, is installed and connected to all mentioned parts by
a CAN bus. ROS subscribers, publishers, and nodes can get commands from the
central computer, the Nvidia Drive. The car did have a pre-installed feature with
the possibility of controlling the car with an Xbox one controller that was directly
connected to Nvidia Drive through a USB. The Xbox controller was made as a
"ROS joy node", the Nvidia drive as a publisher and the drive kit as a subscriber.
The current part is in-depth in ??.

Chapter 3: Theory 23

3.4.5 Radar and GNSS

The radar attached to the car is Continental ARS 408-21 Long Range 77Ghz. There
are two of them, one in front and one in the rear. Continental ARS 408-21 77GHz
is a long-range millimetre-wave radar sensor. The car is also equipped with two
Swift GNSS GPS/GLONASS/Galileo/BeiDou mini-survey antennas on the roof for
localization, see in Figure 3.4.

3.4.6 Router

The car is equipped with Arcus 5G router by Celerway. It is a powerful 5G and
4G LTE, modular ruggedized router, enabling up to 7 simultaneous WAN con-
nections, of which three are cellular. Its main objective is to enable high-capacity
connectivity on the move or outdoors and to promote performance for latency-
sensitive applications. The router supports a maximum load balancing capacity
of 990Mbps and 800+Mbps using VPN encryption. This makes the Arcus router
especially suited for installation in vehicles, trains, ships, proven in multiple trans-
portation scenarios [34]. The router also features direct VPN connections through
Open VPN, IPSec, WireGuard, Celerway Phantom and more. It was installed ex-
plicitly for this project mainly because of its 5G cellular compatibility, and the
possibility of creating direct VPN channels with low latency [35].

The cellular 4G/5G signal is received by four antennas of the type Panorama EF-
6-60 attached to the front window and on the small rear windows in the back, see
Figure 3.8. The antenna covers the frequency bands 617-960 / 1427-6000 MHz,
which means all 4G and 5G bands. The reason for installing four antennas rather
than just one is to increase the bandwidth and the reliability of the signal, [36].

3.4.7 Steering Wheel and joystick

In order to remote control the car, a joystick or steering wheel is needed. For this
project, a Logitech g29 PS3/PS4 wheel was used together with pedals connected
through USB on the remote client machine. An Xbox One/360 joystick was also
used in the early phase of the testing, both connected to the car and the remote
client machine.

Some specification of the g29 set:

• Rotation: 900 degrees lock-to-lock
• Hall-effect steering sensor
• Dual-Motor Force Feedback
• Nonlinear brake pedal
• Self-calibrating

24 Alexey Gusev: Remote Control System for Autonomous Vehicles

(a) Setup of the Xbox controller
(b) Setup of the Logitech g29 steering
wheel in the car.

Figure 3.7: A figure showing the setup of the remote controllers.

3.5 Software

3.5.1 Nvidia Drive SDK - Drive OS and DriveWorks

"The open Nvidia Drive SDK gives developers all the building blocks and algorithmic
stacks needed for autonomous driving. It empowers developers to build and de-
ploy a variety of state-of-the-art AV applications more efficiently, including per-
ception, localization and mapping, planning and control, driver monitoring, and
natural language processing" this is the way Nvidia describes the Drive SDK on
their website [37]. Making it possible to build and develop a self-driving car is the
main objective of the SDK, but it is worth mentioning the fact that this is mainly
made to be working together with Nvidia’s Drive platform and hardware. The
SDK consists of different parts, but the main ones used in the car are Drive OS
and DriveWorks, installed on Nvidia Drive AGX Xavier. The stack is illustrated in
Figure 3.10.

Nvidia Drive OS is a software stack acting as a foundation that consists of RTOS -
embedded real-time operating system, Nvidia Hypervisor, Nvidia CUDA libraries,
NVIDIA TensorRT, and other modules providing access to the hardware engines.
Drive OS should offer a safe and secure execution environment for applications
such as secure boot, security services, firewall, and over-the-air updates and is
designed to develop and deploy autonomous vehicle applications. [38]

Chapter 3: Theory 25

Figure 3.8: Figure illustrates an overview over the type and placement of the
equipment on the car. Different colors indicate different type of equipment.

26 Alexey Gusev: Remote Control System for Autonomous Vehicles

Figure 3.9: Figure illustrates the field of view of each camera and lidar, with
respect to it placement. Different colors indicate different type of equipment.

Chapter 3: Theory 27

The Nvidia DriveWorks SDK provides a large set of fundamental capabilities, in-
cluding processing modules, tools and frameworks required for advanced AV de-
velopment on the Nvidia Drive platform. DriveWorks sits on top of the Drive OS
and gives a developer the right tools for developing a self-driving car. The pur-
pose of the software is to offload the developers from spending time on basic
low-level functionality. DriveWorks is modular, open, and readily customizable.
That means a developer can use only one module within their software stack to
achieve a specific function or multiple modules to accomplish a higher-level ob-
jective. The DriveWorks and Drive OS gives together a foundation for self-driving
car development. [39]

Figure 3.10: Figure illustrates the stack of Nvidia Drive SDK. Source of image
[38]

3.5.2 Kivy

Kivy is an open-source and free Python multi-platform GUI development library
and framework. It is made for developing desktop GUI, mobile apps and other
multi-touch application software with a natural user interface. Kivy helps to de-
velop applications that make use of innovative, multi-touch GUI. The fundamental
idea behind the library is to enable the developer to build an app once and then
use it across all other devices, making the code reusable and deployable. It does
also allow for quick and easy interaction design and rapid prototyping. Kivy does
not use CSS or HTML code structures or components, it has its way of function-

28 Alexey Gusev: Remote Control System for Autonomous Vehicles

ing. However, Kivy can still be in many parts similar to web HTML and JavaScript
based web frameworks. It can run on Android, iOS, Linux, macOS, and Windows
and is s distributed under the terms of the MIT License. For this project, Kivy 2.1.0
with Python 3.8 was used.

3.5.3 OpenCV

OpenCV - an open-source computer vision and machine learning software lib-
rary. It can be used in C++, Python, Java and MATLAB interfaces and supports
Windows, Linux, Android and Mac OS. It can also be compiled with support for
CUDA, which can use the CUDA cores on the Nvidia Drive AGX or an Nvidia GPU
to achieve GPU-accelerated functionality. The library can also be used for display-
ing, rendering and transforming images, which was its primary objective in this
project. For this thesis, OpenCV 4.5.5 was used.

3.5.4 ROS

The Robot Operating System (ROS) is an open-source meta-operating system de-
veloped specifically for robotics. It is a set of software libraries and tools that
helps build robot applications; it includes everything from drivers to algorithms
and developer tools, such as libraries to visualize data and run code on mul-
tiple platforms, including embedded computers and micro-controllers. ROS imple-
ments low-level device control, hardware abstraction, message-passing between
processes, implementation of commonly-used functionality, and package manage-
ment. ROS functions as a peer-to-peer network of loosely coupled processes using
the ROS communication infrastructure. It can be similar to how the MQTT pro-
tocol works with subscribers, publishers and topics. ROS delivers several different
styles of communication, which include the synchronous RPC-style communica-
tion over services, asynchronous streaming of data through topics, and data stor-
age on a Parameter Server.[40]

ROS comes in two main versions, ROS 1 and ROS 2. The two versions are almost
like two different systems and do not share much of their functionality. ROS 1
Melodic was used for this project, even though a newer version was available and
ROS 2 was better suited for real-time applications. But the reason was possible
compatibility problems with earlier projects and software in the car and the fact
that ROS 1 is now more widely used and has a lot more documentation than ROS
2. [40]

Core elements of the ROS system and extra ROS packages important for the pro-
ject are listed below:

• Catkin is the successor to the original ROS build system, rosbuild, which is
now the ROS’s main and official build system.

Chapter 3: Theory 29

A general build system is usually responsible for generating "targets" from
any raw source code that an end-user can use. In ROS-specific terminology,
source code is organized into "packages", where each package can consist
of one or more targets when built. The catkin build system is specifically
made for ROS but inherits much from CMake. On top of CMake’s normal
workflow, it combines CMake macros and Python scripts to provide some
functionality. When Catkin was designed, it was planned to be more con-
ventional than rosbuild, allowing for better cross-compiling support, better
distribution of packages and better portability. The workflow of Catkin and
CMake is very similar, but it does add support for automatic ’find package’
infrastructure and support for building multiple, dependent projects simul-
taneously. [41]

• Packages organize the software of ROS. It might contain the ROS run-time
processes called nodes, libraries, a third-party piece of software, or anything
seen as a useful module usefully organized together. The goal of these pack-
ages is to provide functionality in an easy-to-consume manner so that others
can easily reuse software. ROS packages can be seen to follow a "Goldilocks"
principle in general, meaning that it has enough functionality to be useful
but not so much that the package is difficult for other programmers to under-
stand. Packages can be created by hand or by tools like catkin_create_pkg.
[42]

• Nodes are ROS run-time processes that perform computation and can pub-
lish and subscribe to topics for inter-node communication. A full ROS system
usually has many different nodes, often started with roslaunch with multiple
parameters nodes doing specific tasks. [43]

• Master is responsible for name registration and lookup to the rest of the
nodes in the ROS system. It can run across multiple machines for commu-
nication via Ethernet or WiFi and does so that the nodes can find each other
and send messages. It tracks subscribers and publishers to the different top-
ics as well as services. The main role of the ROS master is to make it pos-
sible for ROS nodes to locate each other in the network. It could look like an
MQTT broker, but it is more like a DNS server for lookup and localization.
Once these nodes have located each other, the further communication is in
a peer-to-peer fashion, while in MQTT, it still goes through the broker. [44]

• Messages in ROS are, in general, a way to standardize communication
between nodes. There are many standard message formats for different
needs, such as int, float, sensors, and navigation. ROS makes it also pos-
sible to have custom formats of messages; an example is illustrated in Fig-
ure 3.11a where a Joy message of the type sensor_msgs is shown. [45]

30 Alexey Gusev: Remote Control System for Autonomous Vehicles

• Topics are channels exchanging messages between nodes. The messaging
is made in a publisher and subscriber fashion over the given topic. A node
can publish a message on a given topic, and all nodes subscribed to it will
receive the message. The topic has an identifier that allows other nodes
through the ROS master to identify and subscribe to it. In general, nodes do
not get the information about whom they are communicating with because
they are intended for unidirectional streaming communication. However,
via the ros master, it is possible to get information about who is subscrib-
ing and publishing to a topic. It is worth mentioning that ROS currently
supports mostly TCP/IP-based and some UDP-based message transport but
only in roscpp. ROS streams message data over persistent TCP/IP connec-
tions and is known as TCPROS. [46]

• Roslaunch is a simple but powerful tool for launching multiple ROS nodes
locally and remotely, for example, via SSH, and setting parameters for spe-
cific nodes on the Parameter Server under the launch. It also includes op-
tions to automatically re-spawn already dead processes. By taking one or
more XML configuration files with the .launch extension, roslaunch can spe-
cify what parameters to set and what nodes to launch, as well as the ma-
chines on which they should be run onto. This package was used to start
multiple local and remote nodes, discussed in depth in chapter 4. [47]

• Rqt is a plotting data tool made to automatically display the connections
between nodes. [40]

• Rosbags are used for saving ROS message data from topics, with a possib-
ility of playing it back. [40]

• Rviz is a tool for visualizing ROS messages and transformations and can be
used to visualize radar scans, laser scans, maps, paths, current positions and
orientations, to mention a few. [40]

• sensor_msgs is a package that defines messages for commonly used sensors,
including cameras and scanning laser rangefinders. Inside this package, it
is possible to find raw message definitions for many different sensors and
equipment, such as for sending images or, as an example, the Joy message
used in this project for interacting with a joystick or steering wheel; the
definition can be seen illustrated in Figure 3.11a. [48]

• image_transport is a package that uses the prior sensor_msgs providing
transparent support for transporting images in low-bandwidth compressed
formats. Specialized transport strategies, such as image compression or stream-
ing video codecs, are often preferred when working with images.

Chapter 3: Theory 31

Image_transport is abstracting the complexity of compressing and decom-
pressing and transporting images in arbitrary over-the-wire representations
so that the developer only sees familiar sensor_msgs/Image messages. [49]

• Joy and joystick_drivers is the ROS driver for a generic joystick supported
by Linux. The joy package contains joy_node, which interfaces a Linux joy-
stick to ROS. This node publishes a sensor_msgs/Joy message on the topic
"joy", which contains the current state of the joystick’s buttons and axes, see
Figure 3.11a. This node should work with any joystick that Linux supports.
[50]

• usb_cam The usb_cam node interfaces with standard USB or built-in cam-
eras using libusb_cam and publishes images as sensor_msgs/Image to differ-
ent topics, based on the type of compression, for example,/raw or /theora,
together with the use of the image_transport library to allow compressed
image transport. In the project, this was mainly used on the operator/client
computer to debug the GUI. [51]

• nvidia_gmsl_driver_ros is a package made by UT-ADL of a university in
Estonia; it is free to use and available on Github [utAdl]. The purpose of
the package is to make it possible to take out camera images from the GMSl
camera connected to Nvidia Drive and processed by DriveWorks and convert
it into ros messages published on a topic in the form of sensor_msgs/Image.
This was used in the project in order to have easy access to the cameras. [52]

• h264_image_transport is a H264 plugin for the ROS image transport pack-
age. This repo was created by UT-ADL to be used in pair with the prior
vidia_gmsl_driver_ros mainly but can work standalone also. It decodes h264
encoded image packets published with the correct message type. [53]

• image_view is a simple viewer for ROS image topics. It allows viewing and
visualizing a camera image published on a ROS topic. [54]

32 Alexey Gusev: Remote Control System for Autonomous Vehicles

(a) Figure illustrates the main workflow of ROS nodes.

(b) Figure shows a autogenerated overiew over a sensor message of type Joy, used for
managing joystick commands.

Figure 3.11: Figures illustrates ROS workflow and a message example

Chapter 3: Theory 33

3.5.5 WireGaurd VPN

WireGuard was created by Jason A. Donenfeld, also known as "zx2c4", with the
first release on 09 December 2016 [55]. WireGuard is a communication protocol
that is free and open-source, designed as a universal VPN for operation on em-
bedded devices and supercomputers. Its software implements encrypted virtual
private networks (VPN), with design goals that aim to possess low attack surface,
high-speed performance and ease of use. WireGuard claims to have better per-
formance and more power than the two standard tunnelling protocols; IPsec and
OpenVPN. That information is also backed up by different reviews and tests. An
early review from Ars Technica did, for example, found out that WireGuard con-
nected and reconnected much faster than other protocols in the test and that its
cryptographical choices, in other words, its security, pointed out to be better [56].
In May 2019, a machine-checked proof of the WireGuard protocol was published
by researchers from INRIA; it was produced using the CryptoVerif proof assist-
ant[57]. WireGuard is also a straightforward protocol and VPN to understand. It
incorporates many modern VPN solutions and, in contrast to many other proto-
cols, only delivers over UDP, which uses no handshake protocols, entirely skipping
TCP support. Such a choice is explained as necessary according to WireGuard; due
to the classically terrible network performance of tunnelling TCP-over-TCP [58].

WireGuard includes the following[59]:

• Curve25519 for key exchange
• ChaCha20 for symmetric encryption
• Poly1305 for message authentication codes
• SipHash for hashtable keys
• BLAKE2s for cryptographic hash function
• UDP-based only

Chapter 4

Methods

This chapter features the main methods used to answer and fulfil the goals in
section 1.2. The methods will mainly be concentrated on building the software
architecture for the remote control system, as stated in goal 2. Each section will
discuss and explain the implementation and solutions of the different parts of the
total system. At the end of each section, there will also be an architecture overview
containing graphs and charts of that particular part. It is essential to understand
that every graph or diagram has its level of abstraction, meaning that it can be
wrong to compare them directly, but together they all form the complete remote
control system. The architectural aspects will be covered from either some or all
of the following points of view:

• The physical view describes the hardware allocation of each component of
the system.
• The process view explains the run-time operations of the system and its

processes, usually a sequence or process diagram.
• The development view shows the organization of software in the develop-

ment of the system, usually a deployment diagram.

4.1 Connection and Communication Between Car and Op-
erator

Teleoperation can be used for controlling autonomous vehicles when edge cases
occur, as already discussed in subsection 2.1.4. However, for an operator to accur-
ately manoeuvre a vehicle over IP, the remote controller must retain all necessary
information and data over a secure, stable, high-performing communication chan-
nel, with latency lower than 50ms [22]. This chapter will address developing and
establishing such a communication channel.

35

36 Alexey Gusev: Remote Control System for Autonomous Vehicles

4.1.1 Peer to Peer(P2P)

Peer-to-peer (P2P) systems show numerous advantages over centralized systems,
such as load balancing, scalability, and fault tolerance. [60]. In addition, no pro-
cessing was needed at any possible server for this task and project. Then by remov-
ing the possibility of having a server as both a bottleneck in speed and a possible
single point of failure, the direct communication between the operator and the
autonomous agent would be the proposed solution.

The easiest way to connect to the car’s computer from the outside WAN was
by opening ports in the router placed in the car and sending packages directly
between the operator and the car, letting them traverse the firewall and NAT. That
was needed because all routers have a firewall that, by default, blocks or drops all
incoming WAN traffic and only allows traffic outbound initiated by the internal
LAN side [61]. In addition, port forwarding was needed to traverse Network ad-
dress translation (NAT) inside the router, a method of remapping IP address space
by modifying the network address in the IP header of packets during their transit
across any routing device. [62].

The mentioned is not enough to make a P2P connection between the operator and
the car. In this case, the Internet Service Provider(ISP) Telenor does its network
address translation on top of the one done locally in the router. The indicated
induces a known issue of being behind double NAT, where the ISP has a carrier-
grade or large-scale NAT (CGN). The CGN maps IPs and ports of the user devices in
the network into other IPs and ports in its external interface. Even though the car
router might be configured correctly for port forwarding, the ISP "master router"
running the carrier-grade NAT will never let the packets travel to the destination.
Therefore, the IP address and port seen from the operator’s perspective would not
be the actual IP and port given to the car’s router. In addition, all IP addresses are
usually dynamic and will change steadily.

To address the NAT issues, ISP (Telenor) was contacted, and a unique static IP was
obtained on the SIM card placed inside the car’s router, with their CGN in bridge
mode on this particular IP. As a result, the CGN was disabled, and the translation
of IP addresses by the ISP was stopped. Along with port forwarding from WAN to
LAN in the car’s router, the operator could reach the car at the same public IP and
onto the same port at any time.

4.1.2 VPN

The solution with P2P is handy but unfortunately carries many security issues that
need to be fixed. The first main issues are the open ports in the router interface,
which can be attacked by first doing a port scanning and then exploiting the open
port (the outcome will depend on the port type and what it can give access to).
The second issue, and maybe the most dangerous, is the fact that the data transfer
between the two hosts, the operator and the car, is not encrypted at all and can

Chapter 4: Methods 37

easily be exploited in attacks such as "man in the middle attack", eavesdropping,
sniffing and spoofing, to mention a few. In the worst case, this can let the attacker
gain control over the car[63]. Therefore this vulnerability was addressed with a
solution chosen to be a VPN. The VPN would be a secure channel from the operator
to the car, encrypting all data sent between the devices with end-to-end public-
key cryptography. Hence, it alone can restrict eavesdropping, sniffing, and other
attacks where the main target is to obtain transferred data.

The open ports problem was addressed by creating a special VPN zone inside
the Arcus router rather than inside the car’s computer. Consequently, incoming
connections from WAN are not accepted into the port forwarding mechanism,
except for the VPN; see Figure 4.1. Such a setup made the router act as a server,
always listening to possible client VPN connections. If an operator was trying to
connect to the car, a secure connection must be established with the VPN zone
first; only possible for hosts with the right encrypting keys. After the connection
is ready, the operator is inside the VPN zone the appropriate port, this case SSH
and ROS are opened for the operator, and the car’s computer could be reached;
see Figure 4.2.

Figure 4.1: Illustrates the setup of WireGuard zone, the one in blue. WAN mas-
sages has only access to the WireGuard zone, the router and LAN more secure to
threats.

The choice for a suitable VPN protocol was set between using OpenVPN with
its out-of-the-box solution with graphical user interface, the lightweight TincVPN
daemon and the new WireGuard VPN protocol. When implementation started,
OpenVPN became a non-working solution very fast. Because DriveWorks has a
limited version of Linux by design, OpenVPN is not installable. Even though it
would have worked, OpenVPN seems to lose to TincVPN and especially to the
WireGuard VPN in speed, simplicity and controllability[64][65]. The choice was
then between Tinc and WireGuard.

38 Alexey Gusev: Remote Control System for Autonomous Vehicles

Figure 4.2: Illustrates the setup of WireGuard zone port forwarding, the one in
blue. When the any host has connection established with the VPN zone(wg_zone)
only ROS and SSH messages to the specific ports are possible to use. Giving an
additional layer of security.

Chapter 4: Methods 39

After doing more research and setting up both, it was clear WireGuard had some
extra advantages over Tinc. WireGuard could deliver even more speed than Tinc
because of its UDP-only design, whereas Tinc could go into using TCP. TCP is more
secure and desirable in many situations but not in real-time applications where
speed is more important than a lost packet. Tinc’s TCP design could become a
problem due to the remote control system using ROS for controlling the car (??).
ROS is a robot operating system explained in both chapter 2 that mainly uses TCP
to send commands. Having TCP both in the outer and inner tunnel could induce
an issue known as TCP Meltdown [66]. TCP-over-TCP could make one of the layers
overcompensate when detecting a problem because they have the same logic. In
addition, as TCP is way slower than UDP, doubling up with it would make the
connection have more latency, which is not desirable for this system. The chosen
WireGuard was, therefore, a better solution given the TCP-over-UDP design of
the remote control system. Tinc VPN was also not possible to use as a VPN zone
inside the Arcus router, making the problem of open ports applicable again. The
chapter 5 shows the difference in the performance of Tinc and WireGuard[67].
See Figure 4.3 for a comparison between a TCP-over-UDP and TCP-over-UDP and
Figure 4.5 for a simple deployment view over the system setup.

(a) UDP and TCP inside a UDP tunnel. (b) UDP and TCP inside a TCP tunnel.

Figure 4.3: A figure showing a latency comparison between TCP and UDP tunnels
in WAN. Source [67]

4.1.3 Automated Connection

Since WireGuard is only a protocol with no GUI, everything concerning the con-
nection must be done manually in CLI. That, together with ROS-dependent soft-
ware, discussed in ??, makes it difficult and not user-friendly to start a session
with the proposed remote control system. The issue confrontation was done with
a couple of ".bash" scripts, running different commands automatically in a given
order. It was done on both the car’s and operator’s computer. One script named
"autoStartAll.sh", ran by the operator, fires a variety of other scripts, establishing
the VPN connection and starting the system in the car and the operator’s device.

40 Alexey Gusev: Remote Control System for Autonomous Vehicles

In order to start scripts from one host on the other, a specific script establishes
an SSH connection through the VPN, which makes it possible to dictate orders to
the car’s computer and, for example, run the "setupAndStart.sh" script that will
start all necessary ROS based programs and make the car ready to drive. The se-
quence diagram in Figure 4.8 illustrates how the first operation of establishing a
VPN and SSH connection is realized, and ?? shows a screenshot of the particu-
lar WireGuard VPN interface settings used for the connection. Altogether, those
scripts make the system much more user-friendly since only one script needs to be
run with a password prompt from SSH, and the rest is taken care of automatically.

Figure 4.4: Figure is screenshot of the the WireGuard interface setup "wg0" on the
remote machine. This is used in establishing VPN connection to the WG interface
inside the car´s router. (The private key on the picture is hidden)

Chapter 4: Methods 41

4.1.4 Architecture Overview

Deployment Diagram

Figure 4.5: Figure showing a deployment diagram view with only relevant com-
ponents of the remote control system network architecture.

42 Alexey Gusev: Remote Control System for Autonomous Vehicles

Network Diagram

Figure 4.6: Figure showing a network diagram with only relevant components
of the remote control system network architecture.

Chapter 4: Methods 43

Logical Network Diagram

Figure 4.7: Figure showing a logical view network diagram with only relevant
components of the remote control system P2P network architecture. Note that
the shown CGN is in bridge mode only for this particular static IP and that the IP
address of remote PC is a logical IP set by WireGuard, the physical is arbitrary for
this view.

44 Alexey Gusev: Remote Control System for Autonomous Vehicles

Figure 4.8: Figure showing a sequence diagram view with only relevant com-
ponents for the VPN and SSH connection establishment. The diagram shows also
commands during the process. After the connection is established it is possible to
use the connection directly end-to-end without going through the steps again

Chapter 4: Methods 45

4.2 Vehicle Control System

An autonomous car’s software or hardware stack is built of various parts, where
many are critical for the system to function. However, some are still more dom-
inant, and a part of the core, like the control system, which is especially crucial
for the remote control system of this thesis [2]. In this section, its realization will
be presented. It is worthy of note that this section covers the software primarily
since this project did not include working with the hardware.

4.2.1 Drive Kit and CAN bus wiring

As mentioned in Figure 3.4.3, the car already had a pre-installed OSCC Drive Kit
by Polysync before this project started. This kit is connected to the car’s CAN bus
to receive essential data and possibly take over the control of the car. Kia Niro’s
car has a handful of CAN buses on board. The OBD-II CAN network - the vehicle’s
self-diagnostic and report-capable bus, contains vehicle state information such
as steering wheel angle, wheel speeds, and brake pressure. This information is
helpful for algorithms like PID control or displaying data in the graphical user
interface.

Rather than sharing the vehicle’s OBD-II bus and possibly interfering with the
vehicle’s native messages, Polysync OSCC Drive Kit has made its CAN bus called
Control-CAN. Through this bus, all commands and reports are sent and received.
This is illustrated in the Figure 4.9 by Polysync [68].

The CAN Gateway module bridges the vehicle’s native built-in OBD-II bus and
the Control-CAN. The gateway forwards all relevant vehicle messages from the
OBD-II bus to the Control-CAN bus, which can later be consumed by applications
subscribing to the OBD messages, such as the GUI or PID controller. By already
mentioned diagram in Figure 4.9 shows that CAN messages are only published
in one direction: towards the Control-CAN bus from the OBD-II CAN bus, and all
overriding control commands are sent directly to the respective component, such
as the steering wheel motor from the Control-CAN.

4.2.2 Utilize CAN Data in ROS

In order to utilize the data from the OBD CAN bus, it needs to be read and conver-
ted to ROS. ROS acts as a backbone framework for control and communication in
this project between the remote computer and the car systems. ROS is used as the
top layer for communication and control, whereas the Drive Kit and CAN bus are
the lower layers directly communicating with the car’s internal systems, such as
sending torque value to the power steering column. Therefore all data from and
to the Drive Kit must be converted into the respective type. However, this paper
will not cover how the converting happens since it is the work of Polysync and not
developed as a part of this project.

46 Alexey Gusev: Remote Control System for Autonomous Vehicles

Figure 4.9: Figure illustrates the wiring of Drive Kit into the car, though CAN bus.
Source [68]

The data is gathered from the OBD CAN bus and then republished as a ROS topic
on a specific node. By running the command "candump can0," it is possible to see
various hexadecimal numbers. Those are all different ids in the CAN bus, each
connected to a specific data stream running through the bus. The corresponding
id needs to be known to use any specific data stream. This Figure 4.10 shows a
table with information from Polysync on what id wheel angle corresponds to in
the CAN bus. This way, data for steering angle, throttle position, brake position,
and speed is known and can be taken out from the CAN bus and then published
on a ROS topic for the GUI ?? to subscribe on. On Figure 4.11 it is a plot showing
the data taken out from the CAN bus with speed on the top followed by throttle,
braking and steering wheel angle as the last with a middle point as 0 degrees. A
similar way is used to send the data into the Drive Kit and the car’s components.
Nevertheless, that is mainly done automatically by the Polysync Drive Kit and is
not covered in this paper. The important part is that code for receiving ROS msg,
converting and sending it is available for the project inside the "teleop.cpp" file.
Moreover, the full Github for the Drive Kit is available online [68].

4.2.3 Wired Control Over ROS With Xbox Joystick

During the beginning of this project, the car already had some example function-
ality embedded, from both the Polysync Drive Kit, Nvidia DriveWorks and some
made by NAP-lab. The wired joystick control is the most relevant example code
and is used as a base for the remote control system. The example contained one
script file called "runJoystickDrive.sh" located inside the Joystick catkin workspace
in the car’s computer. This script first sources the ROS environment required by
ROS because ROS relies on the notion of combining spaces using the shell en-
vironment. By doing that, all variables connect to the ROS environment in that
specific shell. In addition, it allows access to all packages of ROS even though they
are not in the same folder.

Chapter 4: Methods 47

Figure 4.10: Figure illustrates the wiring of Drive Kit into the car, though CAN
bus. Source [68]

Figure 4.11: Figure illustrates plot of respectively from the top; speed, throttle,
brake and steering from the OBD CAN bus, during a short manual drive with the
car According to vehicle internal metrics.

48 Alexey Gusev: Remote Control System for Autonomous Vehicles

After the sourcing is done, a launch file "example.launch" runs, and launches three
nodes: "roscco_node.cpp", roscco_node.cpp and "joy_node". The Joy node has the
mission of sending joy_msgs messages, earlier shown in Figure 3.11a, when an
Xbox joystick is connected to the car’s computer and initialized. Then the Teleop
node does different computations, mapping and calibration for the commands to
make sense for the car and the Drive Kit before publishing four different topics.
That is the steering, throttle, brake and enable_disable topic. Those topics are
then subscribed on by rossco_node, converted into data used by the OSCC Drive
Kit, and sent as control commands through the Control-CAN bus and into the car’s
components.

This process is essential and described here because it was used as the base for
developing the controlling part of the remote control system with the G93 steering
wheel.

4.2.4 Vehicle Control Over IP From LAN

As explained in subsection 4.2.3, the car did have some functionality for con-
trolling the car with a joystick. However, it did not have the feature necessary for
taking control over the car from another host, on either LAN or WAN. It was there-
fore chosen to manipulate, enhance and facilitate the "joystick.launch" file and its
dependencies into working over the Internet, rather than only local. Therefore,
before using the developed VPN and P2P secure connection from WAN (??), the
objective was to make a setup that could work on the car’s LAN.

The Control from LAN was realized by taking apart the "example.launch" and di-
viding it into two parts: Teleop and Roscco node formed the receiving part while
Joy node became the transmitting part. The launch files became "example_nojoy.launch"
and "example_onlyjoy.launch" with their respective bash scripts "runJoystickDriv-
eNoJoy.sh" and "runJoystickDriveOnlyJoy.sh". The name "example" was not changed
because it is used as the base; therefore, it remained for this project to keep the
code consistent. The scripts and launch files were placed at each end of the system;
the car and the remote computer. This way, the remote computer could publish
joy_msgs messages on a topic called joy. The receiving part could then subscribe
to the topic and extract the data for further processing, as explained in ??, and
control the car. Figure 4.12 shows an RQT graph of the nodes, topics and their
interaction when the "runJoystickDrive.launch", that means before it was divided
into two parts, but the interactions are still the same. In another diagram, how-
ever, the entire sequence of the process is illustrated; see Figure 4.17

In the theory of ROS, this setup only works if the nodes know exactly where the
ROS master is located, more precisely, having its IP address. In addition, the IP of
ROS-master should not be "localhost", which is standard. For those criteria to be
met, ROS_MASTER_IP and URI must be specified on both the car’s and operator’s
computer. It was chosen to have ROS-master running in the car since it makes
more sense than on the remote PC. If the connection with the operator is broken,

Chapter 4: Methods 49

Figure 4.12: Figure shows a RQT graph of the nodes, topics and their interaction
when the "runJoystickDrive.launch" is run

the nodes and system running in the car will not collapse. Therefore, the master
URI and IP in the car are set to the car’s local IP. In the remote PC, the URI is also
set to the car’s local IP; this way, the ROS nodes running at the remote control
PC can locate the ROS-master. The system was then fully functional, and the car
could be controlled from an Xbox controller over LAN connected remote control
PC.

4.2.5 Vehicle Control Over IP From WAN

Change of ROS-master URI and IP

The next step after achieving fully functional remote Control from LAN was to
make the system work from WAN, i.e. having the remote computer on another
network. A VPN and P2P connection were needed to grasp the task. The system
connection scripts and steps described in ?? was applied, and the P2P connection
was set. Since the remote computer is connecting to the WireGuard interface in
the router, seeing it as a peer and not the car’s computer directly means that all
devices connected to the router will be available to the remote computer peer
through their local IP address, as long as the respective ports in the router are
open. From the car’s perspective, the remote PC is in the same network but at
another IP address; the one set in the WireGuard settings on the remote machine,
even though it is located on a completely different network. Having that inform-
ation is vital because of the ROS-master IP and URI settings. Those are the only
parts that need to be slightly changed in order to make the system work over IP.
The ROS-master URI will be the same as already explained, but the ROS IP will
be changed on the remote PC into the one set by WireGuard.

50 Alexey Gusev: Remote Control System for Autonomous Vehicles

Latency Caused Drive Kit Collapse

When this setup was tested, it did work as intended for ROS functionality. How-
ever, the Drive Kit was not made to take care of a situation when latency occurs,
forcing the Drive Kit to disable itself every time the connection was initialized. The
Drive Kit was originally only intended to be used by wire; therefore, its threshold
for latency between one command to another is, as stated by Polysync maximum
of 50ms. Consequently, it needs to be fed by new commands at a frequency of
20Hz. By testing, this showed to be wrong, and the latency threshold looked to
be around 20-30ms. Because all communication over IP does have at least some
latency, often called ping, this infers into a problem where such low latency is
very hard to achieve. Even with the 5G cellular network, this can be difficult since
there is always a chance of packet loss or lousy network connection leading to
uncertainties and sudden jumps in ping, called jitter.

Command Repeater

To deal with the possible jitter problem and latency intolerance, the usual ap-
proach is to use a jitter buffer. VoIP often uses that to smooth any variations in the
packet stream. However, measuring the average ping through VPN made it clear
that a buffer would not help since it was about 40-60ms on 4G and 15-30ms on
5G, sometimes worse. In addition, the worst that could happen is that a buffer
could be exhausted before a significant packet loss, and the car could stop mid-
driving. The choice was then to make a simple repeater that would repeat the last
command received from the "Joy" topic at 50Hz, meaning a maximum latency of
20ms independent of the packet stream. That would make the Drive Kit always
receive a command in time even though there is high jitter in the network. The
Drive Kit threshold was, in this case, not altered because the Drive Kit system is
an extensive system with not only software but also hardware parts, which means
that a change of the threshold could interfere with or cause problems to some
hardwired parts in the kit.

4.2.6 System Adaption for G29 Steering Wheel and Pedals

Steering the car with an Xbox controller(3.7a) was not optimal because any slight
joystick movement could propagate into a swift movement of the car’s steering
wheel. It was therefore decided to introduce and embed the G29 steering wheel
(3.7b) with accompanying pedals into the remote control system. The G29 did not
need more drivers than the Xbox controller on the remote Linux machine, and the
only thing installed as extra was "jstest-gtk", a tool for testing and watching the
status of the steering wheel position [69].

Chapter 4: Methods 51

Mapping the G29 Kit

As the steering wheel kit was recognized and worked in the "jstest-gtk" tool, the
next step was to incorporate it into the ROS code. By changing the mappings of
all buttons, pedals and the steering column in "teleop.cpp", the node started to re-
ceive ROS Joy messages. The earlier mapping was done with respect to the Xbox
controller, which had fewer buttons and a different setup.
In order to determine to what ID every button corresponded to on the steering
wheel, a Joy node was started and by using the "rostopic echo joy" command in
the CLI, it was possible to check every button and watch its response and bound-
aries manually. Then, the mapping method was set inside the "teleop.cpp". There-
fore, every command from the steering wheel was interpreted as intended by the
Polysync OSCC Drive Kit and sent further to the car’s components.

4.2.7 Steering Control Strategy

Introducing the G29 kit into the system did work but only to the point of not
crashing it or having wrong mapping of buttons or pedals. In addition, the driving
and steering itself were not as intended.

Manual Steering

The Xbox controller, as used in subsection 4.2.3 did incorporate a model in which
a movement of the small joystick directly corresponded to a specific amount of
torque sent into the Drive Kit and to the power steering column. That did work
as long as the joystick could self-centre itself, which it usually does on an Xbox
controller. This means that any move to the left or right would make the power
steering column apply a force on the steering as long as the operator was pushing
on the joystick. With a steering wheel, on the other hand, namely the G29, it
will always remain at the place operator left it on, leading to a constant torque
applied to the power steering column. The torque would also become larger for
every steering wheel angle when moved to any side.

The used model can be interpreted to be directly proportional to the operator’s
input without having any correcting methods for changes in the environment. The
operator is also unaware of how much the steering wheel will move and if less
or more torque should be applied to get the desired trajectory. This system was,
therefore, not suitable for the remote control system.

Control Algorithm Comparison

There are, of course, a variety of different controller algorithms. Some are better
suited than others in each situation but generally when it comes to traditional
control strategies, PI or PID controllers are the primary choice for speed control
and other types of longitudinal control. In contrast, MPC or a geometric controller
are usually employed for lateral control, such as steering.

52 Alexey Gusev: Remote Control System for Autonomous Vehicles

That, however, depends upon the specifics of the problem statement. In this case,
an operator will always have control of the vehicle, only remotely. Hence any com-
plex algorithms would be overkill in terms of technical complexity, computational
overhead and tuning [70]. At the same time, the algorithms with low complexity
could be not enough for smooth and stable steering and driving experience. In
Figure 4.13 two diagrams compares the most popular control strategies available
for an AV based on research done by Cornell University, New York [70].

Any controller algorithm can be either an open or closed-loop controller. That
refers to electronically controlled devices and whether they can take feedback
from the device. Devices with closed-loop controls get feedback from their sensors
and adjust the response and operations based on current device conditions. On the
other hand, open-loop controls do not receive feedback and purely do what they
are programmed to do without regard for current device condition [70]. An open-
loop controller in this project would not be enough for the remote control system
since it would do basically what the manual steering torque applier was doing
without knowing how much force to apply. Therefore a closed-loop controller is
needed, and based on the comparison in Figure 4.13 the best would be either PID
or a Geometric controller, but since the PID controller is more widely used, it is
the one chosen for this project. [71]

PID implementation and tuning

Inside the PID controller, there are three variables; proportional (P), integral (I)
and derivative (D). In tandem, they work to give rise to a much more efficient
PID controller than only using a plain P, PD or PI. The PID controller takes advant-
age of all the three primary controllers in order to generate a more sophisticated
control action that proportionally corrects the variable error. It also dampens the
resulting overshoots and reduces a possible steady-state error over time. Never-
theless, all these three variables need to be tuned after the implementation, either
automatically assisted or manually. [70].

Figure 4.13: Summary of Control Strategies for Autonomous Vehicles. [72]

Chapter 4: Methods 53

Figure 4.14: P, PD and PI controller comparison. [72]

The PID steering controller algorithm was implemented inside the "teleop.cpp"
and in "pid_controller.cpp". The controller takes input from the ROS commands
from the G29 kit and gets input from the OBD CAN bus. This information is used
to alter the torque sent to the power steering column to match the wheel angle
given by the CAN bus and the one sent via ROS from G23.

The tuning of this PID controller was done manually because any automatic tun-
ing in simulated environments requires a realistic model of the car, which was not
made and could take too much time. So instead, an extra feature was implemen-
ted into "teleop.cpp", which was real-time adjustments of the three parameters
Kp, Kd and Ki. This could be done right from the G29 steering wheel by press-
ing down a square, triangle or circle button, mapped to Kp, Kd and Ki, and then
pressing plus/minus on the wheel. For example, this would add/subtract 0.0005
to the initial value. By doing this, it was possible to test the rotation of the car’s
steering wheel and, at the same time, adjust the parameters accordingly to how
the response was. In the end, the controller was tuned and smoothly working. Fig-
ure 4.15 shows how the different parameters’ tuning impacts the performance.

Figure 4.15: Figure illustrates showing how tuning of the different parameters
in a PID controller impact its performance. [73]

54 Alexey Gusev: Remote Control System for Autonomous Vehicles

4.2.8 Architecture Overview

RQT Graph

Figure 4.16: Figure showing a RQT graph also called ROS graph, which illustrates
nodes that subscribes or publishes topics related to the control part in the full
remote control system. The topic "can_frame" is used for publishing information
regarding car status data such as speed.

Chapter 4: Methods 55

Sequence Diagram

Figure 4.17: Figure showing a sequence diagram with only relevant components
regarding ROS nodes used in the remote control process of the vehicle. The dia-
gram shows an abstraction of only ROS processes and assumes that the VPN and
SSH connection showed in Figure 4.8 has already been established.

56 Alexey Gusev: Remote Control System for Autonomous Vehicles

4.3 Real Time Video Transmission Over IP

New technologies have allowed even professional broadcasters requiring high
bandwidth and low latency to migrate to IP networks for video transport, even
in real-time. With the 5G cellular network emerging, P2P, also called device-to-
device (D2D) communications, has been an unfolding technique anticipated to
provide many mobile users with new advanced services in 5G networks. As men-
tioned in section 3.2, 5G is perfect for the task of this project, especially for sending
a large amount of data with low latency, high speed and over a stable connection.
This section describes how video transmission from the car to the remote com-
puter was realized over a cellular network and in real-time. It is important to un-
derstand that architectural choices were explicitly made concerning the available
equipment and software in the car. [74]

4.3.1 Obtaining Image Data From the Cameras

When this project started, the car already had all cameras installed, connected
and initialized. All cameras (3.4.3) were using the GMSL protocol and connected
to the Nvidia Drive Platform through a FAKRA port. On Figure 4.20 an overview of
all parameters a camera contains in the Nvidia Drive OS (??). NAP-lab had three
main front cameras and one rear camera connected into interface csi-a and link 0-
3. The other four side cameras were connected to the interface csi-c with a similar
link 0-3. All cameras were available through built-in DriveWorks commands such
as the "sample_camera" used for testing [75]. The successful sample test ensured
that everything was correct and that cameras were ready to be used in further
development.

Figure 4.18: Figure shows the parameters for camera.gmsl in Nvidia Drive SDK.
Source of image [75]

4.3.2 Compression Algorithm

Video as a media has the nature of being needy in both storage and bandwidth.
The setup of cameras designed in the mock-up, later described in section 4.5, stip-
ulates the use of four cameras. That means four full HD cameras at 30 frames per
second (3.4.3) being sent over IP in real-time. In order to grasp the bandwidth
necessary for the video transmission, a calculation on the raw video was conduc-
ted.

Chapter 4: Methods 57

Five relevant factors in every digital video signal determine how much bitrate, and
thus bandwidth is required: video resolution, frame rate, colour space, chroma
sub-sampling and colour bit-depth. Together, they form the base on how much
data will be required to send and process. Equation 1 in (4.19) shows a simple
mathematical formula used to calculate the needed bandwidth [76]. By filling out
all variables based on information from subsection 3.4.3, and assuming that the
cameras are not doing sub-sampling, meaning that they reserve full-colour depth,
we get the following equation 2 in 4.19. The results of it in equation 4 (4.19) show
an insane bandwidth of 2.52 Gbps per camera, in total 10.08 Gbps with four cam-
eras. This illustrates that it would have been impossible to send any image in the
"raw" format over the IP when using any WiFi or Cellular network. The maximum
speed of a high-speed wireless network is usually around 1 Gbps, the same as a
high-end 5G cellular network these days.

Figure 4.19: Equations for calculating bandwidth usage during video transmis-
sion. [76]

The calculation example above shows that encoding is highly needed for this re-
mote control system to include even one camera. Hence, a search was done in or-
der to find the best-suited codec for this task. There are many different encoding
algorithms, all delivering different performances. Nevertheless, the most preval-
ent standards are MJPEG, MPEG4, and H.264. In addition, the choice is highly
limited when depending on ROS-supported compression algorithms in tandem
with the GMSL cameras and Driveworks. The only directly supported type of im-
age compression algorithm is MJPEG, often referred to as "type=compressed" in
ROS. Testing the MJPEG compression and displaying the frames through ROS
locally showed a considerable use of CPU power in the car, letting the computer
freeze if more than three cameras were encoding simultaneously. However, that
did not prove the MJPEG as bad; it showed the problems it entails when in this
specific setup of software and hardware. Therefore the H.264 looked more prom-
ising since the algorithm should consume less CPU.

58 Alexey Gusev: Remote Control System for Autonomous Vehicles

4.3.3 Video Encoding and Transmission From The Car

H.264 compression was added to ROS through two ROS libraries "h264_image-
_transport" and "nvidia_gmsl_driver_ros" 3.5.4 made by an Estonian University,
and shared freely on Github [52]. Those packages made it possible to encode,
decode and transport frames compressed with H.264, which is normally not sup-
ported in ROS. In this package, it was also possible to fine-tune the compression
bitrate, which again was vital for this project. After some testing, the bitrate for
the compression was chosen to be as low as 2 Mbps for each camera. The reason
was mainly the high CPU usage and the fact of using an additional 4G in places
without 5G, which could sometimes have low bandwidth. The picture was good
enough for seeing important details, and a higher bitrate was not as critical for
this task.

The H.264 encoding is done by launching the nvidia_gmsl_driver_ros.launch file
inside its catkin workspace, which starts several nodes with different tasks. All
cameras specified in a ".yaml" parameter file are then checked, and frame stream is
enabled. All data is then compressed into h.264 and published on a ROS topic cor-
responding to every camera, for example, "interface/link0/camera/image/h264"
showing the camera on interface "A" at link 0, which in this case is the front camera
1. The ROS transport method for publishing the topic is "image_transport", which
sends "sensor_msgs/Image". More exact information about the work of this library
is available on their GitHub [52].

Figure 4.20: Figure shows a comparison between codecs. Source of image [76]

4.3.4 Video Decoding at Remote

When the graphical user interface wants to show the video streamed from the
car, it needs to use its "gui_node" to subscribe to the topic on which the car is
publishing the camera frames and reading them. The problem is that the video
frames published on the topic are compressed in h.264. This data needs to first be
decompressed, then read and displayed.

Chapter 4: Methods 59

An extra library from UT-ADL for ROS was installed to achieve decompression
on the remote computer. This library called "h264_image_transport" adds to the
existing ROS "image_transport" ability to decompress H.264. Since four streams
are being published on four different topics, they must all be decompressed. By
developing a ".launch" file containing four republisher nodes that use the "im-
age_transport" with H.264 decompression and create four brand new topics con-
taining the decompressed image stream called "interface/link0/camera/image/decoded"
for each of the cameras corresponding to the link number. That makes it possible
for the GUI to subscribe to the four topics and receive the desired camera frames.

4.3.5 Architecture Overview

RQT Graph

Figure 4.21: Figure showing a RQT graph also called ROS graph, which illus-
trates nodes that subscribes or publishes topics related to video transmission in
the remote control system. Link 0-4 corresponds to camera 0-4, and this particu-
lar setup shows only 3 cameras are subscribed and used by the GUI

60 Alexey Gusev: Remote Control System for Autonomous Vehicles

Sequence Diagram

Figure 4.22: Figure shows a sequence diagram with only relevant components re-
garding ROS nodes used in the video transmission processes. The diagram shows
an abstraction of only ROS processes and considers that the VPN and SSH con-
nection showed in Figure 4.8 has already been established. The diagram also
illustrates only one republisher and one camera being used. In the system, there
are four of them (front, right, left, rear), but they do the exact same thing.

Chapter 4: Methods 61

4.4 Methods and Algorithms for Real-Time Object Detec-
tion

This section features concepts for object detection and their implementation. This
methods are planned in future development to be embedded as a part of the
operator-assistant in the complete remote control system. The goal of this system
is to be a safety guard for the operator when situations with packet loss occurs,
or the operator simply does a wrong move, result in fatal consequences.

In order to map as much as possible in the field of object detection and later
answer RC 2.5 in section 1.2, the objective for this section was divided into smaller
parts as follows; see the list ??. The experiment will give information about the
procedure of recording, segmentation and making use of lidar data for real-time
object detection and also explore different methods. It was chosen to use the lidar
instead of the cameras in order to explore more of the subject and also map the
possibilities and future potential of the operator-assistance system. [77]

4.4.1 Collection and Segmentation of Lidar Data

The lidar data collection was done by driving a car around in Trondheim while
recording the top lidar (OS2-128) see Figure 4.23a for raw 3D Lidar data and
Figure 4.25b for illustration of the driven route with SLAM, done by NAPLab. Later
because of several complications with formats in Drive Works and Ouster Studio,
segmentation was done with the help of the NAPLab research group; that made a
small plugin for Nvidia DriveWorks to get the right outcome. This is important in
order to have object detection software such as Yolo or SSD to work, since they are
not able to detect object in 3D environment [77]. In addition, the process would
be the same as performing it for a camera, which means that the cameras used
for video streams and sent to the remote computer could also be used for object
detection. The result was 19 videos with 100 frames each, in three variants of
visualization: intensity, range and ambient, whereof all videos are in black and
white. Figure 4.24 shows all three visualizations of the 2D space lidar image from
one of the 19 videos, namely the one chosen to later be the test video.

4.4.2 Label Objects on Videos

In order to label all the respective videos in time, it was done together with the
help of the NAPLab group. The labelling was done in CVAT, free, easy use and
well-known annotation tool for images and videos [78]. It was chosen to use a
car, truck, bus, motorcycle, bicycle, scooter, person and rider as the classes for
the labelling because those are the primary moving objects to be detected when
driving a car, see Figure 4.25a. This labelled data was then ready for being used
in either training or testing with an object detection algorithm, Figure 4.25 shows
the annotated data.

62 Alexey Gusev: Remote Control System for Autonomous Vehicles

(a) Lidar data in 3D format

(b) SLAM on the driven route

Figure 4.23: A figure showing the 3D lidar data and the driven route illustrated
through SLAM.

Chapter 4: Methods 63

(a) 2D lidar picture in intensity variant

(b) 2D lidar picture in range variant

(c) 2D lidar picture in ambient variant

Figure 4.24: A figure showing the lidar data segmented into 2D space images, in
three variants of visualization.

(a) Chosen annotation classes

(b) Labels on a frame

Figure 4.25: A figure showing annotation of video with the chosen classes and
labeling.

64 Alexey Gusev: Remote Control System for Autonomous Vehicles

4.4.3 Object Detection Algorithm

It was chosen to use Yolov3, Yolov3 Tiny and Yolov5 for these experiments. The
reason was that those are popular, simple, fast and easy to work with [79].

The implementation of the object detection algorithm was done with plain Yolov3
and the Coco dataset, downloaded from the original website together with the
Darknet framework. To load the frames, a small algorithm was written. It used
functions in OpenCV to store the CNN and scaled the frame to the appropriate
416x416. The scaling was done not by cropping but by crushing down the image.
This way, all the details should follow as in the original. The bounding boxes were
also drawn by coding a box generator that took anchor points given from the
prediction of Yolov3 as input. After the first run, this showed to be a failure because
none of the objects was predicted, and none of the boxes was drawn. The problem
lied in the scaling of the image or rather the crushing of the frame. Since the
images are of the wide format, 1024x128, when crushing them, almost everything
will look like a brick without any normal details. The solution could be to either
train Yolov3 on those scaled images or try something like patching of splitting
[80]. Patching was then implemented, and the images were split into four parts,
fed into the prediction algorithm and concatenated back into the original picture,
but now with the attached bounding boxes. In the results chapter section 5.7,
Figure 5.9 shows the to different results, with and without the patching and also
rest of the experiment.

Chapter 4: Methods 65

4.5 Graphical User Interface

As the project’s objective was to create a product prototype that would act as
a proof of concept, a graphical user interface plays a vital role for the end-user.
Therefore design and testing became an essential part of the development process.
To ensure that the design would support and highlight the potential of the remote
control system, it was chosen to focus on making the GUI highly functional, aes-
thetically pleasing and user-friendly. To achieve these criteria, a design-thinking
process was followed rather than a user-centred design process because of the
main concentration on functionality, quality and innovation. Several mock-ups
were made, iteratively tested, and enhanced based on the results, followed by
implementation and real data integration into a desktop application. [4] [81]

4.5.1 First Design Phase: Overall Conceptual Design

The first mock-up was designed using Figma - a vector graphics editor and proto-
typing tool. A prototype was designed to show the application’s general idea and
central aspects, everything from how a camera could be shown to how a gauge
cluster could be designed. This mock-up did not contain actual data; all buttons
and text were placeholders. The idea was to understand the interface’s look and
get a starting point before implementing a functional version. The colour palette
and general design solutions like border-radius, and corners, to mention a few,
were set and standardized at the start for consistent use in the whole interface.

The first overall conceptual mock-up is presented in Figure 4.28. The design choices
were not random but carefully considered by research and inspiration from major
game manufacturers making simulator racing games, such as Gran Turismo for
Playstation. Inspiration was also taken from the car industry, for example, on how
to make a proper gauge cluster. Games were considered an inspiration because
they have been developing over a long period, a layout that can give any player a
good overview of the road, the surroundings and data from the digitally made car.
This correlates with the same objective set for this GUI; control a car remotely.

The mock-up in Figure 4.28 consists of a front camera image taking up the entire
screen, because of its importance, a rear camera on top, mimicking a real rear mir-
ror, a gauge cluster showing speed, range, "ePower" (Throttle) and battery level in
the middle, followed by a map with the car’s location and essential information on
each side of the cluster. Altogether it was enough to see what a possible solution
could look like.

66 Alexey Gusev: Remote Control System for Autonomous Vehicles

(a) A figure showing elements designed in Figma, used to later construct the gauge cluster
for the mock-up.

(b) A figure showing first conceptual design of the GUI.

Figure 4.26: Figure showing the design of the first Mock-Up of the Remote Con-
trol System as a graphical user interface.

Chapter 4: Methods 67

4.5.2 Second Design Phase: Functional Design

The second design phase was aimed toward the functional parts of the design. It
was important to understand what information was needed on the screen for a
driver to feel comfortable driving the car. Usually, such a functional mock-up can
be made in Figma and tested by users, but in this case, all data, images and the
driving experience are impossible to simulate in Figma. The solution was to im-
plement one part at a time and test its functionality by me; this again shows the
not user-centred approach but rather a design-thinking process. (The map was
not implemented because it is just an extra feature.)

The first implementation and tests led to issues such as:

• Not enough information about the final or total delay.
• Not enough view around the car. Extremely hard to navigate.
• Difficult to see how much throttle is applied.
• Not possible to view the position of the real steering wheel inside the car.
• When are brakes applied, and how much?

A new mock-up was made to address all the issues presented, shown in Fig-
ure 4.27. Steering wheel position, brake pressure, and total delay were added to
the interface. Two more rear camera views were integrated into the gauge cluster,
now presented as an instrument panel. The inside view was added on the right
side in order to watch what is happening inside the car, but it could also be shifted
out for an extra-wide front camera. This design was maybe a bit more crowded,
but all this information was considered essential to make safe driving possible for
the operator, based on qualitative testing.

4.5.3 Visual Design Principles

The basic five visual design principles found in 5principlesUX and their use during
the design phase are explained in the following paragraphs.

Scale: This design principle refers to using relative size to signal importance and rank
in a composition of different components, and it is generally recommended to only
have about three different sizes for elements inside a component. It was chosen to
use three to four, as the interface would have a lot of data inputs and information
that needed to be held visually separated. This visual hierarchy can be seen in the
speedometer and the torque gauge Figure 4.28a. The speed and the torque value
in each of the gauges are the most prominent elements, followed by the info,
the measuring unit and the values around the gauge. This gives any operator of
the system the most valuable information as standing out as the most significant
elements, followed by more minor, less essential elements.

68 Alexey Gusev: Remote Control System for Autonomous Vehicles

Figure 4.27: Figure illustrates second version of mock-up, this time with more
functional design and fixes of the issues in the first mock-up.

Visual Hierarchy: A principle addressing how to intentionally design web pages in
order to deliver the hierarchy of element importance to users. It should take a min-
imum of time for a user to locate essential elements on a page. To ensure that
this graphical interface delivered a good visual hierarchy, the page was divided
into parts where all of them were placed on a partly transparent background, see
Figure 4.27. This creates a separation between one section and another making it
easier for users to spot different functionality. The same is done inside the inform-
ation panelFigure 4.28c, where every group of elements with its own information
are placed in their own rectangle. Furthermore, the information panel is located
in the top left corner because this is where website users tend to look first [82],
making the most critical information read at first.

Balance: Satisfying arrangement or proportion of design elements. Since the inten-
ded usage area of this system is primarily remote control of a car in traffic; it had
to be informative and balanced, without any unnecessary elements. One excep-
tion was the difference between the left information panel and the right camera
and location panel. They were designed to be strongly symmetric, but the data
inside is highly asymmetric and gives an unbalanced overview. That is inevitable
because of the different information they need to deliver to the operator. At the
same time, this makes the interface more engaging without disrupting its inform-
ative intentions, as asymmetry creates a sense of energy and movement [83].
Consequentially, the other elements are all centred, both with respect to their
containers and horizontally on the page. However, they encapsulate some asym-
metric elements to make the design more interesting. An example is the speed
value, which is asymmetrically placed to the left inside the middle of the gauge,

Chapter 4: Methods 69

while the informative text is placed under and on the right side. This makes the
elements appear not centred, making the design more exciting.

Contrast: Makes certain parts of your design stand out to end-users. As already
touched upon in the paragraph on Visual Hierarchy, visually guiding users to-
wards the information they are looking for is essential. Therefore, contrast is used
frequently in this project to ensure that the most critical information and buttons
stand out. This is done using white text on a partly transparent black background,
making the black and white contrast. This is done so that information is readable
even if the camera shows a bright image, but at the same time, it is not covering
all views of the image completely.

Gestalt: Captures the user’s tendency to perceive the whole as opposed to the in-
dividual elements. The Gestalt principles are used in many of the components;
the different panels containing data give the user the understanding that all the
text inside one rectangle corresponds to the value in the same rectangle, see Fig-
ure 4.28c. Additionally, the Gestalt proximity principle is used a lot in the design.
One example is the labels on every camera view; they are inside or close to their
corresponding boxes, making it intuitive and easy to understand what it labels.

(Norman’s Design Principles) To make a product have high usability, it relied on
Norman’s design principles, in addition to the Visual Design Principles, as a guide
during the design process [84]. Norman’s principles are well known, designed
for humans, and provide guidance in establishing clarity and improving decision-
making. Norman depicts six principles: Visibility, Feedback, Affordance, Mapping,
Constraints, and Consistency.

70 Alexey Gusev: Remote Control System for Autonomous Vehicles

(a) Gauge cluster with speedometer on the left, battery status in the middle and throttle-
meter on the right

(b) Design of the the instrument panel with the gauge cluster in the middle and rear side
views on th

(c) A figure showing the information panel

Figure 4.28: Figure showing different parts of the GUI.

Chapter 4: Methods 71

4.5.4 Implementation and Architecture Overview

This sub-section covers the architectural aspects of the desktop application with
a graphical user interface and the technologies it is made of.

Desktop App

During the first design phase of the GUI, a decision about making the interface a
desktop app was taken. This was a better choice than developing a web interface
for the remote control system because of its complexity, or rather the lack of it.
Since the remote control system uses ROS and a couple of scripts as backbones
for the control and data transmission, it would be a highly complex solution to
let the web interface interact with the computer’s local scripts, CLI and gather
information from ROS. It would also need a client-server setup where the server
could introduce more latency, security issues and complexity to the whole system.
The system should therefore be somewhat redesigned at its root in order to work
properly with a web interface. It is possible and maybe the most modern solution,
but not necessary for this project where the subject is a proof of concept and not
a widely used commercial product.

Python and Kivy

It was chosen to use Python as the language because it supported ROS, machine
learning libraries, object detection and, of course, the possibility of making a good-
looking GUI with the framework KivyFigure 3.5.1. The other possible candidate
was C++, but it did not have good frameworks for making graphical interfaces.
Any other language does not support ROS.

Background and Foreground Processes

In order for the remote control system to work, it is divided into two types of
processes; background processes - running independently of a user and needed
for the app to work, and the foreground processes - interactable by the user and
are mainly the desktop app. Ideally, all processes should have been started auto-
matically by starting the foreground process, but since this is a proof of concept
not made for a non-professional, the background processes are also started by the
user. Therefore, after starting the background processes with a CLI command and
filling in the SSH password, the foreground processes can be started, and the Kivy
desktop app will appear.

App Architecture

As good practice, a Kivy application is divided into at least two pieces; the func-
tional "main" Python file and the graphical layout ".kv" file written in the Kivy
syntax, which is a Kivy app can be seen as the CSS file in a web-page architecture.
The main processes and functionality is happening inside the "main.py" file.

72 Alexey Gusev: Remote Control System for Autonomous Vehicles

The idea of the desktop app is to have multiple camera streams, car data, inform-
ation and driver assistance presented and updated in real-time. All the data is
served by and retrieved from the background processes section 4.5.4 constantly
running.

"__main__" method: This is the primary method that initializes and runs the
whole application. It also creates a ROS node, used for subscribing to different
ROS topics, running as part of background processes. Those are needed to get the
data sent from the car. The ROS node is called "gui_node" and can be seen in the
RQT graph in Figure 4.29.

Camera class: The application consists of multiple camera classes, one for each
camera stream with its own updating mechanism - callback. This callback is called
every time information is received by "gui_node", subscribing to the particular
decoded ROS camera stream. Inside the callback, every frame goes through a
reading process, resizing with interpolation and converting from a Numpy array
into a Kivy texture, before being visualized as an asynchronous image in the GUI.
It is worth mentioning that every callback is running as "@mainthread", meaning
that it will never run in the back as a daemon due to the stop of frame update.
Figure 4.29 illustrates how the gui_node gets image data through ROS from the
car.

"MainWidget" class: The data such as steering wheel angle, throttle position and
speed are also run with their callback functions, only they are inside their own
joint class, the "MainWidget". This class stores and updates all kinds of variables
needed in the interface, which are not a part of the camera views. In the same
class, ping and latency are also evaluated. Those methods show the average ping
and total image latency every 3 seconds. The ping is tested with a library called
Pingparser, which uses the car’s IP address as a reference point. The image latency
is calculated every time a callback function with frame processing is called by the
node subscribing to the decoded image topic.

"drivegui.kv" file: This is the file in Kivy syntax used for making the layout, design
and animations of the app. It contains a structure of different widgets and classes,
together with design-specific variables such as the elements’ colour, size, place-
ment, and shape.

Chapter 4: Methods 73

RQT Graph

Figure 4.29: Figure showing a RQT graph also called ROS graph, which illustrates
nodes that subscribes and publishes topics related to the remote control system
included GUI. Link 0-4 corresponds to camera 0-4. This graph shows the entire
system with all nodes, topics and connections

74 Alexey Gusev: Remote Control System for Autonomous Vehicles

Figure 4.30: Figure showing a RQT graph also called ROS graph, which illustrates
nodes that subscribes and publishes topics related to the remote control system
without the graphical user interface. This graph shows all nodes and topics except
of the graphical user interface and the connection to it.

Chapter 5

Results

The following chapter presents the final results of this project collected during
tests and development of the remote control system. The results are set up with
respect to goals, research challenges and desired features.

The first goal in section 1.2 was mainly to present and map the architecture of
the available NAP-lab vehicle; it is therefore answered throughout the document
by the presented hardware architecture of the car in theory section 3.4, and by
going through the different parts in methods chapter 4. The second goal in sec-
tion 1.2 targeted the development process of a proof-of-concept that also needed
to be tested and evaluated. The testing and results of the concept are thoroughly
described in the following sections.

It is important to notice that a YouTube video was made specifically to cover all the
results and tests. This chapter is therefore accompanied by the video in this link, [10]

5.1 Stationary and non stationary test execution

Several tests were carried out to evaluate both individual parts of the architecture
and the complete system. However, because the car could not legally drive on a
public road or any public place, all driving tests were performed in a private and
closed area. That was primarily due to the use of equipment non-certified by the
local authorities, such as the developed remote control system. This limitation
entailed only one test conducted with the entire system running in its intended
and realistic environment, while the other test was done with the vehicle either
stationary or with somewhat limited driving space.

The main test was done at the landing site of the Værnes airport in Trondheim,
Norway. Its objectives were to remotely operate the car from a nearby office,
demonstrate the concept, test its functionality, measure user and usability sat-
isfaction, and stress test the equipment.

75

76 Alexey Gusev: Remote Control System for Autonomous Vehicles

It must be noted that there were only three test users of the remote control sys-
tem: a developer, a professor and a TV reporter. The reason for having a small
number of test users is because the concept is in an early phase of the develop-
ment process, and at this stage, qualitative feedback has a lot more value than
quantitative, as stated in the theory of iterative design thinking process [81].

When the test was performed, the landing site at Værnes Airport was unfortu-
nately only equipped with 4G and 4G+ technology, making it impossible to test
the 5G connection. Therefore, all 5G testing was done at other places with a 5G
connection and with the vehicle either stationary or slowly moving. Nevertheless,
the test results gave the developer a large amount of essential data that later can
be used for further development.

5.2 The Entire Remote Control System

The second goal was to build a complete remote control system that enabled an
operator to manoeuvre an autonomous vehicle in an edge case situation such as
a "dead-lock". In addition, several features were proposed for the remote control
system to make it a complete proof-of-concept.

5.2.1 Implemented features

• Automated P2P WireGuard VPN connection over 5G and 4G cellular net-
work.
• PID controller for precise by wire manoeuvrability, with Logitech G29 steer-

ing wheel and pedals.
• Automated system of several interconnected ROS nodes and ".launch" files

for remote control of the vehicle over IP.
• Video Transmission with ROS over IP and H.264 compression of 4 GMSL

cameras.
• Desktop app displaying real-time data and video streams in a clean and

eye-catching graphical user interface.

Assembling all parts explained in chapter 4 together leads to a complete remote
control system for the NAP-lab AV. With the use of ROS and a PID controller, the
system controls the car from a G29 kit in real-time, while video from 4 cam-
eras mounted on the car is encoded in H.264, transmitted via ROS, decoded
and displayed in an informative designed graphical user interface. The connec-
tion between the operator and the car is realized with a secure P2P VPN tunnel
with a fast UDP WireGuard protocol directly through the 5G/4G cellular network.

All software parts in the remote control system are interconnected through sev-
eral "bash" scripts and start automatically by running two commands in the CLI:
"./autoStartAll" starts all background processes and establishes a connection between
operator and car, whereas "./runDriveGui" launches the Kivy app. When both the

Chapter 5: Results 77

commands are run, and the password is entered, the result is shown in Figure 5.1.
Altogether this forms a completed second goal, with the remote control system be-
ing built.

Figure 5.1: Figure showing both the background processes and the app running.
All systems are nominal and the control over the car is established.

The feature tree presented in the first chapter in Figure 1.1 was almost fulfilled,
and the features were successfully implemented onto the concept. However, there
were still some discrepancies, especially within the assistance part. Due to limited
time and features connected to the operator assistance being highly dependent
on object detection software, the operator assistance was not implemented into
the system. Nevertheless, a lot of research and exploring was carried out into its
components. This part can, therefore, in further development, be addressed and
implemented.

Figure 5.2 shows a picture from the operator’s point of view when the system is up
and running. The screen 5.6c displays the graphical user interface and developer
information such as background processes. Figure 5.6d shows the setup inside the
car during LAN tests and system development. The graphical user interface is run
from a portable computer connected to either the car’s router or a 5G hot-spot,
depending on the test.

78 Alexey Gusev: Remote Control System for Autonomous Vehicles

(a) Setup during test of the system in the
office nearby the test track.

(b) Setup inside the car during develop-
ment and tests.

Figure 5.2: Figure shows the operator’s setup during test of the system.

Figure 5.3: Operator’s point of view in the GUI of the remote control system. Side
cameras is changed to front wide cameras.

Chapter 5: Results 79

5.2.2 Tests

The system was tested for multiple parameters and different cases; whether the
connection was LAN, a slow 4G, fast 4G, slow 5G or a fast 5G. That would show
how the technology of cellular connection can impact a remote-controlled vehicle
and its systems. All test parameters are explained below.

Test parameters with respect to connection type:

• User Satisfaction - Measures how satisfied the operator is by using a remote
control system.
• Usability - Measures how usable the system is, in its intended environment,

which in this case is a real traffic situation.
• Total Latency - Round trip time (ping) in addition to the camera processing

latency on the remote computer (Process latency calculated by metering
time it takes for a camera callback function to process one frame on the
remote computer)
• Ping - Round trip time from the remote to the car and back.
• Total Satisfaction - Measures the total satisfaction of the system based on

the given results in the rest of the table.

As this test is a proof-of-concept, all satisfaction measurements are exclusively
qualitative and based on the developer’s opinion. User satisfaction, usability and
total satisfaction use the satisfaction scale from 1 to 5, where one means that the
system performed poorly and five is that the performance was outstanding. Dur-
ing the main test, the operator drove the car in straight lines at higher speeds
and slower speeds on winding tracks. Everything such as steering tests, ping and
latency, except for the actual driving, was performed on the stationary experi-
ments. The objective was to understand how well the system behaves in different
situations.

5.2.3 Results

Figure 5.4 shows a table with all the results of the performed tests for the entire
system. The results are discussed and explained in the subsections below, divided
into connection types.

LAN

On LAN, which means that the operator is inside the car and connected to the
car’s internal router, the results were the best, which was expected. However, it is
still important because it shows that the system’s overhead is low enough to not
impose any problems on the functionality, thereby receiving a high score on both
usability, total satisfaction and user satisfaction.

80 Alexey Gusev: Remote Control System for Autonomous Vehicles

On the other hand, the user satisfaction was not outstanding because the user
interface and camera placement were shown to have some design flaws that made
it hard to operate a vehicle at low speed and corners.

5G

On the 5G with a high download and upload speed, the results are almost identical
except for the latency and ping. The processing is still happening in the same
amount of time on the remote machine, but the round trip time is significantly
higher than on LAN. Nevertheless, the results are still very acceptable, with the
total latency only being between 30-65ms, making the driving easy and without
feeling lagging. Still, the goal for total latency is to be below 50ms for real-time
operation, considering that any higher than 50ms in 60 km/h will lead to 0.8m or
more distance being travelled by car. That can entail a threat of being unable to
manoeuvre the car correctly, as earlier discussed in subsection 2.1.4. That leads
to the "total satisfaction" missing the point.

On the 5G with lower bandwidth and higher ping, the system started to obtain
a high latency, which implicated difficulties in the car’s remote manoeuvrability
and dropped satisfaction points on all parameters. With this latency, driving the
car on the road was possible, and the system worked. However, it was slightly
more difficult, especially when the latency could peak at 100ms. Using the system
in its intended environment is therefore not optimal but possible.

4G

Using the faster 4G connection did not change the performance much compared
to the low-end 5G. Ping did not have a considerable increase, making it highly
plausible to operate the car, but not as an optimal solution. On the "airport test",
the car drove at 60km/h and higher with the operator still having control, which
shows that the performance is the same as on low-end 5G.

The lower 4G, on the other hand, was not usable for driving. The ping and the
total latency increased to between 80-140ms, making it harder for the operator
to react in real-time. However, the worst part was probably the amount of packet
drop induced by the low upload speed. In the worst case, the picture could freeze
and the system collapse in the absence of a stable packet stream. All this gives 4G,
the lowest score in the test, making it unusable for such real-time operations in
traffic.

Chapter 5: Results 81

Figure 5.4: Figure showing a table with results of ping, total latency, user satis-
faction, usability of the system and total satisfaction of the system with regard to
the connection type.

82 Alexey Gusev: Remote Control System for Autonomous Vehicles

5.3 P2P WireGuard VPN Connection Over 5G Cellular Net-
work

The research challenge 2.1 set in section 1.2 was about making a secure, stable
and fast connection from the remote control computer to the car. As described in
depth in section 4.1 the connection was established through a VPN with a P2P
design, using SSH to enable the launch of systems related to the control of the
car.

5.3.1 Tests

The system was tested for two parameters; whether the connection was through
a VPN tunnel or not. The test aimed to understand how the VPN performs and its
average latency on both the vehicle and the remote computer. All test parameters
are explained below.

Test parameters with respect to connection type:

• Vehicle Computer - Latency in milliseconds inside the vehicle computer on
a given test.
• Remote Computer - Latency in milliseconds inside the remote computer on

a given test.
• Test Type - Type of the test that is ran both devices.
• Connection Type - Shows whether the connection is through the VPN tun-

nel or not.

Together with the system testing, there was also a test measuring cellular con-
nection in the city of Trondheim at two different places; at the NTNU university
and Ila. The measurements were done on both 4G and 5G, showing low-end and
high-end 4G/5G. The total results are shown in Figure 5.6.

5.3.2 Results

The VPN connection result shown by the table in Figure 5.5 gives a good over-
view of different latency present in the system. Looking at the lower table, the
connection speed on the remote computer is high due to the use of Ethernet. The
vehicle computer also has a high download speed but a low upload speed because
of the use of low-end 5G and the test facility being located inside an underground
garage. Nevertheless, the upper table does show important results related to how
much overhead the VPN tunnel can create. By comparing the latency of pinging
"google.com" on remote and on the vehicle, the difference is about 37ms. That
means the tunnel creates an overhead of around 21ms; 37ms minus the 16ms
ping without VPN. The same results are revealed when comparing the delay of one
ROS joystick message minus the latency of pinging "google.com" in the vehicle.
These results show an overhead created by the VPN tunnel with around 20-30ms

Chapter 5: Results 83

on top of the ISP-induced latency. These are promising results when considering
a high-end 5G cellular network that can have a 10-20ms ping (5.6) and, together
with VPN, sum up to about 40-50ms. As long as the total delay of the system is
50 or under 50 ms, the car is highly manoeuvrable by the operator [23].

5.4 PID Controller and ROS System For Manoeuvring Vehicle
Over IP

The research challenge 2.2 set in section 1.2 was to enable vehicle brake, steering
and throttle control over IP. That was done by building an interconnected ROS
system with an additional PID controller inside the car for precise manoeuvring,
described in depth in section 4.2. This section shows the control part of the system
going through multiple tests.

5.4.1 Tests

The vehicle control system was tested for multiple parameters and, for different
cases, different driving speeds, ranging from 0-60km/h. That would show how
good and precise the system is at manoeuvring and controlling the car. All tests
were performed with the car connected to LAN, 4G+ and 5G cellular networks.
As a result, the test shows an average value of several different tests.

Test parameters with respect to speed:

• User Satisfaction - Measures the operator’s satisfaction with the control
system’s manoeuvrability, response and feel.
• Steering Angle Deviation - Divination between the operator’s G29 steering

wheel and the native wheel inside the car.
• Steering - Operator’s satisfaction with using the proposed control system

with the G29 steering wheel to control the car over IP.
• Brakes - Operator’s satisfaction with using the proposed control system with

the G29 brakes to stop the car over IP.
• Throttle - Operator’s satisfaction with using the proposed control system

with the G29 gas pedal to accelerate the car over IP.
• Total Satisfaction - Measures the total satisfaction of the system based on

the given results in the rest of the table.

As this tests a proof-of-concept, all satisfaction measurements are exclusively qual-
itative and based on the developer’s opinion. User satisfaction, usability and total
satisfaction use the satisfaction scale from 1 to 5, where one means that the system
performed poorly and five is that the performance was outstanding. The test was
carried out by driving the vehicle around, making different manoeuvres, braking
and accelerating at different speeds.

84 Alexey Gusev: Remote Control System for Autonomous Vehicles

Figure 5.5: In this figure there are 2 tables, the upper one showing Connection
latency with or without use of the VPN on both the vehicle computer and the
remote computer. The lower table shows connections speed on both computers
during the testing.

Chapter 5: Results 85

(a) Measurements of 4G connection with
OpenSignal at Ila, Trondheim.

(b) Measurements of 5G connection with
OpenSignal at Ila, Trondheim.

(c) Measurements of 4G with OpenSignal at
NTNU, Trondheim.

(d) Measurements of 5G with OpenSignal
at NTNU, Trondheim.

Figure 5.6: Figure shows 4 measurments at two different locations in Trondheim
with both 4G and 5G in order to compare the connection type on speed and
latecny.

86 Alexey Gusev: Remote Control System for Autonomous Vehicles

5.4.2 Results

The results of the performed remote manoeuvrability test are presented in the
table in Figure 5.7, and all were promising. When the system was tested in non-
stationary, all parts worked well, with the steering wheel angle showing a devi-
ation of about 1-3 degrees if started at identical positions.
There was no delay in the system, and all parts felt exactly like they were working
in real-time, even when driving at high speeds such as 60 km/h. However, if the
remote G29 steering wheel was offset compared to the native steering wheel in
the car, it could have a larger offset during the rest of the session. In addition, at a
standstill, the PID controller did struggle a bit to hold the desired angle. The car’s
steering wheel could start wobbling when turning the remote wheel in a very fast
or a very slow manner. The reason is probably the high friction from the tires not
letting the wheels turn evenly. That is why steering did not get an outstanding
satisfaction factor in the tests, especially not in the stationary case. Nevertheless,
the brakes and throttle did surprisingly good and had an outstanding result in all
cases. The remote pedals had a response factor that could be close to the native
inside the car and were very easy to interact with.

5.5 Video Transmission Over ROS With H.264 Encoding

The research challenge 2.3 set in section 1.2 ensure a stable real-time video stream
from the cameras mounted on the car and connected to the Nvidia Drive platform.
That was done using a third-party library "nvidia_gmsl_driver_ros" to encode and
convert the GMSL camera stream into ROS "sensor_msgs/Image" messages before
being transported to the remote computer and decoded. The detailed explanation
of the method can be read in section 4.3.

5.5.1 Tests

This part of the system was somewhat challenging to test. Therefore, the results
are based on qualitative visual and logical interpretation, in addition to the overall
performance. That is because the main work related to encoding and decoding is
either done by the "nvidia_gmsl_driver_ros" library or ROS transport libraries;
testing the process in detail is therefore not accessible.

Chapter 5: Results 87

Figure 5.7: Figure with a table showing the results of testing of the remote man-
euverability. All tests are done using 4G+ and 5G.

88 Alexey Gusev: Remote Control System for Autonomous Vehicles

5.5.2 Results

The video transmission is, as mentioned in subsection 4.3.2 compressed in order
to be sent over IP. The compression and conversion are CPU and GPU intensive,
showing that up 60% of the CPU in the vehicle is loaded. That makes more than
4-5 cameras taught for the machine. On the remote computer, it is the displaying
and not the decoding that is heavily GPU and CPU intensive, showing that a PC
without a dedicated GPU cannot display more than one camera. The bandwidth
used by the video transmission is about 8mbps, shown in Figure 5.8. That infers a
bandwidth shortage due to the cellular network, especially 4G, having much lower
upload than download speed. Four cameras displayed simultaneously is therefore
only possible with a powerful remote computer and a fast 4G+ or 5G connection,
where upload speed is higher than 12mbps. The measurement in Figure 5.6 shows
that this is not always achievable, resulting in slow video transmission or even a
system collapse.

Figure 5.8: The bandwidth used by the video transmission is shown on this
screenshot from the Celerway Arcus router’s interface.

Chapter 5: Results 89

5.6 GUI Desktop App in Kivy

The research challenge 2.4 set in section 1.2 describes the need for a graphical
user interface for the remote control system in order for the operator to achieve
reliable control. That was carried out by developing a desktop app with all the
necessary information to achieve a good overview of the system and integrate the
other parts. The desktop app is described in depth in section 4.5.

5.6.1 Tests

The desktop app testing was done by the same tests when testing the complete
system, as described in section 5.2. User satisfaction was based on the system and
how it was to interact with the graphical user interface. Optimally, a user interface
should be tested by many users to detect errors or misleading design elements.
However, since this is a proof-of-concept developed in a matter of design think-
ing, the feedback on GUI is highly qualitative and received from the developer,
professor and a reporter on the test.

5.6.2 Results

The satisfaction results can be seen in Figure 5.4 showing that the operators were
mostly happy with the proposed interface, but only with a good cellular connec-
tion. The reason was laggy performance and the risk of the system crashing when
the connection was at the lower end. Nevertheless, the app fully displayed four
cameras simultaneously with a lot of information updating in real-time. That was
marked as working smoothly all the time, such as the speedometer and the steer-
ing angle.

Regarding design elements, the feedback was positive, and the interface was mostly
easy to use. However, the battery indicator showing the current state of the charge
was not fully implemented and not working, with the map at the top right corner
being only a mock-up. The implemented trajectory projections were also not work-
ing as intended and showed the wrong trajectory when turning the steering wheel
more than 45 degrees. However, the biggest problem was the camera placement
and its displaying. Because the primary front camera did not show the vehicle’s di-
mensions or parts, it was rather challenging to understand whether the car would
crash or drive beside an object. The trajectory projections were, therefore, not
enough even when they worked as intended. See Figure 5.3

90 Alexey Gusev: Remote Control System for Autonomous Vehicles

5.7 Object Detection With Yolo V5 in Real Time

The research challenge 2.5 set in section 1.2 was to explore and map possible
methods and algorithms that can be used as a part of a future operator-assistance
system. That has been done by testing different algorithms, both pre-trained and
trained by developer’s data, collected from driving the NAP-lab car. In addition,
an additional test was conducted to see object detection potential as an integrated
part of the remote control system.

5.7.1 Tests

At first, all three object detection algorithms, Yolov3 and Yolov3 Tiny and Yolov5,
were tested pre-trained with the COCO dataset. That was done to check which
would perform the best and whether the patching affects the performance.

Then, to take the exploration a bit further, the train and validation set was cre-
ated and divided as shown in Figure 5.12a, 100 frames for training and 20 for
validation for ten different videos. This dataset was then loaded into Yolo5 and
trained in the network. That was done to see what performance object detection
can have if it is trained specifically for its purpose.

Lastly, the operator assistant is considered an essential part of the remote control
system in further development. Therefore an extra experiment was carried out to
prove its potential. First, Yolov5 was installed and integrated into the graphical
user interface to test if it could work with the whole remote control system. For
this experiment, Yolo5 was used as pre-trained and ran on GPU with CUDA. Then,
it was implemented into the callback that processes the primary video stream from
the camera inside the remote computer. That was done before the frame was fully
processed and displayed in the desktop app; see Figure 5.13 for the result.

5.7.2 Results

In order to make simulated real-time testing, some extra functionality was added
in the form of a loop where every frame was loaded as fast as the CPU could
and processed the same way as described earlier. The list subsection 5.7.2 shows
all the different trails together. In addition, Figure 5.9 and Figure 5.10 illustrate
the trials with screenshots of one frame from the simulated object detection. It is
worth mentioning that Yolov5 was more of a black box compared to Yolov3, so
many of the functions like scaling were done automatically by Yolo5, and results
show, therefore, that patching on Yolov5 was not efficient as on v3, instead made
it worse because of the lower speed.

The results was very good on the validation set, 42% mAP, showed in Figure 5.12b,
but not so good on the test set, only 14%, in Figure 5.11c. Either way, it was still
better than all the Yolo3 variants and the pre-trained Yolov5 when looking at
the screenshot, comparing it to the others, in Figure 5.10c. One of the possible

Chapter 5: Results 91

reasons that Yolov5 worked better on the trained data without any patching or
pre-processing is that it has implemented the Auto anchor functionality, where the
code automatically looks at the given anchors(labels) and compares them against
the data. If any of them fall below a certain threshold, the algorithm will change
them, make new, more appropriate anchors, and train the model on them instead.

• Pretrained Yolov3 without patching

◦ Pretrained on COCO 2012
◦ Prediction as black box(By Yolo)
◦ Bounding box and label generation and image crop/scaling by own

algorithm in python with OpenCV.
◦ Results:

− Predictions: Few and all are bad
− Speed: To slow in real-time(On CPU)
− Illustrated in Figure 5.9a

• Pretrained Yolov3 with patching

◦ Pretrained on COCO 2012
◦ Prediction as black box(By Yolo)
◦ Bounding box and label generation and image crop/scaling by own

algorithm in python with OpenCV.
◦ Results:

− Predictions: Many and more correct
− Speed: To slow in real-time(On CPU)
− Illustrated in Figure 5.9b

• Pretrained Yolov3 Tiny with patching

◦ Pretrained on COCO 2012
◦ Prediction as black box(By Yolo)
◦ Bounding box and label generation, patching and image crop/scaling

by own algorithm in python with OpenCV.
◦ Results:

− Predictions: Few and somewhat correct
− Speed: Very fast in real-time(On CPU)
− Illustrated in Figure 5.9c

92 Alexey Gusev: Remote Control System for Autonomous Vehicles

• Pretrained Yolov5 without patching

◦ Pretrained on COCO 2017
◦ Prediction as black box(By Yolo)
◦ Bounding box and label generation as black box(By Yolo)
◦ Results:

− Predictions: Medium amount and many correct
− Speed: Very fast in real-time(On CPU)
− Illustrated in Figure 5.10a

• Pretrained Yolov5 with patching

◦ Pretrained on COCO 2017
◦ Prediction as black box(By Yolo)
◦ Bounding box and label generation as black box(By Yolo)
◦ Patching by own algorithm in python with OpenCV.
◦ Results:

− Predictions: Medium amount and many correct
− Speed: Very slow in real-time(On CPU)
− Illustrated in Figure 5.10b

• Trained Yolov5 without patching

◦ Trained on custom dataset, see Figure 5.12a
◦ Prediction as black box(By Yolo)
◦ Bounding box and label generation as black box(By Yolo)
◦ Patching by own algorithm in python with OpenCV.
◦ Results:

− Predictions: Many and a lot correct
− Speed: Very fast in real-time(On CPU)
− Illustrated in Figure 5.10c

At last, in this section, the results of object detection with Yolov5 being run as a
part of the remote control system showed that it works, but only when comput-
ing one camera. Even though the computer was using GPU for object detection,
several streams, together with processing and rendering, were computationally
heavy for any of the tested computers. The GPU used in the test was RTX 2060,
both in the laptop and the desktop computer. The extra overhead and latency
created were around 22ms if the object detection was turned on, which can be
concluded as fast and suitable for real-time remote control, but only if the cellu-
lar connection is not having high latency. Because it could sum up to very high
latency in tandem. Figure 5.13 shows a picture of the object detection perform
detection in real-time inside the remote control GUI.

Chapter 5: Results 93

(a) Pretrained Yolov3 with no patching

(b) Pretrained Yolov3 with patching

(c) Pretrained Yolov3 Tiny with patching

Figure 5.9: A figure showing the labels predicted by different version of pre-
processing with Yolov3 and Yolov3 Tiny.

(a) Pretrained Yolov5 with no patching

(b) Pretrained Yolov5 with patching

(c) Trained Yolov5 with no patching

Figure 5.10: A figure showing the labels predicted by different version of pre-
processing, training with Yolov5.

94 Alexey Gusev: Remote Control System for Autonomous Vehicles

(a) Figure showing the distribution of frames on the training and validation set.

(b) Results of on the validation set

(c) Trained Yolov5 with no patching

Figure 5.11: A figure showing the training and validation dataset together with
the results.

Chapter 5: Results 95

(a) A figure showing graphed results of Yolo5 on validation set.

(b) A figure showing the predictions on the validation set.

Figure 5.12: A figure showing graphed results of Yolo5 and the predictions labels
on the validation set.

Figure 5.13: Testing of the implemented object detection with Yolo5, that is em-
bedded into the remote control system as seen on picture.

96 Alexey Gusev: Remote Control System for Autonomous Vehicles

5.8 Expert Feedback

Based on the given results presented in section 5.3 expert feedback was needed
to fully grasp the connection challenges with the cellular network. In a mail cor-
respondence with Lars Inge Graabak, the Service Manager of Voice and Internet
Computing in Telia, the system was presented shortly, and the results were shown.
Then a question was asked on why the 4G and 5G sometimes can have the same
low speed and latency, on which L. Graabak responded:

"Indeed, there can often be equal speeds of 4G and 5G. That is because
some frequency bands are used by both of them due to the same amount
of resources for 4G and 5G. Today we run 4G on the following frequen-
cies: 700MHz, 800MHz, 900MHz, 1800MHz, 2100MHz and 2600MHz.
The frequency band 700MHz is used by both 4G and 5G and 3600MHz
only for 5G. That will change as the use of 5G increases. How much speed
we produce depends on the bandwidth. The 700MHz frequency band pro-
duces about 80Mbps while the 3600MHz band up to 1,500 Mbps. What
also complicates it a bit is that we use Carrier Aggregation, i.e. we con-
nect and use several frequency bands simultaneously. Under favourable
conditions, it is possible to get up to 800Mbs on 4G. "

"The reason why latency is quite similar between 4G/5G is that the 5G
network in the current version uses the earlier 4G network for signalling.
The version everyone uses on public 5G networks today is called Non-
Stand-Alone (NSA), and in about one year, Stand-Alone 5G will be in-
troduced, and then you will typically get latency down to expected 7-9
ms on 5G. After that, possible edge computing will be developed and send
the latency down to 2-3ms in special cases."

See complete mail correspondence in Appendix A

Chapter 6

Discussion

The developed system showed its effectiveness, performance, and usability and
performed above all expectations with the vehicle control realized from a nearby
office, with only a 4G+ connection. The operators could ensure that this proof-of-
concept did its job and showed the system’s potential. All parts were easy to run
by the automated scripts described in subsection 4.1.3 and a desktop app with
an adequately designed graphical user interface, endowing the operator with a
complete overview of the vehicle status and movement.

However, not everything worked as planned, and improvements to the system
are needed to be taken into account. The robustness was unfortunately below
the threshold for the system to be used in its intended environment; traffic [23].
Furthermore, the use of 4G did not deliver a stable connection, and the latency
could sometimes peak at over 100ms, as shown in section 5.3, making it rather
difficult for the operator to manoeuvre the vehicle. High bandwidth usage also
impacted the system and could overflow the buffers when the available upload
speed was lower than 12mbps (5.5). Data packets could therefore be lost, thus
lowering the stable video refresh rate of 30 frames per second. In the worst case,
this would completely stop the delivery of frames or joystick control messages,
resulting in the system collapsing. That affects especially the Drive Kit mounted
inside the car and the desktop app on the remote computer, as both are in a stage
of receiving messages.

The lack of any mechanism that could stop the car from rolling away or restart the
collapsed desktop app automatically made the system at this stage of development
risky to use without a safety driver. One of the possible solutions is an integrated
operator assistant that was already proposed and planned but unfortunately not
finished and remained in the development stage. This assistant could be sure to
either safely stop the vehicle or hold the trajectory with object avoidance and lane
assistance before the connection was re-established.

97

98 Alexey Gusev: Remote Control System for Autonomous Vehicles

Nevertheless, even operator assistant system measurements in Figure 5.6 show
that 4G+ and low-end 5G still have high latency, low upload speed and some-
what unstable connection. That is entirely out of the scope of the remote control
system and is dependent on the roll-out and development of the 5G transceivers.
In section 5.8 the response of the service manager from the ISP Telia explains the
possibility of using a new version of 5G in 2023 in Norway, which should make
the connection more stable, faster and with lower latency, down to 7-9ms. If this
happens, the remote control system would not need to change or downgrade its
image quality to lower the bandwidth as it could be a solution for lower latency
because of less processing and lower bitrate of the sent video stream.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Self-driving vehicles are slowly but surely starting to become a reality despite the
many obstacles still to be overcome. A significant challenge for engineers working
on this development is getting the cars to safely and effectively operate in com-
plex and unpredictable human environments. Environments where autonomous
cars inevitably will end up in a complex situation where some sensor information
is wrong, limited, or something unreasonable happens on the road, leading the
vehicle to a possible "deadlock" or an edge case, as discussed in the Background
chapter (2). As the main driving force behind this thesis, a remote control system
was proposed as a possible solution for dealing with unpredictable edge cases. To
prove such a solution, goals, research challenges, and essential features were set
in the introduction 1.2 and acted as an important guide throughout the project to
develop a proof-of-concept.

Several parts were explored, developed and tested. Together they formed the en-
tire remote control system for the NAP-lab autonomous vehicle. With the use of
ROS and a PID controller, the system controls the car from a G29 kit in real-time,
while video from 4 cameras mounted on the car is encoded in H.264, transmitted
via ROS, decoded and displayed in an informative designed graphical user inter-
face as a desktop app in Kivy. The connection between the operator and the car is
realized with a secure P2P VPN tunnel with a fast UDP WireGuard protocol dir-
ectly through the 5G/4G cellular network. All this is automated with scripts and
started by only two CLI commands.

The project results showed that a remote control system can be installed and de-
veloped with today’s available technology, with both 4G and 5G cellular networks.
However, for this system to be used on the road in real traffic situations, 4G is not
enough for a stable and robust connection. Furthermore, as of today, 5G is still
under development, as stated by the ISP Telia(A).

99

100 Alexey Gusev: Remote Control System for Autonomous Vehicles

Therefore the remote control system needs some additional functionality in or-
der to use the older 4G safely. An example is the proposed integrated operator-
assistance system that could be vital if some possible collapse of the system oc-
curs. Because of the limited amount of time for this project, the operator assistant
was unfortunately not developed and implemented. However, some essential parts
were explored and tested, such as the object detection and trajectory projections
in the GUI.

To sum up, the complete remote control system did work during the testing and
got positive feedback from the operators, but it also needs to be further developed
and tested to be safely used in traffic. Per now, it is still considered a proof-of-
concept and not a commercial product, but the system did its intended objective
in this project; it showed its performance in a real test and proved the potential
and feasibility of a remote control system for an autonomous vehicle.

7.2 Future Work

Although the system is fully functional and showed promising results during the
tests, some improvements should still be made. As mentioned in the Conclusion
section, the system needs a support system that can counteract any lousy network
connection or possible wrong manoeuvres by the operator. The development of
the operator assistant system was already somewhat started during this project but
only at an exploring and test stage. In the future, this system should be developed
completely and added to the remote control system. That could help using not
only the 5G connection but also realize possible use of the older 4G connection,
which was somewhat tricky based on the results in this project.

Another part that needs further development and enhancement is the graphical
user interface together with the camera placement on the car. The satisfaction
score in Results did never show outstanding user satisfaction, which often was
based on connection losses, system collapse and the GUI that did show the front
camera view somewhat strange and did not have any reasonable trajectory projec-
tions. All these parts need to be fixed and again user-tested on multiple operators.

The last part that also should go through an enhancement is the ROS transfer
protocol. Even though the VPN uses UDP, the inside of ROS uses TCP. That could
be a part that slows down all the video transmission even more than the latency
of the ISP itself. A solution here that could be developed is turning ROS into using
UDP rather than TCP, thus making a faster connection. Beyond the mentioned,
there are, of course, overall further testing and enhancement of the concept to
increase its robustness and potential.

Bibliography

[1] Yandex. ‘Yandex self-driving group and grubhub partner for robot delivery
on us college campuses.’ (), [Online]. Available: https://yandex.com/
company/press_center/press_releases/2021/07-06-2021 (visited on
13/12/2021).

[2] K. Jo, J. Kim, D. Kim, C. Jang and M. Sunwoo, ‘Development of autonomous
car—part ii: A case study on the implementation of an autonomous driving
system based on distributed architecture,’ IEEE Transactions on Industrial
Electronics, vol. 62, no. 8, pp. 5119–5132, 2015. DOI: 10.1109/TIE.2015.
2410258.

[3] M. Claypool and D. Finkel, ‘The effects of latency on player performance
in cloud-based games,’ pp. 1–6, 2014. DOI: 10.1109/NetGames.2014.
7008964.

[4] T. Cerny and M. J. Donahoo, ‘Impact of remote user interface design and
delivery on energy demand,’ pp. 1–4, 2015. DOI: 10.1109/ICISSEC.2015.
7371005.

[5] G. Lewis. ‘Object detection for autonomous vehicles.’ (), [Online]. Avail-
able: https://web.stanford.edu/class/cs231a/prev_projects_2016/
object-detection-autonomous.pdf (visited on 13/12/2021).

[6] R. J. Krumsvik, Forskningsdesign og kvalitativ metode - ei innføring. Fagbok-
forlaget, 2014, p. 16.

[7] R. J. Krumsvik, Forskningsdesign og kvalitativ metode - ei innføring. Fagbok-
forlaget, 2014, pp. 145–146.

[8] O. Bukve, Forstå, forklare, forandre. Om design av samfunnsvitskapelege for-
skingsprosjekt. Oslo: Universitetsforlaget, 2016, p. 121.

[9] D. Muslihat. ‘Agile methodology: An overview.’ (), [Online]. Available: https:
//medium.com/zenkit/agile-methodology-an-overview-7c7e3b398c3d
(visited on 13/12/2021).

[10] A. Gusev. ‘Remote Controll System of Autonomous Vehicle With Operator
Assistance over 5G cellular network.’ [Online; accessed 6. Jul. 2022]. (Jul.
2022), [Online]. Available: https://www.youtube.com/watch?v=cehT9yf8Ljs&
ab_channel=AlexeyGusev.

101

https://yandex.com/company/press_center/press_releases/2021/07-06-2021
https://yandex.com/company/press_center/press_releases/2021/07-06-2021
https://doi.org/10.1109/TIE.2015.2410258
https://doi.org/10.1109/TIE.2015.2410258
https://doi.org/10.1109/NetGames.2014.7008964
https://doi.org/10.1109/NetGames.2014.7008964
https://doi.org/10.1109/ICISSEC.2015.7371005
https://doi.org/10.1109/ICISSEC.2015.7371005
https://web.stanford.edu/class/cs231a/prev_projects_2016/object-detection-autonomous.pdf
https://web.stanford.edu/class/cs231a/prev_projects_2016/object-detection-autonomous.pdf
https://medium.com/zenkit/agile-methodology-an-overview-7c7e3b398c3d
https://medium.com/zenkit/agile-methodology-an-overview-7c7e3b398c3d
https://www.youtube.com/watch?v=cehT9yf8Ljs&ab_channel=AlexeyGusev
https://www.youtube.com/watch?v=cehT9yf8Ljs&ab_channel=AlexeyGusev

102 Alexey Gusev: Remote Control System for Autonomous Vehicles

[11] R. B. "Brown A Gonder J, "An Analysis of Possible Energy Impacts of Auto-
mated Vehicles". "Springer International Publishing", 2014.

[12] T. W. Organization. ‘Road traffic injuries.’ (), [Online]. Available: https://
www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
(visited on 12/12/2021).

[13] J. Cusack. ‘How driverless cars will change our world.’ (), [Online]. Avail-
able: https://www.bbc.com/future/article/20211126-how-driverless-
cars-will-change-our-world (visited on 12/12/2021).

[14] A. Mills. ‘Driving in the snow is a team effort for ai sensors.’ (), [Online].
Available: https://www.sciencedaily.com/releases/2021/05/210527172545.
htm (visited on 12/12/2021).

[15] W. Knight. ‘Snow and ice pose a vexing obstacle for self-driving cars.’ (),
[Online]. Available: https://www.wired.com/story/snow-ice-pose-
vexing-obstacle-self-driving-cars/ (visited on 12/12/2021).

[16] M. J. E. E. G. Coffman and A. Shoshani, ‘System deadlocks,’ ACM Comput.
Surv., vol. 3, no. 2, pp. 67–78, Jun. 1971.

[17] A. J. Hawkins. ‘A driverless waymo got stuck in traffic and then tried to
run away from its support crew.’ (), [Online]. Available: https://www.
theverge.com/2021/5/14/22436584/waymo-driverless-stuck-traffic-
roadside-assistance-video (visited on 12/12/2021).

[18] R. Stern. ‘Angry residents, abrupt stops: Waymo vehicles are still causing
problems in arizona.’ (), [Online]. Available: https://www.phoenixnewtimes.
com/news/waymo-arizona-abrupt-stops-angry-residents-are-still-
a-problem-11541896 (visited on 12/12/2021).

[19] S. Jun, Y. Kang, J. Kim and C. Kim, ‘Ultra-low-latency services in 5G sys-
tems: A perspective from 3GPP standards,’ ETRI Journal, vol. 42, no. 5,
pp. 721–733, Oct. 2020, ISSN: 1225-6463. DOI: 10.4218/etrij.2020-
0200.

[20] K. Sasaki, S. Makido and A. Nakao, ‘Vehicle control system for cooperative
driving coordinated multi -layered edge servers,’ in 2018 IEEE 7th Inter-
national Conference on Cloud Networking (CloudNet), 2018, pp. 1–7. DOI:
10.1109/CloudNet.2018.8549396.

[21] M. S. "M. Fukui Y. Sugiyama and D. Wolf", "Cooperative Driving: Taking
Telematics to the Next Level". "Springer International Publishing", 2003.

[22] X. Ge, ‘Ultra-reliable low-latency communications in autonomous vehicu-
lar networks,’ IEEE Transactions on Vehicular Technology, vol. 68, no. 5,
pp. 5005–5016, 2019. DOI: 10.1109/TVT.2019.2903793.

[23] T. Blomqvist, ‘Video latency in a vehicle’s remote operating system,’ Metro-
polia University of Applied Sciences, p. 38, 2018.

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.bbc.com/future/article/20211126-how-driverless-cars-will-change-our-world
https://www.bbc.com/future/article/20211126-how-driverless-cars-will-change-our-world
https://www.sciencedaily.com/releases/2021/05/210527172545.htm
https://www.sciencedaily.com/releases/2021/05/210527172545.htm
https://www.wired.com/story/snow-ice-pose-vexing-obstacle-self-driving-cars/
https://www.wired.com/story/snow-ice-pose-vexing-obstacle-self-driving-cars/
https://www.theverge.com/2021/5/14/22436584/waymo-driverless-stuck-traffic-roadside-assistance-video
https://www.theverge.com/2021/5/14/22436584/waymo-driverless-stuck-traffic-roadside-assistance-video
https://www.theverge.com/2021/5/14/22436584/waymo-driverless-stuck-traffic-roadside-assistance-video
https://www.phoenixnewtimes.com/news/waymo-arizona-abrupt-stops-angry-residents-are-still-a-problem-11541896
https://www.phoenixnewtimes.com/news/waymo-arizona-abrupt-stops-angry-residents-are-still-a-problem-11541896
https://www.phoenixnewtimes.com/news/waymo-arizona-abrupt-stops-angry-residents-are-still-a-problem-11541896
https://doi.org/10.4218/etrij.2020-0200
https://doi.org/10.4218/etrij.2020-0200
https://doi.org/10.1109/CloudNet.2018.8549396
https://doi.org/10.1109/TVT.2019.2903793

Bibliography 103

[24] IDC. ‘Self-driving vehicles will emerge, but only gradually, idc says.’ (), [On-
line]. Available: https://www.fierceelectronics.com/electronics/
self-driving-vehicles-will-emerge-but-only-gradually-idc-says
(visited on 12/12/2021).

[25] Globaldata. ‘Sobering attitudes towards autonomous vehicles see long-term
forecasts cut by almost half.’ (), [Online]. Available: https://www.globaldata.
com/sobering-attitudes-towards-autonomous-vehicles-see-long-
term-forecasts-cut-almost-half/ (visited on 27/04/2021).

[26] C. Murray. ‘Automakers are rethinking the timetable for fully autonom-
ous cars.’ (), [Online]. Available: https : / / www . plasticstoday . com /
electronics- test/automakers- are- rethinking- timetable- fully-
autonomous-cars (visited on 27/04/2021).

[27] W. Law, ‘An Introduction to Autonomous Vehicles - Towards Data Science,’
Medium, Dec. 2021, ISSN: 9161-8140. [Online]. Available: https://towardsdatascience.
com/an-introduction-to-autonomous-vehicles-91d61ff81a40.

[28] SAE J3016 automated-driving graphic, [Online; accessed 6. Jul. 2022], Jul.
2022. [Online]. Available: https://www.sae.org/news/2019/01/sae-
updates-j3016-automated-driving-graphic.

[29] Forskning.no, [Online; accessed 6. Jul. 2022], Mar. 2021. [Online]. Avail-
able: https://forskning.no/internett-mobiltelefon/hva-er-egentlig-
5g/1813874.

[30] Read @Kearney: 5G: a key requirement for autonomous driving—really? [On-
line; accessed 6. Jul. 2022], Jul. 2022. [Online]. Available: https://www.
kearney.com/communications-media-technology/article/-/insights/
5g-a-key-requirement-for-autonomous-driving-really-.

[31] C. Moozakis, ‘The pros and cons of 5G networks,’ SearchNetworking, Apr.
2022. [Online]. Available: https://www.techtarget.com/searchnetworking/
feature/The-pros-and-cons-of-5G-networks.

[32] M. W. Vick Yu. ‘3 types of autonomous vehicle sensors in self-driving cars.’
(), [Online]. Available: https://www.itransition.com/blog/autonomous-
vehicle-sensors (visited on 14/12/2021).

[33] OS2 Long-range lidar sensor for autonomous vehicles, trucking, and drones,
[Online; accessed 6. Jul. 2022], Jul. 2022. [Online]. Available: https://
ouster.com/products/scanning-lidar/os2-sensor.

[34] The Superyacht Group, ‘British-Norwegian technology partnership provides
superyachts with secure super-speed internet,’ Superyacht News, Sep. 2021.
[Online]. Available: https://www.superyachtnews.com/technology/
british-norwegian-technology-partnership-provides-superyachts-
with-secure-super-speed-internet.

[35] Arcus, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online]. Available: https:
//www.celerway.com/products/arcus.

https://www.fierceelectronics.com/electronics/self-driving-vehicles-will-emerge-but-only-gradually-idc-says
https://www.fierceelectronics.com/electronics/self-driving-vehicles-will-emerge-but-only-gradually-idc-says
https://www.globaldata.com/sobering-attitudes-towards-autonomous-vehicles-see-long-term-forecasts-cut-almost-half/
https://www.globaldata.com/sobering-attitudes-towards-autonomous-vehicles-see-long-term-forecasts-cut-almost-half/
https://www.globaldata.com/sobering-attitudes-towards-autonomous-vehicles-see-long-term-forecasts-cut-almost-half/
https://www.plasticstoday.com/electronics-test/automakers-are-rethinking-timetable-fully-autonomous-cars
https://www.plasticstoday.com/electronics-test/automakers-are-rethinking-timetable-fully-autonomous-cars
https://www.plasticstoday.com/electronics-test/automakers-are-rethinking-timetable-fully-autonomous-cars
https://towardsdatascience.com/an-introduction-to-autonomous-vehicles-91d61ff81a40
https://towardsdatascience.com/an-introduction-to-autonomous-vehicles-91d61ff81a40
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://forskning.no/internett-mobiltelefon/hva-er-egentlig-5g/1813874
https://forskning.no/internett-mobiltelefon/hva-er-egentlig-5g/1813874
https://www.kearney.com/communications-media-technology/article/-/insights/5g-a-key-requirement-for-autonomous-driving-really-
https://www.kearney.com/communications-media-technology/article/-/insights/5g-a-key-requirement-for-autonomous-driving-really-
https://www.kearney.com/communications-media-technology/article/-/insights/5g-a-key-requirement-for-autonomous-driving-really-
https://www.techtarget.com/searchnetworking/feature/The-pros-and-cons-of-5G-networks
https://www.techtarget.com/searchnetworking/feature/The-pros-and-cons-of-5G-networks
https://www.itransition.com/blog/autonomous-vehicle-sensors
https://www.itransition.com/blog/autonomous-vehicle-sensors
https://ouster.com/products/scanning-lidar/os2-sensor
https://ouster.com/products/scanning-lidar/os2-sensor
https://www.superyachtnews.com/technology/british-norwegian-technology-partnership-provides-superyachts-with-secure-super-speed-internet
https://www.superyachtnews.com/technology/british-norwegian-technology-partnership-provides-superyachts-with-secure-super-speed-internet
https://www.superyachtnews.com/technology/british-norwegian-technology-partnership-provides-superyachts-with-secure-super-speed-internet
https://www.celerway.com/products/arcus
https://www.celerway.com/products/arcus

104 Alexey Gusev: Remote Control System for Autonomous Vehicles

[36] R. Ricky, ‘Why Do Routers Have Multiple Antennas? - NetWork From Home,’
NetWork From Home, Dec. 2021. [Online]. Available: https://network-
from - home . com / home - network / why - do - routers - have - multiple -
antennas.

[37] NVIDIA DRIVE Software for Autonomous Machines, [Online; accessed 6. Jul.
2022], Jul. 2022. [Online]. Available: https://www.nvidia.com/en-
us/self-driving-cars/drive-platform/software.

[38] NVIDIA DRIVE SDK, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online].
Available: https://developer.nvidia.com/drive/drive-sdk.

[39] DriveWorks SDK Reference: Getting Started, [Online; accessed 6. Jul. 2022],
Jun. 2020. [Online]. Available: https://docs.nvidia.com/drive/archive/
driveworks-3.0/dwx_devguide_getting_started.html.

[40] ROS/Introduction - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022.
[Online]. Available: http://wiki.ros.org/ROS/Introduction.

[41] S. Kavanagh. ‘5g vs 4g: No contest.’ (), [Online]. Available: http://wiki.
ros.org/catkin/conceptual_overview (visited on 15/12/2021).

[42] Packages - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online].
Available: http://wiki.ros.org/Packages.

[43] Nodes - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online].
Available: http://wiki.ros.org/Nodes.

[44] Master - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online].
Available: http://wiki.ros.org/Master.

[45] Messages - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online].
Available: http://wiki.ros.org/Messages.

[46] Topics - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online].
Available: http://wiki.ros.org/Topics.

[47] roslaunch - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online].
Available: http://wiki.ros.org/roslaunch.

[48] sensor_msgs - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022. [On-
line]. Available: http://wiki.ros.org/sensor_msgs.

[49] image_transport - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022.
[Online]. Available: http://wiki.ros.org/image_transport.

[50] joy - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online]. Avail-
able: http://wiki.ros.org/joy.

[51] usb_cam - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online].
Available: http://wiki.ros.org/usb_cam.

[52] Ut-Adl, nvidia_gmsl_driver_ros, [Online; accessed 6. Jul. 2022], Jul. 2022.
[Online]. Available: https://github.com/UT-ADL/nvidia_gmsl_driver_
ros.

https://network-from-home.com/home-network/why-do-routers-have-multiple-antennas
https://network-from-home.com/home-network/why-do-routers-have-multiple-antennas
https://network-from-home.com/home-network/why-do-routers-have-multiple-antennas
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/software
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/software
https://developer.nvidia.com/drive/drive-sdk
https://docs.nvidia.com/drive/archive/driveworks-3.0/dwx_devguide_getting_started.html
https://docs.nvidia.com/drive/archive/driveworks-3.0/dwx_devguide_getting_started.html
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/catkin/conceptual_overview
http://wiki.ros.org/catkin/conceptual_overview
http://wiki.ros.org/Packages
http://wiki.ros.org/Nodes
http://wiki.ros.org/Master
http://wiki.ros.org/Messages
http://wiki.ros.org/Topics
http://wiki.ros.org/roslaunch
http://wiki.ros.org/sensor_msgs
http://wiki.ros.org/image_transport
http://wiki.ros.org/joy
http://wiki.ros.org/usb_cam
https://github.com/UT-ADL/nvidia_gmsl_driver_ros
https://github.com/UT-ADL/nvidia_gmsl_driver_ros

Bibliography 105

[53] Ut-Adl, h264_image_transport, [Online; accessed 6. Jul. 2022], Jul. 2022.
[Online]. Available: https://github.com/UT-ADL/h264_image_transport.

[54] image_view - ROS Wiki, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online].
Available: http://wiki.ros.org/image_view.

[55] wireguard-monolithic-historical - Historical monolithic WireGuard reposit-
ory, split into wireguard-tools, wireguard-linux, and wireguard-linux-compat.
[Online; accessed 6. Jul. 2022], Jul. 2022. [Online]. Available: https:
//git.zx2c4.com/wireguard-monolithic-historical/tag/?h=0.0.
20161209.

[56] WireGuard VPN review: A new type of VPN offers serious advantages, [Online;
accessed 6. Jul. 2022], Jul. 2022. [Online]. Available: https://arstechnica.
com/gadgets/2018/08/wireguard- vpn- review- fast- connections-
amaze-but-windows-support-needs-to-happen.

[57] [Online; accessed 6. Jul. 2022], Jun. 2022. [Online]. Available: https:
//hal.inria.fr/hal-02100345v3/document.

[58] J. A. Donenfeld, Known Limitations - WireGuard, [Online; accessed 6. Jul.
2022], May 2022. [Online]. Available: https://www.wireguard.com/
known-limitations.

[59] J. A. Donenfeld, WireGuard: fast, modern, secure VPN tunnel, [Online; ac-
cessed 6. Jul. 2022], May 2022. [Online]. Available: https://www.wireguard.
com.

[60] D. Kondo, Y. Hirota, A. Fujimoto, H. Tode and K. Murakami, ‘P2p live
streaming system for multi-view video with fast switching,’ in 2014 16th In-
ternational Telecommunications Network Strategy and Planning Symposium
(Networks), 2014, pp. 1–7. DOI: 10.1109/NETWKS.2014.6959253.

[61] How To Block Incoming Traffic Firewall? [Online; accessed 6. Jul. 2022],
Jul. 2022. [Online]. Available: https://www.nstec.com/how-to-block-
incoming-traffic-firewall.

[62] T. Bocek, E. Hunt, D. Hausheer and B. Stiller, ‘Fast similarity search in
peer-to-peer networks,’ in NOMS 2008 - 2008 IEEE Network Operations and
Management Symposium, 2008, pp. 240–247. DOI: 10.1109/NOMS.2008.
4575140.

[63] A. Summers. ‘Self-driving cars to bring a new form of hacking.’ (), [Online].
Available: https://www.le-vpn.com/self-driving-cars-bring-new-
form-hacking/ (visited on 15/12/2021).

[64] H. Long, ‘WireGuard vs OpenVPN in 2022: 7 Big Differences,’ RestorePri-
vacy, Apr. 2022. [Online]. Available: https://restoreprivacy.com/vpn/
wireguard-vs-openvpn.

[65] B. Smith. ‘Compare tinc vs openvpn- which one?’ (), [Online]. Available:
https://internet-access-guide.com/tinc-vs-openvpn/ (visited on
15/12/2021).

https://github.com/UT-ADL/h264_image_transport
http://wiki.ros.org/image_view
https://git.zx2c4.com/wireguard-monolithic-historical/tag/?h=0.0.20161209
https://git.zx2c4.com/wireguard-monolithic-historical/tag/?h=0.0.20161209
https://git.zx2c4.com/wireguard-monolithic-historical/tag/?h=0.0.20161209
https://arstechnica.com/gadgets/2018/08/wireguard-vpn-review-fast-connections-amaze-but-windows-support-needs-to-happen
https://arstechnica.com/gadgets/2018/08/wireguard-vpn-review-fast-connections-amaze-but-windows-support-needs-to-happen
https://arstechnica.com/gadgets/2018/08/wireguard-vpn-review-fast-connections-amaze-but-windows-support-needs-to-happen
https://hal.inria.fr/hal-02100345v3/document
https://hal.inria.fr/hal-02100345v3/document
https://www.wireguard.com/known-limitations
https://www.wireguard.com/known-limitations
https://www.wireguard.com
https://www.wireguard.com
https://doi.org/10.1109/NETWKS.2014.6959253
https://www.nstec.com/how-to-block-incoming-traffic-firewall
https://www.nstec.com/how-to-block-incoming-traffic-firewall
https://doi.org/10.1109/NOMS.2008.4575140
https://doi.org/10.1109/NOMS.2008.4575140
https://www.le-vpn.com/self-driving-cars-bring-new-form-hacking/
https://www.le-vpn.com/self-driving-cars-bring-new-form-hacking/
https://restoreprivacy.com/vpn/wireguard-vs-openvpn
https://restoreprivacy.com/vpn/wireguard-vs-openvpn
https://internet-access-guide.com/tinc-vs-openvpn/

106 Alexey Gusev: Remote Control System for Autonomous Vehicles

[66] What Is TCP Meltdown? | OpenVPN, [Online; accessed 6. Jul. 2022], Jul.
2022. [Online]. Available: https://openvpn.net/faq/what-is-tcp-
meltdown.

[67] I. Coonjah, P. Catherine and K. Soyjaudah, ‘Experimental performance com-
parison between tcp vs udp tunnel using openvpn,’ pp. 1–5, Dec. 2015. DOI:
10.1109/CCCS.2015.7374133.

[68] PolySync, oscc, [Online; accessed 6. Jul. 2022], Jul. 2022. [Online]. Avail-
able: https://github.com/PolySync/oscc/wiki/Hardware-Gateway.

[69] jstest-gtk - A joystick testing and configuration tool for Linux, [Online; ac-
cessed 6. Jul. 2022], Feb. 2021. [Online]. Available: https://jstest-
gtk.gitlab.io.

[70] S. K. "Chinmay Samak Tanmay Samak, "CONTROL STRATEGIES FOR AUTONOM-
OUS VEHICLES". "Carnell University", 2021.

[71] x-engineer. org, Open loop vs. closed loop control systems (with Xcos simu-
lations) – x-engineer.org, [Online; accessed 6. Jul. 2022], Jul. 2022. [On-
line]. Available: https://x-engineer.org/open-loop-vs-closed-loop-
control-systems.

[72] C. V. Samak, T. V. Samak and S. Kandhasamy, ‘Control Strategies for Autonom-
ous Vehicles,’ arXiv, Nov. 2020. DOI: 10.48550/arXiv.2011.08729. eprint:
2011.08729.

[73] PID Controller Manual tuning - DCS - Engineers Community, [Online; ac-
cessed 6. Jul. 2022], May 2018. [Online]. Available: https://engineerscommunity.
com/t/pid-controller-manual-tuning/4043.

[74] H. Yamauchi and A. Luštica, ‘Audio and video over ip technology,’ in 2015
57th International Symposium ELMAR (ELMAR), 2015, pp. 125–128. DOI:
10.1109/ELMAR.2015.7334512.

[75] DriveWorks SDK Reference: Camera, [Online; accessed 6. Jul. 2022], Jun.
2020. [Online]. Available: https://docs.nvidia.com/drive/archive/
driveworks-3.0/camera_mainsection.html.

[76] Biamp, ‘Video Basics,’ Biamp Cornerstone, Jun. 2019. [Online]. Available:
https://support.biamp.com/General/Video/Video_Basics.

[77] Z. Z. Yecheng Lyu Xinming Huang. ‘Learning to segment 3d point clouds in
2d image space.’ (), [Online]. Available: https://arxiv.org/abs/2003.
05593 (visited on 14/12/2021).

[78] G. Boesch. ‘Computer vision annotation tool (cvat) – 2021 overview.’ (),
[Online]. Available: https://viso.ai/computer-vision/cvat-computer-
vision-annotation-tool/ (visited on 14/12/2021).

[79] ‘What is YOLO Algorithm? | Baeldung on Computer Science.’ [Online; ac-
cessed 4. Jul. 2022]. (Jul. 2022), [Online]. Available: https://www.baeldung.
com/cs/yolo-algorithm.

https://openvpn.net/faq/what-is-tcp-meltdown
https://openvpn.net/faq/what-is-tcp-meltdown
https://doi.org/10.1109/CCCS.2015.7374133
https://github.com/PolySync/oscc/wiki/Hardware-Gateway
https://jstest-gtk.gitlab.io
https://jstest-gtk.gitlab.io
https://x-engineer.org/open-loop-vs-closed-loop-control-systems
https://x-engineer.org/open-loop-vs-closed-loop-control-systems
https://doi.org/10.48550/arXiv.2011.08729
2011.08729
https://engineerscommunity.com/t/pid-controller-manual-tuning/4043
https://engineerscommunity.com/t/pid-controller-manual-tuning/4043
https://doi.org/10.1109/ELMAR.2015.7334512
https://docs.nvidia.com/drive/archive/driveworks-3.0/camera_mainsection.html
https://docs.nvidia.com/drive/archive/driveworks-3.0/camera_mainsection.html
https://support.biamp.com/General/Video/Video_Basics
https://arxiv.org/abs/2003.05593
https://arxiv.org/abs/2003.05593
https://viso.ai/computer-vision/cvat-computer-vision-annotation-tool/
https://viso.ai/computer-vision/cvat-computer-vision-annotation-tool/
https://www.baeldung.com/cs/yolo-algorithm
https://www.baeldung.com/cs/yolo-algorithm

Bibliography 107

[80] deep-plant-phenomics. ‘Automatic image patching.’ (), [Online]. Available:
https://deep-plant-phenomics.readthedocs.io/en/latest/Automatic-
Image-Patching/ (visited on 14/12/2021).

[81] A. Combelles, C. Ebert and P. Lucena, ‘Design thinking,’ IEEE Software,
vol. 37, no. 2, pp. 21–24, 2020. DOI: 10.1109/MS.2019.2959328.

[82] Where do users look first? | GazeHawk Blog, [Online; accessed 6. Jul. 2022],
Sep. 2021. [Online]. Available: https://gazehawk.com/blog/where-do-
users-look-first.

[83] K. Gordon, ‘5 Principles of Visual Design in UX,’ Nielsen Norman Group, Mar.
2020, Accessed: 2020-11-13. [Online]. Available: https://www.nngroup.
com/articles/principles-visual-design/.

[84] H. S. J. Preece Y. Rogers, Interaction Design: Beyond Human-Computer In-
teraction, 5. edition. John Wiley & Sons Inc, 2019.

https://deep-plant-phenomics.readthedocs.io/en/latest/Automatic-Image-Patching/
https://deep-plant-phenomics.readthedocs.io/en/latest/Automatic-Image-Patching/
https://doi.org/10.1109/MS.2019.2959328
https://gazehawk.com/blog/where-do-users-look-first
https://gazehawk.com/blog/where-do-users-look-first
https://www.nngroup.com/articles/principles-visual-design/
https://www.nngroup.com/articles/principles-visual-design/

Appendix A

Additional Material

109

Fra: Graabak, Lars Inge
Sendt: onsdag 29. juni 2022 kl. 19:54
Til: Alexey Gusev; Frydenlund, Espen
Emne: Re: Masterprosjekt - Spørsmål til Telia om 5G

Absolutt! Helt greit.

Få Outlook for Android

From: Alexey Gusev <alexeygu@stud.ntnu.no>
Sent: Wednesday, June 29, 2022 7:28:44 PM
To: Graabak, Lars Inge <lars-inge.graabak@telia.no>; Frydenlund, Espen
<espen.frydenlund@telia.no>
Subject: Re: Masterprosjekt - Spørsmål til Telia om 5G

Hei, Tusen takk for så rask respons og svar på spørsmålene! Er det greit at jeg legger ved denne
mailen som referanse i masteren? :)

Mvh Alexey Gusev

Fra: Graabak, Lars Inge <lars-inge.graabak@telia.no>
Sendt: Monday, June 27, 2022 3:52:04 PM
Til: Frydenlund, Espen <espen.frydenlund@telia.no>; Alexey Gusev <alexeygu@stud.ntnu.no>
Emne: RE: Masterprosjekt - Spørsmål til Telia om 5G

Hei
Har kommentert med rød skrift under spørsmålene. Har prøvd å lage en kort forklaring på hver
enkelt

Lars Inge Graabak
Service manager Voice | NSD
+47 92695830
lig&telia.no

Skonnertvegen 7, 7053 Trondheim
www.telia.no

Telia Norge AS 981 929 055

From: Frydenlund, Espen <espen.frydenlund@telia.no>
Sent: mandag 27. juni 2022 13:23
To: Graabak, Lars Inge <lars-inge.graabak@telia.no>
Subject: FW: Masterprosjekt - Spørsmål til Telia om 5G

Hei Lars!

Alexey er en NTNU-student som skriver en masteroppgave rundt autonome kjøretøy (Remote
Control Systems) og spør om vi kan besvare spørsmålene nedenfor.
Ettersom du sitter med bedre kompetanse og informasjon enn det jeg gjør – kunne du hjulpet til å
med å besvare de? ѮѯѰѱ

Mvh

Espen Frydenlund
Senior Sales Executive | Telia Enterprise
tlf: +47 958 19 909
epost: espen.frydenlund@telia.no

From: Alexey Gusev <alexeygu@stud.ntnu.no>
Sent: mandag 27. juni 2022 12:32
To: Frydenlund, Espen <espen.frydenlund@telia.no>
Subject: Masterprosjekt - Spørsmål til Telia om 5G

Hei Espen,

Jeg har da som tidligere nevnt et par spørsmål som kan anses som noe tekniske til dere i Telia,
angående 5G nettet. Jeg tror mest sannsynlig at du kanskje vet svaret på de fleste, og jeg selv har en
anelse på dem, men det er fint å få et korrekt svar direkte fra dere. ѧѨѩѪѫѬ

Jeg leverer masteren den 30. juni, på torsdag. Så om dere får til å svare før den tid så legger jeg ved
svaret deres på mailen til som en referanse i masteroppgaven. Det trengs ikke veldig lange svar, men
bare noe som gir en forståelse. ѮѯѰѱ

1. EtterÊåÊhaÊkjørtÊrundtÊomÊiÊbyenÊTrondheimÊforÊåÊtesteÊ5GÊogÊ4GÊnettetÊmedÊvanligÊmobilÊogÊ
applikasjonenÊOpenSignal, såÊviserÊdetÊsegÊatÊflereÊstederÊiÊbyenÊdetÊerÊlikÊhastighetÊogÊ
latencyÊmellomÊ4GÊogÊ5G.ÊHvorforÊerÊdetÊslik?Ê(BilderÊlagtÊvedÊfraÊ3ÊulikeÊstederÊiÊTrondheim)

DetÊerÊriktigÊatÊdetÊmangeÊgangerÊkanÊværeÊlikÊhastighetÊpåÊ4ÊogÊ5GÊfordiÊdeÊiÊenkelteÊfrekvensÊbåndÊ
erÊdelt.ÊDVSÊdetÊerÊlikeÊmyeÊresurserÊtilgjengeligÊforÊ5GÊsomÊ4G.ÊIÊdagÊkjørerÊviÊ4GÊpåÊfølgendeÊ
frekvenserÊ700 800 900Ê1800 2100ÊogÊ2600.ÊMensÊviÊiÊdagÊbrukerÊ700Ê(deltÊmedÊ4G)ÊogÊ3600ÊforÊ5G.Ê
DetteÊvilÊendreÊsegÊetterÊhvertÊsomÊbrukenÊavÊ5GÊøker.ÊHvorÊmyeÊhastighetÊviÊklatrerÊåÊprodusereÊerÊ
avhengigÊavÊbåndbredden.ÊPåÊ700ÊerÊdenÊpåÊ10ÊMHzÊmensÊpåÊ3600ÊpåÊ100MHz.Ê700ÊfrekvensenÊklarerÊ
åÊprodusereÊcaÊ80MbsÊmensÊ3600ÊoppÊtilÊ1 500ÊMbs.ÊDetÊsomÊiÊtilleggÊkomplisererÊdetÊlittÊerÊatÊviÊ
brukerÊnoeÊsomÊheterÊCarrierÊAggregasjon,ÊdvsÊviÊkoblerÊsammenÊogÊbrukerÊflereÊfrekvensbåndÊ
samtidig.ÊUnderÊgunstigeÊforholdÊkanÊduÊdaÊpåÊoppÊmotÊ800MbsÊpåÊ4G.ÊDetÊsammeÊerÊviÊiÊgangÊmedÊ
påÊUL,ÊmenÊennåÊiÊlittÊbegrensetÊomfang.
IÊdelerÊavÊOsloÊ(ogÊsnartÊTrondheim)ÊfårÊduÊoverÊ180ÊMbsÊpåÊUL
ÅrsakenÊtilÊatÊlatencyÊerÊganskeÊlikÊerÊatÊ4GÊnettetÊiÊdagensÊversjonÊavÊ5GÊbrukesÊtilÊsignalering.ÊDenÊ
versjonenÊalleÊbrukerÊpåÊoffentligeÊ5GÊnettÊiÊdagÊkallesÊNonÊStandÊAloneÊ(NSA)ÊogÊomÊetÊårsÊtidÊ
kommerÊStandÊAloneÊ5GÊogÊdaÊvilÊduÊtypiskÊkommeÊnedÊiÊ7-9Êms,ÊinntilÊEdgeÊcomputingÊkommerÊogÊ
senderÊdenÊnedÊmotÊ2-3ÊiÊsværtÊspesielleÊtilfeller.

2. DetÊerÊogsåÊslikÊatÊpåÊalleÊtesteneÊsåÊharÊ5GÊmenÊspesieltÊ4GÊveldigÊlavÊ«Upload»ÊhastighetÊiÊ
forholdÊtilÊ«Download».ÊDetÊerÊførstÊogÊfremstÊdenneÊsomÊkanÊsetteÊbegrensningerÊforÊmittÊ
systemÊnårÊdetÊgjelderÊbrukÊavÊ4GÊettersomÊsystemet,ÊvedÊbrukÊavÊhøykomprimertÊvideo,ÊkanÊ
sendeÊmellomÊ16mbpsÊ– 8mbps.ÊVedÊhøyereÊkvalitetÊogÊflereÊkameraerÊsåÊvilÊdetteÊselvsagtÊ

øke.ÊPåÊnoenÊavÊtesteneÊserÊviÊenÊopplastingshastighetÊpåÊ12mbpsÊsomÊerÊlavereÊennÊdetÊsomÊ
sendes.ÊKortÊsagtÊhvorforÊerÊdetÊslikÊogÊvilÊdenneÊiÊfremtidenÊøkeÊpåÊ5GÊnettet?Ê

ÅrsakenÊerÊenÊskjevfordelingÊavÊULÊogÊDL.ÊDenÊallerÊmesteÊavÊtrafikkenÊerÊDLÊdvsÊatÊkundeneÊsurferÊ
ellerÊserÊpåÊvideo,ÊderforÊbrukerÊviÊmangeÊflereÊblokkerÊtilÊDL.ÊNåÊharÊviÊbegyntÊåÊaktivereÊcarrierÊ
AggregasjonÊpåÊUpÊLinkÊogsåÊsåÊhastighetenÊvilÊøkeÊpåÊsiktÊetterÊhvertÊsomÊviÊbrukerÊflereÊressurserÊtilÊ
5G

3. JegÊforståÊdetÊfraÊnevnelserÊavÊTelenorÊogÊartikkelÊpåÊforskning.noÊatÊdagensÊ5GÊiÊNorgeÊ
brukerÊunderliggendeÊ4GÊteknologiÊiÊformÊavÊatÊallÊprosesseringÊforÊtrafikkÊforegårÊiÊservereÊiÊ
Oslo.ÊDetÊførerÊdaÊtilÊlatencyÊiÊTrondheim kanÊværeÊbetydeligÊhøyereÊenÊ5GÊharÊmulighetÊtil.Ê
EnkeltÊforklart,ÊhvordanÊforegårÊdenneÊprosessenÊogÊhvorforÊerÊdetÊegentligÊslik?Ê

ÅrsakenÊerÊatÊviÊbrukerÊ4GÊtilÊsignalering,ÊogÊdetÊerÊmuligÊTelenorÊbareÊharÊkjerneÊnettÊiÊOslo.ÊViÊharÊiÊ
dagÊ3ÊlokasjonerÊhvoravÊenÊliggerÊiÊTrondheim.ÊHoveddelenÊavÊtrafikkenÊiÊTrondheimÊrutesÊdirekteÊhit,Ê
menÊdetÊerÊlastdelingÊmellomÊnodeneÊslikÊatÊiÊperioderÊkanÊdetÊmyeÊrutesÊviaÊOsloÊ

4. HvorÊlangtÊharÊmanÊkommetÊmedÊutviklingÊavÊ5GÊnettetÊiÊNorgeÊiÊdag?Ê
SammenlignetÊmedÊmangeÊandreÊlandÊkommetÊganskeÊlangt.ÊRadiodelenÊavÊnettetÊskalÊværeÊrulletÊutÊ
overÊheleÊlandetÊiÊløpetÊavÊnesteÊårÊforÊTeliaÊogÊTelenorÊåretÊetterÊ.ÊNårÊdetÊgjelderÊkjerneÊnettetÊskalÊviÊ
haÊSAÊklarÊiÊsluttenÊavÊåretÊogÊtilbyÊnyeÊtjenesteÊsomÊskivedelingÊpåÊnyåret

5. HvorÊmangeÊårÊframoverÊantarÊviÊatÊviÊharÊetÊstabiltÊ5GÊnettÊiÊforÊeksempelÊOsloÊellerÊ
TrondheimÊutenÊatÊlatencyÊellerÊhastighetÊfallerÊnedÊtilÊ4GÊkvalitet?Ê

DuÊvilÊaldriÊfåÊetÊnettÊutenÊlatency,ÊmenÊmedÊstabilÊ7-9ÊmsÊiÊløpetÊavÊnesteÊår.ÊOgÊnårÊviÊkommerÊlittÊ
framÊiÊtidenÊnedÊmotÊ2-3msÊiÊspesielleÊsituasjoner.ÊIÊforbindelseÊmedÊutrullingenÊavÊ5GÊoppgradererÊviÊ
4GÊnettetÊslik atÊkvalitetenÊpåÊ4GÊnettetÊøkerÊbetraktelig.ÊDetÊerÊmangeÊtingÊsomÊpåvirkerÊlatency.Ê
AvstandÊtilÊbasestasjon,ÊhvordanÊtransmisjonenÊerÊmellomÊbasestasjonenÊogÊkjernenettet.ÊTrafikkenÊ
utÊpåÊinternettÊogÊhvordanÊleverandørenÊavÊmåletjenestenÊerÊsattÊopp.ÊSerÊatÊnårÊjegÊkjørerÊspeedÊtest,Ê
atÊresultatetÊblirÊforskjelligÊomÊjegÊtesterÊmotÊNTNUÊellerÊmotÊenÊserverÊsomÊstårÊpåÊBlindern.ÊJegÊ
sitterÊiÊTrondheim

6. HvordanÊserÊTeliaÊpåÊdenÊtypeÊteknologiÊsomÊutviklesÊsomÊdelÊavÊdetteÊmasterprosjektet.Ê
KunneÊetÊsliktÊfjernstyringsÊsystemÊ(RemoteÊControlÊSystem)ÊhypotetiskÊsettÊblittÊbruktÊforÊ
fremtidensÊautonomeÊbilerÊbliÊbruktÊiÊNorge?

DetÊkanÊsåÊabsoluttÊtenkesÊatÊdenneÊteknologienÊkanÊbrukesÊpåÊautonomeÊbilerÊiÊfremtiden.ÊDetÊpågårÊ
mangeÊstoreÊprosjekterÊpåÊdetteÊuteÊiÊverdenÊogÊdetÊdiskuteresÊtungtÊhvilkenÊprotokollÊsomÊskalÊ
brukes.ÊIÊdagÊerÊdetÊV2VÊogÊV2IÊsomÊerÊmestÊaktuell.ÊHerÊharÊjegÊsettÊnoenÊpappersÊfraÊNTNUÊogsåÊ
medÊbetraktninger.

PåÊforhåndÊtakk

MvhÊAlexeyÊGusev
MasterstudentÊogÊforskningsassistentÊvedÊNTNU

ThisÊemailÊmayÊcontainÊinformationÊwhichÊisÊprivilegedÊorÊprotectedÊagainstÊunauthorizedÊdisclosureÊorÊcommunication.ÊIfÊ
youÊareÊnotÊtheÊintendedÊrecipient,ÊpleaseÊnotifyÊtheÊsenderÊandÊdeleteÊthisÊmessageÊandÊanyÊattachmentsÊfromÊyourÊsystemÊ
without producing,ÊdistributingÊorÊretainingÊcopiesÊthereofÊorÊdisclosingÊitsÊcontentsÊtoÊanyÊotherÊperson.Ê

TeliaÊCompanyÊprocessesÊemailsÊandÊotherÊfilesÊthatÊmayÊcontainÊpersonalÊdataÊinÊaccordanceÊwithÊTeliaÊCompany’sÊPrivacyÊ
Policy.

