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Abstract

1. The availability and quantity of observational species occurrence records have
greatly increased due to technological advancements and the rise of online portals,
such as the Global Biodiversity Information Facility (GBIF), coalescing occurrence
records from multiple datasets. It is well-established that such records are biased in
time, space and taxonomy, but whether these datasets differ in relation to origin have
not been assessed. If biases are specific to different types of datasets, and the rela-
tive contribution from these datasets have changed over time, these shifting biases will
have implications for interpretations of results and, consequentially, for management
and conservation measures.

2. We examined observational GBIF records from Norway to test potential differences
in taxonomic, time and land-cover biases between 10 different datasets, with a focus
on red-listed and non-native species.

3. The datasets differ in their taxonomic coverage, with datasets dominated by citizen
scientist recorders focusing greatly on birds. The number of records has increased over
time; in particular, citizen science datasets have had a sharp increase in recent years.
4. The different datasets (including division of the datasets by conservation status)
showed differences in geographical coverage. Anthropogenic land covers have more
records than would be expected by chance in the majority of cases. Remote areas have
fewer records than would be expected, underlining the prevalence of a roadside bias.
5. Accounting for biases in opportunistic species occurrence records need to be a
dynamic rather than static process, as the taxonomic and geographical biases have
changed over time and differ between datasets, depending on origin and inherent char-
acteristics. Data-collection programmes should be designed to counteract the biases of
the specific datasets, and methods to account for the biases in existing data should be
developed. When utilizing compiled, open-source data, care must be taken to ensure
complementarity between the datasets, both regarding time and space. Incorporating
strengths and accounting for biases between datasets can strengthen the integration
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and management.
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1 | INTRODUCTION

The amount and availability of data on species occurrences have
increased tremendously in recent years (Gaiji et al., 2013), as have
their use in applied conservation and biodiversity management
(Powney & Isaac, 2015). Registering species occurrences have become
far easier than in the early days of biogeographical surveys due to tech-
nological advancements and can be done with the help of volunteer
amateurs (‘citizen scientists’) (Boakes et al., 2016). Online portals, for
example the Global Biodiversity Information Facility (GBIF) (GBIF.org,
2019a), have further increased the public availability and interest
(Amano et al., 2016). These portals gather data from various sources,
ranging from digitized natural history collections to observations
made by citizen scientists. Thus, these records are a mixture of data on
preserved specimens and observational records from both structured
surveys and opportunistic sightings (Speed et al., 2018). Volunteers
participating in citizen science programmes (or autonomously report-
ing species occurrences) likely have different motivations for reporting
than do institutional recorders registering species according to a
specified aim, covering both intrinsic and extrinsic factors. For partic-
ipants in citizen science programmes, the most important motivational
factors have been reported as a personal connection, interest and
concern for nature, a wish to contribute to science and (biodiversity
and nature) conservation and the value/usefulness of their contri-
butions (Ganzevoort, van den Born, Halffman, & Turnhout, 2017;
Larson et al., 2020; Tiago, Gouveia, Capinha, Santos-Reis, & Pereira,
2017).

These mixed datasets thus suffer from various biases and errors due
to their diverse origins and underlying motivations (Newbold, 2010). A
frequently recognized bias for occurrence records is the ‘roadside’ bias;
observations are reported more frequently short distances from roads
and paths, due to easier accessibility (Kadmon, Farber, & Danin, 2004;
Tye, McCleery, Fletcher, Greene, & Butryn, 2017). The term can be
expanded to include areas near densely populated areas (Luck, 2007;
Robinson, Ruiz-Gutierrez, & Fink, 2018). Concern has been raised
repeatedly over this bias, especially if sampled areas cover significantly
different environmental conditions than do un-sampled areas (Bys-
triakova, Peregrym, Erkens, Bezsmertna, & Schneider, 2012; Phillips
et al.,, 2009; Speed et al., 2018). This potentially leads to faulty con-
clusions regarding biodiversity patterns (Kramer-Schadt et al., 2013).
More importantly, if such potential biases are not similar among data
providers (e.g. datasets mainly consisting of purely opportunistic citi-
zen science records vs. datasets from structured, targeted institutional

surveys), conclusions can differ depending on the proportional contri-

between species occurrence records with different origins for science-policy impact

alien species, citizen science, Global Biodiversity Information Facility, land cover, museum collec-
tions, sampling bias, threatened species

bution from the different datatypes (Tye et al., 2017). Even more so, if
this relative contribution from various types of datasets has changed
over time.

In terms of biodiversity management, attention is frequently
focused on specific taxonomic groups or on species of conservation
concern (e.g. red-listed and alien species). However, different data
providers might prioritize differently regarding taxonomic groups and
species’ management status (red-listed vs. alien). Citizen scientists
can be biased towards charismatic, easily recognizable taxa (Amano
et al,, 2016) and have a greater incentive to report red-listed and rare
species (Tulloch, Mustin, Possingham, Szabo, & Wilson, 2013). Speed
et al. (2018) showed that observational plant records and preserved
specimens have different biases regarding taxonomic coverage, time
and space and hypothesized that these differences can be translated
somewhat to whether the data originate from structured surveys or
opportunistic records, thus illustrating some of the potential issues
with these mixed datasets. Note, however, the distinction between
observation- and specimen records is not equivalent to the distinction
between citizen science- and institutional records; vegetation plot
data will be registered as observations, and some specimens in natural
history collections are supplied by citizens (Miller-Rushing, Primack,
& Bonney, 2012; NTNU University Museum, 2018). Geldmann et al.
(2016) showed that spatial bias in citizen science records depended
on the sampling scheme, distance to roads and the human population
density.

Understanding spatio-temporal dynamics of biodiversity is
paramount to achieve sustainable management of biodiversity
issues, for example red-listed and alien species; for example there
is a general lack of understanding on how land use, a main but com-
plex driver, affects biodiversity change, as detailed data on species
occurrences associated with different land-use types often are limited.
Fine-grain data on species distributions and associations from local
to global spatial scales, and over long time periods are required - a
task virtually impossible to achieve through targeted surveys alone
(Bonney et al., 2009; Dickinson, Zuckerberg, & Bonter, 2010; Theobald
et al., 2015). Opportunistic citizen science records are frequently used
as adata source, for species distribution modelling (SDM) (Beck, Boller,
Erhardt, & Schwanghart, 2014; Jetz, McPherson, & Guralnick, 2012),
which can be used in decision-making for managing red-listed and alien
species (Thuiller et al., 2005; Guisan et al., 2013; Syfert et al., 2014). As
these models are sensitive to bias in the data (Yafiez-Arenas, Guevara,
Martinez-Meyer, Mandujano, & Lobo, 2014), methods to account for
varying forms of bias in SDM’s are still being explored (e.g. Kramer-
Schadt et al., 2013; Dorazio, 2014; Robinson et al., 2018). A general
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caveat of using GBIF records in SDM is that only few of datasets

report species absences, thus requiring the use of presence-only

modelling.

If the inherent biases differ markedly between datasets collected
through institutional surveys, as citizen science, or as a mixture of the
two, and the proportional contribution from these groups has changed
over time, this raises the additional issue of how to deal with shifting
biases, rather than simply static ones.

To our knowledge, limited attention has been given to whether
taxonomic, temporal and geographical sampling biases are similar for
datasets with varying origins (i.e. predominantly from citizen science
programmes or institutionally organized surveys), and whether these
different datasets complement or amplify each other’s biases. The
same holds for records of conservation concern within these datasets
(but see Beck et al., 2014, for a comparison of GBIF original source
data; Tye et al., 2017, for comparison of SDMs based on citizen sci-
ence or institutional observation records; Troudet, Grandcolas, Blin,
Vignes-Lebbe, and Legendre, 2017, for an assessment of taxonomic
bias in GBIF records; Speed et al., 2018, for comparison of spatial, envi-
ronmental, temporal and taxonomic coverage of observational records
vs. preserved specimens). Awareness of such differences can elucidate
how such mixed datasets should be utilized in the future to ensure com-
plementarity and what biases to account for. Specifically, it will provide
guidance to (1) what geographical areas, taxonomic and conservation
groups should be targeted to balance sampling effort (and by whom);
(2) whether certain datasets (with specified origins and characteristics)
are representative of all collected data, and if not: (3) how to ensure
complementarity between datasets to obtain maximum coverage.

In this study, we aim to test the 10 datasets with the most records
within the study region from GBIF, detailing their differences and
biases in taxonomy, time and land-cover associations and relating these
to the various origins and characteristics of the datasets. The datasets
range from ‘pure’ opportunistic citizen science records to observations
from structured, targeted surveys by scientific institutions. To relate
the results to biodiversity management, focus will be put on red-listed
and alien species.

We hypothesize the following:

H1: The distribution of records between the three main kingdoms
(H1a) and alien- versus red-listed species (H1b) differ between
the datasets; also within the datasets not explicitly focusing on a
particular taxonomic group.

H2: There has been an increase in the number of records over time,
primarily reflecting an increase in the activity of citizen scien-
tists.

H3: Thedifferent datasets will be unevenly distributed among differ-
ent land-cover types, with areas heavily influenced by humans
(e.g. urban areas and agricultural land; areas classified as ‘devel-
oped area’ and ‘cultivated’ in Table S.1 in the Supporting Informa-
tion (Figure 1, Figure S.1)) sampled more than would be expected
by random chance; this oversampling is expected to be greater
for datasets primarily consisting of citizen science records than

for more targeted datasets.

2 | MATERIALS AND METHODS

2.1 | Land-cover and species occurrence records
The study was limited to Norway (Figure 1). This is a well-surveyed
region regarding species occurrence records in GBIF (Chandler et al.,
2017), covering great variation in land cover, climate, human popu-
lation density and with detailed land-cover data available (Statistics
Norway, 2020).

Land cover was based on the Norwegian AR50 maps from NIBIO
(Norwegian Institute of Bioeconomy Research, 2019), downloaded
through Geonorge (2019). Land cover is categorized based on land-
and tree cover type, timber productivity and soil condition (Supporting
Information S.1, Table S.1, Figure. S.1). Areas smaller than 1.5 ha are not
visible in the dataset. The AR50 data were last updated in year 2016.

All georeferenced records of all taxa (regardless of taxonomic level)
within Norway were downloaded from GBIF on 19 November 2019
(GBIF.org, 2019b). The full dataset consisted of 31,091,434 species
occurrence records. Of these, 23,586,634 belonged to the kingdom
Animalia, 1,275,533 belonged to Fungi, 5,872,214 belonged to Plan-
tae, 283,924 belonged to Archaea, Bacteria, Chromista or Protozoa,
46 were viruses, and 73,083 had no reported kingdom or were incertae
sedis. The records ranged temporally from 1686 to 2019.

The following criteria were used for improving the dataset quality
and comparability: (1) records with the occurrence status ‘absent’
were removed, as very few of the dominant datasets included infor-
mation on absences. Thus, including absence records would reduce
the comparability of the datasets; (2) records with no registered
species-level information were removed to standardize the taxonomic
resolution of the datasets; (3) potential duplicate records for species,
date, basis of record, coordinates and coordinate uncertainty were
removed, as there is no guarantee that the same records have not been
registered multiple times by different data providers; (4) records from
later than 31 December 2018 were removed, thus only including full
sampling years. This was done in consideration of the temporal analy-
ses; (5) only records classified as ‘HUMAN_OBSERVATION’ were retained;
as the distribution of data types differed greatly between datasets,
only comparing data within a single basis of record increased the com-
parability among datasets. Only records from the kingdoms Animalia,
Plantae and Fungi were retained. For the comparison of different
datasets, the analyses were limited to datasets including >50,000
records. The final dataset for analyses consisted of 10 datasets holding
a total of 7,560,590 records (Table 1; see Supporting Information S.2
and Table S.2 for detailed descriptions of the individual datasets). Most
species were only observed sporadically (Supporting Information S.3
and Figures S.2 and S.3). The 10 datasets were not evenly distributed
across Norway, neither individually nor in unison. However, as part of
the aim of the study was to assess skews in geographical distribution,
this was not considered an issue.

The datasets included in the analyses differ in origin and in several
characteristics, including (but not limited to) taxonomic focus, method-

ology, number- and skill level of the reporters. Two of the datasets
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can be regarded as ‘pure’ citizen science datasets (NBICcs: Citizen
science species observations from the Species Observation Service
in Norway (The Norwegian Biodiversity Information Centre [NBIC]
and Hoem, 2020b). eBird: citizen science records of birds, Levatich &
Padilla, 2019)). Five datasets originated from museums and/or univer-
sities (KMN: vascular plant registrations from the Agder Museum of
Natural History and Botanical Garden (Asen, 2019); NTNU: vascular
plant registrations according to standardized cross-lists (NTNU Uni-
versity Museum, 2020); UiOychen: lichen registrations from the Uni-
versity of Oslo Natural History Museum (Natural History Museum,
2020); UiOpjant obs: Vascular plant registrations (observational records)
(Natural History Museum, 2019b); UiOpjant Notes: Vascular plant reg-
istrations (field notes) (Natural History Museum, 2019a)) and can be
regarded to cover somewhat structured surveys and observations by
institutional recorders. Two datasets stemmed from a private consul-
tant and organization (Jordal: consultant within biology and manage-
ment (Jordal, 2019) and BioFokus: non-profit organization providing
survey information (Blindheim, 2020)), which both provide biodiver-
sity survey information for decision makers, and can thus be regarded
as mainly structured surveys and observations done by institutional
recorders. Likewise, the final dataset (NBICoiper) included datasets and
databases from providers not hosting their own GBIF Integrated Pub-
lishing Toolkit (IPT) services, such as the Norwegian Environmental
Agency - these are likewise regarded as mainly structured, institu-
tional surveys. Data from NBIC are quality controlled internally: the
data owner is responsible for the quality of the data. Dubious records
are validated by experts, and the data owner is asked to provide evi-
dence (e.g. photographs) of the record. If these cannot be provided, the
record is deleted (Norwegian Biodiversity Information Centre [NBIC],
2018a; Norwegian Species Observation Service, 2020).

The latest Norwegian Red List of Species was finalized in 2015, 10
years after the first national assessment. The list includes species eval-
uated as being at risk of extinction in Norway, if conditions remain
unchanged. The classification follows the same criteria as the IUCN
Red List (Henriksen & Hilmo, 2015). In total, #4500 species are cur-
rently red-listed; of these are ~2550 animals (mainly invertebrates),
~750 plants and ~1,200 fungi. The first version of the Alien Species List
was compiled in 2007 (Gederaas, Moen, Skjelseth, & Larsen, 2012), and
the latest version was refined and published in 2018 (Sandvik, Geder-
aas, & Hilmo, 2017; NBIC, 2018b). In total, ~3000 species are listed as
alien to mainland Norway, ~1500 of these have a risk assessment. Of
these, ~#390 are animals, ~990 are plants and ~100 are fungi. As per
the guidelines published by the NBIC (Sandvik et al., 2017), we here
use the term ‘alien species’ rather than the frequently used ‘invasive
species’. ‘Alien’ refers to ‘(...) a species introduced outside its natural
past or present distribution’ (IUCN, 2020). The term ‘invasive’ suggests
invasion potential and negative ecological effects, which is not neces-
sarily the case for all alien species. To avoid subjective decisions as to
which alien species to classify as ‘invasive) all species classified as ‘alien’
on the Alien Species List (Gederaas et al., 2012) were included, and the
term ‘alien’ was used rather than ‘invasive’.

Species names of the GBIF records were matched with the Nor-

wegian Red List, and the Norwegian Alien Species List, using syn-

onyms from the GBIF backbone taxonomy, using the package rgbif
(Chamberlain & Boettiger, 2017). Species within the Red List cate-
gories ‘regionally extinct), ‘critically endangered’, ‘endangered’, ‘vulner-
able’, ‘near threatened’ and ‘data deficient’ are classified as ‘red-listed..
As the majority of ‘data-deficient’ species are potentially threatened
(Bland, Collen, Orme, & Bielby, 2015), and old records are included
in the analyses, inclusion of the remaining Red List categories is war-
ranted. Species alien to Svalbard, but native to mainland Norway were
not listed as alien, neither were alien species which have not yet estab-
lished, but are evaluated to have the potential to do so within 50 years;
NBIC, 2018).

Maps and occurrence records were transformed to the geodetic
coordinate reference system WGS84/UTM zone 32 (epsg: 32632).

2.2 | Statistical analyses
Taxonomic differences within and between datasets were examined
using X2- tests (base package: ‘stats’), testing the null hypothesis of
equal distribution of the kingdoms between and within the datasets.
Likewise, the distribution of red-listed and alien species between the
datasets was tested with a X2-test.

To test for temporal patterns in the data, a Mann-Kendall test for a
monotonic trend was applied (package: ‘trend’; Pohlert,2020). The
median sampling year of the datasets were compared with a Kruskal-
Wallis test, followed by a posthoc pairwise Dunn test with Bonferroni
correction for multiple comparisons (packages: ¢stats’ and *FSA’;
Ogle, Wheeler, & Dinno, 2020).

For examining geographical biases, the data were further reduced
to match the timeframe of the land-cover data. Only data from year
2004 to (and including) year 2018 were used. Changes in land cover
are assumed to be minimal within this 15-year span. The remaining
5,622,260 records were overlaid on the AR50 map (package: ‘sp’;
Pebesma & Bivand, 2005). The null hypotheses was that the species
occurrence records are randomly distributed across Norway, and the
number of records is a function of the area of each land-cover type.

5,622,260 points were randomly overlaid on the map 100 times, giv-
ing ranges of expected number of points associated with each land-
cover type. Dataset names and conservation status (‘red-listed’-, and
‘alien’) were assigned randomly to the points in the same proportions
as in the original data. Generalized linear models (Poisson error distri-
bution, ‘identity’ link function) (base package: ‘stats’)were fitted
to the number of records predicted by area of each land-cover type for
the simulated data, providing the null models; one separate model for
each of the combinations of dataset and conservation status. Sampling
bias was concluded if the observed number fell outside the 0.95 con-
fidence interval of the model. To compare the extent of sampling bias
for the different groups, the absolute and relative residuals were cal-
culated as

Absolute residual = Number of records,pserved

—Number of recordspregicted
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and

Relative residual

Absolute residual

Mean (Number of recordsgpserved, Number of recordsredicted )

To evaluate the differences in biodiversity patterns obtained using
occurrence records from the different datasets, or all in combina-
tion, individual-based species accumulation curves were made for each
dataset x conservation status group, and the asymptotic species rich-
ness calculated (package: ¢iNEXT’; Hsiehetal., 2020).

All data preparation and analyses were performed in R, version 3.6.1
(R Core Team, 2020). Maps were made in ArcMap version 10.6 (ESRI,
2018).

3 | RESULTS

3.1 | Taxonomic differences

The number of records from each dataset differed (X2 = 26,019,773,
df = 9, p-value < 0.001) with the vast majority of the records belong-
ing to the NBICg dataset, followed by the UiOpj nt Notes (Se€ Table 1
for description of dataset names). The kingdoms were not equally dis-
tributed between and within the datasets (X2 = 3,813,957, df = 18,
p-value < 0.001). Obviously, the datasets with a specified taxonomic
scope were dominated by records belonging to the particular king-
dom, but the datasets including several kingdoms differed as well; the
BioFokus- and NBIC¢s datasets had an overabundance of animals and
fungi, whereas the NBICg,er dataset only had an overabundance of
animal records. The Jordal dataset had an overabundance of plants
and fungi (Figure 2). Within the animal kingdom, birds was the most
frequently recorded class, followed by insects and mammals overall.
For the multi-taxa datasets, the distribution within the animal king-
dom differed: the BioFokus datasets held most records of insects, fol-
lowed by birds and mammals, the Jordal dataset was dominated by
birds, followed by insects and bivalves, and the NBICs- and NBICiper
datasets were dominated by records of birds, followed by insects and
mammals (Figure S.4 in the Supporting Information). When account-
ing for the different sample sizes, the distribution of red-listed and
alien species differed between the datasets, with the BioFokus, eBird,
NBICcs, NBICiher and UiOy jchen holding more red-listed, and the KMN,
Jordal, NTNU, UiOpjant Nores @nd UiOpjant ops datasets holding more
alien species than what would be expected by random (X2 = 104,807,
df = 9, p-value < 0.001; Figure 2(b)).

3.2 | Temporal differences

The Mann-Kendall test detected a tendency in the overall dataset; the
number of records had increased over time (z = 16.732, n = 200, p-
value < 0.001; Figure 3(a)). Median year differed for all datasets (medi-
ans: KMN = 1986, BioFokus = 2011, eBird = 2015, Jordal = 2007,

NBICcs = 2014, NBICyiher = 2014, NTNU = 1985, UiOyichen = 2000,
UiOpjant Notes = 1961, UiOpjant obs = 2009, Kruskal-Wallis = 496.44,
df = 9, p-value = < 0.001. p-value < 0.001 for all pairwise comparisons;
Figure 3(b)).

3.3 | Geographic differences

The simulated numbers of records within the groups (conservation sta-
tus x dataset) were predicted by the area of the specified land cover
type (Table 2, Figure 4).

Each land-cover type was relatively over- or under-sampled for dif-
ferent datasets (the observed number of records fell outside of the
0.95 confidence interval of models based on the simulated data), except
for snow/ice, which was under-sampled by all datasets. The results are
summarized in Table 3, and the full table can be seen in the Supporting
Information S.6.

Models and results regarding datasets (regardless of conservation
status) can be seen in the Supporting Information (Supporting Informa-
tion S.5).

Comparing the absolute residuals between predicted and observed
number of records within each land-cover type, the largest numerical
discrepancies were seen for open firm ground, developed areas and
cultivated land (Figure 5(a)). However, comparing the relative residuals
(disregarding un-mapped areas and snow/ice), only alien records asso-
ciated with open firm ground showed a consistent pattern between
datasets (under-sampling; Figure 5(b)).

3.4 | Asymptotic species richness

The asymptotic species richness differed for most of the datasets (Sup-
porting Information S.7). For both red-listed- and alien species, only
the estimates for the NBIC¢s datasets (NBICcs red-listed = 2,412
[CI = 2 333-2 513], NBIC¢s alien = 867 [Cl = 833-920]) over-
lapped with the estimates for all datasets combined (combined red-
listed = 2 550 [Cl = 2 469-2 654], combined alien = 861 [C| = 836-
902]).

4 | DISCUSSION

Various forms of biases have been shown for the increasing amount of
species data available from open databases, such as GBIF. However the
potential taxonomic, temporal and geographical biases differ between
datasets according to the origin and characteristics of the datasets,
and how these different datasets might complement each other, have
not been addressed. Additionally, whether these biases extend to
red-listed and alien species remain un-investigated. We found that
multi-taxa datasets from GBIF are biased towards different kingdoms
(supporting H1a). More records of red-listed species are registered
than alien species; (supporting H1b). When categorizing the records

according to datasets and conservation status, the geographical biases
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FIGURE 2 Number of records within each of the datasets used in the analyses. (a) Number of records from the included kingdoms in each
dataset; (b) number of red-listed- or alien species records in each dataset. Note the differences in y-axis values due to species neither on the Red

List nor the Alien Species List included in (b)

differ between the datasets, with a few general patterns. Anthro-
pogenic land covers are generally oversampled (with a few exceptions),
whereas less directly human-affected- and/or remote