
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Alexander Stensland Iversen Szewczyk

AI-agents Trained Using Deep
Reinforcement
Learning in the CARLA Simulator

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
Co-supervisor: Gabriel Kiss
June 2022M

as
te

r’s
 th

es
is

Alexander Stensland Iversen Szewczyk

AI-agents Trained Using Deep
Reinforcement
Learning in the CARLA Simulator

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
Co-supervisor: Gabriel Kiss
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

In recent years, deep learning and reinforcement learning within the field of
vision-based autonomous driving systems has had a large increase in interest,
and additionally several breakthroughs. The creation of publicly available open-
source tools such as the CARLA driving simulator [1], has spawned the creation of
several highly capable autonomous driving systems, both using a reinforcement
learning approach and imitation learning approach.

The World on Rails algorithm [2] is a reinforcement learning approach to
training an autonomous agent to drive using the CARLA driving simulator. In the
World on Rails algorithm, a forward model is first trained and used to predict
the future states for different actions that an agent can choose at a given state,
without actually performing them in the real world. This forward model is then
used to supervise a visuomotor agent, by predicting the outcome of any potential
driving trajectory.

In this thesis, we investigate the World on Rails algorithm by attempting to
recreate the results that were presented in the World on Rails paper [2]. We only
managed to create a dataset of approximately 100 thousand data frames, but still
manage to create a model that performs remarkably well on the NoCrash bench-
mark, even outperforming the World on Rails paper’s [2] recreation of Learning
by Cheating [3] in terms of success rate.

We also investigate how the introduction of an autoencoder training step can
help improve the performance of the World on Rails algorithm. We do this by pre-
training a visual encoder backbone on a highly relevant dataset containing images
from the CARLA driving simulator. We train the visuomotor agent with this visual
encoder backbone in two different arrangements, one using the visual encoder
with frozen weights, and the other with unfrozen weights. We found that using
the pre-trained visual encoder backbone with unfrozen weights, did significantly
help to improve the model’s ability to understand traffic lights, and their states.

iii

Sammendrag

De siste årene har dyp læring og forsterknings-læring innenfor synsbaserte autonome
kjøresystemer hatt en stor økning i interesse, i tillegg til flere gjennombrudd. Op-
prettelsen av offentlig tilgjengelige verktøy, med åpen kildekode, som kjøresimu-
latoren CARLA [1], har skapt flere svært dyktige autonome kjøresystemer, både
ved bruk av forsterknings-læring og imiterings-læring.

World on Rails-algoritmen [2] er en forsterknings-læring-tilnærming, som bruker
kjøringssimulatoren CARLA til å trene en agent til å kjøre autonomt. I World on
Rails-algoritmen trenes først en "forward"-modell, som brukes til å forutsi fremti-
dige tilstander for forskjellige handlinger som en agent kan velge i en gitt tilstand,
uten å faktisk utføre dem i simulatoren. Denne "forward"-modellen brukes der-
etter til å trene en visuomotorisk agent, ved å forutsi utfallet til enhver potensiell
kjørebane.

I denne oppgaven undersøker vi World on Rails-algoritmen ved å forsøke å
gjenskape resultatene som ble presentert i World on Rails-artikkelen [2]. Vi klarte
bare å lage et datasett på omtrent 100 tusen datarammer, men klarer likevel å lage
en modell som yter bemerkelsesverdig godt på NoCrash-benchmarken, til og med
bedre enn World on Rails-artikkelens [2] gjenskaping av Learning by Cheating
[3], i forhold til suksessrate.

Vi undersøker også hvordan introduksjonen av et autoencoder-treningstrinn
kan bidra til å forbedre ytelsen til World on Rails-algoritmen. Vi gjør dette ved
å forhåndstrene en visuell enkoder på et svært relevant datasett som inneholder
bilder fra kjøresimulatoren CARLA. Vi trener den visuomotoriske modellen med
denne visuelle enkoderen i to forskjellige oppsett, der den ene bruker den visuelle
enkoderen med frosne vekter, og den andre med ufrosne vekter. Vi fant ut at bruk
av den forhåndstrente visuelle enkoderen med ufrosne vekter bidro betydelig til
å forbedre modellens evne til å forstå trafikklys og deres tilstander.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . xi
Tables . xiii
Code Listings . xv
1 Introduction . 1

1.1 Background and Motivation . 1
1.2 Research Goal and Research Questions 2
1.3 Contributions . 2
1.4 Thesis Structure . 2

2 Background and Related Work . 5
2.1 Machine Learning . 5

2.1.1 Supervised and Unsupervised learning 5
2.1.2 Deep Learning . 6

2.2 Reinforcement Learning . 10
2.2.1 Markov Decision Process . 11
2.2.2 Bellman equation . 11
2.2.3 Reward Function . 12
2.2.4 Deep Reinforcement Learning 12

2.3 Computer Vision . 14
2.3.1 Convolutional Neural Networks (CNNs) 14
2.3.2 Residual Neural Networks (ResNet) 15
2.3.3 Semantic Segmentation . 17
2.3.4 Autoencoders and Dimensionality Reduction 18

2.4 Approaches to autonomous driving . 19
2.4.1 Modular . 19
2.4.2 End-to-end . 20

2.5 Technology . 20
2.5.1 Car Learning to Act (CARLA) 20
2.5.2 Machine Learning frameworks 22

2.6 Related Work . 22
2.6.1 Alvinn: An autonomous land vehicle in a neural network

(1989) . 23

vii

viii Szewczyk A.: Reinforcement Learning in CARLA

2.6.2 End-to-end Driving via Conditional Imitation Learning (2017) 23
2.6.3 End-to-End Model-Free Reinforcement Learning for Urban

Driving using Implicit Affordances (2019) 24
2.6.4 Learning to Drive From a World on Rails (2021) 25
2.6.5 TransFuser (2022) . 26
2.6.6 Learning from All Vehicles (2022) 26

3 Methodology . 29
3.1 Tools and Resources . 29

3.1.1 Software . 29
3.1.2 Hardware . 30
3.1.3 Working Environment . 30

3.2 Converting to PyTorch 1.10.2 and CUDA 11.3 31
3.3 World on Rails . 31

3.3.1 Bellman Evaluation . 34
3.3.2 Reward Function . 34

3.4 Experiment 1: Reproducing the results from World on Rails in the
NoCrash benchmark . 35
3.4.1 Data Collection . 35
3.4.2 Network Architectures . 38
3.4.3 Visumotor Network Training . 39

3.5 Experiment 2: Integrate Semi-Supervised Learning into World on
Rails . 42
3.5.1 Dataset for Semi-Supervised learning 42
3.5.2 Autoencoder Architecture . 43
3.5.3 Autoencoder Training . 44
3.5.4 Implementation A: Visuomotor network with frozen visual

encoder weights . 44
3.5.5 Implementation B: Visuomotor network with unfrozen visual

encoder weights . 46
4 Results . 47

4.1 Comparison of models on the NoCrash benchmark 47
4.2 Results from Experiment 1 . 48
4.3 Results from Experiment 2 . 49

4.3.1 Implementation A . 49
4.3.2 Implementation B . 51

5 Discussion . 53
5.1 Experiment 1 . 53
5.2 Experiment 2 . 54

5.2.1 Implementation A . 54
5.2.2 Implementation B . 55

5.3 Shortcomings of this Thesis . 55
6 Conclusion and Future Work . 57

6.1 Conclusion . 57
6.2 Future Work . 58

Contents ix

Bibliography . 59
A Environment . 63
B Training Parameters . 65
C PyTorch Code . 67
D Autoencoder Reconstructions . 69

Figures

2.1 Figure of a neural network with two hidden layers 7
2.2 Figure of a optimal path problem environment to the left, and a

possible optimal table policy to the right. 13
2.3 Figure illustrating how a two-dimensional kernel in applied to a

two-dimensional data-structure to output into a two dimensional
feature map. 16

2.4 Figure showing a residual block. 17
2.5 Figure showing an RGB image and its semantically segmented coun-

terpart. The images are extracted from the one million frames World
on Rails dataset [2]. 18

2.6 Figure of an autoencoder with a latent space, or bottleneck, of 2
nodes . 19

2.7 Overview of two network architectures for command-conditional
imitation learning . 24

2.8 Overview of the model-free RL algorithm using implicit affordances 25
2.9 Overview of the TransFuser architecture. 26
2.10 Figure showing an overview of the inference pipeline to a LAV agent. 27

3.1 Figures showing how renderings in CARLA would have artefacts on
different graphical settings, and how the semantic segmentations
would also have artefacts. The semantic segmentation image was
captured in CARLA launched with -quality-level=Epic. 32

3.2 Figure showing images from the wide (3.2a) and narrow camera
(3.2b). The images are extracted from the one million frames World
on Rails dataset [2]. 33

3.3 Visualisation of the computed value functions and action-value func-
tions. 35

3.4 Figure showing a wide RGB image 3.4a, and the stacked road,
vehicle and pedestrian labels for a given data frame. In 3.4b, the
agent’s position is at the center. The pedestrian label is coloured
blue, vehicle is coloured red, and the road is white. 37

3.5 Figure showing the visuomotor network architecture. 39

xi

xii Szewczyk A.: Reinforcement Learning in CARLA

3.6 Figure showing different types of image augmentations. For visu-
alisation purposes the augmentations in sub-figures 3.6b, 3.6e and
3.6f were given more extreme augmentation values than what was
used during the training of the visuomotor network. 41

3.7 Figure showing the ground truth semantic segmentation 3.7a, and
the visuomotor network predictions 3.7b with predicted artefacts. . 42

3.8 Figure showing the autoencoder architecture. 43
3.9 Figure showing input wide RGB, and its ground truth semantic seg-

mentation on the left, and reconstructed wide RGB and predicted
semantic segmentation image on the right. Images are taken from
the validation step at epoch 12. The predicted semantic segmenta-
tion image is shown in its state prior to up-scaling using interpolation. 45

3.10 Figure showing training loss and validation loss throughout the 12
epochs of training. 45

3.11 Figure showing the visuomotor architecture in implementation A. . 46

4.1 Figure showing the action loss generated by the action head during
train_phase2 for WOR-R, WOR-EF and WOR-EU. 50

4.2 Image from an intersection with a weather condition where the
WOR-EF model was unable to turn. 50

D.1 Figure showing an example of image reconstruction from each epoch
of the autoencoder training. 69

D.1 Figure showing an example of image reconstruction from each epoch
of the autoencoder training. 70

D.1 Figure showing an example of image reconstruction from each epoch
of the autoencoder training. 71

D.1 Figure showing an example of image reconstruction from each epoch
of the autoencoder training. 72

D.1 Figure showing an example of image reconstruction from each epoch
of the autoencoder training. 73

Tables

4.1 Table showing the success rates for different models in the NoCrash
benchmark. Where train town and test town refer to Town01 and
Town02, respectively. 48

4.2 Table showing the average number of traffic light infractions per
hour for different models in the NoCrash benchmark. 49

4.3 Table showing the success rates for the LBC and WOR-R models in
the NoCrash benchmark. 51

B.1 Training parameters used for training the forward model. 65
B.2 Training parameters used for training the autoencoder network. . . 65
B.3 Training parameters used for training the visuomotor networks. . . 65

xiii

Code Listings

A.1 environment.yml file generated from conda environment used for
this thesis. 63

C.1 The Resnet34 decoder architecture in PyTorch code form. 67
C.2 Latent space head in PyTorch code form. 68

xv

Chapter 1

Introduction

1.1 Background and Motivation

Ever since large breakthroughs within vision based autonomous driving back in
the 1980s [4][5], the topic of cars being driven by artificial intelligence has been
highly anticipated. Yet, large-scale implementation of fully self-driving cars is still
not present at the time of writing. In contrast to how things were back in the
1980s, the requirement for highly expensive equipment and large budgets has
faded, with the introduction of publicly accessible tools and information such
as driving simulators, machine learning frameworks and code sharing platforms,
making it easier to contribute towards the goal of large-scale full autonomy.

Within the world of developing autonomous vehicles, we generally have two
main approaches. One being the modular approach, which is the approach used
in most of today’s most prominent autonomous driving systems. The modular ap-
proach separates the driving system into several independent modules, examples
being mapping, perception, planning, and control modules. The end-to-end ap-
proach, on the other hand, aims to learn a driving policy that maps directly obser-
vations and vehicle actions, most commonly using an artificial neural network.

Currently, one of the most viable options for creating autonomous vehicles has
been through the use of imitation learning as it only requires a large dataset, which
can be collected by drivers all around the world. As most drivers usually travel
significantly long distances without any significant incidents [6], a problem arises
as autonomous vehicles are trained significantly less on how to handle safety-
critical situations. This is where an approach using reinforcement learning can
give an advantage over imitation learning, as the reinforcement learning process
entails more exploration.

In this thesis, we investigate the World on Rails algorithm by trying to recre-
ate the results as presented in their paper [2]. We also investigate how adding an
autoencoder training step to pre-train a visual encoder backbone can affect the
performance and training of the World on Rails algorithm. We use the pre-trained
visual encoder backbone in two different implementations. The first implement-
ation uses the visual encoder backbone with frozen weights, but with a small

1

2 Szewczyk A.: Reinforcement Learning in CARLA

trainable interpretation head. The second interpretation uses the visual encoder
backbone with unfrozen weights. We validate our model using the CARLA driving
simulator [1] and the NoCrash benchmark [7].

1.2 Research Goal and Research Questions

In this thesis, we will use the World on Rails [2] algorithm as a foundation to
explore the use of an autoencoder training step, and how it can improve the per-
formance of the World on Rails algorithm. Our research goal is formulated as the
following: Improve training and performance in the World on Rails algorithm.

We intend to reach this goal by answering the following research questions:

• Research question 1: Can we recreate the results presented in the Learning
to drive from a World on Rails paper [2]?
• Research question 2: How will pre-training a visual backbone on a highly

relevant dataset affect performance in the world on rails algorithm?

Two experiments have been conducted to answer these research questions.

1.3 Contributions

This thesis serves as an exploration and comparison of different implementations
of the World on Rails algorithm. The main contributions of the thesis are the
following:

• We convert the World on Rails algorithm to be run on a newer version of
PyTorch and CUDA, more specifically 1.10.2 and 11.3, respectively.
• An investigation on the performance of the World on Rails algorithm, by

attempting to recreate the results that were presented in the World on Rails
paper [2]with a limited dataset of approximately 100 thousand data frames
on the NoCrash benchmark [7].
• An investigation on how the World on Rails algorithm can be improved

using a visual encoder backbone pre-trained on a highly relevant dataset
extracted from the CARLA simulator.

1.4 Thesis Structure

This thesis is structured into six chapters. These chapters are organized in the
following order:

• Chapter 1 - Introduction: This chapter gives an introduction to the thesis,
including the motivation and context.
• Chapter 2 - Background and Related Work: This chapter will cover some

of the theoretical foundations of this thesis, including topics such as machine

Chapter 1: Introduction 3

learning, deep learning and reinforcement learning. This chapter will also
cover some related works that are relevant to this thesis.
• Chapter 3 - Methodology: This chapter will describe how the work in this

thesis has been executed. This chapter will describe the experiments, how
these experiments were performed and which tools and resources were util-
ized.
• Chapter 4 - Results: This chapter will present the results from the experi-

ments.
• Chapter 5 - Discussion: This chapter will discuss the results from the ex-

periments
• Chapter 6 - Conclusion and Future Work: This chapter concludes the res-

ults and discussion of this thesis and proposes ideas for future work.

Chapter 2

Background and Related Work

This chapter will be covering the theoretical foundations and topics that are re-
lated to this thesis. The first section will be covering machine learning, second will
be covering reinforcement learning and also concepts and algorithms related to re-
inforcement learning. This chapter will also be covering topics related to autonom-
ous driving, such as computer vision and approaches to autonomous driving. The
final section of this chapter will cover related works.

2.1 Machine Learning

"Artificial intelligence" and "machine learning" are two terms there can be confu-
sion between. Machine learning is a sub-field within the field of AI, studying the
ability to improve performance based on experience. AI systems can use machine
learning to achieve intelligent behaviour but can achieve this with other methods
than machine learning [8].

Learning can be done in different ways. An agent can learn from reading,
studying others, performing actions or solving mathematical problems. What makes
learning regarded as machine learning is when the agent is computer-based. Given
observed data, a computer-based agent can build a model that can fit this observed
data, which can be used as a hypothesis about the agent’s world, to help it solve
problems within its world [8].

2.1.1 Supervised and Unsupervised learning

In the field of machine learning, we have two main methods of training an agent.
These two are Supervised learning and Unsupervised learning. Each with their use
cases, the two mainly differ in terms of the data used to train the agents.

Supervised Learning

Supervised learning focuses on making an agent learn a function that maps from
an input to a desired output. As an example, we could take the task of classifying

5

6 Szewczyk A.: Reinforcement Learning in CARLA

the animal displayed in the image, where the input is a camera image of an animal,
and the output is the class of the animal in the image. In the case of this example,
an animal classifying agent would have to be trained on a data set containing pairs
of image input and their corresponding animal label. A training data set Dsup, can
then be defined as:

Dsup = [[x1, y1], [x2, y2], ...[xn, yn]]

Where x i is an input, and yi is the corresponding label (or target value). The
agent trains on this data set D to learn a function that maps an input x to an
appropriate output y [8].

Unsupervised Learning

In unsupervised learning, the training data is unlabeled, and the agent is expected
to learn patterns and gather knowledge from within the data itself without any
explicit supervision in the form of target values or labels during training. Due
to unsupervised learning not requiring labelled data, it circumvents the need for
extensive labelling work which can be time and resource costly [8]. A more specific
example of unsupervised learning (Autoencoders) is explained in section 2.3.4.

Since unsupervised learning doesn’t require any labels yi , a training data set
Dunsup can be defined as:

Dunsup = [x1, x2, ...xn]

Where x i represents a data input, e.g. an image or generally a set of values.

2.1.2 Deep Learning

As machine learning is a sub-field within AI, deep learning is then again a sub-field
within machine learning. Deep learning refers to the group of methods of machine
learning involving the use of deep neural networks. Deep neural networks are
networks comprised of multiple layers of simple, adjustable computing elements,
e.g. weights and biases [8].

Deep neural networks were originally inspired by the structure and flow of the
human brain and its brain cells. One key component that the neural net mimics,
is the brain’s neuron in the form of a perceptron. The perceptrons in a neural
network are combined together in a connected and layered structure which is
shown in figure 2.1. With these perceptrons, or nodes, their activation functions,
weights between layers, and bias’, the network is able to learn a mapping between
an input X and an output Y [8]. More about different types of machine learning
is discussed in section 2.1.1.

Being one of the most common approaches to machine learning, deep learning
is a versatile and widely applicable method. It can effectively handle complex data,
and also plays a significant role in this thesis due to its usage within reinforcement
learning [8]. Within reinforcement learning, a deep neural network can act as both

Chapter 2: Background and Related Work 7

Figure 2.1: Figure of a neural network with two hidden layers

a policy mapping between state and action, and as a state-value mapping, which
is explained further in section 2.2.

Activation Function

One of the explanations as to why deep learning is so powerful is the universal
approximation theorem. This theorem implies that neural networks with a linear
output layer with a minimum of one hidden layer consisting of enough neurons
with a "squashing" activation function can approximate any continuous function
on a closed and bounded subset of Rn [9].

Choosing a fitting activation function is an important part of designing a neural
network, and impacts the results of the training process and the rate of conver-
gence of the network. Different activation functions can be optimal for different
scenarios, and are not necessarily only placed on the neurons in the hidden layers.
Below is a list of some common activation functions, where z denotes the sum of
weighted input plus bias.

• Rectified Linear Unit (ReLU): ReLU is similar to the identity function, how-
ever if the input z ≤ 0, the output from ReLU will be zero. ReLU is con-
sidered to be the default recommendation for most modern feed-forward
neural networks [9].

ReLU(z) = max(0, z)

• Leaky Rectified Linear Unit (LReLU): Similar to ReLU, except it allows for
a small output when z ≤ 0.

LReLU(z) =

¨

z, if z > 0,

0.01z, otherwise.

8 Szewczyk A.: Reinforcement Learning in CARLA

• Sigmoid (σ): Sigmoid outputs a values between zero and one.

σ(z) =
1

1+ e−z

• Hyperbolic Tangent (tanh): tanh outputs values between minus one and
one. In the equation below, σ is the sigmoid function.

tanh(z) = 2σ(2z)− 1

• Softmax: Softmax is commonly used in the output layer of a neural net-
work, as it limits the network to output an output vector where the sum of
the vector is equal to one, making it a good alternative when the network is
expected to handle classification problems, or generally output probability
distributions.

so f tmax(zi) =
ezi

∑

j ez j
,

where zi denotes one element in the vector z.

Loss Function

An important part of estimating the accuracy of a neural network is determining
how much its output values deviate from the desired target values. In other words,
the degree of error the network makes on every training data frame after propagat-
ing it through its layers, by comparing a network’s output ŷ against the desired
target value y of that data frame. ŷ and y are compared using a loss function, and
the result from this comparison (the loss) is what fundamentally impacts how the
network’s parameters will be updated. The choice of a loss function is therefore an
important decision to make during the designing of the network, and the optimal
loss function can vary based on the network’s architecture, training process and
the training data.

Below is a list of different loss functions, where ŷ refers to the network’s out-
put, and y refers to the target value. n is the number of outputs from the network
based on a sample of n data frames in the training data.

• Mean Squared Error (MSE): MSE estimates the error by squaring the dif-
ference between prediction and target. Meaning that MSE strictly will not
return negative numbers.

MSE(ŷ) =
1
n

n
∑

i=1

(ŷi − yi)
2

• Root Mean Squared Error (RMSE): Similar to MSE, except it outputs the
root of MSE.

RMSE(ŷ) =

√

√

√1
n

n
∑

i=1

(ŷi − yi)2

Chapter 2: Background and Related Work 9

• Cross Entropy (CE): CE compares two probability distributions, ŷ and y ,
by measuring the entropy between these two distributions, which makes it
a good alternative for classification or logistic regression.

C E(ŷ) = −
n
∑

i=1

yi log(ŷi)

Back-propagation (backprop)

Feed-forward neural networks take in an input x as an initial flow of informa-
tion that propagates forward throughout the network’s hidden layers until it gets
output as an output ŷ , which can be compared against a target y to produce a
scalar loss J(θ). This information flow is altered throughout the network by the
weights, biases and activation functions at each layer. From this we can form an
optimization problem, as the activation functions commonly are immutable dur-
ing training, the weights and biases in the network need to be altered to best
minimize the loss [9].

In 1986, Rumelhart et al. [10] introduced the back-propagation algorithm, not
to be confused with stochastic gradient descent. The back-propagation algorithm
allows for the information gathered from the loss to be propagated backwards
through the network, which ultimately computes a gradient. This gradient can
then be used by another algorithm, such as stochastic gradient descent, to have
the network update its parameters to learn accordingly [9].

The back-propagation algorithm works in two stages, where the first stage in-
volves passing information forward in the network, which allows for the loss to be
created. The second stage is the backwards pass, where we use the chain rule from
calculus to compute the gradient from the loss. Ultimately, with gradient descent,
we update all the weights and biases in the network, which can be formulated as:

θ t+1 = θ t −α
∂ L
∂ θ

,

where L is the loss function, and θ denotes all the weights and biases in the
network. ∂ L

∂ θ is the gradient computed in the backwards pass, and α is the learn-
ing rate. As this is gradient descent, the term including the gradient is negatively
signed.

Issues related to training

• Overfitting is a problem that can occur in which the network too closely fits
to its training dataset, and badly generalizes outside the dataset it trained
on. This problem can occur in cases where the network has too many para-
meters or trains on a not adequately diverse or large enough dataset. Apart
from resizing the network or modifying the dataset, one can add regulariz-
ation such as dropout, L1 or L2, or add noise or augmentations to the data

10 Szewczyk A.: Reinforcement Learning in CARLA

being input to the network. On the other hand, underfitting is the scenario
where the network becomes too simplistic to accurately represent the data.
• The Vanishing gradient problem can occur during back-propagation in many-

layered feed-forward networks when the partial derivative of the error func-
tion with respect to a network weight (∂ L

∂ω) becomes vanishingly small,
which is the result of multiplying many low-value terms. With a vanish-
ing gradient, the weights of the network get insignificantly updated, and
the network might become stuck in local minima. In relation, exploding
gradients happen when gradients become too large, which is the result of
multiplying multiple high-value terms, making the network unable to up-
date its weights in a stable manner. This can occur when activation functions
whose derivatives can have large values are used.

Training, Testing and Validation

A common practice in deep learning is to have three separate datasets, a train-
ing dataset, a testing dataset and a validation dataset. The training dataset is
commonly the largest of the three, and is used to generate losses to perform back-
propagation and ultimately train a network. The validation dataset is a dataset
usually passed through the network after each epoch, in order to get an unbiased
evaluation of the network’s performance. The evaluation can be used to detect
whether the network generalizes well from the training dataset (not overfitting),
and can also be used for hyperparameter tuning. After training has finished, we
want to get an unbiased evaluation of the performance of the network by passing
data through the network that it has not been trained on. The predictions of the
network are then compared to targets, and we can measure the network’s per-
formance in some desired metric.

2.2 Reinforcement Learning

As opposed to imitation learning [11], where an agent learns how to act based on
a labelled dataset, reinforcement learning lets an agent interact with an environ-
ment and periodically receive rewards based on how it acts. This reward allows
the agent to reflect on how it acts, and how it should change its policy. An example
of a reward function could be in a simple game of tic-tac-toe, where a win results
in a reward of 1, loss 0, and a draw 1

2 . In the case of imitation learning, an agent
is not expected to perform better than what he is imitating, which in the field of
autonomous motor vehicles often is a human being. Reinforcement learning on
the other hand can in theory allow for an agent to explore and potentially reach
a better than human performance [8].

The main objective of a reinforcement learning algorithm is to maximize the
expected sum of rewards. The environment is usually in the form of a Markov
decision process (MDP), where the agent needs to choose an action based on the
current state in the environment, where some states result in "better" or "worse"

Chapter 2: Background and Related Work 11

rewards. The agent’s policy (denoted as π) is what determines which action the
agent chooses both outside of training, and during training (depending on the
training being off-policy or on-policy). It is this policy π which the agent needs to
optimize during training to achieve its ultimate goal of maximizing its expected
sum of rewards [8].

A more extensive explanation of reinforcement learning is given by Stuart
Russell [8] and Richard S. Button [12].

2.2.1 Markov Decision Process

A Markov decision process is a sequential decision problem in a stochastic envir-
onment with a transition model that specifies the probabilistic outcomes of any
action and a reward function that specifies the reward from each state [8]. Given
an agent in a current state st (in a state space S) with its reward rt , the agent can
choose to perform an action at (from an action space A, or if the state has limited
actions As), and based on a transition probability function p and at , the agent can
in the next time step t + 1 end up in a new state st+1 with its reward rt . p can be
defined as:

p(s′|s, a) = Pr(st+1 = s′|st = s, at = a),

where p(s′|s, a) is the probability that action a in state s at time t will put the
agent at the next state s′ at time t + 1. As the transition probability function only
depends on a current state s, and an agents action a, and is independent from
all previous states and actions, it satisfies the Markov property. From a given first
state s0 and to some final state sn, and the actions chosen in between, we can
define an agents trajectory τ, where τ= {(s0, a0, r0), ..., (sn, an, rn)}.

2.2.2 Bellman equation

In reinforcement learning, a common task is to estimate an action-value function
Q(s, a) for each state s in the environment. A usual approach is to let an agent
act out a full episode in either an on-policy or off-policy manner, and retroact-
ively update an action-value function based on the agent’s trajectory, which can
be achieved using the Bellman equation. The Bellman equation in a deterministic
environment:

V (s) = max
a∈A(s)

∑

s′
[R(s, a) + γV (s′)], (2.1)

where V is the value function that gives the value of a given state s, and γ is a
discount factor. The Bellman equation computes the value of a state s, by looking
at the reward of the next step, plus the expected value from the subsequent states
[8]. The action-value function Q(s, a) is also directly related to the value function
as follows:

12 Szewczyk A.: Reinforcement Learning in CARLA

V (s) = max
a∈A(s)

Q(s, a), (2.2)

2.2.3 Reward Function

As one of the fundamental parts of reinforcement learning is for an agent to max-
imize its expected reward, the use and design of a fitting reward function are
critical for the success of the learning algorithm. As reinforcement learning usu-
ally implies that an agent starts with a policy that gives random actions, a good
reward function is expected to give the agent a good indication as to what actions
are "good" and which are "bad". In scenarios where rewards are too low, or too
hard to earn, random actions might not be enough for the agent to start learning
a good policy [12].

Given the problem of learning to drive in an urban environment, reward shap-
ing can become complex. In cases of racing on a track, reward could be simply
defined as the longer the distance driven, in the shortest amount of time, the
higher the reward. In urban driving, there are traffic laws, pedestrians, other cars,
traffic lights and signs that the agent needs to learn to act accordingly to. Reward
can then be based upon several factors from the environment, such as collision
with other pedestrians and running red lights resulting in a negative reward, or
staying center lane and yielding for cars resulting in a positive reward.

A reward at a given time step t is usually defined as rt = R(st+1, st , at), where
R is a reward function. Reward can also be defined over a trajectory τ, where
we can sum all rewards over a finite and sequential amount of steps T in the
environment, which can be written as:

R(τ) =
T
∑

t=0

rt

Using trajectories, we can put rewards from states and actions in relation to
each other in time, and not just evaluate the agent’s policy at given isolated states
and actions. Additionally, we can add a discount factor γt , so that we can value
actions closer in time.

2.2.4 Deep Reinforcement Learning

Deep reinforcement learning is a method of reinforcement learning that includes
the use of deep neural networks. The name stems from the combination of rein-
forcement learning and deep learning. Deep reinforcement learning algorithms
usually use deep neural networks as an agent’s policy, which maps states to ac-
tions. This allows agents to effectively handle much more complex and varied
inputs, such as images, continuous state spaces and output into a more complex
action space [12].

Chapter 2: Background and Related Work 13

Policy Representation

The policy is, simply put, just a mapping between states and actions. After an
agent is given a state from the environment, it chooses an action based on this
state and its policy. The states in an environment can be represented in several
ways, some can be represented in a table form, such as the environment in figure
2.2, and others can be represented with continuous values. Action spaces can also
be represented as both discrete and continuous values.

Table policy: Given the problem of finding an optimal path from start to finish
in a discretized environment such as the checkered board shown in figure 2.2, a
good policy mapping can be represented as a table as well. In this table, the input
to the mapping is the x and y position of the agent on the board, and the output
is an action that is either up, down, left or right. In this case, both the state space
and the action space are discrete.

Figure 2.2: Figure of a optimal path problem environment to the left, and a pos-
sible optimal table policy to the right.

Policy networks: In scenarios where an agent is learning how to drive in urban
environments, inputs from the environment can often come in the form of speeds,
positions, accelerations and video/images, that come in the form of continuous,
high-dimensional values. Continuous and high-dimensional spaces will in most
cases be too complex to be handled efficiently by a table policy, and to be updated
accordingly. Therefore, neural networks, or policy networks, can be used to map
between states and actions.

Policy Gradient Methods

Policy gradient methods are a type of reinforcement learning techniques that aim
to optimize policies with respect to expected reward using gradient descent. In
regards to how the policy changes, the methods use an estimate of the gradient of
the expected rewards to evaluate whether or not the changes made to the policy
will be beneficial or not. For one of the more simple gradient methods, vanilla

14 Szewczyk A.: Reinforcement Learning in CARLA

gradient method (or REINFORCE policy gradient method), an estimated gradient
is given by:

ĝ = Êt[∇θ logπθ (at |st)Ât], (2.3)

where Ât is the estimator of the advantage function at a time step t, and
Êt is the empirical average over a finite batch of samples, or trajectory, τ. The
advantage function is a measure of how much a certain action in a given state is
either "good" or "bad". It can be denoted as:

A(s, a) =Q(s, a)− V (s),

where Q(s, a) is the expected reward of an action a from a state s, and V (s) is
the expected reward from state s prior to the action.

With equation 2.3, we can generate a loss function for a policy network with
respect to its parameters denoted as θ :

LPG(θ) = Êt[∇θ logπθ (at |st)Ât], (2.4)

Proximal Policy Optimization (or PPO) [13] is a policy gradient method that
builds upon the work from Schulman et al. [14] which initially introduced Trust
Region Policy Optimization (TRPO). PPO does have some of the benefits TRPO
has, but is much simpler to implement, can be more easily applied to a wider
range of problems, and has better sample complexity [13]. Schulman et al. [13]
introduces a set of PPO methods, but in the case of this thesis, we will only be
focusing on the method that uses a clipped surrogate objective. This clipped ob-
jective function is defined as the following:

LC LI P(θ) = Êt[min(rt(θ)Ât , cl ip(rt(θ), 1− ε, 1+ ε)Ât)], (2.5)

where rt(θ) denotes the probability ratio πθ (at |st)
πθold

(at |st)
, which means that rt(θold) =

1. ε is the clipping parameter. rt(θ), in combination with the clipping function, is
used to discourage and limit large deviations from the original θold .

2.3 Computer Vision

The following section will cover some topics related to computer vision, and tech-
niques created to help machines more easily interpret complex and high-dimensional
image and video data. The section will cover the types of artificial neural networks
known as CNN and ResNet, and will also cover semantic segmentation.

2.3.1 Convolutional Neural Networks (CNNs)

A convolutional neural network is a class of neural networks that employ one
or more convolutional layers, and are common to use when analyzing image or
other grid-like data. Looking at natural images, they usually contain statistical

Chapter 2: Background and Related Work 15

properties that are invariant to spacial shifts. In practice, this means that an im-
age containing motives, usually still remains an image with said motives even
when the motives are moved a few pixels in a direction. The main advantage of
the CNN is that they are shift invariant by using shared weights across multiple
image locations. These shared weights are known as the kernel, and the process
of applying this kernel across the image is known as a convolution. The method
has proved to be highly successful in practical application [9].

For a two-dimensional image I as input, we can use a two-dimensional kernel
K , this kernel K slides over the image to output a feature map S. If the convolution
outputs into a two-dimensional feature map, we refer to a feature at position (i, j)
as S(i, j). The value in S(i, j) is defined as:

S(i, j) = (I ∗ K)(i, j) =
∑

m

∑

n

I(i +m, j + n)K(m, n), (2.6)

where K is a kernel with a size mxn. A visual representation of the convolution
process can be seen in figure 2.3 where the kernel moves with a stride of one. After
S is calculated, all the values in the feature space are passed through an activation
function before being passed to the next layer.

In the examples above, the input I is a two-dimensional data structure, how-
ever, CNN can in theory handle data for any n-dimensional array of inputs. In
the cases where CNNs handle RGB encoded images, the input is expected to be
three-dimensional, as each pixel contains the three RGB values that represent its
color. Another example of CNNs handling three-dimensional data are Volumetric
CNNs, which can be used to classify objects in three-dimensional data [15].

Max Pooling and Average Pooling

A common method used in CNNs after a convolution has been performed, is to
apply a pooling function to further modify the output from the convolution. A
pooling function can help to effectively down-scale the output from the convolu-
tion layer, by replacing the values of a rectangular area within the output with
a summary statistic of the area. Two common pooling functions are max pooling
and average pooling [9].

In the two-dimensional case of a 2x2 pooling function over a 4x4 data struc-
ture with a stride of two, the result from the pooling will be a 2x2 data structure.
As the pooling function is 2x2 with a stride of two, the targeted regions in the
original output don’t overlap. If the max pooling function is being utilized, the
output from each region after the pooling function is applied is the maximum
value in that 2x2 region. On the other hand, if the average pooling function is
being used, then the average value from that region will be returned.

2.3.2 Residual Neural Networks (ResNet)

As neural networks grow deeper, the task to optimize them, and have them train
reliably in a matter that make them more accurate, and able to store more know-

16 Szewczyk A.: Reinforcement Learning in CARLA

Source: [9]

Figure 2.3: Figure illustrating how a two-dimensional kernel in applied to a two-
dimensional data-structure to output into a two dimensional feature map.

ledge, proves to be a hard task to tackle. In addition, as traditional neural net-
works grow deeper, the problem of vanishing/exploding gradients become more
prominent. In 2015, He et al. [16] introduced residual networks, which allowed
for deeper neural network to more easily be optimized, and that gained accuracy
with considerably increased depth [16]. The ResNet architecture has since become
a widely used network architecture within the field of computer vision.

A residual network consists of several residual blocks. An example of a residual
block can be seen in figure 2.4. A residual block receives an input x , and passes
it through its multiple layers, as a mapping F(x). Before being output from the
block, its skip connection adds the original input x to its mapped value F(x),
which results in F(x) + x .

Consider a mapping H(x) to be the underlying mapping that needs to be fit
by a couple of layers of a network. By utilizing skip connections, we allow for the
network to also fit the residual mapping. This means that instead of just H(x), we
let the layers fit F(x) := H(x)− x , giving H(x) := F(x) + x [16].

There exists multiple different variants of ResNet, these include the ResNets
having different amounts of learnable layers, like ResNet-34 having 34 learn-

Chapter 2: Background and Related Work 17

Source: [16]

Figure 2.4: Figure showing a residual block.

able layers and ResNet-101 having 101 learnable layers. Related to ResNet, there
also exists architectures which utilize skip connections such as HighwayNet [17]
(weighted skip connections), and DenseNet [18].

2.3.3 Semantic Segmentation

Semantic segmentation is the process of assigning a label to every individual pixel
in a given image, and is a popular tool in the field of computer vision. The main
goal of the method is to help learning algorithms to better analyze, differentiate
and classify objects and concepts in images. During training, semantic segmenta-
tions are most commonly used as target values for the network, where the original
RGB image is the input. In figure 2.5, we can see an example of an RGB image,
and its semantically segmented counterpart.

In a semantically segmented image, each individual pixel of an image has
been given a label, usually in the form of an integer value ranging from zero to
n − 1, where n is the number of labels. In an urban driving environment, these
labels could correspond to the five classes vehicles, pedestrians, road, sidewalk
and "other", where "other" is a class relating to any class which is not within the
first four classes. As a network is input RGB images from this driving environ-
ment, it needs to output into a similar amount of feature maps as the amount of
categories of labels. In practice, if the original RGB image matrix is of the shape
3× 480× 360, the resulting semantically segmented image matrix from the net-
work will be of the shape 5×480×360. With the use of a Softmax function across
the label category dimension, we can ultimately get a probability distribution.

18 Szewczyk A.: Reinforcement Learning in CARLA

(a) RGB image (b) Semantically segmented image

Source: [2]

Figure 2.5: Figure showing an RGB image and its semantically segmented coun-
terpart. The images are extracted from the one million frames World on Rails
dataset [2].

2.3.4 Autoencoders and Dimensionality Reduction

In the field of statistics, the dimensionality of a dataset refers to how many at-
tributes a dataset has. In the case of a dataset holding only two attributes (e.g.
gender and hair color), the dataset is said to have a dimensionality of two. Datasets
are usually of much higher dimensionality than two, and in the case of machine
learning these datasets can often come closer to thousands or even millions of
dimensions. The field of dimensionality reduction focuses on representing high-
dimensional data in a more sensible way, for humans or even AI [8]. Dimension-
ality reduction can be performed using traditional methods such as PCA [19] or
LDA [20], or through deep learning methods like autoencoders [8].

The autoencoder consists of two main parts, an encoder part and a decoder
part, as can be seen in figure 2.6. The main goal during the training of a simple
autoencoder is to fit a model such that the output yi is similar to its input x i , more
specifically yi = f (x i) ≈ x i . This task is relatively trivial. However, the benefits
of the autoencoder lies in its architecture. Since the autoencoder has a bottleneck
between the input and the output layer, it needs to compress the input data as
effectively as possible, at the bottleneck, in order to have it be reconstructed with
as little loss as possible.

Post-training, the autoencoder can be divided into an encoder model and a
decoder model. The encoder has learned to take an input x i and encode it to a
more condensed representation zi , while the decoder has learned to take some
condensed representation zi and reconstruct it into some output x̂ i , which should
be similar to the original x i [8]. In this thesis, mostly the properties of the encoder
are utilised.

The encoder part of an autoencoder can be beneficial to use in certain re-
inforcement learning scenarios. In cases where an agent observes the environ-
ment through very high-dimensional observations, such as images, it can take
both longer, and be more challenging for the agent to create a good internal rep-

Chapter 2: Background and Related Work 19

Figure 2.6: Figure of an autoencoder with a latent space, or bottleneck, of 2
nodes

resentation of the data, whilst also trying to learn a good policy for acting in the
environment. Using a pre-trained encoder from an autoencoder, which can have
the agent train on fewer input parameters, and possible a better representation of
the observation, which can be beneficial [21].

2.4 Approaches to autonomous driving

This section will cover the two main approaches to autonomous driving, modular
and end-to-end, including some of their advantages and disadvantages. A more
extensive explanation of approaches to autonomous driving can found in Janai et
al. [22].

2.4.1 Modular

The modular approach implies that the autonomous system that operates the car
consists of separate modules that individually perform separate tasks that are
needed for the car to operate in its environment. Modules could be human-made
or be based on machine learning. Modules are usually structured in a pipe-lined
manner. The tasks these modules can handle might be navigation, lane orienta-
tion, perception, vehicle control, object detection etc. The modular approach is
considered to be the standard approach in the autonomous driving industry [22].

20 Szewczyk A.: Reinforcement Learning in CARLA

An advantage of using a modular approach is that the pipeline allows for
human interpretable intermediate representations to be extracted from between
modules, which allows for humans to gain insights into possible reasons as to
why a system is failing, given system failure [22]. The modular approach does
require additional domain knowledge in comparison to an end-to-end approach.
However, in a commercial setting, the modular nature of the system allows for
separate teams to work and specialize in different aspects of the driving system
simultaneously.

2.4.2 End-to-end

In contrast to a modular approach, the end-to-end approach focuses on learning
a driving policy that maps directly between observations from the environment to
vehicle actions. This driving policy usually comes in the form a deep neural net-
work, that outputs either discrete or continuous vehicle control values. The neural
network can be train in either an imitation learning manner, or in a reinforcement
learning manner. However, there are also approaches that use a combination of
both reinforcement learning and imitation learning, which can combine the be-
nefits of both exploration and expert data [23].

A large problem related to end-to-end approaches, is that the neural network
acts as a "black box" which makes it harder for humans to understand the reas-
oning behind the network’s inferences. In cases where the system’s actions are
faulty, it is therefore harder to understand why this/these actions were chosen.
For end-to-end systems trained in a reinforcement learning manner, the approach
is expected to act in a simulated environment during training, as early actions in
the reinforcement learning process can be considered to be random and danger-
ous for real life situations. In contrast to the modular approach, the end-to-end
approach does not necessarily require the equivalent amount of domain know-
ledge.

2.5 Technology

This section will cover some of the technology related to this thesis. This includes
the Car Learning to Act (CARLA) driving simulator, some important benchmarks
used in CARLA to evaluate performance of autonomous driving systems, and ma-
chine learning frameworks.

2.5.1 Car Learning to Act (CARLA)

Car Learning to Act (CARLA) [1] is an open-source urban driving simulator used
for research within the field of autonomous driving. The system has been built
from the ground up to support the development and training of autonomous driv-
ing systems, and also for the systems to be evaluated through various benchmarks.

Chapter 2: Background and Related Work 21

A more extensive explanation of the CARLA simulator can found in Dosovitskiy et
al. [1].

The CARLA simulator is by it self hosted on a port in a given computing system,
and the user can communicate and interact with simulator via a Python API. In
the CARLA simulator, the user can choose to load different maps that traffic can be
spawned within. These maps are also referred to as towns. For this thesis we will
refer to eight different publicly available towns for the CARLA simulator. These
towns, and a short description (as presented in the CARLA simulator docs [24])
of each, can be found in the list below:

• Town01: A basic town layout with all "T junctions".
• Town02: Similar to Town01, but smaller.
• Town03: The most complex town, with a 5-lane junction, a roundabout,

unevenness, a tunnel, and much more. Essentially a medley.
• Town04: An infinite loop with a highway and a small town.
• Town05: Squared-grid town with cross junctions and a bridge. It has mul-

tiple lanes per direction. Useful to perform lane changes.
• Town06: Long highways with many highway entrances and exits. It also

has a Michigan left.
• Town07: A rural environment with narrow roads, barely non traffic lights

and barns.
• Town10: A city environment with different environments such as an avenue

or a promenade, and more realistic textures.

The CARLA simulator also allows for the weather and lighting conditions to
be changed in the town that is currently being used. The user can change the
weather and lighting conditions by augmenting certain parameters such as cloud-
iness, precipitation, sun altitude angle or fog density to name a few. 14 different
weather and lighting condition combinations are however also defined as a set of
presets. Examples of these weathers are ClearNoon, CloudyNoon, WetNoon and
WetCloudyNoon. In this thesis, we will refer to weather and lighting conditions
as just weather.

NoCrash Benchmark

Evaluation in the CARLA simulator can be performed using different benchmarks.
Examples of these benchmarks can be the CARLA benchmark [1] or the NoCrash
benchmark [7]. For this thesis, we will only focus on the NoCrash benchmark,
as it is the only benchmark utilized for agent evaluation in the two experiments
conducted.

The NoCrash benchmark is a high-demanding benchmark that requires an
agent to adapt to dynamic urban driving scenarios, with different levels of traffic
density, as well as a different types of weather. The different levels of traffic dens-
ity, also referred to as tasks, are empty, regular and dense. The empty task does
not spawn any pedestrians or other vehicles, the regular task spawns some ped-
estrians and vehicles, and the dense task spawns a higher level of pedestrians and

22 Szewczyk A.: Reinforcement Learning in CARLA

vehicles than regular.
During training and evaluation for the NoCrash benchmark, the agent is ini-

tially trained to act in Town01, and is evaluated in both Town01 and Town02.
The NoCrash benchmark does also utilize six different weathers, where four are
used for training, and all six are used for evaluation. The training weathers are
ClearNoon, WetNoon, HardRainNoon and ClearSunset, and the last two testing
weathers being WetSunset and SoftRainSunset.

In each town, there are 25 different routes that the agent is evaluated on. For
each route, there are three different tasks, and six different weathers, meaning
that the agent is ultimately evaluated on 2× 25× 3× 6= 900 different episodes.
Throughout an episode, the agent receives high-level commands that tell the agent
which path to follow. Episodes end with the agent either reaching the end of the
route, collision, deviating too far from the route, or by the time limit of the route
being reached. Agents can be evaluated on several different metrics, one of the
most common being success rate, which is defined as the number of times the
agent completed an episode compared to the total number of episodes.

2.5.2 Machine Learning frameworks

Two common machine learning frameworks in the research and development in-
dustry are TensorFlow [25] and PyTorch [26], developed by Google Brain and
Facebook’s AI Research lab, respectively. The frameworks are open-source tools
that aim to give simpler interfaces that allow researchers and developers to build
and deploy machine learning models much faster, easier and reliably, than begin-
ning the development process from scratch [25] [26].

The open-source machine learning framework PyTorch allows for an easy set-
up and installation process, and allows for the creation of machine learning mod-
els down to a layer-to-layer scale. PyTorch also allows for accelerating training
with both AMD and Nvidia GPUs. For Nvidia’s GPUs, the CUDA (Compute Unified
Device Architecture) library allows for software to utilize GPUs and their parallel
processing capabilities, which in machine learning can be remarkably more effi-
cient than the CPU. The cuDNN (CUDA Deep Neural Network) also allows the use
of optimized GPU-accelerated primitives for the use and training of deep neural
networks.

Torchvision is a library that is part of PyTorch. The Torchvision library in-
cludes an array of popular datasets, model architectures and image transform-
ations. Some model architectures can also be fetched that have been pre-trained
on popular datasets such as ImageNet [27] or COCO [28].

2.6 Related Work

This section will cover the related work that has had major influence on the area
of study that this thesis exists within. The works are presented in chronological
order in respect to publication date.

Chapter 2: Background and Related Work 23

2.6.1 Alvinn: An autonomous land vehicle in a neural network (1989)

Pomerleau [4] is one of the first instances of autonomous driving using an artificial
neural network. The fully-connected feed-forward network consisted of an input
layer, an output layer and a hidden layer, totalling only three layers. The input to
the network where divided into three main types:

• 30x32 Video Input Retina: Video camera input from a road scene, where
the activation level is proportional to the intensity of the blue color band of
the corresponding path of the image. Blue was chosen since it provided the
highest contrast between road and non-road.
• 8x32 Range Finder Input Retina: Laser range finder input, where the ac-

tivation level is proportional to the proximity of the corresponding area in
the image.
• 1x1 Road Intensity Feedback Unit: Indicates whether the road is lighter

or darker than the non-road in the previous image.

These values totalled 1217 input units to the neural network, which ultimately
outputs into 46 units where 45 of these is a linear representation of the turn
curvature which the vehicle should follow in order to move towards the center of
the road. The middle units represented no turn, and left and right from the center
represented successively sharper left and right turns.

The system was trained for 40 epochs on 1200 data samples, and managed
to output turn curvatures which were within two units of the correct answer ap-
proximately 90% of the time on test examples. ALVINN ultimately managed to
accurately drive 400 meters through a wooded area under sunny fall conditions.
Due to the limited processing power of the on-board Sun computer that ALVINN
was equipped with [4], it could only drive at a speed of 0.5 meters per second.

2.6.2 End-to-end Driving via Conditional Imitation Learning (2017)

Codevilla et al. [29] proposes conditioning imitation learning on high-level com-
mand input, and introduced a novel imitation learning approach called condi-
tional imitation learning, which learns a driving policy that acts as a chauffeur
that can handle sensorimotor coordination, but continues to act upon given high-
level navigational commands. The approach aims to remove the ambiguity in situ-
ations that present multiple actions, i.e. arriving at an intersection where one can
choose between multiple directions (straight, left, right). The work presented by
Codevilla et al. [29] has ultimately had a large impact in the field of end-to-end
learning for autonomous vehicles, and has been used in several projects [2] [30]
[3].

In order to remove ambiguity from traffic situations, each observation that is
to be fed into the agent is also accompanied by a high-level command, which spe-
cifies a navigational direction that the agent is expected to move towards. During
training, each data point in the training set therefore consists of an observation,
a high-level command (encoded as a one-hot vector), and a target action. This

24 Szewczyk A.: Reinforcement Learning in CARLA

does require the system to have a separate navigational resource to constantly
feed navigational commands to the agent at any given time outside of training.

Source: [29]

Figure 2.7: Figure showing the two network architectures for command-
conditional imitation learning presented in Codevilla et al. [29], where (a) shows
the architecture where the high-level command in processed as input by the net-
work along with the image and other measurements. (b) shows the branched
network, where the command is used as a switch to select which sub-part of the
network the image and measurement data will be passing through.

Codevilla et al. [29] explores two different network architectures in regards
to how an end-to-end system should handle a high-level command input, these
two networks are shown in figure 2.7. Figure 2.7 (a) shows the command input
network architecture which handles an image, measurements and a high-level
command as input in separate modules, from which the results are concatenated
into a single vector, to be processed further in the network. 2.7 (b) shows the
branched network handles image and measurements as input in separate modules,
and the high-level command as switch to different branches, where each branch
represents and is specialized to perform a single high-level command.

After testing the different network architectures in both a real world scenario
using a toy truck, and in the CARLA simulator, Codevilla et al. [29] showed that
the branched network performed notably better than the command input network.
The results also showed that performing augmentations on the training data, such
as augmenting image hue, contrast and brightness, randomly dropping pixels and
applying Gaussian blur and noise, notably improved the agent’s performance and
generalization.

2.6.3 End-to-End Model-Free Reinforcement Learning for Urban Driv-
ing using Implicit Affordances (2019)

Toromanoff et al. [30] presents an RL algorithm for urban driving that, at the time,
was the first RL algorithm to successfully handle the complex nature of the CARLA
environment, being able to handle lane keeping, pedestrians, vehicle avoidance
and traffic light detection. Toromanoff et al. [30] also managed to win the track
"Camera Only" in the CARLA challenge.

Chapter 2: Background and Related Work 25

Toromanoff et al. [30] use a large custom ResNet-18 encoder which is trained
using supervised learning from data collected from driving around in the CARLA
simulator using CARLA’s autopilot. The encoder is trained using loss from tasks
relevant to autonomous driving, such as semantic segmentation, traffic light pres-
ence, intersection presence and lane positioning.

Source: [30]

Figure 2.8: Figure showing overview of the end-to-end model-free reinforcement
learning for urban driving using implicit affordances (MaRLn) architecture.

During RL training, the encoder’s weights are frozen, and the output from
the encoder is what ultimately is used to train the rest of the network, including
its conditional branches (similar to Codevilla et al. [29]). Figure 2.8 shows an
overview of the architecture used in Toromanoff et al. [30].

2.6.4 Learning to Drive From a World on Rails (2021)

Chen et al. [2] presents the model-based approach "Learning to drive from a world
on rails", which at its time of publication achieved the best score on the CARLA
leaderboard, using 40 times less training data than the next ranking model, "End-
to-End Model-Free Reinforcement Learning for Urban Driving using Implicit Af-
fordances" [30]. It also managed to achieve new state of the art results on the
NoCrash benchmark. The authors also shows the approach’s ability to generalize
by achieving good results and still being sample-efficient on the ProcGen bench-
mark.

Chen et al. [2] starts with training a forward model of the world which is used
to simulate the actions that an agent takes, without the them actually being ex-
ecuted in CARLA. The forward model is used to estimate an action-value function
via the use of Bellman equations. This action-value function is then used to su-
pervise a visuomotor driving policy, which only takes RGB images and the current
agent speed as input.

A main part of the algorithm presented in Chen et al. [2], is the assumption
that "the world is on rails". This means that the actions the agent chooses, does
not influence the environment, but only itself (ego). With this assumption, the
state space is significantly simplified, meaning that the action-value function can
be stored in a tabular form, and that the use of Bellman equations with a learned

26 Szewczyk A.: Reinforcement Learning in CARLA

forward model is adequate.
As this thesis builds upon the work of World on Rails [2], a more descriptive

explanation of the algorithm can be found in section 3.3.

2.6.5 TransFuser (2022)

Chitta et al. [31] investigates how information from multiple sensors should be
fused together in end-to-end driving systems. Chitta et al. [31] introduce a mech-
anism called TransFuser, which integrates RGB images and LiDAR representations
using transformer modules at multiple resolutions. This allows for a perspective
view (RGB image) and a bird’s eye view (LiDAR scan) feature maps to be fused
together using self-attention. An overview of the TransFuser architecture can be
seen in figure 2.9.

Source: [31]

Figure 2.9: Figure showing an overview of the TransFuser architecture.

The TransFuser architecture consists of two main branches, with transformer
modules connected between them for intermediate information to be shared between
the two branches. From figure 2.9, we also see that this fusion is applied at dif-
ferent resolutions, and is ultimately combined to a 512 dimensional vector and
passed on a multi-layer perceptron network, before ultimately being passed on to
a waypoint prediction network.

At the time of its original submission, TransFuser outperforms significantly
outperformed other models on the CARLA leaderboard in terms of driving score,
and at the time of writing currently stands among the top three on the CARLA
leaderboard. The paper also introduce a new challenging benchmark Longest6,
which uses long routes with high traffic density and pre-crash scenarios [31].

2.6.6 Learning from All Vehicles (2022)

Learning from All Vehicles (LAV) [32] introduces a driving system, that during
training not only trains on the experiences from the ego-vehicle, but also all the
other vehicles that it observes. Without using the other vehicles’ sensors, the sys-

Chapter 2: Background and Related Work 27

tem trains on predicting trajectories of the other vehicles in the ego-vehicle vicin-
ity. An overview of a LAV agent’s inference pipeline can be seen in figure 2.10.

Source: [32]

Figure 2.10: Figure showing an overview of the inference pipeline to a LAV agent.

Chen and Krähenbühl [32] aims to train a deterministic driving model that
outputs control commands based on RGB images, LiDAR scans, high-level com-
mands, and speed. The agent’s pipeline consists of three main modules; perception
module, motion planner, and low-level controller. The perception model aims to
learn a mapping between a combination of RGB images and LiDAR scans, and a
two-dimensional map-view representation of the near vicinity of the ego-vehicle.
The motion planner uses these map-view’s to predict the ego-vehicles future tra-
jectory, but does also, during training, predict the future trajectories for close-by
vehicles.

At the time of their submission, LAV was at first place, but at the time of writing
is currently ranked second best on the CARLA leaderboard, with still the best route
completion of any other entry.

Chapter 3

Methodology

This chapter covers the methodology of the project. The first section will cover
the technological choices and the resources used in this thesis. Section 3.2 will
cover some changes made in terms of software versions, and section 3.3 will give
a deeper description of the World on Rails [2] algorithm. The last two sections
will cover the experiments conducted in this thesis.

3.1 Tools and Resources

This section will cover some of the technological choices made in regards to the
project, this includes the choice of simulator, the machine learning framework,
and hardware resources.

3.1.1 Software

Simulator

The simulator chosen for this project was the CARLA driving simulator [1]. The
main reasoning behind this choice was that this project builds upon the work of
Chen et al. [2], which does part of their experiments in the CARLA simulator.
The simulator is also built with a focus on training and validating autonomous
driving systems, and provides several free assets such as car models, pedestrian
models, buildings, and maps which can be used for creating realistic simulated
environments.

Machine Learning Framework

For the machine learning framework, PyTorch was chosen. PyTorch was chosen
due to it being the main machine learning framework utilized in the World on
Rails [2] project. PyTorch is also a highly popular framework within the research
community, and allows the use of Torchvision, which contains pre-made models
that can be fetched as either non-pre-trained or pre-trained on popular datasets.

29

30 Szewczyk A.: Reinforcement Learning in CARLA

3.1.2 Hardware

For this thesis there were four hardware resources available:

• Personal laptop with an Intel Core i5-8265U CPU, 8GB RAM, and an Nvidia
GeForce GTX 1650 GPU with 4GB VRAM.
• Personal desktop with an AMD Ryzen 5 3600 CPU, 32GB RAM, and an

Nvidia Geforce RTX 3060 Ti GPU with 8GB VRAM.
• Virtual machine hosted by IDI Horizon with an Intel Xeon Gold 6342 CPU,

51GB RAM, and an Nvidia A40-16Q GPU with an allocated VRAM amount
of 16GB.
• Idun cluster hosted by NTNU High Performance Computing Group. Spe-

cifications for this resource can be found on the Idun cluster webpage (https:
//www.hpc.ntnu.no/idun/)

Due to the resource-demanding task of utilizing the CARLA driving simulator,
and using the models and methods used in the World on Rails [2] algorithm,
none of the personal resources were utilized. As the World On Rails [2] repository
proved to be difficult to implement by itself, only the Virtual machine hosted by
IDI Horizon was utilized to produce the results in this thesis. Additionally, for ease
of implementation and not having to abide by the queuing times that are expec-
ted when using the Idun cluster, we did not utilize the Idun cluster. The virtual
machine hosted by IDI Horizon had approximately 540GB of local storage, and a
10TB separate storage, which allowed for multiple large datasets to be stored and
moved simultaneously.

3.1.3 Working Environment

Throughout the span of the experiments being performed, we mainly utilized the
IDI Horizon VM. By using the VMware Horizon Client, we could access the VM
with a desktop GUI from any device connected to the NTNU campus network, or
connected to the network via VPN. We also had the ability to access the VM via
secure shell (SSH) using a Ubuntu terminal.

For management of packages and libraries for our python projects, we also cre-
ated conda environments using Anaconda [33]. Additionally, we used the open-
source code editor Visual Studio Code (VS Code) [34] as it did make navigating
through large projects easier, as well as being compatible with conda environ-
ments.

During training and evaluation of the agents throughout this project, we also
used the machine learning platform known as Weights & Biases (W&B or wandb)
[35], which allowed us to store relevant data at given steps throughout processes.
Information could be easily accessed either via local files on the VM, or online
at W&B’s webpages1. Using W&B, we were also able to record videos from the
agent’s perspective during evaluation in the NoCrash benchmark.

1https://wandb.ai/

https://www.hpc.ntnu.no/idun/
https://www.hpc.ntnu.no/idun/
https://wandb.ai/

Chapter 3: Methodology 31

3.2 Converting to PyTorch 1.10.2 and CUDA 11.3

As both the virtual machine 3.1.2 and the personal desktop 3.1.2 both utilize GPUs
built with Nvidia’s Ampere architecture which initially requires applications to be
built using CUDA version 11.0 or later [36]. The environment.yml in the World on
Rails GitHub repository specifies that the project requires the use of CUDA version
10.1, and PyTorch version 1.4.0. The latest CUDA version that PyTorch 1.4.0’s is
compiled against is CUDA 10.1 [37].

Using PyTorch 1.4.0 with CUDA 10.1 initially created issues related to run-
ning the World on Rails [38] project. The specific issues that occurred were not
investigated in-depth or documented. The choice to move versions from PyTorch
1.4.0 with CUDA 10.1 to 1.10.2 with CUDA 11.3, was therefore made to circum-
vent these issues and to also potentially improve performance. Some other python
package versions were also changed. Changes made in terms of this conversion
can be viewed in our GitHub repository 2. A list of package versions used for this
project can be found in appendix A.

Using CARLA version 0.9.10 on a GPU with the Ampere architecture with
CUDA 11.3 did prove to have some issues. First being that the simulator would
randomly crash, which required regular supervision to ensure that processes had
not stopped, and to restart them if they had. Secondly, rendering in the CARLA
simulator launched with -quality-level=Low (lower graphical settings) showed
a lot of artefacts in the form of black squares, but was not as present in the simu-
lator when launched with -quality-level=Epic (higher graphical settings). The
artefacts did however also occur on other sensor data collected from the CARLA
simulator, such as the semantic segmentations, even with -quality-level=Epic.
An example of the artefacts occurring in the renderings can be seen in figure 3.1.
To avoid having the visuomotor agent learn with RGB images containing many
artefacts, CARLA was only launched with -quality-level=Epic.

3.3 World on Rails

This section describes the World on Rails algorithm in more detail. The algorithm
can be divided into five sequential operations:

• data_phase0: Collect data in the CARLA simulator that is to be used in
the training of the forward model. The resulting dataset is a small subset of
trajectories consisting of 2400 frames. This dataset is generated by an agent
performing random actions.
• train_phase0: Train the forward model with the dataset collected in the

previous phase, data_phase0. The forward model takes as inputs an ac-
tion at from an agent and a current driving state Lt in the form of a two-
dimensional location x t , yt , orientation θt , and speed vt , and outputs the
next driving state Lt+1 as x t+1, yt+1,θt+1, vt+1.

2https://github.com/MorningClub/master-thesis

https://github.com/MorningClub/master-thesis

32 Szewczyk A.: Reinforcement Learning in CARLA

(a) Low settings (b) High settings

(c) Semantic segmentations

Figure 3.1: Figures showing how renderings in CARLA would have artefacts on
different graphical settings, and how the semantic segmentations would also have
artefacts. The semantic segmentation image was captured in CARLA launched
with -quality-level=Epic.

• data_phase1: Collect data for the visuomotor training by using a privileged
autopilot driving around on a predefined set of routes in the CARLA simu-
lator, collecting RGB images, semantic segmentations, high-level commands,
and labels in the form of proximal information such as pedestrians, vehicles,
waypoints etc.
• data_phase2: Label each data frame in the collected data_phase1 using

bellman equation evaluation and the forward model from phase0, where
labels come in the form of action value tables for steering and throttle, and
one additional bin for braking.
• train_phase2: Train a visuomotor agent on the dataset from data_phase2,

with an additional semantic segmentation loss.

For the CARLA leaderboard, Chen et al. [2] collected one million data frames
in data_phase1 which corresponded to 69 hours of simulation time. The dataset
was collected across the 8 publicly available towns in CARLA. The RGB images
collected consist of front-facing wide images and front-facing narrow images that
are collected from cameras placed at x = 1.5m and z = 2.4m on the ego-vehicle.
Examples of these images can be seen in figure 3.2. The wide image is an im-

Chapter 3: Methodology 33

age stitched up from three individual cameras with a 60°field of view, where the
side cameras are angled at 55°angles. The narrow image comes from a telephoto
camera, with a 50°field of view. The main reasoning behind using an additional
telephoto camera is that some cities in CARLA’s public towns have intersections
with traffic lights placed on the other side of the intersection, which can be hard to
distinguish in the wide camera. Figure 3.2 shows how even in dark-lit scenarios,
traffic lights from across an intersection can be hard to distinguish in the wide
image. For dataset augmentation, additional cameras are mounted with a similar
setup as the four previously mentioned, however, these cameras are rotated 30°,
giving each data frame in the CARLA leaderboard dataset a total of six RGB im-
ages. These three different camera orientations will be referred to as the three
camera yaws.

(a) Wide image

(b) Narrow image

Source: [2]

Figure 3.2: Figure showing images from the wide (3.2a) and narrow camera
(3.2b). The images are extracted from the one million frames World on Rails
dataset [2].

For the NoCrash benchmark, Chen et al. [2] collected 270 thousand frames.
These frames were collected in the training town Town01, and the model was
tested in both Town01 and Town02 in different weather as is the procedure in the
NoCrash benchmark. Since Town01 and Town02 don’t contain any intersection
with agents having to read traffic light states on the other side of the intersection,

34 Szewczyk A.: Reinforcement Learning in CARLA

the model in the NoCrash benchmark does not utilize the telephoto camera, and
therefore only takes as input the stitched-together wide images.

3.3.1 Bellman Evaluation

The main goal of data_phase2, is to compute action-values that will be used to
supervise the visuomotor training. Visualisations of the computed value functions
and action-value functions for given frames can be seen in figure 3.3. The value
function Vt is a NH × NW × Nv × Nθ four-dimensional tensor, where NH × NW
corresponds to the bins that are the discretized 24m2 area surrounding the vehicle,
where NH = NW = 96. Nv are the velocity bins, that are in the range [0,8] m/s
where Nv = 4. Nθ are the orientation bins, and are in the range [−95,95], where
Nθ = 5. Value maps were also generated using 5 Bellman updates, predicting
1.25s into the future.

The actions for the visuomotor agent have also been discretized into Ms ×Mt
table of bins, with an additional bin for braking. Using Ms = 9, Mt = 3, the number
of actions the agent can choose from are 28, which includes the braking action.
Using the values from the value function, they generate action-values for each of
the 28 bins as shown in figure 3.3d, implying that throttle and steering are chosen
in pairs, and no other action is performed when the agent chooses to brake. During
data_phase2, action-value tables were stored for each of the six different high-
level commands and the four speed bins covering the speed range [0, 8] m/s, and
for each of the camera yaws.

3.3.2 Reward Function

The reward function utilized during the Bellman evaluations is a function that
considers the current ego-vehicle state, the current high-level command, the world
state, and an action. The reward is based upon the following:

• Position, speed and orientation in the target lane. The agent is rewarded +1
for staying in the desired position, orientation and speed in the target lane.
Deviation from this desired state smoothly reduces the reward to 0.
• Speed in zero-speed regions (proximity to other vehicles and pedestrians,

or red light at intersections). The agent is rewarded for standing still in
zero-speed regions. In red light regions, the agent is also penalized for not
keeping orientation.
• Braking in zero-speed regions. Agent receives +5 for braking in zero-speed

regions.

Rewards from zero-speed regions are scaled by a factor rstop = 0.01, so re-
wards from staying in the target lane are not overshadowed. Chen et al. [2] men-
tion that they restrict the braking reward in the sense that they can not be accumu-
lated, which they argue avoids agents chasing braking zones. Their reward design
using zero-speed and braking zones also removed the necessity to implement any
penalty for collision.

Chapter 3: Methodology 35

Source: [2]

Figure 3.3: Figure showing a visualisation of the computed value functions and
action-value functions for given data frames. The figure shows the RGB images
(a), bird’s-eye view maps of the area surrounding the ego-vehicle (b), the value
maps (c), and the action-values for the current frame (d). In the maps the ego-
vehicle is centered, but for visualisation the area behind the ego-vehicle has been
removed.

3.4 Experiment 1: Reproducing the results from World on
Rails in the NoCrash benchmark

This section will introduce the first experiment of this thesis, which involved re-
producing the results presented in the World on Rails paper [2]. For additional
information regarding the World on Rails [2] algorithm, see section 3.3.

3.4.1 Data Collection

In the World on Rails [2] algorithm, there are two phases where data is collected in
the CARLA simulator. The initial data collection, referred to as data_phase0, and
the second data collection, referred to as data_phase1. There is also an additional
phase which labels the data collected in data_phase1 with action-values, and this
phase is referred to as data_phase2.

Collection in data_phase0

In data_phase0, data was collected in Town04 using an agent performing random
actions. The actions consisted of performing steering or throttling simultaneously,
or just braking. Steering and throttle were uniformly sampled between ranges [-

36 Szewczyk A.: Reinforcement Learning in CARLA

1,1] and [0,1], respectively. The chances of braking PB were based on the following
equation:

PB =
1

Ms ×Mt + 1
,

where Ms and Mt respectively denote the number of steering actions and
throttle actions, using Ms = 9, Mt = 3. In this phase, the agent’s trajectories
are collected in the form of positions, orientations, speeds and actions. For this
phase, we collected 2079 frames, in comparison to the original amount of 2400
that the World on Rails paper [2] collected.

Collection and Labeling in data_phase1 and data_phase2

For data_phase1we collected in Town01, which is the training town for the NoCrash
benchmark. The agent used for collecting data is the q_collector agent, which
uses privileged information from the CARLA simulator and the forward model to
calculate the best action using Bellman equation evaluations. During data_phase1
we collected wide RGB images, their semantic segmentation, the current high-
level command, and labels which were used for Bellman evaluation.

The wide RGB images consist of three side-by-side images collected from three
cameras mounted at x = 1.5m, z = 2.4m on the ego-vehicle, producing images
that are 480 × 240 pixels. One camera is pointed straight forward, and the two
others are rotated 55°in each direction from the straight forward-facing camera.
Each camera has a field of view of 60°. An example of a wide RGB image can
be seen in figure 3.2a. As described in Chen et al. [2], for data augmentation
purposes, there are also additional cameras set up to take similar wide images,
but rotated in±30. These three rotations are referred to as the three camera yaws.

The labels collected include information that is proximal to the agent. The
information is from a birds-eye view, where the agent is placed in the center.
These labels are roads, lanes, stops, vehicles, pedestrians, traffic and waypoints.
An example of the road, pedestrian and vehicle labels can be seen layered on top
of each other in figure 3.4b.

The total amount of data frames collected in data_phase1 was 105 503, which
is significantly lower than the original World on Rails paper [2] which used 270
000 frames for their NoCrash benchmark agent. We decided to use a lower amount
due to the performance limitations of the virtual machine (3.1.2) and the general
instability of the CARLA simulator. With 16GB of VRAM, we could have two par-
allel data collection processes running simultaneously. In terms of single process
performance, we got a simulation time to wall-clock time ratio of approximately
0.15 to 0.20, meaning that simulating one second in the simulator took anywhere
from 5 seconds to 6.7 seconds. With simulator crashes, collecting 100 000 frames
would take approximately 4 days.

During data_phase2 each data frame from the dataset collected in data_phase1
was labeled with action-values using Bellman equation evaluations (as described

Chapter 3: Methodology 37

Source: [2]

(a) Wide image

(b) Stacked road, vehicle and ped-
estrian labels

Figure 3.4: Figure showing a wide RGB image 3.4a, and the stacked road, vehicle
and pedestrian labels for a given data frame. In 3.4b, the agent’s position is at the
center. The pedestrian label is coloured blue, vehicle is coloured red, and the road
is white.

in 3.3.1). Labels stored for each data frame come in a data structure with the di-
mensions 6×4×28, which corresponds to the six different commands that can be
active in a given moment, the four speed bins that the agent could be in, and the
28 different actions that the agent can choose between, and labels were created
for each of the three camera yaws. These dense labels allow for the algorithms’
high sample efficiency.

The original World on Rails project does not store labels to the dataset until
all frames had been labelled, this was not possible with the limited 51GB of RAM
the virtual machine (3.1.2) had, and the labelling process therefore had to be split
up into 50 thousand frame batches.

38 Szewczyk A.: Reinforcement Learning in CARLA

3.4.2 Network Architectures

This section will cover the network architectures of the two networks used in the
recreation of the World on Rails [2] results. The first being the forward model,
which is used to predict future states based on a current world state and an action.
The second network is the visuomotor network, which is the resulting autonomous
driving agent.

Forward Model

As the forward model τego was a key component during the prediction of future
states for each data frame collected, a simple model needs to be utilized to make
quick and accurate predictions. Building on the work of Polack et al. [39], World
on Rails [2] use a parameterized kinematic bicycle model of a vehicle, where the
front and rear wheels are in theory collapsed into one front and one rear wheel-
base (fb, rb) at the front center and rear center of the vehicle. When assuming that
only fb can be steered, the kinematics of the bicycle model can then be written
as:

d x
d t
= vcos(θ + β) (3.1)

d y
d t
= vsin(θ + β) (3.2)

dv
d t
= a (3.3)

dθ
d t
=

v
rb

sin(β) (3.4)

tan(β) =
rb

fb + rb
tan(φ) (3.5)

where a is the acceleration corresponding to either the throttle action multiplied
by a constant taccel , or the breaking action multiplied by a constant baccel , based
on if the vehicle is throttling or braking. φ is the front wheel steering angle,
which is the applied steering action s multiplied by a steering constant sgain.
taccel , baccel , sgain, rb and fb are the learnable parameters of the model, and loss is
generated using L1 loss and stochastic gradient descent, based on the predicted
new two-dimensional position (x̂ t , ŷt), and predicted orientation θ̂t of the vehicle.

Visuomotor Network

World on Rails’ NoCrash visuomotor network consists of a ResNet34 visual back-
bone, a conditionally branched action head, and a semantic segmentation head for
generating the additional semantic segmentation loss. An overview of the NoCrash
system can be seen in figure 3.5.

In comparison to World on Rails’ [2] leaderboard agent, which uses an addi-
tional ResNet18 visual backbone to parse images from the telephoto camera which

Chapter 3: Methodology 39

Figure 3.5: Figure showing the visuomotor network architecture.

is concatenated with the output from the ResNet34, the NoCrash agent only uses
the ResNet34 visual backbone to parse the wide RGB images it takes as input. The
ResNet34 backbone is pre-trained on the ImageNet [27] dataset prior to training.
The pre-trained model is fetched from Torchvision [26]. The original wide RGB
image has the dimension 3×240×480, but following the configuration of World
on Rails, is cropped by 48 pixels from the top of the image, making the input to
the ResNet34 have the dimension 3×192×480. The output of the ResNet34 back-
bone is an embedding following the dimension 512×6×15, and is passed further
on to both the semantic segmentation head and the conditionally branched action
head.

The semantic segmentation head takes as input the embedding from the Res-
Net34, and by using transpose convolutions and regular convolutions, outputs a
6× 48× 120, which corresponds to the 6 labels that the network trains semantic
segmentation on. These 6 labels are pedestrians, road lines, road, vehicles, traffic
lights and "other". Before generating loss by comparison with ground truth se-
mantic segmentation images, the 6×48×120 semantic segmentations are scaled
up to 6× 48× 120 using interpolation.

From the ResNet34 visual backbone, the image embedding is first collapsed on
the second and third dimensions, by taking the average values across these dimen-
sions. The resulting 512 parameter vector is then passed on to the conditionally
branched action head, which ultimately outputs a categorical distribution over the
action space, similar to the action-value table as presented in figure 3.3d, for each
of the six high-level commands and four speed bins, resulting in a 6×4×28 data
structure. Outside of training, the agent requires the current high-level command
and the agent’s current speed, to choose the appropriate categorical distribution.

3.4.3 Visumotor Network Training

The visuomotor network was trained on the labelled dataset with 105 503 data
frames. With three different camera yaws, this amounted to 3×105 503 instances

40 Szewczyk A.: Reinforcement Learning in CARLA

that the network trained on. For each training instance, the network was trained
on both semantically segmenting the wide RGB images with the semantic seg-
mentation head, and generating categorical action distributions from the action
head. For training, we used the Adam optimizer with a learning rate of 0.0003
over the course of 20 epochs. For an overview of the training parameters used
during the training of the visuomotor network, see appendix B.

Image augmentations were also performed on the data similarly to the Learn-
ing by Cheating [3] algorithm. Augmentations were performed using the imgaug
[40] python library. These augmentations were:

• Gaussian Blur: Blurs images using gaussian kernels.
• Additive Gaussian Noise: Adds gaussian noise to an image.
• Dropout: A fraction of the images pixels in an image are set to the value

zero.
• Multiply: Multiplies all pixels in an image with a specific value, which makes

the images lighter or darker.
• Linear Contrast: Adjusts the contrast by scaling each pixel in an image.
• Grayscale: Grayscales an image. Given a certain percent range α, the ori-

ginal image can also be overlaid with a random percent of strength within
the range of α.
• Elastic Transformation: Moves pixels around in local areas using displace-

ment fields.

Each image is passed through these augmentations in a random order se-
quence. There is a 50% chance of each of these augmentations being applied to
the image, meaning that also none of the augmentations can be applied. The dif-
ferent augmentations can be shown applied in figure 3.6. As the Resnet34 visual
backbone is pre-trained on images from the ImageNet [27] dataset, images are
also normalized using the mean and standard deviation values calculated from
ImageNet [27] images, commonly referred to as ImageNet normalization. The
values for mean and standard deviation during ImageNet normalization are re-
spectively mean = [0.485, 0.456,0.406] and std = [0.229, 0.224,0.225], where
the three floating point numbers in each list correspond to the three RGB channels.

The collapsed 512 parameter vector embedding from the ResNet34 image em-
bedding was taken as input to the conditionally branched action head, which out-
put categorical action distributions for each of the high-level commands, and each
of the four speed intervals that the agent could be in. As labels were categorical
action distributions for each high-level command, and speed interval, we used
Kullback-Leibler divergence to calculate loss between targets and predictions.

The output from the semantic segmentation head was scaled up by a factor of
four, using interpolation, prior to being compared to the ground truth semantic
segmentations. We used the cross-entropy loss function to generate loss for the
task of semantic segmentation. The semantic segmentation loss was also scaled
by a weight factor segweight = 0.05 before being added to the action loss and
backpropagated. As mentioned in section 3.2, due to artefacts occurring in the

Chapter 3: Methodology 41

(a) Original image (b) Gaussian blur

(c) Additive Gaussian Noise (d) Dropout

(e) Multiply (f) Linear Contrast

(g) Grayscale (h) Elastic Transformation

Figure 3.6: Figure showing different types of image augmentations. For visual-
isation purposes the augmentations in sub-figures 3.6b, 3.6e and 3.6f were given
more extreme augmentation values than what was used during the training of
the visuomotor network.

semantic segmentation images collected from CARLA, the dataset generated in
data_phase1 collected semantic segmentation images with these artefacts. The se-
mantic segmentation head did also learn to predict these artefacts during train_phase2.
An example of these predictions can be seen in figure 3.7.

The visuomotor network was trained over the course of 20 epochs, and a
model was saved after each epoch. Due to time limitations, and the time it takes
took evaluate a single model, the decision was made to qualitatively inspect the
performance of the model saved at epoch 10, and epoch 20. The two models were

42 Szewczyk A.: Reinforcement Learning in CARLA

(a) Ground truth (b) Prediction

Figure 3.7: Figure showing the ground truth semantic segmentation 3.7a, and
the visuomotor network predictions 3.7b with predicted artefacts.

evaluated on the map Town01 with testing weather as used in the NoCrash bench-
mark. The model from epoch 20 showed better driving capabilities than the model
from 10, and was therefore chosen for further benchmarking.

3.5 Experiment 2: Integrate Semi-Supervised Learning into
World on Rails

As a second experiment, we propose an additional autoencoder training step, that
uses a semi-supervised approach to pre-train a visual encoder backbone that is
used to encode RGB images into a condensed representation. The visual encoder
is used in two separate implementations, where one utilizes the encoder with
frozen weights, and the other with unfrozen weights.

3.5.1 Dataset for Semi-Supervised learning

We trained the autoencoder on a subset of the World on Rails one million data
frames dataset [2]which is publicly available via the World on Rails GitHub repos-
itory. The dataset contains all the one million frames that were collected for the
training of their CARLA leaderboard agent, which was collected across 8 publicly
available towns for the CARLA simulator. Due to time limitations, and processing
limitations, the decision was made to only use a subset of the dataset, which cor-
responded to one-third of the dataset.

As one data frame contains images in three different camera orientations, each
data frame effectively has three training instances for the autoencoder to train on,
meaning that when we sampled one-third of the dataset, we sampled one million
training instances with their corresponding semantic segmentation, from a set
of three million training instances. The subset was randomly selected using a set
seed. We also selected a random subset of 15 000 training instances for validation.

It is important to note that from the one million training instances extracted,
we did not actively filter out training instances that were from Town02, which
puts into question whether or not Town02 should be considered a testing town
or not. Ideally, we would have these training instances filtered out, but did not
find this to be realistic to perform due to time limitations as the dataset did not

Chapter 3: Methodology 43

contain labels pertaining to which towns the training instances are from. We also
did not filter out training instances with certain weathers, as the dataset also did
not contain labels pertaining to current weather.

3.5.2 Autoencoder Architecture

The encoder used in both implementations was taken from the same autoencoder
consisting of three modules, the encoder, decoder, and a semantic segmentation
head. An overview of the Autoencoder architecture can be seen in figure 3.8.

Figure 3.8: Figure showing the autoencoder architecture.

Taking inspiration from the visuomotor agent from 3.4, we used a similar Res-
Net34 network as our encoder module, taking in a wide RGB image as input, and
embedding it into a 512×6×15 latent space. The encoder is also fetched as pre-
trained on the ImageNet [27] dataset from Torchvision, but since we were fitting
the encoder to another dataset which the images we had not calculated the new
mean and standard deviation values for, we normalized RGB values in the range
[0, 1] by simply dividing by the maximum colour value, 255. This also implies
that we used the same normalisation for later stages for all implementations in
this experiment.

With the intention to fit more knowledge in the encoder module, we also use
the same semantic segmentation head as was used in the visuomotor training
phase in 3.4, however, did not weigh the semantic segmentation loss during train-
ing.

For the decoder module, we decided to use a correspondingly reversed Res-
Net34, which we originally took inspiration from a publicly available GitHub re-
pository 3 for a variational ResNet18 autoencoder. We did however remove the
variational aspects of this decoder architecture and expanded the decoder to be
ResNet34. Given that images are normalized between the range [0, 1], the decoder
outputs on a last layer that uses a sigmoid activation function. The architecture
for the ResNet34 decoder can be seen in PyTorch code form in appendix C.

3https://github.com/julianstastny/VAE-ResNet18-PyTorch

https://github.com/julianstastny/VAE-ResNet18-PyTorch

44 Szewczyk A.: Reinforcement Learning in CARLA

3.5.3 Autoencoder Training

We trained the autoencoder using the Adam optimizer with a learning rate of
0.0003, across 12 epochs where we stored models at the end of each epoch. For
the image reconstructions, we used the RMSE loss function to generate loss, which
we combined with the loss from the task of semantic segmentation. The task of
semantic segmentation was done similarly to the semantic segmentation training
that is described in 3.4. Losses were combined without weighting before being
backpropagated. We did not weight losses, as we viewed the task of image recon-
struction to be relatively easy to learn with ResNet34 modules, and wanted to give
more focus on which elements were present in a given image.

There was also an intention to include several other tasks during this train-
ing phase, including traffic light state, presence and distance prediction, junction
presence and distance prediction, and agent lane positioning and orientation pre-
diction, similar to what was proposed by Toromanoff et al. [30]. Due to time lim-
itations, these additional losses were not prioritised to be implemented.

We also performed image augmentations on the wide RGB images prior to
being input to the autoencoder. These augmentations are identical to the ones
used in 3.4. These augmentations include gaussian blur, additive gaussian noise,
dropout, multiply, linear contract, grayscale and elastic transformation. The aug-
mentations are applied in a random sequence on a given image, with a 50% chance
of an augmentation being applied.

After each epoch, we stored training losses and validation losses. Additionally,
when we validated the model, we stored the input images and reconstructed im-
ages with ground truth semantic segmentations and their semantic segmentation
predictions, for qualitative inspection of the autoencoder’s performance during
training. Training loss and validation loss throughout the 12 epochs can be seen
in figure 3.10. An input image from validation during epoch 12, and its respective
reconstruction along with its semantic segmentations can be seen in figure 3.9.
To see all wide RGBs, reconstructed wide RGBs, and semantic segmentations col-
lected at each epoch, see appendix D. Based on the losses recorded throughout
training, we decided to use the model from epoch 12, as it showed the best per-
formance and reconstruction capabilities, with no initial sign of over-fitting to the
training dataset.

3.5.4 Implementation A: Visuomotor network with frozen visual en-
coder weights

In the first implementation, we intended to study how well a visuomotor agent us-
ing a pre-trained visual backbone trained on highly relevant data performs when
the visual backbone has frozen weights. We studied this implementation’s per-
formance both during visuomotor training and during evaluation in the NoCrash
benchmark.

For the first implementation, we load the weights from the encoder from the
autoencoder, and freeze them during the final visuomotor training phase, referred

Chapter 3: Methodology 45

Figure 3.9: Figure showing input wide RGB, and its ground truth semantic seg-
mentation on the left, and reconstructed wide RGB and predicted semantic seg-
mentation image on the right. Images are taken from the validation step at epoch
12. The predicted semantic segmentation image is shown in its state prior to up-
scaling using interpolation.

Figure 3.10: Figure showing training loss and validation loss throughout the 12
epochs of training.

to as train_phase2. As shown in figure 3.5 in the first experiment 3.4, the image
embedding was first collapsed by taking the average values across the second and
third dimensions before being sent to the action head. Since weights are frozen in
our encoder, we remove this step and rather introduce a latent space head which
took in the 512× 6× 15 image embedding as input, and output a 512 parameter
vector which is passed on to the action head. The latent space head is a simple CNN
network, consisting of two convolutional layers with ReLU activation, a flattening
operation, and a feed-forward layer with ReLU activation. Following the PyTorch

46 Szewczyk A.: Reinforcement Learning in CARLA

syntax, the latent space head with its parameters is shown in appendix C.
Since the encoder also is trained on semantic segmentation, we remove the

segmentation head from the visuomotor agent in this implementation. The action
head remains the same as presented in the first experiment 3.4. An overview of
implementation A’s visuomotor agent can be seen in figure 3.11.

Figure 3.11: Figure showing the visuomotor architecture in implementation A.

3.5.5 Implementation B: Visuomotor network with unfrozen visual
encoder weights

In the second implementation, we intend to study how pre-training a visual back-
bone on a more specific and relevant dataset, can affect the performance of the
visuomotor agent, both during training and during evaluation on the NoCrash
benchmark.

For the second implementation, we load the weights from the encoder from
the autoencoder but do not freeze them during the visuomotor training phase.
We additionally did not remove the task of semantic segmentation during training
and did not implement a latent space interpretation head, meaning that for this
implementation we performed visuomotor training as described in 3.4, with the
only difference being that we did not perform ImageNet normalization.

Chapter 4

Results

This chapter will present the results of the experiments in this thesis. The first
section will cover the results related to the visuomotor training for all the ex-
periments and implementations in the form of action loss collected throughout
train_phase2. In the first section, we also present the success rates and traffic
light infraction rates for all the different models trained throughout this thesis,
including the results from the original World on Rails paper [2]. For the last two
sections, we present more specific results from the NoCrash benchmark for each
of the experiments.

For this chapter we will refer to the different models by their acronyms as
described below:

• WOR: Original World on Rails model trained for the NoCrash benchmark
as presented in the World on Rails paper [2]
• WOR-R: Our recreation of the World on Rails paper as presented in 3.4.
• WOR-EF: Our visuomotor implementation using an visual encoder back-

bone with frozen weights, as described in 3.5.4
• WOR-EU: Our visuomotor implementation using a visual encoder backbone

pre-trained on a relevant dataset with unfrozen weights, as described in
3.5.5.
• LBC: World on Rails’ model from the recreation of the Learning by Cheating

algorithm in CARLA 0.9.10.

We also created a video showing examples of the models WOR-R, WOR-EF
and WOR-EU driving around in the CARLA simulator, which can be accessed via
the following link: https://youtu.be/rOCWftL7kFU.

4.1 Comparison of models on the NoCrash benchmark

In this section, we compare the models WOR, WOR-R, WOR-EF and WOR-EU
on their performance in the NoCrash benchmark. We compare the results from
WOR against the other WOR-R, WOR-EF and WOR-EU, where the latter three
have performed train_phase2 with a limited 100 thousand data frame dataset.

47

https://youtu.be/rOCWftL7kFU

48 Szewczyk A.: Reinforcement Learning in CARLA

Task Town Weather WOR WOR-R WOR-EF WOR-EU
Empty 98 91 61 92

Regular train train 100 95 68 91
Dense 96 86 65 81
Empty 94 95 84 92

Regular test train 89 87 81 91
Dense 74 59 51 56
Empty 90 70 62 80

Regular train test 90 68 60 76
Dense 84 82 64 78
Empty 78 84 60 76

Regular test test 82 70 58 78
Dense 66 42 40 50

Average values 86.75 77.42 62.83 78.42

Table 4.1: Table showing the success rates for different models in the NoCrash
benchmark. Where train town and test town refer to Town01 and Town02, re-
spectively.

We compare models on two main metrics on the NoCrash benchmark, which are
success rate and traffic light infractions per hour.

Throughout experiments 1 and 2, we also collected the loss generated from
the action head during train_phase2, when training models WOR-R, WOR-EF
and WOR-EU. This loss can be seen in figure 4.1. The models were trained on
105 503 data frames with three different camera yaws, giving a total of 316 509
training instances. With 20 epochs and a batch size of 128, we saved action losses
from every 100th batch, which equalled 494 saves.

In table 4.1, we see the average success rates of each of the key models for this
thesis. We calculated average values across different settings of tasks (traffic and
pedestrian density), towns and weather. Looking at the overall averages for each
of the models, we see that WOR has the highest average score of 86.75, followed
by 78.42, 77.42 and 62.83 for WOR-EU, WOR-R and WOR-EF, respectively.

In table 4.2, we see the average number of traffic light infractions per hour
for different settings from the NoCrash benchmark. The overall averages for the
traffic light infractions per hour per model are 6.41 (WOR), 12.51 (WOR-R), 25.89
(WOR-EF) and 7.34 (WOR-EU).

4.2 Results from Experiment 1

With a limited dataset containing less than half of the number of data frames used
to train the WOR model, we still saw a remarkable performance from the WOR-R
model. The model also performs overall better than World on Rails’ recreation
of the Learning by Cheating (LBC) algorithm. A comparison between the success

Chapter 4: Results 49

Task Town Weather WOR WOR-R WOR-EF WOR-EU
Empty 0.00 0.57 6.17 0.73

Regular train train 0.43 1.94 8.90 1.50
Dense 2.61 2.74 9.76 4.86
Empty 10.68 8.77 44.61 7.56

Regular test train 6.95 18.11 43.80 11.12
Dense 12.90 17.27 33.99 14.41
Empty 0.00 1.29 18.70 0.98

Regular train test 0.00 1.39 15.06 1.04
Dense 4.29 5.06 15.32 3.38
Empty 14.46 27.62 41.71 9.85

Regular test test 11.30 37.23 35.88 13.65
Dense 13.28 28.17 36.77 19.03

Average values 6.41 12.51 25.89 7.34

Table 4.2: Table showing the average number of traffic light infractions per hour
for different models in the NoCrash benchmark.

rates in the NoCrash benchmark between WOR-R and LBC can be seen in table
4.3.

The WOR-R model did show good driving capabilities, and for the majority
of the time during evaluation, it did show a relatively good understanding of the
traffic light states at intersections. The most common errors encountered during
evaluation on the NoCrash benchmark was that the agent would misunderstand
the traffic light state at given intersections, and end up either staying stuck at
intersections expecting the light to be red, or running a red light misunderstanding
it to be green. Running red lights would also create scenarios where the agent
would either collide or get stuck face-to-face with other vehicles.

4.3 Results from Experiment 2

4.3.1 Implementation A

From table 4.1 we see that WOR-EF was the worst performer of the three models
from experiments 1 and 2. The agent would handle turns and intersections rel-
atively well, and also stop for pedestrians and other vehicles driving in front of
the agent, but did not show a good understanding of traffic light states. In these
cases, the agent would often become stuck in intersections, or run red lights. These
observations are reflected in both table 4.1 and 4.2. During evaluation, the WOR-
EF model would perform some turns in a less-than-desirable manner, outputting
fluctuating steering commands, making the turn seem wobbly.

Looking at the action loss in figure 4.1, we see that WOR-EF did manage to fit
relatively well to the dataset generated in data_phase2, but not as good as WOR-R
and WOR-EU. WOR-EF had an average action loss above 0.005 towards the end of

50 Szewczyk A.: Reinforcement Learning in CARLA

Figure 4.1: Figure showing the action loss generated by the action head during
train_phase2 for WOR-R, WOR-EF and WOR-EU.

train_phase2, and looking at the graphs’ volatility, did indicate a more unstable
convergence in the training process. On average, WOR-R and WOR-EU would
stay at an action loss of approximately 0.002 towards the end of their visuomotor
training. WOR-EF did also tend to miss turns at intersections under some weather
conditions, mistaking water patches and reflections for something else than road.
An example of such a turn can be seen in figure 4.2.

Figure 4.2: Image from an intersection with a weather condition where the WOR-
EF model was unable to turn.

Chapter 4: Results 51

Task Town Weather LBC WOR-R
Empty 89 91

Regular train train 87 95
Dense 75 86
Empty 86 95

Regular test train 79 87
Dense 53 59
Empty 60 70

Regular train test 60 68
Dense 54 82
Empty 36 84

Regular test test 36 70
Dense 12 42

Table 4.3: Table showing the success rates for the LBC and WOR-R models in the
NoCrash benchmark.

4.3.2 Implementation B

Looking at the average value of the success rates, as seen in table 4.1, of each
of the three models WOR-R, WOR-EF and WOR-EU, we see that the WOR-EU
performed best, marginally better than WOR-R. Taking into account the traffic
light infraction rate, as presented in table 4.2, we see a significant improvement
over both the WOR-EF and the WOR-R models. As a common reason for WOR-
R, WOR-EF and WOR-EU to get failed runs were that they would get stuck at
intersections constantly assuming that a traffic light is red, models ignoring red
lights would sometimes benefit from it in the form of better success rates. We can
see a good example of this from the performance of WOR-EF on the testing town
with training weather, the agent has one of its highest instances of success rate,
but also the highest instances of traffic light infraction rates.

During evaluation of WOR-EU, we saw good driving capabilities, similar to the
WOR-R model. WOR-EU performed turns in a more smooth manner compared to
WOR-EF. The WOR-EU model did however show a greater understanding of traffic
lights and their states, less frequently ending up running red lights, or staying
stuck at intersections not being able to interpret when the traffic light is green.

From the action losses observed in figure 4.1, we do observe some indication
that WOR-EU’s action loss more quickly converges and fits to the training dataset
than the WOR-R model that uses a visual backbone network only pre-trained on
the ImageNet [27] dataset. This is best observed in the first 100 losses saved.
Towards the end of the training period, the two models WOR-EU and WOR-R do
however converge to similar loss values of approximately 0.002.

Chapter 5

Discussion

This chapter will discuss the results presented in this thesis in relation to the re-
search questions presented in section 1.2. The last section will discuss shortcom-
ings of this thesis.

5.1 Experiment 1

For our first research question, we set out to recreate the results presented in the
Learning to drive from a World on Rails paper [2]. Because of a generally unstable
training environment, with frequent simulator crashes, and a shorter time frame
than initially expected, due to converting PyTorch versions and utilizing graphics
cards with the Ampere architecture, we were not able to fully recreate the results
that were presented in the World on Rails paper [2]. The original paper specifies
that they performed the NoCrash visuomotor training with a training dataset con-
taining 270 000 data frames, while we only managed to generate approximately
100 000 data frames for visuomotor training.

Although we were unable to fully recreate the results, we still managed to cre-
ate a WOR-R model which was trained with a smaller dataset, that still managed
to outperform World on Rails’ LBC recreation, which does to some extent validate
the World on Rails algorithm’s high sample efficiency. From only one data frame,
it calculates values for the different speeds that the agent could be in, and the dif-
ferent high-level commands the agent could be given, making single data frames
highly densely informative.

During rendering in CARLA 0.9.10, we did experience some artefacts occur-
ring in the form of black shapes showing in the renderings, which were signific-
antly apparent in the semantic segmentations. Even though these artefacts were
present in the training dataset, it did not indicate a significant performance drop
for our WOR-R model, considering that the model was trained on less than half of
the amount the original World on Rails paper used on their NoCrash model. The
model did also learn a rough estimation of the patterns that the artefacts would
occur in, as can be seen in figure 3.7.

53

54 Szewczyk A.: Reinforcement Learning in CARLA

5.2 Experiment 2

This section will discuss the results from the second experiment in relation to the
second research question presented in section 1.2. Discussion related to the results
for implementation A can be seen in 5.2.1, and for implementation B in 5.2.2.

5.2.1 Implementation A

Looking at the results from the NoCrash benchmark we see that WOR-EF, which
uses a visual backbone image encoder with frozen weights, performed signific-
antly worse than the other models we compared it to, which does to some ex-
tent give an answer to our second research question, when following this imple-
mentation. Looking at the model’s architecture, we do see that using a ResNet34
visual backbone with a smaller, 3-layered, interpretation head was not an op-
timal configuration. From the action loss generated by the action head throughout
train_phase2, we also saw a higher and more volatile loss amount compared to
the other models WOR-R and WOR-EU, which could indicate some information
being lost in the encoding, or that the interpretation head and action head hold
too few parameters to be able to reasonably fit a good mapping between input
images and the large output that the action head outputs.

To answer our second research question, we initially wanted to include more
losses during autoencoder training in our second experiment, taking inspiration
from the work of Toromanoff et al. [30]. Compared to the ResNet34 visual back-
bone from the first experiment, it learns mainly based on the loss generated from
action prediction and semantic segmentation, and not image reconstruction, while
we mainly make the encoder in the autoencoder training learn to encode an im-
age to a smaller embedding space, along with the task of semantic segmentation,
which means it in practice does not learn anything related to performing actions,
or how to encode an image in the context of performing an action. To get a better
image encoding using implementation A, we expect that more driving relevant
losses during autoencoder training could potentially increase performance in the
NoCrash benchmark. Additional losses could be intersection presence prediction,
intersection distance prediction, traffic light state prediction, or traffic light dis-
tance prediction.

From what was observed during evaluation on the NoCrash benchmark, we
still saw some issues in terms of misinterpreting puddles, or similar distortions
on the ground for not being road or being obstacles. This observation was most
prominent in turns, making the agent miss a turn and ultimately fail the run. This
does beg into question, the necessity to create loss in regards to image recon-
struction, as it also requires the system to learn to reconstruct these puddles or
visual distortions, information regarding these phenomena would also have to be
present in the image embedding. Given an autonomous driving problem with a
bigger focus on traction control, a visual encoder could potentially benefit from
image reconstruction in this manner.

Chapter 5: Discussion 55

5.2.2 Implementation B

From the results presented in this thesis, we see that the WOR-EU model generally
performed better than both the WOR-EF model and the WOR-R model, which
does give more answer to our second research question. This indicates that even
though the visual encoder has been trained on tasks other than action prediction,
it still manages to retain knowledge relevant to the visual interpretation of the
environment even after being trained on action prediction in train_phase2.

Although showing much broader generalizability as can be seen in tables 4.1
and 4.2, it is important to note that WOR-EU uses a visual encoder that most likely
had been trained on images from Town02 and also test weathers. This does show
itself in how the traffic light infraction rates differ from one another in any other
NoCrash benchmark configuration other than train town and train weather. Al-
though interesting to see how familiarising a network with relevant images does
translate well into other tasks, we would still ideally want to test this implement-
ation with a dataset that does not contain images from Town02 or images with
testing weather.

The action losses observed in figure 4.1 did indicate some quicker convergence
for the WOR-EU model in comparison to the WOR-R model, implying that the au-
toencoder training process does help the WOR-EU more quickly fit to the training
dataset after being familiarized with images and semantic segmentations from the
CARLA simulator.

5.3 Shortcomings of this Thesis

Throughout the duration of this project, we have mainly utilized a VM hosted by
IDI Horizon. During a short initial period we used a VM with an Nvidia Quadro
RTX 6000/8000 GPU, but later moved to another configuration which allowed us
to use a more powerful Nvidia A40-16Q GPU, due to the processing power and
VRAM required to parallelize processes which required multiple CARLA simulators
to run efficiently. This transition did however pose a couple of issues and delays
throughout some of the lifetime of this project. Most prominent was the issue
regarding not having enough Nvidia Grid licenses for all of IDI Horizon’s users,
making the occurrence of sudden GPU access loss quite frequent. We did also
experience that the VMWare client GUI would randomly crash, which required us
to reboot the VM to fix the issue. These issues did impact progression in the initial
time period of the project.

A substantial amount of time was spent on making the World on Rails al-
gorithm run, and converting PyTorch versions. An initial issue occurred when try-
ing to run an evaluation script following the same environment as described on the
World on Rails GitHub repository, this issue was related to the PyTorch version not
being compiled to a newer version of CUDA which is initially supported by newer
graphics cards using the Ampere architecture. The decision was therefore made to
change versions of PyTorch, which created several issues at each step of the World

56 Szewczyk A.: Reinforcement Learning in CARLA

on Rails algorithms. Not all issues were fixed, as some were circumvented using
checkpoints throughout the steps, to restart the step from where it crashed. We
did also experience random CARLA simulator crashes frequently, where we again
used checkpoints to not have to restart the process from the beginning. Frequent
simulator crashes could have been circumvented by converting the World on Rails
algorithm to use one of the newer versions of CARLA, which at the time of writing
is CARLA 0.9.13. We did not perform this conversion as we expected not to have
enough time to allocate to perform such a conversion.

Due to the time limitations of this project, we were unable to fully perform
a hyperparameter search, and could have spent more time better configuring the
different neural networks. We were also not able to perform many evaluations on
the different models saved at different epochs throughout train_phase2, which
means that our chosen model, with our parameters, might not be the optimal
solution for the proposed task.

In retrospect, we did observe that when choosing to build upon the work of
others, it is important to investigate which technology and resources the work
has been created with, and what resources we require or currently have access to.
Building upon work using older resources might require time for conversion and
debugging when this could be time spent to further evolve the work we are build-
ing upon. In contrast, with state-of-the-art submissions on the CARLA benchmark,
not all of the newest submissions have published their code which does discour-
age building upon their work, as coding a state-of-the-art project from scratch can
be both challenging and time-consuming.

Chapter 6

Conclusion and Future Work

This chapter will cover the conclusion and future work of the thesis. Section 6.1
will cover the main findings from the experiments that were conducted in this
thesis, and section 6.2 will present some ideas for future work.

6.1 Conclusion

The research goal of this thesis was to improve the training and performance
of the World on Rails [2] algorithm. By performing two experiments, with one
experiment having two different implementations, this goal was partially reached,
but due to issues encountered throughout the project, not fully reached.

For our first research question, we were not able to fully recreate the results
that are presented in the World on Rails [2] paper, as we were unable to create
a same-size dataset for visuomotor training. We were however able to get fairly
decent results on the NoCrash benchmark, using a visuomotor training dataset of
less than half the data frames that the World on Rails [2] paper specified, even
outperforming their Learning by Cheating [3] recreation in terms of success rate.

For our second research question, we did manage to greatly improve perform-
ance in terms of lowering traffic lights infraction rate with our second implement-
ation in the second experiment, WOR-EU. The model also did manage to decrease
loss quicker than our model from the first experiment, WOR-R, showing quicker
convergence. It is important to note that we were unable to filter out images from
the testing town and weathers used in the NoCrash benchmark during autoen-
coder training, which did give WOR-EU a questionable advantage.

For our first implementation in the second experiment, the WOR-EF model, we
saw a significant drop in performance using a visual encoder with frozen weights.
The performance drop was large in both success rate and traffic light infraction
rate in the NoCrash benchmark. The implementation was however not imple-
mented as we originally intended it to be, as it only trained on the two tasks of
image reconstruction and semantic segmentation during autoencoder training, so
we do not regard an approach using a visual encoder with frozen weights as a
sub-optimal solution.

57

58 Szewczyk A.: Reinforcement Learning in CARLA

6.2 Future Work

For future work, we suggest converting the World on Rails algorithm to use CARLA
0.9.13 instead of using CARLA 0.9.10. From this conversion, we expect to exper-
ience fewer random crashes during simulation when using newer graphics cards
using the Ampere architecture. In addition to less frequent crashes, the conversion
could potentially remove the issue regarding artefacts occurring in the renderings
from the CARLA simulator, including the semantic segmentations.

Although being one of the worst-performing implementations from the exper-
iments performed in this thesis, our WOR-EF used a visual encoder that was not
pre-trained in the manner we initially planned. For future work we suggest aug-
menting the autoencoder training step in our second experiment, to add more
tasks for the autoencoder to train on. Examples of potential tasks could be in-
tersection presence prediction, intersection distance prediction, traffic light state
prediction, or traffic light distance prediction. Implementing such tasks in the au-
toencoder training could be beneficial, as was explored by Toromanoff et al. [30].

As the second experiment does perform autoencoder training using a dataset
containing images from NoCrash’s test town and test weather, we propose per-
forming the second experiment with a dataset that does not contain such images.
It would then be possible to more accurately compare the WOR-EU model’s ability
to generalize in comparison to WOR-R.

We would also like to see the World on Rails algorithm be implemented in
a real-world urban driving scenario, and whether or not it performs well. Fol-
lowing the World on Rails algorithm, the initial forward model could be trained
on a closed course, using highly accurate positioning and navigational systems,
including the vehicle’s speed and steering sensors. During data collection in the
visuomotor training phase, a human expert driver can be used to collect data. Data
could be collected using positioning and navigational systems, as well as traffic
light data. A LiDAR sensor can be used additionally to accurately position vehicles
and pedestrians nearby.

Our code is available at: https://github.com/MorningClub/master-thesis.

https://github.com/MorningClub/master-thesis

Bibliography

[1] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López and V. Koltun, ‘CARLA: an
open urban driving simulator,’ CoRR, vol. abs/1711.03938, 2017. arXiv:
1711.03938. [Online]. Available: http://arxiv.org/abs/1711.03938.

[2] D. Chen, V. Koltun and P. Krähenbühl, Learning to drive from a world on
rails, 2021. arXiv: 2105.00636 [cs.RO].

[3] D. Chen, B. Zhou, V. Koltun and P. Krähenbühl, Learning by cheating, 2019.
arXiv: 1912.12294 [cs.RO].

[4] D. Pomerleau, ‘Alvinn: An autonomous land vehicle in a neural network,’ in
Proceedings of (NeurIPS) Neural Information Processing Systems, D. Touret-
zky, Ed., Morgan Kaufmann, Dec. 1989, pp. 305–313.

[5] M. Xie, L. Trassoudaine, J. Alizon, M. Thonnat and J. Gallice, ‘Active and
intelligent sensing of road obstacles: Application to the european eureka-
prometheus project,’ in 1993 (4th) International Conference on Computer
Vision, 1993, pp. 616–623. DOI: 10.1109/ICCV.1993.378154.

[6] B. Tefft, ‘Rates of motor vehicle crashes, injuries and deaths in relation to
driver age, united states, 2014-2015,’ in AAA Foundation for Traffic Safety,
2017.

[7] F. Codevilla, E. Santana, A. M. López and A. Gaidon, Exploring the limit-
ations of behavior cloning for autonomous driving, 2019. DOI: 10.48550/
ARXIV.1904.08980. [Online]. Available: https://arxiv.org/abs/1904.
08980.

[8] P. N. Stuart Russell, Artificial Intelligence: A Modern Approach (4th Edition)
(Pearson Series in Artifical Intelligence), 4th ed. Language: English, 2020,
ISBN: 0134610997; 9780134610993.

[9] A. C. Ian Goodfellow Yoshua Bengio, Deep Learning. The MIT Press, 2016.

[10] D. E. Rumelhart, G. E. Hinton and R. J. Williams, ‘Learning representations
by back-propagating errors,’ Nature, vol. 323, pp. 533–536, 1986.

[11] A. Hussein, M. M. Gaber, E. Elyan and C. Jayne, ‘Imitation learning: A
survey of learning methods,’ ACM Comput. Surv., vol. 50, no. 2, Apr. 2017,
ISSN: 0360-0300. DOI: 10.1145/3054912. [Online]. Available: https://
doi.org/10.1145/3054912.

59

https://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
https://arxiv.org/abs/2105.00636
https://arxiv.org/abs/1912.12294
https://doi.org/10.1109/ICCV.1993.378154
https://doi.org/10.48550/ARXIV.1904.08980
https://doi.org/10.48550/ARXIV.1904.08980
https://arxiv.org/abs/1904.08980
https://arxiv.org/abs/1904.08980
https://doi.org/10.1145/3054912
https://doi.org/10.1145/3054912
https://doi.org/10.1145/3054912

60 Szewczyk A.: Reinforcement Learning in CARLA

[12] A. G. B. Richard S. Button, Reinforcement Learning, Second Edition, 2nd ed.
Bradford Book, 2018, ISBN: 0262039249; 978-0262039246.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov, Proximal
policy optimization algorithms, 2017. arXiv: 1707.06347 [cs.LG].

[14] J. Schulman, S. Levine, P. Moritz, M. I. Jordan and P. Abbeel, Trust region
policy optimization, 2017. arXiv: 1502.05477 [cs.LG].

[15] C. Ruizhongtai Qi, H. Su, M. Niessner, A. Dai, M. Yan and L. Guibas, ‘Volu-
metric and multi-view cnns for object classification on 3d data,’ Apr. 2016.

[16] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image re-
cognition, 2015. DOI: 10.48550/ARXIV.1512.03385. [Online]. Available:
https://arxiv.org/abs/1512.03385.

[17] R. K. Srivastava, K. Greff and J. Schmidhuber, ‘Highway networks,’ CoRR,
vol. abs/1505.00387, 2015. arXiv: 1505.00387. [Online]. Available: http:
//arxiv.org/abs/1505.00387.

[18] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, ‘Densely con-
nected convolutional networks,’ in 2017 IEEE Conference on Computer Vis-
ion and Pattern Recognition (CVPR), 2017, pp. 2261–2269. DOI: 10.1109/
CVPR.2017.243.

[19] S. Wold, K. Esbensen and P. Geladi, ‘Principal component analysis,’ Chem-
ometrics and Intelligent Laboratory Systems, vol. 2, no. 1, pp. 37–52, 1987,
Proceedings of the Multivariate Statistical Workshop for Geologists and
Geochemists, ISSN: 0169-7439. DOI: https://doi.org/10.1016/0169-
7439(87)80084- 9. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0169743987800849.

[20] S. Balakrishnama and A. Ganapathiraju, ‘Linear discriminant analysis—a
brief tutorial,’ vol. 11, Jan. 1998.

[21] S. Lange and M. Riedmiller, ‘Deep auto-encoder neural networks in rein-
forcement learning,’ in The 2010 International Joint Conference on Neural
Networks (IJCNN), 2010, pp. 1–8. DOI: 10.1109/IJCNN.2010.5596468.

[22] J. Janai, F. Güney, A. Behl and A. Geiger, Computer vision for autonomous
vehicles: Problems, datasets and state of the art, 2017. DOI: 10.48550/ARXIV.
1704.05519. [Online]. Available: https://arxiv.org/abs/1704.05519.

[23] R. Chekroun, M. Toromanoff, S. Hornauer and F. Moutarde, ‘GRI: general
reinforced imitation and its application to vision-based autonomous driv-
ing,’ CoRR, vol. abs/2111.08575, 2021. arXiv: 2111.08575. [Online]. Avail-
able: https://arxiv.org/abs/2111.08575.

[24] CARLA, 3rd. maps and navigation, https://carla.readthedocs.io/en/
0.9.10/core_map/, Accessed: 06-06-2022, 2022.

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1502.05477
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/https://doi.org/10.1016/0169-7439(87)80084-9
https://www.sciencedirect.com/science/article/pii/0169743987800849
https://www.sciencedirect.com/science/article/pii/0169743987800849
https://doi.org/10.1109/IJCNN.2010.5596468
https://doi.org/10.48550/ARXIV.1704.05519
https://doi.org/10.48550/ARXIV.1704.05519
https://arxiv.org/abs/1704.05519
https://arxiv.org/abs/2111.08575
https://arxiv.org/abs/2111.08575
https://carla.readthedocs.io/en/0.9.10/core_map/
https://carla.readthedocs.io/en/0.9.10/core_map/

Bibliography 61

[25] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vié-
gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu
and Xiaoqiang Zheng, TensorFlow: Large-scale machine learning on hetero-
geneous systems, Software available from tensorflow.org, 2015. [Online].
Available: https://www.tensorflow.org/.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and
S. Chintala, ‘Pytorch: An imperative style, high-performance deep learning
library,’ in Advances in Neural Information Processing Systems 32, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox and R. Garnett,
Eds., Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available:
http://papers.neurips.cc/paper/9015- pytorch- an- imperative-
style-high-performance-deep-learning-library.pdf.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ‘Imagenet: A large-
scale hierarchical image database,’ in 2009 IEEE conference on computer
vision and pattern recognition, Ieee, 2009, pp. 248–255.

[28] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick and P. Dollár, Microsoft coco: Common objects
in context, 2014. DOI: 10.48550/ARXIV.1405.0312. [Online]. Available:
https://arxiv.org/abs/1405.0312.

[29] F. Codevilla, M. Müller, A. López, V. Koltun and A. Dosovitskiy, End-to-
end driving via conditional imitation learning, 2018. arXiv: 1710 . 02410
[cs.RO].

[30] M. Toromanoff, E. Wirbel and F. Moutarde, End-to-end model-free reinforce-
ment learning for urban driving using implicit affordances, 2020. arXiv: 1911.
10868 [cs.LG].

[31] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz and A. Geiger, Transfuser: Im-
itation with transformer-based sensor fusion for autonomous driving, 2022.
DOI: 10.48550/ARXIV.2205.15997. [Online]. Available: https://arxiv.
org/abs/2205.15997.

[32] D. Chen and P. Krähenbühl, Learning from all vehicles, 2022. DOI: 10.48550/
ARXIV.2203.11934. [Online]. Available: https://arxiv.org/abs/2203.
11934.

[33] Anaconda, Anaconda, https://www.anaconda.com/products/distribution,
Accessed: 06-06-2022, 2022.

https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/ARXIV.1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1710.02410
https://arxiv.org/abs/1710.02410
https://arxiv.org/abs/1911.10868
https://arxiv.org/abs/1911.10868
https://doi.org/10.48550/ARXIV.2205.15997
https://arxiv.org/abs/2205.15997
https://arxiv.org/abs/2205.15997
https://doi.org/10.48550/ARXIV.2203.11934
https://doi.org/10.48550/ARXIV.2203.11934
https://arxiv.org/abs/2203.11934
https://arxiv.org/abs/2203.11934
https://www.anaconda.com/products/distribution

62 Szewczyk A.: Reinforcement Learning in CARLA

[34] Microsoft, Visual studio code, https : / / code . visualstudio . com/, Ac-
cessed: 06-06-2022, 2022.

[35] Weights Biases, Weights biases, https://wandb.ai/site, Accessed: 06-
06-2022, 2022.

[36] NVIDIA. ‘Nvidia ampere gpu architecture compatibility guide for cuda ap-
plications.’ (2022), [Online]. Available: https://docs.nvidia.com/cuda/
archive/11.4.0/ampere-compatibility-guide/index.html (visited on
19/05/2022).

[37] PyTorch. ‘Installing previous versions of pytorch.’ (2022), [Online]. Avail-
able: https://pytorch.org/get-started/previous-versions/ (visited
on 19/05/2022).

[38] D. Chen, V. Koltun and P. Krähenbühl, World on rails, https://github.
com/dotchen/WorldOnRails, 2022.

[39] P. Polack, F. Altché, B. d’Andréa-Novel and A. de La Fortelle, ‘The kinematic
bicycle model: A consistent model for planning feasible trajectories for
autonomous vehicles?’ In 2017 IEEE Intelligent Vehicles Symposium (IV),
2017, pp. 812–818. DOI: 10.1109/IVS.2017.7995816.

[40] A. B. Jung, K. Wada, J. Crall, S. Tanaka, J. Graving, C. Reinders, S. Yadav, J.
Banerjee, G. Vecsei, A. Kraft, Z. Rui, J. Borovec, C. Vallentin, S. Zhydenko,
K. Pfeiffer, B. Cook, I. Fernández, F.-M. De Rainville, C.-H. Weng, A. Ayala-
Acevedo, R. Meudec, M. Laporte et al., imgaug, https://github.com/
aleju/imgaug, Online; accessed 01-Feb-2020, 2020.

https://code.visualstudio.com/
https://wandb.ai/site
https://docs.nvidia.com/cuda/archive/11.4.0/ampere-compatibility-guide/index.html
https://docs.nvidia.com/cuda/archive/11.4.0/ampere-compatibility-guide/index.html
https://pytorch.org/get-started/previous-versions/
https://github.com/dotchen/WorldOnRails
https://github.com/dotchen/WorldOnRails
https://doi.org/10.1109/IVS.2017.7995816
https://github.com/aleju/imgaug
https://github.com/aleju/imgaug

Appendix A

Environment

Code listing A.1: environment.yml file generated from conda environment used
for this thesis.

name: world_on_rails
channels:
- pytorch
- conda-forge
- anaconda
- defaults

dependencies:
- cudatoolkit=11.3.1
- pip=21.2.2
- python=3.7.9
- pip:
- dictor==0.1.9
- imageio==2.16.0
- imageio-ffmpeg==0.4.5
- imgaug==0.4.0
- lmdb==1.1.1
- matplotlib==3.5.1
- moviepy==1.0.3
- numpy==1.21.5
- opencv-python==4.5.5.62
- py-trees==0.8.3
- pygame==2.1.2
- pyyaml==6.0
- ray==1.11.0
- shapely==1.8.0
- tabulate==0.8.9
- torch==1.10.2+cu113
- torchaudio==0.10.2+cu113
- torchvision==0.5.0
- tqdm==4.62.3
- wandb==0.12.10
- xmlschema==1.9.2

63

Appendix B

Training Parameters

This appendix presents the different training parameters used during training of
the main networks in this thesis.

Parameter Value
Batch size 128

Learning rate 1e-2
Epochs 100

Table B.1: Training parameters used for training the forward model.

Parameter Value
Batch size 64

Learning rate 3e-4
Weight decay 3e-5

Epochs 12
Segmentation loss scale 1

Table B.2: Training parameters used for training the autoencoder network.

Parameter Value
Batch size 128

Learning rate 3e-4
Weight decay 3e-5

Epochs 20
Segmentation loss scale 5e-2

Table B.3: Training parameters used for training the visuomotor networks.

65

Appendix C

PyTorch Code

This appendix will present some PyTorch code relevant to this thesis.

Code listing C.1: The Resnet34 decoder architecture in PyTorch code form.

class ResizeConv2d(nn.Module):

def __init__(self, in_channels, out_channels, kernel_size, scale_factor, mode=’
nearest’):
super().__init__()
self.scale_factor = scale_factor
self.mode = mode
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=1,

padding=1)

def forward(self, x):
x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)
x = self.conv(x)
return x

class BasicBlockDec(nn.Module):

def __init__(self, in_planes, stride=1):
super().__init__()

planes = int(in_planes/stride)
self.in_planes = in_planes

self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=1,
padding=1, bias=False)

self.bn2 = nn.BatchNorm2d(in_planes)

if stride == 1:
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=1,

padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()

else:
self.conv1 = ResizeConv2d(in_planes, planes, kernel_size=3,

scale_factor=stride)
self.bn1 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential(

67

68 Szewczyk A.: Reinforcement Learning in CARLA

ResizeConv2d(in_planes, planes, kernel_size=3, scale_factor=stride)
,

nn.BatchNorm2d(planes)
)

def forward(self, x):
out = torch.relu(self.bn2(self.conv2(x)))
out = self.bn1(self.conv1(out))
out += self.shortcut(x)
out = torch.relu(out)
return out

class ResNet34Dec(nn.Module):

def __init__(self, num_Blocks=[3, 4, 6, 3], z_dim=10, nc=3):
super().__init__()
self.in_planes = 512

self.upsample1 = nn.Upsample(scale_factor=2)

self.layer4 = self._make_layer(BasicBlockDec, 512, num_Blocks[3], stride=2)
self.layer3 = self._make_layer(BasicBlockDec, 256, num_Blocks[2], stride=2)
self.layer2 = self._make_layer(BasicBlockDec, 128, num_Blocks[1], stride=2)
self.layer1 = self._make_layer(BasicBlockDec, 64, num_Blocks[0], stride=1)
self.conv1 = ResizeConv2d(64, nc, kernel_size=3, scale_factor=2)

def _make_layer(self, BasicBlockDec, planes, num_Blocks, stride):
strides = [stride] + [1]*(num_Blocks-1)
layers = []
for stride in reversed(strides):

layers += [BasicBlockDec(planes, stride)]
self.in_planes = planes
return nn.Sequential(*layers)

def forward(self, x):
x = self.layer4(x)
x = self.layer3(x)
x = self.layer2(x)
x = self.layer1(x)
x = self.upsample1(x)
x = torch.sigmoid(self.conv1(x))
x = x.view(x.size(0), 3, 192, 480)
return x

Code listing C.2: Latent space head in PyTorch code form.

self.latent_space_head = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(256, 64, kernel_size=3, stride=2),
nn.ReLU(True),
nn.Flatten(),
nn.Linear(896, 512),
nn.ReLU(True)

)

Appendix D

Autoencoder Reconstructions

(a) Epoch 1

(b) Epoch 2

Figure D.1: Figure showing an example of image reconstruction from each epoch
of the autoencoder training.

69

70 Szewczyk A.: Reinforcement Learning in CARLA

(c) Epoch 3

(d) Epoch 4

(e) Epoch 5

Figure D.1: Figure showing an example of image reconstruction from each epoch
of the autoencoder training.

Chapter D: Autoencoder Reconstructions 71

(f) Epoch 6

(g) Epoch 7

(h) Epoch 8

Figure D.1: Figure showing an example of image reconstruction from each epoch
of the autoencoder training.

72 Szewczyk A.: Reinforcement Learning in CARLA

(i) Epoch 9

(j) Epoch 10

(k) Epoch 11

Figure D.1: Figure showing an example of image reconstruction from each epoch
of the autoencoder training.

Chapter D: Autoencoder Reconstructions 73

(l) Epoch 12

Figure D.1: Figure showing an example of image reconstruction from each epoch
of the autoencoder training.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Alexander Stensland Iversen Szewczyk

AI-agents Trained Using Deep
Reinforcement
Learning in the CARLA Simulator

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
Co-supervisor: Gabriel Kiss
June 2022M

as
te

r’s
 th

es
is

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Background and Motivation
	Research Goal and Research Questions
	Contributions
	Thesis Structure

	Background and Related Work
	Machine Learning
	Supervised and Unsupervised learning
	Deep Learning

	Reinforcement Learning
	Markov Decision Process
	Bellman equation
	Reward Function
	Deep Reinforcement Learning

	Computer Vision
	Convolutional Neural Networks (CNNs)
	Residual Neural Networks (ResNet)
	Semantic Segmentation
	Autoencoders and Dimensionality Reduction

	Approaches to autonomous driving
	Modular
	End-to-end

	Technology
	Car Learning to Act (CARLA)
	Machine Learning frameworks

	Related Work
	Alvinn: An autonomous land vehicle in a neural network (1989)
	End-to-end Driving via Conditional Imitation Learning (2017)
	End-to-End Model-Free Reinforcement Learning for Urban Driving using Implicit Affordances (2019)
	Learning to Drive From a World on Rails (2021)
	TransFuser (2022)
	Learning from All Vehicles (2022)

	Methodology
	Tools and Resources
	Software
	Hardware
	Working Environment

	Converting to PyTorch 1.10.2 and CUDA 11.3
	World on Rails
	Bellman Evaluation
	Reward Function

	Experiment 1: Reproducing the results from World on Rails in the NoCrash benchmark
	Data Collection
	Network Architectures
	Visumotor Network Training

	Experiment 2: Integrate Semi-Supervised Learning into World on Rails
	Dataset for Semi-Supervised learning
	Autoencoder Architecture
	Autoencoder Training
	Implementation A: Visuomotor network with frozen visual encoder weights
	Implementation B: Visuomotor network with unfrozen visual encoder weights

	Results
	Comparison of models on the NoCrash benchmark
	Results from Experiment 1
	Results from Experiment 2
	Implementation A
	Implementation B

	Discussion
	Experiment 1
	Experiment 2
	Implementation A
	Implementation B

	Shortcomings of this Thesis

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Environment
	Training Parameters
	PyTorch Code
	Autoencoder Reconstructions

