
Aleksander Scherm
an O

lsen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Aleksander Scherman Olsen

Adaptive General Reinforced
Imitation in Autonomous Driving

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
Co-supervisor: Gabriel Kiss
June 2022

M
as

te
r’s

 th
es

is

Aleksander Scherman Olsen

Adaptive General Reinforced Imitation
in Autonomous Driving

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
Co-supervisor: Gabriel Kiss
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

The task of autonomous driving is hard, and the task of autonomous driving based
on visual input is even harder. Advances in visual intelligence and autonomous
driving systems could have great societal benefits if such a system achieves better-
than-human performance. A reinforcement learning approach could potentially be
the solution to such a system. Reinforcement learning does however have chal-
lenges with sample efficiency and stability.

This thesis presents Adaptive General Reinforced Imitation, an adaptive method
for combining the exploratory features of reinforcement learning with the expert
demonstrations from imitation learning. The method seeks to reduce the num-
ber of samples needed for the agent to learn, by injecting expert demonstration
data into the training data of the reinforcement learning algorithm. Experimental
results indicate that for one of the implementations the method exhibits traits of
being more robust than a corresponding vanilla reinforcement learning algorithm,
and is able to learn a better policy.

iii

Sammendrag

Oppgaven med autonom kjøring er vanskelig, og oppgaven med autonom kjøring
basert på visuell input er enda vanskeligere. Fremskritt innen visuell intelligens
og autonome kjøresystemer vil kunne ha store samfunnsmessige fordeler dersom
et slikt system oppnår bedre ytelse enn mennesker. En tilnærming som tar utgang-
spunkt i forsterkningslæring (reinforcement learning) kan potensielt være løsnin-
gen på et slikt system. Forsterkningslæring har imidlertid både utfordringer med
datamengden som er nødvendig for å lære og stabilitet i læringen.

Denne oppgaven presenterer Adaptive General Reinforced Imitation, en adaptiv
metode for å kombinere de utforskende egenskapene til forsterkningslæring med
ekspertdemonstrasjonene fra imitasjonslæring. Metoden forsøker å redusere meng-
den data som trengs for at agenten skal lære. Dette gjøres ved å injisere data fra
ekspertdemonstrasjoner inn i treningsdataene til forsterkningslæringsalgoritmen.
Resultater fra eksperimenter indikerer at for en av implementasjonene viser met-
oden tegn til å være mer robust enn en tilsvarende vanlig forsterkningslæringsal-
goritme. Den er også i stand til å lære en bedre policy.

v

Preface

This thesis is a part of the research conducted at the NTNU Autonomous Per-
ception Lab (NAPlab) at the Norwegian University of Science and Technology
(NTNU).

I would like to thank my supervisors Frank Lindseth and Gabriel Kiss for giving me
the opportunity to write my master’s thesis within this field of research, and for
their feedback on my thesis. I would also like to thank Jan Grønsberg for providing
me with access to a virtual machine with a GPU.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
1 Introduction . 1

1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Contributions . 2
1.4 Thesis Structure . 2

2 Background and Related Work . 5
2.1 Learning Agents . 5

2.1.1 Modular Learning vs End-to-End Learning 5
2.1.2 Imitation Learning . 6
2.1.3 Reinforcement Learning . 6
2.1.4 Markov Decision Processes . 6
2.1.5 Reward Functions . 8
2.1.6 Designing Environment Reward Functions 9
2.1.7 Policies . 10
2.1.8 On-Policy vs. Off-Policy . 11
2.1.9 Value Functions . 12
2.1.10 Tabular RL vs. Deep RL . 13
2.1.11 Policy Gradient Methods . 14
2.1.12 Value Based Methods . 15
2.1.13 Deep Q-Learning . 15
2.1.14 Deep Deterministic Policy Gradient 16
2.1.15 Twin Delayed Deep Deterministic Policy Gradient 16

2.2 Reinforcement Learning Libraries and Tools 17
2.2.1 OpenAI Gym Environment . 17
2.2.2 Stable-Baselines3 . 17

ix

x A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

2.3 Simulated Environments for Autonomous Vehicles 18
2.3.1 CARLA . 18
2.3.2 Alternatives to CARLA . 20

2.4 Related Work . 21
2.4.1 Learning by Cheating . 21
2.4.2 End-to-End Model-Free Reinforcement Learning for Urban

Driving Using Implicit Affordances 23
2.4.3 Learning to Drive From a World on Rails 24
2.4.4 GRI: General Reinforced Imitation and its Application to

Vision-Based Autonomous Driving 27
2.4.5 Learning From All Vehicles . 28

3 Methodology . 31
3.1 Training the Autonomous Agent: Adaptive General Reinforced Im-

itation . 31
3.1.1 Underlying Assumption . 31
3.1.2 Episode Rollouts . 33
3.1.3 Updating the Probability for Expert Demonstrations 33

3.2 Implementation and Technology . 34
3.2.1 Choice of Simulator . 34
3.2.2 OpenAI Gym Implementation 34
3.2.3 Action Space . 35
3.2.4 Observation Space . 36
3.2.5 Reward Function Design . 39
3.2.6 Visual Encoder . 40
3.2.7 Policy Network . 41
3.2.8 Expert Data Collection . 43

3.3 Experiments . 43
3.3.1 Experiment 1a and 1b: Using AGRI with Value Based Meth-

ods and Policy Based Methods 43
3.3.2 Experiment 2a and 2b: Augmenting the State Representa-

tion With a Kinematic Bicycle Model 44
4 Results . 47

4.1 Visual Encoder Results . 47
4.2 Experiment 1a: Using AGRI With DQN 49
4.3 Experiment 1b: Using AGRI With TD3 51
4.4 Experiment 2a: Augmenting the State in the Value Based Approach 53
4.5 Experiment 2b: Augmenting the State in the Policy Gradient Ap-

proach . 54
4.6 Results in the Evaluation Environment 57

4.6.1 Evaluation Metric . 57
4.6.2 Evaluation Episode Length . 57
4.6.3 A Note on Time Steps Used in Training 58
4.6.4 Evaluation Results . 58

5 Discussion . 61

Contents xi

5.1 Experiment 1a . 61
5.2 Experiment 1b . 62
5.3 Experiment 2a and 2b . 62
5.4 Shortcomings . 63

5.4.1 Flaws in the Reward Function 63
5.4.2 Gradient Steps and Replay Buffer Size 63

6 Conclusion and Future Work . 65
6.1 Conclusion . 65
6.2 Future Work . 66

Bibliography . 67
A Additional Material . 71

A.1 Route Configuration File . 71
A.2 Route Configuration File for Evaluation 77

Figures

2.1 Illustration of environment interaction 7
2.2 Illustration of a simple environment . 11
2.3 Visual representation of the input used in Learning by Cheating . . 22
2.4 Learning From All Vehicles pipeline . 29

3.1 The visual input for the agent . 37
3.2 Visual representation of the directional vector 38
3.3 Semantic segmentation autoencoder 40
3.4 Policy network . 42
3.5 Policy network with kinematic bicycle model 46

4.1 Semantic encoder reconstruction . 48
4.2 Semantic encoder reconstruction from expert dataset 48
4.3 Training results from experiment 1a . 50
4.4 Training results from experiment 1b 52
4.5 Training results for a discrete kinematic AGRI 54
4.6 Training results for a continuous kinematic AGRI 56

xiii

Tables

4.1 Rewards obtained in the evaluation environment using the evalu-
ation reward . 59

xv

Code Listings

A.1 The route configuration file used for training 71
A.2 The route configuration file used for evaluation 77

xvii

Acronyms

AGRI Adaptive General Reinforced Imitation. xiii, 2, 3, 31–34, 43, 49–56, 58,
61–66

API Application Programming Interface. 18–21, 28

CARLA Car Learning to Act. 18–21, 23, 24, 27–30, 34–36, 41, 43, 45, 57, 58

DDPG Deep Deterministic Policy Gradient. 16, 17, 43

DQN Deep Q-Network. 15, 17, 28, 41, 43, 44, 50, 54, 61, 62, 65

GRI General Reinforced Imitation. 27, 31, 33, 65, 66

MDP Markov Decision Process. 6–8

RL Reinforcement Learning. 6, 8–10, 17, 21, 23, 24, 27, 28, 31–35, 38, 39, 41,
43, 44, 49–52, 58, 61, 62

TD3 Twin Delayed Deep Deterministic Policy Gradient. 16, 17, 41, 43, 44, 62, 65

xix

Chapter 1

Introduction

1.1 Background and Motivation

The research field of autonomous vehicles has been blooming in recent years,
and over the last decades advances in machine learning and computational power
have made autonomous vehicles closer to reality than ever before. As most autonom-
ous driving approaches are dependent on a visual input of the surroundings, ad-
vances in the ongoing research field of visual intelligence have been, and still are,
crucial for the development of successful autonomous driving systems.

Successfully creating an autonomous driving system that achieves better-than-
human performance could be greatly beneficial to society. The U.S. Department
of Transportation’s National Highway Traffic Safety Administration estimates that
in the first half of 2021, 20,160 people died in traffic accidents [1]. An autonomous
driving system that is better at driving than humans can therefore help save the
lives of thousands of people worldwide.

Deep reinforcement learning is considered a promising family of machine learn-
ing methods for achieving better-than-human performance in the task of driving
vehicles. It has shown a great ability for complex problem solving based on self-
learning and simulations. Complex tasks where deep reinforcement learning has
performed better than humans include games such as Go, where Silver et al. cre-
ated AlphaGo [2] that beat the world champion. Berner et al. also show in [3]
that a reinforcement learning agent can be trained to beat the world champions
in the e-sports game Dota 2, a highly complex game with imperfect information.

One of the main obstacles of reinforcement learning is that it requires very much
data to be able to learn and generalize. It also often lacks stability in training
and promising results could rely heavily on parameter tuning. Overcoming these
obstacles could be crucial for the future of reinforcement learning for autonomous
vehicles.

1

2 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

1.2 Goals and Research Questions

The goal of this thesis is to explore the possibility to speed up and enhance rein-
forcement learning by combining the exploration of a simulated environment with
expert demonstration data. To do this, the method Adaptive General Reinforced
Imitation (AGRI), an extension of General Reinforced Imitation by Chekroun et
al.[4], is introduced. To test if the proposed method can fulfill the overall goal the
following research questions are formulated:

RQ1: Can AGRI be used with value-based reinforcement learning methods to im-
prove learning?

RQ2: Can AGRI be used with policy gradient reinforcement learning methods to
improve learning?

RQ3: Can a kinematic bicycle model be used to enrich the state representation of
the environment with basic knowledge about vehicle dynamics to improve learn-
ing?

1.3 Contributions

The following are the contributions of this thesis to the research field of deep
reinforcement learning for autonomous driving agents:

• A literature review of state-of-the-art performing reinforcement learning
and imitation learning approaches to autonomous driving.

• The introduction of the method Adaptive General Reinforced Imitation. The
method is trained and tested using different implementations of reinforce-
ment algorithms and evaluated on a separate dataset.

• A study of the use of policy gradient algorithms when combining reinforce-
ment learning with expert demonstrations.

• A study of the effects of augmenting the state representation with basic
knowledge of vehicle dynamics.

1.4 Thesis Structure

This thesis is divided into six chapters:

Chapter 1: Introduction This chapter introduces the background and motiva-
tion for this thesis, together with the research goal and questions that it aims to
answer. The contributions and the thesis structure are also presented.

Chapter 2: Background and Related Work This chapter presents the relev-
ant theory behind imitation learning, reinforcement learning, and deep reinforce-
ment learning. Further, an overview of the programming tools and simulator is

Chapter 1: Introduction 3

explained before, in the end, a selection of related work with state-of-the-art per-
formance is presented.

Chapter 3: Methodology This chapter presents the methodology used to con-
duct experiments to answer the research questions. The method Adaptive General
Reinforced Imitation, an extension to GRI by Chekroun et al. [4], is proposed and
its implementation is explained. The chapter also describes the Python implement-
ation of the environment and how the experiments are conducted.

Chapter 4: Results This chapter presents the experimental results obtained in
the thesis. Both the results from training and evaluation are presented.

Chapter 5: Discussion This chapter discusses the results obtained in the thesis
and answers the research questions. A discussion about the shortcomings of the
implementations in this thesis is also provided.

Chapter 5: Conclusion and Future Work This chapter draws a conclusion from
the results and the discussion. It also presents a possible suggestion for future work
on extensions to AGRI.

Chapter 2

Background and Related Work

This chapter presents the theory behind imitation learning, reinforcement learn-
ing, and deep reinforcement learning relevant to this thesis. It explains how rein-
forcement learning tasks are modeled as Markov Decision Processes with a state
space and an action space and the calculations for state values and action values
are explained. Later the concept of policies will be explained as well as the dif-
ference between on-policy and off-policy. The programming libraries used in the
thesis will be explained together with the simulated environment used, and other
relevant simulated environments will be listed. In the end, a selection of related
work with state-of-the-art performance will be presented.

2.1 Learning Agents

This section introduces the two most common approaches for end-to-end training
of autonomous agents, imitation learning and reinforcement learning. An over-
view of imitation learning is presented before an in-depth explanation of rein-
forcement learning. The explanation of reinforcement learning addresses Markov
decision processes, reward functions, value functions, and methods for finding
optimal policies through policy gradients and value-based methods. In the end,
an overview of relevant reinforcement learning algorithms will be presented.

2.1.1 Modular Learning vs End-to-End Learning

When training autonomous driving systems there are generally two approaches
used. The first is a modular approach consisting of a pipeline of modules. A mod-
ule could be anything that solves a sub-task based on the input or the output
from other modules. Modules could be neural networks, rule-based approaches,
or other kinds of expert systems. A drawback of the module-based approach is
that they often require a lot of domain knowledge to implement the modules.

End-to-end approaches on the other hand require little to no domain knowledge

5

6 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

to implement. In this approach, observations are mapped directly to actions, in-
stead of solving sub-tasks that are then combined to solve the main task. The
major benefit of this approach lies in its simplicity. The drawback of the end-to-
end approach is its black-box nature. It is close to impossible to explain why an
agent chooses an action based on a state.

2.1.2 Imitation Learning

Imitation learning is a supervised learning approach where the agent is trained
to imitate actions from a dataset. The dataset consists of state observations and
actions selected by an expert. The expert could be anything from a rule-based
system to a human or even a trained neural network. The goal of the imitation
learning agent is to learn a mapping, or a policy, that maps observations to actions.

Early approaches to imitation learning suffered from what Bellman refers to as
the curse of dimensionality [5]. However, recent advances in deep learning have
provided solutions to overcome these problems, and imitation learning has shown
to be able to perform well in complex tasks such as autonomous driving tasks.

A challenge with imitation learning is that it usually generalizes poorly to new
situations. The agents have only been trained on expert observations that never,
or very rarely, make mistakes. Therefore, it tends to struggle to learn a policy that
is able to recover from mistakes or adapt to new situations. A learning approach
that tends to generalize better to new situations is reinforcement learning.

2.1.3 Reinforcement Learning

Reinforcement learning (RL) is a method in machine learning for agents to learn
a wanted behavior in an environment without explicitly being told what actions
are better than others. Instead, the agent learns how to behave by interacting
with the environment through actions that affect the state of the environment.
Figure 2.1 shows a simple visualization of how the agent observes the state st at
time t and executes an action at on the environment and receives a reward rt+1
as the environment transitions into state st+1. In some literature rt+1 is denoted
rt to indicate the reward received for selecting action at . This is only a matter
of notation, and in this thesis, the notation rt+1 is used. The reward received
can be any real number, and the ultimate goal is for the agent to maximize the
cumulative reward collected over a sequence of transitions, called an episode. In
the first episodes, the agent will select actions at random, but as it experiences
more episodes it will learn to create a map from actions to states that maximizes
the reward.

2.1.4 Markov Decision Processes

To model RL problems Markov Decision Processes (MDPs) are used. A MDP is
a time-discrete stochastic process that describes the evolution of a system over

Chapter 2: Background and Related Work 7

Figure 2.1: An illustration of an agent interacting with an environment. At time t
the agent observes the state of the environment st and the reward rt from applying
action at−1 in the previous time step. The agent then decides on an action at
and executes it on the environment, that transitions into state st+1 and the agent
receives reward rt+1.

time. The MDP has a state space S, an action space A, a reward function R,
and a transition function p. The reward function determines the reward rt+1 for
transitioning from a state st in time t to state st+1 by applying action at to the
environment. The transition function is defined as:

p(s′, r|s, a) = Pr(st+1 = s′, rt+1 = r|st = s, at = a) (2.1)

It describes the probability for moving from state st = s to state st+1 = s′ and
receive reward rt = r when executing action at on the environment.

As the transition function is a probability distribution the following must hold

∑

s′∈S

∑

r∈R
p(s′, r|s, a) = 1 (2.2)

This puts a requirement on the state. It must contain all the information that
makes a difference for future states, so that future states are only dependent on
the current state and not the trajectory of all states leading up to it. If the state
fulfills this requirement it is said to exhibit the Markov property.

From Equation (2.1) the dynamics of the environment can be calculated. The
state-transition probability function can be expressed as

p(s′|s, a) = Pr(st+1 = s′|st = s, at = a) =
∑

r∈R
p(s′, r|s, a) (2.3)

and the expected reward from selecting action a in state s can be expressed as

8 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

r(s, a) =
∑

r∈R
r
∑

s′∈S
p(s′, r|s, a). (2.4)

2.1.5 Reward Functions

The cycle of an MDP consists of observing the state of the environment st , selecting
and executing an action at , and receiving a reward rt+1. Rewards are only given
on the transition from one state to another so the agent will receive the first reward
at time t = 1.

As the agent explores the environment by repeating the cycle of the MDP it gen-
erates a sequence of observed states, actions executed and rewards received. This
sequence, or trajectory of state-action-reward tuples can be written as

τ= {(s0, a0, r1), ..., (st , at , rt+1), ...}.

The goal of the agent is to find the action to take for each state so that the total
reward of the trajectory is maximized. In its simplest form, this cumulative reward
for the trajectory can be expressed as

R(τ) =
T−1
∑

t=0

rt+1 (2.5)

Where T is the total number of steps in the trajectory. T can be an arbitrary num-
ber and must not necessarily be the same for every episode. It may also very well be
infinite. RL problems that can be said to have a well-defined ending are referred to
as episodic tasks. In these kinds of problems, T is finite and Equation (2.5) could
be used as the trajectory reward. However, in other tasks, the episode may not
have a natural ending but goes on forever. These kinds of problems are referred
to as continuous tasks. In continuous tasks Equation (2.5) could be too simple to
represent the total reward for the trajectory. As T approaches infinity R(τ) could
also be approaching infinity. To avoid this, discounting of future rewards is used
to make the sum of rewards converge. The total reward for a trajectory can then
be expressed as

R(τ) =
∞
∑

t=0

γt rt+1. (2.6)

Here γ is the discount factor, and is defined so that 0 <= γ <= 1. The discount
factor indicates how much emphasis should be put on future rewards. In the case
where γ = 0 the discounted rewards becomes γt rt+1 = 0 for all rewards except
for the first reward received in time t = 0. In the other extreme case γ = 1 and
the expression becomes the same as in Equation (2.5). To be able to use the same

Chapter 2: Background and Related Work 9

notation for both episodic and continuous tasks it is assumed that rt = 0 for t > T .
By setting γ so that 0< γ < 1, the sum of the rewards is guaranteed to converge.
For example, if the reward is given as rt = 1 for all t the total reward for the
trajectory would be

∞
∑

t=0

γt =
1

1− γ
.

Sometimes, as will be seen in Section 2.1.9, it is useful to be able to calculate the
reward of the remaining of a trajectory starting at time t. This can be expressed
as

Rt(τ) =
∞
∑

k=0

γt rt+k+1 (2.7)

and by the property of the sum of a series, this can also be written as

Rt(τ) = rt+1 + γRt+1(τ) (2.8)

2.1.6 Designing Environment Reward Functions

When trying to solve RL problems the design of the reward function plays a cru-
cial role in how well the agent will learn to behave in the environment. In some
types of environments, there could be a very well-defined set of rules for what
should give a reward. An example of such an environment is the pole balancing
environment described on page 56 in [6]. Here the reward function can be as
simple as rewarding +1 for transitioning to any state that is not a failure state. In
other problems, such as chess, designing the reward function could be far more
difficult. The chess environment is so complex that even an expert would not be
able to accurately estimate the reward for all state transitions.

One solution to the problem of complex environments is to only give a reward
when the agent finishes an episode. If the agent finishes with success the agent
is given a positive reward, and if the agent failed the episode the agent is given
a negative reward. In the chess environment, this would mean giving a positive
reward if the agent wins and a negative reward if the agent fails. For all other
state transitions, the reward is 0. This is the exact approach used by Silver et al.
in [2], where they train an agent to achieve expert-level performance in the game
of Go.

While this approach might work well for episodic tasks such as chess and Go, it
quickly becomes problematic when used in continuous tasks or problems with very
long episodes. Imagine training an agent that is learning to drive an autonomous
where the goal is to reach a final destination. Even if the destination is relatively

10 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

close, e.g. less than a kilometer away, the agent would still have to observe and act
on thousands of states before reaching the desired destination. The probability of
an agent selecting the correct sequence of actions to reach the desired destination
is infinitesimally small. This would lead to the agent wandering aimlessly and
most likely learning to stand still to avoid collisions.

Giving the agent rewards for completing sub-goals could be a solution to the prob-
lem of sparse rewards. Sutton and Barto [6] do however argue that this should
not be done as it could potentially make the agent learn to only complete sub-
goals and not care about the overall goal. Therefore, the challenge of designing a
good reward function plays a large part for RL agents to be able to complete goals
successfully.

2.1.7 Policies

When the agent explores the environment and tries to learn how to maximize the
total reward received it follows what is called a policy. The policy determines how
the agent behaves in the environment and can be seen as a set of rules for what
action to take in every state. Mathematically the policy is a mapping from a state
to a probability distribution of actions that can be selected in the given state. The
policy is defined as

π(a|s) = Pr(a = at |s = st) (2.9)

for all a ∈A(s) and all s ∈ S. The notation π is used for simplicity. When learning,
the agent will update its policy to maximize the expected reward. The theoretical
policy that achieves this is called the optimal policy π∗. The goal when training is
to learn a policy that is as close as possible to the optimal policy.

A policy that always selects the action with the highest probability is called a
greedy policy. This approach may work well when applying a trained policy to
a problem, but while the agent is exploring the environment this could easily
cause the agent to get stuck in a local optimum. This problem is known as the
challenge of exploration versus exploitation. Typically, early in the learning stages,
it is desirable for the agent to explore the environment more than it exploits what
it has learned about the environment up until that point. Take for instance the very
simple environment shown in Figure 2.2. If in the first episode the agent selects
the actions a0 = ri ght, a1 = ri ght it will receive a total reward of 0, given no
discounting. If the agent then in the second episode selects a0 = le f t, a1 = le f t
it will receive a total reward of 1.5. At this point, the agent should have updated
its policy so that the probability for selecting a0 = le f t in state s0 is higher than
the probability for selecting a0 = ri ght. The optimal policy in this environment
is a0 = ri ght, a1 = le f t, but if the agent stops exploring after these two episodes
it will get stuck in the local optima by exploiting the knowledge about the reward
received from a0 = le f t, a1 = le f t. By exploring, the agent will select a random

Chapter 2: Background and Related Work 11

Figure 2.2: An example of a very simple environment with only two actions for
each state.

action instead of following the policy in hopes of finding new actions that can
give higher rewards. This trade-off between exploration and exploitation is an
important aspect of successfully learning an optimal policy. Too much exploration
can make the agent wander around without ever coming any closer to its goal,
whereas too much exploitation may lead to the agent getting stuck repeating a
sub-optimal pattern. A common way to let the agent explore the environment is
to use stochastic policies. That way the agent will start out with relatively random
actions and as it learns the better actions will be assigned a higher probability of
being selected.

2.1.8 On-Policy vs. Off-Policy

When exploring the environment the agent needs to follow a policy. One method
is to let the agent explore the environment using the same policy it is trying to
optimize. This approach is called on-policy and is used in algorithms such as A2C
[7], PPO [8], or TRPO [9]. The idea for on-policy is that there is always a small
probability for selecting any action in any state so that π(a, s) > 0 for all states s
and all actions a. As the agent learns, the policy will converge toward a determ-
inistic policy. The challenge with on-policy algorithms is how fast to let the policy
converge. Converging too fast will likely result in a sub-optimal policy while con-
verging too slow might cause training to take too long to be feasible. This is the
problem of exploration vs exploitation discussed in Section 2.1.7.

In contradiction to on-policy algorithms, off-policy algorithms use different policies
for exploring the environment and learning the optimal policy. The exploring
policy is often referred to as the behavior policy and the policy being learned
is referred to as the target policy. The benefit of off-policy algorithms is that they
can use experience collected by any policy. This allows them to reuse experiences

12 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

collected earlier in the learning phase by storing state transitions, actions taken
and the rewards collected in replay buffers. By using replay buffers, off-policy al-
gorithms open up the possibility of inserting other data into the replay buffers,
such as expert data, as Chekroun et al do in their work [4].

2.1.9 Value Functions

For the agent to be able to learn a policy it needs a way to determine the value of
a state and the value of selecting an action in a given state. These value estimates
are called value functions. The value function for a state is often called a state-
value function and is denoted Vπ(s). It estimates the value of starting in state s
and selecting actions according to the policy π from there on. The value function
under the policy π is defined as

Vπ(s) = Eπ[Rt(τ)|s = st] = Eπ

�∞
∑

k=0

γkRt+k+1|s = st

�

. (2.10)

Similarly the value of taking action at while in state st at time t is called the
action-value function and denoted Qπ(s, a). It is defined as

Qπ(s, a) = Eπ[Rt(τ)|s = st , a = at] = Eπ

�∞
∑

k=0

γkRt+k+1|s = st , a = at

�

. (2.11)

It is worth noting that since the action-value is the value of taking action at in
state st at time t, and then follow the policy from there on out it must be equal
to the reward rt+1 received for transitioning from st to st+1 plus the discounted
future value of state st+1 under the policy. The action-value function can therefore
be expressed as a function of Vπ(s):

Qπ(s, a) = Eπ [rt+1 + γVπ(st+1)|a = at , s = st] . (2.12)

It is also worth noting that the following must hold:

max
at+1

Qπ(st+1, at+1) = Vπ(st+1) (2.13)

For both Vπ(s) and Qπ(s, a) the value of terminal states are always defined to be 0
so that Vπ(sT) =Qπ(sT , aT) = 0. Using both Equation (2.10) and Equation (2.11)
it is possible to calculate the advantage of selecting another action at is compared
to selecting based on the policy π. This is called the advantage function and is
defined as the difference between the action-value function and the state-value
function as follows:

Chapter 2: Background and Related Work 13

Aπ(s, a) =Qπ(s, a)− Vπ(s) (2.14)

Given that the agent follows an optimal policy π∗ the advantage function Aπ(s, a)
should have a maximum value of 0. If on the other hand, the advantage function
is positive for any action it indicates that for the state s there exists an action a so
that executing a and then following the policy is better than following the policy
in s. This would mean that the agent is not following an optimal policy.

2.1.10 Tabular RL vs. Deep RL

When implementing the state-value function and action-value function one choice
for implementation would be a one-to-one mapping from states to values so that
every state is uniquely mapped to a value. An example of this is a tabular approach,
where for each state an associated state-value is stored for the value function.
Similarly, the action-value function would be represented by a mapping from a
state-action pair to a value. The benefit of such an approach is that it accurately
maps the states and state-action pairs to their respective values, and updating a
value for one state or state-action pair has no influence on the other mappings.
Another benefit of such an approach is that it is very fast as a lookup in a table is
computationally cheap.

There are however drawbacks to this approach that often has a tendency to out-
weigh the benefits. The most important drawback is that it becomes very memory-
consuming as the state space of the environment grows. Even a simple game such
as tic-tac-toe has a state space size of 39 = 19683 states. The number of state-
action pairs would be even larger as for each state, several actions would be as-
sociated with it. For very simple environments, such as tic-tac-toe, the tabular
approach is feasible in terms of memory consumption, but state space sizes can
quickly grow too large to fit in the memory of any computer. Imagine an environ-
ment with a grayscale image of size 10 × 10 pixels. If each pixel can be a value
in the range [0,255] then the size of the state space is 256100. This is far more
states than are possible to store on any computer. Another drawback with the tab-
ular approach is that both the state space and action space have to be discrete. In
some cases, this problem could be solved by discretization. Only the state space is
assumed to be continuous in the following, but the same applies to action spaces.
Take for instance pole balancing problem mentioned in Section 2.1.6 from [6]. In
this environment, the state space is represented by the angle of the pole. The state
space could then be discretized by rounding the angle to the closest integer and
using that as the new state space. If the state space is already discrete, but large,
one could sometimes use bins to cluster similar states and thus reduce the state
space size. In [10] Chen et al. used a combination of discretization and bins.

In many environments, state spaces may already be discrete and very large, such
as in chess or Go. In these cases, the state space is also very difficult to reduce in

14 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

size by clustering states into bins, as it is very hard to determine accurately which
states are similar. This is where deep neural networks as function approximators
come in. By representing the state-value function, action-value function, or policy
using a deep neural network it is possible to map states to values or actions without
one-to-one mappings. Parameterized approximations are denoted Vθ (s), Qθ (s, a),
πθ (s, a) where θ ∈ Rd , d << |S| is the d-dimensional vector of parameters for the
functional approximation. Note that θ in the notation is not necessarily the same
for V , Q, and π. The functional approximation has the property that updating the
value for a single state, by updating the parameters θ , also updates the value of
other states. In some cases, this could be an advantage, as it could speed up the
learning process by updating multiple states at the same time. It could potentially
also make learning harder because of the same property. Updating the value for
one state could simultaneously corrupt the value for another.

2.1.11 Policy Gradient Methods

Methods that rely on a functional approximator of the policy needs a way to up-
date the policy. The ultimate goal of the agent is to maximize the expected reward
R(τ) for any trajectory τ. The expected reward over a trajectory τ is denoted
J(πθ) so that J(πθ) = E

τ∼πθ
[R(τ)]. E

τ∼πθ
reads the expected value of a trajectory

when following policy πθ . For the agent to learn an optimal policy it has to find
the optimal parameters θ ∗ for the policy. This is done by solving the following
optimization problem

max
θ

J(πθ) (2.15)

To solve Equation (2.15), θ is updated over a series of small steps by gradient
ascent. After k updates the new value for θ at the next iteration k+ 1 is given by

θk+1 = θk +α∇θ J(πθ)|θk
. (2.16)

In Equation (2.16) ∇θ J(πθ) is referred to as the policy gradient. α is the size of
the step to take along the gradient when up θ and is referred to as the learning
rate. Silver et al. shows in [11] how the expected reward J(πθ) can be written as

J(πθ) =

∫

S
ρπ(s)

∫

A
πθ (s, a)r(s, a)dads. (2.17)

Here ρπ(s) is the probability distribution of states under the policyπ. They further
show how the policy gradient can be expressed as

Chapter 2: Background and Related Work 15

∇θ J(πθ) =

∫

S
ρπ(s)

∫

A
πθ (s, a)Qπ(s, a)dads

= E
τ∼π
[∇θ logπθ (s, a)Qπ(s, a)].

(2.18)

2.1.12 Value Based Methods

An alternative to policy gradient methods is value-based methods. Instead of cal-
culating the gradient ∇θ J(πθ) to do gradient ascent, value-based methods aims
to maximize the equation

Qπ(s, a) = Eπ
�

rt+1 + γmax
at+1

Qπ(st+1, at+1)|a = at , s = st

�

(2.19)

This is the same equation as Equation (2.12), but with Equation (2.13) inserted
for Vπ(st+1). Equation (2.19) is known as the Bellman equation for value based
methods. Value based methods aim to maximize this equation through Bellman
iterations, so that

Q i+1(s, a) = E
�

rt+1 + γmax
at+1

Q i(st+1, at+1)|a = at , s = st

�

(2.20)

Sutton and Barto explains in [6] that Equation (2.20) can be shown to converge
to Q∗ as i −→∞.

2.1.13 Deep Q-Learning

Deep Q-Learning (DQN) was introduced by Mnih et al. in [12]. They argue that
using Equation (2.20) directly is impractical, as the action-value function is estim-
ated separately for each sequence. Instead they propose using a neural network as
a functional approximator for Q, so that Qθ (s, a) ≈ Q∗(s, a). The authors refer to
this neural network as a Q-network. They then train the Q-network by minimizing
the loss function

Li(θi) = E
πbehavior

�

(yi −Qθi
(s, a))2
�

(2.21)

where

yi = Eπ
�

rt+1 + γmax
at+1

Qθi
(st+1, at+1)|a = at , s = st

�

. (2.22)

In the implementation provided by Stable-Baselines3 [13] πbehavior is implemen-
ted using a second Q-network. As DQN is an off-policy algorithm it is able to use
replay buffers. This is utilized in the algorithm by randomly sampling a minibatch
of transitions at each step and then doing a step of gradient descent based on the
gradient of Equation (2.21).

16 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

2.1.14 Deep Deterministic Policy Gradient

With DDPG [14] Lillicrap et al. introduced algorithm that estimates a deterministic
parameterized actor function µθ (s) that maps states to actions. By doing this they
are able to use µθ (s) as an estimate for the action a when training the Q-network.
This approach allows them to use deep Q-learning in continuous action spaces. By
using the definition of J(πθ), the policy optimization problem in Equation (2.15)
can then be written as

max
θ
E

s∼D

�

Qφ(s,µθ (s))
�

. (2.23)

During the optimization of the policy, the parameters φ of the action-value func-
tion are treated as constants. s ∼ D indicates states collected from a replay buffer
D. The Q-network is trained separately as explained in Section 2.1.13.

2.1.15 Twin Delayed Deep Deterministic Policy Gradient

In [15] Fujimoto et al. presents the Twin Delayed Deep Deterministic Policy Gradi-
ent (TD3) in an attempt to improve DDPG [14]. It is an algorithm that takes into
account the error that occurs from using function approximators for both the value
function and the policy. They recognize that the estimation Qφ(s,µθ (s)) is suscept-
ible to error and may introduce overestimation bias. To handle the problem of
overestimation bias they use clipping by simultaneously training two Q-networks
(twins) and using the minimum value of the two.

The second improvement Fujimoto et al. makes is to delay the updating of the
policy network compared to the value networks. They suggest that updating the
policy based on value estimates with high errors could lead to divergent behavior.
By updating the policy network at a lower frequency the Q-networks will have
more iterations of updates to more accurately estimate the actual value.

The last improvement to DDPG that TD3 makes is to add a smoothing regulariz-
ation term to the target in Equation (2.22). They write this as

y = r +Eε
�

Q′θ (s
′,π′φ(s

′) + ε)
�

(2.24)

This expectation can then be expected by adding a small amount of random noise,
so that

y = r + γQ′θ (s
′,π′φ(s

′) + ε)

ε∼ cl ip(N (0,σ),−c, c)
(2.25)

where ε is sampled from a normal distribution and clipped to the interval [−c, c].

Chapter 2: Background and Related Work 17

2.2 Reinforcement Learning Libraries and Tools

This section presents a selection of RL libraries and tools relevant to this thesis.
The presented technologies help simplify the learning process of RL agents by
providing a standardized interface to interact with.

2.2.1 OpenAI Gym Environment

OpenAI Gym [16] is an open-source toolkit that aims to simplify the process of
handling RL environments. The authors deliberately only create an abstraction for
the environment and not the agent. They argue that this is to maximize the con-
venience for the users while allowing for different implementations of the agents.
The environment interface proposed mainly consists of two methods: reset() and
step(). reset() sets the environment back to an initial state and returns the state.
step() takes an action as an argument and applies it to the environment. The im-
plementation of the environment is then responsible for calculating the next state
and the reward received. A tuple of four values is returned: (state, reward, done,
info). The first three values are self-explanatory, and the info-value is a diction-
ary of metadata about the environment. This value should not be accessed by
the agent but is for logging and debugging purposes only. In this thesis, the info-
value is never used, and for simplicity in notation, the tuple returned by step()
will hereafter only be referred to as (state, reward, done).

In addition to reset() and step() the interface also requires the environment to
define an action space and an observation space. Action spaces and observation
spaces can be discrete, continuous, or a combination of the two. In complex envir-
onments, such as in autonomous driving, parts of the state are represented with
continuous numbers, such as the speed of a vehicle, while other parts of the state
could be discrete, such as the current gear. Gym environments make this possible
by allowing action spaces and observation spaces to have sub-spaces that can be
discrete or continuous independently.

2.2.2 Stable-Baselines3

Stable-Baselines3 [13] is an open-source framework that aims to simplify the pro-
cess of using RL algorithms. The authors created the framework for researchers
to have the exact same implementation of RL algorithms when conducting ex-
periments. The authors argue that Henderson et al. in [17] show that very small
differences in the implementation of an algorithm can have a greater impact than
the choice of the algorithm itself. This is especially important when new RL al-
gorithms are developed. If the new algorithm is compared to an unstable or un-
reliable implementation of a baseline algorithm, the performance of the new al-
gorithm might seem better than it actually is. The algorithms implemented are
A2C [7], PPO [8], DDPG [14], SAC [18], TD3 [15], HER [19], and DQN [12]. All
algorithms have been thoroughly tested by comparing the learning curves of the

18 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

agent with published work and by the use of unit tests for most methods. All al-
gorithms are designed to interact with an implementation of a Gym environment.
This is to ensure that the environments have a standardized interface to interact
with.

2.3 Simulated Environments for Autonomous Vehicles

This section presents a selection of simulated environments used for representing
the environments for the agents to explore. The main focus will be on CARLA
[20], as this is the most widely used simulator for autonomous vehicles, and the
one used in this thesis. At the end of the section, some alternatives to CARLA will
also be presented.

2.3.1 CARLA

In [20] Dosovitskiy et al. present CARLA (Car Learning to Act), an open-source
simulator intended to support research for autonomous urban driving. The sim-
ulator features realistic physics and photo-realistic graphics as well as logic for
the other vehicles. The simulator is implemented as a client-server architecture.
The server is responsible for running the simulation and handling the rendering
of the environment, and the client is responsible for all agent logic. The client
communicates with the environment through an API implemented in Python1.

Through the Python API the client can send commands to control the agents, or
meta-commands to control the environment itself. Commands control the agents
by steering, throttling, braking, gear change, etc. Meta-commands control the en-
vironment itself, such as changing the weather or the city the agent is driving in.
The client is also responsible for receiving sensor readings from the server.

Agents observe the environment in CARLA through sensors. There is a variety
of sensors that can be attached to the vehicle. Some of the sensors provide real-
istic data, as would have been in the real world, whereas other sensors provide
ground truth data from the simulator, allowing for supervision when training
the autonomous agent. Below is an overview of some of the sensors available
in CARLA.

Realistic Sensors

• RGB camera: Provides RGB images of the surroundings of the vehicle. The
camera can be rotated in any direction and the field of view and image size
can be customized.

• LIDAR: Provides the coordinates and intensity of the surroundings of the
vehicle. The intensity can be used to measure the distance to other objects.

1Documentation for the Python API can be found here: https://carla.readthedocs.io/en/0.
9.13/python_api/

https://carla.readthedocs.io/en/0.9.13/python_api/
https://carla.readthedocs.io/en/0.9.13/python_api/

Chapter 2: Background and Related Work 19

• GNSS: Provides the altitude, latitude, and longitude of the vehicle.
• IMU: Provides information about the acceleration in m/s2, the orientation

in radians relative to North, and the angular velocity in m/s.
• Radar: Provides information about elements in sight and their movement.

Ground Truth Sensors

• Collision detector: Signals if the vehicle has collided. If this is the case an
indicator is returned making it possible to determine what the agent has
collided into.

• Depth sensor: Provides an image where the pixels represent the distance to
the elements in the view.

• Lane invasion detector: Signals if the vehicle has crossed a lane marking.
Tells if the vehicle has crossed over a lane marking. If this is the case an
object representing the lane marking is returned, making it possible to de-
termine what kind of marking was crossed.

• Semantic segmentation camera: Provides an image where each pixel is an
integer in the range [0, 22]. Each pixel represents a tag for what class of
object is in the pixel.

• Semantic LiDAR: Similarly to the semantic segmentation camera, the se-
mantic LiDAR provides semantic information about what class of object is
present at each point in the LiDAR reading.

In addition to sensors, the agent also has access to an HD map of the driving area
in the OpenDrive format2. The HD map is static and only has to be fetched from
the server once by the client. The CARLA Python API provides methods for parsing
these files to represent the map in a manageable way. One of the most relevant
features provided by the Python API is the Waypoint API. The Waypoint API is one
of the main building blocks for most of the methods presented in Section 2.4 and
allows for the client to generate so-called waypoints. Waypoints are 3D objects
that provide information about roads and lanes on the HD map. As the waypoints
are generated directly from the HD map no interaction with the CARLA server is
required. This means that any information provided by waypoints can be used for
training and inference as it is not privileged information.

CARLA Leaderboard and the Scenario Runner

In recent years challenges for creating the best autonomous vehicle driving in
CARLA have appeared. The CARLA challenge3 was one of the first challenge to
arrive with realistic driving scenarios. Later the CARLA Autonomous Driving Lead-
erboard4, or just CARLA leaderboard for short, was also created and is today the

2https://www.asam.net/standards/detail/opendrive/
3https://carlachallenge.org/
4https://leaderboard.carla.org/

https://www.asam.net/standards/detail/opendrive/
https://carlachallenge.org/
https://leaderboard.carla.org/

20 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

de-facto standard for benchmarking autonomous driving agents in CARLA.

The CARLA leaderboard challenge comes in two flavors. The first is the SENSOR
challenge where the driving agents only have access to sensors and not the HD
map provided by the server. In the MAP challenge, the driving agents have access
to the HD map in addition to the same sensors as in the SENSOR challenge. In both
challenges, the agent has a limit on how many of each sensor can be used. The
sensors include GNSS, IMU, LiDAR, RADAR, RGB camera, and a custom pseudo
sensor that provides an approximation of the speed.

The CARLA leaderboard challenge is run through the Scenario Runner5, an open-
source GitHub repository. The Scenario Runner provides functionality to define
routes and scenarios that the agent should follow. Routes are given as a list of
waypoints with a high-level command associated with each waypoint. A high-
level command is an integer value ranging from 1 to 6 representing the actions:
turn left, turn right, keep straight in an intersection, follow the lane, change lane
left, and change lane right. Other mentions of high-level commands in CARLA in
this thesis refer to these commands. Scenarios are predefined tasks that the agent
should encounter while driving the route. An example of such a scenario is making
a right turn in an intersection while a pedestrian suddenly crosses in front of the
vehicle.

2.3.2 Alternatives to CARLA

CARLA is not the only simulator available for training autonomous driving agents.
TORCS [21], short for The Open Racing Car Simulator, is another alternative.
Similar to CARLA, it is also implemented in a server-client architecture with a
low-level API for controlling the car. The simulator is made for simplicity while at
the same time being able to provide a realistic simulation. The default interface
through the API can provide ground truth information about the position of the
car and the distance from the lane center. As the graphics of the simulator are
relatively basic TORCS is more suitable for trajectory planning tasks rather than
visual perception tasks. It also does not have support for urban driving with traffic
rules and pedestrians.

The LG SVL simulator [22] is another simulator intended for training autonom-
ous driving agents. It is built using the Unity engine and was intended to be a
simple-to-use simulator that could be integrated with already existing autonom-
ous driving stacks. The authors argue that CARLA and other simulators are too
difficult to add custom sensors and more complex logic for other actors. The SVL
simulator is intended to handle this problem. It features several sensors, including
all the realistic sensors mentioned in Section 2.3.1. It also provides an HD map of
the environment similar to CARLA.

Another simulated environment that is not specialized for autonomous agents is

5https://carla-scenariorunner.readthedocs.io/en/latest/

https://carla-scenariorunner.readthedocs.io/en/latest/

Chapter 2: Background and Related Work 21

the Unity ML-Agents Toolkit6 is an open-source toolkit for training machine learn-
ing agents in the Unity engine. While it is not specialized for autonomous driving
tasks it is still possible to do. This does however more designing of the environ-
ment than the aforementioned simulators. The toolkit provides a python API for
RL algorithms, as well as functionality to do imitation learning. The Python API
also provides a Gym wrapper for the environment so that researchers can interact
with the environment through the Gym interface presented in Section 2.2.1. This
is intended to reduce the time researchers spend learning the toolkit so that they
can focus their time on the machine learning tasks.

2.4 Related Work

This section presents a selection of related work that has had success in training
autonomous agents that achieves state-of-the-art performance. The main focus
will be on their method for training their agents and how they have implemented
their solutions.

2.4.1 Learning by Cheating

Learning by Cheating [10] from 2019 was the first of the three submissions by
Chen et al. currently on the CARLA leaderboard. At the time of writing this thesis,
it is ranked number 14 out of 18 submissions. Their method consists of three
stages of training.

Stage 1 First, a privileged agent is trained that have access to a map of ground-
truth information about the environment. The ground-truth information includes
lane and road information as well as the location of other vehicles, pedestrians,
and traffic lights. The agent is trained to predict the next waypoints that the agent
should steer towards. Predictions are done using a convolutional network where
the input is a binary map anchored at the agent’s position with ground truth data.
The input map has dimensions (H, W, 7) for height H, width W, and 7 categories of
objects. The predicted categories are roads, lane boundaries, vehicles, pedestrians,
and one category for each traffic light state. A visual representation of the map
can be seen in Figure 2.3. The output of the network is a series of heatmaps. One
heatmap for each waypoint and high-level command (follow the lane, turn right,
etc). The heatmaps are then converted into waypoints using soft-argmax.

Stage 2 The second stage of the training consists of training the privileged agent
on a dataset of prerecorded expert trajectories using behavior cloning. The data-
set of trajectories is noise-free, and augmentations are added offline by shifting
and rotating the ground-truth maps, and therefore require no modification to the
collection procedure of the expert data. The unprivileged, sensorimotor agent is

6https://github.com/Unity-Technologies/ml-agents

https://github.com/Unity-Technologies/ml-agents

22 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

Figure 2.3: A visual representation of the map that is used as input to the priv-
ileged agent. Roads and lane boundaries are represented as light gray and gray,
respectively. Vehicles are blue, pedestrians are orange and red, and yellow and
green are represents traffic light states. The purple dots are the predicted waypo-
ints and are not input to the model. The image is from the original paper [10]

then trained on the same trajectories as the privileged agent using off-policy beha-
vioral cloning. The sensorimotor agent does not have access to the ground-truth
map that the privileged agent used. Instead, it uses a single RGB image as in-
put. The objective of the sensorimotor agent is to predict the same waypoints and
high-level commands that the privileged agent predicts for each input.

Stage 3 The last stage of the training consists of on-policy imitation learning via
DAgger [23]. The loss function is given as the L1 distance between the waypoints
predicted by the privileged agent and a transform of the predicted waypoints by
the sensorimotor agents. The transform of the sensorimotor agent is calculated
by utilizing the fact that waypoints in the map are related to waypoints in the
image by a fixed perspective given by the position of the RGB camera. This lets
the sensorimotor train on data not in the original dataset of expert trajectories by
using the privileged agent model as target predictions.

Implementation For training the privileged agent and the sensorimotor agent
uses different versions of ResNet [24] as backbone. The privileged agent uses an
untrained ResNet-18 whereas the sensorimotor agent uses a pretrained ResNet-34
pretrained on ImageNet [25]. Both agents use three up-convolutional layers where
each of these layers is given the velocity of the agent as an additional input. The
up-convolutional network branches into four heads, each predicting a heatmap
for high-level command (follow the lane, turn right, etc). These heatmaps are
then converted into spatial coordinates using a differentiable soft-argmax. The
input map to the privileged agent has a resolution of 192x192 and the output is
a heatmap with resolutions 48x48. The input is cropped so that the agent is at
the center bottom of the map. The augmentations applied include rotating the

Chapter 2: Background and Related Work 23

image by [-5, 5] degrees and shifting the image [-5, 5] pixels either left or right.
Both the number of degrees for rotating and the number for pixels to shift are
selected uniformly at random. The input to the sensorimotor agent is a 384x160
RGB image and the output heatmap is 96x40. The same augmentations as in CIL
[26] are used.

Results The results achieved in the paper achieve state-of-the-art performance at
the time. Compared to CILRS [27] it reduces the number of traffic light violations
by an order of magnitude for all scenarios tested. It also has significantly fewer col-
lisions than CILRS. Chen et al. conclude by stating that vision-based autonomous
driving tasks can be more effectively trained using imitation learning by decom-
posing the learning process into first learning to drive, then learning to see.

2.4.2 End-to-End Model-Free Reinforcement Learning for Urban
Driving Using Implicit Affordances

In their work from 2019, Toromanoff et al. present a technique they coin implicit
affordances [28] to effectively leverage RL for autonomous driving. Their method
won the CARLA challenge7 2019, a challenge similar to the CARLA leaderboard.
At the time of writing this thesis, their method is currently at 8th place in the
CARLA leaderboard. They train their model in two stages.

To train their model they start by training a ResNet-18 visual encoder using a data-
set of images from a single RGB camera. The encoded output is what will later be
used to represent the state of the environment during the RL phase. The input to
the backbone is four consecutive 288× 288 pixel RGB images stacked on top of
each other. This is done to add temporal information to the input. The output of
the encoder is a vector with shape 512×4×4. The encoder is trained similarly to
how auto-encoders are trained. The encoded vector is passed to a semantic seg-
mentation decoder that predicts the semantic segmentation of the images. The
authors argue that using an RGB decoder instead of a semantic decoder would
not work, particularly for traffic light detection. They argue that traffic lights rep-
resent very few pixels in an image, but that these pixels are important for the
agent behavior, and that an RGB decoder is not able to capture this importance
sufficiently.

In addition to training the encoder using the semantic decoder, the encoded vector
is also flattened and passed to a fully connected network that predicts affordances.
The authors argue that this is to ensure that the encoded RL state has enough rel-
evant signals. There are six affordances predicted. These are traffic light presence,
traffic light state, distance to the traffic light, intersection presence, distance to
the center of the lane, and the rotation relative to the lane. The ground truth data
for the first four affordances can be acquired directly from CARLA, whereas the
last two have to be acquired by augmenting the viewpoints of the images in the

7https://carlachallenge.org/

https://carlachallenge.org/

24 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

dataset. The authors explain how this is necessary as the dataset only consists of
images from an autopilot that is always in the middle of the lane with no rotation.
The losses from the fully connected affordance network and the semantic decoder
are then used in the backpropagation when training the ResNet-18 encoder.

During the RL stage the ResNet-18 encoder weights are frozen and therefore not
trained any further. The encoded vector is used in a conditional network as in [29]
together with a Rainbow-IQN [30] to handle high-level commands for following
the lane, turning left, right or keeping straight in intersections, or changing lanes
left or right. As the agent never predicts the affordances explicitly during the RL
training phase the authors say that it predicts them implicitly, hence they coin the
term implicit affordances.

The reward function used in the RL training phase consists of three components. It
has a speed component, a positional component, and a rotational component. The
speed component is in the interval [0, 1]. The reward is 1 when the agent is driving
at the desired speed and is reduced linearly to 0 if the agent is driving faster or
slower. The desired speed is set to a maximum of 40 km/t and is reduced linearly
to 0 when approaching a red light or a vehicle or pedestrian. The positional reward
component is in the interval [−1,0]. It is 0 when the agent is in the center of the
lane and is reduced to -1 when the agent approaches a 2 meter distance from the
lane center. If the agent reaches the maximum distance from the lane center of
2 meters the episode terminates and the agent is rewarded -1. Using only these
two reward components the authors experienced that the agent oscillated around
the lane center. To prevent this they added the third component that rewards the
agent for having the same relative rotation as the lane center. The reward is in the
interval [-1, 0] and is inversely proportional to the difference in angle between
the agent and the lane center.

At the time of release Toromanoff et al. achieved state-of-the-art performance for
an end-to-end model-free RL approach. They compare their results to the RL ex-
periment in [20], as well as CAL [31], CILRS [27], and Learning by Cheating
[10]mentioned in Section 2.4.1. Toromanoff et al. outperform all methods except
Learning by Cheating in most metrics. In the CoRL2017 8 (Conference on Robot
Learning 2017) benchmark, the implicit affordance approach scores 100% on all
metrics except for the one the author calls the hardest metric. In the NoCrash
benchmark [32] Toromanoff et al. achieve results that are slightly worse than
Learning by Cheating. This is however the first time an RL approach has matched
an imitation learning approach according to the authors.

2.4.3 Learning to Drive From a World on Rails

Learning to Drive From a World on Rails [33] is the second submission by Chen
et al. to the CARLA leaderboard. When it was submitted in 2021 it ranked first

8https://sites.google.com/a/robot-learning.org/corl2017/corl2017

https://sites.google.com/a/robot-learning.org/corl2017/corl2017

Chapter 2: Background and Related Work 25

on the leaderboard with a Driving Score 25% higher than the second place and
is currently ranked 7th. They use a model-based approach where they create a
semi-parametric forward model of the environment. The model is factorized into
two components, one component for the forward model of the ego vehicle and
one for the forward model of the world. In doing this, they make the assumption
that "the world is on rails, meaning neither the agent nor its actions influence the
environment." [33] They show how this assumption greatly simplifies the learning
problem, and that despite that the assumption does not hold, the agent learns to
drive well in a dynamic and reactive world. The ultimate goal of Chen et al. is to
train a visuomotor policy that maps input RGB images to actions. Their approach
consists of three modules: A forward model, T , of the world, an action-value func-
tion, Q, and a policy π.

Forward model The forward model estimated is a semi-parametric model that
consists of a ego-component T ego and a world-component T world . The ego com-
ponent is approximated using a simple deep neural network while the world com-
ponent uses prerecorded driving logs as a non-parametric approximation. The
driving state of the world is denoted Lt for time step t. The ego-component com-
putes the forward ego-driving state as Lego

t+1 = T ego(Lego
t , Lworld

t , at), given the
current ego driving state, world state and action a. The world forward model com-
putes the forward world state as Lworld

t+1 = T world(Lego
t , Lworld

t , at). By the world
on rails assumption, this simplifies to Lworld

t+1 = T world(Lworld
t) as the agent state

and actions are assumed to not have any influence on the world. Since the for-
ward world state is now only determined by the previous world state the entire
trajectory of world states can be determined from the initial world state. This al-
lows for the prerecorded trajectories to model the world transitions directly. The
ego-component is modeled as a parametric bicycle model [34] and is trained on
rollouts of T=10 steps using the following L1 regression:

E L̂ego
t:t+T ,ât

� T
∑

∆=1

�

�T ego∆(L̂ego
t , ât+∆−1)− L̂ego

t+∆

�

�

�

In the equation above, hat notation denotes data from prerecorded driving logs.

Action-value function To estimate the action-value function, Q(L̂t , a, a factor-
ized version of the Bellman equation is used. This is possible due to the world-on-
rails assumption. The original γ-discounted Bellman equation is

V (Lt) = max
a

Q(Lt , a) = max
a
γV (T (Lt , a)) + r(Lt , a),

but with the simplifying assumption and the factorized forward model, the authors
show how this simplifies to

26 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

V̂ (Lego
t) = max

a
Q̂(Lego

t , a)

Q̂(Lego
t , a) = r(Lego

t , L̂world
t , at) + γV̂t+1(T ego(Lego

t , a)).

Here the action-value function is dependent on all ego states, but only prerecorded
world states. Therefore, the agent is able to calculate the value of different ego
states without actually moving to them. For this to work, the reward function has
to be explicit and not just a black box output from the environment. The ego-state,
Lego

t is compact enough so that it is possible to compute a tabular approximation
of Vt(L

ego
t) instead of using a deep network. This is done by creating bins based

on discrete values of the position, orientation, and velocity of the ego vehicle. At
evaluation time linear interpolation is used to estimate values that are not in the
center of the bins.

Reward function As stated earlier the reward function must be explicit for a
given ego-state, world-state, and action. The reward is designed to be in the range
[0, 1] where 1 indicates that the vehicle has the desired speed, position, and ori-
entation. The reward is smoothly decreased to 0 for errors in any of these criteria.
In scenarios where the agent is in so-called zero-speed zones, such as behind an-
other stopped vehicle, it receives an additional reward of +5 for braking. This
braking reward can only be received once for every zero-speed zone so the agent
does not actively seek out zero-speed zones.

Policy The policy is trained using the action-value function Q t(L̂
ego
t , ·) to super-

vise the policy π(Ît). The learning objective is to maximize the expected return of
the policy given by:

E L̂world
t , L̂ego

t , Ît

�

∑

a

π(a| Ît)Q̂ t(L̂
ego
t , a) +αH
�

π(·| Ît)
�

�

where H is an entropy regularizer [18] with temperature α.

Implementation Through discretization the ego-state is represented as a 4D
vector containing 96 × 96 bins for positions, 4 bins for velocity, and 5 bins for
orientation. Each of the positional bins represents a 1

3×
1
3 m2 area in the simulated

world. The bins for velocity and orientation represents 2m/s and 38◦ respectively.
Orientations are only represented in the range [−95◦, 95◦], and any value that is
either too high or too low to be inside the discretization is given a value estimate
of 0. Actions are discretized to 9 values for steering, 3 values for throttle, and one
value for braking for a total of 9 · 3+ 1= 28 possible actions.

Chapter 2: Background and Related Work 27

The policy network is implemented using ResNet34 [24] as backbone for the RGB
images. The output of the backbone is flattened using global average pooling be-
fore being fed to the fully connected network together with the vehicle velocity.
The output of the fully connected network is a vector of size 28, one for each
action, representing the probability of selecting each action. The authors use the
same augmentations as in their previous work, Learning by [10], presented in
Section 2.4.1.

Results The policy trained by Chen et al. achieved state-of-the-art performance,
outperforming the previous leader, Implicit Affordances [28] presented in Sec-
tion 2.4.2, by 25% on the Driving Score metric. This was done using only 1 million
time frames for training versus 40 million in Implicit Affordances. The authors
conclude by addressing that even though the world-on-rails assumption rarely
holds, the benefits of training and sample efficiency outweigh the constraints.

2.4.4 GRI: General Reinforced Imitation and its Application to Vision-
Based Autonomous Driving

In their work Chekroun et al. presents General Reinforced Imitation (GRI) [4],
a method for combining RL with imitation learning to combine the exploration
from RL with expert data from imitation learning. In the autonomous driving
domain, they call their method GRI for Autonomous Driving (GRIAD). At the time
of submission in 2021, their method ranked first on the CARLA leaderboard, and
at the time of writing this thesis, their method is ranked 5th.

GRIAD aims to leverage expert demonstration through imitation learning to speed
up the learning process compared to standard RL. At the same time, they want to
keep the exploring nature of RL to generalize better to unseen scenarios. To do this
they create an end-to-end system based on off-policy reinforcement algorithms.
The authors build upon the hypothesis that expert demonstrations can be seen
as perfect data following an optimal policy. By using off-policy RL using replay
buffers they are able to insert expert data directly into the replay buffer for the
policy to learn from. At the beginning of an episode, the system randomly collects
an episode by letting an online agent explore the world in the CARLA simulator,
or sample an episode trajectory from a prerecorded dataset. The authors denote
the probability for sampling from expert demonstrations pdemo.

Chekroun et al. explain that the training pipeline in GRIAD is inspired by Toro-
manoff et al. in Implicit Affordances [28]. They first train two visual encoders for
transforming visual input from RGB cameras to a compressed vector representa-
tion before freezing the weights before the RL stage. The authors use a specialized
EfficientNet-b1 [35] as the encoder backbone. They argue that the rationale for
using EfficientNets is that it lets them keep the same accuracy for the segmenta-
tion task and classification task as Toromanoff et al. while reducing the encoded
vector size by a factor of almost 5.

28 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

The first visual encoder is a semantic segmentation encoder that is trained as an
auto-encoder by trying to decode the semantic segmentation map from three RGB
images as input. The three cameras are mounted in front of the vehicle at differ-
ent angles to give a wide view of the environment ahead. The output from the
semantic encoder is three encoded vectors, each of size 448, one for each camera.
The second visual encoder also uses EfficientNet-b1, but instead of predicting seg-
mentation maps, the encoded vector is passed to a classification decoder. It also
differs from the semantic encoder by only using input images from the center cam-
era. This decoder learns to predict whether or not there is an intersection present,
the traffic light state, and the distance to the traffic light if there is one present.
The visual encoders are trained on a dataset of 400,000 samples collected using
the autopilot provided by the CARLA Python API.

For training the RL agent Chekroun et al. use Rainbow-IQN Ape-X [30]. As this
method uses DQN [12] the action space had to be discretized. The authors did
this by using 27 values for steering and 4 values for controlling the speed through
braking or throttling. The discretized vector space then had a size of 27×4= 108.
In their experiment, the authors use a distributed system with 12 agents running
at the same frequency. Three of these collect expert data, and the authors explain
that this is then equal to pdemo = 25%. The demonstration dataset of expert tra-
jectories consisted of 200,000 samples. Based on the underlying assumption that
expert agents always follow an optimal policy the authors set a fixed reward for
demonstration samples as rdemo = 1. For online exploration in the environment,
Chekroun et al. used the same reward signal as Toromanoff et al. used in Implicit
Affordances [28].

The authors show that by training their agent for 60 million time steps they
achieved state-of-the-art performance at the time. They outperformed World on
Rails [33] by approximately 17% on the Driving Score, and also achieved a higher
score on the Route Completion metric and Infraction Score. The authors note how
the assumption that the demonstration data introduces noise into the training if
the assumption does not hold. They also explain how their expert data have ap-
proximately 10% noisy demonstrations, but that the agent is still able to improve
learning compared to regular RL.

2.4.5 Learning From All Vehicles

Learning From All Vehicles [36] is the third and most recent submission by Chen et
al, submitted in March 2022. Their approach was ranked first on the CARLA lead-
erboard until an anonymous submission outperformed them on May 7th, 2022.
Their goal is to build a driving policy that maps sensor readings, high-level com-
mands, and vehicle states to actions. They also aim for this approach to be de-
terministic. To do this they train their model in a three pipeline with three stages.

Chapter 2: Background and Related Work 29

Figure 2.4: The training pipeline created by Chen et al. a) trains a perception
model to map sensor inputs to a map-view feature representation of the environ-
ment. b) trains a motion planner using traces all nearby vehicles as input. The
training is supervised using future trajectories from driving logs. c) The sensory
model from a) is combined with the motion planner from b) using policy distil-
lation. The figure is from the original paper [36].

Stage 1 The first stage in the pipeline is to train a perception model that is able to
map sensory input to a map-view feature representation of the surroundings. The
sensors used are three RGB cameras and one LiDAR attached to the ego vehicle.
The RGB images and the LiDAR readings are combined to provide a map-view
feature representation with shape W × H × C , for width, height, and channels
respectively. The perception model is trained using both semantic segmentation
losses and detection losses. Figure 2.4 a) illustrates the training of the percep-
tion model. As an additional goal, the model is trained to create features that are
indistinguishable between the ego vehicle and other vehicles. This is to create a
richer feature representation than using only the ego vehicle. The outputs from
the trained perception model will later be used as input to the motion planner,
trained in stage 2.

Stage 2 In the second stage Chen et al. train a motion planner that takes the
predictions from the perception model trained in stage 1 as input and predicts
future waypoints that the vehicles should steer towards. As the features from
the perception model are indistinguishable between the ego vehicle and other
vehicles, ground truth data about the future trajectories from all vehicles can be
used as supervision during training. One challenge the authors address is that
CARLA only provides ground truth information about high-level commands that
the ego vehicle follows. The high-level commands for the other vehicles have to be
estimated. The authors argue that using a rule-based approach inferred from fu-
ture trajectories will be noisy and ambiguous. Therefore, they design their model
to infer the high-level commands directly and then select the most likely high-level
command. The motion planner is trained in a similar fashion as in [10]where they
use a privileged planner to supervise another planner. Figure 2.4 b) illustrates the
training of the motion planner. The privileged planner has access to ground truth
features whereas the unprivileged planner only has access to the predicted fea-
tures from the perception model from stage 1. Finally the models from stage 1
and stage 2 are combined using policy distillation, illustrated in Figure 2.4 c).

30 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

Stage 3 The third and last stage trains two PID controllers [37] that map plans
from the motion planner into actions to be executed in CARLA. The authors use
one PID controller for steering and another for acceleration control. For acceler-
ation control, they also use an additional neural network classifier for predicting
traffic lights and hazards that should cause the vehicles to stop. This classifier
takes in four RGB images as input, where the first three are the same as in stage
1 and the last image is an additional image for detecting traffic lights far away.
The classifier is trained using braking actions from prerecorded driving logs. Mo-
tion plans from other vehicles are also used to predict potential predictions or
stoppages. This is done by predicting the future trajectories for all nearby vehicles
using the models from stage 1 and stage 2. These trajectories are then matched
with the ego vehicle trajectory to prevent collisions.

Results The authors compare their method to other state-of-the-art methods on
the CARLA leaderboard. They show how their method outperforms the previous
best method, GRIAD [4], by a great margin. On the Driving Score metric, they ob-
tain a score of 61.85. Compared to the previous best at 36.79 this is an improve-
ment of more than 60%. They also achieve the highest Route Completion score
of all submissions with 94.46 points. The Route Completion score is 32.61 points
higher than GRIAD and 24.62 points better than Transfuser+ [38], the previous
highest Route Completion score. The authors conclude with the fact that even
though they have achieved state-of-the-art performance their system still incurs
traffic infractions, and would not be safe to deploy directly in the real world.

Chapter 3

Methodology

This chapter presents the methods and implementations used in this thesis. Sec-
tion 3.1 introduces the algorithm Adaptive General Reinforced Imitation (AGRI),
an extension of GRI [4] created by Chekroun et al. Further Section 3.2 describe
how the algorithm is implemented in Python and Section 3.3 describes the exper-
iments conducted in this thesis.

3.1 Training the Autonomous Agent: Adaptive General
Reinforced Imitation

This section presents the method used for training autonomous vehicles in this
thesis. It is a slightly modified version of GRI [4] is used for training autonomous
driving agents. The algorithm is an Adaptive General Reinforced Imitation (AGRI)
and is shown in Algorithm 1. The underlying hypothesis and assumptions for the
algorithm are presented in Section 3.1.1. Section 3.1.2 and Section 3.1.3 then
provides an overview of how episodes are rolled out and how the probability
pdemo from GRI is made adaptive to favor RL over imitation learning as the agent
learns.

3.1.1 Underlying Assumption

AGRI builds on the same hypothesis that Chekroun et al. present in GRI [4], that
expert demonstrations get a constant high reward. The authors assume that ex-
pert demonstrations can be seen as perfect data. In AGRI this assumption is slightly
modified so that expert actions are assumed to be good actions, but not perfect.
They should therefore be given a high reward, but not the maximum reward.
Chekroun et al. give expert demonstrations a constant reward of 1, the maximum
in their reward function. In this thesis, expert demonstrations have been given
a constant reward of 0.6, 60% of the maximum possible. Section 3.2.5 describes

31

32 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

Algorithm 1 AGRI: Adaptive General Reinforced Imitation

Input: initial demonstration probability pini t ial , expert demonstration reward
rdemo, episode success threshold Thresh, demonstration probability decay
factor γp;

initialize empty replay buffer B;
initialize dataset D;
pdemo← pini t ial ;

while not converged do
if random.random()> pdemo then

Perform an episode using the RL agent;
Store the trajectory in B;
Repisode←
∑len(episode)

i ri ;

∆pdemo←−
�Repisode

Thresh − 1
�

;
∆pdemo← cl ip(∆pdemo,−1, 0.1);
pdemo← cl ip(pdemo, 0, 1);
pdemo← pdemo +∆pdemo;

else
Sample an episode from D;
Store the trajectory in B;
pdemo← γppdemo;

end if

Sample minibatch from B and update network weights;

end while

Chapter 3: Methodology 33

how the reward function is implemented. The hypothesis is that the expert demon-
strations can provide a guide to how the agent should behave while allowing the
reinforcement exploration to stay relevant, even with a high rdemo.

3.1.2 Episode Rollouts

Algorithm 1 shows how AGRI uses pdemo to do a rollout of an episode using either
the prerecorded expert demonstrations or the exploring RL agent. When using the
expert demonstrations an episode of fixed length is added to the replay buffer B. In
this thesis, an episode length of 300 has been used for the expert demonstrations.
If the rollout is performed using an RL agent, the agent explores the environment.
The exploration continues until a terminal event happens, the agent reaches the
maximum episode length, or the total episode reward reaches a lower threshold.
A terminal event is defined as a collision, or if the agent strays too far from the
lane center. For the RL agent the maximum episode length in this thesis is 1,000
steps and the lower threshold for the total episode reward is -100. The rationale
for using a longer episode length for the RL agent stems from the underlying
hypothesis that expert demonstrations should only be used for guiding the RL
agent in the right direction, and should not be too dominating.

3.1.3 Updating the Probability for Expert Demonstrations

In their experiments with GRI [4], Chekroun et al. use a constant probability pdemo
for selecting expert demonstrations instead of exploring the environment. In AGRI
this probability is designed to adapt to how well the agent performs when explor-
ing the environment. The pdemo is initialized as pini t ial , given as an input to the al-
gorithm. After rolling out an RL episode the total reward over the episode Repisode
is calculated as seen in Algorithm 1. The episode reward is then compared to a
success threshold Thresh that indicates the total reward needed for the episode
to be considered a success. Repisode is then compared to the threshold for success.
If Repisode is greater than Thresh the probability of rolling out an episode using
the RL agent should be higher and vice versa. The update to pdemo is shown in
Algorithm 1 as ∆pdemo. In this thesis Thresh have been set to 200, 20% of the
theoretical maximum reward for RL agents.

AGRI is designed to favor the RL agent, in accordance with the underlying hy-
pothesis. To do this it uses probability update clipping to make sure that ∆pdemo
does not become too large. Using cl ip(∆pdemo,−1, 0.1) as the clip function pdemo
is guaranteed to increase by a maximum of 0.1 each episode. A slowly increas-
ing pdemo is desirable as it prevents pdemo from instantly becoming 1 after a single
poor episode from a potentially otherwise well performing RL agent. On the other
hand it does allow pdemo to instantly become 0 if the RL agent manages to achieve
Repisode = 2·Thresh. A limit on the maximum decrease in pdemo would be counter-
intuitive to the RL favoring nature of AGRI. A clip function is also applied to pdemo
in the end to ensure that it stays in the interval [0,1] at all times.

34 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

Another mechanism AGRI implements to ensure that RL rollouts will occasionally
happen is a probability decay that reduces pdemo. Every time a rollout is collec-
ted from expert demonstrations a decay factor γp is multiplied with pdemo. γp a
parameter defined as 0 < γp < 1 that is given as an input to the algorithm, and
ensures that pdemo does not get stuck at 1, even if the RL agent behaves poorly
over a long period of time. In this thesis γp = 0.9 have been used.

3.2 Implementation and Technology

This section presents the technical details describing the Python implementation
of the training pipeline. Section 3.2.1 presents the simulator before Section 3.2.2
explains how this is implemented in Python using a Gym environment. The re-
maining sub-sections describe the action- and observation space of the environ-
ment, the reward function design, and the design of the visual subsystem and
policy network.

3.2.1 Choice of Simulator

CARLA [20]was chosen as the simulator for the experimental setup. The rationale
for the choice is that out of all the simulators mentioned in Section 2.3, CARLA is
by far the most well-documented one. It is also one of the most widely used sim-
ulators by other researchers, making it easier to compare results. Another major
reason for using CARLA is that Chen et al. have made their dataset from [36] of
prerecorded expert trajectories available for the public. The dataset includes RGB
images from three cameras on the ego-vehicle from different angles as well as their
respective semantic segmentation labels. Using this dataset instead of collecting
everything from the beginning saves several days’ worth of data collection.

3.2.2 OpenAI Gym Implementation

To interact with the CARLA simulator using the Python API an environment fol-
lowing the OpenAI Gym interface has been used. The reason for implementing the
environment as a Gym environment is that it allows for Stable-Baselines3 imple-
mentations of the RL algorithms to be used to train the agents. This ensures that
the reinforcement algorithms are correctly implemented and thoroughly tested.
As mentioned in Section 2.2.1 a Gym environment requires a method reset() that
returns the initial state of the environment and a method step() that takes an
action as input and returns the new state, the reward and if the new state is a
terminal state. When resetting the environment the decision to collect data using
the current exploration policy or expert data is made. The decision is based on
the current value of the RL probability. Resetting the environment for an episode
of RL is referred to as rl_reset(), and resetting the environment for an episode of
imitation learning is referred to as imitation_reset(). Similarly, when the environ-
ment is collecting an episode by exploration the step() method is referred to as

Chapter 3: Methodology 35

rl_step(), and imitation_step() when collecting from the expert data.

imitation_reset() and imitation_step() When resetting the environment for
collecting an episode from expert demonstrations an episode is loaded. The epis-
ode consists of 300 consecutive states and the actions selected by the expert in
each state. Stable-Baselines3 offers no way to directly access the replay buffer
during training. Therefore, the states and actions have to be added one by one
through the imitation_step() method. Luckily this is relatively straightforward to
implement. The environment is already implemented to keep track of the epis-
ode length, so all that has to be done is to return the i-th state-action pair from
the dataset i-th episode step. As mentioned in Section 2.2.1, step() is expected
to return a tuple (state, reward, done). The selected action is not a part of this
tuple, so the action a selected by the expert agent in state s is therefore added as
a component to the state instead. Section 3.2.4 explains how this is implemented.
As explained in Section 3.1.1 a constant reward of 0.6 is returned for each step,
and imitation_step() returns done = True when the 300th step is returned.

rl_reset() When resetting the environment for a RL episode a random route
is selected from the Scenario Runner route configuration. The configuration file
used for the training is available in Appendix A.1. It contains ten different routes
in Town 1, which is used as the training town. The Scenario Runner parses the
configuration file and creates a list of route points that the agent should follow.
The client then sets the map to Town 1 in the server and enables synchronous
mode. This ensures that the server only produces a new frame in the simulation
when it is told to so that it is time-discrete. The time between each time frame in
the simulation is set to 1/20 seconds so that the simulation is running at 20 frames
per second. This means that the sensors and cameras also produce signals at a rate
of 20 frames per second. The Scenario Runner then creates a set of scenarios for
the ego-vehicle to complete and spawns all necessary vehicles and pedestrians for
the scenario.

rl_step() When applying an action to the environment the action is first trans-
lated from an action in the action space to a VehicleControl defined in the CARLA
Python API. The client then sends the VehicleControl to the server together with
a signal to move to the next time frame. The server performs one tick and returns
new values for ego-vehicle sensors. The environment then calculates the reward
according to the reward function explained in Section 3.2.5, and returns the tuple
(state, reward, done).

3.2.3 Action Space

The environment comes in two flavors to support both methods that require dis-
crete action spaces and methods that requires continuous action spaces. The dis-
crete action space is implemented using 21 values for steering and 5 values for

36 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

braking or throttling. The CARLA Python API defines the VehicleControl that con-
trols a vehicle in the simulation. It takes as arguments steer in the interval [−1,1],
and throttle and brake both in the interval [0,1]. The 21 discrete values for steer-
ing are used to represent the following values for steer: {−1,−0.9, ..., 0.9, 1}. Sim-
ilarly the 5 values for throttling and braking represents {0.5, 1} for both throttle
and brake, the last value is 0 which indicates no braking or throttling. In total this
is 21× 5= 105 actions.

Continuous actions are easier to represent. The continuous action space is im-
plemented as a vector with two elements a = [x1, x2]. Both elements are in
the interval x1, x2 ∈ [−1,1]. The first element in the vector, x1, represents the
value for steer. As steer expects a value in the interval [−1, 1] it can be used dir-
ectly. The second element, x2, represent the control for the speed. Since brake
and throttle both expects values in the interval [0,1] negative values are used
to represent braking, so that if x2 > 0 then throt t le = x2, brake = 0 else
throttle = 0, brake = x2. This approach ensures that the agent never brakes and
throttles at the same time.

3.2.4 Observation Space

The observation space defines a standard for how the agent can expect to receive
observations. The agent observes the environment through a set of sensors. The
sensors used are three RGB cameras, one GNSS sensor, one IMU sensor, and one
collision sensor. The collision sensor is only used for the reward function and for
terminating the episode early and is not provided as an input to the agent policy.
As mentioned in Section 2.2.1, complex environments such as autonomous driv-
ing environments require the use of sub-spaces to represent the different com-
ponents of the environment state. In Gym environments, this is implemented as a
dictionary space that is composed of simpler sub-spaces. In this thesis, there are
six sub-spaces. The first three represent one RGB camera each, and the next three
represent the vehicle velocity, a directional vector, and the expert demonstration
action. A more detailed description of the sub-spaces is presented below. Vehicle
velocity is omitted due to it being self-explanatory.

Visual Sub-Space The three sub-spaces representing the image from one RGB
camera each can be seen as a combined visual sub-space. All images have sizes
H ×W × C with H = 288 and W = 256 and C = 3. Section 3.2.4 depicts the
three images that together make up the visual sub-space. All three cameras have
a field of view (FoV) of 64 degrees. The left camera is rotated 60 degrees to the
left and the right camera is rotated 60 degrees to the right. The center camera is
faced directly ahead. The rationale for these exact measurements is based on the
available dataset [36] from Chen et al. In order to use their dataset for training
the visual encoder, explained in Section 3.2.6, the images have to be of the same
sizes and with the same FoV.

Chapter 3: Methodology 37

(a) Left camera (b) Center camera (c) Right camera

Figure 3.1: The three visual inputs that the agent observes. All three are RGB
images of size 288× 256.

Directional Vector The agent is equipped with a GNSS sensor that provides geo-
location data and an IMU that provides information about the vehicle rotation.
By combining this information with the HD map and the route points provided
by the Scenario Runner it is possible to create a normalized vector that points
in the direction that the agent should drive. Geolocation data is provided as co-
ordinates given in longitude and latitude. Using the HD map these coordinates
can be translated into a xy-coordinate system, the same coordinate system used
by the Scenario Runner. One possible approach is to use the xy-coordinates of the
vehicle and route points directly as observations. However, this complicates learn-
ing as the coordinates are not normalized. If the current route point is at [0, 0]
and the next route point is at [0, 1] it will look completely different than if the
current route point is at [100, 100] and the next route point is at [100, 101]. In
both cases, the agent is tasked to drive towards a point that is 1 meter ahead,
but the input to the agent is different. The same applies if the current route point
is at [0,0] and the next route point is 1 meter ahead at [1,0]. The location and
rotation of the vehicle influence the representation for the same task. To handle
this issue a normalized directional vector relative to the vehicle is used to point
the vehicle in the correct direction.

The directional vector is calculated by first calculating the distance vector between
the vehicle and the next route point. The distance vector is in a vector space with
basis Bworld that is independent of the vehicle rotation. This is undesirable, as ro-
tating the vehicle 10 degrees to the left from the desired direction should rotate
the directional vector 10 degrees to the right. The directional vector should there-
fore be relative to the vehicle, and not to the world coordinates. To handle this a
change of basis is applied to the distance vector between the vehicle and the next
route point. The basis is changed from Bworld to Bvehicle so that the distance vector
is now relative to the vehicle. This vector is then normalized by dividing with the
L2 norm and now represents the directional vector. Figure 3.2 displays a visual
representation of the directional vector for the vehicle while driving straight and

38 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

while turning. Note how the vector directs the vehicle to turn left by pointing close
to, but not directly at, the next route point.

Figure 3.2: The images shows the directional vector that points to where the
vehicle should drive as a red arrow. The two black squares (in the green circles
in the right image) represent the current route point and the next route point.

Expert Actions As mentioned in Section 3.2.2 there is no way to insert the expert
demonstrations directly into the replay buffer directly. Therefore, the expert ac-
tions have to be added as a component to the state in the imitation_step() method.
This is implemented by defining a sub-space for actions in the observation space.
As explained in Section 3.2.3 the environment comes in two flavors to handle
both discrete and continuous actions. The same therefore has to be done with the
observation sub-spaces for expert actions.

The observation sub-space for discrete action space is implemented as an integer
in the interval [−1, 104]. The value -1 is used to indicate any action from the
RL agent, and the remaining 105 actions are used to represent the discrete action
values from the expert demonstrations. During the episode rollout, when the agent
policy receives an observation containing an action value that is not -1 it simply
selects the action instead of passing the state through the neural network. This
way the action is stored correctly in the replay buffer together with the next state.
If the action value in the observation sub-space is -1 then the policy will behave
normally and pass the state to the neural network.

For the continuous action space a vector of three elements aobs = [x1, x2, x3] is
used to implement the observation sub-space. Here x3 is added in addition to the
two elements in the action space. x3 = 1 indicates that x1, x2 comes from expert
demonstrations and x3 = −1 indicates that the system is collecting experience
with the RL agent. The same way as with the discrete actions the agent policy will
use expert demonstration actions directly, bypassing the neural network.

Chapter 3: Methodology 39

3.2.5 Reward Function Design

The reward function used for the RL agent is heavily inspired by the reward func-
tion Toromanoff et al. present in [28]. It uses the same three components desired
speed, desired position, and desired rotation to calculate the reward so that

R= Rspeed + Rposi t ion + Rangular . (3.1)

To calculate Rspeed the desired speed first needs to be calculated. The desired speed
is defined, with a slight abuse of notation, as:

speeddesired = min

















0 m/s, i f red light ahead

(d − 5)/3 m/s, i f vehicle ahead

30/3.6 m/s otherwise






(3.2)

Here d is the distance to the leading vehicle. The distance is subtracted by 5 and
divided by three so that the agent should keep a 3 seconds distance and stop 5
meters from the leading vehicle. If there is a red light affecting the vehicle it should
stop, and otherwise, it should keep a speed of 30km/t (30/3.6 m/s). The speed
reward is based on the relationship between the current speed and the desired
speed. It is calculated as follows:

Rspeed =











max(1− abs
�

1− 10·speedcur rent
speeddesired

�

,−1), speedcur rent > speeddesired
speedcur rent
speeddesired

, speedcur rent < speeddesired

0, speeddesired < 1
(3.3)

The speed reward component is in the interval [−1, 1]. Negative values first occur
if the current speed is higher than 10% of the desired speed and is capped at -
1. This is intended to learn the agent to not drive recklessly fast. If the agent is
driving slower than the desired speed the speed reward is equal to the fraction of
the desired speed that the agent is driving. To avoid the agent from seeking out
and stopping in areas where the desired speed is zero Rspeed is set to zero if the
desired speed is less than 1 m/s.

The positional reward Rposi t ion is based on the distance from the vehicle to the
center of the lane. Let d here denote this distance and Dmax denote the maximum
distance the agent is allowed to be from the lane center before the episode ter-
minates. The positional reward Rposi t ion is then calculated as

Rposi t ion = −
�

d
Dmax

�2

. (3.4)

40 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

The positional reward is in the interval [−1,0]. It is 0 if the agent is exactly in the
middle of the lane and -1 if the agent is 2 meters or more from the lane center.
Similar to Toromanoff et al. in [28] the episode is terminated if the agent is further
from the lane center than 2 meters so that Dmax = 2. The positional reward in this
thesis uses the square of the distance divided by the maximum allowed distance.
The rationale for this is that the agent should be allowed to deviate from the lane
center to some degree without receiving too much negative reward. Dividing by
Dmax ensures that the squared expression is in the interval [0, 1]. The reward is
therefore less punishing for small deviations from the lane center than if a linear
expression was used because x ≥ x2 for x ∈ [0,1].

The last reward component is the angular reward. It uses the waypoint API to cal-
culate the angle in radians between the lane and the vehicle. The angular reward
component is then calculated using the absolute value of the angle as follows:

Rangular = −
angle
π

(3.5)

As the absolute value of the angle is at most π and at least 0 the angular reward
is in the interval [−1,0]. In addition to the three reward components, the agent
is rewarded -5 for colliding with anything.

3.2.6 Visual Encoder

Similar to [4, 28, 36] a semantic segmentation encoder is trained like an autoen-
coder to predict the semantic segmentation labels. The encoder first transforms
the input image into a lower-dimensional vector. This vector representation is later
used as a part of the state representation. The decoder then uses the encoded
vector representation to reconstruct the semantic segmentation labels. Figure 3.3
displays the overall architecture for the visual autoencoder with the encoder com-
ponent, the encoded representation, and the decoder component.

Figure 3.3: A visual representation of the semantic segmentation autoencoder.
The encoder transforms the input image into a lower dimensional vector that is
used by decoder to reconstruct the semantic segmentation labels in the image.

Chapter 3: Methodology 41

The visual encoder is trained in a supervised fashion using the dataset provided
by Chen et al. [36] with a cross-entropy loss. Toromanoff et al. argue in [28] that
augmenting the viewpoint of the images is important as the expert demonstration
agent is always in the center of the lane, and that therefore, the dataset does not
have enough variation in viewpoints to generalize well to the RL agent, whose
images are much more varied. They do however use only a single center camera
for training their model. The dataset by Chen et al. consists of images collected by
three cameras placed at different angles. This is assumed to be enough variation
so that the viewpoint augmentation is not needed. Images are instead augmen-
ted by randomly flipping the images horizontally, and randomly adding jitter and
gaussian blur.

The backbone used in the semantic encoder is the ERFNet [39] created by Romera
et al. Using the input sizes of 288×256×3 the ERFNet outputs an encoded feature
map of size 36 × 32 × 128, where 128 is the channel dimension. Using ERFNet
as the encoder backbone is partly based on the fact that it was used by Chen et
al. in Learning From All Vehicles [36], the best performing driving agent on the
CARLA leaderboard with an open-source implementation. The other main reason
it was chosen is that it is one of the fastest semantic encoders available with state-
of-the-art performance. The time for inference in the visual encoder is critical as
this is the bottleneck in the entire training pipeline. During inference, this feature
map is averaged over the channel dimension using adaptive average pooling to
produce a vector of size 128. Wyk et al. explain adaptive average pooling: in [40]
"Adaptive average pooling is simply an average pooling operation that, given an input
and output dimensionality, calculates the correct kernel size necessary to produce an
output of the given dimensionality from the given input."

3.2.7 Policy Network

The policy network is responsible for mapping the inputs to actions. The RGB im-
ages are passed sequentially through the same visual encoder before the outputs
are concatenated with the directional vector and the agent velocity. While train-
ing the RL agent the weights of the visual encoder are frozen as is [4, 28]. The
resulting encoded state representation is a vector of size 387 that is then passed
to the policy head. Figure 3.4 depicts an illustration of the policy network.

As will be explained in Section 3.3 both DQN [12] and TD3 [15] have been used
as RL algorithms in this thesis. Both algorithms have a policy head that consists of
two fully connected layers of sizes 400 and 300 respectively. In Stable-Baselines3
[13] this is the default for TD3, and the same architecture have therefore been
used in the DQN architecture for comparability. The shape of the output action
depends on the algorithm used. DQN outputs a discrete action while TD3 outputs
a continuous action as described in Section 3.2.3.

42 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

Figure 3.4: The policy network. The RGB images are encoded using the same
visual encoder. The three outputs are then concatenated together with the direc-
tional vector and the velocity of the agent. The resulting vector is the encoded
state representation of size 387. This vector is then passed to the policy head that
outputs an action.

Chapter 3: Methodology 43

3.2.8 Expert Data Collection

The Scenario Runner, explained in Section 2.3.1, is used for collecting the ex-
pert demonstration dataset. The CARLA Python API comes with functionality for
creating agents that can drive using an auto-pilot. The auto-pilot uses privileged
information from the server about other vehicles and pedestrians to drive with
a rule-based approach. This allows the agent to exhibit a near-perfect behavior
most of the time. For unknown reasons the auto-pilot does however sometimes
get stuck or collides with other vehicles. This phenomenon is also reported by
Chekroun et al. in [4] where they estimate that ∼ 10% of the expert demonstra-
tions are noisy. The privileged agent is equipped with the same set of sensors as
the RL agent, mentioned in Section 3.2.4. The resulting dataset consists of a total
of 54,434 samples collected from ten different routes in Town 1 with the same
weather. Using episode lengths of 300 for expert demonstrations this totals 181
episodes of expert data.

3.3 Experiments

This section presents the experiments that have been conducted. Section 3.3.1
present the experiments used to test AGRI. Both the value-based approach and
the policy gradient approach are presented. Section 3.3.2 presents how the first
experiments are repeated, using a kinematic bicycle model to augment the en-
coded state representation.

3.3.1 Experiment 1a and 1b: Using AGRI with Value Based Methods
and Policy Based Methods

The first part of experiment 1 is to test AGRI using a value-based approach with
discrete action space. DQN have been chosen as the RL algorithm for this as it is the
most commonly used in similar research [4, 28]. The second part of experiment
1 is to test AGRI using a policy gradient approach with continuous action space.
TD3 have been used for this task. The reason for choosing TD3 is that it is the most
recent of the three off-policy algorithms provided by Stable-Baselines3, and from
[15] it also seems to perform better than DDPG in general. The most important
hyperparameters and specifications are given below:

Training length Due to a limited amount of time the agent is trained for only
500,000 time steps in the environment. The simulation runs at approximately 3
frames per second so training a model takes up to 46 hours. Models are trained for
at most 100,000 time steps before the model and replay buffer is saved and the
training is paused. Training the models for longer tended to cause the CARLA
server to freeze. Restarting the training by saving and loading the model and
replay buffer every 100,000 time steps helped prevent this freezing.

44 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

Buffer size The buffer size is set to only 10,000 samples. The small size is due
to memory limitations, as observations stored in the replay buffer consist of three
relatively large RGB images. Chapter 5 discusses this issue further.

Discount factor The discount factor γ is set to 0.9. The default from Stable-
Baselines3 is 0.99, but early experimenting indicated that γ = 0.9 helped the
agent learn faster. A hypothesis is that as the agent is trained for relatively few
iterations it helps learning by focusing more on immediate rewards than rewards
further into the future.

Experiment 1a: Training with DQN The behavior network is updated by gradi-
ent descent after every episode. The update is done by sampling a mini-batch from
the replay buffer and doing one step of gradient descent for every step the agent
has taken in the environment. A mini-batch has a size of 16 samples, so if the
agent reaches the maximum episode length of 1,000 steps it is trained for a total of
1,000 steps of gradient descent on 16,000 samples. The target network is updated
every 2,000 steps by copying the weights of the behavior network. The learning
rate is set to a constant of 0.0001 and the optimizer used by default is the Adam
optimizer [41]. The DQN implementation uses an ε greedy policy that selects a
random action instead of the action with the highest predicted value with prob-
ability p = ε. In the beginning, the model selects actions mostly at random, with
an initial exploration rate set to εini t ial = 0.9. The exploration rate decreases as
the agent explore the environment and after 90,000 steps it reaches the minimum
value of εminimum = 0.05.

Experiment 1b: Training with TD3 To properly compare the results from RQ1
and RQ2 it is desirable to use similar specifications for TD3 as for DQN. The same
mini-batch size, learning rate, and optimizer are therefore used. The behavior net-
work for TD3 is also updated every episode, similar to the experiment with DQN.
The delay for updating the policy is set to two episodes. If agents reach the max-
imum of 1,000 steps per RL episode the update will be at approximately the same
interval as the target update in experiment 1a. The rest of the hyperparameters
are set as the defaults from Stable-Baselines3. This includes σ = 0.2 and c = 0.5
for σ and c from Equation (2.25).

3.3.2 Experiment 2a and 2b: Augmenting the State Representation
With a Kinematic Bicycle Model

The kinematic bicycle model [34] is a mathematical model of vehicle dynamics.
Polack et al. [34] shows how the model can be written as:

Chapter 3: Methodology 45

ẋ = v · cos(θ + β)

ẏ = v · sin(θ + β)

v̇ = a

θ̇ =
v
rb

sin(β)

tan(β) =
rb

fb + rb
tan(φ)

(3.6)

The same notation used by Chen et al. in World on Rails [33] is used. ẋ , ẏ , v̇, θ̇
represents the change in position in the x-direction and y-direction, change in
velocity, and change in rotation of the vehicle body respectively. rb, fb, and φ rep-
resent the location of the rear and front wheelbases, and the front wheel steering
angle respectively. β will then be the slip angle at the center of gravity of the
vehicle. Some of these variables are unknown for the vehicle in CARLA. Chen et
al. solved this in World on Rails [33] by implementing the model as a very simple
parameterized neural network. Their implementation and trained model is used
in this thesis to represent the vehicle dynamics of the vehicle.

To answer RQ3 almost the exact same experiments as experiments 1a and 1b are
repeated. The only difference is that the encoded state representation explained
in Section 3.2.6 is augmented with the outputs from a kinematic bicycle model.
This is to add knowledge about the vehicle dynamics to the state representation.
A pretrained model is used with frozen weights, similar to the visual encoder. The
weights used for the model are from Chen et al. and their work with World on
Rails [33]. It takes as input the current vehicle position, current rotation, current
velocity, and action and predicts the next location, rotation, and velocity if the
agent executes the action.

For each of the 105 discrete actions, the kinematic bicycle model calculates the
predicted outputs. To do this the input velocity is replicated 105 times and rep-
resented as a vector. It is desirable for the output from the bicycle model to be
relative to the vehicle, similar to the directional vector. The vector representa-
tions for locations and rotations can therefore be constant and equal to zero as
if the vehicle was starting in origin in the coordinate system with zero rotation.
For each of the actions in the discrete action space, the bicycle model produces a
vector of size 4 to represent the predicted location, rotation, and velocity. Before
being passed to the bicycle model the actions are translated from discrete integers
to a vector representation as described in Section 3.2.3 with three elements rep-
resenting steer, throttle and brake. Doing this for all 105 actions produces a vector
of size 4×105= 420 that is flattened and concatenated together with the encoded
image representations, the directional vector, and the velocity. The resulting state
representation is then a vector of size 3×128+2+1+4×105= 807. Figure 3.5
illustrates the policy network with the kinematic bicycle model.

46 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

The underlying hypothesis for using the kinematic bicycle model is that it enriches
the state representation by adding an understanding of how the vehicle behaves
to input actions. The same discrete actions are used as input for the continuous ac-
tion space policy. It would be impossible to apply the bicycle model to the infinitely
large continuous action space. An assumption is that the continuous agent will be
able to learn from the augmented state representation. In theory, any discretiza-
tion of the action space should be eligible to use as input to the bicycle model as
it is not directly used as output, but merely as a part of the state representation.

Figure 3.5: An augmentation of the encoded state representation. In addition to
the encoded images, velocity, and directional vector a kinematic bicycle model
has been added. The kinematic bicycle model uses the vehicle velocity together
with constant predefined actions to calculate the relative location and rotation of
the vehicle by applying each action.

Chapter 4

Results

This chapter presents the results obtained from the experiments conducted in this
thesis. Section 4.1 presents the intermediate results obtained from training the
semantic segmentation encoder before Section 4.2, 4.3, 4.4 and 4.5 presents the
results from training the models described in Section 3.3. In the end Section 4.6
presents the results from evaluating the agents in an unseen environment.

4.1 Visual Encoder Results

Figure 4.1 and Figure 4.2 displays input images and their predicted labels. In
Figure 4.1 the left image is the RGB input, the center image is the ground truth
semantic labels and the right image is the predicted labels. The image is sampled
from a separate dataset that was collected with the sole purpose to be used for
evaluation. It is not part of the Learning From All Vehicles dataset [36] and has
therefore never been seen before by the visual encoder. In Figure 4.2 images are
sampled from the dataset containing expert demonstrations. Therefore, it does not
contain any ground truth labels. However, it is still possible to visually observe the
consistency in the predictions.

The results from training the visual encoder are best evaluated by analyzing the
reconstructions. 1,000 images from a custom collected dataset were used in the
evaluation. The reconstructions are evaluated using mean accuracy and the inter-
section over union (IoU) as the metrics. When evaluated on the 1,000 images the
visual encoder achieved a mean accuracy of 0.9525 and a mean IoU of 0.9172.
The mean accuracy indicates that on average 95.25% of the pixels in the image
are correctly classified, and the high IoU score indicates that the visual encoder
does not achieve the high accuracy by being overly confident in predicting classes
of large sizes. Simply predicting "road" for the bottom half of the image and "sky"
for the top half of the image would most likely result in a relatively high accuracy
score, but the IoU would be incredibly low. Therefore, it is reasonable to believe

47

48 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

that the visual encoder is able to represent the state of the visual input to a satis-
fying degree.

Figure 4.1: The figure displays the results of training the visual encoder. The
left image is the RGB input to the visual encoder, the center image is the visual
representation of the ground truth semantic labels, and the right image is the
predicted ground truth semantic labels. The input image is sampled from a custom
collected dataset and was not part of the training data.

Figure 4.2: The figure displays the reconstructed labels predicted by the trained
visual autoencoder. The inputs are sampled from the expert demonstration data-
set and therefore does not have a ground truth image available.

Chapter 4: Results 49

4.2 Experiment 1a: Using AGRI With DQN

Figure 4.3 displays all the results from training the autonomous driving agent
using AGRI together with the results from training the same agent using vanilla
RL as a baseline. Figure 4.3a and 4.3c displays the episode reward and the value
loss for the vanilla RL agent, and Figure 4.3b, 4.3d and 4.3e displays the reward,
loss and proportion of imitation learning episodes for the AGRI agent. All plots
use the number of time steps as the horizontal axis, and all plots are smoothed
using a smoothing factor of 0.8 in Tensorboard1.

Based on the rewards plotted in Figure 4.3a and 4.3b it is safe to say that the
agent did not learn to consistently score a high reward, neither for the vanilla
RL agent or the agent trained with AGRI. The vanilla RL agent tends to achieve
points closer to zero compared to the AGRI agent. A hypothesis is that this agent
more quickly learns to stand still, to not receive a negative reward, or to drive
straight forward for a short period of time before causing a collision or driving off
the road.

The AGRI agent will not learn to stand still the same way, as this would lead it to
be constantly trained on the expert demonstration dataset. A large partition of the
expert demonstration data consists of states where the expert is driving forward,
and training mostly on this data should in theory lead to the agent learning to drive
forward in some way. From the reward plot, it is evident that the agent did not
learn to stand still, but it did not learn any optimal policy either. Visually inspecting
the agent when it is training gives an indication that it learns to drive forward for a
short period of time, but then stops for unknown reasons. Due to the design of the
reward function the agent receives a negative reward in every time step until the
episode times out unless it is perfectly aligned in the lane center. The AGRI agent
is therefore rewarded less than the vanilla RL agent that goes off the road after
driving forward. This is one of the flaws in the reward function and is discussed
further in Chapter 5. The low rewards achieved by the AGRI agent are reflected in
the proportion of imitation learning episodes in Figure 4.3e. Approximately 60%
of all episodes are rolled out using imitation learning, and the imitation learning
decay explained in Section 3.1.2 is the only mechanism that enables the agent to
occasionally explore with RL.

Both the plots for the value losses in Figure 4.3c and 4.3d further supports the
claim that the agents are not able to learn an optimal policy. For the vanilla RL
agent the loss has a slight downward trend at the end, but the very low values for
the loss could indicate that the agent is stuck in a local optimum. Agents can at
best achieve a reward of 1 in a single time step. The discounted value of the first
state should then be approximately 10, using a discount factor for future values

1Tensorboard (https://www.tensorflow.org/tensorboard) uses exponential moving average
for smoothing. A smoothing factor of 0.8 means an exponential moving average where data at
the current time step is weighted by 0.2 and the exponential average at the previous time step is
weighted by 0.8.

https://www.tensorflow.org/tensorboard

50 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

of 0.9 and a maximum of 1,000 time steps per episode. Value losses that are in the
order of 0.1 together with rewards that are mostly less than zero could therefore
indicate that the agents are in a local optimum. The value loss for the AGRI agent
has an upward trend, indicating that it might be able to learn a way out from the
local minima over time. However, it was not able to do so during the 500,000 time
steps used for training.

(a) Vanilla RL episode reward. (b) AGRI episode reward.

(c) Vanilla RL DQN value loss. (d) AGRI DQN value loss.

(e) The proportion of episode rollouts us-
ing imitation learning. 1 indicates only im-
itation learning and 0 indicates only RL.

Figure 4.3: The results from training an agent using a discrete action space with
AGRI are displayed in the red plots. The gray plots are from an agent trained with
the exact same hyperparameters using vanilla RL. All subplots have the number
of time steps as the horizontal axis.

Chapter 4: Results 51

4.3 Experiment 1b: Using AGRI With TD3

Similar to the first experiment a vanilla RL agent is trained as a baseline to com-
pare AGRI in an environment with a continuous action space. Figure 4.4a, 4.4c,
and 4.4e shows the RL agent reward, actor loss and critic loss respectively. Fig-
ure 4.4b, 4.4d, 4.4f and 4.4g shows the AGRI agent reward, actor loss, critic loss
and proportion of imitation learning episodes. The horizontal axis and the smooth-
ing factor is equal to that in Section 4.2.

Unlike in the first experiment, the agents in the second experiment manage to
achieve some higher rewards. Based on the reward and losses for the vanilla RL
agent it seems like the model becomes unstable at approximately 250,000 time
steps. Until this point, the reward is consistently considerably higher than for the
discrete approaches, but the reward goes to zero as the actor and critic losses
come back to lower values. At this point, the RL agent is stuck in a local optimum
where it has learned to stand still and almost always receives a reward of zero.
Occasionally it manages to achieve some more reward, but this is rare compared
to how often it stands still.

On the other hand, the AGRI agent manages to achieve a high reward with some
consistency. It is however not able to fully converge, as the actor loss oscillates
around zero. For high absolute values of the actor loss the rewards tends to be
lower, as seen in Figure 4.4b and 4.4d. The critic network does seem to be able to
converge to some degree, but as Figure 4.4f shows it does not manage to stabilize
completely. Nevertheless, the AGRI agent does achieve the highest total rewards
by a great margin. Due to the smoothing of the plots, the maximum values for the
rewards are not visible, but for the vanilla RL agent the maximum reward during
training was 338.9, whereas the AGRI agent achieved a maximum of 599.7. Due to
the inconsistencies in reward the proportion of imitation learning never converges
to zero, but instead reaches a minimum at approximately 30% imitation learning
(The dips in Figure 4.4g around 100k and 200k time steps are caused by the
resetting of the training every 100k time step as explained in Section 3.3.1. The
logging of the metric for the imitation proportion is not saved and is therefore
highly sensitive to the first few episodes. It does however become representative
after some episodes).

52 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

(a) Vanilla RL episode reward. (b) AGRI episode reward.

(c) Vanilla RL actor loss. (d) AGRI actor loss.

(e) Vanilla RL critic loss. (f) AGRI critic loss.

(g) The proportion of episode rollouts using
imitation learning. 1 indicates only imitation
learning and 0 indicates only RL.

Figure 4.4: The results from training an agent using a continuous action space
with AGRI are displayed in the red plots. The blue plots are the results from an
agent trained with the exact same hyperparameters using vanilla RL. All subplots
have the number of time steps as the horizontal axis.

Chapter 4: Results 53

4.4 Experiment 2a: Augmenting the State in the Value
Based Approach

As explained in Section 3.3.2 the second experiment is to test if the state represent-
ation can be augmented using the outputs of a kinematic bicycle model. Figure 4.5
displays the results from augmenting the state in the discrete action space envir-
onment. The left column of plots displays the discrete AGRI agent trained in the
first experiment as the baseline. The right column displays the results from train-
ing the same agent with the augmented state representation, all else kept equal.
Similarly Figure 4.6 compares the results from using a kinematic model with AGRI
in the right column to the AGRI agent trained in the second experiment.

Based on the rewards in Figure 4.5a and 4.5b there is little evidence that using
a kinematic bicycle model does help the agent to learn. The rewards for the kin-
ematic agent might be slightly shifted up compared to the agent trained in the first
experiment, but it still rarely manages to complete episodes with a total reward
greater than zero. Both the losses and the imitation proportions are also very sim-
ilar without any significant differences. The training results for the discrete action
space environment indicate that augmenting the state with the kinematic bicycle
model has little to no effect on the training performance.

54 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

(a) Discrete AGRI episode reward.
(b) Discrete Kinematic AGRI episode re-
ward.

(c) Discrete AGRI DQN value loss.
(d) Discrete Kinematic AGRI DQN value
loss.

(e) Discrete AGRI imitation proportion.
(f) Discrete Kinematic AGRI imitation pro-
portion.

Figure 4.5: The results from training an agent using AGRI in the discrete action
space environment with a kinematic bicycle model to augment the state repres-
entation.

4.5 Experiment 2b: Augmenting the State in the Policy
Gradient Approach

The results for the experiment in the continuous environment, displayed in Fig-
ure 4.6, also indicate that the kinematic bicycle model does not increase the per-
formance of the agent. On the contrary, comparing the rewards in Figure 4.6a

Chapter 4: Results 55

and 4.6b indicates that adding the kinematic bicycle model makes it harder for
the agent to learn. Without the bicycle model, the agent is able to achieve higher
rewards, more frequently, than with the bicycle model. This may be a result of
the assumption from Section 3.3.2, that the continuous agent will be able to learn
from the augmented state representation even if a discrete action space is used as
a basis for the augmentation.

Both losses in Figure 4.6d and 4.6f also indicates that the model trained with the
kinematic bicycle model performs worse than the baseline. This also goes for the
imitation proportion, where the kinematic AGRI does not get lower than approx-
imately 60% imitation learning. This could be an indication that the augmented
state representation from the bicycle model adds more noise to the state repres-
entation than it enriches the state. Nevertheless, the kinematic AGRI agent does
learn to some extent. Based on the training rewards it is still the second-best per-
forming agent trained in all the experiments.

56 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

(a) Continuous AGRI episode reward.
(b) Continuous kinematic AGRI episode re-
ward.

(c) Continuous AGRI actor loss. (d) Continuous kinematic AGRI actor loss.

(e) Continuous AGRI critic loss. (f) Continuous kinematic AGRI critic loss.

(g) Continuous AGRI imitation proportion.
(h) Continuous kinematic AGRI imitation
proportion.

Figure 4.6: The results from training an agent using AGRI in the continuous
action space environment with a kinematic bicycle model to augment the state
representation.

Chapter 4: Results 57

4.6 Results in the Evaluation Environment

The previous sections have discussed how the agents trained in the experiments
have performed in the training environment. To see if the agents are able to gen-
eralize, and not simply learn the training environment, they have to be evaluated
in a different environment. During training, the agents were only exploring the
world of Town 1 in CARLA. The evaluation will therefore be done using Town 4 so
that the agents have never seen the environment before. The agents are evaluated
by completing ten routes in the environment. The configuration file for the routes
used in the evaluation is available in Appendix A.2.

4.6.1 Evaluation Metric

When evaluating the agents the flaw in the reward function mentioned in Sec-
tion 4.2 became very clear in scenarios where the agents have to stop and wait
for the vehicle in front. With the current reward design the agents have to stop
very close to the lane center and at the exact right angle to not get negative re-
wards for several time steps at a time. This makes it likely that the agent will reach
the lower threshold of -100 total reward, and the episode terminates. The result
of this flaw in the reward function design is that the agents that do not move
for the entire episode receive a total reward of 0, whereas the agents that drive
reasonably well could very well be rewarded -100.

To solve this problem, a different metric is used to evaluate the agent perform-
ance in the evaluation environment. The new metric is simply how many points
along the route that the agent manages to pass in an episode. Route points are
approximately 1 meter apart, and the reward can therefore almost be viewed as
the distance traveled. Colliding is still treated as a terminal event and will stop
the episode early. The terminal event of straying more than 2 meters from the
lane center is slightly relaxed, to see if agents can recover from their mistakes.
Therefore, the episode does not terminate before the agent has been more than 2
meters from the lane center for more than 4 seconds.

4.6.2 Evaluation Episode Length

As one time step in the environment corresponds to 1/20 seconds in the simulator,
an episode length of 1,000 time steps corresponds to 50 seconds of driving. The
evaluation town, Town 4, features highways and routes that are much longer than
the routes in the training town. To better evaluate how well the agents perform,
the maximum episode length used in the evaluation is set to 4,000 time steps,
corresponding to 200 seconds of driving. For most of the agents trained this is
enough time to either crash, leave the lane for a long enough time or get stuck
standing still.

58 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

4.6.3 A Note on Time Steps Used in Training

Note that some of the result plots in Section 4.2 and Section 4.3 have plots that go
slightly longer than to 500,000 time steps. This is related to the problems with the
CARLA server freezing, and when training in intervals of 100,000 time steps from
the last checkpoint before the failure some agents were trained slightly longer than
500,000. However, all evaluations are completed with agents trained for exactly
500,000 time steps, as checkpoints are saved every 10,000 time steps as a backup.

4.6.4 Evaluation Results

The mean, maximum and minimum episode rewards, as well as the mean epis-
ode length from the evaluations, are displayed in Table 4.1. Both agents trained
in the environment with continuous action space using AGRI greatly outperform
all the other agents by approximately two orders of magnitude. The results indic-
ate that the agents trained in experiments 1a and 2a did not manage to learn a
working policy at all. They either stand completely still or leave the lane almost
immediately and are outperformed by the vanilla RL baseline.

On the other hand, the agents trained in experiment 1b and 2b does manage
to learn policies that can drive longer distances. As displayed in Table 4.1 the
AGRI agent trained in experiment 1b outperforms all the other on all metrics.
The highest mean reward indicates that the agent consistently drives longer than
the other agents. The highest maximum reward indicates that it performs best
at peak performance, and the highest minimum reward indicates that it is better
at its worst than the other agents at their worst. A video of this agent driving in
the evaluation environment can be found here: https://youtu.be/Cmje6RrnWCo.
The bird view camera in the video is added to provide an overview only and is
not a part of the observation space.

The AGRI agent trained with the kinematic bicycle model achieves only approx-
imately 60% of the performance compared to the agent from experiment 1b on
most metrics. However, it still performs more than 10 times that of the third-best
agent trained. This could be an indication that AGRI might be a valid method for
increasing performance when training RL agents, whereas augmenting the state
representation with a kinematic bicycle model seems to add more noise to the
state than it adds value.

https://youtu.be/Cmje6RrnWCo

Chapter 4: Results 59

Table 4.1: Rewards obtained in the evaluation environment using the evaluation
reward

Mean Reward Max Reward Min Reward Mean Episode Length

DQN RL 14.90 59 0.00 145.10
DQN AGRI 1.90 7.00 0.00 32.90
DQN Kinematic AGRI 6.30 7.00 5.00 88.40

TD3 RL 0.00 0.00 0.00 101.00
TD3 AGRI 770.20 1,338.00 122.00 2,252.20
TD3 Kinematic AGRI 380.90 1,054.00 117.00 1,466.10

Chapter 5

Discussion

This section discusses the results obtained from the experiments. Section 5.1 dis-
cusses the results from conducting experiment 1a and answers the research ques-
tion RQ1 based on the results. Section 5.2 then discusses the results from exper-
iment 1b and answers RQ2 before Section 5.3 discusses the results from experi-
ment 2a and 2b and answers RQ3. In the end Section 5.4 discusses shortcomings
of the implementations in this thesis.

5.1 Experiment 1a

When evaluating the agents trained using AGRI with a value-based RL algorithm
it is clear that AGRI does not improve learning at all. On the contrary, the results
displayed in Table 4.1 show that the vanilla RL approach is able to achieve a higher
mean reward, and a higher maximum reward, than both the other AGRI agents
trained with the same RL algorithm.

A question that arises is how the agents trained with AGRI using the policy gradi-
ent approach outperformed the AGRI agents using the value-based approach with
such a great margin. One explanation could be that the discretization of the ac-
tion space is not fine-grained enough. In this thesis, 21 values have been used to
represent steering, allowing the agent to turn in steps of 10% in either direction
or go straight. 5 values have been used to control the speed, leaving 2 values each
for braking and throttling and 1 value for neither. Similar works, such as Toro-
manoff et al. [28] and Chekroun et al. [4], have used 27 values for steering and
2 or 3 values for throttling or braking. It does however seems unlikely that this
difference should make such an impact on performance.

Another possible could have been that the learning rate was too high or too low
for the agent to properly learn. However, the most probable cause of the large dif-
ference between the value-based approaches and the policy gradient approaches
lies in the updating of the target network in the DQN implementation. By de-

61

62 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

fault, the target network in the DQN implementation is updated by copying the
weights of the behavior network. This differs significantly from the updates of the
value networks in the TD3 implementation where the target network weights are
updated by adding the behavior network weights multiplied by 0.005. The tar-
get networks in the DQN implementation are therefore completely changed every
2,000 time step, whereas the TD3 implementation gradually updates the target
networks. Sadly this difference was noticed too late to train the agents again for
experiments 1a and 2a.

To draw a conclusion from the results, and answer the first research question,
RQ1, the results from experiment 1a indicate that using AGRI with a value-based
approach does not improve learning.

5.2 Experiment 1b

When evaluating the agents trained using AGRI with a policy gradient RL al-
gorithm it is clear that AGRI outperforms the vanilla RL implementation by a great
margin. The video linked to in Section 4.6.4 shows that the agent is able to follow
lanes reasonably well, slow down to not run into leading vehicles, and change
lanes. However, as can be seen in the video the agent does not at all consider red
traffic lights when driving, and it does oscillate a lot around the lane center. The
agent trained in experiment 1b is still the best out of all the agents trained, and it
does learn to follow lanes to a satisfactory degree considering the low number of
time steps used for the training. With the 500,000 time steps used for training at
20 frames per second, the agent has experienced just under 7 hours of simulated
driving.

To draw a conclusion from the results, and answer the second research question,
RQ2, the results from experiment 1b indicate that using AGRI with a policy gradi-
ent approach does indeed improve learning.

5.3 Experiment 2a and 2b

The results from evaluating the trained agent from experiment 2a and 2b agrees
well with the training results from Section 4.4 and Section 4.5. The DQN im-
plementation in this experiment suffers from the same drawbacks of the target
update explained in Section 5.1 that could be the explanation for why the DQN
implementations failed to learn. For the TD3 the AGRI agent trained without
the kinematic bicycle model performs significantly better. In both Figure 4.6 and
Table 4.1, the agent without the bicycle model achieves a consistently higher re-
ward as well as a higher maximum reward. The results give no indication that the
bicycle model improves learning in any way, but rather that it adds noise to the
state representation and makes learning more difficult.

To draw a conclusion from the results, and answer the third research question,

Chapter 5: Discussion 63

RQ3, the results from experiments 2a and 2b indicate that using a kinematic bi-
cycle model to augment the state representation does not improve learning at
all.

5.4 Shortcomings

5.4.1 Flaws in the Reward Function

As mentioned in Section 4.2 and Section 4.6 the reward function used to train the
agents has design flaws that should be corrected if used in further studies. The
reward should be designed in a way so that the agent does not receive negative
rewards when waiting behind a leading vehicle or waiting for a red light. An ap-
proach similar to that of Chen et al. in [33] where they reward the agent 0.01
times the speed reward in areas where the desired speed is zero. They also ignore
orientation and distance to lane center in these areas. In this thesis, the speed
reward for such areas has been set to zero, but the lateral component and angu-
lar component are still considered. Using zero as the speed reward component in
all areas where the desired speed is zero leads to scenarios where the maximum
episode reward could be zero, for example, if the agent spawns in front of a red
light. With the current reward design, this type of scenario gives the exact same
reward as spawning anywhere and not moving at all. This is not desirable as the
agents then have no way to differentiate between when to stand still and when
to not. Even worse could be if the agent spawns a few meters in front of the red
light. By not ignoring the lateral and angular reward components when the de-
sired speed is zero the agent could be rewarded -60 for stopping 0.5 meters away
from the lane center and staying there until the episode times out. These flaws
in the design function could be one of the reasons why the agents fail to con-
verge. Especially the continuous AGRI agent that learns to somewhat consistently
achieve high rewards could suffer from this design.

5.4.2 Gradient Steps and Replay Buffer Size

Another factor that could be crucial in the learning process for the agents is the
replay buffer size. The replay buffer size used in this thesis is incredibly small for
such a complex task. In combination with the small buffer size, a high number of
gradient steps have been used. It is highly likely that this could have caused the
models to overfit to recent observations. If the agent manages to complete ten RL
episodes in a row where the episode length is the maximum then the replay buffer
will be completely switched out. Furthermore, agents are trained for one gradient
step for every step taken in the environment. This means that for every episode
with a length of 1,000 steps the weights of the network will be updated 1,000
times. Recall from Section 3.3.1 that the mini-batch size used in 16. This means
that a total of 16,000 samples will be sampled from the replay buffer during an
update of the weights and that there are bound to be duplicate samples in the

64 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

training data. This could possibly be the source of over-fitting and could be an
explanation for why the continuous AGRI agent tended to have an oscillating
reward and actor loss.

A solution to the over-fitting problem could be to reduce the number of gradient
steps per update. A challenge is that a fixed number of gradient steps would then
have to be performed at each weight update. This could potentially lead to over-
fitting if the agent completes a series of very short episodes. Similarly, the number
of gradient steps could be too small, so there would exist samples in the replay
buffer that was never sampled before being replaced. This would be bad for the
sample efficiency.

A better solution would be to increase the buffer size. The problem with the cur-
rent implementation is that the RGB images are stored directly in the replay buffer.
Toromanoff et al. present a solution in [28]where they only store the encoded vec-
tor representation of the state. This method could be applicable to this thesis as
well, by storing all images as their encoded vectors of length 128. This would re-
duce the size of each image by a factor of approximately 500 which in turn should
enable the replay buffer size to be increased by at least two orders of magnitude.

To implement this into the current solution all the RGB images would have to
be encoded and stored in a new dataset of expert demonstrations. The visual
encoder would also have to be moved from a part of the policy network to a part
of the environment. The states emitted by the environment would then be in the
form of the encoded vector state representation depicted in Figure 3.4. In theory,
moving this part of the policy network to the environment should not make any
difference, as it does not have any weights that should be updated. By doing this
the learning process should also experience an increase in speed in terms of frames
per second. In the current solution, samples from RL rollouts have to pass through
the visual encoder in order to select an action, and again during the gradient steps.
By moving the encoder to the environment, the samples would only have to be
encoded a single time, when emitting the state.

Despite the design flaws in the reward function, the small replay buffer size, and
the relatively large amount of gradient steps when updating the policy, AGRI still
shows some evidence that it is able to learn a policy that can drive a vehicle in
an urban setting. The video linked to in Section 4.6 shows how the AGRI agent
from experiment 1b is able to follow the lane, change lanes, and follow a leading
vehicle for a while. These results are from training for only 500,000 time steps.
The fact that the vanilla RL agent only learned to stand still while the AGRI agents
learn to follow vehicles could indicate that AGRI might be a more robust method
for training RL agents.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis presents AGRI, an adaptive extension to GRI presented by Chekroun
et al. [4]. AGRI utilizes the replay buffer of off-policy RL algorithms to mix expert
demonstrations into the RL learning process. Experimental results indicate that
AGRI works to some extent, and could possibly be a robust method for training
RL agents.

Research question 1 seeks to find out if AGRI can be used together with a value-
based off-policy RL algorithm. DQN was chosen as the RL algorithm for the ex-
periments. The experiments fail to provide any results that indicate that an agent
trained using AGRI is able to learn better than a standard DQN RL approach.

Research question 2 seeks to find out if AGRI can be used together with a policy
gradient RL algorithm with a continuous action space. TD3 was chosen as the
RL algorithm for the experiments. The results from the experiments indicate that
the agent trained with AGRI performs significantly better than the baseline agent
trained with TD3 in a standard RL approach. The agent learns to follow lanes and
leading vehicles to some degree, with a relatively low number of interactions with
the environment.

Research question 3 seeks to find out if the representation of the environment
state can be augmented using a kinematic bicycle model and whether this can
improve the performance of AGRI. The results from the experiments indicate this
is not the case. By adding the augmentations from the bicycle model, the perform-
ance of the agents is lower than without the augmentations.

65

66 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

6.2 Future Work

In the current implementations GRI [4] and AGRI are only compatible with off-
policy RL algorithms, as they rely on the replay buffer of the algorithms. In future
work, it would be interesting to see an extension to GRI and AGRI that is able to
use on-policy algorithms as well. This should in theory be possible to implement.
The forward pass of off-policy algorithms returns an action and the expected value
of the action. On-policy algorithms, on the other hand, return the action, value,
and the log-probability of selecting the action given the current state under the
current policy. In order to use GRI and AGRI together with an on-policy, all that has
to be done is to calculate the log probability of selecting the expert demonstration
under the current policy.

One drawback of using on-policy RL approaches is that the sample efficiency is
low as they do not use replay buffers. Instead, they only store the states between
updates in a rollout buffer. A second drawback is that the expert demonstration
observations also have to be passed through the policy network to calculate the
policy distribution of the state. This will most likely slow down the frame rate of
the learning process, although this can be mitigated by encoding the state repres-
entations of the expert demonstrations in advance as discussed in Chapter 5.

Bibliography

[1] N. C. for Statistics and Analysis, Early estimate of motor vehicle traffic fatal-
ities for the first half (january–june) of 2021, 2021.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M.
Leach, K. Kavukcuoglu, T. Graepel and D. Hassabis, ‘Mastering the game of
go with deep neural networks and tree search,’ Nature, vol. 529, no. 7587,
pp. 484–489, Jan. 2016, ISSN: 1476-4687. DOI: 10.1038/nature16961.
[Online]. Available: https://doi.org/10.1038/nature16961.

[3] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D.
Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Ols-
son, J. Pachocki, M. Petrov, H. P. de Oliveira Pinto, J. Raiman, T. Sali-
mans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski
and S. Zhang, ‘Dota 2 with large scale deep reinforcement learning,’ CoRR,
vol. abs/1912.06680, 2019. arXiv: 1912.06680. [Online]. Available: http:
//arxiv.org/abs/1912.06680.

[4] R. Chekroun, M. Toromanoff, S. Hornauer and F. Moutarde, ‘GRI: general
reinforced imitation and its application to vision-based autonomous driv-
ing,’ CoRR, vol. abs/2111.08575, 2021. arXiv: 2111.08575. [Online]. Avail-
able: https://arxiv.org/abs/2111.08575.

[5] R. Bellman, R. Corporation and K. M. R. Collection, Dynamic Programming,
ser. Rand Corporation research study. Princeton University Press, 1957,
ISBN: 9780691079516. [Online]. Available: https://books.google.no/
books?id=wdtoPwAACAAJ.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[7] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Sil-
ver and K. Kavukcuoglu, ‘Asynchronous methods for deep reinforcement
learning,’ CoRR, vol. abs/1602.01783, 2016. arXiv: 1602.01783. [Online].
Available: http://arxiv.org/abs/1602.01783.

67

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1912.06680
https://arxiv.org/abs/2111.08575
https://arxiv.org/abs/2111.08575
https://books.google.no/books?id=wdtoPwAACAAJ
https://books.google.no/books?id=wdtoPwAACAAJ
https://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783

68 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov, ‘Proximal
policy optimization algorithms,’ CoRR, vol. abs/1707.06347, 2017. arXiv:
1707.06347. [Online]. Available: http://arxiv.org/abs/1707.06347.

[9] J. Schulman, S. Levine, P. Moritz, M. I. Jordan and P. Abbeel, ‘Trust region
policy optimization,’ CoRR, vol. abs/1502.05477, 2015. arXiv: 1502.05477.
[Online]. Available: http://arxiv.org/abs/1502.05477.

[10] D. Chen, B. Zhou, V. Koltun and P. Krähenbühl, Learning by cheating, 2019.
DOI: 10.48550/ARXIV.1912.12294. [Online]. Available: https://arxiv.
org/abs/1912.12294.

[11] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller, ‘De-
terministic policy gradient algorithms,’ in International conference on ma-
chine learning, PMLR, 2014, pp. 387–395.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg and
D. Hassabis, ‘Human-level control through deep reinforcement learning,’
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015, ISSN: 1476-4687. DOI:
10.1038/nature14236. [Online]. Available: https://doi.org/10.1038/
nature14236.

[13] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus and N. Dormann,
‘Stable-baselines3: Reliable reinforcement learning implementations,’ Journal
of Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021. [Online].
Available: http://jmlr.org/papers/v22/20-1364.html.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and
D. Wierstra, Continuous control with deep reinforcement learning, 2015. DOI:
10.48550/ARXIV.1509.02971. [Online]. Available: https://arxiv.org/
abs/1509.02971.

[15] S. Fujimoto, H. van Hoof and D. Meger, ‘Addressing function approxima-
tion error in actor-critic methods,’ CoRR, vol. abs/1802.09477, 2018. arXiv:
1802.09477. [Online]. Available: http://arxiv.org/abs/1802.09477.

[16] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang
and W. Zaremba, ‘Openai gym,’ CoRR, vol. abs/1606.01540, 2016. arXiv:
1606.01540. [Online]. Available: http://arxiv.org/abs/1606.01540.

[17] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup and D. Meger,
‘Deep reinforcement learning that matters,’ CoRR, vol. abs/1709.06560,
2017. arXiv: 1709.06560. [Online]. Available: http://arxiv.org/abs/
1709.06560.

[18] T. Haarnoja, A. Zhou, P. Abbeel and S. Levine, ‘Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,’
CoRR, vol. abs/1801.01290, 2018. arXiv: 1801.01290. [Online]. Available:
http://arxiv.org/abs/1801.01290.

https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
https://doi.org/10.48550/ARXIV.1912.12294
https://arxiv.org/abs/1912.12294
https://arxiv.org/abs/1912.12294
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.48550/ARXIV.1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290

Bibliography 69

[19] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B.
McGrew, J. Tobin, P. Abbeel and W. Zaremba, ‘Hindsight experience replay,’
CoRR, vol. abs/1707.01495, 2017. arXiv: 1707.01495. [Online]. Available:
http://arxiv.org/abs/1707.01495.

[20] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López and V. Koltun, ‘CARLA: an
open urban driving simulator,’ CoRR, vol. abs/1711.03938, 2017. arXiv:
1711.03938. [Online]. Available: http://arxiv.org/abs/1711.03938.

[21] B. Wymann, C. Dimitrakakis, A. Sumner, E. Espié and C. Guionneau, ‘Torcs,
the open racing car simulator,’ 2015.

[22] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Mozeiko, E. Boise,
G. Uhm, M. Gerow, S. Mehta, E. Agafonov, T. H. Kim, E. Sterner, K. Ushiroda,
M. Reyes, D. Zelenkovsky and S. Kim, ‘LGSVL simulator: A high fidelity sim-
ulator for autonomous driving,’ CoRR, vol. abs/2005.03778, 2020. arXiv:
2005.03778. [Online]. Available: https://arxiv.org/abs/2005.03778.

[23] S. Ross, G. J. Gordon and J. A. Bagnell, A reduction of imitation learning
and structured prediction to no-regret online learning, 2010. DOI: 10.48550/
ARXIV.1011.0686. [Online]. Available: https://arxiv.org/abs/1011.
0686.

[24] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image re-
cognition,’ CoRR, vol. abs/1512.03385, 2015. arXiv: 1512.03385. [Online].
Available: http://arxiv.org/abs/1512.03385.

[25] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image re-
cognition, 2015. DOI: 10.48550/ARXIV.1512.03385. [Online]. Available:
https://arxiv.org/abs/1512.03385.

[26] F. Codevilla, M. Müller, A. López, V. Koltun and A. Dosovitskiy, End-to-end
driving via conditional imitation learning, 2017. DOI: 10.48550/ARXIV.
1710.02410. [Online]. Available: https://arxiv.org/abs/1710.02410.

[27] F. Codevilla, E. Santana, A. M. López and A. Gaidon, Exploring the limit-
ations of behavior cloning for autonomous driving, 2019. DOI: 10.48550/
ARXIV.1904.08980. [Online]. Available: https://arxiv.org/abs/1904.
08980.

[28] M. Toromanoff, É. Wirbel and F. Moutarde, ‘End-to-end model-free rein-
forcement learning for urban driving using implicit affordances,’ CoRR,
vol. abs/1911.10868, 2019. arXiv: 1911.10868. [Online]. Available: http:
//arxiv.org/abs/1911.10868.

[29] F. Codevilla, M. Müller, A. Dosovitskiy, A. M. López and V. Koltun, ‘End-to-
end driving via conditional imitation learning,’ CoRR, vol. abs/1710.02410,
2017. arXiv: 1710.02410. [Online]. Available: http://arxiv.org/abs/
1710.02410.

https://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
https://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
https://arxiv.org/abs/2005.03778
https://arxiv.org/abs/2005.03778
https://doi.org/10.48550/ARXIV.1011.0686
https://doi.org/10.48550/ARXIV.1011.0686
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.48550/ARXIV.1710.02410
https://doi.org/10.48550/ARXIV.1710.02410
https://arxiv.org/abs/1710.02410
https://doi.org/10.48550/ARXIV.1904.08980
https://doi.org/10.48550/ARXIV.1904.08980
https://arxiv.org/abs/1904.08980
https://arxiv.org/abs/1904.08980
https://arxiv.org/abs/1911.10868
http://arxiv.org/abs/1911.10868
http://arxiv.org/abs/1911.10868
https://arxiv.org/abs/1710.02410
http://arxiv.org/abs/1710.02410
http://arxiv.org/abs/1710.02410

70 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

[30] M. Toromanoff, É. Wirbel and F. Moutarde, ‘Is deep reinforcement learn-
ing really superhuman on atari?’ CoRR, vol. abs/1908.04683, 2019. arXiv:
1908.04683. [Online]. Available: http://arxiv.org/abs/1908.04683.

[31] A. Sauer, N. Savinov and A. Geiger, ‘Conditional affordance learning for
driving in urban environments,’ CoRR, vol. abs/1806.06498, 2018. arXiv:
1806.06498. [Online]. Available: http://arxiv.org/abs/1806.06498.

[32] F. Codevilla, E. Santana, A. M. López and A. Gaidon, ‘Exploring the limita-
tions of behavior cloning for autonomous driving,’ CoRR, vol. abs/1904.08980,
2019. arXiv: 1904.08980. [Online]. Available: http://arxiv.org/abs/
1904.08980.

[33] D. Chen, V. Koltun and P. Krähenbühl, ‘Learning to drive from a world
on rails,’ CoRR, vol. abs/2105.00636, 2021. arXiv: 2105.00636. [Online].
Available: https://arxiv.org/abs/2105.00636.

[34] P. Polack, F. Altché, B. d’Andréa-Novel and A. de La Fortelle, ‘The kinematic
bicycle model: A consistent model for planning feasible trajectories for
autonomous vehicles?’ 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 812–
818, 2017.

[35] M. Tan and Q. V. Le, ‘Efficientnet: Rethinking model scaling for convolu-
tional neural networks,’ CoRR, vol. abs/1905.11946, 2019. arXiv: 1905.
11946. [Online]. Available: http://arxiv.org/abs/1905.11946.

[36] D. Chen and P. Krähenbühl, ‘Learning from all vehicles,’ in CVPR, 2022.

[37] H. Wu, W. Su and Z. Liu, ‘Pid controllers: Design and tuning methods,’ in
2014 9th IEEE Conference on Industrial Electronics and Applications, 2014,
pp. 808–813. DOI: 10.1109/ICIEA.2014.6931273.

[38] B. Jaeger. ‘Expert drivers for autonomous driving.’ (2021), [Online]. Avail-
able: https://kait0.github.io/files/master_thesis_bernhard_
jaeger.pdf.

[39] E. Romera, J. M. Álvarez, L. M. Bergasa and R. Arroyo, ‘Erfnet: Efficient re-
sidual factorized convnet for real-time semantic segmentation,’ IEEE Trans-
actions on Intelligent Transportation Systems, vol. 19, no. 1, pp. 263–272,
2018. DOI: 10.1109/TITS.2017.2750080.

[40] G. J. van Wyk and A. S. Bosman, ‘Evolutionary neural architecture search
for image restoration,’ CoRR, vol. abs/1812.05866, 2018. arXiv: 1812 .
05866. [Online]. Available: http://arxiv.org/abs/1812.05866.

[41] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.
DOI: 10.48550/ARXIV.1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980.

https://arxiv.org/abs/1908.04683
http://arxiv.org/abs/1908.04683
https://arxiv.org/abs/1806.06498
http://arxiv.org/abs/1806.06498
https://arxiv.org/abs/1904.08980
http://arxiv.org/abs/1904.08980
http://arxiv.org/abs/1904.08980
https://arxiv.org/abs/2105.00636
https://arxiv.org/abs/2105.00636
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://doi.org/10.1109/ICIEA.2014.6931273
https://kait0.github.io/files/master_thesis_bernhard_jaeger.pdf
https://kait0.github.io/files/master_thesis_bernhard_jaeger.pdf
https://doi.org/10.1109/TITS.2017.2750080
https://arxiv.org/abs/1812.05866
https://arxiv.org/abs/1812.05866
http://arxiv.org/abs/1812.05866
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Appendix A

Additional Material

A.1 Route Configuration File

Code listing A.1: The route configuration file used for training

<?xml version="1.0" encoding="UTF-8"?>
<routes>

<route id="0" town="Town01">
<weather

cloudiness="0"
precipitation="0"
precipitation_deposits="0"
wind_intensity="0"
sun_azimuth_angle="0"
sun_altitude_angle="70"
fog_density="0"
fog_distance="0"
wetness="0"

/>
<waypoint pitch="360.0" roll="0.0" x="338.7027893066406" y="

226.75003051757812" yaw="269.9790954589844" z="0.0" />
<waypoint pitch="360.0" roll="0.0" x="321.98931884765625" y="

194.67242431640625" yaw="179.83230590820312" z="0.0" />
<waypoint pitch="360.0" roll="0.0" x="283.6903991699219" y="

194.78451538085938" yaw="179.83230590820312" z="0.0" />
<waypoint pitch="360.0" roll="0.0" x="108.0505142211914" y="

195.29856872558594" yaw="179.83230590820312" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="88.40200805664062" y="210.57827758789062"

yaw="89.99128723144531" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="88.41706848144531" y="309.6344299316406"

yaw="89.99128723144531" z="0.0" />
<waypoint pitch="360.0" roll="0.0" x="75.58748626708984" y="326.3004455566406

" yaw="180.0352020263672" z="0.0" />
<waypoint pitch="360.0" roll="0.0" x="14.334035873413086" y="

326.2628173828125" yaw="180.0352020263672" z="0.0" />
<waypoint pitch="360.0" roll="0.0" x="1.8717632293701172" y="

299.4347229003906" yaw="269.8846435546875" z="0.0" />
<waypoint pitch="360.0" roll="0.0" x="1.612621784210205" y="

170.71238708496094" yaw="269.8846435546875" z="0.0" />

71

72 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

<waypoint pitch="360.0" roll="0.0" x="1.3654530048370361" y="
47.93744659423828" yaw="269.8846435546875" z="0.0" />

</route>
<route id="1" town="Town01">

<waypoint pitch="0.0" roll="0.0" x="121.72344970703125" y="59.17844009399414"
yaw="0.0670308843255043" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="249.13783264160156" y="59.3275032043457"
yaw="0.0670308843255043" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="315.4411315917969" y="59.40507507324219"
yaw="0.0670308843255043" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="334.6475524902344" y="75.26239013671875"
yaw="89.9791030883789" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="334.6621398925781" y="115.21650695800781"
yaw="89.9791030883789" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="312.11029052734375" y="
129.5294189453125" yaw="180.18728637695312" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="254.0718994140625" y="
129.33969116210938" yaw="180.18728637695312" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="130.1896514892578" y="128.9347381591797
" yaw="180.18728637695312" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="104.88580322265625" y="
128.85202026367188" yaw="180.18728637695312" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.3873062133789" y="113.84988403320312
" yaw="269.99127197265625" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.3824462890625" y="81.85515594482422"
yaw="269.99127197265625" z="0.0" />

</route>
<route id="2" town="Town01">

<waypoint pitch="0.0" roll="0.0" x="53.05508041381836" y="-2.35788631439209"
yaw="-179.970947265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-2.673415422439575" y="28.63454818725586"
yaw="89.88465118408203" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-2.3427786827087402" y="192.8701171875"
yaw="89.88465118408203" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-2.1942241191864014" y="266.6610107421875
" yaw="89.88465118408203" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-2.1050660610198975" y="310.9482727050781
" yaw="89.88465118408203" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="24.25780487060547" y="330.2689208984375"
yaw="0.03519752621650696" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="67.7093276977539" y="330.29559326171875"
yaw="0.03519752621650696" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="103.49156951904297" y="330.31756591796875
" yaw="0.035137325525283813" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="271.3299560546875" y="330.4205017089844"
yaw="0.035137325525283813" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="316.4518127441406" y="330.4482421875" yaw
="0.03531792759895325" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="376.9873352050781" y="330.485595703125"
yaw="0.03531792759895325" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="396.4393310546875" y="290.8396301269531"
yaw="-90.04281616210938" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="396.38623046875" y="219.68142700195312"
yaw="-90.04266357421875" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="396.3192443847656" y="129.7147979736328"
yaw="-90.04266357421875" z="0.0" />

</route>
<route id="3" town="Town01">

<waypoint pitch="360.0" roll="0.0" x="315.2674560546875" y="
1.7750924825668335" yaw="0.029052734375" z="0.0" />

Chapter A: Additional Material 73

<waypoint pitch="0.0" roll="0.0" x="334.6253356933594" y="14.335249900817871"
yaw="89.9791030883789" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="315.8530578613281" y="55.40555191040039
" yaw="180.06703186035156" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="226.33297729492188" y="
55.300819396972656" yaw="180.06703186035156" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="173.5809326171875" y="
55.239105224609375" yaw="180.06703186035156" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="157.98867797851562" y="
39.896236419677734" yaw="269.930908203125" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="141.9262237548828" y="-2.3128161430358887
" yaw="-179.970947265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="109.39694213867188" y="-2.329313039779663
" yaw="-179.970947265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="88.37610626220703" y="40.17418670654297"
yaw="89.99128723144531" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="88.38069152832031" y="70.33818054199219"
yaw="89.99128723144531" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="88.38651275634766" y="108.64129638671875"
yaw="89.99128723144531" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="88.391845703125" y="143.68722534179688"
yaw="89.99128723144531" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="88.39682006835938" y="176.42515563964844"
yaw="89.99128723144531" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="88.4019775390625" y="210.35337829589844"
yaw="89.99128723144531" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="88.41710662841797" y="309.8704833984375"
yaw="89.99128723144531" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="75.55514526367188" y="326.3004150390625
" yaw="180.0352020263672" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="12.632027626037598" y="
326.26177978515625" yaw="180.0352020263672" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="1.8649307489395142" y="
296.0408020019531" yaw="269.8846435546875" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="1.4228647947311401" y="76.4553451538086
" yaw="269.8846435546875" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="1.3183270692825317" y="
24.528728485107422" yaw="269.8846435546875" z="0.0" />

</route>
<route id="4" town="Town01">

<waypoint pitch="360.0" roll="0.0" x="56.90949630737305" y="1.644068956375122
" yaw="0.029052734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="108.8623046875" y="1.6704164743423462"
yaw="0.029052734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="134.96644592285156" y="
1.6836549043655396" yaw="0.029052734375" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="153.95574951171875" y="12.585290908813477
" yaw="89.93091583251953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="153.98809814453125" y="39.41703414916992"
yaw="89.93091583251953" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="139.60507202148438" y="
55.19935607910156" yaw="180.06703186035156" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="108.625244140625" y="55.16311264038086"
yaw="180.06703186035156" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="88.3819351196289" y="78.5218505859375"
yaw="89.99128723144531" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="88.38763427734375" y="116.0037612915039"
yaw="89.99128723144531" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="88.3920669555664" y="145.12017822265625"
yaw="89.99128723144531" z="0.0" />

74 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

<waypoint pitch="0.0" roll="0.0" x="88.39686584472656" y="176.69561767578125"
yaw="89.99128723144531" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="182.24264526367188" y="199.08143615722656
" yaw="-0.16769057512283325" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="310.5677185058594" y="198.7058563232422"
yaw="-0.16769057512283325" z="0.0" />

</route>
<route id="5" town="Town01">

<waypoint pitch="0.0" roll="0.0" x="334.7254638671875" y="288.90679931640625"
yaw="89.9791030883789" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="334.7344970703125" y="313.657958984375"
yaw="89.9791030883789" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="357.1101379394531" y="330.47332763671875"
yaw="0.03531792759895325" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="396.45916748046875" y="317.3710021972656"
yaw="-90.04281616210938" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="396.43365478515625" y="283.24346923828125
" yaw="-90.04281616210938" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="396.318115234375" y="128.203857421875"
yaw="-90.04266357421875" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="396.2600402832031" y="50.238136291503906"
yaw="-90.04265594482422" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="396.2330017089844" y="13.925765991210938"
yaw="-90.04265594482422" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="368.76617431640625" y="
-2.1977765560150146" yaw="-179.970947265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="308.4601135253906" y="-2.228360176086426"
yaw="-179.970947265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="207.614501953125" y="-2.279503107070923"
yaw="-179.970947265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="173.9556427001953" y="-2.296572685241699"
yaw="-179.970947265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="153.95753479003906" y="14.065252304077148
" yaw="89.93091583251953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="153.9872283935547" y="38.697792053222656"
yaw="89.93091583251953" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="109.57969665527344" y="
55.16423034667969" yaw="180.06703186035156" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.3765869140625" y="43.30881881713867"
yaw="269.99127197265625" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.37274169921875" y="18.01288414001465
" yaw="269.99127197265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="68.05789947509766" y="-2.3502776622772217
" yaw="-179.970947265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="14.081366539001465" y="
-2.3776514530181885" yaw="-179.970947265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-2.6820547580718994" y="
24.343191146850586" yaw="89.88465118408203" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-2.4851901531219482" y="
122.13080596923828" yaw="89.88465118408203" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-2.1895012855529785" y="269.0069580078125
" yaw="89.88465118408203" z="0.0" />

</route>
<route id="6" town="Town01">

<waypoint pitch="360.0" roll="0.0" x="92.41790771484375" y="315.1663513183594
" yaw="269.99127197265625" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.41033172607422" y="
265.31756591796875" yaw="269.99127197265625" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.40457153320312" y="
227.42677307128906" yaw="269.99127197265625" z="0.0" />

Chapter A: Additional Material 75

<waypoint pitch="360.0" roll="0.0" x="92.40277099609375" y="
215.60093688964844" yaw="269.99127197265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="219.9288330078125" y="198.97113037109375"
yaw="-0.16769057512283325" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="313.20977783203125" y="198.6981201171875"
yaw="-0.16769057512283325" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="338.6866455078125" y="
182.45599365234375" yaw="269.9790954589844" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="338.6753234863281" y="
151.41770935058594" yaw="269.9790954589844" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="320.4845275878906" y="
129.55679321289062" yaw="180.18728637695312" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="199.1981658935547" y="
129.16030883789062" yaw="180.18728637695312" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="129.8414764404297" y="128.93359375" yaw
="180.18728637695312" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="107.4002685546875" y="
128.86024475097656" yaw="180.18728637695312" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.38561248779297" y="
102.70710754394531" yaw="269.99127197265625" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.381103515625" y="73.05748748779297"
yaw="269.99127197265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="114.37248992919922" y="59.16984176635742"
yaw="0.0670308843255043" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="135.82371520996094" y="59.19493865966797"
yaw="0.0670308843255043" z="0.0" />

</route>
<route id="7" town="Town01">

<waypoint pitch="360.0" roll="0.0" x="157.9880828857422" y="39.39617156982422
" yaw="269.930908203125" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="157.96221923828125" y="
17.952861785888672" yaw="269.930908203125" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="253.0749053955078" y="
1.7435522079467773" yaw="0.029052734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="315.1820983886719" y="
1.7750492095947266" yaw="0.029052734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="348.85223388671875" y="
1.7921247482299805" yaw="0.029052734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="379.3345031738281" y="
1.8075834512710571" yaw="0.029052734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="392.24493408203125" y="
29.937896728515625" yaw="89.95734405517578" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="392.2692565917969" y="
62.618507385253906" yaw="89.95734405517578" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="392.34820556640625" y="
168.6100311279297" yaw="89.95733642578125" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="392.4200439453125" y="265.0082702636719
" yaw="89.95718383789062" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="392.4576721191406" y="315.3871765136719
" yaw="89.95718383789062" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="361.8758850097656" y="326.4762878417969
" yaw="180.0353240966797" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="299.8201599121094" y="326.4380187988281
" yaw="180.0353240966797" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="269.32763671875" y="326.4192810058594"
yaw="180.03514099121094" z="0.0" />

</route>
<route id="8" town="Town01">

<waypoint pitch="360.0" roll="0.0" x="204.92605590820312" y="
326.3797912597656" yaw="180.03514099121094" z="0.0" />

76 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

<waypoint pitch="360.0" roll="0.0" x="111.30892944335938" y="
326.3223571777344" yaw="180.03514099121094" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.4170913696289" y="309.8084716796875"
yaw="269.99127197265625" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.41275787353516" y="
281.28570556640625" yaw="269.99127197265625" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.40253448486328" y="214.0068359375"
yaw="269.99127197265625" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.39788818359375" y="
183.42884826660156" yaw="269.99127197265625" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="92.39239501953125" y="
147.30715942382812" yaw="269.99127197265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="105.45079803466797" y="132.8538818359375"
yaw="0.1872929185628891" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="214.47857666015625" y="133.2102813720703"
yaw="0.1872929185628891" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="312.8659362792969" y="133.53189086914062"
yaw="0.1872929185628891" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="334.67816162109375" y="159.21560668945312
" yaw="89.9791030883789" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="334.68341064453125" y="173.56646728515625
" yaw="89.9791030883789" z="0.0" />

</route>
<route id="9" town="Town01">

<waypoint pitch="360.0" roll="0.0" x="338.6842956542969" y="
176.00216674804688" yaw="269.9790954589844" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="338.6741638183594" y="
148.27407836914062" yaw="269.9790954589844" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="338.6495666503906" y="80.78645324707031
" yaw="269.9790954589844" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="320.7290344238281" y="55.4112548828125"
yaw="180.06703186035156" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="212.8487548828125" y="55.2850456237793"
yaw="180.06703186035156" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="173.32044982910156" y="
55.238800048828125" yaw="180.06703186035156" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="157.9892120361328" y="
40.340248107910156" yaw="269.930908203125" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="157.95950317382812" y="
15.695076942443848" yaw="269.930908203125" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="173.07179260253906" y="
1.702979564666748" yaw="0.029052734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="280.5867614746094" y="
1.7575045824050903" yaw="0.029052734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="312.7760314941406" y="
1.7738289833068848" yaw="0.029052734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="349.441162109375" y="1.7924233675003052
" yaw="0.029052734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="380.9141540527344" y="
1.8083845376968384" yaw="0.029052734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="392.23345947265625" y="
14.538103103637695" yaw="89.95734405517578" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="392.3465576171875" y="
166.41212463378906" yaw="89.95733642578125" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="392.4117431640625" y="
253.89410400390625" yaw="89.95718383789062" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="392.44500732421875" y="
298.43646240234375" yaw="89.95718383789062" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="378.6864318847656" y="
326.48663330078125" yaw="180.0353240966797" z="0.0" />

Chapter A: Additional Material 77

<waypoint pitch="360.0" roll="0.0" x="365.12506103515625" y="326.478271484375
" yaw="180.0353240966797" z="0.0" />

</route>
</routes>

A.2 Route Configuration File for Evaluation

Code listing A.2: The route configuration file used for evaluation

<?xml version="1.0" encoding="UTF-8"?>
<routes>

<route id="30" town="Town04">
<weather

cloudiness="0"
precipitation="0"
precipitation_deposits="0"
wind_intensity="0"
sun_azimuth_angle="0"
sun_altitude_angle="70"
fog_density="0"
fog_distance="0"
wetness="0"

/>
<waypoint pitch="0.0" roll="0.0" x="-488.22320556640625" y="339.6849670410156

" yaw="59.5145149230957" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-475.5334167480469" y="358.6210021972656"

yaw="52.83040237426758" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-447.5931701660156" y="388.4106140136719"

yaw="40.839210510253906" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-419.9382019042969" y="408.3812255859375"

yaw="30.82954216003418" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-390.7762145996094" y="422.646728515625"

yaw="21.30451011657715" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-353.0600891113281" y="433.14752197265625

" yaw="9.811640739440918" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-321.3542785644531" y="436.00048828125"

yaw="0.4719550609588623" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-277.26324462890625" y="

435.85406494140625" yaw="-0.2081967145204544" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-226.70909118652344" y="435.6703796386719

" yaw="-0.2081967145204544" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-177.30760192871094" y="

434.55560302734375" yaw="-5.559072494506836" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-146.08168029785156" y="429.1661376953125

" yaw="-14.025965690612793" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-112.87530517578125" y="417.9194030761719

" yaw="-23.39567756652832" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-84.46420288085938" y="403.0145568847656"

yaw="-31.968528747558594" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-58.0605583190918" y="383.5847473144531"

yaw="-40.728450775146484" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="-29.442157745361328" y="

353.67669677734375" yaw="-51.796146392822266" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="54.57451629638672" y="269.7650451660156"

yaw="-40.916812896728516" z="0.0" />
<waypoint pitch="0.0" roll="0.0" x="82.24029541015625" y="248.6325225830078"

yaw="-33.83201217651367" z="0.0" />

78 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

<waypoint pitch="0.0" roll="0.0" x="133.7696990966797" y="221.35757446289062"
yaw="-21.953279495239258" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="219.6721954345703" y="192.3584747314453"
yaw="-20.596675872802734" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="321.0372009277344" y="146.99412536621094"
yaw="-30.665882110595703" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="382.2953796386719" y="92.96318054199219"
yaw="-56.819374084472656" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="413.94622802734375" y="
-240.84771728515625" yaw="267.1632080078125" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="409.15411376953125" y="
-272.8075866699219" yaw="255.7819061279297" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="394.5356750488281" y="
-310.2859802246094" yaw="241.60153198242188" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="361.81060791015625" y="
-352.4405212402344" yaw="222.7532958984375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="322.1484680175781" y="
-379.4797668457031" yaw="205.8142547607422" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="271.0467834472656" y="
-394.52667236328125" yaw="186.9999237060547" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="145.00303649902344" y="
-395.58477783203125" yaw="175.4221954345703" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="84.82112121582031" y="
-379.7251892089844" yaw="155.05113220214844" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="53.213504791259766" y="
-360.7630920410156" yaw="143.0278778076172" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="15.176793098449707" y="
-315.29376220703125" yaw="123.47056579589844" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="-13.497654151916504" y="
-219.7641357421875" yaw="90.8860778808594" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="-15.270705223083496" y="
161.37664794921875" yaw="89.71086883544922" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="-15.517499923706055" y="
235.0567626953125" yaw="94.42162322998047" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="-66.07498931884766" y="
347.8439636230469" yaw="133.86752319335938" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="-141.9580841064453" y="
395.2472229003906" yaw="162.14744567871094" z="0.0" />

</route>
<route id="31" town="Town04">

<waypoint pitch="0.0" roll="0.0" x="-281.5526428222656" y="-87.47563934326172
" yaw="176.10842895507812" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-310.5595397949219" y="-86.0473861694336"
yaw="-187.61404418945312" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-331.85467529296875" y="
-80.33483123779297" yaw="-202.41879272460938" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-354.71966552734375" y="-66.363037109375"
yaw="-220.4357452392578" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-381.8287048339844" y="
-23.544204711914062" yaw="-254.88758850097656" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-439.4989929199219" y="7.347505569458008"
yaw="-190.1195068359375" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-480.9691467285156" y="26.524372100830078
" yaw="-219.5145721435547" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-502.7483215332031" y="52.914344787597656
" yaw="-241.42083740234375" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-513.7513427734375" y="100.86363983154297
" yaw="90.3575210571289" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-514.5786743164062" y="201.4623565673828"
yaw="91.7344741821289" z="0.0" />

Chapter A: Additional Material 79

<waypoint pitch="0.0" roll="0.0" x="-504.91351318359375" y="303.23046875" yaw
="71.28516387939453" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-471.06451416015625" y="
364.29425048828125" yaw="50.71378707885742" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-427.3395690917969" y="403.7365417480469"
yaw="33.39055252075195" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-362.9612731933594" y="431.170654296875"
yaw="12.770912170410156" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-289.670166015625" y="435.899169921875"
yaw="-0.2081967145204544" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-197.3670196533203" y="435.56378173828125
" yaw="-0.2081967145204544" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-126.55042266845703" y="423.2880859375"
yaw="-19.473011016845703" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-90.14501190185547" y="406.43914794921875
" yaw="-30.197683334350586" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-41.47032928466797" y="367.6764221191406"
yaw="-46.86736297607422" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="16.131141662597656" y="233.97682189941406
" yaw="-86.51721954345703" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="15.703251838684082" y="57.05411911010742"
yaw="-90.28913116455078" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="15.309857368469238" y="-32.79617691040039
" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="14.847967147827148" y="-150.4875030517578
" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="27.290651321411133" y="
-170.50123596191406" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="112.77010345458984" y="
-170.01467895507812" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="144.0137481689453" y="-169.85960388183594
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="187.89918518066406" y="-169.5870361328125
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="211.6175079345703" y="-169.45204162597656
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="243.9209442138672" y="-169.26815795898438
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="268.7220153808594" y="-169.1269989013672"
yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="300.8354187011719" y="-168.9442138671875"
yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="323.29046630859375" y="
-168.81639099121094" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="338.3078918457031" y="-168.7309112548828"
yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="351.9974060058594" y="-179.7596435546875"
yaw="-89.22856140136719" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="352.63641357421875" y="-229.4485626220703
" yaw="-91.26260375976562" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="340.038818359375" y="-250.28768920898438"
yaw="-178.60302734375" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="324.9431457519531" y="-250.18927001953125
" yaw="179.60549926757812" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="302.8276672363281" y="-250.03700256347656
" yaw="179.60549926757812" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="268.8157043457031" y="-249.8028106689453"
yaw="179.60549926757812" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="244.80979919433594" y="
-249.63751220703125" yaw="179.60549926757812" z="0.00433349609375" />

80 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

<waypoint pitch="0.0" roll="0.0" x="216.93577575683594" y="-249.4456024169922
" yaw="179.60549926757812" z="0.00433349609375" />

<waypoint pitch="360.0" roll="0.0" x="204.1916961669922" y="
-261.2143249511719" yaw="271.3144226074219" z="0.01959228515625" />

<waypoint pitch="360.0" roll="0.0" x="204.96435546875" y="-294.8885192871094"
yaw="271.3144226074219" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="215.9167938232422" y="-307.83258056640625
" yaw="0.5897840261459351" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="245.5916748046875" y="-307.527099609375"
yaw="0.5897840261459351" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="268.7578125" y="-307.28863525390625" yaw=
"0.5897840261459351" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="306.52886962890625" y="-290.6662292480469
" yaw="65.18749237060547" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="311.8023986816406" y="-260.4535827636719"
yaw="90.51094055175781" z="0.0043487548828125" />

</route>
<route id="32" town="Town04">

<waypoint pitch="360.0" roll="0.0" x="269.0704650878906" y="
-246.3044891357422" yaw="359.6054992675781" z="0.00433349609375" />

<waypoint pitch="360.0" roll="0.0" x="300.98529052734375" y="
-246.5242462158203" yaw="359.6054992675781" z="0.00433349609375" />

<waypoint pitch="360.0" roll="0.0" x="315.2895812988281" y="
-258.9996643066406" yaw="270.51092529296875" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="312.9399719238281" y="
-283.4756164550781" yaw="253.852294921875" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="287.4882507324219" y="
-310.2721862792969" yaw="189.25515747070312" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="266.4151306152344" y="
-310.81292724609375" yaw="180.58978271484375" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="230.984619140625" y="
-310.99237060546875" yaw="180.58978271484375" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="258.725967845524" y="-280.241984548755"
yaw="90.0648851519824" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="201.725967845524" y="-280.241984548755"
yaw="-90.0648851519824" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="230.984619140625" y="-246.0105660541485
" yaw="0.02145987658843" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="258.725967845524" y="-280.241984548755"
yaw="90.0648851519824" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="230.984619140625" y="
-310.99237060546875" yaw="180.58978271484375" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="214.57583618164062" y="
-311.3465576171875" yaw="180.58978271484375" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="191.778076171875" y="-311.1783142089844"
yaw="-179.8567352294922" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="160.05184936523438" y="-311.2235412597656
" yaw="-181.35772705078125" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="127.77545928955078" y="-305.0201721191406
" yaw="-200.40090942382812" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="96.31536102294922" y="-286.0783996582031"
yaw="-221.70245361328125" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="77.39625549316406" y="-263.79034423828125
" yaw="-237.07952880859375" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="63.925846099853516" y="
-234.94784545898438" yaw="-252.85215759277344" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="58.790828704833984" y="
-202.98590087890625" yaw="-268.8935241699219" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="58.69148254394531" y="-188.51019287109375
" yaw="90.35357666015625" z="0.033660888671875" />

Chapter A: Additional Material 81

<waypoint pitch="0.0" roll="0.0" x="71.52420043945312" y="-170.24945068359375
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="112.69795989990234" y="-170.0150909423828
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="131.4148712158203" y="
-185.9712371826172" yaw="272.4569396972656" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="137.35049438476562" y="
-211.70291137695312" yaw="-63.98918151855469" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="151.6375732421875" y="
-230.22340393066406" yaw="-40.845550537109375" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="182.2176513671875" y="
-244.37359619140625" yaw="-8.816879272460938" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="191.0310516357422" y="
-245.1036834716797" yaw="358.4046936035156" z="0.0386962890625" />

<waypoint pitch="0.0" roll="0.0" x="200.0151824951172" y="-231.7708740234375"
yaw="91.3144302368164" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="198.86997985839844" y="-181.860595703125"
yaw="91.3144302368164" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="211.7692108154297" y="-169.451171875" yaw
="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="245.3657989501953" y="-169.2599334716797"
yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="268.75653076171875" y="
-169.12680053710938" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="301.767822265625" y="-168.93890380859375"
yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="324.3397216796875" y="-168.81040954589844
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="340.23541259765625" y="
-168.71994018554688" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="357.42059326171875" y="-168.6221160888672
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="368.80682373046875" y="
-168.55731201171875" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="381.82220458984375" y="
-153.25997924804688" yaw="90.59859466552734" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="381.6919860839844" y="-140.7970428466797"
yaw="90.59859466552734" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="384.9174499511719" y="-114.50049591064453
" yaw="90.59859466552734" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="384.2105712890625" y="-34.1280632019043"
yaw="90.43910217285156" z="0.0" />

<waypoint pitch="0.3238201141357422" roll="0.0" x="361.8473815917969" y="
5.333199977874756" yaw="149.4435272216797" z="0.03513186052441597" />

<waypoint pitch="1.9857581853866577" roll="0.0" x="307.6686096191406" y="
10.060099601745605" yaw="-179.02207946777344" z="1.3211320638656616" />

<waypoint pitch="3.3505096435546875" roll="0.0" x="255.2800750732422" y="
9.165844917297363" yaw="-179.02207946777344" z="3.7611031532287598" />

<waypoint pitch="2.8235442638397217" roll="0.0" x="182.79576110839844" y="
7.928563594818115" yaw="-179.02207946777344" z="7.966650009155273" />

<waypoint pitch="0.0" roll="0.0" x="49.19037628173828" y="6.282506942749023"
yaw="-179.76736450195312" z="11.0" />

<waypoint pitch="-0.5447480082511902" roll="0.0" x="-1.444108247756958" y="
6.076910018920898" yaw="-179.76736450195312" z="10.926908493041992" />

<waypoint pitch="-0.9749510884284973" roll="0.0" x="-63.26222229003906" y="
5.862168312072754" yaw="-179.9231719970703" z="9.915364265441895" />

<waypoint pitch="-2.9702091217041016" roll="0.0" x="-178.98451232910156" y="
5.70700740814209" yaw="-179.9231719970703" z="5.817442893981934" />

<waypoint pitch="-2.0595204830169678" roll="0.0" x="-263.76251220703125" y="
5.593338966369629" yaw="-179.9231719970703" z="1.7683030366897583" />

82 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

<waypoint pitch="-0.6504369378089905" roll="0.0" x="-331.0777587890625" y="
5.503083229064941" yaw="-179.9231719970703" z="0.1763741374015808" />

<waypoint pitch="0.0" roll="0.0" x="-432.02093505859375" y="6.334071159362793
" yaw="-185.31605529785156" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-493.97271728515625" y="39.71971893310547
" yaw="-231.3241424560547" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-513.587158203125" y="91.11449432373047"
yaw="-266.8977966308594" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-513.947265625" y="132.26893615722656"
yaw="90.3575210571289" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-514.2728271484375" y="184.4401397705078"
yaw="90.3575210571289" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-515.2552490234375" y="238.67782592773438
" yaw="89.86629486083984" z="0.0" />

</route>
<route id="33" town="Town04">

<waypoint pitch="0.0" roll="0.0" x="-63.0432243347168" y="387.7452697753906"
yaw="-38.99549102783203" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-32.63063049316406" y="357.6307678222656"
yaw="-50.440120697021484" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="10.684922218322754" y="270.6761169433594"
yaw="-76.6004638671875" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="16.52663803100586" y="220.31808471679688"
yaw="-90.16564178466797" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="16.234933853149414" y="162.4143524169922"
yaw="-90.28913116455078" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="15.550390243530273" y="26.762535095214844
" yaw="-90.28913116455078" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="15.254679679870605" y="
-46.855560302734375" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="361.47802734375" roll="0.0" x="67.48360443115234" y="
-103.71863555908203" yaw="358.3492431640625" z="0.2963566184043884" />

<waypoint pitch="363.54254150390625" roll="0.0" x="97.12774658203125" y="
-100.31896209716797" yaw="20.55169677734375" z="1.7024706602096558" />

<waypoint pitch="365.3463134765625" roll="0.0" x="118.11686706542969" y="
-86.13691711425781" yaw="47.54095458984375" z="3.877535581588745" />

<waypoint pitch="365.0263366699219" roll="0.0" x="131.61622619628906" y="
-58.393516540527344" yaw="80.56587982177734" z="7.1716814041137695" />

<waypoint pitch="363.0312805175781" roll="0.0" x="128.23634338378906" y="
-28.46866798400879" yaw="112.11688995361328" z="9.519408226013184" />

<waypoint pitch="-0.44407668709754944" roll="0.0" x="1.3972853422164917" y="
6.088447570800781" yaw="-179.76736450195312" z="10.951427459716797" />

<waypoint pitch="-0.9741529822349548" roll="0.0" x="-65.08020782470703" y="
5.8597307205200195" yaw="-179.9231719970703" z="9.884441375732422" />

<waypoint pitch="359.7007141113281" roll="0.0" x="-106.3203125" y="
-9.66769027709961" yaw="226.91018676757812" z="9.322182655334473" />

<waypoint pitch="357.0876159667969" roll="0.0" x="-119.02806854248047" y="
-36.12523651123047" yaw="261.7791748046875" z="8.397171974182129" />

<waypoint pitch="356.02716064453125" roll="0.0" x="-111.6511459350586" y="
-72.12218475341797" yaw="-59.072662353515625" z="5.675800323486328" />

<waypoint pitch="356.02716064453125" roll="0.0" x="-72.83853912353516" y="
-98.28777313232422" yaw="-8.899246215820312" z="2.005282402038574" />

<waypoint pitch="359.74945068359375" roll="0.0" x="-35.542240142822266" y="
-89.2466049194336" yaw="36.93992614746094" z="0.0046467469073832035" />

<waypoint pitch="360.0" roll="0.0" x="-16.205305099487305" y="
-36.5977668762207" yaw="89.77513885498047" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="-16.017396926879883" y="
11.281970977783203" yaw="89.77513885498047" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="-15.820234298706055" y="
52.47965621948242" yaw="89.71086883544922" z="0.0" />

Chapter A: Additional Material 83

<waypoint pitch="361.2682800292969" roll="0.0" x="-60.99004364013672" y="
144.97706604003906" yaw="172.96588134765625" z="0.3752487599849701" />

<waypoint pitch="364.0442199707031" roll="0.0" x="-118.65277862548828" y="
117.16047668457031" yaw="240.92144775390625" z="3.8155317306518555" />

<waypoint pitch="364.77117919921875" roll="0.0" x="-125.39179992675781" y="
87.23468017578125" yaw="273.736083984375" z="6.545107841491699" />

<waypoint pitch="360.97479248046875" roll="0.0" x="-63.682159423828125" y="
37.36163330078125" yaw="0.0768280029296875" z="9.908937454223633" />

<waypoint pitch="0.0" roll="0.0" x="15.606971740722656" y="37.97494888305664"
yaw="-90.28913116455078" z="11.0" />

<waypoint pitch="357.4396057128906" roll="0.0" x="170.7868194580078" y="
39.22816467285156" yaw="0.9779205322265625" z="8.505694389343262" />

<waypoint pitch="357.51171875" roll="0.0" x="287.8409423828125" y="
41.22623825073242" yaw="0.9779205322265625" z="2.074390411376953" />

<waypoint pitch="359.01605224609375" roll="0.0" x="346.86383056640625" y="
42.00389099121094" yaw="356.32611083984375" z="0.32436490058898926" />

<waypoint pitch="360.0" roll="0.0" x="412.2002258300781" y="
-32.668495178222656" yaw="270.4390869140625" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="412.56622314453125" y="
-80.42717742919922" yaw="270.4390869140625" z="0.0" />

</route>
<route id="34" town="Town04">

<waypoint pitch="360.0" roll="0.0" x="92.20408630371094" y="
-382.9563903808594" yaw="157.67535400390625" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="44.082176208496094" y="
-353.39971923828125" yaw="139.20782470703125" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="28.456111907958984" y="
-338.1231384277344" yaw="132.0880584716797" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-28.244382858276367" y="
-247.3603057861328" yaw="123.9988021850586" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-97.86443328857422" y="-167.5721893310547
" yaw="139.3140869140625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-139.92556762695312" y="
-132.6236572265625" yaw="148.55484008789062" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-197.8251953125" y="-102.70037841796875"
yaw="158.62039184570312" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-234.66213989257812" y="
-91.12406158447266" yaw="166.48809814453125" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-279.4051818847656" y="-84.12016296386719
" yaw="175.71859741210938" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-309.8734130859375" y="-82.607666015625"
yaw="-187.45741271972656" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-352.29095458984375" y="
-63.83389663696289" yaw="-220.2904052734375" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-379.75689697265625" y="
-17.014066696166992" yaw="-258.9152526855469" z="0.0" />

<waypoint pitch="360.1035461425781" roll="0.0" x="-357.1685791015625" y="
30.017763137817383" yaw="359.631591796875" z="0.004470161162316799" />

<waypoint pitch="361.1860656738281" roll="0.0" x="-305.5273132324219" y="
33.53736877441406" yaw="0.0768280029296875" z="0.5864595770835876" />

<waypoint pitch="362.97021484375" roll="0.0" x="-204.52964782714844" y="
33.67278289794922" yaw="0.0768280029296875" z="4.4951276779174805" />

<waypoint pitch="361.34271240234375" roll="0.0" x="-127.03149852145" y="
37.30177307128906" yaw="0.0768280029296875" z="9.137267112731934" />

<waypoint pitch="360.9741516113281" roll="0.0" x="-65.13790893554688" y="
37.35968017578125" yaw="0.0768280029296875" z="9.88417911529541" />

<waypoint pitch="357.6973571777344" roll="0.0" x="120.90387725830078" y="
61.45814514160156" yaw="56.92566680908203" z="9.838208198547363" />

<waypoint pitch="355.5294494628906" roll="0.0" x="126.76893615722656" y="
106.36044311523438" yaw="107.34747314453125" z="6.799232482910156" />

84 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

<waypoint pitch="355.8213806152344" roll="0.0" x="97.20584106445312" y="
140.24691772460938" yaw="154.8564453125" z="2.48572039604187" />

<waypoint pitch="357.9312438964844" roll="0.0" x="66.20530700683594" y="
145.62423706054688" yaw="183.5865936279297" z="0.6092644333839417" />

<waypoint pitch="0.0" roll="0.0" x="15.716876029968262" y="59.7540283203125"
yaw="-90.28913116455078" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="15.451249122619629" y="3.2311558723449707
" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="14.921006202697754" y="
-131.87681579589844" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="14.814301490783691" y="-159.0655059814453
" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="25.810285568237305" y="
-170.50965881347656" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="115.74958038330078" y="
-169.99771118164062" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="145.0629119873047" y="-169.86502075195312
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="187.36929321289062" y="
-169.59005737304688" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="211.6328582763672" y="-169.4519500732422"
yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="243.6725616455078" y="-169.2695770263672"
yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="254.8811492919922" y="
-154.82557678222656" yaw="90.17674255371094" z="0.01958465576171875" />

<waypoint pitch="360.0" roll="0.0" x="254.80921936035156" y="
-131.50787353515625" yaw="90.17674255371094" z="0.01958465576171875" />

<waypoint pitch="0.0" roll="0.0" x="271.760498046875" y="-118.60427856445312"
yaw="0.9240430593490601" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="299.6679382324219" y="-118.15415954589844
" yaw="0.9240430593490601" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="310.4628601074219" y="-110.24256896972656
" yaw="90.51094055175781" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="310.24847412109375" y="-86.20258331298828
" yaw="90.51094055175781" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="330.2210693359375" y="-64.07766723632812"
yaw="0.9061377644538879" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="364.35577392578125" y="-65.0423355102539"
yaw="-0.7268505692481995" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="380.8219909667969" y="-48.67954635620117"
yaw="90.43910217285156" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="380.6858825683594" y="-30.922266006469727
" yaw="90.43910217285156" z="0.0" />

<waypoint pitch="0.5015116930007935" roll="0.0" x="357.5417785644531" y="
7.521181106567383" yaw="156.6797637939453" z="0.08426664024591446" />

<waypoint pitch="1.3669906854629517" roll="0.0" x="331.4211730957031" y="
10.465546607971191" yaw="-179.02207946777344" z="0.6260725855827332" />

</route>
<route id="35" town="Town04">

<waypoint pitch="3.307222366333008" roll="0.0" x="203.8810272216797" y="
8.288481712341309" yaw="-179.02207946777344" z="6.838401794433594" />

<waypoint pitch="2.4017601013183594" roll="0.0" x="164.40867614746094" y="
7.61470365524292" yaw="-179.02207946777344" z="8.805212020874023" />

<waypoint pitch="1.288453459739685" roll="0.0" x="115.87562561035156" y="
6.786262035369873" yaw="-179.02207946777344" z="10.368358612060547" />

<waypoint pitch="0.0" roll="0.0" x="17.27475929260254" y="6.152915954589844"
yaw="-179.76736450195312" z="11.0" />

<waypoint pitch="-0.9736899137496948" roll="0.0" x="-66.13497161865234" y="
5.8583173751831055" yaw="-179.9231719970703" z="9.8665132522583" />

Chapter A: Additional Material 85

<waypoint pitch="357.8592834472656" roll="0.0" x="-116.99535369873047" y="
-27.572500228881836" yaw="251.48211669921875" z="8.826952934265137" />

<waypoint pitch="356.02716064453125" roll="0.0" x="-118.04573822021484" y="
-56.33713912963867" yaw="-76.82113647460938" z="6.974219799041748" />

<waypoint pitch="356.02716064453125" roll="0.0" x="-86.76951599121094" y="
-94.17179870605469" yaw="-24.02081298828125" z="3.111525058746338" />

<waypoint pitch="356.1885681152344" roll="0.0" x="-60.678245544433594" y="
-98.7884521484375" yaw="4.63446044921875" z="1.075364112854004" />

<waypoint pitch="360.0" roll="0.0" x="-16.0787410736084" y="
-4.348906517028809" yaw="89.77513885498047" z="0.0" />

<waypoint pitch="360.45977783203125" roll="0.0" x="-42.43091583251953" y="
138.98097229003906" yaw="151.22486877441406" z="0.04931524023413658" />

<waypoint pitch="361.35125732421875" roll="0.0" x="-62.9927864074707" y="
145.18467712402344" yaw="175.197021484375" z="0.42595288157463074" />

<waypoint pitch="363.2038879394531" roll="0.0" x="-105.59686279296875" y="
132.7899627685547" yaw="219.33187866210938" z="2.394624948501587" />

<waypoint pitch="364.825439453125" roll="0.0" x="-125.36922454833984" y="
94.58512878417969" yaw="265.9417419433594" z="5.865746021270752" />

<waypoint pitch="361.6607971191406" roll="0.0" x="-111.92537689208984" y="
55.14680480957031" yaw="311.796875" z="8.730497360229492" />

<waypoint pitch="360.97528076171875" roll="0.0" x="-62.548316955566406" y="
37.363155364990234" yaw="0.0768280029296875" z="9.92823314666748" />

<waypoint pitch="360.0" roll="0.0" x="14.9048433303833" y="37.643550872802734
" yaw="0.232635498046875" z="11.0" />

<waypoint pitch="358.1361999511719" roll="0.0" x="115.05550384521484" y="
54.051361083984375" yaw="46.485382080078125" z="10.216599464416504" />

<waypoint pitch="356.49639892578125" roll="0.0" x="129.1477508544922" y="
85.6916732788086" yaw="85.49930572509766" z="8.395012855529785" />

<waypoint pitch="354.87432861328125" roll="0.0" x="113.65818786621094" y="
128.47520446777344" yaw="133.9757843017578" z="4.349025249481201" />

<waypoint pitch="357.5226745605469" roll="0.0" x="72.28358459472656" y="
145.66053771972656" yaw="177.21603393554688" z="0.8736939430236816" />

<waypoint pitch="359.6270446777344" roll="0.0" x="42.331844329833984" y="
138.30975341796875" yaw="210.4820556640625" z="0.019801577553153038" />

<waypoint pitch="0.0" roll="0.0" x="15.397431373596191" y="
-10.481854438781738" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="14.942656517028809" y="
-126.36024475097656" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="14.825342178344727" y="
-156.25233459472656" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="27.33547019958496" y="-170.5009765625"
yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="95.40255737304688" y="-170.24444580078125
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="144.3073637005684" y="-222.2315674215825"
yaw="-45.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="204.7617985159424" y="-276.6031597621564"
yaw="-90.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="187.361479254546" y="-310.924575364244275
" yaw="-180.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="58.93156874521454" y="
-310.924575364244275" yaw="-180.3261248767375946" z="0.195892333984375" /
>

<waypoint pitch="0.0" roll="0.0" x="95.40255737304688" y="-170.24444580078125
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="113.82496643066406" y="-170.0086669921875
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="138.85244750976562" y="-169.8662109375"
yaw="0.3261248767375946" z="0.195892333984375" />

86 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

<waypoint pitch="0.0" roll="0.0" x="187.37423706054688" y="
-169.59002685546875" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="210.88375854492188" y="
-169.45620727539062" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="243.1909942626953" y="-169.27232360839844
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="271.02838134765625" y="
-169.11387634277344" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="299.91827392578125" y="
-168.94943237304688" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="339.91497802734375" y="
-168.81283569335938" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="328.2840576171875" y="
-121.1314568559897" yaw="180.44322204589844" z="0.004344940185546875" />

<waypoint pitch="360.0" roll="0.0" x="314.561482117812" y="-143.754693469346"
yaw="-90.269681378458341" z="0.004344940185546875" />

<waypoint pitch="360.0" roll="0.0" x="331.01798362149" y="-246.731653219784"
yaw="0.17484318769354348" z="0.004344940185546875" />

<waypoint pitch="360.0" roll="0.0" x="328.2840576171875" y="
-180.2013702392578" yaw="242.44322204589844" z="0.004344940185546875" />

</route>
<route id="36" town="Town04">

<waypoint pitch="0.0" roll="0.0" x="14.701272964477539" y="
-187.86557006835938" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="14.630420684814453" y="
-224.15390014648438" yaw="271.5786437988281" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="31.320476531982422" y="
-287.68646240234375" yaw="-62.1405029296875" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="65.48259735107422" y="-330.2546081542969"
yaw="-40.3635139465332" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="102.10064697265625" y="
-352.94903564453125" yaw="-23.2144775390625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="140.73130798339844" y="-363.4803466796875
" yaw="-7.283715724945068" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="176.6475372314453" y="-364.4976806640625"
yaw="0.5013986825942993" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="190.8989715576172" y="-364.38360595703125
" yaw="0.4299219846725464" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="202.90049743652344" y="-350.5193786621094
" yaw="91.3144302368164" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="202.1409149169922" y="-324.4151916503906"
yaw="91.3144302368164" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="191.3997802734375" y="-311.17926025390625
" yaw="-179.8567352294922" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="164.50732421875" y="-311.24652099609375"
yaw="-179.8567352294922" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="137.1165771484375" y="-307.9787292480469"
yaw="-194.74749755859375" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="116.63600158691406" y="
-300.07989501953125" yaw="-207.43331909179688" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="92.745849609375" y="-282.73663330078125"
yaw="-224.52279663085938" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="74.62584686279297" y="-259.2897644042969"
yaw="-239.69004821777344" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="62.53457260131836" y="-230.06149291992188
" yaw="-255.3617401123047" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="58.682777404785156" y="
-187.09957885742188" yaw="90.35357666015625" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="78.54766082763672" y="-170.2493133544922"
yaw="0.3261248767375946" z="0.195892333984375" />

Chapter A: Additional Material 87

<waypoint pitch="0.0" roll="0.0" x="111.11359405517578" y="
-170.02410888671875" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="131.49044799804688" y="
-187.73252868652344" yaw="272.4569396972656" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="133.5595703125" y="-201.670654296875"
yaw="-74.61013793945312" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="140.02346801757812" y="
-216.57327270507812" yaw="-58.49299621582031" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="151.96360778808594" y="
-230.5032958984375" yaw="-40.44239807128906" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="180.46920776367188" y="
-244.0763397216797" yaw="-10.48089599609375" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="190.38192749023438" y="
-245.08560180664062" yaw="358.4046936035156" z="0.0386962890625" />

<waypoint pitch="0.0" roll="0.0" x="200.07064819335938" y="
-234.18809509277344" yaw="91.3144302368164" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="198.90110778808594" y="
-183.21690368652344" yaw="91.3144302368164" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="198.4252166748047" y="-160.47689819335938
" yaw="91.3144302368164" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="214.66400146484375" y="
-125.70246124267578" yaw="36.59318161010742" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="231.2375946044922" y="-119.35476684570312
" yaw="5.320570468902588" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="245.8983917236328" y="-119.02140808105469
" yaw="0.9240430593490601" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="258.3119201660156" y="-132.37623596191406
" yaw="-89.82325744628906" z="0.01958465576171875" />

<waypoint pitch="0.0" roll="0.0" x="258.39239501953125" y="
-158.46783447265625" yaw="-89.82325744628906" z="0.01958465576171875" />

<waypoint pitch="0.0" roll="0.0" x="258.46453857421875" y="
-181.85963439941406" yaw="-89.82325744628906" z="0.01958465576171875" />

<waypoint pitch="0.0" roll="0.0" x="258.6319580078125" y="-236.132568359375"
yaw="-89.82325744628906" z="0.01958465576171875" />

<waypoint pitch="0.0" roll="0.0" x="258.70123291015625" y="-258.5882263183594
" yaw="-89.82325744628906" z="0.01958465576171875" />

<waypoint pitch="0.0" roll="0.0" x="258.8244323730469" y="-298.52032470703125
" yaw="-89.82325744628906" z="0.01958465576171875" />

<waypoint pitch="0.0" roll="0.0" x="267.0066223144531" y="-307.306640625" yaw
="0.5897840261459351" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="282.8596496582031" y="-307.1434631347656"
yaw="0.5897840261459351" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="301.0977783203125" y="-299.2485656738281"
yaw="46.956443786621094" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="308.9264831542969" y="-284.6018371582031"
yaw="71.66845703125" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="311.7925720214844" y="-259.35113525390625
" yaw="90.51094055175781" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="311.5842590332031" y="-235.9899139404297"
yaw="90.51094055175781" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="311.1050720214844" y="-182.2567596435547"
yaw="90.51094055175781" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="310.90240478515625" y="
-159.53497314453125" yaw="90.51094055175781" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="310.64276123046875" y="
-130.41705322265625" yaw="90.51094055175781" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="325.8652038574219" y="-117.73162078857422
" yaw="0.9240430593490601" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="336.6689147949219" y="-117.63641357421875
" yaw="-4.299356460571289" z="0.01959228515625" />

88 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

<waypoint pitch="-0.07674998790025711" roll="0.0" x="351.3386535644531" y="
-130.84422302246094" yaw="-88.98917388916016" z="0.007313055917620659" />

<waypoint pitch="0.0" roll="0.0" x="351.7012634277344" y="-157.76431274414062
" yaw="-89.22856140136719" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="352.003173828125" y="-180.1864471435547"
yaw="-89.22856140136719" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="352.1387634277344" y="-235.35081481933594
" yaw="-98.3767318725586" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="342.57342529296875" y="-249.9364471435547
" yaw="-165.61737060546875" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="324.3822021484375" y="-250.18540954589844
" yaw="179.60549926757812" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="302.6083984375" y="-250.03549194335938"
yaw="179.60549926757812" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="268.7098388671875" y="-249.8020782470703"
yaw="179.60549926757812" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="245.00079345703125" y="-249.6388397216797
" yaw="179.60549926757812" z="0.00433349609375" />

<waypoint pitch="0.0" roll="0.0" x="214.6555633544922" y="-249.42990112304688
" yaw="179.60549926757812" z="0.00433349609375" />

<waypoint pitch="360.0" roll="0.0" x="204.12197875976562" y="
-258.1758117675781" yaw="271.3144226074219" z="0.01959228515625" />

<waypoint pitch="360.0" roll="0.0" x="205.01510620117188" y="
-297.1004333496094" yaw="271.3144226074219" z="0.01959228515625" />

<waypoint pitch="360.0" roll="0.0" x="205.64422607421875" y="
-324.51934814453125" yaw="271.3144226074219" z="0.01959228515625" />

<waypoint pitch="360.0" roll="0.0" x="206.39923095703125" y="
-350.42425537109375" yaw="271.3144226074219" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="230.66529846191406" y="-364.1372985839844
" yaw="-0.29530856013298035" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="260.695556640625" y="-363.8970031738281"
yaw="4.1477370262146" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="287.33489990234375" y="-359.1738586425781
" yaw="15.96041202545166" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="313.7850036621094" y="-348.3807067871094"
yaw="28.436067581176758" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="342.71429443359375" y="-327.1446533203125
" yaw="44.12626647949219" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="364.6312561035156" y="-299.2043762207031"
yaw="59.65094757080078" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="375.8125" y="-274.61480712890625" yaw="
71.44500732421875" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="382.434814453125" y="-240.22972106933594"
yaw="86.75253295898438" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="385.9430236816406" y="-212.6571502685547"
yaw="90.59859466552734" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="385.6279296875" y="-182.50074768066406"
yaw="90.59859466552734" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="385.1250305175781" y="-134.36874389648438
" yaw="90.59859466552734" z="0.0" />

</route>
<route id="37" town="Town04">

<waypoint pitch="360.0" roll="0.0" x="220.9058380126953" y="
-395.6593017578125" yaw="180.42991638183594" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="159.40386962890625" y="
-396.1457824707031" yaw="180.11590576171875" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="137.2083282470703" y="-394.78564453125"
yaw="172.87075805664062" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="104.40274810791016" y="
-387.4465637207031" yaw="161.90866088867188" z="0.0" />

Chapter A: Additional Material 89

<waypoint pitch="360.0" roll="0.0" x="79.4221420288086" y="-377.1005554199219
" yaw="153.096435546875" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="43.836021423339844" y="
-353.1868896484375" yaw="139.1018829345703" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="24.01766014099121" y="
-333.01483154296875" yaw="129.88455200195312" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="-16.338682556152344" y="
-224.6736053466797" yaw="456.06732177734375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="-16.847301483154297" y="
-200.18057250976562" yaw="89.77513885498047" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="-16.218891143798828" y="
-40.059322357177734" yaw="89.77513885498047" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="-15.852235794067383" y="
46.137962341308594" yaw="89.71086883544922" z="0.0" />

<waypoint pitch="360.98297119140625" roll="0.0" x="-54.19522476196289" y="
143.67225646972656" yaw="165.29368591308594" z="0.2254064530134201" />

<waypoint pitch="362.3365783691406" roll="0.0" x="-87.07882690429688" y="
142.7154083251953" yaw="197.0497283935547" z="1.2736387252807617" />

<waypoint pitch="363.457763671875" roll="0.0" x="-110.15067291259766" y="
128.603515625" yaw="225.85433959960938" z="2.7891640663146973" />

<waypoint pitch="364.16278076171875" roll="0.0" x="-119.98950958251953" y="
114.59873962402344" yaw="243.9669647216797" z="4.0424885749816895" />

<waypoint pitch="364.1700744628906" roll="0.0" x="-124.50845336914062" y="
80.44613647460938" yaw="281.0916748046875" z="7.1322197914123535" />

<waypoint pitch="360.9730224609375" roll="0.0" x="-67.70280456542969" y="
37.35624313354492" yaw="0.0768280029296875" z="9.840595245361328" />

<waypoint pitch="360.5543212890625" roll="0.0" x="-1.8418172597885132" y="
37.57555389404297" yaw="0.232635498046875" z="10.924320220947266" />

<waypoint pitch="355.69207763671875" roll="0.0" x="127.71321868896484" y="
102.9642333984375" yaw="103.72856140136719" z="7.094720840454102" />

<waypoint pitch="354.87432861328125" roll="0.0" x="109.84391021728516" y="
132.0736083984375" yaw="139.3603057861328" z="3.835606098175049" />

<waypoint pitch="357.2054138183594" roll="0.0" x="77.34449005126953" y="
145.40267944335938" yaw="176.0394744873047" z="1.111791968345642" />

<waypoint pitch="359.8039245605469" roll="0.0" x="40.10015869140625" y="
136.9214630126953" yaw="213.28746032714844" z="0.0054727462120354176" />

<waypoint pitch="0.0" roll="0.0" x="15.446653366088867" y="2.0601918697357178
" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="15.27511978149414" y="-41.64741516113281"
yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="11.423349380493164" y="
-131.27297973632812" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="11.226259231567383" y="
-187.49221801757812" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="11.076330184936523" y="
-220.64308166503906" yaw="270.18170166015625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="38.74594497680664" y="-300.171875" yaw="
-56.37700271606445" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="84.09489440917969" y="-343.6820983886719"
yaw="-31.25214958190918" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="124.4841079711914" y="-360.4506530761719"
yaw="-13.841785430908203" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="152.728759765625" y="-364.50787353515625"
yaw="-2.5068819522857666" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="187.6028594970703" y="-364.4083251953125"
yaw="0.4299219846725464" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="202.83053588867188" y="-352.47021484375"
yaw="91.3144302368164" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="202.17324829101562" y="-325.8245849609375
" yaw="91.3144302368164" z="0.01959228515625" />

90 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

<waypoint pitch="0.0" roll="0.0" x="200.6520233154297" y="-259.5257873535156"
yaw="91.3144302368164" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="200.14462280273438" y="-237.4120635986328
" yaw="91.3144302368164" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="198.89111328125" y="-182.7812042236328"
yaw="91.3144302368164" z="0.01959228515625" />

<waypoint pitch="0.0" roll="0.0" x="212.9224090576172" y="-169.44461059570312
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="244.10043334960938" y="-169.2671356201172
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="269.11859130859375" y="
-169.12474060058594" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="300.999267578125" y="-168.9432830810547"
yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="340.3591613769531" y="-168.71923828125"
yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="357.4131774902344" y="-168.62216186523438
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="368.7809753417969" y="-168.55746459960938
" yaw="0.3261248767375946" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="381.7611389160156" y="-147.41366577148438
" yaw="90.59859466552734" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="381.3944396972656" y="-112.31800842285156
" yaw="90.59859466552734" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="381.0716247558594" y="-81.25092315673828"
yaw="-269.5501708984375" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="349.1683349609375" y="
-68.27950286865234" yaw="178.3131103515625" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="332.59405517578125" y="
-67.64382934570312" yaw="177.70645141601562" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="315.1619567871094" y="
-77.60230255126953" yaw="246.20465087890625" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="313.9056701660156" y="
-103.81141662597656" yaw="270.51092529296875" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="314.1311340332031" y="
-133.0957489013672" yaw="270.51092529296875" z="0.0043487548828125" />

</route>
<route id="38" town="Town04">

<waypoint pitch="360.0" roll="0.0" x="64.83004760742188" y="
-224.6131134033203" yaw="-77.751708984375" z="0.033660888671875" />

<waypoint pitch="360.0" roll="0.0" x="71.2993392944336" y="-244.9078826904297
" yaw="-66.88722229003906" z="0.033660888671875" />

<waypoint pitch="360.0" roll="0.0" x="82.44536590576172" y="
-265.03167724609375" yaw="-55.15098571777344" z="0.033660888671875" />

<waypoint pitch="360.0" roll="0.0" x="96.07714080810547" y="
-281.0929260253906" yaw="-43.79193115234375" z="0.033660888671875" />

<waypoint pitch="360.0" roll="0.0" x="117.77859497070312" y="
-296.72784423828125" yaw="-27.750274658203125" z="0.033660888671875" />

<waypoint pitch="360.0" roll="0.0" x="133.2962646484375" y="
-303.2240295410156" yaw="-17.680862426757812" z="0.033660888671875" />

<waypoint pitch="360.0" roll="0.0" x="153.1439666748047" y="
-307.3028869628906" yaw="-5.5453338623046875" z="0.033660888671875" />

<waypoint pitch="360.0" roll="0.0" x="170.66632080078125" y="
-307.7311096191406" yaw="0.1432647705078125" z="0.033660888671875" />

<waypoint pitch="360.0" roll="0.0" x="190.39112854003906" y="
-307.6817626953125" yaw="0.1432647705078125" z="0.033660888671875" />

<waypoint pitch="0.0" roll="0.0" x="217.03329467773438" y="-307.8210754394531
" yaw="0.5897840261459351" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="245.18458557128906" y="-307.5003967285156
" yaw="0.5897840261459351" z="0.0043487548828125" />

Chapter A: Additional Material 91

<waypoint pitch="0.0" roll="0.0" x="268.8760681152344" y="-307.28741455078125
" yaw="0.5897840261459351" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="285.8556213378906" y="-306.9682922363281"
yaw="6.765690326690674" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="303.4971008300781" y="-296.243896484375"
yaw="55.82583236694336" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="311.79425048828125" y="-259.5401916503906
" yaw="90.51094055175781" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="325.0581359863281" y="
-246.6899871826172" yaw="359.6054992675781" z="0.00433349609375" />

<waypoint pitch="360.0" roll="0.0" x="339.20684814453125" y="
-246.7873992919922" yaw="359.6054992675781" z="0.00433349609375" />

<waypoint pitch="360.0" roll="0.0" x="347.8764343261719" y="
-238.92654418945312" yaw="76.22891235351562" z="0.00433349609375" />

<waypoint pitch="360.0" roll="0.0" x="349.05889892578125" y="
-221.4833221435547" yaw="90.77143859863281" z="0.00433349609375" />

<waypoint pitch="360.0" roll="0.0" x="348.5255126953125" y="
-181.8705596923828" yaw="90.77143859863281" z="0.00433349609375" />

<waypoint pitch="360.0" roll="0.0" x="324.3228454589844" y="
-172.31056213378906" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="302.01007080078125" y="
-172.4375762939453" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="267.8661804199219" y="
-172.63192749023438" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="242.79788208007812" y="
-172.7746124267578" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="212.1085968017578" y="
-172.9492950439453" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="190.2705078125" y="-173.07359313964844"
yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="146.2179718017578" y="
-173.35848999023438" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="116.8371810913086" y="
-173.4915771484375" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="76.47642517089844" y="
-173.74407958984375" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="27.645009994506836" y="
-173.999267578125" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="14.69900894165039" y="-188.4425048828125"
yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="14.615015983581543" y="-209.8443145751953
" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="50.487098693847656" y="-320.7240905761719
" yaw="-47.19378662109375" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="83.29607391357422" y="-347.2858581542969"
yaw="-30.792631149291992" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="125.97801208496094" y="-364.4034729003906
" yaw="-12.913924217224121" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="163.1409912109375" y="-368.1159973144531"
yaw="0.5013986825942993" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="249.90109252929688" y="-367.7364501953125
" yaw="-0.29530856013298035" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="287.49481201171875" y="
-359.12799072265625" yaw="16.03290367126465" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="336.909423828125" y="-332.44757080078125"
yaw="40.69894790649414" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="374.4433898925781" y="-278.4915466308594"
yaw="69.65299987792969" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="382.3780517578125" y="-241.1703643798828"
yaw="86.34180450439453" z="0.0" />

92 A. S. Olsen: Adaptive General Reinforced Imitation in Autonomous Driving

<waypoint pitch="0.0" roll="0.0" x="382.4445495605469" y="-212.8241729736328"
yaw="90.59859466552734" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="382.1245422363281" y="-182.1951904296875"
yaw="90.59859466552734" z="0.0" />

<waypoint pitch="360.0" roll="0.0" x="368.3731689453125" y="
-172.0313720703125" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="359.9306640625" y="-172.10787963867188"
yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="339.1204833984375" y="
-172.2149658203125" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="325.8786315917969" y="
-172.3017120361328" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="0.0" roll="0.0" x="310.8879699707031" y="-157.91519165039062
" yaw="90.51094055175781" z="0.0043487548828125" />

<waypoint pitch="0.0" roll="0.0" x="310.6393737792969" y="-133.03883361816406
" yaw="90.51094055175781" z="0.0043487548828125" />

<waypoint pitch="360.0" roll="0.0" x="301.86016845703125" y="
-121.61925506591797" yaw="180.92404174804688" z="0.01959228515625" />

<waypoint pitch="360.0" roll="0.0" x="269.64727783203125" y="
-122.1388168334961" yaw="180.92404174804688" z="0.01959228515625" />

<waypoint pitch="360.0" roll="0.0" x="243.0809326171875" y="
-122.5027847290039" yaw="180.92404174804688" z="0.01959228515625" />

<waypoint pitch="360.0" roll="0.0" x="231.92315673828125" y="
-122.80830383300781" yaw="184.61492919921875" z="0.01959228515625" />

<waypoint pitch="360.0" roll="0.0" x="201.91207885742188" y="
-161.14862060546875" yaw="269.77020263671875" z="0.01959228515625" />

<waypoint pitch="360.0" roll="0.0" x="187.185791015625" y="
-173.09115600585938" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="141.87583923339844" y="
-173.34906005859375" yaw="180.3261260986328" z="0.195892333984375" />

<waypoint pitch="360.0" roll="0.0" x="131.3639678955078" y="
-184.7850341796875" yaw="272.4569396972656" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="137.26539611816406" y="
-211.52774047851562" yaw="-64.18177795410156" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="156.52223205566406" y="
-234.0313262939453" yaw="-35.032196044921875" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="190.98350524902344" y="
-245.10235595703125" yaw="358.4046936035156" z="0.0386962890625" />

<waypoint pitch="360.0" roll="0.0" x="214.16030883789062" y="
-245.92640686035156" yaw="359.6054992675781" z="0.00433349609375" />

<waypoint pitch="360.0" roll="0.0" x="243.9140167236328" y="
-246.1312713623047" yaw="359.6054992675781" z="0.00433349609375" />

<waypoint pitch="360.0" roll="0.0" x="271.29522705078125" y="
-246.2991485595703" yaw="359.6054992675781" z="0.00433349609375" />

</route>
<route id="39" town="Town04">

<waypoint pitch="0.0" roll="0.0" x="-257.4617919921875" y="-90.17411804199219
" yaw="171.1091766357422" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-296.2134704589844" y="-86.86602783203125
" yaw="179.0170135498047" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-351.7880859375" y="-68.75138092041016"
yaw="-217.90353393554688" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-381.4906005859375" y="
-24.760557174682617" yaw="-254.04220581054688" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-384.76947021484375" y="
-3.012847900390625" yaw="-268.8101501464844" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-398.76190185546875" y="5.784707546234131
" yaw="179.631591796875" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-430.2335205078125" y="6.185691833496094"
yaw="-184.1747283935547" z="0.0" />

Chapter A: Additional Material 93

<waypoint pitch="0.0" roll="0.0" x="-503.7024841308594" y="54.71406936645508"
yaw="-242.7170867919922" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-513.7704467773438" y="103.92790985107422
" yaw="90.3575210571289" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-515.2421875" y="242.3034210205078" yaw="
89.47163391113281" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-506.9309997558594" y="296.92578125" yaw=
"73.2252197265625" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-472.6380920410156" y="362.345458984375"
yaw="51.44786071777344" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-428.0704650878906" y="403.25244140625"
yaw="33.64748001098633" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-375.0228576660156" y="428.02935791015625
" yaw="16.424245834350586" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-332.56890869140625" y="435.5860290527344
" yaw="3.7612531185150146" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-292.7345886230469" y="435.9103088378906"
yaw="-0.2081967145204544" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-181.4010772705078" y="434.91448974609375
" yaw="-4.462084770202637" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-130.54518127441406" y="424.6565246582031
" yaw="-18.345731735229492" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-78.3988037109375" y="399.085693359375"
yaw="-33.8978271484375" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-33.48869705200195" y="358.66290283203125
" yaw="-50.08180618286133" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="15.592141151428223" y="240.9547119140625"
yaw="-84.6488037109375" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="16.422504425048828" y="199.58425903320312
" yaw="-90.28913116455078" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="15.254642486572266" y="-46.86491394042969
" yaw="-90.22486114501953" z="0.0" />

<waypoint pitch="362.50775146484375" roll="0.0" x="82.86859893798828" y="
-103.56114959716797" yaw="5.0680694580078125" z="0.8531252145767212" />

<waypoint pitch="365.38226318359375" roll="0.0" x="118.45911407470703" y="
-85.75933837890625" yaw="48.07890319824219" z="3.9298620223999023" />

<waypoint pitch="364.364990234375" roll="0.0" x="132.3380584716797" y="
-48.34086227416992" yaw="91.20783233642578" z="8.078770637512207" />

<waypoint pitch="361.8727111816406" roll="0.0" x="119.09281158447266" y="
-13.37026309967041" yaw="130.28089904785156" z="10.349198341369629" />

<waypoint pitch="0.0" roll="0.0" x="25.08895492553711" y="6.18464469909668"
yaw="-179.76736450195312" z="11.0" />

<waypoint pitch="-1.580212950706482" roll="0.0" x="-286.66015625" y="
5.562638282775879" yaw="-179.9231719970703" z="1.041011929512024" />

<waypoint pitch="-0.03770020976662636" roll="0.0" x="-360.4718933105469" y="
5.538497447967529" yaw="179.631591796875" z="0.0005925323348492384" />

<waypoint pitch="0.0" roll="0.0" x="-400.5914611816406" y="5.796472072601318"
yaw="179.631591796875" z="0.0" />

<waypoint pitch="0.0" roll="0.0" x="-435.8338623046875" y="6.7710137367248535
" yaw="-187.75843811035156" z="0.0" />

</route>
</routes>

Aleksander Scherm
an O

lsen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Aleksander Scherman Olsen

Adaptive General Reinforced
Imitation in Autonomous Driving

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
Co-supervisor: Gabriel Kiss
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Background and Motivation
	Goals and Research Questions
	Contributions
	Thesis Structure

	Background and Related Work
	Learning Agents
	Modular Learning vs End-to-End Learning
	Imitation Learning
	Reinforcement Learning
	Markov Decision Processes
	Reward Functions
	Designing Environment Reward Functions
	Policies
	On-Policy vs. Off-Policy
	Value Functions
	Tabular RL vs. Deep RL
	Policy Gradient Methods
	Value Based Methods
	Deep Q-Learning
	Deep Deterministic Policy Gradient
	Twin Delayed Deep Deterministic Policy Gradient

	Reinforcement Learning Libraries and Tools
	OpenAI Gym Environment
	Stable-Baselines3

	Simulated Environments for Autonomous Vehicles
	CARLA
	Alternatives to CARLA

	Related Work
	Learning by Cheating
	End-to-End Model-Free Reinforcement Learning for Urban Driving Using Implicit Affordances
	Learning to Drive From a World on Rails
	GRI: General Reinforced Imitation and its Application to Vision-Based Autonomous Driving
	Learning From All Vehicles

	Methodology
	Training the Autonomous Agent: Adaptive General Reinforced Imitation
	Underlying Assumption
	Episode Rollouts
	Updating the Probability for Expert Demonstrations

	Implementation and Technology
	Choice of Simulator
	OpenAI Gym Implementation
	Action Space
	Observation Space
	Reward Function Design
	Visual Encoder
	Policy Network
	Expert Data Collection

	Experiments
	Experiment 1a and 1b: Using AGRI with Value Based Methods and Policy Based Methods
	Experiment 2a and 2b: Augmenting the State Representation With a Kinematic Bicycle Model

	Results
	Visual Encoder Results
	Experiment 1a: Using AGRI With DQN
	Experiment 1b: Using AGRI With TD3
	Experiment 2a: Augmenting the State in the Value Based Approach
	Experiment 2b: Augmenting the State in the Policy Gradient Approach
	Results in the Evaluation Environment
	Evaluation Metric
	Evaluation Episode Length
	A Note on Time Steps Used in Training
	Evaluation Results

	Discussion
	Experiment 1a
	Experiment 1b
	Experiment 2a and 2b
	Shortcomings
	Flaws in the Reward Function
	Gradient Steps and Replay Buffer Size

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Additional Material
	Route Configuration File
	Route Configuration File for Evaluation

