
Viroshaan U
thayam

oorthy

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

Viroshaan Uthayamoorthy

Quantum Machine Learning in
Variational Quantum Algorithms

Master’s thesis in Applied physics
Supervisor: Franz Georg Fuchs
Co-supervisor: Alexander Johannes Stasik, Jeroen Danon, Halvor
Møll Nilsen
June 2022M

as
te

r’s
 th

es
is





Viroshaan Uthayamoorthy

Quantum Machine Learning in
Variational Quantum Algorithms

Master’s thesis in Applied physics
Supervisor: Franz Georg Fuchs
Co-supervisor: Alexander Johannes Stasik, Jeroen Danon, Halvor Møll
Nilsen
June 2022

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics





Abstract

This master thesis introduces concepts of machine learning and quantum
machine learning. Particular focus will be put on variational quantum al-
gorithms (VQAs) and how these quantum circuits are trained. Known is-
sues related to the trainability of these hybrid quantum-classical computation
methods are also discussed. Limiting the scope to the variational quantum
algorithm QAOA, two different parameter initialization heuristics were im-
plemented and analyzed on the problem of MaxCut. The analysis considers
unweighted 3-regular graphs and Erdős-Rényi graphs in particular. These
heuristics are referred to as INTERP and Parameter Fixing and were intro-
duced by Zhou et al. [1], and Lee et al. [2] respectively. Both heuristics provide
ways to incrementally increase the depth of the QAOA circuit by finding local
optima at the current depth. Numerical results of both methods indicate that
the underlying mechanisms are similar for both heuristics and that INTERP
is preferable because of its lower run-time.

Based on trends discovered using the INTERP heuristic, a similar proced-
ure to the one presented by Alam et al. [3] was implemented where machine
learning is used to learn the patterns in these optimal QAOA parameters.
Using this approach, one can reduce the number of intermediary optimization
runs needed to find good local optima at a target depth. The thesis shows that
relatively few graph instances are needed to learn the optimal QAOA para-
meters using a feedforward neural network. This machine learning procedure
was tested on weighted 3-regular graphs.

Lastly, the thesis considers a realistic implementation of the ESCAPE
algorithm of Rivera-Dean et al.’s [4] using a shot-based simulator instead
of an ideal one. In this implementation, a gradient-free optimizer was used
instead of a gradient-based one to reduce the number of function evaluations
performed on a quantum computer. The procedure was tested on weighted five
and twelve-node graphs, with the number of successful escapes being higher
than the original procedure. This increase in performance is believed to be
caused by convergence difficulties with gradient-free optimizers and random
perturbations into regions of better cost.

Simulations on the five-qubit noise model FakeManilla from IBMQ show
that the number of successful and failed escapes is comparable, and thus the
procedure is less reliable on NISQ hardware.

The thesis bases its results on extensive numerical simulations. Over 20 000
CPU hours on computer clusters were used to run simulations on 90 graph
instances to gather data for the ESCAPE routine. At each depth of the
QAOA routine for each graph instance, 100 randomized initializations were
used to gauge the performance of the algorithm. The INTERP routine and
the subsequent usage of a neural network to perform parameter predictions
was tested for 200 graph instances.

i



Acknowledgements

I would like to express my sincerest thanks to my main supervisor Franz
Fuchs for providing informative articles, constructive criticism, and feedback
throughout the duration of the thesis. Additionally, I would like to extend
my gratitude to Halvor Møll Nilsen, Alexander Johannes Stasik, and Jeroen
Danon for providing invaluable input to the thesis. The simulations were
performed on resources provided by Sigma2 - the National Infrastructure for
High-Performance Computing and Data Storage in Norway.

ii



Sammendrag

Denne masteroppgaven introduserer konsepter innen maskinlæring og kvante-
maskinlæring. Spesiell fokus vil bli ilagt variasjonelle kvantealgorithmer hvor
parametre i kvantekretser blir optimert. Hvordan disse kretsene trenes of
kjente problemer relatert til disse hybride beregningsmodellene blir diskutert
gjennom oppgaven. Skopet til oppgaven begrenses til en spesifikk kvanteal-
goritme kalt QAOA. I forhold til denne algoritmen kommer to heuristikker
innen parameter initialisering til å bli testet og analysert p̊a beregningsprob-
lemet MaxCut. Analysen er utført p̊a uvektete grafer med tre kanter pr. node
og diverse Erdős-Rényi graf instanser. Heuristikkene heter INTERP og Para-
meter Fixing. Disse heuristikkene ble henholdsvis introdusert av Zhou m.fl. [1]
and Lee m.fl. [2]. Begge heuristikkene viser til m̊ater for å inkrementelt øke
dybden av en QAOA krets ved å ta i bruk parameterverdier fra et foreløpig
lokalt minimum. Numeriske reultater for begge metodene indikerer at den
underliggende mekanismen for begge metodene ligner og at INTERP er den
foretrukne metoden p̊a grunn av dens relativt lave kjøretid.

En utvidelse av dette arbeidet ble ogs̊a utført basert p̊a en metode lignende
Alam m.fl [3] hvor maskinlæring blir brukt for å lære trendene i optimale
QAOA parametre. Denne tilnærmingen gjør at man kan redusere antallet
optimeringssteg for å øke dybden p̊a QAOA kretsen til en m̊alsatt dybde.
Denne prosedyren ble implementert og testet p̊a vektede grafer med tre kanter
pr. node. Resultatene viser at relativt f̊a graf instanser er nødvendig for at
et kunstig nevralt nettverk skal kunne lære de optimale QAOA parametrene.

Til slutt bygger masteroppgaven videre p̊a Rivera-Dean m.fl.’s [4] ESCAPE
algorithme ved å implementere algoritmen p̊a en mer realistisk m̊ate. Dette
gjøres ved å se p̊a en skudd-basert kvantedatamaskin. Med form̊alet om å
redusere antallet kall til kvantedatamskinen blir en gradient-fri variant av al-
goritmen utviklet og testet. Denne prosedyren er testet p̊a vektede grafer med
12 og 16 noder hvor hver node er tilkoblet tre andre noder. Resultatene viser
at denne varaisjonen er mer effektiv enn funnene til Rivera-Dean m.fl. Det
er grunn til å tro at den høye suksessraten kommer av konvergensproblemer i
de gradient-fri optimeringsprosedyrene og at tilfeldige perturbasjoner gjør at
ESCAPE prosedyren finner omr̊adet i kostlandskapet som har gode løsninger.

Simuleringer p̊a en støy-modell fra IBMQ viser at antallet vellykkede of
defekte kjøringer av algoritmen er sammenlignbare, og dermed er algortimen
lite p̊alitelig p̊a realistiske kvantedatamaskiner.

Resultatene som blir diskutert i master oppgaven stammer fra omfattende
numeriske simuleringer. Over 20 000 CPU timer ble brukt for å kjøre sim-
uleringer p̊a 90 graf instanser for å hente inn data for ESCAPE rutinen.
Dataene som ble brukt for å trene opp et nevralt nettverk til å predikere
parametrene ved å bruke trender fra INTERP rutinen baserte seg p̊a 200 graf
instanser.

iii





Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Machine Learning 4

2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Elements of Machine learning . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Cost-function . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 The Bias-variance trade-off, Double Descent, and Generalization 11

2.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Nelder-Mead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Simultaneous Perturbation Stochastic Approximation (SPSA) 15

2.5 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . 17

2.5.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Quantum Machine Learning 21

3.1 Variational Quantum Algorithms (VQA) . . . . . . . . . . . . . . . . 23

3.1.1 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Encoding Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Basis Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Amplitude encoding . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Quantum Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Circuit Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Problem-agnostic ansätze . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Problem-specific ansätze . . . . . . . . . . . . . . . . . . . . . 30

iv



3.4.3 Expressibility of a circuit . . . . . . . . . . . . . . . . . . . . . 31

4 Training hybrid models 35

4.1 Parameter-shift Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Barren Plateaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Local minima distribution . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Quantum Approximate Optimization Algorithm (QAOA) 46

5.1 QAOA on the MaxCut problem . . . . . . . . . . . . . . . . . . . . . 47

5.2 Interpolation Heuristic: INTERP . . . . . . . . . . . . . . . . . . . . 51

5.3 Parameter Fixing Heuristic . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Results: Comparison between the heuristics . . . . . . . . . . . . . . 53

5.4.1 Results from INTERP heuristic . . . . . . . . . . . . . . . . . 53

5.4.2 Results from the parameter-fixing heuristic . . . . . . . . . . . 56

5.4.3 Cost Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Difference between QAOA and Quantum Annealing . . . . . . . . . . 61

6 Using neural networks to find the optimal parameters 65

7 Avoiding local minima in VQA with neural networks 70

7.1 ESCAPE-algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Details on the implementation . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.4 Toy Example: Overparametrization and activation functions . . . . . 79

7.5 Reproduction and extension of ESCAPE . . . . . . . . . . . . . . . . 81

7.5.1 Graph instance A . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5.2 Graph instance B and C . . . . . . . . . . . . . . . . . . . . . 85

7.6 ESCAPE with sampling noise . . . . . . . . . . . . . . . . . . . . . . 87

7.7 ESCAPE with a Noise Model . . . . . . . . . . . . . . . . . . . . . . 92

8 Conclusion and outlook 96

v



A Appendix: Derivation of generalization error 98

B Appendix: Simultaneous measurement procedure 100

C Appendix: Measurement Accuracy 104

References 106

vi



List of Figures

1 A schematic overview of the two ways classical neural networks will
be included in the processing of quantum information in the master
thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The four steps of a supervised machine learning approach. . . . . . . 8

3 Costfunction and regularizer. . . . . . . . . . . . . . . . . . . . . . . . 10

4 Generalization error and Double Descent. . . . . . . . . . . . . . . . . 13

5 A schematic overview of the different steps in the Nelder-Mead pro-
cedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Illustration of a feedforward neural network . . . . . . . . . . . . . . 18

7 Interplay between quantum computing and classical machine learning. 21

8 Overview of a variational quantum algorithm. . . . . . . . . . . . . . 22

9 Illustration of circuit expressibility. . . . . . . . . . . . . . . . . . . . 32

10 Illustration of hybrid quantum-classical models. . . . . . . . . . . . . 35

11 A 3-degree graph with 4 nodes. . . . . . . . . . . . . . . . . . . . . . 48

12 Probability distribution of measuring different basis state using QAOA. 49

13 Successful and unsuccessful run of the INTERP heuristic. . . . . . . . 54

14 The performance of INTERP on u3R and Erdős-Rényi graphs. . . . . 55

15 Performance of Parameter fixing heuristic on u3R and Erdős-Rényi
graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

16 Different statistics of the parameter fixing heuristic. . . . . . . . . . . 58

17 Fixing minima and maxima of the p = 1 cost landscape. . . . . . . . 60

18 Cost landscape at p = 10 using parameter-fixing and average runs.
Transition of the cost landscape with repeated applications of the
heuristic is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

19 Schematic overview of using a feedforward neural network to learn
the optimal QAOA parameters. . . . . . . . . . . . . . . . . . . . . . 65

20 Plot of the optimal QAOA patterns, highlighting the correlation between
the input variables and output. . . . . . . . . . . . . . . . . . . . . . 66

21 Correlation between input variable and output. . . . . . . . . . . . . 67

22 Plot of the target (γi, βi) from the dataset and the predictions from
the neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vii



23 The relative error between the prediction parameters and the optimal
parameters found in the dataset. . . . . . . . . . . . . . . . . . . . . . 68

24 A schematic overview of how the neural network is included in the
ESCAPE procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

25 Cost landscape at various stages of ESCAPE . . . . . . . . . . . . . . 74

26 Cost landscape of the toy example at various t for two successful jumps. 77

27 Cost landscape at various t for both a successful gradient-based jump
and unsuccessful gradient-free jump. . . . . . . . . . . . . . . . . . . 78

28 A schematic overview of the various neural network setups tested with
the toy example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

29 The various graph instances used with the gradient based ESCAPE
procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

30 Statistics of gradient-based ESCAPE comparing the effect of using
various neural network steps M when using g(t) = Θ(t− T ). . . . . 83

31 Statistics of gradient-based ESCAPE comparing the effect of using
various neural network steps M when using g(t) = t

T
. . . . . . . . . 84

32 Statistics of ESCAPE when fewer initial optimization steps are taken. 85

33 Statistics of gradient based ESCAPE using graph instances B and C . 86

34 The cost plotted against the steps of the initial optimization proced-
ure at QAOA depth p = 8. . . . . . . . . . . . . . . . . . . . . . . . . 88

35 Performance of gradient-free ESCAPE on 12 node graphs. . . . . . . 90

36 ESCAPE procedure on a 16 node graph instance. . . . . . . . . . . . 91

37 ESCAPE on noise models with various levels of noise. . . . . . . . . . 93

38 ESCAPE procedure applied on IBMQ FakeManilla noise model. . . . 94

viii



List of Tables

1 A short summary of how different types of classical data can be en-
coded into a quantum state (Adapted from Schuld and Petruccione,
p.109 [16]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Approximation ratio and standard deviation when using the predic-
tions from the neural network as initialization strategy. . . . . . . . . 67

3 A showcase of the number instances where a successive jump was
performed when activation functions are used. . . . . . . . . . . . . . 80

ix



1 Introduction

Recent years have seen great strides in large-scale quantum computing, and interest
has grown in potentially practical near-term applications. Several algorithms have
already been designed to utilize some of the exciting capabilities of quantum com-
puters, such as Shor’s algorithm [5] for prime factoring and the HHL algorithm [6] for
solving linear systems of equations. However, these traditional algorithms require a
high number of qubits and long decoherence times that far exceed the capabilities
of the quantum hardware available today. Describing the limitations of current-
day quantum hardware is the term Noisy Intermediate-Scale Quantum Computing
(NISQ) [7], a term coined by John Preskill to describe an era of quantum com-
puting where noise and decoherence cause unreliable operations. To address these
issues, hybrid quantum-classical algorithms have emerged as the most promising
candidates, using the available quantum resources while utilizing classical routines
to process quantum information. Examples of such algorithms are the Variational
Quantum Eigensolver (VQE) [8] and the Quantum Approximate Optimization Al-
gorithm (QAOA) [9] which were introduced to solve quantum chemistry problems
and classical combinatorial optimization problems respectively.

The hybrid algorithms VQE and QAOA are two particulars of a more comprehensive
class of algorithms called Variational Quantum Algorithms (VQA). These algorithms
consist of two parts; one performed on a quantum computer and another on a
classical computer. The quantum part of these algorithms consists of preparing
a quantum state using a quantum circuit. A quantum circuit is a sequence of
quantum gates (unitary operators) that act on single or multiple qubits. In the case
of VQAs, the quantum gates involve parameters that can be adjusted. An example
of these types of gates is a single qubit rotation gate, where the rotation angle is the
variational parameter. The set of gates that defines the circuit structure is called
an ansatz. These circuit designs can have elements that incorporate parts of the
problem, often referred to as problem-dependent ansätze, or be problem agnostic
in their structure. The evolution of the quantum state through an ansatz creates
a final prepared state from which measurements are performed. The measurement
output of the quantum system (often in the form of bitstrings) is the input to a
cost function to optimize. Optimizing the free variational parameters for the cost
function is performed using a classical optimizer. These optimized parameters are
then fed into the quantum circuit to create a closed feedback loop. If the neural
network block is removed, the rightmost subfigure of figure 1 illustrates this feedback
loop between the quantum computer and classical optimizer.

Bittel et al. [10] find that the classical optimization of these hybrid algorithms is
NP-hard when using random initial points due to the training landscape having
multiple local minima with suboptimal cost. Hence, gradient-based optimizers will
generally converge to these sub-optimal solutions. It is found that the quality of
local minima of VQA undergoes a phase transition [11]. Below the transition, the
expected distribution of local minima values is far from the values of the global
minima, which supports the NP-Hard results derived by Bittel et al. [10]. However,
the paper finds that once the number of parameters reaches a certain threshold, all
local minima values are distributed close to the global one, hence improving the

1



Quantum 
Computer

Neural 
Network

Optimization

Measurements
Measurements

Quantum 
Computer

Neural 
Network Optimization

Transformed 
Measurements

Optimized parameters

Optimized parameters

Patterns to learnParameter prediction

Figure 1: A schematic overview of the two ways classical neural networks will be
included in the processing of quantum information in the master thesis. The right-
most version is elaborated on in section 6 while the leftmost version is presented in
section 7.

quality of the local minima. The rub is that the number of parameters needed to
achieve this transition is exponentially large in the problem size. This transition has
also been found numerically in various problem-agnostic ansätze [12].

In contrast, it is widely recognized that heavily parametrized deep neural networks
are significantly easier to train as the expected distribution of local minima val-
ues is concentrated around the values of the global minima [13, 14]. With these
observations in mind, the motivation behind this master thesis is to add more para-
meters to VQAs by including a classical neural network to create a model that
more reliably converges to optimal solutions. The leftmost subfigure of figure 1
illustrates this procedure. As the figure shows, the neural network transforms the
measurements from the quantum computer before calculating the cost. The neural
network introduces additional variables that are optimized using the classical op-
timizer. Numerical studies are conducted on problem-dependent ansätze to see if
any significant improvements can be made by increasing the number of parameters
through the neural network variables. This work extends on Rivera-Dean et al.’s [4]
work on avoiding local minima in VQAs with neural networks.

The thesis is structured as follows. Section 2 presents a high-level overview of cent-
ral concepts in machine learning, which ends in the introduction of feedforward
neural networks. This machine learning method is heavily used throughout the
thesis. From there, section 3 introduces quantum machine learning, including meas-
urements, encoding procedures, and VQAs. These hybrid models are trained in
section 4. Section 5 introduces the QAOA algorithm and applies it to the problem
of MaxCut. This section presents two different parameter initialization heuristics,
following a discussion of the results when applying them to MaxCut. Based on these
findings, section 6 utilizes feedforward neural networks to create effective initializ-
ation strategies for the variational parameters for this particular VQA. The right
subfigure of figure 1 illustrates this procedure. This figure shows that the neural net-
work learns trends and patterns from the feedback loop to form efficient parameter
predictions. Lastly, the main algorithm of the thesis, namely avoiding local minima
in VQAs with neural networks, is introduced in section 7, schematically shown in
the left subfigure. Along with a description of the procedure, numerical studies are
conducted, and results are discussed. Note that the master thesis extends on the
work of the specialization project, which contained sections 2 - 5.

2



The main work of the master thesis can be summarized as follows:

• Reproduction of the heuristic parameter initialization method INTERP of
Zhou et al. [1] to find optimal QAOA parameters close to the global minimum
of the MaxCut problem.

• Reproduction of a similar initialization heuristic; the parameter fixing heuristic
as introduced by Lee et al. [2]

• A rigorous comparison between both heuristics finds similar trends in the
QAOA parameters upon successful runs.

• Using the patterns found from the initialization heuristics, a feedforward neural
network is used to learn these trends in optimal QAOA parameters. Based on
these trends, parameter predictions are made to reduce intermediary optimiz-
ation steps. This procedure is inspired by a similar procedure introduced by
Alam et al. [3].

• Reproduction of the ESCAPE algorithm of Riveradean et al. [4] to escape
potential local minima using a classical feedforward neural network.

• Worked on extending the method into a shot-based approach instead to see
how it would work in a more realistic implementation of the algorithm that
uses gradient-free methods. The motivation behind this extension is to limit
the number of function evaluations used in the procedure.

• Tested the new version of the ESCAPE procedure on the IBMQ noise model
FakeManilla to see how the algorithm would perform on real hardware.

3





2 Machine Learning

Machine learning is a field of study about creating algorithms where computers can
learn without being explicitly programmed. Tom Mitchell proposed a widely quoted
definition of machine learning in 1997. He defines it as the following:

Well-posed Learning Problem: A computer program is said to learn from
experience E with respect to some task T and some performance measure
P, if its performance on T, as measured by P, improves with experience
E. (T. Mitchell p.2 [15])

To exemplify this definition, consider the following. The task T can be playing chess
or creating an E-mail spam filter. The algorithm gains experience in the context
of chess by playing other players or even other computers. In the case of the spam
filter, gaining experience would be the algorithm sorting through E-mails labeled as
spam or not spam, from which it learns to detect patterns. Performance measure P
in the event of chess would be the win/loss rate, while in the spam filter case, the
performance can be measured as the accuracy of the model’s E-mail classifications
as spam.

At the heart of machine learning lies data-driven decision-making and prediction,
where models infer useful information from the implicit patterns in the data that give
rise to the models. On an overarching level, machine learning is divided into three
disciplines: reinforcement learning, supervised learning, and unsupervised learning.
Only the latter two disciplines are relevant for this project assignment and thus
are presented in the following chapters. Additionally, a high-level overview of the
different elements of a machine learning algorithm will be presented in section 2.3.
Lastly, feedforward neural networks are presented in section 2.5 in anticipation that
this machine learning model is relevant for the master thesis.

2.1 Supervised Learning

Supervised learning algorithms build the predictive model from a data set containing
training input x and corresponding training labels y. Based on a limited training
data set, the model infers a function that can predict the output of some previ-
ously unseen input. Schuld and Petruccione use the following definition in the book
Supervised Machine Learning with Quantum Computers :

Definition (Supervised learning task): Given an input domain X and and out-
put domain Y , a training data set D = {(x1,y1), . . . (xM ,yM)} of training pairs
(xm,ym) ∈ X × Y drawn independently from the same underlying distribution
P (x,y) (iid) with m = 1, . . . ,M of training inputs xm and target outputs ym, as
well as a new unclassified input x̃ ∈ X, predict the corresponding output ỹ ∈ Y
(Schuld and Petruccione p.25, [16]).

The input domain X is an N -dimensional vector space. The input-vector x are
also called feature vectors since they represent information on selected features. A

4



prototypical example is to calculate the expected selling price of a house. In this case,
the input would be an N -dimensional vector x where each element is an instance of
a feature that is indicative of the pricing of a house (ex. number of rooms, location,
size of the house, etc.). The output y is the corresponding price of that instance.

The dimension of the output-domain separates two types of supervised learning
problems. The above example was an example of a regression problem. The goal of
a regression algorithm is to predict the value of a continuous variable y, and thus the
output space Y is the space of real numbers R. In contrast, a classification problem
is categorized as a problem in which the prediction y falls into a set of D discrete
labels {l1, . . . , lD}. The output-vector y is generally a real vector in RD where each
of the elements yi is the probability of the model predicting class i. An example of a
classification problem is classifying an image into three classes: dog, cat, or mouse.
If an input results in predicted state y = (0.2, 0.7, 0.1)T , the model would classify
that image as a cat.

2.2 Unsupervised Learning

During the training of an unsupervised learning algorithm, the algorithm is given
a dataset that contains many features x, but the data are not preassigned any
labels. The goal of the unsupervised learning approach is to self-discover any useful
properties of the structure of the dataset. These approaches are used to either make
predictions on new input or more commonly used as a preprocessing of the data
to reduce the complexity of the dataset. In general, one has access to an empirical
distribution from M samples in a dataset, which can be expressed as

q(x) =
1

M

M∑
m=1

δ(x− xm) (1)

As before, xm refers to an instance of the input data, separated into its features.
The goal of an unsupervised approach is to change the parameters w of a family of
distributions p(x;w) so that it is similar to the empirical distribution q(x) provided
by the data [13]. In other words, these approaches modify p such that the probability
of measuring data points from the data set is high.

A definition of these types of tasks as given by Schuld and Petruccione in the book
Machine Learning with Quantum Computers is the following:

Definition (Unsupervised learning task): Given an input domain X and a data
set of input samples D = {x1, . . . ,xM} with xm ∈ X , drawn from a probability
distribution p(x), approximate the probability distribution p(x) and draw a new
sample x using the approximated distribution (Schuld and Petruccione, p.27 [17]).

Common unsupervised learning algorithms are clustering- and dimensionality re-
duction techniques. Clustering is an approach in which the algorithm groups the
training examples into categories with similar features. Examples of these types

5



of algorithms are K-means clustering [18], hierarchical clustering [19], and probab-
ilistic clustering [20]. Dimensionality reduction is a group of techniques in which
the algorithm reduces the necessary number of features in the dataset while still
preserving the underlying patterns. Common algorithms are principal component
analysis (PCA) [21], singular value decomposition (SVD) [22], and autoencoders [23].

2.3 Elements of Machine learning

As indicated in the above two subsections, the task of the machine learning routine
is to pick the best model that can reproduce the data from the data set. The best
model f is chosen from a set of functions {F} which can be a mapping from the
input domain X to output domain Y , or a distribution p over the input domain X .

Choosing the optimal model is different for the supervised and unsupervised learn-
ing tasks. For supervised learning tasks, this process is known as empirical risk
minimization. Since the data is labeled in these tasks, one can define the loss func-
tion L(f(x),y) which is a measure of the error between the model prediction f(x)
and the target y for said input. Risk is defined as the expected loss over the true
distribution p over the input and output pairs (x,y),

Rtrue (f) = E
p
[L(f(x),y)] =

∫∫
p(x,y)L(f(x),y)dxdy (2)

However, the true distribution p(x,y) is unknown, and therefore needs to be ap-
proximated from the finite samples in the data set D

E
p
[L(f(x),y)] ≈ Ê[L(f(x),y)] (3)

The performance of a machine learning model depends on how well it can generalize
the trend seen from the limited samples in the data set to the entire input domain X .
This notion of generalization also holds true for unsupervised learning approaches,
where the optimal model distribution can sample the true underlying distribution
between the inputs x and outputs y and generalize to new unseen data pairs.

The family of models is usually parametrized, and choosing a specific model from the
model family usually means finding a configuration of the parameters which minim-
ize the loss function. This minimization is usually performed using an optimization
routine. Different training procedures are applied for unsupervised learning tasks.
It should also be noted that other non-parametric approaches of machine learning
do exist such as Gaussian processes [24] and Suppport Vector Machines (SVM) [22].
Although these methods are valuable in their own right, they will not be discussed
further.

The next sections detail each of these critical aspects of machine learning, where
model, loss, and training are elaborated upon. These aspects will be put together
at the end where artificial neural networks are presented.

6



2.3.1 Model

A machine learning approach to problem-solving starts with a general mathematical
model and uses data to adapt the model parameters to the problem being solved.
A model specifies the rule or hypothesis that leads from input to output that re-
produces the properties of a set of data samples. Examples of models are functions
that map certain inputs to outputs, or probability distributions that sample the
datapoints with high probability. It is common to separate between two types of
models: deterministic and probabilistic models.

Definition (Deterministic model): Let X be an input domain and Y be an output
domain for a supervised learning problem. A deterministic model is a function

y = f(x;θ) (4)

with x ∈ X ,y ∈ Y , and a set of real parameters θ = {θ1, . . . , θD} (Schuld and
Petricione, p.28 [16]).

For general parameters, f defines a model family. Additionally, some hyperpara-
meters are not included in the above formalism but are often chosen a priori. An
example is the way distance is measured in nearest neighbor classification tasks.
In these types of tasks, a new point is assigned the label of the closest point with
respect to some distance measure. Examples of such measures are absolute differ-
ence between the two points (Manhattan distance) or the absolute square difference
between the points (euclidean distance). In a deterministic model, the function f
acts like a function that maps inputs to outputs.

An example of such a deterministic model could be a simple linear regression in
which the output of the model is given by y = f(x; β0, β1) = β̃1x + β̃0 where the
values of β̃ are found by training the model to fit training data.

Conversely, a probabilistic model understands the data inputs and outputs as ran-
dom variables drawn from an underlying probability distribution p(x, y) where data
aids the model in approximating this distribution.

Definition (Probabilistic model): Let X be an input domain and Y be an output
domain for a supervised learning problem. Let X, Y be random variables which
from which samples x ∈ X , y ∈ Y are drawn, and let θ be a set of real parameters.
A probabilistic model refers to either the generative model distribution

p(x, y; θ), (5)

or the discriminative model distribution

p(y|x; θ) (6)

over the data (Schuld and Petricione, p.29 [16]).

The marginal probability p(y|x) computes the probability of all possible outputs
y given an input x. A supervised probabilistic model can also be used to form

7



𝑦 𝑦

𝑥

𝑥

Regression Classification

𝑥 𝑦?

𝑦 𝑦

𝑥

𝑥

Regression Classification

𝑥 𝑦𝑓(𝑥)

𝑦 𝑦

𝑥

𝑥

Regression Classification

𝑥 𝑦𝑓(𝑥)

𝑦 𝑦

𝑥

𝑥

Regression Classification

𝑥 𝑦𝑓(𝑥)

𝒟

&𝑦

&𝑥

&𝑥

&𝑦

Figure 2: The four steps of a supervised machine learning approach (Adapted from
Schuld and Petricione, p.31 [16]).

a deterministic model by interpreting the output of the model as deterministic.
The most common practices to form a prediction from probabilistic models given a
specific input x̃ are to either take the maximum of the distribution or the mean of
the distribution.

Mean of the distribution: ỹ =

∫
dy p(y, x̃)y (7)

Maximum a posteriori estimate: ỹ = max
y
p(y|x̃) (8)

Figure 2 illustrates how the data can turn the general model family into a model that
can perform predictions. This figure assumes that the model f(x) is deterministic.
As the upper left figure indicates, the dataset has an unknown relationship between
the datapoints (xi, yi). The first step is to choose which generic model family to fit
the data (upper right). This choice depends on the problem at hand (linear model
for the regression problem and a step-function for the classification). Training the
model means choosing a specific model (or distribution) from the model family by
tuning the parameters and hyperparameters of the model to estimate the data points
in the training-set D. Training a classification model means separating the input
space into segments of different classes. When the model is trained to fit the data,
it can be used for predicting new input variables x̃.

8



2.3.2 Cost-function

As mentioned earlier, the goal of a supervised learning task is to minimize the risk
(generalization error)

Rfθ = E [Lfθ ] =

∫
X×Y

L (fθ(x), y) p(x, y)dxdy (9)

where the integral is over all possible data pairs with p(x, y) being the true under-
lying distribution between the inputs and outputs, and the loss-function L being a
measure of how close the predictions of the models are to target labels. However,
since the true distribution is unknown, one has to minimize the empirical risk over
the M samples in the data set D as a proxy for the real risk,

R̂fθ = Ê [Lfθ ] =
1

M

M∑
m=1

L (f (xm) , ym) (10)

to choose the model family with parameters that minimize this risk

θ∗ = min
θ
R̂fθ . (11)

Optimal parameters in the empirical risk do not necessarily correspond to optimal
parameters of the true risk. This difference means that the model performs well on
data it is trained on, however for unseen instances the prediction power of the model
remains low. Merely minimizing the loss function by exactly fitting a function to
the training data leads to a phenomenon called overfitting. An overfit model suffers
from learning the residual variations (e.g. noise) in the data as if they were the
underlying structure. As a result, the model cannot create generalized predictions
to new, unseen data. To combat overfitting, a regularizer is added to the loss
function. This combination of both loss and regularizer is often referred to as the
cost function

C(θ) = loss + regularizer. (12)

As mentioned, the loss term measures how close the model predictions are to target
variables. The loss term can take different forms depending on the type of problem
that is solved. In a regression task, a typical loss function is the sum of squared
error,

Squared loss:
1

2

n∑
i=0

(f(xi)− yi)2 (13)

9



where (xi, yi) are data points from the training set used to fit the model and f(xi)
is the prediction that the model makes. This specific loss function is the sum of the
euclidean distances between predictions and labels in the training set.

Loss-functions for classifications take different forms since the outputs are discrete.
Two examples of loss-functions used in classification tasks are the hinge loss and
logistic loss functions,

Hinge loss:
n∑
i=0

max(0, 1− yif(xi)) (14)

Logistic loss:
n∑
i=0

log(1 + e−y
if(xi)) (15)

These two loss-functions use the term yif(xi) as a distance measure since it is
positive when the two numbers have the same sign and negative when they are
different. These functions are useful in binary classification, where the output is
y ∈ {−1, 1}.

There is a delicate balance between a flexible model that can predict the training
data well and an overfitted model that cannot generalize from the data. The general
term for preventing overfitted models is called regularization. There are several ways
to prevent the model from overfitting with the most common being an addition of
a regularizer -term to the cost function as done in equation 12. The regularizer
is a penalty term that constraints the choice of parameters to avoid overfitting.
Examples of regularizers are

RL1(θ) = λ||~θ||1 = λ
∑
i

|θi| (16)

RL2(θ) = λ||~θ||22 = λ
∑
i

θ2
i (17)

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

L1 norm
L2 norm
Sol. w/o regularization
Sol. w/L1 regularization
Sol. w/L2 regularization

Figure 3: Plot of a loss function and
the two regularizers, L1 (green) and
L2 (orange).

The L2 regularizer adds a penalty for the
length of the parameter vector, favoring
parameters with a small absolute value. The
L1 regularizer favors sparse parameter vec-
tors. A geometric way of interpreting this
behavior is to consider a model that de-
pends on two parameters (β1, β2). Fig-
ure 3 shows a geometric interpretation of
how these two regularizers affect the optimal
solution. The L1 regularizer gives rise to a
diamond-shaped constraint while L2 norm
gives rise to a circular constraint. Since the
optimal parameters of the loss lie outside the
constraints, the optimal parameters of the

10



cost are the intersection between the contour of the lowest loss still within the
boundary of the regularizer. For the L1 regularizer, this condition is often met at
the corners of the diamond, which gives sparse solutions as shown. The hyperpara-
meter λ regulates the regularizer’s contribution to the cost. A low λ tends to give
overfitted models.

In order to estimate the generalization performance of the model, one divides the
available dataset into three parts: training-, validation-, and test-set. The training
set is used to optimize the parameters to minimize the cost-function C(θ). The
validation set is then used to estimate the performance after training to adapt hy-
perparameters of the model (this can be the value of λ in the regularization-term in
the cost function). The test set is finally used to evaluate the model’s performance
on unseen data. The model’s performance can be estimated by calculating the cost
function on the test-set, or by using some other metric. In classification tasks, it is
common to use other metrics to estimate the performance of the model, such as

accuracy =
number of correctly classified examples

total number of examples
(18)

error = 1− accuracy =
number of incorrectly classified examples

total number of examples
(19)

Other measures such as false negatives and false positives might be more important
to minimize in certain applications. Dividing the available data into these sets gives
a way to estimate how well the model can generalize, the importance of which is
highlighted in the following subsection.

2.3.3 The Bias-variance trade-off, Double Descent, and Generalization

As mentioned earlier, training only on the particulars of the training data creates
the problem of overfitting, and hence regularization was introduced as a means to
combat this. It is possible to show that the generalization error decomposes into
three interpretable terms which shed light on how the model error typically scales
with increased model complexity. For the interested reader, a derivation of the
generalization error is presented in Appendix A. The resulting expression consists
of three terms:

Generalization error =Ex,D

[(
fD(x)− f̄(x)

)2
]

︸ ︷︷ ︸
Variance

+Ex,y
[
(ȳ(x)− y)2

]︸ ︷︷ ︸
Noise

(20)

+ Ex
[
(f̄(x)− ȳ(x))2

]︸ ︷︷ ︸
Bias2

(21)

This expression expresses that to minimize the error, two terms must be minimized
simultaneously, namely the bias and the variance of the model.

11



The first term expresses the variance, which measures the amount the model fD
would change if it was fit using different training data. Ideally, each model should
not differ significantly between training sets, hence deviations from the average
model f̄ using different datasets should be relatively low. Flexible models that fit
the data well usually give rise to high variance and are prone to overfitting since the
same model family applied on two training sets gives vastly different models.

The last term represents the expected deviation of the expected model f̄ from the
expected label ȳ. Hence this term represents the inherent error associated with the
model. Even with an infinitely sized data set, the model would still produce errors
since the model is biased towards a certain kind of solution. For instance, applying
simple linear regression to a problem where the data itself is non-linear would result
in a large error since the model is too simple to capture the underlying patterns of
the data set. Regardless of how many data points the model is given, the model’s
bias towards linear solutions would persist.

Lastly, the noise term captures the fluctuations of the labels of a newly drawn data
point to the expected value of the label given the same feature-vector x. Certain
measures can be taken to reduce the noise by for instance increasing the number
of features of the model to capture more dimensions of the underlying distribution,
hence reducing the uncertainty of a given data point. However, it is generally
assumed that errors are irreducible after a certain point.

Although simplifying assumptions like the squared loss and regression were made in
the above derivation, it has been widely understood in statistical learning that this
trend generally holds for most models. As a rule of thumb, more flexible methods
generally give rise to high variance as they fit the training data well and these
models have a low bias as they can capture complex trends in the data. Herein
lies the trade-off. If the model is too simplistic/rigid, it cannot capture the trend
of the underlying data distribution; the model is underfitting. On the other hand,
if the model is too flexible, it will fit the data points of the training set very well,
essentially fitting noise as part of the model; the model is overfitting. This trade-off
generally gives rise to a U-shaped curve as shown in the left part of figure 4. As
shown, the training error monotonically decreases with increasing model complexity
since complex models can interpolate all the points in the dataset. However, the
test error (generalization error) increases after a certain point as the model starts
to overfit.

However, recent trends in deep learning seem to challenge this well-established trend
in machine learning. Particularly, trends in deep learning suggest that once the
complexity of the method reaches an interpolation threshold, the test error starts to
decrease, often going beyond the lowest test error achievable from the bias-variance
trade-off as illustrated in figure 4. The name interpolation threshold comes from the
fact that the model is essentially interpolating all training data, hence the training
error is zero. This observed phenomenon has been referred to as double descent,
and little is known about its mechanisms. Belkin et al. [25] note that the traditional
way of viewing a model family is flawed and that increasing the model complexity
does not necessarily translate into increased variance with respect to fitting the
underlying bias of the data. Instead, a more appropriate bias for the model is to

12



Er
ro

r

Er
ro

r

Complexity of F Complexity of F

Underfit Overfit Test Error

Training Error

Under-parametrized Over-parametrized

Training Error Test Error

«Modern»

interpolating regime

«Classical»

 regime

Interpolation tresholdSweet-spot

Figure 4: An illustration from the findings by Belkin et al. [25]. The left image
represents the regime in which the U shape of bias-vairance trade-off operates. The
right graph shows the double desecent phenomena wherein after an interpolation
threshold is reached, the model generalizes increasingly well (Adapted from Belkin
et al. [25]).

consider the smoothness of the function made from the model.

To illustrate the concept, consider a simple spline regression problem. At the in-
terpolation threshold there is only one specific interpolating polynomial (of degree
equal N − 1 where N is the number of points in the training data set) capable of
interpolating all points. Therefore, the model cannot generalize well, resulting in
the spike seen at the threshold. As the polynomial order increases, there are in-
finitely many solutions at each order that still interpolate all the points. Choosing
the minimum norm solution yields a smooth behaving function that does not wildly
oscillate, a form of Occam’s razor since the simplest solution (least norm) is used to
explain the trend in all the data points. Using this as a measure of model complex-
ity, it is evident that the variance of a minimum norm spline regression decreases
with an increase in degree.

Specifically, in deep learning, it is found that when training deep, overparametrized
neural networks with stochastic gradient descent, the optimized parameters are very
close to the random initial parameters. This indicates that the training routine
chooses within a very limited subset of all possible models within a model family.
Neglecting training and data as part of the model complexity, which effectively acts
like a regularizer term, gives a misguided estimate of model complexity. It should
also be noted that not all machine learning algorithms show this double descent
trend, especially if a regularizer term is already built into the cost function.

2.4 Optimization

Most cost functions are non-convex and are therefore hard to optimize. As a res-
ult, most optimization algorithms rely on some form of an iterative search such as
stochastic gradient descent. This method performs a stepwise search for the min-
imum cost on batches of data. Gradient descent updates the parameters θ of a cost
function C(θ) iteratively towards the direction of steepest descent,

13



θ(t+1) = θ(t) − η∇C(θ(t)) (22)

Each step is taken in the decreasing-cost direction. η is the learning rate that
quantifies how large each step is. The problem with gradient descent is that it gets
stuck in local minima (suboptimal solutions to the cost function) and becomes very
slow at saddlepoints since the gradient becomes vanishingly small.

Stochastic gradient descent (SGD) uses the same procedure as regular gradient des-
cent. However, rather than calculating the gradient using the entire dataset at each
iteration, SGD approximates the gradient using a randomly selected batch of the
dataset. The stochastic version has some favorable properties. Firstly, the compu-
tation needed to perform one iteration of the algorithm is smaller (which becomes
significant with increasing datasets). Second, the gradient direction’s stochastic
nature helps escape local minima since the cost landscape is altered when using
different points since the cost function itself is data-dependent.

Additional complexities can be added to the SGD-based optimizers to increase per-
formance. For instance, the Adam (Adaptive Moment Estimation) [26] optimizer
is a famous optimizer widely used in deep learning that incorporates dynamically
changing learning rates and incorporates momentum. Momentum is a feature for
optimizers where the parameters’ change depends on the previous steps’ changes.

In practice, one usually has iterative runs in which one trains the algorithms on the
training data and tests the model on the test set. This iterative approach allows
for the continuous monitoring of the generalization error during optimization, which
means that one can truncate the training procedure once the model starts to fit the
particulars of the training set. The abovementioned methods rely primarily on the
gradient when navigating the cost landscape. However, when the cost function is
difficult to evaluate or no gradient-functions are available, one must rely on gradient-
free optimization procedures. In the following two subsections, the gradient-free
optimizers Nelder-Mead and SPSA are presented in more detail as they have been
widely used in the thesis.

2.4.1 Nelder-Mead

Nelder-mead is a direct search method for finding a minimum or maximum of a
multi-dimensional function. Rather than evaluating the gradient to navigate the
landscape, direct search methods use function evaluations in a point’s vicinity to
determine the direction of increasing/decreasing cost. Search methods work well,
but are not guaranteed to converge.

The Nelder-Mead method method uses simplexes to navigate the cost landscape. A
simplex is a shape that consist of n + 1 vertices in n dimensions. For instance, in
two dimensions the simplex is a triangle while in three dimension it is a tetrahedron.
The method begins with selecting three arbitrary points (in 2D) to form a simplex.
From there the method performs a set of steps until a convergence criteria is met.

14



u

w v

Sort

u

w v

r

e

Extend

u

w v

r

Reflect

u

w v

r

ci

co

Contract Shrink

u

w v

w′￼ v′￼

Figure 5: A schematic overview of the different steps in the Nelder-Mead procedure

These steps are sort, reflect, extend, contract and shrink. In order to demonstrate
the method, these steps will be elaborated on in a two-dimensional function f(x, y)
where one wishes to find a local minima of this function.

The method starts with picking three points, u, v, w according to their function value
where u is the best point while w is the worst point. In other words,

f(u) < f(v) < f(w) (23)

Once this sorting has been established, one attempts to replace the worst point w
with a better one. This is done by reflecting the point w through the line that
connects the other two points u and v as shown in figure 5. In general, the reflection
is performed through the centroid of the remaining points. Now, if f(u) < f(r) <
f(v), then w is replaced by r and the next iteration uses the points u, v, r to form
the new simplex. If the reflected point r is also better than u one anticipates that
this direction is one of decreasing cost. Hence a greedy extension in the direction
through r is performed to the point e as shown in figure 5. If f(e) < f(r), one
replaces w with e, while if f(r) < f(e), the point r is chosen instead.

Now, if the reflected point r is worse than both u and v and one were to accept
the point, the procedure would end up in a loop since the worst point of the next
iteration would again be w. Define instead points ci and co as the halfway points
along the reflected lines where ci is 1/4 between w and r while co is 3/4. If either
of these points perform better than the point v, w is replaced by the better point.
Lastly, if neither of the contracted points outperforms v, the new simplex is shrunk
towards the best performing point u, where the points v, w are moved halfway along
the lines that link them to the point u. At all these steps where a different point could
be chosen, the convergence is checked along some predefined convergence criteria.

2.4.2 Simultaneous Perturbation Stochastic Approximation (SPSA)

SPSA [27] is a gradient-free black box optimization procedure for multivariate func-
tions. As with general non-gradient based methods, this optimization procedure is
utilized when calculating the gradient is either not possible or costly. The SPSA
optimization routine stochastically approximates the gradient using a perturbation
vector ∆ = [∆1,∆2, . . . ,∆p]

T and calculates the gradient, gk(θk), using only two
function evaluations

15



gk (θk) =
y (θk + ck∆k)− y (θk − ck∆k)

2ck


∆−1
k1

∆−1
k2
...

∆−1
kp

 . (24)

This approximated gradient contrasts the 2p shifts used for a finite difference ap-
proximation for a parameter-vector of p parameters. The perturbation vector is
randomly generated at each step, with the components generated from a zero-mean
distribution. Very commonly the components are sampled from the Bernoulli dis-
tribution and hence each parameter is simultaneously perturbed by either ±ck. The
update rule is similar to that of SGD, namely

θk+1 = θk − akgk(θk) (25)

ak =
a

(A+ k + 1)α
, ck =

c

(k + 1)γ
(26)

however in contrast to SGD, the step size continually decreases with each iteration
k. The performance of this optimization procedure heavily depends on five free
hyperparameters a, c, α, γ, A. Spall [27] provides some guidelines to choosing these
hyperparameters, namely that α = 0.101, γ = 0.602 and that A should be roughly
10% of the total number of iterations used in the procedure. The remaining two
parameters must be chosen based on the problem the procedure is being applied to.
a essentially acts like the learning rate while c is the scaling of the random shift.

SPSA is often applied to noisy optimization problems because of the stochastic
perturbation vector. Since each parameter is already being perturbed, additional
shifts from noise has less of an effect.

To summarize, a general method in machine learning specifies a general model fam-
ily of functions (deterministic) or distributions (probabilistic) which is useful for the
prediction of new inputs. Additionally, a training strategy is needed to use the data
to construct a specific model which can generalize from the given training data. The
overarching goal of the learning algorithm is to minimize the generalization error,
which is the error made on new data instances. All machine learning algorithms fol-
low these general underlying steps, however, some nuances differentiate the machine
learning methods. The methods most relevant for quantum machine learning can
be separated into four categories: data fitting, artificial neural networks, graphical
models, and kernel methods. Rather than introducing all these methods, this thesis
will reduce the scope to neural networks.

16



2.5 Artificial Neural Networks

Artificial neural networks can be seen as a non-linear model in which an input vector
is processed through layers of different non-linear transformations. This model has
its inspiration from biology in which information is fed to the brain through layers
of firing neurons. The basic building-block of neural networks are often referred to
as perceptrons and are given by

ϕ(x) =

{
1, if wx ≥ b

−1, else
(27)

where w is a vector of trainable weights and b is the bias. The bias term shifts the
decision boundary from the origin. Once this threshold is reached, the perceptron
”fires”. Mathematically, the perceptron is a linear classifier that classifies inputs
into a class of outputs based on an activation function.

Neural networks are often referred to as multi-layer perceptrons. In these models,
the output from one perceptron is the input to another. Individual neurons may have
different non-linear activation functions that cause them to fire differently from the
non-linear activation function of the original perceptron. There are multiple types
of neural networks, some common ones being feedforward neural networks, recurrent
neural networks, and Boltzmann machines.

2.5.1 Feedforward Neural Networks

Feedforward neural networks are deterministic models, and their general form is
given by (with bias term included in Wi)

f(x,W1,W2, . . . ) = φN(WNφN−1(. . . φ2(W2φ1(W1x))). (28)

Each layer in a feedforward neural network is associated with a vector wherein each
vector element represents a node in that layer. There are three different types of
layers: an input layer, an output layer, and hidden layers. The input layer x consists
of decoding data into the features that are used in the model. This layer is connected
to the first of L hidden layers, hl where l ∈ {1, . . . , L}. These hidden layers are used
for finding patterns in the training data, and each hidden layer is associated with
different activation functions φi(x). The activation function is applied element-wise.
Examples of widely used activation functions are tanh(x), ReLU and the sigmoid
function,

ReLU : ϕ(x) =

{
a if x > 0
0 else.

, Sigmoid : ϕ(x) =
1

1 + e−x
(29)

17



y0

yK

Output layer

⋮

⋮

yj = ϕ2(z(2)
j )

z(2)
j = Ωjh

y = ϕ2(z(2)),
z(2) = Ωh

yj

x0

xa

xN

Input Layer

⋮

⋮

x

1

ωij

h0

hJ

hi

hb

⋮

⋮

⋮

hi = ϕ1(z(1)
i )

z(1)
i = Wix

Hidden layer
h = ϕ1(z(1)),
z(1) = Wx

1

wab

Figure 6: A neural network with one hidden layer. The illustration also includes how
a unit processes information from the previous layer, and is highlighted in nodes hi
and yj. The notation for the variables is described in the backpropagation section
(Adapted from Schuld and Petricione, p.53 [16]).

The last hidden layer hl is connected to the output layer which returns a vector y.
This vector is typically associated with a classification in which each element is the
probability of a certain classification. The largest element is commonly assumed to
be the prediction of the model.

A node in one layer is linearly dependent on all the nodes from the previous layer,
but the contribution from each of the previous layers’ nodes is weighted differently.
This can be represented by an edge in the neural network, as shown in figure 6 with
varying weights. This linear dependence between one node and the previous layer
can be represented by a matrix Wi, where each element wab signifies the weight of
node b in the previous layer’s contribution to node a in the current layer. Addition-
ally, by attaching a column vector at the end of the weight matrices and including
a node at each layer set to the value 1, one may include terms often referred to as
biases. These trainable constants do not couple to the nodes in the previous layer.
The non-linearity of these architectures comes from the fact that the output from
the node undergoes the non-linear activation function. Therefore, the output from
one layer is ai = φ(Wai−1) where ai denotes a layer. Recursively performing this
procedure from the output layer until the input-layer results in equation 28.

2.5.2 Backpropagation

The trainable parameters of the models are the weights of the matrices that connect
two layers. Training these parameters are done using gradient descent methods;
therefore the gradient of the loss function with respect to each weight has to be
calculated. These weights are computed using the chain rule. Backpropagation

18



is efficient because one avoids redundant calculations of intermediate terms in the
chain rule. This redundancy is avoided by starting from the outer-most layer and
computing the gradient iteratively backward. To see how calculating the gradient
backward layer by layer reduces the needed calculations, consider the following.

Consider a neural network with a N -dimensional input-layer, one J-dimensional
hidden layer, and a K-dimensional output layer. Connecting the input and hidden
layers is the weight matrix W1 = W = RJ×N while the hidden layer and output
layer is connected by W2 = Ω = RK×J . Each element of these matrices is given by
wij and ωij. These matrix elements connect node i in the current layer to node j
in the right neighboring layer. Additionally, Wk and Ωk describe the k-th row of
these matrices. z

(1)
k = Wkx and z

(2)
j = Ωjh describe the linear dependence between

the k-th node in a layer and all the nodes in the previous layer. Figure 6 shows
a schematic view of this neural network with the relevant variables. In order to
perform gradient descent to update each of the weights, two derivatives are needed,
namely ∂C

∂ωij
and ∂C

∂wij
for each of the matrices Ω and W respectively. In figure 6

the indices are separated between ab and ij to show that these sets of indices are
independent. The derivatives can be calculated using the chain rule as follows:

∂C

∂ωij
=
∂C

∂yj

∂yj

∂z
(2)
j︸ ︷︷ ︸

φ′2(z
(2)
j )

∂z
(2)
j

∂ωij︸ ︷︷ ︸
hi

= δybhi (30)

As evident by the expression, updating a single hidden-to-output layer weight ωij
requires the gradients of the output unit yj that it leads to. Similarly, the derivative
of the cost with respect to the weights between the input and hidden layer is given
by

∂C

∂wab
=

K∑
k=1

∂C

∂yk

∂yk

∂z
(2)
k︸ ︷︷ ︸

δyk

∂z
(2)
k

∂hb︸ ︷︷ ︸
ωbk

∂hb

∂z
(1)
b︸ ︷︷ ︸

φ′1(z
(1)
b )

∂z
(1)
b

∂wab︸ ︷︷ ︸
xa

(31)

=

(
K∑
k=1

δykωbk

)
φ′1(z

(1)
b )︸ ︷︷ ︸

δhb

xa (32)

= δhbxa (33)

Updating the input-to-hidden layer weight requires the gradient of all output units
(
∑K

k=1 δykωbk) and the hidden unit it leads to (φ′1(z
(1)
b )). An important notion in

this expression is the sum over the K nodes in the output layer. This is because
all the nodes in the output layer depend on hb, so a small change in this specific
node would generally propagate to all the nodes connected to it. Including more
hidden layers is simple; let the sum run over all nodes in all layers in front of the

19



layer the weight leads to. The method is called backpropagation since the error
terms, δ, are propagated backward in the neural network to calculate the derivat-
ives. Backpropagation employs dynamical programming since the nodes’ derivative
within a layer depends on the errors of the layers in front of it. Note also that the
weight derivatives have the same dimensions as the weight matrix. Therefore, the
computations in backpropagation are highly parallelizable and widely used in deep
neural networks.

Classical post-processing of measurements from quantum hardware using Neural
Networks has shown great promise, primarily because of the efficiency of back-
propagation. Particularly, it is found that training these classical models is signi-
ficantly easier than training quantum models; the reason why will be elaborated on
in section 4. This interplay between Neural Networks and VQAs will be explored
in section 7. However, an introduction to quantum machine learning is needed to
understand VQAs and their parallels to machine learning.

20





3 Quantum Machine Learning

Type of Algorithm

Ty
pe

 o
f D

at
a CC CQ

QC QQ

Classical Quantum

Q
ua

nt
um

C
la

ss
ic

al

Figure 7: The four combinations
of quantum computing and machine
learning. The first letter stands for
the type of system while the second
letter represents the information pro-
cessing device (Adapted from Schuld
and Petruccione, p.6 [16]).

The term Quantum Machine Learning has
no definite definition. It is often widely
used as an umbrella term for comput-
ing methods that utilize some form of
both quantum resources and traditional
machine learning approaches. Schuld and
Petruccione [16] divides the field into four
categories based on how the data is gen-
erated (classical or quantum) and how
the information is processed (classical or
quantum). This separation is presented in
figure 7. Since both the field of quantum
computing and machine learning are in
development, this framework is not rig-
orous and labeling all aspects of the in-
terplay between the disciplines is difficult.
Therefore, this framework is primarily a
guide that indicates aspects of the inter-
play rather than a rigorous definition that
consistently applies to all quantum ma-
chine learning models. Confusion arises primarily when the differentiation between
quantum and classical becomes blurry.

Classical data refers to data that can be represented on a classical computer while
quantum data traditionally refers to data that is inherently quantum, like a quantum
state. Confusion in the labeling of data as quantum or classical arises when consider-
ing a data-generating device that is quantum, like a molecule. If the exact quantum
state of the molecule is the input to some other processing device, the input data
would be labeled quantum. However, if repeated measurements are performed on
the molecule which was then processed, one may argue that this is classical data
since measurement outputs from a quantum computer is a bitstring. At that point,
the quantum state is essentially viewed as an underlying probability distribution
from which classical sampling procedures are performed.

Classical algorithms refer to machine learning approaches computed on classical
hardware while quantum algorithms are those performed on quantum hardware.
Processing is inherently different on quantum hardware as the properties of en-
tanglement and superposition from quantum mechanics introduce novel methods
unavailable through classical machine learning methods. Although the differenti-
ation between quantum and classical algorithms is fairly straightforward, confusion
arises in hybrid computational models. In these models, the outputs of a quantum
procedure are the input to a classical machine learning routine or vice versa. As a
result, it is difficult to label the entire processing device as one or the other.

This master thesis explores the QC interplay further. In particular, optimization
routines applied in classical machine learning will aid in training a type of quantum

21



1 Conclusion

|0i

S(x) U(✓1) U(✓2)

· · ·

U(✓n) M
|0i · · ·

...
...

...
...

...
...

|0i · · ·

1

O
ptim

ization

minθ ⟨C(θ)⟩

Variational parameters

θ = (θ1, θ2, …, θn)

Embedding strategy Variational Circuit Ansatz Measurement 

procedure

Figure 8: The three parts of a general variational circuit. The structure starts with
embedding classical information into a quantum state performed by a unitary S(x).
The state evolution is conducted using a series of unitaries, which are variational for
VQAs. Lastly, measurements are conducted, which may involve the transformation
of eigenbasis. In the case of a variational circuit, a classical optimization procedure
is used to find the optimal parameter that minimizes some cost function.

algorithm called Variational Quantum Algorithms (VQA). This paper labels this
interplay QC because a variational circuit is used to evolve a quantum state, from
which computational basis measurements are sampled. These measurements are
the inputs to a classical optimizer that optimizes the variational parameters of the
quantum circuit, which creates a feedback loop as shown in figure 8. In order
to incorporate the notion that VQAs use quantum processing of information, the
paper labels this interplay as QC and not CC, even though the information into the
classical processing device is inherently classical as alluded to earlier. Additionally,
Schuld (2021, p.8) [16] refers to the QC intersection as ”how machine learning can
help quantum computing” which reflects this work’s use of machine learning best.
This interplay will be explored further by post-processing the measurement data
using a classical neural network, elaborated on in section 7.

A general quantum routine consists of three parts: state initialization, state prepara-
tion, and measurements as shown in figure 8. These three processes are different de-
pending on the problem definition and how the algorithm is structured. For instance,
state initialization may involve simple routines such as initializing the |+〉⊗N state
(|+〉 is one of the eigenstates of the Pauli X matrix), as is the case in certain VQAs,
or may require the embedding of classical data into quantum states. Examples of
embedding strategies are presented in section 3.2. The solutions to problems are
also different, primarily reflected in the measurement procedure. Consider for in-
stance solving combinatorial optimization problems on quantum hardware. These
problems require repeated measurements of the prepared quantum state in the com-
putational basis, i.e the eigenbasis of the Pauli Z operator. On the other hand,
chemistry problems may require the measurement of some arbitrary Hamiltonian.
How the measurement of arbitrary Hamiltonians is performed in a mathematical
sense is presented in section 3.3.

22



The most differentiating factor between different types of quantum routines is the
preparation of the quantum state, which is a unitary evolution of the initial state
through a quantum circuit. Long-term quantum algorithms such as Shor’s al-
gorithm [5], Grover search [28], and the Quantum Fourier Transform [29], employ
gates that remain fixed in their structure. In contrast, the near term algorithms
primarily employ parametrized circuits in which parameters of the gates are varied.
This project assignment examines algorithms involving circuits of the latter type.
This section starts by presenting the general structure of VQAs.

3.1 Variational Quantum Algorithms (VQA)

Variational Quantum Algorithms is a class of hybrid quantum-classical algorithms.
The quantum computer prepares a quantum state with variational parameters, while
the classical computer optimizes the parameters to minimize some cost function.
This hybrid approach directly addresses some of the issues present in NISQ devices.
Since the optimization of the parameters is offloaded to the classical computer,
short variational circuits are still capable of exploring sizable parts of the Hilbert
space. Instead of running long circuits, this iterative approach instead runs short
circuits several times, exploiting the qubits’ short decoherence times and limiting
the gate-induced noise of larger circuits. Other hardware limitations, such as limited
qubit connectivity, are also considered when designing the structure of the quantum
circuits.

The inputs of a VQA are a training set, a cost function, and an ansatz. The cost-
function, C(θ) encodes the problem’s solution based on the problem description and
the available training data. The ansatz is a quantum circuit that contains a set of
parametrized gates. These parameters are trained to minimize the cost. The training
of these parameters (using training data) is performed in a quantum-classical hybrid
loop to solve the optimization task.

In essence, the goal of a VQA is similar to the machine-learning approaches men-
tioned earlier in this paper. Both attempt to find a set of parameters through
learning-based approaches which minimize some cost,

θ∗ = arg min
θ

C(θ)) (34)

This quantum-classical hybrid loop consists of two parts. The first part evaluates
the cost function (or its gradients) on quantum hardware. This involves preparing
a variational state |ψ〉 = U(θ)|ψ0〉 based on a circuit ansatz and performing meas-
urements of this prepared state. This information is used in a classical optimization
routine for training to gradually approach a smaller cost corresponding to a bet-
ter solution to the problem. The output of the VQA is task-dependent, which is
reflected by the cost function.

23



3.1.1 Cost function

The cost function in VQA is similar to those introduced in the machine learning
part of the thesis. Mapping the trainable parameters to real-valued costs creates
a hypersurface (cost landscape) as a function of the trainable parameters θ. The
classical optimizer navigates this landscape to find the global minimum.

The cost function should be faithful, efficiently estimatable, operationally meaning-
ful, and trainable. In short, this means that the optimal solution of the cost function
should reflect the desired solution to the problem and that smaller cost values reflect
a better solution. Additionally one should be able to efficiently estimate the cost
function on a quantum computer through measurements (preferably not efficiently
computable on a classical computer) and some classical post-processing. Lastly, the
cost should be trainable to optimize the circuit parameters θ.

Due to the faithful nature of the cost function, different problems have different cost
functions. The standard choice of the cost function is the one used in Variational
Quantum Eigensolvers (VQE). This particular VQA is widely used in chemistry and
condensed matter applications to find the ground state energy and state. The cost
function of these circuits is

C(θ) = 〈ψ(θ)|H|ψ(θ)〉, |ψ(θ)〉 = MU(θ)S(x)|ψ0〉 (35)

where |ψ0〉 is an easily initializable state (usually |0〉⊗N), S(x) is a circuit that
encodes classical information into a quantum state, U(θ) is a variational circuit
which evolves this state and H is the Hamiltonian of the problem which is to be
solved. Measuring a Hamiltonian on quantum hardware requires a change of basis,
represented by the unitary M . A visual representation of this total unitary evolution
was presented earlier in figure 8. Although the trainability of this cost function is
dependent on the depth of the circuit, notice that this cost function realizes the four
above criteria of a cost function. This is due to the variational method of quantum
mechanics, namely 〈Ψ|H|Ψ〉〈Ψ|Ψ〉 ≥ E0 where E0 is the ground state energy and |Ψ〉 is an
unknown wavefunction.

Alternatively, the expectation value can be post-processed as input to another func-
tion. For instance, some research has been proposed to create supervised quantum
machine learning models for classification tasks [30], inspired by the supervised ma-
chine learning models mentioned earlier. A natural extension of the squared loss
function to include a quantum observable would be the following cost:

C(θ) =
∑
i

[y(i) − 〈ψ0|S†(x(i))U †(θ)M †HMU(θ)S(x(i))|ψ0〉]2. (36)

As before, the pair (x(i), y(i)) represents pairs of data points from the classical train-
ing set. As seen from both these cost functions, the result of the algorithm is de-
pendent on the embedding of classical information into quantum states through the

24



unitary transformation S(x), the measurement procedure M to perform measure-
ment of an observable H and the state evolution U(θ). In the remaining subsections,
detailed explanations of each aspect of a general VQA will be provided, starting with
encoding classical data into quantum states.

3.2 Encoding Strategies

As in machine learning algorithms, it is crucial to get a representation of the data
that will be trained on. There are multiple ways of encoding classical data into a
quantum state. Different strategies give different properties of the quantum state,
and different algorithms use different strategies. This section will give a brief over-
view of basis and amplitude encoding.

3.2.1 Basis Encoding

Basis encoding is an encoding strategy where one encodes binary information into
an n-qubit computational basis state. For example, encoding the number 5 into a 3-
qubit quantum state would result in the state |101〉. In many ways, the amplitude of
the basis encoded state carries with it information about the output of an algorithm.
For instance, if the absolute square of the |101〉 amplitude, |α101|2, is larger than 0.5,
then repeated circuit measurements will sample this state with higher probability
than the rest of the states. In this case, 101 would be interpreted as the algorithm’s
output. A critical element of basis encoded algorithms is increasing the probability
of measuring the basis states corresponding to correct solutions to a problem.

The positive aspect of this encoding strategy is that all classical systems encode
information in binary, hence encoding information merely initializes qubits in the
needed bit configuration. However, in contrast to amplitude encoding strategies,
this strategy requires the same number of qubits as the classical bits-representation
of information.

3.2.2 Amplitude encoding

This strategy is about encoding the information of a classically normalized vector
or matrix into the amplitudes of the quantum state vector,

x =

 x1
...
x2n

↔ |ψx〉 =
2n∑
j=1

xj|j〉,
∑
k

|xk|2 = 1 (37)

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

↔ |ψA〉 =
2m∑
i=1

2n∑
j=1

aij|i〉|j〉,
∑
ij

|aij|2 = 1 (38)

25



where the index registers |i〉|j〉 corresponds to the ith row and jth column of the
matrix A. Fixing one of these registers can address the row or column of the matrix.
If A is a Hermitian positive trace-1 matrix, one can associate A’s entries with the
density matrix entries so that aij = ρij.

This type of encoding is more qubit efficient than basis encoding. It is easier to
see why by working through an example. Consider the embedding of the classical
number 15 into a quantum state. Converting 15 into a 4-bit binary number gives
1111. If the number was basis encoded, the corresponding state would be the 4-qubit
state |1111〉.

In amplitude encoding one operates with an amplitude vector, which for a 2-qubit
state would be α = [α00, α01, α10, α11] which represents the state

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉. (39)

The superposition of computational basis states is also a valid state, so given that the
amplitudes are normalized, this is a valid quantum state. Now, to encode the binary
string 1111 into a quantum state, one first normalizes it and assigns the elements
of the amplitude vector equal to the normalized string. Hence, α = 1

2
[1, 1, 1, 1] and

gives the resulting state

|ψ〉 =
1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉. (40)

With three qubits there are 8 elements in the amplitude vector, with four qubits
there are 16 elements in the vector and with five there are 32. A superposition
of computational basis state is also a valid quantum state. As a result, the qubit
requirement for preparing a state scales logarithmically in the bits needed to clas-
sically represent the same state. So a classical vector with N entries can be encoded
in log2(N) number of qubits.

However, even though this encoding procedure results in an exponentially smaller
representation of classical information, it is not widely used in quantum algorithms
since encoding information into a probabilistic description of a quantum system
poses limitations on the possible executions. In particular, it is impossible to per-
form a nonlinear map of the amplitudes using only unitaries since nonlinear operators
would violate fundamental principles of quantum mechanics. Additionally, initializ-
ing such a state is costly; hence, this encoding strategy is not viable for near-term
applications.

Conclusively, note that when employing these different encoding strategies the cir-
cuit needed to embed classical information into quantum states can become large.
Therefore, the encoding procedure must be considered when QML algorithms’ runtime
is studied. In contrast, traditional machine learning algorithms do not consider data
representation and embedding a part of the runtime. Most algorithms for near-term

26



applications rely on basis encoding since circuits for other embedding strategies be-
come too deep for NISQ devices. Unless specified, the encoding strategy used in the
remainder of the thesis will be basis encoding. Table 1 gives an overview of other
possible encoding strategies that provide different properties which may be useful
for different purposes.

3.3 Quantum Measurement

One of the postulates of quantum mechanics states that a measurement of a quantum
state collapses the wave function into an eigenstate of the observable and one meas-
ures the corresponding eigenvalue of the operator. Although different methods are
possible, qubits were traditionally made using electron spin, where spin up and down
gives rise to a two-level state used to perform computations. The spin up and down
states are the eigenbases of the Pauli Z operator,

Z =

(
1 0
0 −1

)
. (41)

Measuring the observable Z on the state |ψ〉 = α|0〉 + β|1〉 leaves two possibilities:
measure the eigenvalue 1 with probability |α|2 or -1 with probability |β|2. Here
|0〉 and |1〉 are the eigenvectors of the Z matrix. Practical limitations of quantum
hardware only restrict measurements in the Pauli Z basis, hence a measurement
outcome in the computational basis is a bit string of 0 and 1. If other observables

Classical data Properties Quantum State

Basis encoding

(b1, . . . , bd), bi ∈ {0, 1} b encodes x ∈ RN in binary |x〉 = |b1, . . . , bd〉
Amplitude encoding

x ∈ R2n
∑2n

i=1 |xi|2 = 1 |ψx〉 =
∑2n

i=1 xi|i〉
A ∈ R2n×2n

∑2n

i=1

∑2n

j=1 |aij|2 = 1 |ψA〉 =
∑2n

i=1

∑2n

j=1 aij|i〉|j〉
A ∈ R2n×2n

∑2n

i=1 aii = 1, aij = a∗ji ρA =
∑

ij aij|i〉〈j|
Qsample encoding

p(x), x ∈ {0, 1}⊗n ∑
x p(x) = 1

∑
x

√
p(x)|x〉

Dynamic encoding

A ∈ R2n×2n A is unitary UA with UA = A

A ∈ R2n×2n A is hermitian HA with HA = A

A ∈ R2n×2n - HÃ with Ã =

(
0 A

A† 0

)

Table 1: A short summary of how different types of classical data can be encoded
into a quantum state (Adapted from Schuld and Petruccione, p.109 [16]).

27



are to be measured, a unitary transformation must be applied to the qubits prior
to measurements that map measurements in the computational basis into measure-
ments in the basis of the observable. If the hardware supports measurements in the
computational basis {|k〉}, but a measurement in the basis {|φk〉} is needed, the
general unitary transformation

M =
∑
k

|k〉〈φk| (42)

can map from the computational basis into the desired basis. This means that meas-
uring M |ψ〉 in a particular computational basis state |j〉 is equivalent to measuring
|ψ〉 in the {|φk〉} basis:

∣∣〈j|M |ψ〉∣∣2 =
∣∣∑

k

〈j|k〉〈φk|ψ〉
∣∣2 =

∣∣〈φj|ψ〉∣∣2 (43)

For a single qubit, this transformation can be interpreted as rotating the Bloch-
sphere so the observable’s eigenvectors align with the z-axis. For general multi-qubit
systems, a measurement is performed by rotating the eigenvectors of the operator
to align with the standard Z-basis vectors. Therefore, this means that measuring in
the Z-basis collapses the qubit-state onto eigenvectors of the operator of interest.

Measuring the eigenvalues of any arbitrary Hamiltonian (which is often the case in
quantum machine learning) by creating the above unitary using circuits is either
intractable or requires circuits of high depth. Therefore, it is standard practice to
decompose the Hamiltonian of interest into a series of Pauli strings,

HP =
∑
i

Pi, Pi = {X, Y, Z, I}⊗N (44)

〈Hp〉 =
∑
i

〈Pi〉 (45)

Pauli strings are essentially concatenated Pauli-matrices across multiple qubits (math-
ematically a Pauli string is a tensor product of multiple Pauli-matrices), where the
remaining two Pauli matrices X, Y are given by

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, I =

(
1 0
0 1

)
(46)

The eigenvectors of X are usually referred to as |+〉 and |−〉. On the Bloch-sphere,
these vectors lie along the X-axis. Similarly, the eigenvectors of Y lie along the Y
direction on the Bloch-sphere and are notated with the vectors |i〉 and | − i〉. To

28



measure the X, Y bases, the Bloch sphere has to be rotated such that these axes
align with the Z axis. Two gates, the Hadamard (H)- and the S-gates, are needed
for these transformations which are given by

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
(47)

Through explicit matrix multiplication it can be readily shown that

HZH = X, SHZHS† = Y (48)

Hence, from these expressions, it is evident that measuring in the Z basis after the
unitary transformations H,HS† will result in measurements of the X, Y observ-
ables respectively. Because of these simple transformations, Pauli strings are widely
used in VQAs since it exchanges having too many gates with having many meas-
urements. Although the number of measurements might pose practical limitations
on the computations, Gokhale et al. [31] show that by exploiting commutative rela-
tionships between Pauli strings it is possible to perform simultaneous measurements
of Pauli strings. Appendix B presents this algorithm for the interested reader. This
algorithm has practical importance for VQE applications of finding the ground state
energy of a problem Hamiltonian. The problems in the master thesis are of diagonal
Hamiltonians; hence, this procedure is unnecessary.

With encoding strategies and measurement procedures described, the most crucial
aspect of VQAs remain, namely the unitary evolution of a quantum state, U(θ).
The unitary evolution follows a fixed circuit structure with variational parameters.
These circuit structures are referred to as circuit ansätze and are the topic of the
next section.

3.4 Circuit Ansatz

Different VQAs use different sequences of gates to evolve the initial state into a
final state used for measurements. The circuit ansatz defines the base structure of
the gates to be applied, wherein some of the gates are associated with variational
parameters while others are not. As a result, the number of changeable parameters
θ in the variational quantum model is heavily dependent on the choice of circuit
ansatz. As with Neural Networks there is ”no one size fits all”-type of circuit ansatz,
as all ansätze have their strengths and weaknesses. The general form of an ansatz
is a sequence of L applied unitaries

U(θ) = UL(θL) · · ·U2(θ2)U1(θ1) (49)

Ul(θl) = Πme
−iθmHmWm (50)

29



Each Ul is a unitary layer consisting of a sub-routine of m gates that are either
parametrized (e−iθmHm) with Hm being a Hermitian operator or unparametrized
(Wm). The circuit ansätze come in two overarching forms: Problem-specific and
Problem-Agnostic ansätze. Problem-specific ansätze use the problem’s structure to
tailor the ansatz, while problem-agnostic ansätze consider no aspects of the problem
in their design.

3.4.1 Problem-agnostic ansätze

Hardware-efficient ansätze: Problem-agnostic ansätze are ansätze that are con-
structed using no information about the problem Hamiltonian. Restrictions in
quantum hardware, such as limited qubit connectivity and multi-qubit gates, form
the design of these ansätze. For instance, if the quantum hardware only allows for
two-qubit gates and only nearest-neighbor interactions, only certain entanglement
procedures are possible. This restriction limits the applicable quantum gates to
three-qubit gates between the qubits’ nearest neighbors. Advantages with these
types of circuits are that Hamiltonians with similar structures to the device interac-
tions can be readily studied. Also, since these ansätze are designed with the device
structure in mind, it avoids some of the overhead needed to translate an arbitrarily
designed circuit to the implementable gates on hardware. Since these ansätze use
no information about the Hamiltonian of the problem, these types of ansätze can
be applied to various problems.

3.4.2 Problem-specific ansätze

Unitary coupled-cluster ansatz: This ansatz is used in quantum chemistry prob-
lems to obtain the ground state of a fermionic molecular Hamiltonian H. The ansatz
takes the form

eT (θ)−T (θ)†|ψ0〉, (51)

T =
∑
k

Tk, T1 =
∑
i,j

θjia
†
iaj, T2 =

∑
i,j,k,l

θk,li,ja
†
ia
†
jakal (52)

In these ansätze, the |ψ0〉 is usually the Hartree-Fock state of H; an approximation
of the ground-state wavefunction commonly used in computational chemistry [32].
This state is a good starting point for finding the system’s ground state since it
is most likely close to the Hartree-Fock state. T is the cluster-operator which is
commonly truncated at single excitations T1 and double excitations T2 and {ai, a†i}
are fermionic destruction and creation operators. Qubits on the other hand operate
with spin-Hamiltonians, and therefore a mapping from fermionic operators to spin-
operators is needed, often using the Jordan-Wigner mapping [33].

Quantum alternating operator ansatz (QAOA): The QAOA ansatz is inspired
by adiabatic quantum computing; a type of computing where the input state |ψ0〉 is

30



adiabatically transformed into the ground state of a problem Hamiltonian Hp. This
transformation happens by gradually turning off the initial Hamiltonian H0 (which
gave rise to |ψ0〉) and gradually introducing the problem hamiltonian HP . The
QAOA ansatz deviates from this approach, where instead of gradually introducing
the problem Hamiltonian into the system, it instead alternatively applies a problem
unitary (involving the problem Hamiltonian HP ) and a mixer unitary (involving a
mixer Hamiltonian HM with the condition [HP , HM ] 6= 0). The total unitary for
this ansatz is given by

U(γ,β) = Πp
l=1e

−iβlHM e−iγlHP , θ = (γ,β) (53)

The number p refers to the depth of the ansatz. It describes how many layers of
this alternating unitary process should be applied. This expression shows that the
QAOA ansatz consists of 2p trainable parameters.

Similarly, the Variational Hamiltonian Ansatz aims to prepare a trial ground
state for a given Hamiltonian H =

∑
kHk where the terms {Hk} do not commute.

The difference between this ansatz and QAOA is that in QAOA, only two unitaries
(problem unitary and mixer unitary) are alternated. In the Variational Hamiltonian
Ansatz, unitaries from all the decomposed terms Hk are used to create the ansatz,

U(θ) = Πp
l (Πke

−θl,kHk) (54)

Both of these methods can be viewed as generelized trotterization of adiabatic state
evolution. Trotterization means to truncate the the exponential of a sum of two

or more hermitian operators, namely e−i(H1+H2)t = limN→∞
(
e−iH1t/Ne−iH2t/N

)N
.

Further comparisons between adiabatic state preparation and the QAOA algorithm
will be presented in section 5.5.

The QAOA ansatz started as a promising heuristic algorithm for solving combinat-
orial optimization problems. However, the generalization of the ansatz to different
algorithms has proven successful [34]. As a result, this ansatz, in particular, will be
further elaborated on in section 5

3.4.3 Expressibility of a circuit

The differences between these types of ansätze can be understood through the
notion of ansatz expressibility. Ansatz expressibility considers the number of dif-
ferent quantum states reachable by an ansatz if the parameters were to be var-
ied. Holmes et al. [35] quantify this notion by considering the following. Let
U = {U (1), U (2), . . . , U (y)} be the corresponding ensemble of unitaries generated by
a different set of parameters {θ(1),θ(2), . . . ,θ(y)}. Define Us as the set of solution
unitaries to a problem (a unitary that is close to the unitary that minimizes the
cost). The ansatz is said to be complete for a given problem when Us ∩ U 6= ∅. In
other words, the ansatz can generate a unitary that solves the problem.

31



Low Expressibility Ansatz

𝕌B
s 𝕌A

s

High Expressibility Ansatz

𝕌B
s 𝕌A

s

𝕌 𝕌

Figure 9: An illustration showing the difference in expressibility between a low- and
high-expressible ansatz. U represents the ensemble of unitaries that can be generated
from the ansatz, Us represents the solution unitaries to problems A and B, while
the grey circle represents the total space of unitaries. The low-expressibility circuit
can reach unitaries solving only problem A, while the high-expressibility ansatz is
complete for both problems A and B (Adapted from Holmes et al. [35]).

One can distinguish two categories of ansätze in this regard: expressive and inex-
pressive ansätze. The problem-agnostic ansätze usually refer to expressive ansätze.
When there is no information to pinpoint where the optimal unitaries lie, the op-
timal strategy to create a complete ansatz is for the ansatz to be capable of searching
the total space of unitaries. Figure 9 illustrates this notion where the ansatz with
high expressibility can find unitaries that solve both problems A and B.

Problem-inspired ansätze on the other hand limits the searchable space of unitaries
to find unitaries that solve one problem in particular. For instance, if one were to
use the QAOA-ansatz to solve both problems A and B, one would necessarily have
to change the problem-hamiltonian HP in the ansatz to the particular problem being
solved. Although these ansätze are complete for the problem to be solved, they are
inexpressible as the searchable space of unitaries is restricted. Note that a problem-
agnostic ansatz needs to have a significant depth to be sufficiently expressible to be
applied to various problems.

The circuit expressibility is the circuit’s ability to generate pure states representative
of the Hilbert space. In the case of a single qubit, the Hilbert space can be spanned
by the general single-qubit unitary

U(φ, θ, ω) =

(
e−i(φ+ω)/2 cos(θ/2) −ei(φ−ω)/2 sin(θ/2)
e−i(φ−ω)/2 sin(θ/2) ei(φ+ω)/2 cos(θ/2)

)
(55)

The expressibility of a single-qubit parametrized circuit is how similar the paramet-
rized circuit unitary and the general single-qubit unitary are to each other. Gener-
alizing this notion to the unitary group U(N) for N × N unitary matrices can be

32



done differently depending on how closeness is defined. Sim et al. [36] quantify the
expressibility of an ansatz U(θ) by comparing the states reachable from this unitary
to the ensemble of Haar random matrices. These matrices are uniformly distributed
in the space of unitaries measured using the Haar measure dµ.

The Haar measure expresses the distribution of all unitaries in the unitary group
U(N). A measure gives information about how the elements of a mathematical
set/space are distributed and concentrated. For instance, the sphere is paramet-
rized by three parameters, r, θ, φ, and the measure of this space is given by dV =
r2 sin(θ)drdθdφ. The measure must be included if a function is integrated over the
sphere or points sampled from this space to give the correct expression. The meas-
ure extends this notion to abstract mathematical spaces, and the Haar measure,
dµ, describes the measure of the unitary group U(N). Every point in the unitary
group is a unitary matrix described by certain parameters, similar to how the three
coordinates describe the sphere.

Through this measure, one may sample random quantum circuits (unitaries) by
sampling random parameter values. From this, circuit expressibility defines how
close the circuits generated by a specific ansatz are to the unitary group’s unitaries.
An estimate of the latter can be made by sampling random circuits in unitary space.
To evaluate this analytically, the number of samples needed would technically be
infinity. However, using the unitary t-design, one may reduce the sampling procedure
only to include a particular set of unitaries.

In these groups, one considers polynomials Pt,d(U) with degree at most t in d vari-
ables that acts on the elements of a unitary U . The unitary t-design is a set of
K unitaries {U (t)

k } such that the average over the polynomial Pt,d is equal to the
average over the Haar measure dµ(U) of the unitary group [37],

1

K

K∑
k=1

Pt,d (Uk) =

∫
U(d)

Pt,d(U)dµ(U). (56)

This relation should hold for all the unitaries {U (t)
k } in the t-design and for all pos-

sible polynomials Pt,d. The above relation is exact. This representative set consists
of unitaries evenly spaced in the unitary group U(d). By only using the unitaries
from the t-design, complex functions can be evaluated using this representative set
instead of the entire unitary space.

Now, using the difference between the random Haar unitary matrices and the unitar-
ies reachable through the circuit ansatz as a measure of closeness, the expressibility
of an ansatz can finally be expressed quantitatively by ||A(t)|| [36],

A(t)(U) :=

∫
dUHaar U

⊗t
Haar |0〉〈0|

(
U †Haar

)⊗t
−
∫
dUU⊗t|0〉〈0|

(
U †
)⊗t

. (57)

The first integral represents the space of random Haar unitaries, while the second
integral stands for the unitaries spanned by the variational unitary of the circuit.

33



The closer these integrals are, the larger parts of the unitary group U(N) can be
explored by the variational circuit U(θ).

The Haar measure is prone to the concentration of measure, which means that the
unitaries tend to cluster in unitary space. Similar concentration is found in the
volume of a sphere as there is a higher volume concentration around the equator
from the sin(θ) term in its measure. This effect is prominent with increasing system
sizes. Given a function f(x), Levy’s lemma [38] states that on a N -dimensional unit
hypersphere, when a point is sampled uniformly at random from the said sphere,
the probability that f(x) deviates from the mean of the function E[f ] by an amount
ε is

Pr(|f(x)− E[f ]| ≥ ε) ≤ 2 exp

[
− Nε2

9π3η2

]
(58)

given that f is Lipschitz continuous with Lipschitz constant η. In other words,
the function evaluation of a random point is exponentially constrained around the
mean value, whose effect is exponentially dependent on N , the dimension of the
hypersphere. Noting that quantum states are mapped to hyperspheres because
|〈ψ|ψ〉|2 = 1, functions on quantum states are also prone to this concentration of
measure effect. The consequences of concentration of measure are discussed by Hay-
den et al. [39]; they find that as the qubit-count increases (the unitaries become lar-
ger), the randomly sampled states will concentrate around the maximally entangled
state. If an ansatz is highly expressible, the Haar measure of unitary matrices will
cause concentration of measure. This concentration ties into a phenomenon called
Barren plateaus. Barren plateaus cause trainability issues in circuit ansätze that
are highly expressive. This phenomenon is discussed further in section 4.2.

General VQAs can be summarized as follows: One starts with embedding clas-
sical information into a quantum state. This state evolves through a set of unitary
gates defined by the circuit ansatz that may either be problem-specific or problem-
agnostic. Measurements from the final state are the input to a problem-specific cost
function. With all these pieces in hand, one can train the variational parameters
of the quantum circuits using a classical optimizer. This training procedure is the
topic of the next section.

34



4 Training hybrid models 2

classical
node

hybrid computation

quantum
node

quantum 
device

Cost

-

FIG. 1. The “parameter shift rule” in the larger context of hybrid optimization. A quantum node, in which a variational
quantum algorithm is executed, can compute derivatives of its outputs with respect to gate parameters by running the
original circuit twice, but with a shift in the parameter in question.

various quantum hardwares and simulator platforms [8].

II. COMPUTING QUANTUM GRADIENTS

Consider a quantum algorithm that is possibly part
of a larger hybrid computation, as shown in Fig. 1. The
quantum algorithm or circuit consists of a gate sequence
U(✓) that depends on a set ✓ of m real gate parameters,

followed by the measurement of an observable B̂.1 An
example is the Pauli-Z observable B̂ = �z, and the result
of this single measurement is ±1 for a qubit found in
the state |0i or |1i, respectively. The gate sequence
U(✓) usually consists of an ansatz or architecture that
is repeated K times, where K is a hyperparameter of
the computation.

We refer to the combined procedure of applying the
gate sequence U(✓) and finding the expectation value of

the measurement B̂ as a variational circuit. In the over-
all hybrid computation one can therefore understand a
variational circuit as a function f : Rm ! Rn, mapping
the gate parameters to an expectation,

f(✓) := hB̂i = h0| U†(✓)B̂U(✓) |0i . (1)

While this abstract definition of a variational circuit is
exact, its physical implementation on a quantum device
runs the quantum algorithm several times and averages
measurement samples to get an estimate of f(✓). If the

1 The output of the circuit may consist of the measurements
of n mutually commuting scalar observables, however, without
loss of generality, they can always be combined into a vector-
valued observable with n components.

circuit is executed on a classical simulator, f(✓) can be
computed exactly up to numerical precision.

In the following, we are concerned with the partial
derivative @µf(✓) where µ 2 ✓ is one of the gate param-
eters. The partial derivatives with respect to all gate
parameters form the gradient rf . The di↵erentiation
rules we derive consider the expectation value in Eq. (1)
and are therefore exact. Just like the variational circuit
itself has an ‘analytic’ definition and a ‘stochastic’ im-
plementation, the evaluation of these rules with finite
runs on noisy hardware return estimates of the gradi-
ent.2

There are three main approaches to evaluate the gra-
dients of a numerical computation, i.e., a computer pro-
gram that executes a mathematical function g(x):

1. Numerical di↵erentiation: The gradient is approx-
imated by black-box evaluations of g, e.g.,

rg(x) ⇡ (g(x+�x/2)� g(x��x/2))/�x, (2)

where �x is a small shift.

2. Automatic di↵erentiation: The gradient is e�-
ciently computed through the accumulation of in-
termediate derivatives corresponding to di↵erent
subfunctions used to build g, following the chain
rule [13].

3. Symbolic di↵erentiation: Using manual calcula-
tions or a symbolic computer algebra package, the
function rg is constructed and evaluated.

2 It is an open question whether such estimates have favourable
properties similar to approximations of gradients in stochastic
gradient descent.

Figure 10: Overview of hybrid computation using both classical and quantum nodes.
A diagrammatic representation of the parameter shift rule is also presented, showing
the macroscopic shift in parameter to compute the gradient of the quantum node
(Schuld 2019 [40]).

A general cost function of classical-quantum hybrid models can contain both classical
and quantum information processing nodes, as shown in figure 10. Information is
passed from one node to another until the final node calculates the actual cost. Both
nodes can have variational parameters that need to be optimized to minimize the
cost, often using some gradient-based method.

There are primarily three ways of computing derivatives on a computer: numeric-
, symbolic- and auto-differentiation. Numerical differentiation primarily refers to
finite difference methods, while symbolic differentiation returns the symbolic ex-
pression of the differentiated function using symbolic programming packages.

Automatic differentiation is a method of derivation which takes an arbitrary function
expression and reduces it down to its elementary operations (addition, subtraction,
multiplication, division) and elementary functions (exp, log, sin). This reduction
follows the chain rule. By storing the values and derivatives of the linked interde-
pendencies and reusing them in later calculations, one can calculate the derivative
of a function with respect to some arbitrary variable, ∂f(θ)

∂θi
. As noted by Baydin et

al. [41], ”automatic differentiation refers to a set of techniques that are similar, but
more general than back-propagation, used to efficiently and accurately evaluate the
derivative of numeric functions” (Baydin, 2015).

In order to calculate how the cost changes with respect to the variational parameters
within a quantum node, the following chain-rule relation holds

∂µC(θ) =
∂C

∂Q

∂Q

∂µ
(59)

35



where Q represents the quantum node as seen in figure 10 wherein µ is a para-
meter. By merely defining C and Q, the computational framework can compute
the derivatives automatically without further input from the user. The first term
represents the change in a classical node with respect to the output results from a
quantum node. Classical auto-differentiation libraries like Pytorch and Tensorflow
are already capable of differentiating such classical nodes. However, to incorporate
differentiable quantum nodes into these auto-differentiation frameworks, rules have
to be provided regarding how quantum circuits should be differentiated w.r.t its
variational parameters. The auto-differentiation libraries are effective because they
can store and reuse intermediate derivatives of an arbitrary functional relation by
reducing the expression to the elementary operators and functions. However, storing
and reusing intermediate values of the derivative during the quantum computation
is impossible for a variational quantum circuit since it requires the measurement
of intermediate quantum states, which impacts the overall computation. The rules
provided to the auto-differentiation libraries will therefore have to be of a ”black-
box” type in which changing a parameter results in a new circuit evaluation, from
which the derivative can be found. The following section focuses on such a method
to differentiate a variational circuit using parameter-shift rules.

4.1 Parameter-shift Rules

The parameter shift rule is an analytic method that calculates the gradients of
expectation values of quantum measurements. Similar to central finite differences,
this method measures the same circuit (model function) twice, shifting the parameter
of a single gate, as diagrammatically shown in the second part of figure 10. The
significant difference between these methods is how large this shift is, as will be
discussed later in this section. The parameter shift rule, presented here, follows the
derivation presented by Mari et al. [42].

A variational quantum model is usually expressed as the expectation value of some
Hermitian observable M

f(θ) =
〈
0
∣∣U(θ)†MU(θ)

∣∣ 0〉 (60)

where U(θ) is a set of unitary operators that depend on classical variational para-
meters θ = (θ1, θ2, . . . , θm), whose gradients need to be found. Generally, the unitary
can be written as

U(θ) = VmUm (θm) . . . V2U2(θ)V1U1 (θ1) (61)

where Vj are parameter-independent circuits while Uj(θj) are characterized by invol-
utory matrices Hj, i.e matrices where H2

j = 1. Examples of such generator-matrices
are the single and multi-qubit Pauli rotation gates. Unitary gates involving invol-
utory matrices can, in general, be written as

36



Uj (θj) = e−
i
2
Hjθj = cos (θj/2) 1− i sin (θj/2)Hj. (62)

As is often the case with VQAs, the expectation of an operator is measured. Con-
sider, therefore, the unitary conjugation of an arbitrary operator K̂ by Uj(θj).

K̂(θj) = Uj (θj)
† K̂Uj (θj) =

(
cos(θj/2)1 + i sin(θj/2)H†j

)
K̂
(

cos(θj/2)1− i sin(θj/2)Hj

)
(63)

= Â+ B̂ cos(θj) + Ĉ sin(θj) (64)

where Â, B̂, Ĉ are only dependent on K̂, Ĥj and thus independent of the parameters
to be differentiated. Standard trigonometric addition and subtraction identities can
be expressed as follows

d cos(x)

dx
=

cos(x+ s)− cos(x− s)
2 sin(s)

(65)

d sin(x)

dx
=

sin(x+ s)− sin(x− s)
2 sin(s)

. (66)

This identity is valid for any shift s 6= kπ, k ∈ Z. By using this identity, K̂ can be
differentiated with respect to θj, yielding

∂

∂θj
K̂(θj) =

cos(x+ s)− cos(x− s)
2 sin(s)

B̂ +
sin(x+ s)− sin(x− s)

2 sin(s)
Ĉ. (67)

Adding and subtracting the above equation with Â gives an illuminating expression
for the derivative of the unitary conjugated operator,

∂

∂θj
K̂ (θj) =

K̂ (θj + s)− K̂ (θj − s)
2 sin(s)

. (68)

Since no assumptions on the operator K were made, this expression can be applied
to the conjugated operator in the original cost-function f(θ). The parameter-shift
rule to evaluate the jth component of the gradient is given as

gj(θ) =
f (θ + sej)− f (θ − sej)

2 sin(s)
(69)

37



where ej is the unit vector in the j-th direction. This expression expresses that
in order to calculate the jth component of the gradient, one has to perform two
circuit measurements with the parameter θj in the unitary Uj(θj) shifted by ±s
while keeping all other parameters unshifted. At first glance, this expression looks
similar to central finite differences

∂f(θ)

∂θ
≈ f(θ + ∆θ)− f(θ −∆θ)

2∆θ
. (70)

Specifically, the s → 0 limit gives the central finite difference approximation since
sin(s) ≈ s in this limit. However, there are notable differences. Most notably,
the gradient from the parameter-shift rule is exact, not approximated as in finite
differences. Naturally, this expectation value can only be estimated on hardware
through many calls to the quantum computer. The differences between the two are
therefore evident; parameter shifting allows for the computation of an estimate of
the analytic gradient, whereas finite differences estimate the approximate gradient.

Since finite differences linearly approximate the gradient at a point, smaller values of
∆θ yield better approximations of the gradient (in practice, this is true until round-
ing errors become notable). This is not the case for the parameter shift rule since the
formula is exact for arbitrary s except multiples of π, which is why parameter-shift
is preferable over finite differences. If the shift ∆θ in finite differences is too small
(∆θ � 1), the shifted function evaluations cannot be differentiated from noise. In
contrast, a macroscopic shift s in parameter space allows for function evaluations
that are less likely to overlap. Although both methods are prone to noise, the
parameter-shift method is not prone to numerical issues. A macroscopic shift of
s = π/2 is often used in libraries like Pennylane [43].

Applying the parameter shift rule twice yields an analytical expression for the Hes-
sian. When applying the parameter shift rule twice, one can, in principle, use two
different shifts s1, s2; however, both are commonly set to the same value s. Using
this simplification, the Hessian is expressed as

gj1,j2(θ) =
1

4 sin2(s)

[
f (θ + s (ej1 + ej2))− f (θ + s (−ej1 + ej2)) (71)

− f (θ + s (ej1 − ej2)) + f (θ − s (ej1 + ej2))

]
(72)

As with the gradient, the s → 0 limit gives the finite differences approximation of
the Hessian.

As mentioned earlier, there are certain limitations on the applicability of this specific
parameter shift rule, namely that the generator matrices H needed to be involutory.
However, the stochastic parameter shift rule, introduced by Banchi et al. [44], can
address parameter shifts for an arbitrary generator matrix by first expanding the
generator into a sum of Pauli-Strings,

38



Ĝ = Â+ θiV̂ (73)

where Â is an arbitrary linear combination of Pauli strings while V̂ is a single
arbitrary Pauli string, this is excluded from the rest precisely due to the variational
parameter θi, which is the variable to be differentiated. The algorithm computing
the derivative of the expectation of an observable 〈M(θ)〉 is the following:

1. Choose a value s uniformly from [0,1]

2. Rather than applying eiĜ, apply instead ei(1−s)(Â+θiV̂ )ei
π
4
V̂ eis(Ĥ+θiV̂ )

Perform repeated measurements of M and call the expectation value 〈r+〉

3. Repeat the previous step, but flip the angle of π
4

to −π
4

in the second gate.
Call this measurement expectation value 〈r−〉
The gradient is then given by Es∈U [0,1] [〈r+〉 − 〈r−〉]

General parameter shift methods can be made for more general gates without re-
stricting to only two eigenvalues in the generator G. Wierichs et al. [45] looked into
this problem. Their approach hinges on the notion that the expectation value of an
observable with respect to a unitary evolution U(x) = exp(ixG) with free parameter
x may be decomposed as a Fourier series

E(x) :=
〈
ψ
∣∣U †(x)MU(x)

∣∣ψ〉 (74)

=
d∑

j,k=1

ψjeiωjxmjkψke
iωkx (75)

=
d∑

j,k=1
j<k

[
ψjmjkψke

i(ωk−ωj)x +ψjmjkψkei(ωk−ωj)x
]

+
d∑
j=1

|ψj|2mjj, (76)

= a0 +
R∑
`=1

a` cos (Ω`x) + b` sin (Ω`x) . (77)

In the first two equations, M and |ψ〉 was expanded in the eigenbasis of U as denoted
by mjk and ψj. Note also that the eigenvalues of U(x) = exp(ixG) are eiωjx with
real valued ωj and j ∈ {1, . . . , d} where d is the dimension of the generator G. In
the last equality, R was introduced as the number of unique positive differences
{Ωl} = {ωk − ωj|ωk > ωj} with j, k = {1, . . . , d} and l = {1, . . . , R}.

The important observation from the above decomposition is that equation 77 shows
that the expectation value E can be decomposed into a finite-term Fourier series.
Therefore, if one were to have 2R + 1 interpolating points {xµ}, one could com-
pletely determine the unknown coefficients {al, bl} using a nonuniform discrete Four-
ier transform. E(x) is then constructed and using it one can differentiate it for

39



arbitrary x. If more assumptions are made, namely that the spectra Ωl = lΩ and
that Ω = 1, one could get a closed form expression of E(x) by evaluating them at
points

{
xµ = 2µ

2R+1
π
}
, µ ∈ {−R, · · · , R}

E(x) =
R∑

µ=−R

E (xµ)D (x− xµ) =
sin
(

2R+1
2
x
)

2R + 1

R∑
µ=−R

E (xµ)
(−1)µ

sin
(x−xµ

2

) (78)

where D(x− xµ) are Dirichlet kernels, often used when interpolating trigonometric
functions. The most important takeaway is that the entire function E(x) can be
reconstructed using 2R+ 1 function evaluations of E(xµ), constructed through calls
to the quantum computer.

This subsection concludes with how one step of straightforward gradient descent
scales when using the parameter shift rule to evaluate the gradient. When using
the simple two-term parameter shift rule considered earlier, the number of circuit
evaluations scales as 2JS where J is the number of parameters in the circuit and S is
the number of shots used to estimate a single expectation value. In terms of scaling,
gradient-calculations scale worse with increased parameters J . This is because each
of the J parameters’ gradients needs to be calculated separately in contrast to tradi-
tional auto-differentiation methods such as backpropagation, whereby storing inter-
mediate values of the derivatives, the total gradient can be calculated using a single
evaluation of the model. Implementations similar to those in auto-differentiation
libraries can only be implemented in simulators of quantum computers. Using
backpropagation-like methods through a quantum circuit would prove impossible
since storing the states being differentiated is prohibited by the no-cloning theorem.

For the general parameter shift rule, the scaling is worse and goes like (2R + 1)JS
since each parameter x requires the reconstruction of E(x) to be differentiated.
Wierichs et al. [45] also provide closed-form solutions of E ′(0); however, the scaling
remains the same. R was the number of unique positive differences Ωl needed to
recompose E(x) which has a scaling of R ≤ r(r−1)

2
with r = |{ωj}| being the number

of unique eigenvalues of the generator G. As evident from these scaling arguments,
the parameter shift rule is a costly way to calculate gradients, at least comparatively
to finite differences, which would only require 2JS function evaluations for the
entire gradient for an arbitrary quantum function. However, as mentioned earlier,
this comes with associated numerical instability, which causes infeasible function
comparisons on NISQ hardware.

4.2 Barren Plateaus

Although the parameter shift rule does allow for the navigation of the cost landscape
(i.e., regimes for the parameters θ), two problematic landscapes may occur during
training. The first type of landscape has several suboptimal local minima (discussed
in the following subsection), while the other is essentially flat. The latter type
categorizes Barren Plateaus, landscapes with gradient elements close to zero. Such

40



landscapes cause slow optimization since there is no reliable information on the
direction for the steepest gradient. Additionally, small gradients are difficult to
differentiate from noise, which requires high precision measurements to avoid random
walks in the cost landscape.

Barren Plateaus have been observed in variational circuit architectures that are
very expressive (i.e., capable of exploring a large Hilbert space). Since the num-
ber of parameters, in this case, is large, the contribution from a single parameter
becomes negligible, giving an intuitive explanation as to why Barren Plateaus are
prevalent in these circuits. This result contrasts with traditional machine learning
models, where more parameters yield increased trainability. Most works on this
topic utilize randomized circuits without any particular structure to both numeric-
ally and analytically show that the gradient vanishes. The Haar-Measure is used to
evaluate these circuits analytically.

Assuming a generic ansatz of form U(θ) =
∏D

j=1 Uj (θj)Wj with Uj = e−iθjVj and

hermitian operator Vj that satisfies (Vj)
2 = 1, Holmes et al. [35] show two notable

aspects about the gradient of the cost landscape when certain assumptions are made.

Firstly, the authors note that

〈∂kC〉 = 0 ∀ k, ∂kC :=
∂C(θ)

∂θk
(79)

The result is found through explicit calculations by integration over θk. Intuitively,
this unbiased result can be understood by noting that the average of a rotation
unitary e−iθkVk is zero when V 2

k = 1. Fluctuations away from zero mean value
allow for training since the gradient has a finite direction. The probability of such
fluctuations can be bounded using Chebyshev’s inequality

P (|∂kC| ≥ δ) ≤ Var[∂kC]

δ2
(80)

Var[∂kC] =

〈
(∂kC)2

〉
− 〈∂kC〉2. (81)

where the expectation value is taken over the parameters θ. As evident by Cheby-
shev’s inequality, if the variance of the partial derivative ∂kC vanishes exponentially
for all directions θk, the probability of a non-zero ∂kC becomes exponentially small,
resulting in an inability to navigate the cost landscape since the steps taken are ex-
ponentially small. Therefore, the dependency on the variance of the cost derivative
is crucial, where a low variance results in slow or even inability to train.

The barren plateau phenomenon is a probabilistic result that states that given an
ansatz U(θ), the cost has a barren plateau if the gradient vanishes exponentially
with the number of qubits n with a high probability. As mentioned above, the
variance of the cost-derivative captures this notion. To show that the variance does
vanish exponentially, one starts by separating the ansatz into two

41



U(θ) = UL(θ)UR(θ) (82)

UL(θ) =
D∏

j=k+1

Uj (θj)Wj and UR(θ) =
k∏
j=1

Uj (θj)Wj (83)

where the right unitary contains the parameter θk to be differentiated. The para-
meters θj are assumed uncorrelated; therefore, these unitaries are independent. A
critical assumption is that the ensemble of unitaries UL and UR formed by these two
unitaries form a 2-design. Unitary 2-designs are particular instances of the general
group of unitary t-designs as elaborated on when discussing circuit expressibility.
The assumption of unitary 2-designs in this derivation holds for a widely studied
hardware-based expressive ansatz built up in a brick-wall-like manner using 2-qubit
gates acting layer-wise on alternating pairs of qubits, studied by Cerezo et al. [46].
The result from these calculations is that if either or both of the UL,UR ensembles
form a 2-design, the qubit-dependence of the variance takes the following form:

Varx ∂kC =
gx(ρ,H, U)

22n − 1
(84)

Here, Varx∂kC refers to the variance of the cost gradient when either R,L or both
unitaries are 2-design. This proof is based on using that 2-design unitaries have
expectations that up to second-order behaves like the Haar Distributions. Applying
some identities for such distributions and calculating yields the answer. The function
gx depends on the problem being solved.

This result generally holds for deep, expressive circuits capable of being applied
to multiple problems. The phenomenon has also been shown to appear in shallow
circuits [46], where local instead of global cost functions have been shown to have
better trainability. Additionally, Want et al. [47] rigorously prove that noise can
also induce barren plateaus.

From these considerations, it seems that less expressive circuits that limit the search
to relevant parts of Hilbert space are preferable over expressible unitaries. In this
regard, few studies have been performed on the analytical side of barren plateaus
for hamiltonian-inspired circuits. In a recent contribution to the topic, Wiersema
et al. [48] show numerical evidence that when solving a particular problem using
the variational Hamiltonian ansatz, only small barren plateaus are encountered.
The authors also encountered a phase transition in the local minima distribution,
potentially aiding the training of VQA.

4.3 Local minima distribution

A natural issue related to quantum circuits’ trainability is local minima distribution.
The cost landscape of VQAs is widely recognized as non-convex and therefore filled

42



with several sub-optimal local minima. This is also the case with traditional ma-
chine learning models. In high-dimensional neural networks, it is found that when
using random Gaussian landscapes as a way to approximate the error landscape of
random neural networks, some interesting properties emerge. Most notably, critical
points higher in energy primarily are saddle points, and the probability of encoun-
tering a local minimum in which all directions curve upwards is exponentially small
[49]. As a result, traditional neural networks cluster local minima around the energy
of the global minima. When studying high-dimensional neural network error land-
scapes, the Random Gaussian Landscape approximation is reasonable [50]. This
methodology stems from random matrix theory and is often used to analyze neural
networks’ error landscapes.

In contrast, mapping a random VQA to random Gaussian fields is impossible because
of two factors: the first is that the Gaussian mapping relies on the non-linearities of
the learning model, which are absent in VQAs since the state evolution is unitary.
Secondly, compared to traditional learning models, variational circuits are heavily
under-parameterized since variational unitaries consist of a single variational para-
meter for a potentially exponentially sized matrix. In contrast, every single matrix
element in neural networks can be trained.

Anschuetz [11] studied randomized variational hamiltonian ansätze of the form
Πq
i e
−iθiQ|ψ0〉 where Q is a uniformly random Pauli matrix. He finds that due to

the limitations mentioned above of VQA and the random nature of the ansatz itself
(because of the random sampling ofQ in the ansatz), the mapping of error landscapes
to random Gaussian fields is not valid. Instead, he finds that with the assumptions
made for this particularly randomized ansatz, mapping to the Wishart random fields
on a hypertorus is appropriate in contrast to the Gaussian hypersphere,

Gaussian Mapping: FGHRF(θ) ∝
Λ∑

i1,...,ir,i′1,...,i
′
r=1

σi1 . . . σirJi1,...,ir,i′1,...,i′rσi′1 . . . σi′r (85)

Wishart Mapping: FWHRF(θ) ∝
2p∑

i1,...,ir,i′1,...,i
′
r=1

wi1 . . . wirJi1,...,ir,i′1,...,i′rwi′1 . . . wi′r

(86)

where w are points on a hypertorus while σ are points on a hypersphere, both
parametrized by θ (the geometry of these fields come from the 2π periodicity in
VQA because the parameters are angles, while such limitations are not present in
neural network parameters). p stands for the number of distinct parameters θi while
r stands for the fraction of unitaries that are distinct, r = q/p. The difference is
that each effective interaction J is a r × r random Gaussian matrix. In contrast,
the interaction in the Wishart case, J is a r × r complex random Wishart matrix
normalized by its degree of freedom, which scales like m = O(2n) where n is the
number of qubits. Wishart matrices are a generalization of gamma distribution for
multiple dimensions.

This mapping shows that the local minima distribution exhibits a phase transition

43



when the number of parameters exceeds a threshold that depends exponentially on
the number of qubits in the system. The findings culminate into the definition of
an order-parameter γ = p

2m
. When γ ≤ 1, the model is under-parameterized, the

local minima distribution is exponentially centered around half the mean eigenvalue
of the observable O of the cost function. Once the number of distinct parameters
p exceeds m, the variational circuit is over-parametrized, and the local minima are
exponentially centered around the global minima. As mentioned, the problem with
this transition is that m scales exponentially in the number of qubits.

This computational phase transition is also found numerically. Kiani et al. [12]
studied the task of learning an arbitrary unitary d × d, d = 2N matrix using the
QAOA ansatz. They define learning as having the QAOA circuit transformation
approximate this arbitrary unitary. The problem and mixer Hamiltonians used in
their setup were two matrices sampled from the Gaussian Unitary Ensemble. When
the number of 2p parameters that define the QAOA ansatz is less than d2, the
gradient descent optimization converged to a suboptimal solution. However, when
2p > d2, the optimization always converged to the global minimum, exhibiting the
computational phase transition shown by Anschuetz [11]. The rate of convergence
follows a power-law in the under-parametrized region, however transitions to an
exponential convergence in the over-parametrized region. The rate of convergence
is for the steps in gradient descent. At the critical point 2p = d2, the authors find
a power-law convergence to the global minimum.

These two subsections paint a grim picture for randomly initialized problem-agnostic
ansätze, where the training results in suboptimal solutions for circuits of low depth
and training becomes infeasible due to Barren plateaus at high depths. Such rig-
orously detailed analytical analyses have yet to be performed on problem-inspired
ansätze. However, as mentioned earlier, Wiersema et al. [48] show that when ap-
plying the Hamiltonian Variational Ansatz on two different 1D Ising chain-type
Hamiltonians, the same computational phase transition from under-parametrized
to over-parametrized ansätze was found. Most strikingly is the discovery that this
phase-transition does not scale exponentially in the problem size but instead scales
at most polynomially with problem size. This phase transition is also different from
the one seen in learning arbitrary unitaries using hamiltonian agnostic circuits from
Kiani et al. [12] in the sense that this depth threshold is not tight. This means
that even for lower depth, several random initializations were able to use gradient
descent to converge to a good solution.

In principle, this over-parametrized regime improves the quantum model’s trainab-
ility by concentrating the cost function’s local minima close to the global minima.
However, this implies that the circuit needs to reach a certain depth, which requires
longer coherence times from the qubits and adds multiplicative gate errors. This
depth, with its parameters, needs to have its gradient calculated using the parameter
shift rule, which scales linearly with the number of qubits. Hence training becomes
slower (at least when compared to differentiation of neural network, which requires
a forward and backward pass of auto-differentiation). As a result, researchers are
not sure whether the over-parametrized regime is attainable on near-term devices.

The parameter-shift rule allows for the training of variational quantum circuits

44



within an overall hybrid classical-quantum model using classical optimization. As
alluded to in this section, training the quantum nodes may prove challenging, mainly
because of non-convex cost landscapes causing sub-optimal solutions to be found and
the emergence of barren plateaus as the number of qubits increases. The following
section considers a particular VQA called QAOA in detail to put these concepts into
practice. The motivation behind studying this particular VQA is the suggestion that
this algorithm might be promising in showing quantum advantage [51].

45





5 Quantum Approximate Optimization Algorithm

(QAOA)

The Quantum Approximate Optimization Algorithm (QAOA) is a VQA designed
to solve combinatorial optimization problems. These problems are defined on N-bit
binary strings z = {0, 1}N with the goal of finding the string that maximizes a cost
function C(z) : {0, 1}N → R. An approximate optimization algorithm aims to find a
string z which can approximate the optimal solution within a desired approximation
ratio

C(z)

Cmax
≥ r (87)

Cmax = max
z
C(z) (88)

In order to solve a classical combinatorial problem on a quantum system, one needs
to convert the classical cost function into a problem-Hamiltonian which encodes the
solution to the classical problem. Such encoding is constructed by mapping the
binary values zi onto the eigenvalues of the Pauli Z operator:

HC = C(σz1, σ
z
2, . . . , σ

z
N), σzi = {−1, 1} (89)

The QAOA ansatz starts in the uniform superposition |+〉N and alternately applies
the problem Hamiltonian HC and a mixer Hamiltonian HB for short times γi and
βi respectively. The most crucial aspect of the mixer Hamiltonian is that it does
not commute with the problem Hamiltonian. The non-commutability between HC

and HB is crucial since it increases the expressibility of the ansatz as more states
are reachable. Without the mixer, the ansatz would get stuck in a local optimum of
the problem Hamiltonian. To see why, consider the ansatz with only the problem
unitary, e−iγHP . If a state, |ψ〉, prior to applying the problem unitary is an eigenstate
of HP , then the state after the measurement is

|ψ(γ)〉 = e−iγHP |ψ〉 =
∞∏
n=1

(−iγ)n

n!
Hn
P |ψ〉 =

∞∏
n=1

(−iγ)n

n!
En|ψ〉 = e−iγE|ψ〉 (90)

where E is the energy corresponding to the state |ψ〉, which is an eigenstate of HP ,
but not necessarily the ground state of interest. The mean value of the Hamiltonian
with respect to this evolved state, 〈ψ(γ) |HC |ψ(γ)〉, will therefore be the same as for
the state prior to the evolution. This mean value is fed into the classical optimizer
to be optimized. However, since the variational parameter does not alter this mean
value, it cannot be lowered further. Hence, the optimizer remains trapped in a
suboptimal eigenstate of the problem Hamiltonian HP . The same arguments apply

46



to a mixer Hamiltonian that commutes with HP . A popular choice for the mixer
Hamiltonian is HB =

∑N
i=1Xi (sum of Pauli X on all qubits). Repeating the

alternating unitaries p times prepares the parametrized state

|ψp(γ,β)〉 = e−iβpHBe−iγpHC . . . e−iβ1HBe−iγ1HC |+〉⊗N . (91)

The 2p variational parameters γi, βi (i = 1, 2, . . . , p) describe the applied duration
of these unitaries. Similarly to other VQAs, the goal of QAOA is to find the optimal
set of parameters (γ∗,β∗) that maximizes the expectation value of the cost function:

(γ∗,β∗) = arg max
γ,β

〈ψp(γ,β)|HC |ψp(γ,β)〉 . (92)

In the same way as with classical approximate optimization algorithms, the per-
formance of the QAOA is estimated using the approximation ratio

r =
〈ψp(γ∗,β∗)|HC |ψp(γ∗,β∗)〉

Cmax
. (93)

Performance guarantees of the QAOA ansatz have been widely studied for the p = 1
case [9], however little is known beyond this depth. Fahri et al. [51] claims that,
under certain complexity-theoretic assumptions, sampling from the variational wave
function |ψp(γ, β)〉 is classically intractable. This is the case for the lowest depth
QAOA circuit, i.e., p = 1. Therefore, the QAOA ansatz is believed to be promising
to prove a quantum advantage over classical models.

5.1 QAOA on the MaxCut problem

One combinatorial optimization problem often considered when using QAOA is the
MaxCut problem. Given a graph G = (V,E) with V nodes and E edges, divide
the graph into two sets such that the number of edges between the two sets of
nodes is maximized. It is proven that finding an approximate solution to MaxCut
beyond 16/17 ≈ 0.9412 is NP-Hard [52, 53]. The polynomial-time approximation
algorithm, the Goemans-Williamson algorithm, guarantees an approximate ratio
of 0.8785 [54]. Assuming the unique games conjecture (a specific conjecture from
computational complexity theory) to be true [55], this approximation ratio is proven
to be optimal [56].

The cost function of MaxCut on a graph G with a set of edges E and nodes V is
given as

MaxCut(G) = max
1

2

∑
i,j∈E

wij(1− xi · xj), s.t xi ∈ {−1, 1} for every i ∈ V (94)

47



where wij is finite if there is an edge between nodes i, j and 0 otherwise. This cost
function gives the expected behavior of MaxCut since when two nodes are of opposite
type (xi = 1, xj = −1), the edge’s cost contribution is one. In comparison, if two
nodes have the same value and are within the same partition, the cost contribution
is zero. Replacing the xi, xj variables with the Pauli Z operators encode the classical
cost function into a problem Hamiltonian, which is diagonal in the computational
basis:

HP =
1

2

∑
i,j∈E

wij(1− ZiZj) (95)

1

1

1

1

1

1

0

1

2

3

Figure 11: A 3-
degree graph with 4
nodes.

Z is the Pauli σz matrix applied on qubit i. Notice that the
behavior of this problem is identical to the classical case since
the eigenvalue of the Pauli Z matrix is {−1, 1}. As evident by
the Hamiltonian, this is essentially an energy minimization
problem for an anti-ferromagnetic system with coupling wij.
In order to see an implementation of QAOA, consider first a
simple graph instance as shown in figure 11. The MaxCut on
this graph has a cost equalling 4, where all cuts that separate
the nodes into subgroups of two nodes give the maximum cut.

To implement QAOA, two operators are needed, namely e−iγHP and e−iβHB . Con-
sider first e−iγHP = e−iγ

1
2

∑
ij∈E(1−ZiZj) where i, j are all the nodes with edges on the

graph. The operator needed to be considered is ei
γ
2
ZZ = ei

γ
2
Z⊗Z since the identity

term contributes an unobservable global phase. Since the problem is basis-encoded
in the computational basis, e−Z |z〉 = e(−1)z |z〉 where z ∈ {0, 1} with eigenvalues
{1,−1} respectively. The following identity therefore holds for the 2-qubit operator:
ei
γ
2
Z⊗Z |z1z2〉 = ei

γ
2

(−1)z1⊕z2 |z1z2〉 where ⊕ is mod 2 addition. The quantum circuit
that implements this is the following circuit:

ei
γ
2
Zi⊗Zj ≡

zi : • •

zj : RZ (−γ)

To show that this circuit indeed does transform the state as stated previously, one
can view the quantum state after each gate transformation as follows

CNOT

(
|z1〉|z2〉

)
= |z1〉|z1 ⊕ z2〉 (96)(

1⊗ ei γ2Z
)
|z1〉|z1 ⊕ z2〉 = |z1〉ei

γ
2

(−1)z1⊕z2 |z1 ⊕ z2〉 (97)

ei
γ
2

(−1)z1⊕z2 CNOT

(
|z1〉|z1 ⊕ z2〉

)
= ei

γ
2

(−1)z1⊕z2 |z1〉|z2〉 (98)

48



Note also that the terms in the problem Hamiltonian commutes since all terms are
either the Z or the I operators, ie ei

γ
2
ZiZj+i

γ
2
ZjZk = ei

γ
2
ZiZjei

γ
2
ZjZk . Implementing

the entire e−i
γ
2
HP operator therefore consists of implementing the above circuit for

all edge-combinations on the graph.

The mixer operator e−iβHB = e−iβ
∑
i∈V Xi consists of a block of RX(β) rotations

e−iβXi ≡ RX(2β)

As noted earlier in the section, the initial state of the QAOA algorithm is in the |+
+ · · ·+〉 state, which can be readily prepared using a layer of Hadamard gates. The
QAOA algorithm with depth p = 1 is given by the unitary U(γ, β) = e−iγHP e−iβHB ,
which can be implemented as follows

q0 : |0〉 H • • • • • • RX (2β)

q1 : |0〉 H RZ (−γ) • • • • RX (2β)

q2 : |0〉 H RZ (−γ) RZ (−γ) • • RX (2β)

q3 : |0〉 H RZ (−γ) RZ (−γ) RZ (−γ) RX (2β)

c : /4
0 1 2 3

Repeating this circuit (except the first layer of Hadamard gates and final meas-
urements) p times with different parameters γi, βi gives the QAOA circuit for more
considerable depths. After optimizing the parameters, running the above circuit and
performing measurements is equivalent to sampling from the distributions shown in
figure 12. As evident from the figure, running the algorithm for higher depths results
in measurements involving the correct cut with higher probability. For this graph
instance, the set of bitstrings {0011, 0101, 0110} and their bit-flipped counterparts
all give a cost of 4 and solve the MaxCut problem.

Here it should be noted that these results were obtained using a classical statevector
simulator, which uses a matrix representation of the circuit to evaluate it precisely.
For instance, evaluating the cost function of the Hamiltonian is done by

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Measurement outcome

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y

(a) Circuit depth p = 1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Measurement outcome

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y

(b) Circuit depth p = 5

Figure 12: The probability distribution for measuring different basis states using
QAOA. These results were obtained using a quantum state-vector simulator.

49



F (γ,β) = = 〈ψ(γ,β) |HC |ψ(γ,β)〉 (99)

=
∑
i

λipi (100)

where λi is an eigenvalue of the operator and pi is the corresponding probability
of measuring this eigenvalue. On physical hardware, one would necessarily have to
perform shots to the quantum computer to approximate the probability distribution
pi, which is not the case on a statevector simulator.

The seminal paper on QAOA introduced by Fahri et al. [9] examines the performance
of QAOA using the p = 1 depth analytically, and the authors find that the algorithm
creates a guaranteed approximation rate r = 0.6924 on 3-regular unweighted graphs.
These are graphs where each node has three other nodes connected, and their weights
are 1. By noting that the expectation value (eq. 99) is a sum of all possible subgraphs
that can be generated at a given p, Fahri et al. [9] has analyzed the QAOA algorithm
for p = 1. However, little is understood of QAOA as the depth increases. A critical
aspect of solving the MaxCut problem is to optimize the 2p QAOA parameters using
classical optimization routines using either gradient-based or gradient-free methods.
The classical optimization part is prone to encounter sub-optimal solutions due to
the non-convex cost landscape, even at low circuit depths. As a result, the per-
formance of the QAOA algorithm is heavily dependent on the initial parameters.
Standard approaches that rely on random initialization of parameters quickly be-
come intractable due to a large amount of sub-optimal solutions (unless the depth
is large enough to undergo a phase transition as discussed earlier).

A straightforward way to reduce the number of initializations is to restrict the search
to specific regions in parameter space from symmetry arguments. This section, in
particular, will restrict the numerical analysis of QAOA to 3-regular unweighted
graphs (u3R) and Erdős-Rényi graphs (G(n, q)), which are random graphs con-
structed by connecting two nodes at random with probability q. Writing out the
problem- and mixer-unitaries of the QAOA ansatz in its trigonometric forms, one
arrives at the following terms

ei
∑

(i,j)∈E
γl
2
ZiZj =

∏
(i,j)∈E

[
cos

γlwi,j
2

+ iZiZj sin
γlwi,j

2

]
(101)

e−iβl
∑
j∈V Xj =

∏
j∈V

[cos βl − iXj sin βl] . (102)

Some symmetry arguments can be made from these expressions. Firstly, a shift in
β by π/2 yields the same cost function. The easiest way to see this is to note that
ei
π
2

∑
iXi = (Xi)

⊗N . This has the effect of flipping all the spins, which does not
change the cost function due to the bit flip symmetry inherent in MaxCut. As a
result, the searchable subspace for all βl angles can be reduced to [0, π/2).

The searchable subspace for γl is graph-dependent. This is evident from the notion
that the problem-unitary is the product of several trigonometric terms with different

50



phases, dependent on γlωi,j. Consider first udR graphs where the weights ωi,j =
{0, 1} and each node is connected to exactly d other nodes. For these graphs, a shift
in γl of π results in the problem unitary being

∏
(i,j)∈E iZiZj which is either Z⊗n if

d is odd or 1 if d is even. Applied to a ket-vector, these two operators will output
the same ket-vector, hence creating redundancies. Therefore, one can restrict the
search of all γl parameters to be between [0, π) for udR graph instances. The same
arguments do hold for unweighted Erdős-Rényi graph instances since the resulting
operator is either Z or 1 at each qubit by similar arguments.

On the other hand, weighted graph instances are less restrictive in their symmetries.
The restrictions on βl remain; however if ωi,j are different irrational numbers, a
general period for the γl parameters cannot be found. In principle, one must search
the entire real number line for potentially good solutions to MaxCut. However, one
expects the phases γlωi,j to somewhat align for small γl, while they are effectively
random for higher values. Therefore, one expects to find high-quality solutions
around γl = 0. However, there are no guarantees that this solution is the globally
optimal parameter.

Even with these restrictions, convergence to local minima has been a hurdle for
many practical applications of QAOA. It, therefore, has motivated several research-
ers to find heuristic optimization strategies that improve the QAOA performance.
In the following two subsections, two heuristic strategies will be presented. Both
heuristics create efficient ways of generating initial parameters based on the optimal
parameters from the previous depth p− 1, from which all 2p parameters (γi, βi) will
be optimized using a typical classical optimizer. One of the strategies presented by
Leo Zhou et al. [1] finds that the globally optimal parameters follow a linear trend
from layer p to p+1, from which they create two heuristics. On the other hand, Lee
et al. [2] conditions the new initial parameters by fixing the 2(p− 1) parameters to
be local optima of the previous depth and generates 20 random pairs of (γp, βp) to
find the local optima of layer p. In order to train and examine the QAOA algorithm
for larger graph instances and depths more efficiently, the following two subsections
present some of these authors’ findings.

5.2 Interpolation Heuristic: INTERP

To address the parameter optimization problem, Leo Zhou et al. [1] introduce a heur-
istic approach that exploits heuristic patterns in the optimal QAOA parameters to
initialize optimization efficiently. The heuristics produce quasioptima in O[poly(p)]
time that would require 2O(p) randomly initialized optimization runs to surpass.
Two different interpolation heuristics are constructed based on heuristic patterns in
the optimal QAOA parameters. These are called INTERP and FOURIER. These
heuristics generate the initial point from which to start the optimization of the 2p
parameters at depth p.

The authors investigate the optimal QAOA parameters for MaxCut on random u3R
and w3R graphs with vertex numbers 8 ≤ N ≤ 22. Testing on 100 random graph
instances, 104 random initial points were optimized to find the globally optimal
parameters at depth p. The authors found that at a fixed depth p, the optimal

51



parameters (γi, βi) had a continuous trend. In particular, for each i = 1, 2, . . . , p,
γ∗i tend to increase smoothly while β∗i tend to decrease smoothly. This pattern is
similar to adiabatic quantum annealing in which the mixer-Hamiltonian is gradually
turned off while the problem Hamiltonian is gradually turned on. A more detailed
comparison between the two algorithms is presented in section 5.5.

From the observations, there seems to be an underlying pattern in the optimal
parameters, which varies little from p to p+ 1. This pattern can be exploited where
one essentially starts by finding a good set of parameters at p = 1 (using random
initialization since the number of parameters is small). Increment to p + 1 and
use the optimized parameter-values at the previous depth to interpolate a good
initial guess for the 2(p + 1) parameters. The interpolation can be performed in
various ways, and the authors present two methods. INTERP uses the pattern
generated from depth p to linearly interpolate a guess for the parameters at depth
p+ 1. Meanwhile, FOURIER interpolates using the discrete sine/cosine transform,
where the parameters at depth p+ 1 are determined from the Fourier amplitudes at
depth p. This thesis limits the scope to only considering INTERP; hence only this
procedure is presented. The new initial parameters at depth p+ 1, (γ0

(p+1),β
0
(p+1)),

are generated according to

[
γ0

(p+1)

]
i

=
i− 1

p

[
γL(p)

]
i−1

+
p− i+ 1

p

[
γL(p)

]
i

(103)

where i = 1, 2, . . . p+ 1 and [γL]i is the i-th component of the parametervector that
corresponds to the previous depth p’s optimal value, and [γL(p)]0 ≡ [γL(p)]p+1 ≡ 0.
This interpolation is correspondingly performed on βi to find its new initial point.

It is important to stress that in both these strategies, the generated vectors (γ0,β0)
are only educated guesses as to where the optimal parameters will lie in parameter
space. The generated point is used to optimize all the 2(p+1) parameters at the p+1
level, yielding a good approximation of the optimal parameters (γ∗,β∗). Through
extensive searches, Zhou et al. [1] find that their heuristic performs just as well as the
best randomly initialized runs at low p, indicating that both methods find the global
minima. As the depth increases, the heuristic performs better than randomized
runs on average since these runs tend to converge to suboptimal solutions. The
researchers found that the median number of randomly initialized runs needed to
match the approximation number r of the heuristics scales exponentially with depth
p.

5.3 Parameter Fixing Heuristic

As introduced by Lee et al. [2], the parameter fixing heuristic utilizes conditioned
search to generate good initial points for traversing the cost landscape. Like IN-
TERP, this method iteratively increases the circuit depth by utilizing the paramet-
ers from the previous depth. As the name indicates, when looking for an initial point
at depth p, one fixes the optimized parameters at the previous layer, then generates
two random points (corresponding to γp, βp) then starts optimization.

52



Consider here the procedure for the first three depths. The heuristic first starts at
depth p = 1, generates two random points, and performs the optimization. This
procedure is repeated 20 times in order to find the global minimum. Note that
the cost landscape at the smallest depth is well-behaved, and very often, the global
minima will be reached through a few random initializations alone. Alternatively,
a grid search can be performed to find the optimal parameter at this depth. The
cost landscape for a graph instance at the lowest layer will be provided later in
this section. This procedure generates the optimal parameters (γ∗1 , β

∗
1). Now the

heuristic iterates to p = 2. When generating an initial point, (γ0
1 , β

0
1) is set to the

previously found (γ∗1 , β
∗
1), while the two new parameters (γ0

2 , β
0
2) are once again 2

new random points. As before, the optimizer is used to navigate the cost landscape;
however, now, with four variables, after 20 new repetitions gives four new optimal
parameters. These are then passed on to the p = 3 depth when looking for new
initial points.

5.4 Results: Comparison between the heuristics

The analysis of the heuristics will be performed by combining insightful statistics
from both papers. The performance measure is the approximation ratio r as a
function of depth p of the QAOA circuit. This analysis method is used in both papers
to evaluate the performance of their respective heuristics. However, the successes of
their algorithms are explained differently. Zhou et al. [1] attribute their heuristic’s
performance to the closeness between the continuous pattern found in the globally
optimal parameters and the parameters obtained by the heuristic. The authors do
so by plotting (γ∗i , β

∗
i ) with i = 1, 2, . . . , p at the final depth. On the other hand,

Lee et al. [2] instead plot all the optimally found parameters (γ∗i , β
∗
i ) at each depth

p, essentially displaying the trajectory of each parameter in parameter space. An
example of these methods is found in figure 13, where the upper left figure displays
the approximation ratio, the upper right displays the optimal parameters at the final
depth, while the two lower graphs display the optimal parameters at each depth p.
Utilizing both methodologies, each of these heuristics will be compared to see if there
are commonalities. For these simulations, the L-BFGS-B optimizer from the python
library SCIPY [57] is used, an optimizer that bounds the parameters to search
only within a certain area in parameter space. In these simulations, the parameter
search is bounded by the symmetry arguments mentioned earlier. This optimizer is
gradient-based, which can be calculated using the parameter shift method or finite
differences as introduced in section 4.1. The circuits and gradients are calculated
using the quantum machine learning package PennyLane [43].

5.4.1 Results from INTERP heuristic

The INTERP heuristic was tested for both u3R and Erdős-Rényi graphs. For the
u3R graph type, 30 random graph instances of nodes n = 6, 8, 10, 12, 14 were tested,
while 10 different Erdős-Rényi graph instances of nodes n = 6, 7, 8, 9, 10 were tested.
First, ten different optimization runs were performed for each graph instance to find
general patterns in the optimization. Once a pattern was established, the heuristic

53



1 2 3 4 5 6 7 8 9 10
p

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

r

Approximation ratio r
8 Node graph

1 2 3 4 5 6 7 8 9 10
i

0.05

0.10

0.15

0.20

0.25

0.30

0.35

An
gl

es
/

( *
i , *

i ) at p = 10
i

i

1 2 3 4 5 6 7 8 9 10
p

0.00

0.20

0.40

0.60

0.80

1.00

i/

Optimal *
i  at each depth p

1
2

3
4

5
6

7
8

9
10

1 2 3 4 5 6 7 8 9 10
p

0.00

0.10

0.20

0.30

0.40

0.50

i/

Optimal *
i  at each depth p

1
2

3
4

5
6

7
8

9
10

(a) The statistics for a successful run.

1 2 3 4 5 6 7 8 9 10
p

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

r

Approximation ratio r
8 Node graph

1 2 3 4 5 6 7 8 9 10
i

0.00

0.20

0.40

0.60

0.80

1.00

An
gl

es
/

( *
i , *

i ) at p = 10
i

i

1 2 3 4 5 6 7 8 9 10
p

0.00

0.20

0.40

0.60

0.80

1.00

i/

Optimal *
i  at each depth p

1
2

3
4

5
6

7
8

9
10

1 2 3 4 5 6 7 8 9 10
p

0.00

0.10

0.20

0.30

0.40

0.50

i/

Optimal *
i  at each depth p

1
2

3
4

5
6

7
8

9
10

(b) The statistics for an unsuccessful run.

Figure 13: Two separate optimization runs on the same 8 node u3R graph instance.
For each run, the approximation ratio as a function of QAOA depth p (upper left),
optimal parameters (γ∗i , β

∗
i ) at depth p = 10 (upper right) and optimal parameters

(γ∗i , β
∗
i ) at each depth (lower figures) are plotted.

was only run once per graph instance.

The performance of the heuristic is mixed. Consider, for instance, figure 13, where
the statistics of two separate runs using INTERP are presented for the same eight-
node u3R graph instance. As the figure shows, the performance is strongly correlated
with the initial point used at layer p = 1 from which the higher depth parameters
are extrapolated. For u3R graphs, the cost landscape is well behaved and has two

54



1 2 3 4 5 6 7 8 9 10
p

0.80

0.85

0.90

0.95

1.00

r

Approximation ratio r
6 Node graph
8 Node graph
10 Node graph
12 Node graph
14 Node graph

1 2 3 4 5 6 7 8 9 10
i

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

An
gl

es
/

( *
i , *

i ) at p = 10
i, 6 Node graph
i, 6 Node graph
i, 8 Node graph
i, 8 Node graph
i, 10 Node graph
i, 10 Node graph
i, 12 Node graph
i, 12 Node graph
i, 14 Node graph
i, 14 Node graph

Average performance of INTERP on u3R graphs

(a) Performance on u3R graph instances.

1 2 3 4 5 6 7 8 9 10
p

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

r

Approximation ratio r
6 Node graph
7 Node graph
8 Node graph
9 Node graph
10 Node graph
11 Node graph
12 Node graph

1 2 3 4 5 6 7 8 9 10
i

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
An

gl
es

/

( *
i , *

i ) at p = 10
i, 6 Node graph
i, 6 Node graph
i, 7 Node graph
i, 7 Node graph
i, 8 Node graph
i, 8 Node graph
i, 9 Node graph
i, 9 Node graph
i, 10 Node graph
i, 10 Node graph
i, 11 Node graph
i, 11 Node graph
i, 12 Node graph
i, 12 Node graph

Average performance of INTERP on G(0.5,n) graphs

(b) Performance on Erdős-Rényi graph instances.

Figure 14: The average INTERP performance for both u3R (left) and Erdős-Rényi
(right) graph instances. For the u3R graph instances, 30 graph instances (n =
6, 8, 10, 12, 14) were considered, while 10 graph instances (n = 6, 7, 8, 9, 10, 11, 12)
were considered for the Erdős-Rényi graph instances.

global maxima and two global minima (more on the cost landscapes in section 5.4.3).
The only difference between graph instances is how deep the minima and maxima
are. The reason for this is that with u3R graphs, there are only a certain amount of
subgraph types for p = 1; thus, the cost landscape is simply a weighted sum of the
possible subgraphs on the particular graph instance, as explained by Fahri et al. [9].

The general trend for the well-behaved instances is that it seems to reach the global
minima at the highest depth, as indicated by the upper right figure of 13a, as it
follows the pattern heuristically found by Zhou et al. [1]. These simulations also
have a monotonically increasing approximation ratio with increasing depth. The
trend of only one particular global minima at p = 1 giving rise to well-behaved
optimization at higher depths is seen across all graph instances. The reason why

55



the other global minima give rise to inconsistent results is most likely attributed to
the optimizer choice. As the parameter reaches the bound of parameter space, linear
interpolation will shoot the initial parameters at layer p+ 1 past the bounds, which
truncates the parameter to the edge value. As a result, the parameters are forced
to perform drastic changes, as evident by the lower plots of figure 13b. In this case,
the approximation ratio can decrease with increasing depths, as seen in the figure.
In these cases, the interpolation interpolates into a local sub-optimal minimum of a
higher value than the previous layer’s local minimum.

Somewhat surprisingly, this trend is not found in the Erdős-Rényi instances con-
sidered in the simulations, and most instances follow the approximation ratio-trend
as indicated by 13a. With these observations in mind, when the performance of
this heuristic is analyzed, the initial p = 1 parameter will be set to the values that
consistently yield increasing approximation ratios.

Figure 14a shows the results from the simulations on random u3R graphs. As
the figure indicates, the average simulation converges to an approximation ratio
of 1, indicating that the optimal partitions of the graph are found. Higher depth
circuits are expected to give better approximation ratios, as more subgraph types
can be considered with increasing p. Additionally, as with the successful runs of
figure 13a, the optimal parameters found through the heuristic at the final depth
p = 10 follow the trend expected from Zhou et al.’s [1] paper, indicating that
the found solution is close to the global one. This finding is especially promising
considering that only a single run of the heuristic was performed on all 30 graph
instances. Similar performance is also found for the Erdős-Rényi graph instances,
as shown in figure 14b.

5.4.2 Results from the parameter-fixing heuristic

The algorithm is compared to the performance of randomly initialized runs of the
same graph instances to evaluate the performance. In particular, 20 random values
of the variational parameters are generated and passed onto the QAOA algorithm.
The average approximation ratio is calculated, and the procedure is repeated at
each depth p. As seen from figure 15, the heuristic consistently outperforms the
randomly initialized runs, both for the u3R graphs and the Erdős-Rényi graph in-
stances considered.

The graph instances considered in this paper are identical to those in Lee et al.’s [2]
paper, and thus performances can be compared. The performance of the parameter-
fixing technique is relatively similar between the two cases. One slight difference is
that it seems that the optimizer can converge into deeper parts of the cost landscape
for larger depths than for the results of Lee et al. [2], thus giving approximation ratios
that are closer to 1. However, the differences are marginal. One stark contrast
between these simulations and those presented by Lee et al. [2] are the results using
random initialization of the QAOA parameters. Compared to their simulations, the
average approximation ratio is significantly higher. For instance, in the simulation
of u3R graphs at the largest depth p = 10, Lee et al. [2] found that only the
n = 6 graph instance was able to surpass the r = 0.9 threshold in contrast to these

56



0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ap
pr

ox
im

at
io

n 
ra

tio
 r

u3R graphs with parameterfixing

6
8
10
12
14

0.80

0.85

0.90

0.95

1.00

Ap
pr

ox
im

at
io

n 
ra

tio
 r

G(n, 0.5) graphs with parameterfixing
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10
Depth p

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

ap
pr

ox
im

at
io

n 
ra

tio
 r

u3R graphs with random initialization
6
8
10
12
14

1 2 3 4 5 6 7 8 9 10
Depth p

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Av
er

ag
e 

ap
pr

ox
im

at
io

n 
ra

tio
 r

G(n, 0.5) graphs with random initialization
6
7
8
9
10

Figure 15: Comparison of the performance (measured in approximation ratio) using
the two initialization methods discussed in the text. On the left are 5 graph instances
of u3R graphs (n = 6, 8, 10, 12, 14) while the right show the performance on 5 random
Erdős-Rényi (G(n, q)) graphs (n = 6, 7, 8, 9, 10) with edge probability q = 0.5.

simulations where all graph instances on average were able to reach it. A similar
trend is observed with the Erdős-Rényi graph instances. The choice of optimizers
may be the cause of this difference in performance. These simulations were run
with the L-BFGS-B optimizer rather than the Nelder-Mead optimizer used by Lee
et al. [2] In L-BFGS-B, gradient information is passed directly to the optimizer in
order to navigate the cost landscape. This is not the case for the Nelder-Mead, a
direct search method.

With the parameter fixing heuristic, one can evaluate how the optimal parameters
change with increasing depths. Lee et al. [2] find that when comparing the optimal
parameters of one depth to the same parameters of the subsequent depth (for in-
stance, comparing γp=2

2 when QAOA has depth 2 to γp=3
2 at depth 3), the change

in parameters is subtle. Lee et al. [2] draw their conclusions from an eight-node
u3R graph. Figure 16 is an extension of their findings using the same graphs as
in figure 15. Each column corresponds to the same statistics as plotted earlier in
figure 13 (the approximation ratio r is not plotted here).

Somewhat surprisingly, even though the same graph instance as Lee et al. [2] studied
was considered in these simulations, the trend that they found was not reproduced
in these simulations, as is evident by the rapid variations of (β∗i , γ

∗
i ), i = 5, 6, 7 for

the n = 8 node graph. However, the trend discovered in the paper is found on the
10 and 12 node graph instances, as the two lower rows of figure 16 show. The trend
is that most parameters do not change significantly when the depth is increased.
This can be surprising, as the fixing of parameters only occurs when choosing the
initial point for the optimization. After the point is set, all 2p parameters are free to

57



0.0

0.2

0.4

0.6

0.8

An
gl

es

u3R graph with 6 nodes

0.0

0.2

0.4

0.6

0.8

1.0
u3R graph with 8 nodes

0.05

0.10

0.15

0.20

0.25

0.30

0.35
u3R graph with 10 nodes

0.05

0.10

0.15

0.20

0.25

0.30

0.35

u3R graph with 12 nodes

i

i

0.0

0.2

0.4

0.6

0.8

1.0

i/

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0
1
2

3
4

5
6

7
8

9
10

2 4 6 8 10
Depth p

0.0

0.1

0.2

0.3

0.4

0.5

i/

2 4 6 8 10
Depth p

0.0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10
Depth p

0.0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10
Depth p

0.0

0.1

0.2

0.3

0.4

0.5
1
2

3
4

5
6

7
8

9
10

Figure 16: Comparing different statistics for the same four instances of u3R graphs
(n = 6, 8, 10, 12) as in figure 15. The first row of plots show the optimal γ∗i , β

∗
i as a

function of i = 1, 2, . . . , 10 at depth p = 10 using the parameter-fixing heuristic. The
second and third rows of graphs plots the optimal parameters γ∗i and β∗i respectively
at each depth p using the parameter-fixing heuristic.

be optimized. After a parameter has relaxed to its fixed value, further optimization
changes it little. This effect is especially prominent at higher depths, particularly
p ≥ 6, where parameters that change most significantly are the newly introduced
ones.

This fixing of the parameters can be intuitively understood by noting that the optim-
ization at depth p is a constrained version of the optimization at p+ 1. Considering
this fact, in tandem with the observation that the approximation ratio changes little
at higher depths (as it is already close to r = 1), setting the newly introduced para-
meters to zero gives the same result as the previous depth while finding the minimum
of the constrained cost landscape of the newly introduced parameters yields lower
costs. In these simulations, the trajectories of the parameters are less fixed than the
findings from Lee et al. [2].

An interesting find is that for the well-behaved instances, the optimal parameters
at depth p = 10 follow the trend found in INTERP for the optimal parameters,
namely that γ∗i , β

∗
i at the highest depth p follow the continuous trend of increasing

γi and decreasing βi. The finding suggests that out of the 20 new pairs of points
at layer p + 1, the pairs that yield better approximation ratios follow a similar
trajectory as the parameters of the INTERP heuristic. Comparing the two lower
rows of figure 16 with the lower row of figure 13a, it seems that the fixing of the
previous layer’s parameters is prevalent in the INTERP heuristic as well, especially
at higher depths p.

58



However, the parameter-fixing heuristic searches larger parts of parameter space
due to the 20 randomized parameters at each depth p. As a result, the method is
less prone to getting stuck in local minima than the INTERP method, which can
interpolate into local minima and get stuck, as seen in figure 13b. This problem
is circumvented in the parameter-fixing heuristic as indicated by figure 15 where
the monotonicity in the increasing approximation ratio remains even if the optimal
parameters (γ∗i , β

∗
i ) do not necessarily follow the trend predicted by Zhou et al.[1].

Naively using the INTERP heuristic might give mixed results, as indicated earlier,
in contrast to the parameter-fixing heuristic, which generally performs well for all
parameter initializations. However, the parameter fixing heuristic is slower since its
runtime is of O(np) where n is the number of sampled pairs (γp, βp) at each depth p
(this was set to 20 in these simulations). This scaling is in contrast to the INTERP
heuristic, where the interpolated initial parameters are optimized only once at each
depth p, which scales like O(p). However, suppose the correct optimal minima at
p = 1 are chosen. In that case, the INTERP heuristic seems to give a monotonically
increasing approximation ratio with increasing depths and generally converges to
a good optimal solution. As a result, the INTERP heuristic generally seems to
outperform the parameter fixing heuristic.

5.4.3 Cost Landscape

With the observation that fixed parameters tend to remain fixed at higher depths,
it is possible to get a glimpse into how the cost landscape changes as the depth is
increased. Figure 17 presents the cost landscape for a ten node u3R graph for QAOA
depths of 1 and 2. The right subfigures of figure 17 present the cost landscapes as a
function of the (γ2, β2) parameters for the particular cases where (γ1, β1) are fixed
to the minimum and maximum of the previous depth as indicated with diamonds
in figure 17. The orange diamond is the p = 1 minimum that consistently gives rise
to well-behaving runs for the INTERP heuristic, while the green diamond is one of
two potential maxima. Note here that the cost-landscape corresponds to expectation
values of the negative cost Hamiltonian, which is needed to use the SCIPY minimize
library as it optimizes in the negative cost direction. Thus, blue regions correspond
to better partitions of the graph instance. As the figure shows, fixing the previous
layer parameters substantially affects the cost landscape. There are two things to
take note of with these cost-landscapes in particular.

Firstly, as the previous layer parameters are fixed to the optimal values of layer
p = 1 (lower right of figure 17), large regions of the cost landscape yield reasonable
costs, as the areas of the cost landscape are predominantly blue. Additionally, the
attractive basin around the global cost is large; thus, most initialization within this
area will converge to the constrained global minimum. Note that if the optimization
was performed without bounds, the constrained global minimum for this particular
depth would be reached as the minima are degenerate in parameter space. If the
searchable parameter space is restricted, as in these simulations, there are two low-
cost minima to converge towards.

Secondly, suppose a maximum of the previous layer is fixed instead. In that case, a

59



Depth p = 2

Depth p = 1

Fix minima

Fix maxima

Figure 17: Surface-plots of the cost landscape, −〈ψ(γ,β)|HC |ψ(γ,β)〉, for layers
p = 1 (left) and p = 2 (right). For the p = 2 upper (lower) figure, the previous
parameters (γ1, β1 ) are fixed to the arguments of the orange (green) diamonds
of p = 1. Blue regions corresponds to better expected cuts of the graph. These
particular cost landscapes was generated using a u3R 10-node graph.

third suboptimal minimum emerges, hinting at the notion of a non-convex landscape
as the previous layer parameters are changed. It should also be noted that two of the
three minima are suboptimal solutions if the parameter space is bounded. Hence the
attractive basin of the constrained global minimum is relatively small compared to
when the minimum is fixed. Naturally, this discussion is incomplete since there are
more degrees of freedom to optimize, which are not considered as they are fixed in
these figures. From the previous figures of the parameter trajectories, it is recognized
that usually, all parameters are optimized at the lower depths.

In figure 18 the expected cost −〈ψ(γ,β)|HC |ψ(γ,β)〉 for a 10-layered circuit is
plotted as a function of the final depth parameters (γ10, β10). The rest of the 2(p−1)
parameters remain fixed, where figure 18a sets the fixed values to the values found
from repeated application of the parameter-fixing heuristic. In figure 18b, the fixed
parameters are random values sampled uniformly within the bounds of the QAOA
parameters. The sampling procedure was performed 25 times and the cost averaged.
In these cases, a ten node graph was considered with an optimal MaxCut value of
13.

Working with the assumption that the parameters of the previous depths remain
fixed, the reason for the excellent performance becomes evident. Lee et al. [2] at-
tribute the positive performance of the parameter-fixing heuristic to the appearance
of these minima-lines, which becomes deeper with increasing depth, as shown in fig-
ure 18c. As the figure shows, the transition from the simple local minimum at depth
p = 1 to the lines of minima happens reasonably early. However, these lines are not
deep enough to give high approximation ratios until intermediate depths (p ≥ 6).

60



p

0.0 0.5 1.0 1.5 2.0 2.5 3.0

p

0.00
0.25

0.50
0.75

1.00
1.25

1.50

C

12
11
10
9
8

Depth p = 10

(a) The cost-landscape with all previous
parameters fixed to the optimal value.

p

0.0
0.5

1.0
1.5

2.0
2.5

3.0 p
0.00

0.25
0.50

0.75
1.00

1.25
1.50

C

7.45
7.40
7.35
7.30
7.25
7.20

Depth p = 10

(b) The average cost landscape where the
fixed parameters are set to random values.

(c) The cost landscape plotted as a function of the last parameters (γp, βp) plotted for
various depths. The 2(p− 1) fixed parameters follow from the parameter-fixing heuristic.

Figure 18: The cost −〈ψ(γ,β)|HC |ψ(γ,β)〉 plotted as a function of the last para-
meters (γ10, β10) with fixed optimal parameters (left) and random fixed parameters
(right). Further explanation of the figure is found in the text.

As is evident by these cost landscapes, the cost function essentially becomes convex
within the bounds set for the parameters.

If a similar procedure were to be performed using randomly fixed parameters, the
cost would concentrate around local optima, far off the global one, as shown in
figure 18b. However, it needs to be emphasized that this argument does not hold as
there are several degrees of freedom to optimize. The performance of the randomly
initialized parameters of figure 16 indicates that good solutions indeed are found.

5.5 Difference between QAOA and Quantum Annealing

In order to understand QAOA and its mechanisms, it is informative to compare
it to adiabatic quantum computation, which usually goes by the name Quantum
Annealing (QA). There are slight differences between these two terms; however,
they usually lie in the fact that Quantum annealing cannot sufficiently approximate
the adiabaticity required of adiabatic quantum computing.

The goal of adiabatic quantum computation is to find the ground state of a problem

61



Hamiltonian HP , which it does by adiabatically evolving from the ground state of
a known Hamiltonian HB at time t = 0 to the problem Hamiltonian HP at time
t = T using the following time-dependent Hamiltonian

HQA(s(t)) = sHP + (1− s)HB, s(0) = 0, s(T ) = 1 (104)

This method is grounded in the adiabatic theorem, which states that a physical
system remains in its instantaneous eigenstate if a given perturbation is acting on
it slowly enough and if there is a gap between the eigenvalue and the rest of the
Hamiltonian’s spectrum (Born, 1928 [58]). Therefore, at t = T , the system is in the
ground state of the problem Hamiltonian, and thus the problem’s solution can be
found. The time-evolution of a quantum state can in general be written as a unitary
|ψ(t)〉 = U(t)|ψ(0)〉. Inserting this into the time-dependent Schrodinger equation
gives the following differential equation for the unitary operator:

i
∂U(t)

∂t
= H(t)U(t) (105)

U(t) = e−i
∫ t
0 H(t)dt (106)

In the second equation it was implicitly assumed that [H(t1), H(t2)] = 0. In the
case that the Hamiltonian is time-independent, one would get U(t) = e−iHt. Using
the time-evolving operator, one can decompose the evolution from time t = 0 to
t = T as follows:

U(T, 0) = U(T, T −∆t)U(T −∆t, T − 2∆t) . . . U(∆t, 0) (107)

In general, the time-intervals ∆ti can be different. Choosing ∆t to be sufficiently
small such that H(t) is constant in each of these intervals yields an approximate
expression for the time evolution operator,

U(j∆t, (j − 1)∆t) = e−i
∫ (j)∆t
(j−1)∆t

H(t)dt ≈ e−iH(j∆t)∆t, (108)

where H(j∆t) is the constant Hamiltonian in the time-interval between times (j −
1)∆t and j∆t. Decomposing the total time evolution into p parts yields

U(T, 0) =

p∏
j=1

U(j∆t, (j − 1)∆t) ≈
p∏
j=1

e−iH(j∆t)∆t (109)

Now the evolution operator is expressed as a product of time-independent evolution
operators over p small time intervals. However, since H is given by HQA, the terms

62



in the Hamiltonian do not commute ([HP , HB] 6= 0 by design). However, one can
employ the Trotter-Suzuki decomposition to address this issue, which to first-order
states that eit(A+B) = eitAeitB + O(t2) [59]. Using this decomposition and inserting
for the hamiltonian HQA yields

U(T, 0) =

p∏
j=1

e−i(1−s(j∆t))∆tHBe−is(j∆t)∆tHp (110)

By setting the QAOA parameters to be γj = s(j∆t)∆t and βj = (1 − s(j∆t))∆t,
one could simulate quantum annealing using the QAOA ansatz. As a result, one
can view QAOA as a generalization of quantum annealing. QAOA differs signi-
ficantly from QA in one aspect, namely adiabaticity. In QA, one starts in the
ground of some known Hamiltonian and adiabatically evolves this state in such a
way that it always remains in the instantaneous ground state of the time-dependent
Hamiltonian HQA(t). This is represented by the s(t) function (usually given as a
linear interpolation t

T
), which gradually introduces the problem-Hamiltonian HP

during the evolution. In contrast, QAOA does not gradually introduce the problem
Hamiltonian but instead switches on the mixer and problem Hamiltonian for varying
durations βi and γi, respectively. As a result, QAOA is not restricted to following
an adiabatic path in these parameters. Zhou et al. [1] compared QAOA with QA
and found that the QAOA procedure can find optimized annealing paths and exploit
diabatic transformations to increase the ground state population through classical
optimization. This allows QAOA to find good approximate solutions faster than
QA, with an algorithmic run time that scales like T = O(1/∆2

min). ∆min is the
minimum spectral gap, i.e., the minimal gap between the ground state and the first
excited state through the annealing process.

To summarize, QAOA is a particular algorithm within the family of VQAs which
use alternating unitaries to evolve the state towards the minimum cost. In this sec-
tion, the algorithm was applied to the combinatorial optimization problem MaxCut
on u3R and Erdős-Rényi graph instances, where it is found that the algorithm is
indeed effective in finding the ground state spin configuration that minimizes the
cost. Similarities with quantum annealing are further discussed in order to get an
understanding of the mechanisms of the algorithm. Here it is found that the al-
gorithm can find diabatic paths in parameter space that cause faster convergence
to the ground state energy through classical optimization. As indicated by the op-
timization from randomized initial points in parameter space, the cost landscape is
non-convex, and the optimizer often gets stuck in local minima. Two initialization
heuristics were introduced to combat this, successfully converging towards the global
minimum costs. Note that training these algorithms take a considerable amount of
time, within which multiple runs of the classical Goemans-Williamson algorithm can
be run to achieve minimum costs with a high probability.

Through the lens of QAOA, this section has also exemplified how the general struc-
ture of variational algorithms is applied in a general hybrid quantum-classical com-
putational framework. In particular, a classical optimizer can train the variational
parameters in quantum circuits using a black-box approach where inquiries are made

63



to the quantum computer to estimate gradient directions. From this point forward,
two different approaches will be explored further. The first utilizes a classical feedfor-
ward neural network to learn the optimal QAOA parameters based on the INTERP
heuristic. The other approach attaches a feedforward neural network at the end of
quantum measurements to escape local minima in the QAOA cost landscape.

64





6 Using neural networks to find the optimal para-

meters

Closing this part of the thesis, the findings presented so far will be used to create
a machine learning procedure that consistently produces good mean cost values for
the MaxCut problem. Section 5 established that the optimal QAOA parameters
(γi, βi) at a given p follow increasing and decreasing trends, respectively. Using
this knowledge, Alam et al. [3] propose using classical machine learning techniques
to learn the optimal parameters at a given depth. Using this pre-trained machine
learning algorithm, one may use it to predict the optimal parameters on unseen
graph instances using optimal parameters at low depth. Their approach involved
using Gaussian processes to predict the optimal parameter values. In anticipation
that neural networks will be used later in the thesis, this section extends their
approach by using a neural network to predict the 2pf optimal parameter values
at the final depth using only the optimal parameters at level p = 1. Figure 19
illustrates how this procedure works.

⋮

⋮

γp=1
1

βp=1
1

γ p=pf
1

γ p=pf
2

γ p=pf
p

βp=pf
1

βp=pf
2

βp=pf
p

Optimize
2pf parameters2 parameters

Optimize

Figure 19: A figure explaining how one incorporates machine learning in this proced-
ure. Using the optimized QAOA parameters at p = 1, (γ1,β1), the neural network
predicts all the QAOA parameters at the final depth p = pf . Hence the model takes
two parameters as input and outputs 2pf parameters. Using the predicted values
as an initial guess, a final optimization is performed to find the optimal parameters
(γ∗,β∗) at depth p = pf .

This approach consists of two parts. The first part is generating a set of data
to learn the optimal patterns. The dataset consists of all optimal parameters at
QAOA depths ranging from 1 to 8 for 200 different graph instances. These optimal
parameters were generated using an identical setup as presented in section 5 using
the INTERP heuristic. The graph dataset consisted of various twelve node w3R
graph instances with weights sampled uniformly between [0, 1]. From here, the
dataset is separated into a 20-80 train-test split to show that a significant amount
of graph instances is not needed to form good results. The dataset is then used to
train a neural network. The neural network that is considered here is rather simple:

65



Figure 20: This is an example showing the trends as indicated in the paper. Notably,
for each angle index i, as the depth of the QAOA circuit increases, the optimal angle
γi decreases while βi increases, as highlighted by the blue arrows at each angle index
i. Also, for a fixed p, γi tends to increase while βi tends to decrease with increasing
angle index i as highlighted by the red arrows.

it consists of a single input layer and a single output layer. The input layer has two
nodes, while the output layer has 2p nodes. The neural network takes as input the
optimal (γ, β) at depth p = 1, then outputs a set of parameters (γ,β) that can be
used as initialization for a regular optimization run.

There are two particular trends in the parameters that are worth taking a note
of. The first is the familiar trend of increasing γi and decreasing βi at a given
depth p. The second is that given an angle index i, the parameter γi decreases
when increasing the circuit depth p while βi increases with increasing p. Figure 20
highlights this trend using arrows where the red arrows represent the former trend
while the blue arrows represent the latter. This is the motivation for trying to use
the optimal parameters at depth p = 1 to find the optimal 2p parameters at higher
depths. For instance, if one were to predict the initial parameters at p = 2 using
the p = 1 optimal parameters (γp=1

1 , β
p=1)
1 , the intuitive values would be to set γp=2

1

to be lower than γp=1
1 and set γp=2

2 to be larger than γp=2
1 based on the observed

trends shown in 20. One would correspondingly do the same for βp=2, and continue
in a similar fashion to predict the optimal parameters at higher depths.

In order to quantify the expected predictive capability of the model, the correlation
between the model’s features and expected output was calculated using data from
the generated dataset. The results are shown in figure 21. In this figure, the output
is shown along the x-axis, while the correlation between this output at the various
features of the model is plotted along the y-axis. p is included as a feature of the
model since the size of the neural network is determined by the QAOA depth p.

66



1 2 3 4 5 6 7
i

0.5

0.0

0.5
C

or
re

la
tio

n 
R

Correlation between i and predictors
R p = 1

1 , p = 8
i

R p = 1
1 , p = 8

i

Rp, p = p
i

1 2 3 4 5 6 7
i

0.2

0.4

0.6

0.8

C
or

re
la

tio
n 

R

Correlation between i and predictors

R p = 1
1 , p = 8

i

R p = 1
1 , p = 8

i

Rp, p = p
i

Figure 21: Correlations between the predictors and the response variables found
from the generated dataset. The outcomes γ and β are plotted along the x-axis and
the correlation between it and the predictor variables along the y-axis. Alternatively,
outcome b in Ra,b from the legend in the plots are plotted along the x axis, and the
correlation between it and the feature a is plotted along the y axis.

Firstly, as expected, the correlation between γi (βi) and p is negative (positive) as
per the earlier findings indicated using the blue arrows in figure 20. The predictive
power of the neural network features seems to vary between the types of variables.
As the figure 21 shows, γp=1

1 correlates highly with the all the gamma-angles to
be predicted at p = 8, hence this feature can be efficiently used to predict all the
gamma angles γp=8. This cannot be said for the βp=8 where it is found that the
features used as input to the neural network lose predictive power with increasing
angle index i. They still correlate with the outputs, however, to less degree than for
the lower indices.

As figure 22 shows, the model is able to extrapolate the optimal parameters from
the 40 graph instances used to train the model. Since a heavy linear trend is associ-
ated with the parameters (increasing γi, decreasing βi) and a linear trend between
the outputted parameters and input features, fitting a linear model to the data
gives good results as expected. This is particularly the case for the predicted γi
parameters, as the neural network can capture the width of the parameters. In
the anticipation that the procedure places the initial parameter vector close to the
global minimum of the optimization landscape, the predicted parameter values are
used as the starting point for an optimization run. This procedure was tested for
final depths pf = 5, 6, 7, 8 and the results are presented in table 2.

p Mean r Std. deviation

5 0.944 0.014
6 0.957 0.012
7 0.967 0.011
8 0.974 0.011

Table 2: A table showing the mean approximation ratio r and the associated stand-
ard deviation when the above method is used as the initialization procedure for
depths p = 5, 6, 7, 8 for the various graphs in the test dataset.

As figure 23 shows, the prediction in the optimal QAOA parameters can have large
relative errors associated with them, particularly in the case of the βi predictions.

67



0.2

0.4

0.6

i/
Predicted i from NN

0.2

0.4

0.6

0.8
Target i from test data

1 2 3 4 5 6 7 8
i

0.05

0.10

0.15

0.20

i/

Predicted i from NN

1 2 3 4 5 6 7 8
i

0.05

0.10

0.15

0.20

Target i from test data

The predicted values of ( , ) at depth p and the target values from the test data

Figure 22: A plot showing the predicted output of the linear model when applied
to 160 separate graph instances. The input to the model is the optimal parameters
(γ, β) at depth p = 1 while the output are the 16 parameters associated with the
procedure at p = 8. The first column shows the predicted initialized values of
(γi, βi) from the linear model, while the second column shows the optimal (γi, βi)
when INTERP is used on the same graph instances. The model was only trained
on 40 of the 200 graph instances that constituted the entire graph dataset.

1 2 3 4 5
pi

0

20

40

60

R
el

at
iv

e 
er

ro
r (

%
)

p = 5
Error in i

Error in i

1 2 3 4 5 6
pi

0

20

40

60

80

R
el

at
iv

e 
er

ro
r (

%
)

p = 6
Error in i

Error in i

1 2 3 4 5 6 7
pi

0

20

40

60

80

100

R
el

at
iv

e 
er

ro
r (

%
)

p = 7
Error in i

Error in i

1 2 3 4 5 6 7 8
pi

0

20

40

60

80

100

R
el

at
iv

e 
er

ro
r (

%
)

p = 8
Error in i

Error in i

The relative error between NN parameter-prediction and test data at various depths p

Figure 23: The relative error between the predicted parameter and the global min-
imum found in the test dataset for the various QAOA depths p = 5, 6, 7, 8.

68



This is to be expected as the correlations show that there is only a weak linear trend
between the p = 1 and p = 8 parameters as the angle index i at p = 8 increases.
Therefore, as expected from the trend in correlations, the relative error increases
with increasing angle index i for the βi parameters and remains relatively constant
with γi. The effect of these relatively large errors in βi predictions can also be seen in
figure 22. The ML predictions can capture the wide span in the optimal parameters
in γi for the various graphs. However, the model is incapable of doing so with
the βi parameters, causing relatively large errors. However, despite the predictions
in βi having inaccuracies, the initial point is still within the attractive basin of the
global optimum. Therefore, if one were to use the predicted parameters as the initial
point for optimization, the optimization would easily converge to the same global
minimum found in the test dataset, yielding performances as noted in table 2.

As this section has shown, the procedure of using machine learning to learn the
optimal parameters of QAOA seems effective. This further validates the INTERP
heuristic’s effectiveness. Through this method, one only needs to perform the p = 1
optimization to interpolate all the 2pf parameters at the final depth from which a
final optimization run is performed to correct the prediction. However, there are lim-
itations to this method, as shown by the relatively large errors in the βi predictions
stemming from its low correlations with the input features of the neural network.
One potential workaround to interpolate to further depths could be incrementally
increasing the number of features in the neural network. For instance, if one were
to interpolate the parameters from p = 1 to p = 15, one could first interpolate to
p = 8 using the above procedure. Then, using the 16 found parameters as a set of
features, one could train a neural network with 16 input nodes and 30 output nodes
to perform the final prediction. Alternatively, one could look for other potential
features with stronger correlations with the final parameters.

The following section presents the final approach that the thesis considers: using
a neural network to escape from a local minimum once encountered. Similarly to
this procedure, a feedforward neural network is considered; however, it is attached
to the measurements at the end of the quantum computation instead.

69





7 Avoiding local minima in VQA with neural net-

works

The previous sections have either exclusively considered machine learning or simple
VQA procedures where the outputs of the quantum systems are classically optim-
ized. Most of the latter problems keep the cost landscape fixed and use momentum,
adaptive step sizes, and randomization to escape local minima. This section seeks to
utilize the machinery from machine learning actively on VQA procedures to escape
local minima. An overview of this procedure is shown in figure 24. For this purpose,
two heuristics are developed by Riveradean et al. [4] where the cost-landscape itself
is modified in order to avoid local minima.

The modification is performed by attaching a classical single-layer feedforward neural
network at the end of the quantum circuit measurement. The introduction of a
neural network adds additional parameters to the model and thus increases the
number of parameters. As discussed in more detail in section 4.3, increasing the
number of parameters has been linked to improved trainability of variational cir-
cuits as expected from the cost landscapes of classical neural networks [13]. The
cost landscape can be continuously deformed as a function of its weights by post-
processing the measurement output through the neural network. Depending on how
this cost landscape is deformed, Riveradean et al. [4] create two different algorithms.
In the ESCAPE algorithm, the deformation is applied once the optimization of the
VQA parameters encounters a local minimum. The second algorithm, GUIDE, it-
eratively optimizes the cost landscape through the entire optimization as a means
of continuously evading local minima. The thesis considers only the ESCAPE al-
gorithm in more detail.

The paper considers a general variational problem,

min
θ
〈ψ(θ) |HD|ψ(θ)〉 (111)

HD =
∑

x∈{0,1}N
C(x)|x〉〈x| (112)

where HD is a diagonal Hamiltonian in the computational basis and C(x) is some
cost function that maps the input x ∈ {0, 1}N to some output in R. This is usually
how a classical optimization problem is presented for VQA problems; an example
was presented when applying QAOA on MaxCut in section 5. However, the VQA
architecture needs to be combined with feedforward neural networks for this hybrid
classical-quantum model, as shown in figure 24.

The architecture of the classical-quantum hybrid model is as follows: Prepare the
N qubit quantum parametrized state |ψ(θ)〉 according to an ansatz of choice and
perform a computational basis measurement of the circuit, resulting in a classical
bitstring x ∈ {0, 1}N . This bitstring can be turned into a string of {−1, 1}N by
the transformation x′ = 2x − 1. This string is the input to a single layer, fully
connected feedforward neural network with weights W ∈ RN×N (no bias term is

70



Variational 
parameters


|0i

U(✓1) U(✓2)

· · ·

U(✓n)
|0i · · ·

...
...

...
...

|0i · · ·

1

Variational parameters

θ = (θ1, θ2, …, θn)

wij

W = {wij}

…

O
ptim

ization

minθ,W ⟨C(θ,W

)⟩

Variational Quantum Circuit
 Classical machine learning


Figure 24: A schematic overview of how the neural network is included in this
procedure.

included), hence maps the string {−1, 1}N to RN . The resulting vector is now fed
through an activation function, which in this case is the tanh function, resulting
in the output vector fW (x) = tanh(W (2x − 1)) ∈ RN . The activation function is
a relaxed sign function; however, the cost function in the case of MaxCut accepts
strings of {−1, 1}N as input, as noted in equation 94. Therefore, a final sgn(x)
function is applied to all the elements in the vector, resulting in a vector of {−1, 1}N .
Therefore, the whole procedure maps a binary basis measurement string {0, 1}N into
a string of {−1, 1}N , on which the cost function C is evaluated. There are two ways
of viewing this combination of classical and quantum processing. One way is to
view the quantum circuit as a sample generator that produces a bit string x with
probability p(x|θ) dependent on the final state prior to measurement. In this case,
the mean cost can be expressed as

C(θ,W ) =
∑

x∈{0,1}N
p(x|θ)C (fW (x)) (113)

p(x|θ) = |〈x|ψ(θ)〉|2. (114)

This expression can be rewritten in order to get a different interpretation more
aligned with traditional VQA problem descriptions

C(θ,W ) =
∑

x∈{0,1}N
〈x|ψ(θ)〉〈ψ(θ)|x〉C (fW (x)) (115)

=
∑

x∈{0,1}N
〈ψ(θ)|

(
C (fW (x)) |x〉〈x|

)
|ψ(θ)〉 (116)

= 〈ψ(θ)|H(W )|ψ(θ)〉, (117)

H(W ) =
∑

x∈{0,1}N
C (fW (x)) |x〉〈x| (118)

71



From this expression, it is evident that the parameters of the classical neural network
impact the variational parameters’ cost landscape due to the W -dependence of the
Hamiltonian. Since the model involves both quantum and classical parameters, the
differentiation of the cost with respect to the quantum variables, ∇θC (fW (x)), and
the classical variables, ∇WC (fW (x)), need to be evaluated. Using (117) as the
cost function enables the use of the parameter-shift rule to evaluate the gradient
as presented in section 4.1. Using equation (113), the derivative of the cost with
respect to the classical parameters can be expressed as the sum of gradients over all
the samples from the variational circuit

∇WC(θ,W ) =
∑

x∈{0,1}N
p(x|θ)∇WC (fW (x)) . (119)

Using x as samples, the gradient ∇WC (fW (x)) is calculated through backpropaga-
tion as presented in section 2.5.2. In particular, one fixes the circuit parameters θ
and sample bitstrings from the circuit, which are used in the error terms as they
are backpropagated through the neural network. The quantum resources needed
to calculate this gradient are insignificant compared to calculating the gradients of
gate parameters using parameter-fixing. As explained in section 4.1, the scaling of
calculating ∇θ using the parameter-shift rule is 2PS(R+1). On the other hand, the
number of samples from the quantum computer needed to estimate ∇W scales with
SB, where B is the batch of samples used in the gradient calculations. As noted in
section 4.1, backpropagation is more efficient than parameter-shift methods because
it can calculate derivatives in parallel. In contrast, parameter-shift methods require
two or more shifted expectation values to calculate the gradient with respect to a
single parameter. P generally increases with the depth of the circuit, so for circuits
with significant depth, the quantum resources needed to train the neural network
are insignificant compared to training the circuit parameters.

Training these algorithms instead of bare VQAs seems to be a more efficient use of
the quantum resources due to the computational scaling of the gradient calculations.
With the idea that the weights of the neural network alter the cost landscape with
respect to the gate parameters, this thesis investigates whether a simple feedforward
neural network can aid VQAs in finding better solutions. The following subsection
considers the ESCAPE algorithm.

7.1 ESCAPE-algorithm

The ESCAPE algorithm is utilized when the optimization of the VQA encounters
a local minimum. In essence, the algorithm acts as a quantum version of basin-
hopping [60] where parameters are perturbed until a new minimum is found. How-
ever, in contrast to the traditional basin hopping, the parameters are here kept fixed
while the cost landscape around the parameters is altered. In what follows, the pre-
cise steps of the algorithm are presented from the paper of Riveradean et al. [4].
Along with each step, a short description of the step is provided. For the sake of
generalizability, the entire neural network will be referred to as a function fNN,W

72



where W refers to the trainable parameters of the neural network. It takes as input
the measurement data of the quantum computer and outputs a string from which a
cost can be evaluated.

1. Initialize θ and set fNN = 1

2. Update θ via a gradient descent until convergence to a local minimum.

· So far the algorithm trains without the influence of the neural network,
hence fNN = 1. As it reaches the minimum, the VQA is stuck in a
potentially suboptimal minimum.

3. Update W via a gradient descent procedure for M steps and define W0 as the
weight matrices after the last step.

· The circuit is now a fixed sample generator used to train the weights W
of the neural network.

4. For t = 1, . . . , T :

(a) Set fNN,W = (1− g(t))fNN,W0 + g(t)1 where g(0) = 0 and g(T ) = 1.

(b) Perform a gradient descent update step of θ,

· In this part of the algorithm, the circuit parameters θ are again optimized,
but the cost landscape gradually changes from the altered cost landscape by
the neural network to the original cost landscape due to the properties of
g(t). Through this continuous deformation of landscape, the θ parameters
are potentially perturbed away from the current local minimum of step 2.

5. Update θ via gradient descent until convergence to a (potentially different)
local minimum.

· Now the cost-landscape is reverted back to the original problem (fNN = 1)
and the local minimum potentially escaped. The optimization procedure
of this step solves the original VQA problem.

6. Compare energies in step 2) and step 5). Pick the solution with the lowest
energy.

A figure describing the ESCAPE procedure is found in figure 25 where the neural
network alters the landscape, then gradually relaxes back to the original landscape
again. This gradual perturbation causes the parameter vector to reach one of the
global minima of the landscape.

73



Figure 25: These subplots are meant to exemplify step 4 of the ESCAPE proced-
ure where the neural network alters the cost landscape with respect to the QAOA
parameters. These subplots show the cost landscape as a function of (γp=1

1 , βp=1
1 ) at

various times t with g(t) = t/T and T = 350 for a five node weighted fully connected
graph. The yellow line show the optimization path taken during step 4 of ESCAPE.
See repository [61] for an animation of this transition.

7.2 Details on the implementation

Similar to the original paper, the ESCAPE algorithm was implemented using the
python library Pennylane. Pennylane provides qubit simulators where the entire
quantum circuit is end-to-end differentiable and uses methods from traditional ma-
chine learning to speed up the gradient calculations. Their simulator devices con-
struct a computational graph upon a forward pass through the quantum circuit.
Through the computational graph, the gradient with respect to the free parameters
in the VQA ansatz can be calculated using back-propagation. This gradient could,
in principle, be calculated by utilizing the parameter-shift rule (which is also built
into Pennylane); however, it requires significantly longer computations as the ansatz
depth increases. In essence, these simulators are statevector simulators capable of
calculating the exact outcome of the quantum computer up to floating-point pre-
cision. This, in principle, means that the same set of parameters θ that define an
ansatz will give rise to one specific output. From this point forward, this simu-
lator device will be called the ”ideal simulator.” Pennylane also allows for a shot-
based simulator that outputs a fixed amount of measurements in the computational
basis. This simulator device will be called the shot-based simulator. The choice of
Pennylane over other frameworks such as Qiskit was made because gradient compu-
tations are more intuitively built into this programming framework. Additionally,
the gradient computations are faster because the backend is built up with gradient
calculation in mind. This framework flows seamlessly into other machine learning
libraries such as PyTorch.

Particularly for the ESCAPE algorithm, one can use the ideal simulators provided
by Pennylane for steps 2 and 5 to reach deep parts of the cost landscape. This
might be infeasible when using a shot-based approach since the stochastic output
hinders it from reaching deeper parts of the landscape. However, step 4 of the
algorithm might prove problematic depending on the problem’s size. Rivereadean
et al.’ s [4] workaround to incorporate the analytical gradient framework was to
let the quantum device return a list of the probabilities of measuring each possible
basis state {x}. Through these probabilities, the cost function of the problem can be
readily calculated classically by inserting these probabilities into the expression given
earlier in equation 113. Since these probabilities, in principle, are deterministic (one

74



specific set of parameters θ would give rise to one specific probability distribution),
the gradient with respect to the VQA parameters θ can be calculated using

∂pi
∂θ

=
∂〈ψ(θ)|i〉〈i|ψ(θ)〉

∂θ
(120)

and hence the parameters can be optimized. However, this is a major computational
bottleneck. Notably, as the qubit count increases, the number of possible basis states
{x} increases exponentially as 2N . Hence, if one wishes to increase the problem sizes
beyond N ∼ 16 qubits, a different approach is needed (this was the highest qubit-
count simulated in the original paper).

At graph instances with twelve nodes, the ESCAPE procedure using the ideal sim-
ulator described above takes a modest amount of computational time. Therefore,
the ESCAPE routine in its original form is tested for graph instances up to twelve
nodes to reproduce the findings of the original paper. As the number of graph nodes
increases, a shift is made to move away from the ideal simulator and instead utilize
a more realistic shot-based quantum computer. In principle, one could continue to
use the ESCAPE procedure in its intended form by utilizing the parameter shift
rule to get a stochastic estimate of the analytical gradient. However, in the hopes
of using fewer function evaluations throughout the procedure, a change from the
original approach is made to use gradient-free methods.

Two particular gradient-free methods were tested; Nelder-Mead (as implemented in
SCIPY [57]) and the Simultaneous Perturbation Stochastic Approximation (SPSA).
Rather than taking a single gradient-based step in step 4b of ESCAPE, one instead
takes multiple gradient-free steps to approximate the single gradient-based step.
This altered approach changes the cost function in step 4 in two ways. Firstly, the
sum over {x} is now only sampled from the quantum circuit instead of the entire set
of possible bitstring combinations as was done in the ideal approach, hence circum-
venting the computational bottleneck. Secondly, p(x|θ) is instead estimated based
on the samples returned from the circuit instead of being the exact probabilities
of measuring every bitstring. The number of shots S is set to a fixed number of
10 000 throughout the shot-based simulations. This causes uncertainty in the cost
calculations to fluctuate around 0.01, as explained in Appendix C. This choice intro-
duces noise into the system, but not too much to ultimately hinder optimization. To
demonstrate that escaping a local minimum using gradient-free steps is feasible, the
following section considers a toy example to examine the mechanisms underpinning
this procedure.

7.3 Toy Example

A toy model was constructed and studied in some detail to understand the under-
lying mechanism that allows for the hopping from one minimum to another. In this
example, a simple ”quantum computer” is considered that outputs the parameters
(γ, β), i.e.

75



(γ, β) −→ QC −→ (γ, β). (121)

In other words, the system essentially performs an identity transformation instead
of the QAOA transformation with its binary bit-string outcome. This is a massive
simplification of the original system; however, one may extract valuable insights
using simpler systems. This system is then attached to a 2×2 neural network which
processes this outcome and outputs a R2 vector. This vector is the input to some
cost function C, which outputs a real number R. Schematically the toy example
considered in this problem is given as

(γ, β) −→ QC −→ (γ, β) −→ NN −→ Cost. (122)

The cost landscape depends on the original system parameters (γ, β) and the neural
network parameters W . Seen from a different perspective, the neural network can
alter the cost landscape when plotted as a function of (γ, β). This section aims to
demonstrate that it is possible to escape a local minimum using a neural network
and what mechanisms in the neural network cause the escape.

This toy example considers a neural network without any activation functions.
Therefore, only a linear transformation from the input to the output is performed.
The cost function considered here is given by a sum of two-dimensional normal
distributed functions

Cost(x, y) =
∑
i

αi · N (x, y|µi, σ2
i ) (123)

By altering the value of αi and locating these circles at different points in para-
meter space, one creates a custom cost landscape with various local minima. In
these examples, a landscape with three Gaussians was considered with the following
parameters:

i αi µi σ2
i

1 −1 [−20, 10] 10
2 −1.5 [−12,−3] 10
3 −2 [6,−12] 10

The procedure goes as follows. One chooses a point relatively close to the local
minimum, x1, with the highest cost value. Then train the neural network parameters
by using the cost function in eq. 123 and the current parameter-values x1 in the
local minimum; C(NN(x0)). Then, for T steps, gradually turn off the trained neural
network parameters,W0, and change them with the identity matrix by the following:

76



First jump

Second jump

Figure 26: A plot of the cost landscape and the two consecutive jumps performed by
the procedure using a simple feedforward neural network without any hidden layers
or activation functions. The blue line is the initial optimization when starting from
a point close to the worst minimum. The green line shows the optimization path
taken by the procedure when jumping from minimum µ1 to µ2, while the yellow line
shows the trajectory taken to jump from µ2 to µ3. The two lower rows of the figure
show snapshots of the first and second jump respectively in various parts of the
optimization procedure to highlight how the neural network alters the landscape.
See repository [61] for an animation of these jumps.

W =

(
1− t

T

)
W0 +

t

T
1 (124)

During each of these steps, update the parameter values x by performing a maximum
of 5 iterations of a gradient-free optimizer such as Nelder-Mead or a gradient-based
optimizer such as BFGS. A limitation on the number of iterations for these gradient-
free procedures was put in place to limit the number of function evaluations that
can be taken at each t since the original ESCAPE procedure would only perform
a single gradient-based step at each t. Simulations were run with this setup to see
whether successive escapes were possible from the minimum located close to µ1 to
µ2 then from µ2 to µ3.

Figure 26 shows an example of when the procedure successfully jumps to better
minima twice. In order to understand the dynamics of what happens during these

77



BFGS 

Nelder- 
Mead 

Figure 27: A simulation where the method was able to map the first minimum to
the global minimum using a single jump where at each time t a maximum of 2 BFGS
steps were used. The first row shows snapshots of the optimization at various t for
this direct jump from the first minimum to the global one. This sequence shows that
the global minimum of the cost landscape is mapped to the original minimum x0,
which is then relaxed to the global minimum of the original cost landscape. A similar
procedure was also performed using steps of Nelder-Mead instead of BFGS, where
the neural network is able to map the original minimum to the global minimum.
However, during relaxation, the optimization procedure escapes the attractive basin
of the global minimum and instead relaxes to the second-best minimum x2.

successful jumps, the landscape at various times t are plotted along with the current
values of (γ, β) at those points in the lower two rows of the same figure.

Due to the simplistic nature of the neural network, it is relatively easy to analyze its
behavior. Firstly, note that this neural network is limited to rotation and stretch-
ing/shrinking of the cost landscape due to the absence of an activation function.
During a successful escape from a local minimum, the neural network parameters
are chosen such that it can map the parameters in the minimum, x0, to a min-
imum of lower cost. The first snapshot of the first jump in figure 26 illustrates this
where the minimum point x0 overlaps with the light-blue region. At the end of
the transformation, this region is continuously transformed into the second-deepest
minimum of the original cost landscape. As one takes optimization steps at each t,
the parameters tend to stay within this local minimum at each time t. The second
jump also exhibits the same trend where the cost landscape is initially stretched

78



such that the global minimum overlaps with x1 then continuously transformed back
into the actual position of the global minima of the original cost landscape.

A direct jump to the global minimum is also possible in this toy example. Using the
same setup as before, one may encounter a situation as presented in figure 27 where
the neural network can map x0 to the global minimum of the landscape. In this
simulation, the steps in the changing landscape were performed using the gradient-
based minimization procedure BFGS. Snapshots of this simulation are presented
in the first row of the same figure. On the other hand, the second row presents a
similar situation where the neural network was able to map the original minimum to
the global one. However, using the Nelder-Mead optimizer instead of BFGS caused
the procedure to perturb out of the attractive basin during relaxation. It, therefore,
seems that BFGS requires fewer steps to remain in the attractive basin due to
the added gradient information. Suppose one were to use gradient-free optimizers
like Nelder-Mead. In that case, one has to either increase the maximum number
of gradient-free steps at each t so that the parameter vector remains within the
attractive basin at each step or increase the relaxation time T so that the cost
landscape is less severely changed at each step.

Another point of failure for this method is the inability of the neural network to
map the starting local minimum to a better minimum. The first jump to the second
minimum is relatively consistent in this example. However, the second jump to the
global minimum is less so and relies heavily on if the initial random parameters of
the neural network could be trained to perform the necessary mapping that results in
the global minimum. Based on these observations, the distance between the minima
seems to be the primary cause of this issue.

As mentioned earlier, this toy-example landscape is not indicative of an actual cost
landscape for QAOA applied on Max-Cut for p = 1 parameters. Instead, a relatively
barren landscape was created to examine certain limitations of this procedure in this
extreme case. Additionally, since the parameters in QAOA are angles, they are at
least 2π periodic; hence the landscape is not as far-reaching as it is in this example.
Therefore, this gradient-free version of ESCAPE seems promising for the problem
of QAOA on MaxCut.

7.4 Toy Example: Overparametrization and activation func-
tions

This section extends the results found from the precious section slightly further
by introducing more nodes, layers, and different activation functions to the neural
network to see if they aid in training. Various setups with different hidden layers
and the number of nodes within the hidden layers were tested. This method is
therefore not limited to only stretching and rotating the landscape but is instead
able to perform nonlinear transformations of the landscape to potentially map the
initial point x0 to a better minimum. For each setup configuration, 100 simulations
were run where one starts the procedure initially close to the worst minimum, then
attempts two jumps where the neural network is trained then gradually relaxed back

79



⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Setup 1 Setup 2 & 3 Setup 4

Figure 28: Setup 1 consists of one hidden layer with the ReLU(x) activation function,
Setup 2 consists of three hidden layers with the tanh(x) activation function, Setup
3 consists of three hidden layers with the ReLU(x) activation function and Setup 4
consists of five hidden layers with ReLU(x) activation. Within each of the setups,
the procedure was tested with various numbers of nodes, and the results are shown
in table 3.

to the original cost landscape again. For all these simulations, the neural network
was trained using the Adam optimizer with an initial learning rate of 0.01 for 250
optimization steps. The relaxation back to the original landscape is performed
using the BFGS optimizer for a maximum of 5 steps. In these simulations, the
only thing that is allowed to change is the random weights that initialize the neural
network. Although one of the setups performs better than the naive method of no
hidden layers, these methods still struggle with the same problems that the previous
method encountered, namely that if the distance between minima is too large, the
method fails. Considering that the landscape is mostly barren, and hence little
gradient information is available, one might anticipate such outcomes.

Number of nodes Setup 1 Setup 2 Setup 3 Setup 4

5 14 2 7 6
10 17 2 5 4
20 11 0 5 0
100 14 0 3 0

Table 3: A table showing the number of attempts out of 100 that the method
found the lowest minima in the example landscape. Within each of these setups as
described in figure 28, the number of nodes in the hidden layer is given in each row
of the table. The number of successful jumps in the case of no hidden layer and bias
terms is 10. From these results it is evident that Setup 1 is the best performer.

There are two key takeaways from these tests. Firstly, using activation functions
and increasing the number of trainable parameters in the neural network seems
to aid in searching larger parts of the optimization landscape as there are more
degrees of freedom to optimize with respect to the over parametrized neural network.
However, this is not a general result as table 3 shows where the best performing
setup is one where one has a single hidden layer with ten nodes in it with the
ReLU activation function. Rather surprisingly, it seems that merely increasing the
number of nodes in the network does not aid in searching a larger part of the
landscape as one might anticipate. It is uncertain why this is. One possible reason
for the lowered performance with increasing complexity might be that the input and

80



output dimensions are only 2, and hence merely increasing the number of trainable
parameters in the network inhibits training as one is easily capable of finding a
parameter configuration that maps to the closest minimum rather than searching
the landscape.

Secondly, the same shortcomings that were found in the simpler examples still remain
in these over-parametrized problems as well. Notably that the procedure is heavily
dependent on whether the neural network is capable of mapping a better minimum
to the initial starting parameter-value x0. If this is the case, a gradual relaxation
towards the original cost landscape will lead to a better minimum in the landscape.
If this is not the case, a better minimum is not found and the relaxation remains
in the originally found local optimum. Hence for the difficult problems considered
here, the procedure is heavily dependent on the initial values of the neural network
weights. The primary limiting factor of jumping towards better minima seems to
be the distance between the minima, and also how deep the original minimum is.

7.5 Reproduction and extension of ESCAPE

As indicated in the previous section, the method of perturbing a point away from
a local minimum by altering the landscape can work. This section first implements
the method presented by Riveradean et al. [4] where each optimization step in part
4 of the algorithm is made using gradients on the ideal simulator. The algorithm
was tested on various graphs of a similar type as the ones presented in the paper of
Riveradean et al. [4], namely

• Graph A: A five node fully connected graph with weights sampled from a
normal distribution with µ = 0 and σ2 = 1

• Graph B: An eight node fully connected graph with weights sampled randomly
between [0, 1]

• Graph C: The same eight node fully connected graph but with weights sampled
from a normal distribution with µ = 0 and σ2 = 1

0.916

-0.604
1.1

62

-0.601

-1.597

0.3
98

1.206

1.056

0.853

0.689

0

1

2

4

3

(a) Graph instance A

0.916 -0.604

1.1
62

-0.601

-1.597

0.398
1.206

1.056

0.853

0.6
89

-0.225

-0.522

-0
.8

4

1.181

-1
.32

9

-0.124

-0.497

-1.947

-1.849

0.2
65

0.935

-1.17

0.74

-1.112
-1.982

-1.194
0.169

-2.099

3

4

7

6

5

0

2

1

(b) Graph instance B

0.296 0.809

0.3
5

0.789

0.561

0.254
0.105

0.058

0.673

0.6
98

0.733

0.788

0.
07

6

0.318

0.7
41

0.328

0.47

0.181

0.324

0.4
55

0.53

0.293

0.277

0.678
0.233

0.677
0.432

0.388

3

4

7

6

5

0

2

1

(c) Graph instance C

Figure 29: The various graph instances that are considered in this section

Note that the graph weights are allowed to be negative in graphs A and C; hence,
some graph partitions may have negative costs. For the approximation ratio to
remain meaningful for these graph instances, it is changed slightly to the following:

81



r =
〈C(γ,β)〉 − Cmin
Cmax − Cmin

(125)

With this change, the approximation ratio will remain within the interval [0, 1] even
if the mean cost is negative. The original paper only considered g(t) = Θ(t − 150)
where Θ is the Heaviside function. This thesis also considers a gradual relaxation
out of the cost landscape using g(t) = t/T to see if that provides any difference in
performance.

For each QAOA depth p, 100 simulations were run where the initial parameters
were sampled randomly between [0, 2π]. The results of these simulations will be
presented in a similar format to figure 30. The leftmost subplots show the number of
successful and failed escapes that were performed over the 100 random initializations.
The rightmost subplots show the change in energy for those initializations where
the ESCAPE algorithm successfully found a better minimum relative to the initial
minimum from step 2. Riveradean et al. [4] determine a successful escape based on
the condition C (θQAOA)−C (θ∗) > 0.1 where θQAOA are the initial parameters at the
local minimum of step 2 while θ∗ are the final parameters found after the ESCAPE
procedure. C is the cost function that defines the problem being solved (MaxCut
cost function throughout this thesis). A cost difference of −0.1 or less categorizes
a failed jump, i.e., the ESCAPE procedure produced a worse final minimum by the
same condition. For the remaining cases where the cost difference is between −0.1
and 0.1 it is assumed that the ESCAPE procedure finds the same minimum. Since
an ideal simulator is used throughout this section, using this condition as a measure
of success is valid since the cost can be calculated to floating-point precision.

The various graph instances highlight certain aspects of the gradient-based ESCAPE
routine. Firstly, these graphs are used to highlight the difference between using
g(t) = Θ(t− T ) instead of using g(t) = t

T
. Graph A also highlights the observation

that over-training the neural network may hinder the performance, a result found
for both versions of g(t) that were tested. Lastly, graph instances B and C show that
when the graph instances have several cuts of negative value, the performance of the
procedure shows a trend of increasing successes with increasing depth p. Riveradean
et al. [4] found this trend for all their graph instances. The observations from these
graph instances seem to suggest that this trend is graph instance dependent and
also dependent on the number of initial steps performed at step 2 of the ESCAPE
routine.

7.5.1 Graph instance A

Solving on identical graphs of type A, a simulation involving M = 50 neural network
optimization steps is compared to a simulation involving M = 200 steps. The neural
network optimization is performed using stochastic gradient descent (SGD) with a
learning rate of 0.05. The results of M = 50 (M = 200) are shown in figure 30a
(figure 30b). When the neural network is overtrained, most runs find the same
optimum that it started in, as indicated by the lowered success and failure rates

82



1 2 3 4 5 6 7 8
p

0

10

20
%

 o
f c

as
es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.4

0.6

0.8

1.0

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(a) Results using 50 neural network training steps

1 2 3 4 5 6 7 8
p

0

5

10

15

20

%
 o

f c
as

es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.4

0.6

0.8

1.0

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(b) Results using 200 neural network training steps

Figure 30: The statistics of the ESCAPE procedure applied to graph instance A.
Within these subplots, the left subplot shows the number of cases out of 100 ini-
tializations where the procedure succeeded or failed using the success criteria as
presented in the text. Given that a successful escape has been performed, the right
subplot shows the cost before (blue) and after (green) the escape as whisker plots.
The average cost over all 100 initializations is also plotted, given by the grey lines
CAll. Figure 30a (figure 30b) shows the performance when M = 50 (200) neural
network steps are taken during training. At step 4 of ECAPE, g(t) = Θ(t − 150)
is used. As the plots show, the number of successful jumps seems to increase when
the neural network is not overtrained; however, the number of failures also seems to
increase.

of figure 30b. It would seem that the parameter vector cannot be perturbed away
from the local minimum it is stuck in when the landscape is overtrained. Note that
the training landscape in these simulations are static due to g(t) = Θ(t − 150).
During step 3 of ESCAPE, (γ,β) remain fixed, and the quantum computer acts like
a sample generator that outputs bitstrings that are input to the neural network. As
mentioned earlier, the neural network maps an input binary string into an output
one with a better cost. Therefore, the neural network deepens the cost landscape
around the originally found (γ,β) to a value that has an approximation ratio closer
to 1. This deepening of the cost landscape can be seen in figure 25. Since the
cost cannot improve any further, the QAOA parameters are perturbed little in this
altered landscape during step 4 of the ESCAPE procedure.

Using the same graph, another set of simulations using g(t) = t/T with T = 350
was run and compared with the previously mentioned results. Similar to before,
two simulations were run; one with M = 50 training steps (figure 31a) and another
with M = 200 (figure 31b). As shown in figure 31, the overall performance seems
to have improved when using g(t) = t/T instead of using g(t) = Θ(t − 150). This

83



1 2 3 4 5 6 7 8
p

0

10

20

30

40
%

 o
f c

as
es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.4

0.6

0.8

1.0

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(a) Results using 50 neural network training steps

1 2 3 4 5 6 7 8
p

0

10

20

30

%
 o

f c
as

es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.4

0.6

0.8

1.0

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(b) Results using 200 neural network training steps

Figure 31: The same type of plots as the previous figure, however, with the change
that g(t) = t

T
with T set to 350.

seems to indicate that training in a dynamic landscape is better than training in a
fixed landscape. Using the insights gained from the toy example, this improvement
in performance can be attributed to the finding that dynamically changing the cost
landscape forces the parameter-vector to perturb away from the originally found
minimum, thus potentially improving the found cost. From the toy-example it is
also evident that even if the original parameters are potentially mapped to better
cost values, the jump itself may fail due to the parameter-vector jumping out of the
attractive basin created by the neural network. These results also seem to show that
using an over-trained neural network decreases the success rate, similar to what was
found when using the Heaviside function.

For all the four variations considered here, it is found that the method succeeds for
those cases where the initial QAOA cost is worse than the initial cost that is found
on average from the 100 simulations. This can be seen from the right subplots of
these figures, where the mean over all 100 simulations (CAll) has a higher cost than
the mean of CPre-ESCAPE indicated by the blue lines within the blue boxplots. This
reiterates that the algorithm is more of a corrective method meant to find slightly
better solutions when a local minimum is found rather than an approach meant to
find the optimal minimum of the landscape, such as the INTERP heuristic.

The choice in hyperparameters was meant to mimic the ones of the original paper of
Riveradean et al. [4]. During step 2 of the algorithm, the optimization using Adam
was performed for 200 steps to ensure convergence. However, one specific pattern
was not reproduced with these simulations. Namely, Riveradean et al. [4] claim that
the number of successful escapes increase with QAOA depth p, and find that the
number of successful escapes hovers around 30 − 40% for graph instance A when

84



1 2 3 4 5 6 7 8
p

0

10

20

30
%

 o
f c

as
es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.4

0.6

0.8

1.0

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

Figure 32: A figure showing the findings that Riveradean et al. [4] highlight. Namely,
as the QAOA depth p increases, so does the number of successful escapes. Note that
the number of steps taken during the initial QAOA optimization is 50 instead of
200.

using g(t) = Θ(t−150). Evidently, this was not the case for the simulations that were
performed here, as no particular pattern was found. However, when changing the
number of initial optimization steps during step 2 of ESCAPE from 200 down to 50,
these patterns that Riveradean et al. [4] find start to emerge as shown in figure 32.
Namely, the number of successful escapes increases with increasing p. It, therefore,
seems that the pattern that Riveradean et al. [4] find is mostly a consequence of
terminating the initial optimization before it has completely converged to the local
minimum. One can also see the effect of this from the right subplot of figure 32
where the blue boxplots and CAll have lower approximation ratios than for figures 30
and 31. Since 50 steps are not enough for convergence, particularly for higher depths
p, the additional optimization steps during steps 4 and 5 of the ESCAPE procedure
will most likely cause an improvement in cost of at least 0.1 even if the parameter-
vector is not perturbed significantly away from the initially found minimum of step
2.

The most deviation from this pattern is found at the higher depths p of around 7
and 8, where the number of successes decreases as shown in figures 30 and 31. An
explanation for this deviation is that the graph instance being solved is relatively
simple. Therefore, using a deep QAOA ansatz to solve the problem would result
in high-quality minima during the initial optimization, as indicated by CAll. As a
result, few minima are available in the landscape that can create a cost-improvement
of at least 0.1 as required by the success criteria.

7.5.2 Graph instance B and C

One distinct difference between graph instances B and C is that graph instance
C may have negative weights. For graph instance C, 232 out of all possible 264
partitions have negative costs associated with them; hence most partitions of the
graphs have subpar cuts. It is also worth noting that only 6 out of 32 possible
partitions of graph A had negative costs. Two sets of similar simulations were run
on each graph instance to see whether this caused any differences in the number of
successful escapes. Namely M = 50, g(t) = Θ(t− 250) and 300 initial optimization
steps of the Adam optimizer is taken at step 2 of ESCAPE. The initial learning rate
η is 0.1.

85



1 2 3 4 5 6 7 8
p

0

5

10

15
%

 o
f c

as
es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.80

0.85

0.90

0.95

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(a) Results using graph B.

1 2 3 4 5 6 7 8
p

0

10

20

30

40

%
 o

f c
as

es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.70

0.72

0.74

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(b) Results using graph C.

Figure 33: The performance of the gradient based ESCAPE routine applied to graph
instances B and C. In these simulations M = 50, g(t) = Θ(t − 250) and the initial
learning rate of Adam is η = 0.1 with 300 initial optimization steps.

As figure 33 shows, the rate of successful escapes increases when using graphs of type
C over type B. Additionally, the number of successful escapes increases with increas-
ing QAOA depth p for graph C. As this example shows, the trends that Riveradean
et al. [4] find seem graph dependent as well. It is difficult to pinpoint what causes the
differences in performance when only the graph weights are changed. Considering
that graphs A and B have relatively high approximation ratios in contrast to graph
C, it might be that those two graph instances are easier to solve using the QAOA
ansatz. Consequently, there are few local minima that the procedure can escape
into, allowing for a cost improvement of 0.1. Additionally, the cost landscape has a
different nature for graph instance C compared to graph instance B. Note that the
cost function during optimization is −〈ψ(γ,β)|HC |ψ(γ,β)〉, i.e. a weighted sum of
all partitions of the graph. Since most partitions are negative, the cost landscape is
primarily positive, except for regions where the good partitions are heavily weighted.
In other words, the cost can undergo a sign-change during the optimization to find
regions of good cost. This span in cost in the landscape may explain why the per-
formance is higher overall for graph instance C over B, particularly for higher depths
p.

This concludes the reproduction part of the ESCAPE procedure. As found in this
section, the trend of increasing successful escapes with increasing p is not a general
finding for this algorithm, especially for the smaller graph instances. This can be
attributed to the notion that it is relatively easy to solve these graph instances; hence
using QAOA with randomized initializations often find decent solutions on their own.
The procedure’s success depends heavily on the number of initial optimization steps
at step 2 and the graph instance considered. From this point forward, the novel

86



shot-based approach presented in the implementation section will be used.

7.6 ESCAPE with sampling noise

This section tests the ESCAPE routine using a shot-based quantum computer. The
quantum computer is still a simulator; however, its results are now a finite set of
samples taken over the resulting probability distribution over all possible bit strings
at the end of the quantum computation. This contrasts with the previously used
ideal simulator, where the entire procedure was deterministic; a set of inputs that
define the system, (γ,β) would give a single cost output up to floating-point preci-
sion. In other words, the number of shots taken in the ideal simulator is effectively
infinite.

The reason for using a shot-based approach instead of the deterministic approach as
described in section 7.1 is because it is more realistic to do so. All current quantum
computers give stochastic bitstring output. Hence, it is more interesting to see how
using a neural network would aid in a more realistic implementation of the procedure.
Additionally, as mentioned earlier, the gradient-based approach inevitably does not
scale to a higher number of qubits due to the exponential scaling in the p(x|θ) term
of the cost function.

Various optimization procedures can be used in this version of the algorithm, both
gradient-based and gradient-free methods. Usually, gradient-based methods are
shown to work reasonably well on most problems; however, this comes at the cost of
a higher number of function evaluations. These function evaluations are costly as the
problem instances grow in size. For instance, a central finite difference method would
require two function evaluations per parameter, resulting in 4p function evaluations
per gradient calculation for the QAOA ansatz. As mentioned in section 4.1, the
scaling is even worse for a general parameter shift rule approach as it would scale
like 2(2R + 1)p for the QAOA ansatz. These issues motivate using gradient-free
approaches to reduce the number of needed function evaluations while optimizing.

Two gradient-free variations of the ESCAPE procedure were implemented and tested
out. These procedures differ from the original procedure primarily in steps 2, 4, and
5. In steps 2 and 5, a gradient-free optimization procedure is used in the original cost
landscape instead of a gradient-based one to find a local minimum. In step 4, one
takes a fixed number of gradient-free optimization steps to approximate the single
gradient-based update step of the original procedure. The first method uses the
Simultaneous Perturbation Stochastic Approximation (SPSA) as the gradient-free
optimizer, whereas the second uses Nelder-Mead. These particular gradient-free op-
timizers were used because they are less prone to noise and are easily implementable.
Particularly with SPSA, the number of function evaluations at each optimization
step is always two, as noted in section 2.4.2, regardless of the dimension of the
parameter vector.

The shot-based ESCAPE procedure was implemented and tested for two different
graph instances,

87



0 100 200
iterations

0.9

0.8

0.7

0.6

0.5

H
C

C m
ax

Nelder-Mead

0 250 500 750 1000
iterations

SPSA

0 100 200 300 400
iterations

Adam (Gradient-based)

Initial QAOA optimization

Figure 34: The cost plotted against the steps of the initial optimization pro-
cedure at QAOA depth p = 8. Note that the optimization is performed on
−〈ψ(γ,β)|HC |ψ(γ,β)〉, thus the approximation ratio r can be extracted by mul-
tiplying the above graphs with −1. Three different optimizers were used: Nelder-
Mead, SPSA, and Adam. For each case, 100 different initial parameters were chosen
and optimized. The Nelder-Mead and SPSA consider sample-based function evalu-
ations while the simulation involving Adam uses an ideal quantum computer with
analytical gradients, The convergence criteria for Nelder-Mead was set to y-tol = 0.1,
x-tol = 0.02. For SPSA, the hyperparameters (a, c) were set to (0.2, 0.15) respect-
ively and the optimization procedure was performed for 1000 steps. For Adam, the
initial learning rate was set to η = 0.05 and 400 iterations were performed.

• Graph D: A twelve node w3R graph with weights sampled randomly between
[0,1]

• Graph E: A sixteen node w3R graph with weights sampled randomly between
[0,1]

Graph D is used primarily as a benchmark for the procedure where the shot-based
version of ESCAPE is compared to the original gradient-based ESCAPE procedure
on an ideal quantum simulator. For this graph instance, the ESCAPE algorithm
was implemented with T = 800 and g(t) = t

T
. For the gradient-free ESCAPE, three

gradient-free steps were performed at each t during step 4 of the procedure. This
section presents some findings when moving from an ideal quantum computer to a
shot-based one.

The first finding is that navigating the cost landscape when sampling noise is present
is difficult, as evident from figure 34 where several parameter initializations converge
to worse cost values than in the no-noise setting. Nelder-Mead is the worst per-
former, while the gradient-based method Adam is the best performer, as evident by

88



the number of initializations that reach deeper parts of the cost landscape. There
are a couple of reasons that may explain the lack of performance in the gradient-free
methods. The first is simply that the method converged to a local minimum with
a high cost. Considering that several optimizations using Adam also converge to
minima with high cost, one would expect the same from gradient-free methods too.
Additionally, since Adam uses additional information in the form of gradients to
navigate the cost landscape, one would expect this optimizer to reach deeper parts
of the landscape.

However, the number of initializations that converge to high-cost solutions using
Nelder-Mead seems surprisingly high. To examine whether the final parameter val-
ues after the initial Nelder-Mead optimization were actual local minima, the worst-
performing optimizations’ final parameter values were used as the initial parameters
in a small simulation using Adam on an ideal simulator. The simulation yielded
a lower cost, showing that sample noise hinders the gradient-free optimizers from
completely converging to a local minimum. Similar issues in convergence are also
present with the SPSA optimizer, as shown by the band of costs ranging between
[−0.7,−0.6] in figure 34. It must be noted that with stochastic fluctuations in the
cost function, the convergence properties of general SPSA methods are only guar-
anteed if the starting point of the optimization is in the domain of attraction of the
problem [62]. The bulk of the initializations might get stuck in regions of the cost
function where convergence is difficult.

The lack of convergence in these methods is difficult to pinpoint; however, there
is reason to believe that the noise levels stemming from shot noise can cause the
issue. Firstly, it is important to point out that function comparisons are the basis
for taking steps in gradient-free methods; hence a significant amount of noise causes
inaccurate comparisons. This issue is most prominent in regions where the differ-
ence in cost cannot be differentiated from noise. Examples are flat regions of the
cost landscape or around local minima, where the gradient becomes increasingly
flatter. As elaborated on further in appendix C, the number of shots needed to get
an accuracy of ε scales like O(ε−2). As mentioned in the implementation part of
this section, the number of shots used to estimate the cost function was set to 10
000; hence the errors in the cost function would correspondingly be around 0.01.
This was confirmed numerically by calculating the standard fluctuation of a cost
value evaluation. The fluctuation for a single 〈C(γ,β)〉 was calculated using 50
function evaluations of the same parameter. This was repeated for 100 different
(γ,β) configurations to calculate the average standard deviation for these function
evaluations. These tests found that the average standard deviation fluctuated at the
third decimal for each of the 100 simulations and that the mean standard fluctuation
over all 50 tests was 0.0112.

Based on these fluctuations, the same success criteria of 0.1 is used to categorize a
successful escape as before. The justification for this choice is that a difference in
cost value of 0.1 would categorize a point with a cost value of order ten larger than
the shot noise, constituting a point deeper in the landscape.

Using this metric to measure a successful escape, figure 35 shows the performance
of the gradient-free versions of ESCAPE compared to the original version of the

89



1 2 3 4 5 6 7 8
p

0

10

20

30

%
 o

f c
as

es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.6

0.7

0.8

0.9

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(a) Results using gradient-based Adam optimizer through the entire procedure

1 2 3 4 5 6 7 8
p

0

20

40

60

80

%
 o

f c
as

es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.6

0.7

0.8

0.9

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(b) Results using gradient-free SPSA optimizer through the entire procedure

1 2 3 4 5 6 7 8
p

0

20

40

60

80

%
 o

f c
as

es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.55

0.60

0.65

0.70

0.75

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(c) Results using gradient-free Nelder-Mead optimizer through the entire procedure

Figure 35: The performance of the gradient-free version of ESCAPE (fig-
ures 35b, 35c) compared to the gradient-based ESCAPE procedure using Adam
(figure 35a). A maximum of five steps were taken in the gradient-free procedures
during the relaxation which lasted for T = 800 steps. The neural network was
trained for M = 200 steps.

algorithm for 100 different random initializations. As the figure shows, the number
of successful escapes using the gradient-free procedure is significantly higher than
the original ESCAPE method using an ideal simulator and the Adam optimizer.
In contrast to ESCAPE on an ideal simulator, the gradient-free versions of the
procedure produce a better cost solution a majority of the time for p > 4 with
success rates as high as 80% for the deepest QAOA depth tested.

Based on the high number of successful escapes from figure 35c, one would naively
think that the ESCAPE procedure is most effective when using Nelder-Mead as the
gradient-free optimizer. However, the newly found local minimum post-ESCAPE
is not significantly deeper than the cost value of the local minimum pre-ESCAPE,
indicating that Nelder-Mead quickly converges to sub-optimal local minima. This
is most likely because simplex methods are more prone to getting stuck in a local
minimum once they are encountered. Adam can escape some of the local minima it

90



1 2 3 4 5 6 7 8
p

0

20

40

60
%

 o
f c

as
es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.6

0.7

0.8

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(a) Results using gradient-free SPSA optimizer with a = 1.5, c = 0.15

1 2 3 4 5 6 7 8
p

0

20

40

60

%
 o

f c
as

es

Success and failure rates
Success
Failure

1 2 3 4 5 6 7 8
p

0.6

0.7

0.8

0.9

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(b) Results using gradient-free SPSA optimizer with a = 0.2, c = 0.15

Figure 36: The SPSA version of ESCAPE applied to graph instance E, highlighting
the importance of choosing good parameter values a, c used in the SPSA optimizer.
In these simulations, g(t) = t

T
, T = 800, M = 200 and three SPSA optimization

steps are taken during each t.

encounters through momentum and adaptive step sizes, while the random perturb-
ation in SPSA may find a random direction that results in lower cost.

Additionally, based on the convergence issues discussed earlier, one might also argue
that the number of successful escapes is inflated as there is some uncertainty as to
whether the optimization has fully converged. As shown using graph A in the pre-
vious section, this can significantly affect the performance statistics of the ESCAPE
routine.

With these limitations in mind, the SPSA version of the procedure seems signific-
antly more promising than the Nelder-Mead version. In terms of the histogram plots,
the performance of the procedure is similar to the Nelder-Mead version. However,
the SPSA version is capable of performing deeper jumps, as evident by the higher
values of the mean and whiskers of the CPost-Escape in figure 35b. These improvements
in cost are comparable to the gradient-based ESCAPE using the Adam optimizer.
Therefore, approximating the entire gradient using two function evaluations seems
effective in keeping the procedure within the attractive basin during the changing
landscape.

In contrast to the gradient-based version of ESCAPE, this shot-based version of
the procedure is significantly more sensitive to the hyperparameters of the optim-
izer; hence this has to be carefully chosen. Recall from section 2.4.2 that there are
effectively two parameters that can be altered when using the SPSA optimizer; a
essentially acts as the learning rate while c is the scaling of the random shift. Using
Spall’s [27] parameter initialization as guideline and testing out various configura-

91



tions of the a and c parameters, it is found that a = 0.2 and c = 0.15 yield smooth
optimizations. To illustrate the importance of choosing correct parameters, figure 36
shows the performance of ESCAPE when a is altered from 0.2 to 1.5. As shown,
taking three larger steps during step 4 of the procedure produces worse minima
after ESCAPE. This can be attributed to the observation that the optimization is
perturbed out of the attractive basin produced by the neural network due to the
larger steps taken at step 4 of the procedure.

7.7 ESCAPE with a Noise Model

This section considers a simple simulation with a noise model to see the effects
of quantum noise. Pennylane allows for the modeling of noise through the Kraus-
matrices formalism. The custom noise model considers two single-qubit quantum
error terms, namely depolarizing channels and bit-flip operations. After each QAOA
layer, depolarizing channel noise with probability λ is applied. An actual quantum
device would have errors at each operation, which is effectively modeled by destroy-
ing information after each QAOA layer by depolarizing the qubit. After the last
layer, bit-flip noise with equal probability λ is added. This last layer of bit-flip rep-
resents measurement errors associated with performing measurements of a quantum
system. Formally, the depolarizing noise can be represented by

∆λ(ρ) =
3∑
i=0

KiρK
†
i (126)

K0 =

√
1− 3λ

4
I,K1 =

√
λ

4
X,K2 =

√
λ

4
Y,K3 =

√
λ

4
Z (127)

In essence, the Pauli matrices are acted on the input state with probability λ/4.
The bitflip operation is given by the following Kraus matrices:

K0 =
√

1− pI, K1 =
√
pX. (128)

Two sets of simulations were used to test the ESCAPE procedure on quantum noise
on an ideal simulator. In these simulations, the parameter-shift rule was used as the
gradient function for the parameters and the Adam optimizer was used during the
procedure. Due to computational limitations, only simulations up to QAOA depth
p = 3 were performed on a five-node w3R graph with weights sampled from [0, 1].

Even at low depths, there are some findings that are worth pointing out. On the ideal
simulators, it seems that the processes are able to converge to local minima when
the noise levels λ are low, even at higher QAOA depths as shown in figure 37a. This
makes sense considering that the depolarizing noise is low at each depth, hence each
noise operation primarily consists of applying the identity transformation. As the
noise level is increased, each depolarization operation causes the qubits to become

92



1 2 3
p

0

5

10

15
%

 o
f c

as
es

Success and failure rates
Success
Failure

1 2 3
p

0.75

0.80

0.85

0.90

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(a) ESCAPE performance when using g(t) = t
T and noise level λ = 0.01

1 2 3
p

0

2

4

6

%
 o

f c
as

es

Success and failure rates
Success
Failure

1 2 3
p

0.72

0.74

0.76

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(b) ESCAPE performance when using g(t) = t
T and noise level λ = 0.1

Figure 37: Comparison between simulations with noise levels of λ = 0.01 and λ = 0.1
using the noise model as defined in the text. SGD was used to train the neural net-
work with a learning rate of 0.05 while Adam was used for the variational parameters
of the quantum computer.

closer to the mixed state, and subsequently, the correct solutions to the problem
cannot be amplified properly using the QAOA routine. This is seen from figure 37b
where the cost values found are worse as the depth of the circuit increases as shown
by CAll. When such levels of noise are present in the simulations, the probability of
escaping a local minimum is particularly low as indicated by figures 37b. The low
jump rate is most likely associated with the gradient being inaccurate, and hence
the ESCAPE causes random walks in the close vicinity of the originally found local
minimum. Additionally, the noise would cause the landscape to inherently become
different which may also cause the procedure to fail.

With regard to noise it is more interesting to see how the procedure fares on real
quantum hardware. This was investigated using the 5-qubit FakeManilla noise model
from IBMQ. The setup is the same as the shot-based procedure used throughout the
thesis. Due to a large amount of noise and uncertainty in hardware-based simulators,
the SPSA algorithm was used to perform the initial and final optimization. Two
simulations were run with this particular noise model, one using g(t) = t

T
and

another using the Heaviside function g(t) = Θ(t−150). When using g(t) = Θ(t−150)
the SPSA optimization was performed using 150 steps. For the t/T relaxation, T
was set to 350 and 10 SPSA steps were taken at each t to approximate a single
gradient step.

Consider first the noise level present in the FakeManilla noise model compared to
the custom depolarizing noise model. It seems that the level of noise inherent in
the hardware may be simulated using an error-probability λ that is somewhere

93



1 2 3 4 5
p

0

10

20
%

 o
f c

as
es

Success and failure rates
Success
Failure

1 2 3 4 5
p

0.70

0.75

0.80

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(a) ESCAPE performance when using g(t) = t
T

1 2 3 4 5
p

0

5

10

15

20

%
 o

f c
as

es

Success and failure rates
Success
Failure

1 2 3 4 5
p

0.70

0.75

0.80

0.85

A
pp

ro
xi

m
at

io
n 

ra
tio

 r

Cost before and after a successful ESCAPE

CPre ESCAPE

CPost ESCAPE

CAll

(b) ESCAPE performance when using g(t) = Θ(t− T )

Figure 38: Comparison between g(t) = t
T

versus g(t) = Θ(t − T ) on the IBM
fakemanilla noisemodel. SGD was used to train the neural network with a learning
rate of 0.05 while SPSA was used for the variational parameters of the quantum
computer. T was set to 350 for g(t) = t

T
and 150 for g(t) = Θ(t− T ).

between [0.01, 0.1]. This is evident from the observation that the achieved approx-
imation ratios from the FakeManilla simulations lie between [0.7, 0.85]. This is to
be compared to the approximation ratios ranging between ([0.75, 0.9], [0.72, 0.76])
for λ = (0.01, 0.1) respectively.

As figure 38 shows, the performance of the ESCAPE routine for both cases is mixed.
Firstly, a familiar trend reappears when comparing these simulations to the ones with
graph instance A. Namely, both success and deterioration rates are generally higher
when training in the dynamic landscape using g(t) = t/T . However, in contrast to
the previously seen trends in graph instance A, the deterioration rates are compar-
able to the number of successful escapes. The reason for the higher deterioration
rates with the dynamically changing landscape stems from the parameter vector’s
inability to remain in the local minimum as the landscape changes. Due to both
shot noise and quantum noise from the device, the procedure is more prone to falling
out of this local minimum, giving rise to high numbers of unsuccessful escapes.

As the results indicate the ESCAPE routine is mostly unsuccessful in finding better
local minima when noise is present in the circuit. Most of the initializations tend to
find the same local minimum that was initially found. Given that a new minimum
is found, the probability of it being an improvement is comparable to it being worse.
Additionally, given that a better minimum is found, the improvement in cost is not
that significant. It is difficult to draw anything conclusive from these results as
the graph instances are still relatively small. However, it seems that lower levels of
noise are needed to get any significant improvements when applying the ESCAPE

94



procedure on NISQ hardware.

95



8 Conclusion and outlook

This thesis presented a high-level overview of machine learning, quantum machine
learning, and issues concerning the trainability of quantum circuits. Using two differ-
ent heuristics for parameter initialization, INTERP and Parameter-fixing, the vari-
ational quantum algorithm QAOA was applied to the classical binary optimization
problem MaxCut for various graph instances. Results from numerical simulations
show that both initialization heuristics consistently outperform randomized initializ-
ations of the QAOA parameters. Additionally, comparisons showed that both yield
the same expected behavior when the heuristics succeed. For both, it is found that
the gate parameters tend to remain relatively fixed as the depth increases. Some
of the heuristics’ success is attributed to the emergence of minimum cost valleys,
making optimization easier.

Based on the findings from the above parameter initialization heuristics, a feedfor-
ward neural network was used to form predictions of the optimal QAOA patterns
from 200 different twelve-node w3R graph instances. Correlation between the neural
network features and the output shows that there are limitations to the predictive
power of only using two features to form predictions of all QAOA parameters at the
final depth. This limitation was also evident from the relative error between the
target variable and the neural network’s predictions. This was particularly the case
for the β parameters, where the relative errors for some predictions reached levels
as high as 100%. Despite the significant errors, using these parameters as the initial
point for a final optimization would find the exact optimum in the dataset, hence
validating this approach. This way of utilizing a neural network has the advantage
of skipping intermediate optimization steps used in heuristics such as INTERP and
parameter-fixing, provided that a dataset is available to train on. Potential exten-
sions to this method are to consider deeper networks, find other features that show
strong correlations with the target variable, or use some other different machine
learning framework to form predictions.

The next part of the thesis considered the ESCAPE algorithm, where a neural
network was used to escape potential local minima in the cost landscape once en-
countered. Results showed a lack of performance when the procedure was applied to
smaller graph instances. The best performing ESCAPE runs involved a not overly
trained neural network, with its contribution gradually turned off using g(t) = t/T .
The pattern of increasing success ratio found by Riveradean et al. [4] was not as
general for the minor graph instances unless the initial optimization was terminated
early, or the graph had both positive and negative graph partitions. For these smal-
ler graph instances, the ESCAPE procedure was ineffective as most runs found the
same local minimum it started in.

The trend of increasing successful escapes with QAOA depth does seem to hold as
the graph size increases. This was tested using the ideal simulator and the shot-
based procedure that used gradient-free steps instead of a gradient-based one. It
was found that the gradient-free version of ESCAPE on a shot-based simulator
significantly increased the number of successful escapes. However, there is reason
to be cautious about the increased performance. As elaborated in section 7.6, it

96



is challenging to separate convergence to a local minimum from regions where the
cost decreases slowly. The SPSA minimizer, in particular, ran into this problem
where the cost would decrease slowly throughout the initial optimization. With
these limitations in mind, improvements in cost using the ESCAPE procedure with
the SPSA optimizer are quite significant and comparable to the jumps performed by
the Adam optimizer on an ideal simulator. Lastly, the ESCAPE procedure was also
run using realistic hardware noise. In these cases, it was found that the number of
failed ESCAPE attempts was comparable to the successful ones; hence the method
is less reliable on NISQ hardware.

The thesis has demonstrated that finding reasonable solutions to the MaxCut prob-
lem can be difficult, even at intermediate depths. This is due to the cost landscape
having several non-optimal local minima, which the optimization tends to get stuck
in. The ESCAPE procedure is meant to aid in this process; however, the ideal sim-
ulator’s findings seem to suggest that a significant amount of initializations will not
find an improvement in cost. Moreover, the gradient-free procedure performance has
inflated numbers due to a lack of convergence during the initial optimization. Still,
there is no guarantee that the procedure will significantly improve the cost. There-
fore, this thesis further reiterates that using a randomized initialization strategy to
solve VQA problems is ineffective, even when methods like ESCAPE are used to
correct some of them.

Therefore, if one wishes to find suitable parameters to the variational QAOA ansatz
that generate bitstrings that solve the MaxCut problem with high probability, one
should use a systematic approach. An example of such an approach is Zhou et al.’s [1]
INTERP heuristic, which works for w3R, u3R, and Erdös Renyi graph instances,
as tested in the thesis. It is important to note that this is merely a heuristic and
that one must conduct similar studies as Zhou et al. [1] to gauge the performance
of other graph types. If such patterns generally hold, one can readily use classical
machine learning to learn the trends in the optimal QAOA parameters to reduce
necessary quantum resources. Out of the methods discussed throughout the thesis,
the machine learning approach using INTERP as the basis for the generated dataset
seems the most effective to solve the MaxCut graph problem using the QAOA ansatz.
Similar approaches using machine learning in this capacity seem like a promising
direction for future work.

97



A Appendix: Derivation of generalization error

The derivation uses methods from statistical learning and follows the one presented
by Weinberger [63]. It will be shown that there is a trade-off between a model
being flexible enough to fit the training data, but also that given too much model
complexity, the generalization error will start to increase.

As with any supervised learning task, a set of data D = {(x1, y1), . . . , (xm, ym)} is
drawn iid from some underlying probability distribution P (X, Y ), and assume that
the problem is a regression problem. Using this dataset as a training set, a machine
learning algorithm A (ex. neural network, linear regression, etc.) is used on this
dataset to fit a model fD = A(D). Additionally, there is not necessarily a unique
label y for each feature vector x, thus two identical feature vectors can give the same
label y. An example of such a case can be two houses with identical features sold
at different prices. Some notation is needed to show the decomposed generalization
error.

Expected label (given x ∈ Rd):

ȳ(x) = Ey|x[Y ] =

∫
y

y P(y|x)dy (129)

This captures the notion that one feature vector x may give rise to different labels
y, hence the expected output given an input x is given by ȳ(x), hence the P (y|x)
in the above expression..

Expected Test error (given fD):

E(x,y)∼P
[
(fD(x)− y)2] =

∫∫
xy

(fD(x)− y)2 P(x, y)dydx (130)

Given that a model is fit from the model family A, the generalization error of
the fitted model can be computed from the above expression (hence the given fD
caution). This expression captures the generalization of the fitted model because
new points (x, y) are sampled from the true distribution to compute the expected
loss, hence a test-set is being used to calculate the loss over new, unseen instances.
Note here that the squared loss has been used as a measure of error.

This expression is valid for a fixed data set D from which the model function fD was
created. However, a differently sampled data set would generate different models
fD. Hence, it is meaningful to consider the average model generated over several
independently sampled data sets.

Expected model (given A):

f̄ = ED∼Pn [fD] =

∫
D

fD P(D)dD (131)

Here, P(D) refers to the probability of drawing a particular data set by sampling
n pairs (x, y) from the original probability distribution P (X, Y ). Now, taking the

98



expectation value over the expected test error given a certain model fD and integ-
rating over all possible combinations of sampled data sets D gives the expected test
error given a particular choice of the model family A.

Expected Test error (given A):

E
(x,y)∼P
D∼Pn

[
(fD(x)− y)2] =

∫
D

∫
x

∫
y

(fD(x)− y)2 P(x, y)P(D)dxdydD (132)

Note here that the variables (x, y) represent the test set as they are independently
sampled from the underlying distribution, while the training set D is used to create
the model. The set of points constituting the training set was used to create the
model fD, and are hence different points from the variables (x, y).

This is the expression that represents the generalization error as it evaluates the
test error of the model family A with respect to the underlying data distribution
P (X, Y ). By expanding the square and evaluating the individual terms it can be
shown that the generalization error can be decomposed into three interpretable
terms.

Ex,y,D
[
[fD(x)− y]2

]
= Ex,y,D

[[(
fD(x)− f̄(x)

)
+ (f̄(x)− y)

]2]
= Ex,D

[(
f̄D(x)− f̄(x)

)2
]

+ 2Ex,y,D
[ (
fD(x)− f̄(x)

)
(f̄(x)− y)

]︸ ︷︷ ︸
0

+Ex,y

[(
f̄(x)− y

)2
]

The second term is zero since the ED[fD(x) − f̄(x)] = 0. Now, evaluate the last
term by expanding the square adding and subtracting ȳ(x):

Ex,y
[
(f̄(x)− y)2

]
= Ex,y

[
(f̄(x)− ȳ(x)) + (ȳ(x)− y)2

]
= Ex,y

[
(ȳ(x)− y)2

]
+ Ex

[
(f̄(x)− ȳ(x))2

]
+ 2Ex,y[(f̄(x)− ȳ(x))(ȳ(x)− y)]︸ ︷︷ ︸

0

Putting all this together give three different terms for the generalization error as
elaborated on further in the main text.

Ex,y,D
[
(fD(x)− y)2] = Ex,D

[(
fD(x)− f̄(x)

)2
]

︸ ︷︷ ︸
Variance

(133)

+ Ex,y
[
(ȳ(x)− y)2

]︸ ︷︷ ︸
Noise

+Ex
[
(f̄(x)− ȳ(x))2

]︸ ︷︷ ︸
Bias2

(134)

99



B Appendix: Simultaneous measurement proced-

ure

The naive method of measurement is one where each Pauli string is measured sep-
arately. For instance, if the four qubit Pauli string XY ZZ needed to be measured,
one would apply H and HS† operations on the first and second wires before, then
perform measurements in the Z-basis on all wires.

Qubit-wise-commuting (QWC) Pauli strings have a similar measurement procedure.
This type of commuting is one in which at each index, the corresponding two Pauli-
matrices commute. An example of this is the set of Pauli gates {XX, IX,XI, II}
since there are only two possibilities, X, I at each index, and [X, I] = [X,X] =
[I, I] = 0. Measuring these strings reduces to changing the basis in which the qubit-
index does commute. For instance, if one were to simultaneously measure the two
strings {XIY IZI, IXIY IZ}, one would simply use the X basis for the two first
qubits, Y basis for the middle two qubits, and Z basis for the last two qubits and
perform measurements.

The measurement circuit for general commutative (GC) Pauli strings is not trivial as
in the other cases. Two Pauli strings are GC if and only if they do not commute on an
even number of indices. For example the partition {XX, Y Y, ZZ} is a GC partition
since the Pauli matrix at each index is either X, Y, Z, and [X, Y ], [X,Z], [Y, Z] 6= 0.
The statement can be shown as follows. Consider two N-qubit Pauli strings A,B
and the product AB,

A =
N⊗
j=1

Aj, B =
N⊗
j=1

Bj, Aj, Bj ∈ {I,X, Y, Z} (135)

AB =
N⊗
j=1

AjBj =
N⊗
j=1

{
BjAj if [Aj, Bj] = 0
−BjAj if [Aj, Bj] 6= 0

}
= (−1)kBA (136)

where k is the number of indices where the Pauli-matrices do not commute. Here
it was used that AiBi = −BiAi for non-commuting matrices due to the anti-
commutation relation between Pauli matrices. For the two operators to commute,
AB must be equal to BA which implies that k is even.

As mentioned, performing simultaneous measurements on GC Pauli-strings is non-
trivial. This cannot be performed naively by rotating the axes of the shared ei-
genvectors to align with the standard Z-axis since the column vector is of size 2N .
However, by exploiting the symmetries of Pauli-matrices, the transpilation algorithm
of Gokhale et al. [31] is able to synthesize a circuit which can perform simultaneous
measurements. The crucial insight behind this procedure is unitary conjugation,
namely that after applying a quantum gate U , a target measurement on the original
state becomes equivalent to the measurement of UMU−1 by the following,

100



〈ψ|M |ψ〉 = 〈ψ|U−1UMU−1U |ψ〉 = 〈ψ̃|UMU−1|ψ̃〉 (137)

where it was used that quantum gates U are unitary and |ψ̃〉 = U |ψ〉 is the trans-
formed state. The essential goal of the mapping is to create a unitary which is
able to transform a commuting family of Pauli operators into the computational
basis, given by {ZI · · · I, IZ · · · I, . . . , I · · ·ZI, I · · · IZ}. In other words, what this
procedure entails is that by applying this unitary, measuring the first qubit in the
z-basis measures the outcome of the first Pauli string in the family while measuring
the second qubit in the z-basis results in the measurement of the second Pauli string,
etc. Therefore, one single shot/run on quantum hardware is able to simultaneously
measure the results of N commuting Pauli strings through the measurement of each
qubit. Before exemplifying this procedure, one has to be familiar with some of the
formalism behind ”stabilizer matrices”.

The stabilizer matrix is a simplified way of representing a set of Pauli strings. De-
scribing the formalism is easier through an example. Given a set of Pauli operators,
[XXX,Y Y Y, ZZZ,XY Z], the stabilizer matrix is given by


0 1 1 0
0 1 1 1
0 1 1 1
1 1 0 1
1 1 0 1
1 1 0 0

 (138)

The dimension of the stabilizer matrix is given by 2N×P where N is the amount of
pauli-terms within a string (3 in this example) and P is the number of Pauli strings
in the family (4 in this example). The first N rows are referred to as the ZS-matrix
while the lower N rows are referred to as the XS-matrix. Each of the members
in the family are represented by the column vectors of the stabilizer matrix. For
instance, the first column represents the XXX operator, second column represents
Y Y Y operator, etc. The i, j-th element of the ZS matrix are given by whether the
index i of the j-th pauli string in the family is a pauli Z operator. Correspondingly
for the XS matrix where the string is considered to be a pauli X matrix instead. If
there is a Y operator, there is a 1 in both XS and ZS because of the pauli relation
Y = −iZX. Considering the last 3-qubit operator in this example, XY Z, the
column vector in the stabilizer matrix is given by [0, 1, 1, 1, 1, 0]. The column vector
representing The ZS, XS matrices therefore have column vectors [0, 1, 1] and [1, 1, 0]
respectively. This indicates that there is an X operator on index 1 (0 in ZS, 1 in
XS), Y operator on index 2 (1 in both matrices) and Z operator on index 3 (1
in ZS, 0 in XS). Similar argumentation gives the remaining column vectors of the
stabilizer matrix.

As mentioned in the main text, the goal of the algorithm is to transform an arbitrary
set of commuting Pauli family into the computational basis. In other word, they are

101



transformed into {ZI · · · I, IZ · · · I, . . . , I · · ·ZI, I · · · IZ}. The approach presented
by Gokhale et al. is therefore to transform a given stabilizer matrix into a stabilizer
matrix where the first N rows are given by N × N -dimensional identity and the
elements of the lower matrix are all zeros. Note that the element of min-clique cover
comes into play in this sense because the ZS and XS are going to be square matrix
since the remaining matrices in the family can be given by products of some of the
matrices within the family as shown in the example of the main text.

There are five different logic gates needed to perform the transformation, namely
the single qubit gates H,S and two-qubit gates CZ, SWAP,CNOT. The effect of
these gates can be calculated by explicit matrix multiplication.

UZU † UXU †

U = H X Z
U = S Z Y

(139)

UZIU † UIZU † UXIU † UIXU †

U = CNOT ZI ZZ XX IX
U = CZ ZI IZ XZ ZX
U = SWAP ZI ZI IX XI

(140)

The effect of these gates on the stabilizer matrix can be summed up as follows:

• H applied on the i-th qubit swaps i-th and i + N -th row of the stabilizer
matrix. This essentially swaps the i-th rows of the ZS and XS matrices.

• S on the ith qubit sets the (i, i) diagonal entry of the ZS matrix to 0

• CNOT controlled on the i-th qubit and targeted on the j-th qubit adds j-th
row on the i-th row and adds i+N -th row to the j +N -th row. All additions
are performed modulo 2.

• CZ between i-th and j-th qubits sets the (i, j) and (j, i) symmetric off-diagonal
elements in the ZS matrix to 0.

• SWAP between i-th and j-th qubits swap the i-th and j-th row of both XS

and ZS matrices.

These are the needed ingredients of the stabilizer formalism. Using these gates one
can transform a given stabilizer matrix into the stabilizer matrix corresponding to
a computational basis measurement.

To exemplify this procedure, let us consider the measurement of the general com-
muting set of gates, [XX, Y Y, ZZ]. Note first that it is possible to represent
Y Y = −(XX)(ZZ), therefore we can restrict to only measure in the [XX,ZZ]
bases. The goal of the algorithm is to create a unitary transformation that maps
[XX,ZZ]→ [ZI, IZ] so that a measurement of the first qubit in the computational

102



basis is equivalent to measuring XX and the second to ZZ. Using stabilizer matrix
formalism, the transformation is given by the following:

[XX,ZZ] =


0 1
0 1
1 0
1 0

 CNOT−−−−→


0 0
0 1
1 0
0 0

 = [XI, IZ] (141)

[XI, IZ] =


0 0
0 1
1 0
0 0

 H⊗I−−→


1 0
0 1
0 0
0 0

 = [ZI, IZ] (142)

With this procedure in hand, the only remaining piece is to perform the partition
of the Pauli strings of the Hamiltonian into commuting families. This problem can
be mapped to the problem of finding the minimum clique cover of a graph [64]
where each node represents one of the Pauli strings of the Hamiltonian. The min-
clique problem is widely studied in computational complexity theory. The problem
is shown to be NP hard, however for small graph instances the problem should be
solvable in reasonable amount of time on a classical computer.

103



C Appendix: Measurement Accuracy

As the simultaneous measurement procedure boils down to measuring single qubits
in the computational basis. The expectation value of 〈Z〉 is performed by running
the quantum circuit S times, conventionally called shots, and sampling the corres-
ponding result {−1, 1}. Multiple runs will yield an estimate of the mean value,
and increased shots yield higher accuracy. Since the outcome is either -1 or 1, this
sampling procedure can be viewed as sampling from a Bernoulli distribution with
probability p, where the probability p is dependent on the quantum state prior to
measurement. This probability can analytically calculated by tracing out all other
qubits. The error is a deviation from this p, and can be estimated through confid-
ence intervals [p− ε, p+ ε]. In essence, this problem boils down to a Bernoulli trial;
a coin-flip trial with a biased probability towards one of the outcomes. There are
several ways of estimating the error in the confidence interval of Bernoulli trials.
One of which being the Wilson Score [65] interval. In this interval, the probability
estimator and error are given by

ˆ̂p =
1

1 + z2

S

(
p̂+

z2

2S

)
(143)

ε =
z

1 + z2

S

(
p̂(1− p̂)

S
+

z2

4S2

) 1
2

, (144)

where p̂ is the ratio of samples being in state 1 (empirical probability), z is the
confidence level, S is the number of trials (which translates to shots on quantum
computer) and ε is the deviation from p. The error is maximized at p̂ = 0.5, giving
a bound on the error and an estimation on the number of necessary shots. Inserting
this into the expression for the error and solving for the number of shots S yields

ε ≤
√
z2
S + z2

4S2
(145)

S ≤
ε2
√

z4(16ε2+1)
ε4

+ z2

8ε2
(146)

which scales likeO(ε−2) in the number of shots on the quantum computer to compute
a single qubit measurement in the computational basis.

To conclude the section on measurement, Gokhale et al. [31] show that it is possible
to reduce the number of needed measurements by separating the problem of meas-
uring the mean value of a Hamiltonian into the sum of measuring multiple Pauli
strings. Additionally, rather than needing to measure several Pauli strings one at
a time, simultaneous measurement of commuting sets of Pauli strings is possible.
Therefore, the general measurement procedure to perform measurements efficiently
goes as follows: reduce the Hamiltonian into Pauli strings, group the strings into as

104



few partitions as possible where each string within a partition form a set of general
commuting operators. These groupings are usually made by creating the minimum
clique cover over all the Pauli-terms; a widely studied problem in computational
complexity theory. Once such groupings have been created, one uses the algorithm
proposed by Gokhale et al. [31] to create the needed circuit for each partition. Then,
measuring each qubit in the computational basis multiple times yields an estimate
of 〈Pi〉, whose precision scales like O(ε−2). Summing each of these mean values
estimates the original Hamiltonian.

105



References

[1] L. Zhou et al. ‘Quantum Approximate Optimization Algorithm: Performance,
Mechanism, and Implementation on Near-Term Devices’. In: Physical Review
X 10.2 (2020) (cit. on pp. i, iii, 3, 51–53, 55, 56, 59, 63, 97).

[2] X. Lee et al. Parameters Fixing Strategy for Quantum Approximate Optim-
ization Algorithm. 2021. arXiv: 2108.05288 [quant-ph] (cit. on pp. i, iii, 3,
51–53, 56–58, 60).

[3] M. Alam, A. Ash-Saki and S. Ghosh. ‘Accelerating Quantum Approximate
Optimization Algorithm using Machine Learning’. In: 2020 Design, Automa-
tion Test in Europe Conference Exhibition (DATE). 2020, pp. 686–689 (cit. on
pp. i, iii, 3, 65).

[4] J. Rivera-Dean et al. Avoiding local minima in Variational Quantum Al-
gorithms with Neural Networks. 2021. arXiv: 2104 . 02955 [quant-ph] (cit.
on pp. i, iii, 2, 3, 70, 72, 74, 81, 82, 84–86, 96).

[5] P. W. Shor. ‘Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer’. In: SIAM Journal on Computing
26.5 (1997), 1484–1509 (cit. on pp. 1, 23).

[6] A. W. Harrow, A. Hassidim and S. Lloyd. ‘Quantum Algorithm for Linear
Systems of Equations’. In: Physical Review Letters 103.15 (2009) (cit. on p. 1).

[7] J. Preskill. ‘Quantum Computing in the NISQ era and beyond’. In: Quantum
2 (2018), p. 79 (cit. on p. 1).

[8] A. Peruzzo et al. ‘A variational eigenvalue solver on a photonic quantum pro-
cessor’. In: Nature Communications 5.1 (2014) (cit. on p. 1).

[9] E. Farhi, J. Goldstone and S. Gutmann. A Quantum Approximate Optimiz-
ation Algorithm. 2014. arXiv: 1411.4028 [quant-ph] (cit. on pp. 1, 47, 50,
55).

[10] L. Bittel and M. Kliesch. ‘Training Variational Quantum Algorithms Is NP-
Hard’. In: Physical Review Letters 127.12 (2021) (cit. on p. 1).

[11] E. R. Anschuetz. Critical Points in Hamiltonian Agnostic Variational Quantum
Algorithms. 2021. arXiv: 2109.06957 [quant-ph] (cit. on pp. 1, 43, 44).

[12] B. T. Kiani, S. Lloyd and R. Maity. Learning Unitaries by Gradient Descent.
2020. arXiv: 2001.11897 [quant-ph] (cit. on pp. 2, 44).

[13] Y. Bahri et al. ‘Statistical Mechanics of Deep Learning’. In: Annual Review of
Condensed Matter Physics 11.1 (2020), pp. 501–528 (cit. on pp. 2, 5, 70).

[14] A. Choromanska et al. The Loss Surfaces of Multilayer Networks. 2015. arXiv:
1412.0233 [cs.LG] (cit. on p. 2).

[15] T. M. Mitchell. Machine learning. McGraw Hill, 1997 (cit. on p. 4).

[16] M. Schuld and F. Petruccione. Supervised Learning with Quantum Computers.
1st. Springer Publishing Company, Incorporated, 2018 (cit. on pp. 4, 7, 8, 18,
21, 22, 27).

106

https://arxiv.org/abs/2108.05288
https://arxiv.org/abs/2104.02955
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/2109.06957
https://arxiv.org/abs/2001.11897
https://arxiv.org/abs/1412.0233


[17] F. Petruccione and M. Schuld. Machine Learning with Quantum Computers.
Springer Nature, 2021 (cit. on p. 5).

[18] S. Dwivedi and L. K. P.Bhaiya. ‘A Systematic Review on K-Means Clustering
Techniques’. In: 2019 (cit. on p. 6).

[19] F. Murtagh and P. Contreras. Methods of Hierarchical Clustering. 2011. arXiv:
1105.0121 [cs.IR] (cit. on p. 6).

[20] T. Rigon, A. H. Herring and D. B. Dunson. A generalized Bayes framework
for probabilistic clustering. 2020. arXiv: 2006.05451 [stat.ME] (cit. on p. 6).

[21] J. Shlens. A Tutorial on Principal Component Analysis. 2014. arXiv: 1404.1100
[cs.LG] (cit. on p. 6).

[22] B. Bermeitinger, T. Hrycej and S. Handschuh. ‘Singular Value Decomposition
and Neural Networks’. In: Artificial Neural Networks and Machine Learning
– ICANN 2019: Deep Learning (2019), 153–164 (cit. on p. 6).

[23] D. Bank, N. Koenigstein and R. Giryes. Autoencoders. 2021. arXiv: 2003.05991
[cs.LG] (cit. on p. 6).

[24] J. Wang. An Intuitive Tutorial to Gaussian Processes Regression. 2021. arXiv:
2009.10862 [stat.ML] (cit. on p. 6).

[25] M. Belkin et al. Reconciling modern machine learning practice and the bias-
variance trade-off. 2019. arXiv: 1812.11118 [stat.ML] (cit. on pp. 12, 13).

[26] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017.
arXiv: 1412.6980 [cs.LG] (cit. on p. 14).

[27] J. Spall. ‘Implementation of the simultaneous perturbation algorithm for stochastic
optimization’. In: IEEE Transactions on Aerospace and Electronic Systems
34.3 (1998), pp. 817–823 (cit. on pp. 15, 16, 91).

[28] L. K. Grover. ‘A fast quantum mechanical algorithm for database search’.
In: arXiv e-prints, quant-ph/9605043 (May 1996), quant–ph/9605043. arXiv:
quant-ph/9605043 [quant-ph] (cit. on p. 23).

[29] D. Camps, R. Van Beeumen and C. Yang. ‘Quantum Fourier transform re-
visited’. In: Numerical Linear Algebra with Applications 28.1 (2020) (cit. on
p. 23).

[30] M. Schuld. Supervised quantum machine learning models are kernel methods.
2021. arXiv: 2101.11020 [quant-ph] (cit. on p. 24).

[31] P. Gokhale et al. ‘Optimization of Simultaneous Measurement for Variational
Quantum Eigensolver Applications’. In: 2020 IEEE International Conference
on Quantum Computing and Engineering (QCE). 2020, pp. 379–390 (cit. on
pp. 29, 100, 104, 105).

[32] Y. Shikano et al. ‘Post-Hartree–Fock method in quantum chemistry for quantum
computer’. In: The European Physical Journal Special Topics 230.4 (2021),
1037–1051 (cit. on p. 30).

[33] M. A. Nielsen. ‘The Fermionic canonical commutation relations and the Jordan-
Wigner transform’. In: 2005 (cit. on p. 30).

107

https://arxiv.org/abs/1105.0121
https://arxiv.org/abs/2006.05451
https://arxiv.org/abs/1404.1100
https://arxiv.org/abs/1404.1100
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2009.10862
https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/2101.11020


[34] S. Hadfield et al. ‘From the Quantum Approximate Optimization Algorithm
to a Quantum Alternating Operator Ansatz’. In: Algorithms 12.2 (2019), p. 34
(cit. on p. 31).

[35] Z. Holmes et al. Connecting ansatz expressibility to gradient magnitudes and
barren plateaus. 2021. arXiv: 2101.02138 [quant-ph] (cit. on pp. 31, 32, 41).

[36] S. Sim, P. D. Johnson and A. Aspuru-Guzik. ‘Expressibility and Entangling
Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical
Algorithms’. In: Advanced Quantum Technologies 2.12 (2019), p. 1900070 (cit.
on p. 33).

[37] Pennylane. Unitary Designs. 2021 (cit. on p. 33).

[38] M. Gerken. ‘Measure concentration : Levy ’ s Lemma Lecture notes for Talk
6’. In: 2013 (cit. on p. 34).

[39] P. Hayden, D. W. Leung and A. Winter. ‘Aspects of Generic Entanglement’.
In: Communications in Mathematical Physics 265.1 (2006), 95–117 (cit. on
p. 34).

[40] M. Schuld et al. ‘Evaluating analytic gradients on quantum hardware’. In:
Physical Review A 99.3 (2019) (cit. on p. 35).

[41] A. G. Baydin et al. Automatic differentiation in machine learning: a survey.
2018. arXiv: 1502.05767 [cs.SC] (cit. on p. 35).

[42] A. Mari, T. R. Bromley and N. Killoran. ‘Estimating the gradient and higher-
order derivatives on quantum hardware’. In: Physical Review A 103.1 (2021)
(cit. on p. 36).

[43] V. Bergholm et al. PennyLane: Automatic differentiation of hybrid quantum-
classical computations. 2020. arXiv: 1811.04968 [quant-ph] (cit. on pp. 38,
53).

[44] L. Banchi and G. E. Crooks. ‘Measuring Analytic Gradients of General Quantum
Evolution with the Stochastic Parameter Shift Rule’. In: Quantum 5 (2021),
p. 386 (cit. on p. 38).

[45] D. Wierichs et al. General parameter-shift rules for quantum gradients. 2021.
arXiv: 2107.12390 [quant-ph] (cit. on pp. 39, 40).

[46] M. Cerezo et al. ‘Cost function dependent barren plateaus in shallow para-
metrized quantum circuits’. In: Nature Communications 12.1 (2021) (cit. on
p. 42).

[47] S. Wang et al. Noise-Induced Barren Plateaus in Variational Quantum Al-
gorithms. 2021. arXiv: 2007.14384 [quant-ph] (cit. on p. 42).

[48] R. Wiersema et al. ‘Exploring Entanglement and Optimization within the
Hamiltonian Variational Ansatz’. In: PRX Quantum 1.2 (2020) (cit. on pp. 42,
44).

[49] A. J. Bray and D. S. Dean. ‘Statistics of Critical Points of Gaussian Fields on
Large-Dimensional Spaces’. In: Physical Review Letters 98.15 (2007) (cit. on
p. 43).

108

https://arxiv.org/abs/2101.02138
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1811.04968
https://arxiv.org/abs/2107.12390
https://arxiv.org/abs/2007.14384


[50] Y. Dauphin et al. Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization. 2014. arXiv: 1406.2572 [cs.LG] (cit. on
p. 43).

[51] E. Farhi and A. W. Harrow. Quantum Supremacy through the Quantum Ap-
proximate Optimization Algorithm. 2019. arXiv: 1602.07674 [quant-ph] (cit.
on pp. 45, 47).

[52] J. H̊astad. ‘Some Optimal Inapproximability Results’. In: J. ACM 48.4 (July
2001), 798–859 (cit. on p. 47).

[53] S. Arora et al. ‘Proof Verification and the Hardness of Approximation Prob-
lems’. In: J. ACM 45.3 (May 1998), 501–555 (cit. on p. 47).

[54] M. X. Goemans and D. P. Williamson. ‘Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidefinite Program-
ming’. In: J. ACM 42.6 (Nov. 1995), 1115–1145 (cit. on p. 47).

[55] S. A. Khot and N. K. Vishnoi. The Unique Games Conjecture, Integrality Gap
for Cut Problems and Embeddability of Negative Type Metrics into `1. 2013.
arXiv: 1305.4581 [cs.CC] (cit. on p. 47).

[56] S. Khot et al. ‘Optimal inapproximability results for MAX-CUT and other
2-variable CSPs?’ English (US). In: SIAM Journal on Computing 37.1 (2007),
pp. 319–357 (cit. on p. 47).

[57] P. Virtanen et al. ‘SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python’. In: Nature Methods 17 (2020), pp. 261–272 (cit. on pp. 53, 75).

[58] M. Born and V. Fock. ‘Beweis des Adiabatensatzes’. In: Zeitschrift fur Physik
51.3-4 (Mar. 1928), pp. 165–180 (cit. on p. 62).

[59] B. D. M. Jones et al. Optimising Trotter-Suzuki Decompositions for Quantum
Simulation Using Evolutionary Strategies. 2019. arXiv: 1904.01336 [cs.NE]

(cit. on p. 63).

[60] R. Gehrke and K. Reuter. ‘Assessing the efficiency of first-principles basin-
hopping sampling’. In: Physical Review B 79.8 (2009) (cit. on p. 72).

[61] V. Uthayamoorthy. Variational-Circuits-and-Neural-Networks. Version 1.0.0.
June 2022 (cit. on pp. 74, 77).

[62] J. Spall. ‘Multivariate stochastic approximation using a simultaneous perturb-
ation gradient approximation’. In: IEEE Transactions on Automatic Control
37.3 (1992), pp. 332–341 (cit. on p. 89).

[63] K. Weinberger. Lecture 12: Bias-Variance Tradeoff. 2017 (cit. on p. 98).

[64] P. Tamta, B. P. Pande and H. S. Dhami. A Polynomial Time Solution to the
Clique Problem. 2019. arXiv: 1403.1178 [cs.DS] (cit. on p. 103).

[65] E. B. Wilson. ‘Probable Inference, the Law of Succession, and Statistical In-
ference’. In: Journal of the American Statistical Association 22.158 (1927),
209–212 (cit. on p. 104).

109

https://arxiv.org/abs/1406.2572
https://arxiv.org/abs/1602.07674
https://arxiv.org/abs/1305.4581
https://arxiv.org/abs/1904.01336
https://github.com/viroshau/Variational-Circuits-and-Neural-Networks/tree/main
https://arxiv.org/abs/1403.1178


Viroshaan U
thayam

oorthy

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

Viroshaan Uthayamoorthy

Quantum Machine Learning in
Variational Quantum Algorithms

Master’s thesis in Applied physics
Supervisor: Franz Georg Fuchs
Co-supervisor: Alexander Johannes Stasik, Jeroen Danon, Halvor
Møll Nilsen
June 2022M

as
te

r’s
 th

es
is


	List of Figures
	List of Tables
	Introduction
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Elements of Machine learning
	Model
	Cost-function
	The Bias-variance trade-off, Double Descent, and Generalization

	Optimization
	Nelder-Mead
	Simultaneous Perturbation Stochastic Approximation (SPSA)

	Artificial Neural Networks
	Feedforward Neural Networks
	Backpropagation


	Quantum Machine Learning
	Variational Quantum Algorithms (VQA)
	Cost function

	Encoding Strategies
	Basis Encoding
	Amplitude encoding

	Quantum Measurement
	Circuit Ansatz
	Problem-agnostic ansätze
	Problem-specific ansätze
	Expressibility of a circuit


	Training hybrid models
	Parameter-shift Rules
	Barren Plateaus
	Local minima distribution

	Quantum Approximate Optimization Algorithm (QAOA)
	QAOA on the MaxCut problem
	Interpolation Heuristic: INTERP
	Parameter Fixing Heuristic
	Results: Comparison between the heuristics
	Results from INTERP heuristic
	Results from the parameter-fixing heuristic
	Cost Landscape

	Difference between QAOA and Quantum Annealing

	Using neural networks to find the optimal parameters
	Avoiding local minima in VQA with neural networks
	ESCAPE-algorithm
	Details on the implementation
	Toy Example
	Toy Example: Overparametrization and activation functions
	Reproduction and extension of ESCAPE
	Graph instance A
	Graph instance B and C

	ESCAPE with sampling noise
	ESCAPE with a Noise Model

	Conclusion and outlook
	Appendix: Derivation of generalization error
	Appendix: Simultaneous measurement procedure
	Appendix: Measurement Accuracy
	References

