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Chiral cyclam (1,4,8,11-tetraazacyclotetradecane) derivatives were synthesized stepwise from chiral mono-Boc-1,2-diamines and

(dialkyl)malonyl dichloride via open diamide-bis(N-Boc-amino) intermediates (65-91%). Deprotection and ring closure with a

second malonyl unit afforded the cyclam tetraamide precursors (80-95%). The new protocol allowed the preparation of the target

cyclam derivatives (53-59%) by a final optimized hydride reduction. Both the open tetraamine intermediates and the cyclam deriv-

atives successfully coordinated with AuClj to give moderate to excellent yields (50-96%) of the corresponding novel tetra-coordi-

nated N,N,N,N-Au(Ill) complexes with alternating five- and six-membered chelate rings. The testing of the catalytic ability of the

cyclam-based N,N,N,N-Au(Ill) complexes demonstrated high catalytic activity of some complexes in selected test reactions (full

conversion in 1-24 h, 62-97% product yields).

Introduction

The importance of gold for humankind dates long back, and
gold is linked to the evolution of many parts of the society.
Contrary to the general fascination and importance of gold, the
potential as homogenous catalyst has been neglected, compared
to a range of other transition metals. The utilization of gold in
synthetic organic chemistry has become a topic of interest
during the last decades, as evidenced by the increasing number
of review articles published in this period [1-8]. Whereas both
gold(I) and gold(III) are proven to be catalytic active forms of
gold, gold(I) has so far, received main attention, likely due to
the higher stability, as demonstrated by the development of a

high number of gold(I)-catalyzed transformations and ligated
gold(I) complexes, along with improved mechanistic under-
standing [9-15]. In contrast, gold(IlI) catalysis was for a long
time mostly based on inorganic salts, such as AuCl3, AuBr3, or
pyridine—AuClj3 and Pic—AuCl,. However, Au(IIl) complexes
with various coordinated ligands are about to become more
explored. Different from the linear coordination mode of
gold(I), gold(IIl) forms square planar complexes. This allows
for greater steric control around the reaction center by using
polydentate ligands. An interesting group of ligands which may

coordinate to all the four coordination sites of gold(Ill), are
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represented by polyamine ligands, such as cyclam (1,4,8,11-
tetraazacyclotetradecane), cyclen (1,4,7,10-tetraazacyclo-
dodecane)), ethylenediamine and triethylenetetraamine deriva-
tives. Studies of Au(Ill)-cyclam modified complexes have been
limited to arylated [16] or polymer-bound cyclams for selective
uptake of Au(IIl) from water [17] as well as X-ray crystal struc-
tures [18-21]. Simple [Au(Ill)-cyclam] complexes have been
investigated for various biological properties [22-29]. Particu-
larly, studies have focused on their potential in vitro anticancer
properties [24,26,29], the activity against a falciparum strain
[22], the in vitro DNA binding properties [25] and reactions
with bovine serum albumin [27].

Cyclam is known as a tetraamino-macrocyclic ligand, which
binds strongly to give complexes with many transition metal
cations. While catalytic applications of square planar cyclam
complexes are reported for metals, such as Ni [30-33], Cu [34],
Fe [35], catalytic properties of cyclam coordinated gold(III)
complexes are not known. Trigged by this knowledge gap, we
wanted to develop new chiral cyclam coordinated gold(III)
complexes. Additionally, these complexes were interesting for
the evaluation of the catalytic effect of the Au(III) complex
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upon substitution of all coordinating halides by nitrogen donors.
We hereby present the synthesis of chiral cyclam ligands and
related polyamino compounds, along with Au(IIl) coordination
studies and evaluation of the catalytic ability of the successful-
ly obtained Au(IlI) complexes in two model reactions.

Results and Discussion
Synthesis of potential ligands

Chiral cyclam derivatives have previously been directly synthe-
sized from (1R,2R)-cyclohexane-1,2-diamine (A) and malonyl
dichloride [36], giving 36% yield of the wanted cyclam
tetraamide product 2a. Additionally, a macrocyclic byproduct
(14%) was formed by condensation of three units of diamine A
and malonyl dichloride. To inhibit the formation of the trimer,
we decided to prepare the cyclams in an indirect way. In fact,
increased yields of cyclam derivative 2a (68% yield over three
steps) were obtained by malonyl reaction of the mono-Boc-pro-
tected diamine (A-Boc) followed by Boc deprotection with
HCI, and final ring closure of diamide—diamine intermediate 1a
with a second malonyl unit to give tetraamide product 2a
(Scheme 1a). The equivalent ethyl-substituted cyclam 4a was
prepared in comparable yield (63% over the three steps) by the
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Scheme 1: Synthetic protocols for the preparation of potential ligands 1-4.
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same method with diethylmalonyl chloride. This method also
allowed for isolation of the open diamide—diamine 1a (77%). In
addition, the similar potential ligands 1b-e (65-95%,
Scheme 1b) were likewise prepared from amines B-E. The
phenyl-substituted cyclam tetraamide derivative 2b was pre-
pared by the original direct method [36] (65%, Scheme 1c), as
the mono-Boc amine B-Boc was less accessible.

As the amide coordination to Au(IIl) in general is challenging,
and not successful in our hands, as discussed below, we wanted
to prepare the reduced amine products (5a,b, 6a,b) from amides
la,b and 2a,b. Initially, by refluxing diamide—diamines 1a,b
and cyclam amide precursors 2a,b in THF with LiAlH,4 for
3 days [36], complex product mixtures of partly and fully
reduced species were obtained for all amides except 2a. In order
to activate the amides for reduction, improved reaction condi-
tions were obtained by adding AIClj to the reactions. Complete
reduction of polyamides 1la,b and 2a,b yielded the open
tetraamine products 5a,b and the target cyclams 6a,b with four
secondary amine functions in moderate to high yields (29-88%,
Scheme 2) within 1-2 days.

Au(lll) coordination studies

Amide-coordinated Au(III) complexes have so far scarcely been
reported [37-44]. This is likely a result of the electron deficient
character of the amide nitrogens. The coordination was initially
tested with the cyclam tetraamide derivatives 2a,b and 4a.
Judged from 'H NMR, these ligands showed no interaction with
Au(lll), as expected. A similar resistance to coordinate was ob-
served for the open diamides 1c—e. The phosphorus containing
ligand 1c did undergo phosphorus oxidation instead of Au(III)
coordination. No effect was obtained by refluxing or by adding
additives, such as silver salts, NaOH or NH4PFg.

O,NH HN@ Ph],NH HNIPh
' ph Ph

“NH, HoN
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Given the previously reported coordinating studies of unsubsti-
tuted cyclam [16,19,29], the prepared new tetraamine ligands
5a,b and 6a,b (Scheme 2) were promising candidates for
Au(III) coordination. Both ligands 5a and 6a readily coordinat-
ed with AuCl; in methanol and gave moderate to excellent
yields of tetracoordinated Sa-Au(IIl) and 6a-Au(Ill) N,N,N,N-
complexes with alternating five- and six-membered chelate
rings (50% and 96%, respectively, Scheme 3).

Monitoring the formation of complex Sa-Au(IIl), using
'H NMR, and 'H,'">N-HMBC, clearly indicated a tetra-
nitrogen-coordinated complex. This was evidenced by changes
in NMR shift values, A8' Ncoora = 8 Neomplex — 8 Niigand: by
coordination. The observed A8!9Nyo.q values were in the range
of 16.3-32.0 ppm for both the primary and secondary amine
nitrogens, indicating a characteristic deshielding effect upon the
Au(IIl) coordination [43,45,46], Likewise, A8'H qorq
0.3-0.5 ppm for all the neighboring N-CH and N-CH, protons
indicated ligand tetra-coordination to Au(IIl), as well. Upon
coordination of ligand 5a, four different 1SN NMR values for
the nitrogens were observed. This might be explained by the
nitrogens becoming non-equivalent when coordinated to
Au(Ill), as a result of the chiral centers in the ligand. The
structure of 5a-Au(IIl) was not confirmed, due to the lack
of a suitable crystal for X-ray analysis, hence, only a
proposed structure for 5a-Au(IIl) is given (Scheme 3). Compa-
rable effects for ligand 6a, A3'H.org 0.3-0.6 ppm,
were also observed for the corresponding N-CH and N-CH,
neighboring protons by formation of complex 6a-Au(Ill)
(Figure 1).

Further on, cyclam 6b readily coordinated to AuClj in a mix-

ture of acetonitrile and dichloromethane, to obtain a sufficient

NH HN

. 5a, 88% yield
1a,b A|C|3, LIA|H4

2a,b THF, reflux %

R R
6a, 53% yield

Scheme 2: Reduction of diamides 1a,b and tetraamides 2a,b.
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Scheme 3: Au(lll) coordination conditions for ligands 5a,b and 6a,b. Coordination of 5b was unsuccessful.
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Figure 1: 'H NMR study of the formation of complex 6a-Au(lll) by AuCls coordination to ligand 6a.

solubility of cyclam 6b, allowing formation of 6b-Au(IIl) in
64% yield (Scheme 3). The corresponding AS'Hyorg values of
6b-Au(Ill) were similar to those discussed for 6a-Au(IIl). Sur-
prisingly, tetraamine 5b did not behave in a similar way as the
other ligands, instead giving a complex mixture, as judged by
'H NMR, when attempted coordinated to Au(IIT). Changing the

source of Au(Ill) or the solvents methanol, acetonitrile and

dichloromethane did not improve the outcome. Both purifica-
tion and characterization of the Au(IIl) complexes were chal-
lenging as a result of low stability, and HRMS or elemental
analysis could not be obtained, due to sample decomposition.
Attempts to obtain crystals for X-ray analysis by slow diffusion
of n-pentane into a DCM solution of the complexes were unsuc-

cessful.
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Catalytic activity

For evaluation of the catalytic ability of the new Au(IIl) com-
plexes, alkyne carboalkoxylation [47,48] and cyclopropanation
of styrene with propargyl ester [49-52] (Table 1) were selected
as test reactions. These reactions have previously been studied
with different gold(I) and gold(IlI) catalysts and a variety of
substrates, thus providing a solid background for comparison. A
large difference in the catalytic activity was observed for
cyclam—gold complex 6a-Au(IIl) versus the open cyclam ana-
logues Sa-Au(Ill). Complex Sa-Au(Ill) afforded a full conver-
sion in the alkyne carboalkoxylation in 5.5 hours, compared to
in 24 hours for complex 6a-Au(IIl) (Table 1, entries 1 and 2).
The same trend was observed for Au(Ill) catalysis of the cyclo-
propanation reaction, where complex 5a-Au(IIl) and 6a-Au(I1I)
gave full conversion in 1 hour and 12 hours, respectively
(Table 1, entries 4 and 5). The cyclopropyl product 11 was ob-
tained in >90% yield and high cis diastereoselectivity (up to
74% de), similar to our previous studies [51], which showed
that JohnPhos-Au(I) and pyr-menthol-Au(IIl) complexes provi-
ded high amounts of the initially formed cis diastereomer in this
model reaction. In contrast, some BOX-Au(Ill) complexes have
the additional ability to rapidly transform the initially formed
cis product into the isomerized trans product. Thus, the proper
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choice of the gold catalyst allows highly stereoselective forma-
tion of either cis or trans cyclopropanation products and facili-

tates the isolation of pure isomers.

Despite the chiral nature of these ligands, no enantioselectivity
was observed in the test reactions. Evaluation of complex
6b-Au(lll) in both reactions, revealed a large difference in cata-
lytic activity and complex stability between the structurally sim-
ilar 6a-Au(IIl) and 6b-Au(IIl) cyclam complexes, with a cyclo-
hexyl and a diphenyl-C, bridge between the nitrogens, respec-
tively. In both test reactions, an immediate color change into
dark red/brown took place after addition of complex 6b-Au(Ill),
indicating a low stabilization of the coordinated diphenyl ligand
and a fast release of Au. The de-coordination resulted in full
conversion within 15 min in both reactions (Table 1, entries 3
and 6), compared to 24 and 12 hours for complex 6a-Au(III)
(Table 1, entries 2 and 5), where the ligand seems to stabilize
and deactivate the Au(Ill) during the reaction. Attempts to
improve the 6b-Au(Ill) complex stability by anion exchange
with less coordinating anions failed, as addition of different
standard silver salts resulted in decomposition of the Au(IIl)
complex. Consequently, the counter-anion exchange method
was not possible.

Table 1: The catalytic activity of Au(lll) complexes evaluated in a) alkyne carboalkoxylation and b) cyclopropanation of styrene with propargy! ester.

a) o~
- Au-complex
Y ©° (5 mol %)
Z TSA, DCM, 1t
7 X PTSA :
QO&
9
Entry Complex
a) Carboalkoxylation of alkyne
1 5a-Au(lll)
2 6a-Au(lll)
3 6b-Au(lll)
b) Cyclopropanation
4 5a-Au(lll)
5 6a-Au(lll)
6 6b-Au(lll)
7 AuCl3

6]
80
O\
Au catalyst
(5 mol %) |
DCM, rt Ph OAc
11
Reaction time Yield product
8
55h 62%
24 h 80%
15 min 13%
11 (cis/trans)
1h 90% (77:23)
12h 97% (87:13)
15 min 58% (12:88)
5 min 80% (13:87)
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Since the ligand 6b seems to de-coordinate, resulting in the
cyclam Au(IIl) complex not being the active catalyst, and the
presence of chloride anions, the activity of the 6b-Au(III)
precatalyst was compared to AuCls. AuCl; showed slightly
faster conversion into the product, 5 min vs 15 min, however, a
comparable cis/trans ratio was obtained. The reduced reaction
time indicates that 6b-Au(Ill) indeed is an precatalyst that needs

some activation time before catalyzing the reaction.

Although the decomposition of complex 6b-Au(IIl) resulted in
the rapid conversion into products, it is undesirable, as the
impact of the ligand on the reaction selectivity is lost. This dif-
ferent stability, caused by small differences in the design of the
two cyclam ligands, is in accordance with the unsuccessful
Au(III) coordination of the diphenyl-C;-bridged 5b ligand, in
contrast to the readily coordinating cyclohexyl-bridged Sa
tetraamine, as discussed above (Scheme 3).

Conclusion

A new stepwise procedure was developed for improved prepa-
ration of chiral cyclam derivatives 5a,b and 6a,b from chiral
mono-Boc-1,2-diamines and (dialkyl)malonyl dichloride. The
four-step approach included ring closure of the initial open
diamide—diamine intermediates 1 with a second malonyl unit,
affording the cyclam tetraamides 2. The target cyclam deriva-
tives 5 and 6 were obtained by optimized LiAlH4 reduction by
AIClj activation of the polyamides 1 and 2.

Successful Au(Ill) coordination of the open tetraamine ligand
5a and the new cyclam derivatives 6a,b gave the corresponding
tetracoordinated N,N,N,N-Au(Ill) cyclam 5a and 6a,b com-
plexes (50-96%) with alternating five- and six-membered
chelate rings. Verification of cyclam tetraamino-coordination
was obtained by 'H,!>N-HMBC NMR. The polyamides (1, 2)
failed to undergo Au(IIl) coordination, which confirmed the
previously observed resistance of amides to coordinate to
Au(III).

The catalytic ability of the new Au(IIl) complexes were
screened in selected test reactions. A high catalytic ability was
shown for novel N,N,N,N-Au(IIl) complexes 5a and 6a in
alkyne carboalkoxylation and propargyl ester cyclopropanation
(full conversion in 1-24 h, 62-97% product yields). No enantio-

selectivity was observed in the test reactions.

The activity and stability of the Au(Ill) complexes were
strongly depending on the structure of the tetraamine ligands,
demonstrating the importance of ligand design. Hence, the
present study on cyclam based Au(Ill) complexes represents the
first study on such chiral cyclam metal complexes and contrib-

utes to a better knowledge of the tetraamine ligand preparation
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and Au(III) coordination, as well as an increased understanding

of Au(IIl) ligand design for optimal reaction outcomes.
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