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Abstract

In 2017, the Transformer model revolutionised the Natural Language Pro-cessing field, bringing large-scale models capable of understanding complexlong-range dependencies in text at amanageable computational cost. In 2020,the Vision Transformer brought a similar revolution to Computer Vision, withsimilar scaling benefits.
The development of linear time complexity Vision Transformers like theSwin transformer further aided the adoption of Vision Transformers, leadingto a large number of applications in Autonomous Driving and Medical ImageComputing. Models like VT-UNet melded traditional UNets with Swin trans-formers to create a strong volumetric segmentation model for brain tumoursegmentation, introducing a novel Encoder-Decoder Cross-Attention concept.
Parallel to these revolutions, Self-Supervised Learning saw a similar re-volution and uptake in use within several Computer Vision subdomains, par-ticularly Medical Image Computing where training data is often scarce. Not-ably, Swin-UNETR pre-trained a strong Swin-based encoder with a large CTdataset utilising contrastitive, reconstructive, and rotation tasks, demonstrat-ing strongperformance in downstreamMedical SegmentationDecathlon (MSD)and Beyond The Cranial Vault (BTCV) tasks.
Our research melds these advances together to produce the QueryingTransformerUNet (QT-UNet): A all-Swin TransformerUNetwith Encoder-DecoderCross-Attention, enhancedby Self-Supervised Learning (SSL). QT-UNet is testedwith several Medical Image Computing datasets to evaluate its efficacy as ageneral volumetric segmentation model. We also collect a large CT pretrain-ing dataset dubbed CT-SSL with 3,597 CT scans. A 2D version, QT-UNet-2D, isspun out to evaluate the techniques in a 2D Autonomous Driving context.
Our best model is competitive with State of the Art in BraTS2021 despitea 40% reduction in FLOPs against our baseline VT-UNet, with an average Dicescore of 88.61 and Hausdorff Distance of 4.85mm. We find weaker resultswith BTCV and Medical Segmentation Decathlon, but demonstrate the effect-iveness of both our new Cross-Attention mechanism, and our SSL pipelinewhen pre-training with our CT-SSL dataset. We transfer the model to a 2Dcontext with CityScapes, finding that our newCross-Attentionmechanism andSSL pipeline are effective without modification.
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Sammendrag

I 2017 revolusjonerte Transformer-modellen naturlig språkbehandling ved åtilgjengeliggjøre store modeller som var i stand til å forstå komplekse sam-menhenger over store avstander i tekst med en håndterbar beregningskost-nad. I 2021 brakte introduksjonen av Vision Transformere med seg en likn-ende revolusjon i bildebehandling, med liknende skaleringsfordeler.Utviklingen av effektive Vision Transformere med lineær tidskompleksitetsom Swin Transformeren bidrog til ytteligere opptak i bruk av Vision Trans-formere, spesielt i felter som Autonomt Syn og Medisinsk Bildeanalyse. Mod-eller somVT-UNet smeltet sammen tradisjonelleUNetmedSwin Transformerefor å skape en ny sterk volumetrisk segmenteringsmodell for hjernesvulster,med et nyskapende Enkoder-Dekoder Cross-Attention konsept.Parallelt med disse revolusjonene opplevde Self-Supervised Learning enlignende revolusjon og økning i bruk innen flere datasynsdomener, spesieltdomener der det er knapt med treningsdata. Swin-UNETR forhåndstrente ensterk Swin-basert kodermedet stort CT-datasett og kontrast-, rekonstruksjons-og rotasjonsbaserte treningsoppgaver, og viste sterk nedstrøms ytelse i Med-ical Segmentation Decathlon (MSD) og Beyond The Cranial Vault (BTCV).Dette prosjektet smelter disse fremskrittene sammenmedmodellenQuery-ing Transformer UNet (QT-UNet): Et all-Swin Transformer UNet med Enkoder-Dekoder Cross-Attention, forsterket med Self-Supervised Learning. QT-UNettestes med flere Medical Image Computing datasett for å evaluere model-lens effektivitet som en generell volumetrisk segmenteringsmodell. Vi samleret stort datasett kalt CT-SSL med 3.597 CT-skanninger til pretrening. En 2D-versjon, QT-UNet-2D, spinnes ut av hovedmodellen for å evaluere effektiv-iteten til teknikkene i en 2D Autonomt synskontekst.Vår beste modell er konkurransedyktig med "state of the art" i BraTS2021med 40% færre FLOPs enn vår baseline VT-UNet, med en gjennomsnittlig Dicescore på 88,61 og Hausdorff Distance på 4,85 mm. Vi finner mindre gode res-ultater med BTCV og MSD, men demonstrer effektiviteten til både vår nyeCross-Attention mekanisme og vår SSL-pipeline ved pretrening på CT-SSL. Vioverfører også teknikkene til en 2D-kontekst med CityScapes, og finner at vårCross-Attention mekanisme og SSL-pipeline er effektiv uten endringer.
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Chapter 1

Introduction

1.1 Background and Motivation

Transformers, introduced by Vaswani et al. [1], revolutionised theNatural Lan-guage Processing (NLP) field by introducing amodel that can effectivelymodellong-rangedependencieswhilemaintaining amanageable computational cost.Transformers are now thedominantmodel in that field, with notable examplesbeing BERT [2] andGPT-3 [3]. The computational efficiency of the Transformerhas enabled NLP models of unprecedented size, with the largest variant ofGPT-3 having approximately 175 billion trainable parameters.The attention mechanisms that power Transformers have also inspiredthe adoption of similar mechanisms in models for Computer Vision (CV), withsomemodels incorporating self-attentionmechanisms instead of convolutionor using a Transformer in conjunction with a convolutional backbone.Dosovitskiy et al. [4] made significant progress in 2020 by introducing theVision Transformer (ViT), a near end-to-end Transformer model for imageclassification. They showed that Transformers can be used for vision taskswithout significant backbones and the inductive bias that ConvolutionalNeuralNetworks employ. They also showed that these models can achieve State ofthe Art (SotA) performance for image classification, whilst still requiring lesscomputational resources and parameters to train than conventional CV mod-els.A major challenge for ViTs is that standard Transformer models suffer aquadratic increase in memory and time complexity in terms of input length.This hinders the application of ViTs on high-resolution images and volumessuch as those used for Autonomous Driving (AD) and Medical Image Comput-ing (MIC) tasks without the usage of CNN backbones to reduce dimensional-ity. Several approaches have been suggested to reduce the time complexityof standard Transformers [5–7], and a handful of approaches to optimise forimage and volumetric data have been suggested for ViTs.Liu et al. [8] introduced the Swin Transformer, which through the use ofself-attention in shifted windows has a linear-time complexity. This has en-
1
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abled its use in applications with high-resolution images, as well as volumetricdata such as CT and MRI scans. The Swin Transformer has been successfullyapplied to several dense prediction tasks, like segmentation and depth estim-ation, thanks to its efficiency. Notable examples include Swin-UNet [9] andVT-UNet [10]. The latter, a all-Swin Transformer UNet used for segmentingMRI scans, introduces a novel Encoder-Decoder Cross-Attention concept, giv-ing the decoder access to more information from the Encoder in addition towhat the traditional skip-connections in a traditional UNet allows.A common challenge in any machine learning problem is getting enoughdata to train the model with, to avoid overfitting the data and poor general-isation. This is even more so a challenge in Medical Image Computing (MIC),where labelling the data requires the effort of highly trained professionals in avery time-consuming task. Self-Supervised Learning (SSL) allowsML-practitionersto get more out of their data without having to label their data, by generat-ing pseudo-labels for more accessible unlabelled data. This has been usedto great effect for CV in general and in MIC especially. A notable work, Swin-UNETR [11], combines SSL with a UNet that employs a Swin Transformer asits encoder.In this project, we attempt to build on recent advances in Vision Trans-formers, focusing on MIC and AD. Taking VT-UNet and Swin-UNETR as inspir-ation, as they currently hold SotA for severalMIC datasets, we attempt to com-bine thesemethods aswell as introducing improvements to them. To this end,we introduce the QT-UNet, which employs an all-Swin Transformer UNet withEncoder-Decoder Cross-Attention and Self-Supervised Learning. We also ap-ply this model in a 2D AD context to evaluate the efficacy of these techniquesin a more traditional CV context.

1.2 Research Goal and Research Questions

In this thesis, we investigate the effects of Cross-Attention as utilised in VT-UNet and SSL as utilised in Swin-UNETR when applied in a general cross-modality model, across 2D and 3D data from a wide variety of sources. Wealso seek improvements to their original approaches to enhance model per-formance. Our research goal can be stated as follows:
To explore the efficacy of a cross-domain all-Transformer UNetsegmentationmodel basedon the Swin Transformer, self-supervisedpre-training, and Encoder-Decoder Cross-Attention onMedical Im-age Computing and Autonomous Driving datasets.

To achieve this goal, we pose the following research questions (RQs):
• RQ1: What is the effect of using self-supervised pretraining of the en-coder in an all-Transformer UNet on the performance of the overall net-work in segmentation tasks?
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• RQ2: What is the effect of using encoder-decoder Cross-Attention onthe overall performance of an all-Transformer UNet?
• RQ3: How can these techniques be applied effectively for both 2D and3D segmentation tasks?

1.3 Contributions

We introduce QT-UNet, a Swin-based all-Transformer U-Net for semantic seg-mentation of 3D and 2D data, augmented by Self-Supervised Learning. Weperform an extensive battery of tests with Medical Image Computing (MIC)and Autonomous Driving (AD) datasets to examine its efficacy, comparing itwith recent state-of-the-art models for the respective datasets.We introduce anovel Cross-Attentionmechanism inspiredby VT-UNet [10],coupled with a new decoder block design that allows the decoder blocks inthe model to query the output of the same-stage encoder for information ateach stage of the decoding process. We also employ Self-Supervised Learn-ing (SSL) for the encoder, based on the procedure developed for Swin-UNETR[11], the first application of the technique across 2D images and 3D MRI andCT volumes to an all-Transformer UNet known to the authors at the time ofwriting. We collect a large dataset consisting of 3,597 CT scans, dubbed CT-SSL, to pre-train the encoder for CT-based tasks.We find strong performance with the BraTS2021 dataset when trainedfrom scratch, and an even stronger result in terms of Hausdorff Distancewhen trained with weights pre-trained on the dataset. Both models are com-petitive with current SotA with a 40% reduction in FLOPs compared to ourbaseline VT-UNet.We find weaker results with the BTCV and MSD, but validate the effect ofour Cross-Attention mechanism and our SSL pipeline when pre-training withCT-SSL.We transfer our techniques to a 2D Autonomous Driving context, demon-strating the positive effects of Encoder-Decoder Cross-Attention and our SSLpipeline in CityScapes and CityScapes by categories, although the model it-self is weaker than the current SotA. We stress that the SSL pipeline was notchanged between the 3D and 2D context, highlighting its generality. We alsofind that the effectiveness of Cross-Attention is related to thenumber of classesin the targets.

1.4 Report outline

Chapter 1 - Introduction introduces theproject, itsmotivation, research goals,and contributions.
Chapter 2 - Background theory and RelatedWork describes relevant back-ground knowledge, as well as work related to the project and its experiments.
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Chapter 3 - Methodology describes in detail the methodology of the project.It contains information about the different experiments that have been run.
Chapter 4 - Results contains the results of our experiments.
Chapter 5 - Discussion contains our reflections on the results achieved in theprevious chapter, as well as on our method.
Chapter 6 - Conclusion and Future Work concludes the report describingthe answers this project gave to the research questions and the achievementof the overall project goal. A discussion of potential directions for future workand improvement is also presented.



Chapter 2

Background theory and
Related Work

This chapter will introduce the theoretical background for the work done inthis project and works related to it. The chapter starts with a short intro-duction to CV tasks in Section 2.1 followed relevant MIC and AD datasetsin Section 2.2, to introduce the problem domain. Section 2.3 then describesMachine Learning fundamentals. Section 2.4 describes Artificial Neural Net-works, while Section 2.5 describes Convolutional Neural Networks. Section 2.6describes Transformers in general, whilst Section 2.7 describes Vision Trans-formers specifically. Section 2.8 describes Self-Supervised Learning beforeSection 2.9 rounds of the chapter by presenting work relevant to this project.The contents of this chapter draws heavily upon work done for the preparat-ory project for this thesis [12].

2.1 Computer Vision

Computer Vision (CV) as a field deals with how computers can understanddigital images, volumes, and video. The field is in its entirety rather broad. Forbrevity, this section will introduce common tasks in the field and introducerelevant evaluation metrics, focusing on segmentation.

2.1.1 Classification

Classification is the task of correctly assigning an element to the correct class[13]. Specifically, for CV, the tasks concern taking an image and correctly clas-sifying its content into one of multiple classes. For example, a model mightbe fed a 256 × 256 RGB image of a cat and asked to predict which breed ofcat is present in the image. An example of image classification can be seen inFigure 2.1.
5
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Figure 2.1: An example of a classification task.

2.1.2 Object detection

Object detection can be considered an amp-ed up version of the classificationtask. Rather than classifying a single object in an image, the goal is now tocorrectly classify and locate multiple objects in the image. This allows us to, asan example, detect the presence of multiple cats in an image and where theyare located in the scene. The output in an object detection task is boundingboxes that indicate the position and dimensions of each object, as well as theobject class. An example can be seen in Figure 2.2.In addition to being trained on the labels the model outputs, it is alsotrained on how well they place the bounding boxes compared to the groundtruth boxes in the training set.
2.1.3 Segmentation

Segmentation takes object detection a step further and detects which class orobject each pixel belongs to. Pixels that are collectively assigned to the sameobject or class are often referred to as a segmentation mask.We can broadly divide the world into two distinct classes of objects: Things– which are countable objects such as cars, people and animals – and stuff –which are amorphous regions of similar texture ormaterial such as grass, sky,
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Car Person Person

Figure 2.2: An example of a object detection task.

or road.
The three different types of segmentation can be characterised by thisdivide. The study of stuff can be formulated as the task of doing semantic seg-

mentation, where the goal is to assign each pixel a class label [14]. Note thatthings are considered a subset of stuff in the context of semantic segmenta-tion and thus are still classified. Say we have an image of a busy road. Then,cars, people, and other classes of entities on the road would each belong totheir respective class segmentation mask.
In contrast, the study of things can be formulated as the task of instance

segmentation, where the goal is to detect each object and delineate it witha segmentation mask, classifying each object individually [14]. With our ex-ample from above, each car and person on the road will have its own seg-mentation mask.
Finally, the study of stuff and things together can be formulated as thetask of doing panoptic segmentation, where the goal is to assign both classand instance labels to each pixel [14]. In our example, the road and the skywould be classified as stuff and thus be segmented semantically, while thecars and the people would each have their own instance segmentation mask.Figure 2.3 shows the difference between the three segmentation tasks.
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(a) Raw image (b) Semantic segmentation

(c) Instance segmentation (d) Panoptic segmentation
Figure 2.3: A comparison of segmentation tasks. Illustration from [14]..

2.1.4 Evaluation metrics for CV

Good quantitative metrics are needed to compare the performance of onemodel to another, or against that of a human. There are several metrics inuse in the ML community in general and within the CV community specific-ally. Differentmetrics will emphasise different aspects ofmodel performance.Somemetrics will highly reward correct predictions of positives, whilst otherswill emphasise the correct classification of a negative sample. This section willgive a brief overview of metrics terminology, some commonly used CV met-rics, and the tasks with which the metrics are used.
Positives and negatives

Several metrics operate with the notion of positives and negatives relative tosome class, where a sample with a positive label is a member of the class,while a sample with a negative label is not. When predicting membership ofthe sample, either yes or no, we get four classes of predictions. If the modelcorrectly predicted that the element does indeed belong to the class, we havea true positive. Likewise, if the model correctly predicted that the element is
not a member of the class, we have a true negative. On the other hand, if themodel predicted membership in the class while the label of the sample in-dicates that it is not, we have a false positive. Vice versa, a prediction of non-membership for a sample that is indeed a member of the class is a false neg-
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Prediction
Label Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Table 2.1: Overview of classification types with abbreviations.

ative. See Table 2.1 for a summary.
Precision and Recall

Using these primitives, we can definemore complex metrics. Two of themostfundamental metrics are precision and recall.Precision, defined as in Equation (2.1), measures the probability that asample classification predicted by themodel is actually amember of the class.In other words, it measures the percentage of predictions that were true pos-itives compared to the total number of true positives and false positives.
Precision=

T P
T P + F P

(2.1)
Recall, as defined in Equation (2.2), measures howmany elements belongto the class that the model is capable of correctly predicting, as a ratio of TruePositives and False Negatives.

Recal l =
T P

T P + FN
(2.2)

Ideally, both precision and recall should both be high. That is, one wouldlike to have a high percentage of true positives and a high number of correctlyclassified samples. However, in reality, increasing either measure will oftenresult in a decrease in the other. A trade-off must be made between highrecall and high precision. There is no silver bullet here. Different tasks willhave different requirements and require different trade-offs.
Intersection over Union

A commonly used metric for object detection and segmentation is Intersec-tion over Union (IoU) [15], also known as the Jaccard Index, as defined inEquation (2.3). Essentially, IoU measures the intersection between the pre-diction and the ground truth (that is, the true positives) divided by the area ofthe union of the prediction and the ground truth (that is, the true positives,the false positives and the false negatives). The metric is defined in the range
[0, 1], with 0 indicating that there is no overlap between the ground truth andthe prediction and 1 indicating perfect overlap. For multi-class prediction, IoUis calculated for each class and then averaged. This is called mean IoU, de-noted as mIoU.
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IoU =
T P

T P + F P + FN
(2.3)

Dice Similarity Coefficient

Anothermetric commonly used for segmentation is Dice Similarity Coefficient(DSC) [16, 17], also known as the F1 score, as defined in Equation (2.4). It isquite similar to IoU, but it is more rewarding of true positives than IoU. Non-etheless, they are positively correlated, meaning that a higher IoU score alsomeans a higher Dice score and vice versa. This metric has its roots in biologyand is used widely in the MIC field.
DSC =

2 · T P
2 · T P + F P + FN

(2.4)

Hausdorff Distance

This metric [18], although less commonly used for standard CV tasks, is quiteoften used for segmentation tasks in the MIC field. In a nutshell, HausdorffDistancemeasures how far two subsets of ametric space are fromeach other.More concretely, it is informally the longest distance one can travel from anypoint in one of the sets to any points in the other. Its interpretation can beunderstood as a measure of how far the worst part of the predicted maskwas from the label. For MIC, it is usually denominated in millimetres.Formally, the Hausdorff Distance is defined as follows: Let X and Y be twonon-empty subsets of a metric space M with distance measure d. Then wedefine their Hausdorff Distance dH(X , Y ) as in Equation (2.5), where d(a, B) =
in f
b∈B

d(a, b) is the distance from a point a ∈ X to the subset B ⊆ X , sup is
supremum and in f is infimum. The supremum and infimum are the smallestand greatest elements of a set, respectively.

dH(X , Y ) = max

�

sup
x∈X

d(x , Y ), sup
y∈Y

d(X , y)

�

(2.5)

2.2 Datasets

There are several different datasets in the Medical Image Computing andAutonomous Driving domains. What follows is a short description of a fewsignificant datasets in these domains.
2.2.1 Medical Image Computing (MIC)

MIC is a subfield of CV that deals with the processing and analysis of medicalimage data for the purposes of aiding medical personnel with diagnosis and
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Figure 2.4: Example ground truth from MSD Task 6, Lung Tumour segment-ation in a CT-scan.

decision making in the treatment of diseases. It has its own set of interest-ing challenges, including high-resolution – often volumetric – data, with highdemands upon the accuracy of the predictions produced. Incorrect predic-tions can have dangerous consequences, although it is uncommon for MICalgorithms to make direct decisions about patient care, instead acting as anaid and decision support to qualified medical personnel.
Medical Segmentation Decathlon

The Medical Segmentation Decathlon (MSD) dataset [19] is a collection of tensemantic segmentation tasks from different organs and image modalities (CTand MRI scans), segmenting organs, tumours, and cancer primaries depend-ing on the task. Each task has a unique set of challenges, with the collectionas a whole aiming to highlight common challenges with medical data, such assmall training sets, unbalanced classes, multi-modality data, and small seg-mentation targets. An example segmentation from Task 6 can be seen in Fig-ure 2.4.
BraTS2021

The Brain Tumour Segmentation (BraTS) challenge [20–22], organised by theRadiological Society of North America (RSNA), the American Society of Neur-oradiology (ASNR), and theMedical Image Computing and Computer AssistedInterventions (MICCAI) society, is a 3D MRI dataset for tumour segmentation.
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Figure 2.5: Example ground truth from BraTS2021.

It includes 1251 samples, each with four 3D MRI modalities: native (T1), post-contrast T1 weighted (T1Gd), T2-weighted (T2), and T2 Fluid-attenuated Inver-sion Recovery (FLAIR). Its ground truth labels were annotated by physicians,dividing the tumour into four regions: The enhancing tumour, the peritumoraledema, the necrotic tissue, and the non-enhancing tumour core. An examplecan be seen in Figure 2.5.

Beyond The Cranial Vault

The Beyond The Cranial Vault (BTCV) abdomen challenge dataset [23] is amulti-organ segmentation dataset consisting of 50 samples. The samples areportal venous phase CT scans collected from various collaborating institu-tions. 13 organs were annotated by trained raters and reviewed for label ac-curacy by a radiologist or radiation oncologist. Being a small dataset withmany classes and with certain small target organs, this dataset poses a chal-lenging segmentation task. An example can be seen in Figure 2.6.

PanNuke

The PanNuke dataset [24] is a semantic nuclei segmentation dataset, contain-ing 7,904 cases across 6 classes in three folds from19 different tissue types. Intotal, the set contains 205,343 labelled nuclei. Each fold contains a little over2,500 samples. Whilst the dataset is relatively small in terms of number ofcases when compared to other recent CV datasets, is it quite large for a MICdataset. An example can be seen in Figure 2.7.
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Figure 2.6: Example ground truth from BTCV.

(a) Raw image (b) Ground truth segmentation
Figure 2.7: Example of PanNuke image and ground truth.
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Figure 2.8: Examples from the KITTI semantic segmentation dataset, takenfrom [30].

2.2.2 Autonomous Driving (AD)

Autonomous Driving is a sub-field of CV that deals with the processing andanalysis of images for the purposes of independent computer-driven naviga-tion in an environment, typically a city street or a highway. It poses an inter-esting set of challenges, as it requires accurate real-time analysis of complexhigh-resolution scenes with many interacting elements in order to produceintelligent driving decisions. The demands upon the algorithms used in thisspace are high, as the consequences of late or incorrect predictions can leadto dangerousmanoeuvres in the real world, causingmaterial damage and hu-man injury. A notable example of a CV application in the AD field is Tesla’s fullself-driving system [25].
KITTI

The KITTI dataset [26–29] is a collection of several different datasets, compiledinto a VisionBenchmark Suite. It includes datasets for vision flow, depth estim-ation, visual odometry, 3D object detection, 3D object tracking, and semanticand instance segmentation. Though it represents for many of these domainsa seminal collection of datasets, it is relatively small with, for instance, only 200train images and 200 test images in the semantic and instance segmentationdatasets. Examples from the dataset can be seen in Figure 2.8.
CityScapes

TheCityScapes dataset [31] is a large-scale segmentation dataset of city scenes,collected from 50 different German cities. It contains in total 5,000 frames at
1024× 2048 pixels with pixel-level annotations across 30 classes, with an ad-ditional 20,000 frames with coarse annotations. It can be used for semantic,instance, and panoptic segmentation. The dataset is widely used in the ADcommunity. An example from the dataset can be seen in Figure 2.9.
nuImages

The nuImages dataset [32] is a large-scale AD dataset for semantic and in-stance segmentation and 2D object detection collected from Singapore and
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Figure 2.9: An example segmentation mask from CityScapes.

Boston. It contains in total 93,000 images with annotations. Although the nu-Images dataset is relatively new, it has gained some traction in the AD com-munity. An example can be seen in Figure 2.10.

2.3 AI fundamentals

Whilst Computer Vision (CV) depends heavily upon Artificial Intelligence (AI), itis difficult to establish a specific and clear definition of AI. AI can, however, ingeneral, be interpreted as a field concerned with building systems that makeintelligent decisions in response to input from its environment. This broaddefinition does, of course, contain a wealth of diversity in approaches. Theserange from the purely algorithmic to the purely statistical. Subfields that haverecently emerged include Machine Learning (ML) and Deep Learning (DL) us-ing Artificial Neural Networks.
2.3.1 Machine Learning

Machine Learning focuses on the construction of algorithms inwhich the agentlearns to solve a task through experience. Formally, we can say that an agent(A) that tries to solve a task (T) with a performance measure (P) is learningif P increases with experience (E). Within this definition, there exist severalparadigms, such as supervised and unsupervised learning.
Supervised and Unsupervised learning

Supervised learning is most relevant for this project, but both paradigms arecomplementary and thus deserving of treatment in this section. For somema-



16 Andreas H. Håversen: QT-UNet

Figure 2.10: Example segmentation from nuImages, from [32].

chine learning problems, the set of correct input-output pairs for the taskmayalready be known. For others, such a set may not be available. For instance,for a system that tries to predict the topic of a newspaper article, a humancan go through it in advance and label the articles completely and correctly.In contrast, a system that is trying to identify clusters in large volumes of datamight not have answers available due to a large amount of data to label.
Tasks in which the expected output is known in advance can be solvedusing supervised learning techniques. Formally, given a training set of N datapairs,

(x1, y1), (x2, y2), . . . (xN , yN )

where each yi was generated by some function y = f (x), the task is to dis-cover a function h that approximates f [13].
In contrast, tasks where the expected output is unknown can be solvedusing unsupervised learning techniques. Generally, unsupervised learning at-tempts to discover similarities and relationships in the data. Returning to ourexample from before, a typical unsupervised technique is to use clusteringalgorithms to discover entities in the data set that are similar, say good andbad weather days measured by rainfall and the number of rides in a taxi on ascatter plot [13].
Variants of supervised andunsupervised learning also exist. Semi-supervisedlearning is a paradigm that uses both labelled and unlabelled data to train themodel. For example, one approach of several approaches to semi-supervisedlearning is to train a model on the limited data available, use that model togenerate new labels for the unlabelled dataset, and then re-train the modelover both the old and new labels.
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Another paradigmof specific interest to this thesis is Self-Supervised Learn-ing (SSL), where the training procedure uses pseudolabels that are automat-ically generated from unlabelled data. SSL is described in more detail in Sec-tion 2.8.

2.4 Artificial Neural Networks

Some of the firstmachine learningmodels recognised today were intended tobe computationalmodels of biological learning [33]. One suchmodel is the Ar-tificial Neural Network (ANN), inspired by the biological brain. This model wasinspired by two insights: Firstly, that the brain provides a proof by examplethat a system that can create intelligent behaviour can exist, and secondly thatit provides a conceptually straightforward path for duplicating that model byreverse engineering the computational principles of the brain [33].
2.4.1 The Artificial Neuron

Similarly to how the basic building block of a biological brain is the biologicalneuron, the basic building block of an artificial neural network is the artificialneuron.A basic artificial neuron consists of nothing more than a numerical biasterm and associated weights. Upon activation, it takes the weighted sum of itsinputs plus a bias term, feeds that to some activation function, and returns theoutput. In practice, we deal with the input and the weights as vectors, whichlends us to an approach where we take the dot product of the transposedweights with the input, add the bias, and then apply an activation function.The bias allows the neuron to shift its zero point up or down. A mathematicalformulation of the artificial neuron can be seen in Equation (2.6).
z = w ⊺ · x + b =

∑

i

w i x i + bi

h = g(z)
(2.6)

We follow the notation of Goodfellow et al. [33] and denote the sum as z,the layer weights as w, the inputs as x , and the bias as b, with vectors set inbold font, over the number of inputs i. Furthermore, we denote the activationfunction as g(x) and the final output as h.The simplest possible ANN consists of a single neuron with the Heavysidestep function as its activation function and is called a Perceptron [13]. While aPerceptron can be useful on their own, they suffer from a fundamental flaw:They can only learn linearly separable functions. A Multi-Layer Perceptron(MLP), consisting of several layers of neurons, can express more complex lin-ear functions, butwill still produce linear decision boundaries due to the linearnature of the activation function [33].
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2.4.2 Activation functions

In order to allow MLPs to express non-linear functions, we need to introducenon-linear activation functions. There are several to choose from. We list ahandful of common choices here for reference.

Sigmoid

The Sigmoid function outputs a value in the range [0,1], and can be seen inEquation (2.7)
σ(z) =

1
1+ e( − z)

(2.7)

Hyperbolic Tangent

The hyperbolic tangent function outputs a value in the range [−1,1], and canbe seen in Equation (2.8)
tanh(z) = 2σ(2z)− 1 (2.8)

Rectified Linear Unit

The Rectified Linear Unit (ReLU) function outputs a value in the range [0,∞],and can be seen in Equation (2.9)
ReLU(z) = max(0, z) (2.9)

2.4.3 Network architecture

As noted in Section 2.4.1, we can arrange several artificial neurons togetherinto layers. We can then compose several layers into a network that, with theuse of non-linear activation functions, can approximate functions that are farmore complex and non-linear. An example of a multi-layered perception canbe seen in Figure 2.11. Neurons in the middle layers, the "hidden layers", arecalled "hidden units". Notice that each neuron in a layer is connected to everyneuron in the previous layer. Each neuron in a layer maintains a bias term,as well as a weight vector where each entry in the vector corresponds to theweight associated with the input from each connected neuron in the previouslayer. Consequently, each layer can be represented with a bias vector b ∈ Rn

and a weight matrix W ∈ Rm×n, where n and m correspond to the number ofneurons in this layer and in the previous layer, respectively.
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Figure 2.11: A Multi-Layer Perceptron (MLP).

The Universal Approximation Theorem

This theorem states that a feedforward network with a linear output layer andat least one hidden layer with any "squashing" activation function (that is, thefunction must saturate for large positive and negative values) can approxim-ate any continuous function on a bounded and closed subset of Rn with anydesired non-zero amount of error, provided that the network has enough hid-den units [33].
2.4.4 Forward pass in a ANN

AANNproduces its output by forwarding its input through its layers. Using thematrix and vector definition of the layers defined at the end of Section 2.4.3,we can formulate a general expression for the output of a n-layer neural net-work with input x in Equation (2.10).
hn = gn(zn) = gn((Wn)⊺hn−1 + bn) (2.10)

Where the superscript denotes the layer from which the term or functionbelongs, and a0 = x . We can see how the output from each previous layeris fed as input to the next layer, with each layer applying its weights, biases,and activation functions all the way forward until we reach the last layer in thenetwork.
2.4.5 Loss functions

An essential part of learning in general is to figure out where we got it rightandwhere we got it wrong. It is no different formachine learning in general or
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ANNs specifically. In machine learning, themechanismwe use to discover ourerrors and successes is called a loss function. As with the activation functionsdescribed in Section 2.4.2, there are several functions to choose from, eachwell suited for different types of tasks. A hand-full of important loss functionsare summarised in the following paragraphs. We denote the predicted outputof our model as ŷ , the ground truth labels as y , and the number of samplesas n.

Mean Squared Error (MSE) Loss

MSE loss is commonly used for regression tasks. It is defined as in Equa-tion (2.11), where yi is the ground truth and ŷi is the prediction producedby the model.
LMSE =

1
n

n
∑

i=1

(yi − ŷi)
2 (2.11)

Cross Entropy (CE) Loss

CE loss is commonly used for classification and segmentation tasks, and isdefined in Equation (2.12) for multi-class problems where y is the label vectorand ŷ is the model prediction vector.

LC E = −
1
n

� n
∑

i=1

y i · log( ŷ i)

�

(2.12)

Dice Loss

Dice Loss is commonly used for segmentation tasks in the MIC field and isdefined by Equation (2.13), where DSC is Dice Similarity Coefficient. This ispossible since DSC has a range between zero and one, where one representsa perfect overlap between the label and the prediction, and zero representsa label and prediction that do not overlap at all. Minimising DSC loss thusmaximises the overlap between labels and predictions.
LDice = 1− DSC (2.13)

For segmentation, this represents an important change in perspective.Whereas minimising CE loss will maximise pixel-wise accuracy, minimisingDice loss will maximise the overlap of the prediction and the label as a whole.That is, Dice loss considers both global and local information, whereas CE lossconsiders only local pixel information.
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2.4.6 Backward pass in a ANN

A fundamental part of howANNs learn is the backwardpass using back-propagation.When a neural network is first instantiated, its weights are set randomly ac-cording to some probability distribution, for example the Xavier or He distri-butions due to Glorot and Bengio [34] and He et al. [35] respectively. Once theweights have been properly initialised, our network can produce a prediction,but it will most likely not be any good and will have a high loss value. Our goalis now to adjust the weights so that the loss decreases.
Howmuch each weight should change is determined by the overall gradi-ent of the network, in other words a measure of how much each weight con-tributes to the total loss of the network. This can be determined by takingthe partial derivative of the loss with respect to the weights and biases. Weperform these calculations and weight adjustments in a layer-wise fashion,passing the remaining error that cannot be explained in a layer back to thelayer before it. In essence, the error gradient, or delta, back-propagates throughthe network, which names this algorithm the back-propagation algorithm.
First, we find the gradient of the loss with respect to the weighted input zin the last layer, denoted δN . Adopting the same notation as in Section 2.4.1,we get Equation (2.14) for each output neuron j with a network with N layers.

δN
j =

∂L
∂ hL

j

gN ′(zN
j ) (2.14)

We can rewrite Equation (2.14) to matrix form in Equation (2.15), where ⊙refers to the Hadamard Product.
δN =∇hL⊙ gN ′(zN ) (2.15)

With this final delta, we can now calculate the delta for each layer n usingthe delta of the previous layer, with Equation (2.16).
δn = W n+1δn+1 ⊙ hn′(zn) (2.16)

The delta of each layer can then be used to calculate the contribution ofeach weight and bias in that layer to the total loss. The contribution of weight
W n

jk, that is the weight connecting neuron k in layer n − 1 and neuron j inlayer n, is given in Equation (2.17). Similarly, the contribution of the bias canbe calculated by Equation (2.18).
∂L
∂W n

jk

= hn−1
k δn

j (2.17)
∂L
∂ bn

j
= δn

j (2.18)
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2.4.7 Gradient descent

Broadly, the equations derived in the previous section described the gradientof the parameter space in our network, with respect to the loss. As previouslynoted, the goal is to navigate this parameter space in such a way that the lossdecreases. This is called gradient decent, interpreting the loss as a measure of"height" in this parameter space.Gradient decent works in several iterations, following these steps:
1. Feed the model an input and attain an output.2. Calculate the loss of the output with respect to some label or perform-ance measure.3. Calculate the gradients of each layer in the network.4. Use those gradients to update the weights and biases of the network.
This sequence of operations is repeated either for a specified number ofiterations or until a convergence criteria for the model is reached. There areseveral variations upon gradient decent, depending on howmuch data is sentthrough the model at each iteration. The most common variant, called mini-

batch gradient decent, passes a subset of the dataset at each iteration. Theweights and biases are then updated as specified in Equation (2.19) and Equa-tion (2.20), respectively.
W n

jk −→ W n
jk −

ε

m

m
∑ ∂L
∂W n

jk

(2.19)

bn
j −→ bn

j −
ε

m

m
∑ ∂L
∂ bn

j
(2.20)

Here, ε denotes the learning rate andm denotes themini-batch size, both ofwhich are hyper-parameters that are set manually. The learning rate determ-ines how large of a step we make in the direction of the gradient for each it-eration, whilst the minibatch size determines howmuch data is used for eachtraining step. How large thesemini-batches should be is often task-dependentand an area of intense research. Often, a mini-batch size between 2 and 32is used. Using mini-batches increases the stability of the training and aids inconvergence, since the model makes updates to its parameters based on theaverage of several gradients rather than one, increasing the chances of des-cending the parameter space in a globally sensible direction. Once all the datapoints in our training set have passed through the network, the model hascompleted one epoch of training. Usually, several training epochs are neededfor the model to converge.
2.4.8 Optimisers

A major issue when training models using gradient decent is navigating theparameter space in such away that themodel avoids getting stuck in localmin-



Chapter 2: Background theory and Related Work 23

Parameters

L
o
ss

Global minimumLocal minimum

Model 1
Model 2

Figure 2.12: Illustration of local and global minima. Without momentum,model 1 will get stuck in a local minimum, while model 2 will reach the globalminimum.

ima, as illustrated in Figure 2.12. Although theremay exist amore optimal andperhaps a globally optimal solution (a global minimum), the model might failto reach it, as the cost of escaping the valley in which it has settled is too large.One way to escape such local minima is to use a form of momentum, usuallydenoted as ρ. The intuitive idea here is to have the gradient decent algorithmmove across the parameter space in a similar way to how a heavy ball wouldroll down a hill. With sufficient momentum, such a ball would be able to rollover local minima and potentially discover more optimal minima elsewherein the parameter space. Momentum can also help to deal with saddle pointsin the space, formuch the same reasons that they help with local minima [33].
A typical optimiser with momentum is ADAptive Movement estimation(ADAM) [36]. It computes first- and second-order estimates of momentum foreach parameter in the network, using the estimatedmomentum to adjust theupdates to the weights in themodel. It alsomaintains a bias term for the first-and second-order estimates.

2.4.9 Overfitting

Provided sufficient model learning capacity, a model can in theory train untilthe training loss is zero, effectively memorising the entire training set. Whilstthismight sound like an attractive proposition, it is not. Themodel wouldmostlikely not generalise well when exposed to new data that is not present in thetraining set. This problem is known as overfitting [13].
There are several ways to deal with andmitigate overfitting. One approach
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Figure 2.13: Early stopping example. Training stops where validation loss be-gins to increase.

is to use early stopping. First, the training set is divided into twoparts: a trainingset and an validation set. The new, smaller training set is used as before. Thevalidation set is held out during training and only applied when the trainingepoch is complete. Then, the loss of the model is evaluated on the validationdata. This validation loss is not used for training directly, but rather comparedwith validation losses calculated over previous epochs. If the validation lossis less than the previous calculated validation loss, training continues. If, onthe other hand, the validation loss has increased, we interpret this as the startof overfitting and terminate training. In practice, validation losses can fluctu-ate during training, so a patience parameter is often used to determine howmany subsequent epochs of increasing validation loss are tolerated beforemodel training is terminated. An illustration of this approach can be seen inFigure 2.13.
Another approach is to apply regularisation. Specifically, for neural net-works, we apply parameter regularisation. In essence, this technique punishesthe model for being overly complex by increasing the loss as complexity in-creases. In this context, high weigh values are equated to high complexity.Two common techniques for regularisation are L1 and L2 regularisation [33].When regularisation is applied, our loss function is slightly modified, as canbe seen in Equation (2.21).
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L̂(φ; X , y) = L(φ; X , y) +αΩ(φ) (2.21)
Here,φ denotes the parameters of the network (theweights),Ω the chosenregularisation function, and α the contribution of the regularisation to theloss.When applying L1 regularisation, Ω is as seen in Equation (2.22).

Ω(φ) = ||w ||1 =
∑

i

|wi| (2.22)
When applying L2 regularisation, Ω is as seen in Equation (2.23).

Ω(φ) =
1
2
||w ||22 =

1
2

∑

i

w2
i (2.23)

Both of these techniques work by pushing the weights towards zero inan effort to reduce the number of features in a network and thus make thenetwork focus more on essential features in the input. Their effect on thenetwork differs slightly. Whilst L1 regularisation pushes weights towards zeroin order to get rid of features in general, L2 regularisation keeps weights smallin general.A third option for dealing with overfitting is to apply dropout. Dropout isa technique where the activations of hidden nodes in the network are ran-domly set to zero in each training step. The effect of this is that instead oftraining one network, an ensemble of sub-networks is trained instead [33].Essentially, we encourage the network to becomemore robust by forcing it tolearn how to route information through the network across several differentpaths, discouraging specialised routes through the network that might leadto overfitting.
2.4.10 Batch Normalisation

Abatch normalisation layer [37] normalises themini-batch input to an internallayer of the network. That is, it redistributes the values of the input so thatthe mean is centred around zero. This can be done by calculating the mean
µ and standard deviation σ across the minibatch. Let X be a batch of inputsto an internal layer in the network. Then, the normalised mini-batch X̂ can becomputed as in Equation (2.24).

X̂ =
X −µ
σ

(2.24)
Using the two learned parameters γ and β , the final output of the batchnormalisation layer is computed as in Equation (2.25). These parameters existto preserve the expressive power of the network [33].

γX̂ + β (2.25)
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Applying batch normalisation allows the use of higher learning rates, sat-urating activation functions andmakes network performance less sensitive toweight initialisation. It also seems to act as a form of regularisation, it reducesthe effect of vanishing or exploding gradients and increases training speed[37]. The exact reason why batch normalisation works so well is poorly un-derstood. Ioffe and Szegedy [37], the creators of batch normalisation, claim intheir paper that it works by reducing internal covariate shift, where parameterinitialisation and changes in the distribution of the inputs of each layer affectthe learning rate of the network. More recent research by Santurkar et al. [38]suggests that the gains can be attributed to batch normalisation smoothingout the objective function, thus increasing performance.
2.4.11 Layer Normalisation

Proposed by Ba et al. [39], Layer Normalisation attempts to address someof the drawbacks of Batch Normalisation. Since the calculation of the mean
µ and standard deviation σ is dependent on the size of the minibatch, theirquality as statistical estimators of the true values of µ and σ across the wholedataset degrades as the size of theminibatch decreases. Batch Normalisationis also difficult to apply to sequence-focused data since the length of each se-quence in the dataset can vary, making calculation of the mean and standarddeviation non-obvious.Layer Normalisation attempts to deal with this by taking the mean andstandard deviation along the feature dimension rather than the batch dimen-sion. That is, Layer Normalisation takes the mean and standard variation ofthe features of a single case and uses it to normalise the input, rather thantaking the mean of each feature across a batch. This means that Layer Norm-alisation can work independent of batch size. This method of normalisationworks especially well with Recurrent Neural Networks [39], which is why it hasseen extensive use in models for NLP.
2.4.12 Gradient Accumulation

A challenge that can arise when dealing with ANNs is to fit all the data in atraining mini-batch into memory. This is particularly challenging in ComputerVision tasks, where the inputs are large multidimensional arrays and trainingis often done on GPUs. As previously noted, larger mini-batch sizes can aid intraining speed and stability, but such gains are lost if we have to reduce thebatch size in order to fit our data onto our computing accelerators.One technique that is often used to attain the advantages of a larger mini-batch size whilst keeping it small enough to fit all the data on the acceleratoris gradient accumulation. Instead of updating the weights immediately after amini-batch has been sent through, we send another mini-batch through andaccumulate the gradients of the twomini-batches. We can keep accumulating
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the gradients of say k mini-batches. Only when the k mini-batches have beensent through do we update the weights. If the mini-batch size is m, the effect-ive batch size of the weight update is k · m. Whilst some of the speed gainsof larger batch-sizes might be lost, the training still enjoys the stability of thelarger mini-batch size.

2.5 Convolutional Neural Network (CNN)

Although Artificial Neural Networks can form strong predictive models, theyscale poorly to large inputs since each neuron in each layer is connected toevery neuron in the next layer. This leads to very high memory requirementsin order to store all the weights in the model. For example, for a 1024× 1024pixel input image, the first layer would need to have 10242 input neurons.With a hidden layer of size n, we would get 10242 ∗ n weights to connect thetwo layers.A technique commonly applied to deal with this is parameter sharing,often expressed through Convolutional Neural Networks. Instead of regularneural layers, CNNs employ so-called convolution layers. Convolutional lay-ers can be applied to any type of data organised in a grid-like topology ina n-dimensional input, for example 1D time series, 2D images or 3D imagingscans.To achieve this, convolutional layers utilise the convolution operation forwhich they are named. For a 2D input, it is defined as in Equation (2.26).
S(i, j) = (K ∗ I)(i, j) =

∑

m

∑

n

I(i +m, j + n)K(m, n) (2.26)
In Equation (2.26), I is a 2D input and K is a m× n kernel of weights. Theequation defines an operation where the kernel K is slid over the input I ,where the value of each cell in I is multiplied with the corresponding cell in Kand then summed, as illustrated in Figure 2.14. The output is a feature map

S, where S(i, j) is the result of the convolution operation over I at row i andcolumn j of S. In some convolutional layers, an activation function is appliedelement-wise over S after the convolution operation has been applied. Addi-tionally, a bias may also be applied.The spatial size of the feature map S depends heavily upon the sizes of
K and I , as well as the stride, padding, and dilation of the convolution. Thestride of the convolution refers to how far the kernel will slide over the input
I between each application. The padding refers to whether or not the inputhas had zeros added around it (padded) in each spatial dimension. Finally,dilation refers to how much distance there should be between each value inthe input to be applied with the kernel, if any (see Figure 2.15).A convolutional layer can employ several kernels, each with its own set ofweights, producing a separate feature map S. That is, a convolutional layerwith n kernels produces as output a stack of n feature maps.
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Figure 2.14: Illustration of a 2D convolution.
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Crucially, since the kernels involved in the convolution operation only con-nect a m×n subset of neurons together between layers, significant parametersavings can be achieved. Additionally, since the kernel is simply sled across theinput, the weights are shared between each input subset, which further con-tributes to the reduction in memory usage. During training, each filter learnsto recognise patterns in the input. As the kernels are slid across the input,we can recognise these patterns anywhere in the input, a property known asequivariance [33].

Pooling

A commonly applied operation in CNNs is pooling. This is an operation thatreduces the input resolution whilst retaining important information. Whilstthere exist many variants of pooling, the most common are average-poolingand max-pooling. The latter is described here.
The max-pooling operation simply selects the maximum value within thepooling filter and forwards it to the next layer. An example can be seen inFigure 2.16. This operation essentially summarises the input, letting only thestrongest signals through, and reducing the spatial resolution of the input inthe process.

Transposed Convolution

The previous two sections have looked at operations that scale down their in-puts. A similar set of operations also exists to increase the spatial resolutionof an input, called up-scaling. Traditional approaches employ purely compu-tational approaches like nearest-neighbour interpolation, bilinear interpola-tion, and other approaches. Another approach, called Transposed Convolu-tion, introduces learnable parameters to this up-scaling operation in a similarfashion to traditional convolution. Instead of using kernels to reduce the res-olution of the input, they scale the image up. An illustration of the operationcan be seen in Figure 2.17.



30 Andreas H. Håversen: QT-UNet

Input Kernel

2 3

1 2

2 1

0 2
* =

0 0 0

0 4 6

0 2 4

0 0 0

0 0 0

0 0 0

0 2 3

0 1 2

0 0 0

4 6 0

2 4 0

0 0 0

4 8 3

2 9 8

0 2 4

+ + + =

Output

Figure 2.17: Transposed convolution example.

2.5.1 U-Net

Whilst there exists a wealth of different CNN architectures that take advant-age of the advantageous properties of convolutional layers in CV, this sectionwill focus on a specific architecture that has seen successful application on abroad spectrum of different CV tasks: The U-Net [40].A U-Net commonly consists of three distinct components: An encoder, abridge (also called a bottleneck), and a decoder. In the encoder, the input isdown-sampled whilst the number of channels is increased in stages throughthe successive application of convolutional and pooling layers with an increas-ing number of kernels for each convolution. In the bridge, more convolutionsare applied, but the resolution is maintained. The bridge is where the inputresolution is at its lowest, whilst the number of channels is the highest. Thiscomponent is placed at the end of the encoder and at the start of the decoder,joining them. In the decoder, the input is up-scaled back to the original inputresolution in stages through the successive application of transpose convolu-tional layers with a decreasing number of kernels. The encoder and decoderare, in addition to the bridge, connected at each stage by skip connections inorder to preserve the spatial information of the input [40].In a nutshell, the encoder encodes the spatial information of the input intoa dense feature space represented in the channels of the input. The decoderthen takes this densely encoded input and decodes it back into the originalresolution, providing a representation of the input with high semantic value.This output can then be fed to a classifier to produce a final prediction.

2.6 Transformers

Transformers were introduced by Vaswani et al. [1] in their seminal paper,"Attention is all you need". They proposed a novelmodel forNatural LanguageProcessing (NLP) based on an attention mechanism called self-attention. Thismodel, and subsequent evolutions, have set new records in the NLP field andcurrently dominate the state of the art formany tasks in that field [1–3]. In thissection, we provide a brief overview of how the Transformer model works.Interested readers who wish to explore the details of the model are referredto the original paper by Vaswani et al. [1].There are several key ideas to explore when addressing Transformers,foremost ofwhich is self-attention,multi-head self-attention, and the Encoder-
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Figure 2.18: A typical U-Net architecture.

Decoder structure of the model. Each aspect is explored in turn, before anoverview is presented in Section 2.6.3. We also present efforts to reduce thecomputational complexity of Transformer models in Section 2.6.4.

2.6.1 Self-Attention

The essence of self-attention is this: Given a sequence of tokens1, how relev-ant is each token to every other token in the sequence? Self-Attention triesto answer this, which in turn explicitly models the interactions between allthe entities in the sequence. In essence, a self-attention layer weights up anddown thedifferent tokens in the sequencebasedonhow important, i.e. worthyof attention, they are relative to the other tokens in the sequence. Let X ∈ Rn×d

denote a sequence of n entity vectors of length d. We then define three learn-able weight matrices to transform X into a queries matrix, a keys matrix, anda values matrix as seen in Equation (2.27), where dk = dq.
WQ ∈ Rd×dq , W K ∈ Rd×dK , W V ∈ Rd×dv (2.27)

The queries (Q ∈ Rn×dq ), keys (K ∈ Rn×dk ), and values (V ∈ Rn×dv ) are thencalculated by projecting X onto these matrices, as seen in Equation (2.28).
Q = X WQ, K = X W K , V = X W V (2.28)

Then, the final outputZ ∈ Rn×dv canbe calculated as seen in Equation (2.29).
1Say, a sentence of words, embedded using a word embedding.
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Z = At tention(Q, K , V) = So f tmax

�

QK⊺
Æ

dq

�

V (2.29)
Intuitively, we can understand the queries as "what token i is interestedin knowing from the other tokens", and the keys as "what token i can provideas information to the other tokens". For a given token in the sequence, theoperation above the fraction (QK⊺) computes the dot product between thekey and query for that token. This can be interpreted as evaluating the agree-ment between the query and key vectors. Similar vectors will receive a highattention value, whilst dissimilar vectors receive a low attention value. Atten-tion values are scaled by the square root of the query dimension in orderto improve training stability [1], before they are normalised using So f tmax .The final output is then calculated by multiplying these normalised attentionscores by V .It should be noted that self-attention is, in contrast to standard ANNs andCNNs, invariant to the position of each token. That is, self-attention cannotcapture the positional information of each token in a sequence. In many do-mains, however, the position of each token can have a profound impact onthe overall meaning of the sequence, say for example the order of words in asentence. In order to address this, Transformers adds a positional encodingto its inputs, either concatenating or adding the encoding to the input. Typic-ally, the positional encoding is a learnable encoding or some function of theposition of the token.A variation of standard self-attention, called masked self-attention, is alsoused in the standard transformer model [1]. When performing word predic-tion, for example, the model should not attend to "future" tokens in the se-quencebefore these tokens have actually beenpredicted.Masked self-attentionis achieved by element-wise multiplication with a mask M ∈ Rn×n, where M isan upper-triangular matrix. Masked self-attention is then defined as in Equa-tion (2.30), where⊙ denotes the Hadamard product. In essence, the attentionscores of future entities in the sequence are set to zero.

ZM = MaskedAt tention(Q, K , V , M) = So f tmax

�

QK⊺
Æ

dq

⊙M

�

V (2.30)

2.6.2 Multi-Head Self-Attention

A layer with Self-Attention can in itself model a relatively complex interactionbetween the different tokens, but often there are several interactions thatcould and should be modelled. For example, when processing language, thestructure of how adjectives relate to different nouns, or how verbs relate todifferent nouns, etc., are all interesting factors to account for in a wide rangeof different NLP tasks. To address this, multiple self-attention heads are used
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Figure 2.19: Self-attention (left) and Multi-head self-attention (right). Figurefrom [1].

in each block. Here, each block has its own set of query, key, and value weightmatrices, denoted WQ
i , W K

i , W V
i . Given an input X and a number of heads h,three groups of vectors are calculated: The query group Q′, the key group

K ′, and the value group V ′, all calculated from the input and the correspond-ing weight matrices for each head. To clarify, each group consists of severalmatrices, where each matrix is calculated as seen in Equation (2.31).
Q′i = X WQ

i , K ′i = X W K
i , V ′i = X W V

i (2.31)
Multi-head self-attention can thenbe formulated as seen in Equation (2.32).

Mul tiHead(Q′, K ′, V ′) = Concat(head1, head2, . . . , headh)W
O,

where headi = At tention(Q′i , K ′i , V ′i)
(2.32)

Here, WO ∈ Rdmodel×dmodel is a learnable linear projection matrix that pro-jects the result of the concatenated output of each head into the dimensionsof the model, where dmodel is the size of the outputs internally in the model.A visual summary of these operations can be seen in Figure 2.19.
2.6.3 Model structure

As can be seen in Figure 2.20, the model also makes extensive use of re-sidual connections across the different subcomponents of each transformermodule. This strengthens the flow of information through the model. A layer-normalisation follows each residual connection. Finally, eachmodule is topped
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Figure 2.20: Full Transformer architecture. Figure from [1].

by a feed-forward network that consists of two linear transformation layersand a non-linear activation function between then, which can be denoted asin Equation (2.33), where W1 and W2 are the weight matrices of the lineartransformations, b1 and b2 are the bias vectors of the linear transformations,and g denotes the activation function.
F FN(X) = W2 g(W1 · X + b1) + b2 (2.33)

As can be seen in Figure 2.20, themodelmakes use of an encoder-decoderarchitecture where the encoder output is fed into the decoder blocks. Theuse of the encoder and decoder modules of the original Transformer modelvaries from model to model. Some models, such as those of the BERT family[2], are based on the encoder, which can then be regarded as a type of featureextractor. Other models, such as the GPT family of models [3], are based onthe decoder.
2.6.4 Speeding up the Transformer

An area of study that has received much attention is how to reduce the com-putational complexity of the Transformer. Recall from the description of self-attention that it performs matrix multiplication of two matrices, the queries(Q ∈ Rn×dq ) and the transposed keys (K⊺ ∈ Rdk×n), which has computationalcomplexity O(n2dk) = O(n2). That is, the computational complexity is quad-
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ratic in the length of the sequence. All other parameters in the Transformerbeing constant, this means that the computational complexity of the Trans-former as a whole is O(n2). While this is manageable for sequences of shortand medium lengths, it can become exceedingly slow for longer sequences.Motivated by this, several approaches for reducing the complexity have beenexplored in the literature. Tay et al. [41] provide a comprehensive survey ofefforts to build more efficient transformers. A couple of highlights are brieflysummarised below.
Reformer

Kitaev et al. [5] introduced the Reformer, which uses locality-sensitive hash-ing in several rounds of self-attention in order to quickly identify similar keysand queries that would yield non-trivial attention values. Additionally, usingreversible layers and chunking of Feed Forward Network activation calcula-tions, they are able to reduce the computational complexity to O(nlog(n)).They demonstrate comparable performance with the standard Transformerin a English to German translation task.
Linformer

Wang et al. [6] introduces the Linformer, where they show that self-attentioncan be approximated by a low-rank matrix, reducing the computational andspatial complexity to O(n). They also demonstrate similar performance withBERT-based baselines on several NLP tasks.

2.7 Vision Transformers

Inspired by the success of self-attention in NLP, several works in CV attemptedto combine elements from the attention mechanism from the Transformerwith standard convolutional networks [42] or otherwise combine Transformerswith convolutional backbones [43]. Some works have taken this a step fur-ther and replaced convolutions entirely with self-attention and related vari-ants [44, 45].
Motivated by the scaling successes of the Transformer in NLP, Dosovit-skiy et al. [4] experimented with the application of a standard Transformerwith minimal modifications directly to images for image classification. Theywere able to do this by splitting each image into a sequence of flattened andprojected patches, which were then fed to the model as words along witha BERT-inspired class token [2]. Their model, named the Vision Transformer(ViT), consisted of a sequence of Transformer encoder blocks, topped witha MLP head that received the class token for class prediction. As with thestandard Transformer by Vaswani et al. [1], they injected each patch with a
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Figure 2.21: Overview of the original Vision Transformer (ViT). From [4].

position embedding, which in this case was a 1D learnable position embed-ding. By leveraging large scale pre-training using the JFT-300M dataset [46],they were able to match or outperform SotA at the time on ImageNet [47],CIFAR-10, CIFAR-100 [48], and VTAB [49] tasks, whilst requiring significantlyless resources to train. An illustration of the model can be seen in Figure 2.21.
The success of the ViT model inspired several new CV publications usingTransformers, with 4 096 publications citing the original ViT-paper by Dosovit-skiy et al. [4] since October 2020 at the time of writing. Khan et al. [50] and Han

et al. [51] have conducted extensive surveys on the use of Vision Transformerin Computer Vision. The rest of this section highlights important aspects ofViT models and trends, as well as a hand-full of general ViT models.

2.7.1 Why ViT?

In addition to the large scale of Vision Transformer models, there are otherqualities that also make ViTs desirable for CV. One such attribute is the incor-poration of global information. As notedpreviously in Section 2.6, transformermodels are generally quite good at modelling long-range dependencies intheir input sequences, due to their self-attention mechanism. Standard con-volutional neural networks, on the other hand, are designed to attend primar-ily locally. Pooling layers can be introduced to increase the effective perceptivefield, but information is lost as the network grows deeper and the perceptivefield increases. It can be likened to how a near-sighted person might see animage: Up close, the fine details are crisp and clear, but much of the imageis out of view. As the image moves further away from the person, more andmore of the image becomes visible, but it becomes progressively more blurryand unclear; information is lost. This effect is illustrated in Figure 2.22. ViTs
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Figure 2.22: An illustration of the blurriness.

are able to better deal with this, since they can attend to all the tokens glob-ally in the first layer. This means that they are much better at attending tolong-range dependencies in the input, even in the early layers of the model.

2.7.2 How ViTs learn

Raghu et al. [52] performed an interesting comparison between ResNets andViT (the model referred to in [4]), comparing how the two models learn. Astheir results are relevant for the discussion in the previous subsection, a briefsummary of their findings is presented in this subsection.
They find, for example, that while ViT attends globally at every stage, itstarts out attending highly locally and gradually more and more globally inthe higher layers. Interestingly, these patterns emerge only when the modelhas been trained on sufficient data. With less data, the ViT tends to attendmore globally. This seems to indicate that the ViT has to learn to attend loc-ally, something that CNN-based ResNets do automatically as an inductive biasowing to their structure.
When comparing the twomodels, the authors also find that the lower halfof the ResNet layers are similar to the lower quarter of layers in the ViT, withthe remaining half2 of the ResNet layers being similar to the next third of ViTlayers, with the final layers being quite dissimilar. The dissimilarity of the finallayers is explained by the ViT primarily modifying the class token in these lay-ers. The similarities in the other layers are interesting, as it seems to indicatethat both ViTs and ResNets learn to compute similar representations in their

2Minus a handfull of layers
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lower layers. However, the authors are able to demonstrate that ViT is cap-able of incorporating far more global information, which could explain theirincreased performance.
The authors also find that ViTmore faithfully preserves spatial informationin the input, that is, the input and output tokens are much more similar inViT compared to ResNets, which could be promising for object detection andsegmentation tasks.

2.7.3 Speeding up ViT

As with standard Transformers, Vision Transformers also struggle with thequadratic memory and time complexity of self attention, as described in Sec-tion 2.6. In fact, the issue is even bigger for Vision Transformers, which funda-mentally deal with images and video. If our model is to attend to all the pixelsof a H ×W image, the length of the input sequence to the transformer wouldbe n= HW , giving complexity O(n2) =O(W 2H2). When dealing with three di-mensional volumes, like video or medical imaging scans, the sequence lengthgrows even longer toO(n2) =O(W 2H2D2)where D is the depth of the volume.
Early Vision Transformers like ViT and DPT [4, 53] deal with this by extract-ing and embedding patches from the image, reducing the sequence length to

n= H
p

W
p where p is the patch size. Although this reduces n and thusmakes theproblem manageable, it still does not directly deal with the quadratic expo-nent in the complexity. Some newer works like Twins, the Swin Transformer,and the Perceiver [8, 54, 55] make architectural changes, including changes tothe attentionmechanism, thatmakes the complexity sub-quadratic. The lattertwo, the Swin Transformer and the Perceiver, even manage to make it linearin the size of n. Twins and the Swin Transformer primarily achieve their spee-dups by cleverly applying local and global attention, whilst Perceiver passesits input through a latent bottleneck that constricts the time and space com-plexity. Another approach, favoured by the Axial Transformer [56], replacesstandard self-attentionwith a row- and column-wise variantwith similar linearcomplexity.

2.7.4 Relevant general Vision Transformer architectures

This section will quickly summarise major general Vision Transformer archi-tectures that have had major impact on the field, but that are not necessarilydirectly related to the experiments in this project.

Vision Transformers for Dense Prediction

Ranftl et al. [53] proposed the Dense Prediction Transformer (DPT) in March2021, setting new records at the time for mono-ocular depth estimation and
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competitive performance for semantic segmentation. They use a Transformer-based backbone. The backbone receives a sequence of embedded patches ofthe image, produced either by a linear projection or a convolutional featureextractor. The backbone itself consists of several layers with transformer en-coders, each processing at a different resolution depending on the output ofthe previous layer. The output of each level is fused back together througha ResNet-based feature fusion module. Before fusion, they employ a reas-sembling module that reassembles the output tokens of each level into animage representation of each token which is then re-sampled to set patchsize and dimensionality. They top their model with a task-specific head, tak-ing the fused feature map as input. They also employ pre-training of theirTransformer backbone using ImageNet-1K and 21K. For semantic segmenta-tion, they achieve a mIoU score of 49.02% on the ADE20K [57, 58] validationdataset and 60.46%with the Pascal Context [59] validation set, using a ResNet-based feature extractor.

Swin Transformer

Liu et al. [8] proposed the Swin Transformer backbone in March 2021, settingnew records at the time for object detection with COCO and semantic seg-mentation with ADE20K. They employ a hierarchical approach, taking 8 × 8patches of the image and processing them at different resolutions at eachstage of the encoder. The encoder consists of specialised Swin Transformerblocks that perform self-attention within each patch rather than across theentire input. Information is spreadbetweenwindowsby a shiftedwindowparti-
tioningmechanism that changes the partition layout in each succeedingmod-ule and computes self-attention within the newwindows. This approach givesthe Swin Transformer linear time and space complexity. A cyclic shift algorithmusing padding andmasked self-attention is used to deal with shifted windowsthat might not completely align with the size of the overall input. In addition,
relative position bias is used instead of position embedding. An overview ofthemodel can be seen in Figure 2.23With pre-training on ImageNet-21K, Swinachieves 53.5%mIoU on the ADE20K validation dataset when used as a back-bone for UPerNet [60].

A further improvement to the model, dubbed the Swin Transformer V2[61], was proposed in November 2021 and further improves upon these res-ults, scaling up the model to 3 billion parameters. These improvements in-clude a more efficient implementation of relative bias, the use of cosine self-
attention, and post-normalisation rather than pre-normalisation of the datain the Transformer modules. They report State of the Art performance onADE20K for semantic segmentation, achieving 59.9% mIoU as a backbone forUperNet.
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Figure 2.23: An overview of the Swin Transformer. Figures from [8].

Twins

Chu et al. [54] proposed the Twins Transformer backbone in April 2021, set-ting a new state of the art at the time for COCO object detection and showingstrong performance on semantic segmentation with ADE20K. They proposetwo methods. One based on the Pyramid Vision Transformer (PVT) [62] andthe Conditional Position Encoding Vision Transformer (CPVT) [63], dubbed theTwins-PCPVT. This method uses a hierarchical approach, where each stage ofthe encoder processes progressively lower-resolution featuremaps. The con-ditional position encoding generator from CPVT is used to impart positionalinformation in each stage of the encoder.
The other approach, dubbed Twins-SVT, uses another approach with so-called Spatially Separable Self-Attention (SSSA), which is composed of Locally-grouped Self-Attention (LSA) and Global Sub-sampled Attention (GSA). LSAis similar to how self-attention works in Swin: Self-attention is applied loc-ally within the input windows. Unlike how Swin shares information globallywith shifting windows, Twins achieves this using GSA. GSA extracts a sub-sample from each group using regular strided convolutions and computesself-attention across these sub-samples. This variant also uses the positionencoding generator fromCPVT. Altogether, SSSA gives thismethod linear com-plexity in time and space.
They report 48.8% mIoU with the ADE20K validation dataset, with pre-training on ImageNet-1K.



Chapter 2: Background theory and Related Work 41

2.8 Self-supervised learning

Self-Supervised Learning (SSL) is a machine learning method that learns fromunlabelled sample data, as a kind of intermediate form between supervisedand unsupervised learning. It is a two-stage process: First, themodel is trainedusing pseudo-labels that pre-condition the network parameters for the ac-tual task. Then, the model is trained for its actual task using supervised orunsupervised learning. Crucially, for SSL, these pseudo-labels are generatedfrom input data by the training procedure itself at train time. This allows thetraining of effective models in domains where labelled data is scarce and re-source intensive to obtain, by pre-training the models onmore extensive setsof unlabelled data or by leveraging the limited labelled data available moreefficiently.
The SSL field as a whole is too broad and complex to fit within the confinesof this thesis. Interested readers are referred to Jing and Tian [64] and Jaiswal

et al. [65], who have conducted extensive surveys of the field. The remainderof this section will briefly treat significant concepts and methods in the fieldthat are relevant for this thesis.

2.8.1 Pretext tasks

A relatively straightforward approach to self-supervised learning is to gener-ate pseudo-labels on the data for some pretext task. Example pretext tasksinclude image reconstruction from a transformed version of the raw input.The raw input could, for example, have had parts of it removed, colour trans-formations introduced, or noise added. The pretext task is then to recover theoriginal input image.
Another type of pretext task is geometric transformation, where the ori-ginal image could have been exposed to flips, crops, and rotation. When ap-plying rotation, a typical task could be to predict howmany degrees the imagehas been rotated, typically in 90° increments.

2.8.2 Contrastitive Methods

Whilst training directly on pretext tasks can be effective, several newer meth-ods utilise so-called contrastitivemethods. In a contrastitivemethod, samplesare drawn from the data set in large batches. Similar samples are consideredpositive samples, whilst dissimilar samples are considered negative. The ob-jective of the pre-training is to have the model produce representations ofpositive sample pairs that are relatively similar, whilst representations of neg-ative sample pairs are relatively dissimilar.
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SimCLR

SimCLR [66] (A Simple Framework of Contrastitive Learning of Visual Repres-entations) is a prominent contrastitivemethodused for pre-training image en-coders. It works by drawing samples in large batches from the dataset. Eachsample is then transformed into a pair of augmented views of the originaldata, by applying a stochastic augmentation chain. In SimCLR, the augment-ations applied are a random crop, a colour shift, and Gaussian blur. This pairof augmented views is considered a positive pair. The other samples in thebatch (and indeed later their augmented views) are considered negative tothis positive pair. The pair is then fed into the encoder, which produces itsrepresentation of the pair. The representation is finally fed through a MLP – aprojector – that projects the representation into a lower dimensional space.Finally, loss is calculated using a contrastitive loss function, as described in2.34, where N is the batch size, i and j is the positive pair, I[k ̸=i] ∈ 0,1 is an in-dicator function that outputs 1 ⇐⇒ k ̸= i, τ is a temperature parameter, and
sim is a similaritymeasure. For SimCLR, this similaritymeasure is as describedin 2.35.

Li, j = −log
ex p(sim(zi ,z j)/τ)
∑2N

k=1 I[k ̸=i]ex p(sim(zi ,zk)/τ)
(2.34)

sim(u,v) = u⊺v
∥u∥∥v∥

(2.35)
SimCLR has shown itself to be a capable contrastitive pre-trainingmethod,and was SotA at the time of publication. However, it suffers from a significantdrawback: It requires very large batch sizes in order to provide a proper su-pervision signal, using a batch size of 8192 for their strongest experiments.With augmentations, this gives a total of 16384 samples per forward pass,which can be prohibitive if the images have high resolution due to excessivememory usage.There exists approaches, like MOCO and MOCOv2 [67, 68], that solve thisby utilising a memory bank that holds a number of previous mini-batches ina queue, drawing upon that queue to provide a sufficient number of negativesamples without having to push large batches through the encoder. Thesesamples do, however, have to be kept in memory during training.

2.8.3 Bootstrap Your Own Latent (BYOL)

Bootstrap Your Own Latent [69] is another approach to self-supervised learn-ing that is able to outperform contrastive methods that require large batchsizes and negative samples, without negative samples and with a significantlysmaller batch size.The method achieves this by using two mostly identical networks: An on-line network and a target network. The networks consist of the encoder to
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be pre-trained and a MLP projection head, with the online network getting anadditional prediction head. From an image augmented by a stochastic aug-mentation chain, the online network is trained to predict the output of thetarget network. Loss is calculated based on the similarity of the outputs. Cru-cially, gradients for the target network are discarded. Only the gradients forthe online network is back-propagated. Instead, the weights of the target net-work is updated as a moving average of the weights in the online network.The dynamics of this update can be seen in 2.36, where θ are the parametersof the online network, ξ are the parameters of the target network, Lθ ,ξ is theloss, τ is the decay rate, and η is the learning rate.

θ ← optimiser(θ ,∇θLθ ,ξ,η)

ξ← τξ+ (1−τ)θ
(2.36)

Although such a setup might seem vulnerable to collapse, where boththe online and target networks attain maximum similarity by outputting nil-predictions, the authors of [69] find that this does not occur in practice. In-deed, Chen and He [70] find that a potential collapse is prevented by discard-ing of the gradient for the target network.Themethod sets newSotA results for both linear evaluationwith ImageNetand other vision tasks such as semantic segmentation and object detectionwith the VOC2012 dataset and depth estimation using the NYU v2 dataset.Importantly, it shows strong performance with smaller batch sizes, effectiveeven at a batch size of 128.

2.9 Related work

This section will list works of specific interest to this project. The core aspectsof their contributions are highlighted.
2.9.1 Swin-UNet

In May 2021, Cao et al. [9] introduced Swin-UNet: A UNet-like pure Trans-former for medical image segmentation in 2D. They employ Swin encoderblocks, patch merging, and patch expansion modules to build an Encoder-Decoder architecture with skip connections, as seen in Figure 2.24.Patch merging layers use a mechanism in which the input patches are di-vided into four parts, concatenated, and then reduced by a linear layer in thechannel dimension to produce a final output that is half the spatial size andhas double the channel dimension (H×W×C → H/2×W/2×2C ). Patch expan-sion layers perform a similar operation, but in reverse. It rearranges the inputfeature dimensions to double the spatial size and applies a linear layer to re-duce the feature dimension to half the input dimension (H/4×W/4× 4C →
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Figure 2.24: The architecture of Swin-UNet, figure from [9].
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(a) The architecture of VT-UNet. Note that k corres-ponds to the number of output classes.

(b) The interactionbetween encoder anddecoder modules inVT-UNet.
Figure 2.25: Overview of VT-UNet. Figures from [10].

H/2×W/2×2C ). Cao et al. [9] show empirically that this way of down- and up-sampling performs better than using standard and transposed convolutionsor Bilinear interpolation.
By applying the model to 2D slices of 3D volumes, Swin-UNet achieves astrong DSC score of 79.13 on the BTCV dataset [9, 23].

2.9.2 VT-UNet

Peiris et al. [10] introduced VT-UNet in November 2021. VT-UNet is a Trans-former architecture for volumetric medical image segmentation, closely re-sembling Swin-UNet but in three dimensions rather than two. Indeed, the au-thors of VT-UNet cite Swin-UNet as an inspiration for their work. Their archi-tecture builds upon the Video Swin Transformer, a Swin Transformer for videodata. Using the Video Swin Encoder block, together with patch merging andexpansion in width and height, they build a 3D UNet architecture, which canbe seen in Figure 2.25a.
Notably, VT-UNet also introduces a novel Cross-Attentionmechanism,wherethe keys and values from each stage in the encoder is shared with the corres-ponding decoder in the same stage. This allows themodel to effectively integ-rate information across the encoder anddecoder branches. The authors showempirically that Cross-Attention aids the performance of the model. Detailsof the Cross-Attention interaction between the encoder and decoder mod-ules can be seen in Figure 2.25b. Note that the decoder module employs aparallel scheme where one branch operates solely on the input from the pre-vious layer. Fusion is performed using a linear combination of each branch,controlled by a parameter α, S = αz1 + (1−α)z2.Theirmethod sets a strong 88.07 averageDSC scorewith an averageHaus-
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dorff Distance of 7.52 using the BraTS2021 dataset [10, 20–22]. They alsoshowed that the method is robust against noise and artefacts in MRI images.

2.9.3 UNETR

UNETR, introduced by Hatamizadeh et al. [71] in March 2021, is a ViT basedmodel that uses a ViT encoder coupled with a conventional CNN decoder.They utilise no patch merging in their model, instead opting for a 12 stageencoder at the same resolution throughout. Their patch embedding layer ex-tracts 16× 16× 16 patches from the input volume with an embedding size of
k = 768. They present an at the time SotA result for BTCV, with an averageDice score of 89.10.

2.9.4 Swin-UNETR

Tang et al. [11] introduced Swin-UNETR inNovember 2021, building upon theirprevious UNETRmodel [71]. They utilise a Swin Transformer Encoder, coupledwith a CNN based decoder. In contrast to UNETR, they utilise a patch mer-ging strategy to reduce the spatial dimension of the input at each stage ofthe model. Notably, they introduce a novel SSL framework for their encoderthat includes both contrastitive learning, masked volume in-painting, and 3Drotation prediction SSL heads. It is worth noting that UNETR has 92.58M para-meters compared to 61.92 M in Swin-UNETR, highlighting significant savingsin terms of model size between the two models.
Their pre-training approach works by extracting a sub-volume from a lar-ger CT scan. This sub-volume is then subjected to stochastic masking and z-rotation augmentation, creating two views of the sub-volume. These views arethen fed to the encoder. The encoded representations are then fed to eachof the SSL heads and produce a loss for backpropagation to the encoder. Thecontrastitive head maps the representations to a latent representation. Con-trastitive loss is then calculated using cosine similarity between the represent-ations. The reconstruction head uses a single transpose convolutional layer toreconstruct the input view from the encoder representation. The loss is calcu-lated using L1 loss. Finally, the input rotation is predicted using anMLP across4 classes: 0°, 90°, 180°, and 270°. Cross-entropy loss is used for the rotationtask. The model is trained jointly across the sum of the losses. An overview ofthe SSL framework can be seen in Figure 2.26a, with the whole architecturein Figure 2.26b.
They pre-train their encoder using 5,050 CT scans drawn from The CancerImaging Archive, and go on to set new State of the Art results for the BTCVdatasets and the CT tasks in MSD. Specifically, they get a 90.8 DSC score forBTCV and similarly strong results in the CT MSD tasks.
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(a) Swin UNETR SSL framework.

(b) Full Swin-UNETR architecture.
Figure 2.26: Overview of Swin-UNETR, figures from [11]
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2.9.5 nnFormer

This model, introduced by Zhou et al. [72] in September 2021, introduces aninteresting three stage all-attention UNet model that shows strong perform-ance in several MIC datasets, despite a relatively lean and elegantly simple ar-chitecture. They interleave convolutional blocks for downsampling and Trans-former blocks in their encoder, employing a local windowed Self-Attentionscheme similar to that of Swin Transformer blocks, only applying global Self-Attention in the bottleneck where the spatial resolution is the smallest. Theyalso incorporate a skip attention module instead of regular skip connectionsto incorporate information from the encoder into the decoder, extracting keysand values from the same stage encoder output and taking queries from theprevious up-sampling layer.
They train the model using deep supervision over the output of every de-coder stage, with greater emphasis given to the loss output at the higher levelsof the encoder. They report an average Dice score of 86.57 on the BTCV data-set, an average Dice score of 86.4 and a 95th percentile average HausdorffDistance of 4.05 mm in the MSD Brain Tumour task.

2.9.6 Model Genesis

Model Genesis, as introduced by Zhou et al. [73] in April 2020, is set of genericmodels for 3D medical image segmentation trained using SSL. These models,seven in total, are pretrained across a vide variety of different data and mod-alities, ranging from 2D X-Ray images to 3DMRI scans. Three of those modelsare trained using SSL over 2D and 3D CT chest data, using input reconstruc-tion of a transformed volume as a proxy task. They demonstrate rapid con-vergence and strong performance of their models across a wide variety ofdatasets.

2.9.7 Trans VW

Transferable Visual Words (Trans VW), introduced by Haghighi et al. [74] inFebruary 2021, is an approach to SSL for MIC where the model learns gen-eralisable representations of recurring anatomical patterns across samples,the so-called Visual Words. In essence, visual words are essentially patchesof the original input volume. They generate a data set of grouped similarvisual words from unlabelled medical data using an unsupervised clusteringstrategy. An encoder is connected to a classification head and a decoder. Theencoder is then trained in a self-supervised manner by taking a visual wordperturbed by cutout and masking as input, feeding the encoded represent-ation to the classification head which tries to classify which group of visualword the input came from, and also feeding the representation to the decoderwhich tries to reconstruct the original unperturbed input. They demonstrate
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strong performance across a variety of MRI, CT, and X-Ray datasets, surpass-ingModel Genesis in terms of convergence speed and performance in severalof them.

2.9.8 UNetFormer

In April 2022, concurrently with with thesis, Hatamizadeh et al. [75] introducedUNetFormer: A Unified Vision Transformer Model and Pre-Training Frame-work for 3DMedical Image Segmentation. Although this paper was publishedtoo late to have significant effect upon this project, it is included in this dis-cussion to highlight concurrent and related work. They introduce two vari-ants of their model, UNetFormer and UNetFormer+. Common to both is a5 stage Swin-based encoder with patch merging layers. They pretrain thisencoder using a masked in-painting scheme across the masked tokens anda skip-connected auto-encoder. Their decoder varies depending on variant.The standard variant uses a 6 stage conventional Convolution-based decoder,whilst the plus-variant uses a 6 stage Transformer-based decoder, both usingtrilinear interpolation to upscale the tokens at each stage.. They train theirencoders using deep supervision, generating segmentation maps from thethree last stages of their decoder. In MSD Task 3 Liver, their plus-variant at-tains a score of 95.06 DSC for the liver and 51.23 for the tumours, with 24.44parameters using 39.63 GFLOPs. When training from scratch on BraTS, theirplus-variant attains a average Dice score of 91.20.

2.9.9 Other models

In this section, strong and modern models in the AD and MIC field are listed.Thesemodels are distinguished from the othermodels as they did not directlyinfluence the methods developed for this project and thus are not quite de-serving of the title "related work". They are included nonetheless to providecontext for the AD and MIC fields at large and to serve as baselines in ourexperiments.

nnUNet

nnUNet, introduced by Isensee et al. [76] in September 2018, is a strong con-volutional UNet that has up until quite recently been one of themost powerfulgeneral 3D medical image segmentation models. They propose an automaticadaptive approach that adapts the model architecture to the specific task athand, with a cascaded two stage approach being used with certain applic-able datasets. They show strong performance across several tasks in theMSDdataset, and is commonly used as a standardised baseline.
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SeMask

In December 2021 Jain et al. [77] introduced SeMask: Semantically MaskedTransformers for Semantic Segmentation. They propose a incorporating spe-cific semantic layers and decoder during training to enhance semantic inform-ation in the features generated by the feature decoder. The output of thesesemantic decoders is used to provide deep supervision at every stage. Thesesemantic layers utilise a specialized form of attention classed semantic atten-
tion, whilst the regular encoder layers are Swin-based. They show strong per-formance on both ADE20K with 57.00 mIoU and CityScapes val with 83.97mIoU, holding 3rd place for the latter.
VOLO

VOLO, also known as the "Vision Outlooker", is a Transformer-based genericCV model introduced by Yuan et al. [78] in June 2021 using a modified at-tention mechanism called "Outlook attention" to better finer level featuresand contexts into tokens before global dependency modelling using Trans-formers. Their largest model, VOLO-D5, shows strong performance acrossseveral downstream tasks, including semantic segmentation on CityScapesval with a 84.3 mIoU score and ADE20K with a 54.3 mIoU score, holding 4thplace for the former.
Segformer

In May 2021, Xie et al. [79] introduced the SegFormer (not to be confused withthe Segmentation Transformer), a simple, efficient, and powerful semanticsegmentation framework with Transformer-based encoders and straightfor-ward MLP decoders. Using an efficient formulation of self-attention and hier-archical features together with their all-MLP decoder, they show remarkableperformance and efficiency on the semantic segmentation datasets ADE20Kwith a 51.8 mIoU score and CityScapes val with a 84.0 mIoU score, holding 5thplace for the latter.



Chapter 3

Methodology

This chapter describes the methodology of our work. Section 3.1 describesthe software and hardware used for the development of the project and forrunning our experiments. Section 3.2 describes the different datasets madeavailable to the experiments. Section 3.3 introduces the QT-UNet in detail,while Section 3.4 briefly describes the models against which we compare it.Section 3.5 describes the experiments carried out in the project, before Sec-tion 3.6 describes the metrics by which we evaluate the models.

3.1 Software and hardware

Datasets, models, and experiments were set up using Anaconda [80] with Py-thon 3.9.11, using PyTorch 1.11.0 [81], PyTorch Lightning 1.6.0 [82], PyTorchLightning Bolts 0.5.0 [83], and MONAI 0.8.1 [84]. PyTorch was selected due toits wide support in the research community and the availability of its TorchVi-sion library, which contains both wrappers for several standard CV datasetssuch as CityScapes [31]. It was decided to extend PyTorch with PyTorch Light-ning, as that library automates much of the manual engineering work asso-ciated with writing PyTorch code. For example, setting up multi-GPU trainingwith Lightning is relatively easy, requiring only a small change in configuration,whereas the same feat in plain PyTorch would require significant engineeringeffort. PyTorch Lightning Bolts was also used, as it further extends someof thedatasets available in TorchVision toworkwith Lightning and includes standardimplementations of several SSL techniques. MONAI was also used as it signi-ficantly simplifies working with 3D data volumes and provides several utilitiesfor working with medical data.
Most of the development, debugging, and data processing for this projectwas carried out using a virtual machine made available by the IDI Horizonvisual computing group. Some trial training was also performed on the VM,though the runs reported in Chapter 4 were run on IDUN. IDUN is a state-of-the-art compute cluster maintained by the High-Performance Computing

51
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Machine Device Specs

IDUN GPU Up to 2× NVIDIA Tesla V100 32/16GB, or P10016GB, or A100 80/40GBCPU Intel Xenon Gold 6148, 20 cores at 2.4GHzRAM 768GB
HorizonVM

GPU NVIDIA A10-24Q, 24GBCPU Intel Xenon Gold 6342, 8 cores at 2.8GHzRAM 87GB
Table 3.1: Hardware Specifications.

Group at NTNU [85]. The cluster is made up of various nodes with differenthardware, using the SLURM resource manager [86] to distribute jobs to thenodes. For this project, nodes with NVIDIA Tesla A100 GPUs were used. Spe-cifically, we used one A100 40GB card for all our standard runs, increasing totwo A100 80GB cards for our SSL pre-training runs. A summary of the avail-able hardware can be found in Table 3.1.
Wedescribe, for the benefit of future practitioners, someparticulars of ourworking setup with the VM and IDUN that we found productive and effective.First and foremost, we used a Git repository to sync code between the VM andIDUN cluster. Using aGit repository provided simple synchronisation betweenthe machines and flexibility to experiment safely in branches. We also useda Anaconda environment specified in a environment yaml file, which allowedus to keep the Python environments in sync easily. Furthermore, we opted touse VSCode over SSH with both machines for development and inspection,which provided a single consolidated development environment across bothmachines without having to log into either machine with a remote desktopsetup. Finally, wemade heavy use of SLURM array jobs in order to orchestrateexperiment runs across many models and model versions at the same time.

3.2 Datasets

The datasets selected and the reasoning behind their selection are describedin this section. Any pre-processing of the data is also explained.

3.2.1 MIC datasets

BraTS2021

BraTS2021 is selected for our experiments because it reflects a real-worldscenario and has diversity in its MRI scans, as they are acquired at different in-stitutions with different equipment and protocols. The dataset contains 1251MRI scans of shape 240× 240× 150. Following Peiris et al. [10], the scans are
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divided into sets of 834, 208, and 209 for training, validation, and testing, re-spectively.
Each scan in the dataset is interpolated to a isotropic voxel spacing of

[1.0 × 1.0 × 1.0]mm. The foreground in the scan is cropped, before intensit-ies are normalised in a non-zero, channel-wise fashion. During validation andtesting, the augmentation ends here. For training, we use randomly selectedsub-volumes of size 128× 128× 128 voxels.
The raw labels in the dataset consist of the Enhancing Tumour (ET), Non-Enhancing Tumour (NET), Necrotic Tumour (NCR), and Peritumoral Edema(ED). Following standard pre-processing for the BraTS dataset, the ET labelis used directly. NET, NCR, and ET are combined to produce the label TumourCore (TC), and ED is combined with TC to produce the label Whole Tumour(WT). This leaves us with three meaningful labels for training and evaluation.

BTCV

BTCV is used for our experiments, as it poses an interesting challenge of 13organ segmentation targets with few training samples available. Each CT scanconsists of between 85 and 198 slices, with resolution 512×512 pixels. Of the50 scans, 40 are available with labels. Of these 40 labelled samples, 35 areused for training and the rest are used for validation and testing.
The pre-processing pipeline for BTCV follows the pipeline used for Swin-UNETR [11], since our model shares architectural similarities with theirs. Eachscan is interpolated to a voxel spacing of [1.5 × 1.5 × 2.0]mm. CT intensityis clipped between -175 and 250, before being normalised. The foregroundis then cropped whilst labels are one-hot encoded. The validation pipelinestops here. For training, 96 × 96 × 96 voxel sub-volumes are extracted, andpadded if smaller than the requested size. Random flips are applied in eachdimension with a probability of 0.1 Random 90 degree rotation is also appliedwith probability 0.1, before a random intensity shift is applied with offset 0.1and probability 0.5.

MSD

The MSD dataset is included due to its diversity of modalities and challenges.This diversity allows us to comprehensively benchmark our method and eval-uate its generalisability for medical image segmentation.
As with BTCV, we adopt the pre-processing pipelines used in Swin-UNETR[11] due to the similarities in architecture. The pipelines for each task are setup as follows.

Task 1 Brain Tumour The pipeline for these MRI images is identical to thatdescribed in Section 3.2.1, with the addition of randomflips in each dimension
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with probability 0.5, random intensity scaling with factor 0.1 and probability0.1, and random intensity shifts with offset 0.1 and probability 0.1.

Task 2 Heart The MRI images are interpolated to an isotropic voxel spacingof 1.0 mm and cropped to remove the foreground, before channel-wise non-zero normalisation is applied. Training sub-volumes are sampled at a resolu-tion of 96×96×96 voxels, with a positive to negative class ratio of 2:1. Randomflip is then applied with probability 0.5, random 90°rotation with probability0.1, intensity scalingwith factor 0.1 and prob 0.2, and intensity shift with offset0.1 and prob 0.5.

Task 3 Liver The CT scans are interpolated to a isotropic voxel spacing of1.0 mm and cropped to remove the foreground. The intensities are scaled to
[−21,189], and then normalised. Training sub-volumes are sampled at a res-olution of 96 × 96 × 96 voxels, with a positive to negative class ratio of 1: 1.Random flip is applied with probability 0.2, random 90°rotation with probab-ility 0.2, intensity scaling with factor 0.1 and prob 0.1, and intensity shift withoffset 0.1 and prob 0.1.

Task 4 Hippocampus Each MRI image is interpolated to a voxel spacing of
0.2× 0.2× 0.2 and cropped to remove the foreground. Training samples areextracted at a resolution of 96×96×96 voxels. Channel-wise non-zero norm-alisation is applied, before random flip, rotation, intensity scaling, and shiftingare applied with probability 0.1. For scaling and shifting, the factor and offsetare both 0.1.

Task 5 Prostate With both channels of the MRI scan, the scans are inter-polated to a voxel spacing of 0.5mm and cropped to remove the foreground.Training samples are extracted at a resolution of 96×96×96 voxels. Channel-wise non-zero normalisation is applied, before random flip, intensity scaling,and shifting is applied with probability 0.5. For scaling and shifting, we set thefactor and offset to 0.1. Additionally, a random affine transformation is ap-plied with a scale factor of [0.3,0.3, 0.0] with a rotation range of [0, 0,π] oneach axis.

Task 6 Lung Each CT scan is interpolated at an isotropic spacing of 1.0mm.The intensities are clipped to [−1000,1000], and then normalised. Trainingsamples are extracted at a resolution of 96 × 96 × 96 voxels, with a ratio ofpositive to negative classes of 2:1. Random flip is applied with probability 0.5,random rotationwith probability 0.3, intensity scalingwith factor 0.1 and prob0.1, and intensity shift with offset 0.1 and prob 0.1.
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Task 7Pancreas CT scan intensities are clipped to [−87, 199]. Training samplesare extracted at a resolution of 96×96×96 voxels, with a positive-to-negativeclass ratio of 1:1. Random flip is applied with probability 0.5, random rotationwith probability 0.25, and intensity scaling with factor 0.1 and prob 0.5.
Task 8 Hepatic Vessel Each CT scan has its intensities clipped to [0,230].Besides this change, the same augmentations as for Task 7 are used.
Task 9 Spleen The CT scans are interpolated to an isotropic voxel spacing of
1.0mm. Intensities are clipped to [−125,275]. Training samples are extractedat a resolution of 96× 96× 96 voxels. Random flip is applied with probability0.1.5, intensity scaling with factor 0.1 and prob 0.1, and intensity shift withoffset 0.1 and prob 0.1.
Task 10 Colon The intensities of each CT scan are clipped to [−57175] andthen normalised. Training samples are extracted at a resolution of 96×96×96voxels, with a positive-to-negative class ratio of 1:1. Random flip is appliedwith probability 0.5, random rotation with probability 0.25, and intensity scal-ing with factor of 0.1 and probability of 0.5.
3.2.2 AD datasets

CityScapes

We opted to use CityScapes, described in Section 2.2, for this project for se-mantic segmentation, as it is one of the most widely used and cited semanticsegmentation datasets in the AD community. There was also a wrapper avail-able in PyTorch Lightning Bolts [83], which tied in nicely with PyTorch Light-ning. It also corresponds well to RQ 3, to test our methods in 2D.Augmentations include normalisation of the images using the mean andstandard deviation of CityScapes. For training, we extract 1024 × 1024 pixelimages from the original 2048 × 1024 pixel images to facilitate their use inour SSL pipeline. The classes to be ignored, as described by [31], are set asbackground, leaving us with 20 total classes. A table of the mapping can befound in the Appendix, in Table B.1.
CityScapesCat

In order to investigate the effect of the number of classes on QT-UNet, wecreate a variant dataset of CityScapes by mapping the class IDs to categoryIDs using the mapping described in Table B.1. This dataset, CityScapes overCategories, is dubbed CityScapesCat. We use the same augmentations as forthe standard CityScapes dataset.
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Figure 3.1: The proposed QT-UNet architecture.

NTNU Data

We utilise a small, 10 sample dataset from Trondheim, Norway provided bythe NTNU Autonomous Perception Laboratory (NAPLab) to test the zero-shottransfer performance of QT-UNet-2D. The dataset is annotated with classescorresponding to the CityScapes class definition.For this data set, we used the same augmentations as with CityScapes.

3.3 QT-UNet

Our model is inspired by VT-UNet [10] and Swin-UNETR [11], with our archi-tecture drawing heavily upon the former and our training procedure beingbased upon the latter. An overview of themodel and components can be seenin Figure 3.1. The model is named Querying-Transformer UNet, or QT-UNetfor short. It exists in two variants: One for 3D inputs and one for 2D inputs.The 3D variant, simply named QT-UNet, takes as input a 3D volume of size
D×H ×W ×C and produces as output a volume of size D×H ×W ×K , where
K is the number of classes. The 2D version is identical to the 3D version, butdrops the depth dimension (D) in all components. The 2D version is denoted
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as QT-UNet-2D.The model consists of the following components:
1. Patch partitioning2. QT-UNet encoder

• QT encoder block
• Patch merging

3. Bottleneck
• QT encoder block
• Patch expansion

4. QT-UNet decoder
• QT decoder block
• Patch expansion

5. Classifier
This section will discuss each component in turn.

3.3.1 Patch partitioning

As with other Vision Transformers, we transform the model input into a se-quence of tokens using a convolutional layer. This layer partitions the inputinto non-overlapping patches using a partitioning kernel. For our 3D variant,this kernel has size M ×M ×M , resulting in a sequence of tokens correspond-ing to a volume of ⌊ D
M ⌋×⌊

H
M ⌋×⌊

W
M ⌋. The convolutional layer is equipped with Csuch kernels as to embed each patch in a C-dimensional vector. A value of 4is set for M , whilst the value of C varies depending on the model variant used(see Section 3.3.9).

3.3.2 QT-UNet Encoder

The QT-UNet encoder consists of successive QT encoder blocks and patchmerging layers. Each stage in the encoder consists of two QT Encoder blocks,followed by a patch merging layer.
3.3.3 QT Encoder Block

The design of the QT Encoder Block draws upon the design of the Video SwinEncoder blocks [87] and VT Encoder Blocks [10]. Each block consists of twosub-blocks with a 3D window-based MHSA (W-MHSA) module followed by atwo-layer MLP with a GELU activation function. Layer normalisation is appliedbefore and after the self-attentionmodule, with skip connections between theself-attention module and the MLP. For the second sub-block in each block,the window partitioning operation is shifted two voxels in each direction to
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Figure 3.3: Illustration of 3D windowed self attention, from [87].

introduce cross-window connections between the blocks. Self-attention withthis shifting operation is known as Shifted Window Multi-Head Self-Attention
(SW-MHSA). Additionally, a 3D relative bias B ∈ RM2×M2×M2 is added to eachself-attention head.

Self-attention is applied to eachwindowas in Equation (3.1), where K ,Q, V ∈
RM3×d are the key, query, and value matrices, d is the dimension of the keyand value features, and M3 is the number of tokens in each window.

At tention(Q, K , V) = So f tmax

�

QK⊺
Æ

dq

+ B

�

V (3.1)
Since the relative position along each axis lies in the range of [-M + 1, M- 1], we parameterise a smaller bias matrix B̂ ∈ R(2M−1)×(2M−1)×(2M−1), takingvalues for B from B̂, as in [8].
The windowing operation can be understood as injecting an inductive biasof locality into the model. The shifting operation allows successive applica-tions of the blocks to receive information across windows, whilst the positionbias informs the relative positioning of those windows.

Patch Merging

Strong feature hierarchies are an essential feature of many segmentationmodels [8–11, 40, 54] in order to predict dense outputs. After eachQT EncoderBlock, adjacent 2×2×2 groups of tokens are concatenated along their featuredimension, producing a vector with 8C-dimensional features with spatial di-mensions D/2×H/2×W/2. A linear layer is used to project the concatenatedfeatures to a fourth of their expanded dimension. That is, the 8C-dimensionalfeatures of each token is reduced to 2C dimensions, producing final tokensof size D/2×H/2×W/2× 2C .
It should be noted that our patch merging application is slightly differentfrom the one used for the Video Swin Transformer [87] and VT-UNet[10]. Asnoted, the patchmerging layers in QT-UNetmerge adjacent tokens in all three
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spatial axes. This is in contrast to the Video Swin Transformer and VT-UNet,which perform patch merging only in the height and width axes.

3.3.4 Bottleneck

The deepest stage of QT-UNet is a bottleneck layer. This layer consists of asingle QT Encoder Block, followed by a patch expansion layer.

3.3.5 QT-UNet Decoder

TheQT-UNetDecoder consists of successive pairs ofQTDecoder blocks, patchexpansion layers, and ends with a classifier.

Patch Expansion

In essence, the Patch Expansion layers work to undo the operation of thePatch Merging layers. That is, their function is to increase the spatial resol-ution of the tokens whilst reducing their feature dimension.
This is achieved through a two-stage process. First, a linear layer is appliedto increase the feature dimension fourfold (i.e. 2C → 8C ). Then, 2×2×2 tokenswith feature dimension C are extracted from the expanded token. That is,given an expanded volume D/2 × H/2 ×W/2 × 8C , we reshape the volumealong the spatial axes by reducing the embedding dimension, producing avolume of tokens of size D×H ×W × C .

3.3.6 QT Decoder Block

UNet architectures typically use skip connections between stages in the en-coder and decoder pipelines to produce higher detail predictions by forward-ing spatial information from earlier stages in the network to later stages thathave strong semantic information but weaker spatial information. These skipconnections merge these spatially and semantically dense representationstogether, allowing us to enjoy the best of both worlds.
Inspired by this, the authors of VT-UNet [10] introduced a novel Cross-Attention mechanism that, in addition to the already well-established skipconnections, fed the keys and values from the same-stage encoder to the de-coder, adding another path between the pipelines. This effectively allows thedecoder to query for spatial information using the spatially strong keys andvalues from the encoder. They employ this Cross-Attention mechanism in atwo-pipeline fusionmodule (see Figure 2.25b), where each pipeline consists ofone block each. One block receives keys and values from the encoder, whilstthe other receives it from the previous block. The output is combined using alinear combination of the outputs of the two pipelines.
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The QT Decoder Block iterates upon this approach by introducing twomajor changes. First, we allow the decoder block to generate its own keysand values from the output of the same-stage encoder, rather than directlyforwarding them. This allows the model to more flexibly query the spatiallydense encoder output by generating its own queries and values rather thanbeing bound by the generation of these in the encoder. This also saves somememory usage at the cost of more parameters, since the keys and queriesfrom the encoder stages need not be stored.
Secondly, we remove the fusion module and instead structure the blockmore in accordance with a standard Transformer decoder. That is, we firstemploy standard Windowed Self-Attention with keys, queries, and values de-rived from the input as normal, before applying Windowed Cross-Attentionwhere the keys and values are generated from the output of the same-stageencoder, and queries are generated from the output of the previous Cross-Attention block. This mirrors the design of the original Transformer Decodersdue to Vaswani et al. [1].
The general intuition of this approach is that we allow the decoder to flex-ibly query the output of the encoder. In our setup, the decoder can essen-tially decide for itself what is and is not pertinent information in the spatiallydense encoder output, whilst still basing the queries upon the semanticallydense decoder output. In essence, the model is querying itself, hence thename "Querying Transformer UNet".
An illustration of the block can be seen in Figure 3.2. As with the encoderblocks, there are several skip connections across the modules in the block,and a final MLP at the top. As in the encoder blocks, this MLP is a two-layermodule with a GELU activation function. Again, similarly to the encoder block,windows are shifted 2 voxels in each axis for each pair of sub-blocks to pro-duce shifted window self-attention. A relative spatial bias is also applied in thesame manner as in the encoder.

3.3.7 Classifier

After the final Patch Expansion layer in the decoder, the model is topped witha convolutional classification head, mapping the C dimensional features to Ksegmentation classes. The final output of the model is then D×H ×W × K .

3.3.8 Common parameters

For the sub-blocks used in both the encoder and decoder, a hand-full of com-mon parameters are set. Firstly, a window size of 7 × 7 × 7 is used for thewindow partitioning for both W-MHSA and SW-MHSA. Secondly, an expan-sion ratio of 4.0 is used for the hidden layers in the MLP. Finally, the numberof heads in each module increases for each stage down into the encoder and
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decreases for each stagemoving upward in the decoder, following the patterngiven in Equation (3.2).Additionally, the encoder modules in the Base variant of QT-UNet are pre-loadedwith Swin Transformerweights pre-trainedon ImageNet, with the othervariants initialised randomly, following Peiris et al. [10].
3→ 6→ 12→ 241→ 12→ 6→ 3 (3.2)

3.3.9 Variants

Several variants of QT-UNet can be introduced by varying the parameters thatcontrol its behaviour. We introduce three variants by adjusting the numberof embedding dimensions C in the Patch Embedding layer, following VT-UNet[10]. Applying the same naming convention as VT-UNet, these variants are asfollows:
1. Tiny: QT-UNet-T, C = 482. Small: QT-UNet-S, C = 723. Base: QT-UNet-B, C = 96

For all models, we employ three stages of encoding and decoding, plusthe bottleneck. The patch embedding uses a patch size of M = 4 for all exper-iments.
QT-UNet-2D

The model described so far is the 3D variant of QT-UNet. To test the applicab-ility of the techniques used in 2D CV domains, we also spin out a 2D versionof themodel as can be seen in Figure 3.4. Mostly identical to the standard QT-UNet, the 2D version drops the depth dimension in all components. Addition-ally, the Patch Merging and Expansion layers work slightly differently. Sincethese layers only work on 2×2 spatial neighbourhoods in the 2D variant, theyproduce and require a lower feature dimension before reduction and expan-sion. That is, in the Merging layers, we get a feature dimension size sequenceof: C → 4C → 2C , rather than C → 8C → 2C . In the Expansion layers, wehave 2C → 4C → C rather than 2C → 8C → C . Consequently, the linear patchexpansion and contraction layers are milder in the 2D version than in the 3Dversion, by a factor of 2, due to the smaller spatial neighbourhood.
3.3.10 Training QT-UNet

QT-UNet is trained byminimisingDice Loss, as described in Section 2.4.5. Notethat this is in contrast to VT-UNet, which jointly minimises both Dice Loss andCE loss. We found that our model performed better under Dice loss rather
1In the bottleneck stage.
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Figure 3.4: Architecture of QT-UNet-2D.
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than joint loss, especially in tasks with overlapping target meshes2, and thusdecided to use it instead of joint loss.
3.3.11 Inference with QT-UNet

In bothMIC and AD tasks, the input sizes are often larger thanwhat themodelcan handle. This is also the case for QT-UNet and other models in this pro-ject. There are several approaches to handle this problem, but an approachof specific interest to this project is sliding window inference. With sliding win-dow inference, the model is simply sled across the larger input to produceprediction windows that collectively represent a segmentation of the wholeinput. Often, an overlap parameter is set to specify howmuch each predictionwindow should overlap. These overlapping predictions are then combined byaveraging the predictions. Two common methods of averaging are constantaveraging3where each predictionwindow is given equal weight, andGaussianaveraging4 where predictions in the edges of windows are given less weightthan those at the centre.In this project sliding window inference in constant mode with an overlapof 0.5 is used during validation and testing unless otherwise noted.
3.3.12 SSL in QT-UNet

We employ Self-Supervised Learning (SSL) on the encoder, training it to pro-duce strong semantic representations of the input before fine-tuning. Ourapproach builds upon the one favoured by Tang et al. [11] for Swin-UNETR,with a handful of improvements.Similarly to Swin-UNETR, we pre-train QT-UNet using a augmented multi-view multi-head approach. First, a sub-volume x ∈ Rd×h×w×C , where d , h, and
w are the spatial dimensions of the volume, is extracted for the larger inputvolume X ∈ RD×H×W×C . From this sub-volume x , two augmented views of thedata are generated with two independent applications of an augmentationpipeline consisting a random sub-volume masking and random 90° rotationalong the z-axis. These augmented views are then fed to the encoder, whichoutputs its representation of them. These representations are then fed toeach of the three task heads:
Reconstruction head This head consists of a single transposed convolutionlayer that takes as input the view representation and attempts to reconstructthe un-augmented sub-volume x . We denote its reconstruction x̂ , and use L1loss between it and x as the objective.

2Such as those for BraTS, where the label "tumour core" and "enhancing tumour" are bothwholly contained in the label "whole tumour".3Referred to as "constant mode".4Referred to as "Gaussian mode".
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Image rotation head This head consists of a standard one layer MLP withBatch Norm and a ReLU activation function. It attempts to predict how muchthe augmented volume was rotated in one of four classes: 0°, 90°, 180°, or270°. This task is optimised using a soft-maxed cross-entropy loss betweenthe true rotation k and the prediction k̂.

BootstrapYourOwnLatent (BYOL) head Noting that the contrastitive SimCLR-based approach favoured by Swin-UNETR requires prohibitively large batchsizes to be properly effective [66], we opt instead to use BYOL as described inSection 2.8.3 due to its stronger performance with smaller batch sizes.
We base our implementation of BYOL on the one provided by PyTorchLightning Bolts [82], modifying it to fit our augmentation scheme. Loss is cal-culated using cosine similarity between the outputs of the augmented viewsfrom the online and target branches of BYOL.

Joint Loss

Formally, the encoder is optimised over the joint loss of all head losses, withequal weight given to each following Tang et al. [11].

Modes of operation for QT-UNet SSL

Weuse this SSL setup in twodifferentmodes, depending on the task, themod-ality, and the domain for which we train. Some modality and domains havelarge, readily available corpuses of unlabelled data that can be used for SSL. Inthese domains, we collect a large out-of-task dataset with relevant unlabelleddata and use this dataset for pre-training. We refer to this as out-of-task pre-training. In other domains, where data access is more scarce, we utilise theSSL setup on the task data directly in order to extract more learning from thelimited corpus, referring to it as in-task pre-training.

CT-SSL dataset

Using The Cancer Imaging Archive (TCIA) [88], we have been able to composea large dataset of CT scans of the abdomen, pelvis, and chest by composingdata available in several of the datasets available in the archive. An overviewof the datasets used can be found in Table 3.2. The dataset, which we nameCT-SSL, consists of 3 597 CT scans, downloaded through the TCIA API and con-verted fromDICOM to Nifti format. Note that some scans were discarded dur-ing conversion due to errors or inconsistencies in the data. 100 scans are heldout as a validation set during training.
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Dataset Region #of scans Source
CT Lymph Nodes [89] Abdomen/Lungs 175 wiki.cancerimagingarchive.net/display/Public/CT+Lymph+NodesCT Colonography [90] Abdomen/Pelvis 1706 wiki.cancerimagingarchive.net/display/Public/CT+COLONOGRAPHYCOVID-19-AR [91] Lungs 149 wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226443MIDRC-RICORD-1A [92] Lungs 121 wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=80969742MIDRC-RICORD-1B [93] Lungs 90 wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=80969771Pelvic Reference Data [94] Pelvis 116 wiki.cancerimagingarchive.net/display/Public/Pelvic+Reference+DataStage II Colorectal CT [95] Abdomen/Pelvis 230 wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=117113567LiDC [96] Chest 1 010 wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI

Table 3.2: Overview of datasets used for pre-training.
Parameter Value
Learning Rate 0.4× 10−4

Weight decay 1.5× 10−6

Optimiser AdamLearning rate scheduler Linear Warm-up Cosine AnnealingMini-batch Size Varies with experiment, see Table 3.4Epochs Varies with experiment, see Table 3.5Warm-up epochs 10
Table 3.3: Parameters for SSL runs.

3.4 Comparison to other models

We compare QT-UNet with several other models to evaluate its performance.The models against which we compare are the models listed in Section 2.9 -Related work, including those listed under "Other models". Models are usedfor comparison where relevant scores are available.

3.5 Experiments

This section describes the experimental setup for each experiment, describ-ingwhatmodels were ran against what data and themodel hyperparameters.
3.5.1 Preparatory SSL

Before all experiments could be run, we ran our SSL against several datasetsto prepare weights to use in later runs. This section will describe what datawe trained on, with hyper-parameters listed in Table 3.3. A full description ofour SSL pipeline can be found in Section 3.3.12.The size of our pre-training datasets and whether they are used for in-taskor out-of-task pre-training informs our choice of number of epochs, as can beseen in Table 3.4. In experiments with large out-of-task datasets, such as theCT-SSL dataset and CityScapes Coarse, we opt for a smaller number of epochsdue to the sheer size of the datasets and time constraints. For leaner, in-task



Chapter 3: Methodology 67

Dataset Batch size
Gradient

accumulation Num. GPUs Effective batch size
CT-SSL 32 2 2 128BraTS2021 8 4 2 64MSD Task 2/4/5 32 2 2 128CityScapes Coarse 16 2 2 64

Table 3.4: Batch sizes used for each experiment in SSL.
Dataset Num epochs
CT-SSL 150BraTS2021 350MSD Task 2/4/5 350CityScapes Coarse 150

Table 3.5: Epochs used for each experiment in SSL.

datasets, we opt for a larger number of epochs to extract as much learning aspossible from the data.
Furthermore, batch sizes were tuned to fit as many samples as possibleon the GPUs to obtain a sufficient batch size for BYOL to be effective, alsousing gradient accumulation to obtain an even larger batch size. Note that theeffective batch size is computed as: nGPU ·batch size ·gradient accumulation.

CT dataset

Using the dataset described in Section 3.3.12, we pre-train all variants of theQT-UNet to initialise weights for downstream CT-based tasks.
In the augmentation pipeline for this dataset, we first interpolate all scansto an isotropic voxel spacing of [1.0 × 1.0 × 1.0]mm. We then crop out fore-ground and normalise the scans, before passing a random 96× 96× 96 cropof the volume to the SSL pipeline.

BraTS 2021

Restricted by the limited availability of relevant data and by time, we performin-task pre-training for BraTS for all variants of QT-UNet. Augmentations be-fore the SSL pipeline are identical to those used for regular training.

MSD

Due to the limited availability of relevant out-of-task data for the MRI tasks inMSD (Tasks 2, 4, and 5), we perform in-task pre-training for each of these taskswith all variants of QT-UNet. As for augmentations as they are described in
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Parameter Value
Learning Rate 0.4× 10−4

Weight decay 0Drop path rate 0.2Optimiser AdamLearning rate scheduler Cosine AnnealingMini-batch Size 1Epochs 350
Table 3.6: Common parameters for MIC experiments.

Section 3.2.1, we drop them all apart from spacing, foreground cropping, clip-ping, normalisation, and sample extraction. The final sample is then passedto the SSL pipeline.

CityScapes

For CityScapes, we pre-train the 2D variants of QT-UNet using the 20 000samples large coarse extension for CityScapes (CityScapes Coarse). Labels arediscarded, although the remaining preprocessing of the images is identical tothat described in Section 3.2.2.
Due to the high dimensionality of the output from the encoder when run-ning QT-UNet-2D against CityScapes, we bilinearly interpolate the output ofthe encoder to reduce its size by a factor of four before feeding the output tothe task head. Without this reduction, the SSL setup does not fit intomemory.

3.5.2 Experiment 1: Medical Image Computing

Our Medical Image Computing experiment consists of three subexperiments,as detailed below.

Subexperiment 1.1: BraTS 2021

For this experiment, we train all versions of bothQT-UNet andVT-UNet againstour own split of the data,with common training hyperparameters as describedin Table 3.6. We also train all versions of QT-UNet initialised with weights pre-trained on the BraTS data with our SSL setup with otherwise identical para-meters. The exact split of the samples and the augmentations used are de-scribed in Section 3.2.1. For validation and testing, we segmentwhole volumesusing sliding window inference in constant mode with an overlap of 0.5. Wereport Dice score and 95th percentile Hausdorff Distance, in addition to thecommon metrics described in Section 3.6.
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Task Modality Dataset used for pretraining
1 Brain Tumour MRI BraTS20212 Heart MRI MSD Task 23 Liver CT CT-SSL4 Hippocampus MRI MSD Task 45 Prostate MRI MSD Task 56 Lung CT CT-SSL7 Pancreas CT CT-SSL8 Hepatic Vessel CT CT-SSL9 Spleen CT CT-SSL10 Colon CT CT-SSL

Table 3.7:Mapping between MSD task and weights used for pre-trained QT-UNet.

Subexperiment 1.2: BTCV

For this experiment, we train all versions of bothQT-UNet andVT-UNet againstour own split of the data,with common training hyperparameters as describedin Table 3.6. We also train all variants of QT-UNet initialised with weights pre-trained on our CT-SSL dataset using our SSL setup, with otherwise identicalparameters. The exact split of the samples and the augmentations used aredescribed in Section 3.2.1. For validation and testing,we segmentwhole volumesusing sliding window inference in constant mode with an overlap of 0.5. Wereport Dice score whilst ignoring the background label, in addition to the com-mon metrics described in Section 3.6.

Subexperiment 1.3: MSD

For this experiment, we train all versions of bothQT-UNet andVT-UNet againstall 10 tasks, with common training hyperparameters as described in Table 3.6.We additionally train all variants of QT-UNet initialised with relevant weightsfor each task, an exact mapping is given in Table 3.7. In general, for tasks us-ing MRI data we initialised the pre-trained models with in-task pre-training,whilst we for CT used the weights generated by out-of-task pre-training usingour CT SSL dataset.
We use the default MSD data splits for each task as provided by MONAI[84], reporting results on the validation set whilst ignoring background. Theaugmentations used for each task are described in detail in Section 3.2.1. Forvalidation and testing, we segment whole volumes using sliding window in-ference in constant mode with an overlap of 0.5. We report Dice score whilstignoring the background label, in addition to the common metrics describedin Section 3.6.
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Parameter Value
Learning Rate 0.4× 10−4

Weight decay 0.001Drop path rate 0.2Optimiser AdamLearning rate scheduler Cosine AnnealingMini-batch Size 4Epochs 150
Table 3.8: Common parameters for AD experiments.

3.5.3 Experiment 2: Autonomous Driving

Our Autonomous Driving experiment consists of three subexperiments, asdetailed below.
Subexperiment 2.1: CityScapes

We train all variants of QT-UNet-2D with CityScapes, using training paramet-ers as described in Table 3.8 and data augmentations as in Section 3.2.2. Wealso train all variants of QT-UNet-2D with weights pre-trained on CityScapesCoarse as described in Section 3.5.1 with the same parameters as in Table 3.8.To better examine the effects of the Cross-Attention module in QT-UNet-2D,we additionally train a variantmodel QT-UNet-2D-A under the same paramet-ers as the standard QT-UNet-2D, but with the Cross-Attention module dis-abled. We report results on the validation set, ignoring class 0 as prescribedby 4.4. For validation and testing, we segment whole images using sliding-window inference in constant mode with an overlap of 0.5. We report theaverage Dice score and the mean IoU (mIoU) across all classes except the ig-nore class 0, in addition to the common metrics described in Section 3.6. Weadditionally report inference speed, recorded by taking the average inferencetime over the testing epoch.
Subexperiment 2.2: CityScapesCat

Observing that CityScapes itself has a high number of classes, and findingduring development that QT-UNet struggles with tasks with a high numberof classes, we train all variants of QT-UNet-2D on our CityScapesCat variant,mapping the CityScapes training IDs to category IDs. Details of this mappingcanbe found in theAppendix, in Table B.1. The training parameters in Table 3.8are used. We report results on the validation set, ignoring the void class 0. Tohighlight the effects of the Cross-Attention module in QT-UNet-2D, we alsotrain the variant model QT-UNet-2D-A under the same parameters as thestandard QT-UNet-2D, with the Cross-Attention module disabled. For valid-ation and testing, we segment whole images using sliding-window inference
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Model Depth-wise New CA module
VT-UNet X XVT-UNet-A ✓ XQT-UNet-A X ✓QT-UNet ✓ ✓

Table 3.9: Overview of enabled features for the ablation models.

in constantmodewith an overlap of 0.5.We report the averageDice score andthe mean IoU (mIoU) across all classes in addition to the commonmetrics de-scribed in Section 3.6. We additionally report the inference speed, recordedby taking the average inference time over the testing epoch.

Subexperiment 2.3: NTNU Data

To evaluate the generality of the weights trained for QT-UNet-2D in subexper-iments 2.1 and 2.2, we evaluate the trained QT-UNet-2Dmodels on the NTNUdataset, described in Section 3.2.2. We apply themodels directly, without fine-tuning, ignoring class 0 as void. We modify the normalisation step in our pre-processing to use the mean and standard deviation over this dataset ratherthan CityScapes. Whole images are segmented using sliding-window infer-ence in constant mode with an overlap of 0.5. We report the average Dicescore and the mean IoU (mIoU) across all classes except the ignore class 0,in addition to the common metrics described in Section 3.6. We additionallyreport inference speed, recorded by taking the average inference time overthe testing epoch.

3.5.4 Ablation study

In order to disentangle the effects of adding depth reduction and our newCross-Attentionmodule on the performance of QT-UNet over our baseline VT-UNet, we performa short ablation studywith BraTS2021 to examine the effectof each component on the overall performance of the model when trainedfrom scratch. We create a version of QT-UNet without depth-wise reductionand expansion in theMerging and Expansion layers and denote this model asQT-UNet-A.We also create a variant of VT-UNetwith depth-wise reduction andexpansion in its Merging and Expansion layers, and denote it as VT-UNet-A.Together with the two standardmodels, these two variantmodels give us fourtotal models with which we can examine the effect of the depth-wise reduc-tion and expansion, as well as the new Cross-Attention design. An overviewof the models with enabled features is given in Table 3.9. These models aretrained with the same parameters as their counterparts in Subexperiment 1.1(see Section 3.5.2).
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3.6 Model evaluation

In addition to themetrics listed for each experiment, we also include two com-monmetrics across all experiments. These are the number of FLOPs requiredfor a forward pass and the number of parameters in themodel. FLOPs are re-corded using the counter in fvcore [97] over a forward pass in training mode.
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Results

The results of the experiments in Chapter 3 are described in this chapter, us-ing the metrics defined for each experiment. Experiment 1 can be found inSection 4.1, with subexperiment 1.1 BraTS 2021 in Section 4.1.1, 1.2 BTCV inSection 4.1.2, and 1.3 MSD in Section 4.1.3. Experiment 2 can be found in Sec-tion 4.2, with subexperiment 2.1 CityScapes in Section 4.2.1, 2.2 CityScapesCatin Section 4.2.2, and 2.3 NTNU in Section 4.2.3.Results in the tables above the double line are fromour experimental runson our data split. Those below the double line are taken from the relevantleaderboards unless otherwise noted, to provide context for our results. Qual-itative examples from the experiments are also provided.In the tables, ↑ indicates that higher values are better, while ↓ indicatesthat lower values are better. When used with QT-UNet, the "/scratch" suffixindicates that the model was trained without pretrained weights. The omis-sion of the "/scratch" suffix to QT-UNet indicates that the model was trainedwith pretrained weights. Numbers listed in bold are the best scores for thatcolumn, whilst numbers listed with an underline are the second best. Scoresare presented in a 0-100 scale rather than the original 0-1 scale bymultiplyingthe score 100×, for ease of reading and interpretation.

4.1 Experiment 1: Medical Image Computing

4.1.1 Subexperiment 1.1: BraTS 2021

We report the results of subexperiment 1.1 in Table 4.1 and qualitative resultsin Figure 4.1. We highlight that QT-UNet across the board requires less FLOPsthan the models against which we compare, with comparable Dice results.The Base variant ofQT-UNet trained from scratch attains the 2ndbest averageDice score.We also note that the pretrained variants ofQT-UNet attain a lowerHausdorff Distance than those trained from scratch.Qualitatively, we observe that the edges of the segmentation masks pro-duced by the QT-UNet variants is lightly more fine than VT-UNet, better con-
73
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Model #Params (M) ↓ FLOPs (G) ↓ Dice score ↑ Hausdorff Distance ↓ET TC WT Avg. ET TC WT Avg.VT-UNet-T 5.4M 52.0 G 85.71 88.40 91.94 88.68 4.12 4.73 5.12 4.69VT-UNet-S 11.8 M 100.8 G 86.58 88.01 91.85 88.82 4.16 4.68 5.35 5.10VT-UNet-B 20.8 M 165 G 86.11 87.88 91.89 88.63 4.22 5.13 4.53 4.71QT-UNet-T /scratch 6.4 M 32.5 G 85.38 87.00 92.06 88.15 4.32 6.24 6.48 5.79QT-UNet-S /scratch 14.5 M 61.3 G 85.90 87.60 92.20 88.56 4.18 5.17 5.95 5.39QT-UNet-B /scratch 25.5 M 98.5 G 86.27 87.61 92.19 88.69 4.23 5.14 5.21 4.92QT-UNet-T 6.4 M 32.5 G 84.58 87.42 92.09 88.03 4.40 5.74 5.54 5.31QT-UNet-S 14.5 M 61.3 G 85.66 87.70 92.15 88.50 4.43 5.63 5.24 5.18QT-UNet-B 25.5 M 98.5 G 85.61 87.78 92.10 88.61 4.23 4.99 5.23 4.85
Swin-UNETR1 [11] 61.98 M 394.8 G 85.80 88.50 92.60 88.97 6.02 5.83 3.77 5.21UNETR2 [71] 102.5 M 193.5 G 79.78 83.66 90.10 84.56 - - - -nnFormer 2 [72] 39.7 M 110.7 G 82.83 86.48 90.37 86.56 - - - -

Table 4.1: BraTS2021 results. Abbreviations: ET = Enchancing Tumour, TC =Tumour Core, WT = Whole Tumour.

forming to the outline of the ground truth. The QT-UNet variant trained withpretrained weights appears to produce a slightly tighter mask than the QT-UNet variant trained from scratch, when compared to the ground truth.
4.1.2 Subexperiment 1.2: BTCV

We report the results per organ in Table 4.2, with a summary in Table 4.3.Qualitative results can be seen in Figure 2.6.We observe that our model QT-UNet achieves significantly better resultsthan VT-UNet, with QT-UNet showing stronger performance than VT-UNet insmaller organs such as the oesophagus, the aorta, the inferior vena cava,portal and spleinc veins, the pancreas, and adrenal glandswith 23.5 Dice pointmargins on average between the VT-UNet and QT-UNet /scratch variants inthese organs. For larger organs like the the spleen, kidneys, liver, and stom-ach we find smaller gains of 13 Dice points on average between VT-UNet andQT-UNet /scratch variants. We also note that QT-UNet is better able to identifythe left kidney, with a 20.39 Dice point margin between VT-UNet and QT-UNet/scratch variants on average, compared to a 3 Dice point average differencefor the right kidney.We also observe that the Tiny variant of QT-UNet experiences a signific-ant 14 DSC point performance boost and the Base variant sees a smaller3 point boost when trained with weights pre-trained on CT-SSL, though theSmall variant sees little to no change. However, both VT-UNet and QT-UNetare far weaker than the current SotA for this dataset.Note that the results for QT-UNet and VT-UNet are based on our split ofthe data, whilst the results for the remaining models are taken from the BTCVleaderboard. We were unable to score our models on the BTCV test dataset,since the competition evaluation servers were offline.
1As reported by [11]2As reported by [10]
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(a) Raw image (b) Ground truth

(c) VT-UNet-B (d) QT-UNet-B /scratch

(e) QT-UNet-B
Figure 4.1: Example results from Experiment 1, BraTS2021.
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Model Spl RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan AG
VT-UNet-T 21.53 53.73 14.50 27.20 0.0 83.75 2.49 24.55 0.0 0.0 1.16 0.0VT-UNet-S 51.27 76.28 43.23 30.97 0.0 84.65 11.16 45.81 14.41 2.21 22.46 8.69VT-UNet-B 58.23 71.40 53.60 20.00 0.0 84.71 24.61 37.62 37.62 12.71 16.10 0.0
QT-UNet-T /scratch 62.84 60.70 50.20 24.21 23.70 79.29 24.91 53.03 21.96 39.76 26.06 16.98QT-UNet-S /scratch 67.56 74.76 57.35 35.54 38.06 82.97 35.70 68.24 46.87 46.47 32.15 34.29QT-UNet-B /scratch 68.11 75.65 64.95 35.11 41.97 83.80 42.28 68.08 45.95 49.75 38.99 34.46
QT-UNet-T 79.19 78.49 64.49 40.66 42.97 87.77 36.59 71.11 50.45 46.69 35.75 32.22QT-UNet-S 71.31 73.86 59.42 35.97 39.24 84.37 35.28 66.92 44.30 48.64 29.94 32.14QT-UNet-B 73.37 80.77 65.76 39.27 45.54 83.69 45.96 70.63 48.24 52.66 35.71 36.45
Swin-UNETR [11] 97.60 95.80 95.60 89.30 87.50 98.50 95.30 94.90 90.40 89.90 89.80 84.60UNETR [71] 97.20 94.20 95.40 82.50 86.40 98.30 94.50 94.80 89.00 85.80 85.20 81.20nnFormer [72] 90.51 86.25 86.57 70.17 - 96.84 86.83 92.04 - - 83.35 -nnUNet [76] 96.70 92.40 95.70 81.40 83.20 97.50 92.50 92.80 87.00 83.20 84.90 78.40Swin-UNet [9] 90.66 79.61 83.28 66.53 - 94.29 76.60 85.47 - - 56.58 -

Table 4.2: BTCV Dice scores (↑) per organ.Abbreviations: Spl: spleen, RKid: right kidney, LKid: left kidney, Gall: gallblad-der, Eso: esophagus, Liv: liver, Sto: stomach, Aor: aorta, IVC: inferior vena cava,Veins: portal and splenic veins, Pan: pancreas, AG: Average of left and rightadrenal glands.

Qualitatively, we observe that VT-UNet struggles to classify both the liverand the spleen, misclassifying both as stomach. None of the models are ableto correctly classify the fluid-filled stomach; tough the QT-UNet variants areable to correctly segment several organs. TheQT-UNet variantwith pre-trainedweights produces significantly better masks than the variant trained fromscratch.

4.1.3 Subexperiment 1.3: MSD

We report the results of the VT-UNet andQT-UNet variants per task in Table 4.4and a summary in Table 4.5. Select qualitative results can be found in Fig-ure 4.3, and the remainder in the Appendix in Figure A.1. We observe thatVT-UNet shows the strongest performance of all the models listed in Task 1 -Brain Tumour with QT-UNet variants being a close second. However, both VT-UNet and QT-UNet trail the SotA in all other tasks by a significant margin. Fur-thermore, the QT-UNet variants in tasks trained with weights pre-trained in-task (see Table 3.7) show no change or degradation in performance betweenthe pre-trained and from scratch variants, although the QT-UNet variants intasks trained with weights pre-trained on CT-SSL see an increase in perform-ance in some tasks. We also observe that all QT-UNet variants produce a nilresult in Task 7. All variants of VT-UNet outperform their equivalent variant ofQT-UNet in the summary Table 4.3, though the margin is not very large.
The results from the models below the double line are pulled from theMSD leaderboard. Note that the submissions for this leaderboardwere closedfor good at the timeofwriting this thesis, whichmeans thatwe could notmake
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(a) Raw image (b) Ground truth

(c) VT-UNet-B (d) QT-UNet-B /scratch

(e) QT-UNet-B
Figure 4.2: Example results from Experiment 1.2, BTCV.
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Model #Params (M) ↓ FLOPs (G) ↓ AVG. Dice score ↑
VT-UNet-T 5.4M 19.7 G 17.61VT-UNet-S 11.8 M 38.2 G 30.76VT-UNet-B 20.8 M 62.6 G 28.46
QT-UNet-T /scratch 6.4 M 12.7 G 38.51QT-UNet-S /scratch 14.5 M 23.6 G 50.33QT-UNet-B /scratch 25.5 M 37.7 G 52.58
QT-UNet-T 6.4 M 12.7 G 53.50QT-UNet-S 14.5 M 23.6 G 50.27QT-UNet-B 25.5 M 37.7 G 54.96
Swin-UNETR [11] 61.98 M 394.84 G 91.80UNETR [71] 92.58 M 41.19 G 89.10nnFormer [72] - M - G 86.57nnUNet [76] 19.07 M 412.65 G 88.80Swin-UNet [9] - M - G 79.13

Table 4.3: BTCV results summary.

a submission of our own. Comparisons between our results withQT-UNet andVT-UNet and those of the othermodels should therefore be takenwith a grainof salt.
Qualitatively, we observe decent segmentation across all models in theselected tasks, though the QT-UNet variants seem a smidge better in task 6,9, and 10. The results are pretty even in the other tasks. The pretrained variantof QT-UNet seems to produce a slightly better segmentation mask than QT-UNet /scratch in tasks 6, 9, and 10.

4.2 Experiment 2: Autonomous Driving

4.2.1 Subexperiment 2.1: CityScapes

The results for this experiment can be found in Table 4.6, with the mean Diceand IoU score for each model. The results for the models below the doubleline are sourced from their respective papers. Qualitative results can be seenin Figure 4.4.
We observe that the QT-UNet variants with Cross-Attention (QT-UNet-2D)show better performance in terms of both mIoU and Dice score than the vari-ant without Cross-Attention (QT-UNet-2D-A). The Tiny and Small variants ofQT-UNet see a boost in IoU and Dice scores when trained with pre-trainedweights from CityScapesCoarse, seeing a 2-point increase in Dice score anda 4-point increase in mIoU. All variants of QT-UNet and VT-UNet trail SotA interms of mIoU by a wide margin and to a lesser degree in inference speed,although QT-UNet-2D-A-T uses the fewest FLOPs at 33.6 GFLOPs.
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Taskno. Raw image Ground Truth VT-UNet QT-UNet/scratch QT-UNet

1

2

4

6

9

10
Figure 4.3: Qualitative results for select MSD tasks.
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Model Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10
VT-UNet-T 78.70 87.60 49.06 85.93 25.32 40.17 25.85 33.38 64.02 12.14VT-UNet-S 78.20 86.77 47.58 85.18 24.73 45.78 23.02 33.11 69.25 7.69VT-UNet-B 78.61 87.10 48.57 85.82 26.53 33.38 21.85 33.47 59.40 8.76
QT-UNet-T /scratch 77.37 85.57 36.00 85.45 30.62 26.02 0.0 42.41 49.30 14.11QT-UNet-S /scratch 77.79 85.81 46.09 82.37 30.90 19.55 0.0 37.07 51.94 13.02QT-UNet-B /scratch 77.81 86.52 39.31 82.92 32.26 23.21 0.0 33.77 48.10 15.76
QT-UNet-T 77.41 85.02 51.65 85.23 27.79 27.23 0.0 45.01 49.86 14.04QT-UNet-S 77.68 85.40 37.14 82.19 31.07 19.91 0.0 36.98 53.31 13.52QT-UNet-B 77.86 86.70 38.56 83.77 34.08 23.85 0.0 38.01 56.45 12.87
Swin-UNETR [11] 66.35 92.62 85.52 89.19 82.40 76.60 70.71 68.95 96.99 59.45nnUNet [76] 61.10 93.30 85.86 89.46 83.11 73.97 67.21 69.12 99.89 58.33Model Genesis [73] 61.14 93.33 86.61 89.53 81.29 74.54 65.86 68.62 97.35 51.47Trans VW [74] 61.14 93.33 86.04 89.53 81.29 74.54 66.25 68.62 97.35 51.47

Table 4.4:MSD Dice scores (↑) per task.

Model AVG. Dice score ↑
VT-UNet-T 50.22VT-UNet-S 50.13VT-UNet-B 48.35
QT-UNet-T /scratch 44.69QT-UNet-S /scratch 44.45QT-UNet-B /scratch 43.97
QT-UNet-T 46.32QT-UNet-S 43.72QT-UNet-B 45.22
Swin-UNETR [11] 78.88nnUNet [76] 78.14Model Genesis [73] 76.97Trans VW [74] 76.96

Table 4.5:MSD results summary.
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(a) Raw image (b) Ground truth

(c) Segformer B5 (d) QT-UNet-2D-B /scratch

(e) QT-UNet-2D-B
Figure 4.4: Example results from Experiment 2.1, CityScapes.

Qualitatively, we observe that QT-UNet-2D-Base struggles to produce seg-mentationmasks comparable to those of the Segformer, regardless ofwhetherQT-UNet was trained from scratch or with pre-trained weights. QT-UNet-2Dappears to struggle particularly with shadow borders and light patches of theroad,misclassifying the light patches as a sidewalk, and classifying the shadowborder into the void class. Both variants QT-UNet-2D also fail to completelysegment cars and trucks in the scene, although the boundaries of buildingsin the distance seem nearly correctly segmented.

4.2.2 Subexperiment 2.2: CityScapesCat

We report the results for our experimentwith CityScapes over class categories(CityScapesCat) in Table 4.7, with mean Dice and IoU score for each model.Qualitative results can be seen in Figure 4.5.
We observe that the QT-UNet variants with Cross-Attention (QT-UNet-2D/scratch) showworse performance in terms of bothmIoU and Dice score than

3As reported by Xie et al. [79] on a Tesla V100 card, a weaker card than the A100 cards usedin this thesis.
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Model #Params (M) ↓ FLOPs (G) ↓ Inference (s) ↓ AVG. Dice score ↑ AVG. IoU score ↑QT-UNet-2D-A-T /scratch 5.0 M 33.6 G 0.22 s 38.82 19.82QT-UNet-2D-A-S /scratch 11.3 M 72.5 G 0.23 s 38.68 19.97QT-UNet-2D-A-B /scratch 20.1 M 126.3 G 0.20 s 39.10 20.25QT-UNet-2D-T /scratch 5.4 M 38.8 G 0.20 s 39.12 20.74QT-UNet-2D-S /scratch 12.2 M 83.3 G 0.21 s 39.35 21.04QT-UNet-2D-B /scratch 21.6 M 144.6 G 0.23 s 39.50 21.15QT-UNet-2D-T 5.4 M 38.8 G 0.20 s 41.53 25.86QT-UNet-2D-S 12.2 M 83.3 G 0.21 s 41.97 25.97QT-UNet-2D-B 21.6 M 144.6 G 0.23 s 39.03 21.00
SeMask [77] 211 M 455 G - s - 84.98VOLO-D4 [78] - M - G - s - 84.30Segformer-B5 [79] 84.7 M 183.3 G 0.1023 s - 84.00Segformer-B0 [79] 3.8M 125.5 G 0.06583 s - 76.20

Table 4.6: CityScapes val results.
Model #Params (M) ↓ FLOPs (G) ↓ Inference (s) ↓ AVG. Dice score ↑ AVG. IoU score ↑QT-UNet-2D-A-T /scratch 5.0M 33.0 G 0.12 s 61.31 57.15QT-UNet-2D-A-S /scratch 11.1 M 71.6 G 0.13 s 61.71 57.69QT-UNet-2D-A-B /scratch 20.1 M 125.0 G 0.16 s 56.04 51.00QT-UNet-2D-T /scratch 5.4 M 38.2 G 0.13 s 55.46 50.91QT-UNet-2D-S /scratch 12.2 M 82.4 G 0.15 s 56.40 51.17QT-UNet-2D-B /scratch 21.6 M 143.4 G 0.19 s 57.45 52.45QT-UNet-2D-T 5.4 M 38.2 G 0.13 s 63.23 60.37QT-UNet-2D-S 12.2 M 82.4 G 0.15 s 64.21 61.55QT-UNet-2D-B 21.6 M 143.4 G 0.19 s 58.45 54.26

Table 4.7: CityScapesCat val results.

the variant without Cross-Attention (QT-UNet-2D-A), the opposite of subex-periment 2.1. The Tiny and Small variants of QT-UNet-2D see a large boost inperformance in terms of Dice score andmIoU when trained with weights pre-trained on CityScapes Coarse, with the Base variant seeing a smaller roughlysingle point increase in both metrics. QT-UNet-2D-A-T uses the fewest FLOPsat 33.0 GFLOPs.Qualitatively, weobserve thatQT-UNet-2D-Base trained fromscratch strugglessignificantly with shadow borders, while QT-UNet-2D trained with pre-trainedweights struggle less so. However, both variants struggle with light patches ofroad. Bothmodels fail to correctly segment the truck ahead, though they bothare able to identify and roughly segment cars parked to the left in the scene.Buildings further away in the distance are also nearly correctly segmented.
4.2.3 Subexperiment 2.3: NTNU data

We report the results in Table 4.8, with the mean Dice and IoU score for eachmodel. Qualitative results can be seen in Figure 4.6. We also report results
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(a) Raw image (b) Ground truth

(c) QT-UNet-B /scratch (d) QT-UNet-B
Figure 4.5: Example results from Experiment 2.2, CityScapesCat.

Model #Params (M) ↓ FLOPs (G) ↓ Inference (s) ↓ AVG. Dice score ↑ AVG. IoU score ↑QT-UNet-2D-T /scratch 5.4M 38.2 G 0.13 s 30.66 7.54QT-UNet-2D-S /scratch 12.2 M 82.4 G 0.15 s 28.39 7.21QT-UNet-2D-B /scratch 21.6 M 143.4 G 0.19 s 29.71 7.28QT-UNet-2D-T 5.4M 38.2 G 0.13 s 30.09 9.29QT-UNet-2D-S 12.2 M 82.4 G 0.15 s 29.12 8.50QT-UNet-2D-B 21.6 M 143.4 G 0.19 s 31.61 8.79
Table 4.8: NTNU results.

when predicting over class categories4 in Table 4.9, with qualitative results inFigure 4.7.
Quantitatively, we see that our model struggles to transfer to this domain,with a significant reduction across both metrics for all model variants of QT-UNet-2D compared to subexperiment 2.1 CityScapes. The same applies whenlooking at the results by class category and subexperiment 2.2 CityScapesCat.However, the quantitative results should be interpreted somewhat cautiouslydue to the small size of the dataset and consequently the small number ofexamples per class.
Qualitatively, we observe that the QT-UNet trained from scratch on City-Scapes struggles with the NTNU data and produces a quite disjointed anderror-pronemask. TheQT-UNet trainedonCityScapeswith pre-trainedweightsseems to produce a more coherent mask but still has errors. A similar pat-tern is also present when looking at NTNU by categories, though bothmodelsstruggle here.

4Like in subexperiment 2.2 CityScapesCat.
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(a) Raw image (b) Ground truth

(c) SegFormer B5 (d) QT-UNet-B /scratch

(e) QT-UNet-B
Figure 4.6: Example results from Experiment 2.2, NTNU.

Model #Params (M) ↓ FLOPs (G) ↓ Inference (s) ↓ AVG. Dice score ↑ AVG. IoU score ↑QT-UNet-2D-T /scratch 5.4M 38.2 G 0.13 s 30.12 20.78QT-UNet-2D-S /scratch 12.2 M 82.4 G 0.15 s 32.30 22.59QT-UNet-2D-B /scratch 21.6 M 143.4 G 0.19 s 27.47 18.36QT-UNet-2D-T 5.4M 38.2 G 0.13 s 33.60 23.52QT-UNet-2D-S 12.2 M 82.4 G 0.15 s 34.04 23.77QT-UNet-2D-B 21.6 M 143.4 G 0.19 s 29.47 19.90
Table 4.9: NTNU by categories results.
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(a) Raw image (b) Ground truth

(c) QT-UNet-B /scratch (d) QT-UNet-B
Figure 4.7: Example results from Experiment 2.2 NTNU, by categories.

4.3 Ablations

The results of our ablation study can be seen in Table 4.10. We observe thatthemodel variants in general produce quite similar results, but with a handfulof important differences.We observe that the reduction in FLOPs between themodel without and with depth-wise reduction and expansion (VT-UNet→ VT-UNet-A andQT-UNet-A→QT-UNet) is 32%, 33%, and 33.7% for the Tiny, Small,and Base variants, respectively, with equivalent numbers between both pairsof compared models. Comparing models without and with the new Cross-Attention module (VT-UNet→ QT-UNet-A and VT-UNet-A→ QT-UNet), we ob-serve a reduction in FLOPs of 7.5%, 9%, and 9.5% for the Tiny, Small, and Basevariants, respectively, with equivalent numbers between each pair of models.Considering parameters, we observe that the increase in the number ofparameters for VT-UNet models without and with depth-wise reduction andexpansion (VT-UNet→ VT-UNet-A) is 15% across all size variants. For the QT-UNet models (QT-UNet-A → QT-UNet), we observe a 9%, 13%, and 14 % in-crease in parameter count for the Tiny, Small, and Base variants.Comparingmodels without and with the new Cross-Attentionmodule (VT-UNet → QT-UNet-A and VT-UNet-A → QT-UNet), we observe an increase inparameters by 9%, 8%, and 8%between VT-UNet andQT-UNet-A5 for the Tiny,Small, and Base variants, respectively. Between VT-UNet-A and QT-UNet6, we
5That is, between models with Cross-Attention but without depth-wise reduction and ex-pansion.6That is, between models with both Cross-Attention and depth-wise reduction and expan-sion.
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Model #Params (M) ↓ FLOPs (G) ↓ Dice score ↑ Hausdorff Distance ↓ET TC WT Avg. ET TC WT AVG.VT-UNet-T 5.4M 52 G 85.71 88.40 91.94 88.68 4.12 4.73 5.12 4.69VT-UNet-S 11.8 M 100.8 G 86.58 88.01 91.85 88.82 4.16 4.68 5.35 5.10VT-UNet-B 20.8 M 165 G 86.11 87.88 91.89 88.63 4.22 5.13 4.53 4.71VT-UNet-A-T 6.2 M 35.0 G 85.16 88.00 91.64 88.27 4.04 4.98 4.93 4.74VT-UNet-A-S 13.5 M 67 G 85.62 87.62 91.62 88.29 4.25 5.08 5.24 4.92VT-UNet-A-B 23.9 M 108.7 G 86.07 87.62 91.60 88.43 4.23 4.93 4.82 4.74QT-UNet-A-T /scratch 5.9 M 47.7 G 86.15 87.95 92.01 88.70 4.77 5.98 6.18 5.69QT-UNet-A-S /scratch 12.8 M 91.2 G 85.66 87.96 92.17 88.60 4.68 4.93 5.91 4.96QT-UNet-A-B /scratch 22.4 M 147.8 G 86.36 87.86 92.24 88.82 4.45 5.88 7.01 5.97QT-UNet-T /scratch 6.4 M 32.5 G 85.38 87.00 92.06 88.15 4.32 6.24 6.48 5.79QT-UNet-S /scratch 14.5 M 61.3 G 85.90 87.60 92.20 88.56 4.18 5.17 5.95 5.39QT-UNet-B /scratch 25.5 M 98.5 G 86.27 87.61 92.19 88.69 4.23 5.14 5.21 4.92
Table 4.10: Ablation study results, on BraTS2021.

observe an increase of 3%, 7%, and 6% in parameters for the Tiny, Small, andBase variants respectively.Overall, QT-UNet has a reduction in FLOP usage of up to 40% comparedto VT-UNet, at the cost of 23% more parameters.We find that QT-UNet-A-Base, that is, a model with Cross-Attention and
without depth-wise reduction and expansion, has the strongest average Dicescore, sharing the top spot with VT-UNet-B. However, it should be noted thatthe performance differences in terms of theDice score are relatively small. VT-UNet-T has the lowest average Hausdorff Distance, with variants with Cross-Attention and depth-wise reduction and expansion performing worse.



Chapter 5

Discussion

This chapter will discuss the project at large and our research questions. Sec-tion 5.1 through Section 5.3 discuss the results against each research ques-tion. Section 5.4 will briefly discuss other pertinent insights that can be takenfromour results that are not directly related to any of the ResearchQuestions.Finally, Section 5.5 closes this chapter with a retrospective evaluation of theproject process.

5.1 RQ1: The effect of SSL

We find that the application of SSL to our model gives mixed results, depend-ing on what experiment it was used for and with whatmodel. Since the exper-iments employ two distinct types of SSL – in-task and out-of-task – this sectionis split accordingly.

5.1.1 Effect of out-of-task pretraining

Looking at experiments carried out with out-of-task pre-training on CT-SSLfirst, we observe in BTCV (Table 4.2) per organ results that the variants of QT-UNet pre-trained on CT-SSL achieve a significantly better result for smaller or-gans such as the gallbladder and aorta than the variants trained from scratch,while the Base variant only sees minor changes and in some tasks significantdeterioration. On average (Table 4.3) the Tiny variant of QT-UNet sees a jumpof more than 15 DSC points, a slight decrease of around 0.05 points for theSmall variant and a small increase of 2 points for Base variant. A similar pat-tern emerges when looking at the MSD scores (Table 4.4, Table 4.5), wherethe Tiny model sees significant improvements in some of the CT tasks, withsmaller adjustments for the Small and Base variants.
This outcome is rather peculiar, as the loss curves from our CT-SSL pre-training runs illustrate. For the Tiny and Small variants (see Figure 5.1b), weobserve that both the BYOL loss, the rotation loss, and reconstruction loss fall

87



88 Andreas H. Håversen: QT-UNet

−4

−3

−2

−1

0

1

2

3

4

5

0 20 40 60 80 100 120 140

Los
s

Epochs

Total lossReconstruction lossRotation lossBYOL loss

(a) Loss curves for QT-UNet-B.
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(b) Loss curves for QT-UNet-S.
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(c) Loss curves for QT-UNet-T.
Figure 5.1: Loss curves for CT-SSL pretraining.
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throughout the training process, whilst the Base variant sees a sharp increasein all losses around mid-way through the training process (see Figure 5.1a).After this increase in loss for the Base variant, the BYOL loss returns to itsprevious lower level, whilst the rotation and reconstruction loss never recov-ers. We theorise that the pretraining process for the Base variant somehowcollapsedmidway through training. This is a risk that the authors of BYOL [69]warn of, claiming that a collapse of BYOL where the model outputs only zero-vectors as projections since that also would provide a minima of loss. How-ever, Chen and He [70] claim that this type of collapse should not be possibleas long as gradients to the target network are stopped.
Another theory that could explain the collapse is the interaction betweenBYOL and the other SSL tasks. Could it be possible that the gradients createdby the other task heads upset the balance of the model and forced it to col-lapse? If so, why was the same type of collapse not observed in the othervariants, Tiny and Small? Given that there is not much research on the use ofBYOL together with other pretext tasks, this result could indicate that moreresearch on the interaction between BYOL and other SSL tasks is warranted.
As we shall discuss in detail in Section 5.1.5, another potential cause of thetraining collapse could be the rate at which the target weights were updated.Due to the nature of how the PyTorch Lightning Bolts BYOL implementationworks, the weight update was applied at the end of each batch, regardlessof gradient accumulation. This could have caused instability during training,especially when a large number of gradients were accumulated before theywere applied to the online network.
However, despite this collapse in CT-SSL-pre-training for the Base variant,we find that it is the Small variant that experiences little to no benefit fromthe pre-training in both the BTCV and the MSD CT tasks. Although it is difficultto point to an exact cause, it is possible that the Small variant simply had littleto no benefit from the pre-training, despite the low loss during pre-training.That is, the pre-training could have ended in a local minima that was of littleuse to the model. However, this seems unlikely due to the reduction in lossacross all tasks, indicating that at least somewhat useful representationswerelearnt. More research is warranted on the effect of pretraining on the modelvariant.

5.1.2 Effect of in-task pretraining

Turning our attention to the in-task trained MRI tasks, we also observe mixedresults. In the BraTS dataset (Table 4.1) we observe negligible changes in theDice score, but a not insignificant decrease in the average Hausdorff Distance.This seems to indicate that pretraining aided the model in producing spatiallyaccurate segmentation masks, which is important if the segmented volumesare to be used to guide medical personnel. We can also qualitatively observein Figure 2.5 that the pre-trained model produces a slightly smoother mask
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than the model trained from scratch.
For MSD, the in-task trained tasks 1, 4, 5 and 6 show mostly mild changesbetween the QT-UNets trained for scratch and those trained with pre-trainedweights in-task. Apart from a 3-point increase for QT-UNet-T and a 2-pointincrease for QT-UNet-B in task 5, the other in-task trained tasks have equi-valent or slightly degraded Dice scores. This indicates that our SSL schemewas unable to learn strong representations from the limited data available. Alarger dataset for pre-training might have mitigated this.

5.1.3 Overall effect

Overall, despite pretraining QT-UNet, it still falls short of SotA in all but theBraTS dataset. Although comparisons between models above and below thedouble line should be taken with a grain of salt, the margin up to SotA in theBTCV and MSD datasets is considerable. For BraTS, we dare to propose thatourmodel is competitive, thoughwe againmake such comparisonswith greatcaution due to the nature of the results above and below the double line.Overall, we find that pretraining out-of-task with our CT-SSL dataset is themost effective, with negligible changes in performance when training in-task.

5.1.4 Implications

In our experiments, we observe that SSL seems to work much better whenperforming out-of-task pretraining on large datasets rather than in-task pre-training on smaller task datasets. This is, frankly, not surprising. Most pre-training datasets, particularly in SSL, are designed to take advantage of largeunlabelled out-of-task datasets, as performance has been shown to scale withthe size of the pre-training sets [98].
That is not to say that the in-task approach is without merit. It can be ar-gued that there are essentially two approaches to dealing with data scarcityfor model training: Either extending the dataset by adding more data to itand pretraining on related, perhaps unlabelled data, or by extracting asmuchlearning as possible from the limited data available. In-task pretraining at-tempts to achieve the latter. More research to find effective techniques forin-task pretraining could greatly mediate data scarcity issues in low data avail-ability domains such as MIC.
It is alsoworth noting that our approach saw some success when perform-ing in-task pre-training on BraTS, reducing the Hausdorff Distance. This couldimply that our approach could be extended to perform better in an in-taskpretraining environment.
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5.1.5 Error sources

Batch sizes in BYOL

Compared to the batch sizes used by Grill et al. [69] for their original imple-mentation of BYOL, the batch sizes used for our experiments (see Table 3.4)are smaller than the ideal batch size 256 reported in that study due tomemoryconstraints on the GPU accelerators. This reduced batch size could have neg-atively impacted performance.Furthermore, our use of gradient accumulation to boost batch sizes wasnot ideal due to how the Pytorch Lightning Bolts [83] implementation of BYOLworked. Gradient accumulation instructs the model trainer to collect and av-erage the gradients over several forward passes, only applying the backwardmethod (and thus completing a "full" batch) only when the specified numberof gradients has been collected. At the same time, the BYOL implementationfrom Lightning Bolts was hooked in to update the weights at the end of eachforward pass. Thismeant that theweight updatewas applied after each batch,rather than after every application of the backward method. This might havecaused an improperly frequent update of the weights in the target network,increasing the chances of a collapse. It should, however, be noted that thegradient accumulation used in our runs is rather moderate, for most experi-ments using only two batches.
Possible model collapse

As previously noted in Section 5.1.1, a possible collapse of the models in thepretraining of QT-UNet-B on CT-SSL was observed. Naturally, this could negat-ively impact the results frommodels trained with these weights, since the en-coder learnt representations that could be less useful in a downstream task.
Imperfect adaption of SSL pipeline

As noted in Section 2.8, we adapt our SSL pipeline from the pipeline describedby Tang et al. [11] for Swin-UNETR. Seeing as their code was not made publicuntil 27.05.2022, long after the implementation phase of this project, we hadto make due with their descriptions of the pipeline in their paper. Althoughwe were fairly confident that our adaption was sound, it was hard to verifywithout access to the source code of the original pipeline. An imperfect ad-aptation might have caused a degradation in pipeline performance. We havebeen able to confirm, post factum, that our pipeline is a close but not faith-ful adaption of the one used for Swin-UNETR. Notably, they use direct linearlayers for their rotation and contrastive heads rather than the MLPs we usedwith QT-UNet. Furthermore, they used amultilayer Transposed ConvolutionalNetwork for their reconstruction head rather than the single Transposed Con-volution layer head used with QT-UNet.
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5.2 RQ2: Encoder-Decoder Cross-Attention

Observing that our experiments essentially consist of three types of models –models without Cross-Attention, the original Cross-Attention module used byVT-UNet, and the new Cross-Attentionmodule used by QT-UNet – this sectionis split accordingly, first discussing the effect of employing Cross-Attention(CA) at all in Section 5.2.1 and then discussing the effect of the new Cross-Attention module in Section 5.2.2.
5.2.1 Cross-Attention versus no Cross-Attention

Noting that the results in Section 4.1 are presentedwith our ownexperimentalresults above the double line and with leaderboard results below the doubleline, this section is presented bearing in mind that the results have differentsources and consequently comparisons should be taken with a grain of salt.It does not make sense to present a detailed analysis between the modelsabove and below the double line because of the differing sources, though weallow ourselves to comment on larger and more general trends between themodels.The results of subexperiment 1.1, BraTS2021, appear to indicate thatmod-els with Cross-Attention perform slightly better than those without it, specific-ally compared to UNETR and nnFormer in Table 4.1. However, this sugges-tion must be taken with a considerable amount of salt, given that the resultsabove and below the double line are sourced differently. The suggestion thatCross-Attention is better than no Cross-Attention is, however, weakened byour results in the other experiments (1.2 BTCV and 1.3 MSD), where the CA-enabled models QT-UNet and VT-UNet trail all the other models by a consid-erable margin. It is, however, also possible that this could be an expressionof other factors such as model size and data preprocessing rather than theeffect of our Cross-Attention mechanism. Furthermore, the size of the cropssupplied to the models could have had a not insignificant impact on the per-formance of the models, with a smaller 96× 96× 96 spatial crop being usedin BTCV and MSD1 compared to the larger 128×128×128 crop in BraTS, con-tributing to a loss of context.
5.2.2 The effect of the updated Cross-Attention module

Observing Table 4.10, specifically comparing VT-UNet with QT-UNet-A and VT-UNet-A with QT-UNet – that is, comparing models with and without the newCA module – it can be seen that the new module reduces the computationalburden by 8.27%, 9.51%, and 10.42% for the Tiny, Small, and Base variants,respectively, at the cost of an increase in parameters of 9.26%, 8.47%, and7.69%.
1Except for MSD Task 1, which used the same 128× 128× 128 crop as BraTS.
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At the same time, the impact onDice score observed in Table 4.10 ismixed,with some variants seeing a boost in performance and others a slight degrad-ation. However, the Hausdorff Distance is negatively affected across all vari-ants. There could be a couple of possible reasons for this. One reason couldsimply be that this is the result of less computation happening in the decoderblocks. The fusion modules VT-UNet uses in its decoder modules allow fordouble the computations per stage compared to the decoders in QT-UNetdue to the dual-stream design of the VT-UNet decoders, at the cost of morecomputational effort. Another issue could be that our new Cross-Attentionmodule is simply not able to properly integrate information from the encoder.It is difficult to conclusively say which is themost influential factor and if thereare others. A deeper quantitative and qualitative examination of the inform-ation flow through the Cross-Attention-enabled decoders is warranted but isnot feasible within the time frame of this thesis.
In BTCV, all QT-UNet variants outperform their corresponding VT-UNetcounterparts by a margin of 18 DSC points in the average, even when trainedfrom scratch. Observing that the QT-UNet variants show significantly betterresults for smaller organs such as the oesophagus, aorta, inferior vena cava,portal and spleenic veins, as well as the pancreas, leads us to speculate thatthe new Cross-Attentionmodule allowed the decoder in QT-UNet to query theencoder more efficiently for the spatial location of these organs, comparedto the mechanism in VT-UNet. This theory is strengthened by the fact that, al-though both QT-UNet and VT-UNet perform relatively well when segmentingthe right kidney, QT-UNet is significantly better at segmenting the left kidney.This could indicate that QT-UNet is better able to distinguish the two, furtherlending credence to the theory that the new Cross-Attention module betterhelps the decoder locate the targets spatially.
However, thoughwe observe that the variants of QT-UNet outperform thecorresponding variants of VT-UNet in MSD tasks 5, 8, and 10, we find thatVT-UNet outperforms QT-UNet in all other tasks. This could be attributed tothe new Cross-Attention mechanism, but also to the depth-wise merge andexpansion added toQT-UNet. Several of the tasks wereQT-UNet struggles aretasks where the segmentation masks are relatively small, though this is notthe case in tasks 3, 4, and 9 where they are comparatively large. It is worthnoting, however, the low number of target classes in these tasks, with mosthaving one or two target classes. Noting that Task 9 Spleen is essentially thesame task as segmenting the spleen organ in BTCV, and observing that QT-UNet outperforms VT-UNet in segmenting the spleen in that task, it seemsprudent to speculate that the new Cross-Attention mechanism is affected bythe number of target classes, performing better in tasks with several targetclasses rather than a few.
We also note that QT-UNet was wholly unable to perform in MSD task 7,where all variants get a nil score. Looking at the loss curves for these runs,we observe that they all collapse mid-way during training with a consider-
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able decrease in training loss coinciding with an increase in validation loss.We speculate that the model collapses because of the relatively small targetsin the task, instead collapsing to predict background everywhere. It is worthnoting that we observe a similar loss behaviour for our runs with VT-UNet butthat VT-UNet recovers from the collapse before the end of training.
Overall, the new Cross-Attention module seems to have attained a betterspeed-to-parameter trade-off, significantly reducing the computational bur-den. Dice score is positively affected in tasks with many target classes, butappears to have a negative effect in tasks with few target classes. In BraTS,we additionally observe a slight degradation in Hausdorff Distance.

5.2.3 Implications

Observing that the use of a Cross-Attention mechanism can have positive ef-fects on BraTS performance compared to relevant baselines, we posit thatthe use of Cross-Attention has a positive impact on the performance of UNetmodels.
Seeing as the new Cross-Attention-mechanism achieves a better speed-to-parameter trade-off with little or no negative impact on performance, andindeed outperforms the original Cross-Attention mechanism in VT-UNet onBTCV and certain MSD tasks, we suggest that further development of Cross-Attention in Transformer based UNets could take advantage of our approach.However, the systematic weakness of the new design in terms of HausdorffDistance and in tasks with few target classes warrants further investigation.Resolving these weaknesses would further strengthen the technique, leadingto a strengthened speed-to-performance trade-off.

5.2.4 Error sources

Improper dataset pre-processing

As noted in Section 3.5.2 and Section 3.5.2, the preprocessing pipelines for theBTCV and MSD datasets were adapted from those used for Swin-UNETR dueto the architectural similarities between the encoders in themodels. It is, how-ever, possible that this was not an optimal choice and that better performancecould have been achieved if the pipelines had been created from scratch forQT-UNet exclusively. However, it is worth noting the considerable amount oftime and effort that this would have entailed. Given the time frame of thisproject, developing and testing individual pipelines for the total 11 datasetsbetween the MSD tasks and BTCV combined would have taken too long.
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5.3 RQ3: Application in 2D contexts

Seeing that ResearchQuestion 3 effectively asks if the SSL andCross-Attentionscheme applied in 3D is also effective in 2D, the discussion in this sectiontreats SSL and Cross-Attention independently. We also render a treatment ofthe effect of the number of classes between CityScapes and CityScapesCat, aswell as a discussion on our tranfer to the NTNU data.
5.3.1 Effect of pretraining

As our results indicate, QT-UNet does not perform convincingly in 2D con-texts like CityScapes, with a modest 41.97 point Dice score (25.97 mIoU) andis vastly outperformed by SotA. At the same time, we do observe a significantbump in Dice score between the Tiny and Small variants trained from scratchand those trained with pre-trained weights. This seems to indicate that ourpre-training approach has somemerit in this 2D context. At the same time, wealso observeminimal changes between the pre-trained and from scratch Basevariants. Looking at the loss graphs for the pre-training runs (see Figure 5.2),we observe a behaviour for each loss type similar to the collapse described forBase variant pretraining on the CT-SSL dataset, as described in Section 5.1.5.That is, the reconstruction and rotation losses suddenly increase, while theBYOL loss remains more or less the same. This collapse could explain thesmall difference in performance between the pre-trained and from scratchvariants of QT-UNet-B.
5.3.2 Effect of cross-attention

In studying the effects of Cross-Attention on our 2D experiments with City-Scapes and CityScapesCat, an interesting pattern emerges. Whilst we observea slight increase in the Dice and IoU score in CityScapes betweenQT-UNet-2D-A and QT-UNet-2D across all variants (see Table 4.6), we observe the oppositein CityScapesCat with QT-UNet-2D surpassing QT-UNet-2D-A (see Table 4.7).That is, the variantwith Cross-Attentionbeats the variantwithout Cross-Attentionin standard CityScapes, with the reverse being true in CityScapesCat.The only major difference between CityScapes and CityScapesCat is thenumber of classes to predict, 20 in CityScapes versus 8 in CityScapesCat. Thisdisparity in the number of classes leads us to theorise that the Cross-Attentionmechanism is more effective in environments with more targets, at least in a2D context. It is, however, difficult to assert whether this effect is particular toQT-UNet-2Dor if it is a general attribute ofQT-UNet itself, althoughwealso ob-serve a similar tendency when comparingMSD task 10 and BTCV as discussedin Section 5.2.2. More experiments are warranted to explore the effect of thenumber of target classes on the performance of the Cross-Attentionmechan-ism.
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(a) Loss curves for QT-UNet-B.
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(b) Loss curves for QT-UNet-S.
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(c) Loss curves for QT-UNet-T.
Figure 5.2: Loss curves for CityScapes pretraining.
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Figure 5.3: Class distribution for CityScapes in terms number of finely annot-ated pixels, grouped by category. Figure from [31].

5.3.3 The effect of the number of classes

Looking at the qualitative results in Figure 4.4, we see that the model indeedproduces somewhat coherent segmentationmasks, despite some issues suchas being confused by shadows on the road. Observing that CityScapes has ahigh number of classes, with several of the classes such as motorbikes, cara-vans, and tunnels to name a few quite rare in the dataset (see Figure 5.3), itcan be theorised that the model is struggling mainly due to the high numberof classes and the relative rarity of several of them.
This insight led us to add CityScapesCat as an experiment. Again, we seeboosts in performance between models trained from scratch and those withpre-trained weights, with minor changes for the Base variant. The qualitat-ive results in Figure 4.5 also show slightly more coherent masks than thoseof regular CityScapes in Figure 4.4, noting some trouble in the void (ignored)areas.
Although the experiment with CityScapes by categories strengthens theproposition that a primary issue for the model is the number of classes, wewould be remiss not to mention that QT-UNet-2D still trails far behind cur-rent SotA for the dataset. Indeed, the model is slower and less performant,though with a smaller computational and parameter budget. Although theeffect of the Cross-Attention mechanism on model performance is positivelycorrelated with the number of classes, toomany classes could still overwhelmthe model, especially when so many of them are so rare in the dataset. How-ever, it can be concluded that QT-UNet-2D is too slow to be effective in anyreal-time AD application.

5.3.4 Transfer to NTNU data

Observing the results from our transfer from CityScapes to NTNU data inTable 4.8 and Table 4.9, we find that our models struggle to properly trans-fer to the new data. Although the Dice scores in Table 4.8 are quite similar tothose seen for CityScapes in Table 4.6, we find that the mIoU scores are farlower for theNTNUdata. Given that theDice scoremetric ismore rewarding oftrue positives than IoU, this indicates that the model is capable of generating
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some true positives, but also generates many false negatives and false pos-itives. This can also be seen in the qualitative results, where there are someareas where the model is able to correctly classify the pixels, and large areaswhere it produces many false positives, such as classifying the building to theright as person.For NTNU by categories (see Table 4.9), we observe that all variants areable to transfer somewhat in terms of both Dice and mIoU scores, in contrastto NTNU by classes where the models suffer from a very low mIoU score.However, all variants are far weaker than their counterparts in CityScapes-Cat (see Figure 4.5), with more than 50% lower scores for all variants. Thisindicates that the weights trained for CityScapes by categories were not quiteadequate for the NTNU dataset.There could be several reasonswhy proper transfer could not be achieved.The most banale, but important, difference between the NTNU data and City-Scapes is the season in which the images in the dataset were taken. Whilst theimages in CityScapes are primarily from spring, summer, and early autumn,the images in the NTNU dataset were taken in late autumn. This differencein season has a profound impact on the appearance of objects in the imagescene. For example, vegetation and shrubbery is thinner in texture and col-oured brown and orange instead of green.TheNTNUdata and CityScapes data are also fromdifferent countries, withthe NTNU data having been sourced from Trondheim in Norway, whilst theCityScapes data is sourced from cities primarily in Germany2. This means thatthere are differences in architecture, road construction style, and signage thatcould have influenced the performance of QT-UNet-2D.However, given that Segformer is able to produce quite sound segmenta-tions of the data, as evident in Figure 4.6c, it seems more likely that the fail-ure of our model to properly transfer is more a reflection of the properties ofQT-UNet-2D rather than the exclusive effect of differences in country or theseasons.
5.3.5 Implications

As noted in the previous section, QT-UNet itself is too slow to be applied tomany real-time applications. However, the individual techniques themselvesdo have some merits that are worth noting. The Cross-Attention mechanismseems to be positively correlated with the number of classes, seemingly bet-ter able to distinguish and locate smaller targets. This result encourages theuse of the mechanism with few class tasks in Autonomous Driving, though adeeper investigation as to why the mechanism has a negative effect in taskswith fewer classes is warranted. Furthermore, the SSL-approach used seemsto have had quite a strong positive effect despite its collapse for the Basevariant. The effectiveness of SSL for segmentation is not novel, as several
2With only two foreign cities, Zürich and Strasbourg, included in the dataset.



Chapter 5: Discussion 99

works can testify to [64]. However, our scheme is3 the first to share a vir-tually identical pipeline between the 3D MIC and 2D AD contexts. Althoughour experiments are too limited to elaborate on the relative effectiveness ofdifferent SSL approaches in the MIC and AD domains, it opens the door forfurther investigation of this type of domain- and modality-independent SSLpipeline.

5.3.6 Error sources

The ignore & void class in CityScapes and CityScapesCat

As discussed in the experiment descriptions for experiment 2.14 and 2.25,class ID 0 was ignored during evaluation as is standard for these datasets.However, we elected to include this class during training. This seems to havehad a somewhat adverse effect on performance, as the model struggles tolearn exactly what to ignore and classify as 0, and thus confuses classifiableobjects with regions to be ignored. This phenomenon can be observed in thequalitative results in Figure 4.4 and Figure 4.5, where, for example, shadowsare prone to misclassification into the ignore class. SegFormer [79], for ex-ample, ignores class 0 all-together during training. This leads us to speculatethat ignoring the class during training could have helped QT-UNet-2D in bothCityScapes and CityScapesCat. Naturally, better performance in CityScapesand CityScapesCat by training without class 0 could also have aided perform-ance when transferring to the NTNU data.

5.4 Other

This sectionwill briefly describe other pertinent insights from the experimentsthat are not directly related to the research questions.

5.4.1 Underutilised computational budget

The results of the ablation study (see Table 4.10) indicate a significant spee-dup in terms of FLOPs between VT-UNet and QT-UNet, due to the updatedCross-Attention design and the addition of spatial depth reduction. This re-duction in computational burden and the consequent increase in availablecomputational budget provide an opportunity to extend the model with an-other stage, a less aggressive patch embedding strategy, a higher number ofembedded dimensions, and other architectural and hyperparameter changesto better exploit the released computational budget. There was not enough
3To our knowledge.4See Section 3.5.3.5See Section 3.5.3
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time to carry out such experiments in this thesis, leaving it as an avenue forfuture exploration.

5.4.2 Depth-wise reduction and its effect on accuracy

Again looking at the results of the ablation study in Table 4.10, the only ma-jor difference in scores between versions with and without depth-wise reduc-tions in the patch merge layers and depth-wise expansion in the patch ex-pansion layers is in the Hausdorff Distance, increasing across all model sizes.It can be surmised that this is the price paid for the saving in FLOPs, know-ing that the reason for those savings is that the model is relieved of the needto attend to long distances in the depth dimension in all stages. This meansthat the model is less capable of capturing certain long-range dependencies,which could negatively impact performance. Dropping the depth-wise reduc-tion could, of course, increase performance, but at the cost of extra compu-tation. Similarly, one could drop the reductions in height and width to helpthe model attend to even longer distances, but at a significantly increasedcomputational cost. This is the essential trade-off faced in machine learningeverywhere: Speed versus accuracy.
As discussed in Section 5.4.1, the reduction in the overall compute neededfor the model provides a larger computational budget to extend and modifyQT-UNet. Though there was not sufficient time to experiment with this in thisproject, it can be theorised thatmodifications and extensions elsewhere in themodel could alleviate the performance reduction caused by the depth-wisereduction, and perhaps indeed outperform the original without depth-wisereduction. More experiments are needed to verify this theory.

5.5 Retrospective evaluation

This section will evaluate different aspects of the way this thesis was carriedout, looking at positive, negative, and unfortunate aspects of the process.Overall, we are satisfied with the overall process, the effort made, and theoutcome of the project, but there were also a hand-full of things that couldhave been done differently.
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Positive aspects
• Modular models, experiments, and pipelineBuilding upon the experimental setup we built in the specialisa-tion project, with modular dataset and model classes using PyT-orch Lightning [82], we were able to quickly set up and test newmodels and datasets in our pipeline with minimal modificationsto each moving part of the overall system. This enabled us toquickly set up and add new experiments quickly.
• Using PyTorch Lightning and MONAIUsing these two packages greatly helped our productivity. Light-ning [82] abstracted away most of the engineering challenges re-lated to machine learning, allowing us to focus our efforts on re-search instead. Using MONAI [84] greatly eased the interactionwith medical data, simplifying the development of MIC experi-ments
• Efficient use of IDUNBuilding upon our experience with IDUN from the specialisationproject, we were able to intelligently and efficiently orchestratethe nearly 900 compute jobs completed for this project throughthe clever use of several job array scripts and other SLURM tricks.
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Negative aspects
• Insufficient model experimentationThe large number of experiments planned for this thesis meantthat there was insufficient time to experiment with model config-urations and hyperparameters. As noted in the discussion, QT-UNet has an underused computational budget that we were un-able to tap into.
• Slow project startThough the reuse and further development of the experimentalsetup developed for the specialisation project helped us start thisproject, we still suffered a slow start to the project in which thefinal and proper experimental runs that were planned to begin inmid-March were not ready to go until mid-April. This set us backquite a bit from our original project timeline.
• Missed data for CT-SSL pretrainingThe CT-SSL dataset was intended to include 771 cardiac CT im-ages from the TCIA COVID19dataset [99]. Their inclusionwas neg-lected and not discovered until pre-training on the CT-SSL datasetwas well underway, in early May, but it became clear that restar-ted runs would take too long to complete. Therefore, it was de-cided to continue the runs without the extra data. This may havehad a slight negative impact on the performance of the modelspre-trainedwith this dataset. However, the general balance of theregions of interest in CT-SSL is still sound (see Table 3.2).
• Model misconfigurationWe discovered in the last month of our project that we had afatal misconfiguration in our experimental setup, with subexper-iments 1.2, 1.3, 2.1 and 2.2 having been trained as if their targetmasks could overlap as in subexperiment 1.1, despite that notbeing true. We were able to redo the runs for the incorrectly con-figured experiments in time, though it caused considerable stressin the final stretch of the project.
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Unfortunate aspects
• File system failure on IDUNOver Easter, IDUN suffered a file system failure where writing todisk would fail due to a "out of disk space" error, despite the factthat space was available. Although no data was lost, we suffereddifficulties with downloading datasets to IDUN and running ourexperiments, as they would crash when writing to disk. This wasunfortunate, as we had planned to start most of our final runsthat week, setting us back another week when we were alreadybehind schedule.
• Swin-UNETR source code unavailableAs noted in our discussion of the effect of SSL, we regret the un-fortunate fact that the source code for Swin-UNETR, whose pre-training scheme this project based its own scheme upon, was notpublished in time to affect this project, making it harder to verifythat our SSL approach was valid and soundly based.
• Disabled test serversAs noted in Chapter 4, several of the test servers from whichwe source the results for the other models did not accept newsubmissions when the training runs for this project ended. Thismeant thatwewere unable to submit predictions over the test setin those datasets and get results equivalent to themodels againstwhich we compare. This made it difficult to make fair comparis-ons between the performance of QT-UNet and that of the othermodels.
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Conclusion and Future Work

Conclusions are drawn in Section 6.1 from the discussion and results in thepreceding sections, before potential avenues for future work are presentedin Section 6.2.

6.1 Conclusion

Recalling the introduction to this project, the overall stated goal of the projectwas to:

To explore the efficacy of a cross-domain all-Transformer UNetsegmentationmodel basedon the Swin transformer, self-supervisedpre-training, and Encoder-Decoder cross-attention onMedical Im-age Computing and Autonomous Driving datasets.

To achieve this goal, three Research Questions were formulated and theQT-UNetmodel was created to incorporate them into a testable unit. QT-UNetand its variants were subjected to six experiments to answer the researchquestions. The first ResearchQuestion deals with the effect of Self-SupervisedLearning upon the all-Transformer Swin-based UNet. For this question, wepre-trained QT-UNet using a large CT dataset consisting of 3,597 CT scans forCT tasks and using the task data directly formodalities likeMRI where relevantdata is more scarce.
105
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Research Question 1
Q:What is the effect of using self-supervised pretraining of the encoderin an all-Transformer UNet on the performance of the overall networkin segmentation tasks?
A:Our results show that the effect of self-supervised pre-training variesdepending on whether in-task or out-of-task data is used. With out-of-task data, SSL can greatly improve the performance of the overallmodel. With in-task data, changes in performance are more marginal,though some improvements can be attained in certain tasks like BraTSwhere Hausdorff Distance was reduced.

The second Research Question asks what effect Cross-Attention has onthe model. For this question, we train VT-UNet alongside QT-UNet to illumin-ate the effect of the updated Cross-Attention mechanism introduced in QT-UNet and compare bothmodels to other SotAmethodswithout Cross-Attention.

Research Question 2
Q: What is the effect of using encoder-decoder cross-attention on theoverall performance of a all-Transformer UNet?
A: Our results show that the use of Cross-Attention can boost theoverall performance of the model in MIC tasks. QT-UNet introducedan updated approach to the mechanism, achieving a better speed-to-performance trade-off by trading a 7.69% increase in parameters fora 10.42% decrease in FLOPs with negligible impact on Dice score com-pared to VT-UNet for the Base variant in BraTS. In BTCV, we find thatthe mechanism increases the Dice score by 18 points in the averageby better capturing the position of smaller organs. However, the Cross-Attentionmechanism in QT-UNet is less accurate in terms of HausdorffDistance, indicating that it is less able to capture certain details than theoriginal approach favoured by VT-UNet [10]. We also observe that themechanism seems more effective in tasks with several target classes.More research is needed to explore the exact role and interaction ofCross-Attention in relation to the other components in the model andthe effect of the number of classes in the target.

The third Research Question deals with the application of the techniquesmentioned in RQ 1 and 2 between the 2D and 3D modalities. We spun out a2D variant of QT-UNet by removing the depth dimension in all componentsand applied it to CityScapes and CityScapes by categories (CityScapesCat).
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Research Question 3
Q: How can these techniques be applied effectively for both 2D and 3Dsegmentation tasks?
A:Our results show that the SSL pipeline can be applied directly to both2D and 3D data without any modifications other than to account forthe extra spatial dimension. Using the SSL pipeline in a similar out-of-task situation as discussed for RQ 1 leads to a significant performanceincrease. Cross-Attention can be applied in a similar fashion betweenthe 2D and 3D modalities, again only needing to account for the extraspatial dimension. Its effect appears to be positively correlatedwith thenumber of classes in the target, but is negative given a restricted num-ber of output classes. However, we find that the 2D variant of QT-UNettrails far behind the current SotA. We additionally find that the modelstruggles in tasks with too many target classes, as is evident by the in-crease in performance on CityScapesCat, although our overall resultsare influenced by the fact that we included the void class in our train-ing. More research and effort is needed to bring the overall model topar with SotA.
The goal of this thesis was to explore the efficacy of a all-TransformerUNetsegmentation model across domains and using Cross-Attention and SSL, giv-ing birth toQT-UNet: TheQuerying TransformerU-Net. Althoughwefindmixedresults in some of the experiments, we conclude that themodel and our over-all approach shows promise and could potentially be developed further to fillthe performance gaps discovered.

6.2 Future work

Whilst the results in this thesis are encouraging in some aspects, there is stilla way to go to bring the model up to par in several of the datasets.
6.2.1 Better utilisation of computational headroom

Observing that QT-UNet has an overall reduction in FLOPs of 40% against VT-UNet, an opportunity arises to extend and modify the model within a reason-able computational budget. A handful of possibilities are listed below.
• Increase the spatial dimensions of the crop for MSD and BTCV from 963

to 1283 as in BraTS2021, to add more spatial context to the model.
• Reduce the patch size in the Patch Embedding to capture more fine-grained information in the embedding and maintain a higher spatialresolution throughout the model.
• Add another stage to the UNet, deepening the network.
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• Employ deep supervision, following UNetFormer [75], to strengthen de-coder training.

6.2.2 Deal with ignore class in CityScapes differently

In our experiments with CityScapes and CityScapesCat, the ignore label 0 wasstill included during training. Retraining QT-UNet-2D without that label couldbe beneficial to model performance, seeing as we observed qualitatively thatit reduced the quality of the predictions.

6.2.3 Deeper analysis of Cross-Attention

Our experiments uncover several interesting effects of the newCross-Attentionmodule, including positive and negative effects in terms of performance andspeed-to-parameter trade-offs. In particular, our experimentswith CityScapesand CityScapesCat uncovered a positive correlation between the number oftarget classes and the effect of Cross-Attention on the overall model, althoughthe effect is negative in CityScapesCat. Furthermore, we observe that QT-UNetis much better at spleen segmentation in BTCV1 than in MSD Task 9 Spleensegmentation2. This could indicate that a similar correlation also holds true inthe 3D context, though our experiments are too limited to say so conclusively.Furthermore, the exact way the newCross-Attentionmodule incorporates theinformation from the encoder to the decoder is not fully understood. Exper-iments to illuminate these effects could inform further development of themechanism to improve its performance.

6.2.4 Hyperparameter tuning

As noted in Section 5.4.1, our timeframe was insufficient to properly tune thehyperparameters of QT-UNet. In the future, a hyperparameter search couldbe conducted to potentially discover more optimal parameter values.

6.2.5 Extending CT-SSL

As noted in Section 5.5, the CT-SSL dataset is missing 717 cardiac CT imagesfrom the TCIA COVID19 dataset [99]. Adding these to the dataset and retrain-ing the model could improve performance and reveal the impact of omittingthis dataset. On a more general note, more data is generally expected to im-prove performance [98]. Extending the dataset with evenmore datasets couldtherefore be quite benifical.
1A task with 13 target classes.2A task with one target class.
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6.2.6 Roubustness analysis

Peiris et al. [10] show in their original work that VT-UNet is quite robust againstdata anomalies in MRI scans. A similar analysis for QT-UNet could be quite il-luminating, highlighting the influence of the updated Cross-Attentionmodule.
6.2.7 Extension to other modalities

This thesis focused on CT, MRI and RGB image data to limit the scope of theproject, though QT-UNet and QT-UNet-2D are quite general in nature. Theycould potentially also be applied to other modalities, such as ultrasound ima-ging, X-ray images, histological slides, videos, and more.
6.2.8 2.5D model variant

This project produced two distinct types of QT-UNet: One for 3D modalitiesand one for 2D modalities. A possibility not explored in this project, a thirdvariant that essentially merges the 3D and 2D variants, is a 2.5D variant.In a 3D MIC context, a 2.5D model is a model that takes as input full-size(in width and height) slices of the input, as well as a hand-full of slices in eitherdirection in the depth axis to provide context. This has the advantage of al-lowing the model to exploit the full spatial context of the width and height ofthe input and some volumetric context in the depth of the input, whilst stillmaintaining a manageable computational cost.Such a model could also have uses in a 2D AD context, where time couldact as surrogate for depth. For example, themodel could be fed a hand-full ofprevious frames of either raw input or segmentations to give the model morecontext for the current input.
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Appendix A

MSD qualitative results

The qualitative results from MSD task not selected to be shown in Chapter 4- Results can be seen in Figure A.1.
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Taskno. Raw image Ground Truth VT-UNet QT-UNet/scratch QT-UNet

3

5

7

8
Figure A.1: Qualitative results for select MSD tasks.



Appendix B

CityScapes class mapping

Ten of the 30 classes in the CityScapes dataset are to be ignored when usingthe dataset. The exact mapping between the original class ID and themappedclass ID and category ID is given in Table B.1, as described in [31]. Table B.2shows the names of the categories in CityScapes with associated IDs.
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Label name Original class ID Mapped class ID Mapped category IDUnlabeled 0 0 0Ego vehicle 1 0 0Rectification border 2 0 0Out of ROI 3 0 0Static 4 0 0Dynamic 5 0 0Ground 6 0 0Road 7 1 1Sidewalk 8 2 1Parking 9 0 1Rail track 10 0 1Building 11 3 2Wall 12 4 2Fence 13 5 2Guard rail 14 0 2Bridge 15 0 2Tunnel 16 0 2Pole 17 6 3Polegroup 18 0 3Traffic light 19 7 3Traffic sign 20 8 3Vegetation 21 9 4Terrain 22 10 4Sky 23 11 5Person 24 12 6Rider 25 13 6Car 26 14 7Truck 27 15 7Bus 28 16 7Caravan 29 0 7Trailer 30 0 7Train 31 17 7Motorcycle 32 18 7Bicycle 33 19 7License plate -1 0 7
Table B.1: The mapping between original class IDs and IDs used for trainingand evaluation in CityScapes and CityScapesCat.

Category name Category ID
Void 0Flat 1Construction 2Object 3Nature 4Sky 5Human 6Vehicle 7

Table B.2: CityScapes category names.
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