
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Bendik Nilsen Brunvoll

Implementing Volume Rendering
Optimizations for Real-Time
Performance Directly on Microsoft's
HoloLens 2

Master’s thesis in Informatics
Supervisor: Gabriel Kiss
June 2022

M
as

te
r’s

 th
es

is





Bendik Nilsen Brunvoll

Implementing Volume Rendering
Optimizations for Real-Time
Performance Directly on Microsoft's
HoloLens 2

Master’s thesis in Informatics
Supervisor: Gabriel Kiss
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Implementing Volume Rendering Optimizations for
Real-Time Performance Directly on Microsoft’s

HoloLens 2

Bendik Nilsen Brunvoll

June 13, 2022





Preface

As I am writing this, there are approximately 24 hours left of my time as a stu-
dent at NTNU. I would first of all like to thank my supervisor, Gabriel Kiss, and
Frank Lindseth, who has acted as an unofficial co-supervisor. I would also like to
thank my girlfriend, Tonje Toseth Haanshus, for supporting me through this whole
process. I extend my thanks to Lachlan Deakin for his answers to my questions re-
garding his work, and Unity forum user bgolus for having helped many before me,
and thus me indirectly, with their questions regarding shaders.

During my time at NTNU I have met many new friends, I have played on stage
in my student organization Online’s band, Output, and written for their magazine,
and I have been part of a few projects through Hackerspace NTNU. My time as
a student comes to an end, but a new chapter awaits as a graduate hardware
engineer at Arm in Trondheim. I would like to thank everyone I have become
friends with these last six years for making me grow both as a person and making
my life as a student amazing.

iii





Sammendrag

Det er ofte nødvendig å visualisere tredimensjonale anatomiske strukturer i medis-
insk bildediagnostikk. En vanlig algoritme for dette er volumgjengivelse. 3D-strukturen
blir vanligvis gjengitt på en vanlig 2D-skjerm. Dette begrenser dybdefølelsen.
Utvidet virkelighet (AR) kan bli brukt for å øke dybdefølelsen ved å "sette ut" det
digitale bildet i virkeligheten (sett gjennom en skjerm). Volumgjengivelse er en
beregningsintensiv algoritme, og for applikasjoner i utvidet virkelighet blir disse
beregningene vanligvis gjort av en ekstern PC.. Dette fører til en viss forsinkelse på
grunn av kommunikasjon mellom AR-brillene og den eksterne maskinen, i tillegg
til å gi en mer komplisert arkitektur på grunn av denne kommunikasjonen. Dette
prosjektet har som mål om å implementere volumgjengivelse direkte på Microsoft
sine AR-briller: HoloLens 2. For å oppnå en ytelse som er tilstrekkelig for sam-
handling med det gjengitte volumet blir flere optimaliseringer implementert og
sammenlignet. Det beste volum-optimaliseringsparet blir testa på to ekkokardiolo-
ger og en anestesilege. Ytelsen er avhengig av både oppløsningen til volumet og
hvor stor del av skjermen bildet dekker. Ytelsen til et ultralydvolum er tilstrekkelig
for samhandling og kan brukes som basis for videre utvikling. Resultatene viser
potensiale for en mer realistisk applikasjon med nødvendige samhandlingsmu-
ligheter uten behov for kommunikasjon med en ekstern maskin.
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Abstract

In medical imaging it is often necessary to visualize complex three-dimensional
anatomical structures. A common algorithm for this use, especially when iso-
surfacing and surface-based visualization are not available, is volume rendering.
The 3D structure is commonly rendered to a standard two-dimensional display,
limiting the depth perception of the image. Augmented reality can be used to al-
leviate this reduced depth perception by superimposing the digital image on the
physical world. Volume rendering is a computationally intensive algorithm, and
for augmented reality applications the rendering is often offloaded to a stronger,
separate computer. Doing this introduces a certain delay from communication
overhead and a more complex architecture. This project aims to implement an
instantiation of volume rendering with a focus on ultrasound and computed tomo-
graphy (CT) directly on Microsoft’s augmented reality head-mounted device, HoloLens
2. In order to achieve a frame rate that allows for interaction with the rendered
volume, several optimizations are implemented and compared. The best perform-
ing volume-optimization pair is also tested on two echocardiologists and an anes-
thesiologist. The resulting frame rate is dependent on the resolution of the volume
and how much of the screen it covers; therefore rendering times for a set of com-
mon resolutions and distances are presented. The frame rate for the ultrasound
volume was sufficient for interaction and can be used as a basis for further work.
The results show potential for a more realistic application with necessary interac-
tion options, and with a no communication overhead and less complex architec-
ture than most existing solutions.
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Chapter 1

Introduction

This project is a natural continuation of a preparatory project performed from
August to December 2021. In that project, a simple volume renderer without op-
timizations or transfer functions was implemented, and a literature search was
performed. The introduction and background will include many similarities to
this project, but it is not necessary to read the report to understand this thesis [1].

1.1 Purpose

Medical imaging often involves visualizing anatomical structures from scans in 3D.
This goes for several types of scans, both computed tomography (CT), magnetic-
resonance imaging (MRI), and ultrasound. One such visualization algorithm is
Volume rendering [2], which is a ray-tracing algorithm that can be used to visual-
ize 3D data directly without the need of extracting iso-surfaces from pre-defined
values. These 3D visualizations are typically rendered on standard 2D displays,
which have the inherent attribute of lacking depth. This limits the depth percep-
tion of the user [3], meaning the mapping between 2D and 3D has to be done
mentally by the user. While not a big problem for experts who look at, say, ul-
trasound images of specific structures regularly, for example surgeons and anes-
thesiologists also need these images in their work. Furthermore, the experts need
to explain the anatomic details using these images. Augmented reality (AR) re-
volves around placing digital objects in the physical world, and has been shown
to improve depth perception [4]. There are companies that work with increasing
the depth perception of medical imaging using augmented reality; among them
are HoloCare [5], MedApp [6], and Siemens [7]. There has also been conducted
research projects regarding medical imaging in AR. Sauer et al. made a head-
mounted device (HMD) that could be used to superimpose medical data on the
patient [8]. Kutter et al. used Sauer et al.’s HMD as a basis for an HMD with a
transparent screen and two cameras per eye, as well as several cameras in the
room. Their goal was to retain quality without sacrificing performance [9]. Bichl-
meier et al. rendered their visualizations on the skin of the patient with the aim
of improving the "perception of 3D medical imaging data (mimesis) in context

1



2 B. N. Brunvoll: AR Volume Rendering

to the patient’s own anatomy" [10]. De Ridder et al. suggest that extended real-
ity may be used to reduce "visual clutter" and allow "users to navigate the data
abstractions in a ‘natural’ way" that lets them keep their focus [11].

Medical visualization can be quite heavy, especially when it comes to volume
rendering. Both previous and contemporary research mostly uses a separate com-
puter to perform the computationally intense rendering. This also goes for the
implementations made by companies. Rendering on a separate machine is easier
because it requires less intense optimization, but it introduces both a delay from
communication overhead and a more complex architecture. Since volume render-
ing has been implemented, optimized, and tested on desktops before, this project
focuses on implementing the rendering directly on Microsoft’s augmented reality
HMD HoloLens 2. The main beneficiaries of this project are those who need 3D
visualization of medical data in their work and those who plan on implementing
volume rendering in AR and wishes to have a more simple and portable architec-
ture without the need of an advanced rendering station with a remote server. As
a bonus, it is also less expensive, as the system requires less hardware. Indirectly,
patients will also benefit from the research due to the intended increased quality
of analyses.

The main purpose of this project is to visualize patient-specific ultrasound data
and computed tomography scans and combine them with geometric models rep-
resenting anatomical structures of interest. This visualization is done by using the
volume rendering algorithm [2], computed with the HoloLens 2’s hardware. It
is important that the structures that are visualized are shown correctly and with
enough quality to be recognized. As one of the main motivations behind using
augmented reality, it is also important that the depth perception is actually im-
proved. And most importantly, it is important that the application is usable. For
this, the performance of the application should be good enough to allow interac-
tion while also not being uncomfortable to use. According to Microsoft, the target
frame rate is 60 frames per second (FPS), but that is not the focus of this project.
This master project’s research questions are therefore:

RQ1: How can volume rendering be implemented on an augmented reality
device with a framerate of at least 15 FPS?

RQ2: Does HoloLens 2 improve 3D depth perception of the volume rendered
content when compared to a standard display?

RQ3: Is the quality of the rendered content sufficient to perceive important ana-
tomic structures?

1.2 Contribution

Most projects and products regarding volume rendering on augmented reality
head-mounted devices perform the actual rendering on a separate machine. This
project, however, shows potential for implementing the algorithm directly on Mi-
crosoft’s HoloLens 2. The code base has been included in Chapter 4, and is part of



Chapter 1: Introduction 3

the contribution of this project. In addition to the code, the project has included
profiling of different optimizations, comparing them. For smaller volumes more
interaction can still be added, but the depth perception is reported to be better
than on standard 2D displays, and the quality is sufficient to perceive important
anatomic structures. This project can be used as a starting point to further develop
a way to perform volume rendering on augmented reality devices with minimal
setup and communication overhead.

1.3 Overview

Chapter 2 explores the history of volume rendering and background theory for
discussing the results. Chapter 3 explains the methods of the project, and Chapter
4 contains details regarding the actual implementation. Chapter 5 presents the
profiling results and key takeaways from the expert testing; Chapter 6 puts the
results in context of the background theory, discusses the limitations and methods,
and provides suggestions for further work. Chapter 7 concludes the project.





Chapter 2

Background

2.1 The principles of volume rendering

In 1988 Drebin, Carpenter, and Hanrahan proposed the volume rendering al-
gorithm. One of its main advantages over previous visualization algorithms is that
it minimizes computational artifacts such as aliasing and quantization. The main
idea of their volume rendering algorithm is as follows, using CT data as an ex-
ample:

The input CT data volume is converted into a set of material percentage volumes.
These volumes will represent how much of a specific material is present at a given
area in space. Each material is mapped to their own color and have their own opa-
city according to the desired classification technique. The color of these volumes
is calculated by multiplying the assigned color with the material percentage. This
can also be done for the opacity. These new color and opacity volumes can then
be combined into a single composite color and opacity volume, which is the product
of the color and opacity volumes.

The algorithm also generates a density volume, which is based on the assigned
density value of each material. To detect the boundaries of each material, a 3D-
gradient is calculated using the density volume. The outputs from this operation
are the magnitude and x, y, and z directions of the gradients; all of these are
represented by their own volumes. The shaded color volume combines the gradient
volumes and the composite color and opacity volume to apply a lighting model
to the data. Then, the volume will be transformed to fit in the viewport. This can
then be used to produce the final output image [12]. Fig. 2.1 is a visualization of
the algorithm, and is from the original paper.

A different way of performing volume rendering is by using ray casting [2],
which is currently the most used method. Again using CT as an example: The
original CT data is treated as a 3D array of voxels containing one CT value each.
For simplicity, this example will follow Levoy’s example. The array is therefore
an N xN xN cube. The image that will be produced consists of P x P pixels. For
each pixel, a "ray" is shot through the scene and thus the cube as well. In Levoy’s
implementation, colors and opacities are accumulated by sampling the CT data at

5
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Fig. 2.1. The volume rendering algorithm visualized [12, Fig. 1]
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equidistant sampling points along the ray with front-to-back blending. The colors
and opacities of each voxel is found by trilinearly interpolating from the eight
surrounding voxels’ colors and opacities [2]. Fig. 2.2 from Levoy’s paper shows
the coordinate systems used in volume rendering: The resulting image with pixels
(image space coordinates), the cube representing the 3D CT array (object space
coordinates), and the scene (world space coordinates).

Fig. 2.2. "Coordinate systems used during volume rendering" [2, Fig. 2]

In the same paper Levoy also presented two optimizations that are still used
today in different forms. The first optimization exploits the fact that volumes will
often contain regions of empty space; Levoy called this "hierarchical spatial enu-
meration" [2], but it is often called empty space skipping or leaping nowadays.
These regions will not contribute to the final image, and can therefore safely be
skipped. Levoy’s way of doing this was using an octree-implementation. This can
be viewed as a pyramid hierarchy of volumes, with increasingly coarse granularity.
Each level that is less detailed only signifies whether there is a non-empty voxel in
this region, with 1 meaning there is something and 0 meaning the entire region is
empty and can be skipped. If the sampled region is 1, the algorithm will go down
a level and try again. If it is 0 it will simply skip to the next region. This way the
algorithm can potentially save a lot of computations, and thus also a lot of time
[2]. Fig. 2.3 comes from Levoy’s paper and visualizes hierarchical spatial enumer-
ation in a 2D grid. The distance between each sample point decreases as the level
increases. The figure shows an example with initial sampling (the shaded cells),
followed by increasingly larger leaps. When the ray enters a region that contains
non-empty voxels, the algorithm gradually decreases the distance before it starts
sampling the voxels.

The second optimization is "adaptive termination of ray tracing" [2], also
known as "early ray termination". At some point further samples will not contrib-
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Fig. 2.3. "Ray tracing of hierarchical enumeration" [2, Fig. 4]

ute much to the final color, though at which point this is depends on the dataset.
When the opacity reaches the set threshold, sampling is stopped and the color is
determined. Since this value is dependent on the dataset, it is beneficial for the
user to be able to set this threshold. A high threshold will lead to higher image
quality, whereas a low threshold will lead to a better performance [2].

As the years passed, computer hardware evolved. This evolution will be ex-
plained in further detail in Section 2.5. When Levoy presented his work, mul-
ticore processors were not available, and graphics processing units (GPU) were
not as programmable [13]. As the texture mapping hardware was improved and
GPUs became more general purpose, more optimizations were made possible. In
1994 Cabral, Cam, and Foran compared the operations of tomographic recon-
struction and visualization, noting that they are similar in both a mathematical
and an algorithmic sense. These two operations used to be handled by two differ-
ent algorithms, but both algorithms can be converted to an algorithm that uses
hardware accelerated texture mapping and summing buffers. By re-writing the al-
gorithms to use these qualities, Cabral, Cam, and Foran were able to prove possib-
ility for a "single hardware accelerated solution", achieving a speedup of about 100
[14]. As a side note, the classification of the different materials is nowadays done
using transfer functions, which are mathematical functions that map a value from
the volume to a color and an opacity. As texture mapping and texture memory
technology improved, the transfer functions could be implemented as lookup-
table textures.

Volume rendering using 3D-textures has also been optimized further. Krüger
and Westermann addressed optimizing 3D texture volume rendering by imple-
menting early ray termination and empty space skipping in 2003 on GPU [15].
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These two techniques were already well-known optimizations for ray-casting, as
seen in Levoy’s work [2]. By terminating rays early, i.e. at a point where they
will not contribute significantly enough anymore, and ignoring empty voxels, one
can save valuable compute power that can be used for more useful computations.
Krüger and Westermann split their shader program, i.e. a program that runs on a
GPU, into three passes:

1. Finding the ray entry
2. Determining the ray direction
3. Ray traversal

Their way of implementing empty space skipping was to introduce a second
2D texture with 1/8 dimension of the original volume in each direction. In the R
and G components of the texture, they would store the minimum and maximum
values of that region. If the region is empty, it can be skipped [15].

Further research has been done by Li, Mueller, and Kaufman, who proposed
partitioning the volume into smaller sub-volumes, and skipping those that only
contained empty voxels according to their transfer function [16]. Also, they intro-
duced a new algorithm for computing the intersection between the volume and
the slicing plane, and an "orthogonal opacity map" which simplifies transforming
from volume coordinates to opacity map coordinates. This was used to perform
more efficient occlusion clipping, which they used as an alternative to early ray
termination [16]. An occlusion technique that has been used in augmented reality
is using the hands of a surgeon when they are in front of the holographic visual-
ization, as done by Kutter et al. [9].

In 2020, Lachlan Deakin and Mark Knackstedt published their work on an
empty space skipping technique which uses Chebyshev distance maps [17]. The
Chebyshev distance, is the maximum difference between two points’ components
defined by Equation 2.1 [18, p. 324].

||x − y||∞ = max{|x1 − y1|, |x2 − y2|, ..., |xn − yn|} (2.1)

Deakin and Knackstedt’s base algorithm follows Levoy’s ray casting formula-
tion, with rays intersecting a volume being sampled at n equidistant points. Us-
ing the transfer function, they could determine what regions contain only empty
space. This information is used to create an occupancy map. This is implemented
as a texture with dimensions equal to the original volume’s dimensions divided
by block size B. A value of 0 means that the region is occupied, and a value of
255 means that the region is empty. This occupancy map is then transformed in
three stages; one per axis. These transformations scan the occupancy map (or the
output from the previous transformation) in order to find the Chebyshev distance
to the next occupied region. Deakin and Knackstedt also implemented anisotropic
Chebyshev distance maps, which take ray direction into account. The previously
mentioned distance maps would lead to extra samples of the distance maps when
leaving occupied regions, but the anisotropic maps would allow the ray to jump
greater distances in this case [17].
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One of the motivations behind Deakin and Knackstedt’s research was to op-
timize volume rendering for extended reality (XR), i.e. virtual and augmented
reality. The reason behind this is that XR provides better depth perception than
traditional screens. Their work was not tested on an XR device, however [17].

2.2 Augmented Reality

"Augmented reality is a system that enhances the real world by superimposing
computer-generated information on top of it" [19]. This means that instead of
being completely immersed in a virtual world, which is the case of virtual reality
(VR), augmented reality (AR) places digital elements in the real world akin to
holograms. There is (and has been) a lot of research and development going into
AR, including medical imaging [5, 6], education [20, 21], collaboration[22, 23],
and serious games [24].

Nowadays, augmented reality is available on several platforms; AR headsets,
web-based applications, and mobile phones are all capable of running augmented
reality. AR headsets are most interesting for this project’s purposes, as they allow
more or less hands-free interaction. For example, Microsoft HoloLens 2 is capable
of running voice commands, and since it is a head-mounted device the user may
look at it without occupying one hand as they may have needed with a phone. One
drawback of AR headsets nowadays is the reduced computing power compared
to desktop computers.

2.3 Volume rendering in augmented reality

HoloCare is a Norwegian company that started as a collaboration between Sopra
Steria and Oslo University Hospital Intervention Centre. They make holographic
medical applications for HoloLens with the goal of simplifying processes and im-
proving the outcomes [5].

MedApp is a Polish company that specializes in developing holographic applic-
ations for the medical field, similar to HoloCare. The project Carnalife Holo visual-
izes anatomical structures from DICOM files in augmented reality. The visualized
models can be interacted with using both voice commands and hand gestures [6].

Both of these companies perform the rendering on a separate computer, lead-
ing to a short latency when communicating between it and the HoloLens, as well
as a more complicated architecture.

In 2008, Kutter et al. presented their work on using a "high quality hardware
accelerated volume renderer" [9] in a medical AR framework. At the time their
work was being done, real-time medical AR applications often sacrificed quality
and complexity. In an effort to retain both quality and complexity, Kutter et al.
used optimizations previously proposed by other researchers and combined them
in a way that made sense for augmented reality.
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This research was done before today’s commercial AR headsets like HoloLens,
so Kutter et al. used a custom setup. Their head-mounted device (HMD) included
a transparent screen with two color cameras per eye. A "Dual Intel Xeon, 3.2Ghz,
1.8Gb Ram" and "Nvidia Geforce 8800 Ultra, 768Mb onboard memory" were used
for computation [9]. In addition to this, they also placed cameras around in the
room and on the HMD itself for tracking purposes. Fig. 2.4 shows results from Kut-
ter et al.’s work. The left image shows "Focus and Context rendering with shaded
volume rendering", and the right image shows direct volume rendering [9, Fig. 2]

Fig. 2.4. Renders by Kutter et al.’s solution, taken from their original paper [9,
Fig. 2]

In 2019 Anders Tasken, Erlend Barstad, and Sondre Tagestad worked on a
project similar to this one as part of a university course. Their goal was to imple-
ment and evaluate volume rendering on the original HoloLens. In order to apply
the volume rendering algorithm in Unity, they had to first convert the raw data
to a 3D texture. Their volume renderer was ray-casting implemented as a shader
program which would perform n intersection calculations per ray; similar to Le-
voy’s base algorithm [2]. The color value was dependent on the alpha value in
each intersection, calculated by accumulation.

The result of their project was that the data was visualized correctly, though it
suffered from performance issues. The potential improvements they identified in-
cluded rewriting the shader with an optimized algorithm and using the HoloLens
2 instead due to its superior hardware. They also suggested adding colors to make
the model easier to understand [25]. Fig. 2.5 shows a volume rendered CT scan
of a pig on a HoloLens 1.

In 2002, Sauer et al. developed an AR system that superimposed medical
graphics, i.e. MR images, onto a "video view of the patient" [8]. The user would
wear a custom head-mounted display that would act as the medium to place the
graphics on the patient. Rendering was performed on a separate computer, and
transmitted with a delay of around 0.1 seconds. To improve the application, they
also added instrument tracking [8]. Sauer et al.’s system was the basis for both
Kutter et al.’s [9] and Bichlmeier et al.’s [10] hardware. Fig. 2.6 shows the head-
mounted device Sauer et al. developed [8, Fig. 1].

Bichlmeier et al. presented their "Hybrid In-Situ Visualization Method for Im-
proving Multi-Sensory Depth Perception in Medical Augmented Reality" [10] in
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Fig. 2.5. Visualized CT scan of a pig from Tasken, Barstad, and Tagestad’s report
[25, Fig. 10]

Fig. 2.6. The head-mounted device developed by Sauer et al., image taken from
the original paper [8, Fig. 1]
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2007. Their objective was to use AR for pre-op diagnoses, planning, and naviga-
tion. To accomplish this, they used the head-mounted display presented by Sauer
et al., and identified three conditions their visualization would have to satisfy
[10]:

1. The visualization must provide a non-restricted view of the region of interest
2. The data must be implemented in a way that makes distances within the

scene be perceived intuitively
3. During operation, the surgical instruments must be integrated with the AR

application to get intuitive visual feedback from interaction

Bichlmeier et al.’s solution was a technique to render the patient data on the
skin of the patient themselves. The head-mounted device would send images to a
computer that also got pre-op data and data from the tracked instruments. In ad-
dition to this, the computer also got position data from the head-mounted device
and an array of infrared cameras hanging from the ceiling. The computer would
then output "spatial registered 3D data" back to the device [10]. The concept is
shown with a phantom showcase in Fig. 2.7 where they also include a tracked
instrument. This image is from the original paper [10, Fig. 10 b].

Fig. 2.7. Phantom showcase from Bichlmeier et al.’s original paper [10, Fig. 10
b]

2.4 Medical imaging

Medical imaging is the process of scanning and visualizing necessary medical data
for analysis or medical intervention. This includes for example a fetus, a brain, or a
heart. Three very common techniques for this are ultrasound, magnetic resonance
imaging (MRI), and computed tomography (CT).

Ultrasound is a real-time method that is used to visualize a slice of the inside
of a patient. This is quite different from MRI and CT, which are not real-time
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and generate 3D-images. In principle, ultrasound is performed by the practitioner
using a probe that includes both a transmitter and a receiver. The probe transmits
a short ultrasonic pulse which goes through the body and is reflected by different
parts of the insides. The probe receives these reflected waves, and sends them to
the machine for processing. This is similar to what animals such as bats use to
"see" [26, Ch. 17].

Ultrasound takes advantage of the different reflection coefficients and wave
impedances of different materials to successfully differentiate between them [26,
Ch. 17].

Magnetic resonance imaging uses principles of nuclear magnetism to scan the
inside of a patient. Using the different weighting, i.e. the dominant tissue-specific
MR parameter, MRI can be used to differentiate very well between different types
of tissue. MRI will use either the density of protons, "the speed of recovery of
the longitudinal nuclear magnetization following excitation" or "the tissue-specific
fading of the MR signal" as weighting. Different configurations will be used for
different application areas, as they will include different types of tissue. The data
is then fed into a fast fourier transform to generate the final image [26, Ch. 23].

Computed tomography (CT) is a widely used non-invasive imaging method
that uses x-rays to generate a 3D visualization of the scanned area. Since it is
three-dimensional, the radiologist gains more spatial information than in a "regu-
lar" X-ray image. CT may be used for "patients with heavy trauma, fractures, and
luxations" [26, Ch. 16], and is also an alternative to MRI if that is not a viable
alternative for the patient. For example, MRI cannot be used if the patient is de-
hydrated. CT has also been used in other areas, such as forensic and archaeological
applications [26, Ch. 16].

CT has evolved a lot over the years, but the general idea is that an X-ray source
and an array of detectors move in a circle around the patient in such a way that
they scan the area of interest. The data gathered from this process is then used to
create different visualizations [26, Ch. 16]. For example, since different materials
have different (known) absorbation/reflection abililites, it is possible to assign
different colors to each materials in order to generate higher contrast.

2.5 Computer architecture

Computer hardware has come a long way since Levoy’s initial algorithm was pub-
lished. At that time multicore processors were not available [27], and GPUs did
not support programmable shaders [13]. Fig. 2.8 shows the highest performing
single cores per year compared to the VAX-11/780 [28, p. 3]. The graph shows
a large increase in performance since the 80s due to Moore’s law, i.e. that the
amount of transistors per processor would double each year (amended to every
two years in 1975), and Dennard scaling, i.e. power density being constant for a
specified area of silicon when increasing the amount of transistors because of the
reduction in transistor size. Dennard scaling ended in 2004, which led to the fo-
cus shifting towards multicore architectures. In recent years Moore’s law has also
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slowed down, which means nowadays it is beneficial to develop domain-specific
architectures which excel at their specific task [28, pp. 4-5].

Fig. 2.8. "Growth in processor performance over 40 years" [28, p. 3]

Processors have used principles of parallelism for a long time. Michael J. Flynn
defines four classes of parallel architectures, in a classification called Flynn’s tax-
onomy [29]:

• Single instruction stream, single data stream (SISD)
• Single instruction stream, multiple data stream (SIMD)
• Multiple instruction stream, single data stream (MISD)
• Multiple instruction stream, multiple data stream (MIMD)

A traditional single core processor is a SISD architecture; there is a single
instruction stream, working on a single stream of data. Going to multicore, we
now have several cores with their own instruction streams and their own data,
i.e. MIMD. These cores work more or less independent of each other, but share
the same main memory and some levels of cache; this is called a shared-memory
system [30, Ch. 2].

A GPU is approximately a SIMD mixed with MIMD architecture, having lots of
cores with many ALUs that perform SIMD operations. They are designed this way
because their job is to convert a lot of data into pixels that can be represented on
a screen. To do this, they use a graphic pipeline which involves many steps, many
of which are programmable nowadays. These programs are called shaders, and
can be applied to e.g. vertices (vertex shaders) and pixels/fragments (fragment
shaders). [30, p. 32].

A GPU program is split into multiple thread blocks which are each assigned to
their own multithreaded SIMD core. These cores have a number of SIMD lanes,
which perform arithmetic and memory operations. Some GPUs have units that
support half-precision operations, which take around half the time of a full 32-bit
ploating point operation. The SIMD lanes are all connected to the same instruction
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register, which contains a SIMD instruction. An interesting effect happens if there
is a branch instruction in the core, and the threads take different directions. This is
called branch divergence. The SIMD lanes in a core "cannot simultaneously execute
different instructions" [28, p. 325], and the threads that have diverged will have to
wait for their turn at the lanes. This does not mean that deep nested if-statements
are inherently bad, but rather that when threads disagree frequently it hurts the
performance [28, Ch. 4.4].

An important concept in computer graphics is textures. These are essentially
images that can be used to give an illusion of depth and more complex geometry.
For example, a simple gray cube can be turned into a wooden crate with a crate
texture. Textures are stored in memory, and are accessed and mapped to the cor-
rect area of the models by a texture mapping unit. Compressing a texture reduces
their size, thus decreasing the memory (and memory bandwidth) requirements
[31]. A different way of looking at textures is as a 2D (or 3D in some cases) mat-
rix. Matrices can be stored in multiple formats, where storing row-wise is very
common. A less common way to store matrices is Morton-order, which essentially
stores the elements in a z-like pattern. This way, every element that has indices
that are close interpreted as Euclidean points are also close in physical space com-
pare to if every row was stored after one another. This can be useful for memory
accesses on GPUs [32], and by extension volume rendering [33].

Although processor performance has improved quite drastically, the speed of
memory has not followed this trend. Fig. 2.9 shows the difference between pro-
cessor and memory performance [28, p. 80]; a phenomenon known as the memory
wall [34]. In order to alleviate the effects of the memory wall, memory has been
organized into a memory hierarchy consisting of smaller, faster, and more expens-
ive types of memory on the top and larger, slower, and cheaper at the bottom. The
higher levels of the hierarchy are closer to the processor, while the levels further
down are farther away. Fig. 2.10 visualizes this relation. An important concept
regarding memory is locality. There are two kinds: spatial locality and temporal
locality. When data has been requested from memory, it is likely that neighbouring
data will be used; this is spatial locality. Temporal locality is that when data has
been used, it is likely to be needed again. The memory hierarchy uses these two
principles, putting recently used data and neighbouring data high up, and other
data further down.

Caches act as a storage between the CPU’s registers and the main memory
which is often off-chip. These follow the principles of locality. There are several
ways a cache may be implemented. A common way is "splitting" up the cache
into a number of sets, where each block of data (a collection of neighbouring
data in memory) can be placed anywhere in its assigned set. Which set this is is
determined by Equation 2.2 [28, Appendix B].

BlockAddress mod #sets (2.2)

When data is needed from memory and is not found in the cache, we call it a
cache miss. This means the data has to be fetched from deeper in memory, which
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Fig. 2.9. "Starting with 1980 performance as a baseline, the gap in performance,
measured as the difference in the time between processor memory requests (for a
single processor or core) and the latency of a DRAM access, is plotted over time"
[28, p. 80]

Fig. 2.10. A standard memory hierarchy for laptops and desktops visualized
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can take a while depending on how deep the miss goes. This data will then be
placed in the cache. If the corresponding set is full, a block of memory needs to
be evicted. There are a few ways this can be done, but the most common one is
Least recently used (LRU). The LRU policy dictates that the block that has gone the
longest time without being used is to be evicted, following temporal locality [28,
Appendix B].

As an example HoloLens 2, which is presented in Section 3.5.2, has a compute
platform consisting of two four-core clusters; one more powerful, the other more
low power. The more powerful one has a 512 KiB L1 cache and a 1 MiB L2 cache,
while the other cluster has 512 KiB for both the L1 and the L2 cache. These caches
also have varying amounts of sets. The clusters share a 2 MiB L3 cache [35].
Outside of this, the HoloLens 2 has a main memory of 4 GB [36].
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Methods

As an extension of the preparatory project [1], which focused more on getting
familiar with volume rendering and Unity’s shaders, this research project focused
more on implementing and testing advanced techniques for optimizing the per-
formance on a device with limited computational power. The following sections
will go further into detail regarding the different shader programs that were made,
research strategy, data generation and analysis, and the test methodology.

3.1 Volume rendering shaders

During the master project, several programs have been implemented. The details
regarding the actual implementation with code snippets is presented in Chapter
4, while this section will take a more theoretical look at the various approaches.
The volume rendering was implemented as GPU shaders, storing the volume data
as a 3D texture, and the transfer function as a 2D texture. Fig. 3.1 shows a CT scan
of a pig rendered using the first unoptimized shader program next to the same pig
rendered using the most optimized shader program (without diffuse shading). A
demo video captured on HoloLens 2 can be found in Chapter 5.

(a) Pig with basic shader (b) Pig with Chebyshev shader

Fig. 3.1. A CT scan of a pig rendered with a basic shader program and an ad-
vanced optimized shader program, both rendered directly on a HoloLens 2

Every program starts in a similar way. A ray is shot through a volume. The ray

19
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direction is the direction vector between the camera position and the volume’s
world coordinates. The ray’s end is determined by the exit intersection between
the ray and the volume’s axis aligned bounding box (AABB), and the ray’s origin
is the position of a vertex in the image plane. The amount of equidistant samples
n that will be taken along the ray [2] is determined by Equation 3.1 [17, Equation
2], where −−→max is the maximum of the vector components, VolumeDims is the
dimension of the volume texture, and q is a quality factor used to scale the amount
of points if needed.

n= −−→max(VolumeDims) ∗ |ra y| ∗ q (3.1)

The ray step is defined by Equation 3.2 [17, Equation 3]:

step =
direct ion(ra y) ∗ |ra y|

n− 1
(3.2)

The first program, Basic, simply samples along the ray and blends the volume
data at each sample point as a grayscale color. The second program, Transfer, takes
this a step further and applies a transfer function (similar to the classification
techniques) to the volume data at each sample point, and blends that function’s
output. The blending is done according to Equations 3.3 and 3.4, where src is the
transfer function’s output and dst is the accumulated fragment color. r, g, b, and
a are the red, green, blue, and alpha components of the colors:

dsta = (1− dsta) ∗ srca + dsta (3.3)

dstr g b = (1− dsta) ∗ srca ∗ srcr g b + dstr g b (3.4)

The next program, ERT, adds early ray termination to the mix. This is a simple
logic test that checks if the accumulated output opacity has reached a specified
threshold value, and stops ray traversal if it has.

The occupancy map program is more complex. A new 3D texture is intro-
duced, representing regions of the volume where every element will evaluate to
0 according to the transfer function. Every element of the new texture corres-
ponds to a region of size B3, meaning the texture, called an occupancy map, has
dimensions equal to the volume’s dimensions divided by B. Since the volume’s
dimensions may not always be divisible by B, a mapping equation is defined [17]:
posi t ionocc = posi t ionvol ∗

Dimsvol
B . The step of the occupancy map can be found

in a similar way, switching the positions for steps.
For the ray sampling, the algorithm assumes the first element is non-empty.

Volume sampling, transfer function, and color blending acts the same as before,
but the algorithm will also check if the alpha value from the transfer function is
zero. To make sure the algorithm does not assume every empty voxel implies that
it should start skipping, it also keeps track of which region it currently is in. For
each volume sample, the algorithm keeps track of its next iteration value imin,
the motivation for which will be explained shortly.
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When the algorithm encounters an empty voxel and has entered a new region,
it stops sampling the volume and starts sampling the occupancy map instead. This
is done with no filtering; otherwise, the algorithm will be less accurate due to
empty regions "bleeding" into non-empty regions (this is because the occupancy
map is implemented with empty regions encoded as 255 and non-empty as 0).
The algorithm checks if the region is empty or not to determine whether to skip or
start sampling again. If the region is empty, the next i is found using Equation 3.5,
which is similar to Deakin and Knackstedt’s ∆i but with a different step function
[17, Eq. 8, 9]:

∆i = max(
−−→
min
�¡

f (∆u) + buc − u
∆u

¤�

, 1) (3.5)

Where f (x) is a step function where x > 0 evaluates to 1, and 0 otherwise. u
is the position in the volume mapped to the occupancy map’s coordinate system,
and ∆u is the step of the volume also mapped to the occupancy map.

If the algorithm finds a non-empty region, it backtracks according to Equation
3.6 in order to not miss any non-empty voxels by accident, and starts sampling
the volume as it did in the previous shader programs.

i = max(i − dqe, imin) (3.6)

imin is the last iteration value where the volume was sampled, and is used as
the boundary for backtracking to avoid infinite loops (as otherwise the ray would
simply re-enter the empty region, skip, and then go back to where it started). q is
the quality factor mentioned in Equation 3.1.

The final optimization program is Chebyshev distance maps, which in principle
is quite similar to the occupancy map. The biggest difference here is how the next i
is calculated. The occupancy map is transformed into a Chebyshev distance map,
which tells the algorithm how far it is to the closest non-empty voxel; this can be
used to determine the minimum amount of samples that can be skipped before
potentially finding a non-empty voxel. If the distance is 0, the sample point is
in a non-empty region, and otherwise the sample point is in an empty region.
Chebyshev distance map sampling is done the same way as for occupancy maps,
but the ∆i is found differently, as shown in Equation 3.7,

∆i = max(
−−→
min
�¡

f (−∆u) + si gn(∆u) ∗ d + buc − u
∆u

¤�

, 1) (3.7)

where si gn(x) evaluates to -1 if x is negative, and 1 otherwise. f (x) is the
same step function as in Equation 3.5, and d is the distance from the Chebyshev
distance map. There has also been made a shader program that uses half precision
for color blending.

Lastly, a shader that uses diffuse shading has been implemented. This one re-
quires precomputed normal vectors which are acquired by calculating the gradi-
ents between each voxel in the volume, based on central differences. The direction
of the normal vectors is stored in the volume’s rgb components, moving the voxel
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value to the alpha component. Diffuse shading also requires a light source. This is
for simplicity defined as the camera, and the light direction is defined according
to Equation 3.8,

l = direct ion(ra y) + |
−−→
min(direct ion(ra y))| (3.8)

in order to make the light direction work as expected. For each volume sample,
the r, g, and b values of src (the color to be blended) are defined according to
Equation 3.9:

srcr g b = t rans f er(va) ∗ (Iambient +max(0, vr g b · l)) (3.9)

where t rans f er(v) is the transfer function, v is the volume data that has
been sampled from the volume, Iambient is the ambient lighting, and l is the light
direction. Normally, the diffuse lighting also uses light intensity, color, and the
material’s diffuse component, but these were assumed to be 1 for simplicity and
as an optimization.

3.2 Strategy

Due to the nature of the research questions, this project followed the strategy
"Design and Creation" [37, Ch. 8]. The artifact of the research is an instantiation
of volume rendering on the HoloLens 2 and more importantly: an evaluation of
optimizations with low memory overhead. Since RQ1 is looking for the frame
rate of the program, it was beneficial to actually make an implementation and
gather data through profiling. RQ2 and RQ3 also benefit from an application, as
that implementation can be used in a demo. The demo will make it possible to get
constructive feedback that can highlight both its strong parts and its shortcomings.

3.3 Data generation

In order to answer RQ1, quantitative date in the shape of frame rate and memory
usage was gathered. In addition, volume size and resolution was also taken into
account, along with shader configurations. Section 3.3.1 goes further into detail
regarding the quantitative data. RQ2 and RQ3 benefited more from qualitative
data from clinical experts. In order to answer this, a demo followed by an interview
was arranged. Section 3.3.2 explains the demo and interview.

3.3.1 Test methodology

The most interesting parameter to measure for RQ1 is unsurprisingly the frame
rate. It is also interesting to check the memory usage, as the HoloLens has less
memory than most laptops nowadays. In order to check the frame rate of each
shader program, tests had to be run for each volume-shader-parameter configur-
ation. For example, the occupancy shader uses regions of size B; B is configurable,
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and directly affects memory usage and frame rate. Each volume dataset has differ-
ent dimensions with different memory requirements, and which may also affect
the frame rate. Thus, every combination is interesting.

The frame rate information was gathered through MRTK’s built-in profiler
which displays frame rate, current memory usage, and peak memory usage. Mi-
crosoft has a profiling tool called PIX, which was considered. However the volume
rendering program tended to crash whenever this was used, likely due to the high
computational and memory requirements. The same argument stands for filming
the testing, at least in the case of larger volumes. As such, the solution was to re-
port the average frame rate through observation. The observed frame rates were
written down in a spreadsheet to be analysed there.

Since the frame rate is dependent on the amount of pixels covered by the
volume object, the tests were split into two parts: the initial rendering which hap-
pens 2.5 m away from the user, and dragging the volume to be at arm’s length
from the user (in the observer’s case, approximately 60 cm). The observed aver-
age frame rate was noted down for each case. The scale and storage size of each
volume was also written down.

Setting up highly reliable profiling tests for a HoloLens application can be
challenging. Much of it is similar to traditional graphics benchmarking, in that
one will move the camera around in a scene. However, in traditional applications
and games, the camera can be fully controlled by a script. On the HoloLens the
camera is "attached" to the user’s head; since the frame rate is affected by the
amount of the screen the volume object takes up, combined with involuntary head
movements, each test’s reliability is lowered. To compensate, the following actions
have been made:

• The test is performed seated in a chair with a back
• The volume object is hard coded to initially spawn 2.5 m from the origin,

which is defined as where the game started. As such, the chair should not
move

• Each test will have five iterations to increase the overall reliability

Fig. 3.2 shows the two cases, i.e. near and far, for each volume.

3.3.2 Clinical experts

When the frame rate of the application was good enough for simple interaction
and reduced eye strain, clinical experts from St. Olavs Hospital were contacted
for a demo and interviews. The original idea was to have a demo showcasing
a dynamic ultrasound volume render with and without shading, followed by a
semi-structured interview focusing on the following themes:

• User experience (eye strain, good aspects, room for improvement etc.)
• Information about how they use 3D visualization in their usual work life
• Which use cases they thought may be the best fits for volume rendering on

HoloLens
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(a) The medium-sized pig CT dataset,
rendered 2.5 m away from the viewer

(b) The medium-sized pig CT dataset,
rendered an arm’s length away from the
viewer

(c) The smaller-sized pig CT dataset,
rendered 2.5 m away from the viewer

(d) The smaller-sized pig CT dataset,
rendered an arm’s length away from the
viewer

(e) The thorax CT dataset, rendered 2.5 m
away from the viewer

(f) The thorax CT dataset, rendered an arm’s
length away from the viewer

(g) The ultrasound mitral valve dataset,
rendered 2.5 m away from the viewer

(h) The ultrasound mitral valve dataset,
rendered an arm’s length away from the
viewer

Fig. 3.2. The test cases shown on the HoloLens 2
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However since they already talked about these themes during testing, the in-
terview format was changed to an unstructured group interview. This way, the
discussion flowed more naturally, facilitating more brainstorming. Quotes and in-
sights were noted down in a text document. By including experts who are poten-
tial users for a mixed reality volume rendering application it was possible to get
more ideas for further research. The experts that tested the application included
two echocardiologists (experts) and an anesthesiologist with basic knowledge of
ultrasound.

3.4 Data analysis

Quantitative analysis methods were used for the ratio data gathered from the
profiling tests. The mean and standard deviation of each set of five tests were
calculated. The mean is used as the "true" frame rate which is used for further
analysis. The standard deviation acts as a measure of the mean’s accuracy, and
thus also as an indicator for the further analysis’ quality and accuracy. In addition,
the Pearson’s product moment correlation coefficient was calculated to check for
a relation between the frame rate and memory usage, volume size, and volume
object scale. This way, it is possible to find less obvious relations between the
different variables.

3.5 Tools

3.5.1 Unity

Unity is a game engine that is primarily used for making video games, but is also
useful for mixed reality applications. In Unity the user is able to set up "scenes"
with objects they can place in the world space. It is possible to run the application
in Unity, and it has many useful plugins and libraries, such as MRTK. Unity also
includes profiling tools, a user interface for development and design, standard
templates, scripts, and objects, and much more.

The Mixed Reality Toolkit (MRTK) is a toolkit developed by Microsoft for
mixed reality, i.e. AR and VR, development. The toolkit makes mixed reality de-
velopment simpler by handling most of the AR/VR-specific functionality for the
developer. This process is especially well tailored to developing on the HoloLens,
as it is made by the same company. MRTK includes functionality such as hand
tracking, spatial awareness, and eye tracking, among other things [38].

The simplest way of rendering for both eyes on HoloLens is simply rendering
twice using two separate render passes. There are better ways, however. Unity’s
Single-Pass Stereo Rendering was used order to render for both eyes on the HoloLens.
This method uses a single render pass, removing the CPU overhead of making two
passes. In addition, the cache coherency between the draw calls will be much bet-
ter, and the slowdown of using two render passes will not be as noticeable on
the GPU. As a bonus, the energy efficiency also gets better [39]. The functions
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in all capitalized letters seen in Chapter 4 are used to facilitate single-pass stereo
rendering.

3.5.2 Microsoft HoloLens

Microsoft HoloLens is Microsoft’s AR headset series. The original HoloLens came
out in 2016, and was the "world’s first fully untethered holographic computer"
[40]. With the HoloLens, one can use holographic applications on a transpar-
ent screen, with the digital elements "placed" around in the room. The HoloLens
comes with 2 GB RAM and Microsoft’s custom Holographic Processing Unit (HPU),
which is Microsoft’s hardware accelerator for AR processing [40]. According to
Chris Pietschmann, the first generation HoloLens’ processor was a "Intel(R) Atom(TM)
x5-Z8100P", which has four cores. HoloLens also uses an Intel GPU [41], though
the exact details are unclear. Fig. 3.3 shows an image of the original HoloLens.

Fig. 3.3. Microsoft HoloLens 1 [42]

Microsoft HoloLens 2 is, as of 2022, Microsoft’s newest released AR headset.
It is the second generation of HoloLens, and includes upgrades to both processing
and memory. The HoloLens 2 uses a Qualcomm Snapdragon 850 Compute Plat-
form for computation, a new version of the HPU, a display consisting of 2K 3:2
light engines, and 4 GB of RAM compared to the first generation’s 2 GB [36]. The
Qualcomm Snapdragon 850 Compute Platform includes a CPU with eight cores
and Qualcomm Adreno 630 GPU [43]. According to CPU-Monkey the perform-
ance of an Adreno 630 is around 737 GFLOPS (Giga floating-point operations per
second), and according to ChipGuider the performance is around 712 GFLOPS
[44, 45]. The reported performance of the GPU depends on which benchmarks
have been used to profile it; CPU-Monkey does not take responsibility for the data
on their website, which could mean that their numbers may not be very accurate.
Fig. 3.4 shows the HoloLens 2.
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Fig. 3.4. Microsoft HoloLens 2 [36], background removed





Chapter 4

Implementation

This chapter goes further into detail regarding how the program is structured and
how it works. It will start by explaining the developer dashboard and the CPU
logic around preprocessing, before further explaining the shaders. The full code
can be found here:

• https://github.com/bednik/Master-Project

4.1 Developer dashboard

In order to make profiling simpler, and to make a more user-controllable applica-
tion, a developer dashboard was made. Fig. 4.1 shows this dashboard in the game
view of the Unity editor. Pushing the big red button starts the volume rendering.
This was added early on, as changing configurations for a very slow render could
be nauseating due to a low frame rate. It makes it possible to set configurations
prior to volume rendering. The dashboard consists of six panels, each controlling
the following:

• Which volume dataset to visualize
• Which transfer function to use
• Which shader should be used for rendering
• The early ray termination value
• The block size of the empty space skipping method
• Whether to use the original quality (amount of sample points hardcoded to

256) or Deakin’s way of calculating amount of sample points (Equation 3.1)

In addition to the dashboard, three more panels were made. These panels con-
trol variables at runtime: Ambient light intensity, delay between each ultrasound
image, and the quality factor. There is also a button here which when pushed stops
volume rendering and sends the user back to the original dashboard. The different
panels only appear when used with a data type or shader that uses their respective
variables. Fig. 4.2 shows these panels in the game view of the Unity editor. Since
the volume is an ultrasound set, the shader uses lighting and is advanced enough

29
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to consider the quality factor, all three panels are loaded.

Fig. 4.1. The developer dashboard to be used for instantiation of a volume render

Fig. 4.2. The render controller panels for an ultrasound volume using the Cheby-
shev shaded shader

4.2 General infrastructure

4.2.1 Volume loading

In order to use the volumes in a shader in Unity, the volumes had to be converted
into 3D textures. For simplicity, this was done "offline", i.e. using python scripts
and a Unity editor tool. The ultrasound data used in this project was stored as
H5 files. This script is a quite simple one, which uses the library h5py to load
the cartesian volumes from the file and saves them as numpy array files. This
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also handles the temporal aspect, saving every cartesian volume numbered in the
correct order. The code is shown in Listing 4.1.

Code listing 4.1: H5 ultrasound file to numpy file converter

import h5py
import numpy as np
import sys
import os

input_folder = "../VolumeData/US/"
output_folder = "../Resources/VolumeRaw/US/"

f = h5py.File(input_folder + str(sys.argv[1]), ’r’)
savelocation = output_folder + str(sys.argv[2])

# Fetch cartesian volumes
cartesian_volumes = f["CartesianVolumes"]

if not os.path.exists(savelocation):
os.makedirs(savelocation)

for key in cartesian_volumes.keys():
v = cartesian_volumes[str(key)]
np.save(savelocation + "/" + str(key), v)

An editor script was made to turn this numpy array into a Unity Texture3D
object. This script used the package NumSharp, which is possible to import using
NuGet for Unity. Using this package, it is possible to flatten the numpy array. This
flattened array is then parsed, and each element is placed in a normal C# byte
array. This array is then set as the pixel data of the resulting Texture3D object,
which is saved as an asset. The editor script will use every cartesian volume, stor-
ing them with a number at the end that makes loading them in the correct order
simpler.

The CT data was stored as a RAW image, meaning it was already a simple
data stream. Along with the data there were metadata files detailing the scale
of the volume and its resolution among other things. The RAW file was parsed,
and its values were added to a byte array and set as the pixel data of the resulting
Texture3D object. However, the thorax data set consisted of 16-bit values. In order
to make it fit within a byte texture, the data had to be scaled. This was done by
reading two bytes, then concatenating them. Since the values were between -1024
and 3071, the script would add 1024 to make the value positive, then divide by
16. This process is shown in Listing 4.2. For the pig data, the process was similar
to that of the ultrasound data as it already contained byte data.

Code listing 4.2: A snippet from the CT texture generator showing reading from
a RAW file and byte concatenation

int textureSize = width * height * depth;

Texture3D density = new Texture3D(width, height, depth, TextureFormat.R8, false);

density.wrapMode = TextureWrapMode.Clamp;
density.filterMode = FilterMode.Bilinear;
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density.anisoLevel = 0;

using (var stream = new FileStream(inputPath, FileMode.Open))
{

var len = stream.Length;

byte[] colors = new byte[textureSize];

for (int i = 0; i < textureSize; i++)
{

byte lower = (byte)stream.ReadByte();
byte higher = (byte)stream.ReadByte();
short val = (short)(lower + (higher << 8));
colors[i] = (byte)((val + 1024)/16);

}

density.SetPixelData(colors, 0);
density.Apply();

}

Later in the project, the loaders were expanded to make compressed volumes
using the compression format BC4. However, Unity did not have a native function
for compressing 3D textures. Luckily, there was a way: transforming the 3D prob-
lem into a series of 2D problems. Since the raw data of a 3D texture is essentially a
collection of 2D textures, which can be compressed, stacked on top of each other
it was possible to compress each layer individually and then setting them as the
texture data of a 3D texture on BC4 format (which is possible despite the lack of
a compression function). It was not possible to do a simple CopyTexture from 3D
layer -> Compress -> CopyTexture back to layer position from this experience. The
process is shown in Listing 4.3. This follows directly after Listing 4.2. The code is
inspired by a forum post on the Unity Forum by user ignarmezh [46].

Code listing 4.3: Code for compressing a 3D texture in Unity

// https://forum.unity.com/threads/texture3d-compression-issue.966494/
List<Texture2D> layers = new List<Texture2D>();
for (int z = 0; z < depth; z++)
{

Texture2D t = new Texture2D(width, height, TextureFormat.R8, false);
Graphics.CopyTexture(density, z, 0, 0, 0, width, height, t, 0, 0, 0, 0);
EditorUtility.CompressTexture(t, TextureFormat.BC4, TextureCompressionQuality.

Best);
layers.Add(t);

}

List<byte> res = new List<byte>();
for (int z = 0; z < depth; z++)
{

var tex2DData = layers[z].GetRawTextureData<byte>();

for (int i = 0; i < tex2DData.Length; i++)
{

res.Add(tex2DData[i]);
}

}

Texture3D storeTex = new Texture3D(width, height, depth, TextureFormat.BC4, false)
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{
wrapMode = TextureWrapMode.Clamp,
filterMode = FilterMode.Bilinear,
anisoLevel = 0

};
storeTex.SetPixelData(res.ToArray(), 0);
storeTex.Apply();

4.2.2 Volume builder and controller

The largest CPU script in this project is Volume Builder. This is controlled by the
dashboard, and contains logic behind generating empty space skipping structures,
transfer functions, local normals, choosing the correct shader, and setting the
shader variables.

Whenever a new transfer function is chosen the builder creates a 2D texture
with height 1 and width 256 that works as a color lookup-table. The values are
made by linearly interpolating between a predefined set of points using MathNet,
which is a package available through NuGet for Unity. These transfer functions are
the following:

• Linear (Color and alpha = volume value)
• Ramp (Bias towards higher values)
• Pig (based on Slicer3D’s built-in function for MR images)
• CT_BONES (Based on Slicer3D’s built-in function for showing CT skeletons)
• Ultrasound (Made by Gabriel Kiss. Works well for showing the heart valves

in the ultrasound dataset)

When the red button is pushed, the volume builder starts making the empty
space skipping structures and normal map, depending on which shader was picked.

There is also a script that controls the volume rendering in real-time. Its re-
sponsibility lies in setting the ambient intensity and the quality factor if they are
changed, and to update the ultrasound images. The latter is the largest task. Each
time the ultrasound image changes, so does the empty space skipping structures
and normal maps. These are calculated for each image.

4.3 Volume rendering

The largest focus of this project has of course been the volume rendering itself.
The five methods described in this section will be presented in the order they were
implemented, giving an idea of the development process. The very first program
was a bare-bones application inspired by Tasken, Barstad, and Tagestad’s [25]
implementation, later extended with Deakin’s [17] way of calculating amount
of sample points and ray entry to make it more consistent for comparison. All
subsequent shaders have used their predecessor as a base. Every shader, except
basic, are extended to allow Unity’s single pass stereo rendering, which is a fast
way of rendering for both eyes.
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All shaders share the same vertex shader, except for Basic which does not have
the macro functions (the functions in all caps). Listing 4.4 shows the code for the
vertex shader.

Code listing 4.4: The vertex shader common for all volume rendering shader
programs

v2f vert(vertexData v)
{

v2f o;

UNITY_SETUP_INSTANCE_ID(v);
UNITY_TRANSFER_INSTANCE_ID(v, o);
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);

o.vertex = UnityObjectToClipPos(v.pos);
o.uv = v.uv;
o.t_0 = v.pos.xyz + 0.5;
o.world = mul(unity_ObjectToWorld, v.pos).xyz;
o.local = v.pos.xyz;
return o;

}

In addition to the vertex shader, there are some other things that are common
across all shaders. One of them is the function for calculating the ray exit that was
used by Deakin [17]. This function is shown in Listing 4.5. The other is some setup
code for determining ray direction, start, amount of sample points, and setting up
necessary variables; this is shown in Listing 4.6. This is a mix of Deakin [17] and
Tasken, Barstad, and Tagestad [25]. All specifically volume rendering calculations
are done in the fragment shader.

Code listing 4.5: A function for determining the exit of a ray through a volume
using a simplified AABB intersection used by Deakin

/*
* Author: Lachlan Deakin
* Date: Dec 9, 2021
* File: shaders/volume_render.frag
* Commit: 4b94c00
* Type: Source code
* Link: https://github.com/LDeakin/VkVolume/blob/master/shaders/

volume_render.frag
*/
float3 ray_caster_get_back(float3 front_intersection, float3 dir) {

// Use AABB ray-box intersection (simplified due to unit cube [0-1]) to get
intersection with back

float3 dir_inv = 1.0f / dir;
float3 tMin = -front_intersection * dir_inv;
float3 tMax = (1.0f - front_intersection) * dir_inv;
float3 t1 = min(tMin, tMax);
float3 t2 = max(tMin, tMax);
float tNear = max(max(t1.x, t1.y), t1.z);
float tFar = min(min(t2.x, t2.y), t2.z);

// Return the back intersection
return tFar * dir + front_intersection;

}
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Code listing 4.6: Setup code common across all shaders

// Fragment kernel //
fixed4 frag(v2f vdata) : SV_Target
{

UNITY_SETUP_INSTANCE_ID(vdata);
UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(vdata);

Ray ray;
ray.origin = vdata.t_0;
ray.dir = normalize(mul(unity_WorldToObject, vdata.world -

_WorldSpaceCameraPos));
float3 ray_exit = ray_caster_get_back(vdata.t_0, ray.dir);
ray.length = length(vdata.t_0 - ray_exit);

// Calculate amount of sample points and step length (with direction)
int n = (_HighQuality == 1) ? int(ceil(float(max3(_VolumeDims)) * ray.

length * _Quality)) : 256;
float3 step_volume = ray.dir * ray.length / (float(n) - 1.0f);

// This piece of code from Deakin makes performance smoother in some cases.
// Deakin’s words:

// "This test fixes a performance regression if view is oriented
with edge/s of the volume

// perhaps due to precision issues with the bounding box
intersection"

// https://github.com/LDeakin/VkVolume/blob/master/shaders/
volume_render.frag

float3 early_exit_test = ray.origin + step_volume;
if (any(early_exit_test <= 0) || any(early_exit_test >= 1)) {

return fixed4(0, 0, 0, 0);
}

float3 currentRayPos = ray.origin;
half oneMinusAlpha = 1;
fixed4 dst = fixed4(0, 0, 0, 0);

float prev_alpha = 0;

4.3.1 Basic

As its name implies, this is a very basic method. As mentioned, Basic is inspired
by Tasken, Barstad, and Tagestad [25]. The main difference from their work is
that this shader does not allow slicing, and does not have a min or max threshold
for the volume values to count. As mentioned, it also determined the amount of
sample points and the ray entry and direction like Deakin [17]. This shader has
also not facilitated for rendering for both eyes on the HoloLens.

The idea of Basic is that it loads a byte from the volume using the ray position
as its coordinates, which is a 3D texture. This value is then blended with the cur-
rent accumulated output color, which is returned when the ray exits the volume.
The algorithm is shown in Listing 4.7. Fig. 4.3 shows an example of a volume
texture, more specifically of a pig. Fig. 4.4 shows a slice of this dataset, and Fig.
4.5 shows a render of this pig dataset using the basic method.
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Code listing 4.7: Volume rendering (Basic)

[loop]
for (int iter = 0; iter < n; iter++)
{

float src = tex3Dlod(_Volume, float4(currentRayPos, 0));

// Get the alpha directly from the texture, set the color by blending
oneMinusAlpha = 1 - prev_alpha;
dst.a += src;
dst.rgb = mad(dst.rgb, oneMinusAlpha, src); // dst.rgb * (1 - prev_alpha) +

src
currentRayPos += step_volume;
prev_alpha = src;

}

dst = saturate(dst);

return dst;

Fig. 4.3. A 3D texture containing CT data of a pig

4.3.2 Transfer

The method Transfer extends Basic with transfer functions. These functions take
in the value loaded from the volume and determine a color and opacity from it.
The function is a 1D texture implemented as a 2D texture with a height of 1, i.e. it
has one row. The function is created on the CPU at runtime before starting volume
rendering. This is done by linearly interpolating between a set of predefined points
using Mathnet. Accessing the color is done by using the volume value and 0 as its
UV coordinates. The color blending was also further simplified. This method can
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Fig. 4.4. A slice of a 3D texture containing CT data of a pig

Fig. 4.5. A CT scan of a pig rendered using the Basic method
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be seen as the "true" base of the subsequent methods. The updated algorithm is
shown in Listing 4.8. Fig. 4.6 shows the transfer function used for the pig datasets.
Fig. 4.7 shows the same pig dataset as in Fig. 4.5 rendered with a transfer function.

Code listing 4.8: Volume rendering (Transfer)

[loop]
for (int iter = 0; iter < n; iter++)
{

// Sample the texture and set the value to 0 if it is outside the slice or
not within the value thresholds

float density = tex3Dlod(_Volume, float4(currentRayPos, 0));
float4 src = tex2Dlod(_Transfer, float4(density, 0, 0, 0));

oneMinusAlpha = 1 - dst.a;
src.rgb *= src.a;
dst = mad(src, oneMinusAlpha, dst);

currentRayPos += step_volume;
}

Fig. 4.6. The transfer function texture used for pig datasets

Fig. 4.7. The medium pig dataset rendered with a transfer function

4.3.3 Early ray termination

Early ray termination (ERT) is, as the name implies, the process of stopping the ray
tracing before it exits the volume. The idea here is that at some point new colors
will not affect the output color to a meaningful degree. This is implemented by
setting the alpha value to 1 and breaking out of the loop when the color’s alpha
value has reached a specified value. Listing 4.9 shows how this was implemented,
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and Fig. 4.8 shows the same pig as previously rendered with an ERT value of 0.95.
Some artifacts are visible, but it is not so easy to notice.

Code listing 4.9: Early ray termination

[branch]
if (dst.a >= _ERT) {

dst.a = 1;
break;

}

Fig. 4.8. The medium pig dataset rendered with early ray termination. The max
value is set to 0.95

4.3.4 Occupancy map

As mentioned in Sec. 2.1, the second of Levoy’s [2] was empty space skipping:
the process of ignoring the parts of the volume that will not contribute to the
final color. The occupancy map method follows Deakin’s [17] formulation of the
first step towards his Chebyshev distance maps. An occupancy map is a 3D texture
that complements the volume texture. Each element in the occupancy map corres-
ponds to a region in the volume of size B3, where B is the extents of each region on
each axis. The value of the region says whether there is an element in the volume
which, when passed through the transfer function, would evaluate to an alpha
value higher than 0. If the alpha is 0, the region’s value will be 255. Otherwise,
the value of the region will be 0. The occupancy map is generated by a compute
shader, shown in Listing 4.10. As an example, Fig. 4.9 shows the occupancy map
of the pig that has been used as an example previously with a block size of 4 and 8.
Fig. 4.10 shows slices of the same occupancy maps. Occupancy maps with higher
block sizes require less memory than those with lower block size and allows for
larger jumps, with the risk of potentially performing more unnecessary volume
samples.
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Code listing 4.10: Occupancy map generation

[numthreads(8,8,1)]
void CSMain (uint3 id : SV_DispatchThreadID)
{

uint3 start = id * blockSize;
uint3 end = start + blockSize;
uint widthV, heightV, depthV, num_levels;
volume.GetDimensions(0, widthV, heightV, depthV, num_levels);
if (start.x >= widthV || start.y >= heightV || start.z >= depthV)
{

return;
}

bool empty = true;

[loop]
for (uint z = start.z; z < end.z; z++)
{

if (z >= depthV)
break;

[loop]
for (uint y = start.y; y < end.y; y++)
{

if (y >= heightV)
break;

[loop]
for (uint x = start.x; x < end.x; x++)
{

if (x >= widthV)
break;

float elem = volume[uint3(x, y, z)];

if (empty)
{

float4 col = transferFunction.SampleLevel(
samplertransferFunction, float2(elem, 0.0), 0.0);

empty = col.a <= 0.0;
}

if (!empty)
{

Result[id] = empty;
return;

}

}

}
}
Result[id] = empty;

}

There is also some added logic and calculations to facilitate empty space skip-
ping. Before the ray tracing, several constants are precomputed. These include
mapping factors to convert between the coordinates of the volume and the occu-
pancy maps, as well as variables that keep track of the skipping state. These are
shown in Listing 4.11. The algorithm assumes that the first element is non-empty.
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(a) Occupancy map of a CT scan of a pig,
blocksize = 4

(b) Occupancy map of a CT scan of a pig,
blocksize = 8

Fig. 4.9. Two occupancy maps of the same pig dataset highlighting the difference

(a) Occupancy map slice of a CT scan of a
pig, blocksize = 4

(b) Occupancy map slice of a CT scan of a
pig, blocksize = 8

Fig. 4.10. Two slices of occupancy maps of the same pig dataset highlighting the
difference

Code listing 4.11: Occupancy map variable initialization

float3 volume_to_occupancy_u = _VolumeDims / _BlockSize;
float3 step_occupancy = step_volume * volume_to_occupancy_u;
float3 step_occupancy_inv = 1 / step_occupancy;
int i_min = 0;
int3 last_u_int = int3(0, 0, 0);
int i_reverse = -int(ceil(_Quality));
bool empty = false;

While tracing the ray, there are two possible states: Sampling and skipping.
When sampling, the algorithm acts quite similar to the ERT shader. The main
difference here is that it will also check if the alpha value from the transfer function
is 0. If it is, the algorithm takes note of the ray’s (floored) integer coordinates and
switches state to skipping. In the sampling state the algorithm will also update
the minimum iteration value to be the current iteration value so it does not enter
an infinite loop.

While skipping, there is no color blending. Instead, the algorithm will load the
value of the occupancy map without any filtering using the floored integer position
in the occupancy map’s coordinate system. Using that value, it determines whether
to add the output of Deakin’s Equation 9 [17, Eq. 9] to the iteration variable, or
to backtrack a little bit and start sampling. The new ray position is evaluated as
i ∗∆t + tent r y , where i is the iteration variable, ∆t is the step size, and tent r y is
the origin of the ray. Listing 4.12 shows the updated for-loop, and Listing 4.13
explains some of the used helper functions.
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Code listing 4.12: Occupancy map skipping loop

[loop]
for (int i = 0; i < n; i) {

float3 u = volume_to_occupancy_u * currentRayPos;
int3 u_int = int3(floor(u));

[branch]
if (empty && any(u_int != last_u_int)) {

//num_distance_samples++; // Test amount of samples
float val = _OccupancyMap.Load(int4(u_int, 0));
empty = val > 0;
last_u_int = (empty) ? last_u_int : u_int;
i = (empty) ? i + delta_i(delta_i3(step_occupancy, u,

step_occupancy_inv)) : int(max(i + i_reverse, i_min));
currentRayPos = findSamplePoint(i, step_volume, ray.origin);

} else {
//num_volume_samples++; // Test amount of samples
float density = tex3Dlod(_Volume, float4(currentRayPos, 0));
float4 src = tex2Dlod(_Transfer, float4(density, 0, 0, 0));

empty = src.a <= 0;
last_u_int = (empty) ? last_u_int : u_int;

oneMinusAlpha = 1 - dst.a;
dst.a = mad(src.a, oneMinusAlpha, dst.a);
dst.rgb = mad(src.rgb * src.a, oneMinusAlpha, dst.rgb);

if (dst.a >= _ERT) {
dst.a = 1;
break;

}
i++;
i_min = i;
currentRayPos += step_volume;

}
}

Code listing 4.13: Occupancy map helper functions

// Equation 4 (Deakin and Knackstead)
float3 findSamplePoint(int i, float3 delta_t, float3 t_entry) {

return mad(i, delta_t, t_entry);
}

// Equation 8 (Deakin and Knackstead)
int3 delta_i3(float3 delta_u, float3 u, float3 delta_u_inv) {

return ceil(((delta_u > 0) + floor(u) - u) * delta_u_inv);
}

// Equation 9 (Deakin and Knackstead)
int delta_i(int3 delta_i3) {

return max(min3(delta_i3), 1);
}
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4.3.5 Chebyshev distance maps

The final method that was implemented was Deakin’s Chebyshev distance maps
[17]. The general idea of this method is to extend the empty space skipping to al-
low dynamic jumps. The occupancy map is transformed into a map that explains
for each region what the shortest distance to a non-empty region is. This is the
maximum distance the ray may skip before potentially reaching interesting val-
ues. Once again, the map is created by a compute shader. This is done by three
transformations implemented as their own kernels; one for each dimension.

The first transformation concerns the X-axis. It first iterates through each x
value of every yz-plane, finding the distance between each non-empty element
in that plane and stores it. Afterwards, it does the same thing in reverse to find
the correct distance. The second and third transformations looks at the y and z
axes, respectively. The Y transformation uses the output from the X transforma-
tion, investigating whether there is a closer non-empty region on the y-axis than
on the x-axis. The Z transformation does the same thing with the output from the
Y transformation as its input, searching along the z axis. Listing 4.14 shows the X
transformation, and Listing 4.15 shows the Y transformation. The Z transforma-
tion can be made by switching the y’s for the z’s [17].

Code listing 4.14: Chebyshev generation, X transformation

[numthreads(1, 8, 8)]
void Trans1(uint3 id : SV_DispatchThreadID)
{

int3 position = uint3(0, id.yz);
uint width, height, depth;
OutMap.GetDimensions(width, height, depth);

if (id.y >= height || id.z >= depth)
return;

uint prev = uint(floor(InMap[position] * 255));
OutMap[position] = ByteToFloat[uint2(prev, 0)];

[loop]
for (position.x = 1; uint(position.x) < width; position.x++)
{

uint val = min(prev + 1, uint(floor(InMap[position] * 255)));
OutMap[position] = ByteToFloat[uint2(val, 0)];
prev = val;

}

[loop]
for (position.x = width - 2; position.x >= 0; position.x--)
{

uint val = min(prev + 1, uint(floor(OutMap[position] * 255)));
OutMap[position] = ByteToFloat[uint2(val, 0)];
prev = val;

}
}

Code listing 4.15: Chebyshev generation, Y transformation
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[numthreads(8, 1, 8)]
void Trans2(uint3 id : SV_DispatchThreadID)
{

uint3 position = id;
uint width, height, depth;
OutMap.GetDimensions(width, height, depth);

if (id.x >= width || id.z >= depth)
return;

[loop]
for (position.y = 0; uint(position.y) < height; position.y++)
{

uint distance = floor(InMap[position] * 255);

[loop]
for (uint n = 1; n < distance; n++)
{

if (position.y >= n)
{

uint distance_n = floor(InMap[position - uint3(0, n, 0)] * 255);
distance = min(distance, max(n, distance_n));

}

if ((position.y + n) < height && n < distance)
{

uint distance_n = floor(InMap[position + uint3(0, n, 0)] * 255);
distance = min(distance, max(n, distance_n));

}
}
OutMap[position] = ByteToFloat[uint2(distance, 0)];

}
}

The transformations are adapted from Deakin’s paper [17] to work with HLSL
in Unity. While he used unnormalized values, this was not possible in this version
of Unity and HLSL. To compensate a linear color lookup table, which essentially
converts an integer between 0 and 255 to a float between 0 and 1, was made. This
is the ByteToFloat texture that is referenced in Listings 4.14 and 4.15. Fig. 4.11
shows an example of a Chebyshev distance map using block sizes of 2 and 4. Fig.
4.12 shows the same slices in the normal view.

The ray sampling is similar to how occupancy map did it, but the delta_i func-
tion is different. Also, the value taken from the Chebyshev distance map is a dis-
tance rather than practically a boolean, but the logic for determining empty space
is still the same, i.e. "empty = distance > 0". Listing 4.16 shows the new ∆i:

Code listing 4.16: Chebyshev distance map function for determining next itera-
tion value i

int3 delta_i3(float3 delta_u, float3 u, float3 delta_u_inv, half dist) {
return int3(ceil(((-delta_u > 0) + mad(sign(delta_u), dist, floor(u)) - u)

* delta_u_inv));
}
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(a) Chebyshev distance map slice of a CT
scan of a pig, blocksize = 2

(b) Chebyshev distance map slice of a CT
scan of a pig, blocksize = 4

(c) Slice of a Chebyshev distance map slice
of a CT scan of a pig, blocksize = 2

(d) Slice of a Chebyshev distance map slice
of a CT scan of a pig, blocksize = 4

Fig. 4.11. Subfigures a and b show the full Chebyshev distance maps of a CT
scan of a pig, while c and d show a slice. All are shown in the ramp view, with a
brighter color implying a larger distance

(a) Slice of a Chebyshev distance map slice
of a CT scan of a pig, blocksize = 2

(b) Slice of a Chebyshev distance map slice
of a CT scan of a pig, blocksize = 4

Fig. 4.12. Slices of Chebyshev distance maps for a CT scan of a pig. More red
means a larger distance
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4.3.6 Diffuse shading

In order for diffuse shading to be possible, both a light source and surface normals
are required. This can not be done the usual way, which relies on the mesh, as it
would generate the wrong normals (The render is a transparent texture, not a
mesh). To generate the normals, a dirrent route had to be taken. Deakin [17]
needed the normals to use them for 2D transfer functions. This project is using an
adapted version of Deakin’s Algorithm 1 [17, Al. 1], storing the gradient directions
in a four-channel 3D texture. The RGB values are the gradient direction, and the
A value is the volume value. This is implemented as a compute shader, displayed
in Listing 4.17.

Code listing 4.17: Normal map generation

[numthreads(8,8,1)]
void CSMain (uint3 id : SV_DispatchThreadID)
{

float density = Volume[id];
float3 normal = float3(0, 0, 0);

int3 volumeDims;
uint mip;
Volume.GetDimensions(0, volumeDims.x, volumeDims.y, volumeDims.z, mip);

int2 k = int2(1, -1);
float3 gradientDir = 0.25 * (
k.xyy * Volume[clamp(id + k.xyy, int3(0, 0, 0), volumeDims)] +
k.yyx * Volume[clamp(id + k.yyx, int3(0, 0, 0), volumeDims)] +
k.yxy * Volume[clamp(id + k.yxy, int3(0, 0, 0), volumeDims)] +
k.xxx * Volume[clamp(id + k.xxx, int3(0, 0, 0), volumeDims)]

);
normal = normalize(gradientDir);

Result[id] = float4(normal, density);
}

The light direction is defined as ra yDir + |min3(ra yDir)|, forcing the direc-
tion to be positive. The sampled color, src, is now calculated as src.r g b∗(Iambient+
max(0, volumeData.r g b·l i ghtDir)), where Iambient is the ambient intensity, and
volumeData.rgb is the local normal of the sample. As an optimization, both the
ambient color and the diffuse constant are assumed to be 1. Fig. 4.13 shows the
pig rendered with Chebyshev distance maps, both with and without shading. Fig.
4.14 shows the same pig with and without shading rendered on the HoloLens,
along with a thorax dataset with and without shading.
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(a) Render without shading (b) Render with shading

Fig. 4.13. Volume renders of a CT scan of a pig using Chebyshev distance maps
(blockSize=4), both with and without diffuse shading

(a) Pig without shading (b) Pig with shading

(c) Thorax without shading (d) Thorax with shading

Fig. 4.14. The pig dataset and a thorax CT dataset rendered directly on a
HoloLens 2 with and without diffuse shading





Chapter 5

Results

The technical results, i.e. performance, was gathered at the end of the project
after the implementation work had ended. These results contain performance data
against shaders and their configurations, as well as memory overhead, scale, and
resolution. Analysis regarding memory, scale, and resolution was only performed
for the best performing configuration of chebyshev distance maps due to time
constraints. Other than that, they were tested five times per shader-configuration-
volume combination, as explained in Section 3.3.1. The volumes that were used in
the general profiling in a search for the best configurations are displayed in Table
5.1, along with their resolution, storage size, and scale. Note that volume US3 is a
series of 13 ultrasound volumes with a storage size of 7.6 MB each. The volumes
called "[volume] BC4" are compressed using the BC4 compression algorithm, thus
the smaller storage size.

Table 5.1: Volumes used for profiling with data type, resolution (dimensions of
the 3D matrix), storage size in megabytes (MB), and scale measured in meters

Volume Type Resolution Storage [MB] Scale [m]
Medium pig CT 256 x 256 x 735 45.9 0.512 x 0.512 x 0.1469

Small pig CT 154 x 154 x 441 10.0 0.512 x 0.512 x 0.1469
Thorax CT 512 x 512 x 310 77.5 0.286 x 0.286 x 0.620

Thorax BC4 CT 512 x 512 x 310 38.8 0.286 x 0.286 x 0.620
Mitral valve US 200 x 200 x 200 98.8 0.2 x 0.2 x 0.2

Mitral valve BC4 US 200 x 200 x 200 49.9 0.2 x 0.2 x 0.2

The qualitative results, i.e. the feedback from clinical experts, was gathered
during the quantitative data generation period (performance profiling) when the
frame rate turned out to be sufficient for a demo. The volume used for the demo
was "Mitral valve".

49
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5.1 Profiling results

The shaders that were tested with different configurations were the occupancy
map and chebyshev distance map shaders. Each figure shows the performance of
the occupancy map shader in two cases: with the volume being 2.5 m away from
the viewer, and the volume being an arm’s length away. Every test was performed
with a quality factor of 1. The graphs use the standard deviance of the five tests
performed for each shader-configuration-volume combination as a measure of re-
liability. Every test used an early ray termination value of 0.95. Fig. 5.1 shows
these performance results for the occupancy map shader per block size on the
uncompressed volumes.

(a) Performance measured with the volume
placed 2.5 m away from the viewer

(b) Performance measured with the volume
placed arm’s length away from the viewer

Fig. 5.1. Performance measured in frames per seconds of the occupancy map
shader per block size with the volume placed 2.5 m away from the viewer vs
arm’s length from the viewer

Similarly, Fig. 5.2 shows the performance of the Chebyshev distance map
shader with the same configurations as the occupancy map shader used in Fig
5.1.

(a) Performance measured with the volume
placed 2.5 m away from the viewer

(b) Performance measured with the volume
placed arm’s length away from the viewer

Fig. 5.2. Performance measured in frames per seconds of the Chebyshev distance
map shader per block size with the volume placed 2.5 m away from the viewer vs
arm’s length from the viewer

Using the results from these tests, a seemingly optimal block size was determ-
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ined for each volume: B = 4 in all cases except for "small pig", which preferred
B = 3. The results of each "optimal" block size is visualized in Fig. 5.3, which
shows each volume’s best average performance grouped per shader. This is also
shown for both cases: near and far. These graphs show all the shaders that were
tested. The shaders "C half" and "C shaded" are the chebyshev shader using half
precision for the color blending and the chebyshev shader with diffuse shading,
respectively. The shaders are explained in further detail in Chapter 4.

(a) Performance measured with the volume placed 2.5 m away from the viewer

(b) Performance measured with the volume placed arm’s length away from the viewer

Fig. 5.3. Performance measured in frames per seconds of the volumes grouped
per shader with the volume placed 2.5 m away from the viewer vs arm’s length
from the viewer

As a final test, the chebyshev shader was tested with the BC4 compressed
volumes, Mitral valve BC4 and Thorax BC4. Only the volume itself is compressed;
the occupancy map and transfer function textures are the same as usual. The
difference in performance between the uncompressed and compressed versions
of the volumes is visualized in Fig. 5.4.



52 B. N. Brunvoll: AR Volume Rendering

(a) Performance measured with the volume
placed 2.5 m away from the viewer

(b) Performance measured with the volume
placed arm’s length away from the viewer

Fig. 5.4. Performance measured in frames per seconds of volumes grouped with
their compressed counterpart with the volume placed 2.5 m away from the viewer
vs arm’s length from the viewer

Pearson’s product moment correlation coefficient was calculated for the fram-
erate and resolution, storage size, and scale for both the near and far cases. Table
5.2 shows the correlation factor between frame rate and the other variables. This
was measured for the Chebyshev distance map shader with the best configura-
tions. Resolution and scale were calculated by multiplying their respective ele-
ments, e.g. a resolution of 512 x 512 x 735 becomes 192 675 840.

Table 5.2: Pearson’s correlation coefficient between frame rate and resolution,
max dimension, storage size (Total and for one image), and scale

Case Resolution Max dimension Total storage Single storage Scale
2.5 m -0.585 -0.928 0.578 -0.583 -0.937

Arm length -0.677 -0.887 0.541 -0.670 -0.875

5.2 Expert tests

For the demo, which doubled as an unstructured interview, three themes were
focused on; this was elaborated on in Section 3.3.2. These were:

• User experience (eye strain, good aspects, room for improvement etc.)
• Information about how they use 3D visualization in their usual work life
• Which use cases they thought may be the best fits for volume rendering on

HoloLens

The participants in the interview and demo included two echocardiologists,
one anesthesiologist, Anders Tasken [25] who worked on this project a few years
ago, and my supervisor Gabriel Kiss. The key takeaways from the interview were
the following, based on quotes and comments during the demo and afterwards:

• The improved depth perception is very welcome, especially for those less
experienced with ultrasound
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• Diffuse shading increases the depth perception
• The volume does not necessarily need to be very close to the user
• Facilitation for cooperation is critical
• Automatic orientation of the volume and the ability to instantly flip the

volume would be welcome
• It would be helpful to see both sides of the volume simultaneously
• Being able to walk around the volume is "interesting"
• Possible use cases include planning where the precise location is critical,

e.g. when repairing defects in the heart, showing the surgeon where to cut
• A possibility to fuse ultrasound images and CT images would be useful
• It would also be useful to add color Doppler to the ultrasound render

A demo video can be found here:

• https://youtu.be/UwA2qusdhI0
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Discussion

6.1 Profiling

Table 5.1 shows the volumes used in the profiling. Of these there are two volumes
of equal scale and different resolution, where the small pig is a downscaled ver-
sion of the medium pig. Because they will cover the same amount of pixels and
contain similar data, they can tell to which degree a larger texture will affect
the performance. One obvious aspect of the algorithm that can be affected is the
amount of sample points, where the maximum dimension of the volume is one of
the factors as seen in Equation 3.1. There are also volumes of similar resolution
to and smaller scale than the medium pig: the thorax volume. This can be used to
gain insight regarding whether the scale, or rather the amount of pixels covered by
the volume’s bounding box, affects the performance. This is because the pixels that
are not covered by the volume will not use the volume rendering shader. There
are also a couple of compressed textures, Thorax BC4 and Mitral valve BC4, that
were used to explore the possibility of optimized storage improving performance
[31], or at least memory usage. The volume with the largest resolution, Thorax,
has a lower resolution than Deakin and Knackstedt’s smallest volume which had
a resolution of 492x492x442. Also, they used a larger scale: 1 m3 placed

p
1 m

away from the camera [17].
Figures 5.1 and 5.2 contain the results from finding the best configurations of

occupancy maps and Chebyshev distance maps for each volume, respectively. For
occupancy maps, a higher block size will lead to fewer occupancy map samples
and larger leaps when an empty region is entered. However, each region will likely
contain more empty space as seen in Fig. 4.10 when comparing the two slices.
This will then lead to more unnecessary volume samples. On the other hand a
small block size leads to a large occupancy map, increasing the amount of oc-
cupancy map samples and decreasing the amount of skipped blocks per sample.
This is most likely why most of the graphs seem to fit with a quadratic function; a
small block size gives smaller skips, but a high block size can hide large amounts
of empty space within "non-empty" blocks. A similar effect can be seen with the
Chebyshev distance maps, as they use occupancy maps as their base. The added

55
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bonus of Chebyshev distance maps is that they can skip longer with lower block
sizes than an occupancy map. This is likely the reason why the performance of lar-
ger Chebyshev distance maps is better than the performance of larger occupancy
maps. There are some differences, however. For example, the optimal configur-
ations of Chebyshev distance maps seem to be more pronounced, especially for
the thorax and the mitral valve. Also, specifically the mitral valve, an ultrasound
dataset with a very different structure compared to the other datasets, seems to
benefit from Chebyshev distance maps. The shape of the graphs are similar to
Deakin and Knackstedt’s results regarding block size [17].

Fig 5.3 shows the final results of the profiling using the average performance
of the optimal configurations for each shader and volume. This also includes a
shader using half precision for color blending and a shader that includes diffuse
shading. Both of these use Chebyshev distance maps. Starting from the left, both
the unoptimized shader using transfer functions and the ERT shader seem to per-
form similarly in the 2.5 m case. However, ERT is more dominant when the volume
is closer to the camera and more pixels are covered, especially when we look at
the ultrasound. This could mean that in general ERT does not give a huge boost to
performance, but when the workload is increased the speedup from ERT is more
prominent. One step to the right are the occupancy map results. For every volume
except the ultrasound mitral valve there is a significant speedup in both the far
and near cases. Those three volumes contain several larger continuous areas of
empty space, thus lending themselves well to occupancy maps. The same goes for
the mitral valve images, but the speedup does not seem to be as drastic. This may
be because the dataset has a lower resolution, and therefore fewer sample points,
than the other volumes. One will therefore see a smaller difference when skipping
the few samples that are being done.

The three rightmost results are from three different Chebyshev shaders. The
original, labelled "Chebyshev", shows a speedup for every volume. At this point
the frame rate is around double the frame rate of the unoptimized shader. This op-
timization is also very significant for the mitral valve, considering how occupancy
maps did not have a large impact. A likely reason is how the ultrasound volume is
structured. While the other volumes have quite tight bounding boxes, the actual
ultrasound data is cone-shaped. With Chebyshev distance maps, the shader can
jump right into the area where non-empty data is located. The initial jump for
ultrasound can be quite large if the ray comes from one of the volume’s corners.
In addition, the volume had a lot of empty space. Fig. 6.1 shows a slice of an oc-
cupancy map and a Chebyshev distance map, highlighting the cone shape and the
amount of empty space. For the other volumes, the ray will often be close to non-
empty regions, bringing out less of the benefit from Chebyshev distance maps.
Deakin and Knackstedt made an anisotropic version of this skipping method, con-
sidering the direction of the ray. However, they concluded that the performance
gain was not that great compared to the amount of preprocessing needed [17].
However, both the pig and the thorax can be compared to the snake volume they
used, which is seems to have benefited from this method [17]. Another place
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(a) Occupancy map
(b) Chebyshev distance map

Fig. 6.1. Slices of an occupancy map and a chebyshev distance map for a mitral
valve ultrasound volume

where the performance could be better is when leaving a non-empty region and
entering a very large area of empty space. Since the ray is still close to the volume,
it will need a warm-up of sorts. Sampling the distance map will gradually give lar-
ger jumps, as long as the ray gets farther from non-empty regions. This is in a way
similar to the octree implementations by both Levoy and Krüger and Westermann,
where the empty space skipping would jump up and down levels based on the size
of empty regions [2, 15].

An interesting observation regarding the half precision shader is how the per-
formance is actually worse than with normal floating point precision. It is possible
that there is some implicit casting that is being done, hurting the performance.
In theory, if everything works as expected and intended, the performance should
have been improved [28, p. 329]. The diffuse shading works as expected, on the
other hand. Adding more multiplications, a max function and a dot product for
every volume sample unsurprisingly lowered the performance. There are actually
supposed to be more factors than in Equation 3.9 (A scalar diffuse factor, a scalar
light intensity, and the light color), but since these are assumed to be 1, they have
not been added to the code. This shader performs better than the unoptimized
shader in the near case, but certainly worse than the normal Chebyshev shader.
In addition, it requires precomputation of the normal map.

An optimization that was tested for Chebyshev distance maps was to not per-
form the color and lighting calculations when the opacity was zero, as those
samples would not contribute to the final color. While this worked well on the
laptop with a GTX 1660 Ti GPU used for development and simple debugging, it
was detrimental to the performance on HoloLens 2. This is likely due to thread
divergence [28, Ch. 4.4], as removing the if-statement improved the frame rate
significantly. The HoloLens accepted the big branches of roughly equal size for
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empty space skipping, likely because that can remove a lot of instructions and
that they did not differ often. However, when an extra branch was added inside
a branch, it became too much for the HoloLens’ GPU. The threads within a group
on a GPU like performing the same work, and when the branches become too
deep and different too often there will be a lot of stalling [28, Ch. 4.4]. On a CPU,
this would not be a problem, and many instructions could be skipped and a spee-
dup could probably be seen (Though volume rendering on a CPU would still be
considerably slower than on a GPU due to the high parallelism of GPUs).

Fig. 5.4 shows the results from testing the difference between using uncom-
pressed and compressed textures. The compression method used was BC4, and the
compressed volumes were the ultrasound mitral valve and the thorax. The expec-
ted outcome was that using compressed textures would not only lower memory
usage, but at the same time lead to faster loads [31]. For the most part this held
true, though the compressed thorax seems to have struggled a bit. It is unclear
if the thorax results are completely valid, as something seemed off during test-
ing. The mitral valve performed as expected, with compression leading to better
performance. The compression tests are far from extensive enough, and the re-
flections regarding the thorax dataset may be painted by bias.

The final step that was performed in the profiling results was calculating the
Pearson correlation coefficient between frame rate and resolution, storage size,
and scale. Table 5.2 shows the results from this analysis. The coefficient is a num-
ber between -1 and 1, with -1 being a clear negative linear correlation and 1 being
a clear positive linear correlation. From the tests performed for Chebyshev dis-
tance maps, there is a clear negative correlation between the scale and the frame
rate. This is most likely related to how many pixels have to be evaluated by the
volume rendering shader, as performance tended to decrease significantly when
the volume was closer to the camera (thus covering a larger part of the viewport).

The resolution also seems to play a large part, though the correlation is not as
strong linearly as with the scale. This may be because of a combination of early ray
termination and empty space skipping reducing the true amount of sample points,
but there is also another possibility. The resolution itself does not directly affect the
amount of sample points; this is done by the max dimension, e.g. for dimensions
(256, 256, 735) Equation 3.1 uses 735 as its factor. According to Table 5.2 there is
a clear correlation between the max dimension and the frame rate, most likely due
to the Equation 3.1. This does not necessarily mean the resolution is irrelevant, as
a too large texture will not fit completely in the L2 cache, increasing load times;
this follows from the memory hierarchy and the speed of memory accesses further
down as seen in Section 2.5.

The storage size of each dataset was also considered. If one only looks at the
total storage of each dataset it is possible to believe using more memory somehow
makes the algorithm faster. The reason why the correlation coefficient is positive
in this case is because the mitral valve dataset generally produced good results
and consists of many smaller volumes. Looking at the storage of a single volume
in each dataset paints a different picture. According to the Pearson correlation
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coefficient of the storage size of each individual volume, there is a negative cor-
relation between memory usage and frame rate. However, the storage size is more
or less only affected by how many voxels there are in each volume. This is why
the coefficient is almost identical to that of the resolution. Therefore, the actual
storage size most likely follows the same arguments as for resolution.

6.2 Methods

The profiling method was highly susceptible to human error. Since the only part
that was automatic in the tests was how frame rate was gathered by the profiler,
everything else was tester-controlled. This does not affect the far cases of the
profiling since that was done with no interaction, though it gives more uncertainty
to the arm’s length cases. These were performed with different rotations and what
an "arm’s length" was could vary based on how slouched or leaning forward the
tester was. In order to alleviate this every test was performed five times, taking the
average of these and noting their standard deviation to get a measure of quality.
The ultrasound mitral valve seems to have been affected by human error, as its
standard deviation tended to be a lot higher than other volumes. The thorax also
seems to have been affected; at spawn it is rotated in an unnatural way, and could
be rotated different ways that could cover the pixels differently.

In defense of this method, one can look at realism. In real life, the volume
will probably be rotated and moved in different ways. The user may want to get
a closer look sometimes, and they may want to get more of an overview. Using
a more human-minded test method could therefore give a more realistic image
of the performance. However, the two cases tested in this project can be seen
almost as best and worst cases. The user will most likely rarely want to have the
image right in front of their nose, nor do they want to have it so far away it is
hard to see the details. Despite this slight unrealism, this was the simplest way
to test without making a strong test framework. Since each test was performed
several times it provides each data point with more accuracy, and the standard
deviation is a measure of said accuracy. Despite the room for human error and
slightly unrealistic test cases, the profiling gives a valid picture of the performance.

In order to provide even more accuracy, it would be possible to automatic-
ally do both rotation and translation of the volume, calculating an accumulated
mean of the program’s frame rate. After a few frames of each rotation and posi-
tion, volume rendering could stop, the mean frame rate could be written to a text
file, and a new test could then be run. This is partially inspired by Deakin and
Knackstedt’s test methodology [17], combined with the more simple method that
was used in this project. The HoloLens would still sit on a tester’s head to ensure
that the volume is always in the viewport. By doing this, it would be easier to add
more locations than the spawn location and the unscientific "arm’s length" to the
mix. It would also reduce the margin for human error, as all interaction would be
controlled by the CPU.

Since the performance was consistently significantly below 30 frames per second,
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there were bugs in the optimizations for a while, and that some core functionalit-
ies such as dynamic ultrasound and diffuse shading were missing, the demo was
not decided on before very late in the project. Therefore, when it did happen it
was not very carefully planned. Room for improvement includes voice recording,
a specific set of test cases, and more helpful "training" regarding how to interact
with a Hololens. These are things to consider when a more realistic application
has been made; this project focused on the technical aspects of implementing and
optimizing volume rendering on HoloLens 2.

6.3 Research questions

The research questions for this project were as follows:

RQ1: How can volume rendering be implemented on an augmented reality
device with a framerate of at least 15 FPS?

RQ2: Does HoloLens 2 improve 3D depth perception of the volume rendered
content when compared to a standard display?

RQ3: Is the quality of the renderer sufficient to perceive important anatomic
structures?

For the ultrasound dataset it seems like simply adding early ray termination
was sufficient for the requirements of RQ1. However, that frame rate is quite un-
stable, but this seems to stabilize with occupancy maps. For even higher perform-
ance, Chebyshev distance maps are viable. The other larger volumes did not reach
15 FPS in the near case, but some did reach it in the far case. It is also worth men-
tioning that empty space skipping increased the performance sufficiently for more
seamless interaction, which means it may be almost usable in medium distances.
Since they were much larger and contained a lot of detail, it could help the per-
formance by introducing a slicing functionality that would almost act like empty
space skipping. This will be elaborated on in the next section. The short answer
to RQ1 is therefore:

RQ1: It is possible to achieve 15+ FPS on a HoloLens 2 if the volume is suf-
ficiently small and by using both early ray termination and Chebyshev
distance maps.

According to the experts that tested the program with the ultrasound mitral
valve volume, using HoloLens for visualization definitely added better depth per-
ception. They also liked being able to walk around the volume, and noted that the
diffuse shading gave even better depth perception. The short answer to RQ2 is:

RQ2: HoloLens 2 improves the 3D depth perception when analyzing volume
rendered content compared to a standard display.
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The experts were able to identify the anatomic structure of the ultrasound
volume, i.e. a mitral valve. A very important note is that this was done using a
scan that clearly shows the valve opening and closing, with a well-designed trans-
fer function for that case. The experts that tested the program were experienced
echocardiologists, and were used to looking at these kinds of structures. More ex-
tensive research with pre-analyzed medical data is required, but from these tests
the answer to RQ3 is:

RQ3: The quality of the renderer is sufficient to perceive important anatomic
structures

6.4 Hardware comparisons

At the time Levoy presented the algorithm and its optimizations, rendering a
skull consisting of 7 405 568 voxels (resulting in 14 million samples) took 1183
seconds, or 19.7 minutes. With the optimizations it took 105 seconds; 1 minute
and 45 seconds. This was done on a Sun 4/280 [2], which had a processor with
a clock frequency of 16.67 MHz capable of performing 1.6 MFLOPS (1 600 000
floating point operations per second). The system had 120 MB of memory [47].
This processor was a single core processor, as the first multicore processor was
released in 2001 [27]. Compared to the Adreno 630’s 700 GFLOPS (700 000 000
000 FLOPS) [44, 45], and considering the amount of floating point operations
required for volume rendering, there is no doubt how the unoptimized algorithm
can run much faster as a modern GPU program than on hardware from the 1980’s.
These are the effects of both Moore’s law, Dennard scaling, development of spe-
cialized hardware, and all the other technological advancements the last 30 or
so years. However, this floating point performance is still significantly lower than
that of modern desktop (and laptop) GPUs. Deakin and Knackstedt used NVIDIA’s
GeForce GTX 1080 for their rendering, using a viewport of 12002 pixels [17]. This
GPU has a floating point performance of 8.873 TFLOPS (Tera FLOPS) according
to Tech Powerup [48], roughly 12.7 times as fast. These three are rather different
architectures, and as mentioned earlier the reported performance is affected by
the benchmarks that were used among other things, but the floating point per-
formance should still give an indication of the expected performance difference.
In addition, the viewport resolution, cache sizes, amount of pixels covered by the
volume etc. also play a difference.

Compared to the HMD by Sauer in 2002 [8], the HoloLens 2 is very light. It
has no cables going to a different machine, giving more mobility to the user. It
does not require any extra cameras in the room, and the necessary cameras for
the HoloLens are integrated in the device itself.
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6.5 Limitations

There are, as always, a few limitations to the research. One such limitation is
that the project only had one researcher. With a larger team it would be possible
to implement more optimizations in parallel, as well as opening for someone to
focus on more interactions that could be implemented. Combined with the small
team size, the main bulk of the research was done over the course of one semester,
and the pre-study was performed simultaneous to two other university courses.
Getting access to Tasken, Barstad, and Tagestad’s [25] application alleviated the
time constraint by making it easier to start implementation.

A very different limitation comes from the hardware. Microsoft’s HoloLens
2’s processing power and memory is comparable to that of a smart phone [36],
not taking the holographic processing unit into account. While they have come a
long way, it is still demanding to run ray-tracing algorithms. While not a limita-
tion on the project as a whole, considering the comparison of optimizations, it still
provides an extra challenge for reaching user friendly frame rates. This limitation,
however, is part of the motivation itself and does not hinder the research in a very
meaningful way except making it hard to perform profiling in the worst cases.
Unity was used in order to more easily make the application run on HoloLens.
With MRTK and Microsoft’s other tools, "everything" was good to go on the mixed
reality part. However, that does constrain the program to run the way Unity wants.
This means compute shaders are a bit more complicated to work around, it is not
possible to compress a 3D texture with a native function, and memory layout is
not as simple to define. That does not mean that it is impossible, but it may lead
to unexpected hacky methods at times. HLSL, at least in Unity, does not support
unnormalized texture values, so even with an R8 (byte values) texture the val-
ues will be floats in the range 0-1. Because of this, a few conversions were made
between float and byte by multiplying by 255 and flooring when loading from the
input texture, and loading from a byte texture with values 0-255 (which are inter-
preted as floats between 0 and 1) from a lookup-table texture as seen in Listings
4.14 and 4.15. This means that the Chebyshev distance map implementation
may be incomplete, and the results could potentially be better. The resulting
rendered volume does not seem to be affected by this, however.

6.6 Future work

There are several directions further research can go. The technical aspects will be
discussed first, followed by more of an application focus.

One optimization that has not been tested in this project is using Morton order
[32, 33], also known as Z-order, matrices. When a matrix is stored as a Morton-
order matrix, each element will be close to each other in both index and in phys-
ical position. It should be possible to rearrange the texture elements in the correct
order, but there may be difficulties regarding filtering between elements. Local-
ity is a very central theme in optimization [28, Appendix B]. When shooting a
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ray through the volume, spatial locality is not necessarily leveraged as much as it
should be with conventional storage. Deakin and Knackstedt also introduced their
anisotropic Chebyshev distance maps. Although they concluded that the speedup
was not impressive, it could still be interesting to see how it performs on HoloLens
2. A third optimization that can be considered is Li, Mueller, and Kaufmann’s oc-
clusion clipping to see how that holds up against the simpler early ray termination
[16].

A very slow optimization that may have a large impact is simply waiting for
better hardware. With luck an augmented reality headset with some hardware
accelerated ray tracing pops up, making volume rendering a lot easier in AR. Until
then, further research will have to look at optimizations.

In order to get more data on optimizations, more varied volumes could be gen-
erated. In the case of very large volumes, it would be interesting to explore the
possibility of only storing the non-empty regions on the GPU to lower the memory
requirements. This has been done in other research projects [17]. There should
also be much more rigorous testing, preferably controlled by the CPU. The exact
framework and format is up for debate, but the suggestion from Section 6.2 is a
good starting point. Part of the testing should also focus more on compression. For
example, more compression formats could be explored, the effect of compressing
the empty space skipping structure could be interesting, and compressing the dif-
fuse shading texture (volume with gradients) is also beneficial due to the memory
usage.

In could be beneficial to add slicing or region of interest functionality to the
application. This way it is possible to "remove" the parts of the volume that are
not interesting to the user, while also doubling as a supplement to empty space
skipping. The calculated amount of sample points will be the same, but the pro-
gram will skip to the first sample point that is inside the accepted area. Since
the amount of pixels covered by the volume negatively affects the performance,
removing chunks of uninteresting data should be helpful.

Further work also includes working on the feedback given by the practitioners.
For example, it is very important to facilitate for cooperation. Since they always
work in teams, it is key to be able to show their coworkers what they are ex-
plaining. Therefore, implementing collaborative features, e.g. being able to see
the same things on different HoloLenses, is an important step. In order to place
the volume at the same location, an image/QR-code or similar can be used as an
anchor. The echocardiologists also wanted color Doppler mode to be added to the
volume. This could be an extra transfer function or need more data, but it should
be possible to add without too much of an impact. Sometimes, the experts use CT
volumes fused with ultrasound. This could prove more difficult, but if one can re-
move the parts of the CT volume that are not as important, it should increase the
CT performance, thus making it possible. An interesting challenge is to show both
sides of the volume simultaneously, as this could require an extra volume render.
There may be tricks that can be used to achieve this effect, but that requires more
research. A much simpler interaction technique that may alleviate some of the
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need for two renders simultaneously is adding a way of flipping the volume by
the push of a button or with a voice command. This would be a simple transform-
ation, with minimal performance drops. More future work regarding use cases
and needs of practitioners can be found by conducting a survey with this goal.



Chapter 7

Conclusion

An instantiation of volume rendering on an augmented reality device has been
made. Several optimizations have been implemented and evaluated. These op-
timizations are transfer functions as a lookup table, early ray termination, and
empty space skipping with occupancy maps and Chebyshev distance maps. For
lower resolutions, the frame rate reached around 30-60 FPS depending on the
distance between viewer an volume, whereas higher resolutions reached around
5-20 depending on the distance. The quality of the renders has been evaluated
both with and without diffuse shading. The evaluation of the quality was done
together with two echocardiologists and an anesthesiologist, using an ultrasound
scan of a mitral valve as a test. According to these experts, there is a clear advant-
age regarding depth perception on the HoloLens, and they were able to identify
the anatomical structures.

Further research can include further optimizations, but also more information
about the needs of practitioners should be researched. The performance for small
textures show a strong possibility of implementing volume rendering directly on
head-mounted augmented reality devices. For larger textures, more optimization
is needed to make the user experience more seamless, but it shows promise.
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