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Abstract: Environmental constraints in hydropower systems serve to ensure sustainable use of water resources. Through accurate treatment
in hydropower scheduling, one seeks to respect such constraints in the planning phase while optimizing the utilization of hydropower.
However, many environmental constraints introduce state-dependencies and even nonconvexities to the scheduling problem, making them
challenging to represent in stochastic hydropower scheduling models. This paper describes how the state-dependent maximum discharge
constraint, which is widely enforced in the Norwegian hydropower system, can be embedded within the stochastic dual dynamic program-
ming (SDDP) algorithm for hydropower scheduling without compromising computational time. In this work, a combination of constraint
relaxation and time-dependent auxiliary lower reservoir volume bounds is applied, and the modeling is verified through computational experi-
ments on two different systems. The results demonstrate that the addition of an auxiliary lower bound on reservoir volume has significant
potential for improved system operation, and that a bound based on the minimum accumulated inflow in the constraint period is the most
efficient.DOI: 10.1061/(ASCE)WR.1943-5452.0001609. This work is made available under the terms of the Creative Commons Attribution
4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

Hydropower is a dominant generation technology in the Nordic
power system, accounting for 143 TWh=year or 96% of the total
power production in Norway in 2017 (Statistisk Sentralbyrå). In
the future, the Nordic power system will have tighter connections
with Europe and an increasing proportion of intermittent renewable
generation from, for example, wind and solar power. Rapid and
unpredictable fluctuations in intermittent generation will offer new
possibilities for controllable generation, such as regulated hydro-
power, to be able to respond to these fluctuations.

In symphony with the ongoing power market changes, the
physical and environmental requirements associated with hydro-
power operation are changing, through proposed revisions of
hydropower concessions and the implementation of EU Water
Framework Directive, for example. The directive strives to ensure
sustainable use of water resources, balancing the multiple uses such
as water hydropower, irrigation, water supply, flood control, and
recreation (European Commission). Consequently, hydropower
producers need to both adjust their operational schedules according
to the new price patterns seen in the market and at the same time
relate to new operational constraints. In this context, the hydro-
power producers need scheduling models that represent physical
and environmental constraints in a precise and consistent manner.

Operational planning (or scheduling) models have been widely
used by Nordic hydropower producers for several decades. Meth-
ods and models for hydropower scheduling have been developed
along different methodological tracks, as documented in the re-
views in (Labadie 2004; de Queiroz 2016; Macian-Sorribes and
Pulido-Velazquez 2020; Pérez-Díaz et al. 2021; Giuliani et al.
2021) and benchmarked in Côté and Leconte (2015). The early
works on scheduling of hydropower reservoirs used the principles
of stochastic dynamic programming (SDP) (see Stage and Larsson
1961). SDP decomposes the multistage planning problem into a
sequence of single-stage subproblems that can be solved by back-
ward induction (Tejada-Guibert et al. 1995; Kim and Palmer 1997;
Nandalal and Bogardi 2007). SDP algorithms are still widely
applied and have mild requirements to system representation
(Giuliani et al. 2021), allowing representation nonconvexities.
Variants of the SDP model, such as sampling stochastic dynamic
programming (SSDP) (Kelman et al. 1990; Côté and Arsenault
2019) and robust stochastic dynamic programming (RSDP) (Kim
et al. 2021) has extended the applicability of this type of algorithm.
However, because state variables need to be discretized in the SDP
algorithm, it suffers from the “curse of dimensionality,” leading to
computationally intractable problems when considering systems
with a large number of state variables. The stochastic dual dynamic
programming (SDDP) introduced in Pereira and Pinto (1991) al-
lows solving the scheduling problem without discretizing the state
variables, and is therefore computationally tractable for systems
with multiple reservoirs. The SDDP algorithm can be classified
as a sampling-based variant of multistage Benders decomposition
method (Birge and Louveaux 2011), requiring a convex problem
formulation, and is normally solved by using linear programming
(LP). Extensions of the SDDP algorithm have been frequently re-
ported in recent literature (see Rebennack 2016; Poorsepahy-
Samian et al. 2016; Helseth et al. 2016; Street et al. 2017; Zou
et al. 2018). The SDDP algorithm is currently the most widely used
method for medium-term hydropower scheduling in the Nordic
market (Helseth et al. 2018). In the Nordic context, medium-term
scheduling refers to the process of computing strategies for local
or regional hydropower resources providing a long-term price
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forecast. In particular, the extended algorithm to incorporate
uncertainty in power price presented in Gjelsvik et al. (1999)
has become popular and is implemented in the software ProdRisk
(SINTEF 2022).

Environmental constraints in water resources systems come in
many flavors, depending physical and legislative conditions. The
technical literature tend to emphasize on ecologically acceptable
flows, in terms of magnitude and rate of change (Pérez-Díaz and
Wilhelmi 2010; Chakrabarti et al. 2011; Olivares et al. 2015;
Guisandez et al. 2016). The impact of minimum flows and maxi-
mum ramping rates certainly limits the flexibility of the hydro
system, but from a modeling point of view these constraints fit well
into algorithms relying on a convex model formulation, such as
SDDP. Other environmental constraints involve state-dependencies,
which are not easily treated in the SDDP algorithm, as reported in
Pereira-Bonvallet et al. (2016) and Helseth et al. (2020), and recently
reviewed in Schäffer et al. (2020). The main complicating factor is
the nonconvexities associated with such constraints. Ideally, the
assessment of nonconvex environmental constraints within hydro-
power scheduling models should be performed using methodolo-
gies that allow explicit modeling of the nonconvexities. A recent
reformulation of the SDDP algorithm, known as stochastic dual
dynamic integer programming (SDDiP), has proven convergence
also in the nonconvex case. SDDiP was first presented in Zou
et al. (2018), and has later been applied to hydropower scheduling
in Hjelmeland et al. (2018), and was further tested to deal with
state-dependent discharge constraints in Helseth et al. (2020).
Although the numerical results were promising, the computation
times of the SDDiP method are prohibitive, and it is therefore fair
to claim that the algorithm is not generally suited for operational
use in its current form. Recent research on the application of SDP
to nonconvex environmental constraints is presented in Schäffer
et al. (2022).

This work concerns the widely applied SDDP algorithm, and
investigates different approaches for representing a particular type
of environmental constraint that comes in many flavors in hydro-
power systems, namely the state-dependent maximum discharge. In
particular, this work emphasizes on cases where the maximum dis-
charge capacity depends on the reservoir level. There are numerous
examples of this type of constraint in the Norwegian and Swedish
hydropower systems, and two such cases from Norway are pre-
sented in the “Computational Experiments” section. This type of
constraint is commonly motivated by the reservoir’s abilities to
serve recreational purposes (tourism, lodging, fishing, canoeing,
etc.) in the summer season.

This paper elaborates on how the formulation of this constraint
can be approximated in the SDDP algorithm in a transparent man-
ner and without compromising computation time. A problem relax-
ation supported by a time-dependent auxiliary lower reservoir
volume bound is proposed, and the performance of this approach
is demonstrated in two separate case studies resembling Norwegian
hydropower systems. When properly defined, the auxiliary reser-
voir bounds serve to tighten the problem relaxation, providing
improved SDDP strategies. Results in terms of water values, simu-
lated reservoir trajectories, and expected profits are presented to
validate our approach. This work contributes with new knowledge
on how to model this type of constraint within SDDP and quantify
its potential impact on scheduling strategies and simulation results.

Model Description

This study assumes a risk-neutral, price-taking hydropower pro-
ducer aiming at maximizing the expected profit from operating

a hydropower system while respecting all physical and legislative
constraints. This is the typical market context for producers in the
liberalized Nordic market. The decision problem can be formulated
as a multistage stochastic optimization problem, where the expect-
ation is typically taken over the stochastic variables’ inflow and
market price. The combined SDP/SDDP algorithm presented in
Gjelsvik et al. (1999, 2010) is currently the most widely applied
algorithm for solving this type of scheduling problem in the Nordic
market. It combines the classical SDDP algorithm described in
Pereira and Pinto (1991) with an outer layer based on SDP to in-
corporate the market price uncertainty.

The model presentation emphasizes on the SDDP part of the
algorithm, assuming a stochastic inflow and a deterministic price
sequence. By treating the price as deterministic, the authors attempt
to clarify the tight relationship between the studied constraint and
the price pattern, without loss of generality. That is, the SDP-part of
the algorithm can be easily added to the model formulation later on.
It is assumed that the probability distributions of the inflow can be
discretized, and that problem can be decomposed into weekly de-
cision stages. Consequently, the realizations of the inflow for an
entire week are known at the beginning of that week. The use of
weekly decision stages is the standard approach when computing
water values for producers in the Nordic market (Gjelsvik et al.
2010; Helseth et al. 2018), and provides a compromise between
computational complexity and accuracy. There are no further time
steps within each decision stage t in the model applied in this work.

For all stages in the planning horizon 1 · · · T a vector Xt is
defined, comprising all decision variables for that stage. Associated
with Xt there is a price vector λt. The overall objective is then to
find an operating strategy to obtain

maxE

�XT
t¼1

λ⊺tXt þ ΦðSTÞ
�

ð1Þ

where E denotes the expectation operator; and ΦðSTÞ the end of
horizon valuation of state variables in ST .

Inflow Model

Inflows to the hydropower reservoirs are considered as uncertain in
Eq. (1) and are represented by a stochastic model explained in the
following. A set of inflow time series Is; s ∈ S are available as a
starting point. Each time series can be associated with one or multi-
ple reservoirs. These values are first normalized to remove seasonal
variation and resemble a weakly stationary process

zst ¼
Ist − μt

σt
ð2Þ

where Ist is the vector of observed inflows for scenario s and stage t;
μt the vector of averageweekly inflows; and σt the vector of standard
deviations. Next, a vector autoregressive inflow model of first order
(VAR-1) is fitted to the normalized inflow according to Eq. (3)

zt ¼ ϕzt−1 þ ϵt ð3Þ

In Eq. (3), the inflow zt is explained by the product of the cor-
relation matrix ϕ and the inflow from the previous stage zt−1 and
residuals ϵt. To make sure that the inflow model always generates
nonnegative inflows to the mathematical model subsequently de-
scribed, a three-parameter lognormal distribution is fitted to the
residuals as outlined in Maceira and Bezerra (1997) and de Matos
and Finardi (2012). For the interested reader, further discussions
on inflow modeling within the SDDP algorithms can be found in
Mbeutcha et al. (2021), and in particular approaches guaranteeing
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nonnegative inflows in Poorsepahy-Samian et al. (2016) and Raso
et al. (2017).

Weekly Stage Problem

In the further model formulation, a watercourse is referred to as a
set of connected hydropower modules h ∈ H. Each module h can
have a set of upstream connected modules Ωh and a downstream
module receiving its discharged water. A power station can be as-
sociated with h where the conversion from discharge to power is
described by a piecewise linear PQ-curve, where water discharge
through the station is modeled using one variable qDhmt per dis-
charge segment m ∈ Mh. These segments will be used in decreas-
ing order according to their discharge efficiency ηhm, assuming that
ηhm decreases with m, as illustrated with three segments in Fig. 1.
A set of decision stages t with no further time steps within each
decision stage is considered. The weekly stage problem for stage
t can be formulated as in Eqs. (4a)–(4j). Symbols related to the
inflow model formulation were previously described

αt ¼ max

�
λt
X
h∈H

pht −
X
h∈H

Cv−ht þ αtþ1

�
ð4aÞ

vht þ
X

m∈Mh

qDhmt þ qSht −
X
u∈Ωh

X
m∈Mu

qDumt − Fsh½σ⊺tϕ�szs;t−1

¼ vh;t−1 þ Fshðσstϵst þ μstÞ ∶πv
h s ¼ sðhÞ; ∀ h ∈ H

ð4bÞ

pht −
X

m∈Mh

ηhmqDhmt ¼ 0 ∀ h ∈ H ð4cÞ

qDhmt − γhtQ̄D
hm ≤ 0 ∀ h ∈ H;m ∈ Mh ð4dÞ

vht þ v−ht − γht ~Vht ≥ 0 ∀ h ∈ H ð4eÞ

Vht ≤ vht þ v−ht ≤ V̄ht ð4fÞ

αtþ1 −
X
h∈H

πv
htcvht −

X
s∈S

½ϕπz
tc�szs;t−1 ≤ βtc þ ðπz

tcÞ⊺ϵt ∀ c ∈ C

ð4gÞ

zs;t−1 ¼ z�s;t−1 ∶ πz
s ∀ s ∈ S ð4hÞ

pht; vht; v−ht; qDhmt; q
S
ht ≥ 0 ð4iÞ

γht ∈ f0; 1g ð4jÞ
where λt is the power price; pht is the power generation; v−ht is a
slack variable for the lower reservoir bound with a marginal cost C;
αtþ1 is the future expected profit; vht is the reservoir volume; qDhmt

is the discharge at PQ-curve segmentm; qSht is the spillage;Ωh is the
set of modules upstream h; Fsh is the scaling factor converting in-
flow from series s to module h; ηhm is the discharge efficiency at the
PQ-curve segment m; Q̄D

hm is the maximum discharge limit for seg-
ment m; γht is a binary variable indicating if the discharge water-
way is open (1) or not (0); Vht and V̄ht are the lower and upper
reservoir volume boundaries; ~Vht is the reservoir threshold; and
πv
htc, π

z
tc, and βc are coefficients for Benders cut c. The notation

½σ⊺tϕ�s is used to indicate the s element of the vector resulting from
the multiplication within the brackets [ ]. Dual values πv

h and π
z
s are

obtained from Eqs. (4b) and (4h) and further applied in the SDDP
algorithm as subsequently described.

The objective in Eq. (4a) is to maximize profit from selling
power, subtracted the cost of violating the reservoir boundary in
Eq. (4f). Temporal discounting for time preference is not consid-
ered in this work. The variables (left-hand side) are separated from
the parameters (right-hand side) in each constraint and the matrix
notation is adapted to highlight the presence of the inflow state var-
iable. With this setup, it is easier to see how constraints are being
updated before re-solving (“warm starting”) the stage problem.
Reservoir balances are stated in Eq. (4b) where the normalized in-
flow state zt−1 is transformed back to physical inflow, according to
Eqs. (2) and (3). Production functions are described in Eq. (4c).
Eqs. (4d) and (4e) control the environmental constraint, saying that
discharge is not allowed if reservoir volume is lower than a prede-
fined threshold volume ~Vht. If vht reaches the threshold ~Vht, the
binary variable γht can be “switched on” to allow discharge qDhmt

according to the maximum discharge boundary Q̄D
hm per discharge

segment m in Eq. (4d), as illustrated in Fig. 1.
Benders cuts are given in Eq. (4g), constraining the future ex-

pected profit. Although the copy constraints in Eq. (4h) are not an
active part of the optimization problem, it is included here for ease
of computing the dual value πz

s ¼ ð∂αtÞ=ð∂zs;t−1Þ. All variables are
nonnegative except αt. The slack variables v−ht are penalized with a
cost C ensuring that they are only used if unavoidable, as will be
further discussed in this paper.

The presence of the binary variable γht makes the problem in
Eqs. (4a)–(4j) a mixed integer linear programming (MIP) problem.

Fig. 1. (Color) Illustration of a hydropower module comprising a
reservoir and a power station, with mathematical symbols.
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If γht is relaxed so that so that γht ∈ ½0; 1�, the problem of
Eqs. (4a)–(4j) becomes an LP problem. This is a convex relaxation
of the original formulation, facilitating the possibility of the SDDP
algorithm to converge at an optimal policy for the relaxed problem
formulation.

Solution Procedure

By relaxing γht the overall optimization problem becomes convex
and can be solved by SDDP, as discussed and illustrated in this
section. The overall problem is decomposed into LP stage problems
defined by Eqs. (4a)–(4j), for each week and with given values of
inflows. The stage problems are solved repeatedly in the SDDP
algorithm and the reservoir balances in Eq. (4b) and Benders cuts
in Eq. (4g) are updated according to changes in state variables. An
SDDP iteration comprises a forward simulation and a backward
recursion as subsequently described.

Forward simulation: First, a sequence of inflow scenarios n ¼
1; : : : ;N covering the period of analysis from t ¼ 1; : : : ;T are
computed by randomly sampling residuals from the fitted three-
parameter lognormal distribution and by use of Eq. (3). Sub-
sequently, the weekly stage problem of Eqs. (4a)–(4j) is solved
for each stage t along the simulated scenario i, and results are
collected and state variables are updated for the next stage. The
simulated state at the end of the stage is used as the initial state for
the next stage. The forward simulation provides an updated set of
state trajectories, as illustrated by following the black (thicker) lines
and black dots in Fig. 2 forward in time for each scenario sample i.
The forward simulation is used to obtain an upper bound Jþ in
Eq. (5) representing the first stage profit plus the future expected
profit seen from the first stage, and the lower bound J− in Eq. (6)
representing the expected simulated profit

Jþ ¼
X
h∈H

ðλ1ph1 − Cv−h1Þ þ α1 ð5Þ

J− ¼ 1

I

XT
t¼1

XI

i¼1

X
h∈H

ðλtpiht − Cv−ihtÞ ð6Þ

Backward recursion: For each state trajectory obtained in the
previous forward iteration, one starts from the state at the end
of week T − 1, and for each of the K sampled inflow realizations,

often referred to as backward openings and illustrated by the
white dots in Fig. 2, one computes the optimal operation for
week T. From the solution of each of the K stage problems of
Eqs. (4a)–(4j), contributions to cut coefficients are gathered as
the dual values πv

h from Eq. (4b) and πz
s from Eq. (4h), and the

right-hand side βct ¼ α�
t −P

h∈Hπv
hv

�
h;t−1 −

P
s∈Sπz

sz�s;t−1. These
cut contributions are later averaged over all inflow samples to form
a Benders cut of type Eq. (4g). Thus, inflow realizations in a week
T for scenario sample i1 are used to construct one cut for stage
T − 1, illustrated by the red horizontal line in Fig. 2. The residual
vector ϵt ¼ ½ϵt1; : : : ; ϵtK � should be state independent, and thus, ϵt
is uncorrelated from stage to stage. Therefore, the cut constructed
for scenario i1 and for stage T − 1 will be valid for all the other
scenarios at stage T − 1, as illustrated by the red arrows and dashed
horizontal lines in Fig. 2. This is often referred to as cut sharing
(Infanger and Morton 1996) and is of crucial importance for the
convergence characteristics of the SDDP algorithm. One then re-
peats the procedure for week T − 1, and so on, to obtain an updated
operating strategy.

Convergence can be declared when the upper bound is inside
the confidence interval of the expected simulated profit or when
the upper bound stabilizes (Shapiro 2011). If this condition fails,
new sample points are added and another backward recursion is
performed to refine the approximation at each time step. More
details on the theory and applications behind the SDDP method and
its convergence can be found in Tilmant and Kelman (2007) and
Homem-de-Mello et al. (2011).

Relaxation

This section presents a discussion on how the environmental con-
straint controlled by Eqs. (4d), (4e), and (4j) can best be approxi-
mated to meet the convexity requirement of the SDDP algorithm
without compromising the computational performance. In the
“Enhanced Relaxation” section, it is elaborated on that the use of
an auxiliary lower reservoir volume bound can be included to
improve the approximation.

Standard Relaxation

The relationships between the upper boundary (γQ̄D) applied to
qD in Eq. (4d) and variables γ and v are shown in Figs. 3(a and b),
respectively. From this figure, the discontinuity introduced in
Eq. (4e) becomes apparent.

The dots in Figs. 3(a and b) indicate positions where γ takes
the value 0 or 1. If one restricts the solution space to binary values
of γ, the upper boundary on qD follow the solid drawn line in the
two figures. That is, γQ̄D equals Q̄D when γ ¼ 1 and 0 when
γ ¼ 0, and γ can only be 1 when v ≥ ~V. If one relaxes γ to a con-
tinuous variable, the solution space is relaxed as shown with the
dashed black lines in Figs. 3(a and b). The upper boundary on
discharge gradually increases with an increasing γ [Fig. 3(a)], and
a nonzero γ is allowed whenever v > 0.

Enhanced Relaxation

In many practical applications of such constraints, the threshold ~V
corresponds to a relatively high reservoir level that forms a target
level in the summer season, and consequently the relaxation dis-
cussed so far is not a tight approximation of the original formu-
lation. It may seem intuitive and tempting to tighten the relaxed
constraint Eq. (4e) by linearizing from the initial volume vh;t−1
as shown in Eq. (7)

Fig. 2. (Color) Illustration of a main iteration in the SDDP algorithm.
Circles indicate system states, and branches correspond to realizations
of stochastic variables.
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vht þ v−ht − γhtð ~Vht − vh;t−1Þ ≥ vh;t−1 ∀ h ∈ H ð7Þ

Because vh;t−1 is a state variable, this would leave us with an
expression comprising the product of the two variables γht and
vh;t−1, which would violate the convexity requirement of the SDDP
algorithm. The bilinear term (γhtvh;t−1) in Eq. (7) can, for example,
be approximated using McCormick envelopes (Cerisola et al.
2012). However, it can be shown that such approximation of
Eq. (7) leaves us with the challenge of finding a tight and valid
time-dependent lower bound estimate on vh;t−1. This lower bound
estimate is referred to as an auxiliary and time-dependent lower
reservoir volume boundary denoted as V�

h;t−1 in the following.
Reformulating Eq. (7) gives

vht þ v−ht − γhtð ~Vht − V�
h;t−1Þ ≥ V�

h;t−1 ∀ h ∈ H ð8Þ

If V�
h;t−1 for the reservoir volume is defined, the linearization

could start from these limits [and not vh;t−1 ¼ 0, as in Eq. (4e)]
to provide a tighter relaxation. This is illustrated with the stapled
red line in Fig. 3(b), and implies changing Eqs. (4e)–(8). Note that
with γht ¼ 0 in Eq. (8), V�

h;t−1 becomes a lower bound on reservoir
volume. The challenge is then to define the parameters V�

h;t−1 to
be used with Eq. (8) that allows the tightest possible relaxation

of Eqs. (4a)–(4j) without compromising the SDDP convexity
requirement.

Due to the cut sharing property of the SDDP algorithm, cuts
should be valid for a wide range of values of the state variables
vh;t−1. Typically, this range becomes narrower with an increasing
number of SDDP iterations. However, to facilitate cut sharing, the
parameters V�

h;t−1 cannot be adjusted dynamically. Moreover, the
auxiliary lower bound should be low enough to avoid constraining
system operation more than necessary, because this would conflict
with the purpose of the environmental constraint. Because inflow is
uncertain, situations where the slack variable v−ht needs to be acti-
vated at marginal cost C may occur, directly impacting the strate-
gies (cut parameters). Thus, any V�

h;t−1 > 0 should be carefully
evaluated because it potentially impacts the water values according
to the penalty C, providing an overly strong incentive to store water.
From this discussion the authors recommend that the auxiliary and
time-dependent lower reservoir volume bounds V�

h;t−1 are defined
prior to running the SDDP model and that the procedure for defin-
ing these parameters is transparent.

The authors suggest basing the parameter V�
h;t−1 on the mini-

mum accumulated inflow, starting from the first week of the
environmental constraint. Fig. 4 shows the development of
minðV�

h;t−1; ~VtÞ in the constraint periods (weeks 18–35 and 18–48)

(a) (b)

Fig. 3. (Color) Upper bound on qD as function of (a) γ; and (b) v.
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for the two systems described in “Computational Experiments,”
where V�

h;t−1 is represented by the minimum (red curve) and aver-
age (gray curve) accumulated inflow. The inflow time series from
which the minimum and average values are found comprise large
(10,000) sets of scenarios sampled from the inflow model previ-
ously described prior to running the actual SDDP model. If one
lets V�

h;t−1 follow the minimum accumulated inflow (colored red
in Fig. 4), the volume trajectories considered both in the forward
simulation and backward recursion should be able to meet this aux-
iliary lower bound in the vast majority of encountered states. Thus,
the replacement of Eq. (4e) with Eq. (8) will improve the SDDP
strategies. If V�

h;t−1 follows a higher trajectory, such as the average
accumulated inflow (colored gray in Fig. 4), the problem formu-
lation will be further constrained. This may provide better approxi-
mation of the environmental constraint, but may also lead to overly
conservative strategies, as discussed further in “Computational
Experiments.”

Finally, it should be noted that a tighter relaxation will be
possible for other types of scheduling models that do not rely
on the cut sharing property, such as scenario-based approaches
(Helseth et al. 2018) or multistage Benders decomposition (Diniz
et al. 2018).

Computational Experiments

Computational Setup and Organization

A computer model was established implementing the aforemen-
tioned SDDP algorithm. The model was used to obtain and verify
strategies (cuts) obtained using the different approximations previ-
ously outlined for two Norwegian cascaded hydropower systems.
The environmental regulation differs in the two systems, exempli-
fying flavors of the regulation regime.

A scheduling horizon of 3 years was applied with weekly de-
cision stages. For each of the watercourses an initial reservoir vol-
ume equal to 50% of the maximum reservoir volume was assumed.
Inflow models were fitted for both systems using the corresponding
inflow time series comprising 62 historical years. A total of 100
inflow scenarios were re-sampled in each forward iteration, and
12 backward openings were used at each stage in the backward
iterations of the algorithm.

Before applying the aforementioned fitted statistical model in
the SDDP model, it was compared against the historical observa-
tions. Results from this comparison for the inflow series used in
System 1 are shown in Fig. 5. The black lines are the 0 and
100 percentiles (dashed) and the mean (solid drawn) obtained
when sampling 10,000 time sequences of one year from the stat-
istical model. The blue lines are the 0 and 100 percentiles (dashed)
and the mean (solid drawn) obtained from the historical data. The
statistical model avoids negative values which is an important
point in the experiments. Moreover, it provides the correct mean
value and a good fit for the 0 percentile. Extremal inflow values
are not captured that well. In summary, we find that the stochastic
inflow model serves its purpose but has potential for improve-
ments with respect to capturing the extremal (wet) values.

The model was run with two deterministic price scenarios
according to the weekly average NordPool system prices for
the years 2018 and 2020 (Nord Pool), shown in Fig. 6, each of
them repeated over the scheduling horizon. Possible correlations
between inflow and market prices are neglected in the computa-
tional experiments. The model parameter C was tuned accord-
ing to the maximum price level to avoid the use of v−ht while
producing.

For each price scenario, four cases were run:
1. Reference (REF) using the formulation Eqs. (4a)–(4j) setting

γht ¼ 1 in Eq. (4d) and γht ¼ 0 in Eq. (4e) (i.e., ignoring the
environmental constraint).

2. Standard Relaxation (SLIN) using the formulation Eqs. (4a)–(4j)
with γht ∈ ½0; 1�.

3. Enhanced Relaxation Minimum (ELIN-MIN) using the formu-
lation Eqs. (4a)–(4j) with γht ∈ ½0; 1�, and replacing Eq. (4e)
with Eq. (8). V�

ht is set equal to the minimum accumulated
inflow, obtained from a set of 10,000 sampled scenarios from
the SDDP inflow model.

4. Enhanced Relaxation Average (ELIN-MED) with similar math-
ematical modeling as ELIN-MIN, but with V�

ht set equal to the
average accumulated inflow, obtained from the same sampled
scenarios as in ELIN-MIN.
The sequence of model runs to prepare results for each of the

two considered systems is subsequently explained. For both price
scenarios and for all four cases, the SDDP model was run to obtain
strategies [cuts of type Eq. (4g)] for each of them. Recall that the
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Fig. 5. (Color) Comparing statistical inflow model against observa-
tions for System 1.
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SDDP model is an optimization model based on LP where the non-
convex environmental constraints are relaxed. Then, for both price
scenarios and for each of the four cases, system operation was si-
mulated by using the respective cuts from the SDDP runs. In the
simulations a fixed set of 4,000 out of sample inflow scenarios were
applied. For each inflow scenario and for each week in the sched-
uling horizon, the system simulation solved the MIP problem de-
scribed by Eqs. (4a)–(4j). Thus, the four different SDDP strategies
were tested using a common and presampled set of scenarios and a
common simulation model.

The SDDP and simulation models were implemented in Julia,
using the JuMP package (Dunning et al. 2017) and CPLEX 12.10
solver for solution of the optimization problems. All tests were
carried out on an Intel Core i7-9850H processor with maximum
frequency of 4.60 GHz and 64 GB RAM. Parallel processing
was not applied.

The stabilization of the upper bound was used as the conver-
gence criterion for the SDDP model. As discussed in Shapiro
(2011), the stabilization of the lower (for minimization problem)

bound indicates that further runs of the algorithm do not signifi-
cantly improve the constructed policy, and may serve as a practical
convergence criterion.

System 1–Description and Results

The first system description resembles the Bergsdalen watercourse
located in the western part of Norway. An illustration of the
topology and specification of some technical characteristics is pro-
vided in Fig. 7. For each reservoir shown in the figure the average
annual inflow and the storage capacity are stated, both in mm3.
Each power plant is identified with its installed capacity in MW.
An environmental constraint is associated with reservoir 2, stating
that no water should be discharged from the reservoir in between
weeks 18 to 35 if the reservoir volume is lower than 145 mm3.

Strategy from SDDP Runs

Fig. 8 shows the convergence process for both price scenarios and
for each of the four cases, comparing the upper bounds on expected
profit as defined in Eq. (5) for the first 80 iterations. The total
computation time was approximately 90 minutes for all three cases
with the environmental constraint, while case REF was 10% faster.
Consequently, the different treatments of Eq. (8) do not imply
notable differences in computational complexity. As expected, the
converged upper bounds are lowest for the most constrained cases.
Recall that case REF does not respect the environmental constraint
and thus provides a too optimistic expectation of the future profit.
The reduced expected profit seen in Fig. 8 when gradually tight-
ening the approximation of the environmental constraint can be
seen as the cost of a stricter constraint.

Next, the strategies obtained for reservoir 2 from the four cases
were studied by inspecting their cuts from the SDDP runs. The ex-
pected marginal value of water (water value) at a given stage (week)
and state (reservoir volume) can be found as the coefficients (πv) of
the binding cut for that stage and state. Note that water values pro-
vide important information for the producers regarding the valua-
tion of stored water applied in the shorter-term operational decision
making. Figs. 9 and 10 show the water values for reservoir 2 for
weeks 15 and 30, respectively. These values are plotted as a func-
tion of the volume in reservoir 2, while fixing all other reservoir
volumes to their corresponding expected values. The considered

Fig. 7. Watercourse topology and technical data for System 1.
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Fig. 8. (Color) Upper bound evolution for System 1: (a) price 2018; and (b) price 2020.
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reservoir intervals in the two figures reflect the bands of reservoir
states visited in the final SDDP forward simulations for the week in
question (these bands are shown in Fig. 11 for the case REF). Water
values differ most for 2018 prices, being generally higher and more
sensitive to reservoir volume in the most constrained cases for both
week 15 and 30. As a general note, the differences in water values
for this system indicate that the improved representation of the
environmental constraint will be more important to consider if
one expects the price level to be relatively high in the constraint
period.

Simulation

In this section, the results obtained when simulating operation fol-
lowing the different strategies are discussed. The simulated average
reservoir volume trajectories for reservoir 2 are shown in Figs. 11(a
and b). The 0 and 100 percentiles for the REF case are included in
the figure to indicate the variation. As expected, one observes in

Fig. 11(a) that the tightening of constraint Eq. (8) leads to a higher
simulated average reservoir trajectory, reflecting the importance of
being able to produce at high summer prices. With the low summer
prices for 2020, similar but far less pronounced differences can
be seen.

The expected increases in annual profit compared to the REF
case are shown in Table 1. Relative to the annual profit in the range
of EUR 30–50 million, the increases reported in Table 1 are
modest. However, one should keep in mind that the improvements
can be harvested simply by improving the representation of Eq. (8)
and that producers will often hunt for such marginal improvements
in a competitive market.

In general, increased precision in constraint representation leads
to a higher expected profit. With 2018 prices, the enhanced relax-
ation based on the highest auxiliary lower reservoir volume bound
(ELIN-MED) provides the highest expected profit. For 2020 prices,
the ELIN-MIN strategy is slightly more profitable. Because prices
are lower in the summer season, reservoir levels according to the
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Fig. 9. (Color) Water values as functions of the reservoir in week 15 for reservoir 2. The x-axis reflects the range of simulated system states for each
case: (a) price 2018; and (b) price 2020.
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2020 price scenario are lower as well, due to the reduced incentive
to generate power in this period. As a consequence, the lower res-
ervoir bound applied in ELIN-MED constrains the SDDP strategy
more than what is considered optimal, and thus leading to a lower
simulated profit.

System 2–Description and Results

The second system resembles the main string of the Rjukan water-
course located in a mountainous area in Southern Norway. Note
that the full system comprises two strings and several additional
reservoirs. However, to ease the presentation this study emphasizes
on the string comprising the reservoir with an environmental con-
straint. The topology and technical data for this system are provided
in Fig. 12. The environmental constraint is associated with the
upper reservoir, but is more complicated than in System 1. In the
period between weeks 18 and 48, no discharge should take place if
the reservoir volume is lower than 734 mm3. However, according
to an interpretation of the concession, the reservoir volume avail-
able at the beginning of the constraint period could be discharged
in the constraint period. The water available in week 18 will there-
fore be used differently and have a different value than water arriv-
ing to the reservoir at a later stage. The modeling of this constraint
was facilitated by introducing a “virtual reservoir” (1b) in parallel
with the “physical reservoir” (1), as illustrated in the box in Fig. 12.
Operation of the physical and virtual reservoirs are set to obey the
following rules:
• All inflow to the upper reservoir enters the physical reservoir.
• A separate volume constraint is introduced to ensure that the

sum volume ~v1 ¼ v1 þ v1b does not exceed the maximum
boundary of the physical reservoir.

• The maximum reservoir boundary of the physical reservoir is set
to zero in week 18 to ensure that all water is transferred to the
virtual reservoir when reaching that week.

• The maximum reservoir boundary of the virtual reservoir is set
to zero at the end of week 48 to ensure all water is transferred
back to the physical reservoir by then.

• Water transfer between the physical and the virtual reservoir is
only made possible in week 18 (from 1 to 1b) and week 48
(from 1b to 1).

• A copy of the power station is associated with the virtual res-
ervoir, and additional constraints are imposed to ensure the sum
production does not exceed the physical limitations of the origi-
nal station.

• Discharge from the physical reservoir 1 is constrained according
to Eqs. (4e) or (8) in the constraint period, referring to the sum
volume ~v1 ¼ v1 þ v1b.

• Discharge from the virtual reservoir 1b is not constrained by the
environmental constraint.
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Fig. 11. (Color) Simulated average reservoir volume for reservoir 2. The threshold ~V is shown as a horizontal line. Percentiles (0 and 100) are shown
for case REF: (a) price 2018; and (b) price 2020.

Table 1. Increase in expected annual profit for System 1 compared to case
REF (in 103 €)

Case Price 2018 Price 2020

SLIN 205 9
ELIN-MIN 252 11
ELIN-MED 301 8

Fig. 12. Watercourse topology and technical data for System 2.
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Strategy from SDDP Runs

Fig. 13 shows the convergence process for all cases and for both
price scenarios, comparing the upper bounds for all cases for the
first 80 iterations. The total computation time was approximately
130 minutes for all three runs with the environmental constraint,
while case REF was 12% faster. As for System 1, the different treat-
ments of Eq. (8) do not imply notable differences in computational
complexity, and the converged upper bounds are lowest for the
most constrained cases. The curves for ELIN-MED are substan-
tially lower than the others. These large differences indicate that
the model is not always able to meet the auxiliary lower reservoir
boundary in the ELIN-MED case, imposing high penalties that are
reflected in the cuts.

The use of the slack variable v−ht recorded from the backward
recursion per SDDP iteration is illustrated in Fig. 14 for cases
ELIN-MIN and ELIN-MED considering 2018 prices. The numbers
should be related to the total number of LP problems solved in
the backward recursion in a single iteration (156 × 100 × 7 ¼
109.200). As expected, the ELIN-MED case imposes more frequent

use of the slack variable in the backward recursion, explaining the
differences in upper bounds shown in Fig. 13.

Figs. 15 and 16 show how the water values for reservoir 1 differ
between cases REF and ELIN-MIN for both the physical (1) and
the virtual (1b) reservoir in the beginning of the constraint period
(week 20). Each figure is accompanied with a probability density
plot of the two reservoir volumes according to the simulated values
in week 20. The water is valued significantly higher for both
reservoirs in case ELIN-MIN, demonstrating the impact of the
environmental constraint. Water in the auxiliary reservoir can be
operated more freely in the constraint period for case ELIN-MIN
and is therefore valued higher than water in the physical reservoir
in both price scenarios. Note that the REF case values water in
both reservoirs similarly because the environmental constraint is
ignored, giving the model no incentive to prefer one of the reser-
voirs over the other.

Simulation

The simulated average reservoir volume trajectories for reservoir 1
(the sum of 1 and 1b) are shown in Fig. 17. The four cases differ
significantly considering 2018 prices, with ELIN-MED strategies
leading to the highest reservoir volumes. With 2020 prices, ELIN-
MED still suggests high reservoir volumes, while differences be-
tween the three other cases are muted.

The expected increases in annual profit compared to the REF
case are shown in Table 2. The enhanced relaxation based on the
minimum auxiliary lower volume boundary (ELIN-MIN) provides
the highest expected profit in both price scenarios, improving the
increased profit by EUR 458,000 and EUR 165,000 for price
scenarios 2018 and 2020, respectively. The ELIN-MED cases pro-
vided overly conservative strategies, due to the frequent use of pen-
alties in the backward recursion illustrated in Fig. 14, leading to
lost opportunities for power generation at favorable prices com-
pared to ELIN-MIN. Moreover, by further inspecting the results,
it was found that the ELIN-MED cases led to higher spillage than
ELIN-MIN.

Conclusions

This work concerns the treatment of volume-dependent maximum
discharge constraints in hydropower scheduling models based on
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Fig. 13. (Color) Upper bound evolution for System 2: (a) price 2018; and (b) price 2020.
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SDDP. This state-dependent environmental constraint introduces a
pronounced nonconvexity in the scheduling problem formulation,
challenging the use of the SDDP algorithm. A combination of con-
straint relaxation and auxiliary and time-dependent lower reservoir
volume boundaries is proposed to deal with this constraint without
sacrificing the advantageous computational performance of the
SDDP algorithm. If carefully defined, the auxiliary volume boun-
daries serve to tighten the relaxation of the environmental con-
straint, leading to a more accurate model representation.

The proposed modeling approach is applied to two hydropower
systems resembling Norwegian watercourses, demonstrating the
impact on water values and simulation results as well as the ex-
pected profit improvements, considering uncertainty in inflow and
deterministic prices. The water values, which inform the producer
when and where to discharge water for power generation, are found
to be sensitive to the environmental constraint.

The computational experiments demonstrate the importance of
defining the auxiliary lower reservoir boundaries high enough to
provide a tight constraint relaxation, and low enough to prevent
exaggerated use of slack variables for the environmental constraint.
Thus, the definition of these boundaries should serve to naturally
constrain the solution space while always being a relaxation of
the original (MIP) formulation. For the general case, the authors
recommend using the minimum accumulated inflow over the con-
straint period as a time-dependent auxiliary lower reservoir vol-
ume bound.

The authors find that the use of the proposed approach increases
the expected annual profits with EUR 47,000 for System 1 and
EUR 458,000 for System 2 compared to the standard relaxation
approach in a scenario with high prices in the constraint period.
Although the type of constraint considered is typically active in
the low-load summer period, the ongoing transition to a low-carbon

100 200 300 400 500

55
60

65
70

75
80

85

Reservoir level

W
at

er
 v

al
ue

 [k
E

U
R

/M
m

3]

REF−PHYSICAL
REF−VIRTUAL
ELIN−MIN−PHYSICAL
ELIN−MIN−VIRTUAL

0 200 400 600 800

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Reservoir volume [Mm3]

P
ro

ba
bi

lit
y

REF−PHYSICAL
REF−VIRTUAL
ELIN−MIN−PHYSICAL
ELIN−MIN−VIRTUAL

(a) (b)

Fig. 15. (Color) Water values and simulated reservoir volumes for reservoirs 1 and 1b, in week 20, price 2018: (a) water values week 20; and
(b) simulated reservoir volumes week 20.
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Fig. 16. (Color) Water values and simulated reservoir points for reservoirs 1 and 1b, in week 20, price 2020: (a) water values week 20; and
(b) simulated reservoir points week 20.
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power system may lead to more frequent occurrences of high prices
throughout the year, underlining the importance of considering
high constraint-period prices. Moreover, the results demonstrate
that the accuracy provided by using auxiliary lower reservoir
bounds based on the average accumulated inflow is system depen-
dent, and that this approach may lead to overly conservative strat-
egies. In particular, results from System 1 show that a volume
bound based on the average accumulated inflow may in some cases
further improve results, while this was not found for System 2.

Further validation of the presented approach is needed to pro-
vide more robust estimates of result improvements. Further work
may involve validation using an SDDP model with stochastic mod-
eling of both price and inflow, and the application to different case
studies. A detailed comparison between the proposed SDDP-based
modeling against other algorithms (such as SDP or SDDiP) for the
presented systems could provide important knowledge regarding
the importance of accurate treatment of the nonconvex environmen-
tal constraint.
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