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Abstract

Interest and investment in autonomous vehicle research has increased rapidly in

the last decade. A major roadblock which has received increased attention is the

area of object detection: making vehicles able to see and understand their sur-

roundings using various tools like cameras and deep learning algorithms.

To implement object detection, algorithms can be trained using annotated data.

These algorithms usually require large datasets to perform adequately, which is

typically images hand-annotated by humans. This is a costly and time-consuming

practice. Using images from a simulated environment in place of real images could

help mediate the cost and time spent significantly. With a simulated environment

one has full control over all objects, which enables automatic annotation of im-

ages. One such simulator is Carla, an open source project specifically developed

for research around autonomous driving.

This thesis investigates whether automatically annotated simulator data from Carla

can be used to train object detection models which can detect real life traffic ob-

jects. As a large part of the thesis revolves around collecting properly automatic-

ally annotated training data from the simulator, it also investigates whether tight-

ness is important for the bounding boxes. In the first six experiments, the results

show that Carla data alone is not sufficient to properly train the chosen models.

However, fine-tuning a Carla trained model using some real data shows prom-

ising results. The results from the seventh experiment indicate that bounding box

tightness is important for training the models properly.
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Sammendrag

Interesse og investering i forskning rundt autonome kjøretøy har økt kraftig det

siste tiåret. En stor hindring som har fått økt oppmerksomhet er området objekt-

deteksjon: få kjøretøy til å se og forstå deres omgivelser ved å bruke diverse

verktøy som kameraer og dyp-læring algoritmer.

For å implementere objekt-deteksjon kan algoritmer bli trent ved å bruke annotert

data. Disse algoritmene krever vanligvis store datasett for å oppnå god nok ytelse,

som vanligvis er bilder hånd-annotert av mennesker. Dette er en kostbar og tidkre-

vende øvelse. Å bruke bilder fra et simulert miljø i stedet for ekte bilder kunne

redusert kostnader og tidsbruk betydelig. Med et simulert miljø har man full kon-

troll over alle objekter, som gjør det mulig å automatisk annotere bilder. En slik

simulator er Carla, et prosjekt med åpen kildekode som er spesifikt utviklet for

forskning rundt autonome kjøretøy.

Denne avhandlingen undersøker om automatisk annotert simulert data fra Carla

kan brukes for å trene objekt-deteksjon modeller som kan detektere ekte trafikk-

objekter. Siden en stor del av oppgaven handler om å samle inn automatisk an-

notert trenings-data fra simulatoren, undersøker avhandlingen også hvor viktig

tettheten til avgrensningsboksene er. I de første seks eksperimentene viser res-

ultatene at data fra Carla alene ikke er nok til å trene de utvalgte modellene or-

dentlig. Å bruke noe ekte data til å finpusse en modell som hovedsakelig er trent på

Carla ga lovende resultater. Resultatene fra det syvende eksperimentet indikerte

at tettheten til avgrensningsboksene var viktig for å trene modellene ordentlig.
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Chapter 1

Introduction

This chapter has four sections. Section 1.1 explains the background and motiva-

tion behind the report. Section 1.2 describes the goal and research questions that

form the basis of the thesis. Section 1.3 talks about the contribution this paper

makes. Section 1.4 summarizes the structure of the report.

1.1 Background and Motivation

According to a study published in 2018 by The World Health Organization, traffic

accidents was the leading cause of deaths among children and young adults aged

5-29 years old [1]. The same report also stated that an estimated 1.35 million

people die every year in various traffic related accidents. Another study by the

U.S. Department of Transportation published in 2017 claimed that between 94-

96% of all traffic accidents were caused by human error [2]. As more aspects of

society is being automated, Autonomous Vehicles (AV) might be a solution which

can help reduce these numbers.

There are additional benefits to AVs. According to Zhong et al, AVs could reduce

commuters’ value of travel time by 18-32% [3], allowing passengers to spend their

time on activities other than driving, while reducing time spent on commutes. A

study by Stern et al. stated that having 5% of a vehicle fleet be AVs designed to

1



Chapter 1: Introduction 2

help stabilize traffic flow could help reduce the overall CO2-emissions of the fleet

by 15% [4]. For Europe, roughly 22% of total CO2 emissions comes from road

traffic [5], so implementing AVs in existing traffic solutions could help significantly

reduce emissions.

A central part of making cars autonomous is making them able to observe their

surroundings. A human driver has to see and understand a large variety of dif-

ferent types of objects that can appear on the road, like other cars, pedestrians

or other road users like cyclists. Making a vehicle able to accurately detect these

objects is a vital part of making autonomous vehicles viable. This paper focuses on

a specific aspect of this expansive and evolving topic: object detection of dynamic

traffic objects. In this paper, dynamic traffic objects are defined as traffic objects

which can move, like cars or pedestrians.

Object detection in images can be summed up in two questions:

• What kind of object is it? You want to identify different objects in the

image. This is typically done by separating objects into classes or labels,

such as cars, dogs, people etc. Also called Image Classification.

• Where is the object? Where the detected objects are located in the image.

This is especially important for autonomous driving, as knowing your sur-

roundings is essential to be able to predict and react to dynamic situations.

Also called Object Localization.

One of the challenges when training a model in object detection is having a big

enough dataset. For example, the ImageNet dataset contains over 14 million im-

ages divided into roughly 22,000 categories 1. When training an object detection

model, the model needs annotated data in the form of labels which specifies where

objects are located in the images. This is done by using bounding boxes, a rect-

angle that determines the spatial location of the object in the image. Traditionally,

images are manually annotated by hand, which is time consuming and repetitive.

The first part of this project explores whether a simulator can be used to collect

photo-realistic images that can be precisely automatically annotated. Building on

1https://www.image-net.org/

https://www.image-net.org/
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previous work by Jang et al. [6], an open-source autonomous driving simulator

named Carla (Car Learning to Act) is used to collect automatically annotated im-

ages. They created scripts for collecting RGB images from the simulation, along

with 3D bounding boxes. These 3D bounding boxes were then converted into 2D,

using additional information to correct the boxes.

The bounding boxes collected using the scripts from the paper showed to often be

inaccurate, being larger than the boundaries of the objects. A paper by Kervadec

et al. published in 2020 showed the importance of tight bounding boxes in a

Machine Learning (ML) scenario [7]. Also, the original project only separated

objects into two categories: vehicles and pedestrians. This limited the variety of

the dataset, as Carla contains several sub-types of spawnable objects such as trucks

and cyclists. The team, being particularly interested in Computer Vision (CV) and

related subjects, were interested in improving the groundwork laid by the paper

to produce scripts capable of making more robust and balanced datasets. This

would be done in part by implementing the new Instance Segmentation Image

sensor added in the then newest version of Carla (0.9.13) to achieve more precise

bounding boxes.

In order to test whether the collected data is valuable for object detection tasks,

the second part of the project explores if the generated datasets can be used to

train a model to detect traffic objects in real life images. Two object detection

models (Yolov5 and Faster R-CNN) were chosen to get comparative results, and

several experiments were conducted with various parameters. The models were

tested against the Kitti dataset 2, a popular dataset for traffic detection.

1.2 Research Goal and Questions

The research goal for this paper is:

Investigate whether automatically annotated images from the Carla

simulator can be used to train object detection models for real

traffic scenarios.
2http://www.cvlibs.net/datasets/kitti/eval_object.php

http://www.cvlibs.net/datasets/kitti/eval_object.php
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To achieve this goal, three research questions were posed:

• RQ 1: How well can an object detection model detect real traffic objects

when trained on simulated RGB image data collected from the Carla simu-

lator?

• RQ 2: Can RGB image data collected from the Carla simulator be used to

reduce the amount of real images required by fine-tuning an object detection

model trained primarily on the simulated data?

• RQ 3: How well can an object detection model detect real traffic objects in

LiDAR images when trained on simulated LiDAR image data?

• RQ 4: To what degree can simulated LiDAR image data be used to reduce the

number of real LiDAR images required by fine-tuning a model pre-trained

on the simulated data?

• RQ 5: To what degree do tight bounding boxes improve the detection of

objects?

1.3 Contributions

While using simulator data to train object detection models for real life usage is

not a new concept, there is not a great amount of research using Carla specifically.

Particularly using the included 3D bounding boxes from the simulator and pro-

jecting them onto 2D images. The CarFree project is one example, which was im-

proved upon during this project [6]. The bounding boxes produced by the script

were improved by tightening as well as extending the boxes where the objects

were partly occluded. This improved model performance significantly.

Training object detection models solely on Carla data did not produce viable res-

ults. Different model variations like increasing training time or dataset size did

not significantly impact the results either. However, the RGB and LiDAR mod-

els trained on primarily Carla data (with fine-tuning using a small real dataset)

showed promising results, getting an improved score compared to solely using the

small real dataset. While the models did not achieve similar performance as their

respective baselines, the improvement suggests that the data collected from Carla
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could be used as a majority of the training data, which reduces time and cost of

annotating by hand.

1.4 Report Structure

• Introduction discusses the practical problems and motivations as to why

this topic is worthwhile doing research on.

• Background presents the theoretical background for the different aspects

of the thesis. Related work will also be presented in this chapter.

• Methodology is split into two parts. The first part explores whether a sim-

ulator can be used to collect photo-realistic images that can be precisely

automatically annotated. The second part of the project looks at whether

this dataset can be used to train models to detect dynamic traffic objects in

real life images.

• Experiments and Results presents the different experiments that were done,

along with their results.

• Discussion elaborates and discusses the different results from the experi-

ments. This is done in part by addressing the research questions. Shortcom-

ings of the thesis are also discussed.

• Conclusion will conclude the thesis and present the most important find-

ings, along with future work that could be done.



Chapter 2

Background and related work

This chapter details the most relevant theory behind the thesis. Section 2.1 de-

scribes concepts like Convolutional Neural Network (CNN)s, neural networks and

transfer learning. Section 2.2 explains the most relevant theory in Computer Vis-

ion (CV). Section 2.3 talks about the two object detection models chosen for the

thesis. Section 2.4 briefly explains the theory behind how a LiDAR scanner works.

Section 2.5 looks into the most relevant mechanisms of the Carla simulator. Fi-

nally, section 2.6 investigates related work in the form of previously published

papers.

2.1 Deep Learning

2.1.1 Convolutional Neural Networks

A popular method of implementing object detection is through using CNNs. The

concept gained recognition when Alex Krizhevsky and his team won the ImageNet

classification challenge by a substantial margin in 2012 [8]. CNNs specialize in

analyzing data that have a grid-like structure, such as images. They are built on

the idea of an Artificial Neural Network (ANN) which are networks inspired by

how the nervous system and the human brain functions [9]. CNNs are built using

a high number of neurons [9]. These neurons receive an input and then performs
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an operation based on that input. From the initial input of raw image vectors to

the final output, the weight of the network will be expressed as a score function.

The CNN architecture is consists of primarily three types of layers: the convolu-

tional layer, the pooling layer and the fully connected layer [9]. This is illustrated

in image 2.1.

Figure 2.1: CNN architecture. Source: Keiron O’Shea, Ryan Nash[9]

An input is passed through the CNN which holds the pixel values of the input

image. The convolutional layer will calculate the scalar product between the

weights and input region. This will then determine the outputs of neruons that

are connected to those regions. A Rectified Linear Unit (ReLu) will apply an ac-

tivation function. Next the pooling layer will reduce the number of parameters

in the activation from the ReLu. This is done by using downsampling in the spa-

tial dimensionality of the input. Lastly, a fully connected layer will produce class

scores from these activations, which are used for classification.

2.1.2 Overfitting a model

Overfitting can be a challenge when it comes to deep neural networks. It might

seem like simply adding more layers to the model will improve performance in-

definitely. However, when adding more complexity to a neural network overfitting
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can happen. Overfitting happens when the model fits exactly to the training data,

and is unable to generalize on objects it has not seen before [10]. This may result

in a model having a reduced ability to do the task of pinpointing features, not only

in the training set but also in the test and validation sets [9].

2.1.3 Transfer learning

Typically, there is an assumption that training and testing data for detection mod-

els is taken from the same domain. However, in many cases training data can be

expensive to collect. Because of this, having models pre-trained on data from dif-

ferent domains could be helpful. The pre-trained model acts as a foundation, and

the model uses the old features to enhance new learning. This method is called

transfer learning [11]. This enables models to be trained quickly and effectively

despite having small or limited datasets.

2.2 Computer Vision

CV is a field in Artificial Intelligence (AI) about enabling computers to derive

meaningful information from visual inputs, and take actions or make recommend-

ations based on said information [12]. Humans rely on large amounts of context

to be able to recognize objects, determine depth and whether objects are mov-

ing. Computers can learn this by using images, videos and other visual inputs to

differentiate objects and separate them into categories.

The two essential technologies used to achieve this is deep learning and CNNs.

Features can be extracted from images to describe different objects, like their

shape, size and texture. CV encompasses many different areas, with this paper

focusing primarily on object detection.
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2.2.1 Object detection

Object detection is a CV task dealing with detecting instances of visual objects

of different classes in digital mediums like images or videos [13]. The aim of

object detection is to develop computer models that can determine what objects

are and where they are located in the scene. Many other CV tasks rely on object

detection as a building block, including object tracking and semantic/instance

segmentation, which is detailed further in section 2.2.2.

In order to train an object detection model, labeled data has to be provided. A

common implementation is to use bounding boxes. For images, bounding boxes

are traditionally drawn in 2D as rectangles. They can also be drawn in 3D. A

comparison can be seen in figure 2.2:

Figure 2.2: 2D bounding box (left) vs 3D bounding box (right). Source: https:

//towardsdatascience.com/orientation-estimation-in-monocular-3d-ob

ject-detection-f850ace91411

The bounding box lets the model know where objects are placed in the image,

and the associated label provides the object class. The trained model will then

attempt to draw its own bounding boxes to determine where the different objects

are in the scene. Bounding boxes offer some advantages over other annotation

methods like brush strokes or scribbles, due to their fast placement and them

spatially constraining the object [14].

One of the big challenges with the bounding box solution is the need for manual

https://towardsdatascience.com/orientation-estimation-in-monocular-3d-object-detection-f850ace91411
https://towardsdatascience.com/orientation-estimation-in-monocular-3d-object-detection-f850ace91411
https://towardsdatascience.com/orientation-estimation-in-monocular-3d-object-detection-f850ace91411


Chapter 2: Background and related work 10

annotation by humans to create datasets for training. Annotating images is an

expensive and time-consuming process, and datasets often need to be large to

cover the variance in the data[14]. As such, being able to automate this process

could save a substantial amount of time and money, while also making the creation

of larger datasets easier.

2.2.2 Semantic and instance segmentation

Semantic segmentation is the process of assigning a label to every pixel in an

image [15]. Unlike regular object detection, where one might focus on only spe-

cific objects in the images, segmentation requires every pixel in the image to be

assigned a specific class.

Instance segmentation takes this concept further, by assigning a unique label to

every instance of the different objects as well. For example, with semantic seg-

mentation the pixels representing all cars in an image would be assigned the same

label. For instance segmentation, all the cars would be assigned different labels

like Car1, Car2 etc. Figure 2.3 visualizes the difference between the methods:

Figure 2.3: A scene processed using semantic and instance segmentation. Source:

https://towardsdatascience.com/review-deepmask-instance-segmentati

on-30327a072339

According to Hafiz et al. [15], instance segmentation could have significant applic-

ations in robotic automation, autonomous driving and surveillance among other

areas. Many popular object detection models like Faster R-CNN (see section 2.3.2)

have the ability to perform instance segmentation on images in addition to object

https://towardsdatascience.com/review-deepmask-instance-segmentation-30327a072339
https://towardsdatascience.com/review-deepmask-instance-segmentation-30327a072339
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detection. Newer datasets like COCO 1 and Cityscapes 2 also provide segmentation

images which can be used for training and validating models.

2.2.3 Mean Average Precision

A common way to measure the performance of an object detection model is by

using Mean Average Precision (mAP) over the classes [16]. As mentioned, the

goal of object detection is to localize objects in the images, and assign the correct

classes to said objects.

To understand mAP, one needs to understand the precision-recall curve [17].

Precision is a measurement of how many objects the model gets correct out of

the ones it guesses. The formula for precision can be expressed as:

Precision=
True Positives

True Positives + False Positives
, (2.1)

where True Positives is the amount of objects the model correctly guesses, and

False Positives is the amount of objects the model did not manage to guess. Recall

is a measurement of how many objects the model managed to guess out of the

total amount of existing objects.

Recal l =
True Positives

True Positives + False Negatives
, (2.2)

where False Negatives is the amount of objects where the model guessed in-

correctly. Most models also implement the concept of confidence, which is a

threshold used to adjust what the model should prioritize. A higher confidence

value means the model values avoiding False Positives over avoiding False Negat-

ives. The precision-recall curve is a plot of the models’ recall and precision values

as a function of its confidence threshold.

There are different types of metrics associated with the precision-recall curve,

with the most relevant one for this project being the Average Precision (AP)
1https://cocodataset.org/#home
2https://www.cityscapes-dataset.com/

https://cocodataset.org/#home
https://www.cityscapes-dataset.com/
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curve. It is calculated as the weighted mean of precision achieved at each confid-

ence threshold. The increase in recall from each previous threshold is used as the

weight.

To get the mAP, one also needs to consider Intersect over Union (IoU). This is a

threshold which determines how tight the bounding boxes need to be in compar-

ison to the ground truth label. For example, if the IoU is set to 0.5, at least 50%

of the bounding box needs to overlap with the ground truth to count as a correct

guess. The IoU threshold depends on the task at hand. For example, the COCO

dataset uses ten thresholds, starting at 0.5 and increasing by 0.05 until 0.95 3. It

could be useful to combine these different thresholds into one metric, resulting

in the mAP metric. The AP for each class is calculated across all the different IoU

thresholds, and the mAP for all classes is averaged to arrive at the final metric

value.

2.3 Object detection models

2.3.1 Yolov5

You Only Look Once (Yolo) is a popular ML algorithm which uses neural networks

to do real-time object detection. It is named You Only Look Once because it only

requires a single forward propagation through a neural network to detect objects.

This is also known as a Single shot detector. It employs CNNs in a regression

method to provide class probabilities of provided images. The first version of Yolo

was released in 2015 by Redmon et al. [18]. Since then many new versions have

been released, with the newest mainstream release being Yolov5 as of May 2022.

Yolov5 is currently the newest mainstream iteration of Yolo. It was released in

2020, and is being updated regularly on its Github page4. The main difference

between this and the previous version, Yolov4, is that it is much faster, albeit at

the cost of some prediction accuracy. Unfortunately, as of May 2022, there is no

paper detailing how Yolov5 works in detail. However, there is some information

3https://cocodataset.org/#detection-eval
4https://github.com/ultralytics/yolov5

https://cocodataset.org/#detection-eval
https://github.com/ultralytics/yolov5
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about the model architecture available on the Github page5. Figure 2.4 shows a

simplified version of the model architecture.

Figure 2.4: Yolov5 architecture. Source: https://github.com/ultralytics/y

olov5/issues/280

Much like other CNN-based detectors, it consists of many stages of convolution at

different scales. The input images get upscaled and downscaled at various stages

in the pipeline, and results are concatenated.

Yolov5 also uses a variety of image augmentation techniques during training. Mo-

saics (splitting the image into smaller parts and distributing them randomly across

the image) are used to ensure that small objects are well recognized, as well as

increasing image variance. Other augmentations are also applied randomly, like

image flips, rotation and scale variance.

An important aspect of Yolov5 is its ease of use compared to previous versions of

Yolo. In an interview with Roboflow.com, Glenn Jocher (the lead developer on the

Yolov5 project), shared some insights on what makes it easier to use6. Yolo predicts

bounding boxes as deviatons from a list of anchor box dimensions. Anchors are

pre-exisiting areas of the images where the model assumes objects will occur.

5https://github.com/ultralytics/yolov5/issues/6998
6https://blog.roboflow.com/yolov5-improvements-and-evaluation/

https://github.com/ultralytics/yolov5/issues/280
https://github.com/ultralytics/yolov5/issues/280
https://github.com/ultralytics/yolov5/issues/6998
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
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These boxes were initially created based on the COCO dataset, which Yolov5 is

customized for. By creating thousands of candidate anchor boxes per image and

using loss functions to reward correct boxes, the model can learn efficiently. The

new contribution in Yolov5 was the introduction of genetic anchors. Instead of

using pre-existing anchors, the model uses genetic learning algorithms to create

new anchors based on the bounding boxes of the custom dataset. This enables the

model to train using custom datasets much more easily than previous versions,

with no modification of the model needed.

2.3.2 Faster R-CNN

Faster R-CNN is a network composed of two main modules. These two modules

are the Region Based Network (RBN) and the Fast R-CNN module that detects the

objects within that region [19]. Faster R-CNN is the third iteration of its family,

having R-CNN and Fast R-CNN as its predecessors. Faster R-CNN is the fastest of

the three, but also the most efficient computationally due to sharing convolutional

computations across both the RBN module and the Fast R-CNN module.
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Figure 2.5: Faster R-CNN architecture. source: https://blog.paperspace.com/

faster-r-cnn-explained-object-detection/

As seen in figure 2.5, the RBNs job is to generate proposals based on different

regions. It will then apply neural networks using attention to guide the Fast R-

CNN detection module. This will help the module to look for the specific objects

in the image [19]. Looking at the figure, one can see that the convolutional layers

are shared across both the RBNand the Fast R-CNN module.

Region Based Network

The previous models used a Selective Search algorithm for the region proposals,

whereas Faster R-CNN opted for a network that itself can produce these regional

proposals [19]. It takes an image as input and returns rectangular object propos-

als. Generating these region proposals is done by sliding a small network across

the feature map, as seen on figure 2.5. One of the main advantages of RBN is

that it processes the image using the same convolutional layer that was used in

the Fast R-CNN module. Because of this, the RBN will not use any extra time to

produce regional proposals. This is also one of the reasons why Faster R-CNN is

https://blog.paperspace.com/faster-r-cnn-explained-object-detection/
https://blog.paperspace.com/faster-r-cnn-explained-object-detection/
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faster than its predecessors, as mentioned in the sections above. The RBN module

and the Fast R-CNN module can be seen as a single unified network.

2.4 LiDAR

Light Detection and Ranging (LiDAR) is a technology that uses laser beams to

create 3D representations of its surrounding environment. The technology is used

in many different areas, such as infrastructure, robotics, mapping and autonomous

driving [20]. The LiDAR sensor sends out light waves into the environment, where

these beams bounce back when hitting an object of any sort and returns to the

sensor. The sensor will then measure the distance from the sensor to the hit object,

by calculating the laser beams’ time traveled. This step is then repeated millions of

times per second to give a visual 3D representation of an environment surrounding

the sensor [20]. When driving in an urban area a LiDAR can map everything from

tall buildings and trees to smaller objects like pedestrians and vegetation.

Systems that make use of LiDAR have the advantage of creating a high-resolution

3D map (also called point cloud) of the surroundings. This means it can get accur-

ate distance measurements compared to other systems using regular cameras or

stereo vision [20]. There are millions of points generated at a high speed, which

is one of the reasons for its accuracy.

2.5 Carla Simulator

Using simulators is a common way to allow for testing models for autonomous

driving without requiring expensive equipment and tools. One such simulator

is CARLA; an open-source autonomous driving simulator built using Unreal En-

gine 7. According to their website, the goal of CARLA is to "..help democratize

autonomous driving R&D, serving as a tool that can be easily accessed and

customized by users". It uses Python and C++ as its main programming lan-

guages, allowing users to create scripts which modify and control the open world

7https://carla.readthedocs.io/en/0.9.12/start_introduction/

https://carla.readthedocs.io/en/0.9.12/start_introduction/
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simulator.

The Carla simulator is built using a scalable client-server architecture. The server

is responsible for handling everything related to simulating; computation of phys-

ics, sensor rendering, the world-state and the actors etc. The client consists of

different client modules which control the actors and world conditions. These

can be manipulated and interacted with using the Carla Python API, acting as a

communication-layer between the server and client.

The team behind Carla highly recommend using a dedicated GPU for the server

part of the simulator. For the current newest version (0.9.13 as of May 2022) they

recommend at least 6GB of dedicated video memory for the GPU, especially if

ML will be used when simulating. This ended up being somewhat problematic for

the team, due to limited access to hardware options. The team had access to one

laptop with a 4GB GPU, which was able to run Carla version 0.9.11 in a limited ca-

pacity. It was decided that using the newest version should be a priority to ensure

access to the most updated features. The team got access to an upgraded Virtual

Machine (VM) provided by NTNU, which had sufficient hardware. However, only

one VM was provided, which had to be split between both team members. To re-

solve this, one team member usually remoted into their own desktop PC which

had sufficient specifications for Carla. This ensured that the project could be car-

ried out with the newest version of Carla at the time (0.9.13).

As mentioned previously, the Carla simulator is split into a server part (which acts

as a spectator overview for the simulation) and a client part. The client part uses

the Pygame-package (see section 2.5.2) in Python to allow additional windows to

be opened for further control. For example, when running the manual_control.py

script from the included examples from the Carla github page 8, a second window

pops up where the user can control a car using their keyboard.

8https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/manual

_control.py

https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/manual_control.py
https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/manual_control.py
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2.5.1 Python API

The primary way a user can interact with the Carla simulator is by using the Python

API9. This allows for manipulation of the simulation, and is essential if one is to

extract simulator data. The API allows for interaction with and manipulation of

most aspects of the world, including:

• Actors: These are the objects that interact with the simulation in any way.

Primarily vehicles, pedestrians and sensors.

• Sensor: Various objects that can be attached to actors for data collection

and observation.

• World: The world that the simulation happens in. Several attributes can be

changed, like time of day, the current map or weather conditions like rain

and wind.

2.5.2 Relevant python packages

A variety of python packages were used during the project, some of which are

required to use the Carla Python API. This section contains a brief summary of

the most relevant ones.

• Numpy10: Package used for scientific computing in Python, primarily used

for efficient multidimensional array operations. This package is required to

use the Carla simulator.

• Pygame11: Package for creating games in Python. Used by the Carla Py-

thonAPI for rendering a controllable client.

• OpenCV12: Image processing package for Python. Used to read and write

images, as well as find shapes and draw bounding boxes on said images.

• Open3D13: Library which supports rapid development of software that deals

with 3D data. Used to read and display point cloud files.

9https://carla.readthedocs.io/en/latest/python_api/
10https://numpy.org/
11https://www.pygame.org/wiki/about
12https://opencv.org/
13http://www.open3d.org/docs/release/getting_started.html

https://carla.readthedocs.io/en/latest/python_api/
https://numpy.org/
https://www.pygame.org/wiki/about
https://opencv.org/
http://www.open3d.org/docs/release/getting_started.html
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• Matplotlib pyplot14: Interface package for Matplotlib, which allows for

visualization of data. Used for displaying and saving images to disk.

2.5.3 Types of sensors

Various sensors were used to collect data from the Carla simulator15. Carla con-

tains a library of different sensor types, like cameras, collision detectors and LiDAR

sensors. This next section will briefly explain some of the sensors that were used

in this project to collect data in Carla. All of the sensors can be placed freely inside

the simulator, but are usually attached to the player vehicle in a certain position.

• RGB camera sensor: Acts as a typical camera, capturing images from the

scene. A variety of options can be adjusted, like image resolution, iso and

other camera settings.

• Semantic segmentation camera: Classifies every object in camera view

by displaying them in different colors. Objects are pre-labeled depending

on their type (e.g. pedestrians are red, cars are blue). Around 20 different

classes are available.

• Instance segmentation camera: Introduced in version 0.9.13, this sensor

operates similarly to the semantic segmentation camera, but creates unique

colors for each actor based on their unique ID.

• LiDAR sensor: Simulates a LiDAR sensor by using ray-casting. This is a

fairly complex sensor, and has a lot of parameters which can be adjusted for

effect. See section 3.2.5 for more details.

• Semantic LiDAR sensor: Similar to the LiDAR sensor, with two main dif-

ferences: the raw data collected contains more data per point (primarily

semantic information about objects hit by the LiDAR) but does not include

the intensity, drop-off or noise model attributes.
14https://matplotlib.org/3.5.0/api/_as_gen/matplotlib.pyplot.html
15https://carla.readthedocs.io/en/latest/ref_sensors/

https://matplotlib.org/3.5.0/api/_as_gen/matplotlib.pyplot.html
https://carla.readthedocs.io/en/latest/ref_sensors/
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2.5.4 Carla Client bounding boxes

The Carla simulator has specific functionality for getting the 3D bounding boxes

of spawned actors in the simulation16. Specifically, bounding boxes for spawned

vehicles and pedestrians can be obtained through their bounding_box attribute.

The information includes the object location, orientation and the eight box outer

points in an (X, Y, Z) format.

Figure 2.6: Carla Vehicle bounding box example. Source: https://carla.read

thedocs.io/en/0.9.5/measurements/

2.5.5 Ouster LiDAR sensor and LiDAR images

NTNUs NAPLab17 has a car fitted with a variety of sensors, including a LiDAR

sensor developed by the company Ouster. Ouster enables its users to get various

images as an output from their LiDAR sensor 18. These images are made by pro-

jecting the 3D point cloud created by the sensor into 2D images using information

from the points in the cloud. Ouster provides three types of images: range, intens-

16https://carla.readthedocs.io/en/0.9.5/measurements/
17https://www.ntnu.edu/idi/naplab
18https://ouster.com/blog/the-camera-is-in-the-lidar/

https://carla.readthedocs.io/en/0.9.5/measurements/
https://carla.readthedocs.io/en/0.9.5/measurements/
https://carla.readthedocs.io/en/0.9.5/measurements/
https://www.ntnu.edu/idi/naplab
https://ouster.com/blog/the-camera-is-in-the-lidar/
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ity and ambient. For the range images, each pixel value represents the range from

the sensor to the projected point. For intensity, the pixel values are typically calcu-

lated based on factors like reflectivity and by measuring the amount of light that

returns to the sensor. For the ambient images, Ouster uses a combination of vari-

ous data collected from the sensor to create a more realistic image. An example

of these images can be seen in figure 2.7:

Figure 2.7: Example of Ouster LiDAR images. Top is range, middle intensity and

bottom ambient. Source: https://ouster.com/blog/the-camera-is-in-the-l

idar/

The Carla simulator has several LiDAR sensors available. The primary LiDAR sensor19

can be attached to a vehicle for data collection. In order to create images from the

LiDAR data collected from the Carla simulator, a sensor with similar settings to

the Ouster LiDAR would need to be used. Following this one could try to generate

similar images that can be used for training. Unfortunately, much of the Ouster

image processing is not public domain, as they develop and provide it as a part of

their business. As such, part of the data collection process for this project included

creating LiDAR images similar to the Ouster LiDAR images that were collected us-

ing the NTNU Ouster LiDAR.

19https://carla.readthedocs.io/en/latest/ref_sensors/#lidar-sensor

https://ouster.com/blog/the-camera-is-in-the-lidar/
https://ouster.com/blog/the-camera-is-in-the-lidar/
https://carla.readthedocs.io/en/latest/ref_sensors/#lidar-sensor
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2.6 Related Work

A paper published by Jang et al. details a method to automatically gather annot-

ated image data using the Carla simulator, as well as using semantic segment-

ation to correct the collected bounding boxes [6]. The paper aimed at making

the collection of synthetic data from Carla easier and more robust. One of the

provided scripts were used to gather images and 3D bounding box information

from the simulator, while the other was used to convert the 3D bounding boxes

to 2D and further process them to achieve more tightness. The second part was

done by using segmentation images retrieved from the simulation, which when

visible provide pixel-perfect boundaries of each object. Their scripts were used as

a baseline for parts of this project, with some modifications and improvements to

fit the assignment specifications.

There have been attempts in the past to find out if simulator data can be used

for training object detection models for the use of real-life detection. Dworak et

al. investigated whether LiDAR data collected from the Carla simulator could be

used to train deep learning object detection models [21]. They found that while

combining the real and simulated data for training did not improve the models, it

could still be used for fine-tuning. This was done by first training a model using the

simulated data, then fine-tuning this model using a portion of the real world data.

This created a model with similar performance to the baseline, while requiring

less real world data to achieve similar performance. They also suggest that the

simulation data could be used for validating new solutions.

A paper published in 2021 by Niranjan et al. investigated whether data collected

from the Carla simulator could be used to train object detection models [22].

They collected around 1000 images from Carla which were then annotated by

hand. They used 5 classes; vehicles, bicycles, motorbikes, traffic lights and traffic

signs. SSD Mobilenet was chosen as the object detection model to train using

the collected dataset. Testing the model, they measured an accuracy of 82.81%,

leading them to claim that Carla can be utilized effectively to train and test object

detection algorithms. They argue that Carla has advantages over other simulators

in the form of its open source nature, compatibility and real world environment

modelling.
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Another paper using Carla simulator data was published in 2021 by Bu et al. [23].

They wanted to investigate whether data extracted from Carla could be used to

train object detection models. They managed to create a pipeline to automatically

annotate the data. To prove the ease of creating automatically annotated data us-

ing Carla, they used objects not included in the semantic segmentation label list

by adding their own objects in the form of fire hydrants and crosswalks. They then

used the ray-tracing capabilities of Unreal Engine in combination with the RGB

camera sensor to capture annotated images. To get a baseline, they implemented

a Cut-Paste method, in which images of real objects are pasted in various places,

sizes and rotations on background images. This was done in an attempt to show

that Carla data could outperform poorly made datasets made from real life im-

ages. ResNet was chosen as the object detection model, and the trained model

was benchmarked on several real life datasets. They conclude by saying that data

from the Carla simulator can be effectively used to train models to detect real life

objects. While not achieving performance close to the models trained on proper

datasets, their model performed above the baseline, showing that Carla data could

outperform poor real-life datasets.

A paper by Tremblay et al. explored whether synthetic data could be used to train

deep networks [24]. Synthetic images were created by placing 3D models of ob-

jects such as cars in a 3D scene in random positions and orientations. Textures

and colors of the objects were randomized, and shapes were randomly placed to

allow the network to learn which objects were not of interest. Backgrounds were

selected from real images. Another relevant aspect of the paper is the usage of ran-

dom perturbing to force the models to focus on learning important features over

photo-realistic ones. The networks trained on purely synthetic data performed

compellingly. The best performance was found when fine-tuning with real data,

which performed better than using real data alone. According to the paper, this

shows how synthetic data can replace parts of real datasets to reduce the amount

of annotating that has to be done.

Creating and using 3D objects in place of real objects is a fairly popular alternative

to using real data. The main challenge lies in creating realistic and photo-realistic

backgrounds, which requires significant time and effort. To remedy this, Alhaija

et al. attempted a hybrid solution; using real life images as backgrounds, and
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rendering photo-realistic 3D objects into the scenes in a realistic manner [25].

They argue that this is possible because not all aspects of the scene are equally

important when training a detection model. The generated dataset was trained

on an object detection model and compared to synthetic data as as well as a small

real-life dataset. They found that the model trained on their augmented dataset

generalized better than both the real-life and synthetic datasets.

A similar method was developed by Tsirikoglou et al., where highly realistic syn-

thetic data with per-pixel accurate annotations was generated to aid in CV tasks

related to semantic segmentation [26]. Their image generation pipeline was based

on procedural world modeling, using light transport simulation with path tracing

techniques. They estimate that the time spent generating their dataset was three

to four times shorter than other synthetic options, while achieving similar per-

formance. This was done by focusing on important features in the image, while

also managing low-level features like anti-aliasing and motion blur. The paper also

found that the best relative merits for comparing synthetic datasets comes from

training on the synthetic data alone, without initializing weights or fine-tuning.

Richter et al. explored using the video game GTA V, a realistic open-world game,

to create pixel-accurate semantic label maps for images extracted from the game

[27]. They produced a dataset with 25,000 images, and used this to train a de-

tection model. Their results showed that a model supplemented with the syn-

thetic data achieved significantly better results, while also being able to reduce

the amount of hand-labeled data. A model trained with their dataset and only 1/3

of a real-life dataset outperformed a model trained solely on the real-life data.



Chapter 3

Methodology

This chapter is split into two main parts. The first part details the collection of

simulator data in order to create a dataset. The second part describes how this

dataset was used to train two different object detection models. For more details

on how specific experiments were conducted and the results, see chapter 4. For

the Python script sections, select parts of the code is presented. All of the code

used for the project can be found on the teams’ Github repository 1.

3.1 Fixing the Carla instance segmentation LiDAR sensor

In version 0.9.13 (released November 16, 2021), the Carla team added an instance

segmentation camera sensor 2. This sensor could be useful to perform automatic

annotation of the collected RGB images, since having a unique color for each actor

would make separating the different objects easier. The sensor would, according to

the announcement, store the ID of the actors in the G and B channels of the image,

with the red channel storing the semantic tag (similar to the semantic segmenta-

tion camera sensor). Unfortunately the sensor was released without any relevant

documentation. The Carla sensor reference3 did not contain any information on

1https://github.com/PederEspen/master-thesis
2http://carla.org/2021/11/16/release-0.9.13/
3https://carla.readthedocs.io/en/latest/ref_sensors/
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https://carla.readthedocs.io/en/latest/ref_sensors/
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the new sensor. Several posts on the Carla forum and Github page complained

about this4. Inspecting the Carla source code 5, it seemed like the instance seg-

mentation sensor used a different ID for encoding the green and blue pixel values

compared to other sensors like the semantic Lidar sensor. The instance segment-

ation images were created by encoding the IDs into the green and blue channel

of the image, see section 3.2.4 for more information. The semantic Lidar sensor6

utilized Carla’s ActorRegistry, an zero-indexed ID system used to assign IDs to

spawned actors in the simulation. The code snippet seen in figure 3.1 from the

source file ActorRegistry.cpp shows how the ID was incremented for each actor

spawned in the simulation.

Figure 3.1: Code snippet from ActorRegistry.cpp

The ID used by the Instance Segmentation sensor was fetched directly from Un-

real Engine, using the function GetUniqueID7. This was an ID assigned by Unreal

Engine to spawned objects. Because this ID was different from the Carla ActorRe-

gistry ID the sensor was effectively not usable, since there was no way to match

the Carla actor IDs to the IDs calculated from the image pixel values.

Luckily a user on the Carla Github page found a solution to this 8. The user found

that while they could not change the instance sensor to use the ActorRegistry ID,

4https://github.com/carla-simulator/carla/issues/4938
5https://github.com/carla-simulator/carla/tree/master/Unreal/CarlaUE4/Plugins/C

arla/Source/Carla
6https://carla.readthedocs.io/en/latest/ref_sensors/#semantic-Lidar-sensor
7https://docs.unrealengine.com/4.26/en-US/API/Runtime/CoreUObject/UObject/UObje

ctBase/GetUniqueID/
8https://github.com/carla-simulator/carla/discussions/5047

https://github.com/carla-simulator/carla/issues/4938
https://github.com/carla-simulator/carla/tree/master/Unreal/CarlaUE4/Plugins/Carla/Source/Carla
https://github.com/carla-simulator/carla/tree/master/Unreal/CarlaUE4/Plugins/Carla/Source/Carla
https://carla.readthedocs.io/en/latest/ref_sensors/#semantic-Lidar-sensor
https://docs.unrealengine.com/4.26/en-US/API/Runtime/CoreUObject/UObject/UObjectBase/GetUniqueID/
https://docs.unrealengine.com/4.26/en-US/API/Runtime/CoreUObject/UObject/UObjectBase/GetUniqueID/
https://github.com/carla-simulator/carla/discussions/5047
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they could change it the other way around, i.e. make Carla use the Unreal Engine

ID for its actors. This would make it so that one could retrieve the correct ID from

the pixel values, and match this to the actor bounding boxes retrieved from the

simulation.

Fixing this issue would require a change of the source code, and one would need

to build Carla from source to be able to apply the change. Originally, only the

pre-packaged version of Carla had been used during the project. Building Carla

from source proved to be a complicated process. The documentation contained

instructions for how to build on both Windows and Linux, although Linux was

recommended. Initially, Windows was chosen as this was the operating system

of choice for both team members. Building on Windows proved quite difficult,

with several errors showing up along the process. A post was made on the Carla

Discord server to try and get some help with the error messages. The team decided

to instead build using Linux as it was the recommended option.

Building on Linux was done successfully, and some testing was performed to en-

sure that the ID was changed properly for the other sensors that were used (like

the semantic Lidar sensor, which provides an object ID along with the point cloud

information). Testing showed that the method worked, and a precise method to

tighten bounding boxes using instance segmentation could be implemented.

3.2 Collecting simulator data and creating datasets

3.2.1 Defining dynamic object types

Performing object detection required the selection of object classes. As this pro-

ject focused on detecting dynamic objects in a traffic situation, the following four

classes were chosen:

• 0 - Car (regular passenger cars)

• 1 - Truck (bigger cars like vans or ambulances)

• 2 - Cyclist

• 3 - Pedestrian
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The classes were partly chosen based on what objects were available in the Carla

simulator and partly based on what classes were typically found in available real-

life datasets for comparison.

3.2.2 Methods of gathering sensor data

There are primarily two ways one could go about gathering data from the Carla

simulator: Letting the player vehicle drive around on its own for a specified amount

of time, or by manually controlling the player vehicle. Typically one would use a

specific route to collect data on, and do repeated sessions with different paramet-

ers to gather a variety of data.

The player vehicle would be fitted with select sensors, which were accessible

through the Python API. For example, the following snippet attached a collision

sensor to the vehicle and gathered collision data every game update:

Figure 3.2: Carla PythonAPI Example

The listen() function ran every game update and checked for new information.

In this case it simply output the information gathered to console, but one could

for example write the information to a .csv file to be used for later analysis. It

could also be used to save data to disk, like in the case of the RGB image or LiDAR

sensors.
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3.2.3 Extracting RGB data from Carla

The first step of the data collection process was to gather raw data from the sim-

ulator. This was done using the file ExtractRGB.py. This file was adapted from a

file (extract.py) from the CarFree project [6]. The script spawned a player vehicle

used for collecting data, which then could be interacted with via a Pygame win-

dow. The primary controls included the ability to drive the car manually using the

arrow keys, having the car drive using auto pilot, and being able to either manu-

ally and automatically capture images. Figure 3.3 shows the Pygame window.

Figure 3.3: Pygame window in Carla

For the majority of the data collection, the autopilot and automatic capture of

images was used. The manual control and image capture was occasionally used

during development to debug or get images from specific angles or situations. The

images were captured with a resolution of 960x540.

After launching the Carla client, vehicles and pedestrians needed to be spawned.

This was done using the spawn.py file, which comes included with the Carla simu-

lator. The file spawned a specified amount of actors into the simulation, where the

amount of vehicles and pedestrians could be chosen separately. For more details,
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see the subsection regarding dataset imbalance in section 3.2.7.

The player vehicle was spawned with the RGB camera sensor and Instance Seg-

mentation camera sensor attached. Both sensors were attached to the car via the

Python API, and were shifted in the x and z directions slightly, along with a pitch

rotation of -15 degrees. This was to emulate a camera being attached to the inside

of the front windshield of the car, looking forward.

The script applied a synchronous mode to the client. This was done to ensure

consistency when collecting data. Normally, data would be collected every game

update of the simulation when using the listen() function in an asynchronous

fashion. Creating a separate synchronous loop would prevent this, and only allow

data capture when certain requirements were met. Figure 3.4 shows the loop

which ran continuously when starting the script. Using this loop, images were

captured every 5 seconds.

Figure 3.4: Synchronous loop from ExtractRGB.py
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Whenever conditions were met, the script would set the sensor record variables to

true. This in turn would allow the listen() functions to record and save the data

collected at that specific time in the simulation.

In addition to saving the RGB and instance segmentation images, bounding box

data had to be collected and saved. The PythonAPI allowed direct access to an act-

ors bounding box via the bounding_box.extent attribute. This was used initially

to get the 8 extents of the bounding boxes in (x,y,z) format. The next step was to

transform these coordinates with respect to the sensor coordinates. Each bound-

ing box had coordinates with respect to its own center, as explained in section

2.5.4. The bounding boxes were only useful if they were located with respect to

the camera view, so a transformation of the coordinates was done. This was done

in two steps; first by transforming the actor coordinates to the world coordinates,

and then from the world coordinates to the sensor coordinates.

After this, the coordinates needed to be projected from 3D into 2D to achieve 2D

bounding boxes. To do this, camera calibration was used. Parts of the CarFree code

was based on an example script from the Carla Github page, client_bounding_boxes.py
9. Figure 3.5 shows how the camera calibration was implemented.

Figure 3.5: Camera calibration code snippet from client_bounding_boxes.py

The eight bounding box extents were produced with respect to the camera view,

with an x and y image coordinate value. These were then saved to disk in .txt files.

The format of these files is shown in figure 3.6.

9https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/client

_bounding_boxes.py

https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/client_bounding_boxes.py
https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/client_bounding_boxes.py
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Figure 3.6: Example of a bounding box text file

In the original CarFree code, each line contained a separate bounding box. As se-

mantic segmentation was used, no additional information was needed to achieve

bounding boxes, as Carla already separated vehicles from pedestrians with the se-

mantic tag. However, for the instance segmentation implementation, the format

had to be altered. In the new version, every three lines contained information

about one actor. The first line contained the actor ID. This was used later when

tightening bounding boxes to match the actor box ID to the ID calculated from

the instance segmentation images. Additionally, the custom labeling (see section

”Creating correct labels” below) required the actors type_id, which got stored on

the second line. The third line contained the coordinates of the bounding box.

The reason for formatting the files this way was to make it easier to read the

information when processing the files later.

Creating correct labels

CarFree only used two labels: vehicles and pedestrians. As mentioned in section

3.2.1, this project aimed at 4 labels for the dynamic objects. This meant a dif-

ferent approach had to be taken to add additional labels. Information about the

actors could be retrieved from the simulation along with the bounding boxes.
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This included the name or type_id of the spawned actor, written in the format:

vehicle.tesla.model3, as an example. The full list of actor names can be found in

the Blueprint library10.

Using this information, a .json file was created which contained all spawnable

vehicles and pedestrians, as well as an associated class. This idea was inspired by

a project which aimed at converting 3D bounding boxes to 2D11. The structure of

the .json file is shown in figure 3.7.

Figure 3.7: Part of the .json file used for labeling objects

The file acted as a dictionary, with the reference containing the different classes

and their associated label values. The classification section contained all the type_ids

10https://carla.readthedocs.io/en/latest/bp_library/
11https://github.com/MukhlasAdib/CARLA-2DBBox

https://carla.readthedocs.io/en/latest/bp_library/
https://github.com/MukhlasAdib/CARLA-2DBBox


Chapter 3: Methodology 34

and their labels. When storing the bounding box data, the actor type_id was also

stored. Then, for each bounding box the .json file was iterated over and when a

match was found, it was assigned the associated class. See section 3.2.4 for more

information. Doing this, the dataset could be labeled in different ways by modify-

ing the structure of the .json file. The others tag was included to compensate for

a bug which would happen occasionally in Carla, where no proper type_id was

retrieved. These instances were ignored when iterating over the bounding boxes.

Challenges surrounding bounding boxes and labels

When bounding boxes were fetched on a certain timestamp, the simulator re-

turned all of the currently spawned objects, not only those that were visible to

the player vehicle. As such, bounding boxes of objects outside the camera view

had to be removed. Also, certain objects could technically be in the camera view,

but could be completely occluded by other vehicles, buildings and so on. These

occluded objects also needed to be removed.

After these steps, only bounding boxes that were visible inside the camera view

were left. The next step was to select min/max X and Y values to create 2D bound-

ing boxes for each visible actor. CarFree solved this by picking the min and max

values from the eight 3D bounding box points. The problem with the simple min

max approach was that the bounding boxes were often too large, as seen in figure

3.8.
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Figure 3.8: Example of bounding boxes being too large

This was due to the rudimentary way of selecting min and max values of the 3D

bounding box coordinates. Different angles would change how the bounding box

appears due to perspective.

It was also found that the lack of certain features in the Carla simulator limited

the selection of classes. An issue was encountered with the cyclist class. Typically,

this class would be defined as a bicycle, along with a person on top riding it.

However, Carla did not spawn pedestrian actors on top of the bicycles. Instead,

static pedestrian-looking objects were spawned on top, which meant the bounding

boxes did not extend across the entire object, only the bicycle part. Figure 3.9

shows an example of a bounding box drawn for one of these objects. Note how

the bounding box only extends to the top of the bicycle, and does not include the

person on top. The team did not find a satisfactory solution to this issue, so it was

determined that the bounding boxes would have to suffice.
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Figure 3.9: Example of cyclist bounding box in Carla

The project supervisor Frank Lindseth mentioned that having a Bus class would

also be helpful, but it was not possible to spawn any such objects in the simulator.

However, bigger vehicles like fire trucks and ambulances were available, and are

as mentioned labeled as trucks.

3.2.4 Generating RGB images

Since one of the RQs was to investigate how well a model could be trained on

data collected from a virtual environment such as Carla, it was important that

the bounding boxes were correctly placed and tight to achieve optimal results.

Building Carla from source (see section 3.1) enabled this since it became possible

to extract the ID of the different actors from the instance segmentation images.

These IDs could then be used to match the different actors to their respective

bounding boxes, and get well placed, tight bounding boxes.

To do this post-processing, the file GenerateRGB.py was used. The file iterated

over the stored RGB and instance images, as well as the bounding box .txt files.

Bit-shifting was used to get the colors of the different actors based on their ID, as

seen on figure 3.10. It should be noted that the color space used for the project
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was BGR (Blue-Green-Red), as this was the default format for the OpenCV package

used to read and write images.

Figure 3.10: Code snippet for converting the actor ID into BGR colors

Bit-shifting is done by shifting the integer representation of an ID to either left

or right. For the instance segmentation, each object had an associated bounding

box ID. The next step was to calculate the colors from that ID, where bit-shifting

to the right was done. Applying (& 0x00ff) to the ID returns a hexadecimal rep-

resentation for green, whereas (& 0xff00) with the ID gives the hexadecimal rep-

resentation for blue. There is no need to shift the green to the right, because it is

already shifted all the way to the right. Although shifting the hexadecimal for blue

is needed to get the blue color into a number between 0-255. Figure 3.11 shows

the pipeline that was executed to match the bounding box IDs to their respective

instance segmentation colors.
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Figure 3.11: Pipeline showing the extraction of the G and B channels of an in-

stance segmentation image, and how bit-shifting is used to match the ID of the

object bounding box.

The function filtering(array, color) shown in figure 3.12 would filter the actors

not in the scene. The array argument would be the bounding box points, while

the color would be calculated based on the id contained in the bounding box .txt

file. Every pixel within the boundary of the bounding box in the image would be

checked using a double loop, and if a match was found, it meant that the object

was both in the scene and also not entirely occluded. Using this function, entirely

occluded objects would not pass the filter.
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Figure 3.12: Code snippet for filtering out objects not in the scene

Correcting partially occluded objects

After removing entirely occluded objects, the next step was correcting the objects

that were partly occluded by other objects. After talking to Frank Lindseth, the

project supervisor, it was decided that the partially covered objects should have

an extended bounding box to show the entire object boundary. Figure 3.13 shows

an example of a bounding box occluded by a building.

Figure 3.13: Occluded bounding box example

The problem was solved by looking at how much of the objects’ bounding box was
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covered by something different than the object itself. Looking at the code snippet

in Figure 3.14,

Figure 3.14: Code snippet showing how the bounding boxes where tightened

if 30% or more of the bounding box was occluded in the x-axis, the bounding box

kept its original bounding box values. However, if less than 30% of the bound-

ing box was occluded, this usually meant that the bounding box was simply too

large, and the bounding box was fitted with the instance segmentation image co-

ordinates. The reason for this threshold was because there were images where the

original bounding box extended more than 30% outside of the actual object itself.

Having this threshold made the large bounding boxes fit pixel-perfect.

A related issue was found specifically for the y-axis, where bounding boxes for

objects placed on the sides of the image extended outside of the objects actual

bounding box, even extending all the way to the bottom of the of the screen. See

figure 3.15 for an example. This was because the bounding box for these objects

extended outside the image itself, so to not lose the x-values they were set to either

0 (for the left side of the image) or the max x value of the image (for the right

side).
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Figure 3.15: Example of bounding box stretching on the edge of the image

Fixing this required a change in the threshold. The best solution the team found

was removing the threshold in the bottom part of the y-axis. This meant that fitting

the bottom part of the bounding box would happen regardless of any other scen-

ario. This caused its own issue with larger vehicles that were slightly visible behind

the top of other vehicles or objects, where their bounding box would become very

slim in the y dimension. However, this happened significantly less frequently than

the previously mentioned issue, and was seen as an acceptable compromise for

the issue.

3.2.5 Extracting LiDAR data from Carla

The script ExtractLidar.py created for LiDAR data collection was based on a tu-

torial script from the Carla documentation, tutorial_ego.py12. Initially, the same

base script as for ExtractRGB.py was used, but the synchronous client did not

work well with the Lidar sensor, so the asynchronous option was chosen instead.

Similar to ExtractRGB.py, vehicles and pedestrians were spawned using a separ-

ate spawning script. After this, the script was started to collect data. The script

spawned a player vehicle at an available spawn point which would save the point

12https://carla.readthedocs.io/en/latest/tuto_G_retrieve_data/#tutorial-scripts

https://carla.readthedocs.io/en/latest/tuto_G_retrieve_data/#tutorial-scripts
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cloud files based on the sensor_tick attribute (see the next paragraph for more

information). Figure 3.16 shows part of the code which retrieved the semantic

LiDAR sensor blueprint, set various attributes and attached it to the player vehicle.

Each time an image was saved, a counter would be incremented. The game loop

would then stop whenever the counter reached a specified threshold, typically a

few thousand images collected.

Figure 3.16: Code snippet from LidarExtract.py

As the RGB images were collected at a rate of one every 5 seconds, this was done

for the point cloud files as well. The rate could be controlled via the sensor_tick

attribute, which determined how many seconds should pass between each action

the sensor takes (in this case, saving a .ply file).

When starting a data collection session, a file named ids_labels.txt was generated.

The function which created this file can be seen in figure 3.17.
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Figure 3.17: SaveActorLabels function

The generated file contained the ID of all the spawned actors, as well as their

type_id. The type_id described the actor type, for example ’vehicle.tesla.model3’.

This file was used later to match actor IDs to their respective type when creating

labels for the dataset.

Creating images from Lidar point clouds

The Carla LiDAR sensor had several attributes that needed to be tweaked before

collecting data:

• Channels: This attribute determined the number of vertical lasers. The Ouster

images had a vertical resolution of 128 pixels, so this value was set to 128

(one laser per vertical pixel).

• Range: Determined the range of the lasers in meters. Ouster used 240m by

default, which was chosen for the Carla sensor as well.

• Upper FOV and lower FOV: The upper and lower angle of the sensor. The

NTNU Ouster sensor had a -11.25 to 11.25 degree field of view according

to the project co-supervisor Gabriel Kiss, for a total of 22.5 degrees.

• Dropoff general rate, Dropoff intensity limit and Dropoff zero intensity:

These values introduce general random loss to the sensor, to mimic real life

data loss which can occur. Playing around with these values, it was found

that removing the loss completely was the most similar to the Ouster images.

• Rotation frequency: How many times the sensor rotated completely per

step. This was chosen to be the same as the FPS of the simulation (which
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was chosen to be 20, more on that below), to always get a complete 360

degree point cloud. If i.e. half the FPS value was chosen for this setting, the

point clouds would be 180 degrees only.

• Points per second: How many points the sensor should register per second.

The amount of point cloud files (.ply) generated per second always equaled

the simulation FPS. This setting was per second, meaning one would need

30 times as many points as one would want for each file. The desired output

images had a resolution of 1024x128 pixels, which lead to this setting being

set to 1024 * 128 * 20 = 2,621,440.

Using these settings, 20 .ply files were generated each second. The team discussed

how many images it was necessary to collect. Ultimately, it was decided that col-

lecting images at a similar pace to the RGB images was the natural approach (one

image every 5 seconds). This would allow for a greater variance in the images, as

20 images each second would result in many very similar images. As mentioned

previously, this was controlled via the sensor_tick attribute.

The Points per second attribute was an especially important factor to consider.

Because one could only choose the points per second and not per point cloud file

captured, a huge amount of points needed to be collected every second (even if the

point cloud is only saved every 5 seconds). The simulation ran at 60 fps by default.

According to the documentation it should be possible to run at a fixed time-step

by applying the parameters ”-benchmark -fps=X”, where X is the desired FPS
13. Unfortunately, the team could not get this to work as expected. A workaround

was found by using the NVIDIA Control Panel application 14 on Windows, where a

max FPS for all applications on the computer can be set. The minimum configur-

able FPS was 20, which is what was chosen for the simulation. This would make

the simulation FPS match the rotation frequency, and complete 360 degree point

clouds could be collected every 5 seconds.

13https://carla.readthedocs.io/en/stable/configuring_the_simulation/
14https://www.microsoft.com/en-us/p/nvidia-control-panel/9nf8h0h7wmlt?activetab=p

ivot:overviewtab

https://carla.readthedocs.io/en/stable/configuring_the_simulation/
https://www.microsoft.com/en-us/p/nvidia-control-panel/9nf8h0h7wmlt?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/p/nvidia-control-panel/9nf8h0h7wmlt?activetab=pivot:overviewtab
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Point cloud file format

The LiDAR sensor generated .ply (Polygon File format) files, with each file repres-

enting one point cloud. The format of the .ply files is shown in figure 3.18.

Figure 3.18: Example of a .ply file generated from the semantic LiDAR sensor

The first lines describe the format of each row value in the file, as well as how

many points were contained in the file (the element vertex value, in this case

130041). Each line represents a point in the cloud, with the first three values

being its X, Y and Z values. For the regular LiDAR sensor, the fourth value was the

returned intensity, normalized between 0 and 1. For the semantic LiDAR sensor,

the fourth value was the cosine of the incident angle, while the fifth and sixth

value represented the actor ID and semantic tag respectively.
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Autopilot issue

Gathering the LiDAR data proved to be a computationally intensive task. This lead

to some inconsistencies with the script. The primary issue encountered was the

player vehicle occasionally getting stuck. It was observed that all of the spawned

vehicles would have issues with their autopilots, which did not occur when gath-

ering RGB images. When turning, the vehicles would turn too far, and end up

crashing into objects on the side of the road like lamp posts. If there were no

objects to crash into, the vehicles would be able to correct their path and keep

driving. However, if the player vehicle got stuck, it would still collect .ply files,

but the scene would remain the same. This issue rarely happened, and only on

the map Town02, where the vehicle always got stuck in the same spot. However,

since this behavior was also observed in the other vehicles to some extent, it war-

ranted a mention. It was not determined what caused this issue, but the team

believes it happened due to a performance limitation with the Carla simulator, or

possibly some issue with the default asynchronous mode.

3.2.6 Generating LiDAR images

This file was responsible for reading the point cloud files, generating the LiDAR

images and creating bounding box files for the dataset.

Handling .ply files

The LiDAR sensor saved the point clouds in a .ply file format (See section 3.2.5 for

more information on the file format). The team initially used the open3D15 Python

package to read the .ply files. This package was found be insufficient, as it could

only read the X, Y and Z values, and did not support the reading of additional

parameters like the intensity or actor ID values. As such, another method was

required. The team ended up using a script from a Github repo16 by the user

daavoo which could be used to read .ply files and store the result in a Pandas

15http://www.open3d.org/docs/0.9.0/tutorial/Basic/file_io.html
16https://github.com/daavoo/pyntcloud/blob/master/pyntcloud/io/ply.py

http://www.open3d.org/docs/0.9.0/tutorial/Basic/file_io.html
https://github.com/daavoo/pyntcloud/blob/master/pyntcloud/io/ply.py
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Dataframe. As this project used numpy arrays for the data processing, the pandas

function .to_numpy()17 was used to convert the dataframe into a numpy array.

Each value in the returned array contained another array with the values of each

line in the .ply file. This array could then be iterated over to process all the points

from the point clouds.

Projecting 3D points to 2D image space

In order to create an image, the 3D point cloud needed to be projected to a 2D

image space. Wu et al. describes one method to achieve this [28]. This is done by

calculating where the 3D points will fit as pixel coordinates, as well as what the

pixel value should be.

Following the paper, the following formulas were implemented in Python. The

image range value was calculated using Euclidean vector distance, using the for-

mula:

r =
Æ

x2 + y2 + z2

The azimuth angle was calculated using the formula:

φ = arctan(x/y)

The elevation angle was calculated using the formula:

θ = arcsin(z/r)

For the column index u of the image, this was calculated with the formula:

u= ⌊
1
2
(1+φ/π) ·w⌋,

where w was the desired width of the image.

For the row index v of the image, the paper presented two choices. The first option

was using projection by laser ID (PBID), which assigned each laser to its corres-

ponding image row, with the elevation angle being equal to the laser angle. The

other option was projection by elevation angle (PBEA), where each row value was

17https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_numpy.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_numpy.html
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calculated based on the minimum and maximum elevation angles. The formula

for calculating the value was as follows:

v = ⌊(θup − θ )/(θup − θdown) · h⌋,

where h was the desired height of the image.

The paper found that PBEA gave a more consistent and accurate result, so this

method was chosen.

One issue was found regarding the calculation of the row index v. When using the

floor operator, an entire row in the middle of the image would not get indexed.

After examination, it seemed like all the calculated values before flooring would

be just above .5 in their respective bracket, including for 0. Because of this, the

row on angle 0 would not get any values. This was fixed by rounding the values

instead of flooring, which caused a more even distribution of values.

For the pixel intensity values, this was initially found by multiplying the normal-

ized value from the .ply file generated by the normal LiDAR sensor by 255 to

receive a pixel value between 0 and 255. However, as this value was not provided

by the semantic LiDAR sensor, one would have to run the normal LiDAR and se-

mantic LiDAR sensors concurrently and match the points to get the correct in-

tensity values. Luckily, some testing showed that the inverted range image was

identical to the calculated intensity image. Because of this, the final version of the

script simply inverted all the calculated range values to create the intensity image.

After obtaining index values for the rows and columns of the image, the range/in-

tensity values were set at these values. Figure 3.19 shows the function process-

PointCloud() which handles everything explained in this section up until this

point:
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Figure 3.19: processPointCloud() function

As mentioned, the file reads a .ply file, calculates [u,v] pixel coordinates and fills

these coordinates with range and intensity values. The img_labeled array was

later used to annotate the images (essentially acting as an instance segmentation

image mask, but using IDs instead of colors), while the img_tag was used to create

semantic segmentation images to visualize results.

The images generated were then saved to disk using the imsave() function from

the matplotlib.pyplot-package. Figure 3.20 shows an example of a typical gener-

ated range and intensity image.
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Figure 3.20: Example range image (top) and intensity image (bottom)

An issue was encountered with the images, which can be observed in the figure

above. Towards the bottom the LiDAR images got noisy, with some values not

being filled in. While this only happened for the bottom 3-4 rows of pixels, the

team did some testing in an attempt to correct this issue. The bottom pixels cor-

responded to the point cloud coordinates closest to the sensor, which meant the

points had very similar coordinates. The further away from the sensor the points

were, the more spread out they became. As the 2D projection was an imperfect

estimation and values were rounded, this lead to many values overwriting one

another instead of filling every available space. The team believed this to be a

limitation of the Carla sensor, as well as the method of 3D to 2D projection. As

this only happened in the lower part of the images and did not significantly impact

visibility, the team decided to ignore this issue for the data collection.

Automatic annotation for Lidar images

As mentioned previously, one of the advantages of using a simulator to collect

data is that one has full control over all objects in the scene, which can be used

for automatic annotation. Manual annotation is time consuming and tedious, so

being able to do this automatically would save time.

A similar method to the RGB images was applied when generating the LiDAR

bounding boxes. While the semantic LiDAR sensor did not provide instance colors

for each object, it did provide the actor ID directly. As such, a slightly different

approach had to be used compared to the RGB images.
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While projecting the 3D points to 2D image coordinates, an array named img_labeled

was also created with the same dimensions as the input image. This array was

then filled with the actor IDs obtained from the .ply file. What was created was

effectively an image mask of the actor IDs. For the next step, the ids_labels.txt

file was iterated over, and for each actor ID the entire image was scanned. The

relevant min/max X and Y values were gathered, which represented the bound-

aries of the bounding box. A check was implemented to ensure that only objects

that were present in the image were checked (as the ids_labels.txt file contained

all the spawned actors in the entire simulation).

A case was found where certain objects could appear on both sides of the image.

Since the image was 360 degrees, an actor could appear split on both ends of the

image horizontally. This would cause issues with said objects’ bounding box, as

the bounding box would stretch across the entire image. To avoid this, any object

where the difference between max and min X was above 900 pixels were ignored.

Another option would be to treat these two parts as separate objects, but this

seemed like a sub-optimal solution from an annotation perspective.

As with the RGB images, bounding boxes that were too small were removed.

However, unlike for the RGB images, where a percentage of the x and y values

was chosen as a threshold for removal, the area of the bounding box was calcu-

lated and used as a threshold. Compared to the RGB images, the LiDAR images

had more slim and tall objects, particularly the pedestrians. Using an area as the

threshold preserved these bounding boxes while still removing small boxes that

could be a detriment to model training. Figure 3.21 shows the effect of using the

threshold on a range image. Note the smaller objects being removed in the bottom

image.
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Figure 3.21: Lidar range image without bounding box threshold (top) vs with

threshold (bottom)

Occluded bounding boxes for Lidar images

Using the bounding boxes retrieved from the simulation, it would be possible to

draw full boxes for objects partially occluded by other objects. This was success-

fully done for the RGB images (see section 3.2.4), but proved to be difficult for the

LiDAR images. A similar method was attempted to transform the bounding box

coordinates to the sensor coordinates. If one could get the bounding box coordin-

ates to match values from the LiDAR sensor cloud points, one could use the same

method for projecting the 3D points to 2D image coordinates to get 2D bounding

boxes directly on the image. However, unlike for the camera sensor, there was no

camera calibration available. The 3D to 2D projection warps the image towards

the edge, and this was observed to happen with the bounding boxes as well. This

meant that objects close to the center of the image would have correct bound-

ing boxes, while ones closer to the edge would have somewhat shifted bounding

boxes. See figure 3.22 for an example:

Figure 3.22: Segmentation LiDAR image showing the shifted bounding boxes

The team was not able to find a solution to this issue. The majority of found

bounding boxes were shifted enough to be unusable, which caused this part of

the project to not be implemented. Instead, a purely visual instance segmentation
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was done, using only the labeled image as described above. This worked well most

of the time, only failing to get bounding boxes occluded by other objects in the

scene. As the LiDAR images were to be used mostly as secondary training data,

this was considered acceptable by the team.

3.2.7 Data collection pipeline

The team created a pipeline to collect the training datasets. First the Carla server

needed to be started, and town and weather conditions for the session were de-

termined. To change towns, an included Carla configuration file config.py was

executed by issuing the command:

python config.py --map ${preferred town}

The weather conditions were changed by using the included environment.py file

and the command:

python environment.py --weather ${preferred weather condition}

After changing the desired map and weather conditions, the actors needed to be

spawned. The actors were spawned using the command:

python spawn.py

where the number of actors was modified in the file directly. These could also be

passed as parameters if necessary.

The amount of actors depended on the size of the map that data was collected

from. If not enough actors were spawned in relation to the map size, many of the

collected images would have few or no objects in view most of the time due to

them being spread out. To ensure a consistent number of labels in the collected

images, maps with a relatively similar size was chosen. The chosen maps were

Town01, Town02 and Town11.
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After setting up the Carla simulator with actors, map and weather conditions, the

next step was to run the code for extracting the data. For the RGB images, this

was done by executing the command:

python ExtractRGB.py

This opened a secondary pygame window. The team would press "P" to enable

the auto-pilot and then "l" to start capturing images. Every five seconds the script

would save an instance segmentation image, RGB image and bounding box in-

formation for all the actors present in the current image view of the simulator.

The next step was to run the command:

python GenerateRGB.py

which looped through all of the above images, tightened the bounding boxes and

saved these in the Darknet format (see section 3.3 for more information on the

dataset formats).

For the LiDAR data collection, the process was similar. However, there was no

need to manually start the player vehicle or saving of images, as this happened

automatically.

Real RGB images for testing

The team needed a dataset with properly annotated real images to test the mod-

els. A popular dataset used for 2D traffic object detection is the Kitti dataset18.

It contains roughly 7500 annotated images. This dataset was chosen due to the

quality of the annotations, as well as it having annotations for all the relevant label

types used in this project. For the Carla dataset, the team initially collected 500

test images to review the dataset before collecting a larger sample. The images

were all collected from Town11.
18http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
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Real LiDAR images for testing

As with the RGB images, a test dataset was needed to test the generated LiDAR

images. During the 2021 fall semester, the team members completed the course

Visual Intelligence19 (subject code TDT17) in preparation for the master thesis.

The course included a mini-project, with the aim of performing object detection on

annotated LiDAR images from the NTNU Ouster sensor. The data was provided in

the form of short video files with a framerate of 30 FPS. Annotations were provided

in several different formats, including Darknet and COCO. The annotations were

divided into 4 classes; car, person, rider (cyclist) and bus.

The videos were divided into single frames using simple Python scripts to create

a dataset consisting of images. The team decided to use Yolov5 as the object de-

tection model for the project. After some discussion with the project supervisor

Frank Lindseth, he suggested using this dataset to test the LiDAR images gener-

ated from the Carla point cloud files. Roughly 5000 images were provided during

the project, which the team considered sufficient to use for training, validating

and testing purposes.

One issue that had to be addressed was the mismatching labels between the sim-

ulated and real data. The data provided for the project did not contain any truck

class, however it did contain a bus class. The team decided to simply change the

class name in the project dataset, with the reasoning that some of the trucks in

Carla like the fire truck or ambulance look fairly similar to buses.

Dataset format conversion

The team decided to use two object detection models to test the generated data-

sets; Yolov5 and Faster R-CNN. Yolov5 uses the Darknet Pytorch dataset format,

while Faster R-CNN through MMDetection uses the COCO format. See section

3.3 for more information on the specific formats. GenerateRGB.py and Gen-

erateLidar.py only saved the bounding box information to the regular Darknet

19https://i.ntnu.no/wiki/-/wiki/Norsk/TDT17+-+Visual+Intelligence

https://i.ntnu.no/wiki/-/wiki/Norsk/TDT17+-+Visual+Intelligence
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format. To convert between these formats, a website called Roboflow was used20.

Roboflow specializes in CV tasks, having image annotation, dataset splitting and

dataset format conversions available online. While they have paid models, their

free plan was sufficient for this project. The datasets were uploaded in regular

Darknet format to the website and converted and downloaded in the Darknet Py-

torch and COCO formats respectively.

Dataset imbalance

The team wanted to make sure that the collected datasets did not suffer from sig-

nificant class imbalance. According to Oksuz et al. [29], an imbalanced dataset

can have adverse effects on the final detection performance of object detections

models. As mentioned previously, a test dataset consisting of 500 images was ini-

tially collected. The team created a simple Python script to count the number of

labels in the dataset, seen in figure 3.23:

20https://roboflow.com/

https://roboflow.com/
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Figure 3.23: Python script to count the number of different labels for the project

datasets

The script iterated over all the .txt label files and counted the number of different

labels (label type was determined by the first number on each line). At the end

the result would be printed to console.

Using this script, it was discovered that the 500 image test dataset suffered from

a significant class imbalance, which is illustrated in figure 3.24.

Figure 3.24: Class imbalance for 500 image test dataset
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As the figure shows, the cyclist class was severely under represented in the data-

set. Additionally, car was over represented. The team investigated the origin of

the class imbalance in an attempt to fix it. The issue was determined to be with the

spawn.py file, used to spawn actors in the simulation. As mentioned, Carla separ-

ated actors into two categories: vehicles and pedestrians. Both trucks and cyclists

counted as vehicles, as could be seen from their type_id, for example with the

cyclist type_id "vehicle.diamondback.century". When running the spawn.py file,

it would randomly select vehicles from the list of vehicle blueprints and spawn

these. The Carla blueprint library contained a variety of vehicle types, with the

following counts:

• Car: 25

• Truck: 7

• Cyclists: 3

The library had significantly more car blueprints than trucks or cyclists. Because

blueprints were randomly chosen, this would lead to fewer trucks and cyclists

being spawned.

To fix this issue, the team decided to balance the spawning. This was done by

modifying the spawn.py file to spawn a certain amount of each type of vehicle.

A list was made of all the blueprint names of the different vehicles, seen in figure

3.25. The team decided that 20 of each vehicle type was a sufficient amount for

the size of the selected maps, for a total of 60 vehicles.

Figure 3.25: Blueprint lists from spawn.py

After updating the file (also renaming it to spawnBalanced.py, a sample of 500

images were collected from Town11 to test the new class balance. After counting

the labels, the team discovered there was still some class imbalance, as can be

seen in figure 3.26.
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Figure 3.26: Class imbalance for 500 image test dataset with balanced spawning

However, it was an improvement over the original dataset. While cyclist was still

under represented, it was significantly improved over the previous version. Car

was also not tagged as over represented anymore.

Inspecting the generated images, it was discovered that the cyclists would not

consistently have bounding boxes drawn. While the bounding boxes did appear

to be extracted from the simulation, their coordinates were often inaccurate, to the

point where the bounding box would not appear inside the camera view. This was

determined to be an issue with the Carla simulator itself, due to the inconsistency

and it not happening with the cars, trucks and pedestrians. The team did not

manage to find a solution to this problem. See section 5.3 for further discussion.

The LiDAR images were collected after addressing the class imbalance. The label

count from the complete LiDAR dataset can be seen in figure 3.27:

Figure 3.27: Class imbalance for the Carla LiDAR training dataset (4000 images)

While the a class imbalance still existed (primarily for the cyclist class), it was

much more consistent compared to the original dataset.

After the imbalance was addressed, 7500 images from the Carla simulator were

gathered to match the Kitti dataset size. The dataset had a similar class imbalance
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to the 500 image test dataset. The images were equally split between the three

maps, with each map having three separate weather conditions: clear, night and

rain. Both datasets were split, with 80% reserved for training, 10% for testing and

10% for validation.

For the data collection of LiDAR images from the Carla simulator, the team opted

for a total of 5000 images to match the testing dataset size, with 2500 range

and 2500 intensity images. This was done by collecting an equal amount of .ply

files from the same three towns as the RGB images. The LiDAR images would not

be affected by world conditions like rain and lighting, so these settings were not

considered. The same 80/10/10 split was used for this dataset.

3.3 Training and testing object detection models

3.3.1 Yolov5

One of the reasons for picking Yolov5 for this project was its ease of use in everything

from training on custom data to testing the trained models. The team also had

previous experience using it for the mini-project during the TDT17 course. First,

the Yolov5 Github repository21 was cloned. Requirements were installed using pip

with the included requirements.txt file.

Dataset format

Yolov5 uses the Pytorch Darknet format, where train/test/valid are separated into

folders, with sub-folders separating the images into one folder and labels in an-

other. The bounding box information and labels are saved in a .txt format, with

each image having a corresponding label file with the same name. See figure 3.28

for an example.

21https://github.com/ultralytics/yolov5

https://github.com/ultralytics/yolov5
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Figure 3.28: Yolov5 Pytorch dataset structure (top) and .yaml file contents (bot-

tom)

The .yaml file contains the file paths to each part of the dataset, along with the

number of classes and their names respectively.

Training a Yolov5 model

There are several versions of Yolov5 available; Yolov5n (nano), Yolov5s (small),

Yolov5m (medium), Yolov5L (large) and Yolov5X (XL). The primary difference is

a tradeoff in speed vs. accuracy. The smaller models like nano and small could run

inference (detect objects in images) faster, but are not as accurate as the larger

models. Figure 3.29 shows a comparison between the speed and AP on the COCO

dataset.
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Figure 3.29: Differences between Yolov5 variations. Source: https://github.c

om/ultralytics/yolov5

The team decided that a balance between speed and accuracy was the best choice,

resulting in Yolov5m being chosen.

To start training, the included train.py file from the Yolov5 Github repository had

to be executed. The file required parameters in the form of –data, which should

point to the path of the .yaml file of the chosen dataset. It also required the choice

of Yolov5 model, passed via the –cfg argument.

The file also had a variety of optional parameters. In order to train a model from

scratch, this could be done by passing an empty string as the –weights para-

meter. Otherwise, pretrained COCO weights for the corresponding model would

be downloaded and used. Specific weight files could also be passed using this argu-

ment to do transfer learning on a model trained on another dataset. Additionally,

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
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other parameters such as batch size and number of epochs could be specified.

An example of the full command issued to start training:

python train.py --data datasets/kitti/data.yaml --cfg yolov5m

--weights ’’

Testing a Yolov5 model

For testing the trained models, the included val.py file was used. The file took

similar arguments to train.py: –data being the .yaml file of the dataset used as

test data, and –weights being the weights of the trained model. One important

additional argument was –task, which could be used to specify what type of task

the script should carry out. By default, the task was val, meaning the model would

be tested on the validation part of the dataset. The team wanted to use the test

part of the dataset, which was achieved by passing –task test to the file.

An example of the full command issued to test the trained models:

python val.py --data datasets/kitti/data.yaml

--weights runs/kitti300epochs/weights/best.pt --task test

3.3.2 Faster R-CNN via MMDetection

MMDetection22 is an object detection framework for working with different ob-

ject detection models. The framework supports several different object detection

models. The team opted for Faster R-CNN, because there was a need to train the

model from scratch, and this model was already implemented from scratch in the

included files from the MMDetection repository. Faster R-CNN is also a widely

documented and used object detection model.

22https://github.com/open-mmlab/mmdetection

https://github.com/open-mmlab/mmdetection
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Dataset format

Faster R-CNN through MMDetection used the COCO format, having a folder struc-

ture as shown in figure 3.30. It was important to correctly specify file and folder

paths in order to get the code running correctly.

Figure 3.30: Folder structure of the COCO format used in MMDetection Faster

R-CNN

As mentioned in section 3.2.7, a dataset split of 80% train, 10% test and 10% val-

idation images was used. Using the COCO format, information about the images

and their bounding boxes was located in the annotation .json files. These files

contained the file name of every image within the database, shown in figure 3.31,

along with all the annotations, shown in figure 3.32. The images and annotations

were linked with a unique ID.

Figure 3.31: Example of a image information within a .json file
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Figure 3.32: Example of an object and its information within a .json file

Training from scratch using the framework proved to be challenging. There was

little to no documentation on how to fix errors that occurred or what files to edit in

order to make the code run properly. The training tutorial23 only mentioned what

code to run from terminal and therefore indirectly what files had to be used. Sev-

eral files in different locations needed to be changed to train models successfully.

See appendix A for detailed instructions.

In order to start training, the following command was executed:

python tools/train.py ${configuration file}

To be able to do transfer learning with MMDetection, the line load_from = None

in the default_runtime.py file needed to be changed to the desired .pth file. This

line allows the user to load a weights file (in .pth format), and then continue

training on top of that file.

23https://github.com/open-mmlab/mmdetection/blob/master/docs/en/1_exist_data_mod

el.md

https://github.com/open-mmlab/mmdetection/blob/master/docs/en/1_exist_data_model.md
https://github.com/open-mmlab/mmdetection/blob/master/docs/en/1_exist_data_model.md
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Testing Faster R-CNN with MMDetection

To test models with MMDetection, the following command needed to be executed

from terminal:

python tools/test.py ${configuration file} ${checkpoint file}

The configuration file being same one that was used during training, whereas the

checkpoint file being weights file generated after training was finished.

3.3.3 Metric evaluation

Testing both Yolov5 and Faster R-CNN through MMDetection produced a variety of

information and metrics about the models. A common way to measure a models’

performance is by using its mAP score (see section 2.2.3 for details). The team

decided to use this as the main metric to compare the results from the experiments.

Average Precision for each class was also measured, as it could show discrepancies

among different classes and how they could affect the mAP value.

Each dataset had its own validation set, which could provide the end-user with

useful metrics when the training was finished. These metrics could also be used

during training to fine-tune the model. However, the metrics were calculated using

the validation set of the dataset itself, making it potentially less relevant in regards

to the research questions. The mAP training values for a model trained exclusively

on Carla would likely not be very useful when the objective is to check how well

a model trained on simulator data can perform on a real dataset. Instead, the

models were tested using the test portions of the Kitti and Ouster LiDAR datasets.
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Experiments & Results

This section details the experiments that were carried out in an attempt to an-

swer the research questions posed in section 1.2. Section 4.1 explains the baseline

models which were used for comparison. The following sections present the eight

experiments which were conducted. Experiments 1, 2 and 3 addresses RQ1, while

experiment 4 and 5 addresses RQ2. Experiment 6 and 7 addresses RQ3 and RQ4

respectively. Finally, experiment 8 attempts to answer RQ5.

4.1 Training baseline models

Before any experiments were conducted, four baseline models were created; two

Yolov5 models and two Faster R-CNN models, both using RGB and LiDAR data

from the hand-annotated datasets. As mentioned previously, the Kitti dataset con-

tained roughly 7500 annotated images. As per the 80/10/10 split, 6000 of the

images were used to train the baseline models, with the remaining 1500 images

divided equally into the validation and testing sets. For the Ouster LiDAR data,

the team had access to 5000 images, of which 4000 were used for training, and

500 each for test/valid. All trained models were tested on the test portion of their

respective hand-annotated datasets.

Experiment parameters:

67
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• Training dataset: Kitti (6000 images) and Ouster (4000 images)

• Testing dataset: Kitti dataset

• Epochs: 300 (Yolov5), 30 (Faster R-CNN)

Table 4.1 shows the mAP scores for the baseline models:

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Yolov5 (Kitti) 0.936 0.703 0.812 0.822 0.680 0.497

Faster R-CNN (Kitti) 0.864 0.564 0.702 0.688 0.482 0.382

Yolov5 (Ouster) 0.877 0.522 0.691 0.498 0.475 0.425

Faster R-CNN (Ouster) 0.723 0.443 0.635 0.445 0.346 0.347

Table 4.1: Results from baseline models trained on Kitti RGB and Ouster LiDAR

images.

The mAP0.5 score is the mAP score (see section 2.2.3 for details) at an IoU

threshold of 0.5. mAP0.5:0.95 is the standard COCO performance measurement,

being the average mAP across 10 IoU thresholds from 0.5 to 0.95. The four last

columns show the individual AP scores for each class.

For the baseline models, Yolov5 performed better than Faster R-CNN across all

metrics. In particular, the cyclist class got a relatively higher score for Yolov5. As

mentioned, these scores represented the baseline against which the other experi-

ments were compared.

4.2 Experiment 1: Small RGB dataset, default settings

The purpose of this experiment was to observe how the two models performed

with their default settings and a relatively small dataset, consisting of 6000 train-

ing images from Carla to match the Kitti dataset. The Yolov5 model was trained

using 300 epochs, while Faster R-CNN was trained using 30 epochs, being the

default amount for each model.

Experiment parameters:
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• Training dataset: Carla RGB (6000 images)

• Testing dataset: Kitti dataset

• Epochs: 300 (Yolov5), 30 (Faster R-CNN)

• Baseline: Trained on Kitti dataset, 300 epochs (Yolov5) 30 epochs (Faster

R-CNN)

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.936 0.703 0.812 0.822 0.680 0.497

Yolov5 0.168 0.078 0.221 0.052 0.005 0.037

Table 4.2: Yolov5 RGB results compared to Yolov5 baseline.

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.864 0.564 0.702 0.688 0.482 0.382

Faster R-CNN 0.150 0.065 0.151 0.052 0.005 0.052

Table 4.3: Faster R-CNN RGB results compared to Faster R-CNN baseline.

As table 4.2 and table 4.3 show, the results were poor compared to the baseline

for both models. Comparing the two models, Yolov5 performed slightly better on

mAP0.5, mAP0.5:0.95 and the Car class. For Truck and Cyclist both models per-

formed equally, whereas Faster R-CNN performed slightly better on Pedestrian.

4.3 Experiment 2: Increase number of epochs

This experiment was conducted to investigate if increasing the number of epochs

would affect model metrics. The team chose to train two versions of each model

using an increased amount of epochs and comparing them to the baseline and

the default epochs for each model. Yolov5 was trained using 600/900 epochs and

Faster R-CNN using 60/90 epochs.

Experiment parameters:

• Training dataset: Carla RGB (6000 images)
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• Testing dataset: Kitti dataset

• Epochs: 300/600/900 (Yolov5), 30/60/90 (Faster R-CNN)

• Baseline: Trained on Kitti dataset, 300 epochs (Yolov5) 30 epochs (Faster

R-CNN)

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.936 0.703 0.812 0.822 0.680 0.497

300 epochs 0.168 0.078 0.221 0.052 0.005 0.037

600 epochs 0.189 0.088 0.235 0.060 0.008 0.049

900 epochs 0.190 0.091 0.237 0.061 0.009 0.049

Table 4.4: Yolov5 results compared to the Yolov5 baseline.

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.864 0.564 0.702 0.688 0.482 0.382

30 epochs 0.150 0.065 0.151 0.052 0.005 0.052

60 epochs 0.145 0.062 0.136 0.048 0.001 0.065

90 epochs 0.122 0.057 0.148 0.042 0.000 0.035

Table 4.5: Faster R-CNN results compared to Faster R-CNN baseline.

Table 4.4 shows that using 900 epochs for Yolov5 resulted in slightly better scores

than using 600 epochs, and they both outperformed the baseline 300 epochs.

Pedestrian was the only class that did not get an increased score for 600 and 900

epochs.

In table 4.5, Faster R-CNN trained using 90 epochs produced slightly worse res-

ults than 60 epochs and the default 30 epochs, except from the car class, which

achieved a marginally better score. This was possibly due to overfitting, which is

discussed more in chapter 5.1.1.
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4.4 Experiment 3: Increase dataset size

The next experiment was conducted to see if changing the amount of training data

could affect the model performance. As mentioned in section 4.2, the amount of

images for the baseline training was 6000. The team decided to double the size

of the training set to 12000 images in order to investigate how it might affect the

training.

Experiment parameters:

• Training dataset: Carla RGB (6000/12000 images)

• Testing dataset: Kitti dataset

• Epochs: 300 (Yolov5), 30 (Faster R-CNN)

• Baseline: Trained on Kitti dataset, 300 epochs (Yolov5) 30 epochs (Faster

R-CNN)

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.936 0.703 0.812 0.822 0.680 0.497

6K images 0.168 0.078 0.221 0.052 0.005 0.037

12K images 0.178 0.087 0.247 0.052 0.006 0.043

Table 4.6: Bigger dataset for Yolov5 compared to Yolov5 baseline.

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.864 0.564 0.702 0.688 0.482 0.382

6k images 0.150 0.065 0.151 0.052 0.005 0.052

12k images 0.247 0.114 0.277 0.095 0.002 0.083

Table 4.7: Bigger dataset for Faster R-CNN compared to Faster R-CNN baseline.

Both table 4.6 and 4.7 show an improved score across most metrics when training

with a bigger dataset. For Yolov5, the scores improved across all classes apart

from truck, which did not change. Most of the scores improved by between 10-

20%. The improvement was more significant for Faster R-CNN, nearly doubling

its scores on every class except from cyclist, which worsened.
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4.5 Experiment 4: Fine-tuning with Kitti images

Experiment 4 was conducted to investigate whether the Carla data could be used

to train a baseline model, which could then be fine-tuned using a smaller subset of

the Kitti data. 2000 images were selected randomly from the Kitti training dataset,

and transfer learning was done on top of pre-trained Carla weights (6000 images,

300/30 epochs). Models were also trained from scratch using the same 2000 Kitti

images to check if the pre-trained weights had any effect at all.

Experiment parameters:

• Training datasets: Carla RGB (6000 images), Kitti (2000 images)

• Testing dataset: Kitti dataset

• Epochs: 300 (Yolov5), 30 (Faster R-CNN)

• Baseline: Trained on Kitti dataset, 300 epochs (Yolov5) 30 epochs (Faster

R-CNN)

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.936 0.703 0.812 0.822 0.680 0.497

Kitti 2k 0.863 0.592 0.748 0.711 0.537 0.374

Kitti Transfer 0.898 0.644 0.776 0.764 0.591 0.447

Table 4.8: Baseline vs. Kitti trained on 2k images vs. Kitti transfer learned on

Carla for Yolov5

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.864 0.564 0.702 0.688 0.482 0.382

Kitti 2k 0.071 0.016 0.027 0.014 0.021 0.003

Kitti Transfer 0.089 0.024 0.045 0.034 0.015 0.002

Table 4.9: Baseline vs. Kitti trained on 2k images vs. Kitti transfer learned on

Carla for Faster R-CNN

As table 4.8 shows, the Yolov5 model trained using the pre-trained Carla weights

showed an improvement across all metrics compared to the one trained solely on
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2000 Kitti images. While not reaching the performance of the 6000 image Kitti

model, the improvement was significant. The mAP0.5:0.95 score improved by

roughly 10%, while the Pedestrian class showed the biggest improvement overall.

Comparatively, Faster R-CNN performed poorly. The scores did improve from the

2K Kitti model, but they were still far off compared to the Yolov5 model. The

team initially suspected something went wrong during training, and training was

repeated twice to check if something was done incorrectly. Despite this, the results

did not change.

4.6 Experiment 5: Fine-tuning on pre-trained COCO mod-

els

Experiment 5 was conducted to investigate whether models pre-trained on the

COCO dataset could be used to enhance the data collected from Carla. For Yolov5,

the pre-trained weights were automatically downloaded when specifying their us-

age in training, while for Faster R-CNN they were included in the cloned reposit-

ory.

Experiment parameters:

• Training datasets: Carla RGB (6000 images), Pretrained COCO weights

• Testing dataset: Kitti dataset

• Epochs: 300 (Yolov5), 30 (Faster R-CNN)

• Baseline: Trained on Kitti dataset, 300 epochs (Yolov5) 30 epochs (Faster

R-CNN)

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.936 0.703 0.812 0.822 0.680 0.497

Carla RGB 0.168 0.078 0.221 0.052 0.005 0.037

COCO weights + Carla RGB 0.283 0.144 0.352 0.13 0.005 0.088

Table 4.10: Baseline vs. Carla RGB vs. Carla RGB transfer learned on pretrained

COCO weights for Yolov5
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Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.864 0.564 0.702 0.688 0.482 0.382

Carla RGB 0.150 0.065 0.151 0.052 0.005 0.052

COCO weights + Carla RGB 0.190 0.074 0.181 0.063 0.001 0.050

Table 4.11: Baseline vs. Carla RGB vs. Carla RGB transfer learned on pretrained

COCO weights for Faster R-CNN

Table 4.10 shows the result for the Yolov5 model. A substantial increase in mAP

can be seen, even doubling the value for the mAP0.5:0.95 metric. The only class

which did not benefit from the pre-trained weights was cyclist. However, the

results for Faster R-CNN seen in table 4.11 differ, where cyclist did not improve

with the transfer learning. It also showed an improvement across most categories,

though notably Pedestrian got a poorer score when pre-trained on COCO. It also

improved less overall compared to Yolov5.

4.7 Experiment 6: LiDAR images from scratch

This experiment was performed identically to Experiment 1, replacing the RGB

Kitti images with Ouster LiDAR images. Default settings were used for both mod-

els, and the training set consisting of 4000 Ouster images was used. The models

were tested against the test part of the Ouster dataset.

Experiment parameters:

• Training datasets: Carla LiDAR (4000 images)

• Testing dataset: Ouster dataset

• Epochs: 300 (Yolov5), 30 (Faster R-CNN)

• Baseline: Trained on Ouster dataset, 300 epochs (Yolov5) 30 epochs (Faster

R-CNN)
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Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.877 0.522 0.691 0.498 0.475 0.425

LiDAR 0.038 0.018 0.048 0.001 0.005 0.015

Table 4.12: Yolov5 LiDAR results compared to Yolov5 baseline.

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.723 0.443 0.635 0.445 0.346 0.347

LiDAR 0.040 0.019 0.056 0.001 0.002 0.016

Table 4.13: Faster R-CNN LiDAR results compared to Faster R-CNN baseline.

As table 4.12 and 4.13 show, both models performed quite poorly compared to the

baseline trained on Ouster image data. The truck class in particular received a very

poor score, which is understandable considering that these labels were marked as

bus in the baseline Ouster dataset (see section 3.2.7 for more information).

4.8 Experiment 7: Fine-tuning with LiDAR images

Experiment 7 was conducted to investigate whether the Carla LiDAR images could

be used to reduce the amount of real images required when training with LiDAR

images. A subset of the Ouster training dataset consisting of 2000 randomly chosen

images were used to fine-tune the models from experiment 6 by doing transfer

learning. Models were also trained using the 2000 images alone to check whether

the transfer learning had any effect.

Experiment parameters:

• Training datasets: Carla LiDAR (4000 images), Ouster (2000 images)

• Testing dataset: Ouster dataset

• Epochs: 300 (Yolov5), 30 (Faster R-CNN)

• Baseline: Trained on Ouster dataset, 300 epochs (Yolov5) 30 epochs (Faster

R-CNN)
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Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.877 0.522 0.691 0.498 0.475 0.425

Ouster 2k 0.631 0.346 0.442 0.469 0.245 0.202

Ouster Transfer 0.670 0.402 0.476 0.569 0.305 0.250

Table 4.14: Baseline vs. Ouster trained on 2000 images vs. Ouster transfer

learned on pretrained Carla LiDAR weights for Yolov5

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.723 0.443 0.635 0.445 0.346 0.347

Ouster 2k 0.004 0.004 0.008 0.002 0.001 0.004

Ouster Transfer 0.008 0.005 0.010 0.002 0.002 0.006

Table 4.15: Baseline vs. Ouster trained on 2000 images vs. Ouster transfer

learned on pretrained Carla LiDAR weights for Faster R-CNN

For Yolov5, the fine-tuned model saw substantial gains in its metrics compared to

the model trained only on the 2k Ouster images. As table 4.14 shows, all scores in-

creased by between 5-14%, with the truck class seeing the largest increase. How-

ever, the scores did not reach the baseline, and the gains were not as significant

as the Kitti model in experiment 4 4.5.

Similar to experiment 4, transfer learning on Faster R-CNN with 2000 Ouster im-

ages produced poor results. Again, training was repeated twice to see if the metrics

would change, which they did not. The team was not able to find a solution to

these poor scores, though it only seemed to happen when the training set was

small.

4.9 Experiment 8: Comparing bounding box tightness

The final experiment was carried out to investigate whether the tightened bound-

ing boxes developed as part of this project had any impact on model perform-

ance. To test this, 6000 RGB images were collected using the original CarFree

code (apart from having the extra classes added) and models were trained us-
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ing the same parameters as the base Carla RGB models (6000 images, 300/30

epochs). The results were compared to the baseline and the trained models from

experiment 1.

Experiment parameters:

• Training datasets: Carla RGB (6000 images), CarFree (6000 images)

• Testing dataset: Kitti dataset

• Epochs: 300 (Yolov5), 30 (Faster R-CNN)

• Baseline: Trained on Kitti dataset, 300 epochs (Yolov5) 30 epochs (Faster

R-CNN)

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.936 0.703 0.812 0.822 0.680 0.497

CarFree 0.074 0.028 0.065 0.022 0.005 0.002

Tight bboxes 0.168 0.078 0.221 0.052 0.005 0.037

Table 4.16: Results from comparing bounding box tightness with Yolov5

Model mAP0.5 mAP0.5:0.95 Car Truck Cyclist Pedestrian

Baseline 0.864 0.564 0.702 0.688 0.482 0.382

CarFree 0.077 0.030 0.077 0.008 0.012 0.023

Tight bboxes 0.150 0.065 0.151 0.052 0.005 0.052

Table 4.17: Results from comparing bounding box tightness with Faster R-CNN

As table 4.16 and table 4.17 show, there was a substantial improvement when

using the tightened bounding boxes. For Yolov5, the mAP0.5:0.95 nearly tripled,

with significant gains for cars, pedestrians and trucks. The cyclist class did not

see any improvement. For Faster R-CNN, all classes improved apart from cyclist,

which saw reduced results. It should be noted that this improvement was relative,

and the scores were still poor when compared to the baseline model.
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Discussion

This chapter discusses the results from the experiments and highlights the most in-

teresting findings. The chapter is divided into four parts; the first three discussing

the results in the context of the research questions, with the last part discussing

the shortcomings of the thesis.

5.1 Object detection in RGB images

5.1.1 Research Question 1

The first research question was:

How well can an object detection model detect real traffic objects

when trained on simulated RGB image data collected from the

Carla simulator?

This question was posed to figure out whether or not it was possible to use a

simulated environment, more specifically the Carla simulator, to train an object

detection model which could detect traffic objects in real images. Looking at ex-

periments 1 through 4, the results were generally poor. Both models performed

badly when trained exclusively on simulated data, and the results were not suffi-
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cient to be considered usable in real-life scenarios.

Increasing the epochs in experiment 2 was done to see whether it could improve

performance while keeping the other parameters the same. In a paper by Dai

et al. where several object detection models were tested, larger epochs resulted

in improved scores in most cases [30]. For example, for Faster R-CNN their AP

score improved from 40.2% to 42.0% when increasing the epochs threefold. The

results from experiment 2 indicate that generally, more epochs would improve

model performance. For Yolov5, the increase was most noticeable between 300

and 500 epochs. The model only slightly improved between 500 and 700 epochs,

suggesting that the model would not stand to gain from training much longer

than that. For Faster R-CNN, most classes got worse results when using increased

epochs. Only the pedestrian class improved between 30 and 60 epochs, while

the remaining results were significantly impacted. One reason for this could be

overfitting, which can happen because the model is unable to generalize because

it fits exactly to its training data [10]. Because the model is too well trained to

detect a specific variety of data, it is unable to detect similar objects from other

datasets. In this case it could mean that the model was trained to only recognize

objects in Carla images, and not the similar looking objects in the Kitti images,

thus being unable to generalize.

Through experiment 3, the team attempted to improve the results by using a larger

dataset. Zhu et al. found that having additional data is helpful, but mainly with

correcting regularization and reducing noise and outliers in the dataset[31]. The

results show that increasing the size of the dataset did improve the metrics. Faster

R-CNN improved significantly, with the mAP scores nearly doubling, allowing the

model to outperform Yolov5. However, the results were still not on par with the

baseline Kitti model, and would not be considered sufficient for real life use.

Experiment 5 showed that even though the scores were poor, transfer learning on

pre-trained COCO models produced increased scores, even doubling the mAP0.5:0.95

at its best. From the conducted experiments, it becomes clear that it is difficult to

train an object detection model with Carla images alone and test it on real life

images from Kitti. Even though experiment 5 showed improved scores, the results

overall were way below the baseline and what would be acceptable for a prop-
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erly trained object detection model. The best results across all experiments came

from Yolov5, scoring a map0.5:0.95 value of 14.4%, which was extremely low

compared to the baseline at more than 70%.

5.1.2 Research Question 2

The team formulated research question 2 as:

Can RGB image data collected from the Carla simulator be used

to reduce the amount of real images required by fine-tuning an

object detection model trained primarily on the simulated data?

Experiment 5 was conducted to investigate this question. For Yolov5, a significant

improvement to the results was observed when training a base model on Carla

data and fine-tuning with a small portion of the Kitti dataset. This is consistent

with previous work from Dworak et al. and Tremblay et al., which showed that

simulator data could be used effectively to fine-tune models [21] [24]. Being able

to significantly reduce the size of the manually annotated dataset could save time

and money. These results show that the data collected from Carla could have an

application in training the building blocks of Yolov5 object detection models used

in traffic environments.

As a contrast to these results, the model trained using Faster R-CNN achieved

poor performance. As mentioned previously, the experiment was conducted two

additional times because the team thought something had gone wrong during

dataset preparation or training, but the results were consistent. It is not quite clear

to the team where the issue lies. One suggestion is that transfer learning does not

work as well for Faster R-CNN as for Yolov5, but experiment 5 (which used the

pre-trained COCO weights for transfer learning) got results as expected for both

models. The model trained on 2k Kitti images for comparison also achieved very

poor performance, despite not using transfer learning. It is possible that Faster

R-CNN simply needs much more data in general than Yolov5 to perform decently,

but the team could not find any research indicating this.
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5.2 Object detection in LiDAR images

5.2.1 Research Question 3

The third research question was:

How well can an object detection model detect real traffic objects

in LiDAR images when trained on simulated LiDAR image data?

As mentioned in section 3.2.7, the Ouster dataset was provided as part of a mini-

project from the course TDT17. The dataset was hand-annotated by researchers

at NAPLab. This slow and tedious process was part of the reason why the project

supervisor Frank Lindseth suggested exploring the option to use Carla to generate

LiDAR images which could replace parts of the hand-annotated dataset.

The results from experiment 6 show that solely using the Carla LiDAR images to

train the models did not produce sufficient results. While the experiment para-

meters were limited (no increased dataset, using default number of epochs), the

results were poor enough that they would likely not increase significantly with

these changes.

One reason responsible for the poor results could be the difference in image qual-

ity between the datasets. The Carla LiDAR images are severely lacking in de-

tail, with the main distinguishing feature between objects being their shape. The

Ouster images (especially ambient) have much higher detail with different objects

being easily distinguishable. See figure 5.1 for a comparison. While some details

are available in both images, the Ouster images have more details like shadows

and object texture.
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Figure 5.1: Intensity images from Carla (top) vs Ouster (bottom)

The team believes one reason for this difference is the lack of data available from

the Carla sensor compared to the Ouster sensor. The Ouster sensor could produce

more information which enables the creation of more detailed images. It is also

likely that the Ouster sensor is more precise, which allows for more detailed cal-

culations of pixel values. Also, Ouster might have a more advanced method of

projecting the point clouds to 2D images, while doing more processing on the im-

ages to enhance clarity . Unfortunately, as mentioned in section 2.5.5, their code

is not public domain which makes this difficult to confirm.

5.2.2 Research Question 4

The fourth research question was:

To what degree can simulated LiDAR image data be used to reduce

the number of real LiDAR images required by fine-tuning a model

pre-trained on the simulated data?

Experiment 7 was conducted to investigate this RQ. While solely using Carla

LiDAR images produced poor results, the team wanted to check if the data could

be used to reduce the amount of hand-annotated images required. The results

from Yolov5 increased across all metrics. Interestingly, the truck class saw the

largest increase, despite the Carla data not having many objects which could be

considered similar to a bus (the most similar object available in Carla would be a

fire truck).
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When looking at the results from Faster R-CNN, the metrics were similar to the

ones achieved when using Kitti in experiment 4. Comparing the results from the

2000 Kitti images with the 2000 images from the Ouster dataset, it can be ob-

served that training with few images and iterations works poorly when using

Faster R-CNN through MMDetection. This comparison and the results from exper-

iment 3, where the metrics almost doubled when training with the double amount

of training data, also adds to the idea that Faster R-CNN and MMDetection may

not work well with few images.

While the team would not consider these results sufficient to use in real scenarios,

they show that the Carla LiDAR images could have a use in reducing the amount

of real images required while still achieving decent model performance.

5.3 Bounding box tightness

Research question 3 was posed as:

To what degree do tight bounding boxes improve the detection of

objects?

A major part of this project was centered around improving the bounding boxes

from the CarFree paper [6]. Experiment 7 was conducted to see how the new

bounding boxes compared to the old ones. The results showed a significant in-

crease in detection scores across most mAP and individual class AP values. The

most notable result was the increase in the highly relevant mAP0.5:0.95 score,

which for Yolov5 nearly tripled, and for Faster R-CNN more than doubled. While

the scores were still poor compared to the baseline Kitti dataset, the relative in-

crease shows that the improved bounding boxes did improve the detection scores

in this scenario significantly.

A caveat can be seen in the cyclist class for both models. Yolov5 did not see any

improvement for this class, while Faster R-CNN actually got a decreased cyclist

score with the tighter bounding boxes. As mentioned in section 3.2.3, the bound-

ing boxes for the cyclists in Carla were not always consistent. There was also the
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issue from section 3.2.7 where cyclists would not get bounding boxes properly

drawn sometimes. Furthermore, across all experiments cyclists would consistently

get the lowest AP score compared to the other classes. These might be some of

the reasons why the cyclist class was an outlier in experiment 7.

5.4 Shortcomings

The team recognize several shortcomings with the thesis. The process of convert-

ing 3D bounding boxes from Carla into 2D turned out to be a fairly complicated

and lengthy process. The team would like to see the Carla team implement 2D

bounding boxes directly to avoid issues. Also, the team did not manage to imple-

ment the semantic LiDAR sensor in the synchronized client used to collect the RGB

images. The synchronized client has some features like the secondary window and

controls which would be helpful for the LiDAR data collection as well.

Another shortcoming of the thesis is the lack of variety in the testing method. The

team were surprised to see the poor results on the Carla trained models. While the

Kitti images differ somewhat in their light levels and scenery, the general outlines

and shapes of the desired objects look fairly similar. The team should have tested

the models on several other datasets if possible. These datasets would likely have

a different composition to Kitti, which could give a more detailed and balanced

conclusion to the research goal.

5.5 Reflections

The team had previous experience working with 2D bounding boxes, which is why

2D object detection was chosen as the focal point for this project. About halfway

through the project, the teams’ supervisor Frank Lindseth suggested investigating

3D object detection, which would circumvent the need to transform the Carla

3D bounding boxes to 2D. The team spent a couple of days investigating this

option. While the team found interesting previous work, it was determined that

there was not enough time to completely change the scope of the thesis. The
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team acknowledges that more time could have been spent on research early in

the semester to avoid these issues.

A significant amount of time was spent improving the bounding boxes from the

CarFree project [6]. Fixing the Instance Segmentation sensor by building Carla

from scratch took several weeks alone. This led to the team having less time to

train and test models than initially planned. If the team had better planned and

researched the project initially this could have been avoided, and better results

could have been achieved. Earlier testing could have exposed bad datasets or is-

sues with the models (like Faster R-CNN not training properly with the smaller

datasets), and the team could have addressed these challenges.
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Conclusion and Future work

6.1 Conclusion

The research goal of this thesis was:

To investigate whether automatically annotated images from the

Carla simulator can be used to train object detection models for

real traffic scenarios.

The results from the conducted experiments seem to indicate that Carla data by

itself is not sufficient to train models which can perform well on real data. Models

trained on both RGB and Lidar images from Carla performed poorly when tested

on real datasets, and changing parameters like dataset size and number of epochs

trained did not significantly improve the results. Similarly to Dworak et al. and

Tremblay et al., using the Carla data to train a base model which was then fine-

tuned using a small amount of real data showed a decent improvement, suggesting

that the data is most suited for this purpose [21] [24].

A significant portion of this project was spent improving the bounding boxes from

the CarFree project [6]. The improved and tightened bounding boxes achieved

significantly better results in the conducted experiment. This seems to show that

bounding box tightness has a large impact on the performance of an object detec-
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tion model, especially for higher IoU thresholds.

6.2 Future Work

The team believes that certain aspects of the data collection process could be fur-

ther improved. One aspect is inspecting the differences between small and big

objects, and whether having more or less size variety would improve the results.

Also, collecting images at various resolutions could be worth investigating. Train-

ing with smaller images is generally quicker, so one could potentially gather a

large amount of smaller resolution images to get better results while training the

same amount of time. Conversely, larger images could have more detail which

could also improve detection.

Testing the trained models using additional real datasets could be beneficial. By

doing this one could eliminate the possibility that testing solely with Kitti and

Ouster data was partly responsible for the bad results from the different experi-

ments. This idea could also be expanded to training, where Carla data could be

combined with other simulators, like rFpro1. This could create a greater variance

in the dataset and produce an even more robust dataset.

Improving the bounding boxes further is another possibility. As seen in section 5.3,

the improved bounding boxes produced better results. Improving these bounding

boxes further could be done by for example fixing the issue with the cyclist bound-

ing boxes. The issue with occluded bounding boxes in the y dimension should also

be addressed. Most importantly, adding in the possibility of extracting 2D bound-

ing boxes directly from Carla instead of having to project the 3D bounding boxes

into the 2D space could be a major improvement. This is something that the de-

velopers of Carla would have to look into and implement directly into the simu-

lator with a feature that would enable the extraction of the 2D bounding boxes

directly. It would make it easier to create bounding boxes for occluded objects, and

avoid bugs such as bounding boxes extending outside of the objects themselves

in the y-axis, as presented in section 3.2.4.

1https://www.rfpro.com/

https://www.rfpro.com/
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As mentioned in section 5.5, the team spent some time researching 3D object

detection. Because the Carla bounding boxes are available directly in a 3D format,

this could be a better approach to extract data from the Carla simulator. Both

RGB image 3D object detection and LiDAR point cloud object detection could be

possible applications for this data.

Finally, the team believes improving the Carla LiDAR images could increase model

performance substantially. Particularly, being able to recreate the ambient images

that Ouster provide would be helpful as these are most similar to real images and

contain the most detail. In order to do this, the Carla team would likely need to add

more functionality to their LiDAR sensors like the possibility to extract reflectivity

data.

All code is available at https://github.com/PederEspen/master-thesis.

https://github.com/PederEspen/master-thesis


Bibliography

[1] World Health Organization, Global status report on road safety 2018, 2018.

[Online]. Available: https://www.who.int/publications/i/item/WHO-

NMH-NVI-18.20.

[2] US Department of Transportation, 2016 fatal motor vehicle crashes: Over-

view, 2017. [Online]. Available: https://crashstats.nhtsa.dot.gov/Ap

i/Public/ViewPublication/812456.

[3] H. Zhong, W. Li, M. W. Burris, A. Talebpour and K. C. Sinha, ‘Will autonom-

ous vehicles change auto commuters’ value of travel time?’ Transportation

Research Part D: Transport and Environment, vol. 83, p. 102 303, 2020, ISSN:

1361-9209. DOI: https://doi.org/10.1016/j.trd.2020.102303. [On-

line]. Available: https://www.sciencedirect.com/science/article/pi

i/S1361920919311010.

[4] R. E. Stern, Y. Chen, M. Churchill, F. Wu, M. L. Delle Monache, B. Piccoli,

B. Seibold, J. Sprinkle and D. B. Work, ‘Quantifying air quality benefits

resulting from few autonomous vehicles stabilizing traffic,’ Transportation

Research Part D: Transport and Environment, vol. 67, pp. 351–365, 2019,

ISSN: 1361-9209. DOI: https://doi.org/10.1016/j.trd.2018.12.008.

[Online]. Available: https://www.sciencedirect.com/science/article

/pii/S1361920918304383.

[5] European Environment Agency, Co2 emissions from cars: Facts and figures

(infographics), 2019. [Online]. Available: https://www.europarl.europa

.eu/news/en/headlines/society/20190313STO31218/co2-emissions-f

rom-cars-facts-and-figures-infographics.

89

https://www.who.int/publications/i/item/WHO-NMH-NVI-18.20
https://www.who.int/publications/i/item/WHO-NMH-NVI-18.20
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812456
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812456
https://doi.org/https://doi.org/10.1016/j.trd.2020.102303
https://www.sciencedirect.com/science/article/pii/S1361920919311010
https://www.sciencedirect.com/science/article/pii/S1361920919311010
https://doi.org/https://doi.org/10.1016/j.trd.2018.12.008
https://www.sciencedirect.com/science/article/pii/S1361920918304383
https://www.sciencedirect.com/science/article/pii/S1361920918304383
https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics
https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics
https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics


Bibliography 90

[6] J. Jang, H. Lee and J.-C. Kim, ‘Carfree: Hassle-free object detection data-

set generation using carla autonomous driving simulator,’ Applied Sciences,

vol. 12, no. 1, 2022, ISSN: 2076-3417. [Online]. Available: https://www.m

dpi.com/2076-3417/12/1/281.

[7] H. Kervadec, J. Dolz, S. Wang, E. Granger and I. B. Ayed, Bounding boxes

for weakly supervised segmentation: Global constraints get close to full su-

pervision, 2020. DOI: 10.48550/ARXIV.2004.06816. [Online]. Available:

https://arxiv.org/abs/2004.06816.

[8] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Imagenet classification with

deep convolutional neural networks,’ Advances in neural information pro-

cessing systems, vol. 25, 2012.

[9] K. O’Shea and R. Nash, ‘An introduction to convolutional neural networks,’

arXiv preprint arXiv:1511.08458, 2015.

[10] IBM.com, What is overfitting? [Online]. Available: https://www.ibm.com

/cloud/learn/overfitting.

[11] K. Weiss, T. Khoshgoftaar and D. Wang, ‘A survey of transfer learning,’

Journal of Big Data, vol. 3, May 2016. DOI: 10.1186/s40537-016-0043-6.

[12] IBM.com, What is computer vision? [Online]. Available: https://www.ibm

.com/topics/computer-vision.

[13] Z. Zou, Z. Shi, Y. Guo and J. Ye, Object detection in 20 years: A survey, 2019.

DOI: 10.48550/ARXIV.1905.05055. [Online]. Available: https://arxiv.o

rg/abs/1905.05055.

[14] M. Rajchl, M. C. H. Lee, O. Oktay, K. Kamnitsas, J. Passerat-Palmbach, W.

Bai, M. Damodaram, M. A. Rutherford, J. V. Hajnal, B. Kainz and D. Rueck-

ert, Deepcut: Object segmentation from bounding box annotations using con-

volutional neural networks, 2016. DOI: 10.48550/ARXIV.1605.07866. [On-

line]. Available: https://arxiv.org/abs/1605.07866.

[15] A. M. Hafiz and G. M. Bhat, ‘A survey on instance segmentation: State of the

art,’ International Journal of Multimedia Information Retrieval, vol. 9, no. 3,

pp. 171–189, Jul. 2020. DOI: 10.1007/s13735-020-00195-x. [Online].

Available: https://doi.org/10.1007%2Fs13735-020-00195-x.

https://www.mdpi.com/2076-3417/12/1/281
https://www.mdpi.com/2076-3417/12/1/281
https://doi.org/10.48550/ARXIV.2004.06816
https://arxiv.org/abs/2004.06816
https://www.ibm.com/cloud/learn/overfitting
https://www.ibm.com/cloud/learn/overfitting
https://doi.org/10.1186/s40537-016-0043-6
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://doi.org/10.48550/ARXIV.1905.05055
https://arxiv.org/abs/1905.05055
https://arxiv.org/abs/1905.05055
https://doi.org/10.48550/ARXIV.1605.07866
https://arxiv.org/abs/1605.07866
https://doi.org/10.1007/s13735-020-00195-x
https://doi.org/10.1007%2Fs13735-020-00195-x


Bibliography 91

[16] P. Henderson and V. Ferrari, End-to-end training of object class detectors for

mean average precision, 2016. DOI: 10.48550/ARXIV.1607.03476. [Online].

Available: https://arxiv.org/abs/1607.03476.

[17] Roboflow.com, What is mean average precision (map) in object detection?

[Online]. Available: https://blog.roboflow.com/mean-average-precis

ion/.

[18] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, ‘You only look once:

Unified, real-time object detection,’ Jun. 2016, pp. 779–788. DOI: 10.1109

/CVPR.2016.91.

[19] S. Ren, K. He, R. Girshick and J. Sun, ‘Faster r-cnn: Towards real-time object

detection with region proposal networks,’ Advances in neural information

processing systems, vol. 28, 2015.

[20] velodyne.com, What is lidar? [Online]. Available: https://velodynelida

r.com/what-is-lidar/.

[21] D. Dworak, F. Ciepiela, J. Derbisz, I. Izzat, M. Komorkiewicz and M. Wójcik,

‘Performance of lidar object detection deep learning architectures based on

artificially generated point cloud data from carla simulator,’ in 2019 24th

International Conference on Methods and Models in Automation and Robotics

(MMAR), 2019, pp. 600–605. DOI: 10.1109/MMAR.2019.8864642.

[22] D. Niranjan, B. C. VinayKarthik and Mohana, ‘Deep learning based object

detection model for autonomous driving research using carla simulator,’ in

2021 2nd International Conference on Smart Electronics and Communication

(ICOSEC), 2021, pp. 1251–1258. DOI: 10.1109/ICOSEC51865.2021.95917

47.

[23] T. Bu, X. Zhang, C. Mertz and J. M. Dolan, ‘Carla simulated data for rare

road object detection,’ in 2021 IEEE International Intelligent Transportation

Systems Conference (ITSC), 2021, pp. 2794–2801. DOI: 10.1109/ITSC4897

8.2021.9564932.

[24] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To,

E. Cameracci, S. Boochoon and S. Birchfield, ‘Training deep networks with

synthetic data: Bridging the reality gap by domain randomization,’ in 2018

https://doi.org/10.48550/ARXIV.1607.03476
https://arxiv.org/abs/1607.03476
https://blog.roboflow.com/mean-average-precision/
https://blog.roboflow.com/mean-average-precision/
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://velodynelidar.com/what-is-lidar/
https://velodynelidar.com/what-is-lidar/
https://doi.org/10.1109/MMAR.2019.8864642
https://doi.org/10.1109/ICOSEC51865.2021.9591747
https://doi.org/10.1109/ICOSEC51865.2021.9591747
https://doi.org/10.1109/ITSC48978.2021.9564932
https://doi.org/10.1109/ITSC48978.2021.9564932


Bibliography 92

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), 2018, pp. 1082–10 828. DOI: 10.1109/CVPRW.2018.00143.

[25] H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger and C. Rother,

Augmented reality meets computer vision : Efficient data generation for urban

driving scenes, 2017. DOI: 10.48550/ARXIV.1708.01566. [Online]. Avail-

able: https://arxiv.org/abs/1708.01566.

[26] A. Tsirikoglou, J. Kronander, M. Wrenninge and J. Unger, Procedural mod-

eling and physically based rendering for synthetic data generation in auto-

motive applications, 2017. DOI: 10.48550/ARXIV.1710.06270. [Online].

Available: https://arxiv.org/abs/1710.06270.

[27] S. R. Richter, V. Vineet, S. Roth and V. Koltun, Playing for data: Ground truth

from computer games, 2016. DOI: 10.48550/ARXIV.1608.02192. [Online].

Available: https://arxiv.org/abs/1608.02192.

[28] T. Wu, H. Fu, B. Liu, H. Xue, R. Ren and Z. Tu, ‘Detailed analysis on gener-

ating the range image for lidar point cloud processing,’ Electronics, vol. 10,

no. 11, 2021, ISSN: 2079-9292. DOI: 10.3390/electronics10111224. [On-

line]. Available: https://www.mdpi.com/2079-9292/10/11/1224.

[29] K. Oksuz, B. C. Cam, S. Kalkan and E. Akbas, Imbalance problems in object

detection: A review, 2019. DOI: 10.48550/ARXIV.1909.00169. [Online].

Available: https://arxiv.org/abs/1909.00169.

[30] Z. Dai, B. Cai, Y. Lin and J. Chen, ‘Up-detr: Unsupervised pre-training for ob-

ject detection with transformers,’ in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), Jun. 2021, pp. 1601–

1610.

[31] X. Zhu, C. Vondrick, D. Ramanan and C. Fowlkes, ‘Do we need more train-

ing data or better models for object detection?’ BMVC 2012 - Electronic

Proceedings of the British Machine Vision Conference 2012, vol. 3, Jan. 2012.

DOI: 10.5244/C.26.80.

https://doi.org/10.1109/CVPRW.2018.00143
https://doi.org/10.48550/ARXIV.1708.01566
https://arxiv.org/abs/1708.01566
https://doi.org/10.48550/ARXIV.1710.06270
https://arxiv.org/abs/1710.06270
https://doi.org/10.48550/ARXIV.1608.02192
https://arxiv.org/abs/1608.02192
https://doi.org/10.3390/electronics10111224
https://www.mdpi.com/2079-9292/10/11/1224
https://doi.org/10.48550/ARXIV.1909.00169
https://arxiv.org/abs/1909.00169
https://doi.org/10.5244/C.26.80


Appendix A

Faster R-CNN

The project datasets only had 4 classes, which required overwriting the default

number of classes (which was taken from COCO). This was done by editing the file

mmdetection/configs/scratch/faster_rcnn_r50_fpn_gn-all_scratch_6x_coco.py,

by adding the line num_classes=4.

The next step was to add the correct class names in the MMDetection/mmdet/-

core/evaluation/class_names.py file and also adding the classes and some color

palettes in the MMDetection/mmdet/datasets/coco.py file. The color palettes

were required and used to draw different class bounding boxes during inference.

After changing all of the class names in the files mentioned above, the class names

in the annotation files under MMDetection/data/coco/annotations had to be

changed (see the section about the dataset format below for more information).

The class order in the annotation files had to be the same as in the previous files,

which is shown in figure A.1.

93



Chapter A: Faster R-CNN 94

Figure A.1: Class structure inside of a .json annotation file used in MMDetection

Faster R-CNN.

The last step required was in MMDetection/configs/_base_/datasets/coco_detection.py,

specifying where the different train, test and validation folders were located.
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