
Structural Analysis in Algorithm
s Aided D

esign
Aakre, Bødal, Elm

er

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

Aleksander Hatlestad Elmer
Brage Lund Aakre
Isak Flo Bødal

Exploring Finite Element Analysis
with Higher-order Solid Elements in
Algorithms Aided Design and
Optimization with Help of Machine
Learning

Master’s thesis in Civil and Environmental Engineering
Supervisor: Associate Professor Marcin Luczkowski
Co-supervisor: Dr. techn. Konstantinos Gavriil
June 2022

M
as

te
r’s

 th
es

is

Aleksander Hatlestad Elmer
Brage Lund Aakre
Isak Flo Bødal

Exploring Finite Element Analysis with
Higher-order Solid Elements in
Algorithms Aided Design and
Optimization with Help of Machine
Learning

Master’s thesis in Civil and Environmental Engineering
Supervisor: Associate Professor Marcin Luczkowski
Co-supervisor: Dr. techn. Konstantinos Gavriil
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Structural Engineering

Department of Structural Engineering
Faculty of Engineering
NTNU − Norwegian University of Science and Technology

MASTER THESIS 2022

SUBJECT AREA:

Structural Engineering

DATE:

11/06/2022

NO. OF PAGES:

vii + 116

TITLE:
Exploring Finite Element Analysis with Higher-order Solid Elements in Algorithms Aided
Design and Optimization with Help of Machine Learning

Utforsking av Elementanalyse med Høyere-ordens Volumelementer i Algorithms Aided Design og
Optimalisering med Maskinlæring

BY:
Aleksander Hatlestad Elmer
Brage Lund Aakre
Isak Flo Bødal

SUMMARY:
This thesis explores the possibilities of Finite Element Analysis (FEA) with solid elements in an Algorithms
Aided Design (AAD) environment. An AAD environment is a program that uses an algorithmic approach with
parameters to create 3D models. In this thesis, the AAD program used is Grasshopper. Furthermore, the
advantages of applying Machine Learning (ML) to some of the more challenging steps when implementing the
FEA in Grasshopper has been investigated. ML is applied to make parts of the analysis more efficient, or to
solve problems that are too complex to solve in a satisfying manner with a program that uses fixed rules.

Two different finite element plugins for Grasshopper are developed. The first is fully developed by the authors
of this thesis, while the second plugin is a further development of an already established plugin. These plugins
illustrate how the implementation of FEA in Grasshopper makes the design development process more
efficient. One of the greatest benefits of working in Grasshopper is the ability to rapidly make changes to the
geometry. The plugins developed in this thesis improve the design process by adding the option to perform an
FEA with solid elements. The second plugin also highlights the benefits of implementing higher-order elements
in an AAD environment, where we often find more complex geometry.

In addition, a series of ML models are developed to answer the second research question. One of the most
challenging steps in the FEA is preprocessing of the model, especially meshing of complex geometry has
proven to be challenging. Therefore, the meshing process is one of the tasks investigated with the help of ML.
The thesis also explores if ML can be used to replace the entire FEA, and if it can be used to predict the
rotational stiffness of a connection.

All the ML models included in this thesis show promising results. The problem of finding the location of mesh
vertices is solved for both 2D and 3D. To create complete meshes, the method would need more
development. For the entire FEA problem, the results show accurate predictions for stresses, while the
predicted displacement needs some further improvement before the results are satisfactory.

In general, it is clear that the use of ML in the FEA workflow will improve the efficiency and accuracy of the
analysis. Furthermore, the implementation of the FEA illustrates the possibilities of improving the rapid design
process in an AAD environment.

RESPONSIBLE TEACHER: Associate Professor Marcin Luczkowski

SUPERVISOR(S): Associate Professor Marcin Luczkowski and Dr. techn. Konstantinos Gavriil

CARRIED OUT AT: Department of Structural Engineering, Norwegian University of Science and
Technology

ACCESSIBILITY

OPEN

Preface

This thesis concludes our Master of Science degree in Structural Engineering at the department of
Structural Engineering at the Norwegian University of Science and Technology.

We would like to thank our supervisor Marcin Luczkowski and co-supervisors Konstantinos Gav-
rill and Arturs Berzins for their help and guidance during the course of this theis. We would also
like to thank our friends and family for their support during all these years.

Aleksander Hatlestad Elmer
Brage Lund Aakre
Isak Flo Bødal

iii

Abstract

This thesis explores the possibilities of Finite Element Analysis (FEA) with solid elements in an
Algorithms Aided Design (AAD) environment. An AAD environment is a program that uses an
algorithmic approach with parameters to create 3D models. In this thesis, the AAD program used
is Grasshopper. Furthermore, the advantages of applying Machine Learning (ML) to some of the
more challenging steps when implementing the FEA in Grasshopper has been investigated. ML is
applied to make parts of the analysis more efficient, or to solve problems that are too complex to
solve in a satisfying manner with a program that uses fixed rules. The thesis consists of seven case
studies designed to explore the following research questions.

What are the possibilities and issues of Finite Element Analysis with solid elements in an
Algorithms Aided Design environment?

Can parts of, or the whole, Finite Element Analysis be replaced by machine learning?

To answer the first research question, two different finite element plugins for Grasshopper are de-
veloped. The first is fully developed by the authors of this thesis, while the second plugin is a
further development of an already established plugin. These plugins illustrate how the implement-
ation of FEA in Grasshopper makes the design development process more efficient. One of the
greatest benefits of working in Grasshopper is the ability to rapidly make changes to the geometry.
The plugins developed in this thesis improve the design process by adding the option to perform
an FEA with solid elements. The second plugin also highlights the benefits of implementing
higher-order elements in an AAD environment, where we often find more complex geometry.

A series of ML models are developed to answer the second research question. One of the most
challenging steps in the FEA is preprocessing of the model, especially meshing of complex geo-
metry has proven to be challenging. Therefore, the meshing process is one of the tasks investigated
with the help of ML. The thesis also explores if ML can be used to replace the entire FEA, and if
it can be used to predict the rotational stiffness of a connection.

All the ML models included in this thesis show promising results. The problem of finding the
location of mesh vertices is solved for both 2D and 3D. To create complete meshes, the method
would need more development. For the entire FEA problem, the results show accurate predictions
for stresses, while the predicted displacement needs some further improvement before the results
are satisfactory.

In general, it is clear that the use of ML in the FEA workflow will improve the efficiency and
accuracy of the analysis. Furthermore, the implementation of the FEA illustrates the possibilities
of improving the rapid design process in an AAD environment.

iv

Sammendrag

Denne masteroppgaven utforsker mulighetene ved å implementere Elementsanalyse med volumele-
menter i program som benytter seg av Algorithms Aided Design (AAD). AAD er en metode for
å bruke algoritmer og parametere til å lage 3D modeller. I denne oppgaven blir programmet
Grasshopper brukt. Videre ser oppgaven på å erstatte de mer komplekse delene av elementana-
lysen med Maskinlæring (ML). ML blir brukt for å effektivisere deler av analysen, eller til å løse
oppgaver som er for komplekse til å bli løst av en algoritme med faste regler. Oppgaven består av
syv case studier som utforsker følgende problemstillinger.

Hva er mulighetene og utfordringene ved å implementere elementanalyse med volumetriske
elementer i et Algorithms Aided Design program?

Kan deler av, eller hele, analysen erstattes med maskinlæring?

For å svare på den første problemstillingen har to ulike programvareutvidelser til Grasshopper,
som gjennomfører elementanalyse, blitt utviklet. Den første av disse er utviklet i sin helhet av
oppgavens forfattere, mens den andre er en videreutvikling av en allerede etablert programvare.
Disse to programvarene viser hvordan implementeringen av elementanalyse i AAD effektiviserer
designprosessen. En av de største fordelene ved å jobbe i Grasshopper er muligheten til å raskt
gjøre endringer på geometrien til en modell. Den andre programvareutvidelsen som ble utvik-
let viser fordelene ved å bruke elementer med høyere-ordens formfunksjoner i analysen. Dette
spesielt på kompleks geometri, som er vanlig å lage i AAD programmer.

Videre ble det utviklet en rekke ML modeller for å svare på den andre problemstillingen. En av
de største utfordringene i elementanalysen er å lage et godt mesh, spesielt for kompleks geometri.
Det har derfor blitt utforsket å bruke ML til å forbedre denne prosessen. I tillegg har det blitt sett
på å erstatte hele elementanalysen med ML, samt å bruke ML til å predikere rotasjonsstivheten til
en forbindelse.

Alle ML-modellene i denne oppgaven gir positive resultater. Oppgaven med å finne plasseringene
til nodene i meshet er løst både i 2D og i 3D. For å kunne generere ett fullstendig mesh, må
metoden utvikles ytterligere. Resultatene når ML blir brukt på hele elementanalysen er gode for
spenninger, mens det for deformasjoner kreves forbedring før resultatene er tilfredsstillende.

Det er tydelig at å bruke ML til å gjennomføre deler av, eller hele, elementanalysen vil forbedre
effektiviteten. I tillegg viser implementeringen av elementanalyse som støtter volumetriske ele-
menter hvordan designprosessen i AAD program kan forbedres og effektiviserer.

v

Glossary

AAD Algorithms Aided Design is a method for creating digital
models with an algorithm based-approach.

Artificial Intelligence The theory and development of computer systems able to
perform tasks normally requiring human intelligence.

Batch size Number of training samples utilized in one iteration.

Convolutional network A network architecture specifically designed to process
pixel data.

Deep learning A neural network with two or more hidden layers.

DF Distance Field, a field that describe the distance to an un-
closed object.

Dropout Data that is intentionally dropped from the neural network
to improve processing and time to results.

Fully connected network A network architecture where all neurons in two sub-
sequent layers are connected.

Epochs The number of times a learning algorithm runs through the
whole dataset.

FEA Finite Element Analysis is an analysis using the Finite Ele-
ment Method, which is a method numerical calculation
method.

Feature The input property for the algorithm.

Hidden layer A layer between input and output layers that contains neur-
ons.

Learning rate A tuning parameter that determines the step size of each
iteration.

Loss function A function that calculates the error between the prediction
and the target.

Machine Learning A branch of AI that uses large datasets to imitate the way
humans learn.

Neural Networks A series of algorithms that aims to recognize the relation-
ship between a set of features and a set of targets.

Neurons A connection point in a neural network that imitates the
neurons in a human brain.

SDF Sign Distance Field, a field that describe the distance to a
closed object.

Target or label The target for an algorithm to predict.

Unet A network architecture designed for image segmentation
and classification.

Weight A weight controls the strength of the connection between
two neurons. I.e., it decides how much a neuron influences
the output.

vi

Table of Contents

Preface iii

Abstract iv

Sammendrag v

Glossary vi

1 Introduction 1
1.1 Background . 1
1.2 Research Question . 2
1.3 Structure of the Thesis . 3

2 Theory 4
2.1 Finite Element Method . 4
2.2 Machine Learning . 12
2.3 Rotational Stiffness in Structural Connections 19

3 Software 23
3.1 AAD Software . 23
3.2 FEM Software . 23
3.3 Programming Software . 24

4 Methods 25
4.1 Simple FEM Solver Plugin with 8-node Hex Element 25
4.2 SolidFEM Plugin with 20-node Hex Element 32
4.3 Machine Learning . 42

5 Case Studies 48
5.1 Case study 1: Verification of the Simple FEM Solver plugin 48
5.2 Case study 2: Verification of the SolidFEM plugin with 20-node elements 53
5.3 Introduction to Meshing with Machine Learning 62
5.4 Case Study 3: 2D Meshing with Machine Learning 63
5.5 Case Study 4: 3D Meshing with Machine Learning 77
5.6 Case Study 5: FEA of Cantilever Beam with ML 89
5.7 Case Study 6: FEA of a Simple Steel Connection with ML 95
5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML . . 101

6 Discussion/Conclusion 111
6.1 Discussion . 111
6.2 Conclusion . 116

Bibliography 117

Appendices 119

A GitHub Repositories 119

B Videos 120

vii

1 Introduction

This thesis was written for the Conceptual Structural Design Group (CSDG) of NTNU. The CSDG
explores the relationship between structural engineering and architectural design. Conceptual
structural design is about creating designs that in addition to carrying loads, also appear mean-
ingful, beautiful and otherwise interesting. In this thesis, the aim is to improve the structural
design process and enhance the possibilities of creating interesting structures.

1.1 Background

In the traditional workflow of a building project the architect is responsible for the design, while the
engineer is responsible for calculating dimensions and controlling the architects design solutions.
If something does not work, the engineer sends the design back to the architect. The design goes
back and forth until both the architect and the engineer are satisfied. The design is then sent to
the cost calculation and finally to the construction contractor. This workflow is ineffective and
gives an increase in cost. Figure 1.1 shows the cost of making design changes, together with the
ability to implement them, in terms of time. As the project progresses, the cost of making changes
increases, while the ability to implement these changes decreases. If the design gets stuck in a loop
between the architect and the engineer, the cost of making a small change increases drastically.

Figure 1.1: Relationship between cost and ability of making a change, and the time development of a
project (Eikeland, 2001).

A solution to the flaws in what has been described as the traditional workflow of a building project
is Digital Prototyping. Digital prototyping is a technique to quickly create a digital computer-
aided design (CAD) model. The model can be easily changed to create multiple design proposals
in a short amount of time. By creating an easily adjustable CAD model early in the design process,
the engineer and architect could work together to create design proposals. In this way, the design
is driven not only by aesthetics, but also by good engineering solutions, which leads to better
designs. The main bottleneck in the process is that the prototype models must be exported or
recreated in a dedicated FEA program. These programs are computationally demanding to run
and the analyzes are often slow. This, in turn, increases the cost and decreases the effectiveness of
the design process.

1

1.2 Research Question

A method for creating digital prototypes, called Algorithms Aided Design (AAD), is becoming
increasingly popular. When creating a model in AAD, the traditional graphical representation
is replaced by an algorithm, often done through visual programming. The algorithmic approach
to creating geometry allows for the parameters that determine the model to be changed in real
time. This makes it quick to produce a lot of new design proposals. When moving from manual
design exploration to an algorithm-based approach, it would be natural to explore the possibility
of linking the FEA part of the design process with the AAD part. The application of the Finite
Element Method (FEM) in an AAD environment would make the whole design process algorithm-
based. This, in turn, would streamline and make the digital prototyping process more efficient.

For AAD based FEA, there is already some established software. These are mainly based on beam
and shell elements, which works well for the main parts of a structure: the beams, columns, walls,
roofs, etc. The connections between these parts are more problematic, because it is not possible
to represent a connection correctly with beam- or shell elements. To analyze these, an analysis
with solid elements is required. FEA with solid elements are computationally costly, especially
when working with higher-order shape functions. When working with AAD, it is desirable to
have everything updated in real time. It is not effective if parts of the model must be remodeled
in another FEA program for every small change to the design. Additionally, it is often difficult
to create a mesh of high enough quality, especially for more complex geometry. The idea to
use Artificial Intelligence (AI) to accelerate the FEA process and improve the mesh generation is
therefore explored.

Machine Learning (ML) is a subcategory of AI and creates algorithms based on large sets of data.
It is often used at tasks that are too complex or difficult to solve for human written programs. The
algorithm uses the provided data to learn, instead of using an algorithm with fixed rules. This
could be a solution to the computational cost problems described. Since ML uses large datasets
to create an algorithm to solve problems, it should be able to replace an FEM solver in the AAD
environment. This would make it possible to create design proposals with a good approximation
for the FEA results in real time.

1.2 Research Question

This thesis aims to answer the following research questions:

What are the possibilities and issues of finite element analysis with solid elements in an AAD
environment?

Can parts of, or the whole, finite element analysis be replaced by machine learning?

By exploring these questions, we hope to find a way to improve the workflow and efficiency of
the conceptual design phase. By implementing FEA and ML software to improve the efficiency
of the FEA in AAD software such as Grasshopper, the design process will be more efficient. This,
in turn, will improve the cooperation between architects and engineers in the design phase, with
both sides being able to influence design choices more easily. Furthermore, it would create the
possibilities to analyze more complex structural systems, like a grid of connections.

2

1.3 Structure of the Thesis

To answer these questions, an FEM plug-in with solid elements has to be developed for Grasshop-
per. This solver needs to support elements with higher-order shape functions to be applicable for
detailed design of connections, because these elements better represent complex geometry. Fur-
thermore, an ML model needs to be developed to enhance different parts of the FEA. It would be
sensible to explore the application of ML to both the meshing and the full analysis. Meshing of
complex and nonuniform geometry is difficult and would greatly improve an analysis if this were
done by ML.

1.3 Structure of the Thesis

This thesis is based on case studies that explore the research questions. It begins with an introduc-
tion to the relevant theory used for software development. This includes an introduction to FEM
and ML, with different network architectures and algorithm building. There is also a sub-chapter
on rotational stiffness. A chapter describing relevant third-party software follows. Chapter 4 gives
an in-depth explanation of the structure and architecture of the different software developed by the
authors of this thesis. This includes the simple FEM Solver plug-in for Grasshopper, the further
development of the SolidFEM plug-in for Grasshopper, as well as the framework for creating ML
models in PyTorch. All source codes can be found in the appendix, in Table A.1. The different
case studies are presented in Chapter 5, each case study being described in detail, along with a
result and a small discussion section. Lastly, there is a discussion and conclusion section that
connects all parts of the thesis together with the research questions.

3

2 Theory

2.1 Finite Element Method

2.1.1 Introduction

FEM is a well-established numerical method that aims to find approximate solutions to load re-
sponses. Since the method works by dividing complex systems into smaller and more manageable
subsystems, it is often used for structures with advanced geometries that are impossible to describe
with analytical formulations. These subsystems are commonly known as elements, and these ele-
ments are a representation of the geometry of the model. There are four main elements: beam,
shell, plate, and solids. This thesis focuses on solid elements. The following theory will explain
the general concepts of FEM, before the theory for solid elements is explained with the help of an
eight-noded hexahedron element.

Assumptions

To describe the physical world in terms of mathematical formulations, some simplification is
needed. The theory is based on elastic and homogeneous materials. Furthermore, the load re-
sponse is calculated using linear theory. Linear theory is based on two main assumptions (Bell,
2013):

• The calculated displacements are assumed to be small. Therefore, the equilibrium calcula-
tions can be based on an undeformed geometry.

• The material is assumed to be linear elastic. Such that the relationship between stress and
strain is linear and reversible.

This thesis formulates the relationship between force, displacement, and stress using the Principle
of Virtual Work, (Bell, 2013). The principle assumes a small virtual displacement, which intro-
duces changes to the system. Furthermore, it assumes that the work performed by a real external
force is in equilibrium with the work performed by internal forces, both as a result of the virtual
displacements, for a system in static equilibrium.

2.1.2 FEM procedure

Discretization

As mentioned in the introduction to the theory, the geometry of a model must be dicretizised into
smaller elements to perform an FEA on it. These elements consist of a set of nodes, and the number
of nodes per element depends on the type of element. Elements are connected through neighboring
nodes, creating the models connectivity. This ensures that the elements are compatible, that is, that
the entire model is connected without any overlap or gaps.

4

2.1 Finite Element Method

Load - Displacement relation

The basis of FEM theory is the relationship between loads and displacements. Nodal displace-
ments are calculated in Eq. 2.1.

Kr = R (2.1)

In this equation, K represents global stiffness matrix, r is a vector of the unknown nodal displace-
ments, and R is a vector of the applied loads at the nodes. By calculating nodal displacements,
stresses and strains can be calculated.

Shape Functions

To describe the displacements within the elements, the nodal displacements are interpolated. The
interpolation is performed with shape functions. The construction of these shape functions is based
on a set of principles that must be followed. These are continuity and completeness, as defined by
(Bell, 2013).

• The displacements are required to be continuous over all elements. If the highest-order
differential equation in FEM is denoted by m, then the shape functions and its derivatives
should be continuous up to and including m-1.

• The completeness principle requires the shape functions to correctly describe the rigid body
movements of the elements. This is achieved when a rigid body movement does not cause
any stress in the element. Furthermore, they must be able to represent a state of constant
stress within the element.

The shape functions are denoted as N and determine the variation of displacements within an
element. It is given by Eq. 2.2 and Eq. 2.3.

N(x,y,z) =
[
N1(x,y,z) N2(x,y,z) . . . Nnd (x,y,z)

]
(2.2)

where

Ni =

Ni1 0 · · · 0
0 Ni2 · · · 0
...

...
. . .

...
0 0 · · · Nin f

 (2.3)

Here, nd is the total number of nodes, while n f is the total number of degrees of freedom (DOFs).
Which for a model based on solid elements will be three DOFs per node, since the solid elements
only account for translation and not rotation.

5

2.1 Finite Element Method

The displacements are calculated by

u(x,y,z) =
nd

∑
i=1

Ni(x,y,z)ri = N(x,y,z)re (2.4)

with ri being the displacements of node i for the three DOFs.

ri =

r1

r2

r3

 (2.5)

The total number of DOFs for an element is equal to n f ·nd . As mentioned above, n f = 3 for solid
3D elements. Furthermore, the shape functions are the same for each DOF: Ni = Ni1 = Ni2 = Ni3.

Stiffness Matrix

The local stiffness matrix of an element can be defined from the principle of virtual work as

ke =
∫

Ve

BT cB dV (2.6)

where c is the material matrix and B is the strain matrix. B is defined as the derivative of the shape
functions B = ∆N.

Since the local stiffness matrix is related only to one element, it is necessary to assemble all local
stiffness matrices into a global stiffness matrix. This is done by constructing the connectivity
matrix a for each element. The a matrix relates the local position of the nodes to their global
position; see Eq. 2.7.

K =
ne

∑
k=1

aT
e keae (2.7)

Boundary conditions

Boundary conditions are constraints on nodal displacements. A fixed node means that the nodal
DOFs are predefined to be 0. To simplify the calculations and make the analysis more efficient,
this can be included in the load-displacement relationship given in Eq. 2.1. The global stiffness
matrix and the load vector can be reduced in correspondence with the fixed DOFs, as illustrated in
Eq. 2.8.

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

r1

r2

0
r4

=

R1

R2

R3

R4

→

K11 K12 K14

K21 K22 K24

K41 K42 K44

r1

r2

r4

=

R1

R2

R4

 (2.8)

6

2.1 Finite Element Method

Loads

External loads can be applied by either point loads directly in the nodes or by surface loads. The
external point loads are deconstructed and assigned to the corresponding DOFs to construct the
load vector R. For distributed surface loads, there are different approaches to lumping these at the
nodes. Lumping is a method of distributing surface loads to nodal loads. The simplest method is
to multiply the distributed load by the area of the surface and divide it by the number of nodes.
When going element by element, the nodes connected to several elements get a contribution from
all. The other method creates a consistent nodal load vector. This method is based on the idea
that the external work, W, done by nodal loads S0 in moving through nodal displacements, v, is
equal to the work done by distributed loading F and Φ, when moving through the displacement
field u = Nv. This is shown with the following equations:

W = vT S0 =−
∫

V
uT FdV −

∫
SΦ

uT
ΦdS (2.9)

S0 =−
∫

V
NT FdV −

∫
SΦ

NT
ΦdS = S0

F +S0
Φ (2.10)

Where S0
F is the nodal load contribution from body forces, and S0

Φ
is the nodal load contribution

from surface traction.

Lumping of the distributed loads should only be done when working with linear elements with
corner nodes. For higher-order shape functions, it is recommended to use consistent nodal loads.

2.1.3 Isoparametric mapping

Figure 2.1: Isoparametric mapping of an eight-node hexahedron element.

To account for elements with an arbitrary shape, the element can be formulated as an isoparametric
element with natural coordinates. For a hexahedron element, the mapping transforms the element
into a quadratic cube with lengths of 2 and the origin in the middle, as shown in Figure 2.1. For
the following example of an implementation of the FEM, this type of element is used.

After mapping, the element’s shape functions can be expressed with natural coordinates. These
consist of eight trilinear functions given in Eq. 2.11.

7

2.1 Finite Element Method

Ni =
1
8
(1+ξ ξi)(1+ηηi)(1+ζ ζi) (2.11)

Here, ξi, ηi, and ζi represent the natural coordinates of node i.

By interpolating the shape functions, N, and the nodal displacements, re, the displacement vector,
u is created.

u = Nre, re =

re1

re2
...

re8

 , N =
[
N1 N2 · · · N8

]
(2.12)

Here, the displacements for the different directions, ui,vi and wi, and the shape function are given
by Eq. 2.13:

rei =

ui

vi

wi

 , Ni =

Ni 0 0
0 Ni 0
0 0 Ni

 (2.13)

Furthermore, the strain matrix from the Stiffness Matrix section is defined as

B =
[
B1 B2 · · · B3

]
(2.14)

with Bi defined as the following matrix:

Bi =

Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

Ni,y Ni,x 0
0 Ni,z Ni,y

Ni,z 0 Ni,x

(2.15)

Here, the notation Ni,x corresponds to the partial derivative of Ni with respect to x. Since shape
functions are derived from natural coordinates, the Jacobian matrix is used to relate the Cartesian
and natural coordinate systems. It may be regarded as a scaling factor multiplied by dξ dηdζ to
create the physical volume dxdydz. The Jacobian matrix is derived from the partial derivatives of
the shape functions.

Ni,x

Ni,y

Ni,z

= J−1

Ni,ξ

Ni,η

Ni,ζ

 (2.16)

8

2.1 Finite Element Method

In Eq. 2.16 the matrix J is given by:

J =

Ni,ξ

Ni,η

Ni,ζ

[
x y z

]
=

Ni,ξ

Ni,η

Ni,ζ

x1 y1 z1

x2 y2 z2
...

...
...

x8 y8 z8

 (2.17)

From this, the local stiffness matrix k can be calculated by Eq. 2.18.

k =
∫ +1

−1

∫ +1

−1

∫ +1

−1
BT cB |J| dξ dη dζ (2.18)

2.1.4 Numerical Integration

Since the integration in Eq. 2.18 is complex, numerical integration schemes are used to simplify
the calculations. In FEM, the most common method is Gauss integration method, where the
integral is replaced with a sum of weighted integrands that are evaluated at predefined Gauss
points, (Bathe, 2014). The weights and points can be found in Table 2.1. Eq. 2.19, shows the
integration for a 3D element with ξ ,η and η being the coordinates and wi,w j and wk the weights.

±ξi w j

0 n = 1 2.000000
1/
√

3 n = 2 1.000000√
0.6 n = 3 5/9

0.000000 8/9
0.861136 n = 4 0.347855
0.339981 0.347855

Table 2.1: Gauss points and weights.

I =
∫ +1

−1

∫ +1

−1

∫ +1

−1
f (ξ ,η ,ζ) dξ dη dζ =

n

∑
i=1

n

∑
j=1

n

∑
k=1

wiw jwk f (ξ ,η ,ζ) (2.19)

With n sampling points, the Gaussian quadrature will give an exact integration of a polynomial
with an order of 2n− 1. For the eight-node hexahedron element, this corresponds to n = 2 in all
three directions, since shape functions are linear in all three directions. This gives a total of eight
sampling points with coordinates ξ =η = ζ =±1/

√
3, and the corresponding weights, also found

in Table 2.1, being wi = w j = wk = 1.

2.1.5 Stress and Strain

The strain is calculated in Eq. 2.20 by multiplying the strain matrix B found in Eq. 2.15 with
global displacements, de. The strain is calculated individually for each point and is evaluated in
Gaussian integration points.

9

2.1 Finite Element Method

εεε =
[
εx εy εz γx γy γz

]T
= ∆u = Bde (2.20)

Furthermore, stress is found using Hooke’s law, which gives a linear relationship between stress
and strain when using linearly elastic materials. Eq. 2.21 calculates the stress from the strain

σσσ =
[
σx σy σz τxy τyz τzx

]T
= Cεεε (2.21)

where C is the material matrix and εεε is the strain. The material matrix, C, for a linearly isotropic
material is given in Eq. 2.22

C =

C1 C2 C2 0 0 0
C2 C1 C2 0 0 0
C2 C2 C1 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

,

C1 =
E

(1+ν)(1−2ν)(1−ν)

C2 =
E

(1+ν)(1−2ν)ν

G = E
2(1+ν)

(2.22)

Since stress and strain have been calculated in the Gauss points, an extrapolation has to be per-
formed to obtain stress and strain in the nodal points. This is done by introducing a new set of
coordinates which corresponds to the shape functions being equal to one in the Gauss points.

ξ = ξ
′/
√

3, η = η
′/
√

3, ζ = ζ
′/
√

3 (2.23)

The nodal extrapolated stresses are calculated in Eq. 2.24

σextr =
nd

∑
i=1

N′
i σ

′
i (2.24)

where σ ′
i corresponds to the Gauss stress at points i, and N′

i corresponds to the shape function; see
Eq. 2.11, of node i, using the new coordinates ξ ′,η ′ and ζ ′. σextr is the extrapolated stress.

When working with metallic materials, the most common yield criterion is the Von Mises yield
criterion, shown in Eq. 2.25. This stress is compared to the yield stress of the material to evaluate
utilization.

σm =

√
(σx −σy)2 +(σy −σz)2 +(σz −σx)2 +6(τ2

xy + τ2
yz + τ2

zx)

2
(2.25)

10

2.1 Finite Element Method

2.1.6 Higher-order Shape Functions

The example for Isoparametric mapping in 2.1.3, uses an eight-node hexahedral element. It is
also possible to use elements with a larger number of nodes. Increasing the number of nodes
for each element increases the accuracy and convergence rate, but at a higher computational cost.
Since the eight-node element only has nodes in the corner, it is restricted to represent linear shape
functions between nodes. This means it cannot represent beam action properly, since its element
edges remain straight when the element is bent. On the other hand, the 20-node element is capable
of representing quadratic shape functions because of the mid-side nodes, which makes it better
to describe beam action. Furthermore, the eight-node element exhibit shear-locking, while the
20-node does not. This makes it possible to converge towards a solution with fewer elements.
However, the 20-node element has 60 DOFs per element, in contrast to the eight-node element,
which has 24. This, in turn, results in a much larger stiffness matrix and a slower computational
time. For the following explanation, the 20-node serendipity element is used.

For higher-order shape functions, the implementation is equivalent to that of the shape function
part of Section 2.1.2. The only difference is the functions for the different nodes, (Zienkiewicz &
Taylor, 2000). For the corner nodes, the functions are the same as those given in Eq. 2.11. The
functions for the mid-side nodes are given by the following equations:

Ni =
1
4
(1−ξ

2)(1+ηηi)(1+ζ ζi) for i = 8,10,12,14 (2.26)

Ni =
1
4
(1−η

2)(1+ξ ξi)(1+ζ ζi) for i = 9,11,13,15 (2.27)

Ni =
1
4
(1−ζ

2)(1+ξ ξi)(1+ηηi) for i = 16...19 (2.28)

Here, the nodal numbering is given in Figure 2.2.

Figure 2.2: Isoparametric mapping of a twenty-node hexahedron element.

Further calculations follow the same principles as those in the previous sections of this chapter.
The only difference is an increase in the size of a lot of the matrices. There is also a difference
in numerical integration. Full integration of the 20-node element corresponds to n = 3 in all three
directions. This gives a total of 27 sampling points; see Table 2.1 for coordinates and weights.

11

2.2 Machine Learning

2.2 Machine Learning

As can be seen in Figure 2.3 ML is a subcategory under the umbrella term AI. An ML algorithm
is an algorithm that is capable of learning from data. It is often used in tasks that are too complex
or difficult to solve using human-written programs. Instead of implementing an algorithm with
fixed rules, the algorithm can learn from the data provided in training (Goodfellow et al., 2016).
To clarify the meaning of learning in this context, the following definition is included:

"A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E." Mitchell, 1997

Figure 2.3: Machine learning in the AI landscape.

There are many different classes of tasks that can be solved by machine learning. In this thesis,
the tasks to be solved are called regression tasks and are a subcategory of supervised learning.
The task is usually described and categorized in terms of how the machine learning system should
process an example. One set or example is a collection of features that are usually represented
by a vector x ∈ Rn where each xi is a feature. In the case of supervised learning tasks, each input
feature is associated with a label or target. The program tries to learn a function f : Rn → Rm,
which maps the features to the labels. Similarly to features, the labels can be represented by a
vector y where each y j is a label. The experience of a supervised learning algorithm involves
observing several samples of random features and labels taken from a larger collection of samples,
called datasets. The algorithm then attempts to predict the target from the feature by maximizing
the function p(y|x). The term supervised learning comes from providing both the feature and the
label and, in this way, showing the system what to do.

To be able to evaluate the capabilities of the algorithm, a measure of its performance must be
introduced. The goal is to minimize the error between the prediction and the target, calculated
by a given loss function. There are many loss functions that can be used; the choice depends on
the problem at hand and the desired behavior of the algorithm. Sometimes a loss function that
penalized frequently made medium-sized mistakes is needed, and other times large mistakes that
are rarely made should be penalized hard. It is also possible to create a custom loss function, as
will be shown in Case Study 3. In short, a loss function is any function that calculates the degree
to which the prediction made by the model is incorrect. Two of the most commonly used functions
are called the mean absolute error and the mean squared error. These functions are called mean

12

2.2 Machine Learning

because they calculate the loss over an entire dataset and return the mean value. Equation 2.29
illustrates these two loss functions.

MAE =
1
n

n

∑
i=1

|yi − f (xi)|, MSE =
1
n

n

∑
i=1

(yi − f (xi))
2 (2.29)

The interesting aspect to observe during training is how the algorithm performs on data that it has
never seen before. Therefore, the data are divided into three sets, training, validation, and testing.
The training set is used to train the model, the validation set is used to evaluate performance
during training, and the testing set is applied to the model after training is completed to get a final
evaluation of the model’s accuracy. The training and validation loss gives a good indication if the
model is overfitting or underfitting. If the model performs very well on the training data but cannot
get the same performance on the validation data, it usually means that the model is overfitting.
Overfitting is a term that is used when a model learns the detail and noise in the training data so
well that it negatively impacts the performance of the model on new data. Random properties from
the training data are picked up and learned as concepts by the model. The problem is that new data
does not have these concepts and therefore the concepts have a negative impact on the prediction
of the model. On the other hand, if performance is low on both the training and validation data,
the model is said to underfit. Underfitting is the case where the model can not learn anything from
the training data. Ideally, we want a model that performs well both on the training data and on the
validation data. Figure 2.4 illustrates underfitting, robust fit and overfitting.

Figure 2.4: Underfitting, robust fit and overfitting of a model.

2.2.1 Linear Regression

A regression task is a task in which the program is asked to predict a numerical value given some
input. The simplest case of a regression task is called linear regression. In this case, the output is
a linear function of the input. To clarify the notation in Equation 2.30, ŷ is the predicted value of
the label y, x is the input vector of features, and w ∈ Rn is a vector of weights. The equation can
be written as follows:

13

2.2 Machine Learning

ŷ = wT x (2.30)

Equation 2.30 defines the task of predicting y from x. In the equation, wi is multiplied by xi and
summed to obtain the prediction. In this sense, it is intuitive to see how the weights affect the
prediction. If a feature’s weight is large, it has a large effect on the prediction, and if it is small,
it has a small effect. A negative weight reduces the prediction, while a positive weight increases
the prediction. In training, these weights start as random values, which often gives a large loss.
The weights are then adjusted in a way that reduces the loss provided by the loss function and
improves the performance with experience. The goal is to find the weights that minimize the error
at all points. This is achieved when the partial derivatives of the loss function with respect to
the weights are zero. The optimization algorithm used for this process is called gradient descent,
and it involves estimating the gradient for every point, taking a step in the opposite direction of
the gradient, and repeating this process until the loss converges towards a minimum. To illustrate
this calculation, the normal equations of the mean squared error are shown below. Equation 2.31
illustrates the derivative with respect to the weights of the mean squared error. In this equation,
the prediction has the notation ŷ(train) and is a result of the input features X(train) multiplied by the
weights w. The equation is then solved for the weights.

∇w
1
m
||ŷ(train)−y(train)||22 = 0 (2.31)

=⇒ ∇w
1
m
||X(train)w−y(train)||22 = 0 (2.32)

=⇒ ∇w(X(train)w−y(train))T (Xtrainw−y(train)) = 0 (2.33)

=⇒ w = (X(train)T
X(train))−1X(train)T

y(train) (2.34)

Finally, an additional parameter called bias is included in the equation. The bias b accounts for
when the regression line does not include the origin, and thus a translation b is needed. This bias
is included in Equation 2.35.

ŷ = wT x+b (2.35)

In this thesis, most regression tasks include problems with multiple inputs and outputs, called
multiple regression tasks. These regression tasks work in a similar fashion as described above; in
matrix form the equation can be written as illustrated in Equation 2.36.

[
y1 y2 · · · yp

]
=
[
x1 x2 · · · xq

]

w11 w12 · · · w1p

w21 w22 · · · w2p
...

...
. . .

...
wq1 wq2 · · · wqp

+
[
b1 b2 · · · bp

]
(2.36)

14

2.2 Machine Learning

2.2.2 Feedforward Neural Networks

The goal of feedforward networks, or deep feedforward networks if the depth of the network is
two or greater, is to approximate a function. The network defines the mapping y = f (x;θ) and
learns the parameters θ that give the best approximation. It is called feedforward because the
information flows through the function evaluated from x, through the computations that define the
function, and finally to the output. In other words, there are no feedback connections that feed the
output back into itself, as in recurrent neural networks. This is an important distinction, because
in a feedforward network, the gradient is clearly defined and computable through backpropagation
or the chain rule. Feedforward networks form the basis of many important networks, such as
fully connected networks and convolutional networks, which we will describe later in this section.
The reason it is called a network is because it can consist of many different functions connected
in a chain or a network. As an example, a network with three hidden layers has three functions
connected in a chain, f (x) = f (3)(f (2)(f (1)(x))). Figure 2.5 illustrates this network as a fully
connected network with all features x in the input layer, f (1) as the first hidden layer, f (2) as the
second hidden layer, f (3) representing the third hidden layer, and the last layer is called the output
layer, which consists of all the labels.

Figure 2.5: Illustration of a fully connected feedforward network with three hidden layers.

The length of the chain represents the depth of the model and is the reason for the terminology
"deep learning". In the other direction, the number of neurons in the layers determines what we
call the width of the model. Each feature x is mapped to a label y and during training the output
layer is told what to do at each point. It must produce a value as close to the label as possible. The
other layer is not told directly what to do, but the learning algorithm must decide how to use these
layers to obtain the best approximation of the function. Because these layers are not told directly
what to do, they are called hidden layers.

Each neuron in the network is a function that receives a value from the connected neurons. A
weighted sum of all these inputs, with an added bias value, is calculated, and we obtain the ac-
tivation of the neuron, a = g(wT x + b). By applying a non-linear activation function on this
calculated value, we have introduced non-linearity to the model. When including this non-linear
activation function, we get a non-linear regression task that outputs a non-linear function of the
input. Without this activation function, we would not be able to approximate any continuous func-

15

2.2 Machine Learning

tion; therefore, it is very important for nonlinear problems. The most common activation function
is called ReLU, short for rectified linear unit.

R(x) = max(0,x) (2.37)

ReLu returns x for all positive values, zero for negative values. The function is very simple; there
is no complicated math or heavy computations. Due to this simplicity, the model often takes less
time to train and run compared to other activation functions. This is one of the reasons why ReLU
has been shown to learn faster than other activation functions, (Team, 2020).

The optimization algorithm used in this thesis is called the Adam optimizer and is an optimization
technique for gradient descent. Because this algorithm requires less memory, it is efficient when
working on large problems involving a lot of data. The optimizer inherits the strengths of two
gradient descent methods, "gradient descent with momentum" and "root mean square propagation"
(RMSP), to obtain a more optimized gradient descent method that reach the global minimum
efficiently, (Prakhar, 2020). Next, some of the network architectures explored during development
are presented.

Fully connected neural network

A fully connected network consists of a series of fully connected layers that connect every neuron
in one layer to every neuron in the following layer. Figure 2.5 is an example of a fully connected
neural network. A fully connected network has the simplest architecture and is very broadly ap-
plicable. On the other hand, it tends to have a weaker performance than special-purpose networks
designed for the problem at hand, (Bharath Ramsundar, 2018).

Convolutional neural network

As the fully connected network, the convolutional network is made up of neurons, each neuron
receives input, performs a dot product, and follows with nonlinearity. There are three types of
layers that are used to build the convolutional architecture, the convolutional layer, the pooling
layer, and a fully connected layer as the output layer. The difference is that the convolutional
architecture makes the assumption that the inputs are images, which allows us to encode certain
properties into the architecture. These properties make the forward function more efficient to
implement and reduce the number of parameters in the network. In comparison the fully connected
network does not scale well to full images. For example, an image with low resolution, such as
32x32 pixels with 3 channels, seems manageable, but once the image resolution gets larger, the
network struggles. An image with resolution 512x512 would lead to an input vector that has
512x512x3 = 786 432 features. Unlike a fully connected network, a convolutional network takes
advantage of the fact that the input is an image and arranges the features in three dimensions:
width, height, and depth. Depth in this context refers to the third dimension, not the number
of layers, as described earlier in feedforward networks. An image, 512x512x3, has a width and
height of 512 and a depth of 3. To clarify, an example architecture that includes all the layers used
to build a convolutional network is illustrated in Figure 2.6.

16

2.2 Machine Learning

Figure 2.6: Illustration of a convolutional network architecture.

Steps in a simple convolutional network:

• Input: An image [32,32,3] has a width and height of 32 with the three channels R,G,B.

• Convolutional layer: Compute the output of neurons that are connected to local regions in
the input. Using six filters, the result is a volume with six feature channels [32,32,6].

• ReLU layer: Introduces nonlinearity and does not change the dimensions.

• Pool layer: Performs a downsampling operation in spatial dimensions (width and height),
resulting in a volume of [16,16,6].

• Fully connected layer: In this case, the output layer depends on the desired output of the
network. For example, [1,1,2].

Note that the sequence is not fixed and that all layers must not be included in every sequence. For
example, another network can look like this: [Input-Conv-ReLU-Conv-ReLU-Pool-Conv-ReLU–
Conv-ReLU-Pool-FC] (Stanford, 2022). Also, it is worth mentioning that in our research we have
a grid of points that can be associated with the pixels, and instead of RGB values for each pixel
or point, we use a scalar value or a vector. In these cases, we get the dimensions [32,32,1] or
[32,32,3] if the dimension of the grid is 32.

Traditional Unet

Unet is a fully convolutional network, very popular in image segmentation. The architecture
is often used to transform from one input image to another output image. Unet is a U-shaped
encoder-decoder network architecture, which usually consists of four encoder blocks and four
decoder blocks that are connected with a bridge at the bottom. The architecture is illustrated in
Figure 2.7. At each encoder block, the spatial dimensions (width and height) are reduced by a
factor of two, while the number of feature channels is doubled. In the same way, the decoder
network doubles the spatial dimensions and halves the number of feature channels.

17

2.2 Machine Learning

Figure 2.7: Illustration of the Unet architecture.

The encoder block consists of two 3x3 convolutions with ReLU that introduce nonlinearity into
the model. In Figure 2.7, these convolutions are marked with a purple arrow. The output from
the last ReLU function is sent to the corresponding decoder block; this operation is called a skip
connection, and is visible in the figure as gray arrows. In a sense, the encoder block acts as a
feature extractor for the decoder block and provides the decoder with additional information that
helps to improve the flow of gradients during backpropagation. After the convolutions, a 2x2 Max-
pooling, shown with orange arrows, is applied to reduce the number of parameters to be trained.
As a result of the reduced parameters, the computational cost of the system is decreased.

The bridge at the bottom of the Unet connects the encoder to the decoder network. The bridge
consists of two 3x3 convolutions with ReLU functions in between.

The decoder network receives the feature representation provided by the encoder block through
the skip connection and generates a segmentation mask. The decoder block contains a 2x2 trans-
pose convolution indicated with green arrows in Figure 2.7. The result of this convolution is
concatenated with the information provided by the skip connection, and thereafter the result is
sent into two 3x3 convolutions with ReLU in between the convolutions. At the end of the net-
work, the output is passed through a 1x1 convolution followed by a sigmoid function. This gives
a segmentation mask that represents the pixel-wise classification. Classification is the process of
predicting the class of given data points. For example, in the case of image segmentation and
classification, an image of a dog can have the classes dog, grass, sky, and tree. The task in this
example is to identify to which class a given data point belongs, (Stanford, 2022).

18

2.3 Rotational Stiffness in Structural Connections

2.3 Rotational Stiffness in Structural Connections

2.3.1 Introduction

Connections are an integral part of a structure and require special attention to ensure safe and
cost-effective construction. The way forces are absorbed in a structural element and transferred to
the next one, and how the structural system works as a whole, is highly dependent on the types of
joints and connections. The connections used to join the structural elements can be in the form of
a point, a line, or a surface. A point connector is usually called a pinned joint, whereas line and
surface connectors are termed rigid or fixed joints. These terms of connections are idealizations
of actual physical joints, where their behavior can differ greatly from reality. A pinned joint, e.g.
a bolted connection, allows rotation but resists translation in any direction. A rigid or fixed joint,
for example, a welded connection or a glued surface, can also restrain rotation and provide both
force and moment resistance.

2.3.2 Classification of joints

The properties of a joint can be determined by considering its rotational and translational behavior
under loading. There are different possible ways to classify connections, and three widely used
experimental approaches are illustrated in Figure 2.8.

• Strength - the moment resistance. The connection can be full-strength, partial-strength, or
nominally pinned.

• Rigidity - the rotational stiffness. The connection may be rigid, semi-rigid, or nominally
pinned.

• Ductility - the rotation capacity of the joint before it collapses. The connections can be
classified as infinitely ductile, limited ductile, and non-ductile.

Figure 2.8: Three different joint classification approaches. (Joints in Steel Construction Moment Connec-
tions, 1995)

19

2.3 Rotational Stiffness in Structural Connections

2.3.3 Rotational Stiffness

In this thesis, the rigidity classification method will be studied. For simplicity, an elastic response
is considered on a beam-to-column connection. The definition of rotational stiffness, S j, is defined
by Equation 2.38.

S j =
M j

φ j
(2.38)

where M j is the bending moment in the connection and φ j is the difference between the absolute
rotations of the two connected members. When the rotational stiffness, S j, is zero or relatively
small, the joint can be classified as pinned. On the contrary, when the rotational stiffness is infinite
or relatively high, the joint will fall into the rigid joint class. A pinned or rigid joint is an idealized
assumption that is used in structural calculations, and in reality, no joint will have zero or infinite
stiffness. For all intermediate cases, the joint will belong to the semi-rigid joint class. Taking
into account an elastic response, the relationship of the moment and the rotation is linear, and
the rotational stiffness will be the gradient of the M − φ line. This is called the initial rotational
stiffness with the symbol S j,ini (ECCS, 2016).

Figure 2.9: Classification of joints according to stiffness and their moment-rotation diagram (Joints in Steel
Construction Moment Connections, 1995).

There are many ways to analyze and compute the rigidity of a semi-rigid joint. A simplified nu-
merical method using FEM software will be introduced, and the approach according to Eurocode
3 will be briefly explained.

Numerical method using FEM software

This is a simplified method, but will give an approximation of the rotational stiffness of a beam-to-
column connection subjected to a bending moment, M j. If φb and φc are the rotation of the beam
and column, respectively, the rotation of the connection, φ j, is defined in Equation 2.39.

φ j = φb −φc (2.39)

To find the angle of rotation of the beam, an evaluation point, pb, can be placed on the beam axis
a distance xpb from the connection point. Dz1 will be the vertical displacement of the intersection

20

2.3 Rotational Stiffness in Structural Connections

point of the beams, ib. Dz2 will be the vertical displacement of pb. See Figure 2.10. The angle of
rotation of the beam can then be calculated using the following formula.

φb = arctan
(

Dz2 −Dz1

xpb

)
= arctan

(
Dz

xpb

)
≈ Dz

xpb
(2.40)

A similar approach can be used to find the angle of rotation of the column. Where the evaluation
points, pc1 and pc2, can be placed on the vertical column axis, with an equal length of 1

2 zpc from
the intersection point of the columns, ic. zpc is the lever arm and can be defined as zpc = hb − t f b,
where hb is the total height of the beam and t f b is the thickness of the beam flanges. The difference
in the horizontal displacement of pc1 and pc1 will be Dx, and the angle can be obtained from:

φc = arctan
(

Dx2 −Dx1

zpc

)
= arctan

(
Dx

zpc

)
≈ Dx

zpc
(2.41)

Figure 2.10: Numerical computation of rotational stiffness of a beam-to-column connection.

With the applied bending moment, M j, the initial rotational stiffness, S j,ini, of the beam-to-column
connection can be calculated by equation (2.38).

Empirical method - Eurocode

In Eurocode 3: Design of steel structures - Part 1-8: Design of joints, 2009 a guide is provided to
assess rotational stiffness for many types of joints. This practical application is limited by criteria
that are not always verifiable. For example, the general Equation (2.42) is only applicable if the
design value of the axial force, NEd , in the connected member is greater than 5% of its plastic
resistance in the cross section. Additionally, the equation is also only valid for joints connecting I
or H sections. If these conditions are satisfied, the following formula for rotational stiffness from
Equation 6.27 in EN 1993-1-8 can be applied.

21

2.3 Rotational Stiffness in Structural Connections

S j =
S j,ini

µ
=

Ez2

µ ∑i
1
ki

(2.42)

where E is the Young’s Modulus for the material of the connection, ki is the stiffness coefficient
for the various i components and z is the lever arm which will change with the type of joint. The
stiffness ratio, µ , can be set as 1 if the design bending moment, M j,Ed , is less than 2/3 of the
moment resistance of the connection, M j,Rd . So, for an elastic analysis, µ is 1 and S j,ini is given
by the same expression as for S j.

22

3 Software

This section describes relevant software for this thesis. The software has been classified into AAD
software, FEM software, and Programming software, where AAD software has been used mainly
to create geometry. FEM software has been used to perform FEA. Finally, the programming
software has been used to develop plugins for the Grasshopper and ML algorithms.

3.1 AAD Software

3.1.1 Rhino/Grasshopper (version 7)

Rhinoceros 3D is a CAD software, (McNeel, 2022). The software makes it possible to create
complex 3D geometry. Grasshopper is a Rhino plugin that allows AAD. Grasshopper provides a
visual programming tool to create geometry in Rhino. This differs from traditional programming
by allowing for a more graphical approach to programming. Instead of writing lines of code,
different components are connected with lines to create code. This means that an AAD model
can be automatically updated when its input changes. By creating geometry with parameters on
sliders, different design proposals can be created in a short amount of time. Figure 3.1 shows a
simple example of creating geometry with Grasshopper.

Figure 3.1: Example of parametric modelling in Rhinoceros 7 with Grasshopper

3.2 FEM Software

3.2.1 Karamba3D

Karamba3D is an interactive, parametric Finite Element program, (Preisinger, 2013). Karamba3D
is a plugin for Grasshopper. This makes it easy to combine parameterized geometric models and
finite element calculations. It has tools to perform structural analysis by transforming geometry
into finite element objects. The limitation of Karamba3D is that it does not support 3D elements,
only beam and surface elements.

23

3.3 Programming Software

3.2.2 Abaqus

Abaqus is a FEM software with extensive possibilities, (Company, n.d.). It can perform simple
linear and more complex nonlinear analyses. The software supports a wide range of elements
and materials. One of the strengths of Abaqus is the ability to customize the model and problem
with a high level of detail. Abaqus is one of the leading FEM software in the civil engineering
world, especially when it comes to solid element problems. This is the reason why it is used for
verification throughout this thesis.

3.2.3 Robot Structural Analysis

Robot Structural Analysis is a FEM software by Autodesk, (Autodesk, n.d.). It is a simpler and
more graphical software than Abaqus. The analyzes are mostly based on beam and shell elements.
For this thesis, it has been used to calculate the rotational stiffness and compare with the calcu-
lations performed in Grasshopper. Robot uses the method for rotational stiffness analysis in the
Eurocodes directly.

3.3 Programming Software

3.3.1 Visual Studio 2022

Visual studio 2022, (Microsoft, 2022a), has been used to create plug-ins for Grasshopper. Codes
have been written in C#. MathNet, (‘Math.NET Numerics’, n.d.), has been used for mathematical
and matrix operations, and CSparse, (‘CSparse’, n.d.), for more efficient matrix calculations. This
framework is optimal for creating plug-ins for Grasshopper, since it has templates for Rhino 7 and
Grasshopper. Grasshopper is developed in C#, making it easy to use its custom API when creating
new plug-ins.

3.3.2 Visual Studio Code

Visual Studio Code has been used to program the ML, (Microsoft, 2022b). These codes were
written in Python. This framework has been used since it has better debugging features than
Visual Studio 2022.

Packages

PyTorch is an open-source ML framework. It is an optimized tensor library for deep learning
that uses GPUs and CPUs. The networks have been built using PyTorch. NumPy (Harris et al.,
2020) has been used for computational tasks, and MatplotLib (Hunter, 2007) for plotting. In
addition, Pygmsh (Schlömer, 2020) and PyVista (Sullivan & Kaszynski, 2019) has been used for
mesh generation. For visualizing results and collaboration, WandB (Biewald, 2020) has been used,
which is a platform designed to support and automate key steps in the development of ML models.

24

4 Methods

4.1 Simple FEM Solver Plugin with 8-node Hex Element

In this first plugin, a system analysis of a solid problem is created using a trilinear hexahedron,
often called the 8-node brick element, for the grasshopper environment. The plugin is divided into
three main components, loft mesh, FEM solver, and preview results. Loft mesh is a prepro-
cessing component in which a mesh with trilinear hexahedron elements is created with the desired
density. The FEM solver component is applied to calculate the nodal displacements and to cal-
culate the strains and stresses. Finally, the Preview components are created to show the results in
the most optimal way.

Before discussing the study in detail and for clarification, Table 4.1 presents the custom classes
used in the plugin.

Class name Properties Description
Element id, Nodes, Mesh An element has an id, eight nodes and a mesh.
Node Global id, Local id,

Point3D, Support
A node has a global id in the range zero to the
total number of nodes in the system, a local id in
the range zero to seven, a point in the 3D space
and a support.

Mesh Faces, vertices A mesh consist of six faces and eight vertices.
Load Vector3D, Point3D A load has a load vector and a point in the 3D

space where the load vector is applied.
Support Point3D, Boolean A support has a point in 3D space and three

Boolean values representing the points ability to
move freely in the x-, y- and z-direction.

Material Young’s Modulus, Pois-
son’s ratio

A material has a name, Young’s modulus and
Poisson’s ratio.

Result Displacements, stresses,
strains, new points, old
points, mesh

A result has displacements, stresses, strains, new
location of the nodes, old location of the nodes
and a new mesh.

Table 4.1: Custom classes used in the FEM Solver plug-in.

25

4.1 Simple FEM Solver Plugin with 8-node Hex Element

4.1.1 Loft mesh component

Figure 4.1: Flowchart of the Loft mesh component.

As input, the Loft mesh component takes two rectangular surfaces, one optional guiding curve,
and divisions in all three directions, u, v, and w. Given these inputs, the component starts by
populating the top surfaces with a grid of evenly distributed points according to the division inputs
u and v. If a guiding curve is given, this curve is duplicated and used to connect the grid points
from one surface to the other. If this guiding curve is not provided, instead a linear curve is
created between the points. The curves are then populated with points according to the selected
w-division. These points are then sorted into different levels and rows to obtain a data structure
that is easy to work with. All points with the same w index belong to the same level, and all points
with the same v index belong to the same row. Looping through levels, rows, and points creates
the necessary nodes, meshes, and finally elements. These elements are then appended to the output
list of this component.

4.1.2 FEM Solver component

Figure 4.2: Flowchart of the FEM solver component.

The FEM Solver component has a total of four different inputs, all provided by custom compon-
ents. The first input is a list of elements, then a list of loads is needed, a list of supports, and
finally a material. To make the main code more slender and increase readability, the FEM Solver
component uses eight custom methods that are called from the main code. Figure 4.2 shows a

26

4.1 Simple FEM Solver Plugin with 8-node Hex Element

component flowchart. To best describe the solver component, the methods are presented first be-
fore going through the main code. Table 4.2 describes some abbreviations used as input in the
methods.

Abbreviations Description in the 8-node brick element case
nodeIdL Local node id, an integer between zero and seven.
NnodesL Number of local nodes, in this case eight.
nodes A list of all nodes in the system.
ndofs Number of degree of freedom for one node, in this case three.
NnodesG Number of global nodes in the system.
r Global nodal point displacements.

Table 4.2: Abbreviations used as input in the methods described.

GetGeneralizedCoordinate (nodeIdL): This method uses the local node id and returns the gen-
eralized coordinates for this specific node.

return: [ξi ηi ζi].

GetShapeFunctions (NnodesL, ξ , η , ζ): For each of the eight nodes the generalized coordinates
are found by calling the GetGeneralizedCoordinate method. These coordinates are then used to
create a shape function Ni, where i is the node id, and the function depends on the generalized
coordinate input values ξ , η and ζ . All shape functions are then appended to the shape functions
row vector, N = [N0 N1 N2 N3 N4 N5 N6 N7]. Finally, this vector is inserted on the diagonal of a 3
by 3 matrix, where all other elements in the matrix contain a zero row vector of the same length
as the N vector. In this specific case, the shape function matrix gets dimensions 3 by 24 and is the
returned matrix of this method.

return:
[N 0 0

0 N 0
0 0 N

]

GetDerivatedShapeFunctions (NnodesL, ξ , η , ζ): Similar to the GetShapeFunctions method
the generalized coordinates are found for each node. These coordinates are then used to create
three shape functions Ni,ξ , Ni,η , and Ni,ζ , representing the derivative of Ni with respect to ξ , η

and ζ . As before, i is the node id and the shape function Ni depends on ξ , η and ζ . The derivative
shape functions Ni,ξ , Ni,η , and Ni,ζ , are then, respectively, appended to the row vectors N,ξ , N,η ,
and N,ζ . The return for this method is a 3 by 8 matrix, where the first row contains the shape
functions derivated with respect to ξ , N,ξ = [N0,ξ N1,ξ ... N7,ξ]. Similarly, the second row contains
the N,η vector and the last row is represented by the N,ζ vector.

return:
[N,ξ

N,η

N,ζ

]
.

27

4.1 Simple FEM Solver Plugin with 8-node Hex Element

ConstructIntegrandForStiffnessMatrix (nodes, material, IntegrationPoint): The goal of this
method is to find the integrand BT CB |J| of the stiffness matrix. The first step is to create an 8
by 3 matrix of Cartesian coordinates [x y z], where x = [x1 x2 ... x8]T and similarly for the y- and
z-coordinates. By calling the GetDerivatedShapeFunctions for the input integration point and
multiplying the return value with the coordinate matrix we get a 3 by 3 Jacobian matrix. To find
the 3 by 8 shape function matrix derivated with respect to the Cartesian coordinates, the inverse
of the Jacobian matrix is multiplyed with the return value of GetDerivatedShapeFunctions. The
result of this multiplication is the following matrix, [N,x N,y N,z]T , where N,x = [N0,x N1,x ... N7,x]

and similarly for the y- and z-derivative N,y and N,z. Once the derivative with respect to Cartesian
coordinates is obtained, the B-matrix is constructed by mapping the row vectors into its correct
place, resulting in a B-matrix with the dimensions 6 by 24. The 6 by 6 C matrix is fairly simple
to construct when the material properties are given. Finally, the integrand matrix is calculated and
returned along with the B- and C-matrix.

return: BT CB|J|,

N,x 0 0
0 N,y 0
0 0 N,z

N,y N,x 0
0 N,z N,y

N,z 0 N,x

,

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0

0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

GetIntegrationPointsBrickElement (): This method returns a list of integration points. In this
case, it returns the integration points of an eight-point quadrature rule (2x2x2), corresponding to
full integration of the stiffness matrix.

return:

 ξ0 η0 ζ0
ξ1 η1 ζ1

...
...

...
ξ7 η7 ζ7

ConstructGlobalStiffnessMatrix (elements, ndofs, NnodesG, material): This method starts
with creating an empty global stiffness matrix with the correct dimensions. The stiffness matrix is
a square matrix with dimensions ndofs times NnodesG, in this case three times NnodesG. There-
after, GetIntegrationPointsBrickElement is called to get the correct integration points for this
type of element. The remaining part is to go through the list of elements and, for each element,
create the connectivity matrix, the local stiffness matrix, and map the local stiffness matrix onto
the global stiffness matrix using the connectivity matrix. The connectivity matrix for each element
is easily found by going through the nodes of the current element, extracting the properties local-
and global-id for each node, and using this to populate the connectivity matrix with a unit value in
the correct places. The local stiffness matrix is, in the case of trilinear hexahedrons, a matrix with
dimension 24 by 24. The matrix is then populated by calling the ConstructIntegrandForStiff-
nessMatrix method for each integration point, extracting the integrand matrix, and summing the
contributions for each integration point. After finding the connectivity and stiffness matrix for
the current element, its contribution, aT ka, to the global stiffness matrix is calculated. After going
through each element and summing up all the contributions, the global stiffness matrix, K, is ready
to be returned.

28

4.1 Simple FEM Solver Plugin with 8-node Hex Element

return:

K11 K12 ··· K1n
K21 K22 ··· K2n
...

...
. . .

...
Kn1 Kn2 ··· Knn

ConstructSupportsAndLoadVectors (supports, loads, nodes, ndofs): This method takes as
input a list of supports and a list of loads. At the start of the method, an empty output list is
created for the load vector and support points, both with the same length (ndofs times NnodesG).
To create the support output, the method goes through every node in the system and checks if its
location corresponds to the location of one of the supports in the input list. If this is the case, the
code duplicates the boundary condition for this support and places a Boolean value in the output
support list according to its global id. The value is set to True for fixed supports and False for free.
The loads are created in a similar fashion; if the location of a node corresponds to the location
of one of the input loads, then the load is duplicated and inserted into the output load list at the
correct location.

return:

[r0
r1
...
ri

]
,

Bool0
Bool1

...
Booli

CalculateResults (elements, r, K, material, nodes, ndofs): The method starts by creating a list
for each output item: displacements, stresses, strains, and new points. Here, the new points are
the locations of the nodes after deformation. The method also needs the integration points for the
element used; this is obtained by calling the method GetIntegrationPointsBrickElements. The
results are created by going through each element of the system. The first operation is to create a
connectivity matrix, a, for the element; this is done in a similar fashion as described in the Con-
structGlobalStiffnessMatrix method. Subsequently, the displacements of the local nodal point
are calculated from the equation v = ar. At this point, the nodal displacements are in the natural
coordinate system. To return the displacements to Cartesian coordinates, the GetGeneralizedCo-
ordinate method is called for each node of the element. The generalized coordinates are then sent
to the GetShapeFunctions method to obtain the shape function for the current node. The dis-
placement in Cartesian coordinates can now be found by premultiplying the shape function with
the displacement in natural coordinates. The result is a displacement column vector with a length
of three, where the first element represents the displacement in the x direction, the second in the
y direction, and the last element is the displacement in the z direction. After going through each
node in the element, the result is a 3 by 8 displacement matrix where the first column represents
the displacement column vector for the first node, the second column for the second node, etc.
Each element produces a new displacement matrix that is appended to the output displacement
list.

The next task of this method is to find the stresses and strains of each element. This is done by
calculating the stresses at the optimal sampling points, in this case the integration points. These
stresses are then extrapolated to the nodes. To find these strains and stresses, it is necessary to loop
through all integration points. For each integration point, ConstructIntegrandForStiffnessMat-
rix are called. This outputs the B and C matrices. Multiplying the displacement vector v by the

29

4.1 Simple FEM Solver Plugin with 8-node Hex Element

strain matrix B, the strains are given. Furthermore, stresses are calculated by multiplying the strain
by the material matrix C. These strains and stresses are kept in a 6 by 8 matrix, one column for
each sampling point, and rows with strain and stress in different directions. To calculate the nodal
strain and stress, it is necessary to loop through all nodal points and extrapolate the strains and
stresses. This is achieved by first calling GetGeneralizedCoordinate, then calling GetShape-
Functions with the calculated generalized coordinate multiplied by

√
3. Lastly, the new shape

functions are premultiplied with the stress and strain at the sampling points, producing the nodal
stress and strain. These stresses and strains are appended to the output list.

The lists of displacements, stresses, strains, and new points are added to the result class and out-
putted.

return: [ResultClass]

Main code:

The main code begins with obtaining the input, which is a list of elements, list of supports, list
of loads and a material. Then a list of all nodes is created without duplicates. This is important,
to know how many unique nodes there are, since that determines the size of the stiffness matrix.
Furthermore, the global stiffness matrix is calculated using ConstructGlobalStiffnessMatrix.
ConstructSupportsAndLoadVectors is used to construct a list of supports and a list of loads.
This list of supports is then used to set the corresponding values in the stiffness matrix to zero to
simplify the subsequent calculations. Since the stiffness matrix must be inversed, the diagonals
of these DOFs are set to one, so as not to make the matrix singular. The next step in the process
is to inverse the stiffness matrix and solve the equation r = K−1R. Lastly, the CalculateResults
method is used to calculate the stresses and strains from displacement. The result is outputted with
the custom result class, for post-processing.

4.1.3 Preview results component

These two components visualize the results from the FEMSolver component.

DisplacementPreview (NewNodes, displacements, scale):

The purpose of this component is to visualize the deformation of the beam in 3D. The component
takes the displaced nodes, the displacements and a scaler and uses this to create a deformed mesh.
Looping through all displaced points, the displacement is multiplied by the scaler and added. This
magnifies the displacement and is especially useful for cases with small displacements. The new
points are used to create a mesh which, in turn, is colored after the amount of displacement for
each element. With a large displacement colored red and a small displacement colored green, see
Figure 5.3 for an example.

StressPreview (NewNodes, Stress, stressDirection):

This component has the calculated stresses in each node from the FEM solver component as in-
put, along with the displaced nodes and an integer slider to select type of stress to visualize. In

30

4.1 Simple FEM Solver Plugin with 8-node Hex Element

this component, the von Mises stresses are calculated using Equation (2.25). The output of this
component is a colored mesh. To give each element a color, the average value is calculated from
the internal nodes of the elements. This value is translated into a color. The colors are determined
from a red-green color map, where the element with the highest value turns red, and the one with
the lowest value turns green. By connecting an integer slider to the component, the user can decide
which result values they want to visualize. The slider can be adjusted in the range from 0 to 6,
where 0, 1 and 2 give the stress in the local xx, yy, and zz direction. 3, 4, and 5 give the shear
stress in the local xy, yz, and zx directions, and the integer 6 will give the von Mises stress. The
output of the component is a colored mesh and a list of stresses, which is chosen by the integer
slider.

31

4.2 SolidFEM Plugin with 20-node Hex Element

4.2 SolidFEM Plugin with 20-node Hex Element

This chapter includes a description of the Grasshopper plugin SolidFEM created by Marcin Luczkowski
and Sverre Magnus Haakonsen. The authors of this thesis contributed with further development of
the plugin, with the intention of implementing elements with higher-order shape functions. There-
fore, this is a continuation of the first simple FEM Solver plugin described, which was used as
an introduction to FEM with solid elements in AAD. The theory behind this implementation is
described in Section 2.1.6. The benefits of using elements with more nodes come from the abil-
ity to represent quadratic shape functions. This is especially beneficial for representing bending
modes and more complex geometry. Elements with higher-order shape functions are therefore
preferred when analyzing connections and other details. Although the computational cost for one
element increases substantially when these mid-side nodes are added, fewer elements are needed
for convergence.

The SolidFEM plugin is fully developed for the 8-node hex element; the task was therefore to
implement the 20-node hex element in the already established components. In addition to editing
and expanding existing components, a new component was created. All code involving the 20-
node elements have been created by the authors of this thesis. Some of the existing code has been
tweaked to support the implementation of the 20-node element. Table 4.3 lists the components of
the plugin and Figure 4.3 shows a flowchart of how the different components work together. Table
4.4 lists all custom classes in the plugin, with a short description.

This method chapter will describe all components of the plugin, but will mainly focus on the
sections regarding implementation of the 20-node hexahedron element. The first two subsections
describe three classes that contain all support methods for the other components. Thereafter, the
main components of the plugin are described.

Components of the plugin
NEWFEMSolver
FEMLoadMesh
FEMBoundaryOnPointsMESH
FEMMaterial
MeshPreview
ConvertMeshTo20Node

Table 4.3: All components of the SolidFEM plugin.

Figure 4.3: Flowchart of the SolidFEM plugin.

32

4.2 SolidFEM Plugin with 20-node Hex Element

Class name Properties Description
Element id, name, Nodes, Connectiv-

ity, Type, MeshQuality,
ElementMesh, TypologyVer-
tices, LocalK, LocalB

The element class is used to describe
the FEM element, with its main fea-
tures being the nodes, connectivity and
type.

Node ID, Name, Coordinate, BC-
U, BC-V, BC-W, Type

The Node class is used to describe each
individual node in the element, with its
ID, Name, Coordinate, Boundary Con-
dition in three directions, as well as the
type (edge, corner or internal).

Material E, PossionRatio, Yielding-
Stress, Weight

The material class describes the mater-
ial used in the FEA, with its features
being the Young’s modulus, the Pois-
son’s ration, yielding stress and self-
weight.

Support Position, Tx, Ty, Tz The support class describes the bound-
ary conditions in three directions of a
given point.

FEMUtility This class contains most of the methods
used in the plugin.

FEMMatrices This class contains the methods for
creating the different stiffness matrices
used.

GrahamScan This class contains methods for doing
Graham Scans on the meshes.

Table 4.4: All classes for the SolidFEM plug-in.

33

4.2 SolidFEM Plugin with 20-node Hex Element

4.2.1 FEMUtility and FEMMatrices

These two classes contain most of the methods used in the plugin, where most of these methods are
found in the NEWFEMSolver component. Starting with the FEMUtility component, it contains
twelve different methods that are described in the following.

GetMeshNodes (meshList): This method has a list of meshes as input. By looping through all
the meshes in the list, the method creates a new list of unique nodes from the mesh. This is done
by controlling the distance of each new point from the points already added to the list of nodes.

return:

x0 y0 x0
x1 y1 x1

...
...

...
xnpts ynpts xnpts

ElementsFromMeshList (meshList, globalNodePts): This method has a list of meshes and a
list of unique global node coordinates as input. The method uses these inputs to create elements.
Looping through all the meshes in the list, a new element is made from each mesh. It gets an
ID, connectivity, and a list of nodes. To get the correct global ID for the nodes (which also
is the connectivity), the distance between each node in the element and the points in the input
globalNodePts are checked. The element also gets assigned a type depending on the number of
nodes. Either Hex8 for eight nodes, Hex20 for 20 nodes, or Tet4 for four nodes.

return:

 Element0
Element1

...
Elementnels

LocalCartesianCoordinates (element): The input of this method is an element. It moves all
points in the element, so the first node has the coordinates (0,0,0).

return:

x0 y0 x0
x1 y1 x1

...
...

...
xnnodes ynnodes xnnodes

GetGaussPointMatrix (order, elType): This method takes an order as input in addition to the
element type. The order represents the number of Gauss integration points in each direction, as
illustrated in table 2.1 with the letter n. Based on the input, a matrix of Gaussian integration points
is returned as output. The method uses an if check based on the element type to select the correct
number of Gauss points. For most of the element we only have one set of Gauss points, the matrix
returned is therefor straight forward. For the 20-node hexahedron element the method creates a
matrix for two or three integration points in each direction, depending on the input order.

return:

ξ0 η0 ζ0
ξ1 η1 ζ1

...
...

...
ξn ηn ζn

34

4.2 SolidFEM Plugin with 20-node Hex Element

PartialDerivateShapeFunctions (r, s, t, elType): By inputting a set of Gaussian coordinates, r,
s and t, and the type of element, this method creates a matrix with the partial derivatives of the
shape functions. For the 8-node hexahedron and four-node tetrahedron element, the approach is
simple with a direct assignment of the matrix. For the 20 - node hexahedron element, a couple
more steps are needed. An empty matrix with the correct shape is created. In addition, four lists
of indexes are created that correspond to the type of nodes (corner or mid-side). Then a matrix of
the natural coordinates is created. Looping through the rows of this matrix, the different values of
the result matrix are calculated using the equations in Section 2.1.6.

return:
[Nξ

Nη

Nζ

]

GetShapeFunctions (r, s, t, elType): This method uses the same approach as PartialDerivate-
ShapeFunctions, to create a vector of shape functions. A set of Gauss coordinates, r, s, and t, and
the element type are inputted. Then different methods are used for the different types of elements
to create the shape functions. As for the derivated shape functions, the vector is created directly
for the linear elements, while a more complex approach is used for the 20 - node element. This ap-
proach is the same as for the derivated shape functions, only with different equations; see Section
2.1.6.

return: [N]

DisplacementInterpolationMatrix (shapeFunctins, dofs): By inputting the shape functions vec-
tor, and degrees of freedom for each node, a matrix with the shape functions along the diagonal is
created.

return:
[N 0 0

0 N 0
0 0 N

]

GetBodyForceVector (material, elements, numGlobalNodes): The inputs are the material, a
list of the elements, and the number of unique global nodes. This method calculates a load vector
for the self-weight. It begins by creating an empty load vector and the body load vector. Then it
loops through all elements of the list. For each element, a matrix of global coordinates is created
for each node. The order of Gauss integration is assigned, which is 3 for 20-node elements and 2
for the other supported elements. A matrix is created for the Gaussian coordinates with the Get-
GaussPointMatrix method. This matrix is looped through to perform numerical integration. For
each set of Gauss coordinates, a matrix with the partial derivatives of the shape functions is created
by the PartialDerivateShapeFunctions method. This matrix is multiplied by the coordinates of
the global element to calculate the Jacobian determinant. As described by the theory in Section
2.1.3. Furthermore, a matrix for shape functions is created with the GetShapeFunctions method,
as well as an interpolation matrix with the DisplacementInterpolationMatrix method. This mat-
rix is multiplied by the body load vector to obtain the interpolated load vector in the Gauss points.

35

4.2 SolidFEM Plugin with 20-node Hex Element

The only thing missing from numerical integration are the weights. These depend on the type of
element used. Then, the load vector is calculated and added to the list of load vectors. Finally,
the element load vector is added in the correct position in the global load vector. This global load
vector is outputted.

return:

S0

F1
S0

F2
...

S0
Fn

CalculateDisplacementCSparse (K-gl, R-gl, applyBCToDOF): This method needs the global
stiffness matrix, the global load vector, and a list of boundary conditions as input. Looping through
the list of boundary conditions, the corresponding value in the stiffness matrix is set to zero for
the whole row and column, except for the diagonal. The diagonal is set to 1, to avoid the stiff-
ness matrix becoming singular and unable to be inverted. Then Equation 2.1 is solved and the
displacements are outputted.

return:

 u1
u2
...

un

CalculateElementStrainStress (element, u, material): The CalculatedElementStrainStress
method uses the displacement vector and material properties to calculate the stress and strain of
a single element. First, the material matrix is created from a simple method in the material class.
Then the B-matrix is calculated using the CalculateElementMatrices method, with reduced in-
tegration for the 20-node hexahedron element, since these points correspond to the optimal eval-
uation points. Furthermore, empty matrices for element Gauss strain and stress, in addition to
element strain and stress, are made. Using the connectivity of each element, nodal displacements
can be extracted from the global displacement vector. There are three approaches for further calcu-
lation, depending on the type of element Hex8, Hex20, or Tet4. The approaches for the hexahedral
elements are similar. By looping through the list of B-matrices and multiplying each of these by
the local deformation, the Gaussian strain and stress matrices are found. To obtain the nodal stress
and strain, the strain and stress must be extrapolated from the Gauss points, as shown in Section
2.1.5. This is done by creating a matrix of extrapolation coordinates and looping through these.
For each loop, the shape functions are found and multiplied by the Gauss strain and stress matrices,
which yield the elemental nodal strain and stress. The difference between 8- and 20-node elements
is that reduced integration is used for the 20 node. For the four-node tetrahedron element, a direct
approach is used, since the B-matrix is constant.

return:

ε0

x ε1
x ... ε

nnodes
x

ε0
y ε1

y ... ε
nnodes
y

ε0
z ε1

z ... ε
nnodes
z

γ0
xy γ1

xy ... γ
nnodes
xy

γ0
yz γ1

yz ... γ
nnodes
yz

γ0
zx γ1

zx ... γ
nnodes
zx

,

σ0
x σ1

x ... σ
nnodes
x

σ0
y σ1

y ... σ
nnodes
y

σ0
z σ1

z ... σ
nnodes
z

τxy0 τxy1 ... τxynnodes

τyz0 τyz1 ... τyznnodes

τzx0 τzx1 ... τzxnnodes

,

36

4.2 SolidFEM Plugin with 20-node Hex Element

CalculateGlobalStress (elements, u, material): This method uses CalculateElementStrain-
Stress to calculate the global stresses. The inputs are a list of elements, the global displacement
vector, and the material. When looping through all elements and calculating the strain and stress
matrices with the CalculateElementStrainStress method, a global stress matrix is created. The
connectivity of each element is used to add the stress of the element to the correct position in the
global stress matrix. Since many nodes receive contributions from multiple elements, a nodal av-
erage is calculated. Furthermore, the von Mises stress in every node is calculated using Eq. 2.25.
The same is done for an element average, i.e. the average stress over a whole element. The global
stress matrix is outputted, together with the nodal Mises and the element Mises.

return:

σ0

x σ1
x ... σ

nnodes
x

σ0
y σ1

y ... σ
nnodes
y

σ0
z σ1

z ... σ
nnodes
z

τxy0 τxy1 ... τxynnodes

τyz0 τyz1 ... τyznnodes

τzx0 τzx1 ... τzxnnodes

,

σ0
m

σ1
m
...

σ
nnodes
m

,

σ0
m

σ1
m
...

σ
nelems
m

The FEM-Matrices class contains the two methods described in the following.

CalculateElementMatrices (element, material, intType): This method calculates the local stiff-
ness matrix and the B-matrix. The inputs are an element, a material, and the integration type, full
or reduced. First, the material matrix is found. Then empty stiffness- and B-matrices are made.
Looping through the nodes of the element, a matrix of global coordinates is created. There are
different methods for the three types of supported elements. This section addresses the method
for the 20-node elements, but the other methods are similar. The method is explained in detail in
Section 2.1.3. For the 20-node method, both full and reduced integration can be used; the only
difference is the number of integration points, 2x2x2 or 3x3x3. The first thing that is needed is a
matrix with Gaussian integration points, which is found using the GetGaussPointMatrix method.
These points are looped through. For each set of coordinates, a matrix with the partial derivatives
of the shape functions is found using the PartialDerivateShapeFunctions method. This matrix is
multiplied by the global coordinates to obtain the Jacobian matrix. Furthermore, the derivatives of
the shape functions in Cartesian coordinates are found by multiplying the inverse of the Jacobian
matrix by the matrix with partial derivatives. In addition, the determinant of the Jacobian matrix is
found. The B-matrix is established with a direct approach. Lastly, the stiffness matrix is calculated
using Eq. 2.18, with weights found in Table 2.1. The local stiffness matrix and the B-matrix are
outputted.

return:

N,x 0 0
0 N,y 0
0 0 N,z

N,y N,x 0
0 N,z N,y

N,z 0 N,x

,

k11 k12 ··· k1n
k21 k22 ··· k2n
...

...
. . .

...
kn1 kn2 ··· knn

GlobalStiffnessCSparse (elements, numNode, material): With a list of elements, the number
of nodes, and the material inputted, this method calculates the global stiffness matrix. An empty
stiffness matrix is created. For each element in the list of elements, the local stiffness matrix is
calculated using the CalculateElementMatrices method. The local stiffness contribution is then

37

4.2 SolidFEM Plugin with 20-node Hex Element

added to the global stiffness matrix at the correct index using the connectivity of each element. In
addition, the B-matrix is calculated and added as a property to the element. The global stiffness
matrix is outputted.

return:

K11 K12 ··· K1n
K21 K22 ··· K2n
...

...
. . .

...
Kn1 Kn2 ··· Knn

4.2.2 GrahamScan

This class contains a couple of different methods. The only one of these that is called outside
the class is DoGrahamScan, which utilizes some of the other methods. The purpose of a Graham
scan is to sort the nodes in an element in the correct order. This order is important for the following
analysis to work. The method takes a mesh as input and checks the position for all nodes and faces.
Then it orders them in the correct way, as shown in Figure 2.1.

4.2.3 ConvertMeshTo20Node component

This component has a list of meshes as input and a list of meshes as output. The purpose of the
component is to add the mid-side nodes for the 20-node hexahedron element. As described in
section 2.1.6, the 20-node hexahedron element is equivalent to the 8-node hexahedron element,
only with nodes added in the middle of all edges. To achieve this, the component first loops
through all meshes. For each mesh, a Graham scan is performed, using the DoGrahamScan
method; this ensures that the 8-node mesh is correctly ordered. Then the mid-side nodes are added
in the correct order, as shown in Figure 2.2, taking the average of the correct corner nodes to get
the points between them. This creates a mesh with 20 nodes.

4.2.4 FEMBoundaryOnPointsMESH

Figure 4.4: Flowchart of the FEMBoundaryOnPointsMESH component.

This component takes a list of meshes, a list of points, a list of surfaces, the type of support, and
three Boolean values for the three directions of translation. The component supports two kinds of
boundary condition, either for a list of explicit points on the mesh or for all points on a surface.
First, the mesh is cleaned and sorted using a GrahamScan, but only if it is an 8-node mesh, since

38

4.2 SolidFEM Plugin with 20-node Hex Element

the 20-node mesh has been cleaned and sorted in the ConvertMeshTo20Node component. Then
the unique nodes of the mesh are found using the GetMeshNodes method. There are different
methods for point and surface support. To create the support list for the point support, a loop
is created through the points in the point list. For each point, a node index is found by using
the GetClosestNodeIndex method. This method compares a point with the list of unique nodal
points to obtain the correct global index. Then, a support class element is created and added to
the support list. For surface support, a loop is created through all surfaces in the surface list. For
each surface, all the points in the list of unique nodal points are checked to find the points on the
surface. Then, a support class element is created for all these points and added to the support list.
This component outputs a list of support class elements.

4.2.5 FEMLoadMesh

Figure 4.5: Flowchart of the FEMLoadMesh component.

The load component has a list of meshes, the type of load, a list of points for point loads, a list
of surfaces for surface load, and a list of load vectors. As for the support component, the first
step is to clean and order the meshes, but only for the 8-node, since the 20-node already has been
cleaned. Then, a list of unique nodal points is created with the GetMeshNodes method, as well as
an empty vector for the residual forces. The approach to creating the load vector depends on the
type of load.

For point loads, the approach is straightforward. First, there is a check to control that the list of
points and the list of load vector has the same number of elements; if not, the last element in the
load vector list is duplicated so that the lengths of the two lists are the same. The next step is to
loop through all points. The GetClosestNodeIndex method is used to find the correct index for
the loading points. The load vector is then deconstructed and added to the correct position in the
residual force list, using the global index of the loaded point.

For surface loads, the approach is more complicated. First, it varies according to the type of
element used. This section will describe the method used for the 20-node element. All methods
loop through all loaded surfaces and then through all meshes in the mesh list. For the 20-node
element, there are two different methods of load lumping. Regardless of the method used, the first

39

4.2 SolidFEM Plugin with 20-node Hex Element

step is to create a list of points in the mesh that are on the loaded surface. The two methods use
the same approach, with load lumping. The only difference is that Method 2 uses −P/12 as a
load for the corner nodes and P/3 for the mid-side nodes, while Method 2 uses P/8 for all nodes.
To calculate the global load vector, the area of the loaded surface is calculated. Then, nodal load
vectors are created by looping through the loaded points and assigning the correct load values.
Finally, the global node index is found using the GetClosestNodeIndex method, and the loads are
assigned to the correct position in the global load vector.

4.2.6 FEMMaterial

This component has the Young’s modulus, the Poisson’s ratio, the yielding stress, and the weight
of the material as input. The simple component creates a material class element with the correct
properties and returns it.

4.2.7 NEWFEMSolver

Figure 4.6: Flowchart of the FEM Solver component.

The FEMSolver is the main component of the plugin. It takes as input a list of meshes, a list of
loads, a list of supports, and a material. The output is three lists of displacements in the global x,
y, and z directions, in addition to a list of element Mises stresses, nodal Mises stresses, and the
calculated mesh. As for the other components, the first step is to clean and sort the mesh if it is
8-noded. Then a list of unique nodal points is created using the GetMeshNodes method, as well as
a list of unique nodes. After this, a list of elements is created using the ElementsFromMeshList
method. The GlobalStiffnessCSparse method is used to create the global stiffness matrix. To
solve the force-displacement relation in Eq. 2.1, the global load vector is needed. This consists of
the self-weight and external loads. The self-weight is calculated with the GetBodyForceVector
method, while the external loads are an input. These two load vectors are summed to create a total
load vector. Then a list of boundary conditions is created. The FixBoundaryConditions method
uses the list of supports and the list of unique nodal points to create a list of Boolean values that
represents a fixed or free point for each unique nodal point in the mesh. The method converts

40

4.2 SolidFEM Plugin with 20-node Hex Element

the support class elements into a list of Booleans. The stiffness matrix, the load vector and a
list of boundary conditions are used in CalculateDisplacementCSparse to calculate the global
displacement vector. This vector is used in CalculateGlobalStress to calculate global stresses, in
addition to the nodal and element von Mises stress. The last step is to prepare the different outputs
of the lists to achieve a clear result in Grasshopper.

4.2.8 MeshPreview

This component has the resulting mesh from the solver as input, in addition to a type and scaler.
The type determines what the mesh should be colored after; displacement, Mises stress, utilization,
or stresses in the xx, yy, or zz directions. First, the displacements are scaled according to the scaler
input. This is done by multiplying the displacement in the three directions with the scaler value
and then creating new coordinates for the vertices in the mesh. Then, depending on the type of
result desired, the mesh is colored accordingly.

41

4.3 Machine Learning

4.3 Machine Learning

In this Section we describe the general workflow of our ML models. An introduction to the
different classes and functions will be provided with a simplified and generalized code example.
A more detailed explanation of each case will be provided in the Case Study chapters. In this
section, we focus on presenting the ML workflow with main focus on the five files: dataset.py,
NN.py, trainer.py, run.py and sweep_run.py.

4.3.1 Creation of datasets

To train an ML model, a large collection of data with input features and targets is needed. The
creation of these datasets differs between the different study cases. Some of the datasets were
created in Visual Studio Code with Python, while others were created in Grasshopper. An in-
depth explanation of the different approaches to data creation can be found in the relevant case
study sections.

4.3.2 Weights and Biases

Weights and Biases (WandB) has been used as a platform to log all projects and runs. The platform
is a helpful tool in collaboration, to get an overview of the projects and to recreate previous network
configurations. With WandB, it is possible to log all information needed to recreate a run, for
example, all hyperparameters and network depths and widths. In addition to information about
the run, all interesting results are logged. In most cases the results logged are the training loss and
the validation loss, in some cases we also log an image representation of the target and prediction.
Figure 4.7 illustrates the result overview page at Wandb with some selected graphs and images.

Figure 4.7: Snip of an example project in WandB.

42

4.3 Machine Learning

4.3.3 Dataset

This file contains the CustomDataset class that is used to load the data in the run file. The class
contains three functions, where the first one is called init and initializes the data directory. The
second function, len, returns the number of samples in the dataset. The last function, getitem,
loads and returns a sample from the dataset at a given index, idx. Based on this index, the location
on the disk is identified.

class CustomDataset(Dataset):

def __init__(self, root_dir="data", split="train"):
self.data_path = f"{root_dir}/{split}"
self.data = [folder for folder in os.listdir(self.data_path)]

def __len__(self):
return len(self.data)

def __getitem__(self, idx):
folder_name = self.data[idx]
full_path = f"{self.data_path}/{folder_name}"
data = torch.load(f"{full_path}/data.pth")
x = data["x"]
y = data["y"]
return x, y

Listing 4.1: Simplified code of dataset.py.

All data are collected in a folder named data, and the location of this folder is set as the root
directory in the init function. The data folder contains three subfolders named train, validation,
and test, all of which contain different data samples. By default, the init function uses train at the
split position, to load data from the test or validation folder, simply change the split argument to
either of these strings. In this simple illustration code, shown in Listing 4.1, it is assumed that each
sample is a .pth file that contains a dictionary with the input x and the target y, which is already
in Pytorch format. This is not always the case; therefore, some manipulation and sorting might be
necessary after loading the data.

4.3.4 NN

The main class in this file is the NeuralNet class itself. In some of the case studies, this file also
contains some helper classes, but these classes will be explained in depth when we come to the
relevant case studies. For now, we focus on the NeuralNet class. To illustrate this class, a simple
fully connected network is used, similar to the network in Figure 2.5. This example is shown in
Listing 4.2

43

4.3 Machine Learning

class NeuralNet(nn.Module):
def __init__(self, layer_sizes, device="cuda"):

super(NeuralNet, self).__init__()

self.device = device
layers = []
input_features = 4

for output_features in layer_sizes:
layers.append(nn.Linear(input_features, output_features))
input_features = output_features

self.layers = nn.Sequential(*layers)

def forward(self, x):
pred = self.layers(x)
return pred

Listing 4.2: Simplified code of NN.py.

The example in Figure 2.5 has four input features, three layers with three neurons in each layer,
and two output features. The layer sizes, in this case [3 3 3 2], is a list that is sent into the class
from the run file. The last item in the list corresponds to the output layer, which is fixed. To
change the depth of the network, we simply add or remove items in the list, and to change the
width or number of neurons in each layer, the value of each item in the list is changed. In this
case, the default device is set to "cuda", but this property is also sent into the class from the run
file, where an availability check is performed. We define the network by subclassing nn.Module
from Pytorch and initializing the layers in the init method. In the forward pass method, every
nn.Module subclass implements the operations on the input data, before the prediction is returned.

4.3.5 Trainer

Trainer is the file that is used to train our model. The train function is the main function in this
file; this function is called from the run file and takes a model, batch size, the three data loaders,
the learning rate, and the device as input. An example code is shown in Listing 4.3

def no_grad_loop(data_loader, model, batch_size, device="cuda"):
loss = 0
cnt = 0
for x, y in data_loader:

transfer data to device
x = x.to(device)
y = y.to(device)

forward pass
pred = model(x)

44

4.3 Machine Learning

loss += F.l1_loss(pred, y)
cnt += 1

return loss/cnt

def train(model: NeuralNet, num_epochs, batch_size, train_loader,
test_loader, validation_loder, learning_rate, device="cuda"):

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

training loop
iter = 0
for epoch in range(num_epochs):

loader = tqdm.tqdm(train_loader)
for x, y in loader:

#transfer data to device
x = x.to(device)
y = y.to(device)

forward pass
pred = model(x)
loss = F.l1_loss(pred, y)

backward and optimize
optimizer.zero_grad() # clear gradients
loss.backward() # calculate gradients
optimizer.step() # update weights
iter += 1

if (iter+1) % 50 == 0:
validation loop
model = model.eval()
valid_loss = no_grad_loop(validation_loader,

model, batch_size, device="cuda")
model = model.train()

test loop
test_loss = no_grad_loop(test_loader, model, batch_size, device="cuda")

Listing 4.3: Simplified code of trainer.py.

The train function loops through a selected number of epochs and loads a batch of training data
from the train loader. In each loop, the data are transferred to the correct device, the input features
are sent into the model, and a prediction is returned. The prediction, together with the label, is
used to calculate the loss. After this, the gradients are cleared from the last run, new gradients are
calculated, and the weights are updated. This is the training process that will slowly improve a
healthy model. As can be seen in the code, in Listing 4.3, a validation loop is performed for every
50th iteration. The validation loop uses the no_grad_loop. This does not calculate the gradients,
nor does it update the weights. As described in the theory chapter, the validation loop does not

45

4.3 Machine Learning

train the model, but is used to evaluate performance during training. The validation loop returns
the average loss over the entire validation set. After all epochs are completed, a test loop is applied,
using the same no_grad_loop, to get the performance of the trained network. For simplicity the
code that logs data to WandB is excluded from this code, but it is worth mentioning that all losses,
targets and predictions are logged as graphs and in some cases image illustrations. An example
of logged images can be found in Table B.1, where all logged images from a single run is used to
create a GIF. In some of the case studies, early stopping and saved checkpoints are also included.
Early stopping is implemented so that the trained model is returned if the model has converged.
A check point code is included in the training loop; this code overwrites the saved check point if
the model has improved with respect to the validation loss. As a result, the best performing model
is saved as a check point. Additionally, a scheduler is used to reduce the learning rate when the
validation loss begins to converge. The scheduler used is called ReduceLROnPlateau. A patience,
denoted n here, is defined. Every time the validation loss does not decrease n consecutive times,
the learning rate is multiplied with 0.1.

4.3.6 Run

The run file is used to start training the model. In the simplified code, illustrated in Listing 4.4, the
example from Figure 2.5 is used. Before the run function, we also have some code, not included
here, that sets the random seed. The weights in the network is initialized with random values; by
setting the seed to a fixed number these random values are always the same. This enables us to
reproduce and compare runs in a better way because we always have the same starting point. Also
not included is the code that saves the trained model and gives the opportunity to start a new run
from the saved model.

def run():
Hyperparameters
layer_sizes = [3,3,3,2]
num_epochs = 50
batch_size = 16
learning_rate = 0.001

dataset
train_dataset = CustomDataset()
test_dataset = CustomDataset(split="test")
validation_dataset = CustomDataset(split="validation")

dataloader
train_loader = DataLoader(train_dataset, batch_size)
test_loader = DataLoader(test_dataset, batch_size)
validation_loader = DataLoader(validation_dataset, batch_size)

model = NeuralNet(layer_sizes).to(device)
train(model, num_epochs, batch_size, train_loader, test_loader,

validation_loader, learing_rate, device)

Listing 4.4: Simplified code of run.py.

46

4.3 Machine Learning

After setting the hyperparameters, CustomDataset retrieves the features and labels of our dataset
one sample at a time. By using Dataloader, we can pass samples of minibatches into the model
and reshuffle the data at every epoch during training, which reduces the possibility of overfitting.
We also use multiprocessing to speed up data retrieval. The model is imported and transferred to
the device. Finally, we call the train function and send in the required input.

4.3.7 Sweep_run

Sweep_run is essentially the same component as run, with the only difference being that a hand-
ful of hyperparameters that we want to optimize are extracted from a configuration file created in
Wandb. This configuration file is a file with many different hyperparameters that we want to test
on our network. For example, the file can contain many networks with different depths and widths,
a range of learning rates, dropouts, and the number of epochs. Basically, any variable we would
like to optimize. The sweep then randomly selects and tests the configurations of these hyper-
parameters to find the configuration that best performs the task, often to minimize the validation
loss. This process is called Hyperparameter Tuning, and Figure 4.8 shows the result of a tuning
process.

Figure 4.8: Example of sweep run in WandB.

47

5 Case Studies

5.1 Case study 1: Verification of the Simple FEM Solver plugin

To verify the accuracy of the solver, a simple cantilever beam, as illustrated in in Figure 5.1, is ana-
lyzed. The analysis is done in Grasshopper and the architecture of this analysis is described below.
Furthermore, the results of the Simple FEM Solver are compared with the results of Abaqus. The
dimensions of the cantilever and the total magnitude of the force are shown in Table 5.1, together
with the material properties. A video showcasing this Case Study is found in Table B.1.

Width Height Length ∑ Loads Young’s Modulus Poisson’s ratio
200 mm 150 mm 1400 mm -150 kN 210000 MPa 0.3

Table 5.1: Dimensions and material properties of the cantilever beam.

Figure 5.1: Model of the simple cantilever beam in Case Study 1 with 10x2x5 mesh.

5.1.1 Grasshopper

Figure 5.2: Flowchart of the cantilever beam in Grasshopper.

In Figure 5.2, a flowchart of the algorithm in Grasshopper is presented. To construct the cantilever
as a parametric model in Grasshopper, the surface on the left end of the beam is first created. This
surface sets the width and height of the cantilever. The input variables for the beam geometry
are height, width, and length. These parameters are connected to number sliders so that they can

48

5.1 Case study 1: Verification of the Simple FEM Solver plugin

be easily adjusted. The surface is then duplicated and moved along the longitudinal direction (x-
axis) by a vector where the x-value is the given length of the beam. The Loft Mesh component
takes these two surfaces as input, along with integers which are the number of divisions in each
direction, to create the beam as a uniform volumetric mesh. The number of divisions in each
direction is equivalent to the number of elements in each direction. The Loft Mesh component
creates 8-node elements.

The support points and load points are extracted from the mesh geometry. All nodes on the left
end surface of the beam are set as support points, and the top nodes on the right end surface are
used as load points. The total magnitude of the given force is distributed by the number of load
points, and the corresponding load vectors are unit vectors in the negative z direction with this
value. The Load component takes the load points and the load vector as input, and the Support
component takes the support points and three Boolean toggles, set to true, to fix the nodes in
all directions. Together with the material, these components are connected to the Solver, which
performs the FEA. The results of the analysis are visualized with the StressStrainPreview and
DisplacementPreview components.

Abaqus

To evaluate the results of our solver, the cantilever beam was reconstructed in Abaqus. The cross-
section of the beam has been drawn in the sketch module and extruded with an extrusion depth
equal to the length of beam. To mesh the part, three edges have been seeded to achieve the equi-
valent number of elements as the model in Grasshopper. In Abaqus, the same 8-node hexahedron
element has been used, the C3D8 element. Steel was defined as a material and assigned to the
part. The entire left end surface of the beam was set as a boundary condition, and point loads were
applied to the top nodes on the right end surface.

5.1.2 Results

The results of the analysis are shown in the following section. Stress and displacement values are
extracted from the yellow points in the figures. Figures 5.3 and 5.5 show the deformed model with
a coloration that represents displacements and stresses. Tables 5.2 and 5.3 show the calculated
displacements and von Mises stresses for both the Simple FEM solver and Abaqus, while Figures
5.4 and 5.6 show the displacement and stresses plots with respect to the number of elements in the
mesh.

49

5.1 Case study 1: Verification of the Simple FEM Solver plugin

Displacements

Figure 5.3: Study case 1, cantilever beam, displacement: Simple FEM Solver, 8-node hex (left) and
Abaqus, C3D8 (right).

Mesh [x,y,z] No. Elements Simple FEM Solver (8-node) Abaqus (C3D8) Difference
10x1x1 10 -4.76 mm -5.11 mm 6.85 %
10x2x5 100 -8.49 mm -8.70 mm 2.41 %
20x4x5 400 -10.57 mm -10.80 mm 2.13 %

Table 5.2: Displacement: Simple FEM Solver and Abaqus.

Figure 5.4: Displacement: FEM Solver, Abaqus and analytical.

50

5.1 Case study 1: Verification of the Simple FEM Solver plugin

Stress

Figure 5.5: Study case 1, cantilever beam, von Mises stress: Simple FEM Solver, 8-node hex (left) and
Abaqus, C3D8 (right).

Mesh [x,y,z] No. Elements Simple FEM Solver (8-node) Abaqus (C3D8) Difference
10x1x1 10 155 MPa 169 MPa 8.28 %
10x2x5 100 231 MPa 229 MPa 0.87 %
20x4x5 400 258 MPa 261 MPa 1.15 %

Table 5.3: Von Mises stress: Simple FEM Solver and Abaqus.

Figure 5.6: Stress: Simple FEM Solver and Abaqus.

51

5.1 Case study 1: Verification of the Simple FEM Solver plugin

5.1.3 Discussion

As Figure 5.4 shows, the displacements of both the Simple FEM solver and Abaqus are converging
towards the analytical value of 11.61 mm, when the number of elements increases. A cantilever
beam, such as this, is not the ideal case for the 8-node linear element because it is too stiff in
bending due to shear locking. This case was chosen for simplicity, and since the same element
is used in Abaqus, the comparison between the two is the important part. From the comparison
with the analytical value in Figure 5.4, it is obvious that the 8-node element is too stiff. However,
compared to the displacements in Abaqus, the results are acceptable.

Furthermore, the stress results are good compared to the Abaqus results. There are some differ-
ences between the results in Abaqus and the FEM solver, but these are small and would probably
come down to more post-processing of the results in Abaqus. This could also be the reason why
the difference between the FEM Solver and Abaqus reduces when the number of elements is in-
creased. This case was used as an introduction to develop an FEM solver in Grasshopper. For this
purpose, it performs well.

52

5.2 Case study 2: Verification of the SolidFEM plugin with 20-node elements

5.2 Case study 2: Verification of the SolidFEM plugin with 20-node elements

To verify the precision of the SolidFEM plugin, two different models were analyzed in Grasshop-
per. The first is a simple cantilever beam, while the second is an arched beam. The results have
been compared with results from the SolidFEM plugin with an 8-node element, Abaqus, and for
the cantilever beam with the analytical solution. The analysis in Abaqus has been done with the
same 20-node hexahedron element as in the SolidFEM plugin. A video showcasing the arch beam
in this Case Study is shown in Table B.1.

5.2.1 Cantilever beam

The first model analyzed is a simple cantilever beam; dimensions and material properties are
shown in Table 5.4. The beam has been loaded with point loads at the right end and is fixed at the
entire left end.

Width Height Length ∑ Loads Young’s Modulus Poisson’s ratio
100 mm 280 mm 3000 mm -100 kN 210000 MPa 0.3

Table 5.4: Model: Dimensions and material properties of the cantilever beam.

Grasshopper

Figure 5.7: Flowchart of the Cantilever beam Grasshopper file.

A flow chart of the Grasshopper file is shown in Figure 5.7. For the parametric model in Grasshop-
per, the structure is quite simple. The input parameters for the length, height and width of the beam
are connected to sliders, as well as the number of elements in the x, y and z directions for mesh-
ing. These values are then used to create boxes that each represent one element in the mesh and
together create the whole geometry. These boxes are meshed to create a list of 8-node meshes.
The ConvertMeshTo20Node component is used to create the 20-node mesh. Points and surfaces
for loads and supports are created from the initial geometry. These are inputted, together with the
mesh list, to create a load vector in the FEMLoadMesh component and the boundary conditions
in FEMBoundaryOnPointsMESH. Together with the material, the load vector, the boundary
conditions and the mesh list are inputted into NEWFEMSolver to perform the FEA. The results
are previewed with the MeshPreview component. To compare the results in a consistent way, the
displacements and stresses for the same node were sorted from the results.

53

5.2 Case study 2: Verification of the SolidFEM plugin with 20-node elements

Abaqus

For the best comparison between the analysis in Abaqus and Grasshopper, the Abaqus model was
made to mimic the Grasshopper model. To create the geometry, an extrusion method was used.
Then, the same mesh as in Grasshopper was applied for each step of refinement. A 20-node
hexahedron element was used, which is called C3D20 in Abaqus. To mesh the model in the same
way as in Grasshopper, the approach was to seed three edges, in the vertical, transversal, and
longitudinal direction, with the correct amount of elements. The model was loaded with three-
point loads at the right edge and fixed at the entire left end. Since Abaqus is a well-established and
developed software, it was a point to make the analysis as simple as possible, since the SolidFEM
plugin is a more raw software.

Results

As for Case Study 1, stress and displacement have been extracted from the same node in Grasshop-
per and Abaqus. This node is shown with a yellow point in the figures. Figures 5.8 and 5.10
show the resulting geometry with colored displacement and stresses. The numerical results of
the analysis are shown below, with Table 5.5 showing the displacements and Table 5.6 showing
the stresses. Figures 5.9 and 5.11 shows the plots of displacement and stresses with respect to
the number of elements. The analytical solution for the displacements was calculated with the
following equation:

w =
PL3

3EI
(5.1)

Where w is the vertical displacement, P is the point load, L the beam length, E the Young’s
modulus, and I the moment of inertia.

54

5.2 Case study 2: Verification of the SolidFEM plugin with 20-node elements

Displacement

Figure 5.8: Study case 2, cantilever beam model with displacements. Grasshopper (Hex 20) to the left and
Abaqus (C3D20) to the right.

Mesh No. Elements SolidFEM 20-node SolidFEM 8-node Abaqus (C3D20)
1x2x4 8 -17.92 mm -0.54 mm -17.53 mm
2x2x4 16 -22.19 mm -1.99 mm -21.68 mm
5x2x4 40 -23.59 mm -8.54 mm -23.30 mm
10x2x4 80 -23.88 mm -16.36 mm -23.33 mm
25x2x4 200 -24.01 mm -22.15 mm -23.48 mm
50x2x4 400 -24.05 mm -23.38 mm -23.52 mm
100x2x4 800 -24.06 mm -23.72 mm -23.54 mm

Table 5.5: Displacement: SolidFEM and Abaqus.

Figure 5.9: Study case 2, cantilever beam, displacement: SolidFEM, Abaqus and analytical solution.

55

5.2 Case study 2: Verification of the SolidFEM plugin with 20-node elements

Stress

Figure 5.10: Study case 2, cantilever beam model with stress. Grasshopper (Hex 20) to the left and Abaqus
(C3D20) to the right.

Mesh No. Elements SolidFEM 20-node SolidFEM 8-node Abaqus (C3D20)
1x2x4 8 110 MPa 19 MPa 114 MPa
2x2x4 16 163 MPa 59 MPa 170 MPa
5x2x4 40 200 MPa 126 MPa 204 MPa
10x2x4 80 225 MPa 159 MPa 215 MPa
25x2x4 200 241 MPa 207 MPa 227 MPa
50x2x4 400 247 MPa 218 MPa 237 MPa
100x2x4 800 242 MPa 223 MPa 231 MPa

Table 5.6: Von Mises stress: SolidFEM and Abaqus.

Figure 5.11: Study case 2, cantilever beam, stress: SolidFEM and Abaqus.

56

5.2 Case study 2: Verification of the SolidFEM plugin with 20-node elements

5.2.2 Arch beam

The other model analyzed is the arch beam. This introduces a more complex geometry to control
if the solver can handle it. This case has a surface load, unlike the point load on the cantilever,
applied to the whole upper surface of the arch. For supports, the left beam end is fixed in all
directions in the bottom, while the right beam end is fixed in only the vertical and transverse
directions. The geometry of the arch is shown in Table 5.7. This case uses the same material as
the cantilever.

Width Height Arch length Arch height ∑ Loads
100 mm 280 mm 3822 mm 1000 mm -100 kN

Table 5.7: Model: Dimensions of the arch beam.

Grasshopper

Figure 5.12: Flowchart of the Arched beam Grasshopper file.

A flowchart of the Grasshopper file is shown in Figure 5.12. The parametric model for the arch
beam is built on the same basis as the cantilever beam. A set of input sliders defines the height
and width of the beam, the length and height of the arch, and the number of elements in the x,
y, and z directions for meshing. These inputs are used to create a simple arched curve that is
expanded to two parallel surfaces. Using the LoftMesh component from the Simple FEM Solver
plugin, a list of 8-node meshes was created. The ConvertMeshTo20Node component is then
used to create 20-node meshes. These meshes are deconstructed and processed to extract the load
surface on top of the arched beam, in addition to the support points at each end of the beam. The
load vector is created using the FEMLoadMesh component. There are, as mentioned, different
supports for the two beam ends. One of the beam supports is free in the longitudinal direction
of the arch. These supports are created using the FEMBoundaryOnPOintsMESH component.
The loads, supports and list of meshes are inputted in the NEWFEMSolver component, together
with a material, to do the finite element analysis. The result is previewed with the MeshPreview
component. Additionally, the maximum displacement and stresses are presented in a panel.

57

5.2 Case study 2: Verification of the SolidFEM plugin with 20-node elements

Abaqus

For this Abaqus model, the approach has been the same as for the cantilever. The geometry was
created by creating the arch in 2D and extruding it along the width. A surface load was applied
along the top of the beam. Supports were added for both beam ends, with the right end fixed only
in the vertical and transverse directions. As for the cantilever model, the arch has been meshed by
seeding three edges in three directions. In this way, the number of elements in each direction can
be explicitly determined.

Results

As for the cantilever, the node where the results have been extracted from is shown in the figures
with a yellow point. The results of the analysis are shown below, with Table 5.8 showing the
displacements in the x direction (the longitudinal direction of the arch), Table 5.9 showing the
displacement in the z direction (the vertical direction of the arch), and Table 5.10 showing the
stresses. Figures 5.14 and 5.15 show displacement plots in the x and z directions with respect
to the number of elements, while Figure 5.17 shows a stress plot with respect to the number of
elements. Furthermore, the deformed geometry with colored displacements and stresses is shown
in Figures 5.13 and 5.16.

Displacements

Figure 5.13: Case Study 2, arch beam model with displacements. SolidFEM (Hex 20) to the left and
Abaqus (C3D20) to the right.

Mesh No. Elements SolidFEM 20-node SolidFEM 8-node Abaqus (C3D20)
10x2x4 80 3.051 mm 0.537 mm 2.858 mm
20x2x4 160 3.109 mm 0.854 mm 2.906 mm
50x2x4 400 3.216 mm 1.305 mm 2.999 mm
100x2x4 800 3.254 mm 1.400 mm 3.010 mm

Table 5.8: Displacement in the x direction: SolidFEM and Abaqus.

58

5.2 Case study 2: Verification of the SolidFEM plugin with 20-node elements

Figure 5.14: Displacement in x-direction: SolidFEM and Abaqus.

Mesh No. Elements SolidFEM 20-node SolidFEM 8-node Abaqus (C3D20)
10x2x4 80 -1.266 mm -0.275 mm -1.175 mm
20x2x4 160 -1.273 mm -0.455 mm -1.187 mm
50x2x4 400 -1.285 mm -0.586 mm -1.201 mm
100x2x4 800 -1.292 mm -0.617 mm -1.204 mm

Table 5.9: Displacement in z-direction: SolidFEM and Abaqus.

Figure 5.15: Displacement in z-direction: SolidFEM and Abaqus.

59

5.2 Case study 2: Verification of the SolidFEM plugin with 20-node elements

Stress

Figure 5.16: Case Study 2, arch beam model with stress. SolidFEM (Hex 20) to the left and Abaqus
(C3D20) to the right.

Mesh No. Elements SolidFEM 20-node Abaqus (C3D20)
10x2x4 80 29 MPa 28 MPa
20x2x4 160 37 MPa 42 MPa
50x2x4 400 81 MPa 79 MPa

100x2x4 800 124 MPa 125 MPa

Table 5.10: Von Mises stress: SolidFEM and Abaqus.

Figure 5.17: Case Study 2, arch beam, stress: SolidFEM and Abaqus.

60

5.2 Case study 2: Verification of the SolidFEM plugin with 20-node elements

5.2.3 Discussion

For the cantilever, the displacements from both SolidFEM with a 20-node element and Abaqus
converge toward roughly the same value when the number of elements in the mesh increases. It is
clear that the displacements coincide with the analytical solution in both Table 5.5 and Figure 5.9.
The SolidFEM plugin with an 8-node element converges toward the same value, but at a much
slower rate than the other solvers. The same trend is observable for the stress result shown in
Figure 5.11.

The result of the comparison between SolidFEM and Abaqus was similar for both the arch beam
and the cantilever. The deviation between the two is small for any number of elements. In both
Figures 5.14 and 5.15, it can be seen that SolidFEM is consistently softer than Abaqus, as it has
higher displacements in the x and z directions. For this curve geometry, the analysis with 8-
node element in SolidFEM is clearly too stiff. This shows that when working with more complex
geometries, higher-order shape functions improve the results. The stress results are very similar
for SolidFEM and Abaqus. In Figure 5.17 it can be seen that the values do not converge toward
one value but constantly increase as the number of elements increases. This comes down to the
way the models were created, with supports only for the lower edge of the beam ends. With
an increasing number of elements, this creates an increasingly high stress concentration for the
support. Figure 5.16 also shows this effect, with high stress concentrations at the end of the beam.

Regarding the number of elements used in the different directions, many combinations were tried.
To obtain a consistent result when increasing the number of elements, the division in the vertical
and transverse directions was kept the same. It was observed that increasing the number of ele-
ments in the vertical direction had a large positive effect on the result, because the case is a beam
in bending. Therefore, to achieve a consistent study on the effect of mesh refinement, the number
of divisions in y and z direction was fixed.

In summary, the results of the SolidFEM solver are acceptable. For both the cantilever and the
arch, the deviations from the analytical solution and established software such as Abaqus are of
sufficient deviation. The solver calculates both displacements and stresses with good accuracy. It
is also clear that, especially for curved geometry, the element with higher-order shape functions
performs better. As seen in Figure 5.9, the 20-node element converges faster than the 8-node
element, which confirms the theory between the 20- and 8-node element.

61

5.3 Introduction to Meshing with Machine Learning

5.3 Introduction to Meshing with Machine Learning

The goal of the ML meshing part of this thesis is to develop a method that can be used to create an
ML meshing component in the AAD environment. This component will replace one of the most
challenging parts of the FEA performed in an AAD environment. The FEM solver component
created in this thesis needs an adequate mesh as input. For now, the loft mesh component is
used to create the mesh; this component works well, but is simple and has limitations when the
geometry becomes complex. To perform an FEA with solid elements, we need a component that
can create an adequate hexahedral mesh for complex geometry. Due to the complexity of the task
and a desire to find the most optimal solution, the task has been restricted to finding a method to
predict the location of the mesh vertices of a given object. The location of the mesh vertices is
the most important information in a high-performing mesh. This performance is highly dependent
on angular or curved-edge distortions, especially for lower-order elements. Our FEM solver uses
the 20-node serendipity element. This element can model linear strain fields exactly as long as
the element is rectangular. This capability is lost if the element is non-rectangular or if the edges
are curved. The location of the mesh vertices is important to achieve a rectangular shape. If
the object is optimally meshed with rectangular elements, a courser mesh can be used without
loss of accuracy in the solution. This will simplify the problem and have a positive effect on the
computational time of the analysis.

As an introduction, the task is first simplified to meshing of 2D surfaces, before moving on to the
more complex implementation in three dimensions. Most of the research and methods developed
are first implemented in 2D, before moving on to the 3D task.

The methods used and developed are inspired by Alexis Papagiannopoulos and Avellan, 2020. In
this paper, a random contour is created and scaled to fit within a bounding box of grid points.
The contour is then meshed using an existing meshing tool. The mesh vertices are then placed
inside the grid, and a distance field (DF) is calculated. There are two different types of DF used
in this thesis. The first DF calculates a scalar score for each point on the grid, representing the
shortest distance to a mesh vertex. The other DF calculates a vector for each point; this vector
represents the shortest vector to a mesh vertex. In the latter case, the DF is a vector field, while
in the first case the DF is a scalar field representing the scalar value of the vectors. There is not
a large difference in network performance between the two DFs, and both fields are used in this
thesis. The DF is used as the target in our networks, whereas the input features that represent the
geometry of the object vary with different network architectures. To make the following more
intuitive and easier to see in the context of network architecture, it can be helpful to compare the
grid points with scores to an image with pixels and RGB values. The difference is that the RGB
values are replaced with a single scalar or a vector.

62

5.4 Case Study 3: 2D Meshing with Machine Learning

5.4 Case Study 3: 2D Meshing with Machine Learning

This case study starts with an explanation of how data are created in Python, and then we present
two of the most successful network architectures that have been developed for this case study.

5.4.1 Data Generation

In the early stages of development, a custom function, GetContour(n), was used to obtain a
random polygon contour with n edges. In this function, the unit circle is divided into n zones, and
polar coordinates are used to select a point in each zone. An example code can be seen in Listing
5.1. As can be seen in Figure 5.18a, some areas are excluded for point selection. This is done to
avoid short edges; ± 5 radians are excluded between the zones. In addition, the WeightedRandom
function excludes a circle area close to the center of the contour and has a weighting toward larger
numbers to avoid sharp angles.

def GetContour(n):
contour = []
one_rad = pi/180
rad = 2 pi/n
theta = 0
for i in range(n):

a = random.uniform(theta+one_rad*5, theta + rad-one_rad*5)
r = WeightedRandom()
contour.append([r*cos(a),r*sin(a)]
theta += rad

return contour

Listing 5.1: Simplified code for the GetCountour definition.

The contour is normalized by translating the contour so that the mass center is located in origin.
To have a unit diameter, the contour is scaled. This is important because we want the input contour
to match the training contours when using the final model. In the final model, a contour of any size
is scaled and translated, sent into the trained model before the prediction is scaled and translated
back to its original size and returned. Figure 5.18a illustrates the creation of 1000 contours before
normalization, a contour has one point from each zone.

63

5.4 Case Study 3: 2D Meshing with Machine Learning

(a) 1000 random hexagon contours. (b) Hexagon meshed with Pygmsh.

Figure 5.18: Data generation of Hexagons.

After creating a contour, the Pygmsh package is used to mesh the polygon. This mesh can be seen
in 5.18b. The Pygmsh mesh vertices are used to create the DF used as a target in our networks.
This approach looks fine and is similar to the method used in Alexis Papagiannopoulos and Avel-
lan, 2020, but the performance of our networks never reached the level we expected or needed.
After trying many different networks, fixes and techniques to improve performance, we started to
investigate issues in the training data. To explore the trainability of our data, a GIF was created to
investigate how the mesh looks for different contours. This GIF can be found in Table B.1.

The idea behind this GIF is to select two random contours from the training data, contour A and
contour B. Then make 100 contours in between, where the first contour is A, the last contour
is B, and the other contours represent a smooth transition from contour A to contour B. All the
contours in this transition were meshed with the Pygmsh package. From this we expected to see
a smooth transition in the meshes, as we saw for the contours, but this was not the case. For
example, if we select contours 50 and 51 in this smooth transition, these contours look similar,
but they can have totally different meshes. This jump in mesh configuration can be seen at some
stages in the GIF and is not what we want in our training data. Two almost identical contours, or
input to the network, can have two completely different meshes, or targets. In other words, the
meshing output is discontinuous with respect to the input; therefore, any attempt to approximating
the targets with a continuous function, as we are trying to do, will not yield acceptable results. To
solve this problem, we need to find a meshing algorithm that creates an output that is continuous
with respect to the input.

This issue was resolved using StructuredGrid provided by the Pyvista package in Python. This
meshing algorithm has the desired mesh vertices as input. To simplify data generation in this case,
the contour shape was changed to a four-sided polygon, a rectangle. The GetContour function is
adjusted to create a rectangle where the side-length ratio varies. The code also includes an option
to control the target number of elements in the mesh, and the generated mesh will have an element
count as close to this number of elements as possible. The target number of elements is distributed
in width and length so that the side length of each element is as equal as possible. The method
developed here should work for any contour shape, as long as the generated mesh is continuous
with respect to the input. After changing the meshing algorithm, we get the smooth transition we

64

5.4 Case Study 3: 2D Meshing with Machine Learning

wanted in the GIF. A link to the new GIF is found in Table B.1, while the new contour and mesh
are illustrated in Figure 5.19a.

(a) Meshing with Pyvista. (b) Distance field with scalar values.

Figure 5.19: Data generation where the target is continuous with respect to the output.

The vertices in the mesh are used to create the target, a DF. This field is illustrated in Figure
5.19b, where a color map is used to represent the scalar value of each point. As can be seen, the
darker colors have a low score and represent local minima in the DF. The input features vary from
network to network and are presented together with the different network architectures in Case
Study 3 and 4.

65

5.4 Case Study 3: 2D Meshing with Machine Learning

5.4.2 Fully Connected Neural Network

For a fully connected network, the input features are the four points that describe the contour
boundary, together with the grid points. Because the 2D contour is located in the xy-plane, the z
coordinate is excluded. Therefore, each point has only two values, the x- and y-coordinates. The
boundary box contains dim2 = 65 536 grid points, corresponding to a grid with a dimension of
256 points in each direction. After concatenating the four contour points with the grid points, the
input vector consists of 131 080 features. The target in our fully connected network is the DF with
a scalar value for each point on the grid.

To find the optimal hyperparameters, a sweep run is completed in WandB, where the task was to
minimize the validation loss. The best configuration of this run is presented in Table 5.11

Dropout Layer sizes Start learning rate Validation loss
0.0 [512 1024 1024 512] 1e-03 0.01418

Table 5.11: Sweep run from WandB.

An illustration of the fully connected network can be seen in Figure 5.20 where P1,x represents the
x-value of the first contour point and Pn,x the last contour point. In this case n = 4. GP1,x the x
coordinate for the first grid point and DIM2 is the total number of points on the grid.

Figure 5.20: Illustration of the fully connected network.

66

5.4 Case Study 3: 2D Meshing with Machine Learning

Custom Loss Function

The L1 loss function is used to train our model, this function comes from torch.nn.functional and
corresponds to the mean absolute error loss function described in Equation 2.29. If the reader
recalls, we had some problems getting the performance we wanted when using the Pygmsh pack-
age. Before finding the reason for the low performance, a custom helper loss function, called DF
loss, was developed. This loss function is meant as an addition to the L1 loss function and can be
used for all networks in Case Study 3. The idea behind the function is classified within physics-
informed neural networks because it uses physical properties of the DF. To present this idea, we
need to introduce some theory.

The DF, referred to as f, in L2-norm is differentiable almost everywhere and satisfies the Eikonal
equation ||∇ f (x,y)||2 = 1. More explicitly,

(
∂

∂x
f (x,y)

)2

+

(
∂

∂y
f (x,y)

)2

= 1. (5.2)

We can use this fact to formulate an additional loss for the output of a neural network. For a
function g, the loss is

L (g) :=
∫∫

(||∇g(x,y)||−1)2 dxdy. (5.3)

From Equation 5.3 it is intuitive to see that if g is a DF, then L (g) = 0. To compute the partial
derivatives, we use finite difference second order schemes (Brenner, 1960). The calculations used
in the networks are illustrated in Listing 5.2.

Second order schemes, forward difference
dx_kernel = torch.zeros(5,5)
dx_kernel[2] = torch.tensor([1/12, -2/3, 0, 2/3, -1/12])/step
dx_kernel = dx_kernel.view(1, 1, 5, 5)
dy_kernel = dx_kernel.transpose(2,3)

Compute the finite partial derivatives
f_x = conv2d(DF, dx_kernel)
f_y = conv2d(DF, dy_kernel)
comb = torch.cat([f_y, f_x], 1)
f_norm = torch.norm(comb, dim=1)

custom_loss = ((f_norm-1)**2).mean()

Listing 5.2: Second order finite difference schemes.

67

5.4 Case Study 3: 2D Meshing with Machine Learning

The DF in Listing 5.2 is the prediction provided by the neural network, f_x and f_y represents the
derivative with respect to x and y, and f_norm is the norm of the combination between the two.
Figure 5.21 illustrates the calculations from a simple example problem. In the illustration, a DF
with random points is created and used as input to the calculations.

Figure 5.21: Illustration of partial derivatives with finite difference schemes.

The simple example in Figure 5.21 shows that the gradient norm is equal to one almost everywhere,
that is, the loss is zero almost everywhere, except exactly at the points and along the boundaries.
At the boundaries, the gradient jumps because the closest point suddenly changes. At these points,
the derivative is not defined; these regions contribute a non-zero loss even for an exact DF.

Because the custom loss function is meant to be a helper loss function, the model is first trained
with only the L1 loss function. This means that we are only training to optimize the L1 loss. We
don’t want the custom loss function to disturb the training at this point, we want it to fine tune
the predictions after we all ready have a high performing model. A run with only the L1 loss is
performed with early stopping included. Early stopping is included to stop the training after the
model has converged; this saves a lot of time during training.

The trained model is then saved and used as a starting point for further training. At this point, the
custom loss function is included, but multiplied by a scalar factor so that it is not too dominant
in relation to the L1 loss. This is done to ensure that the helper function does not dominate the
training. To find the most optimal scaling factor, a sweep run is performed. The results show that
in this case, a factor of 1e-06 is the most optimal.

68

5.4 Case Study 3: 2D Meshing with Machine Learning

Results

When only the L1 loss is included in the optimizer and with early stopping, the validation loss
converges after only eight minutes. At this point, we get the loss values listed in Table 5.12.

Valid loss Valid loss L1 Valid loss DF
0.01415 0.01415 0.02642

Table 5.12: Validation losses with only L1 in optimizer.

Note that the DF loss function is logged, but not included in the total loss that is used to train the
model. An illustration of the prediction is shown in Figure 5.22.

(a) Target and prediction of DF. (b) Partial derivatives of DF.

(c) Patrial derivative norm and DF loss.

Figure 5.22: Results from training with only L1 loss function.

The network trained with the L1 loss function is saved and used as a starting point when including
the DF loss function. Further training includes the L1 loss function and the DF loss function
multiplied with the scaling factor 1e-03. The result can be seen in Table 5.13.

Validation loss Validation loss L1 Validation loss DF
0.01411 0.01410 0.008954

Table 5.13: Validation losses starting from the saved model, with DF loss included.

The image representation of the results from Table 5.13 is illustrated in Figure 5.23.

69

5.4 Case Study 3: 2D Meshing with Machine Learning

(a) Target and prediction of d f . (b) Partial derivatives of function df.

(c) Partial derivative and loss function.

Figure 5.23: Results from training with both loss functions.

Discussion

As can be seen from Figure 5.22, performance of the network trained with only L1 loss is decent.
Although we do not include the custom loss function, the partial derivatives of the distance field
look very similar to Figure 5.21, where the results are close to perfect. It is safe to say that the
result from this network is good.

Table 5.13 shows the result when including both loss functions. As explained in the custom loss
function section, there are some points in the distance field where the derivatives are not defined.
These regions will introduce some error into the DF loss, even for a perfect estimate. Since we
add the L1 and DF loss to get the total loss, the DF loss will also introduce an increase in the total
loss of the model. Note that the DF loss is added to the total loss with the scaling factor included.
The interesting question at this point is whether the loss of DF can help training so that the L1 loss
decreases. Recall that it is the L1 loss that measures the error in the grid prediction; therefore, we
want to reduce this loss. If the L1 loss does not decrease by including the DF loss function, then
we have no reason to include it.

The result shows that including the DF loss function gives a slightly better performance; at least
it does not hurt the grid score predicted by the L1 loss function. One theory to explain why the
custom loss function does not improve the network more than it does is that the network already
performs well. The reason for developing this custom loss function was to help the network
learn at a stage where we had low performance. At this stage, the custom loss function did not
help much, but, as mentioned, the low performance was due to discontinuity in the input-output
relationship. Since the custom loss function slightly improves the predictions, it is reasonable to

70

5.4 Case Study 3: 2D Meshing with Machine Learning

believe that the theory used to develop the custom loss function is correct. It is also reasonable
to believe that the custom loss function might have a greater impact on a network that does not
perform as well. In simpler terms, the helper loss function cannot help improve the network if
there is nothing to improve. Of course, the network can be further improved, but the results are
decent and the location of the mesh vertices is easy to find from the grid prediction. It looks like
the network is a good starting point to develop a complete mesh prediction algorithm.

71

5.4 Case Study 3: 2D Meshing with Machine Learning

5.4.3 Unet

This architecture is designed to take an image as input; in our case, we use a signed distance field
(SDF) as input. An SDF is simply a DF as described before, but in this case the SDF describes
the location of the contour and not the mesh vertices. The network architecture is transferable to
our problem because the points in the grid are similar to, and can be compared to, the pixels in an
image. The only difference is that the value of a point or pixel is a scalar, and not the RGB color
representation. In an SDF, points outside the object have a negative value, points inside the object
have a positive value, and points on the boundary have the value zero. An example of an SDF is
illustrated in Figure 5.24a, while Figure 5.24b illustrates a DF. In these figures, the scalar values
are represented with a color map.

(a) Input SDF of the contour. (b) Target DF based on mesh vertices.

Figure 5.24: SDF and DF for the Unet architecture.

The input to the Unet is the grid points, where each point has a set of coordinates in addition to
the scalar value provided by the SDF. In this case, the grid has a width and height of 256 points.
Since the width and height are equal, the value is simply notated as dim. The SDF tensor has the
shape [1,dim,dim]. The first element in the tensor is called the feature and represents the scalar
value of a selected point, the second element is called the width and the last the height of the input.
The grid tensor has the shape [3,dim,dim] where the feature represents the x, y and z coordinate
of the point. The two inputs are concatenated into a tensor with four features, [4,dim,dim]. The
output, or target, has the same shape as the SDF [1,dim,dim], where the feature represents the
scalar value in the DF. Because this network is a bit more complex than the one explained in the
method chapter, a list of the classes used in the network is included.

• DoubleConv: This class consists of two convolutional layers after another. It receives in-
features, out-features, and optional mid-features as input. The mid-feature is only used
in the Up class where we want to reduce the number of features. Note that features and
channels are used interchangeably.

72

5.4 Case Study 3: 2D Meshing with Machine Learning

• Down: This class consists of a max pool that reduces width and the height of the grid, this
is done to reduce memory allocated during training. It also contains the DoubleConv class
that can change the feature size depending on the selected input. The input dimensions are
set during the init function in the Neural network, as illustrated in Listing 5.3.

• Up: This class uses an up-sample class to increase the width and height of the grid. It also
contains the DoubleConv class, which changes the size of the feature depending on the
input. In this case, because of the skip connections, the mid-feature property is used in the
middle of the two convolutional layers. In our network the mid feature has half the number
of features compared to the in features.

• OutConv: This class is used at the end of the Unet and consists of a single convolutional
layer. The output from this layer is the predicted DF.

The code in Listing 5.3 is included as an overview of the network. It illustrates the number of
encoders, decoders, features, width and height of the grid at every step in the Unet. For this
network we have not used a sweep run as we have for other networks, the layer sizes in the
network are fixed as illustrated below. Hopefully, the architecture is well presented together with
the class descriptions above, Figure 2.7 and the Unet theory.

class NeuralNet(nn.Module):
def __init__(self, bilinear=False, device="cuda"):

super(NeuralNet, self).__init__()
self.bilinear = bilinear
self.device = device

Unet
self.inc = DoubleConv(4,64)
self.d1 = Down(64, 128)
self.d2 = Down(128, 256)
self.d3 = Down(256, 512)
self.d4 = Down(512, 1024)
self.d5 = Down(1024,1024)

self.u1 = Up(1024+1024, 1024)
self.u2 = Up(1024+512, 512)
self.u3 = Up(512+256, 256)
self.u4 = Up(256+128, 128)
self.u5 = Up(128+64,64)
self.out = OutConv(64, 1)

73

5.4 Case Study 3: 2D Meshing with Machine Learning

def forward(self, SDF): # [B,1,256,256]
B = SDF.shape[0] # Batch size
dim = SDF.shape[-1]
pts = PTS.unsqueeze(0).expand(B,-1,-1) # [B,dim*dim,3]
pts = pts.view(B,dim,dim,3).permute(0,3,1,2) # [B,3,dim,dim]
x = torch.cat((pts,SDF), dim=1) # [B,4,dim,dim]

d = self.inc(x) # [B,64,256,256]
d1 = self.d1(d) # [B,128,128,128]
d2 = self.d2(d1) # [B,256,64,64]
d3 = self.d3(d2) # [B,512,32,32]
d4 = self.d4(d3) # [B,1024,16,16]
d5 = self.d5(d4) # [B,1024,8,8]

u1 = self.u1(d5,d4) # [B,1024,16,16]
u2 = self.u2(u1,d3) # [B,512,32,32]
u3 = self.u3(u2,d2) # [B,256,64,64]
u4 = self.u4(u3,d1) # [B,128,128,128]
u5 = self.u5(u4,d) # [B,64,256,256]
pred = self.out(u5) # [B,1,256,256]

Listing 5.3: Unet architecture with sizes for every step.

74

5.4 Case Study 3: 2D Meshing with Machine Learning

Results

With early stopping and learning rate scheduler, the model converged to the valid losses listed in
Table 5.14. As before, the custom loss is logged but not included in the total validation loss.

Validation loss Validation loss L1 Validation loss DF
0.000936 0.000936 0.01241

Table 5.14: Validation losses with only L1 in optimizer.

The input SDF is illustrated twice with different color maps in Figure 5.25a. Figure 5.25b illus-
trates the target DF on the left and the predicted field on the right. The partial derivatives are
shown in Figure 5.25c and the last figure illustrates the combined derivative norm and the DF loss
result.

(a) SDF with terrain and viridis color map. (b) Target and prediction of DF, f.

(c) Partial derivatives of DF, ∂x f and ∂y f . (d) Derivative, ||∇ f || and DF loss, (||∇ f ||−1)2.

Figure 5.25: Results with only L1 loss function.

The trained model above is used as a starting point when including the DF loss function. To
find the scaling factor, a sweep run is performed for values in the range of 1e-02 to 1e-09. The
results give an optimal scaling factor of 1e-07. Table 5.15 lists the result when including both loss
functions.

Validation loss Validation loss L1 Validation loss DF
0.000930 0.000930 0.01004

Table 5.15: Validation losses, L1 and Df loss functions.

The validation loss DF is added to the validation loss with the scaling factor, and the loss of the
most interest is, as before, the validation loss L1. The custom loss function is worth including
only if it reduces the valid loss L1 value. Figure 5.26 illustrates the results achieved by including
the custom loss function.

75

5.4 Case Study 3: 2D Meshing with Machine Learning

(a) SDF with terrain and viridis color map. (b) Target and prediction of DF, f .

(c) Partial derivatives of DF, ∂x f and ∂y f . (d) Derivative, ||∇ f || and loss, (||∇ f ||−1)2.

Figure 5.26: Results with both loss functions.

Discussion

As can be seen from the results, the Unet architecture with SDF as input performs even better than
the fully connected network. By changing the input so that the Unet architecture can be used, we
can improve the already decent predictions from the fully connected architecture. One disadvant-
age of using Unet architecture is that it uses more GPU memory. In the fully connected network,
with the given depth, height of the network and a batch size of 64, approximately 60% of the GPU
memory was allocated. This gives the possibility of increasing the grid point count and the accur-
acy of the predictions. In the Unet architecture, with the current number of encoders/decoders and
batch size of 16 we allocate close to 100% of the GPU memory. Note that in both networks, the
grid has a width and height of 256 points or pixels. The question is how many points are needed to
achieve a good enough prediction of the mesh vertices. To answer this, we can ask another ques-
tion: How accurate do we need the location of the vertices in the mesh to be? A mesh is already
an approximation of the original geometry. Because of this, there already exists a difference from
the true geometry and the mesh, even though it is small. In comparison, it is fair to say that the
difference added by the mesh prediction error is negligible with the current resolution. We have
256 points evenly distributed over a length of 1.1, which gives a step size of 0.0043. With this
step size and network performance, the error in the predicted location is very small. If, for some
reason, we would like to increase the grid dimensions, there are some possibilities to do this. One
option is to lower the batch size, another is to use different layer sizes in the encoder/decoder, or
we could create an Unet with fewer encoders/decoders. For now, with the results we get, this is
not something we want to explore. For the fully connected network, the DF loss function gives a
small improvement in the predictions of the grid value.

76

5.5 Case Study 4: 3D Meshing with Machine Learning

5.5 Case Study 4: 3D Meshing with Machine Learning

Meshing with 3D is an extension of Case Study 3. The methods developed in 2D are also used
here, only with an additional dimension included. The rectangle in Case Study 3 is extended to a
box of a given height. Otherwise, the method with a DF as target is also used in this case study.

5.5.1 Data Generation

The GetContour function is adjusted to include a third dimension, the relation between width,
length and height varies for each contour. As before, the number of elements is controllable, and
the algorithm adjusts the number of elements in each direction so that the side lengths are as equal
as possible. Figure 5.27 illustrates the meshed contour.

Figure 5.27: Illustration of 3D mesh.

The input to the networks used in this study is the contour points or an SDF. The target is, as
before, a DF consisting of scalar values or a vector field. Figure 5.28a illustrates the DF of a grid
with 80 points in each direction, while Figure 5.28b illustrates the SDF in three dimensions.

(a) Target DF in 3D. (b) Input SDF in 3D.

Figure 5.28: Illustration of DF and SDF in 3D.

77

5.5 Case Study 4: 3D Meshing with Machine Learning

5.5.2 Fully Connected Neural Network

This network is similar to the fully connected network created in Case Study 3. The difference is
that the vector with the input features is larger. The input to the network is still the contour points
together with the grid points. In the 2D case, the input vector had the total number of features
calculated in Equation 5.4.

Features = coords ·dim2 + coords ·P = 2 ·2562 +2 ·4 = 131 080 (5.4)

The same input feature equation can be calculated in 3D,

Features = coords ·dim3 + coords ·P = 3 ·403 +3 ·8 = 192 024 (5.5)

As can be seen in Equations 5.4 and 5.5, the transition from 2D to 3D gives an increase in the total
number of input features. The only variable in the equations is the number of grid points or the
number of points in each direction of the grid. This value is notated as dim in the equations. Even
though dim is reduced from 256 to 40 we get an increase in input features. This may indicate that
the fully connected architecture is not optimal for the 3D task. To answer this question, we need
to find how many points are needed on the 3D grid to obtain an acceptable result. The number of
input features must be balanced with the depth and width of the network. In the case where dim
is set to be 40 in each direction, the depth of the network is four and the widths of the layers are
[512,1024,1024,512], we allocate almost 100 % of the GPU memory. In this example, the GPU
type used is NVIDIA GeForce RTX 3080.

In the following research, 40 points in each grid direction are used as default. This is done to ensure
that there is available memory on the GPU to explore different layer depths and sizes, but also to
get comparable results across the different network architectures. Note that some architectures are
designed to use less memory. By restricting the grid dimension to 40 some of the advantages of
these networks are not utilized, but the restriction is done to compare the results, and we always
have the option to increase the grid dimensions after we are finished with the comparison.

A sweep run is completed to find an optimal combination of hyperparameters, the results of the
best sweep run are listed in Table 5.16

Dropout Layer sizes Start learning rate Validation loss
0.2 [512 512 512] 0.04 0.03305

Table 5.16: Sweep run from WandB.

Figure 5.29 illustrates the fully connected network with input features, depth and width, and the
target vector.

78

5.5 Case Study 4: 3D Meshing with Machine Learning

Figure 5.29: 3D fully connected neural network.

Results

The fully connected neural network can achieve the results listed in Table 5.17, this run is per-
formed with the NVIDIA GeForce GTX 1080 GPU.

Validation loss Dim Layers Batch size Allocated GPU memory
0.03265 40 [512 512 512] 12 95%

Table 5.17: Validation loss.

Figure 5.30 shows the target and prediction of the grid scores illustrated with a color map. If
comparing Figure 5.30 with the DF in Figure 5.28a, note that it is more difficult to create a good
illustration of the DF when only using 40 grid points in each direction.

79

5.5 Case Study 4: 3D Meshing with Machine Learning

Figure 5.30: 3D fully connected neural network target and prediction.

Discussion

As can be seen in Tables 5.17 and 5.13 the prediction of the 3D grid is not at the same level as
in the 2D case. One theory for why we are not able to achieve the same loss is that the 3D grid
is a larger and more difficult problem. In the 3D case, it is hard to illustrate the predictions in a
satisfying manner, especially in the case of few grid points. Therefore, in addition to the image in
Figure 5.30, Figure 5.31 illustrates that we can locate the mesh vertices based on the predictions
from the model. In this illustration, the trained model is used on a random example from the test
dataset to obtain the predicted DF. Then, a code is applied that simply finds all the local minima in
the DF. This not only illustrates that the predicted DF is accurate enough to find the vertices, but
also illustrates that our trained and saved models are ready to be used on real examples.

Figure 5.31: Location of mesh vertices based on prediction.

80

5.5 Case Study 4: 3D Meshing with Machine Learning

The only question at this point is whether the location of the vertices in Figure 5.31 is accurate
enough. Recall that we are only using 40 points in each grid direction. The mesh vertices in Figure
5.31 are set to be the point with the lowest score in its neighborhood, a local minimum. As can be
seen, the results are not quite as good as we would like, especially for the mesh vertices towards
the center. An alternative approach is to select all points in a region around this local minimum.
From these points, an interpolation between all values can be performed to find a more accurate
location of the mesh vertices. This is something that would be preferable to do for the current
results. The most intuitive approach to achieve a more accurate position of the mesh vertices is to
increase the density of the 3D grid. This is not an option in this case due to the lack of available
GPU memory.

81

5.5 Case Study 4: 3D Meshing with Machine Learning

5.5.3 Encoder + Fully Connected Neural Network

The main reason for developing this network is to reduce GPU memory allocated during training.
By doing so, we get the possibility to increase the number of grid points, or use deeper and wider
networks. The idea for this architecture is to use 3D convolutions together with 3D max pooling as
an encoder for the input features. This can be compared to one of the encoder blocks in the Unet
architecture presented in Case Study 3. Figure 5.32 illustrates the architecture of the combined
networks together with the layer sizes decided by a Sweep run. The encoder has two layers with
32 neurons, while the fully connected layer has a depth of three layers, each with a width of 512
neurons.

Figure 5.32: Encoder + fully connected neural network.

The input to this network is the contour and grid points, same as in the previous network. In
the fully connected network described above, the input features are arranged in one long feature
vector, while in this case the input has the original image or grid shape. The shape of the grid points
are [dim,dim,dim,3], where 3 represents the x, y and z coordinate of the points. The shape is then
rearranged so that the feature is the first element in the tensor; the shape is then [3,dim,dim,dim].
The original shape of the contour points is [8,3], where 8 is the number of points and 3 represents
the x, y and z coordinates. These two numbers are flattened, three dimensions are added and
repeated to obtain the tensor shape [24,dim,dim,dim]. This operation is applied to be able to
concatenate the contour point representation with the grid points.

After concatenation, the encoder input has the shape [27,dim,dim,dim], where the features rep-
resent the contour points and the x, y and z values of a selected point on the grid. The output of
the encoder has as many features as the last convolutional layer, in this case 32. The dim value
is reduced from 40 to 8 in the encoder, giving the output shape [32,8,8,8]. From this feature rep-
resentation, an input vector to the fully connected network is created. The feature vector inputted

82

5.5 Case Study 4: 3D Meshing with Machine Learning

to the fully connected network now has only 16 384 features. In comparison, the fully connected
network without the encoder had a feature length of 192 024. The encoded features are sent into
the fully connected network and return a prediction of the 3D DF.

Results

Training results for the network is listed in Table 5.18, training is carried out with the NIVIDA
GeForce RTX 3080 GPU. Figure 5.33 illustrates the target and the prediction.

Validation loss Dim Conv. layers Fully con. layers Batch size Allocated memory
0.02228 40 [32 32] [512 512 512] 12 60%

Table 5.18: Validation losses from encoder + fully connected network.

Figure 5.33: Target and prediction from encoder + fully connected neural network.

Figure 5.34 illustrates the mesh vertices predicted from the trained model. A vertex is located at
each local minima in the predicted DF.

Figure 5.34: Location of mesh vertices based on prediction.

83

5.5 Case Study 4: 3D Meshing with Machine Learning

Discussion

By including the encoder before sending the features into the fully connected network, we were
able to reduce the allocated GPU memory from close to 100 % to about 60 %. The results in
Figure 5.34 are based on a grid with only 40 points in each direction, using this architecture we
have the possibility to use a denser grid. We also see a decrease in loss by encoding the features
before sending them through the fully connected network. The location of the vertices in Figure
5.34 is not quite at the level we want to achieve, but the results are improved compared to Figure
5.31. As discussed above, there are at least two ways to improve the predicted location of the mesh
vertices. Interpolate a region around the local minima or increase grid density.

Since we can increase the density of the grid for this network, we conducted a study on its effect.
In the study, new data with different grid dimensions are created, and sweeps are performed to find
the optimal configuration of hyperparameters for each case. The results from this study are listed
in Table 5.19.

Dim Conv. layers Fully con. layers Allocated memory Loss
40 [32 32] [512 512 512] 60 % 0.02228
50 [32 32] [128 128 128] 50 % 0.02142
80 [32 32 32] [128 128 128] 99 % 0.02225

Table 5.19: Study of the effect of different grid sizes.

Figure 5.35 illustrates the target and prediction of a grid with 80 points in each direction. Note
that a layer is added to the encoder block in this case, this is done so that we were able to have
three layers with a width of 128 neurons in the fully connected part without exceeding the GPU
memory capacity.

Figure 5.35: Target and prediction with 80 grid points in each direction.

Figure 5.36 illustrates the predicted mesh vertices in a grid with 80 points in each direction. When
comparing Figure 5.36 with Figure 5.34, it is clear that increasing the number of points on the grid
has a positive effect on the predicted location of the mesh vertices. The predictions of vertices in a

84

5.5 Case Study 4: 3D Meshing with Machine Learning

grid with dimensions of 80 points are very close to predicting the correct location. The predictions
from this network are well within the accuracy needed to create an acceptable mesh.

Figure 5.36: Location of mesh vertices based on prediction.

Due to the available time, we have not optimized the grid density and network depth/width rela-
tionship; this is something that should be fine-tuned if using this architecture. Some of the Sweep
runs, with lower network width, give a loss almost as low as the case with higher network width.
Therefore, we believe that it is possible to create an even denser grid and get an even more accurate
location of the mesh vertices. However, it is clear that encoding the input features before sending
the information through the fully connected network is preferable to a fully connected network
alone. After the grid dimension study, we also have a strong indication that, if optimizing the
network, the predictions can be good and well within the accuracy needed to predict the location
of the mesh vertices.

85

5.5 Case Study 4: 3D Meshing with Machine Learning

5.5.4 3D Unet

This last network is based on the Unet architecture. The Unet was originally created for 2D im-
ages, not for 3D grids, or 3D images if you want. The main idea in this network is to replace the
2D convolutions, 2D max pooling, and 2D up-scaling with 3D versions. To free up some memory
on the GPU, we have replaced the DoubleConv class with a ResBottleneckBlock class. A Bottle-
neck Residual Block is simply a block that utilizes 1x1x1 convolutions to create a bottleneck. The
bottleneck reduces the number of parameters and matrix multiplications. ResBottleneckBlock
makes the block as thin as possible to increase depth and have less parameters (Kaiming He &
Sun, 2015). After implementing the adjustments, we get the network illustrated in Listing 5.4.
Note the dimensions written in the comments.

class NeuralNet(nn.Module):
def __init__(self, bilinear=False, device="cuda"):

super(NeuralNet, self).__init__()
self.bilinear = bilinear
self.device = device

Unet
self.inc = ResBottleneckBlock(4,64)
self.d1 = Down(64, 128)
self.d2 = Down(128, 256)
self.d3 = Down(256, 512)
self.d4 = Down(512, 1024)
self.d5 = Down(1024,1024)

self.u1 = Up(1024+1024, 1024)
self.u2 = Up(1024+512, 512)
self.u3 = Up(512+256, 256)
self.u4 = Up(256+128, 128)
self.u5 = Up(128+64,64)
self.out = OutConv(64, 1)

def forward(self, SDF): # [B,64,64,64]
B = SDF.shape[0] # Batch size
dim = SDF.shape[-1]
SDF = SDF.view(B,1,dim,dim,dim) # [B,1,dim,dim,dim]
pts = PTS.unsqueeze(0).expand(B,-1,-1) # [B,dim*dim*dim,3]
pts = pts.view(B,dim,dim,dim,3) # [B,dim,dim,dim,3]
pts = pts.permute(0,4,1,2,3) # [B,3,dim,dim,dim]
x = torch.cat((pts,SDF), dim=1) # [B,4,dim,dim,dim]

86

5.5 Case Study 4: 3D Meshing with Machine Learning

d = self.inc(x) # [B,64,64,64,64]
d1 = self.d1(d) # [B,128,32,32,32]
d2 = self.d2(d1) # [B,256,16,16,16]
d3 = self.d3(d2) # [B,512,8,8,8]
d4 = self.d4(d3) # [B,1024,4,4,4]
d5 = self.d5(d4) # [B,1024,2,2,2]

u1 = self.u1(d5,d4) # [B,1024,4,4,4]
u2 = self.u2(u1,d3) # [B,512,8,8,8]
u3 = self.u3(u2,d2) # [B,256,16,16,16]
u4 = self.u4(u3,d1) # [B,128,32,32,32]
u5 = self.u5(u4,d) # [B,64,64,64,64]
pred = self.out(u5) # [B,1,64,64,64]

Listing 5.4: 3D Unet architecture with sizes for every step.

Results

The training results achieved for 3D Unet are listed in Table 5.20, and training is performed with
the NVIDIA GeForce RTX 3080 GPU.

Validation loss Dim Batch size Allocated GPU memory
0.02511 64 8 98 %

Table 5.20: Unet training results.

Figure 5.37 illustrates the predicted distance field as a color map. Note that this figure is easier to
illustrate because it has 64 grid points in each direction and not 40 grid points, as is the case for
figures such as 5.33. Because of this, Figure 5.37 may give a false impression compared to figures
with a dimension of 40 points in each direction.

Figure 5.37: Unet target and predicted distance field.

87

5.5 Case Study 4: 3D Meshing with Machine Learning

Figure 5.38 illustrated the location of the mesh vertices based on the prediction provided by the
Unet model.

Figure 5.38: Predicted location of mesh vertices.

Discussion

In the case of 3D Unet we had to change the DoubleConv class with a ResBottleneckBlock
class to obtain predictions that look close to the target. Even with this change, we do not get
predictions on the same level as for the encoder + fully connected network. This is clear from
Figure 5.38, where we miss two of the vertices. As can be seen in Figure 5.37 the model struggles
with predictions of nodes on the mid side. This is a natural result of a lower performing model.
Our data usually have three or four vertices in each direction. This variable of mesh vertices makes
the predictions harder, and that is why these mid-side vertices look kind of smudged. The model is
not sure if it should predict three or four vertices, so it predicts something in between. A solution
to this problem is to increase the number of points in the grid, but a large increase in grid points
is not possible due to lack of GPU memory. The Unet performed very well in the 2D case; if we
could increase the number of grid points, we believe that we could achieve a similar result for the
3D case.

It is worth noting that we have not spent a lot of time optimizing this architecture. It is possible that
some fixes or changes can help to further improve the predictions, but as it is now, this network is
not optimal. Some changes that can be done, so that we are able to increase the number of grid
points, are to use fewer encoder/decoder blocks, change layer sizes in the convolutions, or run the
network on a GPU with more memory. Due to the high performance of the 2D Unet we believe
that using some more time to develop this architecture may be worth exploring.

88

5.6 Case Study 5: FEA of Cantilever Beam with ML

5.6 Case Study 5: FEA of Cantilever Beam with ML

In this case study, the prediction of displacement and stress with ML for a simple cantilever beam is
investigated. The dataset is created in Grasshopper using the SolidFEM plugin for the FEA. There
are two files in the datasets, one file containing input features and one file containing targets. The
input is used to represent the geometry and the information needed for the FEM analysis. For this
case, the only information needed to represent the beam is a vector, since the cross-section is the
same for all cases. Also, a scalar is needed to represent the magnitude of the load. The target file
contains displacements and stresses for all vertices of the mesh, in addition to the coordinates of
the corresponding point. To train the model, the framework described in Section 4.3 is used. Much
of the work has gone into optimizing the network to obtain the best possible results. This section
will first describe the method for creating the dataset, then describe the final version of the training
loop before finally describing the development process. To create the final working network, many
different approaches have been tried. The most important of these will be described to show the
progress that led to the final version.

5.6.1 Dataset creation in Grasshopper

The Grasshopper file for data creation consists of four main parts: Create Geometry, Mesh Geo-
metry, FEA and Create dataset. To create a lot of different cases, the entire Grasshopper code is
looped by a custom C# component. This component has a number slider as input and will loop
through all values possible by the slider. That is, if the slider has a max value of 100, and a step
of 1, the component will loop 100 times. For each loop, a new geometry is created; this geo-
metry is meshed and analyzed, and the results of the analysis are written to a file together with the
corresponding inputs. A flowchart of the Grasshopper file is shown in Figure 5.39.

Figure 5.39: Flowchart of the data creation in Grasshopper.

For geometry creation, a random number between 1000 and 2000 is used for the x and y coordin-
ates for the end of the beam. This creates a beam in the first quadrant of a unit circle with a length
between 1414 and 2828 mm. The number of iterations in the loop is used as a seed to ensure that
a new random number is chosen for each iteration. From this length, a rectangle with a height of

89

5.6 Case Study 5: FEA of Cantilever Beam with ML

300 mm and a width of 100 mm is created and extruded along the beam. This creates two surfaces,
one for the top and one for the bottom. The geometry of the cantilever is listed in Table 5.21.

Width Height Length ∑ Point Loads in Z direction
100 mm 300 mm 1414 to 2828 mm -100 to 100 kN

Table 5.21: Model: Cantilever beam.

These two surfaces are inputted into the Loft Mesh component described in Section 4.1.1. This
creates an 8-node mesh, which is inputted in the ConvertMeshTo20Node component, to create a
20-node mesh. This mesh is then used in the analysis part of the code. Support and load points
are extracted from the mesh and used to create supports and loads. The load is a point load at the
end of the beam, which varies between plus and minus 100 kN. This value is randomly chosen in
the same way as the coordinates for the beam. All of this is inputted into the NEWFEMSolver
component, together with the material. In this case the material is steel, with the properties listed
in Table 5.22.

Young’s Modulus Poisson’s ratio Yielding stress Material weight
210000 MPa 0.3 355 MPa 7850 kg/m3

Table 5.22: Properties of the steel material.

The last part of the script is to sort the results into an easily readable form. This is done by
concatenating displacements in the x, y and z directions, the nodal von Mises stress, and the
corresponding x, y, and z coordinates. This list of results is then used in the dataset creation part
of the Grasshopper code.

To write the results from the analysis to a .txt file, a custom Python script is used. The code for
this illustrated in Listing 5.5. This component uses FileName and the name for Folder, as well as
the lines to be written. Also, it has a stopper input which is used to create different cases for the
training, testing, and validation sets. The total number of sets is determined by the length of the
slider that is inputted in the loop component. This number has to be divided into train, test, and
validation. If 10 000 sets are to be created, 9000 of them could be for training, then 500 would
for testing, and the last 500 for validation. When doing it this way, duplicate sets are avoided. In
addition to writing the results to a file, the input used to create these results is written to another
file in the same way. This input includes a vector representing the beam and the point load used at
the end of the beam.

if stopper == True:
exit() # Stops the script if stopper is true

File = Folder + "/" + FileName # Create folder and filename

Create directory
dirName = Folder
if not os.path.exists(dirName):

os.mkdir(dirName)

90

5.6 Case Study 5: FEA of Cantilever Beam with ML

FilePath = open(File, "w") # Open text File

if os.stat(File).st_size == 0:
for line in lines: # Iterate through lines

FilePath.write(line+"\n") # Write separate lines
else:

for line in lines: # Iterate through lines
FilePath.write(line+"\n") # Write separate lines

FilePath.close() # Close the File

Listing 5.5: Listing of the Python script that writes data to a file in Grasshopper.

5.6.2 Postprocessing of Datasets

Because the data is created in Grasshopper and not in Python, some adjustments are needed to
the dataset.py file. To make training easier and the input data more consistent, the beams are
rotated to align with the x-axis. This is done by calculating the angle between the beams neutral
axis and the x-axis, before multiplying the beam with a rotation matrix. Furthermore, some of the
input features needs to be scaled to avoid large gradients that can cause a problem when training
the network. The scaler applied in this case is the StandardScaler provided by the scikit-learn
package, this scaler standarizes the values around zero. The scaler is applied to both the forces
and the points describing the beam. This means that we have two scalers in this network, one
for the forces and one for the coordinates. The dataset.py returns the scaled force, scaled and
rotated coordinates, original coordinates, target stress, target displacement and the rotated vector
describing the beam. Original coordinates are included to be able to plot an image representation
to WandB.

Fully Connected Neural Network

In this Case Study a fully connected architecture is applied as the neural network. The input
layer has the shape [P, 7], where P represents all mesh points from the FEM analysis. Each
of these points has seven features, the scaled force, rotated and scaled x, y and z coordinates in
addition to the vector describing the beam. The input layer is then connected to three hidden layers
with the width listed in the sweep run Table 5.23. The output layer has the shape [P, 4], where
each point P is mapped to a predicted stress value and displacement in the x, y and z directions.
The output is divided into two predictions, [P,3] for the displacements and [P,1] for the stress
values. From the predictions, three losses are logged at WandB. The first loss is the L1 loss for
the displacement, the second is the L1 loss of the stresses and the last loss is the combination of
both losses. This is done to investigate how the model performs on the predicted displacements
and stresses separately. In addition to the losses, a graphical representation of the predicted result
is logged. The representation is illustrated in Figure 5.40, where the displacements are scaled, so
that they are visible, and added to the original coordinates while the stresses are illustrated with a
color map.

91

5.6 Case Study 5: FEA of Cantilever Beam with ML

5.6.3 Result

To decide the best network configuration, including network depth and width, hyperparameters,
start learning rate and dropout, a sweep run with the task of minimizing the validation loss is
performed. The result of this sweep is listed in Table 5.23.

Dropout Layer sizes Start learning rate Validation loss
0.0 [256 512 256] 0.007 0.3072

Table 5.23: Sweep run from WandB.

Table 5.24 lists the results achieved from a long run with the optimal configuration.

Validation displacement loss Validation stress loss Validation loss
0.226 0.042 0.267

Table 5.24: Resulting validation loss.

Figure 5.40 gives an illustration of the displacements and stresses. This figure illustrates the target
and predictions of a random example from the test set.

Figure 5.40: Target and predicted displacement.

92

5.6 Case Study 5: FEA of Cantilever Beam with ML

To visualize the training process, Figure 5.41 illustrates the target along with the predictions at
different steps or iterations.

Figure 5.41: Progress of the predicted model for the validation set.

As can be seen in Figure 5.41, the model converges very fast. The loss function has the typical L
convergence shape.

93

5.6 Case Study 5: FEA of Cantilever Beam with ML

5.6.4 Development/Discussion

The architecture of the code has remained mainly the same throughout the development process.
From the beginning of development, the biggest change has been to implement scaling of the input
features. In the beginning, there was no scaling for neither forces nor coordinates. Furthermore,
the forces were inputted in N, and not in kN. Because of the large values, the first predictions for
every run were poor, which in turn gave a large loss. Due to the large loss, the calculated gradients
were large. The large gradient caused large updates in weights. This effect continued to go on,
resulting in an unstable network that was unable to predict anything. This is known as Exploding
Gradients. To understand why the network was unable to learn, we stripped the code down to be
as basic as possible, but it still gave the same predictions. This left the dataset as the problem, and,
in the end, a solution was found. When the forces were normalized with the StandardScaler, the
results improved greatly. In addition, the input coordinates and vectors were rotated and scaled.
Since ML works by learning patterns, it is favorable to have an uniform set of input features.
This meant that by rotating and scaling the input features, the model was provided with a solvable
problem.

As can be seen in Figure 5.40 the model performs accurately in prediction of the stresses. To also
optimize the prediction for displacements, some work on the network or changes in the data has
to be implemented.

94

5.7 Case Study 6: FEA of a Simple Steel Connection with ML

5.7 Case Study 6: FEA of a Simple Steel Connection with ML

This case study is an extension of Case Study 5. In this case, a simple steel connection has been
investigated; see Figure 5.42. It has one arm in each quadrant, with the x- and y-axes shown
with a green and red line in the figure. The connection is fixed for one of the arms, while the
other three are loaded with a shear force, a normal force, and a moment. Additionally, a vertical
force is applied in the middle of the connection. This model tries to represent the response of
one connection in a grid of connections. The forces applied at the end of the beams represent the
internal forces of the neighboring members. ML has been used to predict the displacements and
stresses of this connection, the same as in Case Study 5. To evaluate the full grid of connections,
the rotational stiffness of each connection would need to be calculated. This is further investigated
in Case Study 7. The connection in this case could be seen as four of the cantilevers investigated
in Case Study 5.

Figure 5.42: Geometry of the simple steel connection used in Case Study 6.

Grasshopper has been used to create the dataset, using the SolidFEM plugin described in Section
4.2. In the datasets created, there are one file for input features, and five files for targets, one for
each arm of the connection, in addition to the middle section. As in Case Study 5, the input files
consist of vectors that describe the geometry of the beams and the forces applied to each of the free
ends. The target files consist of displacements in the x, y and z directions, stresses, and coordinates
for the corresponding points. The framework described in section 4.3 has been used to train the
model. For this section, the creation of data in Grasshopper will be described first and then the
code for machine learning. After this, the final results will be presented before the development
that led to these results is discussed.

5.7.1 Dataset creation in Grasshopper

The creation of datasets in Grasshopper can be divided into five parts: Create geometry, mesh geo-
metry, FEA, post-processing, and writing data to file. A flowchart of the Grasshopper algorithm is
shown in Figure 5.43. As in Case Study 5, the same custom C# script is used to loop through the
grasshopper code.

95

5.7 Case Study 6: FEA of a Simple Steel Connection with ML

Figure 5.43: Flow chart of the dataset generation in Grasshopper.

Create geometry

To create the geometry, four points are created with random x and y coordinates. The coordinates
are created by a random component that picks a number between 1000 and 2000 depending on the
seed. Using the iteration of the loop component as the seed, a different case could be created for
each loop. In this case, the geometry of the beams is fixed. To create a connection with beams in
four different directions, four points are created, one in each quadrant. This is done by multiplying
either the x or y coordinate with -1 according to Table 5.25.

Quadrant Sign for x-coordinate Sign for y-coordinate
1 + +
2 - +
3 - -
4 + -

Table 5.25: The sign of x and y coordinates in the four quadrants.

These points were connected to origo with lines to represent the beams. The lines are further
expanded with the width and height given in Table 5.26, which also gives the length of the four
different beams according to the numbering in Figure 5.42. This results in a Brep that represents
the whole geometry of the connection.

Width Height L1 L2 L3 L4
100 mm 300 mm 2302 mm 2260 mm 2310 mm 1714 mm

Table 5.26: Model: steel beam connection.

Mesh geometry

From this simple Brep, surfaces are created that describe the four different beams and the middle
section. These are used separately in the LoftMesh component from the solver described in Sec-

96

5.7 Case Study 6: FEA of a Simple Steel Connection with ML

tion 4.1, to mesh the entire geometry. This creates five different lists of 8-node meshes. These
are gathered in one long list and sent through the ConvertMeshTo20Node component to create a
long list of 20-node meshes. The total number of elements is 336. This is a coarse mesh, but since
the elements used are quadratic, the accuracy is good. The reason for not using a finer mesh is the
time it takes to perform an analysis and, in turn, create the entire dataset. If the analysis takes ten
seconds, it would take almost 14 hours to create a dataset with 5000 cases.

FEA

The list of meshes was then used to perform the analysis. Loads and supports were created with
the FEMLoad and FEMBoundaryOnPoints components. One of the beams has a fixed support
at the end, whereas the three others have a free end. These free ends are loaded with a normal
force, a vertical force, and a moment. In addition, a vertical point load is applied in the middle of
the connection. This load is a constant 40 kN in the negative z-direction. The other forces vary
and are listed in Table 5.27. To act as the internal forces of neighboring beams, the shear force is
applied in the positive z direction, and the normal force is applied as compression. The moment
is applied with a force couple, with tension at the top of the beam and compression at the bottom.
For the material, the same steel material used in Case Study 5 has been used. The properties of
the material are shown in Table 5.28.

Shear force (V) Normal force (N) Moment (M)
0 to 50 kN 0 to 50 kN 0 to 7.5 kNm

Table 5.27: Shear force, normal force, and moment applied.

Youngs Modulus Poisson ratio Yielding stress Material weight
210000 MPa 0.3 355 MPa 7850 kg/m3

Table 5.28: Steel material properties.

Postprocessing of results

Postprocessing of the results consists mainly in sorting the displacements and stresses into the five
different parts of the connection. Since the output from the solver is long lists of all the displace-
ments and stresses, it is necessary to sort them into the four beams and the middle section. This is
done using the Point In Brep component in Grasshopper; this creates a dispatch pattern that can
be used for both displacement lists and stress lists. The displacements, stress, and corresponding
coordinates are then concatenated into one list for writing to file.

Writing data to file

To create datasets, the same Python script is used to write to files, see Listing 5.5. For this case,
the results of the analysis are divided into four beams and the middle section, and the same applies
when writing to files. The dataset ends up being five files for the results and one file for the inputs.

97

5.7 Case Study 6: FEA of a Simple Steel Connection with ML

5.7.2 Training

The created datasets are then used in Visual Studio Code and PyTorch as input to a ML model. In
the following section, the differences from the framework described in Section 4.3 are described.
The code is much the same as for Case Study 5.

For this case, the input features are a little different from Case 5 since the geometry is fixed. To
represent this case, three different loads are needed, in addition to the coordinates of the resulting
vertices and the beam index. From the input file, the forces are loaded and scaled in the same way
as in Case Study 5. Since there are five different result files, it is necessary to loop through all
of them. For each file, an angle is calculated, this process is similar to the angle calculations in
Case Study 5. The angle is then used to rotate the corresponding beam coordinates. The data are
sorted in to three lists, stresses, displacements and coordinates. In addition, an index list is created
to keep track of the beam index for the corresponding data. This index corresponds to the beam
numbering in Figure 5.42, with the middle section having index 0. There is also an additional
check for duplicate points, because the middle section shares points with all the other beams. The
same scaling used in Case Study 5 is also applied here. The CustomDataset component returns
the scaled forces, the scaled and rotated coordinates, the original coordinates (for plotting), the
target stress, the target displacement and a list of indexes.

The rest of the codes are mostly the same as in Case Study 5. Trainer and network are the
same, but with different values used for learning rate, batch size, and layer sizes. This case used
SmoothL1Loss instead of the normal L1Loss. The smooth loss is the same as L1 when the loss is
greater than one, but when it is less, the smooth loss is equivalent to MSELoss, which is the mean
squared error. This is shown in Equation (5.6), with β = 1.

ln =

0.5(xn − yn)
2/β , if|xn − yn|< β

|xn − yn|−0.5β , otherwise
(5.6)

A sweep run was performed with different layers, learning rates, and dropout values. The optimal
configuration from this sweep run is shown in Table 5.29.

Dropout Layer sizes Start learning rate Validation loss
0 [128 512 512 512] 0.024 1.81

Table 5.29: Sweep run from WandB.

98

5.7 Case Study 6: FEA of a Simple Steel Connection with ML

5.7.3 Results

The network described in previous sections was used to train a model on the dataset of connections.
The results are presented in the following figures. In Table 5.30, the stress, displacement and total
validation loss can be seen.

Validation displacement loss Validation stress loss Validation loss
1.613 0.1978 1.811

Table 5.30: Resulting validation loss.

Figure 5.44 shows the target and prediction with stresses and displacements. As for the results in
Case Study 5, the loss values must be seen in context with the predictions made. In the following
results, the displacement loss is higher than the stress loss. From Figure 5.44, it is clear that the
predicted stress is better than the predicted displacement, but the difference in loss also comes
down to the loss function used. Since the stress loss is less than 1, its loss is squared, creating an
even larger difference between the two.

Figure 5.44: Target and predicted displacements and stresses.

99

5.7 Case Study 6: FEA of a Simple Steel Connection with ML

5.7.4 Development/Discussion

With the experience of the simple cantilever case, the forces and coordinates were scaled from the
beginning of the development process. The architecture of the network was also kept quite similar,
since the idea was that this case could be seen as five of the cantilever cases.

In the early stages of development, the coordinates for the beams were not rotated, but were scaled.
This meant that when creating an algorithm, the ML tried to predict displacement and stresses,
depending on a points x and y coordinates inside an imaginary area, as depicted in Figure 5.45.
The problem with this approach was that, towards origo, a small change in coordinates could give
a large change in results, again see Figure 5.45. Two solutions to this problem were suggested.
Both involved a division of the model into five different parts.

Figure 5.45: Figure of connection before rotation of arms.

The first suggestion was to load the results into five different lists in the Dataset component.
This meant that instead of six input features: N, V and M forces, and x, y and z coordinates, the
network would have 30 features: N, V and M forces, and x, y and z coordinates for five different
parts. When trying to implement this, a problem arose. The dimensions of the different arrays
did not match since the middle section has fewer vertices than the four beams. This solution was
also discussed to be slow since it had an increase in input features. This would require more GPU
memory than the other solution.

The other solution was to still have all results in a long list, but add an index to each result. This
index refers to what part of the connection to which the result belonged. As described earlier in this
section, this is the solution that was chosen. It required only small changes to the algorithm. When
this solution was applied, the results improved. In addition to dividing the connection, each part
was scaled, and rotated to the x-axis. This meant that the algorithm could predict displacements
and stresses for a normalized grid, depending on the forces applied and the index of the beam.

From the result illustrated in Figure 5.45 it is clear that the stress predictions are decent while the
network needs some adjustments to get an acceptable prediction of the displacement. This result
was not surprising because the codes used here are based on the same code used for Case Study 5
where the results were similar.

100

5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

The purpose of incorporating rotational stiffness computation is to be able to create a framework
for structural analysis of a complete grid of connections. This framework would streamline and
reduce the computational cost of the analysis, using an ML model to predict the rotational stiffness
for every member of all connections and another model to predict the total behavior of the loaded
grid.

In this case study, two different models of steel beam-to-column connections are investigated. The
first part of the case study involves a model of a connection with an HEA 300 cross-section. This
model is used to verify the rotational stiffness computation with SolidFEM, where the results are
compared with Robot. In the second part, a parametric model of beam-to-column connection with
solid rectangular cross-section is developed. For this case, with rectangular cross section, datasets
are created in Grasshopper and used to train an ML model that predicts the rotational stiffness of
the connection.

5.8.1 HEA 300 - Beam to Column Connection

The first case consists of a beam connected to a column, where both parts are HEA 300 profiles of
steel type S355. The connection is restrained in all directions on the end surfaces of the column
and loaded with a shear force at the free end of the beam. This model is made to further verify the
accuracy of the SolidFEM plugin and to evaluate the rotational stiffness calculation of a solid steel
connection using SolidFEM. The results are compared with Robot, which has built-in software for
steel connection analysis using Eurocode equations. As mentioned in Section 2.3.3, the equations
for rotational stiffness calculation in Eurocode are only valid for joints connecting H and I sections.
Hence, HEA 300 is the chosen cross-section for the beam and column.

Cross-section Steel type Beam length (Lb) Column length (Lc) Total shear force (V)
HEA 300 S355 500 mm 966 mm 100 kN

Table 5.31: Setup of the beam-to-column connection.

Figure 5.46: The beam-to-column connection in Grasshopper.

101

5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

Grasshopper

Figure 5.47: Flowchart of the HEA 300 beam-to-column connection in Grasshopper.

The Grasshopper model is an assembly of several parts, a flow chart of the model is shown in
Figure 5.47. First, the cross-section of the beam is created as a collection of surfaces. This col-
lection consists of seven surfaces; two surfaces for the flanges, one surface for the web and four
small surfaces for the flange-web fillet connection. The flange surfaces are the foundation of the
cross-section surface and have the exact dimensions as the standard HEA300 section. To create
the web surface, the size of the mesh needs to be considered. This is because the Loft Mesh
component, which is used to mesh the model, only creates uniform meshes, and the NewFEM-
Solver component has a limitation of number of nodes in its analysis. To be able to analyze this
geometry, the 8-node element has been used, in stead of the 20-node, to reduce the number of
nodes. Furthermore, this causes the dimensions to deviate slightly from the standard HEA300
cross section. This can be seen in Figure 5.48. For example, the width of the flange (300 mm) is
divided into 35 elements so that the web thickness (8.57 mm) becomes as close as possible to 8.5
mm. These dimensions are necessary to make the beam mesh and the column mesh compatible
with each other.

These surfaces, which make up the entire cross-sectional surface, are individually duplicated and
moved along the longitudinal direction to set the length of the beam. The Loft Mesh component
takes these surfaces as input, along with the parameters to control the mesh size, to create the com-
patible beam mesh. To make the column, the cross-sectional surfaces of the beam are duplicated
and rotated, and the same procedure is performed for the meshing of the column. All the different
8-node meshes are then merged into one list of meshes. The meshed model can be seen in Figure
5.46.

To mimic a concentrated load at the beam tip, the free beam end is loaded with a total of 100 kN
in the z-direction, which is evenly distributed on all nodes of the web. For boundary conditions,
all nodes on both end surfaces of the column are restrained in the x, y and z directions. Loads,
supports, material properties and mesh list are inserted in the NEWFEMSolver component to run
the elastic analysis.

To calculate the rotational stiffness, the approach described in Section 2.3.3 is applied. The beam
axis and the column axis are constructed from the mesh geometry. An evaluation point is placed
on the beam axis a distance of 200 mm from the beam intersection point, and two evaluation points

102

5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

for the column are placed on the column axis a distance of 140 mm from the columns intersection
point. See Figure 2.10 for an additional explanation on the placement of the points.

Abaqus

The connection is made as two separate parts in Abaqus. The exact same dimensions used in
Grasshopper is also used in Abaqus. To mesh the two parts, the edges are given a seed to achieve
the same amount of elements. The 8-node hexahedron elements (C3D8) are chosen, which is
equivalent to the type of elements used in the SolidFEM analysis. The two parts are connected
as an assembly by applying face-to-face constraint. For boundary conditions, the end surfaces of
the column were restrained. The free-end web nodes of the beam were applied with concentrated
force in the negative z-direction.

Robot

The structure in Robot is drawn as lines. The column and beam are assigned with HEA 300
cross-sections from Robots section database, and the material is set to steel type S355. Boundary
conditions are applied to the end nodes of the column line, where the two nodes are set as fixed.
Two load classes are created; one for dead load (self-weight) and one for live load. A concentrated
force in the z direction, with the given magnitude, is placed on the node on the free end of the
beam. A manual combination of the two load classes is generated, where both classes are applied
with a partial safety factor of 1.0, to make the load situation similar to the Grasshopper model.

To calculate the rotational stiffness in Robot, their built-in steel connection design is used. A new
steel connection is defined and the beam-to-column type is selected. The connection is applied
with welds on both the flanges and the web. After the automatic calculations are completed, the
rotational stiffness S j,ini could be retrieved from the results report. In these calculations, Robot
uses the Eurocode equations, which are described in Section 2.3.3.

(a) HEA300 dimensions in Robot. (b) Cross-section dimensions in Grasshopper

Figure 5.48: Dimensions of the cross-sections

103

5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

Results

Comparison with Abaqus: Displacement and von Mises stress

To compare the displacements and von Mises stresses of the connection from SolidFEM and
Abaqus, a node on the free end of the beam is selected. The values provided in Tables 5.32
and 5.33 are all extracted from the node highlighted in yellow in Figure 5.49 and Figure 5.50.

Figure 5.49: Comparison of displacement: SolidFEM (left) and Abaqus (right).

Displacement in SolidFEM Displacement in Abaqus Difference
-0.920 mm -1.035 mm 11.11 %

Table 5.32: Displacement in z-direction: SolidFEM and Abaqus.

Figure 5.50: Comparison of von Mises stress: SolidFEM (left) and Abaqus (right).

Von Mises stress in SolidFEM Von Mises stress in Abaqus Difference
64.976 mm 65.300 mm 0.50 %

Table 5.33: Von Mises stress: SolidFEM and Abaqus.

104

5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

Comparison with Robot: Rotational stiffness

Figure 5.51: Computational model for rotational stiffness with SolidFEM in Grasshopper. The blue lines
are the original axes of the beam and the column, and the red curves are the axes after deformation.

From the points in Figure 5.51, the distances are measured to obtain the values needed for the
calculation of rotational stiffness.

The angle of rotation of the beam:

φb = arctan
(

Dz2 −Dz1

xpb

)
= arctan

(
0.354252mm−0.038559mm

200mm

)
= 0.001578 rad (5.7)

The angle of rotation of the column:

φc = arctan
(

Dx2 −Dx1

zpc

)
= arctan

(
0.066856mm−0.066851mm

280mm

)
= 3.5714 ·10−8 rad (5.8)

The initial rotational stiffness of the connection analyzed with SolidFEM is thus:

S j,ini =
M j

φ j
=

(V ·Lb)

(φb −φc)
=

100kN ·0.5m
0.001578rad −3.5714 ·10−8 rad

= 31 685.68 kNm/rad (5.9)

The automatic calculations of the initial rotational stiffness from Robot:

S j,ini =
Ez2

∑i
1
ki

=
210 000N/mm2 · (276mm)2(1
5.129mm + 1

6.258mm + 1
6.258mm

) = 31 088.58 kNm/rad (5.10)

SolidFEM Robot Difference
31 685.68 kNm/rad 31 088.58 kNm/rad 1.92 %

Table 5.34: Comparison of initial rotational stiffness: SolidFEM and Robot.

105

5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

Discussion

Compared to Abaqus, the von Mises stress values are similar, but the displacement differs by
11.11% in the yellow node. This may be due to the way the two parts were connected in Abaqus.
In SolidFem, the connection acts as a complete part, unlike in Abaqus, where the beam and the
column were connected as an assembly by applying a face-to-face constraint. When connecting
them with constraints, there will be a duplication of nodes. This means that the model analyzed
with SolidFEM and the model in Abaqus will not have exactly the same number of nodes. Al-
though they have the same number of elements, the difference in number of nodes will affect the
calculations. This may have influenced the results. In Figure 5.50, it can be seen that there is a
slightly finer transition in the stresses between the column and the beam for the SolidFEM model
than for the Abaqus model.

The rotational stiffness of the connection calculated using Grasshopper and SolidFEM is in line
with the calculation performed in Robot. From the calculation in Equation 5.8 it can be seen that
the angle of rotation of the column has little impact on the rotational stiffness. When determining
the angle of rotation of the beam, the evaluation length, xpb, should be considered. The evaluation
point should be placed at the beginning of the region where the displacement curve of the beam
is close to linear. There is no documentation on exactly where this point should be placed. In
this case, from around 180 mm and to the end of the beam, the curve is almost linear. A length of
200 mm was chosen to ensure that the point was in the linear part.

As can be seen in Figure 5.52, the values for the rotational stiffness with SolidFem are close to
the Robot results when the evaluation point is placed in the early linear area. If the evaluation
point was placed with xpb = 223 mm, the calculation of rotational stiffness with SolidFEM would
give the exact same value as Robot. The Eurocode equations, which Robot uses, are generally
conservative, it was therefore expected that the numerical method initially gave a slightly higher
value.

Figure 5.52: Beam deflection curve and the rotational stiffness at different evaluation lengths.

106

5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

5.8.2 Rectangular Beam-to-Column Connection with ML

In this part of the case study, a Grasshopper model of a beam-to-column connection with rectan-
gular cross-sections is created. With this Grasshopper model, datasets are created to train an ML
model. The ML model is trained to predict rotational stiffness of connections, when the beam
height and the force magnitude varies. The rotational stiffness is calculated with the same method
used in the first part of this case study. The connection is restrained by the end surfaces of the
column, and a shear force is applied and distributed at the free end of the beam. This can be seen
in Figure 5.53, where the yellow arrows indicates the distributed shear force and the small gray
spheres represent the fixed nodes. The dimensions and the magnitude of the shear force are listed
in Table 5.35 and 5.35.

Steel type Beam Length Column Length Total shear force
S355 500 mm 1200 mm 10 to 50 kN

Table 5.35: Setup of the beam-to-column connection with rectangular cross-sections.

Beam width Beam height Column Width Column height
100 mm 100 to 200 mm 100 mm 300 mm

Table 5.36: Dimensions of the cross-sections of the beam and the column.

Figure 5.53: Grasshopper model of the beam-to-column connection with rectangular cross-section.

107

5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

Dataset creation in Grasshopper

Figure 5.54: Flowchart of dataset generation in Grasshopper.

The process of generating the dataset is shown as a flowchart in Figure 5.54. The geometry of
the connection is created with the same approach as for the connection with the HEA300 cross-
section, described in Section 5.8.1. The cross-sections of the beam and the column are first created
as surfaces. The cross-section of the column has fixed dimensions, but the height in the beam
cross-section varies randomly. This random component picks a number between 100 and 200 mm,
depending on the seed given from the loop component. This custom loop component is explained
in Section 5.6.1. The cross-section surfaces are duplicated and moved along their longitudinal
direction to set the length. With these surfaces, the Loft Mesh component is used to mesh the
geometry, and the ConvertMeshTo20Node component converted the beam and column meshes
to 20-node meshes.

Nodes for support and load are extracted from the meshed geometry. The shear force is evenly
distributed and applied to all nodes on the free end beam surface. The magnitude of the force is
connected to a random component that ranges from 10 to 50 kN. The meshes, the load, the support
and the steel material are inserted in the NEWFEMSolver component, and the FEA is performed.

For creating the datasets, the loop component along with the Python script that writes data to a
text files are used. The Python script is illustrated in Listing 5.5. For each loop, the model is given
a new value for the beam height and for the magnitude of the shear force. In this way the new
geometry for the beam is automatically constructed and the analysis is performed. The rotational
stiffness of the connection is thereafter calculated. At the end of each loop, the new beam height,
the new force magnitude and the corresponding rotational stiffness are written to a text file. The
beam height and the magnitude of the shear force are used as input to the ML model, while the
rotational stiffness is used as target for the ML model. In this code 4000 datasets are created for
training, while the validation and testing has 500 samples each.

108

5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

ML model

The created datasets are used to train an ML model with the task of predicting the rotational
stiffness of connections. To create the ML algorithm, the same framework used for the other ML
models in this thesis is applied. This method is described in Section 4.3. The network architecture
used for this problem is a fully connected network. The input layer consist of a vector with two
input features, two scalars that represents the force magnitude and the beam height. The target in
this case is a single scalar representing the rotational stiffness of the connection.

For this problem, to avoid exploding gradients, the input features are scaled with the help of the
MinMaxScaler provided by the scikit-learn package. This scaler normalizes the data between
zero and one. Additionally, the rotational stiffness is scaled to improve predictions. To illustrate
the function that the network is going to solve to predict the rotational stiffness, Figure 5.55 is
included.

Figure 5.55: The datasets for rotational stiffness visualized as a 3d graph.

For this problem, not only the losses are logged to WandB, the actual predictions of the rotational
stiffness are logged together with the target. This can be seen in Figure 5.56, where the green
graph represents the prediction and the orange line is the target.

Figure 5.56: Plot of rotational stiffness prediction and its target throughout a run.

109

5.8 Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

Results

A sweep run is completed to find the optimal configurations. The result from the sweep is presen-
ted in Table 5.37.

Dropout Layer sizes Start learning rate Validation loss
0 [64 128 64 128] 0.009 0.00036

Table 5.37: Sweep run from WandB.

By prolonging the run for the best configuration, the validation loss listed in Table 5.38 is achieved.

Validation loss
0.000269

Table 5.38: Resulting validation loss.

Discussion

Shown in Figure 5.55, the relationship between the rotational stiffness and the input features pro-
duces a smooth 3D curve. It should therefore be a manageable task to train the ML model to
produce an accurate prediction of the rotational stiffness. In our first models, the network was
unable to make accurate predictions and the losses were dispersed. Due to our experience from
Case Study 5, the input features and the target for this network are scaled. After scaling the data,
the predictions of the network improved.

The validation loss, from Table 5.38, represents the mean difference between the scaled prediction
and the scaled target. With the correct unit for rotational stiffness, this equates to 26.9 kNm/rad.
The calculated rotational stiffness for the different geometry ranges from approximately 10 000
kN to 70 000 kN. This means that an average prediction misses with 26.9 kNm/rad, which is an
acceptable estimate. For the lowest calculated rotational stiffness, this corresponds to a estimation
error of 0.25 %, a small error in these kind of approximation tasks.

110

6 Discussion/Conclusion

6.1 Discussion

This section will answer the research questions in light of the different case studies that have been
explored. The section is divided into two main parts: one part concerns the implementation of
FEA with higher-order volumetric finite elements in Grasshopper and the other part concerns the
application of ML on the different aspects of the FEA. The benefits of the developed software
will be discussed, in addition to looking at the problems that were encountered and how to further
develop and improve the software.

6.1.1 Solid FEM

Efficiency is key in the development of designs as a structural engineer. The use of digital software
has made this easier over the last few decades and the use of AAD even more so in the last couple
of years. For a design to be good, it must be both aesthetically pleasing and structurally sound.
The introduction of FEA in an AAD environment creates better opportunities for the latter. By
exploring the research question the benefits of implementing volumetric finite elements in AAD
are highlighted.

The investigation began with a simple FEM solver that worked only with eight node elements.
This solver proved the possibilities of implementation and illustrates that the benefits are huge.
Compared to Abaqus, where it is a tedious process to change the geometry of a model, with an
FEM solver in Grasshopper, changes can be made instantaneously and the result is updated in real
time.

Furthermore, the expansion to elements with higher-order shape functions, with the development
of the SolidFEM plugin, illustrates the same positive effects. The accuracy of the solver was
improved, as well as the inclusion of different load and support types. This made the solver ap-
plicable to more cases. Case Study 2, with the arched beam, showcased the benefits of elements
with higher-order shape functions when the geometry became more complex and, in this case,
curved. This case study indicated the possibilities of the SolidFEM plugin. For designs with com-
plex geometry and especially intricate connections, the solver opens the possibilities of optimizing
the geometry much faster than standard FEM software. This is especially relevant for conceptual
structural design. In more traditional structural design, the structural elements are often standard
and easily created in dedicated FEM software. Designs that have meaning beyond being structur-
ally sound often have more complex geometry, and the analysis of these structures would benefit
from elements of higher order.

The issues that were encountered when working on Case Study 2 were mainly connected to the
preprocessing, the meshing. As geometry became more complex, meshing became harder and
more computationally costly. To further improve this solver, a better method to mesh more com-
plex geometry has to be developed. This could be replaced by ML, which will be discussed in the
next section.

111

6.1 Discussion

For these cases, the solver itself had no real issues, but there could always be improvement. There
was an issue of exceeding the memory cap for Rhino when creating the stiffness matrix. The
way the plugin was built, the whole stiffness matrix was in one continuous array. This meant
that the entire array was stored in the short-term memory of the computer, which is a limited
resource. With about 1600 elements, there are about 31 500 DOFs, which makes the stiffness
matrix array almost 8 Gb. There are different methods for solving this problem and it would
be smart to investigate this. This limitation could be a problem for more complex geometries
and designs. Another improvement would be the implementation of consistent load vector for
surface loads. This was investigated but not fully implemented. The method of load lumping is
not recommended for elements with higher-order shape functions. It would give higher accuracy
and better results with the method of consistent load vector on surface loads.

6.1.2 Machine Learning

An important part of the ML that applies for the further development of all cases explored would
be the integration with Grasshopper. When a model has finished training, it should be possible to
create a Grasshopper plugin that uses this model to make predictions in real time. With the input
as the input features assigned in the machine learning algorithm, and the output the prediction
from the model.

Meshing

Independent of which case study we are talking about, a neural network that tries to predict the
target with a continuous function needs data where the target is continuous with respect to the
input. The importance of getting familiar with our dataset was one of the first lessons we had
to learn the hard way. The need to have a continuous feature-target relationship also reveals one
of the largest challenges when it comes to meshing with machine learning. As long as we are
able to create a mesh that is continuous with respect to the input object, the methods developed
in this thesis are applicable to any object shape. For example, a model could be trained to predict
a good mesh of a connection as long as we are able to create data for training where the input
is continuous with respect to the target. For a more complex geometry, more points are needed
to describe the boundary of the geometry, but the methods developed are the same. That said,
there may be different approaches worth exploring, for example, representing the object with a
nurbscurve, where the input features are the control points and its weights. Labels could also be
represented in a different way. For example, a network could try to predict the coordinates of the
mesh vertices directly or use image segmentation to classify each point in the grid into one of the
two classes, mesh vertex or not mesh vertex. For now we are going to focus on the methods used
in this thesis. As a summary table, 6.1 presents the losses that we managed to achieve with the
different networks.

112

6.1 Discussion

Case study Dim Loss
2D fully connected 256 0.01410
2D unet 256 0.00093
3D fully connected 40 0.03265
3D conv + fully connected 40 0.02228
3D conv + fully connected 80 0.02225
3D unet 64 0.02511

Table 6.1: Summary of Validation Losses

From Case Study 3, two of the most promising networks are included in this thesis. Based on the
results, it is clear that the Unet architecture is superior to the fully connected architecture. The
Unet performs very accurately in predicting the DF. The method developed are close to optimal
and the performance is well inside the accuracy needed to predict the location of the mesh vertices.

In the 3D Case Study, due to memory capacity on the GPU we were not able to use the same grid
dimensions as for the 2D case. As a consequence, the accuracy of the location of the vertices is not
at the same level. One solution to this problem that is not explored in our thesis is to interpolate
between all the values in a region around all the local minima. This will open the possibilities to
find mesh locations in between the grid points and lead to more accurate predictions of the vertices
without needing to increase the number of grid points. This approach is something we would like
to recommend for further work. Alternatively to this solution, it is possible to increase the number
of points in the grid. As shown in the grid dimension study, this has a positive effect on predicting
the correct location of the mesh vertices. An increase in grid points will also improve the DF
predictions. It will especially improve the networks that struggle to predict the mid-side nodes due
to different number of nodes in each direction.

If fine-tuning the grid density and network depth-with relationship, we are confident that the net-
work architecture with an encoder and fully connected neural network would yield satisfying
results. One solution that will make it possible to increase the number of grid points is to use
ResBottleneckBlock in the encoder instead of the DoubleConv class. This will reduce the GPU
memory allocated and open up the possibility to increase the grid point density, as we did for the
Unet architecture in 3D. Alternatively, the density of grid points could be increased if a GPU with
more memory was available.

Another recommendation for further work, and something that would be very interesting to ex-
plore, is the further development of the 3D Unet architecture. The process of developing this
architecture is started in this thesis, but due to available time, we were unable to make this net-
work perform at an acceptable level. It might be that this architecture is not suited for 3D DF
prediction, but based on the superior results from Unet in Case Study 3, it is natural to believe that
the Unet architecture could result in a high-performing network also in three dimensions. Some-
thing that would be interesting to try out in this case is to, somehow, increase the number of points
in the grid.

As described in the Introduction of this thesis, we have focused on exploring and developing dif-
ferent methods for predicting the location of the mesh vertices to find the most optimal method
for this task. The methods developed are only the start of creating a machine learning meshing
component in an AAD environment. The next step in the development is to create a network that

113

6.1 Discussion

predicts the connectivity between vertices. Inspiration for this work can be found in Alexis Papa-
giannopoulos and Avellan, 2020. In this paper, a triangulation algorithm is used to predict the
connections. The paper uses a connection table consisting of the probability that two vertices will
be connected as targets in a neural network. A similar method could be developed for hexahed-
ral elements. Alternatively, a triangulation algorithm can be performed, before transforming the
tetrahedral mesh to a hexahedral mesh as described in Xifeng Gao and Panozzo, 2017. Lastly a
component has to be created in grasshopper, this component should be created in a similar way
to the FEM solver in this thesis. The component needs to include a code that scales the input
geometry to fit the data used for training, then the trained neural network is called from inside
the code, and the prediction for the model is scaled back to its original size. The scaling code is
similar to the code used to scale the data created for training.

If we had more time to work on our meshing networks, we would also like to include the number
of elements as an input feature. For now we have fixed the target number of elements. Note that the
number of elements is not the target number in every case, this means that the number of vertices
in each direction varies in the data used in our models. A fixed number of elements or vertices in
each direction would be a lot easier to predict. Our models are able to predict different numbers
of vertices in each direction, which is a property that we want to have in the models. By including
the number of elements in the network and using many different values we could have a slider in
the final Grasshopper component that decides the density of the final mesh. If the slider was close
to zero the mesh would be coarse, or dense if the slider var set to one. Including this variable of
elements would be fairly simple and a realistic change to our networks without having to change
the network architecture a lot.

The methods developed for predicting the location of mesh vertices clearly perform well inside
the accuracy needed to create a regularly shaped element with high performance. For further
development, it is clear that Unet should be used in 2D, while the encoder + fully connected
network is the best option in three dimensions. The method developed is also transferable to more
complex geometry as long as it is possible to create adequate meshes for training the model. In
the case of more complex geometry, we need more points to describe the boundary of the object,
but the method is the same.

Finite Element Analysis

It is clear from the results in Section 5.7.3 that the current stress predictions are within an ac-
ceptable range of the results from the FEA. The displacement predictions deviate to much from
the FEA results, improving this would be a priority in future development. This could be done
by either improving the network, or redefine the data that defines the problem. Improving an al-
gorithm like this takes a lot of time, since it is mostly a case of trial and error. Different network
architectures could be applied, or the features could be sent in to the network in a different way.

The case investigated in Section 5.7 is a simplified version with deterministic geometry. As men-
tioned in Section 5.7.1, the algorithm for creating data already has the ability to create datasets
with randomized geometry. In addition, the height and width of the beams could be randomized.
This would make the ML model applicable to a larger range of geometries.

114

6.1 Discussion

In addition, in its current state, the ML model has all vertices of the meshed geometry as input fea-
tures. This means that to make a prediction on a new case, it has to be meshed before it can be sent
into the ML model. Since all beams are rotated and scaled to the same scale, the input coordinates
could be replaced by a standardized grid that represents these coordinates rotated to the x-axis and
scaled. With input features that represent the geometry of all the beams, this standardized grid
could be rotated and scaled up to correspond to the meshed geometry. By implementing this, the
only input features needed would be vectors, height and width, to represent the beams, and the
forces applied.

6.1.3 Rotational stiffness

The calculation of rotational stiffness in Grasshopper creates the opportunity to analyze a whole
grid, as the one shown in Figure 6.1. Analyzing such a grid of connections, would further showcase
the benefits of FEA with higher-order solid elements. With the current FEM software available in
Grasshopper, such an analysis would prove difficult, and it is this gap that we would fill by intro-
ducing FEA with higher-order solid elements. The rotational stiffness of each connection in the
grid would be different, since the stiffness depends on the rotation of the beams and the moment;
see Equation 2.38. This means that to calculate the entire grid, a quick method of calculating the
stiffness is needed.

Figure 6.1: An example grid created in Grasshopper

From the calculations in Section 5.8.1, the method applied in Grasshopper is close enough to
the Eurocode approach in Robot. Furthermore, the ML approach shows positive results. This
means that rotational stiffness could be implemented in the whole ML model to predict stress and
displacement. By either first predicting the stiffness and then predicting stress and displacement, or
making a full model for everything. With this, a full grid could be analyzed with an ML approach,
which would be a lot quicker than a more traditional method.

115

6.2 Conclusion

6.2 Conclusion

What are the possibilities and issues of Finite Element Analysis with solid elements in an
Algorithms Aided Design environment?

Can parts of, or the whole, Finite Element Analysis be replaced by machine learning?

The first two case studies illustrate the usage of the FEM plugins developed for Grasshopper and
the benefits of implementing the FEA in an AAD environment. One of the greatest benefits of
using an AAD environment is to make the design process more dynamic with the possibility to
make rapid changes to the design. With the FEM plugins developed in this thesis, we are increasing
the value of the AAD process by adding an important element, real-time FEA with solid elements.
By implementing elements with higher-order shape function in the FEM solver, we are able to
achieve better accuracy of the stress field for designs with complex geometry and connections,
especially in load cases with bending. This can be seen in the case studies, where the FEM solver
performs accurately in comparison to Abaqus.

One of the most challenging parts of the FEA in an AAD environment is to create an adequate
mesh for complex geometry. To solve this issue, we have investigated the possibility of applying
ML to this part of the analysis. In this thesis, we have solved one of the most difficult aspects of
the meshing process, predicting the location of mesh vertices of an object. The method developed
for predicting mesh vertices can be transferred to a more complex geometry than presented in
this thesis. There is still some work to be done to get a complete meshing algorithm, but we are
confident when we say that the meshing part of the FEA can be replaced by ML.

To highlight the benefits of our work: It would be faster to perform an FEA on a conceptual model
created in Grasshopper with our FEM solver than to analyze the same model in Abaqus, by either
exporting the model from Grasshopper or recreating the geometry in Abaqus. That being said, our
FEM solver is not as fast as the Abaqus solver on the actual analysis. To improve the calculation
time of the solver in Grasshopper, it would need to be optimized further. Another solution to this
issue is to create an ML model that performs the entire FEA. This task is investigated in Case
Study 5 and 6. The results are promising; especially the stress predictions are close to the results
from the FEA.

Additionally, the inclusion of rotational stiffness calculations, both in Grasshopper and predicted
with ML, shows the possibilities of analyzing more complex structural systems, like the grid in
Figure 6.1, in an AAD environment.

Implementation of a FEM solver with solid elements in an AAD environment improves the pro-
cess of creating conceptual designs, that are both aesthetically pleasing and structurally sound.
Furthermore, it is clear that ML can improve this analysis, by improving the mesh generation for
complex geometry and reducing the computational time.

116

BIBLIOGRAPHY

Bibliography

Alexis Papagiannopoulos, P. C. & Avellan, F. (2020). How to teach neural networks to mesh:
Applications on 2-d simplicial contours. Retrieved 22nd May 2022, from https://www.
journals.elxevier.com/neural-networks

Autodesk. (n.d.). Robot structural analysis. Retrieved 25th May 2022, from https : / / www .
autodesk .no/products/ robot - structural - analysis/overview?term=1- YEAR&tab=
subscription

Bathe, K.-J. (2014). Finite element procedures. Klaus-Jürgen Bathe.
Bell, K. (2013). An engineering approach to finite element analysis of linear structural mechanics

problems. Fagbokforlaget.
Bharath Ramsundar, R. B. Z. (2018). Tensorflow for deep learning. O’Reilly Media, Inc.
Biewald, L. (2020). Experiment tracking with weights and biases [Software available from wandb.com].

https://www.wandb.com/
Brenner, S. C. (1960). Mathematics of computation. American Mathematical Society.
Company, S. T. (n.d.). Abaqus’. Retrieved 25th May 2022, from https://www.simuleon.com/

simulia-abaqus/
Csparse. (n.d.). Retrieved 4th June 2022, from https://github.com/ibayer/CSparse
ECCS, E. C. f. C. S. (2016). Design of connections in steel and composite structures – eurocode 3

– design of steel structures. part 1–8 design of joints. Ernst & Sohn.
Eikeland, P. T. (2001). Teoretisk analyse av byggeprosesser. http://v1.prosjektnorge.no/files/

pages/362/samspillet-i-byggeprosessen-eikeland.pdf
Eurocode 3: Design of steel structures - part 1-8: Design of joints. (2009). British Standards

Institution.
Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep learning [http://www.deeplearningbook.

org]. MIT Press.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,

Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk,
M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., . . . Oliphant, T. E.
(2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/
10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science & Engineer-
ing, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Joints in steel construction moment connections. (1995). The Steel Construction Institute.
Kaiming He, S. R., Xiangyu Zhang & Sun, J. (2015). Deep residual learning for image recogni-

tion. Retrieved 3rd June 2022, from https://arxiv.org/pdf/1512.03385.pdf
Math.net numerics. (n.d.). Retrieved 4th June 2022, from https://numerics.mathdotnet.com/
McNeel, R. (2022). Rhino 3d. Retrieved 25th May 2022, from https://www.rhino3d.com/
Microsoft. (2022a). Visual studio 2022. Retrieved 25th May 2022, from https ://visualstudio .

microsoft.com/vs/
Microsoft. (2022b). Visual studio code. Retrieved 25th May 2022, from https://code.visualstudio.

com/
Mitchell, T. M. (1997). Machine learning. MacGraw-Hill.

117

https://www.journals.elxevier.com/neural-networks
https://www.journals.elxevier.com/neural-networks
https://www.autodesk.no/products/robot-structural-analysis/overview?term=1-YEAR&tab=subscription
https://www.autodesk.no/products/robot-structural-analysis/overview?term=1-YEAR&tab=subscription
https://www.autodesk.no/products/robot-structural-analysis/overview?term=1-YEAR&tab=subscription
https://www.wandb.com/
https://www.simuleon.com/simulia-abaqus/
https://www.simuleon.com/simulia-abaqus/
https://github.com/ibayer/CSparse
http://v1.prosjektnorge.no/files/pages/362/samspillet-i-byggeprosessen-eikeland.pdf
http://v1.prosjektnorge.no/files/pages/362/samspillet-i-byggeprosessen-eikeland.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://arxiv.org/pdf/1512.03385.pdf
https://numerics.mathdotnet.com/
https://www.rhino3d.com/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/

BIBLIOGRAPHY

Prakhar. (2020). Intuition of adam optimizer. Retrieved 20th May 2022, from https : / /www .
geeksforgeeks.org/intuition-of-adam-optimizer/

Preisinger, C. (2013). Linking structure and parametric geometry. Architectural Design, 83(2),
110–113. https://doi.org/10.1002/ad.1564.

Schlömer, N. (2020). Pygmsh’. Retrieved 22nd May 2022, from https://pygmsh.readthedocs.io/
en/latest/index.htmls

Stanford. (2022). Convolutional neural networks (cnns / convnets) [online course, stanford Uni-
versity]. https://cs231n.github.io/convolutional-networks/

Sullivan, B. & Kaszynski, A. (2019). PyVista: 3D plotting and mesh analysis through a streamlined
interface for the Visualization Toolkit (VTK). Journal of Open Source Software, 4(37),
1450. https://doi.org/10.21105/joss.01450

Team, G. L. (2020). Introduction to relu activation function. Retrieved 20th May 2022, from https:
//www.mygreatlearning.com/blog/relu-activation-function/

Xifeng Gao, M. T., Wenzel Jakob & Panozzo, D. (2017). Robust hex-dominant mesh generation
using field-guided polyhedral agglomeration. Retrieved 29th May 2022, from https://
cims.nyu.edu/gcl/papers/Robust-Meshes-2017.pdf

Zienkiewicz, O. C. & Taylor, R. L. (2000). The finite element method, volume 1, the basis. Butterworth-
Heinemann.

118

https://www.geeksforgeeks.org/intuition-of-adam-optimizer/
https://www.geeksforgeeks.org/intuition-of-adam-optimizer/
https://doi.org/10.1002/ad.1564.
https://pygmsh.readthedocs.io/en/latest/index.htmls
https://pygmsh.readthedocs.io/en/latest/index.htmls
https://cs231n.github.io/convolutional-networks/
https://doi.org/10.21105/joss.01450
https://www.mygreatlearning.com/blog/relu-activation-function/
https://www.mygreatlearning.com/blog/relu-activation-function/
https://cims.nyu.edu/gcl/papers/Robust-Meshes-2017.pdf
https://cims.nyu.edu/gcl/papers/Robust-Meshes-2017.pdf

Appendices

A GitHub Repositories

Project Link
Simple FEM Solver, Hex8 github.com/Bragela/SolidFEM_BrickElement.git

SolidFEM, Hex20 github.com/Bragela/SolidFEM_20_node_hex.git

Fully connected NN, 2D github.com/Isakflobodal/FullyConnectedNN_2dMesh.git

Unet, 2D github.com/Isakflobodal/Unet_2dMesh.git

Fully connected NN, 3D github.com/Isakflobodal/FullyConnectedNN_3dMesh.git

Encoder + Fully connected NN, 3D github.com/Isakflobodal/Encoder-FullyConnectedNN_3dMesh.git

FEA pred, cantilever, ML github.com/Bragela/FEM_cantilever.git

FEA pred, connection, ML github.com/Bragela/FEM_connection.git

Rotational Stiffness pred, ML github.com/AleksElm/RotStiff_ML.git

Table A.1: GitHub Repositories

119

https://github.com/Bragela/SolidFEM_BrickElement.git
https://github.com/Bragela/SolidFEM_20_node_hex.git
https://github.com/Isakflobodal/FullyConnectedNN_2dMesh.git
https://github.com/Isakflobodal/Unet_2dMesh.git
https://github.com/Isakflobodal/FullyConnectedNN_3dMesh.git
https://github.com/Isakflobodal/Encoder-FullyConnectedNN_3dMesh.git
https://github.com/Bragela/FEM_cantilever.git
https://github.com/Bragela/FEM_connection.git
https://github.com/AleksElm/RotStiff_ML.git

B Videos

Filename Description of video and link
Simple_FEM_Solver_gh.MP4 This video showcases Case Study 1, with the use of the

Simple FEM Solver in Grasshopper.
- Link: youtu.be/uARz1IRsHSY

SolidFEM_gh.MP4 This video showcases Case Study 2, for the arch beam,
with the use of the SolidFEM in Grasshopper.
- Link: youtu.be/os2tD25sbWM

pygmsh_continuity.MP4 This video illustrates discontinuity between the contour
and the mesh when using the Pygmsh package.
- Link: youtu.be/3Sv89Rf17Ak

pyvista_continuity.MP4 This video illustrates a continuous contour and mesh re-
lationship. Here the the Pyvista package is used.
- Link: youtu.be/jEQoJ6Wyiww

3D_DF_training.MP4 This video illustrates the development of the DF during
training for the encoder + fully connected neural network
in Case Study 4.
- Link: youtu.be/Uxp_MF8D1oE

Table B.1: Videos with description and link to youtube

120

https://youtu.be/uARz1IRsHSY
https://youtu.be/os2tD25sbWM
https://youtu.be/3Sv89Rf17Ak
https://youtu.be/jEQoJ6Wyiww
https://youtu.be/Uxp_MF8D1oE

Structural Analysis in Algorithm
s Aided D

esign
Aakre, Bødal, Elm

er

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

Aleksander Hatlestad Elmer
Brage Lund Aakre
Isak Flo Bødal

Exploring Finite Element Analysis
with Higher-order Solid Elements in
Algorithms Aided Design and
Optimization with Help of Machine
Learning

Master’s thesis in Civil and Environmental Engineering
Supervisor: Associate Professor Marcin Luczkowski
Co-supervisor: Dr. techn. Konstantinos Gavriil
June 2022

M
as

te
r’s

 th
es

is

	Preface
	Abstract
	Sammendrag
	Glossary
	Introduction
	Background
	Research Question
	Structure of the Thesis

	Theory
	Finite Element Method
	Machine Learning
	Rotational Stiffness in Structural Connections

	Software
	AAD Software
	FEM Software
	Programming Software

	Methods
	Simple FEM Solver Plugin with 8-node Hex Element
	SolidFEM Plugin with 20-node Hex Element
	Machine Learning

	Case Studies
	Case study 1: Verification of the Simple FEM Solver plugin
	Case study 2: Verification of the SolidFEM plugin with 20-node elements
	Introduction to Meshing with Machine Learning
	Case Study 3: 2D Meshing with Machine Learning
	Case Study 4: 3D Meshing with Machine Learning
	Case Study 5: FEA of Cantilever Beam with ML
	Case Study 6: FEA of a Simple Steel Connection with ML
	Case Study 7: Rotational Stiffness of Beam-to-Column Connections with ML

	Discussion/Conclusion
	Discussion
	Conclusion

	Bibliography
	Appendices
	GitHub Repositories
	Videos

