Andreas Hammer Haversen

QT-UNet

A Self-Querying All-Transformer U-Net for 2D and
3D Segmentation Augmented by Self-Supervised
Learning

Master’s thesis in Computer Science
Supervisor: Frank Lindseth & Gabriel Kiss

June 2022

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke

Bo
:
o

zZ

0y
£e
o Y
[Te]
£wun
DOL
c g
w S
= a
SE
S O
oo
D«
w2
T C
ca
=
85
S g
gw
_CD
o}
|_
c
o
=1
©
€
_
L
£
Y
S)
=]
o
©
[N

@ NTNU

Norwegian University of
Science and Technology

Andreas Hammer Haversen

QT-UNet

A Self-Querying All-Transformer U-Net for 2D and 3D
Segmentation Augmented by Self-Supervised
Learning

Master’s thesis in Computer Science
Supervisor: Frank Lindseth & Gabriel Kiss
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Norwegian University of
Science and Technology

Abstract

In 2017, the Transformer model revolutionised the Natural Language Pro-
cessing field, bringing large-scale models capable of understanding complex
long-range dependencies in text at a manageable computational cost. In 2020,
the Vision Transformer brought a similar revolution to Computer Vision, with
similar scaling benefits.

The development of linear time complexity Vision Transformers like the
Swin transformer further aided the adoption of Vision Transformers, leading
to a large number of applications in Autonomous Driving and Medical Image
Computing. Models like VT-UNet melded traditional UNets with Swin trans-
formers to create a strong volumetric segmentation model for brain tumour
segmentation, introducing a novel Encoder-Decoder Cross-Attention concept.

Parallel to these revolutions, Self-Supervised Learning saw a similar re-
volution and uptake in use within several Computer Vision subdomains, par-
ticularly Medical Image Computing where training data is often scarce. Not-
ably, Swin-UNETR pre-trained a strong Swin-based encoder with a large CT
dataset utilising contrastitive, reconstructive, and rotation tasks, demonstrat-
ing strong performance in downstream Medical Segmentation Decathlon (MSD)
and Beyond The Cranial Vault (BTCV) tasks.

Our research melds these advances together to produce the Querying
Transformer UNet (QT-UNet): A all-Swin Transformer UNet with Encoder-Decoder
Cross-Attention, enhanced by Self-Supervised Learning (SSL). QT-UNet is tested
with several Medical Image Computing datasets to evaluate its efficacy as a
general volumetric segmentation model. We also collect a large CT pretrain-
ing dataset dubbed CT-SSL with 3,597 CT scans. A 2D version, QT-UNet-2D, is
spun out to evaluate the techniques in a 2D Autonomous Driving context.

Our best model is competitive with State of the Art in BraTS2021 despite
a 40% reduction in FLOPs against our baseline VT-UNet, with an average Dice
score of 88.61 and Hausdorff Distance of 4.85mm. We find weaker results
with BTCV and Medical Segmentation Decathlon, but demonstrate the effect-
iveness of both our new Cross-Attention mechanism, and our SSL pipeline
when pre-training with our CT-SSL dataset. We transfer the model to a 2D
context with CityScapes, finding that our new Cross-Attention mechanism and
SSL pipeline are effective without modification.

iv Andreas H. Haversen: QT-UNet

Keywords: Medical Image Segmentation, Autonomous Vision, Deep Learn-
ing, UNet, Self-Supervised Learning, Encoder-Decoder Cross-Attention, Vision
Transformer, Swin Transformer

Sammendrag

| 2017 revolusjonerte Transformer-modellen naturlig sprakbehandling ved a
tilgjengeliggjore store modeller som var i stand til & forstd komplekse sam-
menhenger over store avstander i tekst med en handterbar beregningskost-
nad. | 2021 brakte introduksjonen av Vision Transformere med seg en likn-
ende revolusjon i bildebehandling, med liknende skaleringsfordeler.

Utviklingen av effektive Vision Transformere med lineaer tidskompleksitet
som Swin Transformeren bidrog til ytteligere opptak i bruk av Vision Trans-
formere, spesielt i felter som Autonomt Syn og Medisinsk Bildeanalyse. Mod-
eller som VT-UNet smeltet sammen tradisjonelle UNet med Swin Transformere
for a skape en ny sterk volumetrisk segmenteringsmodell for hjernesvulster,
med et nyskapende Enkoder-Dekoder Cross-Attention konsept.

Parallelt med disse revolusjonene opplevde Self-Supervised Learning en
lignende revolusjon og gkning i bruk innen flere datasynsdomener, spesielt
domener der det er knapt med treningsdata. Swin-UNETR forhandstrente en
sterk Swin-basert koder med et stort CT-datasett og kontrast-, rekonstruksjons-
og rotasjonsbaserte treningsoppgaver, og viste sterk nedstrgms ytelse i Med-
ical Segmentation Decathlon (MSD) og Beyond The Cranial Vault (BTCV).

Dette prosjektet smelter disse fremskrittene sammen med modellen Query-
ing Transformer UNet (QT-UNet): Et all-Swin Transformer UNet med Enkoder-
Dekoder Cross-Attention, forsterket med Self-Supervised Learning. QT-UNet
testes med flere Medical Image Computing datasett for & evaluere model-
lens effektivitet som en generell volumetrisk segmenteringsmodell. Vi samler
et stort datasett kalt CT-SSL med 3.597 CT-skanninger til pretrening. En 2D-
versjon, QT-UNet-2D, spinnes ut av hovedmodellen for a evaluere effektiv-
iteten til teknikkene i en 2D Autonomt synskontekst.

Var beste modell er konkurransedyktig med "state of the art" i BraTS2021
med 40% fzaerre FLOPs enn var baseline VT-UNet, med en gjennomsnittlig Dice
score pa 88,61 og Hausdorff Distance pa 4,85 mm. Vi finner mindre gode res-
ultater med BTCV og MSD, men demonstrer effektiviteten til bade var nye
Cross-Attention mekanisme og var SSL-pipeline ved pretrening pa CT-SSL. Vi
overfgrer ogsa teknikkene til en 2D-kontekst med CityScapes, og finner at var
Cross-Attention mekanisme og SSL-pipeline er effektiv uten endringer.

Preface

This Master's thesis in Computer Science was completed as part of the Com-
puter Science master programme at the Norwegian University of Science and
Technology.

Ever since starting my studies in artificial intelligence, | have found it to
be a deeply interesting and satisfying field of study. | recognise how lucky |
have been to be able to work in a field currently experiencing intense devel-
opment and research. For this thesis specifically, | feel especially fortunate to
have been able to work with Vision Transformers and Self-Supervised Learn-
ing, both fields that have experienced intense research interest and progress
in the last three years.

Iwould like to thank my supervisors Frank Lindseth and Gabriel Kiss, whose
valuable insight and feedback made this thesis possible.

Finally, I would also like to thank my fellow masters students at the Fiol
masters hall, who kept me sane throughout the thesis writing process.

Vii

Contents

Abstract e iii
Sammendrag '
Preface e vii
Contents e ix
Figures e xiii
Tables e XV
ACrONYMS xvii
1 Introduction 1
1.1 Background and Motivation, 1
1.2 Research Goal and Research Questions. 2
1.3 Contributions e 3
1.4 Reportoutline 3

2 Background theory and RelatedWork 5
2.1 ComputerVision 5
2.1.1 Classification 5

2.1.2 Objectdetection 6

2.1.3 Segmentation 6

2.1.4 EvaluationmetricsforCV 8

2.2 Datasets 10
2.2.1 Medical Image Computing(MIC) 10

2.2.2 Autonomous Driving (AD) 14

2.3 Alfundamentals e 15
2.3.1 Machinelearning 15

2.4 Artificial Neural Networks 17
2.4.1 TheArtificial Neuron 17

2.4.2 Activationfunctions o 18

2.4.3 Network architecture 18

244 ForwardpassinaANN 19

245 Lossfunctions. 19

24.6 BackwardpassinaANN 21

247 Gradientdescent. 22

248 Optimisers i 22

249 Overfitting o 23

2.4.10 Batch Normalisation. 25

Andreas H. Haversen: QT-UNet

2.4.11 Layer Normalisation 26
2.4.12 Gradient Accumulation oo 26
2.5 Convolutional Neural Network (CNN) 27
251 U-Net e 30
2.6 Transformers e 30
2.6.1 Self-Attention e 31
2.6.2 Multi-Head Self-Attention 32
2.6.3 Modelstructure. i e 33
2.6.4 SpeedinguptheTransformer 34
2.7 VisionTransformers 35
270 Why ViT? 36
272 HowViTslearn 37
2.7.3 SpeedingupViT. 38
2.7.4 Relevant general Vision Transformer architectures 38
2.8 Self-supervisedlearning e 41
2.8.1 Pretexttasks. e 41
2.8.2 Contrastitive Methods 41
2.8.3 Bootstrap Your Own Latent(BYOL) 42
2.9 Relatedwork e 43
29.1 Swin-UNet e 43
29.2 VT-UNet. e e 45
293 UNETR e 46
2.9.4 Swin-UNETR e 46
295 nnFormer. 48
29.6 Model Genesis e 48
297 TransVW . . . e 48
2.9.8 UNetFormer e 49
299 Othermodels e 49
Methodology 51
3.1 Softwareandhardware 51
3.2 Datasets e 52
321 MICdatasetS. . .. v it e 52
3.22 ADdatasets e 55
3.3 QT-UNet . .o e 56
3.3.1 Patchpartitioning 58
3.3.2 QT-UNetEncoder. 58
3.3.3 QTEncoderBlock 58
3.3.4 Bottleneck e 60
3.3.5 QT-UNetDecoder iinnini. 60
3.3.6 QTDecoderBlock 60
3.3.7 Classifier e e 61
3.3.8 Commonparameters 61
339 Variants e 62

3.3.10 Training QT-UNet. 62

Contents Xi

3.3.11 Inference with QT-UNet 64
33.12SSLIinQT-UNet 64

3.4 Comparisontoothermodels. 66
3.5 EXperiments 66
3.5.1 PreparatorySSL. 66
3.5.2 Experiment 1: Medical Image Computing 68
3.5.3 Experiment 2: Autonomous Driving 70
3.54 Ablationstudy 71

3.6 Modelevaluation 72
4 Results 73
4.1 Experiment 1: Medical Image Computing. 73
4.1.1 Subexperiment1.1:BraTS2021 73
4.1.2 Subexperiment1.2:BTCV 74
4.1.3 Subexperiment1.3:MSD............. 76

4.2 Experiment 2: Autonomous Driving 78
4.2.1 Subexperiment 2.1: CityScapes. 78
4.2.2 Subexperiment 2.2: CityScapesCat 81
4.2.3 Subexperiment2.3:NTNUdata 82

43 Ablations 85
5 Discussion. 87
5.1 RQ1:Theeffectof SSL 87
5.1.1 Effect of out-of-task pretraining 87
5.1.2 Effect of in-task pretraining 89
51.3 Overalleffect 90
51.4 Implications e 90
5.1.5 Errorsources 91

5.2 RQ2: Encoder-Decoder Cross-Attention 92
5.2.1 Cross-Attention versus no Cross-Attention 92
5.2.2 The effect of the updated Cross-Attention module 92
523 Implications 94
5.2.4 ErrorsourCes 94

5.3 RQ3: Applicationin2Dcontexts 95
5.3.1 Effectofpretraining 95
5.3.2 Effectof cross-attention 95
5.3.3 The effect of the numberofclasses. 97
53.4 TransfertoNTNUdata 97
5.3.5 Implications 98
5.3.6 Errorsources 99

54 Other 99
5.4.1 Underutilised computationalbudget 99
5.4.2 Depth-wise reduction and its effect on accuracy 100

5.5 Retrospective evaluation 100
6 Conclusionand FutureWork 105

6.1 CoNClUSION v o e e e e 105

xii Andreas H. Haversen: QT-UNet

6.2 Futurework 107
6.2.1 Better utilisation of computational headroom 107

6.2.2 Deal with ignore class in CityScapes differently 108

6.2.3 Deeper analysis of Cross-Attention 108

6.2.4 Hyperparametertuning 108

6.2.5 ExtendingCT-SSL. 108

6.2.6 Roubustnessanalysis 109

6.2.7 Extension to other modalities 109

6.2.8 25D modelvariant 109
Bibliography 111
A MSD qualitativeresults 123

B CityScapesclassmapping 125

Figures

2.1 Anexample of a classificationtask.. 6
2.2 Anexample of a object detectiontask. 7
2.3 A comparison of segmentation tasks. lllustration from [14]. ... 8
2.4 Example ground truth from MSD Task 6, Lung Tumour segment-
ationina CT-scan. i 11
2.5 Example ground truth from BraTS2021. 12
2.6 Example ground truth from BTCV. 13
2.7 Example of PanNuke image and ground truth. 13
2.8 Examples from the KITTI semantic segmentation dataset, taken
from[30]. . ..o e e 14
2.9 Anexample segmentation mask from CityScapes. 15
2.10 Example segmentation from nulmages, from[32]. 16
2.11 A Multi-Layer Perceptron (MLP). 19
2.12 lllustration of local and global minima. 23
2.13 Early stoppingexample. 24
2.14 lllustration of a 2D convolution. 28
2.15 lllustration of dilated convolution. 28
2.16 Max poolingexample. 29
2.17 Transposed convolutionexample. 30
2.18 Atypical U-Net architecture. 31
2.19 Self-attention (left) and Multi-head self-attention (right). Figure
from 1] ... 33
2.20 Full Transformer architecture. Figure from [1]. 34
2.21 Overview of the original Vision Transformer (ViT). From [4]. ... 36
2.22 Anillustration of the blurriness. 37
2.23 An overview of the Swin Transformer. Figures from [8]. 40
2.24 The architecture of Swin-UNet, figurefrom [9]. 44
2.25 Overview of VT-UNet. Figures from [10]. 45
2.26 Overview of Swin-UNETR, figures from [11] 47
3.1 The proposed QT-UNet architecture. 56
3.2 Encoder-Decoderinteraction. 57
3.3 lllustration of 3D windowed self attention, from [87].. 59
3.4 Architecture of QT-UNet-2D. 63

Xiii

Xiv

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
53

A1

Andreas H. Haversen: QT-UNet

Example results from Experiment 1, BraTS2021. 75
Example results from Experiment 1.2, BTCV. 77
Qualitative results for select MSD tasks. 79
Example results from Experiment 2.1, CityScapes. 81
Example results from Experiment 2.2, CityScapesCat. 83
Example results from Experiment 2.2, NTNU. 84
Example results from Experiment 2.2 NTNU, by categories. ... 85
Loss curves for CT-SSL pretraining. 88
Loss curves for CityScapes pretraining. 96
Class distribution for CityScapes in terms number of finely an-

notated pixels, grouped by category. Figure from [31]. 97

Qualitative results for select MSD tasks. 124

Tables

2.1 Overview of classification types with abbreviations. 9
3.1 Hardware Specifications. 52
3.2 Overview of datasets used for pre-training. 66
3.3 ParametersforSSLruns. 66
3.4 Batch sizes used for each experimentinSSL. 67
3.5 Epochs used for each experimentinSSL.. 67
3.6 Common parameters for MIC experiments. 68
3.7 Mapping between MSD task and weights used for pre-trained

QT-UNet. . . . 69
3.8 Common parameters for AD experiments.. 70
3.9 Overview of enabled features for the ablation models.. 71
4.1 BraTS2021results. 74
4.2 BTCV Dicescores(T)perorgan.uuuuuueeno.. 76
43 BTCVresultssummary., 78
4.4 MSD Dicescores(T)pertask.. 80
45 MSDresultssummary. e 80
4.6 CityScapesvalresults. L. 82
4.7 CityScapesCatvalresults. 82
48 NTNUresults.. 83
49 NTNU by categoriesresults. 84
4.10 Ablation study results, on BraTS2021. 86
B.1 The mapping between original class IDs and IDs used for train-

ing and evaluation in CityScapes and CityScapesCat. 126
B.2 CityScapes categorynames.« ... 126

XV

Acronyms

AD Autonomous Driving. iii, ix-xi, xv, 1-3, 5, 10, 14, 15, 49, 55, 64, 70, 78, 97-
99, 105, 109

ADAM ADAptive Movement estimation. 23
Al Artificial Intelligence. 15

ANN Artificial Neural Network. ix, 5, 15, 17, 19-21, 26, 27, 32

BraTS Brain Tumour Segmentation. iii, 3, 11, 49, 53, 64, 67, 68, 89, 90, 92, 94,
106

BTCV Beyond The Cranial Vault. iii, v, xiii, 3, 12, 13, 45, 46, 48, 53, 87, 89, 90,
92-95, 106-108

BYOL Bootstrap Your Own Latent. x, 42, 65, 67, 91

CA Cross-Attention. iii, xi, xii, 2, 3, 45, 60, 61, 70, 71, 78, 81, 82, 85, 86, 92-95,
97-99, 106-109

CE Cross Entropy. 20, 62
CNN Convolutional Neural Network. x, 1, 5, 27, 29, 30, 32, 46

CV Computer Vision.iii, ix, 1, 2,5, 8, 10, 12, 14, 15, 30, 35, 36, 50, 51, 62

DL Deep Learning. 15
DPT Dense Prediction Transformer. 38

DSC Dice Similarity Coefficient. 10, 20, 45, 46

FN False Negative. 9, 10

FP False Positive. 9, 10
HD Hausdorff Distance. iii, 10, 45, 48, 68, 73, 86, 89, 90, 93, 94, 100, 106

Xvii

XViii Andreas H. Haversen: QT-UNet

loU Intersection over Union. 9, 10, 70, 71, 78, 81, 82, 95, 97, 98

MIC Medical Image Computing. iii, ix-xi, xv, 1-3, 5, 10-12, 20, 48, 49, 52, 64,
68, 73,90, 99, 101, 105, 106, 109

ML Machine Learning. 5, 8, 15
MLP Multi-Layer Perceptron. xiii, 17-19, 35, 42, 43, 50, 58, 61, 65

MSD Medical Segmentation Decathlon. iii, v, xiii, 3, 11, 46, 48, 49, 53, 67, 69,
73,76, 87, 89, 90, 92-95, 107, 108

MSE Mean Squared Error. 20
NLP Natural Language Processing. iii, 1, 26, 30, 32, 35

ReLU Rectified Linear Unit. 18

RQ Research Question. 55, 87, 95, 105-107

SA Self-Attention. 48
SotA State of the Art. iii, 1-3, 36, 39, 42, 43, 46, 74, 76, 78, 90, 95, 97, 106, 107

SSL Self-Supervised Learning. iii, xi, xv, 2, 3,5, 17, 41, 46-48, 51, 52, 55, 64-69,
87,90, 91, 95, 98, 99, 103, 105-107

TCIA The Cancer Imaging Archive. 65
TN True Negative. 9

TP True Positive. 9, 10

ViT Vision Transformer. x, xiii, 1, 35-38, 46, 58

Chapter 1

Introduction

1.1 Background and Motivation

Transformers, introduced by Vaswani et al. [1], revolutionised the Natural Lan-
guage Processing (NLP) field by introducing a model that can effectively model
long-range dependencies while maintaining a manageable computational cost.
Transformers are now the dominant model in that field, with notable examples
being BERT [2] and GPT-3 [3]. The computational efficiency of the Transformer
has enabled NLP models of unprecedented size, with the largest variant of
GPT-3 having approximately 175 billion trainable parameters.

The attention mechanisms that power Transformers have also inspired
the adoption of similar mechanisms in models for Computer Vision (CV), with
some models incorporating self-attention mechanisms instead of convolution
or using a Transformer in conjunction with a convolutional backbone.

Dosovitskiy et al. [4] made significant progress in 2020 by introducing the
Vision Transformer (ViT), a near end-to-end Transformer model for image
classification. They showed that Transformers can be used for vision tasks
without significant backbones and the inductive bias that Convolutional Neural
Networks employ. They also showed that these models can achieve State of
the Art (SotA) performance for image classification, whilst still requiring less
computational resources and parameters to train than conventional CV mod-
els.

A major challenge for ViTs is that standard Transformer models suffer a
quadratic increase in memory and time complexity in terms of input length.
This hinders the application of ViTs on high-resolution images and volumes
such as those used for Autonomous Driving (AD) and Medical Image Comput-
ing (MIC) tasks without the usage of CNN backbones to reduce dimensional-
ity. Several approaches have been suggested to reduce the time complexity
of standard Transformers [5-7], and a handful of approaches to optimise for
image and volumetric data have been suggested for ViTs.

Liu et al. [8] introduced the Swin Transformer, which through the use of
self-attention in shifted windows has a linear-time complexity. This has en-

2 Andreas H. Haversen: QT-UNet

abled its use in applications with high-resolution images, as well as volumetric
data such as CT and MRI scans. The Swin Transformer has been successfully
applied to several dense prediction tasks, like segmentation and depth estim-
ation, thanks to its efficiency. Notable examples include Swin-UNet [9] and
VT-UNet [10]. The latter, a all-Swin Transformer UNet used for segmenting
MRI scans, introduces a novel Encoder-Decoder Cross-Attention concept, giv-
ing the decoder access to more information from the Encoder in addition to
what the traditional skip-connections in a traditional UNet allows.

A common challenge in any machine learning problem is getting enough
data to train the model with, to avoid overfitting the data and poor general-
isation. This is even more so a challenge in Medical Image Computing (MIC),
where labelling the data requires the effort of highly trained professionalsin a
very time-consuming task. Self-Supervised Learning (SSL) allows ML-practitioners
to get more out of their data without having to label their data, by generat-
ing pseudo-labels for more accessible unlabelled data. This has been used
to great effect for CV in general and in MIC especially. A notable work, Swin-
UNETR [11], combines SSL with a UNet that employs a Swin Transformer as
its encoder.

In this project, we attempt to build on recent advances in Vision Trans-
formers, focusing on MIC and AD. Taking VT-UNet and Swin-UNETR as inspir-
ation, as they currently hold SotA for several MIC datasets, we attempt to com-
bine these methods as well as introducing improvements to them. To this end,
we introduce the QT-UNet, which employs an all-Swin Transformer UNet with
Encoder-Decoder Cross-Attention and Self-Supervised Learning. We also ap-
ply this model in a 2D AD context to evaluate the efficacy of these techniques
in a more traditional CV context.

1.2 Research Goal and Research Questions

In this thesis, we investigate the effects of Cross-Attention as utilised in VT-
UNet and SSL as utilised in Swin-UNETR when applied in a general cross-
modality model, across 2D and 3D data from a wide variety of sources. We
also seek improvements to their original approaches to enhance model per-
formance. Our research goal can be stated as follows:

To explore the efficacy of a cross-domain all-Transformer UNet
segmentation model based on the Swin Transformer, self-supervised
pre-training, and Encoder-Decoder Cross-Attention on Medical Im-
age Computing and Autonomous Driving datasets.

To achieve this goal, we pose the following research questions (RQs):

e RQ1: What is the effect of using self-supervised pretraining of the en-
coder in an all-Transformer UNet on the performance of the overall net-
work in segmentation tasks?

Chapter 1: Introduction 3

¢ RQ2: What is the effect of using encoder-decoder Cross-Attention on
the overall performance of an all-Transformer UNet?

¢ RQ3: How can these techniques be applied effectively for both 2D and
3D segmentation tasks?

1.3 Contributions

We introduce QT-UNet, a Swin-based all-Transformer U-Net for semantic seg-
mentation of 3D and 2D data, augmented by Self-Supervised Learning. We
perform an extensive battery of tests with Medical Image Computing (MIC)
and Autonomous Driving (AD) datasets to examine its efficacy, comparing it
with recent state-of-the-art models for the respective datasets.

We introduce a novel Cross-Attention mechanism inspired by VT-UNet [10],
coupled with a new decoder block design that allows the decoder blocks in
the model to query the output of the same-stage encoder for information at
each stage of the decoding process. We also employ Self-Supervised Learn-
ing (SSL) for the encoder, based on the procedure developed for Swin-UNETR
[11], the first application of the technique across 2D images and 3D MRI and
CT volumes to an all-Transformer UNet known to the authors at the time of
writing. We collect a large dataset consisting of 3,597 CT scans, dubbed CT-
SSL, to pre-train the encoder for CT-based tasks.

We find strong performance with the BraTS2021 dataset when trained
from scratch, and an even stronger result in terms of Hausdorff Distance
when trained with weights pre-trained on the dataset. Both models are com-
petitive with current SotA with a 40% reduction in FLOPs compared to our
baseline VT-UNet.

We find weaker results with the BTCV and MSD, but validate the effect of
our Cross-Attention mechanism and our SSL pipeline when pre-training with
CT-SSL.

We transfer our techniques to a 2D Autonomous Driving context, demon-
strating the positive effects of Encoder-Decoder Cross-Attention and our SSL
pipeline in CityScapes and CityScapes by categories, although the model it-
self is weaker than the current SotA. We stress that the SSL pipeline was not
changed between the 3D and 2D context, highlighting its generality. We also
find that the effectiveness of Cross-Attention is related to the number of classes
in the targets.

1.4 Report outline

Chapter 1-Introduction introduces the project, its motivation, research goals,
and contributions.

Chapter 2 - Background theory and Related Work describes relevant back-
ground knowledge, as well as work related to the project and its experiments.

4 Andreas H. Haversen: QT-UNet

Chapter 3 - Methodology describes in detail the methodology of the project.
It contains information about the different experiments that have been run.
Chapter 4 - Results contains the results of our experiments.

Chapter 5 - Discussion contains our reflections on the results achieved in the
previous chapter, as well as on our method.

Chapter 6 - Conclusion and Future Work concludes the report describing
the answers this project gave to the research questions and the achievement
of the overall project goal. A discussion of potential directions for future work
and improvement is also presented.

Chapter 2

Background theory and
Related Work

This chapter will introduce the theoretical background for the work done in
this project and works related to it. The chapter starts with a short intro-
duction to CV tasks in Section 2.1 followed relevant MIC and AD datasets
in Section 2.2, to introduce the problem domain. Section 2.3 then describes
Machine Learning fundamentals. Section 2.4 describes Artificial Neural Net-
works, while Section 2.5 describes Convolutional Neural Networks. Section 2.6
describes Transformers in general, whilst Section 2.7 describes Vision Trans-
formers specifically. Section 2.8 describes Self-Supervised Learning before
Section 2.9 rounds of the chapter by presenting work relevant to this project.
The contents of this chapter draws heavily upon work done for the preparat-
ory project for this thesis [12].

2.1 Computer Vision

Computer Vision (CV) as a field deals with how computers can understand
digital images, volumes, and video. The field is in its entirety rather broad. For
brevity, this section will introduce common tasks in the field and introduce
relevant evaluation metrics, focusing on segmentation.

2.1.1 Classification

Classification is the task of correctly assigning an element to the correct class
[13]. Specifically, for CV, the tasks concern taking an image and correctly clas-
sifying its content into one of multiple classes. For example, a model might
be fed a 256 x 256 RGB image of a cat and asked to predict which breed of
cat is present in the image. An example of image classification can be seen in
Figure 2.1.

6 Andreas H. Haversen: QT-UNet

©
5}
O]
&
-
9
S
O
==
?
!
©
@)

Figure 2.1: An example of a classification task.

2.1.2 Object detection

Object detection can be considered an amp-ed up version of the classification
task. Rather than classifying a single object in an image, the goal is now to
correctly classify and locate multiple objects in the image. This allows us to, as
an example, detect the presence of multiple cats in an image and where they
are located in the scene. The output in an object detection task is bounding
boxes that indicate the position and dimensions of each object, as well as the
object class. An example can be seen in Figure 2.2.

In addition to being trained on the labels the model outputs, it is also
trained on how well they place the bounding boxes compared to the ground
truth boxes in the training set.

2.1.3 Segmentation

Segmentation takes object detection a step further and detects which class or
object each pixel belongs to. Pixels that are collectively assigned to the same
object or class are often referred to as a segmentation mask.

We can broadly divide the world into two distinct classes of objects: Things
- which are countable objects such as cars, people and animals - and stuff -
which are amorphous regions of similar texture or material such as grass, sky,

Chapter 2: Background theory and Related Work 7

Person Person

Figure 2.2: An example of a object detection task.

or road.

The three different types of segmentation can be characterised by this
divide. The study of stuff can be formulated as the task of doing semantic seg-
mentation, where the goal is to assign each pixel a class label [14]. Note that
things are considered a subset of stuff in the context of semantic segmenta-
tion and thus are still classified. Say we have an image of a busy road. Then,
cars, people, and other classes of entities on the road would each belong to
their respective class segmentation mask.

In contrast, the study of things can be formulated as the task of instance
segmentation, where the goal is to detect each object and delineate it with
a segmentation mask, classifying each object individually [14]. With our ex-
ample from above, each car and person on the road will have its own seg-
mentation mask.

Finally, the study of stuff and things together can be formulated as the
task of doing panoptic segmentation, where the goal is to assign both class
and instance labels to each pixel [14]. In our example, the road and the sky
would be classified as stuff and thus be segmented semantically, while the
cars and the people would each have their own instance segmentation mask.
Figure 2.3 shows the difference between the three segmentation tasks.

8 Andreas H. Haversen: QT-UNet

(a) Raw image

(c) Instance segmentation (d) Panoptic segmentation

Figure 2.3: A comparison of segmentation tasks. lllustration from [14].

2.1.4 Evaluation metrics for CV

Good quantitative metrics are needed to compare the performance of one
model to another, or against that of a human. There are several metrics in
use in the ML community in general and within the CV community specific-
ally. Different metrics will emphasise different aspects of model performance.
Some metrics will highly reward correct predictions of positives, whilst others
will emphasise the correct classification of a negative sample. This section will
give a brief overview of metrics terminology, some commonly used CV met-
rics, and the tasks with which the metrics are used.

Positives and negatives

Several metrics operate with the notion of positives and negatives relative to
some class, where a sample with a positive label is a member of the class,
while a sample with a negative label is not. When predicting membership of
the sample, either yes or no, we get four classes of predictions. If the model
correctly predicted that the element does indeed belong to the class, we have
a true positive. Likewise, if the model correctly predicted that the element is
not a member of the class, we have a true negative. On the other hand, if the
model predicted membership in the class while the label of the sample in-
dicates that it is not, we have a false positive. Vice versa, a prediction of non-
membership for a sample that is indeed a member of the class is a false neg-

Chapter 2: Background theory and Related Work 9

Label .. .
Prediction Positive Negative
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) | True Negative (TN)

Table 2.1: Overview of classification types with abbreviations.

ative. See Table 2.1 for a summary.

Precision and Recall

Using these primitives, we can define more complex metrics. Two of the most
fundamental metrics are precision and recall.

Precision, defined as in Equation (2.1), measures the probability that a
sample classification predicted by the model is actually a member of the class.
In other words, it measures the percentage of predictions that were true pos-
itives compared to the total number of true positives and false positives.

TP
Precision = ————— (2.1)
TP+FP
Recall, as defined in Equation (2.2), measures how many elements belong
to the class that the model is capable of correctly predicting, as a ratio of True

Positives and False Negatives.

Recall = _IP (2.2)
TP+ FN

Ideally, both precision and recall should both be high. That is, one would
like to have a high percentage of true positives and a high number of correctly
classified samples. However, in reality, increasing either measure will often
result in a decrease in the other. A trade-off must be made between high
recall and high precision. There is no silver bullet here. Different tasks will
have different requirements and require different trade-offs.

Intersection over Union

A commonly used metric for object detection and segmentation is Intersec-
tion over Union (loU) [15], also known as the Jaccard Index, as defined in
Equation (2.3). Essentially, loU measures the intersection between the pre-
diction and the ground truth (that is, the true positives) divided by the area of
the union of the prediction and the ground truth (that is, the true positives,
the false positives and the false negatives). The metric is defined in the range
[0, 1], with 0 indicating that there is no overlap between the ground truth and
the prediction and 1 indicating perfect overlap. For multi-class prediction, loU
is calculated for each class and then averaged. This is called mean loU, de-
noted as mloU.

10 Andreas H. Haversen: QT-UNet

TP

IoU=——"7"—""—
TP+FP+FN

Dice Similarity Coefficient

Another metric commonly used for segmentation is Dice Similarity Coefficient
(DSC) [16, 17], also known as the F1 score, as defined in Equation (2.4). It is
quite similar to loU, but it is more rewarding of true positives than loU. Non-
etheless, they are positively correlated, meaning that a higher loU score also
means a higher Dice score and vice versa. This metric has its roots in biology
and is used widely in the MIC field.

2-TP

DSC = (2.4)
2-TP+FP+FN

Hausdorff Distance

This metric [18], although less commonly used for standard CV tasks, is quite
often used for segmentation tasks in the MIC field. In a nutshell, Hausdorff
Distance measures how far two subsets of a metric space are from each other.
More concretely, it is informally the longest distance one can travel from any
point in one of the sets to any points in the other. Its interpretation can be
understood as a measure of how far the worst part of the predicted mask
was from the label. For MIC, it is usually denominated in millimetres.
Formally, the Hausdorff Distance is defined as follows: Let X and Y be two
non-empty subsets of a metric space M with distance measure d. Then we
define their Hausdorff Distance dy(X,Y) as in Equation (2.5), where d(a,B) =

inf d(a,b) is the distance from a point a € X to the subset B C X, sup is
beB
supremum and inf is infimum. The supremum and infimum are the smallest

and greatest elements of a set, respectively.

dy(X,Y) =max {sup d(x,Y), sup d(X,y)} (2.5)
xeX YEY

2.2 Datasets

There are several different datasets in the Medical Image Computing and
Autonomous Driving domains. What follows is a short description of a few
significant datasets in these domains.

2.2.1 Medical Image Computing (MIC)

MIC is a subfield of CV that deals with the processing and analysis of medical
image data for the purposes of aiding medical personnel with diagnosis and

Chapter 2: Background theory and Related Work 11

Figure 2.4: Example ground truth from MSD Task 6, Lung Tumour segment-
ation in a CT-scan.

decision making in the treatment of diseases. It has its own set of interest-
ing challenges, including high-resolution - often volumetric - data, with high
demands upon the accuracy of the predictions produced. Incorrect predic-
tions can have dangerous consequences, although it is uncommon for MIC
algorithms to make direct decisions about patient care, instead acting as an
aid and decision support to qualified medical personnel.

Medical Segmentation Decathlon

The Medical Segmentation Decathlon (MSD) dataset [19] is a collection of ten
semantic segmentation tasks from different organs and image modalities (CT
and MRI scans), segmenting organs, tumours, and cancer primaries depend-
ing on the task. Each task has a unique set of challenges, with the collection
as a whole aiming to highlight common challenges with medical data, such as
small training sets, unbalanced classes, multi-modality data, and small seg-
mentation targets. An example segmentation from Task 6 can be seen in Fig-
ure 2.4.

BraTS2021

The Brain Tumour Segmentation (BraTS) challenge [20-22], organised by the
Radiological Society of North America (RSNA), the American Society of Neur-
oradiology (ASNR), and the Medical Image Computing and Computer Assisted
Interventions (MICCAI) society, is a 3D MRI dataset for tumour segmentation.

12 Andreas H. Haversen: QT-UNet

Figure 2.5: Example ground truth from BraTS2021.

It includes 1251 samples, each with four 3D MRI modalities: native (T1), post-
contrast T1 weighted (T1Gd), T2-weighted (T2), and T2 Fluid-attenuated Inver-
sion Recovery (FLAIR). Its ground truth labels were annotated by physicians,
dividing the tumour into four regions: The enhancing tumour, the peritumoral
edema, the necrotic tissue, and the non-enhancing tumour core. An example
can be seen in Figure 2.5.

Beyond The Cranial Vault

The Beyond The Cranial Vault (BTCV) abdomen challenge dataset [23] is a
multi-organ segmentation dataset consisting of 50 samples. The samples are
portal venous phase CT scans collected from various collaborating institu-
tions. 13 organs were annotated by trained raters and reviewed for label ac-
curacy by a radiologist or radiation oncologist. Being a small dataset with
many classes and with certain small target organs, this dataset poses a chal-
lenging segmentation task. An example can be seen in Figure 2.6.

PanNuke

The PanNuke dataset [24] is a semantic nuclei segmentation dataset, contain-
ing 7,904 cases across 6 classes in three folds from 19 different tissue types. In
total, the set contains 205,343 labelled nuclei. Each fold contains a little over
2,500 samples. Whilst the dataset is relatively small in terms of number of
cases when compared to other recent CV datasets, is it quite large for a MIC
dataset. An example can be seen in Figure 2.7.

Chapter 2: Background theory and Related Work 13

Figure 2.6: Example ground truth from BTCV.

(a) Raw image (b) Ground truth segmentation

Figure 2.7: Example of PanNuke image and ground truth.

14 Andreas H. Haversen: QT-UNet

Figure 2.8: Examples from the KITTI semantic segmentation dataset, taken
from [30].

2.2.2 Autonomous Driving (AD)

Autonomous Driving is a sub-field of CV that deals with the processing and
analysis of images for the purposes of independent computer-driven naviga-
tion in an environment, typically a city street or a highway. It poses an inter-
esting set of challenges, as it requires accurate real-time analysis of complex
high-resolution scenes with many interacting elements in order to produce
intelligent driving decisions. The demands upon the algorithms used in this
space are high, as the consequences of late or incorrect predictions can lead
to dangerous manoeuvres in the real world, causing material damage and hu-
man injury. A notable example of a CV application in the AD field is Tesla’s full
self-driving system [25].

KITTI

The KITTI dataset [26-29] is a collection of several different datasets, compiled
into a Vision Benchmark Suite. Itincludes datasets for vision flow, depth estim-
ation, visual odometry, 3D object detection, 3D object tracking, and semantic
and instance segmentation. Though it represents for many of these domains
aseminal collection of datasets, itis relatively small with, for instance, only 200
train images and 200 test images in the semantic and instance segmentation
datasets. Examples from the dataset can be seen in Figure 2.8.

CityScapes

The CityScapes dataset [31]is a large-scale segmentation dataset of city scenes,
collected from 50 different German cities. It contains in total 5,000 frames at

1024 x 2048 pixels with pixel-level annotations across 30 classes, with an ad-

ditional 20,000 frames with coarse annotations. It can be used for semantic,

instance, and panoptic segmentation. The dataset is widely used in the AD

community. An example from the dataset can be seen in Figure 2.9.

nulmages

The nulmages dataset [32] is a large-scale AD dataset for semantic and in-
stance segmentation and 2D object detection collected from Singapore and

Chapter 2: Background theory and Related Work 15

Figure 2.9: An example segmentation mask from CityScapes.

Boston. It contains in total 93,000 images with annotations. Although the nu-
Images dataset is relatively new, it has gained some traction in the AD com-
munity. An example can be seen in Figure 2.10.

2.3 Al fundamentals

Whilst Computer Vision (CV) depends heavily upon Artificial Intelligence (Al), it
is difficult to establish a specific and clear definition of Al. Al can, however, in
general, be interpreted as a field concerned with building systems that make
intelligent decisions in response to input from its environment. This broad
definition does, of course, contain a wealth of diversity in approaches. These
range from the purely algorithmic to the purely statistical. Subfields that have
recently emerged include Machine Learning (ML) and Deep Learning (DL) us-
ing Artificial Neural Networks.

2.3.1 Machine Learning

Machine Learning focuses on the construction of algorithms in which the agent
learns to solve a task through experience. Formally, we can say that an agent
(A) that tries to solve a task (T) with a performance measure (P) is learning
if P increases with experience (E). Within this definition, there exist several
paradigms, such as supervised and unsupervised learning.

Supervised and Unsupervised learning

Supervised learning is most relevant for this project, but both paradigms are
complementary and thus deserving of treatment in this section. For some ma-

16 Andreas H. Haversen: QT-UNet

Figure 2.10: Example segmentation from nulmages, from [32].

chine learning problems, the set of correct input-output pairs for the task may
already be known. For others, such a set may not be available. For instance,
for a system that tries to predict the topic of a newspaper article, a human
can go through it in advance and label the articles completely and correctly.
In contrast, a system that is trying to identify clusters in large volumes of data
might not have answers available due to a large amount of data to label.

Tasks in which the expected output is known in advance can be solved
using supervised learning techniques. Formally, given a training set of N data
pairs,

(xli.yl): (X2,y2),.. -(xN’yN)

where each y; was generated by some function y = f(x), the task is to dis-
cover a function h that approximates f [13].

In contrast, tasks where the expected output is unknown can be solved
using unsupervised learning techniques. Generally, unsupervised learning at-
tempts to discover similarities and relationships in the data. Returning to our
example from before, a typical unsupervised technique is to use clustering
algorithms to discover entities in the data set that are similar, say good and
bad weather days measured by rainfall and the number of rides in a taxion a
scatter plot [13].

Variants of supervised and unsupervised learning also exist. Semi-supervised
learning is a paradigm that uses both labelled and unlabelled data to train the
model. For example, one approach of several approaches to semi-supervised
learning is to train a model on the limited data available, use that model to
generate new labels for the unlabelled dataset, and then re-train the model
over both the old and new labels.

Chapter 2: Background theory and Related Work 17

Another paradigm of specificinterest to this thesis is Self-Supervised Learn-
ing (SSL), where the training procedure uses pseudolabels that are automat-
ically generated from unlabelled data. SSL is described in more detail in Sec-
tion 2.8.

2.4 Artificial Neural Networks

Some of the first machine learning models recognised today were intended to
be computational models of biological learning [33]. One such model is the Ar-
tificial Neural Network (ANN), inspired by the biological brain. This model was
inspired by two insights: Firstly, that the brain provides a proof by example
that a system that can create intelligent behaviour can exist, and secondly that
it provides a conceptually straightforward path for duplicating that model by
reverse engineering the computational principles of the brain [33].

2.4.1 The Artificial Neuron

Similarly to how the basic building block of a biological brain is the biological
neuron, the basic building block of an artificial neural network is the artificial
neuron.

A basic artificial neuron consists of nothing more than a numerical bias
term and associated weights. Upon activation, it takes the weighted sum of its
inputs plus a bias term, feeds that to some activation function, and returns the
output. In practice, we deal with the input and the weights as vectors, which
lends us to an approach where we take the dot product of the transposed
weights with the input, add the bias, and then apply an activation function.
The bias allows the neuron to shift its zero point up or down. A mathematical
formulation of the artificial neuron can be seen in Equation (2.6).

z=wT-x+b=Zwl~xi+bi
i (2.6)
h = g(2)

We follow the notation of Goodfellow et al. [33] and denote the sum as g,
the layer weights as w, the inputs as x, and the bias as b, with vectors set in
bold font, over the number of inputs i. Furthermore, we denote the activation
function as g(x) and the final output as h.

The simplest possible ANN consists of a single neuron with the Heavyside
step function as its activation function and is called a Perceptron [13]. While a
Perceptron can be useful on their own, they suffer from a fundamental flaw:
They can only learn linearly separable functions. A Multi-Layer Perceptron
(MLP), consisting of several layers of neurons, can express more complex lin-
ear functions, but will still produce linear decision boundaries due to the linear
nature of the activation function [33].

18 Andreas H. Haversen: QT-UNet

2.4.2 Activation functions

In order to allow MLPs to express non-linear functions, we need to introduce
non-linear activation functions. There are several to choose from. We list a
handful of common choices here for reference.

Sigmoid

The Sigmoid function outputs a value in the range [0,1], and can be seen in
Equation (2.7)

1

Trel—2) 27

o(z) =

Hyperbolic Tangent

The hyperbolic tangent function outputs a value in the range [—1,1], and can
be seen in Equation (2.8)

tanh(z) =20(2z)—1 (2.8)

Rectified Linear Unit

The Rectified Linear Unit (ReLU) function outputs a value in the range [0, oo],
and can be seen in Equation (2.9)

ReLU(z) = max(0,z2) (2.9)

2.4.3 Network architecture

As noted in Section 2.4.1, we can arrange several artificial neurons together
into layers. We can then compose several layers into a network that, with the
use of non-linear activation functions, can approximate functions that are far
more complex and non-linear. An example of a multi-layered perception can
be seen in Figure 2.11. Neurons in the middle layers, the "hidden layers", are
called "hidden units". Notice that each neuron in a layer is connected to every
neuron in the previous layer. Each neuron in a layer maintains a bias term,
as well as a weight vector where each entry in the vector corresponds to the
weight associated with the input from each connected neuron in the previous
layer. Consequently, each layer can be represented with a bias vector b € R"
and a weight matrix W € R™", where n and m correspond to the number of
neurons in this layer and in the previous layer, respectively.

Chapter 2: Background theory and Related Work 19

Input Hidden Hidden Output
layer layer 1 layer 2 layer
X7
X3 h(ll)
h®
X3 s
h§2) g}
Xy e
(2)
h3
X5 hgl)
X6

Figure 2.11: A Multi-Layer Perceptron (MLP).

The Universal Approximation Theorem

This theorem states that a feedforward network with a linear output layer and
at least one hidden layer with any "squashing" activation function (that is, the
function must saturate for large positive and negative values) can approxim-
ate any continuous function on a bounded and closed subset of R" with any
desired non-zero amount of error, provided that the network has enough hid-
den units [33].

2.4.4 Forward passin a ANN

A ANN produces its output by forwarding its input through its layers. Using the
matrix and vector definition of the layers defined at the end of Section 2.4.3,
we can formulate a general expression for the output of a n-layer neural net-
work with input x in Equation (2.10).

R =g"(z") = g"((W")Th" 1 + b") (2.10)

Where the superscript denotes the layer from which the term or function
belongs, and a, = x. We can see how the output from each previous layer
is fed as input to the next layer, with each layer applying its weights, biases,
and activation functions all the way forward until we reach the last layer in the
network.

2.4.5 Loss functions

An essential part of learning in general is to figure out where we got it right
and where we got it wrong. It is no different for machine learning in general or

20 Andreas H. Haversen: QT-UNet

ANNSs specifically. In machine learning, the mechanism we use to discover our
errors and successes is called a /oss function. As with the activation functions
described in Section 2.4.2, there are several functions to choose from, each
well suited for different types of tasks. A hand-full of important loss functions
are summarised in the following paragraphs. We denote the predicted output
of our model as J, the ground truth labels as y, and the number of samples
as n.

Mean Squared Error (MSE) Loss

MSE loss is commonly used for regression tasks. It is defined as in Equa-
tion (2.11), where y; is the ground truth and y; is the prediction produced
by the model.

1w)
Luse = 2 i =3 (2.11)
i=1

Cross Entropy (CE) Loss

CE loss is commonly used for classification and segmentation tasks, and is
defined in Equation (2.12) for multi-class problems where y is the label vector
and y is the model prediction vector.

1 n
Lep=—1 (Z}'i 'log(f’i)) (2.12)
i=1

Dice Loss

Dice Loss is commonly used for segmentation tasks in the MIC field and is
defined by Equation (2.13), where DSC is Dice Similarity Coefficient. This is
possible since DSC has a range between zero and one, where one represents
a perfect overlap between the label and the prediction, and zero represents
a label and prediction that do not overlap at all. Minimising DSC loss thus
maximises the overlap between labels and predictions.

Lpice =1—DSC (2.13)

For segmentation, this represents an important change in perspective.
Whereas minimising CE loss will maximise pixel-wise accuracy, minimising
Dice loss will maximise the overlap of the prediction and the label as a whole.
That s, Dice loss considers both global and local information, whereas CE loss
considers only local pixel information.

Chapter 2: Background theory and Related Work 21

2.4.6 Backward passin a ANN

Afundamental part of how ANNSs learn is the backward pass using back-propagation.
When a neural network is first instantiated, its weights are set randomly ac-
cording to some probability distribution, for example the Xavier or He distri-
butions due to Glorot and Bengio [34] and He et al. [35] respectively. Once the
weights have been properly initialised, our network can produce a prediction,

but it will most likely not be any good and will have a high loss value. Our goal

is now to adjust the weights so that the loss decreases.

How much each weight should change is determined by the overall gradi-
ent of the network, in other words a measure of how much each weight con-
tributes to the total loss of the network. This can be determined by taking
the partial derivative of the loss with respect to the weights and biases. We
perform these calculations and weight adjustments in a layer-wise fashion,
passing the remaining error that cannot be explained in a layer back to the
layer before it. In essence, the error gradient, or delta, back-propagates through
the network, which names this algorithm the back-propagation algorithm.

First, we find the gradient of the loss with respect to the weighted input z
in the last layer, denoted V. Adopting the same notation as in Section 2.4.1,
we get Equation (2.14) for each output neuron j with a network with N layers.

SN = =gV (zM) (2.14)

We can rewrite Equation (2.14) to matrix form in Equation (2.15), where ®
refers to the Hadamard Product.

oN =v,LogV(z") (2.15)

With this final delta, we can now calculate the delta for each layer n using
the delta of the previous layer, with Equation (2.16).

6" =Wrg o BV (2") (2.16)

The delta of each layer can then be used to calculate the contribution of
each weight and bias in that layer to the total loss. The contribution of weight
W', that is the weight connecting neuron k in layer n —1 and neuron j in
layer n, is given in Equation (2.17). Similarly, the contribution of the bias can
be calculated by Equation (2.18).

oL
=hp"1g" (2.17)
n k
oW, j
oL _ 5" (2.18)

ab’ J

22 Andreas H. Haversen: QT-UNet

2.4.7 Gradient descent

Broadly, the equations derived in the previous section described the gradient
of the parameter space in our network, with respect to the loss. As previously
noted, the goal is to navigate this parameter space in such a way that the loss
decreases. This is called gradient decent, interpreting the loss as a measure of
"height" in this parameter space.

Gradient decent works in several iterations, following these steps:

1. Feed the model an input and attain an output.

2. Calculate the loss of the output with respect to some label or perform-
ance measure.

3. Calculate the gradients of each layer in the network.

4. Use those gradients to update the weights and biases of the network.

This sequence of operations is repeated either for a specified number of
iterations or until a convergence criteria for the model is reached. There are
several variations upon gradient decent, depending on how much data is sent
through the model at each iteration. The most common variant, called mini-
batch gradient decent, passes a subset of the dataset at each iteration. The
weights and biases are then updated as specified in Equation (2.19) and Equa-
tion (2.20), respectively.

n . € oL
Wi — Wi —— W (2.19)
J
m
€ Z oL

Here, e denotes the learning rate and m denotes the mini-batch size, both of
which are hyper-parameters that are set manually. The learning rate determ-
ines how large of a step we make in the direction of the gradient for each it-
eration, whilst the minibatch size determines how much data is used for each
training step. How large these mini-batches should be is often task-dependent
and an area of intense research. Often, a mini-batch size between 2 and 32
is used. Using mini-batches increases the stability of the training and aids in
convergence, since the model makes updates to its parameters based on the
average of several gradients rather than one, increasing the chances of des-
cending the parameter space in a globally sensible direction. Once all the data
points in our training set have passed through the network, the model has
completed one epoch of training. Usually, several training epochs are needed
for the model to converge.

2.4.8 Optimisers

A major issue when training models using gradient decent is navigating the
parameter space in such a way that the model avoids getting stuck in local min-

Chapter 2: Background theory and Related Work 23

Model 1
-\ / Model 2
A
S /
Parameters
Local minimum Global minimum

Figure 2.12: lllustration of local and global minima. Without momentum,
model 1 will get stuck in a local minimum, while model 2 will reach the global
minimum.

ima, as illustrated in Figure 2.12. Although there may exist a more optimal and
perhaps a globally optimal solution (a global minimum), the model might fail
to reach it, as the cost of escaping the valley in which it has settled is too large.
One way to escape such local minima is to use a form of momentum, usually
denoted as p. The intuitive idea here is to have the gradient decent algorithm
move across the parameter space in a similar way to how a heavy ball would
roll down a hill. With sufficient momentum, such a ball would be able to roll
over local minima and potentially discover more optimal minima elsewhere
in the parameter space. Momentum can also help to deal with saddle points
in the space, for much the same reasons that they help with local minima [33].

A typical optimiser with momentum is ADAptive Movement estimation
(ADAM) [36]. It computes first- and second-order estimates of momentum for
each parameter in the network, using the estimated momentum to adjust the
updates to the weights in the model. It also maintains a bias term for the first-
and second-order estimates.

2.4.9 Overfitting

Provided sufficient model learning capacity, a model can in theory train until
the training loss is zero, effectively memorising the entire training set. Whilst
this might sound like an attractive proposition, itis not. The model would most
likely not generalise well when exposed to new data that is not presentin the
training set. This problem is known as overfitting [13].

There are several ways to deal with and mitigate overfitting. One approach

24 Andreas H. Haversen: QT-UNet

Stop training |
here ide
A |
s
Training
° loss
Epochs

Figure 2.13: Early stopping example. Training stops where validation loss be-
gins to increase.

is to use early stopping. First, the training setis divided into two parts: a training
set and an validation set. The new, smaller training set is used as before. The
validation set is held out during training and only applied when the training
epoch is complete. Then, the loss of the model is evaluated on the validation
data. This validation loss is not used for training directly, but rather compared
with validation losses calculated over previous epochs. If the validation loss
is less than the previous calculated validation loss, training continues. If, on
the other hand, the validation loss has increased, we interpret this as the start
of overfitting and terminate training. In practice, validation losses can fluctu-
ate during training, so a patience parameter is often used to determine how
many subsequent epochs of increasing validation loss are tolerated before
model training is terminated. An illustration of this approach can be seen in
Figure 2.13.

Another approach is to apply regularisation. Specifically, for neural net-
works, we apply parameter regularisation. In essence, this technique punishes
the model for being overly complex by increasing the loss as complexity in-
creases. In this context, high weigh values are equated to high complexity.
Two common techniques for regularisation are L1 and L2 regularisation [33].
When regularisation is applied, our loss function is slightly modified, as can
be seen in Equation (2.21).

Chapter 2: Background theory and Related Work 25

L(g;X,y)=L($;X,y)+aQ(¢) (2.21)

Here, ¢ denotes the parameters of the network (the weights), Q2 the chosen
regularisation function, and a the contribution of the regularisation to the
loss.

When applying L1 regularisation, 2 is as seen in Equation (2.22).

(¢)=|lwll, = lw (2.22)
When applying L2 regularisation, 2 is as seen in Equation (2.23).
1 1
n(¢)=5||w||§=52w? (2.23)

Both of these techniques work by pushing the weights towards zero in
an effort to reduce the number of features in a network and thus make the
network focus more on essential features in the input. Their effect on the
network differs slightly. Whilst L1 regularisation pushes weights towards zero
in order to get rid of features in general, L2 regularisation keeps weights small
in general.

A third option for dealing with overfitting is to apply dropout. Dropout is
a technique where the activations of hidden nodes in the network are ran-
domly set to zero in each training step. The effect of this is that instead of
training one network, an ensemble of sub-networks is trained instead [33].
Essentially, we encourage the network to become more robust by forcing it to
learn how to route information through the network across several different
paths, discouraging specialised routes through the network that might lead
to overfitting.

2.4.10 Batch Normalisation

Abatch normalisation layer [37] normalises the mini-batch input to an internal
layer of the network. That is, it redistributes the values of the input so that
the mean is centred around zero. This can be done by calculating the mean
u and standard deviation o across the minibatch. Let X be a batch of inputs
to an internal layer in the network. Then, the normalised mini-batch X can be
computed as in Equation (2.24).

X=— (2.24)

Using the two learned parameters y and 3, the final output of the batch
normalisation layer is computed as in Equation (2.25). These parameters exist
to preserve the expressive power of the network [33].

rX+p (2.25)

26 Andreas H. Haversen: QT-UNet

Applying batch normalisation allows the use of higher learning rates, sat-
urating activation functions and makes network performance less sensitive to
weight initialisation. It also seems to act as a form of regularisation, it reduces
the effect of vanishing or exploding gradients and increases training speed
[37]. The exact reason why batch normalisation works so well is poorly un-
derstood. loffe and Szegedy [37], the creators of batch normalisation, claim in
their paper that it works by reducing internal covariate shift, where parameter
initialisation and changes in the distribution of the inputs of each layer affect
the learning rate of the network. More recent research by Santurkar et al. [38]
suggests that the gains can be attributed to batch normalisation smoothing
out the objective function, thus increasing performance.

2.4.11 Layer Normalisation

Proposed by Ba et al. [39], Layer Normalisation attempts to address some
of the drawbacks of Batch Normalisation. Since the calculation of the mean
u and standard deviation o is dependent on the size of the minibatch, their
quality as statistical estimators of the true values of u and o across the whole
dataset degrades as the size of the minibatch decreases. Batch Normalisation
is also difficult to apply to sequence-focused data since the length of each se-
qguence in the dataset can vary, making calculation of the mean and standard
deviation non-obvious.

Layer Normalisation attempts to deal with this by taking the mean and
standard deviation along the feature dimension rather than the batch dimen-
sion. That is, Layer Normalisation takes the mean and standard variation of
the features of a single case and uses it to normalise the input, rather than
taking the mean of each feature across a batch. This means that Layer Norm-
alisation can work independent of batch size. This method of normalisation
works especially well with Recurrent Neural Networks [39], which is why it has
seen extensive use in models for NLP.

2.4.12 Gradient Accumulation

A challenge that can arise when dealing with ANNSs is to fit all the data in a
training mini-batch into memory. This is particularly challenging in Computer
Vision tasks, where the inputs are large multidimensional arrays and training
is often done on GPUs. As previously noted, larger mini-batch sizes can aid in
training speed and stability, but such gains are lost if we have to reduce the
batch size in order to fit our data onto our computing accelerators.

One technique that is often used to attain the advantages of a larger mini-
batch size whilst keeping it small enough to fit all the data on the accelerator
is gradient accumulation. Instead of updating the weights immediately after a
mini-batch has been sent through, we send another mini-batch through and
accumulate the gradients of the two mini-batches. We can keep accumulating

Chapter 2: Background theory and Related Work 27

the gradients of say k mini-batches. Only when the k mini-batches have been
sent through do we update the weights. If the mini-batch size is m, the effect-
ive batch size of the weight update is k - m. Whilst some of the speed gains
of larger batch-sizes might be lost, the training still enjoys the stability of the
larger mini-batch size.

2.5 Convolutional Neural Network (CNN)

Although Artificial Neural Networks can form strong predictive models, they
scale poorly to large inputs since each neuron in each layer is connected to
every neuron in the next layer. This leads to very high memory requirements
in order to store all the weights in the model. For example, for a 1024 x 1024
pixel input image, the first layer would need to have 10242 input neurons.
With a hidden layer of size n, we would get 10242 % n weights to connect the
two layers.

A technique commonly applied to deal with this is parameter sharing,
often expressed through Convolutional Neural Networks. Instead of regular
neural layers, CNNs employ so-called convolution layers. Convolutional lay-
ers can be applied to any type of data organised in a grid-like topology in
a n-dimensional input, for example 1D time series, 2D images or 3D imaging
scans.

To achieve this, convolutional layers utilise the convolution operation for
which they are named. For a 2D input, it is defined as in Equation (2.26).

S(i, j) = (K *1)(i,j) = >, > I(i+m,j+n)K(m,n) (2.26)

In Equation (2.26), I is a 2D input and K is a m x n kernel of weights. The
equation defines an operation where the kernel K is slid over the input I,
where the value of each cell in I is multiplied with the corresponding cell in K
and then summed, as illustrated in Figure 2.14. The output is a feature map
S, where S(i, j) is the result of the convolution operation over I at row i and
column j of S. In some convolutional layers, an activation function is applied
element-wise over S after the convolution operation has been applied. Addi-
tionally, a bias may also be applied.

The spatial size of the feature map S depends heavily upon the sizes of
K and I, as well as the stride, padding, and dilation of the convolution. The
stride of the convolution refers to how far the kernel will slide over the input
I between each application. The padding refers to whether or not the input
has had zeros added around it (padded) in each spatial dimension. Finally,
dilation refers to how much distance there should be between each value in
the input to be applied with the kernel, if any (see Figure 2.15).

A convolutional layer can employ several kernels, each with its own set of
weights, producing a separate feature map S. That is, a convolutional layer
with n kernels produces as output a stack of n feature maps.

28 Andreas H. Haversen: QT-UNet

Input Filter Output
21113]0
O}110
O|2]1]|3 3
0|0 |1 =
0111210
01110
1 2 0 O
2 1 3 0
O11]0
012|113 3 8
010 |1 =
0}1]12]|0 6
O}110
112100
Figure 2.14: Illustration of a 2D convolution.
Input Filter Output
2111310
O 2 1 3 O]1 _ 3
o|1]2]0 110 -
12 0 O
2 1 3 0
02|13 O] _ 3 1
O 1 2 O 110 2
1121010

Figure 2.15: lllustration of dilated convolution.

Chapter 2: Background theory and Related Work 29

Input Output
2 1 3 O
02 1 3 S— 2 3
O 112 O 2 2
1 210 O

Figure 2.16: Max pooling example.

Crucially, since the kernels involved in the convolution operation only con-
nect a mxn subset of neurons together between layers, significant parameter
savings can be achieved. Additionally, since the kernel is simply sled across the
input, the weights are shared between each input subset, which further con-
tributes to the reduction in memory usage. During training, each filter learns
to recognise patterns in the input. As the kernels are slid across the input,
we can recognise these patterns anywhere in the input, a property known as
equivariance [33].

Pooling

A commonly applied operation in CNNs is pooling. This is an operation that
reduces the input resolution whilst retaining important information. Whilst
there exist many variants of pooling, the most common are average-pooling
and max-pooling. The latter is described here.

The max-pooling operation simply selects the maximum value within the
pooling filter and forwards it to the next layer. An example can be seen in
Figure 2.16. This operation essentially summarises the input, letting only the
strongest signals through, and reducing the spatial resolution of the input in
the process.

Transposed Convolution

The previous two sections have looked at operations that scale down their in-
puts. A similar set of operations also exists to increase the spatial resolution
of an input, called up-scaling. Traditional approaches employ purely compu-
tational approaches like nearest-neighbour interpolation, bilinear interpola-
tion, and other approaches. Another approach, called Transposed Convolu-
tion, introduces learnable parameters to this up-scaling operation in a similar
fashion to traditional convolution. Instead of using kernels to reduce the res-
olution of the input, they scale the image up. An illustration of the operation
can be seen in Figure 2.17.

30 Andreas H. Haversen: QT-UNet

Output
Input Kernel
B 5> 3 4.6 O 02 3 0O 0 O 0O 0 O 4 8 3
02*12—24O+O12+OOO+Oii=298
= 0O 0 O 0O 0 O 0O 0 O OB © 2 4
Figure 2.17: Transposed convolution example.
2.5.1 U-Net

Whilst there exists a wealth of different CNN architectures that take advant-
age of the advantageous properties of convolutional layers in CV, this section
will focus on a specific architecture that has seen successful application on a
broad spectrum of different CV tasks: The U-Net [40].

A U-Net commonly consists of three distinct components: An encoder, a
bridge (also called a bottleneck), and a decoder. In the encoder, the input is
down-sampled whilst the number of channels is increased in stages through
the successive application of convolutional and pooling layers with an increas-
ing number of kernels for each convolution. In the bridge, more convolutions
are applied, but the resolution is maintained. The bridge is where the input
resolution is at its lowest, whilst the number of channels is the highest. This
componentis placed at the end of the encoder and at the start of the decoder,
joining them. In the decoder, the input is up-scaled back to the original input
resolution in stages through the successive application of transpose convolu-
tional layers with a decreasing number of kernels. The encoder and decoder
are, in addition to the bridge, connected at each stage by skip connections in
order to preserve the spatial information of the input [40].

In a nutshell, the encoder encodes the spatial information of the inputinto
a dense feature space represented in the channels of the input. The decoder
then takes this densely encoded input and decodes it back into the original
resolution, providing a representation of the input with high semantic value.
This output can then be fed to a classifier to produce a final prediction.

2.6 Transformers

Transformers were introduced by Vaswani et al. [1] in their seminal paper,
"Attentionis all you need". They proposed a novel model for Natural Language
Processing (NLP) based on an attention mechanism called self-attention. This
model, and subsequent evolutions, have set new records in the NLP field and
currently dominate the state of the art for many tasks in that field [1-3]. In this
section, we provide a brief overview of how the Transformer model works.
Interested readers who wish to explore the details of the model are referred
to the original paper by Vaswani et al. [1].

There are several key ideas to explore when addressing Transformers,
foremost of which is self-attention, multi-head self-attention, and the Encoder-

Chapter 2: Background theory and Related Work 31

Encoder Decoder

572x572

284x284

138x138

2l Bottleneck

» 3) 2« »

Conv 3x3 + RelU Max Pool 2x2 Skip Connection Transposed Conv 2x2 Conv 1x1

Figure 2.18: A typical U-Net architecture.

Decoder structure of the model. Each aspect is explored in turn, before an
overview is presented in Section 2.6.3. We also present efforts to reduce the
computational complexity of Transformer models in Section 2.6.4.

2.6.1 Self-Attention

The essence of self-attention is this: Given a sequence of tokens', how relev-

ant is each token to every other token in the sequence? Self-Attention tries

to answer this, which in turn explicitly models the interactions between all

the entities in the sequence. In essence, a self-attention layer weights up and

down the different tokens in the sequence based on how important, i.e. worthy
of attention, they are relative to the other tokens in the sequence. Let X € R"*¢

denote a sequence of n entity vectors of length d. We then define three learn-

able weight matrices to transform X into a queries matrix, a keys matrix, and

a values matrix as seen in Equation (2.27), where d; = d,.

wQ e R¥*dy WK e RI*d& WV ¢ RIXd (2.27)

The queries (Q € R™%), keys (K € R™%), and values (V € R™%) are then
calculated by projecting X onto these matrices, as seen in Equation (2.28).

Q=xWe K=xwKkv=xw" (2.28)

Then, the final output Z € R™% can be calculated as seen in Equation (2.29).

'Say, a sentence of words, embedded using a word embedding.

32 Andreas H. Haversen: QT-UNet

T
Z = Attention(Q,K,V) =Sof tmax (%)V (2.29)
Vg

Intuitively, we can understand the queries as "what token i is interested
in knowing from the other tokens", and the keys as "what token i can provide
as information to the other tokens". For a given token in the sequence, the
operation above the fraction (QKT) computes the dot product between the
key and query for that token. This can be interpreted as evaluating the agree-
ment between the query and key vectors. Similar vectors will receive a high
attention value, whilst dissimilar vectors receive a low attention value. Atten-
tion values are scaled by the square root of the query dimension in order
to improve training stability [1], before they are normalised using Sof tmax.
The final output is then calculated by multiplying these normalised attention
scores by V.

It should be noted that self-attention is, in contrast to standard ANNs and
CNNSs, invariant to the position of each token. That is, self-attention cannot
capture the positional information of each token in a sequence. In many do-
mains, however, the position of each token can have a profound impact on
the overall meaning of the sequence, say for example the order of words in a
sentence. In order to address this, Transformers adds a positional encoding
to its inputs, either concatenating or adding the encoding to the input. Typic-
ally, the positional encoding is a learnable encoding or some function of the
position of the token.

A variation of standard self-attention, called masked self-attention, is also
used in the standard transformer model [1]. When performing word predic-
tion, for example, the model should not attend to "future" tokens in the se-
qguence before these tokens have actually been predicted. Masked self-attention
is achieved by element-wise multiplication with a mask M € R™", where M is
an upper-triangular matrix. Masked self-attention is then defined as in Equa-
tion (2.30), where ® denotes the Hadamard product. In essence, the attention
scores of future entities in the sequence are set to zero.

KT
Z) = MaskedAttention(Q,K,V,M) = Sof tmax (Q— ©) M) \% (2.30)

Vg

2.6.2 Multi-Head Self-Attention

A layer with Self-Attention can in itself model a relatively complex interaction
between the different tokens, but often there are several interactions that
could and should be modelled. For example, when processing language, the
structure of how adjectives relate to different nouns, or how verbs relate to
different nouns, etc., are all interesting factors to account for in a wide range
of different NLP tasks. To address this, multiple self-attention heads are used

Chapter 2: Background theory and Related Work 33

Scaled Dot-Product Attention Multi-Head Attention

Linear

Concat

!

Mask (op Scaled Dot-Product
Attention -

Scal
cale ,-—l ,-—1 ,-Jl

Math Linear Linear Linear

Mathiul

SoftMax

=

Hotly

o
>
-

N K Q

Figure 2.19: Self-attention (left) and Multi-head self-attention (right). Figure
from [1].

in each block. Here, each block has its own set of query, key, and value weight
matrices, denoted W?, Wf, Wl‘.’. Given an input X and a number of heads h,
three groups of vectors are calculated: The query group Q’, the key group
K’, and the value group V’, all calculated from the input and the correspond-
ing weight matrices for each head. To clarify, each group consists of several
matrices, where each matrix is calculated as seen in Equation (2.31).

Q=XWL K, =xWK v/ =xw/ (2.31)

Multi-head self-attention can then be formulated as seen in Equation (2.32).

MultiHead(Q',K’,V’') = Concat(head;, head,, ..., head,)W©,

2.32

where head; =Attention(Ql’., K/, Vg) ()

Here, WO € Rmoder*dmodel js 3 learnable linear projection matrix that pro-

jects the result of the concatenated output of each head into the dimensions

of the model, where d,,,q4.; is the size of the outputs internally in the model.
A visual summary of these operations can be seen in Figure 2.19.

2.6.3 Model structure

As can be seen in Figure 2.20, the model also makes extensive use of re-
sidual connections across the different subcomponents of each transformer
module. This strengthens the flow of information through the model. A layer-
normalisation follows each residual connection. Finally, each module is topped

34 Andreas H. Haversen: QT-UNet

Output
Probabilities

J

L [(Add & Norm J~

Add & Norm

Multi-Head

Attention

N

Add & Norm_Je—

Masked
Multi-Head

N

Multi-Head

Attention Attention
At 4 At 4
L. > L S
Positional B @ Positional
Encoding Encoding
Input Output
Embedcing Embedding
Inputs Oulpuls
(shifted right)

Figure 2.20: Full Transformer architecture. Figure from [1].

by a feed-forward network that consists of two linear transformation layers
and a non-linear activation function between then, which can be denoted as
in Equation (2.33), where W; and W, are the weight matrices of the linear
transformations, b; and b, are the bias vectors of the linear transformations,
and g denotes the activation function.

As can be seenin Figure 2.20, the model makes use of an encoder-decoder
architecture where the encoder output is fed into the decoder blocks. The
use of the encoder and decoder modules of the original Transformer model
varies from model to model. Some models, such as those of the BERT family
[2], are based on the encoder, which can then be regarded as a type of feature
extractor. Other models, such as the GPT family of models [3], are based on
the decoder.

2.6.4 Speeding up the Transformer

An area of study that has received much attention is how to reduce the com-
putational complexity of the Transformer. Recall from the description of self-
attention that it performs matrix multiplication of two matrices, the queries
(Q € R™%) and the transposed keys (KT € R%>*"), which has computational
complexity O(n%d,) = O(n?). That is, the computational complexity is quad-

Chapter 2: Background theory and Related Work 35

ratic in the length of the sequence. All other parameters in the Transformer
being constant, this means that the computational complexity of the Trans-
former as a whole is O(n?). While this is manageable for sequences of short
and medium lengths, it can become exceedingly slow for longer sequences.
Motivated by this, several approaches for reducing the complexity have been
explored in the literature. Tay et al. [41] provide a comprehensive survey of
efforts to build more efficient transformers. A couple of highlights are briefly
summarised below.

Reformer

Kitaev et al. [5] introduced the Reformer, which uses locality-sensitive hash-
ing in several rounds of self-attention in order to quickly identify similar keys
and queries that would yield non-trivial attention values. Additionally, using
reversible layers and chunking of Feed Forward Network activation calcula-
tions, they are able to reduce the computational complexity to O(nlog(n)).
They demonstrate comparable performance with the standard Transformer
in a English to German translation task.

Linformer

Wang et al. [6] introduces the Linformer, where they show that self-attention
can be approximated by a low-rank matrix, reducing the computational and
spatial complexity to O(n). They also demonstrate similar performance with
BERT-based baselines on several NLP tasks.

2.7 Vision Transformers

Inspired by the success of self-attention in NLP, several works in CV attempted
to combine elements from the attention mechanism from the Transformer
with standard convolutional networks [42] or otherwise combine Transformers
with convolutional backbones [43]. Some works have taken this a step fur-
ther and replaced convolutions entirely with self-attention and related vari-
ants [44, 45].

Motivated by the scaling successes of the Transformer in NLP, Dosovit-
skiy et al. [4] experimented with the application of a standard Transformer
with minimal modifications directly to images for image classification. They
were able to do this by splitting each image into a sequence of flattened and
projected patches, which were then fed to the model as words along with
a BERT-inspired class token [2]. Their model, named the Vision Transformer
(ViT), consisted of a sequence of Transformer encoder blocks, topped with
a MLP head that received the class token for class prediction. As with the
standard Transformer by Vaswani et al. [1], they injected each patch with a

36 Andreas H. Haversen: QT-UNet

Vision Transformer (ViT) Transformer Encoder

Transformer Encoder

[
|
I
|
I
I
B
I
I :
war-eoOg ooy | |(EE
I
|
I
|
I
1

;cEf;tsrs]] embeddm,g [Lmear Prol ection of Flattened Patches

ko). H l 44%1‘ H E %i: E

ﬂ w E Embedded
Patches

Figure 2.21: Overview of the original Vision Transformer (ViT). From [4].

position embedding, which in this case was a 1D learnable position embed-
ding. By leveraging large scale pre-training using the JFT-300M dataset [46],
they were able to match or outperform SotA at the time on ImageNet [47],
CIFAR-10, CIFAR-100 [48], and VTAB [49] tasks, whilst requiring significantly
less resources to train. An illustration of the model can be seen in Figure 2.21.

The success of the ViT model inspired several new CV publications using
Transformers, with 4 096 publications citing the original ViT-paper by Dosovit-
skiy et al. [4] since October 2020 at the time of writing. Khan et al. [50] and Han
et al. [51] have conducted extensive surveys on the use of Vision Transformer
in Computer Vision. The rest of this section highlights important aspects of
ViT models and trends, as well as a hand-full of general ViT models.

2.7.1 Why ViT?

In addition to the large scale of Vision Transformer models, there are other
qualities that also make ViTs desirable for CV. One such attribute is the incor-
poration of global information. As noted previously in Section 2.6, transformer
models are generally quite good at modelling long-range dependencies in
their input sequences, due to their self-attention mechanism. Standard con-
volutional neural networks, on the other hand, are designed to attend primar-
ily locally. Pooling layers can be introduced to increase the effective perceptive
field, but information is lost as the network grows deeper and the perceptive
field increases. It can be likened to how a near-sighted person might see an
image: Up close, the fine details are crisp and clear, but much of the image
is out of view. As the image moves further away from the person, more and
more of the image becomes visible, but it becomes progressively more blurry
and unclear; information is lost. This effect is illustrated in Figure 2.22. ViTs

Chapter 2: Background theory and Related Work 37

Figure 2.22: An illustration of the blurriness.

are able to better deal with this, since they can attend to all the tokens glob-
ally in the first layer. This means that they are much better at attending to
long-range dependencies in the input, even in the early layers of the model.

2.7.2 How ViTs learn

Raghu et al. [52] performed an interesting comparison between ResNets and
ViT (the model referred to in [4]), comparing how the two models learn. As
their results are relevant for the discussion in the previous subsection, a brief
summary of their findings is presented in this subsection.

They find, for example, that while ViT attends globally at every stage, it
starts out attending highly locally and gradually more and more globally in
the higher layers. Interestingly, these patterns emerge only when the model
has been trained on sufficient data. With less data, the ViT tends to attend
more globally. This seems to indicate that the ViT has to learn to attend loc-
ally, something that CNN-based ResNets do automatically as an inductive bias
owing to their structure.

When comparing the two models, the authors also find that the lower half
of the ResNet layers are similar to the lower quarter of layers in the ViT, with
the remaining half? of the ResNet layers being similar to the next third of ViT
layers, with the final layers being quite dissimilar. The dissimilarity of the final
layers is explained by the ViT primarily modifying the class token in these lay-
ers. The similarities in the other layers are interesting, as it seems to indicate
that both ViTs and ResNets learn to compute similar representations in their

2Minus a handfull of layers

38 Andreas H. Haversen: QT-UNet

lower layers. However, the authors are able to demonstrate that ViT is cap-
able of incorporating far more global information, which could explain their
increased performance.

The authors also find that ViT more faithfully preserves spatial information
in the input, that is, the input and output tokens are much more similar in
ViT compared to ResNets, which could be promising for object detection and
segmentation tasks.

2.7.3 Speeding up ViT

As with standard Transformers, Vision Transformers also struggle with the
quadratic memory and time complexity of self attention, as described in Sec-
tion 2.6. In fact, the issue is even bigger for Vision Transformers, which funda-
mentally deal with images and video. If our model is to attend to all the pixels
of a H x W image, the length of the input sequence to the transformer would
be n = HW, giving complexity O(n?) = O(W2H?). When dealing with three di-
mensional volumes, like video or medical imaging scans, the sequence length
grows even longer to O(n?) = O(W2H?D?) where D is the depth of the volume.

Early Vision Transformers like ViT and DPT [4, 53] deal with this by extract-
ing and embedding patches from the image, reducing the sequence length to
n= %% where pis the patch size. Although this reduces n and thus makes the
problem manageable, it still does not directly deal with the quadratic expo-
nent in the complexity. Some newer works like Twins, the Swin Transformer,
and the Perceiver [8, 54, 55] make architectural changes, including changes to
the attention mechanism, that makes the complexity sub-quadratic. The latter
two, the Swin Transformer and the Perceiver, even manage to make it linear
in the size of n. Twins and the Swin Transformer primarily achieve their spee-
dups by cleverly applying local and global attention, whilst Perceiver passes
its input through a latent bottleneck that constricts the time and space com-
plexity. Another approach, favoured by the Axial Transformer [56], replaces
standard self-attention with a row- and column-wise variant with similar linear
complexity.

2.7.4 Relevant general Vision Transformer architectures

This section will quickly summarise major general Vision Transformer archi-
tectures that have had major impact on the field, but that are not necessarily
directly related to the experiments in this project.

Vision Transformers for Dense Prediction

Ranftl et al. [53] proposed the Dense Prediction Transformer (DPT) in March
2021, setting new records at the time for mono-ocular depth estimation and

Chapter 2: Background theory and Related Work 39

competitive performance for semantic segmentation. They use a Transformer-
based backbone. The backbone receives a sequence of embedded patches of
the image, produced either by a linear projection or a convolutional feature
extractor. The backbone itself consists of several layers with transformer en-
coders, each processing at a different resolution depending on the output of
the previous layer. The output of each level is fused back together through
a ResNet-based feature fusion module. Before fusion, they employ a reas-
sembling module that reassembles the output tokens of each level into an
image representation of each token which is then re-sampled to set patch
size and dimensionality. They top their model with a task-specific head, tak-
ing the fused feature map as input. They also employ pre-training of their
Transformer backbone using ImageNet-1K and 21K. For semantic segmenta-
tion, they achieve a mloU score of 49.02% on the ADE20K [57, 58] validation
dataset and 60.46% with the Pascal Context [59] validation set, using a ResNet-
based feature extractor.

Swin Transformer

Liu et al. [8] proposed the Swin Transformer backbone in March 2021, setting
new records at the time for object detection with COCO and semantic seg-
mentation with ADE20K. They employ a hierarchical approach, taking 8 x 8
patches of the image and processing them at different resolutions at each
stage of the encoder. The encoder consists of specialised Swin Transformer
blocks that perform self-attention within each patch rather than across the
entire input. Information is spread between windows by a shifted window parti-
tioning mechanism that changes the partition layout in each succeeding mod-
ule and computes self-attention within the new windows. This approach gives
the Swin Transformer linear time and space complexity. A cyclic shift algorithm
using padding and masked self-attention is used to deal with shifted windows
that might not completely align with the size of the overall input. In addition,
relative position bias is used instead of position embedding. An overview of
the model can be seen in Figure 2.23 With pre-training on ImageNet-21K, Swin
achieves 53.5% mloU on the ADE20K validation dataset when used as a back-
bone for UPerNet [60].

A further improvement to the model, dubbed the Swin Transformer V2
[61], was proposed in November 2021 and further improves upon these res-
ults, scaling up the model to 3 billion parameters. These improvements in-
clude a more efficient implementation of relative bias, the use of cosine self-
attention, and post-normalisation rather than pre-normalisation of the data
in the Transformer modules. They report State of the Art performance on
ADE20K for semantic segmentation, achieving 59.9% mloU as a backbone for
UperNet.

40 Andreas H. Haversen: QT-UNet

segmentation
classification detection ...
t

Layer 1 Layer 1+1

e R [
Alocal window to !
perform self-attention I
L - =
) . A patch !
L i iy 4% I:‘ |:|
L L e
o/
(a) Swin Transformer (b) Shifted Window (c) Two Successive Swin Transformer Blocks
H W
35 X33 X8C
HxWx3

Images

Patch Merging

(d) Architecture

Figure 2.23: An overview of the Swin Transformer. Figures from [8].

Twins

Chu et al. [54] proposed the Twins Transformer backbone in April 2021, set-
ting a new state of the art at the time for COCO object detection and showing
strong performance on semantic segmentation with ADE20K. They propose
two methods. One based on the Pyramid Vision Transformer (PVT) [62] and
the Conditional Position Encoding Vision Transformer (CPVT) [63], dubbed the
Twins-PCPVT. This method uses a hierarchical approach, where each stage of
the encoder processes progressively lower-resolution feature maps. The con-
ditional position encoding generator from CPVT is used to impart positional
information in each stage of the encoder.

The other approach, dubbed Twins-SVT, uses another approach with so-
called Spatially Separable Self-Attention (SSSA), which is composed of Locally-
grouped Self-Attention (LSA) and Global Sub-sampled Attention (GSA). LSA
is similar to how self-attention works in Swin: Self-attention is applied loc-
ally within the input windows. Unlike how Swin shares information globally
with shifting windows, Twins achieves this using GSA. GSA extracts a sub-
sample from each group using regular strided convolutions and computes
self-attention across these sub-samples. This variant also uses the position
encoding generator from CPVT. Altogether, SSSA gives this method linear com-
plexity in time and space.

They report 48.8% mloU with the ADE20K validation dataset, with pre-
training on ImageNet-1K.

Chapter 2: Background theory and Related Work 41

2.8 Self-supervised learning

Self-Supervised Learning (SSL) is a machine learning method that learns from
unlabelled sample data, as a kind of intermediate form between supervised
and unsupervised learning. Itis a two-stage process: First, the model is trained
using pseudo-labels that pre-condition the network parameters for the ac-
tual task. Then, the model is trained for its actual task using supervised or
unsupervised learning. Crucially, for SSL, these pseudo-labels are generated
from input data by the training procedure itself at train time. This allows the
training of effective models in domains where labelled data is scarce and re-
source intensive to obtain, by pre-training the models on more extensive sets
of unlabelled data or by leveraging the limited labelled data available more
efficiently.

The SSL field as a whole is too broad and complex to fit within the confines
of this thesis. Interested readers are referred to Jing and Tian [64] and Jaiswal
et al. [65], who have conducted extensive surveys of the field. The remainder
of this section will briefly treat significant concepts and methods in the field
that are relevant for this thesis.

2.8.1 Pretext tasks

A relatively straightforward approach to self-supervised learning is to gener-
ate pseudo-labels on the data for some pretext task. Example pretext tasks
include image reconstruction from a transformed version of the raw input.
The raw input could, for example, have had parts of it removed, colour trans-
formations introduced, or noise added. The pretext task is then to recover the
original input image.

Another type of pretext task is geometric transformation, where the ori-
ginal image could have been exposed to flips, crops, and rotation. When ap-
plying rotation, a typical task could be to predict how many degrees the image
has been rotated, typically in 90° increments.

2.8.2 Contrastitive Methods

Whilst training directly on pretext tasks can be effective, several newer meth-
ods utilise so-called contrastitive methods. In a contrastitive method, samples
are drawn from the data set in large batches. Similar samples are considered
positive samples, whilst dissimilar samples are considered negative. The ob-
jective of the pre-training is to have the model produce representations of
positive sample pairs that are relatively similar, whilst representations of neg-
ative sample pairs are relatively dissimilar.

42 Andreas H. Haversen: QT-UNet

SimCLR

SimCLR [66] (A Simple Framework of Contrastitive Learning of Visual Repres-
entations)is a prominent contrastitive method used for pre-training image en-
coders. It works by drawing samples in large batches from the dataset. Each
sample is then transformed into a pair of augmented views of the original
data, by applying a stochastic augmentation chain. In SimCLR, the augment-
ations applied are a random crop, a colour shift, and Gaussian blur. This pair
of augmented views is considered a positive pair. The other samples in the
batch (and indeed later their augmented views) are considered negative to
this positive pair. The pair is then fed into the encoder, which produces its
representation of the pair. The representation is finally fed through a MLP - a
projector - that projects the representation into a lower dimensional space.
Finally, loss is calculated using a contrastitive loss function, as described in
2.34, where N is the batch size, i and j is the positive pair, Ij;.;; € 0,1 is anin-
dicator function that outputs 1 < k #1i, T is a temperature parameter, and
sim is a similarity measure. For SImCLR, this similarity measure is as described
in 2.35.

exp(sim(z;,2;)/7)

L;j=-—log - (2.34)
" Zii1]I[kaéi]exp(SIm(zi,Zk)/T)
ulv
sim(u,v) = (2.35)
[lulf[Iv]|

SimCLR has shown itself to be a capable contrastitive pre-training method,
and was SotA at the time of publication. However, it suffers from a significant
drawback: It requires very large batch sizes in order to provide a proper su-
pervision signal, using a batch size of 8192 for their strongest experiments.
With augmentations, this gives a total of 16384 samples per forward pass,
which can be prohibitive if the images have high resolution due to excessive
memory usage.

There exists approaches, like MOCO and MOCOV2 [67, 68], that solve this
by utilising a memory bank that holds a number of previous mini-batches in
a queue, drawing upon that queue to provide a sufficient number of negative
samples without having to push large batches through the encoder. These
samples do, however, have to be kept in memory during training.

2.8.3 Bootstrap Your Own Latent (BYOL)

Bootstrap Your Own Latent [69] is another approach to self-supervised learn-
ing that is able to outperform contrastive methods that require large batch
sizes and negative samples, without negative samples and with a significantly
smaller batch size.

The method achieves this by using two mostly identical networks: An on-
line network and a target network. The networks consist of the encoder to

Chapter 2: Background theory and Related Work 43

be pre-trained and a MLP projection head, with the online network getting an
additional prediction head. From an image augmented by a stochastic aug-
mentation chain, the online network is trained to predict the output of the
target network. Loss is calculated based on the similarity of the outputs. Cru-
cially, gradients for the target network are discarded. Only the gradients for
the online network is back-propagated. Instead, the weights of the target net-
work is updated as a moving average of the weights in the online network.
The dynamics of this update can be seen in 2.36, where 6 are the parameters
of the online network, & are the parameters of the target network, Ly : is the
loss, 7T is the decay rate, and 7 is the learning rate.

0 « optimiser(0,VyLy £, M) (2.36)
E—1E+(1—71)0

Although such a setup might seem vulnerable to collapse, where both
the online and target networks attain maximum similarity by outputting nil-
predictions, the authors of [69] find that this does not occur in practice. In-
deed, Chen and He [70] find that a potential collapse is prevented by discard-
ing of the gradient for the target network.

The method sets new SotA results for both linear evaluation with ImageNet
and other vision tasks such as semantic segmentation and object detection
with the VOC2012 dataset and depth estimation using the NYU v2 dataset.
Importantly, it shows strong performance with smaller batch sizes, effective
even at a batch size of 128.

2.9 Related work

This section will list works of specific interest to this project. The core aspects
of their contributions are highlighted.

2.9.1 Swin-UNet

In May 2021, Cao et al. [9] introduced Swin-UNet: A UNet-like pure Trans-
former for medical image segmentation in 2D. They employ Swin encoder
blocks, patch merging, and patch expansion modules to build an Encoder-
Decoder architecture with skip connections, as seen in Figure 2.24.

Patch merging layers use a mechanism in which the input patches are di-
vided into four parts, concatenated, and then reduced by a linear layer in the
channel dimension to produce a final output that is half the spatial size and
has double the channel dimension (HxW xC — H/2xW /2x2C). Patch expan-
sion layers perform a similar operation, butin reverse. It rearranges the input
feature dimensions to double the spatial size and applies a linear layer to re-
duce the feature dimension to half the input dimension (H/4 x W /4 x 4C —

Andreas H. Haversen: QT-UNet

=i}

48 Fatch Partition W i Class

LG
x
4 4
Linear Embedding Patch Expanding Wl = C(4%)
Skip Connection '
Exﬁx o Swin Transformer 1/4 i Swin Transformer L/ ¢
4 4 Block x2 i Block x2 4
Patch Merging | Patch Expanding
Skip Connection i
W . i 2 Swin Transformer /8 5 Swin Transformer W 2
. T Block x2 ! Block x2 L
Patch Merging Patch Expanding
Skip Connection !
woH Swin Transformer 1116 i Swin Transformer W H
—x— x4 - — o —xd(
16 16 Block x2 ! Block x2 6 16
Patch Expanding
Encoder \ ! Decoder

Bottleneck

Figure 2.24: The architecture of Swin-UNet, figure from [9].

Chapter 2: Background theory and Related Work 45

X | 3D Paten Expanding)
ittt Sy

|

; |
el s —ti |

oo 1 f] ; v] 51 2.EW

Sxgxxe | x| VIEncoderBlock @‘ RADCCedcyBloc B arare
1 Skip Comnection — — — — — — — — » ? 7777777
S A

I 5 N

/
_ | 3DPatchMerging |) kv I |_ 3D Patch Expanding

,,,,,,,,,,,,, !
= —— |
]

% | VIEacoderBlock | | KV | | VIDecoderBlock |] 2xH, ¥,
| _ J ")
|
!
i

J
[Lisear Exbedding | | .
!

Skip Connection

’
f
|
I
|
|
I
I
\

[3D Patch Merging \ /?

[
|
1

T
= | 3D Patch Expanding |
- 1

— L 1 Y.l D H W
1 XV || VIDecoderBlock | 5] FrigRggH
> = /

T) -+ | B A (b) The interaction

N B between encoder and

(a) The architecture of VT-UNet. Note that k corres- decoder modules in
ponds to the number of output classes. VT-UNet.

Figure 2.25: Overview of VT-UNet. Figures from [10].

H/2xW /2x2C).Cao etal. [9] show empirically that this way of down- and up-
sampling performs better than using standard and transposed convolutions
or Bilinear interpolation.

By applying the model to 2D slices of 3D volumes, Swin-UNet achieves a
strong DSC score of 79.13 on the BTCV dataset [9, 23].

2.9.2 VT-UNet

Peiris et al. [10] introduced VT-UNet in November 2021. VT-UNet is a Trans-
former architecture for volumetric medical image segmentation, closely re-
sembling Swin-UNet but in three dimensions rather than two. Indeed, the au-
thors of VT-UNet cite Swin-UNet as an inspiration for their work. Their archi-
tecture builds upon the Video Swin Transformer, a Swin Transformer for video
data. Using the Video Swin Encoder block, together with patch merging and
expansion in width and height, they build a 3D UNet architecture, which can
be seen in Figure 2.25a.

Notably, VT-UNet also introduces a novel Cross-Attention mechanism, where
the keys and values from each stage in the encoder is shared with the corres-
ponding decoder in the same stage. This allows the model to effectively integ-
rate information across the encoder and decoder branches. The authors show
empirically that Cross-Attention aids the performance of the model. Details
of the Cross-Attention interaction between the encoder and decoder mod-
ules can be seen in Figure 2.25b. Note that the decoder module employs a
parallel scheme where one branch operates solely on the input from the pre-
vious layer. Fusion is performed using a linear combination of each branch,
controlled by a parameter a,S = az; + (1 —a)z,.

Their method sets a strong 88.07 average DSC score with an average Haus-

46 Andreas H. Haversen: QT-UNet

dorff Distance of 7.52 using the BraTS2021 dataset [10, 20-22]. They also
showed that the method is robust against noise and artefacts in MRl images.

2.9.3 UNETR

UNETR, introduced by Hatamizadeh et al. [71] in March 2021, is a ViT based
model that uses a ViT encoder coupled with a conventional CNN decoder.
They utilise no patch merging in their model, instead opting for a 12 stage
encoder at the same resolution throughout. Their patch embedding layer ex-
tracts 16 x 16 x 16 patches from the input volume with an embedding size of
k = 768. They present an at the time SotA result for BTCV, with an average
Dice score of 89.10.

2.9.4 Swin-UNETR

Tangetal. [11]introduced Swin-UNETR in November 2021, building upon their
previous UNETR model [71]. They utilise a Swin Transformer Encoder, coupled
with a CNN based decoder. In contrast to UNETR, they utilise a patch mer-
ging strategy to reduce the spatial dimension of the input at each stage of
the model. Notably, they introduce a novel SSL framework for their encoder
that includes both contrastitive learning, masked volume in-painting, and 3D
rotation prediction SSL heads. It is worth noting that UNETR has 92.58 M para-
meters compared to 61.92 M in Swin-UNETR, highlighting significant savings
in terms of model size between the two models.

Their pre-training approach works by extracting a sub-volume from a lar-
ger CT scan. This sub-volume is then subjected to stochastic masking and z-
rotation augmentation, creating two views of the sub-volume. These views are
then fed to the encoder. The encoded representations are then fed to each
of the SSL heads and produce a loss for backpropagation to the encoder. The
contrastitive head maps the representations to a latent representation. Con-
trastitive loss is then calculated using cosine similarity between the represent-
ations. The reconstruction head uses a single transpose convolutional layer to
reconstruct the input view from the encoder representation. The loss is calcu-
lated using L1 loss. Finally, the input rotation is predicted using an MLP across
4 classes: 0°,90°, 180°, and 270°. Cross-entropy loss is used for the rotation
task. The model is trained jointly across the sum of the losses. An overview of
the SSL framework can be seen in Figure 2.26a, with the whole architecture
in Figure 2.26b.

They pre-train their encoder using 5,050 CT scans drawn from The Cancer
Imaging Archive, and go on to set new State of the Art results for the BTCV
datasets and the CT tasks in MSD. Specifically, they get a 90.8 DSC score for
BTCV and similarly strong results in the CT MSD tasks.

Chapter 2: Background theory and Related Work 47

| —cmpaint |+‘ £Cont"rast “l“ LRot
.' 1 k
Self-Supervised ! P . : !
Heads \ | Inpainting |Contrastive| Rotation :
_____________________ !
i [
Swin Transformer Encoder J
T T 1T T T 1 T T 1 T 1T T 1
.I.\'\'\ .I.\'Ill .I.\.I'I'I.I .I'I
[Patch Partition }

Xi

=3

— 3 _Q,

Input CT

(a) Swin UNETR SSL framework.

Input iy,

HxWxDxas | /.~ : HxWxDxas

y “
I :
e |7 == /" Segmentation

7 tl

4 Head
Hw b r——
] 5w [77 -
Patch Partition @ 7 | | f [
1 Uil K} I e |] t7777
z ey Wt Hidden Feature AT — =
022 LA XA f—i &,
ExFx7xas i A7 AT ol A [we] [w |t
Stage 1 [e ResidualBlock /| 3 + !
Voouwo et et e w oo /1 [Linear Norm ((Linearnom J | |
CIUM I nw o ———— 4 e /i ;
i e I | Bottleneck Featurs | D/ [——al
) p !
Merging stage 2 - L, awo === /1 [(wasa) [Cswwsa]t
12 How D (] g i i a4]
LU o === ! !
Clariar H_w_ D / ! |
16716 16 3% ==) 4 g 1 [Linear Norm] [Linear Norm] !
Stage 3 é — \
' e bl ol] 2 e Deconv /A T ¥ T /
LIV NP [R e I
16716 %16 1
Merging Stage 4 L _ .
| Merging | ge _ W ow b PRt e Swin Transformer Block
e i L atch Merging

(b) Full Swin-UNETR architecture.

Figure 2.26: Overview of Swin-UNETR, figures from [11]

48 Andreas H. Haversen: QT-UNet

2.9.5 nnFormer

This model, introduced by Zhou et al. [72] in September 2021, introduces an
interesting three stage all-attention UNet model that shows strong perform-
ance in several MIC datasets, despite a relatively lean and elegantly simple ar-
chitecture. They interleave convolutional blocks for downsampling and Trans-
former blocks in their encoder, employing a local windowed Self-Attention
scheme similar to that of Swin Transformer blocks, only applying global Self-
Attention in the bottleneck where the spatial resolution is the smallest. They
also incorporate a skip attention module instead of regular skip connections
to incorporate information from the encoder into the decoder, extracting keys
and values from the same stage encoder output and taking queries from the
previous up-sampling layer.

They train the model using deep supervision over the output of every de-
coder stage, with greater emphasis given to the loss output at the higher levels
of the encoder. They report an average Dice score of 86.57 on the BTCV data-
set, an average Dice score of 86.4 and a 95th percentile average Hausdorff
Distance of 4.05 mm in the MSD Brain Tumour task.

2.9.6 Model Genesis

Model Genesis, as introduced by Zhou et al. [73] in April 2020, is set of generic
models for 3D medical image segmentation trained using SSL. These models,
seven in total, are pretrained across a vide variety of different data and mod-
alities, ranging from 2D X-Ray images to 3D MRI scans. Three of those models
are trained using SSL over 2D and 3D CT chest data, using input reconstruc-
tion of a transformed volume as a proxy task. They demonstrate rapid con-
vergence and strong performance of their models across a wide variety of
datasets.

2.9.7 TransVW

Transferable Visual Words (Trans VW), introduced by Haghighi et al. [74] in
February 2021, is an approach to SSL for MIC where the model learns gen-
eralisable representations of recurring anatomical patterns across samples,
the so-called Visual Words. In essence, visual words are essentially patches
of the original input volume. They generate a data set of grouped similar
visual words from unlabelled medical data using an unsupervised clustering
strategy. An encoder is connected to a classification head and a decoder. The
encoder is then trained in a self-supervised manner by taking a visual word
perturbed by cutout and masking as input, feeding the encoded represent-
ation to the classification head which tries to classify which group of visual
word the input came from, and also feeding the representation to the decoder
which tries to reconstruct the original unperturbed input. They demonstrate

Chapter 2: Background theory and Related Work 49

strong performance across a variety of MRI, CT, and X-Ray datasets, surpass-
ing Model Genesis in terms of convergence speed and performance in several
of them.

2.9.8 UNetFormer

In April 2022, concurrently with with thesis, Hatamizadeh et al. [75] introduced
UNetFormer: A Unified Vision Transformer Model and Pre-Training Frame-
work for 3D Medical Image Segmentation. Although this paper was published
too late to have significant effect upon this project, it is included in this dis-
cussion to highlight concurrent and related work. They introduce two vari-
ants of their model, UNetFormer and UNetFormer+. Common to both is a
5 stage Swin-based encoder with patch merging layers. They pretrain this
encoder using a masked in-painting scheme across the masked tokens and
a skip-connected auto-encoder. Their decoder varies depending on variant.
The standard variant uses a 6 stage conventional Convolution-based decoder,
whilst the plus-variant uses a 6 stage Transformer-based decoder, both using
trilinear interpolation to upscale the tokens at each stage.. They train their
encoders using deep supervision, generating segmentation maps from the
three last stages of their decoder. In MSD Task 3 Liver, their plus-variant at-
tains a score of 95.06 DSC for the liver and 51.23 for the tumours, with 24.44
parameters using 39.63 GFLOPs. When training from scratch on BraTs, their
plus-variant attains a average Dice score of 91.20.

2.9.9 Other models

In this section, strong and modern models in the AD and MIC field are listed.
These models are distinguished from the other models as they did not directly
influence the methods developed for this project and thus are not quite de-
serving of the title "related work". They are included nonetheless to provide
context for the AD and MIC fields at large and to serve as baselines in our
experiments.

nnUNet

nnUNet, introduced by Isensee et al. [76] in September 2018, is a strong con-
volutional UNet that has up until quite recently been one of the most powerful
general 3D medical image segmentation models. They propose an automatic
adaptive approach that adapts the model architecture to the specific task at
hand, with a cascaded two stage approach being used with certain applic-
able datasets. They show strong performance across several tasks in the MSD
dataset, and is commonly used as a standardised baseline.

50 Andreas H. Haversen: QT-UNet

SeMask

In December 2021 Jain et al. [77] introduced SeMask: Semantically Masked
Transformers for Semantic Segmentation. They propose a incorporating spe-
cific semantic layers and decoder during training to enhance semantic inform-
ation in the features generated by the feature decoder. The output of these
semantic decoders is used to provide deep supervision at every stage. These
semantic layers utilise a specialized form of attention classed semantic atten-
tion, whilst the regular encoder layers are Swin-based. They show strong per-
formance on both ADE20K with 57.00 mloU and CityScapes val with 83.97
mloU, holding 3rd place for the latter.

VOLO

VOLO, also known as the "Vision Outlooker", is a Transformer-based generic
CV model introduced by Yuan et al. [78] in June 2021 using a modified at-
tention mechanism called "Outlook attention" to better finer level features
and contexts into tokens before global dependency modelling using Trans-
formers. Their largest model, VOLO-D5, shows strong performance across
several downstream tasks, including semantic segmentation on CityScapes
val with a 84.3 mloU score and ADE20K with a 54.3 mloU score, holding 4th
place for the former.

Segformer

In May 2021, Xie et al. [79] introduced the SegFormer (not to be confused with
the Segmentation Transformer), a simple, efficient, and powerful semantic
segmentation framework with Transformer-based encoders and straightfor-
ward MLP decoders. Using an efficient formulation of self-attention and hier-
archical features together with their all-MLP decoder, they show remarkable
performance and efficiency on the semantic segmentation datasets ADE20K
with a 51.8 mloU score and CityScapes val with a 84.0 mloU score, holding 5th
place for the latter.

Chapter 3

Methodology

This chapter describes the methodology of our work. Section 3.1 describes
the software and hardware used for the development of the project and for
running our experiments. Section 3.2 describes the different datasets made
available to the experiments. Section 3.3 introduces the QT-UNet in detail,
while Section 3.4 briefly describes the models against which we compare it.
Section 3.5 describes the experiments carried out in the project, before Sec-
tion 3.6 describes the metrics by which we evaluate the models.

3.1 Software and hardware

Datasets, models, and experiments were set up using Anaconda [80] with Py-
thon 3.9.11, using PyTorch 1.11.0 [81], PyTorch Lightning 1.6.0 [82], PyTorch
Lightning Bolts 0.5.0 [83], and MONAI 0.8.1 [84]. PyTorch was selected due to
its wide support in the research community and the availability of its TorchVi-
sion library, which contains both wrappers for several standard CV datasets
such as CityScapes [31]. It was decided to extend PyTorch with PyTorch Light-
ning, as that library automates much of the manual engineering work asso-
ciated with writing PyTorch code. For example, setting up multi-GPU training
with Lightning is relatively easy, requiring only a small change in configuration,
whereas the same feat in plain PyTorch would require significant engineering
effort. PyTorch Lightning Bolts was also used, as it further extends some of the
datasets available in TorchVision to work with Lightning and includes standard
implementations of several SSL techniques. MONAI was also used as it signi-
ficantly simplifies working with 3D data volumes and provides several utilities
for working with medical data.

Most of the development, debugging, and data processing for this project
was carried out using a virtual machine made available by the IDI Horizon
visual computing group. Some trial training was also performed on the VM,
though the runs reported in Chapter 4 were run on IDUN. IDUN is a state-
of-the-art compute cluster maintained by the High-Performance Computing

51

52 Andreas H. Haversen: QT-UNet

Machine | Device | Specs
GPU Up to 2x NVIDIA Tesla V100 32/16GB, or P100
16GB, or A100 80/40GB

IDUN CPU Intel Xenon Gold 6148, 20 cores at 2.4GHz
RAM 768GB

Horizon GPU NVIDIA A10-24Q, 24GB

VM CPU Intel Xenon Gold 6342, 8 cores at 2.8GHz

RAM | 87GB

Table 3.1: Hardware Specifications.

Group at NTNU [85]. The cluster is made up of various nodes with different
hardware, using the SLURM resource manager [86] to distribute jobs to the
nodes. For this project, nodes with NVIDIA Tesla A100 GPUs were used. Spe-
cifically, we used one A100 40GB card for all our standard runs, increasing to
two A100 80GB cards for our SSL pre-training runs. A summary of the avail-
able hardware can be found in Table 3.1.

We describe, for the benefit of future practitioners, some particulars of our
working setup with the VM and IDUN that we found productive and effective.
First and foremost, we used a Git repository to sync code between the VM and
IDUN cluster. Using a Git repository provided simple synchronisation between
the machines and flexibility to experiment safely in branches. We also used
a Anaconda environment specified in a environment yaml file, which allowed
us to keep the Python environments in sync easily. Furthermore, we opted to
use VSCode over SSH with both machines for development and inspection,
which provided a single consolidated development environment across both
machines without having to log into either machine with a remote desktop
setup. Finally, we made heavy use of SLURM array jobs in order to orchestrate
experiment runs across many models and model versions at the same time.

3.2 Datasets

The datasets selected and the reasoning behind their selection are described
in this section. Any pre-processing of the data is also explained.

3.2.1 MIC datasets
BraTS2021

BraTS2021 is selected for our experiments because it reflects a real-world
scenario and has diversity in its MRl scans, as they are acquired at differentin-
stitutions with different equipment and protocols. The dataset contains 1251
MRI scans of shape 240 x 240 x 150. Following Peiris et al. [10], the scans are

Chapter 3: Methodology 53

divided into sets of 834, 208, and 209 for training, validation, and testing, re-
spectively.

Each scan in the dataset is interpolated to a isotropic voxel spacing of
[1.0 x 1.0 x 1.0]Jmm. The foreground in the scan is cropped, before intensit-
ies are normalised in a non-zero, channel-wise fashion. During validation and
testing, the augmentation ends here. For training, we use randomly selected
sub-volumes of size 128 x 128 x 128 voxels.

The raw labels in the dataset consist of the Enhancing Tumour (ET), Non-
Enhancing Tumour (NET), Necrotic Tumour (NCR), and Peritumoral Edema
(ED). Following standard pre-processing for the BraTS dataset, the ET label
is used directly. NET, NCR, and ET are combined to produce the label Tumour
Core (TC), and ED is combined with TC to produce the label Whole Tumour
(WT). This leaves us with three meaningful labels for training and evaluation.

BTCV

BTCV is used for our experiments, as it poses an interesting challenge of 13
organ segmentation targets with few training samples available. Each CT scan
consists of between 85 and 198 slices, with resolution 512 x 512 pixels. Of the
50 scans, 40 are available with labels. Of these 40 labelled samples, 35 are
used for training and the rest are used for validation and testing.

The pre-processing pipeline for BTCV follows the pipeline used for Swin-
UNETR [11], since our model shares architectural similarities with theirs. Each
scan is interpolated to a voxel spacing of [1.5 x 1.5 x 2.0]Jmm. CT intensity
is clipped between -175 and 250, before being normalised. The foreground
is then cropped whilst labels are one-hot encoded. The validation pipeline
stops here. For training, 96 x 96 x 96 voxel sub-volumes are extracted, and
padded if smaller than the requested size. Random flips are applied in each
dimension with a probability of 0.1 Random 90 degree rotation is also applied
with probability 0.1, before a random intensity shift is applied with offset 0.1
and probability 0.5.

MSD

The MSD dataset is included due to its diversity of modalities and challenges.
This diversity allows us to comprehensively benchmark our method and eval-
uate its generalisability for medical image segmentation.

As with BTCV, we adopt the pre-processing pipelines used in Swin-UNETR
[11] due to the similarities in architecture. The pipelines for each task are set
up as follows.

Task 1 Brain Tumour The pipeline for these MRI images is identical to that
described in Section 3.2.1, with the addition of random flips in each dimension

54 Andreas H. Haversen: QT-UNet

with probability 0.5, random intensity scaling with factor 0.1 and probability
0.1, and random intensity shifts with offset 0.1 and probability 0.1.

Task 2 Heart The MRIimages are interpolated to an isotropic voxel spacing
of 1.0 mm and cropped to remove the foreground, before channel-wise non-
zero normalisation is applied. Training sub-volumes are sampled at a resolu-
tion of 96 x 96 x 96 voxels, with a positive to negative class ratio of 2:1. Random
flip is then applied with probability 0.5, random 90°rotation with probability
0.1, intensity scaling with factor 0.1 and prob 0.2, and intensity shift with offset
0.1 and prob 0.5.

Task 3 Liver The CT scans are interpolated to a isotropic voxel spacing of
1.0 mm and cropped to remove the foreground. The intensities are scaled to
[—21,189], and then normalised. Training sub-volumes are sampled at a res-
olution of 96 x 96 x 96 voxels, with a positive to negative class ratio of 1: 1.
Random flip is applied with probability 0.2, random 90°rotation with probab-
ility 0.2, intensity scaling with factor 0.1 and prob 0.1, and intensity shift with
offset 0.1 and prob 0.1.

Task 4 Hippocampus Each MRI image is interpolated to a voxel spacing of
0.2 x 0.2 x 0.2 and cropped to remove the foreground. Training samples are
extracted at a resolution of 96 x 96 x 96 voxels. Channel-wise non-zero norm-
alisation is applied, before random flip, rotation, intensity scaling, and shifting
are applied with probability 0.1. For scaling and shifting, the factor and offset
are both 0.1.

Task 5 Prostate With both channels of the MRI scan, the scans are inter-
polated to a voxel spacing of 0.5mm and cropped to remove the foreground.
Training samples are extracted at a resolution of 96 x 96 x 96 voxels. Channel-
wise non-zero normalisation is applied, before random flip, intensity scaling,
and shifting is applied with probability 0.5. For scaling and shifting, we set the
factor and offset to 0.1. Additionally, a random affine transformation is ap-
plied with a scale factor of [0.3,0.3,0.0] with a rotation range of [0,0, 7] on
each axis.

Task 6 Lung Each CT scan is interpolated at an isotropic spacing of 1.0mm.
The intensities are clipped to [—1000,1000], and then normalised. Training
samples are extracted at a resolution of 96 x 96 x 96 voxels, with a ratio of
positive to negative classes of 2:1. Random flip is applied with probability 0.5,
random rotation with probability 0.3, intensity scaling with factor 0.1 and prob
0.1, and intensity shift with offset 0.1 and prob 0.1.

Chapter 3: Methodology 55

Task7Pancreas CT scanintensitiesare clippedto[—87,199]. Training samples
are extracted at a resolution of 96 x 96 x 96 voxels, with a positive-to-negative
class ratio of 1:1. Random flip is applied with probability 0.5, random rotation
with probability 0.25, and intensity scaling with factor 0.1 and prob 0.5.

Task 8 Hepatic Vessel Each CT scan has its intensities clipped to [0,230].
Besides this change, the same augmentations as for Task 7 are used.

Task 9 Spleen The CT scans are interpolated to an isotropic voxel spacing of
1.0mm. Intensities are clipped to [—125,275]. Training samples are extracted
at a resolution of 96 x 96 x 96 voxels. Random flip is applied with probability
0.1.5, intensity scaling with factor 0.1 and prob 0.1, and intensity shift with
offset 0.1 and prob 0.1.

Task 10 Colon The intensities of each CT scan are clipped to [-57175] and
then normalised. Training samples are extracted at a resolution of 96 x 96 x 96
voxels, with a positive-to-negative class ratio of 1:1. Random flip is applied
with probability 0.5, random rotation with probability 0.25, and intensity scal-
ing with factor of 0.1 and probability of 0.5.

3.2.2 AD datasets
CityScapes

We opted to use CityScapes, described in Section 2.2, for this project for se-
mantic segmentation, as it is one of the most widely used and cited semantic
segmentation datasets in the AD community. There was also a wrapper avail-
able in PyTorch Lightning Bolts [83], which tied in nicely with PyTorch Light-
ning. It also corresponds well to RQ 3, to test our methods in 2D.

Augmentations include normalisation of the images using the mean and
standard deviation of CityScapes. For training, we extract 1024 x 1024 pixel
images from the original 2048 x 1024 pixel images to facilitate their use in
our SSL pipeline. The classes to be ignored, as described by [31], are set as
background, leaving us with 20 total classes. A table of the mapping can be
found in the Appendix, in Table B.1.

CityScapesCat

In order to investigate the effect of the number of classes on QT-UNet, we
create a variant dataset of CityScapes by mapping the class IDs to category
IDs using the mapping described in Table B.1. This dataset, CityScapes over
Categories, is dubbed CityScapesCat. We use the same augmentations as for
the standard CityScapes dataset.

56 Andreas H. Haversen: QT-UNet

DXHXWxC DxHXW XK

Patch Partition
Patch Expansit 4x
Linear Embedding atch Expansion (4x)

QT Decoder Block

Patch Merging ansion

Decoder Block

Patch Merging

QT Decoder Block

Figure 3.1: The proposed QT-UNet architecture.

NTNU Data

We utilise a small, 10 sample dataset from Trondheim, Norway provided by
the NTNU Autonomous Perception Laboratory (NAPLab) to test the zero-shot
transfer performance of QT-UNet-2D. The dataset is annotated with classes
corresponding to the CityScapes class definition.

For this data set, we used the same augmentations as with CityScapes.

3.3 QT-UNet

Our model is inspired by VT-UNet [10] and Swin-UNETR [11], with our archi-
tecture drawing heavily upon the former and our training procedure being
based upon the latter. An overview of the model and components can be seen
in Figure 3.1. The model is named Querying-Transformer UNet, or QT-UNet
for short. It exists in two variants: One for 3D inputs and one for 2D inputs.
The 3D variant, simply named QT-UNet, takes as input a 3D volume of size
D x HxW x C and produces as output a volume of size D x H x W x K, where
K is the number of classes. The 2D version is identical to the 3D version, but
drops the depth dimension (D) in all components. The 2D version is denoted

Chapter 3: Methodology

i
)
©
a8}
|-
[}
©
]
O
c
o
'_
(@

SW-MSA

MLP

id & norm

SW-MSA

SW-MSA

Figure 3.2: Encoder-Decoder interaction.

57

i)
=
)
@
o
o)
a
@
-
™
o)
S
Q

58 Andreas H. Haversen: QT-UNet

as QT-UNet-2D.
The model consists of the following components:

1. Patch partitioning
2. QT-UNet encoder

e QT encoder block
e Patch merging

3. Bottleneck

e QT encoder block
e Patch expansion

4. QT-UNet decoder

e QT decoder block
e Patch expansion

5. Classifier

This section will discuss each component in turn.

3.3.1 Patch partitioning

As with other Vision Transformers, we transform the model input into a se-
quence of tokens using a convolutional layer. This layer partitions the input
into non-overlapping patches using a partitioning kernel. For our 3D variant,
this kernel has size M x M x M, resulting in a sequence of tokens correspond-
ing to a volume of | & | x| £ | x| ¥ |. The convolutional layer is equipped with C
such kernels as to embed each patch in a C-dimensional vector. A value of 4
is set for M, whilst the value of C varies depending on the model variant used

(see Section 3.3.9).

3.3.2 QT-UNet Encoder

The QT-UNet encoder consists of successive QT encoder blocks and patch
merging layers. Each stage in the encoder consists of two QT Encoder blocks,
followed by a patch merging layer.

3.3.3 QT Encoder Block

The design of the QT Encoder Block draws upon the design of the Video Swin
Encoder blocks [87] and VT Encoder Blocks [10]. Each block consists of two
sub-blocks with a 3D window-based MHSA (W-MHSA) module followed by a
two-layer MLP with a GELU activation function. Layer normalisation is applied
before and after the self-attention module, with skip connections between the
self-attention module and the MLP. For the second sub-block in each block,
the window partitioning operation is shifted two voxels in each direction to

Chapter 3: Methodology 59

3D local window to
perform self-attention

A token

Layer 1+1
Window size: PxMXM = 4x4x4 # window: 2x2x2=8 # window: 3xX3x3=27

3D tokens: T"XH’XW’ = 8x8x8

Figure 3.3: lllustration of 3D windowed self attention, from [87].

introduce cross-window connections between the blocks. Self-attention with
this shifting operation is known as Shifted Window Multi-Head Self-Attention
(SW-MHSA). Additionally, a 3D relative bias B € RM**M**M” is added to each
self-attention head.

Self-attentionis applied to each window as in Equation (3.1), whereK,Q,V €
RM’*d are the key, query, and value matrices, d is the dimension of the key
and value features, and M? is the number of tokens in each window.

. QKT
Attention(Q,K,V)=Sof tmax 7 +B |V 3.1
q

Since the relative position along each axis lies in the range of [[M + 1, M
- 1], we parameterise a smaller bias matrix B € RGM—D*@M-DxCM-1) taking
values for B from B, as in [8].

The windowing operation can be understood as injecting an inductive bias
of locality into the model. The shifting operation allows successive applica-
tions of the blocks to receive information across windows, whilst the position
bias informs the relative positioning of those windows.

Patch Merging

Strong feature hierarchies are an essential feature of many segmentation
models[8-11, 40, 54] in order to predict dense outputs. After each QT Encoder
Block, adjacent 2x 2 x 2 groups of tokens are concatenated along their feature
dimension, producing a vector with 8C-dimensional features with spatial di-
mensions D/2x H/2x W /2. Alinear layer is used to project the concatenated
features to a fourth of their expanded dimension. That is, the 8C-dimensional
features of each token is reduced to 2C dimensions, producing final tokens
ofsize D/2xH/2x W /2 x 2C.

It should be noted that our patch merging application is slightly different
from the one used for the Video Swin Transformer [87] and VT-UNet[10]. As
noted, the patch merging layersin QT-UNet merge adjacent tokens in all three

60 Andreas H. Haversen: QT-UNet

spatial axes. This is in contrast to the Video Swin Transformer and VT-UNet,
which perform patch merging only in the height and width axes.

3.3.4 Bottleneck

The deepest stage of QT-UNet is a bottleneck layer. This layer consists of a
single QT Encoder Block, followed by a patch expansion layer.

3.3.5 QT-UNet Decoder

The QT-UNet Decoder consists of successive pairs of QT Decoder blocks, patch
expansion layers, and ends with a classifier.

Patch Expansion

In essence, the Patch Expansion layers work to undo the operation of the
Patch Merging layers. That is, their function is to increase the spatial resol-
ution of the tokens whilst reducing their feature dimension.

This is achieved through a two-stage process. First, a linear layer is applied
toincrease the feature dimension fourfold (i.e. 2C — 8C). Then, 2x2x 2 tokens
with feature dimension C are extracted from the expanded token. That is,
given an expanded volume D/2 x H/2 x W /2 x 8C, we reshape the volume
along the spatial axes by reducing the embedding dimension, producing a
volume of tokens of size D x H x W x C.

3.3.6 QT Decoder Block

UNet architectures typically use skip connections between stages in the en-
coder and decoder pipelines to produce higher detail predictions by forward-
ing spatial information from earlier stages in the network to later stages that
have strong semantic information but weaker spatial information. These skip
connections merge these spatially and semantically dense representations
together, allowing us to enjoy the best of both worlds.

Inspired by this, the authors of VT-UNet [10] introduced a novel Cross-
Attention mechanism that, in addition to the already well-established skip
connections, fed the keys and values from the same-stage encoder to the de-
coder, adding another path between the pipelines. This effectively allows the
decoder to query for spatial information using the spatially strong keys and
values from the encoder. They employ this Cross-Attention mechanism in a
two-pipeline fusion module (see Figure 2.25b), where each pipeline consists of
one block each. One block receives keys and values from the encoder, whilst
the other receives it from the previous block. The output is combined using a
linear combination of the outputs of the two pipelines.

Chapter 3: Methodology 61

The QT Decoder Block iterates upon this approach by introducing two
major changes. First, we allow the decoder block to generate its own keys
and values from the output of the same-stage encoder, rather than directly
forwarding them. This allows the model to more flexibly query the spatially
dense encoder output by generating its own queries and values rather than
being bound by the generation of these in the encoder. This also saves some
memory usage at the cost of more parameters, since the keys and queries
from the encoder stages need not be stored.

Secondly, we remove the fusion module and instead structure the block
more in accordance with a standard Transformer decoder. That is, we first
employ standard Windowed Self-Attention with keys, queries, and values de-
rived from the input as normal, before applying Windowed Cross-Attention
where the keys and values are generated from the output of the same-stage
encoder, and queries are generated from the output of the previous Cross-
Attention block. This mirrors the design of the original Transformer Decoders
due to Vaswani et al. [1].

The general intuition of this approach is that we allow the decoder to flex-
ibly query the output of the encoder. In our setup, the decoder can essen-
tially decide for itself what is and is not pertinent information in the spatially
dense encoder output, whilst still basing the queries upon the semantically
dense decoder output. In essence, the model is querying itself, hence the
name "Querying Transformer UNet".

An illustration of the block can be seen in Figure 3.2. As with the encoder
blocks, there are several skip connections across the modules in the block,
and a final MLP at the top. As in the encoder blocks, this MLP is a two-layer
module with a GELU activation function. Again, similarly to the encoder block,
windows are shifted 2 voxels in each axis for each pair of sub-blocks to pro-
duce shifted window self-attention. A relative spatial bias is also applied in the
same manner as in the encoder.

3.3.7 Classifier

After the final Patch Expansion layer in the decoder, the model is topped with
a convolutional classification head, mapping the C dimensional features to K
segmentation classes. The final output of the model isthen D x H x W x K.

3.3.8 Common parameters

For the sub-blocks used in both the encoder and decoder, a hand-full of com-
mon parameters are set. Firstly, a window size of 7 x 7 x 7 is used for the
window partitioning for both W-MHSA and SW-MHSA. Secondly, an expan-
sion ratio of 4.0 is used for the hidden layers in the MLP. Finally, the number
of heads in each module increases for each stage down into the encoder and

62 Andreas H. Haversen: QT-UNet

decreases for each stage moving upward in the decoder, following the pattern
given in Equation (3.2).

Additionally, the encoder modules in the Base variant of QT-UNet are pre-
loaded with Swin Transformer weights pre-trained on ImageNet, with the other
variants initialised randomly, following Peiris et al. [10].

356—-512—-24"' 51256—>3 (3.2)

3.3.9 Variants

Several variants of QT-UNet can be introduced by varying the parameters that
control its behaviour. We introduce three variants by adjusting the number
of embedding dimensions C in the Patch Embedding layer, following VT-UNet
[10]. Applying the same naming convention as VT-UNet, these variants are as
follows:

1. Tiny: QT-UNet-T, C =48
2. Small: QT-UNet-S, C =72
3. Base: QT-UNet-B, C =96

For all models, we employ three stages of encoding and decoding, plus
the bottleneck. The patch embedding uses a patch size of M = 4 for all exper-
iments.

QT-UNet-2D

The model described so far is the 3D variant of QT-UNet. To test the applicab-
ility of the techniques used in 2D CV domains, we also spin out a 2D version
of the model as can be seen in Figure 3.4. Mostly identical to the standard QT-
UNet, the 2D version drops the depth dimension in all components. Addition-
ally, the Patch Merging and Expansion layers work slightly differently. Since
these layers only work on 2 x 2 spatial neighbourhoods in the 2D variant, they
produce and require a lower feature dimension before reduction and expan-
sion. That is, in the Merging layers, we get a feature dimension size sequence
of: C —» 4C — 2C, rather than C — 8C — 2C. In the Expansion layers, we
have 2C — 4C — C rather than 2C — 8C — C. Consequently, the linear patch
expansion and contraction layers are milder in the 2D version than in the 3D
version, by a factor of 2, due to the smaller spatial neighbourhood.

3.3.10 Training QT-UNet

QT-UNetis trained by minimising Dice Loss, as described in Section 2.4.5. Note
that this is in contrast to VT-UNet, which jointly minimises both Dice Loss and
CE loss. We found that our model performed better under Dice loss rather

'In the bottleneck stage.

Chapter 3: Methodology 63

HXWXxC HXxW XK

Classifier
Patch Partition

Linear Embedding

h Mergin

T Decoder Blo

Figure 3.4: Architecture of QT-UNet-2D.

64 Andreas H. Haversen: QT-UNet

than joint loss, especially in tasks with overlapping target meshes?, and thus
decided to use it instead of joint loss.

3.3.11 Inference with QT-UNet

In both MIC and AD tasks, the input sizes are often larger than what the model
can handle. This is also the case for QT-UNet and other models in this pro-
ject. There are several approaches to handle this problem, but an approach
of specific interest to this project is sliding window inference. With sliding win-
dow inference, the model is simply sled across the larger input to produce
prediction windows that collectively represent a segmentation of the whole
input. Often, an overlap parameter is set to specify how much each prediction
window should overlap. These overlapping predictions are then combined by
averaging the predictions. Two common methods of averaging are constant
averaging® where each prediction window is given equal weight, and Gaussian
averaging® where predictions in the edges of windows are given less weight
than those at the centre.

In this project sliding window inference in constant mode with an overlap
of 0.5 is used during validation and testing unless otherwise noted.

3.3.12 SSLin QT-UNet

We employ Self-Supervised Learning (SSL) on the encoder, training it to pro-
duce strong semantic representations of the input before fine-tuning. Our
approach builds upon the one favoured by Tang et al. [11] for Swin-UNETR,
with a handful of improvements.

Similarly to Swin-UNETR, we pre-train QT-UNet using a augmented multi-
view multi-head approach. First, a sub-volume x € R¥>>wxC \where d, h, and
w are the spatial dimensions of the volume, is extracted for the larger input
volume X € RP**WxC Erom this sub-volume x, two augmented views of the
data are generated with two independent applications of an augmentation
pipeline consisting a random sub-volume masking and random 90° rotation
along the z-axis. These augmented views are then fed to the encoder, which
outputs its representation of them. These representations are then fed to
each of the three task heads:

Reconstruction head This head consists of a single transposed convolution
layer that takes as input the view representation and attempts to reconstruct
the un-augmented sub-volume x. We denote its reconstruction x, and use L1
loss between it and x as the objective.

2Such as those for BraTS, where the label "tumour core" and "enhancing tumour" are both
wholly contained in the label "whole tumour".

3Referred to as "constant mode".

“Referred to as "Gaussian mode".

Chapter 3: Methodology 65

Image rotation head This head consists of a standard one layer MLP with
Batch Norm and a ReLU activation function. It attempts to predict how much
the augmented volume was rotated in one of four classes: 0°, 90°, 180°, or
270°. This task is optimised using a soft-maxed cross-entropy loss between
the true rotation k and the prediction k.

Bootstrap Your Own Latent (BYOL) head Notingthatthe contrastitive SimCLR-
based approach favoured by Swin-UNETR requires prohibitively large batch
sizes to be properly effective [66], we opt instead to use BYOL as described in
Section 2.8.3 due to its stronger performance with smaller batch sizes.

We base our implementation of BYOL on the one provided by PyTorch
Lightning Bolts [82], modifying it to fit our augmentation scheme. Loss is cal-
culated using cosine similarity between the outputs of the augmented views
from the online and target branches of BYOL.

Joint Loss

Formally, the encoder is optimised over the joint loss of all head losses, with
equal weight given to each following Tang et al. [11].

Modes of operation for QT-UNet SSL

We use this SSL setup in two different modes, depending on the task, the mod-
ality, and the domain for which we train. Some modality and domains have
large, readily available corpuses of unlabelled data that can be used for SSL. In
these domains, we collect a large out-of-task dataset with relevant unlabelled
data and use this dataset for pre-training. We refer to this as out-of-task pre-
training. In other domains, where data access is more scarce, we utilise the
SSL setup on the task data directly in order to extract more learning from the
limited corpus, referring to it as in-task pre-training.

CT-SSL dataset

Using The Cancer Imaging Archive (TCIA) [88], we have been able to compose
a large dataset of CT scans of the abdomen, pelvis, and chest by composing
data available in several of the datasets available in the archive. An overview
of the datasets used can be found in Table 3.2. The dataset, which we name
CT-SSL, consists of 3597 CT scans, downloaded through the TCIA APl and con-
verted from DICOM to Nifti format. Note that some scans were discarded dur-
ing conversion due to errors or inconsistencies in the data. 100 scans are held
out as a validation set during training.

66 Andreas H. Haversen: QT-UNet

Dataset Region | #of scans | Source

CT Lymph Nodes [89] Abdomen/Lungs 175 | wiki.cancerimagingarchive.net/display/Public/CT+Lymph+Nodes

CT Colonography [90] Abdomen/Pelvis 1706 | wiki.cancerimagingarchive.net/display/Public/CT+COLONOGRAPHY
COVID-19-AR [91] Lungs 149 | wiki.cancerimagingarchive.net/pages/viewpage.action?pageld=70226443
MIDRC-RICORD-1A [92] Lungs 121 | wiki.cancerimagingarchive.net/pages/viewpage.action?pageld=80969742
MIDRC-RICORD-1B [93] Lungs 90 | wiki.cancerimagingarchive.net/pages/viewpage.action?pageld=80969771
Pelvic Reference Data [94] Pelvis 116 | wiki.cancerimagingarchive.net/display/Public/Pelvic+Reference+Data
Stage Il Colorectal CT [95] | Abdomen/Pelvis 230 | wiki.cancerimagingarchive.net/pages/viewpage.action?pageld=117113567
LiDC [96] Chest 1010 | wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI

Table 3.2: Overview of datasets used for pre-training.

Parameter Value

Learning Rate 0.4x107%

Weight decay 1.5x107°

Optimiser Adam

Learning rate scheduler Linear Warm-up Cosine Annealing
Mini-batch Size Varies with experiment, see Table 3.4
Epochs Varies with experiment, see Table 3.5
Warm-up epochs 10

Table 3.3: Parameters for SSL runs.

3.4 Comparison to other models

We compare QT-UNet with several other models to evaluate its performance.
The models against which we compare are the models listed in Section 2.9 -
Related work, including those listed under "Other models". Models are used
for comparison where relevant scores are available.

3.5 Experiments

This section describes the experimental setup for each experiment, describ-
ing what models were ran against what data and the model hyperparameters.

3.5.1 Preparatory SSL

Before all experiments could be run, we ran our SSL against several datasets
to prepare weights to use in later runs. This section will describe what data
we trained on, with hyper-parameters listed in Table 3.3. A full description of
our SSL pipeline can be found in Section 3.3.12.

The size of our pre-training datasets and whether they are used for in-task
or out-of-task pre-training informs our choice of number of epochs, as can be
seen in Table 3.4. In experiments with large out-of-task datasets, such as the
CT-SSL dataset and CityScapes Coarse, we opt for a smaller number of epochs
due to the sheer size of the datasets and time constraints. For leaner, in-task

Chapter 3: Methodology 67

Gradient
Dataset Batch size | accumulation | Num. GPUs | Effective batch size
CT-SSL 32 2 2 128
BraTS2021 8 4 2 64
MSD Task 2/4/5 32 2 2 128
CityScapes Coarse 16 2 2 64

Table 3.4: Batch sizes used for each experiment in SSL.

Dataset | Num epochs
CT-SSL 150
BraTS2021 350
MSD Task 2/4/5 350
CityScapes Coarse 150

Table 3.5: Epochs used for each experiment in SSL.

datasets, we opt for a larger number of epochs to extract as much learning as
possible from the data.

Furthermore, batch sizes were tuned to fit as many samples as possible
on the GPUs to obtain a sufficient batch size for BYOL to be effective, also
using gradient accumulation to obtain an even larger batch size. Note that the
effective batch size is computed as: nGPU -batch size- gradient accumulation.

CT dataset

Using the dataset described in Section 3.3.12, we pre-train all variants of the
QT-UNet to initialise weights for downstream CT-based tasks.

In the augmentation pipeline for this dataset, we first interpolate all scans
to an isotropic voxel spacing of [1.0 x 1.0 x 1.0Jmm. We then crop out fore-
ground and normalise the scans, before passing a random 96 x 96 x 96 crop
of the volume to the SSL pipeline.

BraTS 2021

Restricted by the limited availability of relevant data and by time, we perform
in-task pre-training for BraTS for all variants of QT-UNet. Augmentations be-
fore the SSL pipeline are identical to those used for regular training.

MSD

Due to the limited availability of relevant out-of-task data for the MRI tasks in
MSD (Tasks 2, 4, and 5), we perform in-task pre-training for each of these tasks
with all variants of QT-UNet. As for augmentations as they are described in

68 Andreas H. Haversen: QT-UNet

Parameter Value
Learning Rate 0.4x10~4
Weight decay 0

Drop path rate 0.2
Optimiser Adam
Learning rate scheduler | Cosine Annealing
Mini-batch Size 1

Epochs 350

Table 3.6: Common parameters for MIC experiments.

Section 3.2.1, we drop them all apart from spacing, foreground cropping, clip-
ping, normalisation, and sample extraction. The final sample is then passed
to the SSL pipeline.

CityScapes

For CityScapes, we pre-train the 2D variants of QT-UNet using the 20 000
samples large coarse extension for CityScapes (CityScapes Coarse). Labels are
discarded, although the remaining preprocessing of the images is identical to
that described in Section 3.2.2.

Due to the high dimensionality of the output from the encoder when run-
ning QT-UNet-2D against CityScapes, we bilinearly interpolate the output of
the encoder to reduce its size by a factor of four before feeding the output to
the task head. Without this reduction, the SSL setup does not fitinto memory.

3.5.2 Experiment 1: Medical Image Computing

Our Medical Image Computing experiment consists of three subexperiments,
as detailed below.

Subexperiment 1.1: BraTS 2021

For this experiment, we train all versions of both QT-UNet and VT-UNet against
our own split of the data, with common training hyperparameters as described
in Table 3.6. We also train all versions of QT-UNet initialised with weights pre-
trained on the BraTS data with our SSL setup with otherwise identical para-
meters. The exact split of the samples and the augmentations used are de-
scribed in Section 3.2.1. For validation and testing, we segment whole volumes
using sliding window inference in constant mode with an overlap of 0.5. We
report Dice score and 95th percentile Hausdorff Distance, in addition to the
common metrics described in Section 3.6.

Chapter 3: Methodology 69

Task Modality | Dataset used for pretraining
1 Brain Tumour MRI BraTS2021
2 Heart MRI MSD Task 2
3 Liver cT CT-SSL
4 Hippocampus MRI MSD Task 4
5 Prostate MRI MSD Task 5
6 Lung cT CT-SSL
7 Pancreas cT CT-SSL
8 Hepatic Vessel cT CT-SSL
9 Spleen cT CT-SSL
10 Colon cT CT-SSL

Table 3.7: Mapping between MSD task and weights used for pre-trained QT-
UNet.

Subexperiment 1.2: BTCV

For this experiment, we train all versions of both QT-UNet and VT-UNet against
our own split of the data, with common training hyperparameters as described
in Table 3.6. We also train all variants of QT-UNet initialised with weights pre-
trained on our CT-SSL dataset using our SSL setup, with otherwise identical
parameters. The exact split of the samples and the augmentations used are
described in Section 3.2.1. For validation and testing, we segment whole volumes
using sliding window inference in constant mode with an overlap of 0.5. We
report Dice score whilstignoring the background label, in addition to the com-
mon metrics described in Section 3.6.

Subexperiment 1.3: MSD

For this experiment, we train all versions of both QT-UNet and VT-UNet against
all 10 tasks, with common training hyperparameters as described in Table 3.6.
We additionally train all variants of QT-UNet initialised with relevant weights
for each task, an exact mapping is given in Table 3.7. In general, for tasks us-
ing MRI data we initialised the pre-trained models with in-task pre-training,
whilst we for CT used the weights generated by out-of-task pre-training using
our CT SSL dataset.

We use the default MSD data splits for each task as provided by MONAI
[84], reporting results on the validation set whilst ignoring background. The
augmentations used for each task are described in detail in Section 3.2.1. For
validation and testing, we segment whole volumes using sliding window in-
ference in constant mode with an overlap of 0.5. We report Dice score whilst
ignoring the background label, in addition to the common metrics described
in Section 3.6.

70 Andreas H. Haversen: QT-UNet

Parameter Value
Learning Rate 0.4x10~4
Weight decay 0.001

Drop path rate 0.2
Optimiser Adam
Learning rate scheduler | Cosine Annealing
Mini-batch Size 4

Epochs 150

Table 3.8: Common parameters for AD experiments.

3.5.3 Experiment 2: Autonomous Driving

Our Autonomous Driving experiment consists of three subexperiments, as
detailed below.

Subexperiment 2.1: CityScapes

We train all variants of QT-UNet-2D with CityScapes, using training paramet-
ers as described in Table 3.8 and data augmentations as in Section 3.2.2. We
also train all variants of QT-UNet-2D with weights pre-trained on CityScapes
Coarse as described in Section 3.5.1 with the same parameters as in Table 3.8.
To better examine the effects of the Cross-Attention module in QT-UNet-2D,
we additionally train a variant model QT-UNet-2D-A under the same paramet-
ers as the standard QT-UNet-2D, but with the Cross-Attention module dis-
abled. We report results on the validation set, ignoring class 0 as prescribed
by 4.4. For validation and testing, we segment whole images using sliding-
window inference in constant mode with an overlap of 0.5. We report the
average Dice score and the mean loU (mloU) across all classes except the ig-
nore class 0, in addition to the common metrics described in Section 3.6. We
additionally report inference speed, recorded by taking the average inference
time over the testing epoch.

Subexperiment 2.2: CityScapesCat

Observing that CityScapes itself has a high number of classes, and finding
during development that QT-UNet struggles with tasks with a high number
of classes, we train all variants of QT-UNet-2D on our CityScapesCat variant,
mapping the CityScapes training IDs to category IDs. Details of this mapping
can be found inthe Appendix, in Table B.1. The training parametersin Table 3.8
are used. We report results on the validation set, ignoring the void class 0. To
highlight the effects of the Cross-Attention module in QT-UNet-2D, we also
train the variant model QT-UNet-2D-A under the same parameters as the
standard QT-UNet-2D, with the Cross-Attention module disabled. For valid-
ation and testing, we segment whole images using sliding-window inference

Chapter 3: Methodology 71

Model | Depth-wise | New CA module
VT-UNet X X
VT-UNet-A N X
QT-UNet-A X v
QT-UNet v v

Table 3.9: Overview of enabled features for the ablation models.

in constant mode with an overlap of 0.5. We report the average Dice score and
the mean loU (mloU) across all classes in addition to the common metrics de-
scribed in Section 3.6. We additionally report the inference speed, recorded
by taking the average inference time over the testing epoch.

Subexperiment 2.3: NTNU Data

To evaluate the generality of the weights trained for QT-UNet-2D in subexper-
iments 2.1 and 2.2, we evaluate the trained QT-UNet-2D models on the NTNU
dataset, described in Section 3.2.2. We apply the models directly, without fine-
tuning, ignoring class 0 as void. We modify the normalisation step in our pre-
processing to use the mean and standard deviation over this dataset rather
than CityScapes. Whole images are segmented using sliding-window infer-
ence in constant mode with an overlap of 0.5. We report the average Dice
score and the mean loU (mloU) across all classes except the ignore class 0,
in addition to the common metrics described in Section 3.6. We additionally
report inference speed, recorded by taking the average inference time over
the testing epoch.

3.5.4 Ablation study

In order to disentangle the effects of adding depth reduction and our new
Cross-Attention module on the performance of QT-UNet over our baseline VT-
UNet, we perform a short ablation study with BraTS2021 to examine the effect
of each component on the overall performance of the model when trained
from scratch. We create a version of QT-UNet without depth-wise reduction
and expansion in the Merging and Expansion layers and denote this model as
QT-UNet-A. We also create a variant of VT-UNet with depth-wise reduction and
expansion in its Merging and Expansion layers, and denote it as VT-UNet-A.
Together with the two standard models, these two variant models give us four
total models with which we can examine the effect of the depth-wise reduc-
tion and expansion, as well as the new Cross-Attention design. An overview
of the models with enabled features is given in Table 3.9. These models are
trained with the same parameters as their counterparts in Subexperiment 1.1
(see Section 3.5.2).

72 Andreas H. Haversen: QT-UNet

3.6 Model evaluation

In addition to the metrics listed for each experiment, we also include two com-
mon metrics across all experiments. These are the number of FLOPs required
for a forward pass and the number of parameters in the model. FLOPs are re-
corded using the counter in fvcore [97] over a forward pass in training mode.

Chapter 4

Results

The results of the experiments in Chapter 3 are described in this chapter, us-
ing the metrics defined for each experiment. Experiment 1 can be found in
Section 4.1, with subexperiment 1.1 BraTS 2021 in Section 4.1.1, 1.2 BTCV in
Section 4.1.2, and 1.3 MSD in Section 4.1.3. Experiment 2 can be found in Sec-
tion 4.2, with subexperiment 2.1 CityScapes in Section 4.2.1, 2.2 CityScapesCat
in Section 4.2.2, and 2.3 NTNU in Section 4.2.3.

Results in the tables above the double line are from our experimental runs
on our data split. Those below the double line are taken from the relevant
leaderboards unless otherwise noted, to provide context for our results. Qual-
itative examples from the experiments are also provided.

In the tables, T indicates that higher values are better, while | indicates
that lower values are better. When used with QT-UNet, the "/scratch" suffix
indicates that the model was trained without pretrained weights. The omis-
sion of the "/scratch" suffix to QT-UNet indicates that the model was trained
with pretrained weights. Numbers listed in bold are the best scores for that
column, whilst numbers listed with an underline are the second best. Scores
are presented in a 0-100 scale rather than the original 0-1 scale by multiplying
the score 100x, for ease of reading and interpretation.

4.1 Experiment 1: Medical Image Computing

4.1.1 Subexperiment 1.1: BraTS 2021

We report the results of subexperiment 1.1 in Table 4.1 and qualitative results
in Figure 4.1. We highlight that QT-UNet across the board requires less FLOPs
than the models against which we compare, with comparable Dice results.
The Base variant of QT-UNet trained from scratch attains the 2nd best average
Dice score. We also note that the pretrained variants of QT-UNet attain a lower
Hausdorff Distance than those trained from scratch.

Qualitatively, we observe that the edges of the segmentation masks pro-
duced by the QT-UNet variants is lightly more fine than VT-UNet, better con-

73

74 Andreas H. Haversen: QT-UNet
Dice score 1 Hausdorff Distance |

Model #Params (M) | | FLOPs (G) | T TC WT AVE. T TC WT T Avg.
VT-UNet-T 54 M 520G 85.71 | 88.40 | 91.94 | 88.68 412 | 473 | 512 | 4.69
VT-UNet-S 11.8M 100.8 G 86.58 | 88.01 | 91.85 | 88.82 4.16 | 4.68 | 5.35 | 5.10
VT-UNet-B 20.8 M 165G 86.11 | 87.88 | 91.89 | 88.63 422 | 513 | 453 | 471
QT-UNet-T /scratch 6.4M 325G 85.38 | 87.00 | 92.06 | 88.15 432 | 6.24 | 6.48 | 5.79
QT-UNet-S /scratch 145M 613G 85.90 | 87.60 | 92.20 | 88.56 418 | 517 | 5.95 | 5.39
QT-UNet-B /scratch 255 M 98.5G 86.27 | 87.61 | 92.19 | 88.69 423 | 514 | 521 | 4.92
QT-UNet-T 6.4M 325G 84.58 | 87.42 | 92.09 | 88.03 440 | 574 | 5.54 | 5.31
QT-UNet-S 145M 613G 85.66 | 87.70 | 92.15 | 88.50 443 | 563 | 524 | 5.18
QT-UNet-B 25.5M 98.5G 85.61 | 87.78 | 92.10 | 88.61 423 | 499 | 523 | 4.85
Swin-UNETRT [11] 61.98 M 394.8 G 85.80 | 88.50 | 92.60 | 88.97 6.02 | 583 | 3.77 | 5.21
UNETR? [71] 102.5M 193.5G 79.78 | 83.66 | 90.10 | 84.56 - - - -
nnFormer 2 [72] 39.7M 110.7G 82.83 | 86.48 | 90.37 | 86.56

Table 4.1: BraTS2021 results. Abbreviations: ET = Enchancing Tumour, TC =
Tumour Core, WT = Whole Tumour.

forming to the outline of the ground truth. The QT-UNet variant trained with
pretrained weights appears to produce a slightly tighter mask than the QT-
UNet variant trained from scratch, when compared to the ground truth.

4.1.2 Subexperiment 1.2: BTCV

We report the results per organ in Table 4.2, with a summary in Table 4.3.
Qualitative results can be seen in Figure 2.6.

We observe that our model QT-UNet achieves significantly better results
than VT-UNet, with QT-UNet showing stronger performance than VT-UNet in
smaller organs such as the oesophagus, the aorta, the inferior vena cava,
portal and spleinc veins, the pancreas, and adrenal glands with 23.5 Dice point
margins on average between the VT-UNet and QT-UNet /scratch variants in
these organs. For larger organs like the the spleen, kidneys, liver, and stom-
ach we find smaller gains of 13 Dice points on average between VT-UNet and
QT-UNet /scratch variants. We also note that QT-UNet is better able to identify
the left kidney, with a 20.39 Dice point margin between VT-UNet and QT-UNet
/scratch variants on average, compared to a 3 Dice point average difference
for the right kidney.

We also observe that the Tiny variant of QT-UNet experiences a signific-
ant 14 DSC point performance boost and the Base variant sees a smaller
3 point boost when trained with weights pre-trained on CT-SSL, though the
Small variant sees little to no change. However, both VT-UNet and QT-UNet
are far weaker than the current SotA for this dataset.

Note that the results for QT-UNet and VT-UNet are based on our split of
the data, whilst the results for the remaining models are taken from the BTCV
leaderboard. We were unable to score our models on the BTCV test dataset,
since the competition evaluation servers were offline.

As reported by [11]
2As reported by [10]

Chapter 4: Results 75

(a) Raw image (b) Ground truth

5

#

(c) VT-UNet-B (d) QT-UNet-B /scratch

(e) QT-UNet-B

Figure 4.1: Example results from Experiment 1, BraTS2021.

76 Andreas H. Haversen: QT-UNet

Model Spl RKid LKid Gall Eso Liv Sto Aor IvC Veins | Pan AG
VT-UNet-T 21.53 | 53.73 | 14.50 | 27.20 0.0 83.75 | 2.49 | 2455 0.0 0.0 1.16 0.0
VT-UNet-S 51.27 | 76.28 | 43.23 | 30.97 0.0 84.65 | 11.16 | 45.81 | 14.41 2.21 22.46 | 8.69
VT-UNet-B 58.23 | 71.40 | 53.60 | 20.00 0.0 84.71 | 24.61 | 37.62 | 37.62 | 12.71 | 16.10 0.0
QT-UNet-T /scratch 62.84 | 60.70 | 50.20 | 24.21 | 23.70 | 79.29 | 24.91 | 53.03 | 21.96 | 39.76 | 26.06 | 16.98
QT-UNet-S /scratch 67.56 | 74.76 | 57.35 | 35.54 | 38.06 | 82.97 | 35.70 | 68.24 | 46.87 | 46.47 | 32.15 | 34.29
QT-UNet-B /scratch 68.11 | 75.65 | 64.95 | 35.11 | 41.97 | 83.80 | 42.28 | 68.08 | 45.95 | 49.75 | 38.99 | 34.46
QT-UNet-T 79.19 | 78.49 | 64.49 | 40.66 | 4297 | 87.77 | 36.59 | 71.11 | 50.45 | 46.69 | 35.75 | 32.22
QT-UNet-S 7131 | 73.86 | 59.42 | 35.97 | 39.24 | 84.37 | 35.28 | 66.92 | 44.30 | 48.64 | 29.94 | 32.14
QT-UNet-B 73.37 | 80.77 | 65.76 | 39.27 | 45.54 | 83.69 | 45.96 | 70.63 | 48.24 | 52.66 | 35.71 | 36.45
Swin-UNETR [11] 97.60 | 95.80 | 95.60 | 89.30 | 87.50 | 98.50 | 95.30 | 94.90 | 90.40 | 89.90 | 89.80 | 84.60
UNETR [71] 97.20 | 94.20 | 95.40 | 82.50 | 86.40 | 98.30 | 94.50 | 94.80 | 89.00 | 85.80 | 85.20 | 81.20
nnFormer [72] 90.51 | 86.25 | 86.57 | 70.17 - 96.84 | 86.83 | 92.04 - - 83.35 -
nnUNet [76] 96.70 | 92.40 | 95.70 | 81.40 | 83.20 | 97.50 | 92.50 | 92.80 | 87.00 | 83.20 | 84.90 | 78.40
Swin-UNet [9] 90.66 | 79.61 | 83.28 | 66.53 - 94.29 | 76.60 | 85.47 - - 56.58 -

Table 4.2: BTCV Dice scores (T) per organ.

Abbreviations: Spl: spleen, RKid: right kidney, LKid: left kidney, Gall: gallblad-
der, Eso: esophagus, Liv: liver, Sto: stomach, Aor: aorta, IVC: inferior vena cava,
Veins: portal and splenic veins, Pan: pancreas, AG: Average of left and right
adrenal glands.

Qualitatively, we observe that VT-UNet struggles to classify both the liver
and the spleen, misclassifying both as stomach. None of the models are able
to correctly classify the fluid-filled stomach; tough the QT-UNet variants are
able to correctly segment several organs. The QT-UNet variant with pre-trained
weights produces significantly better masks than the variant trained from
scratch.

4.1.3 Subexperiment 1.3: MSD

We reportthe results of the VT-UNet and QT-UNet variants per task in Table 4.4
and a summary in Table 4.5. Select qualitative results can be found in Fig-
ure 4.3, and the remainder in the Appendix in Figure A.1. We observe that
VT-UNet shows the strongest performance of all the models listed in Task 1 -
Brain Tumour with QT-UNet variants being a close second. However, both VT-
UNet and QT-UNet trail the SotA in all other tasks by a significant margin. Fur-
thermore, the QT-UNet variants in tasks trained with weights pre-trained in-
task (see Table 3.7) show no change or degradation in performance between
the pre-trained and from scratch variants, although the QT-UNet variants in
tasks trained with weights pre-trained on CT-SSL see an increase in perform-
ance in some tasks. We also observe that all QT-UNet variants produce a nil
resultin Task 7. All variants of VT-UNet outperform their equivalent variant of
QT-UNet in the summary Table 4.3, though the margin is not very large.

The results from the models below the double line are pulled from the
MSD leaderboard. Note that the submissions for this leaderboard were closed
for good at the time of writing this thesis, which means that we could not make

Chapter 4: Results 77

(a) Raw image (b) Ground truth

(c) VT-UNet-B (d) QT-UNet-B /scratch

(e) QT-UNet-B

Figure 4.2: Example results from Experiment 1.2, BTCV.

78 Andreas H. Haversen: QT-UNet
Model #Params (M) | | FLOPs (G) | | AVG. Dice score 7
VT-UNet-T 54 M 19.7 G 17.61
VT-UNet-S 11.8M 38.2G 30.76
VT-UNet-B 208 M 62.6 G 28.46
QT-UNet-T /scratch 6.4 M 127 G 38.51
QT-UNet-S /scratch 145M 236G 50.33
QT-UNet-B /scratch 255 M 377G 52.58
QT-UNet-T 6.4 M 127 G 53.50
QT-UNet-S 145M 236G 50.27
QT-UNet-B 255 M 37.7G 54.96
Swin-UNETR [11] 61.98 M 394.84 G 91.80
UNETR [71] 92.58 M 41.19G 89.10
nnFormer [72] -M -G 86.57
nnUNet [76] 19.07 M 412.65G 88.80
Swin-UNet [9] -M -G 79.13

Table 4.3: BTCV results summary.

a submission of our own. Comparisons between our results with QT-UNet and
VT-UNet and those of the other models should therefore be taken with a grain
of salt.

Qualitatively, we observe decent segmentation across all models in the
selected tasks, though the QT-UNet variants seem a smidge better in task 6,
9,and 10. The results are pretty even in the other tasks. The pretrained variant
of QT-UNet seems to produce a slightly better segmentation mask than QT-
UNet /scratch in tasks 6, 9, and 10.

4.2 Experiment 2: Autonomous Driving

4.2.1 Subexperiment 2.1: CityScapes

The results for this experiment can be found in Table 4.6, with the mean Dice
and loU score for each model. The results for the models below the double
line are sourced from their respective papers. Qualitative results can be seen
in Figure 4.4,

We observe that the QT-UNet variants with Cross-Attention (QT-UNet-2D)
show better performance in terms of both mloU and Dice score than the vari-
ant without Cross-Attention (QT-UNet-2D-A). The Tiny and Small variants of
QT-UNet see a boost in loU and Dice scores when trained with pre-trained
weights from CityScapesCoarse, seeing a 2-point increase in Dice score and
a 4-pointincrease in mloU. All variants of QT-UNet and VT-UNet trail SotA in
terms of mloU by a wide margin and to a lesser degree in inference speed,
although QT-UNet-2D-A-T uses the fewest FLOPs at 33.6 GFLOPs.

Chapter 4: Results 79

QT-UNet

Task Raw image | Ground Truth VT-UNet /scratch QT-UNet

no.

o 0 O3 "Os

Figure 4.3: Qualitative results for select MSD tasks.

80

Andreas H. Haversen: QT-UNet

Model Task1 | Task2 | Task3 | Task4 | Task5 | Task6 | Task7 | Task8 | Task9 | Task 10
VT-UNet-T 78.70 87.60 49.06 85.93 25.32 40.17 25.85 33.38 64.02 12.14
VT-UNet-S 78.20 86.77 47.58 85.18 24.73 45,78 23.02 33.11 69.25 7.69
VT-UNet-B 78.61 87.10 48.57 85.82 26.53 33.38 21.85 33.47 59.40 8.76
QT-UNet-T /scratch 77.37 85.57 36.00 85.45 30.62 26.02 0.0 42.41 49.30 14.11
QT-UNet-S /scratch 77.79 85.81 46.09 82.37 30.90 19.55 0.0 37.07 51.94 13.02
QT-UNet-B /scratch 77.81 86.52 39.31 82.92 32.26 23.21 0.0 33.77 48.10 15.76
QT-UNet-T 77.41 85.02 51.65 85.23 27.79 27.23 0.0 45.01 49.86 14.04
QT-UNet-S 77.68 85.40 37.14 82.19 31.07 19.91 0.0 36.98 53.31 13.52
QT-UNet-B 77.86 86.70 38.56 83.77 34.08 23.85 0.0 38.01 56.45 12.87
Swin-UNETR [11] 66.35 92.62 85.52 89.19 82.40 76.60 70.71 68.95 96.99 59.45
nnUNet [76] 61.10 | 93.30 | 85.86 | 89.46 | 83.11 | 73.97 | 67.21 | 69.12 | 99.89 | 5833
Model Genesis [73] 61.14 93.33 86.61 89.53 81.29 74.54 65.86 68.62 97.35 51.47
Trans VW [74] 61.14 93.33 86.04 89.53 81.29 74.54 66.25 68.62 97.35 51.47

Table 4.4: MSD Dice scores (1) per task.

Model AVG. Dice score
VT-UNet-T 50.22
VT-UNet-S 50.13
VT-UNet-B 48.35
QT-UNet-T /scratch 44.69
QT-UNet-S /scratch 44.45
QT-UNet-B /scratch 43.97
QT-UNet-T 46.32
QT-UNet-S 43.72
QT-UNet-B 45.22
Swin-UNETR [11] 78.88
nnUNet [76] 78.14
Model Genesis [73] 76.97
Trans VW [74] 76.96

Table 4.5: MSD results summary.

Chapter 4: Results 81

(c) Segformer B5 (d) QT-UNet-2D-B /scratch

(e) QT-UNet-2D-B

Figure 4.4: Example results from Experiment 2.1, CityScapes.

Qualitatively, we observe that QT-UNet-2D-Base struggles to produce seg-
mentation masks comparable to those of the Segformer, regardless of whether
QT-UNet was trained from scratch or with pre-trained weights. QT-UNet-2D
appears to struggle particularly with shadow borders and light patches of the
road, misclassifying the light patches as a sidewalk, and classifying the shadow
border into the void class. Both variants QT-UNet-2D also fail to completely
segment cars and trucks in the scene, although the boundaries of buildings
in the distance seem nearly correctly segmented.

4.2.2 Subexperiment 2.2: CityScapesCat

We report the results for our experiment with CityScapes over class categories
(CityScapesCat) in Table 4.7, with mean Dice and loU score for each model.
Qualitative results can be seen in Figure 4.5.

We observe that the QT-UNet variants with Cross-Attention (QT-UNet-2D
/scratch) show worse performance in terms of both mloU and Dice score than

3As reported by Xie et al. [79] on a Tesla V100 card, a weaker card than the A100 cards used
in this thesis.

82

Andreas H. Haversen: QT-UNet

Model #Params (M) | | FLOPs (G) | | Inference (s) | | AVG. Dice score 7 | AVG. loU score 7
QT-UNet-2D-A-T /scratch 5.0M 33.6G 0.22s 38.82 19.82
QT-UNet-2D-A-S /scratch 11.3M 725G 0.23s 38.68 19.97
QT-UNet-2D-A-B /scratch 20.1 M 126.3 G 0.20s 39.10 20.25
QT-UNet-2D-T /scratch 5.4 M 38.8G 0.20s 39.12 20.74
QT-UNet-2D-S /scratch 12.2M 833G 0.21s 39.35 21.04
QT-UNet-2D-B /scratch 21.6 M 144.6 G 0.23s 39.50 21.15
QT-UNet-2D-T 5.4 M 38.8G 0.20s 41.53 25.86
QT-UNet-2D-S 12.2M 833G 0.21s 41.97 25.97
QT-UNet-2D-B 21.6 M 144.6 G 0.23s 39.03 21.00
SeMask [77] 211 M 455 G -s - 84.98
VOLO-D4 [78] -M -G -S - 84.30
Segformer-B5 [79] 84.7M 183.3G 0.1023s - 84.00
Segformer-B0 [79] 3.8M 125.5G 0.0658° s - 76.20

Table 4.6: CityScapes val results.

Model #Params (M) | | FLOPs (G) | | Inference (s) | | AVG. Dice score T | AVG. loU score 7
QT-UNet-2D-A-T /scratch 5.0 M 33.0G 0.12s 61.31 57.15
QT-UNet-2D-A-S /scratch 1M1 M 716G 0.13s 61.71 57.69
QT-UNet-2D-A-B /scratch 201 M 125.0G 0.16 s 56.04 51.00
QT-UNet-2D-T /scratch 54 M 38.2G 0.13s 55.46 50.91
QT-UNet-2D-S /scratch 12.2M 824G 0.15s 56.40 51.17
QT-UNet-2D-B /scratch 216 M 143.4 G 0.19s 57.45 52.45
QT-UNet-2D-T 54 M 382G 0.13s 63.23 60.37
QT-UNet-2D-S 12.2M 824G 0.15s 64.21 61.55
QT-UNet-2D-B 216 M 143.4 G 0.19s 58.45 54.26

Table 4.7: CityScapesCat val results.

the variant without Cross-Attention (QT-UNet-2D-A), the opposite of subex-
periment 2.1. The Tiny and Small variants of QT-UNet-2D see a large boost in
performance in terms of Dice score and mloU when trained with weights pre-
trained on CityScapes Coarse, with the Base variant seeing a smaller roughly
single point increase in both metrics. QT-UNet-2D-A-T uses the fewest FLOPs
at 33.0 GFLOPs.

Qualitatively, we observe that QT-UNet-2D-Base trained from scratch struggles

significantly with shadow borders, while QT-UNet-2D trained with pre-trained
weights struggle less so. However, both variants struggle with light patches of
road. Both models fail to correctly segment the truck ahead, though they both
are able to identify and roughly segment cars parked to the left in the scene.
Buildings further away in the distance are also nearly correctly segmented.

4.2.3 Subexperiment 2.3: NTNU data

We report the results in Table 4.8, with the mean Dice and loU score for each
model. Qualitative results can be seen in Figure 4.6. We also report results

Chapter 4: Results 83

(c) QT-UNet-B /scratch (d) QT-UNet-B

Figure 4.5: Example results from Experiment 2.2, CityScapesCat.

Model #Params (M) | | FLOPs (G) | | Inference (s) | | AVG. Dice score T | AVG. loU score |
QT-UNet-2D-T /scratch 54 M 38.2G 0.13s 30.66 7.54
QT-UNet-2D-S /scratch 122 M 824G 0.15s 28.39 7.21
QT-UNet-2D-B /scratch 216 M 143.4 G 0.19s 29.71 7.28
QT-UNet-2D-T 5.4 M 38.2G 0.13s 30.09 9.29
QT-UNet-2D-S 122 M 824G 0.15s 29.12 8.50
QT-UNet-2D-B 216 M 143.4 G 0.19s 31.61 8.79

Table 4.8: NTNU results.

when predicting over class categories* in Table 4.9, with qualitative results in
Figure 4.7.

Quantitatively, we see that our model struggles to transfer to this domain,
with a significant reduction across both metrics for all model variants of QT-
UNet-2D compared to subexperiment 2.1 CityScapes. The same applies when
looking at the results by class category and subexperiment 2.2 CityScapesCat.
However, the quantitative results should be interpreted somewhat cautiously
due to the small size of the dataset and consequently the small number of
examples per class.

Qualitatively, we observe that the QT-UNet trained from scratch on City-
Scapes struggles with the NTNU data and produces a quite disjointed and
error-prone mask. The QT-UNet trained on CityScapes with pre-trained weights
seems to produce a more coherent mask but still has errors. A similar pat-
ternis also present when looking at NTNU by categories, though both models
struggle here.

“4Like in subexperiment 2.2 CityScapesCat.

84

Andreas H. Haversen: QT-UNet

(a) Raw image

(c) SegFormer B5

(b) Ground truth

(d) QT-UNet-B /scratch

(e) QT-UNet-B

Figure 4.6: Example results from Experiment 2.2, NTNU.

Model #Params (M) | | FLOPs (G) | | Inference (s) | | AVG. Dice score T | AVG. loU score |
QT-UNet-2D-T /scratch 5.4 M 38.2G 0.13s 30.12 20.78
QT-UNet-2D-S /scratch 122 M 824G 0.15s 32.30 22.59
QT-UNet-2D-B /scratch 21.6 M 143.4 G 0.19s 27.47 18.36
QT-UNet-2D-T 5.4 M 38.2G 0.13s 33.60 23.52
QT-UNet-2D-S 122 M 824G 0.15s 34.04 23.77
QT-UNet-2D-B 21.6 M 143.4 G 0.19s 29.47 19.90

Table 4.9: NTNU by categories results.

Chapter 4: Results 85

(a) Raw image

(c) QT-UNet-B /scratch (d) QT-UNet-B

Figure 4.7: Example results from Experiment 2.2 NTNU, by categories.

4.3 Ablations

The results of our ablation study can be seen in Table 4.10. We observe that
the model variants in general produce quite similar results, but with a handful
of important differences. We observe that the reduction in FLOPs between the
model without and with depth-wise reduction and expansion (VT-UNet — VT-
UNet-Aand QT-UNet-A — QT-UNet) is 32%, 33%, and 33.7% for the Tiny, Small,
and Base variants, respectively, with equivalent numbers between both pairs
of compared models. Comparing models without and with the new Cross-
Attention module (VT-UNet — QT-UNet-A and VT-UNet-A — QT-UNet), we ob-
serve a reduction in FLOPs of 7.5%, 9%, and 9.5% for the Tiny, Small, and Base
variants, respectively, with equivalent numbers between each pair of models.

Considering parameters, we observe that the increase in the number of
parameters for VT-UNet models without and with depth-wise reduction and
expansion (VT-UNet — VT-UNet-A) is 15% across all size variants. For the QT-
UNet models (QT-UNet-A — QT-UNet), we observe a 9%, 13%, and 14 % in-
crease in parameter count for the Tiny, Small, and Base variants.

Comparing models without and with the new Cross-Attention module (VT-
UNet — QT-UNet-A and VT-UNet-A — QT-UNet), we observe an increase in
parameters by 9%, 8%, and 8% between VT-UNet and QT-UNet-A> for the Tiny,
Small, and Base variants, respectively. Between VT-UNet-A and QT-UNet®, we

5That is, between models with Cross-Attention but without depth-wise reduction and ex-
pansion.

5That is, between models with both Cross-Attention and depth-wise reduction and expan-
sion.

86 Andreas H. Haversen: QT-UNet

Dice score T Hausdorff Distance |
Model #Params (M) | | FLOPs (G) | T TC WT AVE. a5 TC WT T AVG:
VT-UNet-T 5.4 M 52 G 85.71 | 88.40 | 91.94 | 88.68 412 | 473 | 5.12 | 4.69
VT-UNet-S 11.8M 100.8 G 86.58 | 88.01 91.85 | 88.82 416 | 4.68 | 535 | 5.10
VT-UNet-B 20.8 M 165G 86.11 | 87.88 | 91.89 | 88.63 422 | 513 | 453 | 471
VT-UNet-A-T 6.2 M 35.0G 85.16 | 88.00 | 91.64 | 88.27 4.04 | 498 | 493 | 4.74
VT-UNet-A-S 13.5M 67 G 85.62 | 87.62 | 91.62 | 88.29 425 | 5.08 | 5.24 | 4.92
VT-UNet-A-B 239M 108.7 G 86.07 | 87.62 | 91.60 | 88.43 423 | 493 | 482 | 474
QT-UNet-A-T /scratch 59M 47.7 G 86.15 | 87.95 | 92.01 | 88.70 477 | 598 | 6.18 | 5.69
QT-UNet-A-S /scratch 12.8 M 91.2G 85.66 | 87.96 | 92.17 | 88.60 468 | 493 | 5.91 4.96
QT-UNet-A-B /scratch 224 M 147.8 G 86.36 | 87.86 | 92.24 | 88.82 445 | 588 | 7.01 5.97
QT-UNet-T /scratch 6.4 M 325G 85.38 | 87.00 | 92.06 | 88.15 432 | 6.24 | 6.48 | 5.79
QT-UNet-S /scratch 145M 613G 85.90 | 87.60 | 92.20 | 88.56 418 | 517 | 5.95 | 5.39
QT-UNet-B /scratch 255 M 98.5 G 86.27 | 87.61 92.19 | 88.69 423 | 514 | 5.21 492

Table 4.10: Ablation study results, on BraTS2021.

observe an increase of 3%, 7%, and 6% in parameters for the Tiny, Small, and
Base variants respectively.

Overall, QT-UNet has a reduction in FLOP usage of up to 40% compared
to VT-UNet, at the cost of 23% more parameters.

We find that QT-UNet-A-Base, that is, a model with Cross-Attention and
without depth-wise reduction and expansion, has the strongest average Dice
score, sharing the top spot with VT-UNet-B. However, it should be noted that
the performance differences in terms of the Dice score are relatively small. VT-
UNet-T has the lowest average Hausdorff Distance, with variants with Cross-
Attention and depth-wise reduction and expansion performing worse.

Chapter 5

Discussion

This chapter will discuss the project at large and our research questions. Sec-
tion 5.1 through Section 5.3 discuss the results against each research ques-
tion. Section 5.4 will briefly discuss other pertinent insights that can be taken
from our results that are not directly related to any of the Research Questions.
Finally, Section 5.5 closes this chapter with a retrospective evaluation of the
project process.

5.1 RQ1: The effect of SSL

We find that the application of SSL to our model gives mixed results, depend-
ing on what experiment it was used for and with what model. Since the exper-
iments employ two distinct types of SSL - in-task and out-of-task - this section
is split accordingly.

5.1.1 Effect of out-of-task pretraining

Looking at experiments carried out with out-of-task pre-training on CT-SSL
first, we observe in BTCV (Table 4.2) per organ results that the variants of QT-
UNet pre-trained on CT-SSL achieve a significantly better result for smaller or-
gans such as the gallbladder and aorta than the variants trained from scratch,
while the Base variant only sees minor changes and in some tasks significant
deterioration. On average (Table 4.3) the Tiny variant of QT-UNet sees a jump
of more than 15 DSC points, a slight decrease of around 0.05 points for the
Small variant and a small increase of 2 points for Base variant. A similar pat-
tern emerges when looking at the MSD scores (Table 4.4, Table 4.5), where
the Tiny model sees significant improvements in some of the CT tasks, with
smaller adjustments for the Small and Base variants.

This outcome is rather peculiar, as the loss curves from our CT-SSL pre-
training runs illustrate. For the Tiny and Small variants (see Figure 5.1b), we
observe that both the BYOL loss, the rotation loss, and reconstruction loss fall

87

88

Loss

Loss

Andreas H. Haversen: QT-UNet

5
‘ Total loss
4 - Reconstruction loss |
\ Rotation loss
3 - BYOL loss '*
| ‘
27
1 1 T o) N~ y N AV
) 1 A
0 i AR
_A\\ A //”“ \\ /rﬁ\ /\/“J J /\m\/\J\ L N2 \J,"\ /\/\/ \/ \ﬁv/\'
_1 \“ ‘ 4 “" \] V.Y
\/ Yo ,‘"‘\ \ |
_9 S | OO VAT A\
—3
—4
0 20 40 60 80 100 120 140
Epochs
(a) Loss curves for QT-UNet-B.
5 T T T 5 T T T
Total loss Total loss
4 Reconstruction loss . 4 - Reconstruction loss .
Rotation loss Rotation loss
3 BYOL loss = 3 BYOL loss 8
2 “ 2
10 o B w 15 S S -
| VTV — \ A
| (@] |
0 ‘\ - 0 \\\
1 —1
\i Al
-2 “‘., i A —2 \ \/1/\ A [\
-3 " \/ «\/f\‘ “/‘w\\\\f\v’ﬂ\ﬁ\ | 4 =3 e \‘//\A‘\J/\ W A Al
—4 —4
0O 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Epochs Epochs
(b) Loss curves for QT-UNet-S. (c) Loss curves for QT-UNet-T.

Figure 5.1: Loss curves for CT-SSL pretraining.

Chapter 5: Discussion 89

throughout the training process, whilst the Base variant sees a sharp increase
in all losses around mid-way through the training process (see Figure 5.1a).
After this increase in loss for the Base variant, the BYOL loss returns to its
previous lower level, whilst the rotation and reconstruction loss never recov-
ers. We theorise that the pretraining process for the Base variant somehow
collapsed midway through training. This is a risk that the authors of BYOL [69]
warn of, claiming that a collapse of BYOL where the model outputs only zero-
vectors as projections since that also would provide a minima of loss. How-
ever, Chen and He [70] claim that this type of collapse should not be possible
as long as gradients to the target network are stopped.

Another theory that could explain the collapse is the interaction between
BYOL and the other SSL tasks. Could it be possible that the gradients created
by the other task heads upset the balance of the model and forced it to col-
lapse? If so, why was the same type of collapse not observed in the other
variants, Tiny and Small? Given that there is not much research on the use of
BYOL together with other pretext tasks, this result could indicate that more
research on the interaction between BYOL and other SSL tasks is warranted.

As we shall discuss in detail in Section 5.1.5, another potential cause of the
training collapse could be the rate at which the target weights were updated.
Due to the nature of how the PyTorch Lightning Bolts BYOL implementation
works, the weight update was applied at the end of each batch, regardless
of gradient accumulation. This could have caused instability during training,
especially when a large number of gradients were accumulated before they
were applied to the online network.

However, despite this collapse in CT-SSL-pre-training for the Base variant,
we find that it is the Small variant that experiences little to no benefit from
the pre-training in both the BTCV and the MSD CT tasks. Although it is difficult
to point to an exact cause, it is possible that the Small variant simply had little
to no benefit from the pre-training, despite the low loss during pre-training.
That is, the pre-training could have ended in a local minima that was of little
use to the model. However, this seems unlikely due to the reduction in loss
across all tasks, indicating that at least somewhat useful representations were
learnt. More research is warranted on the effect of pretraining on the model
variant.

5.1.2 Effect of in-task pretraining

Turning our attention to the in-task trained MRI tasks, we also observe mixed
results. In the BraTS dataset (Table 4.1) we observe negligible changes in the
Dice score, but a not insignificant decrease in the average Hausdorff Distance.
This seems to indicate that pretraining aided the model in producing spatially
accurate segmentation masks, which is important if the segmented volumes
are to be used to guide medical personnel. We can also qualitatively observe
in Figure 2.5 that the pre-trained model produces a slightly smoother mask

90 Andreas H. Haversen: QT-UNet

than the model trained from scratch.

For MSD, the in-task trained tasks 1, 4, 5 and 6 show mostly mild changes
between the QT-UNets trained for scratch and those trained with pre-trained
weights in-task. Apart from a 3-point increase for QT-UNet-T and a 2-point
increase for QT-UNet-B in task 5, the other in-task trained tasks have equi-
valent or slightly degraded Dice scores. This indicates that our SSL scheme
was unable to learn strong representations from the limited data available. A
larger dataset for pre-training might have mitigated this.

5.1.3 Overall effect

Overall, despite pretraining QT-UNet, it still falls short of SotA in all but the
BraTS dataset. Although comparisons between models above and below the
double line should be taken with a grain of salt, the margin up to SotA in the
BTCV and MSD datasets is considerable. For BraTS, we dare to propose that
our model is competitive, though we again make such comparisons with great
caution due to the nature of the results above and below the double line.
Overall, we find that pretraining out-of-task with our CT-SSL dataset is the
most effective, with negligible changes in performance when training in-task.

5.1.4 Implications

In our experiments, we observe that SSL seems to work much better when
performing out-of-task pretraining on large datasets rather than in-task pre-
training on smaller task datasets. This is, frankly, not surprising. Most pre-
training datasets, particularly in SSL, are designed to take advantage of large
unlabelled out-of-task datasets, as performance has been shown to scale with
the size of the pre-training sets [98].

That is not to say that the in-task approach is without merit. It can be ar-
gued that there are essentially two approaches to dealing with data scarcity
for model training: Either extending the dataset by adding more data to it
and pretraining on related, perhaps unlabelled data, or by extracting as much
learning as possible from the limited data available. In-task pretraining at-
tempts to achieve the latter. More research to find effective techniques for
in-task pretraining could greatly mediate data scarcity issues in low data avail-
ability domains such as MIC.

Itis also worth noting that our approach saw some success when perform-
ing in-task pre-training on BraTsS, reducing the Hausdorff Distance. This could
imply that our approach could be extended to perform better in an in-task
pretraining environment.

Chapter 5: Discussion 91

5.1.5 Error sources
Batch sizes in BYOL

Compared to the batch sizes used by Grill et al. [69] for their original imple-
mentation of BYOL, the batch sizes used for our experiments (see Table 3.4)
are smaller than the ideal batch size 256 reported in that study due to memory
constraints on the GPU accelerators. This reduced batch size could have neg-
atively impacted performance.

Furthermore, our use of gradient accumulation to boost batch sizes was
not ideal due to how the Pytorch Lightning Bolts [83] implementation of BYOL
worked. Gradient accumulation instructs the model trainer to collect and av-
erage the gradients over several forward passes, only applying the backward
method (and thus completing a "full" batch) only when the specified number
of gradients has been collected. At the same time, the BYOL implementation
from Lightning Bolts was hooked in to update the weights at the end of each
forward pass. This meant that the weight update was applied after each batch,
rather than after every application of the backward method. This might have
caused an improperly frequent update of the weights in the target network,
increasing the chances of a collapse. It should, however, be noted that the
gradient accumulation used in our runs is rather moderate, for most experi-
ments using only two batches.

Possible model collapse

As previously noted in Section 5.1.1, a possible collapse of the models in the
pretraining of QT-UNet-B on CT-SSL was observed. Naturally, this could negat-
ively impact the results from models trained with these weights, since the en-
coder learnt representations that could be less useful in a downstream task.

Imperfect adaption of SSL pipeline

As noted in Section 2.8, we adapt our SSL pipeline from the pipeline described
by Tang et al. [11] for Swin-UNETR. Seeing as their code was not made public
until 27.05.2022, long after the implementation phase of this project, we had
to make due with their descriptions of the pipeline in their paper. Although
we were fairly confident that our adaption was sound, it was hard to verify
without access to the source code of the original pipeline. An imperfect ad-
aptation might have caused a degradation in pipeline performance. We have
been able to confirm, post factum, that our pipeline is a close but not faith-
ful adaption of the one used for Swin-UNETR. Notably, they use direct linear
layers for their rotation and contrastive heads rather than the MLPs we used
with QT-UNet. Furthermore, they used a multilayer Transposed Convolutional
Network for their reconstruction head rather than the single Transposed Con-
volution layer head used with QT-UNet.

92 Andreas H. Haversen: QT-UNet

5.2 RQ2: Encoder-Decoder Cross-Attention

Observing that our experiments essentially consist of three types of models -
models without Cross-Attention, the original Cross-Attention module used by
VT-UNet, and the new Cross-Attention module used by QT-UNet - this section
is split accordingly, first discussing the effect of employing Cross-Attention
(CA) at all in Section 5.2.1 and then discussing the effect of the new Cross-
Attention module in Section 5.2.2.

5.2.1 Cross-Attention versus no Cross-Attention

Noting that the results in Section 4.1 are presented with our own experimental
results above the double line and with leaderboard results below the double
line, this section is presented bearing in mind that the results have different
sources and consequently comparisons should be taken with a grain of salt.
It does not make sense to present a detailed analysis between the models
above and below the double line because of the differing sources, though we
allow ourselves to comment on larger and more general trends between the
models.

The results of subexperiment 1.1, BraTS2021, appear to indicate that mod-
els with Cross-Attention perform slightly better than those without it, specific-
ally compared to UNETR and nnFormer in Table 4.1. However, this sugges-
tion must be taken with a considerable amount of salt, given that the results
above and below the double line are sourced differently. The suggestion that
Cross-Attention is better than no Cross-Attention is, however, weakened by
our results in the other experiments (1.2 BTCV and 1.3 MSD), where the CA-
enabled models QT-UNet and VT-UNet trail all the other models by a consid-
erable margin. It is, however, also possible that this could be an expression
of other factors such as model size and data preprocessing rather than the
effect of our Cross-Attention mechanism. Furthermore, the size of the crops
supplied to the models could have had a not insignificant impact on the per-
formance of the models, with a smaller 96 x 96 x 96 spatial crop being used
in BTCV and MSD' compared to the larger 128 x 128 x 128 crop in BraTS, con-
tributing to a loss of context.

5.2.2 The effect of the updated Cross-Attention module

Observing Table 4.10, specifically comparing VT-UNet with QT-UNet-A and VT-
UNet-A with QT-UNet - that is, comparing models with and without the new
CA module - it can be seen that the new module reduces the computational
burden by 8.27%, 9.51%, and 10.42% for the Tiny, Small, and Base variants,
respectively, at the cost of an increase in parameters of 9.26%, 8.47%, and
7.69%.

"Except for MSD Task 1, which used the same 128 x 128 x 128 crop as BraTs.

Chapter 5: Discussion 93

Atthe same time, the impact on Dice score observed in Table 4.10 is mixed,
with some variants seeing a boost in performance and others a slight degrad-
ation. However, the Hausdorff Distance is negatively affected across all vari-
ants. There could be a couple of possible reasons for this. One reason could
simply be that this is the result of less computation happening in the decoder
blocks. The fusion modules VT-UNet uses in its decoder modules allow for
double the computations per stage compared to the decoders in QT-UNet
due to the dual-stream design of the VT-UNet decoders, at the cost of more
computational effort. Another issue could be that our new Cross-Attention
module is simply not able to properly integrate information from the encoder.
It is difficult to conclusively say which is the most influential factor and if there
are others. A deeper quantitative and qualitative examination of the inform-
ation flow through the Cross-Attention-enabled decoders is warranted but is
not feasible within the time frame of this thesis.

In BTCV, all QT-UNet variants outperform their corresponding VT-UNet
counterparts by a margin of 18 DSC points in the average, even when trained
from scratch. Observing that the QT-UNet variants show significantly better
results for smaller organs such as the oesophagus, aorta, inferior vena cava,
portal and spleenic veins, as well as the pancreas, leads us to speculate that
the new Cross-Attention module allowed the decoder in QT-UNet to query the
encoder more efficiently for the spatial location of these organs, compared
to the mechanism in VT-UNet. This theory is strengthened by the fact that, al-
though both QT-UNet and VT-UNet perform relatively well when segmenting
the right kidney, QT-UNet is significantly better at segmenting the left kidney.
This could indicate that QT-UNet is better able to distinguish the two, further
lending credence to the theory that the new Cross-Attention module better
helps the decoder locate the targets spatially.

However, though we observe that the variants of QT-UNet outperform the
corresponding variants of VT-UNet in MSD tasks 5, 8, and 10, we find that
VT-UNet outperforms QT-UNet in all other tasks. This could be attributed to
the new Cross-Attention mechanism, but also to the depth-wise merge and
expansion added to QT-UNet. Several of the tasks were QT-UNet struggles are
tasks where the segmentation masks are relatively small, though this is not
the case in tasks 3, 4, and 9 where they are comparatively large. It is worth
noting, however, the low number of target classes in these tasks, with most
having one or two target classes. Noting that Task 9 Spleen is essentially the
same task as segmenting the spleen organ in BTCV, and observing that QT-
UNet outperforms VT-UNet in segmenting the spleen in that task, it seems
prudent to speculate that the new Cross-Attention mechanism is affected by
the number of target classes, performing better in tasks with several target
classes rather than a few.

We also note that QT-UNet was wholly unable to perform in MSD task 7,
where all variants get a nil score. Looking at the loss curves for these runs,
we observe that they all collapse mid-way during training with a consider-

94 Andreas H. Haversen: QT-UNet

able decrease in training loss coinciding with an increase in validation loss.
We speculate that the model collapses because of the relatively small targets
in the task, instead collapsing to predict background everywhere. It is worth
noting that we observe a similar loss behaviour for our runs with VT-UNet but
that VT-UNet recovers from the collapse before the end of training.

Overall, the new Cross-Attention module seems to have attained a better
speed-to-parameter trade-off, significantly reducing the computational bur-
den. Dice score is positively affected in tasks with many target classes, but
appears to have a negative effect in tasks with few target classes. In BraTs,
we additionally observe a slight degradation in Hausdorff Distance.

5.2.3 Implications

Observing that the use of a Cross-Attention mechanism can have positive ef-
fects on BraTS performance compared to relevant baselines, we posit that
the use of Cross-Attention has a positive impact on the performance of UNet
models.

Seeing as the new Cross-Attention-mechanism achieves a better speed-
to-parameter trade-off with little or no negative impact on performance, and
indeed outperforms the original Cross-Attention mechanism in VT-UNet on
BTCV and certain MSD tasks, we suggest that further development of Cross-
Attention in Transformer based UNets could take advantage of our approach.
However, the systematic weakness of the new design in terms of Hausdorff
Distance and in tasks with few target classes warrants further investigation.
Resolving these weaknesses would further strengthen the technique, leading
to a strengthened speed-to-performance trade-off.

5.2.4 Error sources
Improper dataset pre-processing

As noted in Section 3.5.2 and Section 3.5.2, the preprocessing pipelines for the
BTCV and MSD datasets were adapted from those used for Swin-UNETR due
to the architectural similarities between the encoders in the models. It is, how-
ever, possible that this was not an optimal choice and that better performance
could have been achieved if the pipelines had been created from scratch for
QT-UNet exclusively. However, it is worth noting the considerable amount of
time and effort that this would have entailed. Given the time frame of this
project, developing and testing individual pipelines for the total 11 datasets
between the MSD tasks and BTCV combined would have taken too long.

Chapter 5: Discussion 95

5.3 RQ3: Application in 2D contexts

Seeing that Research Question 3 effectively asks if the SSL and Cross-Attention
scheme applied in 3D is also effective in 2D, the discussion in this section
treats SSL and Cross-Attention independently. We also render a treatment of
the effect of the number of classes between CityScapes and CityScapesCat, as
well as a discussion on our tranfer to the NTNU data.

5.3.1 Effect of pretraining

As our results indicate, QT-UNet does not perform convincingly in 2D con-
texts like CityScapes, with a modest 41.97 point Dice score (25.97 mloU) and
is vastly outperformed by SotA. At the same time, we do observe a significant
bump in Dice score between the Tiny and Small variants trained from scratch
and those trained with pre-trained weights. This seems to indicate that our
pre-training approach has some merit in this 2D context. At the same time, we
also observe minimal changes between the pre-trained and from scratch Base
variants. Looking at the loss graphs for the pre-training runs (see Figure 5.2),
we observe a behaviour for each loss type similar to the collapse described for
Base variant pretraining on the CT-SSL dataset, as described in Section 5.1.5.
That is, the reconstruction and rotation losses suddenly increase, while the
BYOL loss remains more or less the same. This collapse could explain the
small difference in performance between the pre-trained and from scratch
variants of QT-UNet-B.

5.3.2 Effect of cross-attention

In studying the effects of Cross-Attention on our 2D experiments with City-
Scapes and CityScapesCat, an interesting pattern emerges. Whilst we observe
aslightincrease in the Dice and loU score in CityScapes between QT-UNet-2D-
A and QT-UNet-2D across all variants (see Table 4.6), we observe the opposite
in CityScapesCat with QT-UNet-2D surpassing QT-UNet-2D-A (see Table 4.7).
Thatis, the variant with Cross-Attention beats the variant without Cross-Attention
in standard CityScapes, with the reverse being true in CityScapesCat.

The only major difference between CityScapes and CityScapesCat is the
number of classes to predict, 20 in CityScapes versus 8 in CityScapesCat. This
disparity in the number of classes leads us to theorise that the Cross-Attention
mechanism is more effective in environments with more targets, at leastin a
2D context. Itis, however, difficult to assert whether this effect is particular to
QT-UNet-2D orifitis a general attribute of QT-UNet itself, although we also ob-
serve a similar tendency when comparing MSD task 10 and BTCV as discussed
in Section 5.2.2. More experiments are warranted to explore the effect of the
number of target classes on the performance of the Cross-Attention mechan-
ism.

Loss

Andreas H. Haversen: QT-UNet

Totalloss
Reconstruction loss ——— A
Rotation loss
BYOL loss =
\ N P ot |l
\ bt WU ;,_ﬁ\“J.*\W)«v"\‘_‘“\’/M“M"\"'\”\‘A\%V' 2 P i TV Wi AT [} VA g W
0 /M A ‘” Al ue',wnww
"I' A L | |
-1 ﬁv L ‘?M ‘ } l‘ i
| | Mﬂ'. w‘Mme‘Mm Wﬁﬂw
—2 U | e T VR AL 'W'WVL
b | J { "W\‘W’WV” LA |)
_3 WWMWWM\," LNV IPNY /WWM%NMM‘W oy
—4
0 20 40 60 80 100 120 140
Epochs
(a) Loss curves for QT-UNet-B.
5 T T T 5 T T T
Total loss Total loss
4 Reconstruction loss . 4 Reconstruction loss -
Rotation loss Rotation loss
3 BYOL loss = 3 BYOL loss =
2 2
| |
1 ;W’*WW Al b AN b w 1 WWW’WWW‘M T,
g .l
0 -0
-1 —1 |
-2 !) -2 L \ e
_3 MNMW “,“)‘ Mot N uu'u‘mm ”LLA_WIWJVALVAtvmlﬂnv\uﬂ‘\m b _3 MWWWWWMWWWMWW N .':“Lu“ A wvlv
—4 —4
0O 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Epochs Epochs
(b) Loss curves for QT-UNet-S. (c) Loss curves for QT-UNet-T.

Figure 5.2: Loss curves for CityScapes pretraining.

Chapter 5: Discussion 97

road)

sidewalk

! instance-level annotations are availahle
ignored for evaluation

1010

build.
veget.

car’

parking?
terrain
sky
persont
static?
ground?
dvnamic?

fence

wall

bicycle!
bust

=
E]

pole
traffic sign
traffic light

rail track?
bridge?

-_l tunnel?

number of pixels

guard rail?

pole group?

108

flat construction niture vehicle sky object human void

Figure 5.3: Class distribution for CityScapes in terms number of finely annot-
ated pixels, grouped by category. Figure from [31].

5.3.3 The effect of the number of classes

Looking at the qualitative results in Figure 4.4, we see that the model indeed
produces somewhat coherent segmentation masks, despite some issues such
as being confused by shadows on the road. Observing that CityScapes has a
high number of classes, with several of the classes such as motorbikes, cara-
vans, and tunnels to name a few quite rare in the dataset (see Figure 5.3), it
can be theorised that the model is struggling mainly due to the high number
of classes and the relative rarity of several of them.

This insight led us to add CityScapesCat as an experiment. Again, we see
boosts in performance between models trained from scratch and those with
pre-trained weights, with minor changes for the Base variant. The qualitat-
ive results in Figure 4.5 also show slightly more coherent masks than those
of regular CityScapes in Figure 4.4, noting some trouble in the void (ignored)
areas.

Although the experiment with CityScapes by categories strengthens the
proposition that a primary issue for the model is the number of classes, we
would be remiss not to mention that QT-UNet-2D still trails far behind cur-
rent SotA for the dataset. Indeed, the model is slower and less performant,
though with a smaller computational and parameter budget. Although the
effect of the Cross-Attention mechanism on model performance is positively
correlated with the number of classes, too many classes could still overwhelm
the model, especially when so many of them are so rare in the dataset. How-
ever, it can be concluded that QT-UNet-2D is too slow to be effective in any
real-time AD application.

5.3.4 Transfer to NTNU data

Observing the results from our transfer from CityScapes to NTNU data in
Table 4.8 and Table 4.9, we find that our models struggle to properly trans-
fer to the new data. Although the Dice scores in Table 4.8 are quite similar to
those seen for CityScapes in Table 4.6, we find that the mloU scores are far
lower for the NTNU data. Given that the Dice score metricis more rewarding of
true positives than loU, this indicates that the model is capable of generating

98 Andreas H. Haversen: QT-UNet

some true positives, but also generates many false negatives and false pos-
itives. This can also be seen in the qualitative results, where there are some
areas where the model is able to correctly classify the pixels, and large areas
where it produces many false positives, such as classifying the building to the
right as person.

For NTNU by categories (see Table 4.9), we observe that all variants are
able to transfer somewhat in terms of both Dice and mloU scores, in contrast
to NTNU by classes where the models suffer from a very low mloU score.
However, all variants are far weaker than their counterparts in CityScapes-
Cat (see Figure 4.5), with more than 50% lower scores for all variants. This
indicates that the weights trained for CityScapes by categories were not quite
adequate for the NTNU dataset.

There could be several reasons why proper transfer could not be achieved.
The most banale, but important, difference between the NTNU data and City-
Scapes is the season in which the images in the dataset were taken. Whilst the
images in CityScapes are primarily from spring, summer, and early autumn,
the images in the NTNU dataset were taken in late autumn. This difference
in season has a profound impact on the appearance of objects in the image
scene. For example, vegetation and shrubbery is thinner in texture and col-
oured brown and orange instead of green.

The NTNU data and CityScapes data are also from different countries, with
the NTNU data having been sourced from Trondheim in Norway, whilst the
CityScapes data is sourced from cities primarily in Germany?. This means that
there are differences in architecture, road construction style, and signage that
could have influenced the performance of QT-UNet-2D.

However, given that Segformer is able to produce quite sound segmenta-
tions of the data, as evident in Figure 4.6¢, it seems more likely that the fail-
ure of our model to properly transfer is more a reflection of the properties of
QT-UNet-2D rather than the exclusive effect of differences in country or the
seasons.

5.3.5 Implications

As noted in the previous section, QT-UNet itself is too slow to be applied to
many real-time applications. However, the individual techniques themselves
do have some merits that are worth noting. The Cross-Attention mechanism
seems to be positively correlated with the number of classes, seemingly bet-
ter able to distinguish and locate smaller targets. This result encourages the
use of the mechanism with few class tasks in Autonomous Driving, though a
deeper investigation as to why the mechanism has a negative effect in tasks
with fewer classes is warranted. Furthermore, the SSL-approach used seems
to have had quite a strong positive effect despite its collapse for the Base
variant. The effectiveness of SSL for segmentation is not novel, as several

2With only two foreign cities, Zurich and Strasbourg, included in the dataset.

Chapter 5: Discussion 99

works can testify to [64]. However, our scheme is> the first to share a vir-
tually identical pipeline between the 3D MIC and 2D AD contexts. Although
our experiments are too limited to elaborate on the relative effectiveness of
different SSL approaches in the MIC and AD domains, it opens the door for
further investigation of this type of domain- and modality-independent SSL
pipeline.

5.3.6 Error sources
The ignore & void class in CityScapes and CityScapesCat

As discussed in the experiment descriptions for experiment 2.14 and 2.2°,
class ID 0 was ignored during evaluation as is standard for these datasets.
However, we elected to include this class during training. This seems to have
had a somewhat adverse effect on performance, as the model struggles to
learn exactly what to ignore and classify as 0, and thus confuses classifiable
objects with regions to be ignored. This phenomenon can be observed in the
qualitative results in Figure 4.4 and Figure 4.5, where, for example, shadows
are prone to misclassification into the ignore class. SegFormer [79], for ex-
ample, ignores class 0 all-together during training. This leads us to speculate
thatignoring the class during training could have helped QT-UNet-2D in both
CityScapes and CityScapesCat. Naturally, better performance in CityScapes
and CityScapesCat by training without class 0 could also have aided perform-
ance when transferring to the NTNU data.

5.4 Other

This section will briefly describe other pertinentinsights from the experiments
that are not directly related to the research questions.

5.4.1 Underutilised computational budget

The results of the ablation study (see Table 4.10) indicate a significant spee-
dup in terms of FLOPs between VT-UNet and QT-UNet, due to the updated
Cross-Attention design and the addition of spatial depth reduction. This re-
duction in computational burden and the consequent increase in available
computational budget provide an opportunity to extend the model with an-
other stage, a less aggressive patch embedding strategy, a higher number of
embedded dimensions, and other architectural and hyperparameter changes
to better exploit the released computational budget. There was not enough

3To our knowledge.
4See Section 3.5.3.
5See Section 3.5.3

100 Andreas H. Haversen: QT-UNet

time to carry out such experiments in this thesis, leaving it as an avenue for
future exploration.

5.4.2 Depth-wise reduction and its effect on accuracy

Again looking at the results of the ablation study in Table 4.10, the only ma-
jor difference in scores between versions with and without depth-wise reduc-
tions in the patch merge layers and depth-wise expansion in the patch ex-
pansion layers is in the Hausdorff Distance, increasing across all model sizes.
It can be surmised that this is the price paid for the saving in FLOPs, know-
ing that the reason for those savings is that the model is relieved of the need
to attend to long distances in the depth dimension in all stages. This means
that the model is less capable of capturing certain long-range dependencies,
which could negatively impact performance. Dropping the depth-wise reduc-
tion could, of course, increase performance, but at the cost of extra compu-
tation. Similarly, one could drop the reductions in height and width to help
the model attend to even longer distances, but at a significantly increased
computational cost. This is the essential trade-off faced in machine learning
everywhere: Speed versus accuracy.

As discussed in Section 5.4.1, the reduction in the overall compute needed
for the model provides a larger computational budget to extend and modify
QT-UNet. Though there was not sufficient time to experiment with this in this
project, it can be theorised that modifications and extensions elsewhere in the
model could alleviate the performance reduction caused by the depth-wise
reduction, and perhaps indeed outperform the original without depth-wise
reduction. More experiments are needed to verify this theory.

5.5 Retrospective evaluation

This section will evaluate different aspects of the way this thesis was carried
out, looking at positive, negative, and unfortunate aspects of the process.
Overall, we are satisfied with the overall process, the effort made, and the
outcome of the project, but there were also a hand-full of things that could
have been done differently.

Chapter 5: Discussion 101

Positive aspects

o Modular models, experiments, and pipeline
Building upon the experimental setup we built in the specialisa-
tion project, with modular dataset and model classes using PyT-
orch Lightning [82], we were able to quickly set up and test new
models and datasets in our pipeline with minimal modifications
to each moving part of the overall system. This enabled us to
quickly set up and add new experiments quickly.

e Using PyTorch Lightning and MONAI
Using these two packages greatly helped our productivity. Light-
ning [82] abstracted away most of the engineering challenges re-
lated to machine learning, allowing us to focus our efforts on re-
search instead. Using MONAI [84] greatly eased the interaction
with medical data, simplifying the development of MIC experi-
ments

o Efficient use of IDUN
Building upon our experience with IDUN from the specialisation
project, we were able to intelligently and efficiently orchestrate
the nearly 900 compute jobs completed for this project through
the clever use of several job array scripts and other SLURM tricks.

102 Andreas H. Haversen: QT-UNet

Negative aspects

¢ Insufficient model experimentation
The large number of experiments planned for this thesis meant
that there was insufficient time to experiment with model config-
urations and hyperparameters. As noted in the discussion, QT-
UNet has an underused computational budget that we were un-
able to tap into.

e Slow project start
Though the reuse and further development of the experimental
setup developed for the specialisation project helped us start this
project, we still suffered a slow start to the project in which the
final and proper experimental runs that were planned to begin in
mid-March were not ready to go until mid-April. This set us back
quite a bit from our original project timeline.

o Missed data for CT-SSL pretraining
The CT-SSL dataset was intended to include 771 cardiac CT im-
ages from the TCIA COVID19 dataset [99]. Their inclusion was neg-
lected and not discovered until pre-training on the CT-SSL dataset
was well underway, in early May, but it became clear that restar-
ted runs would take too long to complete. Therefore, it was de-
cided to continue the runs without the extra data. This may have
had a slight negative impact on the performance of the models
pre-trained with this dataset. However, the general balance of the
regions of interest in CT-SSL is still sound (see Table 3.2).

e Model misconfiguration
We discovered in the last month of our project that we had a
fatal misconfiguration in our experimental setup, with subexper-
iments 1.2, 1.3, 2.1 and 2.2 having been trained as if their target
masks could overlap as in subexperiment 1.1, despite that not
being true. We were able to redo the runs for the incorrectly con-
figured experiments in time, though it caused considerable stress
in the final stretch of the project.

Chapter 5: Discussion 103

Unfortunate aspects

¢ File system failure on IDUN
Over Easter, IDUN suffered a file system failure where writing to
disk would fail due to a "out of disk space" error, despite the fact
that space was available. Although no data was lost, we suffered
difficulties with downloading datasets to IDUN and running our
experiments, as they would crash when writing to disk. This was
unfortunate, as we had planned to start most of our final runs
that week, setting us back another week when we were already
behind schedule.

e Swin-UNETR source code unavailable
As noted in our discussion of the effect of SSL, we regret the un-
fortunate fact that the source code for Swin-UNETR, whose pre-
training scheme this project based its own scheme upon, was not
published in time to affect this project, making it harder to verify
that our SSL approach was valid and soundly based.

e Disabled test servers
As noted in Chapter 4, several of the test servers from which
we source the results for the other models did not accept new
submissions when the training runs for this project ended. This
meant that we were unable to submit predictions over the test set
in those datasets and get results equivalent to the models against
which we compare. This made it difficult to make fair comparis-
ons between the performance of QT-UNet and that of the other
models.

Chapter 6

Conclusion and Future Work

Conclusions are drawn in Section 6.1 from the discussion and results in the
preceding sections, before potential avenues for future work are presented
in Section 6.2.

6.1 Conclusion

Recalling the introduction to this project, the overall stated goal of the project
was to:

To explore the efficacy of a cross-domain all-Transformer UNet
segmentation model based on the Swin transformer, self-supervised
pre-training, and Encoder-Decoder cross-attention on Medical Im-
age Computing and Autonomous Driving datasets.

To achieve this goal, three Research Questions were formulated and the
QT-UNet model was created to incorporate them into a testable unit. QT-UNet
and its variants were subjected to six experiments to answer the research
questions. The first Research Question deals with the effect of Self-Supervised
Learning upon the all-Transformer Swin-based UNet. For this question, we
pre-trained QT-UNet using a large CT dataset consisting of 3,597 CT scans for
CT tasks and using the task data directly for modalities like MRl where relevant
data is more scarce.

105

106 Andreas H. Haversen: QT-UNet

Research Question 1

Q: What is the effect of using self-supervised pretraining of the encoder
in an all-Transformer UNet on the performance of the overall network
in segmentation tasks?

A: Our results show that the effect of self-supervised pre-training varies
depending on whether in-task or out-of-task data is used. With out-
of-task data, SSL can greatly improve the performance of the overall
model. With in-task data, changes in performance are more marginal,
though some improvements can be attained in certain tasks like BraTS
where Hausdorff Distance was reduced.

The second Research Question asks what effect Cross-Attention has on
the model. For this question, we train VT-UNet alongside QT-UNet to illumin-
ate the effect of the updated Cross-Attention mechanism introduced in QT-
UNetand compare both models to other SotA methods without Cross-Attention.

Research Question 2

Q: What is the effect of using encoder-decoder cross-attention on the
overall performance of a all-Transformer UNet?

A: Our results show that the use of Cross-Attention can boost the
overall performance of the model in MIC tasks. QT-UNet introduced
an updated approach to the mechanism, achieving a better speed-to-
performance trade-off by trading a 7.69% increase in parameters for
a 10.42% decrease in FLOPs with negligible impact on Dice score com-
pared to VT-UNet for the Base variant in BraTS. In BTCV, we find that
the mechanism increases the Dice score by 18 points in the average
by better capturing the position of smaller organs. However, the Cross-
Attention mechanism in QT-UNet is less accurate in terms of Hausdorff
Distance, indicating thatitis less able to capture certain details than the
original approach favoured by VT-UNet [10]. We also observe that the
mechanism seems more effective in tasks with several target classes.
More research is needed to explore the exact role and interaction of
Cross-Attention in relation to the other components in the model and
the effect of the number of classes in the target.

The third Research Question deals with the application of the techniques
mentioned in RQ 1 and 2 between the 2D and 3D modalities. We spun out a
2D variant of QT-UNet by removing the depth dimension in all components
and applied it to CityScapes and CityScapes by categories (CityScapesCat).

Chapter 6: Conclusion and Future Work 107

Research Question 3

Q: How can these techniques be applied effectively for both 2D and 3D
segmentation tasks?

A: Our results show that the SSL pipeline can be applied directly to both
2D and 3D data without any modifications other than to account for
the extra spatial dimension. Using the SSL pipeline in a similar out-of-
task situation as discussed for RQ 1 leads to a significant performance
increase. Cross-Attention can be applied in a similar fashion between
the 2D and 3D modalities, again only needing to account for the extra
spatial dimension. Its effect appears to be positively correlated with the
number of classes in the target, but is negative given a restricted num-
ber of output classes. However, we find that the 2D variant of QT-UNet
trails far behind the current SotA. We additionally find that the model
struggles in tasks with too many target classes, as is evident by the in-
crease in performance on CityScapesCat, although our overall results
are influenced by the fact that we included the void class in our train-
ing. More research and effort is needed to bring the overall model to
par with SotA.

The goal of this thesis was to explore the efficacy of a all-Transformer UNet
segmentation model across domains and using Cross-Attention and SSL, giv-
ing birth to QT-UNet: The Querying Transformer U-Net. Although we find mixed
results in some of the experiments, we conclude that the model and our over-
all approach shows promise and could potentially be developed further to fill
the performance gaps discovered.

6.2 Future work

Whilst the results in this thesis are encouraging in some aspects, there is still
a way to go to bring the model up to par in several of the datasets.

6.2.1 Better utilisation of computational headroom

Observing that QT-UNet has an overall reduction in FLOPs of 40% against VT-
UNet, an opportunity arises to extend and modify the model within a reason-
able computational budget. A handful of possibilities are listed below.

e Increase the spatial dimensions of the crop for MSD and BTCV from 963
to 1283 as in BraTS2021, to add more spatial context to the model.

e Reduce the patch size in the Patch Embedding to capture more fine-
grained information in the embedding and maintain a higher spatial
resolution throughout the model.

e Add another stage to the UNet, deepening the network.

108 Andreas H. Haversen: QT-UNet

e Employ deep supervision, following UNetFormer [75], to strengthen de-
coder training.

6.2.2 Deal with ignore class in CityScapes differently

In our experiments with CityScapes and CityScapesCat, the ignore label 0 was
still included during training. Retraining QT-UNet-2D without that label could
be beneficial to model performance, seeing as we observed qualitatively that
it reduced the quality of the predictions.

6.2.3 Deeper analysis of Cross-Attention

Our experiments uncover several interesting effects of the new Cross-Attention
module, including positive and negative effects in terms of performance and
speed-to-parameter trade-offs. In particular, our experiments with CityScapes
and CityScapesCat uncovered a positive correlation between the number of
target classes and the effect of Cross-Attention on the overall model, although
the effectis negative in CityScapesCat. Furthermore, we observe that QT-UNet
is much better at spleen segmentation in BTCV' than in MSD Task 9 Spleen
segmentation?. This could indicate that a similar correlation also holds true in
the 3D context, though our experiments are too limited to say so conclusively.
Furthermore, the exact way the new Cross-Attention module incorporates the
information from the encoder to the decoder is not fully understood. Exper-
iments to illuminate these effects could inform further development of the
mechanism to improve its performance.

6.2.4 Hyperparameter tuning

As noted in Section 5.4.1, our timeframe was insufficient to properly tune the
hyperparameters of QT-UNet. In the future, a hyperparameter search could
be conducted to potentially discover more optimal parameter values.

6.2.5 Extending CT-SSL

As noted in Section 5.5, the CT-SSL dataset is missing 717 cardiac CT images
from the TCIA COVID19 dataset [99]. Adding these to the dataset and retrain-
ing the model could improve performance and reveal the impact of omitting
this dataset. On a more general note, more data is generally expected to im-
prove performance [98]. Extending the dataset with even more datasets could
therefore be quite benifical.

A task with 13 target classes.
2A task with one target class.

Chapter 6: Conclusion and Future Work 109

6.2.6 Roubustness analysis

Peiris et al. [10] show in their original work that VT-UNet is quite robust against
data anomalies in MRI scans. A similar analysis for QT-UNet could be quite il-
luminating, highlighting the influence of the updated Cross-Attention module.

6.2.7 Extension to other modalities

This thesis focused on CT, MRl and RGB image data to limit the scope of the
project, though QT-UNet and QT-UNet-2D are quite general in nature. They
could potentially also be applied to other modalities, such as ultrasound ima-
ging, X-ray images, histological slides, videos, and more.

6.2.8 2.5D model variant

This project produced two distinct types of QT-UNet: One for 3D modalities
and one for 2D modalities. A possibility not explored in this project, a third
variant that essentially merges the 3D and 2D variants, is a 2.5D variant.

In a 3D MIC context, a 2.5D model is a model that takes as input full-size
(in width and height) slices of the input, as well as a hand-full of slices in either
direction in the depth axis to provide context. This has the advantage of al-
lowing the model to exploit the full spatial context of the width and height of
the input and some volumetric context in the depth of the input, whilst still
maintaining a manageable computational cost.

Such a model could also have uses in a 2D AD context, where time could
act as surrogate for depth. For example, the model could be fed a hand-full of
previous frames of either raw input or segmentations to give the model more
context for the current input.

Bibliography

[1]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, t.
Kaiser and I. Polosukhin, ‘Attention is all you need,’ in Advances in Neural
Information Processing Systems, 1. Guyon, U. V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan and R. Garnett, Eds., vol. 30, Cur-
ran Associates, Inc., 2017. [Online]. Available: https: //proceedings.
neurips . cc/paper/2017/file/3f5ee243547dee91fbd053clc4a845aa -
Paper.pdf.

J. Devlin, M. Chang, K. Lee and K. Toutanova, ‘BERT: pre-training of deep
bidirectional transformers for language understanding,’ in Proceedings
of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers),). Burstein, C. Doran and T. Solorio, Eds., Association for Compu-
tational Linguistics, 2019, pp. 4171-4186. DOI: 10.18653/v1/n19-1423.
[Online]. Available: https://doi.org/10.18653/v1/n19- 1423,

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C.
Berner, S. McCandlish, A. Radford, I. Sutskever and D. Amodei, ‘Lan-
guage models are few-shot learners,’ in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and
H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 1877-1901. [On-
line]. Available: https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfch4967418bfb8acl42f64a-Paper.pdf.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit
and N. Houlsby, ‘An image is worth 16x16 words: Transformers for im-
age recognition at scale,’ in 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenRe-
view.net, 2021. [Online]. Available: https://openreview. net/ forum?
id=YicbFdNTTy.

111

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

112

[5]

[10]

[11]

[12]

[13]

[14]

Andreas H. Haversen: QT-UNet

N. Kitaev, L. Kaiser and A. Levskaya, ‘Reformer: The efficient transformer,’
in 8th International Conference on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020, OpenReview.net, 2020. [Online].
Available: https://openreview.net/forum?id=rkgNKkHtvB.

S. Wang, B. Z. Li, M. Khabsa, H. Fang and H. Ma, Linformer: Self-attention
with linear complexity, 2020. DOI: 10.48550/ARXIV.2006.04768. [Online].
Available: https://arxiv.org/abs/2006.04768.

C. Wu, F. Wu, T. Qi, Y. Huang and X. Xie, Fastformer: Additive attention
can be all you need, 2021. DOI: 10.48550/ARXIV.2108.09084. [Online].
Available: https://arxiv.org/abs/2108.09084.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin and B. Guo, ‘Swin
transformer: Hierarchical vision transformer using shifted windows,’ in
2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021,
Montreal, QC, Canada, October 10-17, 2021, IEEE, 2021, pp. 9992-10 002.
DOI: 10.1109/ICCV48922.2021.00986. [Online]. Available: https://doi.
org/10.1109/ICCV48922.2021.00986.

H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian and M. Wang, Swin-
unet: Unet-like pure transformer for medical image segmentation, 2021.
DOI: 10.48550/ARXIV.2105.05537. [Online]. Available: https://arxiv.
org/abs/2105.05537.

H. Peiris, M. Hayat, Z. Chen, G. Egan and M. Harandi, A volumetric trans-

former for accurate 3d tumor segmentation, 2021. DOI: 10.48550/ARXIV.

2111.13300. [Online]. Available: https://arxiv.org/abs/2111.13300.

Y.Tang, D.Yang, W. Li, H. Roth, B. Landman, D. Xu, V. Nath and A. Hatamiz-
adeh, ‘Tcvpr'22] self-supervised pre-training of swin transformers for 3d
medical image analysis,” Mar. 2022.

A.H.Haversen, Is general attention all you need to see? experiments on
the use of general transformers for autonomous vision and medical im-
age processing,’ Specialisation/preparatory project for this thesis, Dec.
2021.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.
Prentice Hall, 2010.

A. Kirillov, K. He, R. B. Girshick, C. Rother and P. Dollar, ‘Panoptic seg-
mentation,’ in /EEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, Computer Vis-
ion Foundation / IEEE, 2019, pp. 9404-9413. DOI: 16.1109/CVPR.2019.
00963. [Online]. Available: http://openaccess . thecvf. com/content%
5C_CVPR%5C_2019/html/Kirillov%5C_ Panoptic%5C_ Segmentation%5C
CVPR%5C 2019%5C paper.html.

https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.48550/ARXIV.2006.04768
https://arxiv.org/abs/2006.04768
https://doi.org/10.48550/ARXIV.2108.09084
https://arxiv.org/abs/2108.09084
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.48550/ARXIV.2105.05537
https://arxiv.org/abs/2105.05537
https://arxiv.org/abs/2105.05537
https://doi.org/10.48550/ARXIV.2111.13300
https://doi.org/10.48550/ARXIV.2111.13300
https://arxiv.org/abs/2111.13300
https://doi.org/10.1109/CVPR.2019.00963
https://doi.org/10.1109/CVPR.2019.00963
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Kirillov%5C_Panoptic%5C_Segmentation%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Kirillov%5C_Panoptic%5C_Segmentation%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Kirillov%5C_Panoptic%5C_Segmentation%5C_CVPR%5C_2019%5C_paper.html

Bibliography 113

[15]

[16]

[17]

[18]

[19]

[20]

[21]

P.Jaccard, 'The distribution of the flora in the alpine zone.1,” New Phyto-
logist, vol. 11, no. 2, pp. 37-50, 1912. DOI: https://doi.org/10.1111/
j . 1469-8137.1912. tb05611 . x. eprint: https://nph.onlinelibrary.
wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x. [Online].
Available: https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/
j.1469-8137.1912.tb05611.x.

T. Serenson, A Method of Establishing Groups of Equal Amplitude in Plant
Sociology Based on Similarity of Species Content and Its Application to Ana-
lyses of the Vegetation on Danish Commons, ser. Biologiske skrifter. | kom-
mission hos E. Munksgaard, 1948. [Online]. Available: https://books.
google.no/books?id=rpS8GAAACAAI.

L. R. Dice, ‘Measures of the amount of ecologic association between
species,’ Ecology, vol. 26, no. 3, pp. 297-302, 1945. DOI: https://doi.
org/10.2307/1932409. eprint: https://esajournals.onlinelibrary.
wiley . com/doi/pdf/10.2307/1932409. [Online]. Available: https://
esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1932409.

R. T. Rockafellar and R. J. B. Wets, Variational Analysis. Springer Berlin
Heidelberg, 1998. DOI: 10.1007/978 - 3- 642 - 02431 - 3. [Online]. Avail-
able: https://doi.org/10.1007/978-3-642-02431-3.

A. L. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. van Gin-
neken, A. Kopp-Schneider, B. A. Landman, G. Litjens, B. Menze, O. Ron-
neberger, R. M. Summers, P. Bilic, P. F. Christ, R. K. G. Do, M. Gollub, J.
Golia-Pernicka, S. H. Heckers, W. R. Jarnagin, M. K. McHugo, S. Napel,
E. Vorontsov, L. Maier-Hein and M. J. Cardoso, A large annotated med-
ical image dataset for the development and evaluation of segmentation al-
gorithms, 2019. DOI: 10.48550/ARXIV. 1902 .09063. [Online]. Available:
https://arxiv.org/abs/1902.09063.

U. Baid, S. Ghodasara, S. Mohan et al., The rsna-asnr-miccai brats 2021
benchmark on brain tumor segmentation and radiogenomic classification,
2021. DOI: 10.48550/ARXIV.2107.02314. [Online]. Available: https://
arxiv.org/abs/2107.02314.

B. H. Menze, A. Jakab, S. Bauer, . Kalpathy-Cramer, K. Farahani, J. Kirby,
Y. Burren, N. Porz, . Slotboom, R. Wiest, L. Lanczi, E. Gerstner, M.-A.
Weber, T. Arbel, B. B. Avants, N. Ayache, P. Buendia, D. L. Collins, N.
Cordier, J. J. Corso, A. Criminisi, T. Das, H. Delingette, C. Demiralp, C. R.
Durst, M. Dojat, S. Doyle, J. Festa, F. Forbes, E. Geremia, B. Glocker, P.
Golland, X. Guo, A. Hamamci, K. M. Iftekharuddin, R. Jena, N. M. John,
E. Konukoglu, D. Lashkari, J. A. Mariz, R. Meier, S. Pereira, D. Precup,
S.J. Price, T. R. Raviv, S. M. S. Reza, M. Ryan, D. Sarikaya, L. Schwartz,
H.-C. Shin, J. Shotton, C. A. Silva, N. Sousa, N. K. Subbanna, G. Szekely,
T.J. Taylor, O. M. Thomas, N. J. Tustison, G. Unal, F. Vasseur, M. Winter-
mark, D. H. Ye, L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes and K.

https://doi.org/https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://books.google.no/books?id=rpS8GAAACAAJ
https://books.google.no/books?id=rpS8GAAACAAJ
https://doi.org/https://doi.org/10.2307/1932409
https://doi.org/https://doi.org/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1932409
https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.48550/ARXIV.1902.09063
https://arxiv.org/abs/1902.09063
https://doi.org/10.48550/ARXIV.2107.02314
https://arxiv.org/abs/2107.02314
https://arxiv.org/abs/2107.02314

114 Andreas H. Haversen: QT-UNet

Van Leemput, The multimodal brain tumor image segmentation bench-
mark (brats),' [EEE Transactions on Medical Imaging, vol. 34,n0. 10, pp. 1993-
2024, 2015. DOI: 10.1109/TMI.2014.2377694.

[22] S.Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Frey-
mann, K. Farahani and C. Davatzikos, ‘Advancing the cancer genome
atlas glioma MRI collections with expert segmentation labels and ra-
diomic features,’ Scientific Data, vol. 4, no. 1, Sep. 2017. DOI: 10.1038/
sdata.2017.117. [Online]. Available: https://doi.org/10.1038/sdata.
2017.117.

[23] B. Landman, Z. Xu, J. E. Igelsias, M. Styner, T. R. Langerak, A. Klein, D.
Shen, H. Wang,]. Gee, A. Akhondi-Asl, C. Ledig and Y. Fan, Segmentation
outside the cranial vault challenge, 2015. DOI: 10.7303/SYN3193805. [On-
line]. Available: https://repo-prod.prod.sagebase.org/repo/vl/doi/
locate?id=syn3193805&type=ENTITY.

[24]). Gamper, N. A. Koohbanani, K. Benet, A. Khuram and N. Rajpoot, ‘Pan-
nuke: An open pan-cancer histology dataset for nuclei instance seg-
mentation and classification,” in European Congress on Digital Pathology,
Springer, 2019, pp. 11-19.

[25] Autopilot and full self-driving capability, Apr. 2022. [Online]. Available:
https://www.tesla.com/support/autopilot.

[26] A.Geiger, P.LenzandR. Urtasun, ‘Are we ready for autonomous driving?
the kitti vision benchmark suite,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.

[27] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, ‘Vision meets robotics: The
kitti dataset,’ International Journal of Robotics Research (IJRR), 2013.

[28] J. Fritsch, T. Kuehnl and A. Geiger, ‘A new performance measure and
evaluation benchmark for road detection algorithms,’ in International
Conference on Intelligent Transportation Systems (ITSC), 2013.

[29] M. Menze and A. Geiger, ‘Object scene flow for autonomous vehicles,’
in Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[30] H. Alhaija, S. Mustikovela, L. Mescheder, A. Geiger and C. Rother, ‘Aug-
mented reality meets computer vision: Efficient data generation for urban
driving scenes,’ International Journal of Computer Vision (I/CV), 2018.

[311 M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth and B. Schiele, ‘The cityscapes dataset for semantic
urban scene understanding,’ in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[32] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan and O. Beijbom, ‘Nuscenes: A multimodal dataset for
autonomous driving,’ arXiv preprint arXiv:1903.11027, 2019.

https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.7303/SYN3193805
https://repo-prod.prod.sagebase.org/repo/v1/doi/locate?id=syn3193805&type=ENTITY
https://repo-prod.prod.sagebase.org/repo/v1/doi/locate?id=syn3193805&type=ENTITY
https://www.tesla.com/support/autopilot

Bibliography 115

[33] . Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[34] X. Glorot and Y. Bengio, ‘Understanding the difficulty of training deep
feedforward neural networks,” Journal of Machine Learning Research -
Proceedings Track, vol. 9, pp. 249-256, Jan. 2010.

[35] K.He, X. Zhang, S. Ren and . Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, 2015. arXiv: 1502 .
01852 [cs.CV].

[36] D.P.Kingma and]. Ba, ‘Adam: A method for stochastic optimization,’ in
3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio
and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/
1412.6980.

[37] S.loffeand C.Szegedy, ‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’ in Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-
11 July 2015, F. R. Bach and D. M. Blei, Eds., ser. JMLR Workshop and
Conference Proceedings, vol. 37, JMLR.org, 2015, pp. 448-456. [Online].
Available: http://proceedings.mlr.press/v37/ioffel5.html.

[38] S.Santurkar, D. Tsipras, A. llyas and A. Madry, ‘How does batch normal-
ization help optimization?’ In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurlPS 2018, December 3-8, 2018, Montréal, Canada, S. Bengio,
H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Gar-
nett, Eds., 2018, pp. 2488-2498. [Online]. Available: https://proceedings.
neurips . cc/paper/2018/hash/905056clacldad141560467e0a99%elcf -
Abstract.html.

[39] J.L.Ba,)J.R.Kirosand G.E. Hinton, Layer normalization, 2016. arXiv: 1607 .
06450 [stat.ML].

[40] O.Ronneberger, P. Fischer and T. Brox, ‘U-net: Convolutional networks
for biomedical image segmentation,’ in Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2015 - 18th International Confer-
ence Munich, Germany, October 5 - 9, 2015, Proceedings, Part Ill, N. Navab,
J. Hornegger, W. M. W. lll and A. F. Frangi, Eds., ser. Lecture Notes in
Computer Science, vol. 9351, Springer, 2015, pp. 234-241.DOI: 10.1007/
978 - 3-319- 24574 -4\ _28. [Online]. Available: https://doi.org/10.
1007/978-3-319-24574-4%5C _28.

[41] Y. Tay, M. Dehghani, D. Bahri and D. Metzler, Efficient transformers: A
survey, 2020. arXiv: 2009.06732 [cs.LG].

http://www.deeplearningbook.org
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.neurips.cc/paper/2018/hash/905056c1ac1dad141560467e0a99e1cf-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/905056c1ac1dad141560467e0a99e1cf-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/905056c1ac1dad141560467e0a99e1cf-Abstract.html
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4%5C_28
https://doi.org/10.1007/978-3-319-24574-4%5C_28
https://arxiv.org/abs/2009.06732

116 Andreas H. Haversen: QT-UNet

[42] X.Wang, R. B. Girshick, A. Gupta and K. He, ‘Non-local neural networks,’
in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, Computer Vision Found-
ation / IEEE Computer Society, 2018, pp. 7794-7803. DOI: 10 . 1109 /
CVPR.2018.00813. [Online]. Available: http://openaccess.thecvf.com/
content%5C cvpr%s5C 2018/html/Wang%5C Non-Local%s5C Neuralss5C
Networks%s5C CVPR%5C 2018%5C paper.html.

[43] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov and S. Zagor-
uyko, ‘End-to-end object detection with transformers,” in Computer Vis-
ion - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part I, A. Vedaldi, H. Bischof, T. Brox and J. Frahm,
Eds., ser. Lecture Notes in Computer Science, vol. 12346, Springer, 2020,
pp.213-229.DOI: 10.1007/978-3-030-58452-8_13.[Online]. Available:
https://doi.org/10.1007/978-3-030-58452-8%5C_13.

[44] N. Parmar, P. Ramachandran, A. Vaswani, |. Bello, A. Levskaya and |.
Shlens, ‘Stand-alone self-attention in vision models,’ in Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Inform-
ation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Van-
couver, BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Bug, E. B. Fox and R. Garnett, Eds., 2019, pp. 68-80. [Online]. Available:
https://proceedings.neurips.cc/paper/2019/hash/3416a75f4cea9109507cacd8e2f2aefc-
Abstract.html.

[45] H. Wang, Y. Zhu, B. Green, H. Adam, A. L. Yuille and L. Chen, ‘Axial-
deeplab: Stand-alone axial-attention for panoptic segmentation,’in Com-
puter Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part IV, A. Vedaldi, H. Bischof, T. Brox and J.
Frahm, Eds., ser. Lecture Notes in Computer Science, vol. 12349, Springer,
2020, pp. 108-126. DOI: 10.1007 /978 - 3- 030 - 58548 - 8\ 7. [Online].
Available: https://doi.org/10.1007/978-3-030-58548-8%5C 7.

[46] C.Sun, A. Shrivastava, S. Singh and A. Gupta, ‘Revisiting unreasonable
effectiveness of datain deep learning era,’ in 2017 IEEE International Con-
ference on Computer Vision (ICCV), Los Alamitos, CA, USA: IEEE Computer
Society, Oct. 2017, pp. 843-852. DOI: 10.1109/ICCV.2017.97. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.
97.

[47] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, ImageNet
Large Scale Visual Recognition Challenge,’ International Journal of Com-
puter Vision (l/CV), vol. 115, no. 3, pp. 211-252, 2015. DOI: 16 . 1607/
$11263-015-0816-y.

[48] A.Krizhevsky, G. Hinton et al., ‘Learning multiple layers of features from
tiny images,’ 2009.

https://doi.org/10.1109/CVPR.2018.00813
https://doi.org/10.1109/CVPR.2018.00813
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Wang%5C_Non-Local%5C_Neural%5C_Networks%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Wang%5C_Non-Local%5C_Neural%5C_Networks%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Wang%5C_Non-Local%5C_Neural%5C_Networks%5C_CVPR%5C_2018%5C_paper.html
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1007/978-3-030-58452-8%5C_13
https://proceedings.neurips.cc/paper/2019/hash/3416a75f4cea9109507cacd8e2f2aefc-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3416a75f4cea9109507cacd8e2f2aefc-Abstract.html
https://doi.org/10.1007/978-3-030-58548-8_7
https://doi.org/10.1007/978-3-030-58548-8%5C_7
https://doi.org/10.1109/ICCV.2017.97
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.97
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.97
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

Bibliography 117

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

X. Zhai, J. Puigcerver, A. Kolesnikov, P. Ruyssen, C. Riquelme, M. Lucic, J.
Djolonga, A. S. Pinto, M. Neumann, A. Dosovitskiy, L. Beyer, O. Bachem,
M. Tschannen, M. Michalski, O. Bousquet, S. Gelly and N. Houlsby, A
large-scale study of representation learning with the visual task adaptation
benchmark, 2020. arXiv: 1910.04867 [cs.CV].

S.Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan and M. Shah, ‘Trans-
formers in vision: A survey,” ACM Comput. Surv., Dec. 2021, Just Accep-
ted, ISSN: 0360-0300. DOI: 10.1145/3505244. [Online]. Available: https:
//doi.org/10.1145/3505244.

K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu,
Y. Xu, Z.Yang, Y. Zhang and D. Tao, ‘A survey on vision transformer,’ IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1-1, 2022.
DOI: 10.1109/TPAMI.2022.3152247.

M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang and A. Dosovitskiy, ‘Do
vision transformers see like convolutional neural networks?' In Advances
in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y.
Dauphin, P. Liang and J. W. Vaughan, Eds., vol. 34, Curran Associates,
Inc., 2021, pp. 12116-12128. [Online]. Available: https://proceedings.
neurips . cc/paper/2021/file/652cf38361a209088302ba2b8b7f51e0 -
Paper.pdf.

R. Ranftl, A. Bochkovskiy and V. Koltun, ‘Vision transformers for dense
prediction,’in 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), 2021, pp. 12159-12 168. DOI: 16.1169/ICCV48922.2021.01196.

X. Chuy, Z. Tian, Y. Wang, B. Zhang, H. Ren, X. Wei, H. Xia and C. Shen,

‘Twins: Revisiting the design of spatial attention in vision transformers,’

in Advances in Neural Information Processing Systems, M. Ranzato, A. Bey-

gelzimer, Y. Dauphin, P. Liang and J. W. Vaughan, Eds., vol. 34, Cur-

ran Associates, Inc., 2021, pp. 9355-9366. [Online]. Available: https://
proceedings.neurips.cc/paper/2021/file/4e0928de075538c593fbdabb0c5ef2c3-
Paper.pdf.

A. Jaegle, F. Gimeno, A. Brock, O. Vinyals, A. Zisserman and . Carreira,
‘Perceiver: General perception with iterative attention,’ in Proceedings
of the 38th International Conference on Machine Learning, M. Meila and T.
Zhang, Eds., ser. Proceedings of Machine Learning Research, vol. 139,
PMLR, Jul. 2021, pp. 4651-4664.[Online]. Available: https://proceedings.
mlr.press/v139/jaegle2la.html.

J. Ho, N. Kalchbrenner, D. Weissenborn and T. Salimans, Axial attention
in multidimensional transformers, 2019. arXiv: 1912.12180 [cs.CV].

B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso and A. Torralba, ‘Scene
parsing through ade20k dataset,’ in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

https://arxiv.org/abs/1910.04867
https://doi.org/10.1145/3505244
https://doi.org/10.1145/3505244
https://doi.org/10.1145/3505244
https://doi.org/10.1109/TPAMI.2022.3152247
https://proceedings.neurips.cc/paper/2021/file/652cf38361a209088302ba2b8b7f51e0-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/652cf38361a209088302ba2b8b7f51e0-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/652cf38361a209088302ba2b8b7f51e0-Paper.pdf
https://doi.org/10.1109/ICCV48922.2021.01196
https://proceedings.neurips.cc/paper/2021/file/4e0928de075538c593fbdabb0c5ef2c3-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4e0928de075538c593fbdabb0c5ef2c3-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4e0928de075538c593fbdabb0c5ef2c3-Paper.pdf
https://proceedings.mlr.press/v139/jaegle21a.html
https://proceedings.mlr.press/v139/jaegle21a.html
https://arxiv.org/abs/1912.12180

118 Andreas H. Haversen: QT-UNet

[58] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso and A. Torralba,
‘Semantic understanding of scenes through the ade20k dataset,’ Inter-
national Journal of Computer Vision, vol. 127, no. 3, pp. 302-321, 2019.

[59] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun
and A. Yuille, The role of context for object detection and semantic seg-
mentation in the wild," in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[60] T. Xiao, Y. Liu, B. Zhou, Y. Jiang and J. Sun, ‘Unified perceptual parsing
for scene understanding,’ in Computer Vision - ECCV 2018, V. Ferrari, M.
Hebert, C. Sminchisescu and Y. Weiss, Eds., Cham: Springer Interna-
tional Publishing, 2018, pp. 432-448, ISBN: 978-3-030-01228-1.

[61] Z.Liu,H.Hu,Y.Lin,Z.Yao, Z. Xie, Y. Wei, . Ning, Y. Cao, Z. Zhang, L. Dong,
F. Weiand B. Guo, Swin transformer v2: Scaling up capacity and resolution,
2021. arXiv: 2111.09883 [cs.CV].

[62] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo and L.
Shao, ‘Pyramid vision transformer: A versatile backbone for dense pre-
diction without convolutions,” in 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), 2021, pp. 548-558. DOI: 10.1109/ICCV48922.
2021.00061.

[63] X.Chu, Z.Tian, B. Zhang, X. Wang, X. Wei, H. Xia and C. Shen, Conditional
positional encodings for vision transformers, 2021. arXiv: 2102.10882 [cs.CV].

[64] L. Jing and Y. Tian, ‘Self-supervised visual feature learning with deep
neural networks: A survey,’ IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 43, no. 11, pp. 4037-4058, Nov. 2021, ISSN: 1939-
3539. DOI: 160.1109/TPAMI . 2020.2992393.

[65] A.]Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee and F. Makedon, ‘A sur-
vey on contrastive self-supervised learning,’ Technologies, vol. 9, no. 1,
2021, ISSN: 2227-7080. DOI: 10. 3390/ technologies9010002. [Online].
Available: https://www.mdpi.com/2227-7080/9/1/2.

[66] T. Chen, S. Kornblith, M. Norouzi and G. Hinton, ‘A simple framework
for contrastive learning of visual representations,’ in Proceedings of the
37th International Conference on Machine Learning, H. D. Ill and A. Singh,
Eds., ser. Proceedings of Machine Learning Research, vol. 119, PMLR, Jul.
2020, pp. 1597-1607. [Online]. Available: https://proceedings.mlr.
press/v119/chen20j.html.

[67] K.He, H. Fan,Y.Wu, S. Xie and R. Girshick, 'Momentum contrast for un-
supervised visual representation learning,’ in 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 9726-9735.
DOI: 10.1109/CVPR42600.2020.00975.

https://arxiv.org/abs/2111.09883
https://doi.org/10.1109/ICCV48922.2021.00061
https://doi.org/10.1109/ICCV48922.2021.00061
https://arxiv.org/abs/2102.10882
https://doi.org/10.1109/TPAMI.2020.2992393
https://doi.org/10.3390/technologies9010002
https://www.mdpi.com/2227-7080/9/1/2
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1109/CVPR42600.2020.00975

Bibliography 119

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

X.Chen, H. Fan, R. Girshick and K. He, Improved baselines with momentum
contrastive learning, 2020. DOI: 10 . 48550 /ARXIV .2003.04297. [Online].
Available: https://arxiv.org/abs/2003.04297.

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C.
Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, B. Piot, k. kavukcuo-
glu koray, R. Munos and M. Valko, ‘Bootstrap your own latent - a new
approach to self-supervised learning,’ in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and
H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 21271-21284.
[Online]. Available: https: //proceedings . neurips . cc/paper/2020/
file/f3ada80d5c4ee70142b17b8192b2958e- Paper. pdf.

X. Chen and K. He, ‘Exploring simple siamese representation learning,’
in 2021 |EEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 15745-15753. DOI: 10.1109/CVPR46437.2021.01549.

A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman,
H. R. Roth and D. Xu, ‘Unetr: Transformers for 3d medical image seg-
mentation,’ in 2022 IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV), 2022, pp. 1748-1758. DOI: 10 . 1109 / WACV51458 .
2022.00181.

H.-Y. Zhou, J. Guo, Y. Zhang, L. Yu, L. Wang and Y. Yu, Nnformer: Inter-
leaved transformer for volumetric segmentation, 2021. DOI: 10 . 48550 /
ARXIV.2109.03201. [Online]. Available: https://arxiv.org/abs/2109.
03201.

Z.Zhou, V. Sodha, M. M. Rahman Siddiquee, R. Feng, N. Tajbakhsh, M. B.
Gotway and J. Liang, ‘Models genesis: Generic autodidactic models for
3d medical image analysis,” in Medical Image Computing and Computer
Assisted Intervention - MICCAI 2019, D. Shen, T. Liu, T. M. Peters, L. H.
Staib, C. Essert, S. Zhou, P.-T. Yap and A. Khan, Eds., Cham: Springer
International Publishing, 2019, pp. 384-393, ISBN: 978-3-030-32251-9.

F. Haghighi, M. R. H. Taher, Z. Zhou, M. B. Gotway and . Liang, ‘Transfer-
able visual words: Exploiting the semantics of anatomical patterns for
self-supervised learning,’ IEEE Transactions on Medical Imaging, vol. 40,
no. 10, pp. 2857-2868, 2021. DOI: 10.1109/TMI.2021.3060634.

A. Hatamizadeh, Z. Xu, D. Yang, W. Li, H. Roth and D. Xu, Unetformer: A
unified vision transformer model and pre-training framework for 3d med-
ical image segmentation, 2022. DOI: 10.48550/ARXIV.2204.00631. [On-
line]. Available: https://arxiv.org/abs/2204.00631.

F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen and K. H. Maier-Hein,
‘nnU-net: A self-configuring method for deep learning-based biomed-
ical image segmentation,” Nature Methods, vol. 18, no. 2, pp. 203-211,
Dec. 2020. DOI: 10 . 1038/ 541592 - 020 - 01008 - z. [Online]. Available:
https://doi.org/10.1038/s41592-020-01008- z.

https://doi.org/10.48550/ARXIV.2003.04297
https://arxiv.org/abs/2003.04297
https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://doi.org/10.1109/CVPR46437.2021.01549
https://doi.org/10.1109/WACV51458.2022.00181
https://doi.org/10.1109/WACV51458.2022.00181
https://doi.org/10.48550/ARXIV.2109.03201
https://doi.org/10.48550/ARXIV.2109.03201
https://arxiv.org/abs/2109.03201
https://arxiv.org/abs/2109.03201
https://doi.org/10.1109/TMI.2021.3060634
https://doi.org/10.48550/ARXIV.2204.00631
https://arxiv.org/abs/2204.00631
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41592-020-01008-z

120 Andreas H. Haversen: QT-UNet

[77]1 J.Jain, A. Singh, N. Orlov, Z. Huang, J. Li, S. Walton and H. Shi, Semask:
Semantically masked transformers for semantic segmentation, 2021. DOI:
10.48550/ARXIV.2112.12782. [Online]. Available: https://arxiv.org/
abs/2112.12782.

[78] L. Yuan, Q. Hou, Z. Jiang, J. Feng and S. Yan, Volo: Vision outlooker for
visual recognition, 2021. DOI: 10 . 48550 / ARXIV . 2106 . 13112, [Online].
Available: https://arxiv.org/abs/2106.13112.

[79] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez and P. Luo, ‘Seg-
former: Simple and efficient design for semantic segmentation with trans-
formers,’ in Advances in Neural Information Processing Systems, M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P. Liang and J. W. Vaughan, Eds., vol. 34,
Curran Associates, Inc., 2021, pp. 12077-12090. [Online]. Available: https:
//proceedings.neurips.cc/paper/2021/file/64f1f27bflb4ec22924fd0acb550c235-
Paper.pdf.

[80] Anaconda software distribution, version Vers. 2-2.4.0,2016. [Online]. Avail-
able: https://anaconda. com/.

[81] A.Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Baiand S.
Chintala, ‘Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox and R. Garnett,
Eds., Curran Associates, Inc., 2019, pp. 8024-8035. [Online]. Available:
http://papers . neurips.cc/paper/9015- pytorch-an- imperative -
style-high-performance-deep-learning-library.pdf.

[82] W.FalconandThe PyTorch Lightningteam, PyTorch Lightning, version 1.4,
Mar. 2019. DOI: 10.5281/ zenodo . 3828935. [Online]. Available: https:
//g9ithub.com/PyTorchLightning/pytorch-1lightning.

[83] W.FalconandK. Cho, ‘Aframework for contrastive self-supervised learn-
ing and designing a new approach,’ arXiv preprint arXiv:2009.00104, 2020.

[84] M. Consortium, ‘Monai: Medical open network for ai,’ Feb. 2022. DOI:
10.5281/zenodo.6114127.

[85] M.Sjalander, M. Jahre, G. Tufte and N. Reissmann, EPIC: An energy-efficient,
high-performance GPGPU computing research infrastructure, 2019. arXiv:
1912.05848 [cs.DC].

[86] A.B.Yoo, M.A.]Jette and M. Grondona, ‘Slurm: Simple linux utility for re-
source management,’ in Job Scheduling Strategies for Parallel Processing,
D. Feitelson, L. Rudolph and U. Schwiegelshohn, Eds., Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2003, pp. 44-60, ISBN: 978-3-540-39727-
4,

https://doi.org/10.48550/ARXIV.2112.12782
https://arxiv.org/abs/2112.12782
https://arxiv.org/abs/2112.12782
https://doi.org/10.48550/ARXIV.2106.13112
https://arxiv.org/abs/2106.13112
https://proceedings.neurips.cc/paper/2021/file/64f1f27bf1b4ec22924fd0acb550c235-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/64f1f27bf1b4ec22924fd0acb550c235-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/64f1f27bf1b4ec22924fd0acb550c235-Paper.pdf
https://anaconda.com/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.5281/zenodo.3828935
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://doi.org/10.5281/zenodo.6114127
https://arxiv.org/abs/1912.05848

Bibliography 121

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Z.Liu,J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin and H. Hu, Video swin trans-
former, 2021. DOI: 10 . 48550 / ARXIV . 2106 . 13230. [Online]. Available:
https://arxiv.org/abs/2106.13230.

K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S.
Phillips, D. Maffitt, M. Pringle, L. Tarbox and F. Prior, The cancer imaging
archive (tcia): Maintaining and operating a public information repository,
Jul. 2013. DOI: 10.1007/510278-013-9622-7. [Online]. Available: http:
//dx.doi.org/10.1007/s10278-013-9622-7.

H. Roth, L. Lu, A. Seff, K. M. Cherry, J. Hoffman, S. Wang, J. Liu, E. Turkbey
and R. M. Summers, A new 2.5 d representation for lymph node detection
in ct, 2015. DOI: 10.7937/K9/TCIA.2015.AQIIDCNM. [Online]. Available:
https://wiki.cancerimagingarchive.net/x/0gAtAQ.

C. K. Smith K, Data from ct_colonography, 2015. DOI: 16.7937/K9/TCIA.
2015.NWTESAY1. [Online]. Available: https://wiki.cancerimagingarchive.
net/x/DQE2.

S. Desai, A. Baghal, T. Wongsurawat, P. Jenjaroenpun, T. Powell, S. Al-
Shukri, K. Gates, P. Farmer, M. Rutherford, G. Blake, T. Nolan, K. Sexton,
W. Bennett, K. Smith, S. Syed and F. Prior, ‘Chest imaging representing a
COVID-19 positive rural u.s. population,’ Scientific Data, vol. 7, no. 1, Nov.
2020. DOI: 10.1038/541597 - 020- 00741 - 6. [Online]. Available: https:
//doi.org/10.1038/541597-020-00741-6.

E. Tsai, S. Simpson, M. P. Lungren, M. Hershman, L. Roshkovan, E. Colak,
B. J. Erickson, G. Shih, A. Stein, J. Kalpathy-Cramer, J. Shen, M. A. Hafez,
S.John, P. Rajiah, B. P. Pogatchnik, J. T. Mongan, E. Altinmakas, E. Rans-
chaert, F. C. Kitamura, L. Topff, L. Moy, J. P. Kanne and C. C. Wu, Medical
imaging data resource center - rsna international covid radiology database
release 1a - chest ct covid+ (midrc-ricord-1a), 2020. DOI: 10.7937/VTW4 -
X588. [Online]. Available: https://wiki.cancerimagingarchive.net/x/
DoDTB.

E. B. Tsai, S. Simpson, M. P. Lungren, M. Hershman, L. Roshkovan, E.
Colak, B. J. Erickson, G. Shih, A. Stein, J. Kalpathy-Cramer, J. Shen, M. A.
Hafez, S.John, P. Rajiah, B. P. Pogatchnik, J. T. Mongan, E. Altinmakas, E.
Ranschaert, F. C. Kitamura, L. Topff, L. Moy, J. P. Kanne and C. Wu, Med-
ical imaging data resource center (midrc) - rsna international covid open
research database (ricord) release 1b - chest ct covid-, 2021. DOI: 10.7937/
31V8 - 4A40. [Online]. Available: https://wiki. cancerimagingarchive.
net/x/KA4DTB.

A. A. Yorke, G. C. McDonald, D. Solis and T. Guerrero, Pelvic reference
data [dataset], 2019. DOI: 10.7937/TCIA.2019.W0SKQ500. [Online]. Avail-
able: https://wiki.cancerimagingarchive.net/x/tQGJAw.

https://doi.org/10.48550/ARXIV.2106.13230
https://arxiv.org/abs/2106.13230
https://doi.org/10.1007/s10278-013-9622-7
http://dx.doi.org/10.1007/s10278-013-9622-7
http://dx.doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.7937/K9/TCIA.2015.AQIIDCNM
https://wiki.cancerimagingarchive.net/x/0gAtAQ
https://doi.org/10.7937/K9/TCIA.2015.NWTESAY1
https://doi.org/10.7937/K9/TCIA.2015.NWTESAY1
https://wiki.cancerimagingarchive.net/x/DQE2
https://wiki.cancerimagingarchive.net/x/DQE2
https://doi.org/10.1038/s41597-020-00741-6
https://doi.org/10.1038/s41597-020-00741-6
https://doi.org/10.1038/s41597-020-00741-6
https://doi.org/10.7937/VTW4-X588
https://doi.org/10.7937/VTW4-X588
https://wiki.cancerimagingarchive.net/x/DoDTB
https://wiki.cancerimagingarchive.net/x/DoDTB
https://doi.org/10.7937/31V8-4A40
https://doi.org/10.7937/31V8-4A40
https://wiki.cancerimagingarchive.net/x/K4DTB
https://wiki.cancerimagingarchive.net/x/K4DTB
https://doi.org/10.7937/TCIA.2019.WOSKQ5OO
https://wiki.cancerimagingarchive.net/x/tQGJAw

122 Andreas H. Haversen: QT-UNet

[95] T.Tong and M. Li, Abdominal or pelvic enhanced ct images within 10 days
before surgery of 230 patients with stage ii colorectal cancer, 2022. DOI: 10.
7937/P5K5-TG43. [Online]. Available: https://wiki.cancerimagingarchive.
net/x/3wL7Bg.

[96] S. G.Armato lll, G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer,
A. P. Reeves, B. Zhao, D. R. Aberle, C. I. Henschke, E. A. Hoffman, E. A.
Kazerooni, H. MacMahon, E. J. Van Beek, D. Yankelevitz, A. M. Biancardi,
P. H. Bland, M. S. Brown, R. M. Engelmann, G. E. Laderach, D. Max, R. C.
Pais, D. P. Qing, R. Y. Roberts, A. R. Smith, A. Starkey, P. Batra, P. Cali-
giuri, A. Farooqi, G. W. Gladish, C. M. Jude, R. F. Munden, I. Petkovska,
L. E. Quint, L. H. Schwartz, B. Sundaram, L. E. Dodd, C. Fenimore, D. Gur,
N. Petrick, J. Freymann, J. Kirby, B. Hughes, A. V. Casteele, S. Gupte, M.
Sallam, M. D. Heath, M. H. Kuhn, E. Dharaiya, R. Burns, D. S. Fryd, M.
Salganicoff, V. Anand, U. Shreter, S. Vastagh, B. Y. Croft and L. P. Clarke,
Data from lidc-idri, 2015. DOI: 16.7937/K9/TCIA. 2015 .L09QLISX. [On-
line]. Available: https://wiki.cancerimagingarchive.net/x/rgAe.

[97] Facebookresearch/fvcore: Collection of common code that's shared among
different research projects in fair computer vision team. [Online]. Available:
https://github.com/facebookresearch/fvcore.

[98] B. Zoph, G. Ghiasi, T.-Y. Lin, Y. Cui, H. Liu, E. D. Cubuk and Q. Le, 'Re-
thinking pre-training and self-training,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and
H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 3833-3845. [On-
line]. Available: https://proceedings.neurips.cc/paper/2020/file/
27e9661e033a73a6ad8cefcde965c54d- Paper. pdf.

[99] P.An,S. Xu, S. A. Harmon, E. B. Turkbey, T. H. Sanford, A. Amalou, M.
Kassin, N. Varble, M. Blain, V. Anderson, F. Patella, G. Carrafiello, B. T.
Turkbey and B. J. Wood, Ctimages in covid-19, 2020. DOI: 10.7937/TCIA.
2020.GQRY-NC81.[Online]. Available: https://wiki.cancerimagingarchive.
net/x/05QvB.

https://doi.org/10.7937/P5K5-TG43
https://doi.org/10.7937/P5K5-TG43
https://wiki.cancerimagingarchive.net/x/3wL7Bg
https://wiki.cancerimagingarchive.net/x/3wL7Bg
https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
https://wiki.cancerimagingarchive.net/x/rgAe
https://github.com/facebookresearch/fvcore
https://proceedings.neurips.cc/paper/2020/file/27e9661e033a73a6ad8cefcde965c54d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/27e9661e033a73a6ad8cefcde965c54d-Paper.pdf
https://doi.org/10.7937/TCIA.2020.GQRY-NC81
https://doi.org/10.7937/TCIA.2020.GQRY-NC81
https://wiki.cancerimagingarchive.net/x/o5QvB
https://wiki.cancerimagingarchive.net/x/o5QvB

Appendix A

MSD qualitative results

The qualitative results from MSD task not selected to be shown in Chapter 4
- Results can be seen in Figure A.1.

123

124 Andreas H. Haversen: QT-UNet

QT-UNet
Raw image | Ground Truth VT-UNet /scratch QT-UNet

Task
no.

Figure A.1: Qualitative results for select MSD tasks.

Appendix B

CityScapes class mapping

Ten of the 30 classes in the CityScapes dataset are to be ignored when using
the dataset. The exact mapping between the original class ID and the mapped
class ID and category ID is given in Table B.1, as described in [31]. Table B.2
shows the names of the categories in CityScapes with associated IDs.

125

126 Andreas H. Haversen: QT-UNet

Label name Original class ID | Mapped class ID | Mapped category ID
Unlabeled 0 0 0
Ego vehicle 1 0 0
Rectification border 2 0 0
Out of ROI 3 0 0
Static 4 0 0
Dynamic 5 0 0
Ground 6 0 0
Road 7 1 1
Sidewalk 8 2 1
Parking 9 0 1
Rail track 10 0 1
Building 11 3 2
Wall 12 4 2
Fence 13 5 2
Guard rail 14 0 2
Bridge 15 0 2
Tunnel 16 0 2
Pole 17 6 3
Polegroup 18 0 3
Traffic light 19 7 3
Traffic sign 20 8 3
Vegetation 21 9 4
Terrain 22 10 4
Sky 23 1 5
Person 24 12 6
Rider 25 13 6
Car 26 14 7
Truck 27 15 7
Bus 28 16 7
Caravan 29 0 7
Trailer 30 0 7
Train 31 17 7
Motorcycle 32 18 7
Bicycle 33 19 7
License plate -1 0 7

Table B.1: The mapping between original class IDs and IDs used for training
and evaluation in CityScapes and CityScapesCat.

Category name | Category ID
Void 0
Flat
Construction
Object
Nature
Sky
Human
Vehicle

Noupb~WwN =

Table B.2: CityScapes category names.

@ NTNU

Norwegian University of
Science and Technology

re)
-
c
b
(0]

~

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Background and Motivation
	Research Goal and Research Questions
	Contributions
	Report outline

	Background theory and Related Work
	Computer Vision
	Classification
	Object detection
	Segmentation
	Evaluation metrics for cv

	Datasets
	mip
	av

	AI fundamentals
	Machine Learning

	Artificial Neural Networks
	The Artificial Neuron
	Activation functions
	Network architecture
	Forward pass in a ann
	Loss functions
	Backward pass in a ann
	Gradient descent
	Optimisers
	Overfitting
	Batch Normalisation
	Layer Normalisation
	Gradient Accumulation

	cnn
	U-Net

	Transformers
	Self-Attention
	Multi-Head Self-Attention
	Model structure
	Speeding up the Transformer

	Vision Transformers
	Why vit?
	How vits learn
	Speeding up vit
	Relevant general Vision Transformer architectures

	Self-supervised learning
	Pretext tasks
	Contrastitive Methods
	byol

	Related work
	Swin-UNet
	VT-UNet
	UNETR
	Swin-UNETR
	nnFormer
	Model Genesis
	Trans VW
	UNetFormer
	Other models

	Methodology
	Software and hardware
	Datasets
	mip datasets
	av datasets

	QT-UNet
	Patch partitioning
	QT-UNet Encoder
	QT Encoder Block
	Bottleneck
	QT-UNet Decoder
	QT Decoder Block
	Classifier
	Common parameters
	Variants
	Training QT-UNet
	Inference with QT-UNet
	SSL in QT-UNet

	Comparison to other models
	Experiments
	Preparatory ssl
	Experiment 1: mip
	Experiment 2: av
	Ablation study

	Model evaluation

	Results
	Experiment 1: mip
	Subexperiment 1.1: BraTS 2021
	Subexperiment 1.2: BTCV
	Subexperiment 1.3: MSD

	Experiment 2: av
	Subexperiment 2.1: CityScapes
	Subexperiment 2.2: CityScapesCat
	Subexperiment 2.3: NTNU data

	Ablations

	Discussion
	RQ1: The effect of ssl
	Effect of out-of-task pretraining
	Effect of in-task pretraining
	Overall effect
	Implications
	Error sources

	RQ2: Encoder-Decoder Cross-Attention
	ca versus no ca
	The effect of the updated ca module
	Implications
	Error sources

	RQ3: Application in 2D contexts
	Effect of pretraining
	Effect of cross-attention
	The effect of the number of classes
	Transfer to NTNU data
	Implications
	Error sources

	Other
	Underutilised computational budget
	Depth-wise reduction and its effect on accuracy

	Retrospective evaluation

	Conclusion and Future Work
	Conclusion
	Future work
	Better utilisation of computational headroom
	Deal with ignore class in CityScapes differently
	Deeper analysis of ca
	Hyperparameter tuning
	Extending CT-SSL
	Roubustness analysis
	Extension to other modalities
	2.5D model variant

	Bibliography
	MSD qualitative results
	CityScapes class mapping

