
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Herman Ryen Martinsen

Autonomous Driving: Vision
Transformers for Dense Prediction
Tasks

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
Co-supervisor: Gabriel Kiss
June 2022M

as
te

r’s
 th

es
is

Herman Ryen Martinsen

Autonomous Driving: Vision
Transformers for Dense Prediction
Tasks

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
Co-supervisor: Gabriel Kiss
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Vision Transformers have become extremely popular in the deep learning com-
munity in recent years. It all started back in October 2020 with the release of the
very first Vision Transformer. This deep learning architecture was inspired by the
Transformer model from the natural language processing (NLP) field, but applied
the model to visual data instead. By replacing the commonly used convolutional
layers with layers of self-attention, the Vision Transformer was able to achieve im-
pressive results. Since then, many new Vision Transformers have been proposed
that outperforms previous state-of-the-art models in a wide range of vision tasks.

This thesis investigates how Vision Transformers can be used to process and
understand visual data in an autonomous driving setting. More specifically, it ex-
plores how segmentation and depth estimation can be done using only a single
image as input. First, state-of-the-art Vision Transformers for semantic segmenta-
tion and monocular depth estimation are presented, focusing on their contribution
to the field. Then, two of these models are selected and combined into a multitask
model that is able to perform both tasks. Finally, the proposed multitask model is
evaluated through multiple experiments on four different street image datasets.
The experiments show that the multitask approach significantly reduces the total
inference time, while maintaining a high accuracy for both tasks. Additionally, the
experiments show that changing the size of the Transformer-based backbone can
be used as a trade-off between inference speed and accuracy.

Collecting and labelling real-world data for dense prediction tasks is a tedious
and expensive task. Synthetic data, on the other hand, can easily be generated in
large quantities from simulated environments. Motivated by this, one of the ex-
periments investigates how the use of additional synthetic data affects model per-
formance. The results indicate that pre-training on a synthetic dataset effectively
increases the accuracy of the model when there is little real-world data available.

iii

Sammendrag

Vision Transformers har blitt ekstremt populære innen dyp læring de seneste årene.
Det hele startet i oktober 2020 da den aller første Vision Transformer-modellen
ble lansert. Modellen hentet inspirasjon fra Transformer-modellen innen natur-
lig språkbehandling (NLP), men benyttet den på visuelle data isteden. Ved å bytte
ut de tradisjonelle konvolusjonelle lagene med lag med "self-attention", oppnådde
Vision Transformer-modellen imponerende resultater. Siden den gang har det blitt
lansert mange nye Vision Transformers som utkonkurrerer tidligere toppmodeller
innen en rekke visuelle oppgaver.

Denne oppgaven undersøker hvordan Vision Transformers kan brukes til å
prosessere og forstå visuelle data knyttet til selvkjørende biler. Mer spesifikt utfor-
skes det hvordan segmentering og dybdeestimering kan gjøres ved å kun benytte
enkeltbilder som inndata. Først presenteres toppmodeller av typen Vision Trans-
formers for segmentering og dybdeestimering, med fokus på modellenes bidrag til
feltet. Deretter velges det ut to modeller som kombineres til en multitask-modell
for begge oppgavene. Til slutt evalueres den foreslåtte multitask-modellen gjen-
nom en rekke eksperimenter på fire ulike datasett bestående av gatebilder. Eksper-
imentene viser at bruk av en multitask-modell senker den totale inferenstiden be-
traktelig, samtidig som nøyaktigheten holdes høy. I tillegg viser eksperimentene
at ulike "backbone"-størrelser kan benyttes for å regulere mellom høy inferen-
shastighet og høy nøyaktighet.

Innsamling og annotering av reelle data til prediksjonsoppgaver på piksel-nivå
er en møysommelig og kostbar oppgave. Syntetiske data kan derimot enkelt gener-
eres i store mengder ved hjelp av simulerte miljøer. Motivert av dette undersøker
et av eksperimentene hvordan bruk av ekstra syntetiske data påvirker modellens
nøyaktighet. Resultatene indikerer at trening på syntetiske datasett øker model-
lens nøyaktighet når det er lite reelle data tilgjengelig.

v

Preface

This master thesis is a product of my work at the Department of Computer Science
at NTNU in Trondheim. The thesis explores the potential of Vision Transformers,
a new type of deep learning architecture, in the field of autonomous driving. It
has been really exiting to work in such a recent field, with new publications being
released all the time. Hopefully my work can be of interest to others in the AI and
deep learning community.

I would like to thank my supervisors Frank Lindseth and Gabriel Kiss for their
help during the writing of this thesis. Frank and Gabriel have guided me through-
out this semester, and provided me with data and computational resources for the
experiments of this thesis. I would also like to thank my family and friends for
their support and motivating words during this semester.

Herman Ryen Martinsen
Trondheim, June 2020

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
Acronyms . xvii
1 Introduction . 1

1.1 Motivation . 1
1.2 Goal and Research Questions . 2
1.3 Research Method . 2
1.4 Contributions . 3
1.5 Thesis Structure . 3

2 Background and Related Work . 5
2.1 Deep Learning . 5

2.1.1 Artificial Neuron . 5
2.1.2 Neural Network . 6
2.1.3 Activation Function . 6
2.1.4 Forward Pass and Backpropagation 7

2.2 Computer Vision: Tasks and Metrics . 7
2.2.1 Segmentation . 8
2.2.2 Depth Estimation . 9

2.3 Transformers . 10
2.3.1 Architecture . 11
2.3.2 Attention . 13

2.4 Vision Transformer (ViT) . 14
2.4.1 Architecture . 14

2.5 Datasets . 15
2.5.1 Real-World Datasets . 15
2.5.2 Synthetic Datasets . 16

2.6 Related Work: Vision Transformers for Dense Prediction Tasks . . . 17
2.6.1 Semantic Segmentation . 18
2.6.2 Monocular Depth Estimation 20

3 Methodology . 23

ix

x H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

3.1 Choice of Models . 23
3.1.1 Semantic Segmentation Model 23
3.1.2 Depth Estimation Model . 25
3.1.3 Decision and Summary . 26

3.2 Choice of Datasets . 26
3.2.1 Real-World Datasets . 26
3.2.2 Synthetic Datasets . 28
3.2.3 Decision and Summary . 29

3.3 SegFormer . 29
3.3.1 Transformer Encoder . 29
3.3.2 MLP Decoder . 30

3.4 GLPDepth . 31
3.4.1 Transformer Encoder . 31
3.4.2 Lightweight Decoder . 31
3.4.3 Vertical CutDepth . 32

3.5 Multitask Model . 32
3.5.1 Architecture . 33
3.5.2 Loss Function . 33

3.6 Dataset Preparation . 34
3.6.1 Cityscapes . 34
3.6.2 KITTI-360 . 36
3.6.3 Apollo Synthetic Dataset . 38
3.6.4 NAPLab . 40

3.7 Hardware . 41
3.8 Training . 41

4 Experiments and Results . 43
4.1 Experiment 0: Validating Results . 43

4.1.1 SegFormer . 44
4.1.2 GLPDepth . 45

4.2 Experiment 1: Multitask Training . 46
4.2.1 Training . 46
4.2.2 Quantitative results . 48
4.2.3 Qualitative results . 48

4.3 Experiment 2: Different Backbone Sizes 50
4.3.1 Training graphs . 50
4.3.2 Quantitative results . 52
4.3.3 Qualitative results . 52

4.4 Experiment 3: Pre-training on Synthetic Data 54
4.4.1 Training . 54
4.4.2 Results . 55

4.5 Experiment 4: Validating the Predicted Depth Values 55
4.5.1 Results . 56

4.6 Experiment 5: Evaluating on NAPLab Data 57
4.6.1 Results . 57

Contents xi

5 Discussion . 59
5.1 Potential in Autonomous Driving . 59
5.2 Shortcomings of the Thesis . 60

5.2.1 Early Overfitting . 60
5.2.2 Few Available Datasets . 61

5.3 Fulfillment of Research Questions . 61
5.3.1 Research Question 1 . 61
5.3.2 Research Question 2 . 62
5.3.3 Research Question 3 . 63

6 Conclusion and Future Work . 65
6.1 Conclusion . 65
6.2 Future Work . 66

6.2.1 Semi-supervised or Self-supervised Learning 66
6.2.2 Mixing Datasets for Depth Estimation 66

Bibliography . 67

Figures

2.1 A simple artificial neural network . 6
2.2 Examples of the different segmentation tasks 8
2.3 Example of depth estimation . 9
2.4 The Transformer model architecture 11
2.5 Scaled Dot-Product Attention and Multi-Head Attention 13
2.6 The Vision Transformer architecture 14

3.1 The SegFormer architecture . 29
3.2 The GLPDepth architecture . 31
3.3 The GLPDepth SFF module . 32
3.4 The proposed multitask architecture 33
3.5 Cityscapes example image with annotations 34
3.6 Cityscapes depth map before and after clipping at 100m 35
3.7 KITTI-360 example image with annotations 36
3.8 Apollo Synthetic Dataset example image with annotations 38
3.9 NAPLab example image with segmentation annotation 40

4.1 Experiment 0: Cityscapes training graphs 44
4.2 Experiment 0: Cityscapes qualitative results 45
4.3 Experiment 0: KITTI training graphs 45
4.4 Experiment 0: KITTI qualitative results 46
4.5 Experiment 1: Cityscapes training graphs 47
4.6 Experiment 1: KITTI-360 training graphs 47
4.7 Experiment 1: Apollo Synthetic Dataset training graphs 48
4.8 Experiment 1: Cityscapes qualitative results 49
4.9 Experiment 1: KITTI-360 qualitative results 49
4.10 Experiment 1: Apollo Synthetic Dataset qualitative results 50
4.11 Experiment 2: Cityscapes training graphs 51
4.12 Experiment 2: KITTI-360 training graphs 51
4.13 Experiment 2: Apollo Synthetic Dataset training graphs 52
4.14 Experiment 2: qualitative results for the segmentation task 53
4.15 Experiment 2: qualitative results for the depth estimation task . . . 54
4.16 Experiment 3: Training graphs with and without pre-training on

synthetic data . 55

xiii

xiv H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

4.17 Experiment 4: depth validation images 56
4.18 Experiment 5: NAPLab qualitative results 58

Tables

3.1 Cityscapes classes and color palette . 36
3.2 Apollo Synthetic Dataset classes and color palette 40

4.1 Experiment 0: Cityscapes evaluation metrics 44
4.2 Experiment 0: KITTI evaluation metrics 46
4.3 Experiment 1: quantitative results . 48
4.4 Experiment 2: quantitative results . 52
4.5 Experiment 3: quantitative results . 55
4.6 Experiment 4: depth validation results 57
4.7 Experiment 5: NAPLab quantitative results 58

xv

Acronyms

AI Artificial Intelligence. vii, 5, 7

CNN Convolutional Neural Network. 14, 18, 20, 25

FPS Frames Per Second. 44, 45, 52, 59

GPU Graphics Processing Unit. 41, 59

IoU Intersection over Union. 8, 9

mIoU mean Intersection over Union. 8, 44, 46, 57

MLP Multilayer Perceptron. 15, 18, 23, 29, 30

NAPLab NTNU Autonomous Perception Laboratory. 15, 16, 26, 27, 29, 40, 57

NLP Natural Language Processing. iii, v, 1, 10, 13

NTNU Norwegian University of Science and Technology. vii, 16, 41

RAM Random Access Memory. 41

ReLU Rectified Linear Unit. 7

RMSE Root Mean Squared Error. 10

RNN Recurrent Neural Network. 10

SGD Stochastic Gradient Descent. 7

ViT Vision Transformer. 14, 18, 20, 29, 30

xvii

Chapter 1

Introduction

1.1 Motivation

In recent years the research and development of autonomous vehicles has gained
a lot of interest. Big companies such as Tesla, Waymo and GM are investing large
amounts of time and resources into developing new technology and improving the
field. The introduction of autonomous vehicles will provide a lot of advantages,
such as reduced number of road accidents, higher traffic efficiency, easier access-
ibility for disabled and old people, and lower emissions of greenhouse gasses. At
the same time it is crucial that the vehicles are reliable and work as expected, or
else human lives could possibly be at stake.

For an autonomous vehicle to operate it has to sense its environment. This is
usually done by equipping the vehicle with a wide range of different sensors, such
as cameras, radar and LiDAR. These sensors are used to identify objects around
the vehicle and determine the distance to the objects with high accuracy. While
cameras are relatively cheap and compact, a LiDAR sensor is usually both large
and expensive. It would therefore be beneficial if cameras could replace LiDARs
entirely.

Over the last few years there has been a rapid evolution in the machine learn-
ing field. The availability of large amounts of data and powerful computing re-
sources has made deep learning a viable option to solving real-world problems.
The field of computer vision focuses on applying deep learning to visual data such
as images and videos. This field is especially important for autonomous driving,
as it allows the vehicle to extract useful information about its surroundings using
cameras. Techniques that are commonly used for autonomous driving are object
detection, segmentation and depth estimation.

In 2017 Vaswani et al. [1] introduced a novel deep learning architecture named
the Transformer. The architecture was designed to solve natural language pro-
cessing (NLP) tasks such as machine translation, and achieved impressive results.
Inspired by the massive success of the Transformer, Dosovitskiy et al. [2] suc-
cessfully applied the architecture to vision tasks in 2020. The novel architecture,
named the Vision Transformer, achieved new state-of-the-art results and took the

1

2 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

deep learning community by storm. Since then, many new Vision Transformer
architectures have been proposed.

This thesis will investigate how Vision Transformers can be used for dense
prediction tasks in autonomous driving. It will focus on the tasks of monocular
depth estimation and semantic segmentation, and design a multitask model that
is able to perform both tasks simultaneously. To study the effectiveness of the
model, it will be trained and evaluated on multiple autonomous driving datasets.

1.2 Goal and Research Questions

The main goal of this thesis is to design a multitask Vision Transformer for dense
prediction tasks and investigate how the architecture performs in an autonom-
ous driving setting. The architecture should be able to perform both semantic
segmentation and monocular depth estimation simultaneously. It should also be
able to run in real-time so the architecture has potential to be deployed in an
autonomous vehicle. In order to achieve this goal the following research ques-
tions are proposed:

RQ 1: How does a multitask Vision Transformer trained for both segmentation
and depth estimation simultaneously perform compared to models trained
for individual tasks?

RQ 2: Can synthetic datasets be used to increase model performance when there
is little real-world data available?

RQ 3: How accurate are the absolute depth predictions from the model?

1.3 Research Method

The chosen research strategy for this thesis is experiment. This research strategy
involves studying the correspondence between a cause and effect. The experi-
ments of this thesis will investigate how factors such as training approach and
choice of backbone affects performance. Observation and documents will be used
as data generation methods. Already existing datasets and models will mostly be
used, which can be regarded as documents. Observation will be used to evaluate
the performance of the models. For this evaluation, a combination of quantitative
and qualitative analysis will be used. Quantitative analysis involves computing the
accuracy or error of the model on a validation dataset using common evaluation
metrics. Qualitative analysis involves visual inspection of individual predictions
to look for abnormalities and other interesting findings.

Chapter 1: Introduction 3

1.4 Contributions

This thesis has two main contributions. First, it provides a literature review on
Vision Transformers for the dense prediction tasks of monocular depth estimation
and semantic segmentation. The literature review presents state-of-the-art archi-
tectures for the respective tasks and describes their contributions to the field. Next,
a multitask model for both monocular depth estimation and semantic segment-
ation is proposed. Two existing Vision Transformer architectures are combined
into a single model to perform both tasks simultaneously. The effectiveness of the
model is evaluated through multiple experiments.

1.5 Thesis Structure

The thesis is divided into the following chapters:

Chapter 1 - Introduction: Presents the motivation for the study, the goal and
research questions, the research method of choice and the contributions of
the thesis.

Chapter 2 - Background and Related Work: Introduces theory related to deep
learning, computer vision and Vision Transformers, and presents relevant
datasets and state-of-the-art models.

Chapter 3 - Methodology: Presents the chosen models and datasets, necessary
data preparations and training details.

Chapter 4 - Experiments and Results: Contains qualitative and quantitative res-
ults from the experiments conducted.

Chapter 5 - Discussion: Discusses the implications of the results and relates the
findings to the research questions.

Chapter 6 - Conclusion and Future Work: Concludes the thesis, summarizes the
work done and key findings, and presents possible directions for further
work.

Chapter 2

Background and Related Work

This chapter presents the background material and related work of this thesis.
First, the fundamentals of deep learning and computer vision are explained. Then,
the Transformer and Vision Transformer architectures are described in detail. Fi-
nally, relevant datasets and state-of-the-art Vision Transformers for semantic seg-
mentation and monocular depth estimation are presented.

2.1 Deep Learning

Deep learning is a subfield of artificial intelligence (AI) and machine learning that
uses artificial neural networks to solve problems. These networks mimic the way
the human brain works by connecting artificial neurons into massive networks.
When trained on large amounts of data, the networks are able to achieve im-
pressive results in a wide range of different tasks. This section covers the basics
of artificial neural networks.

2.1.1 Artificial Neuron

Artificial neurons are the basic building blocks of a neural network. They are in-
spired by the biological neurons found in the human brain. An artificial neuron is
designed as a mathematical function that takes multiple values x i as input. Each
input x i is multiplied by a weight wi to regulate the importance of the input. The
sum of the weighted inputs are calculated, and a bias b is added to obtain a value
z. This can be expressed through the following equation:

z =
n
∑

i=1

wi x i + b (2.1)

The value z is sent through an activation function f to introduce a non-linearity
in the network. The final output value a = f (z) is then sent to the next neuron of
the network.

5

6 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

2.1.2 Neural Network

To make use of artificial neurons they have to be combined into a structure called a
neural network. The neural network consists of multiple layers of artificial neur-
ons, with connections between each layer. The first layer of the network is the
input layer. The input layer is responsible for taking the input data and passing it
on to the rest of the network. Next are the hidden layers, which are responsible
for processing of the input data. It is common to have multiple hidden layers in a
neural network. Finally, there is the output layer, which takes the processed data
from the last hidden layer and produces the final results. An example of a simple
artificial neural network can be seen in Figure 2.1.

Figure 2.1: A simple artificial neural network

2.1.3 Activation Function

An activation function is a function used in neural networks to process the output
of artificial neurons. Activation functions are usually applied in both the hidden
layers and the output layer of the network. In the hidden layers the activation
function introduces non-linearity to the network, and ensures that the output val-
ues are within a certain range. In the output layer the activation function converts
the results to the desired format, e.g. a probability distribution.

There are a wide range of different activation functions to choose from. One of
these is the sigmoid function. This is a logistic function that outputs values between
0 and 1. It is thus commonly used to convert an output value to a probability
score. The function is known to cause something known as the vanishing gradient
problem, and is thus normally not applied in the hidden layers of the network.
The sigmoid function is defined as:

Chapter 2: Background and Related Work 7

Sigmoid(z) =
1

1+ e−z
(2.2)

The rectified linear unit (ReLU) is the most commonly used activation function.
It is a fairly simple function that returns 0 for negative input values, and the value
itself for positive input values. As ReLU does not cause the vanishing gradient
problem, it is well suited for the hidden layers in the network. The ReLU function
is defined as:

ReLU(z) =max(0, z) (2.3)

Another widely used activation function is the softmax function. The function
takes K values as input and converts them to a probability distribution where the
values add up to 1. The softmax function is commonly used in the output layer of
the network for classification tasks. It is defined as:

Softmax(zi) =
ezi

∑K
j=1 ez j

(2.4)

2.1.4 Forward Pass and Backpropagation

When processing data, the neural network sends the input data through all of its
layers in the forward direction. This is known as a forward pass. In each layer, the
artificial neurons process the values from the previous layer using Equation (2.1),
and apply an activation function. Then, the calculated output value is sent to the
next layer. This process is repeated for all of the layers, until the data reaches the
output layer of the network. Here, the final results are calculated.

In order for the model to learn, it has to go through a process called back-
propagation. First, the error of the predicted results is calculated using a loss func-
tion. Then, the weights of the network are adjusted to minimize the error. This is
done by calculating the gradient of the loss function with respect to each weight.
The calculations are done step by step in the backward direction, starting from the
output layer and working towards the input layer, until all weights are updated.
An optimizer algorithm is responsible for the updating of the weights. There are
a wide range of different optimizers to choose from. Two of the most commonly
used optimizers are stochastic gradient descent (SGD) and Adam [3].

2.2 Computer Vision: Tasks and Metrics

Computer vision is a subfield of artificial intelligence (AI) that focuses on visual
data such as images and videos. The goal of computer vision is to make computers
able to understand visual data in the same way as a humans do. This involves
extracting useful information from the data, such as the position and category
of objects, and using this information to take actions. Traditionally, conventional
algorithms were used for computer vision. Today, the field is largely dominated

8 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

by deep learning methods. Over the years, a large number of different vision tasks
have been proposed. This thesis mainly focuses on the tasks of segmentation and
depth estimation. This section gives a brief introduction to the tasks, and presents
common evaluation metrics.

2.2.1 Segmentation

Segmentation is a dense prediction task where the image pixels are labeled into
different categories. There are three different segmentation tasks: semantic, in-
stance and panoptic segmentation. For semantic segmentation each image pixel
is assigned a category corresponding to what kind of object/structure the pixel is
a part of, e.g. car, sky or building. The segmentation does not separate between
different instances of the same category. For instance segmentation each instance
of a category is assigned a separate label. Usually only the categories of interest
are labelled, not the whole image. Panoptic segmentation is a combination of se-
mantic and instance segmentation. A visual example of the different segmentation
tasks can be seen in Figure 2.2. In this thesis the semantic segmentation task is
explored.

(a) Original image (b) Semantic (c) Instance (d) Panoptic

Figure 2.2: Examples of the different segmentation tasks. Images are taken from
Kirillov et al. [4].

Evaluation Metrics

Multiple different metrics can be used to evaluate segmentation methods. One of
the simplest is the pixel accuracy. It is found by calculating the percentage of image
pixels that are labelled correctly. Unfortunately, the pixel accuracy has a tendency
to provide misleading results, especially if the class distribution of the image is
imbalanced. A more robust evaluating metric is the Intersection over Union (IoU),
also referred to as the Jaccard index. Given a ground truth segmenatation mask
y and a predicted segmentation mask ŷ , the IoU is calculated using the following
equation:

IoU =
y ∩ ŷ
y ∪ ŷ

=
T P

T P + F P + FN
(2.5)

Here T P, F P and FN refers to the number of true positives, false positives and
false negatives, respectively. The mean Intersection over Union (mIoU) is commonly

Chapter 2: Background and Related Work 9

used when the dataset contains multiple classes. It is found by calculating the sum
of the class-wise IoU scores and dividing by the total number of classes N :

mIoU =
1
N

N
∑

i=1

IoUi (2.6)

2.2.2 Depth Estimation

Depth estimation is a dense prediction task that uses images to predict depth in
a scene. The goal is to obtain the distance from the camera to each pixel in the
image. There are mainly two methods used for this task: stereo depth estimation
and monocular depth estimation. Stereo is the traditional approach, and uses two
cameras with a known distance between each other to estimate depth. This is
done by finding matching pixels in the two images and calculating the differ-
ence between them. The obtained value, called the disparity, can then be used to
calculate depth. More recently, the rise of deep learning has made it possible to
estimate depth using a single image only. This approach, commonly referred to
as monocular depth estimation, uses deep neural networks to predict the depth
of each pixel. Monocular depth estimation can be done using supervised learning
with images and corresponding ground truth depth maps, or with self-supervised
learning and no ground truth at all. This thesis explores the supervised approach
for monocular depth estimation.

(a) Original image (b) Depth prediction

Figure 2.3: Example of depth estimation

Evaluation Metrics

Most recent work related to monocular depth estimation uses the metrics presen-
ted by Eigen et al. [5] to evaluate model performance. This section describes these
commonly used evaluation metrics, and shows how they are calculated given a
ground truth depth map y containing N valid pixels, and a predicted depth map
ŷ .

The absolute error |yi − ŷi| gives the difference between the predicted value
and the ground truth value. However, it does not take into account the magnitude
of the ground truth value. This is problematic when dealing with values of dif-
ferent magnitudes, since a given difference should be more significant for small
values than large values. The absolute relative error incorporates the magnitude

10 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

by dividing the absolute error by the actual value. Both absolute relative error and
squared relative error are commonly used as evaluation metrics:

AbsRel =
1
N

N
∑

i=1

|yi − ŷi|
yi

(2.7)

SqRel =
1
N

N
∑

i=1

||yi − ŷi||2

yi
(2.8)

Another commonly used evaluation metric is the root mean squared error (RMSE),
which has two different versions:

RMSE =

√

√

√

√

1
N

N
∑

i=1

||yi − ŷi||2 (2.9)

RMSElog =

√

√

√

√

1
N

N
∑

i=1

|| log yi − log ŷi||2 (2.10)

Finally, there is the threshold accuracy. This is the percentage of the image
pixels that have a max ratio between prediction and ground truth value below
a given threshold th. For the threshold th, the values 1.25, 1.252 and 1.253 are
commonly used. The threshold accuracy is calculated using the following equa-
tion:

% of yi s.t. max
�

yi

ŷi
,

ŷi

yi

�

= δ < th (2.11)

2.3 Transformers

The field of natural language processing (NLP) was originally dominated by re-
current neural networks (RNNs). These architectures performed reasonably well,
but also had some essential flaws. First, RNNs were unable to capture long range
dependencies in sentences, which in turn affected the performance of the models.
Second, RNNs processed sentences one word at a time, which led to slow train-
ing times. This all changed when the Transformer architecture was introduced by
Vaswani et al. [1] in 2017. The Transformer is based entirely on attention mech-
anisms, which helps the model capture long range dependencies and increases
accuracy. In addition, the model can process multiple words in parallel to signific-
antly speed up the training process. The Transformer achieved impressive results
on machine translation tasks, and has since inspired the development of other suc-
cessful language models such as BERT [6] and GPT [7]. The architecture has also
been successfully applied to other fields, such as computer vision [2]. This section
describes the Transformer architecture in detail and explains how the attention
mechanism works.

Chapter 2: Background and Related Work 11

Figure 2.4: The Transformer model architecture. Image taken from Vaswani et
al. [1].

2.3.1 Architecture

The Transformer architecture uses an encoder-decoder design. First, an input se-
quence is fed into the encoder part of the network. The encoder maps the input
sequence to an intermediate representation z that contains contextual informa-
tion about the sequence. Then, z is passed on to the decoder part of the network.
The decoder uses z to generate the output sequence y in an autoregressive man-
ner. This means that y is generated one word at the time, using all the previously
generated words at each step. An overview of the entire Transformer architecture
can be seen in Figure 2.4.

12 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

Pre-processing

Computers are not able to understand words and sentences. Thus, the input se-
quence has to be converted into a numerical representation. This representation
has to preserve the contextual and positional information of the sequence. This is
done by using an embedding space and positional encoding. The embedding space
maps the words of the sequence into vector representations. The vector represent-
ations preserve contextual information, meaning that similar words have similar
vectors. Next, positional encoding is added to the vectors to preserve positional
information. This step is crucial to produce accurate results, as words can have
different meanings depending on where they appear in the sequence.

Encoder

The encoder consists of N identical layers, each with two crucial components:
a multi-head attention operation and a simple feed-forward network. First, the
input sequence is processed by the multi-head attention operation. Here self-
attention is used to gain information about the relationship between the words of
the sequence. More details on the attention mechanism are given in Section 2.3.2.
Next, the calculated attention vector is sent through a feed-forward network. The
feed-forward network reshapes the vector so it can be processed by the subsequent
layer. After applying N encoder layers the final output is passed on to the decoder.

Decoder

The decoder consists of N identical layers, and has a fairly similar structure to
the encoder. An additional masked multi-head attention operation is added to the
beginning of each decoder layer. This is a modified version of the multi-head at-
tention that masks out some of the attention scores of the target sequence. This
ensures that the model only uses attention scores of previous words in the target
sequence for prediction. Next is a multi-head attention operation that processes
attention scores from both the encoder and decoder. Here the model gains in-
formation about the relationship between words in the input and target sequence.
Finally, a feed-forward network is applied, just like in the encoder.

Linear Layer and Softmax

The final output of the decoder after N layers is processed by a linear layer and a
softmax function to make the final prediction. The dimensions of the output gets
expanded to a size n by the linear layer, where n is the total number of words in
the vocabulary. The softmax function produces a probability distribution that is
used to predict the next word in the sequence.

Chapter 2: Background and Related Work 13

(a) Scaled Dot-Product Attention (b) Multi-Head Attention

Figure 2.5: Scaled Dot-Product Attention and Multi-Head Attention. Image taken
from Vaswani et al. [1].

2.3.2 Attention

The Transformer was the first deep learning architecture based entirely on at-
tention mechanisms. This clever use of the self-attention mechanism made the
Transformer a state-of-the-art architecture in natural language processing (NLP).
This section describes how the self-attention mechanism works, and how the cal-
culation of self-attention is done in parallel using multi-head attention.

Scaled Dot-Product Attention

The self-attention mechanism used in the Transformer architecture is referred to
as scaled dot-product attention. It is calculated using a set of queries Q, keys K
and values V , which are different vector representations of the input sequence.
The queries and keys have a common dimension of dk, while the values have a
dimension of dv . The scaled dot-product attention is calculated using the following
equation:

Attention (Q, K , V) = softmax

�

QK T

p

dk

�

V (2.12)

A visual representation of how the scaled dot-product attention is calculated
can be seen in Figure 2.5a. Here the optional masking step applied in the decoder
is also included.

Multi-Head Attention

The Transformer uses multi-head attention to calculate attention scores. This means
that the self-attention calculation is done using h different heads. First, the quer-
ies, keys and values are projected to each of these heads. Then, the scaled dot-

14 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

product attention is calculated in parallel using the h heads. Finally, the h calcu-
lated attention vectors are concatenated and projected into a final attention score.
This whole process is illustrated in Figure 2.5b. The big advantage of this approach
is that the heads can attend to various parts of the input sequence individually.

2.4 Vision Transformer (ViT)

The Vision Transformer (ViT) was introduced by Dosovitskiy et al. [2] in Octo-
ber 2020. It is one of the earliest attempts at applying Transformers to computer
vision tasks. Some previous works attempted to use the attention mechanism in
conjunction with CNNs. The Vision Transformer, on the other hand, uses a more
or less pure Transformer architecture for the task of image classification. As the
Transformer usually works with sequences, the input image has to be split into
a series of patches that are fed into the model. The Vision Transformer achieved
state-of-the-art results and revolutionized the field of computer vision. This sec-
tion describes how the Vision Transformer architecture works.

Figure 2.6: The Vision Transformer architecture. Image taken from Dosovitskiy
et al. [2].

2.4.1 Architecture

An overview of the Vision Transformer architecture can be seen in Figure 2.6. The
architecture uses the original Transformer encoder proposed by Vaswani et al. [1]
with some small modifications for the image classification task. As the Transformer
originally processes sequences of words, the input image has to be converted to
a form that is digestible by the Transformer encoder. This is done by splitting the
image into a sequence of patches, each with a size of 16× 16 pixels. The patches
are then are flattened and linearly projected to produce patch embeddings. Pos-
itional embeddings are added to the patch embeddings in order to preserve the

Chapter 2: Background and Related Work 15

positional information of the image. Then, the final patch embeddings are fed into
the Transformer encoder. The encoder processes the patch embeddings in more
or less the same way as the original architecture.

A learnable class token is used for the image classification task. The class token
is fed into the Transformer encoder together with the patch embeddings. At the
other end of the encoder, the output for the class token serves as a intermediate
image representation. The image representation is processed by a simple MLP
classification head to acquire the final class prediction for the image.

2.5 Datasets

This section presents potential datasets for the experiments of this thesis. Both
real-world and synthetic datasets are included. All the datasets, except NAPLab,
contain ground truth for both semantic segmentation and depth estimation.

2.5.1 Real-World Datasets

Cityscapes

Cityscapes [8] is a large-scale dataset and benchmark for semantic urban scene
understanding. The dataset covers the three major segmentation tasks of semantic
segmentation, instance segmentation and panoptic segmentation. It consists of 5
000 images with high quality pixel-level annotations, and an additional 20 000
images with coarse annotations. In addition the dataset contains disparity maps
computed from stereo images, which can be used to train and evaluate depth
estimation models. The data were collected in 50 different cities in Germany and
neighbouring countries by a moving vehicle.

KITTI

The KITTI vision benchmark suite [9] and KITTI dataset [10]was released back in
2012, but is still widely used to train and evaluate models at autonomous vehicle-
related tasks. The dataset covers several vision tasks including stereo, optical flow,
visual odometry, object detection, monocular depth estimation, segmentation and
tracking. KITTI contains 94 500 images with corresponding depth maps obtained
from LiDAR data, which can be used for the task of monocular depth estimation.
The dataset also has 400 images with annotations for semantic segmentation. The
segmentation dataset is mainly suited for evaluation and fine-tuning due to the
small number of annotated images. The data were collected in the mid-size city
of Karlsruhe in Germany, in rural areas and on highways.

KITTI-360

The KITTI-360 dataset [11] was released in 2021 and is the successor of the ori-
ginal KITTI dataset. The dataset consists of LiDAR point clouds, front-facing stereo

16 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

images and 180-degree fisheye images from each side of the vehicle, which res-
ults in a full 360-degree view around the vehicle. KITTI-360 focuses on semantic
scene understanding and provides dense semantic and instance annotations for
both LiDAR point clouds and 2D images. The labelling is done by annotating 3D
point clouds with bounding primitives, which is then transferred to the 2D image
domain. This makes it possible to annotate a large amount of images in a short
period of time. Thanks to this efficient labelling method the dataset has a total of
61 280 images with semantic segmentation annotations and corresponding LiDAR
point clouds. The data were collected in multiple suburbs of Karlsruhe, the same
city that was used for the KITTI dataset.

Audi Autonomous Driving Dataset (A2D2)

The Audi Autonomous Driving Dataset (A2D2) [12] is a large dataset developed
for autonomous driving tasks. The dataset consists of images and 3D point clouds
collected with multiple cameras and LiDAR sensors, giving a full 360 degree view
around the vehicle. In addition, the dataset contains annotations for the tasks of
semantic segmentation, point cloud segmentation and 3D object detection. For se-
mantic segmentation the dataset has a total of 41 277 annotated images covering
38 different semantic classes. The images also have corresponding LiDAR point
clouds that can be projected to 2D depth maps. The data were collected on high-
ways, country roads and cities in the south of Germany under varying weather
conditions.

NAPLab

The NTNU Autonomous Perception Laboratory (NAPLab) [13] is a research group
at NTNU in Trondheim. The group focuses on research and development of deep
learning architectures for autonomous vehicles in a Nordic environment. During
the writing of this thesis, NAPLab provided a small dataset collected in the streets
of Trondheim. The dataset contains 10 images with semantic segmentation an-
notations. Unfortunately, no depth ground truth is provided.

2.5.2 Synthetic Datasets

Virtual KITTI

Virtual KITTI [14]was released in 2016 and is a virtual recreation of the real-world
videos from the KITTI dataset. The dataset was created using the Unity game
engine, and provides automatically generated annotations for object detection,
semantic segmentation, instance segmentation, depth, optical flow and tracking.
It contains 5 different driving sequences under different imaging and weather
conditions, resulting in a total of 21 000 annotated images. In 2020 Virtual KITTI
2 [15] was released, which is an updated version of the dataset with increased
photorealism.

Chapter 2: Background and Related Work 17

SYNTHIA

The SYNTHetic collection of Imagery and Annotations (SYNTHIA) [16] is a syn-
thetic dataset released in 2016 that focuses on semantic segmentation of urban
street scenes. The dataset is captured in a virtual city during different seasons and
under varying weather and lighting conditions. Images from multiple viewpoints
are available, giving a effective 360-degree field of view around the virtual vehicle.
The dataset consists of more than 213 400 photo-realistic images with automat-
ically generated annotations for both segmentation and depth. The segmentation
labels contain a total of 13 semantic classes.

Apollo Synthetic Dataset

The Apollo Synthetic Dataset [17] is a photo-realistic virtual dataset for autonom-
ous driving released in 2019. The dataset consists of 7 different virtual envir-
onments that was created using the Unity game engine. The environments re-
sembles real-world settings such as highway, urban, residential, downtown and
indoor parking garage. The dataset contains 273 000 images with automatically
generated annotations for multiple vision tasks, including semantic segmentation,
instance segmentation, depth estimation, object detection and lane mark detec-
tion. Different lighting conditions, weather conditions and road surface qualities
are simulated to bring more variety to the dataset.

All-In-One Drive

All-In-One Drive (AIODrive) [18] is a synthetic dataset created with the goal of
uniting all autonomous driving tasks into one single dataset. The dataset was gen-
erated using the CARLA simulator [19] and contains 500 000 images annotated
for all the common vision tasks, including semantic segmentation and depth estim-
ation. Multiple sensors with 360-degree field of view are available, such as RGB,
stereo, depth, LiDAR, radar and GPS. The dataset also provides varying weather
and lighting conditions, together with rare traffic scenarios like fast driving, viol-
ation of traffic rules and car crashes.

2.6 Related Work: Vision Transformers for Dense Predic-
tion Tasks

This section presents related works using Vision Transformers for semantic seg-
mentation and monocular depth estimation. When finding models for this sec-
tion, three different properties were considered. First, the model should be able
to achieve a high accuracy on an autonomous driving dataset. Next, the model
should be lightweight and able to perform inference close to real-time. Finally,
the model should provide a significant contribution to the field.

18 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

2.6.1 Semantic Segmentation

Segmentation Transformer (SETR)

One of the earliest attempts at applying Transformers to the task of semantic seg-
mentation is the Segmentation Transformer (SETR), which was introduced by
Zheng et al. [20] in December 2020. Prior to their work, the common approach
for semantic segmentation was to utilize a CNN backbone. One major limitation
with this approach is that CNNs have a limited receptive field, which makes it
difficult to capture long-range dependencies in the image. To cope with this issue,
a novel architecture that integrates a Transformer encoder was proposed. The
Transformer encoder has a global receptive field at every layer, and is thus better
at modelling the global context of the image. The encoder is combined with a
lightweight convolutional decoder that produces the final predictions. The model
achieves a mIoU of 82.15 on the Cityscapes dataset.

SegFormer

In May 2021 Xie et al. [21] introduced SegFormer, a simple and efficient encoder-
decoder design for semantic segmentation with Transformers. The model uses a
Transformer encoder inspired by ViT [2] with multiple modifications to make it
better suited for semantic segmentation. The encoder has a hierarchical structure
and outputs multi-scale feature maps to the decoder. It does not use any positional
encoding, something that increases performance when the inference resolution
differs from the training resolution, since no interpolation is needed. In addition,
the encoder uses the efficient self-attention calculation method introduced in PVT
[22], which gives faster processing of high resolution images. The model uses
a lightweight decoder consisting of only MLP layers that further contributes to
the efficiency of the model. There are a total of 6 different model sizes, where
the smallest one is fast and suitable for real-time applications, while the largest
model achieves high accuracy on both the Cityscapes and ADE20K dataset. The
model also performs well on corrupted Cityscapes data, which indicates that the
model is robust and and could potentially be suited for safety-critical tasks such as
autonomous driving. The largest model achieves a mIoU of 84.0 on the Cityscapes
dataset.

MaskFormer

Traditionally the tasks of semantic segmentation and instance segmentation are
handled separately. Semantic segmentation is treated as a per-pixel classification
task, while instance segmentation utilizes mask classification. However, Cheng et
al. argues that the tasks can be unified and solved using a single model. In July
2021 they introduced the MaskFormer [23] architecture, which utilizes mask clas-
sification to generate semantic segmentation predictions. The architecture incor-
porates a Transformer decoder that predicts binary segmentation masks with cor-
responding class labels. MaskFormer is tested with multiple different backbones,

Chapter 2: Background and Related Work 19

but the Swin Transformer [24] gives the best results. Unfortunately, the paper
only reports results on the Cityscapes dataset using a ResNet backbone. With this
backbone, the model achieves a mIoU of 81.4.

Mask2Former

In December 2021 Cheng et al. [25] introduced a new architecture named Mask2-
Former, which build upon the original MaskFormer architecture. Several improve-
ments are made in order to increase performance and simplify training. A masked
attention technique is implemented in the Transformer decoder, which limits at-
tention calculations to local features around the predicted segments. This gives
faster convergence and better performance. In addition, multi-scale high-resolution
features are used in order to better detect small objects. Finally, multiple small
changes are made to further improve performance and save training memory.
Mask2Former achieves a mIoU of 84.5 on the Cityscapes dataset.

SeMask

Vision Transformers for semantic segmentation often pre-train the encoder on a
large image classification dataset such as ImageNet [26], and then fine-tune the
model on a smaller semantic segmentation dataset. Due to the small size of the
segmentation dataset and the differences between the classification and segment-
ation task, the encoder struggles to capture the semantic context of the image.
To solve this issue Jain et al. [27] introduced SeMask in December 2021. The
architecture implements a semantic layer that follows the Transformer layer at
every stage of the encoder. The semantic layer consists of multiple SeMask blocks
that applies a semantic attention operation to the feature maps. During training,
prior maps from the semantic layers are processed by a lightweight semantic de-
coder to give additional supervision. The SeMask block can be integrated with
any hierarichal Vision Transformer, but in the paper the Swin Transformer [24]
and SegFormer [21] is utilized. The best performing model is able to achieve an
impressive mIoU of 84.98 on the Cityscapes dataset.

Lawin Transformer

In January 2022 Yan et al. [28] introduced the Lawin Transformer, an efficient
Transformer-based architecture for semantic segmentation. They argue that cur-
rent Vision Transformers for semantic segmentation are not able to produce con-
textual information at multiple scales, something that harms both the perform-
ance and efficency of the models. To cope with this issue, a novel decoder called
large window attention spatial pyramid pooling (LawinASPP) is introduced. The
decoder is inspired by atrous spatial pyramid pooling (ASPP) [29], but uses a
new technique called large window attention instead of atrous convolutions. The
idea behind large window attention is to let the patches query a larger area of

20 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

the feature map. By using different ratios between the patch size and the quer-
ied area the decoder is able to produce multi-scale contextual information. The
LawinASPP decoder can be combined with any hierarchical Vision Transformer
encoder, and both SegFormer and Swin Transformer are used as encoders in the
paper. The Lawin Transformer with a SegFormer encoder is able to increase the ac-
curacy while lowering the computational cost compared to the original SegFormer
architecture. When utilizing a Swin Transformer encoder, the Lawin Transformer
is able to achieve a mIoU of 84.4 on the Cityscapes dataset.

2.6.2 Monocular Depth Estimation

AdaBins

In November 2020 Bhat et al. [30] introduced the AdaBins architecture for mon-
ocular depth estimation. The architecture uses a simple CNN encoder-decoder
design together with a novel Transformer-based building block named AdaBins in
order to achieve impressive results. The depth estimation problem is regarded as
a classification task, where the depth range is split into adaptive bins with varying
size for each input image. The bin widths are estimated using a smaller version of
the original ViT [2] architecture, named mini-ViT. In order to avoid sharp depth
discontinuities in the predicted depth maps, a linear combination of the bin cen-
ters is used for the final prediction. AdaBins achieves an absolute relative error of
0.058 on the KITTI dataset.

Dense Prediction Transformer (DPT)

The Dense Prediction Transformer (DPT) was proposed by Ranftl et al. [31] in
March 2021, and is a novel architecture for the tasks of monocular depth estim-
ation and semantic segmentation. The architecture adapts a traditional encoder-
decoder design, but replaces the commonly used CNN backbone with the ViT [2]
architecture. The ViT backbone provides a global receptive field through all of its
layers, and preserves the initial feature map resolution. These properties makes it
possible to capture finer details in the images. The ViT backbone is combined with
a convolutional decoder that fuses feature maps from different stages of the en-
coder in order to produce the final prediction. The architecture is pre-trained on a
massive monocular depth estimation dataset of 1.4 million images, and then fine-
tuned on the KITTI dataset to achieve an absolute relative error of 0.062. When
trained for semantic segmentation on the ADE20K dataset, the model achieves a
mIoU of 49.02.

GLPDepth

In January 2022 Kim et al. [32] introduced a novel architecture and training
strategy for the task of monocular depth estimation. They argue that understand-
ing both the global and local context of an image is essential to generate accurate

Chapter 2: Background and Related Work 21

depth predictions. In order to achieve this a Transformer-based global-local path
network named GLPDepth is proposed. The architecture uses the SegFormer en-
coder introduced by Xie et al. [21] to capture global dependencies, and a light-
weight decoder with skip connections to integrate local information. A new depth-
specific augmentation technique is proposed to further improve the performance
of the model. The augmentation method is inspired by CutDepth [33], but is mod-
ified to better preserve vertical information in the image. GLPDepth achieves an
absolute relative error of 0.057 on the KITTI dataset.

DepthFormer

The DepthFormer architecture for monocular depth estimation was proposed by
Li et al. [34] in March 2022. Just like Kim et al. [32], they emphasize the import-
ance of being able to capture both the global and local information of the image
during the encoder stage. This is accomplished by using two separate encoder
branches. The first branch utilizes the Swin Transformer [24] to model long-range
correlation in the image, while the second branch uses convolutions to extract
local information. A novel Hierarchical Aggregation and Heterogeneous Interac-
tion (HAHI) module is introduced to combine the information from both branches
and enhance the feature maps. For the KITTI dataset the model achieves an abso-
lute relative error of 0.052, which is state-of-the-art level.

BinsFormer

In April 2022 Li et al. [35] introduced a novel architecture for the task of monocu-
lar depth estimation named BinsFormer. The architecture is inspired by AdaBins
[30], but makes multiple modifications to further improve model performance.
A Transformer decoder is implemented to enhance the adaptive bins generation.
Similarly to the approach of Carion et al. [36] for object detection, the bin gen-
eration is viewed as a direct set prediction problem. The Transformer decoder in-
corporates a multi-scale design where the feature maps are processed in a coarse-
to-fine manner. In addition, an auxiliary scene classification task is used during
training to improve the model performance. The architecture is compatible with
any backbone, but using the Swin Transformer [24] gives the best results. Bins-
Former achieves an absoulte relative error of 0.052 on the KITTI dataset, and
outperforms all existing methods on the remaining evaluation metrics, making it
the current state-of-the-art method for monocular depth estimation.

Chapter 3

Methodology

This chapter discusses the choice of models and datasets for the experiments of
this thesis. The chosen models are described thoroughly, and an detailed explan-
ation of the necessary dataset preparations is provided. The chapter also presents
the computational hardware and training strategy used in the experiments.

3.1 Choice of Models

The main goal of this thesis is to design a multitask Vision Transformer for seg-
mentation and depth estimation by combining two existing models. Thus, two of
the models presented in Section 2.6 have to be chosen, one for each task. This
section goes through each of the models and gives an explanation of why it was
chosen/not chosen. During the selection process, both the accuracy and the effi-
ciency of the models were considered.

3.1.1 Semantic Segmentation Model

Segmentation Transformer (SETR)

The Segmentation Transformer (SETR) was one of the first successful attempts
at using Transformers for semantic segmentation. The architecture achieved im-
pressive results at the time of publication, and has since been an important source
of inspiration for other Transformer-based segmentation models. The field of com-
puter vision evolves rapidly, and many architectures have been proposed that out-
performs SETR in terms of both accuracy and efficiency. SETR will therefore not
be used in the experiments.

SegFormer

The SegFormer architecture uses an efficient self-attention calculation and a light-
weight all-MLP decoder. These design choices makes the model efficient and suit-
able for real-time applications. SegFormer also provides 6 different backbones

23

24 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

sizes, which gives a lot of flexibility regarding speed-accuracy trade-off. Finally,
the model shows robustness on corrupted data, which indicates that the model
could be suited for safety-critical tasks like autonomous driving. All of these prop-
erties makes SegFormer a really strong candidate, and it is thus chosen as the
segmentation model of this thesis.

MaskFormer and Mask2Former

The fact that MaskFormer and Mask2Former are able to perform multiple differ-
ent segmentation tasks makes them interesting models for this thesis. In addition,
the semantic segmentation task is solved in a novel way by using mask classi-
fication. Mask2Former is considered the most promising candidate as it makes
multiple improvements over the original MaskFormer architecture. However, the
Mask2Former decoder is quite heavy compared to some of the other architectures,
and it would thus be hard to accomplish real-time segmentation with the model.
Consequently, the model was not chosen for the experiments.

SeMask

SeMask is able to increase the performance of semantic segmentation models by
incorporating a small, task-specific layer that captures semantic context into the
Transformer encoder. The new layer is lightweight and efficient, so the overall
computational complexity is only slightly increased. Since the encoder modifica-
tions are made specifically for the task of semantic segmentation, it is uncertain
how they affect other dense prediction tasks such as monocular depth estimation.
Considering that the main goal of this thesis is to design a multitask model with a
shared encoder, the contributions of SeMask seem too task-specific. Consequently,
SeMask will not be used for the experiments.

Lawin Transformer

The Lawin Transformer introduces a new and efficient decoder design for the task
of semantic segmentation. The decoder can be incorporated with the SegFormer
architecture in order to increase accuracy while lowering the computational cost.
The original plan was thus to use the Lawin Transformer for the experiments.
However, at the time of writing this thesis, only a small part of the code was
publicly available. An attempt was made to integrate the code with the official
SegFormer code, but the achieved results did not match the ones reported in the
paper. It was therefore decided to not explore the Lawin Transformer further in
this thesis.

Chapter 3: Methodology 25

3.1.2 Depth Estimation Model

AdaBins

AdaBins proposes to view depth estimation as a classification task where the depth
range is divided into adaptive bins. This idea is new and interesting, and the model
is able to achieve impressive results. The model uses a CNN backbone, and only a
small part of the architecture is Transformer-based. As the goal of this thesis is to
explore the use of Vision Transformers for dense prediction tasks, it is desirable to
pick a model that utilizes Transformers to a greater extent. Consequently, AdaBins
will not be used for the experiments of this thesis.

Dense Prediction Transformer (DPT)

The Dense Prediction Transformer (DPT) is an interesting model as it is able to
perform both the task of monocular depth estimation and semantic segmentation.
It was also one of the earliest attempts at using Transformers for monocular depth
estimation. During the writing of this thesis, the training code for DPT was not
released. In addition, Ranftl et al. [31] describes direct fine-tuning of the model as
difficult, since predictions are arbitrarily scaled and shifted with potentially large
magnitudes. It would thus be challenging to train DPT for the experiments, so the
model was discarded.

GLPDepth

GLPDepth uses a lightweight decoder that fuses the global and local context of an
image in order to generate accurate depth predictions. The lightweight decoder
makes the architecture well suited for real-time depth estimation. Additionally, the
architecture uses the same encoder as SegFormer, which is the chosen segmenta-
tion method. This makes it convenient to integrate GLPDepth with the SegFormer
architecture in order to create a multitask model. GLPDepth is thus chosen as the
monocular depth estimation model of this thesis.

DepthFormer

DepthFormer uses an encoder consisting of two separate branches, one Transformer-
based and one CNN-based, in order to capture both global and local information
of the image. This approach leads to impressive results on the KITTI dataset. The
model is able to outperform GLPDepth, and would thus be interesting to invest-
igate further. However, the official code for DepthFormer was not released until
the start of April. By that time the experiments were already planned out, and it
would be difficult and time-consuming to incorporate a new model. It was there-
fore decided to not include DepthFormer in the experiments.

26 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

BinsFormer

BinsFormer is currently the state-of-the-art model for monocular depth estimation
on the KITTI dataset, and would thus be a natural choice as the depth estimation
model of this thesis. Unfortunately, the paper was not released until the start of
April, and the official code is still not available at the time of writing this thesis.
Consequently, the model could not be used for the experiments.

3.1.3 Decision and Summary

SegFormer and GLPDepth are the chosen models for the experiments. SegFormer
will be used for semantic segmentation, while GLPDepth will be used for monocu-
lar depth estimation. Both models utilizes the same Transformer backbone, which
makes it convenient to combine the models into a multitask model. Additionally,
both models use lightweight decoders that are suited for real-time applications.
The architectural design of SegFormer and GLPDepth is described in Section 3.3
and 3.4, respectively. Section 3.5 explains how the architectures are combined
into a multitask model.

3.2 Choice of Datasets

This section discusses the choice of datasets for this thesis. A total of three pub-
licly available datasets will be chosen, two real-world datasets and one synthetic
dataset. To be chosen, the dataset needs to be relatively big and have high quality
annotations for both depth and segmentation. For the synthetic datasets the en-
vironmental variation will also be taken into consideration. In addition to these
selected datasets, the dataset provided by NAPLab will be used for a small exper-
iment. In this section, each of the datasets from Section 2.5 is presented together
with an explanation of why the dataset was chosen/not chosen.

3.2.1 Real-World Datasets

Cityscapes

The Cityscapes dataset has a total of 5 000 images with fine annotations for se-
mantic segmentation. The images also have corresponding disparity maps that
can be converted to depth maps. The disparity maps are computed from stereo
images, which means that they are less accurate than the depth maps generated
by a LiDAR sensor. However, there are few public datasets for autonomous driv-
ing that provides both accurate LiDAR and semantic segmentation ground truth.
Also, the depth maps computed from the stereo images are likely accurate enough
to generate meaningful results. Thus, the Cityscapes dataset will be used for the
experiments.

Chapter 3: Methodology 27

KITTI

KITTI is one of the most popular datasets for benchmarking of monocular depth
estimation models. The dataset has over 90 000 available images with corres-
ponding LiDAR depth maps. Unfortunately, the dataset only has 400 images with
segmentation annotations, which is too few to train a segmentation model. There-
fore the dataset will not be used for the main experiments. However, KITTI will
be used to validate the accuracy of the chosen depth model GLPDepth, since the
original paper provides results for this dataset.

KITTI-360

The KITTI-360 dataset has a lot of similarities with the original KITTI dataset.
Both datasets are captured in the same area, and have a large number of images
with corresponding depth data. A 64-channel LiDAR sensor was used to capture
the depth data. This gives somewhat sparse depth maps, but they can still be used
to train and evaluate the models. One key difference between the two datasets is
that KITTI-360 provides a total of 61 280 images with corresponding segmenta-
tion annotations, while KITTI only provides 400. Because of its large number of
segmentation and depth annotations, KITTI-360 is chosen as one of the datasets
for the experiments.

Audi Autonomous Driving Dataset (A2D2)

The A2D2 dataset contains 41 277 images with segmentation annotations and cor-
responding LiDAR point clouds, which can be projected to 2D depth maps. This
large amount of annotated data makes A2D2 an interesting candidate for the ex-
periments. Upon closer inspection it was unfortunately discovered that the LiDAR
data was collected using a 16-channel LiDAR sensor. This results in very sparse
depth maps that only covers a small portion of the images. Consequently, the depth
maps would likely not work well for training and evaluation of the models. Based
on this knowledge the A2D2 dataset will not be used for the experiments.

NAPLab

The NAPLab dataset is an obvious choice for this thesis, as it is interesting to
investigate how the model performs on local datasets. Unfortulately, the dataset
was not available until the final week of thesis writing. Additionally, the dataset
only contains 10 images with semantic segmentation annotations, which are too
few for training and fine-tuning. Thus, the dataset will only be used for inference
and evaluation, using a model trained on a different dataset.

28 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

3.2.2 Synthetic Datasets

Virtual KITTI

The Virtual KITTI dataset provides high quality photorealistic images with corres-
ponding ground truth data for depth and segmentation. The dataset has a total
of 21 000 images, which is quite few compared to the other synthetic datasets.
Additionally, the dataset is a virtual recreation of the original KITTI dataset, and
will thus have close resemblance to both KITTI and the KITTI-360 dataset, which
is captured in the same area. Consequently, the Virtual KITTI dataset is not chosen
as the synthetic dataset of this thesis.

SYNTHIA

The SYNTHIA dataset is a really strong candidate for the experiments. With a total
of 213 400 images with segmentation and depth annotations captured during
different seasons, weather and lighting conditions, the dataset has both the size
and environmental variation that is desirable. The dataset was released in 2016,
which makes it a little bit old compared to some of the other synthetic datasets. As
the field of computer graphics evolves rapidly, it would be reasonable to think that
the age of the dataset and the photorealism of the images could be connected. So
even though the SYNTHIA dataset is a solid candidate, it will not be chosen for
the experiments.

Apollo Synthetic Dataset

The Apollo Synthetic Dataset has a total of 273 000 images with annotations for
both semantic segmentation and depth estimation. The images are captured in 7
different virtual environments with varying light, weather and road conditions. In
addition the dataset was released in 2019, something that makes it relatively new.
The large amount of annotated images and the environmental variation provided
makes the Apollo Synthetic Dataset a solid candidate. Therefore the dataset is
chosen as the synthetic dataset for the experiments.

All-In-One Drive

Another promising candidate is the All-In-One Drive dataset. With 500 000 images
with both segmentation and depth ground truth, the dataset is the largest of the
explored synthetic datasets. The dataset also provides environmental variations
and rare traffic scenarios. The dataset would thus be interesting to explore in this
thesis. Unfortunately, none of the download links on the official website worked
at the time of writing this thesis. As there were other good synthetic datasets
available, the All-In-One Drive dataset was not chosen.

Chapter 3: Methodology 29

3.2.3 Decision and Summary

The chosen datasets for the experiments are Cityscapes, KITTI-360 and Apollo
Synthetic Dataset. The datasets have 5 000, 61 280 and 273 000 annotated im-
ages, respectively. Ground truth for both depth and segmentation is available for
all the datasets. In addition to the selected datasets, the NAPLab dataset will be
used for a small experiment.

3.3 SegFormer

This section describes how the selected segmentation model SegFormer works.
The model uses a common encoder-decoder design. The encoder is a hierarchical
Vision Transformer inspired by ViT [2] with multiple improvements for the task
of semantic segmentation. The decoder is lightweight and consists of MLP layers
exclusively. An overview of the entire architecture can be seen in Figure 3.1.

Figure 3.1: The SegFormer architecture. Image taken from Xie et al. [21].

3.3.1 Transformer Encoder

Similarly to ViT, the encoder takes images of size H ×W × 3 as input and splits
them into patches. Here a patch size of 4 × 4 is used to better capture finer de-
tails of the images. The patches are then sent through four Transformer blocks in
order to create hierarchical feature maps. The Transformer blocks are based on
the ones used in ViT, but multiple improvements are made. First, the complex-
ity of the multi-head self-attention operation is reduced significantly. This is done
by implementing the sequence reduction process proposed by Wang et al. [22],
which reduces the length of the input sequence with a reduction ratio R. This
lowers the computational complexity from O(N2) to O(N2

R). Next, the positional

30 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

encoding used in ViT is completely removed. Instead, a 3× 3 convolution and a
MLP is mixed into each feed-forward network. This approach provides the model
with positional information, and also gives better performance for images with
varying resolution during inference.

At the end of each Transformer block an overlapped patch merging process is
applied. This is done in order to reduce the spatial resolution and produce hier-
archical feature maps. The process is inspired by the none-overlapping patch mer-
ging process used in ViT, but operates on overlapping patches instead to preserve
the local continuity around the patches. The final feature maps have a resolu-
tion of H

2i+1 × W
2i+1 × Ci , where i refers to the current Transformer block. Finally,

the feature maps are sent to the decoder to generate the predicted segmentation
mask.

The SegFormer architecture comes with a total of 6 different Transformer en-
coders, B0 to B5. The encoders have different sizes, but other than that they share
the same design. B0 is the smallest model and suited for real-time applications,
while B5 is the largest model and provides the highest accuracy.

3.3.2 MLP Decoder

The Segformer decoder is created using only MLP layers. This makes the decoder
simple and lightweight compared to a lot of other decoders. However, the decoder
is still able to produce high quality predictions. This is made possible by the large
effective receptive field of the hierarchical Transformer encoder, which helps the
model capture the global context of the image. The decoder goes through 4 main
steps to make a prediction:

1. For each feature map Fi , an MLP layer is used to transform the individual
channel dimension Ci into a common channel dimension C .

2. The feature maps are up-sampled to a resolution of H
4 ×

W
4 , and then con-

catenated. The concatenated features F have a channel dimension of 4C .
3. The concatenated features F are fused using a MLP layer, reducing the chan-

nel dimension from 4C to C .
4. The segmentation mask M is created by sending the fused features trough a

new MLP layer. M has a resolution of H
4 ×

W
4 ×Ncls, where Ncls is the number

of classes.

Chapter 3: Methodology 31

3.4 GLPDepth

This section describes how the selected depth estimation model GLPDepth works.
The model combines the hierarchical Vision Transformer encoder used in Seg-
Former with a novel lightweight decoder for the task of monocular depth estim-
ation. Additionally, a depth-specific augmentation technique named Vertical Cut-
Depth is proposed to further increase model performance. An overview of the
architecture can be seen in Figure 3.2.

Figure 3.2: The GLPDepth architecture. Image taken from Kim et al. [32].

3.4.1 Transformer Encoder

The architecture implements the SegFormer encoder proposed by Xie et al. [21],
which is described in Section 3.3.1. The encoder produces hierarchical feature
maps from the input image that are passed on to the decoder. GLPDepth origin-
ally uses the SegFormer B4 backbone for the depth prediction task. However, in
the experiments smaller backbone sizes will be tested to see how this affects per-
formance.

3.4.2 Lightweight Decoder

The decoder takes the final feature map F4
E from the encoder as input. First, the

feature map goes through a channel reduction step and a bilinear upsampling,
which transforms the feature map size to 1

16 H× 1
16W ×NC . Then, the feature map

is passed through multiple consecutive layers with Selective Feature Fusion (SFF)
and bilinear upsampling. The SFF module is proposed in order to selectively fuse
global and local features and create rich feature maps. The module takes the cur-
rent decoder feature map FD and the encoder feature map FE of corresponding
size as input. FE is provided through a skip connection from the encoder, and its
channel dimension is reduced to NC in order to match FD. The feature maps FE
and FD are concatenated along the channel dimension and sent through multiple

32 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

convolutional layers. Then, each channel is multiplied with the corresponding ori-
ginal feature map FE or FD provided through a skip connection, and the channels
are merged to produce a hybrid feature map HD. Finally, HD is upsampled and
passed on to the succeeding layer. An illustration of the SFF module can be seen
in Figure 3.3.

After multiple consecutive layers of SFF and upsampling, the decoder feature
map FD ends up with a size of H ×W × NC . In order to produce the final depth
prediction, FD is sent through two convolutional layers and a sigmoid function.
The final depth map is then multiplied with the maximum depth value of the
current dataset to get the predicted distance in meters.

Figure 3.3: The GLPDepth SFF module. Image taken from Kim et al. [32].

3.4.3 Vertical CutDepth

GLPDepth proposes a new augmentation method, Vertical CutDepth, specifically
designed for depth estimation. The method is inspired by CutDepth [33], which
places a random crop of the ground truth depth map into the RGB image during
training. This makes the dataset more diverse and leads to better performance.
Vertical CutDepth, on the other hand, does not crop the depth map in the vertical
direction. The vertical geometric information of the image, which is important for
depth estimation, is thus better preserved. Vertical CutDepth is a depth-specific
augmentation method, and it is uncertain how it affects other dense prediction
tasks. Since the goal of this thesis is to design an architecture for both depth
estimation and segmentation, it is decided to not use Vertical CutDepth.

3.5 Multitask Model

This section describes how a multitask model for monocular depth estimation and
semantic segmentation is created using the selected models SegFormer and GLP-
Depth. The model is able to create predictions for both tasks in a single forward
pass.

Chapter 3: Methodology 33

Figure 3.4: The proposed multitask architecture

3.5.1 Architecture

The multitask model uses the SegFormer encoder described in Section 3.3.1 to
extract hierarchical features from the input image. The extracted feature maps
are then passed on to two separate decoders: one for semantic segmentation and
one for monocular depth estimation. The decoders produce the final predictions
for their respective tasks. An overview of the proposed architecture can be seen in
Figure 3.4. The segmentation and depth decoders are described in Section 3.3.2
and 3.4.2, respectively.

3.5.2 Loss Function

The model is trained for the tasks of semantic segmentation and monocular depth
estimation simultaneously. This is done by using two separate task-specific loss
functions. For the segmentation task the commonly used cross entropy loss is util-
ized:

LC E = −
n
∑

i

yi log (ŷi) (3.1)

Where yi and ŷi is the ground truth label and the softmax probability for the
i-th class, respectively. For the depth estimation task the scale-invariant log scale
loss used in GLPDepth is adopted:

LSI =
1
n

n
∑

i

d2
i −

1
2n2

� n
∑

i

d2
i

�

(3.2)

Where di = log yi − log ŷi , and yi and ŷi is the ground truth and predicted
depth value of the i-th pixel, respectively. During training the two loss functions
are combined into a single one to find the total loss:

L = LC E + LSI (3.3)

34 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

3.6 Dataset Preparation

This section describes the necessary dataset preparations for the chosen datasets.

3.6.1 Cityscapes

(a) Original (b) Segmentation (c) Disparity

Figure 3.5: Cityscapes example image with annotations

Download and Extraction

The Cityscapes dataset is available through the official website. The dataset con-
sists of 5 000 frames with fine annotations, which are divided into a training set
of 2 975 frames, a validation set of 500 frames and a test set of 1 525 frames. The
annotations for the test set are held back for fair benchmarking, so this set will
not be used for the experiments. This leaves a total of 3 475 frames for training
and evaluation of the models. For each of these frames, RGB images from the left
front-facing camera, annotations for semantic segmentation, precomputed dis-
parity maps and intrinsic and extrinsic camera parameters are downloaded. In
addition, blurred RGB images are downloaded for visualizations in this thesis.

The standard folder structure for Cityscapes will be used, which is
cityscapes/{type}/{split}/{city}/{filename}. Here type refers to the type of data the
folder contains, e.g. leftImg8bit, gtFine, disparity or camera. split is the dataset split
that is contained within the folder, and can be train or val. city refers to the city
the data was captured in, e.g. aachen, bochum or frankfurt. Additionally, the root
folder contains the files train.txt and val.txt which contains the paths to the files
in the training and validation set, respectively.

Image Size

The images in the Cityscapes dataset have a resolution of 2048x1024. This high
resolution makes it infeasible to perform inference in real-time with the chosen
models. In order to make inference in real-time possible the images have to be
resized to a smaller resolution. Thus, a resolution of 1024x512 will be used in the
experiments, which is half of the original image size.

Chapter 3: Methodology 35

Depth Maps

In order to utilize the disparity maps for training they have to be converted to
depth maps. This can be done with some simple calculations. The first step is to
calculate the disparity values from the raw 16-bit PNG files, which can be done
using the following equation:

d =
f loat(p)− 1.0

256.0
(3.4)

Where p is the raw pixel value from the 16-bit PNG file, and d is the calculated
disparity value. The next step is to calculate the depth value using the obtained
disparity value. For this calculation some of the intrinsic and extrinsic camera
parameters is needed. These are found in the parameter file corresponding to the
current image, and are located in the camera folder. The calculation of the depth
values is done using the following equation:

D =
B × fx

d
(3.5)

Where d is the disparity value, B is the baseline, fx is the focal length, and D
is the calculated depth in meters. The calculated depth maps have values ranging
from 0 to approximately 470 meters. It was discovered that high depth values are
quite noisy and inaccurate. This can be seen in Figure 3.6a. The depth maps were
also tested for training, but the evaluation metrics did not converge as expected.
Based on these observations it was decided to cut the depth maps at 100 meters.
This means that values larger than 100 meters will be set to 100. The value of 100
meters was chosen since most of the interesting objects in the image appear within
this range. The resulting depth map after clipping can be seen in Figure 3.6b.

(a) Depth (b) Depth clipped

Figure 3.6: Cityscapes depth map before and after clipping at 100m

Segmentation Annotations

The Cityscapes dataset is labelled with a total of 30 semantic classes. Usually,
only 19 of these are used for training and evaluation, since the remaining classes
are quite rare. This approach will also be used in this thesis. The 19 commonly
used classes with corresponding colors can be seen in Table 3.1. In order to use the

36 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

segmentation data for training, PNG images with values corresponding to the train
IDs of the classes have to be generated. This is done using the official Cityscapes
scripts.

Table 3.1: Cityscapes classes and color palette

Train ID Name Color

0 Road 000000

1 Sidewalk 000000

2 Building 000000

3 Wall 000000

4 Fence 000000

5 Pole 000000

6 Traffic Light 000000

7 Traffic Sign 000000

8 Vegetation 000000

9 Terrain 000000

10 Sky 000000

11 Person 000000

12 Rider 000000

13 Car 000000

14 Truck 000000

15 Bus 000000

16 Train 000000

17 Motorcycle 000000

18 Bicycle 000000

3.6.2 KITTI-360

(a) Original (b) Segmentation (c) Depth

Figure 3.7: KITTI-360 example image with annotations. The images have been
cropped for better visualization.

Chapter 3: Methodology 37

Download and Extraction

The KITTI-360 dataset is available through the official website. The raw perspect-
ive images, the 2D semantic labels, the raw LiDAR scans, the vehicle poses, and
the extrinsic and intrinsic camera parameters are downloaded. The data is struc-
tured into folders with names corresponding to the type of data they contain, e.g.
data_2d_depth, data_2d_raw and data_2d_semantics. The dataset contains a total
of 61 280 annotated images. These images are split into a train and validation
set using the official split. Text files with paths to the images of each split can be
found inside the data_2d_semantics folder. There are a total of 49 004 frames in
the train set and 12 276 frames in the validation set.

Image Size

The images in the KITTI-360 dataset have a resolution of 1408x376. The resolu-
tion is quite low, so it is possible to perform inference in real-time without resizing
the images. However, the image height is not divisible by 32, which is a require-
ment due to the architectural design of the chosen models. Thus, the image height
needs to be cropped. The cropping is done similar to the approach of Kim et al.
[32] on the original KITTI dataset by cropping 24 pixels at the top of the image.
This gives a final image resolution of 1408x352, which will be used in the exper-
iments. During evaluation the crop proposed by Garg et al. [37] will be used.

Depth Maps

The raw LiDAR point clouds are stored in binary format. To utilize them for train-
ing they have to be projected to 2D depth maps. This is done by using the official
KITTI-360 scripts. First, a transformation matrix from the LiDAR coordinate frame
to the camera coordinate frame needs to be applied to all the points. This trans-
formation matrix can be calulated with the following equation:

TL→k = T0→k × TL→0 (3.6)

Where TL→0 is the transformation matrix from the LiDAR coordinate frame
to the left perspective camera, and T0→k is the transformation matrix from the
left perspective camera to any other camera k. Only the left perspective camera
will be used for the experiments, so T0→k is set to the identity matrix during the
calculations. Next, the points in the camera coordinate frame are projected to the
image plane using the intrinsic camera parameters. The resulting depth maps have
a range of 0 to 80 meters and are stored within the data_2d_depth folder.

Segmentation Annotations

The semantic classes for KITTI-360 are consistent with the classes used for City-
scapes (Table 3.1). Thus, the same 19 classes will be used for training and evalu-
ation of KITTI-360 as well. In order to train the models, PNG images containing

38 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

train IDs for the semantic classes have to be generated. A script for generating
these files are created using Python.

3.6.3 Apollo Synthetic Dataset

(a) Original (b) Segmentation (c) Depth

Figure 3.8: Apollo Synthetic Dataset example image with annotations

Download and Extraction

The Apollo Synthetic Dataset was downloaded from the official website. The data-
set has a total of 273 000 frames. It was decided to create a subset of the dataset
for the experiments in order to achieve a better class and scene balance. The fol-
lowing list shows the folder structure for the dataset in hierarchical order from
top to bottom. All the available frames for the current folder are used unless other
is specified:

• type refers to the type of data contained within the folder: Depth, RGB or
Segmentation.
• time_of_day refers to the time of day the data was captured, e.g. 00-00,

09-00 or 13-00.
• weather refers to the weather conditions for the data: CLEAR_SKY, LIGHT_RAIN

or HEAVY_RAIN. Only the CLEAR_SKY frames will be used for the experi-
ments.
• degradation refers to the degree of road surface damage: NO_DEGRADATION,

DEGRADATION or SEVERE_DEGRADATION.
• pedestrian refers to whether or not there are pedestrians present in the

frames: With_Pedestrian or Without_Pedestrian. Only the frames with pedes-
trians present will be used. In addition, the highway frames will be included,
which do not contain pedestrians.
• traffic_barrier refers to whether or not traffic barriers are present in the

frames: With_TrafficBarrier or Witout_TrafficBarrier.
• area refers to the virtual scene where the data was captured, e.g. Downtown,

Residential or Highway. The frames from the indoor parking garage will not
be used.
• sequence refers to the traffic sequence the data belongs to, e.g. Traffic_066.

The highway scene has a large number of frames compared to the other

Chapter 3: Methodology 39

scenes. In order to avoid imbalance only half of the available highway se-
quences will be used.

In addition, 125 frames had to be excluded because of missing depth annota-
tions. This leaves a total of 45 235 frames for the experiments. These frames have
to be split into a training and validation set. In order to avoid validating on data
that are too similar to the training data, the dataset was split on virtual scene
level. The Road_Loop_with_Intersections scene will be used for validation, while
the remaining scenes will be used for training. The resulting training set has a
total of 40 195 frames and the validation set has 5 040 frames.

Image Size

The images in the Apollo Synthetic Dataset have a resolution of 1920x1080. Just
like for Cityscapes, the resolution has to be reduced in order to make inference in
real-time possible. A logical approach would be to resize the images to 960x540,
which is half the size of the original images. However, due to the architectural
design of the chosen models, the image size has to be divisible by 32. Consequently,
an image size of 960x544 is selected instead.

Depth Maps

The depth data is encoded into 16-bit PNG files. To decode the depth values the
following equation is used:

D =
�

R+
G

255.0

�

× 655.36 (3.7)

Where D is the calculated depth value in meters, and R and G are the normal-
ized float values of the pixel’s red and green channels, respectively. This produces
depth values in the range of 0 to 655.35 meters with 1 cm precision. As the depth
values are highly accurate, it would be totally possible to use the full depth range
during training and evaluation. However, since a much shorter depth range is used
for Cityscapes and KITTI-360, it is decided to clip the depth values for Apollo Syn-
thetic Dataset as well. The high accuracy of the depth maps makes it possible to
use a larger max depth value here than for the Cityscapes dataset. The max value
is thus set to 200 meters.

Segmentation Annotations

The Apollo Synthetic Dataset has a total of 24 classes for semantic segmentation.
These classes are modified in order to better match the ones used in Cityscapes.
Some of the classes are merged or ignored, while others are kept as they are.
The result is a total of 14 classes that will be used for the experiments. These
classes, together with the corresponding original classes, can be seen in Table 3.2.
The color palette corresponds to the one used for Cityscapes. Finally, PNG images

40 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

with train IDs have to be generated. Since the Apollo Synthetic Dataset does not
provide a script for generating this, a new one is made using Python.

Table 3.2: Apollo Synthetic Dataset classes and color palette

Train ID Class Name Original Classes Color

0 Road Road 000000

1 Sidewalk Sidewalk 000000

2 Building Building 000000

3 Pole Pole, Street Light 000000

4 Traffic Light Traffic Light 000000

5 Traffic Sign Traffic Sign 000000

6 Vegetation Vegetation 000000

7 Terrain Terrain 000000

8 Person Pedestrian 000000

9 Car Coupe, SUV, Hatchback, Van 000000

10 Truck Truck, Pickup Truck 000000

11 Bus Bus 000000

12 Motorcycle Motorcyclist 000000

13 Bicycle Cyclist 000000

3.6.4 NAPLab

The NAPLab dataset consists of 10 frames with semantic segmentation annota-
tions only. The images have a resolution of 1920× 1080, and are thus resized to
960× 544 to make real-time inference possible. The dataset uses the same class
definition as Cityscapes for semantic segmentation (Table 3.1). An example frame
from the dataset with corresponding segmentation annotation can be seen in Fig-
ure 3.9.

(a) Original (b) Segmentation

Figure 3.9: NAPLab example image with segmentation annotation

Chapter 3: Methodology 41

3.7 Hardware

Powerful computational resources were needed to conduct the experiments of this
thesis. Two different solutions were used: The Idun cluster [38] and a virtual ma-
chine provided by NTNU. Idun is a large computing cluster at NTNU that provides
computational resources for research purposes. The cluster provides several A100,
V100 and P100 GPUs that were used to train the models. This made it possible to
train across multiple GPUs, something that was necessary due to the large memory
consumption of the models. The virtual machine provided by NTNU was used for
development, benchmarking and inference. The machine is equipped with an A10
virtual GPU with 23 GB RAM. It also provides a graphical user interface, which is
convenient for development and visualization of results.

3.8 Training

The multitask model is trained on the three selected datasets. The number of train-
ing epochs are selected according to the dataset size: 300 epochs for Cityscapes, 30
epochs for Apollo Synthetic Dataset, and 20 epochs for KITTI-360. During training
the Adam optimizer [3] is used with a learning rate of 1.0×10−4. The batch size is
set to 12. Augmentations are implemented using the Albumentations library [39],
and the following augmentations are applied during training: HorizontalFlip, Ran-
domBrightnessContrast, RandomGamma and HueSaturationValue. The models are
initialized with ImageNet [26] pre-trained weights.

Chapter 4

Experiments and Results

This chapter presents the results from the experiments of this thesis. In order to
answer the research questions, the following experiments were conducted:

Experiment 0 - Validating Results: The chosen models are trained and evalu-
ated to verify that the results from the official papers are reproducible.

Experiment 1 - Multitask Training: The multitask training approach is compared
to individual task training for segmentation and depth to investigate how it
affects model performance.

Experiment 2 - Different Backbone Sizes: The multitask model is trained with
different backbone sizes to investigate how choice of backbone affects per-
formance.

Experiment 3 - Pre-training on Synthetic Data: The multitask model is pre-trained
on a synthetic dataset in an attempt to increase the model accuracy.

Experiment 4 - Validating the Predicted Depth Values: The predicted distance
to individual objects in the images are evaluated to investigate how accur-
ately the model predicts depth.

Experiment 5 - Evaluating on NAPLab data: The multitask model trained on City-
scapes is evaluated on the NAPLab data.

4.1 Experiment 0: Validating Results

This section presents the results from experiment 0. This is not really an official
experiment, but more of an "warm-up" for the other experiments. The selected
models SegFormer and GLPDepth are trained and evaluated on Cityscapes and
KITTI using the official code implementations for the models. The purpose of the
experiment is to validate the results reported in the official papers, and investigate
how the training graphs converge during training.

43

44 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

4.1.1 SegFormer

Training

The SegFormer-B0 model was trained on the Cityscapes dataset for 160 000 itera-
tions following the training strategy of Xie et al. [21]. Graphs for the training loss
and validation mIoU during training can be seen in Figure 4.1. Unfortunately, the
validation loss was not logged during training, so it is not included here. Both the
training loss and mIoU converges smoothly throughout the entire training pro-
cess. The graphs can thus be used as an ideal representation of how these values
should evolve during training.

(a) Training Loss (b) Validation mIoU

Figure 4.1: Experiment 0: Cityscapes training graphs

Results

The evaluation metrics for the final model can be seen in Table 4.1. The achieved
mIoU closely matches the one reported in the official paper (76.2 mIoU), and
proves that the results are reproducible. The qualitative results in Figure 4.2 shows
that the model is able to produce good and accurate segmentation predictions.
When the inference speed is tested the model is able to work at 8 FPS, which is
too slow to be able to perform in real-time. The reason for this is that inference
is done on the full-sizes images with a resolution of 2048x1024, so the image
processing becomes too computationally expensive. Consequently, the remaining
experiments will use a smaller image size of 1024x512 for the Cityscapes dataset
to make real-time segmentation achievable.

Table 4.1: Experiment 0: Cityscapes evaluation metrics

Model FPS mIoU mAcc aAcc
SegFormer-B0 8 76.19 83.81 95.89

Chapter 4: Experiments and Results 45

Figure 4.2: Experiment 0: Cityscapes qualitative results. First row: original im-
age, second row: predicted segmentation mask.

4.1.2 GLPDepth

Training

GLPDepth was trained on the KITTI dataset for a total of 25 epochs following
the training strategy of Kim et al. [32]. Figure 4.3 shows the development of the
training loss, validation loss and absolute relative error during training. All values
converge smoothly, and the graphs thus give an indication of what an optimal
training procedure should look like.

(a) Training Loss (b) Validation Loss (c) AbsRel

Figure 4.3: Experiment 0: KITTI training graphs

Results

The evaluation metrics for the final model can be seen in Table 4.2. The metrics
are very similar to the ones reported in the official paper (0.057 AbsRel), and
indicates that the results are reproducible. Figure 4.4 shows qualitative results
for the model. In terms of inference speed the model is able to work at 19 FPS.
This is faster than the segmentation model due to the low resolution of the KITTI
images. However, GLPDepth is still not able to perform depth estimation in real-
time, mostly because of the large and complex backbone that is used.

46 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

Table 4.2: Experiment 0: KITTI evaluation metrics

Model FPS AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

GLPDepth 19 0.058 0.189 2.321 0.087 0.966 0.996 0.999

Figure 4.4: Experiment 0: KITTI qualitative results. First row: original image,
second row: predicted depth map.

4.2 Experiment 1: Multitask Training

This section presents the results from experiment 1. The experiment investigates
how a multitask training approach, where the model is trained for both semantic
segmentation and monocular depth estimation simultaneously, affects perform-
ance. To investigate this, three different models are trained: one that performs seg-
mentation only, one that performs depth estimation only, and a multitask model
that performs both tasks. The models are trained and evaluated on the three selec-
ted datasets: Cityscapes, KITTI-360 and Apollo Synthetic Dataset. The SegFormer
B2 backbone is used for all the models.

4.2.1 Training

The models were trained according to the specifications in Section 3.8. The train-
ing graphs for Cityscapes, KITTI-360 and Apollo Synthetic Dataset can be seen in
Figure 4.5, 4.6 and 4.7, respectively. The segmentation loss starts increasing after
the first few epochs of training for all the datasets, which is a common sign of over-
fitting. However, the mIoU continues to improve even though the segmentation
loss is increasing. The depth loss has a smoother convergence than the segment-
ation loss throughout the training process. The individual task models and the
multitask model generally converge quite similarly, and no significant differences
can be seen in the training graphs.

Chapter 4: Experiments and Results 47

(a) Segmentation loss (b) Depth loss (c) Total loss

(d) mIoU (e) AbsRel

Figure 4.5: Experiment 1: Cityscapes training graphs. The graphs show the valid-
ation loss and evaluation metrics during training. Orange: multitask, blue: depth,
green: segmentation.

(a) Segmentation loss (b) Depth loss (c) Total loss

(d) mIoU (e) AbsRel

Figure 4.6: Experiment 1: KITTI-360 training graphs. The graphs show the valid-
ation loss and evaluation metrics during training. Orange: multitask, blue: depth,
green: segmentation.

48 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

(a) Segmentation loss (b) Depth loss (c) Total loss

(d) mIoU (e) AbsRel

Figure 4.7: Experiment 1: Apollo Synthetic Dataset training graphs. The graphs
show the validation loss and evaluation metrics during training. Orange: multi-
task, blue: depth, green: segmentation.

4.2.2 Quantitative results

The quantitative results can be seen in Table 4.3. For depth, the individual task
model performs equal to or better than the multitask model across all datasets in
terms of absolute relative error. However, the differences are quite small. For seg-
mentation, the individual task model performs the best on Cityscapes, while the
multitask model performs the best on the two other datasets. The inference speed
is similar across all the datasets since the images have roughly the same number of
pixels that need to be processed. The multitask model has comparable inference
speed with the segmentation model, even though it performs an additional task.

Table 4.3: Experiment 1: quantitative results

Cityscapes
Model FPS AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253 mIoU mAcc aAcc

Depth only 30 0.096 1.213 6.289 0.162 0.904 0.977 0.991 - - -
Seg only 21 - - - - - - - 76.53 83.98 95.87
Multitask 18 0.096 1.266 6.317 0.162 0.905 0.977 0.992 75.93 83.54 95.80

KITTI-360
Depth only 32 0.083 0.372 2.905 0.147 0.912 0.972 0.989 - - -
Seg only 21 - - - - - - - 65.07 73.33 93.39
Multitask 19 0.087 0.386 2.938 0.150 0.907 0.972 0.989 66.52 74.23 93.37

Apollo Synthetic Dataset
Depth only 30 0.173 6.993 18.550 0.275 0.792 0.902 0.954 - - -
Seg only 21 - - - - - - - 77.98 85.23 94.55
Multitask 18 0.181 6.047 17.190 0.277 0.783 0.897 0.954 78.09 84.59 94.88

4.2.3 Qualitative results

The qualitative results for Cityscapes, KITTI-360 and Apollo Synthetic Dataset
can be seen in Figure 4.8, 4.9 and 4.10, respectively. No significant differences

Chapter 4: Experiments and Results 49

were observed between the predictions of the multitask model and the individual
task models, so only the predictions of the multitask model is included here. The
model is able to create convincing predictions across all the datasets. For Apollo
Synthetic Dataset the model struggles to segment the sky region, since this area
is not labeled in the ground truth annotations. The model is also unable to create
accurate depth predictions for the top part of the KITTI-360 images, since the
ground truth depth maps only cover the bottom part of the image.

Figure 4.8: Experiment 1: Cityscapes qualitative results. The results are gener-
ated using the B2 multitask model. First row: original image, second row: pre-
dicted segmentation mask, third row: predicted depth map.

Figure 4.9: Experiment 1: KITTI-360 qualitative results. The results are generated
using the B2 multitask model. First row: original image, second row: predicted
segmentation mask, third row: predicted depth map.

50 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

Figure 4.10: Experiment 1: Apollo Synthetic Dataset qualitative results. The res-
ults are generated using the B2 multitask model. First row: original image, second
row: predicted segmentation mask, third row: predicted depth map.

4.3 Experiment 2: Different Backbone Sizes

This section presents the results from experiment 2. The experiment investigates
how the size of the Transformer backbone affects the model performance. Three
different SegFormer backbone sizes, B0, B2 and B4, are combined with the mul-
titask model. The different sized models are then trained and evaluated on the
selected datasets: Cityscapes, KITTI-360 and Apollo Synthetic Dataset.

4.3.1 Training graphs

The models were trained according to the specifications in Section 3.8. The train-
ing graphs for Cityscapes, KITTI-360 and Apollo Synthetic Dataset can be seen
in Figure 4.11, 4.12 and 4.13, respectively. Just like in experiment 1, the seg-
mentation loss starts increasing after the first few epochs of training, indicating
overfitting. The problem occurs for all backbone sizes, but is less prominent for
the B0 backbone which has a slower convergence rate. The depth loss has a bet-
ter convergence and is able to improve for a longer period of time. The accuracy
graphs are generally as expected, with the B4 backbone performing the best, B2
the second best and B0 the worst.

Chapter 4: Experiments and Results 51

(a) Segmentation loss (b) Depth loss (c) Total loss

(d) mIoU (e) AbsRel

Figure 4.11: Experiment 2: Cityscapes training graphs. The graphs show the val-
idation loss and evaluation metrics during training. Orange: B0, blue: B2, green:
B4.

(a) Segmentation loss (b) Depth loss (c) Total loss

(d) mIoU (e) AbsRel

Figure 4.12: Experiment 2: KITTI-360 training graphs. The graphs show the val-
idation loss and evaluation metrics during training. Orange: B0, blue: B2, green:
B4.

52 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

(a) Segmentation loss (b) Depth loss (c) Total loss

(d) mIoU (e) AbsRel

Figure 4.13: Experiment 2: Apollo Synthetic Dataset training graphs. The graphs
show the validation loss and evaluation metrics during training. Orange: B0, blue:
B2, green: B4.

4.3.2 Quantitative results

The quantitative results can be seen in Table 4.4. As expected, the model with
the largest backbone generally achieves the highest accuracy for both tasks. The
only exception is depth estimation on the Apollo Synthetic Dataset, where the
B2 model is able to outperform the B4 model. In terms of inference speed the
lightweight B0 model is able to work at an impressive 56-61 FPS, which is in the
real-time area by a large margin. The B2 model works at close to real-time with
18-19 FPS, while the heaviest B4 model works at 11-12 FPS.

Table 4.4: Experiment 2: quantitative results

Cityscapes
Backbone FPS AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253 mIoU mAcc aAcc

B0 57 0.109 1.435 6.999 0.177 0.876 0.969 0.990 69.78 78.34 94.85
B2 18 0.096 1.266 6.317 0.162 0.905 0.977 0.992 75.93 83.54 95.80
B4 12 0.093 1.263 6.251 0.160 0.909 0.978 0.992 76.94 84.83 95.94

KITTI-360
B0 61 0.097 0.440 3.172 0.163 0.889 0.967 0.987 60.44 69.27 92.69
B2 19 0.087 0.386 2.938 0.150 0.907 0.972 0.989 66.52 74.23 93.37
B4 12 0.084 0.377 2.925 0.149 0.909 0.972 0.989 68.08 75.75 93.58

Apollo Synthetic Dataset
B0 56 0.208 7.096 17.750 0.298 0.761 0.881 0.945 68.76 77.16 92.93
B2 18 0.181 6.047 17.190 0.277 0.783 0.897 0.954 78.09 84.59 94.88
B4 11 0.190 6.960 18.390 0.278 0.775 0.896 0.955 79.37 85.80 94.69

4.3.3 Qualitative results

The qualitative results for segmentation and depth can be seen in Figure 4.14 and
4.15, respectively. For semantic segmentation, the two largest models are better at
distinguishing between the driveable road surface and the sidewalk. Additionally,

Chapter 4: Experiments and Results 53

they are better at segmenting small objects far away from the camera and thin
structures, such as poles, correctly. For depth estimation, the largest models are
able to produce sharper depth maps than the smallest one. Small objects in the
distance and thin structures are also better detected by the largest models.

Figure 4.14: Experiment 2: Qualitative results for the segmentation task. The im-
ages have been cropped for better visualization. First column: Cityscapes, second
column: KITTI-360, third column: Apollo Synthetic Dataset. First row: original
image, second row: B0, third row: B2, fourth row: B4.

54 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

Figure 4.15: Experiment 2: qualitative results for the depth estimation task.
The images have been cropped for better visualization. First column: Cityscapes,
second column: KITTI-360, third column: Apollo Synthetic Dataset. First row:
original image, second row: B0, third row: B2, fourth row: B4.

4.4 Experiment 3: Pre-training on Synthetic Data

This section presents the results from experiment 3. The experiment investig-
ates the effect of pre-training on a large synthetic dataset. The multitask model
equipped with a SegFormer B2 backbone is pre-trained on the Apollo Synthetic
Dataset, and then fine-tuned on Cityscapes. The performance of the model is com-
pared to one trained only on Cityscapes.

4.4.1 Training

The models were trained according to the specifications in Section 3.8. The train-
ing graphs can be seen in Figure 4.16. For depth estimation, both the loss and the
absolute relative error is improved by pre-training on the synthetic dataset. For
semantic segmentation, no improvement is observed. The model pre-trained on
synthetic data was unfortunately stopped after 150 epochs, so the model could
potentially perform even better if it was trained for a longer period. However,
since the improvement during the last phase of training usually is quite small, the
difference would likely be minimal.

Chapter 4: Experiments and Results 55

(a) Segmentation loss (b) Depth loss (c) Total loss

(d) mIoU (e) AbsRel

Figure 4.16: Experiment 3: Training graphs with and without pre-training on
synthetic data. The graphs show the validation loss and evaluation metrics during
training. Orange: without pre-training, blue: with pre-training.

4.4.2 Results

The quantitative results are presented in Table 4.5. The model pre-trained on syn-
thetic data outperforms the original model across all depth evaluation metrics. For
semantic segmentation, there is no improvement by pre-training on the synthetic
dataset. No significant differences were observed when comparing the predictions
of the models with and without synthetic dataset pre-training. Consequently, no
qualitative results are provided for this experiment.

Table 4.5: Experiment 3: quantitative results

Cityscapes
Pre-trained AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253 mIoU mAcc aAcc

No 0.096 1.266 6.317 0.162 0.905 0.977 0.992 75.93 83.54 95.80
Yes 0.094 1.185 6.227 0.159 0.908 0.978 0.992 75.48 83.64 95.83

4.5 Experiment 4: Validating the Predicted Depth Values

This section presents the results from experiment 4. The experiment investigates
how accurately the model is able to estimate the distance to different objects in
an image. A total of six images are selected, three from Cityscapes and three from
KITTI-360. These can be seen in Figure 4.17. The multitask model creates a depth
prediction for each of the images. Then, the predicted depth of an object in each
image, marked with a red circle, is compared to the ground truth depth. An av-
erage of multiple depth values in the same region is used. Two different versions
of the multitask model is used: one trained on Cityscapes, and one trained on

56 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

KITTI-360. This makes it possible to investigate how accurate the model performs
on the dataset it was trained on, and also how accurate it performs on new and
unseen data.

(a) Image 1 (b) Image 2 (c) Image 3

Figure 4.17: Experiment 4: depth validation images. The predicted distance to an
object in each image is validated (see Table 4.6). The chosen objects are marked
with a red circle. First row: Cityscapes, second row: KITTI-360.

4.5.1 Results

The results can be seen in Table 4.6. As expected, the predicted depth is most
accurate for the dataset the model was trained on. This is true for both datasets,
and the prediction error is often less than a meter. However, when the model is
tested on a different dataset than the one used for training, it fails to estimate
depth accurately, and the prediction error is large. It seems like the Cityscapes
model overestimates the distance on the KITTI-360 dataset, while the KITTI-360
model underestimates the distance on the Cityscapes dataset.

Chapter 4: Experiments and Results 57

Table 4.6: Experiment 4: depth validation results. The predicted distance to
individual objects in images from Cityscapes and KITTI-360 is evaluated (Fig-
ure 4.17). Two different models are used: one trained on Cityscapes and one
trained on KITTI-360. The values are in meters.

Cityscapes
Trained on Image Ground truth Prediction Error

Cityscapes
1 9.26 9.50 0.24
2 12.31 11.67 0.64
3 35.09 36.40 1.31

KITTI-360
1 9.26 6.47 2.79
2 12.31 6.64 5.67
3 35.09 18.45 16.64

KITTI-360

KITTI-360
1 4.83 4.31 0.52
2 17.13 16.57 0.57
3 34.14 36.75 2.61

Cityscapes
1 4.83 9.31 4.48
2 17.13 26.90 9.76
3 34.14 67.89 33.76

4.6 Experiment 5: Evaluating on NAPLab Data

This section presents the results from experiment 4. The experiment investigates
how the multitask model performs on the NAPLab dataset. As the dataset only
contains 10 annotated frames, it is not possible to train or fine-tune the model
on the dataset. Instead, a model trained on the Cityscapes dataset is used for
evaluation. Three different model sizes, B0, B2 and B4, are tested, just like in
experiment 2.

4.6.1 Results

The quantitative results can be seen in Table 4.7. The dataset does not provide any
ground truth depth data, so only evaluation metrics for semantic segmentation are
presented. The largest model achieves the highest mIoU score, while the smallest
model achieves the lowest score, similar to the results of experiment 2. Qualitative
results are provided in Figure 4.18. The predicted segmentation masks look fairly
similar to the ground truth masks.

58 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

Table 4.7: Experiment 5: NAPLab quantitative results

Backbone FPS mIoU mAcc aAcc
B0 56 50.49 66.49 92.94
B2 18 55.36 74.12 94.15
B4 11 59.97 73.73 94.36

Figure 4.18: Experiments 5: NAPLab qualitative results. Pedestrians and license
plates are blurred for anonymization. First row: original image, second row:
ground truth segmentation mask, third row: predicted segmentation mask, fourth
row: predicted depth map.

Chapter 5

Discussion

This chapter discusses the results of the experiments and their implications on the
potential of the model in an autonomous driving setting. The chapter also reflects
on the shortcomings of the thesis and makes an attempt at answering the research
questions.

5.1 Potential in Autonomous Driving

An important requirement for deep learning architectures applied in autonomous
vehicles is real-time performance. There is no exact definition of what real-time
is, but a frame rate of approximately 30 FPS is usually considered real-time. In ex-
periment 2, models with different backbone sizes were tested. The B0 model was
able to achieve a frame rate of roughly 60 FPS, which is undoubtedly considered
real-time. The B2 model is also close to real-time with a frame rate of roughly
20 FPS. However, it is important to note that the experiments were conducted on
powerful GPUs that may not be available in an autonomous vehicle. In addition,
only the pure inference time was measured. In a real-life scenario, dataloading and
post-processing will take up additional time. The vehicle also needs time to make
decisions based on the predictions. Thus, the actual frame rate in an autonomous
vehicle will probably be lower than the one measured in the experiments.

One way to increase the inference speed of the model is to use TensorRT. This
is a tool provided by NVIDIA that optimizes the model for fast inference. This
is done by lowering the number precision used during inference, which signific-
antly improves processing time. How significant the improvement is depends on
the hardware being used. TensorRT can thus be a possible solution to speed up
inference.

While inference speed is important in autonomous driving, it is also crucial
that the model is able to produce accurate predictions. In experiment 2 the largest
models, B2 and B4, clearly outperformed B0 in terms of accuracy. B0 is arguably
the model best suited for real-time applications, so it would be beneficial to in-
crease the performance of this model. One way of achieving better performance

59

60 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

is to increase the resolution of the input images. This will help the model cap-
ture finer details in the images, and will thus lead to higher accuracy. However,
the frame rate of the model will also decrease. Consequently, different images
sizes should be tested to find the optimal balance between accuracy and infer-
ence speed.

5.2 Shortcomings of the Thesis

This section reflects on the shortcomings of the thesis and suggests possible solu-
tions.

5.2.1 Early Overfitting

In experiment 1 and 2 it was observed that the segmentation loss starts to in-
crease quite early in the training process. This usually indicates that the model is
overfitting to the training data. However, the accuracy of the model continues to
improve after this point. This is quite surprising, as there is usually a clear correla-
tion between the loss and accuracy. This probably happens since the cross-entropy
loss, which is used for the segmentation task, is calculated on the class probab-
ilities of each pixel. The accuracy, on the other hand, is only calculated on the
final prediction mask. Thus, if more pixels are predicted correctly but with less
confidence, the accuracy will improve even though the loss increases.

One possible reason overfitting occurs could be that too few augmentations
are applied during training. The original SegFormer model applies random crop-
ping to the images during training. This technique was not implemented with the
multitask model since it affects the depth estimation task negatively. Thus, the ef-
fective size of the dataset is reduced compared to SegFormer, which in turn could
affect the generalization ability of the model. A possible solution could be to find
alternative augmentation techniques that works well for both depth estimation
and semantic segmentation.

There was spent little time experimenting with different hyperparameters dur-
ing training of the models. Thus, the hyperparameters are probably not optimally
tuned, and likely contributes to the overfitting problem. The learning rate is argu-
ably the most important hyperparameter. In the experiments, a constant learning
rate was used for simplicity. However, a learning rate scheduler or a manual de-
crease of the learning rate after the first initial training epochs would likely lead
to better performance. Another interesting approach would be to use individual
learning rates for each of the task-specific decoders. This would make it easier to
achieve the best accuracy for both depth and segmentation after the same number
of epochs.

Chapter 5: Discussion 61

5.2.2 Few Available Datasets

This thesis investigates the use of a multitask model for monocular depth estim-
ation and semantic segmentation. It was thus important to find datasets that are
annotated for both tasks. This was challenging, as most of the publicly available
datasets mainly focus on one of these tasks. The three datasets chosen all con-
tain annotations for both tasks, but they still have some issues. Cityscapes is a
relatively small dataset with only 5 000 annotated frames. The depth maps are
precomputed from stereo cameras, and is thus not as accurate as LiDAR depth
maps. KITTI-360 is a much larger dataset with about 60 000 annotated frames
and LiDAR ground truth. However, the depth maps are quite sparse and does not
cover the entire input image.

The lack of annotated real-world data motivated the use of synthetic data
for this thesis. Synthetic datasets are labeled automatically, and usually contain a
large number of high-quality annotated frames for a wide range of vision tasks.
The chosen dataset, Apollo Synthetic Dataset, contains a total of 273 000 annot-
ated frames. About 45 000 of these were used in the experiments. The dataset
proved useful for evaluation of the multitask model. However, synthetic datasets
can not completely substitute real-world data as the domain shift between syn-
thetic and real-world data is too large.

Semi-supervised and self-supervised methods were not explored in this thesis,
but could potentially be interesting to look into. With a semi-supervised approach
it would be possible to train the model for both tasks using only annotations for a
single task. With a self-supervised approach no annotations would be needed at all
during training. As the semi-supervised and self-supervised methods require less
annotated data, it would be easier to find suitable datasets for this thesis. However,
annotated data for both tasks would still be needed to evaluate the performance
of the models.

5.3 Fulfillment of Research Questions

This section makes an attempt at answering the research questions of this thesis
based on the findings from the experiments.

5.3.1 Research Question 1

How does a multitask Vision Transformer trained for both segmentation and
depth estimation simultaneously perform compared to models trained for
individual tasks?

This research question was investigated in experiment 1. For depth estima-
tion, the results indicate a slight decrease in accuracy when using the multitask
approach, but the differences are small. For semantic segmentation, no significant
increase or decrease in accuracy was observed when using the multitask approach.
It is important to note that the individual task models can increase their accuracy

62 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

further by applying task-specific augmentations, such as random cropping and
Vertical CutDepth, during training. These augmentations do not necessary work
well for a multitask model, as the two prediction tasks are fundamentally dif-
ferent. Thus, the actual performance gap could possibly be bigger than the one
reported in experiment 1.

In terms of inference speed, the multitask model has comparable inference
speed to the individual segmentation model while performing an additional task.
Compared to running the individual depth and segmentation models one after
another, the multitask model increases the effective inference speed by almost 50
%. This proves that the multitask approach is an effective way to increase inference
speed when multiple dense prediction tasks needs to be performed at the same
time.

Conclusion

A multitask model is able to achieve comparable performance to individual task
models, while lowering the effective inference time compared to running the two
tasks individually.

5.3.2 Research Question 2

Can synthetic datasets be used to increase model performance when there is
little real-world data available?

This research question was investigated in experiment 3. For depth estimation,
the accuracy was significantly increased by pre-training on a synthetic dataset.
However, for semantic segmentation no improvement was observed. This is quite
surprising, as introducing a large synthetic dataset usually leads to better per-
formance. The lack of improvement could be due to sub-optimal hyperparameter
tuning and the lack of augmentations. This is discussed in Section 5.2.1.

In experiment 3, the models were pre-trained on a synthetic dataset and then
fine-tuned on real-world data. This is only one of many possible methods for using
synthetic data during training. Another possible approach is to mix the synthetic
and real-world data during training and train on both datasets simultaneously.
This approach is used by Ros et al. [16] and produces good results. As only one
approach was tested in this thesis, it is not possible to say what the optimal way
of utilizing synthetic data is.

It would be interesting to test multiple synthetic datasets to investigate how
the choice of dataset affects performance. Properties such as dataset size and en-
vironmental variation could potentially have an influence on the results. However,
due to time constraints only one synthetic dataset was used in this thesis.

Conclusion

Pre-training on a synthetic dataset can be used to increase model performance
when there is litte real-world data available. However, it is crucial to optimize the

Chapter 5: Discussion 63

training procedure in order to achieve the expected results.

5.3.3 Research Question 3

How accurate are the absolute depth predictions from the model?
This research question was investigated in experiment 4. The results show

that the model is able to create fairly accurate depth predictions for the dataset
it was trained on. The prediction error is often less than a meter. However, when
tested on a different dataset than the one used for training, the model fails to
create accurate depth predictions, and the prediction error is extremely large.
This indicates that the model has learned features specific to the dataset used for
training, and is unable to generalize to new and unseen datasets.

It is difficult to pinpoint exactly why the model struggles on new datasets. One
possible reason could be that the sensor setup is different for different datasets.
Thus, different image ratios and camera poses could potentially contribute to the
error. Dijk and Croon [40] investigates what kind of information a neural network
uses in order to estimate depth. Interestingly, they find that the network heavily
relies on the vertical position of objects to estimate their depth. As the vertical
position changes with different camara poses, this could potentially explain why
the model is unable to estimate depth accurately for new datasets.

One possible solution could be to train the model on multiple depth estima-
tion datasets simultaneously. This could potentially force the model to focus on
other features than the vertical position and lead to better generalization abilit-
ies. However, this is just a hypothesis, and the effectiveness of this approach is
not verified. It would be interesting to test this approach in the experiments, but
it was not done due to time constraints.

Conclusion

The model is able to create fairly accurate depth predictions for the dataset it was
trained on, but struggles on new and unseen data. It is thus necessary to fine-
tune the model for the desired sensor setup and environment to ensure accurate
predictions.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has investigated the use of Vision Transformers for dense prediction
tasks in autonomous driving. The main goal was to design a Transformer-based
multitask model that is able to perform both monocular depth estimation and se-
mantic segmentation simultaneously. The model should also be able to operate in
real-time. A literature review was conducted in order to find state-of-the-art Vision
Transformers for the task. Two Transformer-based models, SegFormer and GLP-
Depth, were chosen based on the literature review. These models were combined
into a multitask architecture with a common hierarchical Transformer encoder
and two lightweight, task-specific decoders.

In order to evaluate the effectiveness of the proposed model, it was tested
with three different datasets: Cityscapes, KITTI-360 and Apollo Synthetic Data-
set. First, the performance of the multitask model and the individual task models
were compared. The results showed that the multitask model achieves comparable
accuracy to the individual task models, while lowering the total inference time for
both tasks significantly. Next, the model was tested with different backbone sizes.
The results showed that the choice of backbone can be used to effectively control
the ratio between inference speed and accuracy.

There was also conducted an experiment to investigate how pre-training on a
large synthetic dataset affects model performance. The model was first pre-trained
on Apollo Synthetic Dataset, and then fine-tuned on Cityscapes. This approach
increased the depth estimation accuracy significantly, while the segmentation ac-
curacy remained roughly the same. Finally, the models ability to estimate depth
accurately was evaluated. This was done by examining the predicted distance to
individual objects in the frames and comparing with the ground truth. While the
model was able to estimate depth quite accurately for the dataset it was trained
on, it struggled on new and unseen datasets.

65

66 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

6.2 Future Work

This section presents ideas related to Vision Transformers and autonomous driving
that were not explored in this thesis, but could be interesting to investigate further
in future work.

6.2.1 Semi-supervised or Self-supervised Learning

In this thesis a supervised learning approach was used to train the multitask
model. This approach gives high accuracy, but requires large amounts of annot-
ated data for both depth and segmentation. Annotating data for semantic seg-
mentation is very time-consuming as labeling is done on pixel-level. Depth ground
truth is usually gathered using a LiDAR sensor, which is both large and expensive.
It would thus be beneficial to use methods that require less annotated data dur-
ing training, as this would save both time and money. A semi-supervised model
would only require ground truth data for one of the tasks, while a self-supervised
model would not require any ground truth data at all. As semi-supervised and self-
supervised methods have improved a lot in recent years, it would be interesting
to test them with the multitask model.

6.2.2 Mixing Datasets for Depth Estimation

The proposed multitask model was able to create accurate depth predictions for
the dataset it was trained on. However, the model failed to estimate depth cor-
rectly for new and unseen datasets. This means that the model has to be fine-tuned
on each new dataset to ensure good performance. As data collection and training is
expensive and time-consuming, it would be beneficial if the model could perform
well across multiple datasets without additional fine-tuning. A possible solution is
to use a mix of multiple depth estimation datasets during training. In theory, this
would force the model to rely on more general features, and not features specific
to a single dataset. Ranftl et al. [41] uses this approach to achieve good perform-
ance across multiple datasets without additional fine-tuning. As most of the recent
work related to depth estimation focuses on performance on a single benchmark,
it would be interesting to investigate this more general approach further.

Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser and I. Polosukhin, Attention is all you need, 2017. DOI: 10.48550/
ARXIV.1706.03762. [Online]. Available: https://arxiv.org/abs/1706.
03762.

[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit and
N. Houlsby, An image is worth 16x16 words: Transformers for image recogni-
tion at scale, 2020. DOI: 10.48550/ARXIV.2010.11929. [Online]. Available:
https://arxiv.org/abs/2010.11929.

[3] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.
DOI: 10.48550/ARXIV.1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980.

[4] A. Kirillov, K. He, R. Girshick, C. Rother and P. Dollar, ‘Panoptic segment-
ation,’ in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2019.

[5] D. Eigen, C. Puhrsch and R. Fergus, Depth map prediction from a single image
using a multi-scale deep network, 2014. DOI: 10.48550/ARXIV.1406.2283.
[Online]. Available: https://arxiv.org/abs/1406.2283.

[6] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018. DOI: 10.48550/
ARXIV.1810.04805. [Online]. Available: https://arxiv.org/abs/1810.
04805.

[7] A. Radford and K. Narasimhan, ‘Improving language understanding by gen-
erative pre-training,’ 2018.

[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth and B. Schiele, The cityscapes dataset for semantic urban
scene understanding, 2016. DOI: 10.48550/ARXIV.1604.01685. [Online].
Available: https://arxiv.org/abs/1604.01685.

[9] A. Geiger, P. Lenz and R. Urtasun, ‘Are we ready for autonomous driving?
the kitti vision benchmark suite,’ in 2012 IEEE Conference on Computer Vis-
ion and Pattern Recognition, 2012, pp. 3354–3361. DOI: 10.1109/CVPR.
2012.6248074.

67

https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/ARXIV.2010.11929
https://arxiv.org/abs/2010.11929
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.1406.2283
https://arxiv.org/abs/1406.2283
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.48550/ARXIV.1604.01685
https://arxiv.org/abs/1604.01685
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074

68 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

[10] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, ‘Vision meets robotics: The kitti
dataset,’ International Journal of Robotics Research (IJRR), 2013.

[11] Y. Liao, J. Xie and A. Geiger, Kitti-360: A novel dataset and benchmarks for
urban scene understanding in 2d and 3d, 2021. arXiv: 2109.13410 [cs.CV].

[12] J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S. Chung,
L. Hauswald, V. H. Pham, M. Mühlegg, S. Dorn, T. Fernandez, M. Jänicke,
S. Mirashi, C. Savani, M. Sturm, O. Vorobiov, M. Oelker, S. Garreis and P.
Schuberth, A2d2: Audi autonomous driving dataset, 2020. DOI: 10.48550/
ARXIV.2004.06320. [Online]. Available: https://arxiv.org/abs/2004.
06320.

[13] NTNU. ‘Ntnu autonomous perception laboratory (naplab).’ (2022), [On-
line]. Available: https://www.ntnu.edu/idi/naplab (visited on 12/06/2022).

[14] A. Gaidon, Q. Wang, Y. Cabon and E. Vig, Virtual worlds as proxy for multi-
object tracking analysis, 2016. arXiv: 1605.06457 [cs.CV].

[15] Y. Cabon, N. Murray and M. Humenberger, Virtual kitti 2, 2020. arXiv:
2001.10773 [cs.CV].

[16] G. Ros, L. Sellart, J. Materzynska, D. Vazquez and A. M. Lopez, ‘The synthia
dataset: A large collection of synthetic images for semantic segmentation
of urban scenes,’ in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 3234–3243. DOI: 10.1109/CVPR.2016.352.

[17] Baidu. ‘Apollo synthetic dataset.’ (2019), [Online]. Available: http : / /
apollo.baidu.com/synthetic.html (visited on 21/05/2022).

[18] X. Weng, Y. Man, J. Park, Y. Yuan, D. Cheng, M. O’Toole and K. Kitani,
‘All-In-One Drive: A Large-Scale Comprehensive Perception Dataset with
High-Density Long-Range Point Clouds,’ arXiv, 2021.

[19] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez and V. Koltun, Carla: An open
urban driving simulator, 2017. DOI: 10.48550/ARXIV.1711.03938. [On-
line]. Available: https://arxiv.org/abs/1711.03938.

[20] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xi-
ang, P. H. S. Torr and L. Zhang, Rethinking semantic segmentation from a
sequence-to-sequence perspective with transformers, 2020. DOI: 10.48550/
ARXIV.2012.15840. [Online]. Available: https://arxiv.org/abs/2012.
15840.

[21] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez and P. Luo, Seg-
former: Simple and efficient design for semantic segmentation with trans-
formers, 2021. DOI: 10.48550/ARXIV.2105.15203. [Online]. Available:
https://arxiv.org/abs/2105.15203.

[22] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo and L.
Shao, Pyramid vision transformer: A versatile backbone for dense prediction
without convolutions, 2021. DOI: 10.48550/ARXIV.2102.12122. [Online].
Available: https://arxiv.org/abs/2102.12122.

https://arxiv.org/abs/2109.13410
https://doi.org/10.48550/ARXIV.2004.06320
https://doi.org/10.48550/ARXIV.2004.06320
https://arxiv.org/abs/2004.06320
https://arxiv.org/abs/2004.06320
https://www.ntnu.edu/idi/naplab
https://arxiv.org/abs/1605.06457
https://arxiv.org/abs/2001.10773
https://doi.org/10.1109/CVPR.2016.352
http://apollo.baidu.com/synthetic.html
http://apollo.baidu.com/synthetic.html
https://doi.org/10.48550/ARXIV.1711.03938
https://arxiv.org/abs/1711.03938
https://doi.org/10.48550/ARXIV.2012.15840
https://doi.org/10.48550/ARXIV.2012.15840
https://arxiv.org/abs/2012.15840
https://arxiv.org/abs/2012.15840
https://doi.org/10.48550/ARXIV.2105.15203
https://arxiv.org/abs/2105.15203
https://doi.org/10.48550/ARXIV.2102.12122
https://arxiv.org/abs/2102.12122

Bibliography 69

[23] B. Cheng, A. G. Schwing and A. Kirillov, Per-pixel classification is not all you
need for semantic segmentation, 2021. DOI: 10.48550/ARXIV.2107.06278.
[Online]. Available: https://arxiv.org/abs/2107.06278.

[24] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin and B. Guo, Swin
transformer: Hierarchical vision transformer using shifted windows, 2021.
DOI: 10.48550/ARXIV.2103.14030. [Online]. Available: https://arxiv.
org/abs/2103.14030.

[25] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov and R. Girdhar, Masked-
attention mask transformer for universal image segmentation, 2021. DOI:
10.48550/ARXIV.2112.01527. [Online]. Available: https://arxiv.org/
abs/2112.01527.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ‘Imagenet: A large-
scale hierarchical image database,’ in 2009 IEEE Conference on Computer
Vision and Pattern Recognition, 2009, pp. 248–255. DOI: 10.1109/CVPR.
2009.5206848.

[27] J. Jain, A. Singh, N. Orlov, Z. Huang, J. Li, S. Walton and H. Shi, Semask:
Semantically masked transformers for semantic segmentation, 2021. DOI: 10.
48550/ARXIV.2112.12782. [Online]. Available: https://arxiv.org/abs/
2112.12782.

[28] H. Yan, C. Zhang and M. Wu, Lawin transformer: Improving semantic seg-
mentation transformer with multi-scale representations via large window at-
tention, 2022. DOI: 10.48550/ARXIV.2201.01615. [Online]. Available:
https://arxiv.org/abs/2201.01615.

[29] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs, 2016. DOI: 10.48550/ARXIV.1606.00915.
[Online]. Available: https://arxiv.org/abs/1606.00915.

[30] S. F. Bhat, I. Alhashim and P. Wonka, ‘AdaBins: Depth estimation using ad-
aptive bins,’ in 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, Jun. 2021. DOI: 10.1109/cvpr46437.2021.
00400. [Online]. Available: https://doi.org/10.1109%2Fcvpr46437.
2021.00400.

[31] R. Ranftl, A. Bochkovskiy and V. Koltun, Vision transformers for dense predic-
tion, 2021. DOI: 10.48550/ARXIV.2103.13413. [Online]. Available: https:
//arxiv.org/abs/2103.13413.

[32] D. Kim, W. Ga, P. Ahn, D. Joo, S. Chun and J. Kim, Global-local path networks
for monocular depth estimation with vertical cutdepth, 2022. DOI: 10.48550/
ARXIV.2201.07436. [Online]. Available: https://arxiv.org/abs/2201.
07436.

https://doi.org/10.48550/ARXIV.2107.06278
https://arxiv.org/abs/2107.06278
https://doi.org/10.48550/ARXIV.2103.14030
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://doi.org/10.48550/ARXIV.2112.01527
https://arxiv.org/abs/2112.01527
https://arxiv.org/abs/2112.01527
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/ARXIV.2112.12782
https://doi.org/10.48550/ARXIV.2112.12782
https://arxiv.org/abs/2112.12782
https://arxiv.org/abs/2112.12782
https://doi.org/10.48550/ARXIV.2201.01615
https://arxiv.org/abs/2201.01615
https://doi.org/10.48550/ARXIV.1606.00915
https://arxiv.org/abs/1606.00915
https://doi.org/10.1109/cvpr46437.2021.00400
https://doi.org/10.1109/cvpr46437.2021.00400
https://doi.org/10.1109%2Fcvpr46437.2021.00400
https://doi.org/10.1109%2Fcvpr46437.2021.00400
https://doi.org/10.48550/ARXIV.2103.13413
https://arxiv.org/abs/2103.13413
https://arxiv.org/abs/2103.13413
https://doi.org/10.48550/ARXIV.2201.07436
https://doi.org/10.48550/ARXIV.2201.07436
https://arxiv.org/abs/2201.07436
https://arxiv.org/abs/2201.07436

70 H. R. Martinsen: Autonomous Driving: Vision Transformers for Dense Prediction Tasks

[33] Y. Ishii and T. Yamashita, Cutdepth:edge-aware data augmentation in depth
estimation, 2021. DOI: 10.48550/ARXIV.2107.07684. [Online]. Available:
https://arxiv.org/abs/2107.07684.

[34] Z. Li, Z. Chen, X. Liu and J. Jiang, Depthformer: Exploiting long-range correl-
ation and local information for accurate monocular depth estimation, 2022.
DOI: 10.48550/ARXIV.2203.14211. [Online]. Available: https://arxiv.
org/abs/2203.14211.

[35] Z. Li, X. Wang, X. Liu and J. Jiang, Binsformer: Revisiting adaptive bins for
monocular depth estimation, 2022. DOI: 10.48550/ARXIV.2204.00987.
[Online]. Available: https://arxiv.org/abs/2204.00987.

[36] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov and S. Zagoruyko,
End-to-end object detection with transformers, 2020. DOI: 10.48550/ARXIV.
2005.12872. [Online]. Available: https://arxiv.org/abs/2005.12872.

[37] R. Garg, V. K. BG, G. Carneiro and I. Reid, Unsupervised cnn for single view
depth estimation: Geometry to the rescue, 2016. DOI: 10.48550/ARXIV.
1603.04992. [Online]. Available: https://arxiv.org/abs/1603.04992.

[38] M. Själander, M. Jahre, G. Tufte and N. Reissmann, EPIC: An energy-efficient,
high-performance GPGPU computing research infrastructure, 2019. arXiv:
1912.05848 [cs.DC].

[39] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin and
A. A. Kalinin, ‘Albumentations: Fast and flexible image augmentations,’ In-
formation, vol. 11, no. 2, p. 125, Feb. 2020. DOI: 10.3390/info11020125.
[Online]. Available: https://doi.org/10.3390%2Finfo11020125.

[40] T. van Dijk and G. C. H. E. de Croon, How do neural networks see depth in
single images? 2019. DOI: 10.48550/ARXIV.1905.07005. [Online]. Avail-
able: https://arxiv.org/abs/1905.07005.

[41] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler and V. Koltun, Towards ro-
bust monocular depth estimation: Mixing datasets for zero-shot cross-dataset
transfer, 2019. DOI: 10.48550/ARXIV.1907.01341. [Online]. Available:
https://arxiv.org/abs/1907.01341.

https://doi.org/10.48550/ARXIV.2107.07684
https://arxiv.org/abs/2107.07684
https://doi.org/10.48550/ARXIV.2203.14211
https://arxiv.org/abs/2203.14211
https://arxiv.org/abs/2203.14211
https://doi.org/10.48550/ARXIV.2204.00987
https://arxiv.org/abs/2204.00987
https://doi.org/10.48550/ARXIV.2005.12872
https://doi.org/10.48550/ARXIV.2005.12872
https://arxiv.org/abs/2005.12872
https://doi.org/10.48550/ARXIV.1603.04992
https://doi.org/10.48550/ARXIV.1603.04992
https://arxiv.org/abs/1603.04992
https://arxiv.org/abs/1912.05848
https://doi.org/10.3390/info11020125
https://doi.org/10.3390%2Finfo11020125
https://doi.org/10.48550/ARXIV.1905.07005
https://arxiv.org/abs/1905.07005
https://doi.org/10.48550/ARXIV.1907.01341
https://arxiv.org/abs/1907.01341

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Herman Ryen Martinsen

Autonomous Driving: Vision
Transformers for Dense Prediction
Tasks

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
Co-supervisor: Gabriel Kiss
June 2022M

as
te

r’s
 th

es
is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Motivation
	Goal and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background and Related Work
	Deep Learning
	Artificial Neuron
	Neural Network
	Activation Function
	Forward Pass and Backpropagation

	Computer Vision: Tasks and Metrics
	Segmentation
	Depth Estimation

	Transformers
	Architecture
	Attention

	Vision Transformer (ViT)
	Architecture

	Datasets
	Real-World Datasets
	Synthetic Datasets

	Related Work: Vision Transformers for Dense Prediction Tasks
	Semantic Segmentation
	Monocular Depth Estimation

	Methodology
	Choice of Models
	Semantic Segmentation Model
	Depth Estimation Model
	Decision and Summary

	Choice of Datasets
	Real-World Datasets
	Synthetic Datasets
	Decision and Summary

	SegFormer
	Transformer Encoder
	MLP Decoder

	GLPDepth
	Transformer Encoder
	Lightweight Decoder
	Vertical CutDepth

	Multitask Model
	Architecture
	Loss Function

	Dataset Preparation
	Cityscapes
	KITTI-360
	Apollo Synthetic Dataset
	NAPLab

	Hardware
	Training

	Experiments and Results
	Experiment 0: Validating Results
	SegFormer
	GLPDepth

	Experiment 1: Multitask Training
	Training
	Quantitative results
	Qualitative results

	Experiment 2: Different Backbone Sizes
	Training graphs
	Quantitative results
	Qualitative results

	Experiment 3: Pre-training on Synthetic Data
	Training
	Results

	Experiment 4: Validating the Predicted Depth Values
	Results

	Experiment 5: Evaluating on NAPLab Data
	Results

	Discussion
	Potential in Autonomous Driving
	Shortcomings of the Thesis
	Early Overfitting
	Few Available Datasets

	Fulfillment of Research Questions
	Research Question 1
	Research Question 2
	Research Question 3

	Conclusion and Future Work
	Conclusion
	Future Work
	Semi-supervised or Self-supervised Learning
	Mixing Datasets for Depth Estimation

	Bibliography

