
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Andrea Standeren

MongoDB in a Self-Managed
Kubernetes Cluster

Deploying MongoDB in a Self-Managed
Kubernetes Cluster without an Operator

Master’s thesis in Computer Science
Supervisor: Svein Erik Bratsberg
June 2022

M
as

te
r’s

 th
es

is

Andrea Standeren

MongoDB in a Self-Managed
Kubernetes Cluster

Deploying MongoDB in a Self-Managed Kubernetes
Cluster without an Operator

Master’s thesis in Computer Science
Supervisor: Svein Erik Bratsberg
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

This thesis aims towards exploring the manual setup process required when de-
ploying MongoDB in a self-managed Kubernetes cluster without the help of an
operator. The alternative approach takes advantage of a Kubernetes cluster man-
aged by a provider and applies application specific operators for configuring ap-
plications to run in a Kubernetes cluster. Mapping out the areas of complexity
versus simplicity within the manual approach is a valuable contribution to the
field of DevOps, Development and IT Operations, considering whether or not one
should rely on third-parties or do it yourself. In the process of procuring hands-
on experience to justify a recommendation of an approach over another, a self-
managed Kubernetes cluster was initialized using Azure Virtual Machine (VM)s
and kubeadm before deploying a replicaset of three MongoDB instances using a
StatefulSet and a sidecar container. The thesis emphasizes all roadblocks met on
the way to obtaining this architecture and reflects on what concepts that demand
cutting-edge domain expertise. The journey revealed that the biggest challenge by
resolving to manual approaches when working with such a tightly coupled system
as Kubernetes is, is that there are unique configurations for every varying com-
ponent. The thesis concluded that setting up a self-managed Kubernetes cluster is
relative quick and easy while still possessing freedom and control over the cluster.
On the other hand, not exploiting an operator for configuring a stateful applica-
tion to run in a Kubernetes environment was not recommended.

iii

Sammendrag

Denne oppgaven har som formål å utforske den manuelle oppsettprosessen som
kreves ved implementering av MongoDB i et self-managed Kubernetes cluster uten
hjelp fra en operator. Den alternative fremgangsmåten innebærer et provider-
managed Kubernetes cluster og bruk av applikasjonsspesifikke operatorer for å
konfigurere applikasjoner til å kjøre i et Kubernetes cluster. Kartlegging av om-
rådene kompleksitet og enkelhet innenfor den manuelle fremgangsmåten er et
verdifullt bidrag til feltet DevOps, Development og IT Operations, med tanke på
om man bør belage seg på tredjeparter eller gjøre det selv. I prosessen med å skaffe
praktisk erfaring for å rettferdiggjøre en anbefaling av en fremgangsmåte fremfor
en annen, ble et self-managed Kubernetes cluster initialisert ved å bruke Azure
VMs og kubeadm før et replikasett med tre MongoDB-forekomster ble implemen-
tert ved bruk av et StatefulSet og en sidecar container. Oppgaven legger vekt på
alle veisperringer på veien mot å oppnå denne arkitekturen og reflekterer over
hvilke konsepter som krever spisskompetanse innenfor domenet. Reisen viste at
den største utfordringen ved å velge manuelle fremgangsmåter når man arbeider
med et system som består av mange komponenter, er at det er unike konfigur-
asjoner for hver varierende komponent. Avhandlingen konkluderte med at det
er relativt raskt og enkelt å sette opp et self-managed Kubernetes cluster, samti-
dig som man bevarer frihet og kontroll over clusteret. På den annen side ble det
ikke anbefalt å unngå å benytte seg av en operator for å konfigurere en stateful
applikasjon til å kjøre i et Kubernetes-miljø.

v

Acknowledgments

With this section I wish to express my gratitude towards people that have been
central buildingblocks in developing this final construction being my master thesis.
Throughout my journey of working on this thesis I have been continuously accom-
panied by my supervisor, Svein Erik Bratsberg, through both remote and physical
guidance. He has been a source of motivation, self-confidence and courage. I also
want to thank him for always being available and supportive.

Next, I want to thank Yngve Molnes, an experienced developer in the field of
Kubernetes, who generously provided me with his knowledge and expertise. His
technical guidance through pair programming and remote consultancy has been
central for accomplishing the experiments connected to this thesis.

Lastly, I wish to thank my institute, IDI, at NTNU, for financing the resources
obtained on Azure, which was essential for my research.

vii

Contents

Abstract . iii

Sammendrag . v

Acknowledgments . vii

Contents . ix

Figures . xi

Tables . xiii

Code Listings . xv

Acronyms . xvii

1 Introduction . 1

1.1 Thesis Goals . 1
1.2 Outline . 2

2 Background . 3

2.1 Containers and Container Orchestration Tools Explained 3
2.1.1 Containers . 4
2.1.2 Container Orchestration Tools 4

2.2 Benefits of Containers and Container Orchestration 6
2.3 Kubernetes Commercial Usage . 7
2.4 Evolution of Containerizing Stateful Applications 8

2.4.1 Volume Plugins, Persistent Volumes, Persistent Volume Claims
and Storage Classes . 9

2.4.2 StatefulSets . 10
2.4.3 Operators . 10

2.5 Alternatives for Cluster Initialization and Stateful Application De-
ployment . 11
2.5.1 Self-Managed or Provider-Managed Cluster 11
2.5.2 Using an Operator or not . 14

2.6 Similar Research . 15
2.6.1 The Approach . 16
2.6.2 Results . 18

3 Method . 21

3.1 Exploratory Environment . 22
3.2 Experimental Environment . 22

3.2.1 Cluster Setup . 22

ix

x Standeren: MongoDB in K8s

3.2.2 Application Setup . 24
3.2.3 General Considerations Concerning Manual Setup 35

3.3 Information Gathering . 38
4 Conclusion . 39

4.1 The Final Setup . 39
4.2 Answers to the Research Questions . 41

5 Future work . 45

5.1 Comparing Manual and Automated Approach 45
5.2 Testing Different Operators’ Complexity 46
5.3 Comparing Performance of Different Persistent Volume Kinds 46
5.4 Comparing the Manual Setup Process Between Different Databases 46

Bibliography . 47

A Output from MongoDB . 51

B Configuration Files on Master . 55

Figures

2.1 Logic architecture of VM (left) and containers (right). 5
2.2 Overview of the experimental setup of MySQL. 16
2.3 Overview of the experimental setup of TiDB. 17
2.4 Overview of the experimental setup of CockroachDB. 17

3.1 Cluster setup of three Azure VMs. 25
3.2 MongoDB applied on cluster. 26
3.3 MongoDB status immediately after applying. 27
3.4 MongoDB applied to the cluster as a Deployment. 27
3.5 MongoDB applied to the cluster as a StatefulSet. 28
3.6 Initializing the MongoDB replicaset with commands in pod specific-

ation. 29
3.7 Output when running rs.status() command from MongoDB on the

PRIMARY MongoDB instance on worker0. 31
3.8 Calico ippools output. 31
3.9 Output of route -n from master node before editing ippools. 32
3.10 Editing the configuration for Calico ippool. 33
3.11 Calico ippools output after edited ippool configuration. 34
3.12 Output of route -n from master node after editing ippools. 34
3.13 How internal pod-communication is achieved in an Azure/Calico

environment. 35
3.14 Status of LoadBalancer service running in cluster. 35
3.15 External connection to MongoDB from the master node with port-

forwarding. 35
3.16 A possible solution to gaining external connection to the application. 36

4.1 Final Kubernetes cluster architecture. 42

xi

Tables

3.1 Inbound ports on the master node. 24
3.2 Inbound ports on the worker nodes. 24

xiii

Code Listings

2.1 Command for viewing environment variables that are set for the
kube-apiserver. 13

2.2 Command for viewing environment variables that are set for the
ETCD. 13

3.1 Command for viewing pods details. 26

A.1 Output from rs.status() from mongodb instance on worker0 after
editing Calico ippools. 51

A.2 Snippet of output from container logs. 53

B.1 Custom dockerfile for MongoDB image with networking tools in-
stalled. 55

B.2 Headless service for MongoDB replicaset. 55
B.3 Secret for MongoDB credentials. 56
B.4 Statefulset for three replicas of MongoDB. 57
B.5 Role-based access control. 58
B.6 StorageClass. 59
B.7 Persistent Volume for worker 0. 59
B.8 Persistent Volume for worker 1. 59
B.9 Persistent Volume for master. 60

xv

Acronyms

AKS Azure Kubernetes Service. 13, 25, 45

AWS Amazon Web Services. 4, 8, 9, 13, 38

CIDR Container Inter-Domain Routing. 23

CIS Center for Internet Security. 13

CNI Container Network Interface. 23, 24, 30, 32, 39, 40

DNS Domain Name System. 6, 10, 27, 33, 34

EC2 Elastic Compute Cloud. 8

EKS Amazon Elastic Kubernetes Service. 13, 25, 45

GKE Google Kubernetes Engine. 4, 13, 16, 25, 45

OS Operating System. 3, 4

PV Persistent Volume. 9, 10, 26–28, 42

PVC Persistent Volume Claim. 9, 10, 26–28, 40, 42

RBAC Role-based Access Control. 13, 29

VM Virtual Machine. iii, v, xi, 4, 5, 7, 22–24, 40, 41

YCSB Yahoo! Cloud Serving Benchmark. 46

xvii

Chapter 1

Introduction

If there would been a nomination of the hippest technology the past years, I would
place my bet on one candidate for one of the top ratings - Kubernetes. Compan-
ies worldwide are thirsty after developers who posses knowledge in this domain.
Kubernetes’ ability to easily scale allows companies to deliver their services to their
customers with a sky high availability. They host thousands of microservices in
pods running in the cloud. Actually, the physical limit of pods running in a Kuber-
netes cluster is 150 000 pods![1] This appeals even to the companies that have a
certain architecture or services which may not make Kubernetes the optimal host-
ing environment, but just because it is trending. The technology is mainly designed
to handle stateless applications, but with the help of new Kubernetes concepts and
big brains, stateful applications can also be hosted. However, incorporating this
technology into your company’s infrastructure – and let alone if your company’s
infrastructure rely on stateful applications – require high domain knowledge. The
community highly recommends to take advantage of aids simplifying both cluster
initialization and application deployment and management. This brings us to the
essence of this thesis; figure out how difficult the manual approach really is.

1.1 Thesis Goals

This thesis encapsulates the process of an exploration of deploying a stateful ap-
plication – MongoDB in particular – in a self-managed Kubernetes cluster, without
the help of an operator. What these terms means and what the process involves
will become clear in Chapter 2. Moreover, the goal of exploring this is to con-
firm or deny what seems to be the general opinion in the Kubernetes community -
admittedly that one should utilize a provider-managed cluster and an application-
specific operator when deploying a database in Kubernetes. We define the thesis
goal achieved when the following questions can be adequately answered:

1. How much overhead is added to a setup process if choosing a self-managed

1

2 Standeren: MongoDB in K8s

Kubernetes cluster?
2. Is the overhead added to the manual setup process above viable, with in-

creased freedom taken into account, to consider the approach for your com-
pany or personal development?

3. How much overhead is added to a setup process if avoiding an operator in
the deployment of MongoDB in a Kubernetes cluster?

4. Is the overhead added to the manual setup process above viable, with in-
creased freedom taken into account, to consider the approach for your com-
pany or personal development?

1.2 Outline

This master thesis will begin by covering some basics concerning container and
container orchestration technologies, before providing a section on how this tech-
nology is used commercially as of today. All this will be found in Chapter 2,
Background, which is based on the specialization project delivery in the subject
TDT4501 at NTNU Computer Science. This chapter also includes a section present-
ing the considerations that should be done when facing the choice between a self-
or provider-managed cluster and using an operator or not. In the same chapter
there will be a section presenting an example of a similar previous research done
on database usage in the container orchestration field. Following up, Chapter 3,
Method, will explain the approach of the experiment. It will cover the specific-
ations of the experimental environment and how the environment was set up,
including how the application – meaning MongoDB – was set up. Different ap-
proaches, as well as the challenges met, towards the desired application setup will
be addressed in this section. Chapter 4, Conclusion, will discuss the setup process
leading to a conclusion of the master thesis, whether or not you should seek help
in a provider-managed cluster and whether or not you should apply an operator
for your stateful applications running in Kubernetes. Finally, Chapter 5 will ad-
dress some possible expansions of the experiment and alternative approaches to
make within the specific field of databases in a containerized environment.

Chapter 2

Background

This chapter will cover the research made connected to the topic of this thesis
- Exploring the setup of MongoDB in a self-managed Kubernetes cluster without
the help of operators. First, it will cover what containers and container orches-
tration tools are, in particular Docker and Kubernetes, which are the technologies
of the most relevance today. Following up is a section highlighting two differ-
ent approaches on how a Kubernetes cluster can be initialized and how stateful
application deployment can be done. Alternative approaches for cluster initializ-
ation comes in terms of managed or self-managed, while alternative approaches
for stateful application deployment comes in terms of using an operator or not.
Further, the benefits of such technologies will be discussed in addition to the fields
where these technologies are not optimal yet. Then, a status as of today when it
comes to container usage and container orchestration usage, as well as the com-
mercial usage of databases in such environments, will be presented. Finally, a
similar research done on the field of databases in a containerized environment
will be addressed.

2.1 Containers and Container Orchestration Tools Explained

Application development has evolved over the years to be more complex, con-
sisting of more components and dependencies, it can be written in an unlimited
amount of different languages and there are many underlying Operating System
(OS) to adapt to. This flexibility in the field of application development has on
the other hand led to a time consuming and troublesome work for the opera-
tion teams. Allowing the application to be so depended on other libraries and on
their underlying OS makes them difficult to update and will very often lead to
questions like "why doesn’t it work on my machine?". These struggles forced IT
engineers to find a way to abstract the application from the underlying OS and
make updates easier and faster by isolating the application. As a result, containers
was considered an attractive technology to conquer this problem in the 2000s [2].

3

4 Standeren: MongoDB in K8s

Containers was actually developed as early as in 1979, but it needed to take an-
other 20 years before the technology saw its area of use. However, the technology
became more available in 2008 through the inclusion of container functionality
within the Linux kernel [3]. Also, the launch of Docker open-source container
platform in 2013 gave containers even more attention. Containers are simple to
maintain and manage in small quantity, but as organizations often has a need of
scaling their applications to increase performance, the amount of containers can
reach a number that is too high to manage manually. To ease the operation team
for this, container orchestration tools were introduced. With such tools operation
teams could run their application in an automated cluster that manages failover,
updates, loadbalancing and scaling. To conclude, containers and container orches-
tration tools unarguable provide the industry with valuable implementations and
features, but how does these technologies actually work?

2.1.1 Containers

Containers are lightweight units of software that packages code and dependencies
that allow the program running inside to be isolated from its underlying environ-
ment. The term lightweight means that they do not require a dedicated OS per
container - they share the underlying OS of the host server [4]. Being lightweight
units of code they spin up fast and can be destroyed fast. In contrast, VMs, which
possesses many of the same features as a container, must run with its own OS.
See Figure 2.1 that illustrates the differences between a VM and a container. In
commercial use today there are many vendors of container technology including
Docker, Amazon Web Services (AWS) Fargate, Google Kubernetes Engine (GKE)
and many more, where Docker is the most used one by far [5].

In order to run, or initiate, a container, an image must be created first. An image
is made by building a dockerfile which describes – with command lines – how to
start a container with an application inside it while referring to where the code
for the application can be found on the local machine.

2.1.2 Container Orchestration Tools

A container orchestration tool is responsible for running some sort of application
on a cluster of nodes without administrative impact from an operation team. There
are many vendors on the market offering tools to manage a cluster of machines
running many containers each. Kubernetes, Docker Swarm and Apache Mesos are
some to mention the most common ones. Among these, Kubernetes is definitely
the most popular. Before Kubernetes can spin up an application, a Kubernetes
cluster must be deployed, which can consist of nodes being both physical and
VMs. The cluster is bootstrapped by installing Kubernetes critical software, being
kubeadm, kubelet and kubectl, on the nodes.

• Kubeadm is a tool tailored specifically for cluster bootstrapping, including

Chapter 2: Background 5

Figure 2.1: Logic architecture of VM (left) and containers (right).

initializing a cluster, joining a cluster, resetting a node, recreating a cluster
join-token, upgrading a cluster and more.
• Kubelet is a piece of software running on each node that administrates that

pods running on the particular node are satisfying the pod specifications –
in shape of YAML files – applied to the pod through the apiserver.
• Kubectl is the command line tool used for managing the cluster and com-

municating to the cluster, issued from the master nodes’ host terminal.

After installing the essentials, the cluster gets initialized by calling a kubeadm init
command from a node designated as a master node. The maintaining nodes that
should handle workloads, being workers, is then added to the cluster by copying
and running a kubeadm join command that was issued from the master.

For Kubernetes to be able to automatic manage and maintain all the containers in
the cluster, there are many configuration files needed, in addition to logic abstrac-
tions of software units. These configuration files are mostly written in the markup
language YAML due to the in general higher user-friendliness, even though JSON
can be used interchangeably in almost all scenarios. The fundamental files needed
for an application to run and be accessed are a Deployment file and a service file
[6]. However, a so-called StatefulSet configuration file can replace a Deployment,
but more details on this down the line. It is also worth mentioning that configura-
tion files that describe different concepts in the Kubernetes world can be grouped
together in the same file, but following best practice you should only group con-
figurations of concepts that have a close connection.

Deployments

A Deployment, in Kubernetes, is a description of a set of pods, where a pod is a set
of containers running applications. The description provides e.g. information on
how many pods to run, how many containers to run inside, what image the con-

6 Standeren: MongoDB in K8s

tainers shall run, how much RAM and how much CPU the containers should use.
When the Deployment is applied to the Kubernetes cluster all containers inside all
the pods spins up automatically. From inside the pod, the containers are accessed
by using the pods’ IP-address, or localhost, and a corresponding port, which its
port-mapping is defined in the Deployment YAML file through a NodePort field.
Explicit access to a container from outside the pod is therefor not possible and
must go through the pod’s IP-address. Since pods are ephemeral, meaning that
they get created and destroyed dynamically, they also change IP-addresses dy-
namically.

Services

A service, in Kubernetes, is a component in the cluster that is a workaround to
handle the frequently changing pod IP-addresses when pods are communicating.
To enable stable communication between two pods, e.g. a pod running frontend
code and another pod running backend code, the frontend pod can communic-
ate with the backend pod through the Domain Name System (DNS) name of the
service [7]. The service will always be accessible for the application pod through
this name since the service is configured with a static clusterIP. A DNS service in
the cluster will map the DNS name to the IP-address of the service and route the
request to the service. A selector on the service will use the portnumber triggered
to select all the pods with the corresponding name, e.g. api, and pass the requests
to the correct pods. In addition the service is able to load balance the traffic sent to
the set of pods with the requested name to increase performance and availability.

Other Kubernetes concepts also exists, such as Secrets, ConfigMaps and a couple
ones related to successfully running stateful applications. The latter being State-
fulSets, Persistent Volumes, Persistent Volume Claims and Storage Classes, which
are further explained in Section 2.4.

2.2 Benefits of Containers and Container Orchestration

As mentioned above a huge advantage of containers and container orchestration
tools is to ease the management work for operation teams in terms of neglecting
OSes from the development process, automatic updates, scaling and failover, but
there are more benefits [8].

Rapid Development and Testing

Development and testing are two sides of the same story, at least in agile devel-
opment. Developers continuously test new code snippets during development by
running the application locally, or by having different kinds of tests that must be
passed to be able to push new commits to a version controller tool like git. This
process is simplified with containers because container images are quick and easy

Chapter 2: Background 7

to update with new code since they, being lightweighted, spin up fast. The co-
operation between testers, developers and operators also gets improved by the
guarantee that all units will run the application with the same requirements and
dependencies so misunderstandings can be avoided.

Lower Costs

For organizations to develop applications today, they will probably need servers
for running both a testing environment and a production environment. These serv-
ers may be VMs or physical machines, but anyway they will require more resources
which implies higher costs. In addition, you might also get more power and stor-
age than you actually need, which is a waste of money. In contrast, containers
are open-source and free to use. The portability of containers is also a source of
saving since you wont need to pay someone to configure the host machine and
install all required dependencies.

Improved Security

Containers are secure by nature. Their ephemeral property, resulting in 54% of
them existing for five minutes or less [9], provides them with the mechanism of
quickly overcoming software vulnerabilities. Another property increasing security
is the fact that they are isolated units. Despite these natural security measures,
one should be careful with container images. The images are executable code and
is a popular target for tampering [10].

2.3 Kubernetes Commercial Usage

The adoption of container technology in technical organizations is growing in an
incredible speed. A prediction says that by the year 2025, 85% of organizations
will run containers in production. This is an increase of more than 55% from the
state of the art in container-usage in production[11]. Another survey can reveal
that Kubernetes is on the top 3 appreciated platforms used by developers [12].
When it comes to what companies that actually use these technologies, there are
many to mention. Some examples are Spotify, Pokemon Go, Tinder and MobiDev.

Spotify

Spotify, the world’s largest music streaming service provider, is an early adopter
of microservices and Docker as they introduced these in 2014 [13]. They actually
developed their own container orchestration system named Helios where they
hosted their services. However, having a small team inside Spotify working on op-
timizing Helois wasn’t efficient enough considering the fast growth of end users. In
2019 they were able to migrate some of their workloads seamlessly over to Kuber-
netes, but the possibility to scale introduced a challenge in managing multiple

8 Standeren: MongoDB in K8s

services. As a workaround, Spotify developed their own plugin for the Kubernetes
API called Backstage which is a platform for building developer portals. Today the
company has over 1600 production services running on Kubernetes.

Pokemon Go

With the use of Kubernetes, Pokemon Go could establish hubs all over the globe
providing higher availability. This was quite helpful, taken in account, the more
than 20 million daily users the company has.

Tinder

When switching their platforms to Kubernetes, Tinder were able to reduce the
waiting time for Elastic Compute Cloud (EC2) instances down to seconds. An EC2
is a virtual server in AWS terminology where an AWS cloud compute server is
provisioned to an AWS subscriber if requested [14]. Compared to the previous
EC2 waiting time on multiple minutes, the company experienced a significant
reduction in cost when migrating to Kubernetes.

MobiDev

MobiDev had another kind of issue to solve with the usage of Kubernetes. One
of their projects, a Point of scale (POS) software and venue management system
adopted by a lot of bars and restaurants, needed a new strategy [12]. They wanted
to make predictions of sales for the next period for each venue by the use of an
AI-based forecasting system. Kubernetes made this task solvable by providing real-
time computing resources optimization by offering auto-scaling.

In general, Kubernetes and containers are suitable, and tempting, choices for de-
velopers and companies that needs to scale big. This property pairs very well with
Machine Learning and Artificial Intelligence and is predicted to be a combination
that will be seen quite frequently in the future [12].

On the other hand, there are scenarios where containers might not be the best
choice. Examples of such scenarios are for projects that are simple and small,
consumes a tiny user base or has a simple architecture. Another scenario where
Kubernetes might not be the best choice, is when dealing with stateful applica-
tions – in particular – databases. At least this is the general perception in the tech
community, but is it true?

2.4 Evolution of Containerizing Stateful Applications

Considering the ephemeral characteristic of containers, they clearly are not made
for stateful applications where data must be stored persistently to ensure the cor-
rect behavior of such applications. From the early days of container technology,

Chapter 2: Background 9

developers were strictly advised to steer clear of running databases in Kubernetes
[15]. Instead, many stateful applications needed to change their architecture to
make the client responsible for remembering the state of the application by the
use of session cookies and local storage. If the need of a database however was
unavoidable, the solution was almost always to host the database on a server
outside of the Kubernetes cluster. This was especially the case if the application
was relying on transactions, meaning that the ACID property delivered by rela-
tional SQL databases was crucial [16]. When it comes to applications where one
can accept eventual consistency, NoSQL databases has become acceptable to use
in a containerized environment due to their ability to scale which is a necessity
in such environments. Also, the newer database alternative, NewSQL databases,
have properties that make them a promising option in the world of containers as
they combine online ACID transaction processing with the speed and performance
delivered by NoSQL. However, as container technology continues to mature, de-
velopers strive for adapting the data layer to make it an even better fit for contain-
ers. As a result of this dedicated work, distributed SQL databases was designed to
seamlessly integrate with microservices like Kubernetes while still being compat-
ible with the SQL language. Being distributed by nature makes it easier to manage
in a clustered environment. In order to make this evolutionary change allowing
databases to run in containers and container orchestrations, adaption on the data
layer wasn’t the only change needed. Kubernetes has extended their framework
with additional API objects to better facilitate for persistent storage.

2.4.1 Volume Plugins, Persistent Volumes, Persistent Volume Claims

and Storage Classes

Since containers have a short lifecycle, the responsibility for storing data in a per-
sistent matter is outsourced to a third party through a volume plugin. Currently,
Kubernetes supports 16 different kinds of volume plugins, whereas Azure Disk,
AWS Elastic Block Store, Google Cloud Engine Persistent Disk and Network File
System storage, are some examples [17]. The connection between the volume
plugins and the cluster is achieved with objects called Persistent Volume (PV),
Persistent Volume Claim (PVC) and in some cases Storage Classes. PVs are pieces
of storage in the cluster that are provisioned manually by an administrator or auto-
matically by the use of a so called storage Class. PVs are resources in the cluster
in the same way as pods are, created by applying a configuration file, but they
only consist of meta-data of the external storage unit, the volume plugins. When
the pieces of storage are needed by an application a PVC is created that connects
the application to a suitable persistent volume, depending on properties like size
and access modes. Requested size and access mode can either be defined explicit
in the fields of the PVCs YAML file or there can be a field in the PVCs YAML file
pointing to a specific kind of Storage Class, implicitly defining the values of these
properties. A Storage Class must have defined a provisioner which determines
what volume plugin is used for provisioning PVs. All new updates to the applic-

10 Standeren: MongoDB in K8s

ation that results in changes in the state will be added to the storage unit of the
PV that is bound to the pod through the PVC. If, and when, the container run-
ning the stateful application, crashes, a new container running the same image is
created and the storage needed to retain the same state as prior to the crash is
mounted back to the stateful application. Where to mount the data back into the
new pod is defined as part of the pod configuration file in shape of a path to the
volume called "MountPath" under the definition of the containers [18]. Where the
data that should be mounted back to this path is to be found, being defined by
the PVC, is however often defined on a higher level of abstraction than the pod
configurations – namely in the StatefulSet specifications.

2.4.2 StatefulSets

As an alternative to using a PVC that is independent from your stateful applica-
tion running inside a pod, StatefulSets allow managing multiple replicas of the
application and corresponding PVCs at the same time [19]. Running multiple rep-
licas without a StatefulSet introduce operative overhead in terms of handling the
Deployment related requirement that makes the application able to handle con-
current read-write operations of the same file. Instead of this approach, Stateful-
Sets was introduced to replace Deployments for such applications. StatefulSets are
similar to Deployments in the sense that they manage pods based on an identical
container spec, but they differ in the sense that StatefulSets maintain an identity
for all the pods [20]. In order to maintain the identities for the pods a headless
service is required. A headless service is a service that does not have any clusterIP
inside the pod. It creates internally necessary endpoints to expose pods with DNS
names in order to reach a specific pod making it possible to consistently run the
same pod on the same node as its corresponding PV retains.

2.4.3 Operators

An additional step in the journey towards containerizing stateful applications is
the introduction of operators. Operators are application-specific software that
automates the deployment and management process to applications on Kuber-
netes. This is especially the case when it comes to deploying stateful applications,
such as databases. Since all stateful applications require a unique process of de-
ployment and management that the vendors have the most domain knowledge
about, the vendors themselves have to develop the operator for their specific state-
ful application. However, the quality and complexity of the different operators
vary a lot. Some database operators offers nearly any features that simplifies the
process, making them more troublesome than useful.

Operators work by exploiting the Kubernetes extension Custom Resources. A cus-
tom resource is a modification of the Kubernetes API involving an additional end-
point that can be custom configured. This resource can be interpreted in the same
way as a pod or a StatefulSet. This is only a Kubernetes property that operat-

Chapter 2: Background 11

ors exploit, but a control loop mechanism is what they really are. A control loop
mechanism is a Kubernetes core property that allows for its automation by always
checking the state of the cluster and match it with the desired state stored in the
ETCD 1 created from the applied YAML files. However, the control loop mechan-
ism that the operators works with makes sure that the custom resources obtain
the desired state in the cluster.

2.5 Alternatives for Cluster Initialization and Stateful Ap-

plication Deployment

As mentioned Kubernetes is a sought tool in the tech field these days due to
its ability to automate deployment in a large scale. However, this is not neces-
sarily always true. Global Cloud providers, such as Google and Amazon, invest
much resources in their provider-managed Kubernetes cluster solutions. Choosing
a provider-managed cluster solution simplifies the whole process for users migrat-
ing into the Containerized world, but the choice require some sacrifice. Another
concept that liberates the user for a lot of configuration and management when
it comes to deploying a diversity of applications onto Kubernetes, is the operat-
ors. The alternative to exploit the aid provided by operators is to do everything
manually, introducing a lot of overhead.

Following is an explanation of the pros and cons linked to the choices one has to
make. The section is outlined with focus on one aspect at a time; freedom, sim-
plicity, control, security and cost, first when discussing self-managed or provider-
managed clusters, and again when discussing using an operator or not.

2.5.1 Self-Managed or Provider-Managed Cluster

Freedom

Building your Kubernetes cluster as a self-managed cluster gives you the free-
dom to configure the cluster to your desires [21]. You have direct access to the
master node and the control plane. This implies that you can issue kubectl com-
mands directly from the master in contrast to a provider-managed cluster where
the provider have their own managed service to control the master node(s). By
abstracting away this layer from the user, the user are not able to access or control
any of the following;

• Kube-API-server: Validate and configure data for all objects that can be
reached through the API.
• Kube-controller-manager: A daemon pod running in the control plane that

is responsible for maintaining the desired state of the cluster by running a

1The distributed key-value store of Kubernetes, which ir’s name comes from the directory /etc
combined with "distributed".

12 Standeren: MongoDB in K8s

non-terminating control loop over the API.
• ETCD: The Kubernetes specific datastore where all cluster state-related data

is stored.
• Kube Scheduler: Responsible for assigning workloads to the workers in terms

of pods based on data in ETCD.

More of the potential freedom obtained by managing your own cluster is also
discarded when providers tends to inflict you with vendor lock-in. Even if intended
or unintentional, vendors will adapt their services to fit better (or maybe only fit)
with other services that they also offer. In addition, providers will not give you the
freedom to use the latest Kubernetes releases if their services are not designed to
handle them.

Simplicity

When considering the simplicity on the other hand, building your Kubernetes
cluster as a provider-managed cluster simplifies the whole process from initial-
izing to management and maintenance. Relying on a provider takes care of most
of the duties required keeping the cluster running. Doing all the configurations
yourself is almost doomed to be troublesome. The process will be way more time
consuming than the provider-alternative since all necessary packages and tools
must be downloaded and internal networking must be manually configured.

Control

Considering the control aspect of the alternatives, choosing provider-managed
clusters forces you to give away some privacy since you are hosting all your work-
loads on the providers control. However, unless your cluster is used for confiden-
tial military workloads or building a cure to cancer that is worth a billion dollars,
this is not the biggest sacrifice.

Security

Another important aspect providers will (or at least should) take care of for you
is the security. Especially important is it to secure and not publicly expose the
API server that acts as an entrypoint to all your nodes and the containers running
on them [22]. Ensuring that the ETCD is not publicly exposed is also something
the provider should handle for you. Attackers constantly have bots searching for
open APIs to Kubernetes clusters and can use them for malicious actions. An ex-
ample of such actions was when Tesla’s erroneously open consoles was abused
for illegal cryptocurrency mining operations. Considering the security from a self-
managed cluster point of view, doing-it-yourself is obviously not to prefer when
comparing to provider-managed, unless you are never suppose to expose your
cluster for production anyway. Despite this, there are small measures to apply on
your self-managed cluster to make it at least more secure. Running the command

Chapter 2: Background 13

in Code listing 2.1 provide you with an output of all environment variables that
are set for the kube-apiserver. These could then be compared with the security
measurements recommended by the Center for Internet Security (CIS) Founda-
tion Benchmarks2. Ensuring that the ETCD is not exposed can also be done in a
self-managed cluster by running the command in Code listing 2.2 and controlling
that the security essential environment variables are set. The same can be done
enabling Role-based Access Control (RBAC) as an authorization-mode will also
make sure not all cluster administrators can access all services in your cluster.
Especially should the cluster-critical namespace kube-system be restricted to cer-
tified cluster administrators. Another security issue that must be addressed when
choosing a self-managed cluster is the default open network between pods in the
cluster. This should be avoided by customizing the network configurations by cre-
ating the Kubernetes object called NetworkPolicy, when going into production.
The simple reason for this is that if a malicious attacker unfortunately should get
access to creating new pods the attacker is able to access the whole cluster through
the open internal network.

Code listing 2.1: Command for viewing environment variables that are set for
the kube-apiserver.

andrea@masternode$ ps -ef | grep kube-apiserver

Code listing 2.2: Command for viewing environment variables that are set for
the ETCD.

andrea@masternode$ ps -ef | grep etcd

Cost

Of course, the benefits you get by choosing a provider-managed cluster surly does
come at a cost. The services from the providers are expensive. On the other hand,
even though a self-managed cluster is free, you do need to take into account the
costs associated with continuous infrastructure and maintenance costs. If you do
not obtain – or have employees that obtain – the knowledge and experience with
managing a Kubernetes cluster, the general tip is to steer clear of doing it yourself.

The most common provider-managed Kubernetes clusters are the following:

• Azure Kubernetes Service (AKS), created, delivered and managed by Mi-
crosoft Azure.
• Amazon Elastic Kubernetes Service (EKS), created, delivered and managed

by AWS.
• GKE, created, delivered and managed by Google Cloud Platform.

2https://www.cisecurity.org/cis-benchmarks/

https://www.cisecurity.org/cis-benchmarks/

14 Standeren: MongoDB in K8s

2.5.2 Using an Operator or not

Freedom

Similar to taking the advantage of a provider for your cluster management in
exchange for freedom, the same sacrifice has to be made when taking advantage
of an operator for your application management. There is also a positive side of
the freedom aspect when it comes to operators. It allows the operator developer
to customize the feedback from the kubectl describe [custom resource] command,
which provides the cluster administrators with the information that best suits the
particular application. However, this kind of freedom is only experienced by the
operator developers, not the end-users.

Simplicity

The most valuable advantage of using an operator is, without doubt, the simplicity.
Deploying a stateful application without the use of an operator is very trouble-
some and time consuming and it requires a lot of domain knowledge connected
to the exact database. Avoiding these challenges are the essence of an operator.
Assuming that the operator provider has developed a good operator, it should ease
the user of having to create, run and update the cluster of database instances, as
well as having to synchronize the data. On the other hand, this approach does
add another level of complexity to your deployments. You now need to check and
maintain the controller as a part of the operator, to ensure that it runs as it should.

Control

When introducing an operator to your cluster, you do unfortunately need to let go
of some control. The user will not have control over what exactly is deployed in its
cluster - this is abstracted away by the operator. In addition, the operator strive to
maintain a certain state so it may unwillingly overwrite user-added configurations.

Security

Security is always an aspect of high significance. However, using operators from
trusted third-parties is per se not a security risk. The security risk is introduced
when installing operators from non credible sources or when trying to build your
own operator. Operators are very complex and difficult to design without intro-
ducing any risk of failures or security breaches considering that operators take
advantage of core Kubernetes concepts; the API, controllers and Kubernetes re-
sources. These concepts should not be tampered with, but treatd with caution.

Cost

When addressing the cost aspect of choosing an operator or not, there are few
arguments towards avoiding it. Most operators are open source and those vendors

Chapter 2: Background 15

that offers commercial, complex operators to deploy their applications, tend to
also offer a free, less complex operator. In addition, doing it yourself will cost
both time and resources in order to collect all the necessary domain knowledge
to manage without an operator. This involves both deploying the application as
well as maintaining it.

Functionality

In addition to the above aspects to consider when standing upon the choice of
applying an operator or not, there is one last major aspect to take into account.
Applying an operator is actually critical for achieving the correct functionality of
(most) databases in Kubernetes. Or at least if the intention of using Kubernetes
for your application is to exploit its ability to scale. Kubernetes StatefulSet can
not alone be let in charge of gracefully scale a set of database instances from, for
example, 6 to 4. The StatefulSet is not aware of what database is running inside
it, how the data is stored and what the procedure is for replicating the data in
a correct way for that exact database. If this is something you want your cluster
to manage, you will either need to create your own operator or use the operator
provided by the database vendor.

2.6 Similar Research

In 2019 Olle Larsen, hereby referred to as Larsen, wrote his master thesis in co-
operation with Umeå University in Sweden [23]. His thesis title was RUNNING
DATABASES IN A KUBERNETES CLUSTER and it addressed how three different
databases behaved in a Kubernetes environment by evaluating the impact some
Kubernetes primitive operations had on each of them. In Larsen’s case the oper-
ations to evaluate the impact from was scale in/out (horizontal scaling), scale
up/down (vertical scaling), backup and version upgrade. Vertical scaling involves
equipping the nodes with more computing power by for example increasing the
amount of CPUs, RAM and/or memory. This process implies that the workload
running on the particular node that is exposed to the vertical scaling, is moved
to a new node that satisfies the new hardware specifications. Horizontal scaling
means adding more instances to the system that can handle requests or workloads.
The three databases Larsen investigated on was MySQL, TiDB and CockroachDB.
The goal of Larsen’s thesis was achieved if he could answer the following two
questions:

• How large is the gap between Kubernetes capabilities and the requirement
of stateful database services?
• How does different database solutions behave while being hosted in Kuber-

netes and operated on, and what is the impact of operating on both client
performance and resource usage of the database?

16 Standeren: MongoDB in K8s

2.6.1 The Approach

Larsen’s approach to possessing results of the impact of the operations above star-
ted by deploying the databases on a managed Kubernetes cluster. He used the
one provided by Google, GKE. When using GKE as the cluster provider he could
also benefit from the features provided by the Google Cloud Platform, such as
node pools. With node pools Larsen could dedicate different groups of machines
to have different configurations. This allowed him to have dedicated nodes for
monitoring, benchmarking operations and database workloads.

After having the cluster up and running, he deployed the three databases one by
one using custom node pools for each database. This was necessary since he re-
lied on having unique architectures for each database. Figures 2.2, 2.3 and 2.4 of
MySQL-, TiDB- and CockroachDB-architecture respectively, illustrates how much
the architectures of the three different databases varied. For the application de-
ployment itself, Larsen utilized two custom operators to configure and manage
two of the databases. For MySQL he used the Presslabs MySQL Operator, for TiDB
he used the TiDB Operator and for CockroachDB he only utilized a StatefulSet
since the single operator option for CockroachDB, named Rook, did not offer any
additional valuable features.

Figure 2.2: Overview of the experimental setup of MySQL.

For all the setups Larsen equipped the nodes dedicated to perform database-
related tasks with a persistent storage in shape of a 100 GB, network attached, SSD
persistent disk. The data that throughout the experiment was stored on these disks
was generated by SysBench. SysBench is the tool Larsen used to benchmark the
different databases in terms of client-sided metrics, being throughput and latency.
Evaluating these metrics revealed how the client, being the database, handles the
operations performed on the databases. In addition to generate the data and cap-

Chapter 2: Background 17

Figure 2.3: Overview of the experimental setup of TiDB.

Figure 2.4: Overview of the experimental setup of CockroachDB.

ture the client-sided metrics, SysBench also injects the database with queries and
transactions. The generated dataset consisted of 25 tables with 1 million rows per
table, which is equivalent with approximately 6 GB.

While SysBench were able to gather the client-sided metrics, Larsen needed to
set up a manual composition of services to derive the server-sided metrics. The
services Larsen used in the composition was CAdvisor, Prometheus and Grafana.
All the services were deployed inside each node handling database-operations.
As CAdvisor only allows custom configuration when deployed as a stand-alone,
the service was not deployed in a Kubernetes pod in contrast to Prometheus and
Grafana. The two latter was easily deployed and configured with the Prometheus
operator as an aid. CAdvisor acted as the metrics collector by observing and ex-
porting the CPU, memory and network usage at fixed intervals from all containers
running on the host machine. Notice that Larsen chose to observe the memory but
when examining the results he discovered that the operations did not have a signi-
ficant impact on the memory. Furthermore, Prometheus acted as the structuring
unit that stored the collected metrics in a time series database. Lastly, Grafana

18 Standeren: MongoDB in K8s

acted as the visualizer that queried the Prometheus database and aggregated the
time series data before visualizing it with a set of graphs. With these services run-
ning, Larsen were able to observe and obtain how both the client-sided and the
server-sided metrics was impacted when the system was exposed by the Kuber-
netes primitive operations mentioned initially in this section.

2.6.2 Results

Throughout his experiments Larsen were able to obtain valuable results. He presen-
ted his observations by focusing on one Kubernetes primitive operation at a time
and discuss how the different databases’ reactions to the particular operation var-
ied.

When scaling out the Kubernetes cluster, Larsen could observe that the metrics
that had the most impact on all the databases was network rates. Even though
MySQL also experienced this impact, this database differed from the others when
considering the lack of impact on the client performance. A limitation caused by
the usage of the MySQL operator, which forced Larsen to reduce the number of
transactions per second, may be the reason for the lack of impact on this metric.
On the other hand it is quite clear why both CockroachDB and TiDB performed
poorly in terms of network rates. Both databases is built on the principle of data
sharding, meaning that they need to execute data rebalancing when database in-
stances is added to or removed from the cluster. When the new node was added
to the cluster it was the cause of high network receive rate and the three original
nodes was the cause of high network transmit rate. This also caused both data-
bases to experience high throughput and latency due to the new node immediately
needed data from the other nodes to answer client requests. Time-wise the two
databases were however very differentiable - CockroachDB spent 35 minutes on
data rebalancing while TiDB only spent 5.

When scaling in the Kubernetes cluster, MySQL experienced no impact when re-
moving a node due to no need for data rebalancing. MySQL only replicates the
data that resides on one of the other nodes since its a relational database. Cock-
roachDB and TiDB on the other hand experienced negative impact on both through-
put and latency because of the same need to rebalance the data before the node
could be terminated. Again TiDB proves to complete this process significantly
faster than CockroachDB with times on 3 minutes and 9 minutes, respectively.

When scaling up the Kubernetes cluster, all databases applied a method called,
rolling update, meaning that one by one instance of the database is terminated
before deployed again on a new node with the improved computing power. All the
databases had a positive reaction to the scale-up by being able to handle a higher
throughput after the operation, which is an expected result. Another observation
Larsen did was that there was a reduction in throughput for all databases while
terminating each node since all clients that were connected to the database were
not able to query the database during the rolling update. Hence, also an expected

Chapter 2: Background 19

impact.

When scaling down the Kubernetes cluster, all the databases reacted to the opera-
tion similarly to the scaling up, but in an inverted way. The throughput were now
lowered after the rolling downgrade.

When performing a version upgrade on the Kubernetes cluster, similar observa-
tions as when scaling the nodes up and down was observed again. This is due to
the method applied to the cluster during this process is the same as the method
applied when scaling the nodes up and down; rolling update. The only difference
is that the sate before and after this process is the same, in contrast to the ver-
tical scaling where the throughput differs. A version upgrade involves replacing
the database image running in the pod on the node to a newer (in most cases at
least) image, which is in theory synonymous with a new version of the database
software. In order to do so, the pods must terminate and be created again, hence
the need for a rolling update.

When performing backup on the Kubernetes cluster, Larsen could observe differ-
ent impact on the three databases. Again he could report lack of impact on the
client-sided metrics of MySQL. CockroachDB and TiDB both experienced a negat-
ive impact in CPU usage since all the instances of the database needed to transmit
data to a backup pod before this pod could stream the data to Google Cloud Stor-
age. MySQL experienced some increase in network transmit rate because one of
the nodes streamed backup to Google Cloud Storage.

Chapter 3

Method

In this chapter, the method applied in order to be able to answer the research ques-
tions presented in the introduction, is outlined in detail. The process is explained
in a chronological order, from an exploratory testing environment in Minikube,
to a complete and functional StatefulSet of three MongoDB instances running on
a node each where the three nodes acts as members of a self-managed Kuber-
netes cluster. Throughout the explanation of the process, all challenges met and
all possible solutions attempted, will be included. We will start by explaining how
the exploratory testing went by. The second part, being the experimental envir-
onment, will be split up in two parts; the cluster setup and the application setup.
While the cluster setup is quite straight forward, the application setup is more
comprehensive, hence it will be split up in one sections per element in the setup
process that turned out being, in some degree, complex. The elements that will
be examined in detail are the following:

• MongoDB as a Deployment.
• MongoDB as a StatefulSet and volume assessments.
• Enabling communication between containers on different nodes.
• Enabling external connection.

After the setup outline, a section on some general considerations that was made
throughout the process follows. Finally, a section highlighting the importance of
exploiting valuable resources – especially in the tech world where trends and prac-
tices are changing faster than bitcoin changes in value – will find place. To be
specific, the section explains how different knowledgeable people were invited
to share their thoughts and ideas connected to problems encountered in this un-
orthodox approach of deploying a database in a Kubernetes cluster.

21

22 Standeren: MongoDB in K8s

3.1 Exploratory Environment

As a part of the research phase in the subject TDT4501, Specialization Project, the
Minikube platform were explored. Minikube is a technology made primarily for
testing Kubernetes locally. The program allows a seamless setup of a single-node
cluster where one can deploy running pods with kubectl, which is the command
line interface to talk to Kubernetes.

Using Minikube made it easy to test the setup of a database – in this case MongoDB
– in Kubernetes. While performing some simple queries, as well as manipulating
the pods, it was possible to see that the volume plugins worked. Specifically, the
database were created over three pods, data were inserted into a table in one pod,
the pod were killed and restarted revealing that the previous inserted data were
mounted back into the pod.

The exploratory phase could also reveal something else. After using Minikube, the
plan was to test Kubernetes on the physical hardware assigned to the project by
the supervisor. During this process a discovery was made. When bootstrapping the
cluster an error occurred due to an insufficient amount of CPUs. The error stated
the following: [ERROR NumCPU]: the number of available CPUs 1 is less than the
required 2.

3.2 Experimental Environment

For the experimental environment, since the original plan expired due to insuffi-
cient amount of CPUs, cloud technology turned out to be the second best solution.
In addition to being a platform for quick and simple access to VMs, it is also a
more relevant approach in the today’s industry. The choice of cloud technology
fell on Microsoft Azure. Using this platform allows customizing a machine with
a specific operating system, hardware specializations, disk type and size, as well
as assigning a physical region of location. The machines customized for this ex-
periment consisted of one master node, making up the Kubernetes control plane,
and two worker nodes. The master node was a 2 CPU Linux machine with an
Ubuntu 18.04 image, while the workers had 1 CPU each, and also Linux with
Ubuntu 18.04 images. All machines was located in west Europe. For interacting
with the machines SSH connection was set up using Azure portal. Also, inbound
networking between the machines was set up using the portal. However, all direct
interaction with the cluster was done using terminal commands, mainly via the
control plane by passing kubectl commands from the master.

3.2.1 Cluster Setup

Before attacking the assignment on setting up the Kubernetes cluster without a
provider in our back, one need to decide for an approach. All the alternative ap-
proaches involves using some sort of tools that installs necessary software on all

Chapter 3: Method 23

the machines that will be part of the cluster and run a diversity of commands that
initializes and configures the cluster. The different approaches differs in the de-
gree of manual impact required, and consequently the degree of freedom. More
manual impact implies more freedom, and vice versa. The most manual approach
involves using the command line tool, kubeadm, which is the lowest level of in-
teraction that can be. Other approaches, being Kubespray and Kops, exploits ku-
beadm under the hood. Kubespray uses Ansible 1 for deployment and configura-
tion, while Kops simplifies not only deployment and configuration, but also up-
grading, maintaining and deleting the cluster. Kops is very valuable when aiming
for a production-based, high available cluster. Seeing that this is an exploratory
project, we have decided to go for the most manual approach; kubeadm.

Another consideration that one should make is what container runtime to choose.
The common ones are containerd, CRI-O, Docker Engine and Mirantis Container
Runtime. In context of this project the choice of container runtime is rather ir-
relevant since the choice does not impact the manual setup process in any way.
Naturally enough the container runtime chosen in this project was Docker Engine,
being the most common.

The process of setting up the cluster with kubeadm started trivially enough by
possessing access to the three machines. This was done by storing their private
SSH key, generated by Azure, on the local machine and SSH into the VMs. Then
docker, kubectl, kubeadm and kubelet needed to be installed on all the machines
before the cluster could be initialized from the master node with a kubeadm init
command. A crucial part of this command is the option –pod-network-cidr. This
option establishes a subnet on the cluster in terms of Container Inter-Domain
Routing (CIDR) being 192.168.0.0/16, in this case, which is one of a few subnets
that is accepted as a private address space. Also, swap was turned off, meaning
that if the RAM memory space gets filled up, inactive pages are not moved to swap
space to release memory to other processes. This is a common configuration when
working with Kubernetes due to Kubernetes being a highly automated technology
that determines the best available node on which to deploy newly created pods.
If memory swapping is allowed to occur on a host system, this can lead to per-
formance and stability issues within Kubernetes [25]. It is also necessary to open
ports on the nodes so the Kubernetes components can communicate; this is espe-
cially important for the master which must open a port to the api-server, ETCD
datastore, kube-scheduler and kube-controller which together acts as a cluster-
brain. Tables 3.1 and 3.2 lists all the necessary ports that must be opened through
the Azure portal and what their functions are. When initializing the cluster from
the masternode using the masters private IP-address, the output is a kubeadm join
command with a token that are run from the workers to add them to the cluster.
Although being added, the workers maintains in a temporarily NOT READY state.
Finally a Container Network Interface (CNI) is set up by applying an image for a

1Ansible is a software tool that provides simple but powerful automation for cross-platform com-
puter support [24]

24 Standeren: MongoDB in K8s

specific CNI provider on the masternode, which causes the workernodes to change
state to READY.

Name Port Purpose

kube-controller-manager 10252 Lets the kube-controller-manager
continuously control the cluster by
moving the current state closer to
the desired state

kube-scheduler 10251 Lets the kube-scheduler assign pods
to nodes

kubelet-API 10250 Lets the node act as a Kubernetes
node

etcd-server-client-API 2379-2380 Enables communication between
kube-apiserver and ETCD

kubernetes-api-server 6443 Enables creation and manipulation
of all Kubernetes components

Table 3.1: Inbound ports on the master node.

Name Port Purpose

nodeport-services 30000-32767 Enables external access to the services in-
side the cluster

kubelet-API 10250 Lets the node act as a Kubernetes node

Table 3.2: Inbound ports on the worker nodes.

Deploying a CNI to the cluster is a significant step for enabling network connectiv-
ity and network security policy enforcement between workloads [26]. Such inter-
faces are used when it comes to workloads for containers, VMs, and bare-metal,
and there are many to choose from. In this experiment, Calico, was used as the
CNI. When using a CNI in a Kubernetes environment Calico works as an interface
between network providers and Kubernetes pod networking. Applying a Calico im-
age to the cluster creates a new Deployment with a controller pod and a coredns
pod, including one calico-node pod on each node in the cluster. A crucial effect of
applying a CNI to your cluster is that future pods deployed on the cluster will get
assigned IP-addresses in the established subnet from the kubeadm init command.
Figure 3.1 illustrates how the machines in the cluster is configured at this stage.

3.2.2 Application Setup

The process of setting up MongoDB in the cluster is in theory mostly plug-n-play
when using Kubernetes. This however, only applies if all the different YAML files
contains all the necessary fields and if their values match the values of other ne-
cessary fields. With an architecture, a combination of resources and an application
choice that in some way differs from – apparently – all existing tutorials, things

Chapter 3: Method 25

Figure 3.1: Cluster setup of three Azure VMs.

got difficult. First, deploying a self-managed Kubernetes cluster, without any third
party vendor such as AKS, EKS or GKE, lacks documentation and troubleshooting
tips. Yet we were able to set up a functioning cluster as explained above. Second,
deploying databases at all in a self-managed Kubernetes cluster – let alone, Mon-
goDB – is clearly not an everyday-task for developers, leaving behind little doc-
umentation on this topic as well. Third, deploying MongoDB in a self-managed
Kubernetes cluster with a local disk as the volume plugin, is an even rarer topic
with even rarer incidents of suitable tutorials. Also, enabling both internal and
external communication for a MongoDB replicaset in a self-managed cluster with
Calico as the CNI, is – not very surprisingly – a niche knowledge. Finally, there
exists different approaches of running MongoDB on Kubernetes; as a StatefulSet,
a Deployment or a ReplicaSet, which consequently has different standards of pro-
visioning storage, but what differences are however not trivial. In summary, there
does not exist a custom tutorial for this setup, so we needed to create our own.

MongoDB as a Deployment

Before applying a critical eye on the online tutorials, a beginners mistake is to
follow them to the letter without investigating that the prerequisites are fulfilled
and the tutorials goal matches yours. The first step in the right direction in the
process of deploying a three-node replicated MongoDB application on a Kuber-
netes cluster was to mistakenly deploy a Kubernetes Deployment with 1 replica,
meaning 1 pod, which of course was not the intention in a three-node cluster. A
seemingly obvious solution was to adjust the replica amount to 3. See output after
applying the Deployment in Figure 3.2. A first glance at the output of the com-
mand in the Code listing 3.1, which you can see in Figure 3.3, made us believe
that all pods are running and the deployment was successful. This is in some way

26 Standeren: MongoDB in K8s

true, but this setup does not satisfy the architecture that was aimed for, in terms
of being a replicated MongoDB cluster. At this stage the three replicas are totally
independent instances of MongoDB that will not be treated as one stateful applic-
ation by the Kubernetes API. Hence, if one of the replicas would crash Kubernetes
would spin up the replaced pod on a random node with a random name, provid-
ing no guarantees that the initial PV, that was once bounded to the PVC created
along with this new pod, will find the PVC so the data can be mounted back into
the pod. Another issue with this setup, was that all the pods used the same PVC
and PV which will lead to data corruption and strange MongoDB behavior [27].
An example event that could arise is that the pod on worker0 adds a document to
the database, leading to an update of the local volume on that node, and if that
pod failovers to a different node it will mount back the data on the local volume
on the new node - meaning that the previous added document will be out of reach
until a pod is scheduled on the original node. The fact that all pods running on
the workernodes would eventually die and spin up on the masternode, could also
reveal that the usage of "HostPath" as the volume plugin for the PV (which was a
spec designed for the original Deployment of 1 pod) only work in a single-node
cluster, whereas in a multi-node cluster "local" volume should be the equivalent
[17]. Lesson learned from this was that Kubernetes Deployments are suited for
stateless applications or when multiple replicas of pods running stateful work-
loads can use the same volume. It is, however, possible to make this setup work
with a workaround, but that would require a lot of manually management includ-
ing creating a ReplicationController and a service for each replica. Such a solution
is a pitfall of failure when scaling the set up and down. Figure 3.4 illustrates how
the architecture became when deploying MongoDB to the cluster, even though it
was not a functioning architecture.

Figure 3.2: MongoDB applied on cluster.

Code listing 3.1: Command for viewing pods details.
andrea@masternode$ kubectl get pods -n <namespace> -o wide

MongoDB as a StatefulSet and Volume Assessments

Discarding Kubernetes Deployments as an approach to our application setup, the
next obvious Kubernetes concept to apply is a StatefulSet. A StatefulSet is a Kuber-
netes object introduced with Kubernetes 1.5 that simplifies the running of state-
ful workloads in Kubernetes [28]. When applying a StatefulSet to a Kubernetes

Chapter 3: Method 27

Figure 3.3: MongoDB status immediately after applying.

Figure 3.4: MongoDB applied to the cluster as a Deployment.

cluster, the process of how objects gets created differ from a Deployment or a
ReplicaSet. A ReplicaSet is a Kubernetes object that creates identical individual
pods, which is the lower-lever object that Deployments use to delegate the pod-
creation. Being created as individual pods, these pods can all spin up separately.
StatefulSets on the other hand has the unique property that its pods is assigned
stable DNS names, which allows other Kubernetes object to address the pods by
their pod-names. In contrast, pods created by Deployments gets randomly gen-
erated DNS names. The unit responsible for assigning the pods with stable DNS
names is the Headless Service. A headless service is added to a cluster by apply-
ing a YAML file similar to a standard Kubernetes Service, except that its ClusterIP
has the value none. Since a StatefulSet, in contrast to Deployments and Replica-
Sets, creates its own uniquely named pods and corresponding PVCs, a StatefulSet
is created replica by replica. This means that if the first replicas PVC binds to
the, hypothetically, only existing PV, the following replica will enter an infinitely
pending-mode and the third replica will never be created. Before being aware of
this behavior of StatefulSets, the exact scenario did in fact apply. As an attempt
to correct this state we created three identical PVs using "local" as the volume
plugin. When spinning up the StatefulSet with this foundation, an error saying

28 Standeren: MongoDB in K8s

that a persistent volume with name local-pv already exists stopped the process. As-
signing the PVs unique names on the other hand resulted in the PVCs, that are
made from a single PVC Template, did not find the general name of the PV that
they were configured to bind to according to the pod specifications. The solu-
tion was to use a Storage Class that automatically will assign appropriate PVs to
PVCs independently of their names not matching, along with the manually defined
local PVs, while adding "storageClassName" to the the PVC template. When using
local storage on each node as the volume plugin, the Storage Class provisioner
one must specify is "no-provisioner". Applying the StatefulSet YAML to the cluster
with the new starting point resulted in all pods having PVCs that were bound to
their own PV, as intended, but unintentionally all pods did now run on the same
node. Luckily applying NodeAffinity to the specifications of the PVs forced them
to be bound to a specific node, which provided us with an ideal architecture of
our purposes. Furthermore, there is a necessity of having an architecture that is
able to assign a pod-personal volume for each pod, as achieved with StatefulSets
compared to Deployments, when running MongoDB as a replicaset over multiple
pods in Kubernetes. An illustration of the functioning StatefulSet along with the
resulting volume assessment can be found in Figure 3.5. To see the complete con-
figuration files of the StatefulSet, the headless service, the PV and the storageclass
turn to Appendices B.4, B.2, B.7, B.8, B.9 and B.6.

Figure 3.5: MongoDB applied to the cluster as a StatefulSet.

Enable Communication Between Containers on Different Nodes

Even though obtaining an architecture that confirms all theoretical checks of a
checklist, the MongoDB replicaset was not working as expected. For the three
MongoDB instances to communicate by demands from MongoDB and not through

Chapter 3: Method 29

the Kubernetes API, they need to be initialized as a replicaset. This is typically done
from inside each MongoDB instance, but since this application is setup with Kuber-
netes, the command lines that issues this process can be done from the pod spe-
cifications, as showed in Figure 3.6 of a snippet of the pod specification. Before this
was interpreted as a necessity, all seemingly unnecessary fields in the StatefulSet
YAML was removed in order to have a minimum valuable product of the applica-
tion that was functioning without introducing any other dependencies. However,
when discovering that a replicaset needed to be initialized, the command lines
above were added to the pod spec. Still, it turned out to be problematic adding
the instances to the replicaset initialized from the host. The host were successfully
defined as the primary instance, while the two other instances were not able to loc-
ate the host and hence did not become a part of the replicaset. When applying the
command rs.add("<pod-name>.<headless-service-name>:<port-number>") Mon-
goDB returned an error saying NodeNotFound. Considering that Kubernetes com-
ponents communicate by referring to a service in the same namespace and the
name of the pod followed by the port of the relevant container-image, this re-
sponse was rather peculiar.

Figure 3.6: Initializing the MongoDB replicaset with commands in pod specific-
ation.

As described in Section 2, one can apply RBAC to the Kubernetes cluster that
grants access to specific resources only to specific cluster administrators through
components such as roles, role bindings and service accounts. In this stage of the
process, RBAC was set up in the cluster to grant access to the StatefulSet. This did
however not prevent the NodeNotFound-error from occurring when trying to add
the secondary instances to the MongoDB replicaset. Refer to Appendix B.5 to see
the complete YAML file of the RBAC specification.

Another possible workaround was investigated further in the process. Deploying
a helper-container is common procedure in the Kubernetes world. Such helper-
containers are often referred to as a sidecar-container. Sidecar containers can be
used in many circumstances where it is convenient to abstract some of the Kuber-
netes specific additional functionality of the main container. This can be when a
container should be coupled up with a storage unit, but one wishes to facilitate for

30 Standeren: MongoDB in K8s

a situation where the application that runs in the main container can be replaced
and the logic that connects the application to the storage unit must remain. Other
usecases of a sidecar can be scheduling, synchronizing, back-up or authentication.
A sidecar also allows replicas to be added and removed from the MongoDB rep-
licaset automatically when scaling the StatefulSet. In this particular case we wish
to facilitate for the situation where we have multiple MongoDB containers that
must initialize a replicaset amongst them. Implementing a sidecar container in all
the pods in our StatefulSet allows us, in theory, to abstract the manual workload
connected to initializing the replicaset. In our project a MongoDB sidecar image
created by cvallance were added to the pod spec in the StatefulSet YAML file.
The StatefulSet was successfully applied and the new pods with two containers
per pod were created and running in the cluster. Still, when running kubectl exec
on the pod that was assigned the ordinal number 0 – meaning it was addressed
with the role as the PRIMARY instance in the replica set – the replicaset was not
successfully initialized. This was revealed by running rs.status() from within the
MongoDB container. See Figure 3.7 for a snippet of the resulting output of the
command. The list of members only consists of the IP-address belonging to the
MongoDB instance running on worker 0. However, it is clear that the sidecar con-
tainer did contribute to something. Before introducing the sidecar, either of the
MongoDB-instances acted as a primary instance without manual configuration.
Also, the logs of the pods could prove even more contribution. The logs from each
of the pods were examined to see what configurations and commands that auto-
matically was issued. Running the kubectl logs <pod-name> -c <container-name>
command provides us with all terminal outputs from the container during the
creation. From mongodb-replica-0 running on worker 0 we could see that lots of
network connections was attempted established between the MongoDB pods and
some localhost connections (probably to the sidecar container). In addition we
see that the container prints a configuration field called replSetReconfig that lists
all the members that are supposed to be added to the replicaset. In the end of the
line we can also see an error message that tells us that the nodes was not able
to reach each other within the time limit. To see the complete snippet of the logs
from worker 0, turn to Appendix A.2.

After investigating the liveness of the network-connections between the pods, it
was discovered that the error was caused by a problem on a higher level. The in-
vestigation involved installing a diversity of networking packages to troubleshoot
the networking capability. A part of this stage involved updating the running ver-
sion of Calico, the CNI in the cluster. When running calicoctl get ippools -o wide
command, in order to see the ip-pools that Calico had established in the cluster, the
system revealed that Calico client and the cluster used different versions; 3.22.0
and 3.22.1 respectively 2. Both packages was updated to 3.23.0, but the error was
still present. Anyway, after updating Calico, the output from the command above

2This command only works after applying the alias; alias calicoctl="kubectl exec -i -n kube-
system calicoctl – /calicoctl" to the .profile-file on the node.

Chapter 3: Method 31

Figure 3.7: Output when running rs.status() command from MongoDB on the
PRIMARY MongoDB instance on worker0.

got more informative as seen in Figure 3.8.

Figure 3.8: Calico ippools output.

When attempting to install debugging-tools on the pods, a groundbreaking ob-
servation came to our attention. It got clear that the pods running on the worker
nodes in the cluster were not able to run apt-get, which implies that they were
not able to install any packages. As an attempt to bypass this issue a custom Mon-
goDB image was built which included commands that installed networking pack-
ages like net-tools and iproute2. The image was created from a manually written
dockerfile which can be seen as a whole in Appendix B.1. After the image was
built, it was pushed to a private repository on Dockerhub and added to the pod
spec of the StatefulSet. Unfortunately, this attempt did not lead to any network
access on the pods on the worker nodes even though they now were able to run
commands like ip a and route -n. These commands could however reveal that the
pods did not have any gateways connecting them together. As seen in Figure 3.9,
the bottom two routes only reached the gateways to the local IP-addresses of the
worker nodes (10.1.1.6 and 10.1.1.7) through the tunl0 interface. Hence, none

32 Standeren: MongoDB in K8s

of the pods on the workers can be reached from the master node.

Figure 3.9: Output of route -n from master node before editing ippools.

The interpretation of this result was that the networking on the pods on the worker
nodes were not configured correctly. Another consequence of this was that the pod
on the master node were unable to ping the pods on the worker nodes. In order
to locate the root of this issue, network specifications on Azure, in the context of
Calico as the CNI, was investigated. It became clear that this exact cooperation had
contradictory networking configurations by default. A section of the documenta-
tion of Calico that describes its interaction with Azure says that Calico in VXLAN
mode is supported on Azure. However, IPIP packets are blocked by Azure network
fabric [29]. Revisiting Figure 3.8 we can see that Calico defaults to always allow-
ing IPIPmode and never allowing VXLAN. This conflicts with Azure that blocks
all IPIP packets which causes the networking issues from the pods on the worker
nodes. By simply changing the configuration file for Calico ippools with kubectl
edit ippools.crd.projectcalico.org, as seen in Figures 3.10 and 3.11, Calico will now
do its internal container networking through the VXLAN interface instead of IPIP.
Comparing Figure 3.9 with Figure 3.12 we can see that both the gateways and
the interfaces of the two bottom routes have changed as a result of this.

After establishing a functioning internal container communication between the
pods, the replicaset got initialized automatically thanks to the previously added
MongoDB sidecar. When running rs.status() from one of the pods at this stage, all
the pods’ IP-addresses are listed as members. For the full output of this command
see Appendix A.1. An illustration of the architecture at this stage is shown in Figure
3.13.

Enable External Connection

So far all interactions and management of the MongoDB service and the Kuber-
netes objects have been done from within the cluster - more specific with kubectl

Chapter 3: Method 33

Figure 3.10: Editing the configuration for Calico ippool.

from the master-node. If it is desired to expose a Kubernetes service public, the
first most important thing is to make sure the api is protected with authentication
or other policies. At this stage of the process, this was however not a priority or
a consideration at all. And since this project will remain as a testing environment
running on Azure’s machines, it is not an emergency anyway. The process of ex-
posing the application, ignoring the security aspects, started unconsciously while
initializing the cluster. A part of the initialization was to open inbound ports on
the nodes through the Azure portal. When the ports 30000-32767 was opened
for NodePort Services, the possibly created services, that – if existing – acts as
an entry point to the application, is available. Although exposed with open port,
no service, except from the headless service, was established at this point. The
headless service can not act as a service since it does, by default, not obtain any
clusterIP meaning it is not accessible by any instances either inside, nor outside
of the cluster. The DNS server will not interpret the headless service as an actual
service that clients can connect to pods through, so the DNS server responds to
clients DNS lookups with the IPs of each individual pod instead. But in order to

34 Standeren: MongoDB in K8s

Figure 3.11: Calico ippools output after edited ippool configuration.

Figure 3.12: Output of route -n from master node after editing ippools.

do a DNS lookup against the MongoDB application, the cluster needs a service
inside the cluster to connect to first. A Kubernetes service can be configured with
fours different types; ClusterIP, NodePort, LoadBalancer or ExternalName. The
chosen type results in a certain degree of exposure, whereas the clusterIP-type
maps to internal cluster exposure. NodePort maps to external cluster exposure
by being an extension of the simultaneously created clusterIP services for each
node. External traffic can access your service by connecting to the NodePort on
any of the node’s IPs, and then the node forwards the traffic to the service which
handles it according to other configurations. The LoadBalancer type also maps to
external cluster exposure but with yet another extension, cloud-providers custom
LoadBalancer. The ExternalName type also maps to external cluster exposure, but
to a DNS name like an externally running database. So in our case, we would
prefer a LoadBalancer type, but since that type is highly dependent on a cloud-
provider, it is not applicable in a self-managed cluster. Surely, we can create the
LoadBalancer service, but it will not be assigned an external IP-address since we
do not rely on a provider. Figure 3.14 illustrates how the LoadBalancer will not
get any external IP-address, but still gets connected to the StatefulSet through the
selector: app=mongo, which is equal to the label on the StatefulSet. Seen that the
LoadBalancer would get an external IP-address, additional components would be
required for correct behavior anyway. For example, if sending a write request to
the LoadBalancer service, the service would not be able to determine if the request
should be redirected to the primary or secondary MongoDB instances. In fact, the
service would not even know what pods that corresponds to what MongoDB rep-
lica. To make this alternative architecture to function, we could have added an
intermediary MongoDB client responsible for redirecting read/write requests to
the correct instances. Turn to Figure 3.16 illustrating how the external connec-

Chapter 3: Method 35

Figure 3.13: How internal pod-communication is achieved in an Azure/Calico
environment.

tion could be achieved with this approach. However, one can exploit temporary
solutions such as port-forwarding to verify that the application is accessible from
outside the cluster as well. With port-forwarding a port on the master node is
opened and connected to a desired port on the pod in the cluster. In this case the
port 32000 was opened on the master and mapped to a pod on port 27017, which
is the default MongoDB port. Figure 3.15 shows how the connection to MongoDB
is established through port-forwarding from the master node without kubectl.

Figure 3.14: Status of LoadBalancer service running in cluster.

Figure 3.15: External connection to MongoDB from the master node with port-
forwarding.

3.2.3 General Considerations Concerning Manual Setup

Throughout this process we also brought some general considerations to the light,
that might be trivial for an expert in operating MongoDB in Kubernetes.

One of these considerations was whether or not workloads should or can run on
the master node, or if such nodes should be dedicated to running cluster admin-
istration tasks. We can confirm that it is no physical limitation connected to the
master node that restricts it from running application specific workloads, but on

36 Standeren: MongoDB in K8s

Figure 3.16: A possible solution to gaining external connection to the application.

the other hand it is not recommended in all circumstances. When operating on a
small cluster running non-critical and minimal resources-heavy workloads, it is in
general no problem to take advantage of the master to contribute with application
workloads. Said differently, if the master node has sufficient resources available,
in terms of CPU and RAM, that the critical administrative tasks are maintained, it
can also run workloads.

Another consideration that must be addressed is whether to initialize MongoDB
with replication or sharding. If MongoDB runs as a replicated database across
multiple instances all the data residing on each instance is the same[30]. This is
achieved by assigning one instance as a primary instance that handles all write
and update requests and is responsible for replicating the new data to the other
secondary instances. All instances can however respond to read requests. Shard-
ing on the other hand is conceptually differing by splitting the data over multiple
instances, resulting in all instances holding subsets of the whole dataset. In a
sharded MongoDB database all instances can respond to both read and write re-
quests, but if an instance receives a request asking for data that does not reside
on that particular instance, it must ask the other instances for the requested data.

Chapter 3: Method 37

Also, the roles and function of the different instances vary from a replicated cluster,
at least if one strive for configuring a sharded cluster following the practice used
by MongoDBs own Kubernetes operator. Such a sharded cluster needs one or more
configuration servers, mongos instances3 and shard members, where a StatefulSet
is deployed for all the configuration servers, another StatefulSet for all the mongos
instances and one StatefulSet for each of the shard members. Which configuration
to choose for your MongoDB application in a Kubernetes cluster is again depended
on your usecase. If aiming for a simple highly available database one should im-
plement the database as a replicaset. If in need of a larger database that handles
horizontal scaling well one should implement the database as a sharded cluster.
Evaluating the assumed amount of reads and writes is also of significance in this
decision. If you expect your application to process many reads and few writes you
should consider the replicated cluster since all instances can respond to read re-
quests without interacting with other instances. A sharded cluster will most likely
require a lot of inter-instance communication to respond to many read requests,
hence a replicated cluster handles many reads better than a sharded cluster. If
you in contract expect your application to process many writes and few reads,
you should consider a sharded cluster since all instances can respond to write
requests without interacting with other instances. In a replicated cluster on the
other hand, the primary instance will act as a bottleneck in this scenario. Seen in
context with the this exploratory project we chose the replicaset with its perk of
involving a less complex setup. Since the database is not suppose to operate, the
read and write ratio is of little importance.

Understanding the Kubernetes architecture in terms of pod and container con-
nection and communication, is also a barrier to managing applications hosted in
Kubernetes manually. When setting up applications in Kubernetes without using
operators one need to – in some cases at least – get direct access to the application
running in the container and manipulate it from its own shell interface. In order
to do this one must exec4 into the application. However it is not intuitive that
one can exec into the pod and run commands that applies to the application run-
ning inside the container inside the pod. Even more confusion can be introduced
when wanting access to a container from a worker node considering that kubectl
is not installed on this node. In such cases docker, the container runtime, is ap-
plied directly to exec into the container. It soon became clear that when execing
into the pods, Kubernetes takes care of the further connection to the container in
the background and selects the main container. In practice, execing into the pod
with kubectl and execing directly into the container with docker, is equal actions.

3Mongos instances are responsible for the interface between the client applications and the
sharded cluster[31]

4Exec is a kubectl and docker option that lets you execute commands from inside a selected
container.

38 Standeren: MongoDB in K8s

3.3 Information Gathering

As part of the process some guidance were provided along the way. Consider-
ing that the technology applied in this thesis is quite immature there are limited
sources of adequate knowledge out there to cover the specific topic in the already
limited research field. However, we came across some knowledgeable people who
were able to contribute, in some degree, in the technical challenges met in this
thesis. In the tech community the eager to share knowledge is – from a subjective
point of view – unique. At least, an earlier professor at the University at Tenerife, a
colleague from Sweden and an employee from GeoData in Trondheim, were very
willingly to share their thoughts on the subject and their ideas to solutions to the
technical challenges met.

The professor at the university at Tenerife was helpful in exchanging thoughts
within the very beginning of the project. Discussing the core of the topic consider-
ing managing databases in a Kubernetes cluster in general, were helpful in order
to narrow the project down to something that would be feasible and still provide
value to the tech community.

The colleague from Sweden who had some experience working on Kubernetes in
past projects gladly shared his thoughts further down the line in the setup process.
Being familiar with the Kubernetes concepts and some of the logic in how they are
configured in terms of functionalities and network communication, his expertise
was exploited when trying to enable external communication between the cluster
and the outside world. Even though being knowledgeable he were only able to
contribute with rubberducking and introducing tools to troubleshoot the issues.
His expertise were unfortunately limited to Kubernetes clusters managed by pro-
viders where issues concerning external communication are handled by providers
by allowing the Kubernetes service type LoadBalancer. In addition he had never
worked with databases deployed in a Kubernetes cluster, and let alone, MongoDB.
Actually he advised against running databases inside a Kubernetes cluster in gen-
eral.

The employee from GeoData Trondheim on the other hand worked with managing
a PostgreSQL database in a 100+ nodes large Kubernetes cluster on a daily basis.
It is worth to mention that this database were hosted on an AWS managed cluster
which makes the basis for comparison to this particular case slightly less valuable.
Despite his lack of specific domain knowledge he confirms the impression of the
unique willingness to share knowledge and to help out a fellow developer in the
tech community. His expertise were helpful in the stage of the process involving
enabling internal communication between the pods in order to successfully create
the MongoDB replicaset. After some slow and ineffective correspondence over
remote channels of communication, a physical meeting were established where
the internal networking problem could be attempted solved in a much higher
pace.

Chapter 4

Conclusion

In this chapter we will use the experiences and lessons learned from Chapter 3,
Method, to present arguments constructing a conclusion to the research questions
formulated in the introduction. First, we will summarize the manual process in
setting up MongoDB in a self-managed Kubernetes cluster without an operator
with a smooth transition to a presentation of the final setup. Following up, the
research questions will be answered with a detailed justification, whereas the an-
swers will reflect the actual conclusion to the master thesis.

4.1 The Final Setup

Considering each of the visited considerations from the method chapter one by
one, we will now reflect on what resulted to be the actual implementation of the
relevant consideration and why this one was chosen for this particular project.
Then we will reflect on the lessons learned about the complexity or simplicity
regarding the concept.

Cluster Setup

Regarding the cluster setup, there were few alternative approaches to choose from
when settling for a manual and self-managed approach. In this project we built
the cluster using kubeadm since it was the most metal-close approach available.
This choice provided us with a lot of freedom and possibility to see all configura-
tions and possibly do custom configurations, which was valuable when aiming for
a full-fledged exploration. A part of the setup process also involved implementing
a CNI to the cluster responsible for network connectivity between the cluster com-
ponents. In this project Calico was installed to handle this task. We could also have
chosen Flannel, but with the seemingly small differences the choice was irrelev-
ant. Considering the complexity of this approach, it was pretty straight forward.
The cluster setup involving kubeadm only consisted of a few commands and did

39

40 Standeren: MongoDB in K8s

not require any special competence. Installing the CNI was also a smooth affair.
On the other hand, one aspect of the manual cluster setup approach one should
invest some extra evaluation into is the choice of VM vendor. Setting up a Kuber-
netes cluster manually will involve some manual configuration of the specification
of the machines that can be done through an interactive portal, such as the Azure
portal. Being familiar with the VM vendor of your choice is very valuable.

Deployment versus StatefulSet and Volume Assessments

Regarding the choice between a Deployment versus a StatefulSet, the final setup
landed on the implementation of a StatefulSet. Considering that the application
deployed on the cluster was a stateful application relying on a replicated archi-
tecture involving multiple pods on multiple nodes, the only viable choice was a
StatefulSet. The only possible scenario where we could have used a Deployment
for our stateful application is one where we only were suppose to deploy one
pod. Complexity-wise this configuration was a bit more tricky than setting up the
cluster. First of all it took some time to understand that using a Deployment with
three replicas was impossible due to misleading error messages. After the Deploy-
ment option was discarded, difficulties with assigning volumes to the three pods
correctly in the StatefulSet arised. Understanding how volumes work is a com-
plex task and should be investigated thoroughly before implementing any stateful
workloads on your cluster. One must evaluate what kind of volume; local, NFS,
AzureDisk e.g., that suits your situation best, if you should utilize a storageclass or
not, and if so, what provisioner should be used for that storageclass. In addition
one should study how PVCs work and how they should be implemented when
using a StatefulSet.

Communication Between Containers on Different Nodes

Regarding establishing communication between the containers on different nodes,
the final setup relies on a MongoDB replicaset initialized by a sidecar container.
In theory the internal pod-communication should have been established by Calico
and realized by the pod-networking-cidr applied to the cluster when initializing it
with kubeadm. Incompatibilities with the subnet configurations on Azure and on
the cluster did however not reflect the same state in practice. The default config-
uration from Calico only allowing traffic on the IPIP-interface, while Azure blocks
all traffic on the IPIP-interface was the root of the internal networking problem.
This was fixed by manually editing the Calico ippool to allow traffic on the VXLAN-
interface which consequently allowed the MongoDB sidecar to complete its auto-
matic configuration of the replicaset. Before jumping into the Kubernetes world
without being accompanied with a provider or an application operator, you should
definitely have your networking skills and understanding at a high level. Puzzling
together all the components of Kubernetes, which is a highly layered construction,
with the correct IP-addresses, ports and subnets is difficult, especially since a lot
of the communication lives in the shadow of Kubernetes behind NAT.

Chapter 4: Conclusion 41

External Connection

Regarding acquiring external connection to the cluster, the final setup turned out
not having any service exposing it to the outside world. The reason for this out-
come was a combination of two things. First, it demanded unnecessary usage of
time and money seen in context of what was necessary to do in order to answer
the research questions. Second, considering the environment where the database
is the only running instance in the cluster it would not make sense exposing it
directly to the public without having any application in front.

General Considerations

Regarding the general considerations made in the context of this particular pro-
ject, we stood up against the questions whether a master node can run workloads
or not, to implement MongoDB as a replicated cluster or a sharded cluster and how
to correctly connect to containers. In the final setup we have workloads running
on the master, which is fine considering that the cluster is only an experimental
cluster that is not suppose to run any production-workloads. MongoDB was im-
plemented as a replicated cluster in contrast to a sharded cluster. This choice was
based on simplicity grounds and with no regards to expected amount of reads and
writes since the application will not be operating anyhow. When facing the ques-
tion on how to correctly connect to the containers, it soon became clear that the
two methods, execing into the pod or into the container, was equal. All these con-
siderations did not have any big impact on the complexity on the setup. Hence, this
is not something that should affect a decision between choosing a self-managed
cluster or provider-managed cluster, or choosing an application operator or not.

As an attempt of summarizing all decisions made throughout this exploratory pro-
cess and what architectural impacts they had on the final setup, see Figure 4.1.

4.2 Answers to the Research Questions

In order to develop a proper conclusion to this master thesis, we intend to answer
the research questions formulated in Chapter 1, Introduction.

1. When choosing a self-managed cluster in contrast to a provider-managed
cluster, some overhead is added. First, you manually need to obtain VMs or
some other machines to run your cluster on. Second, you need to download
all necessary tools on all the machines before initializing the cluster and add
nodes to it. The steps needed to set up a provider-managed cluster on the
other hand is usually a one-liner command.

2. Despite some added overhead, the process is quick and easy, and given the
increased freedom and control you get, it is definitely worth considering
choosing a self-managed cluster in contrast to a provider-managed cluster.

42 Standeren: MongoDB in K8s

Figure 4.1: Final Kubernetes cluster architecture.

3. When avoiding an operator in the deployment of MongoDB in a Kubernetes
cluster, a lot of overhead is added to the setup process. First, you need to
create your own YAML-files and figure out what architecture that suits your
environment the best. This involves gathering enough domain knowledge to
know what fields must be added to the pod specifications of the StatefulSet,
the PVC template specifications, the potential StorageClass specifications,
the PV specifications and the service specifications. You also need to figure
out if you need Secrets, ConfigMaps and RBAC. Second, you may need to
write your own dockerfiles to create custom images. Third, you must un-
derstand how networking in Kubernetes works. Finally, you either need to
utilize sidecars for automating some necessary database functionality or do
it manually which may be very troublesome. The steps needed when ex-
ploiting an operator are not examined in detail, but assumingly they are
easier and provide better functionality and conditions for scaling.

4. Taken into account all the overhead added, the freedom and control you
gain when avoiding an operator is not worth the extra overhead and re-
duced functionality. Hence, it is not worth considering avoiding exploiting
an application operator for running MongoDB in a Kubernetes cluster.

To summarize, Kubernetes is a highly coupled service of components and network-
ing layers that can introduce a lot of complex errors that originates from config-

Chapter 4: Conclusion 43

urations that are well hidden from the normal user in the many abstractions of
Kubernetes. On the other hand, it is a very powerful tool that can ease your operat-
ing team for a lot of overhead in terms of maintaining and scaling an application
in production. When that being said, it only implies if used correctly and mon-
itored by experienced developers. When being faced with the choice between a
self-managed Kubernetes cluster or a provider-managed Kubernetes cluster and
using an operator or not, the decision is highly dependent on the prior statement;
whether or not your operation team are experienced Kubernetes users. In addi-
tion, the decision is also dependent on how much freedom and personal config-
uration you need, and of course how much fundings you possess. However, put
aside the organizational reasons for basing your decision and only focusing on the
experiences made throughout this project, the conclusion is the following;

It is worth saving money and gain freedom by choosing a self-managed cluster and
rather spend your money on an operator 1 to easily and correctly set up a function-
ing and secure application, even though this limits your freedom in customizing the
application configuration.

1Many operators are even open source.

Chapter 5

Future work

This chapter will present some areas of further development that are closely re-
lated to the essence of the master thesis. The directions one can consider is the
following:

• Comparing manual and automated approach.
• Testing different operators’ complexity.
• Comparing performance of different persistent volume kinds.
• Comparing the manual setup process between different databases.

Of course, there are plenty more directions to choose from, but these are the ones
that will be discussed in more depth in the below sections.

5.1 Comparing Manual and Automated Approach

This direction within future work is more of an extension of this thesis. In this
thesis the focus have been on the manual setup of a stateful application in a
self-managed cluster. When comparing that process with an automated approach,
there are different aspects of the manual versus automated approach one can
study. First, one can only focus on establishing the cluster in a manual way – as
done in the thesis – compared to the quick and easy setup of a subset of provider-
offered solutions like AKS, EKS and GKE. In that process one can study parameters
such as simplicity, time and cost. A further extension of this research could be to
study the usage of the different clusters - degree of freedom possessed, degree
of control possessed, and degree of complexity versus simplicity. Second, one can
focus on deploying a stateful application in a manual way – as done in this thesis –
compared to deploying one with an operator. The same parameters as mentioned
above can also be studied in this context, as well as extending by studying the dif-
ferences in usage of the stateful application when deploying manual versus with
an operator.

45

46 Standeren: MongoDB in K8s

5.2 Testing Different Operators’ Complexity

Another possible direction to go in, involve exploring the complexity offered by
the different available operators. A starting point here could be to investigate the
variety of operators for a single stateful application. In the instance of MongoDB
as the stateful application one could compare the advanced enterprise operator
and the less advanced community operator. Another perspective in the same direc-
tion could be to investigate how different operators designed for different stateful
applications differ. Parameters to look into if so would again be time, freedom,
control, cost and simplicity, as well as the ability to handle both horizontal and
vertical scaling, backups, monitoring and version updates.

5.3 Comparing Performance of Different Persistent Volume

Kinds

Directing focus towards the volume-aspect of the Kubernetes environment, one
can examine different solutions to structure the volume. Kubernetes supports
plenty of alternative PV types including awsElasticBlockStore, azureDisk, gcePer-
sistentDisk, glusterfs, hostPath, local and nfs amongst others. It is also possible to
investigate the performance impacts of introducing a storageclass. If even further
investigation is desired, one could look into how varying the provisioner of the
storageclass effects the performance or simplicity of setup and management.

5.4 Comparing the Manual Setup Process Between Dif-

ferent Databases

Finally, a last possible direction to go in suggested in this thesis, involve comparing
the manual setup in a Kubernetes cluster with a few different databases. An idea
could be to investigate three fundamentally different database systems, meaning
e.g. one relational, one NoSQL and one distributed relational. Since being funda-
mentally different it is a fair assumption to make that they require fundamentally
different configurations when setting them up without an operator. Taking it a step
further one could also compare the performance with a benchmarking like Yahoo!
Cloud Serving Benchmark (YCSB) or SysBench. Different database systems have
properties that either makes them well suited to run in a Kubernetes environment
or that makes them inappropriate. As en example, the ability to easily scale ho-
rizontally is a property that speaks well for running in Kubernetes. Based on this
it is fair to believe that both NoSQL databases and distributed databases may be-
nefit more from running in a Kubernetes environment than a relational database
would.

Bibliography

[1] Kubernetes.io, Considerations for large clusters, https://kubernetes.io/
docs/setup/best-practices/cluster-large/, Jun. 2021.

[2] B. Basyildiz, A brief history of container technology, https://www.section.
io/engineering-education/history-of-container-technology/, Aug.
2019.

[3] IBM, Container orchestration, https : / / www . ibm . com / cloud / learn /
container-orchestration, May 2021.

[4] Docker, Use containers to build, share and run your applications, https:
//www.docker.com/resources/what-container.

[5] Docker, Top 10 best container software in 2021, https://www.softwaretestinghelp.
com/container-software/, Nov. 2021.

[6] M. Palmer, Service - kubernetes guide with examples, https://matthewpalmer.
net/kubernetes-app-developer/articles/service-kubernetes-example-
tutorial.html.

[7] M. Palmer, Kubernetes networking guide for beginners, https://matthewpalmer.
net/kubernetes-app-developer/articles/kubernetes-networking-
guide-beginners.html.

[8] R. Fattakhov, Learn the basics and benefits of container orchestration, https:
//www.parallels.com/blogs/ras/container- orchestration/, Nov.
2020.

[9] Sysdig, Container and kubernetes security checklist, https://sysdig.com/
resources / whitepapers / s - container - and - kubernetes - security -
checklist / ?utm _ source = google & utm _ medium = cpc & utm _ campaign =
10874493555&adgroupid=106662533163&utm_content=473228537164&
utm_term=containerization%20security&utm_position=&utm_device=
c&utm_type=p&utm_geo=1010976&gclid=Cj0KCQjwrJOMBhCZARIsAGEd4VFe3kqT-
ls6FKwaJx_e1kmYMw_1I5L6WmkSB-gYZKZnYXZJqAU7zg4aAuYLEALw_wcB.

[10] M. Mafy, Learn the basics and benefits of container orchestration, https://
www.paloaltonetworks.com/blog/2020/05/containers-are-inherently-
secure-reality-or-myth/, May 2020.

47

https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://www.section.io/engineering-education/history-of-container-technology/
https://www.section.io/engineering-education/history-of-container-technology/
https://www.ibm.com/cloud/learn/container-orchestration
https://www.ibm.com/cloud/learn/container-orchestration
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.softwaretestinghelp.com/container-software/
https://www.softwaretestinghelp.com/container-software/
https://matthewpalmer.net/kubernetes-app-developer/articles/service-kubernetes-example-tutorial.html
https://matthewpalmer.net/kubernetes-app-developer/articles/service-kubernetes-example-tutorial.html
https://matthewpalmer.net/kubernetes-app-developer/articles/service-kubernetes-example-tutorial.html
https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-networking-guide-beginners.html
https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-networking-guide-beginners.html
https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-networking-guide-beginners.html
https://www.parallels.com/blogs/ras/container-orchestration/
https://www.parallels.com/blogs/ras/container-orchestration/
https://sysdig.com/resources/whitepapers/s-container-and-kubernetes-security-checklist/?utm_source=google&utm_medium=cpc&utm_campaign=10874493555&adgroupid=106662533163&utm_content=473228537164&utm_term=containerization%20security&utm_position=&utm_device=c&utm_type=p&utm_geo=1010976&gclid=Cj0KCQjwrJOMBhCZARIsAGEd4VFe3kqT-ls6FKwaJx_e1kmYMw_1I5L6WmkSB-gYZKZnYXZJqAU7zg4aAuYLEALw_wcB
https://sysdig.com/resources/whitepapers/s-container-and-kubernetes-security-checklist/?utm_source=google&utm_medium=cpc&utm_campaign=10874493555&adgroupid=106662533163&utm_content=473228537164&utm_term=containerization%20security&utm_position=&utm_device=c&utm_type=p&utm_geo=1010976&gclid=Cj0KCQjwrJOMBhCZARIsAGEd4VFe3kqT-ls6FKwaJx_e1kmYMw_1I5L6WmkSB-gYZKZnYXZJqAU7zg4aAuYLEALw_wcB
https://sysdig.com/resources/whitepapers/s-container-and-kubernetes-security-checklist/?utm_source=google&utm_medium=cpc&utm_campaign=10874493555&adgroupid=106662533163&utm_content=473228537164&utm_term=containerization%20security&utm_position=&utm_device=c&utm_type=p&utm_geo=1010976&gclid=Cj0KCQjwrJOMBhCZARIsAGEd4VFe3kqT-ls6FKwaJx_e1kmYMw_1I5L6WmkSB-gYZKZnYXZJqAU7zg4aAuYLEALw_wcB
https://sysdig.com/resources/whitepapers/s-container-and-kubernetes-security-checklist/?utm_source=google&utm_medium=cpc&utm_campaign=10874493555&adgroupid=106662533163&utm_content=473228537164&utm_term=containerization%20security&utm_position=&utm_device=c&utm_type=p&utm_geo=1010976&gclid=Cj0KCQjwrJOMBhCZARIsAGEd4VFe3kqT-ls6FKwaJx_e1kmYMw_1I5L6WmkSB-gYZKZnYXZJqAU7zg4aAuYLEALw_wcB
https://sysdig.com/resources/whitepapers/s-container-and-kubernetes-security-checklist/?utm_source=google&utm_medium=cpc&utm_campaign=10874493555&adgroupid=106662533163&utm_content=473228537164&utm_term=containerization%20security&utm_position=&utm_device=c&utm_type=p&utm_geo=1010976&gclid=Cj0KCQjwrJOMBhCZARIsAGEd4VFe3kqT-ls6FKwaJx_e1kmYMw_1I5L6WmkSB-gYZKZnYXZJqAU7zg4aAuYLEALw_wcB
https://sysdig.com/resources/whitepapers/s-container-and-kubernetes-security-checklist/?utm_source=google&utm_medium=cpc&utm_campaign=10874493555&adgroupid=106662533163&utm_content=473228537164&utm_term=containerization%20security&utm_position=&utm_device=c&utm_type=p&utm_geo=1010976&gclid=Cj0KCQjwrJOMBhCZARIsAGEd4VFe3kqT-ls6FKwaJx_e1kmYMw_1I5L6WmkSB-gYZKZnYXZJqAU7zg4aAuYLEALw_wcB
https://sysdig.com/resources/whitepapers/s-container-and-kubernetes-security-checklist/?utm_source=google&utm_medium=cpc&utm_campaign=10874493555&adgroupid=106662533163&utm_content=473228537164&utm_term=containerization%20security&utm_position=&utm_device=c&utm_type=p&utm_geo=1010976&gclid=Cj0KCQjwrJOMBhCZARIsAGEd4VFe3kqT-ls6FKwaJx_e1kmYMw_1I5L6WmkSB-gYZKZnYXZJqAU7zg4aAuYLEALw_wcB
https://www.paloaltonetworks.com/blog/2020/05/containers-are-inherently-secure-reality-or-myth/
https://www.paloaltonetworks.com/blog/2020/05/containers-are-inherently-secure-reality-or-myth/
https://www.paloaltonetworks.com/blog/2020/05/containers-are-inherently-secure-reality-or-myth/

48 Standeren: MongoDB in K8s

[11] B. Enterprise, How container workloads are changing the future of cyberse-
curity, https://businessinsights.bitdefender.com/how-container-
workloads-are-changing-the-future-of-cybersecurity, Aug. 2021.

[12] A. Logvinenko, Why, when and how to use kubernetes for web app develop-
ment, https://mobidev.biz/blog/when-why-how-use-kubernetes-app-
development, May 2021.

[13] C. Gutierrez, Spotify runs 1,600+ production services on kubernetes, https:
//www.altoros.com/blog/spotify-runs-1600-production-services-
on-kubernetes/, Sep. 2021.

[14] D. Taylor, How to create ec2 instance in aws: Step by step tutorial, https:
//www.guru99.com/creating-amazon-ec2-instance.html, Feb. 2022.

[15] B. Kurkchiev, 3 reasons to bring stateful applications to kubernetes, https:
//thenewstack.io/3-reasons-to-bring-stateful-applications-to-
kubernetes/, Aug. 2020.

[16] D. Seymour, What makes a database a good fit to run in kubernetes? https:
//softwareengineeringdaily.com/2020/09/22/what-makes-a-database-
a-good-fit-to-run-in-kubernetes/, Sep. 2020.

[17] Kubernetes.io, Persistent volumes, https://kubernetes.io/docs/concepts/
storage/persistent-volumes/, Sep. 2021.

[18] K. Davenport, A basic guide to kubernetes storage: Pvs, pvcs, statefulsets and
more, https://portworx.com/blog/basic-guide-kubernetes-storage/,
Dec. 2017.

[19] Z. Wen, Persistent volume claim for statefulset, https : / / zhimin - wen .
medium.com/persistent-volume-claim-for-statefulset-8050e396cc51,
Sep. 2018.

[20] Kubernetes.io, Statefulsets, https://kubernetes.io/docs/concepts/
workloads/controllers/statefulset/, Sep. 2021.

[21] C. Klinsmann, Managed kubernetes vs self-managed kubernetes, https://
www.x- cellent.com/blog/managed- kubernetes- vs- self- managed-
kubernetes/, Mar. 2022.

[22] M. Logan, The basics of keeping kubernetes clusters secure, https://www.
trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/
the-basics-of-keeping-your-kubernetes-cluster-secure-part-1,
Aug. 2020.

[23] O. Larsen, Running databases in a kubernetes cluster, https://www.diva-
portal.org/smash/get/diva2:1369598/FULLTEXT01.pdf, 2019.

[24] opensource.com, What is ansible, https://opensource.com/resources/
what-ansible.

[25] Host os swap space must be disabled in nginx controller 2.8.0 and later,
https://support.f5.com/csp/article/K82655201, Nov. 2019.

https://businessinsights.bitdefender.com/how-container-workloads-are-changing-the-future-of-cybersecurity
https://businessinsights.bitdefender.com/how-container-workloads-are-changing-the-future-of-cybersecurity
https://mobidev.biz/blog/when-why-how-use-kubernetes-app-development
https://mobidev.biz/blog/when-why-how-use-kubernetes-app-development
https://www.altoros.com/blog/spotify-runs-1600-production-services-on-kubernetes/
https://www.altoros.com/blog/spotify-runs-1600-production-services-on-kubernetes/
https://www.altoros.com/blog/spotify-runs-1600-production-services-on-kubernetes/
https://www.guru99.com/creating-amazon-ec2-instance.html
https://www.guru99.com/creating-amazon-ec2-instance.html
https://thenewstack.io/3-reasons-to-bring-stateful-applications-to-kubernetes/
https://thenewstack.io/3-reasons-to-bring-stateful-applications-to-kubernetes/
https://thenewstack.io/3-reasons-to-bring-stateful-applications-to-kubernetes/
https://softwareengineeringdaily.com/2020/09/22/what-makes-a-database-a-good-fit-to-run-in-kubernetes/
https://softwareengineeringdaily.com/2020/09/22/what-makes-a-database-a-good-fit-to-run-in-kubernetes/
https://softwareengineeringdaily.com/2020/09/22/what-makes-a-database-a-good-fit-to-run-in-kubernetes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://portworx.com/blog/basic-guide-kubernetes-storage/
https://zhimin-wen.medium.com/persistent-volume-claim-for-statefulset-8050e396cc51
https://zhimin-wen.medium.com/persistent-volume-claim-for-statefulset-8050e396cc51
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://www.x-cellent.com/blog/managed-kubernetes-vs-self-managed-kubernetes/
https://www.x-cellent.com/blog/managed-kubernetes-vs-self-managed-kubernetes/
https://www.x-cellent.com/blog/managed-kubernetes-vs-self-managed-kubernetes/
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/the-basics-of-keeping-your-kubernetes-cluster-secure-part-1
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/the-basics-of-keeping-your-kubernetes-cluster-secure-part-1
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/the-basics-of-keeping-your-kubernetes-cluster-secure-part-1
https://www.diva-portal.org/smash/get/diva2:1369598/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1369598/FULLTEXT01.pdf
https://opensource.com/resources/what-ansible
https://opensource.com/resources/what-ansible
https://support.f5.com/csp/article/K82655201

Bibliography 49

[26] Container network interface (cni) providers, https://rancher.com/docs/
rancher/v2.5/en/faq/networking/cni-providers/.

[27] Can’t run multiple mongodb docker container with same shared volume, https:
//stackoverflow.com/questions/52660659/cant-run-multiple-mongodb-
docker-container-with-same-shared-volume, Oct. 2018.

[28] Running mongodb on kubernetes with statefulsets, https://kubernetes.
io/blog/2017/01/running-mongodb-on-kubernetes-with-statefulsets/,
Jan. 2017.

[29] projectcalico.docs.tigera.io, Azure, https://projectcalico.docs.tigera.
io/reference/public-cloud/azure?fbclid=IwAR0K4SagYXNjW9AsFOVeyChyNLtmX41d4hxLc_
1cfbeuW-1LRRV7L9gaHKM.

[30] mongodb.com, Mongodb database architecture in kubernetes, https://www.
mongodb.com/docs/kubernetes-operator/master/tutorial/mdb-resources-
arch/.

[31] mongodb.com, Mongodb documentation, https : / / www . mongodb . com /
docs/manual/reference/program/mongos/.

https://rancher.com/docs/rancher/v2.5/en/faq/networking/cni-providers/
https://rancher.com/docs/rancher/v2.5/en/faq/networking/cni-providers/
https://stackoverflow.com/questions/52660659/cant-run-multiple-mongodb-docker-container-with-same-shared-volume
https://stackoverflow.com/questions/52660659/cant-run-multiple-mongodb-docker-container-with-same-shared-volume
https://stackoverflow.com/questions/52660659/cant-run-multiple-mongodb-docker-container-with-same-shared-volume
https://kubernetes.io/blog/2017/01/running-mongodb-on-kubernetes-with-statefulsets/
https://kubernetes.io/blog/2017/01/running-mongodb-on-kubernetes-with-statefulsets/
https://projectcalico.docs.tigera.io/reference/public-cloud/azure?fbclid=IwAR0K4SagYXNjW9AsFOVeyChyNLtmX41d4hxLc_1cfbeuW-1LRRV7L9gaHKM
https://projectcalico.docs.tigera.io/reference/public-cloud/azure?fbclid=IwAR0K4SagYXNjW9AsFOVeyChyNLtmX41d4hxLc_1cfbeuW-1LRRV7L9gaHKM
https://projectcalico.docs.tigera.io/reference/public-cloud/azure?fbclid=IwAR0K4SagYXNjW9AsFOVeyChyNLtmX41d4hxLc_1cfbeuW-1LRRV7L9gaHKM
https://www.mongodb.com/docs/kubernetes-operator/master/tutorial/mdb-resources-arch/
https://www.mongodb.com/docs/kubernetes-operator/master/tutorial/mdb-resources-arch/
https://www.mongodb.com/docs/kubernetes-operator/master/tutorial/mdb-resources-arch/
https://www.mongodb.com/docs/manual/reference/program/mongos/
https://www.mongodb.com/docs/manual/reference/program/mongos/

Appendix A

Output from MongoDB

Code listing A.1: Output from rs.status() from mongodb instance on worker0
after editing Calico ippools.

andrea@masternode$ kubectl exec −i t mongodb−repl ica−0 −− mongo

rs0:SECONDARY> r s . s t a t u s ()
{

"set" : "rs0" ,
"date" : ISODate ("2022-05-25T13:17:00.690Z") ,
"myState" : 2 ,
"term" : NumberLong(3) ,
"syncingTo" : "192.168.196.136:27017" ,
"syncSourceHost" : "192.168.196.136:27017" ,
"syncSourceId" : 0 ,
"heartbeatIntervalMillis" : NumberLong(2000) ,
"majorityVoteCount" : 2 ,
"writeMajorityCount" : 2 ,
"optimes" : {

"lastCommittedOpTime" : {
"ts" : Timestamp(1653484611 , 1) ,
"t" : NumberLong(3)

} ,

"lastCommittedWallTime" : ISODate ("2022-05-25T13:16:51.621Z") ,
"readConcernMajorityOpTime" : {

"ts" : Timestamp(1653484611 , 1) ,
"t" : NumberLong(3)

} ,

"readConcernMajorityWallTime" : ISODate ("2022-05-25T13:16:51.621Z") ,
"appliedOpTime" : {

"ts" : Timestamp(1653484611 , 1) ,
"t" : NumberLong(3)

} ,

"durableOpTime" : {
"ts" : Timestamp(1653484611 , 1) ,
"t" : NumberLong(3)

} ,

"lastAppliedWallTime" : ISODate ("2022-05-25T13:16:51.621Z") ,
"lastDurableWallTime" : ISODate ("2022-05-25T13:16:51.621Z")

} ,

"lastStableRecoveryTimestamp" : Timestamp(1653484561 , 1) ,
"lastStableCheckpointTimestamp" : Timestamp(1653484561 , 1) ,
"members" : [

{
"_id" : 0 ,
"name" : "192.168.196.136:27017" ,
"health" : 1 ,
"state" : 1 ,
"stateStr" : "PRIMARY" ,
"uptime" : 1207 ,
"optime" : {

"ts" : Timestamp(1653484611 , 1) ,
"t" : NumberLong(3)

} ,

"optimeDurable" : {
"ts" : Timestamp(1653484611 , 1) ,
"t" : NumberLong(3)

} ,

51

52 Standeren: MongoDB in K8s

"optimeDate" : ISODate ("2022-05-25T13:16:51Z") ,
"optimeDurableDate" : ISODate ("2022-05-25T13:16:51Z") ,
"lastHeartbeat" : ISODate ("2022-05-25T13:16:59.383Z") ,
"lastHeartbeatRecv" : ISODate ("2022-05-25T13:17:00.560Z") ,
"pingMs" : NumberLong(1) ,
"lastHeartbeatMessage" : "" ,
"syncingTo" : "" ,
"syncSourceHost" : "" ,
"syncSourceId" : −1,
"infoMessage" : "" ,
"electionTime" : Timestamp(1653481651 , 1) ,
"electionDate" : ISODate ("2022-05-25T12:27:31Z") ,
"configVersion" : 27721

} ,

{
"_id" : 1 ,
"name" : "192.168.204.72:27017" ,
"health" : 1 ,
"state" : 2 ,
"stateStr" : "SECONDARY" ,
"uptime" : 436171 ,
"optime" : {

"ts" : Timestamp(1653484611 , 1) ,
"t" : NumberLong(3)

} ,

"optimeDate" : ISODate ("2022-05-25T13:16:51Z") ,
"syncingTo" : "192.168.196.136:27017" ,
"syncSourceHost" : "192.168.196.136:27017" ,
"syncSourceId" : 0 ,
"infoMessage" : "" ,
"configVersion" : 27721 ,
"self" : true ,
"lastHeartbeatMessage" : ""

} ,

{
"_id" : 2 ,
"name" : "192.168.235.138:27017" ,
"health" : 1 ,
"state" : 2 ,
"stateStr" : "SECONDARY" ,
"uptime" : 1207 ,
"optime" : {

"ts" : Timestamp(1653484611 , 1) ,
"t" : NumberLong(3)

} ,

"optimeDurable" : {
"ts" : Timestamp(1653484611 , 1) ,
"t" : NumberLong(3)

} ,

"optimeDate" : ISODate ("2022-05-25T13:16:51Z") ,
"optimeDurableDate" : ISODate ("2022-05-25T13:16:51Z") ,
"lastHeartbeat" : ISODate ("2022-05-25T13:16:59.524Z") ,
"lastHeartbeatRecv" : ISODate ("2022-05-25T13:16:59.523Z") ,
"pingMs" : NumberLong(1) ,
"lastHeartbeatMessage" : "" ,
"syncingTo" : "192.168.196.136:27017" ,
"syncSourceHost" : "192.168.196.136:27017" ,
"syncSourceId" : 0 ,
"infoMessage" : "" ,
"configVersion" : 27721

}
] ,

"ok" : 1 ,
"$clusterTime" : {

"clusterTime" : Timestamp(1653484611 , 1) ,
"signature" : {

"hash" : BinData (0 ,"AAAAAAAAAAAAAAAAAAAAAAAAAAA=") ,
"keyId" : NumberLong(0)

}
} ,

"operationTime" : Timestamp(1653484611 , 1)
}

Chapter A: Output from MongoDB 53

Code listing A.2: Snippet of output from container logs.
andrea@masternode$

[. . .] COMMAND [conn14] command admin .$cmd command:

replSetReconfig {
replSetReconfig: {

_id: "rs0" ,
version: 3 ,
protocolVersion: 1 ,
writeConcernMajorityJournalDefault: true ,
members: [

{
_id: 0 ,
host: "192.168.204.69:27017" ,
arbiterOnly: fa lse ,
buildIndexes: true ,
hidden: fa lse ,
pr io r i t y : 1 ,
tags: {} ,
slaveDelay: 0 ,
votes: 1

} ,

{
_id: 1 ,
host: "192.168.235.136:27017"

} ,

{
_id: 2 ,
host: "192.168.196.133:27017"

}
] ,

s e t t ings : {
chainingAllowed: true ,
hear tbea t In terva lMi l l i s : 2000 ,
heartbeatTimeoutSecs: 10 ,
elect ionTimeoutMil l is : 10000 ,
catchUpTimeoutMillis: −1,
catchUpTakeoverDelayMillis: 30000 ,
getLastErrorModes: {} ,
getLastErrorDefaults : {

w: 1 ,
wtimeout: 0
} ,

rep l i caSet Id : Objec t Id (’628659272887 d6d4980b7772’)
}

} ,

force: fa lse ,
$db: "admin"
}
numYields: 0
ok: 0
errMsg:"Quorum�check�failed�because�not�enough�voting�nodes�responded;�required�2�but�only�the�following�1�

voting�nodes�responded:�192.168.204.69:�27017;�the�following�nodes�did�not�respond�affirmatively:�
192.168.196.133:27017�failed�with�Couldn’t�get�a�connection�within�the�time�limit ,�192.168.235.136:�
27017�failed�with�Couldn’t�get�a�connection�within�the�time�limit"

errName:NodeNotFound errCode:74 r e s l e n :588 lock s : {} pro toco l :op_query 70074ms [. . .]

Appendix B

Configuration Files on Master

Code listing B.1: Custom dockerfile for MongoDB image with networking tools
installed.

#
MongoDB Dockerfile
#
https://github.com/dockerfile/mongodb
#

Pull base image.
FROM mongo:4.2

Install MongoDB.
RUN \

apt−get update && \
apt−get i n s t a l l −y iproute2 && \
apt−get i n s t a l l −y net−tools && \
apt−get i n s t a l l −y dnsut i l s

Define mountable directories.
VOLUME ["/data/db"]
Skip because its done from sts yaml

Define working directory.
WORKDIR /data
Skip because its done from sts yaml

Define default command.
CMD ["mongod"]

Expose ports.
- 27017: process
- 28017: http
EXPOSE 27017

EXPOSE 28017

55

56 Standeren: MongoDB in K8s

Code listing B.2: Headless service for MongoDB replicaset.
apiVersion: v1
kind: Serv i ce
metadata:

name: mongo
l abe l s :

app: mongo
spec:

ports:

- port: 27017
targetPort : 27017

c lus ter IP : None
se lec tor :

app: mongo

Code listing B.3: Secret for MongoDB credentials.
apiVersion: v1
data:

password: cGFzc3dvcmQxMjM=
username: YWRtaW51c2Vy

kind: Secre t
metadata:

creationTimestamp: nul l

name: mongo−creds

Chapter B: Configuration Files on Master 57

Code listing B.4: Statefulset for three replicas of MongoDB.
apiVersion: apps/v1
kind: S t a t e f u l S e t
metadata:

name: mongodb−r e p l i c a
spec:

serviceName: mongo
rep l i cas : 3
se lec tor :

matchLabels:

app: mongo
role: mongodb
environment: t e s t

template:

metadata:

labe l s :

app: mongo
se lec tor : mongo
role: mongodb
environment: t e s t

spec:

terminationGracePeriodSeconds: 30
serviceAccount: mongo−account
containers:

- name: mongodb
image: andreastanderen /mongo−s t s −3
command:

- mongod

- "--bind_ip_all"
- "--replSet"
- rs0

ports:

- name: mongo−port
containerPort: 27017

env:

- name: MONGO_INITDB_ROOT_USERNAME
valueFrom:

secretKeyRef:

name: mongo−creds
key: username

- name: MONGO_INITDB_ROOT_PASSWORD
valueFrom:

secretKeyRef:

name: mongo−creds
key: password

volumeMounts:

- name: mongo−data
mountPath: /data/mongo

- name: mongo−s i d e c a r
image: cva l l ance /mongo−k8s−s i d e c a r
env:

- name: MONGO_SIDECAR_POD_LABELS
value: "role=mongodb ,environment=test"

volumeClaimTemplates:

58 Standeren: MongoDB in K8s

- metadata:

name: mongo−data
spec:

accessModes:

- ReadWriteOnce

storageClassName: manual
resources:

requests:

storage: 1Gi

Code listing B.5: Role-based access control.
apiVersion: v1
kind: Serv iceAccount
metadata:

name: mongo−account

apiVersion: rbac . au tho r i za t i on . k8s . io /v1
kind: Clus te rRo le
metadata:

name: mongo−r o l e
rules:

− apiGroups: [""]
resources: ["configmaps"]
verbs: ["*"]

− apiGroups: [""]
resources: ["deployments"]
verbs: ["list" , "watch"]

− apiGroups: [""]
resources: ["services"]
verbs: ["*"]

− apiGroups: [""]
resources: ["statefulset"]
verbs: ["*"]

− apiGroups: [""]
resources: ["pods"]
verbs: ["get" ,"list" , "watch"]

apiVersion: rbac . au tho r i za t i on . k8s . io /v1
kind: Clus te rRo leB ind ing
metadata:

name: mongo_role_binding
subjects :

− kind: Serv iceAccount
namespace: d e f a u l t
name: mongo−account

roleRef:

kind: Clus te rRo le
name: mongo−r o l e
apiGroup: rbac . au tho r i za t i on . k8s . io

Chapter B: Configuration Files on Master 59

Code listing B.6: StorageClass.
kind: StorageC las s
apiVersion: s to rage . k8s . io /v1
metadata:

name: manual
provisioner: kubernetes . io /no−p r o v i s i o n e r
volumeBindingMode: WaitForFirstConsumer

Code listing B.7: Persistent Volume for worker 0.
apiVersion: v1
kind: Pers i s tentVolume
metadata:

name: l o ca l−pv−0
spec:

storageClassName: manual
accessModes:

- ReadWriteOnce

capacity:

storage: 2Gi
loca l :

path: /data/mongo
nodeAff ini ty:

required:

nodeSelectorTerms:

- matchExpressions:

- key: kubernetes . io /hostname
operator: In
values:

- worker0

Code listing B.8: Persistent Volume for worker 1.
apiVersion: v1
kind: Pers i s tentVolume
metadata:

name: l o ca l−pv−1
spec:

storageClassName: manual
accessModes:

- ReadWriteOnce

capacity:

storage: 2Gi
loca l :

path: /data/mongo
nodeAff ini ty:

required:

nodeSelectorTerms:

- matchExpressions:

- key: kubernetes . io /hostname
operator: In
values:

- worker1

60 Standeren: MongoDB in K8s

Code listing B.9: Persistent Volume for master.
apiVersion: v1
kind: Pers i s tentVolume
metadata:

name: l o ca l−pv−2
spec:

accessModes:

- ReadWriteOnce

storageClassName: manual
capacity:

storage: 2Gi
loca l :

path: /data/mongo
nodeAff ini ty:

required:

nodeSelectorTerms:

- matchExpressions:

- key: kubernetes . io /hostname
operator: In
values:

- master−node−0

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Andrea Standeren

MongoDB in a Self-Managed
Kubernetes Cluster

Deploying MongoDB in a Self-Managed
Kubernetes Cluster without an Operator

Master’s thesis in Computer Science
Supervisor: Svein Erik Bratsberg
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Acknowledgments
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Thesis Goals
	Outline

	Background
	Containers and Container Orchestration Tools Explained
	Containers
	Container Orchestration Tools

	Benefits of Containers and Container Orchestration
	Kubernetes Commercial Usage
	Evolution of Containerizing Stateful Applications
	Volume Plugins, Persistent Volumes, Persistent Volume Claims and Storage Classes
	StatefulSets
	Operators

	Alternatives for Cluster Initialization and Stateful Application Deployment
	Self-Managed or Provider-Managed Cluster
	Using an Operator or not

	Similar Research
	The Approach
	Results

	Method
	Exploratory Environment
	Experimental Environment
	Cluster Setup
	Application Setup
	General Considerations Concerning Manual Setup

	Information Gathering

	Conclusion
	The Final Setup
	Answers to the Research Questions

	Future work
	Comparing Manual and Automated Approach
	Testing Different Operators' Complexity
	Comparing Performance of Different Persistent Volume Kinds
	Comparing the Manual Setup Process Between Different Databases

	Bibliography
	Output from MongoDB
	Configuration Files on Master

