
D
etection of a person in the w

ater from
 therm

al im
ages

Petter Tafjord D
rønnen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Petter Tafjord Drønnen

Detection of a person in the water
from thermal images

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
June 2022

M
as

te
r’s

 th
es

is

Petter Tafjord Drønnen

Detection of a person in the water
from thermal images

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Detection of a person in the water from thermal

images

Petter Tafjord Drønnen

Master’s thesis

TTK4900

Faculty of Information Technology and Electronics

Norwegian University of Science and Technology

Norway

June 6, 2022

Supervisor: Annette Stahl Pages / Appendix

64 / 69

i

Preface

This report is a master’s thesis and concludes my master’s degree in Cybernetics and Robotics at

the Norwegian University of Technology and Science in Trondheim. The work is done in collab-

oration with Zebop Avalon [3] and was started in January 2022 and finished in early June 2022.

The report continues the preproject work done in the subject TTK4551 completed in autumn

2021.

Now that I am finishing my master’s degree, I would like to express my gratitude to all my friends

and family for always having my back, and this would not be possible without you all. A special

thanks to you mom, dad, Robert, and Karina.

Trondheim, June 6, 2022

Petter Tafjord Drønnen

ii

Acknowledgement

I want to thank all the contributors to this project, and especially I would like to thank:

• My supervisor Annette Stahl at NTNU, for guidance throughout the project

• Zebop Avalon for giving me the opportunity

• Special thanks to Oscar Markovic, Max Montzka, and Kjetil Beck at Zebop Avalon for help

and hardware

• Family and friends who have supported me throughout this period

A special thanks to the people in this picture that works at and with Zebop Avalon

iii

Summary

Each year in Norway, about 100 people die from drowning accidents. Falling from land or a

dock is overrepresented in the statistics, and accidents often occur when the victims are alone.

This thesis aims to develop a system that uses a thermal camera, object detection, and object

tracking to detect a person falling into the water to decrease the number of drowning accidents.

The system uses several methods for detecting a person falling, such as detecting an object as a

falling person with object detection, a line crossing check, and the relative movement speed of

objects. The dataset created includes seven labels, person, car, dog, boat, truck, falling person,

bus, and contains 3249 labeled thermal images. A YOLOv4-tiny model was the object detection

model and scored a mean average precision of 87.23% on the validation set. Deep SORT was

used as the object tracker algorithm and saved the object’s history as data points for trajectory

analysis. However, the Deep SORT did not reach a real-time performance, running at only nine

frames per second. This leaves much potential for improvement. The trajectory analysis shows

that it is easy to distinguish between relevant movement patterns, such as a person walking,

falling, or climbing. The overall result is that such a system presented in this thesis could save

lives in the future, but there are still many improvements to make the system even more robust.

iv

Sammendrag

Hvert år dør rundt 100 mennesker av drukningsulykker i Norge. Fall fra land eller brygge er

overrepresentert i denne statistikken, og ulykker skjer som oftest når ofrene er alene. Denne

oppgaven har som mål å utvikle et system som bruker et termisk kamera, objektdeteksjon og

objektsporer for å oppdage en person som faller i vannet for å redusere antall drukningsulykker.

Systemet bruker flere metoder for å oppdage en person som faller. Systemet kan oppdage et

objekt som faller som en fallende person, utføre en linjekryssingssjekk og se på relativ beveg-

elseshastighet for objekter. Datasettet som ble laget inneholder syv kategorier, person, bil, hund,

båt, lastebil, fallende person, buss, og inkluderer 3249 merkede termiske bilder. En YOLOv4-tiny

modell ble brukt som objektdeteksjonmodell og fikk en gjennomsnittlig presisjon på 87.23% på

valideringssettet. Deep SORT ble brukt som objektsporingsalgoritmen og lagret objektets histo-

rie som datapunkter for baneanalyse. Deep SORT oppnådde imidlertid ikke en sanntidsytelse

da den bare nådde ni bilder per sekund og har derfor et stort forbedringspotensial. Baneanaly-

sen viser at det er lett å skille mellom relevante bevegelsesmønstre, som at en person går, faller

eller klatrer. Det samlede resultatet er at et slikt system som er presentert i denne oppgaven

kan redde liv i fremtiden, men det er fortsatt mange forbedringer for å gjøre systemet enda mer

robust.

Contents

Preface . i

Acknowledgement . ii

Summary . iii

Sammendrag . iv

Acronyms . ix

1 Introductions 1

1.1 Problem description . 3

1.2 Motivation . 4

1.3 Background . 5

1.4 Aim and objectives . 5

1.5 Contributions . 6

1.6 Structure of the Report . 6

2 Previous work 7

2.1 Object detection and object tracking . 7

2.2 Data visualization and analysis . 10

3 Theory 12

3.1 Object tracking . 12

3.2 Kalman filter . 13

3.3 Mahalanobis distance . 15

3.4 Hungarian algorithm . 16

3.5 Computer vision . 16

3.5.1 Camera . 17

v

CONTENTS vi

3.5.2 Thermal camera . 17

3.5.3 Digital image . 18

3.5.4 Image processing . 19

3.5.5 Feature extraction . 19

3.5.6 Region of interest . 20

3.6 Machine learning . 21

3.6.1 Training . 21

3.6.2 Neural networks . 22

3.6.3 Input layer . 22

3.6.4 Hidden layer . 22

3.6.5 Output layer . 23

3.6.6 Neurons in deep learning . 23

3.6.7 Backpropagation . 24

3.6.8 Convolutional neural network . 24

3.6.9 Convolution layer . 25

3.6.10 Pooling Layer . 25

3.6.11 Fully Connected Layer . 26

3.6.12 Single stage detectors . 26

3.6.13 Data augmentation . 27

3.6.14 Transfer learning . 27

3.6.15 Evaluation . 27

3.6.16 Precision . 28

3.6.17 Recall . 28

3.6.18 Intersection over union . 28

3.6.19 Mean average precision . 29

3.6.20 Total loss . 29

3.7 Programming language . 30

3.7.1 Python . 30

3.7.2 Framework . 30

CONTENTS vii

4 Method 31

4.1 Project approach . 31

4.2 Material . 32

4.2.1 Camera on Solsiden . 32

4.2.2 Cameras for the dataset . 32

4.2.3 Hardware . 33

4.3 Software and libraries . 34

4.3.1 Software . 34

4.3.2 Python libraries . 35

4.4 Implementation . 35

4.4.1 Dataset . 36

4.4.2 DeepStream . 38

4.4.3 Hardware . 39

4.4.4 Convolution neural network . 39

4.4.5 Deep SORT . 41

4.4.6 Detection of a person falling . 42

4.4.7 Data analysis . 44

5 Result 46

5.1 DeepStream . 46

5.2 Object detection training . 47

5.3 Detection of a falling person . 48

5.3.1 Object detection . 49

5.3.2 Line detection . 50

5.3.3 Movement detection . 51

5.4 Deep SORT result . 51

5.5 Trajectory analysis . 52

5.5.1 New YOLO model . 52

5.5.2 Data analysis . 53

5.5.3 Plot of trajectories . 53

CONTENTS viii

6 Discussion 57

6.1 Hardware and YOLO model . 57

6.2 Dataset . 58

6.3 Detection of a falling person . 58

6.3.1 Object detection . 58

6.3.2 Line detection . 59

6.3.3 Movement detection . 59

6.4 Deep SORT . 60

6.5 Trajectory analysis . 61

6.5.1 New YOLO model . 62

7 Conclusion and future work 63

7.1 Conclusion . 63

7.2 Further work . 64

Bibliography 65

Appendices 73

A Source code 74

A.1 DeepStream . 74

A.2 deepSort . 74

A.3 Adaptive line and line intersection . 74

A.4 Data analyse . 74

B Data analyse pictures 75

C Preproject 78

CONTENTS ix

Abbreviations

FOV Field of view

SORT Simple Online and Realtime Tracking

YOLO Your Only Look Once, state-of-the-art real-time object detection

FPS Frames per second

UAV Unmanned aerial vehicle

CV Computer vision

IR Infrared

RGB Red, Green, Blue, the standard way to display colored images

ROI Region of interest

ML Machine learning

AI Artificial intelligence

DL Deep learning

CNN Convolutional Neural Network

IoU Intersection over union

mAP mean Average Precision

GPU Graphics processing unit

CPU Central Processing Unit

SDK Software Development Kit

RTSP Real-Time Streaming Protocol used to access the camera stream from Solsiden

CSV Comma Separated Values, a file format used to store data points in a file

List of Figures

1.1 Where drowning accidents occur [64] . 2

1.2 Warning placed at Nidelva . 3

1.3 Solsiden at night seen in RGB images . 4

1.4 Solsiden at night seen in thermal images . 4

1.5 Camera placement in Trondheim . 5

2.1 Mean average precision of different YOLOv4 models trained on different dataset

sizes. The table is taken from Chaverot [9] . 9

3.1 Tracking of two objects . 13

3.2 Thermal with colors . 17

3.3 Thermal in grayscale . 17

3.4 Grayscale image . 18

3.5 RGB image . 19

3.6 Edge detection example [42] . 20

3.7 Corner detection example [15] . 20

3.8 Difference between AI, ML and DL [74] . 21

3.9 Neural network . 22

3.10 Activation functions [65] . 23

3.11 CNN for classifying handwritten digits [66] . 24

3.12 Max and average pooling [66] . 25

3.13 Difference in single- (a) and two-stage (b) detector [48] 26

3.14 Explanation of IoU [32] . 28

x

LIST OF FIGURES xi

3.15 Example of precision-recall curve [32] . 29

4.1 Thermal camera [17] . 32

4.2 Boson 640 Thermal camera [16] . 32

4.3 E96 handheld camera [18] . 32

4.4 Jetson Nano [53] . 33

4.5 Pictures from the dataset . 36

4.6 Labeled images . 37

4.7 DeepStream pipeline . 38

4.8 Yolov4-tiny architecture [67] . 39

4.9 Deep SORT architecture. Figure based on [37] 41

4.10 Line crossing check . 42

4.11 Flipped images . 44

4.12 Example of stored data points . 45

5.1 DeepStream performance . 46

5.2 DeepStream line intersection . 47

5.3 Training . 47

5.4 Training score . 48

5.5 Detection of a falling person . 49

5.6 Line crossing check . 50

5.7 Movement detection . 51

5.8 All trajectories extracted from a video . 52

5.9 All trajectories extracted from a video . 52

5.10 All trajectories extracted from the video . 53

5.11 (1) All trajectories (2) Non fall trajectories (3) Trajectories from fall 54

5.12 X and Y values compared between non falling and falling trajectories 55

5.13 A climbing trajectory . 56

5.14 X and Y values of a person climbing . 56

B.1 Mean trajectory . 75

B.2 Heat map . 76

LIST OF FIGURES xii

B.3 Number of times a coordinate is present . 76

B.4 Distance between points heat map . 77

B.5 Number of times a distance occur . 77

List of Tables

3.1 Pixel placement in a picture . 18

3.2 Grayscale array . 18

3.3 RGB array . 19

xiii

Chapter 1

Introduction

In recent decades the price and size of electronics and cameras have been significantly reduced.

When taking a closer look at the thermal camera’s history, it is possible to see that in the first 30

years, a camera cost $ 50,000 [38]. Today it is possible to buy a small adapter that can be put on

a mobile phone for $ 230 [19]. When more people can access better and cheaper hardware, it

is easier to innovate in new and old fields. An example of this is the new field of making use of

thermal cameras in self-driving cars because a thermal camera can see as good in the dark as

during the day [20]. Another place it is possible to innovate is to use thermal cameras and ma-

chine learning to make automated security systems. The system can run continuously without

pauses and automatically alert the proper authorities.

The Norwegian Society for Sea Rescue works to prevent drowning accidents in Norway and col-

lects many statistics about the accidents. When looking at these statistics [64] it is possible to

see that on average the last ten years, 93 people have drowned every year in Norway, with 2021

having 75 people drowning.

1

CHAPTER 1. INTRODUCTIONS 2

When categorizing the most common accidents, a fall from land or a dock is overrepresented, as

seen in figure 1.1. The statistics also show that three out of four people that were over 60 years

were alone when the accident occurred [75]. Due to so many being alone when the accident

happens, it would be suitable to develop a system that can make it so that no one is alone. The

system will give the people a chance to get the help they otherwise would not get.

Figure 1.1: Where drowning accidents occur [64]

CHAPTER 1. INTRODUCTIONS 3

Nidelva in Trondheim is infamous for its almost yearly drowning accidents, as mentioned in this

news article [49], and several warnings, such as in figure 1.2 are in the close vicinity to the river.

Warning translated gives “12 men have drowned in the Nidelva since 2000. Half of them did not

reach the age of 22.”

Figure 1.2: Warning placed at Nidelva

In November 2018, an 18-year-old boy named Odin disappeared in Trondheim. His body is still

not yet located, and the hypothesis is that he fell into Nidelva. The system discussed in this

thesis may have seen Odin falling into the river and could have saved his life. This thesis is done

in collaboration with Zebop Avalon [3], and the Odin accident is the motivation for the company.

Zebop Avalon’s motto is that nobody should drown and no accident should go unsolved.

1.1 Problem description

This study aims to develop a system that uses object detection and object tracking algorithms

to implement several methods for detecting a person falling into the water. When this system

works correctly, it can be used to notify rescue services about an incident and then hopefully

reduce the number of drowning accidents.

The sensor used as input for the object detection and object tracking algorithms was a ther-

mal camera. The reason for using a thermal camera is its superior performance in poor lighting

conditions compared to a regular camera [79]. Lighting is essential because the system should

work at any time throughout the year.

CHAPTER 1. INTRODUCTIONS 4

1.2 Motivation

One of the biggest benefits of using a thermal camera compared to a normal camera is its supe-

rior capture quality when it is dark or in bad weather conditions. Figure 1.3 and figure 1.4 is a

comparison between the two. The pictures were taken in the evening in the wintertime of Nor-

way. From the figures, it is possible to see that the thermal image shows features that are hard

to see or completely black in the RGB image. For instance, the drainage pipe near the camera is

visible on thermal but completely black on the RGB image.

Figure 1.3: Solsiden at night seen in RGB
images

Figure 1.4: Solsiden at night seen in thermal
images

Since the system must function at all times with as little as possible human interaction, machine

learning (ML) was needed. ML has a proven record for systems that can work independently

from humans. From robots to automated cars to security systems to military use. The selected

ML method was object detection and object tracking. These can detect and track objects and

can be used in several different ways to give a robust system. Object tracking also allows look-

ing at movement patterns and can be used to detect abnormal movement. Furthermore, no

one uses object detection, object tracking, and thermal cameras to look for drowning accidents.

Therefore, by realizing this product, society could benefit greatly.

CHAPTER 1. INTRODUCTIONS 5

1.3 Background

On Blomsterbrua in Trondheim, Zebop Avalon has placed their test system, including the ther-

mal camera, as seen in figure 1.5. The figure also shows the camera’s field of view (FOV) as the

camera looks at Solsiden. Solsiden will be the test arena for the system. However, new test places

could be necessary to test further and improve the system when the system behaves satisfacto-

rily on Solsiden.

Figure 1.5: Camera placement in Trondheim

1.4 Aim and objectives

This thesis aims to make a system that can help prevent drowning accidents. Several objectives

should be met to achieve this. The objectives are as follows:

• Create a new original dataset for thermal images

• Develop a system that uses object detection and object tracking to detect a person falling

into the water

• Analyze the data captured by the object tracker

CHAPTER 1. INTRODUCTIONS 6

1.5 Contributions

The main contributions of this paper are:

• A system that can detect a person falling into the water using object detection, line detec-

tion, and movement detection

• Save and analyze Deep SORT data to recognize the movement of a person walking and

falling and plot the data

• A new original dataset containing 3249 thermal images with the labels person, car, dog,

boat, truck, falling person, and bus. The dataset is recorded in four different places, both

indoors and outdoors, and in different weather conditions to make the data as varied as

possible

1.6 Structure of the Report

The rest of the report is structured as follows:

Chapter 2 - Previous work: Relevant work done by others are presented

Chapter 3 - Theory: The theoretical background needed to understand the thesis

Chapter 4 - Method: Methods used are presented

Chapter 5 - Result: The different results are presented

Chapter 6 - Discussion: A discussion on the different results are presented

Chapter 7 - Conclusions: The report is concluded

Chapter 2

Previous work

The work done in this thesis is about both object detection, object tracker, and storing and using

the data from the object tracker. This chapter presents existing work done in the respective fields

and how their result may be helpful in this thesis.

2.1 Object detection and object tracking

A good object tracker is only as good as the object detection [4]. Therefore, it is essential to have

a good object detector that maximizes the performance of the tracker. The following sections

will present object detection and object tracking work done by others, emphasizing the per-

formance of several different detection models when using them with an object tracker. Much

work is done with object detection and tracking with an ordinary camera but not as much with

thermal images. In order to reduce repetition, only the best and most relevant work is presented.

In Wojke [81] the authors took the Simple Online and Realtime Tracking (SORT) [5] algorithm

that was one of the best trackers at the time and improved it. The SORT algorithm is a simple

algorithm that uses a Kalman filter to predict bounding boxes and the Hungarian method to

measure the bounding box overlapping, enabling tracking of objects. This method is fast but

comes with many identity switches when occlusions occur, and it is here that the Deep SORT

algorithm comes in. The Deep SORT takes the SORT algorithm but extends it with a pre-trained

neural network that generates features from the objects. This neural network helps the algo-

7

CHAPTER 2. PREVIOUS WORK 8

rithm recognize objects when they are occluded for a time. When using Deep SORT, the identity

switches were reduced by 45% compared to only using the SORT algorithm and can still be used

in a real-time system. The Deep SORT algorithm developed in Wojke [81] looks like an excellent

choice to use as an object tracker. It performs well both in speed and accuracy and is easy to

implement. Moreover, it is popular, as mentioned in [71, 46], and therefore seeking help when

problems occur is easier.

In Punn [61] the authors compared the neural networks, Faster-RCNN, single-shot detector, and

You Only Look Once (YOLO) version 3 to use with Deep SORT. The task was to monitor social

distancing due to COVID-19 from surveillance videos. Punn and the authors found out that

YOLOv3 outperformed the other two networks, and it was the best candidate to be used with

Deep SORT. The result shows that the YOLO architecture can be an outstanding choice for the

network to cooperate with Deep SORT in this paper.

In Parico [57] the author’s task was to make a real-time pear fruit detection and counting sys-

tem. The authors used Deep SORT as the object tracker, and for the object detection, they made

a thorough comparison between YOLOv4, YOLOv4-tiny, and YOLOv4-CSP. The authors went as

far as testing several different network sizes of each of the three models. The overall best model

was the YOLOv4, and they used the YOLOv4-512 model in their system. The -512 name means

that the network resolution is 512x512. The tests also showed that the YOLOv4-tiny network out-

performed the YOLOv4 model at lower network resolutions. Since the video resolution in this

paper is relatively low and high speed is essential, a good model choice can be the YOLOv4-tiny

model at a resolution of 416x416.

In Doan [13] the authors developed a system for detecting and counting different vehicles using

YOLOv4 and Deep SORT. The author’s emphasis was on performance, and they achieved 52.3

average precision at 55 frames per second (FPS) when using an image resolution of 416x416.

This result makes it possible to use the YOLOv4 and Deep SORT to make a real-time system.

The result achieved in Doan [13] is much better than the preproject (see appendix C) with an

FPS of 31 at the exact image resolution and without Deep SORT. The different results between

CHAPTER 2. PREVIOUS WORK 9

Doan [13] and the preproject indicates that there is either an error in the preproject or that Doan

[13] results are tough to reach.

In Chaverot [9] the authors tested the performance of object detection models only trained on

RGB images against models trained on thermal images with different dataset sizes. The dataset

used was the FLIR ADAS [21] dataset that contains 10228 images. They split the dataset into 7860

images for training and 1360 for validation. During testing, a standard YOLOv4 model scored a

mean average precision of 69.13%, and their model trained on the full dataset scored 84.88%.

Figure 2.1 shows the mean average precision of the other models. From this, it is possible to

see that the performance is minimally reduced with a dataset 1/4 of the original size. Using this

result indicates the minimum size of the dataset this thesis should have at
10228

4
= 2557 images.

Figure 2.1: Mean average precision of different YOLOv4 models trained on different dataset
sizes. The table is taken from Chaverot [9]

CHAPTER 2. PREVIOUS WORK 10

2.2 Data visualization and analysis

An ideal way to display information is needed when collecting much data. It was not easy to find

many theses containing relevant and good data visualization and analysis explanations. How-

ever, the following sections will explain the theses that were found and were relevant and good

enough. The sections will look at how others have visualized their data and how they have used

the data.

In Shaoji [70] the authors used an unmanned aerial vehicle (UAV) to capture video of three dif-

ferent squares. Then the authors used YOLOv3 and Deep SORT to save every midpoint of the

bounding boxes to a .csv file. After this, they cleaned the data by removing outliers and then

plotted it in several different ways. They used the python libraries matplotlib [43] and seaborn

[69] to plot a map of all the trajectories saved. The plots they used were a heat map of the people

distribution and a heat map of people’s walking speed. All the maps plotted look very well and

clean. However, the authors in Shaoji [70] only explain which library they used and not how they

used them. This makes recreating what they have done challenging.

In Gatelli [25] they used YOLOv4 and Deep SORT to count cars and look at the movement of

cars at road intersections. The authors recorded several intersections and then ran YOLOv4 and

Deep SORT on the data and recorded every midpoint of the bounding boxes, similar to what

Shaoji [70] did. Gatelli [25] then plotted the trajectories in a graph to look at where and how

most vehicles moved. They could then automate the decisions on improving the intersections,

such as installing traffic signs or widening areas. The findings in Gatelli [25] can be used to look

at the standard moving patterns on Solsiden and to make plots to show this. One problem is that

Gatelli [25] did not explain how they saved the data or made the plots, and therefore recreating

this can be difficult. However, if done correctly, this can be used to raise the alarm if someone is

deviating from the usual walking path.

CHAPTER 2. PREVIOUS WORK 11

In Hng [31] they developed a UAV that could fly to the front of congesting vehicles due to an

accident. The authors in Hng [31] used YOLOv4 and Deep SORT to look at the relative speed of

vehicles to determine if there was congestion or not. To calculate the relative speed, they used:

Relative speed =
√

(x2 −x1)2 + (y2 − y1)2

This takes the coordinates from a midpoint of a bounding box and the same coordinates of a

new bounding box at a later frame and calculates how many pixels it has moved. If the pixel

value is lower than a set threshold, the cars are driving slow, and congestion happens. When

looking for people falling into the water, the relative speed can be used to look at the speed of

objects. A person falling will move much faster than a person walking on a typical path.

Chapter 3

Theory

The following chapter explains the usage of object detection and object tracking. The sections

explain state-of-the-art methods in their respective fields and present the basic theory neces-

sary to understand the methods and results later in this report.

3.1 Object tracking

The task of the object tracking algorithm is to give each object from the object detection algo-

rithm a unique ID. The object detection sends the location of each detected object to the object

tracker every video frame. The tracker should then provide the same ID to the same object and

new IDs to new objects. ID matching should work as objects move around and also if they dis-

appear and reappears in a relatively short time [11].

The advantage of using a tracker is that one can look at the movement of an object through

time. Therefore, it is possible to do more data analysis, such as the relative speed of an object.

The disadvantage of a tracker is that it is often very computational heavy, which can increase

the model’s time to make predictions. In addition, one of the biggest challenges in tracking is to

match the correct objects to each other between two frames and how to handle an object that

disappears and reappears again [11]. Almost all trackers have a unique way of solving this, both

in complexity and speed. A popular tracker is the Deep SORT [82] tracker.

12

CHAPTER 3. THEORY 13

Figure 3.1 shows the tracking of two objects labeled as a person with id “1” and “2”.

Figure 3.1: Tracking of two objects

3.2 Kalman filter

Kalman filter is an optimal state estimator. It can be used to remove noise and inaccuracy on

measurements or estimate system state parameters that can not be measured or observed. For

instance, in object tracking, the Kalman filter can estimate the unmeasured parameter velocity

of an object from the measured position of an object with high accuracy [23]. Based on [58] the

Kalman filter algorithm works as follows:

Initialize the filter at:

x̂−
0 = mx0

P−
0 =Cx0

(3.1)

CHAPTER 3. THEORY 14

Then:

1. Compute Kalman gain:

Lk = P−
k CT (CP−

k CT + R̄v)−1 (3.2)

2. Update estimate with measurement:

x̂k = x̂−
k +Lk (yk −Cx̂−

k) (3.3)

3. Update error covariance matrix:

Pk = (I−Lk C)P−
k (I−Lk C)T +Lk R̄vLT

k (3.4)

4. Project ahead:

P−
k+1 = AP−

k AT +Qw

x̂−
k+1 = Ax̂k +Buk

(3.5)

repeat with k = k+1

Where, mx0 = mean (expected value), Cx0 = covariance matrix, Lk = Kalman gain,

P−
k = a priori covariance matrix, C = output matrix, R̄v = noise covariance,

x̂k = a posteriori estimate, x̂−
k = a priori estimate, yk = measurement,

Pk = a posteriori covariance matrix, A = transition matrix, B = input matrix, uk = inputs, and

Qw = disturbance covariance

CHAPTER 3. THEORY 15

3.3 Mahalanobis distance

Commonly Euclidean distance is used to measure the distance between two points in as many

dimensions as desired and is given by:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2 (3.6)

A problem with this calculation is that it can provide the wrong result of how close two points

are when the data are correlated. To solve this problem, the Mahalanobis distance formula can

be used instead. The formula works by:

1. Transform the data into uncorrelated variables

2. Scale the data making the variance equal to 1

3. Calculate the Euclidean distance.

This gives the Mahalanobis distance formula:

D =
√

(x −m)T ∗C−1 ∗ (x −m) (3.7)

Where D is the distance, x is the observations, m is the mean values of independent variables,

and C−1 is the inverse covariance matrix of independent variables [60]. However, Mahalanobis

distance can be unsuitable as the only association metric in an object tracker when the motion

uncertainty is high, such as tracking through occlusions. [81].

CHAPTER 3. THEORY 16

3.4 Hungarian algorithm

The Hungarian algorithm is used to solve assignment problems optimally. In object tracking, it

can give objects their tracking ID. Based on [59] the algorithm works as follows:

First, a square matrix is needed. If the matrix is not square, add dummy rows or columns that

have a value equal to the largest value in the whole matrix.

Then:

1. Subtract the smallest value in each row from each value in that row

2. Subtract the smallest value in each column from each value in that column

3. Draw lines over rows and columns containing zeros, with the smallest number of lines

possible. If the number of lines equals the number of rows in the matrix, stop here. Oth-

erwise, continue to step 4.

4. Find the smallest uncovered value and call it x. Subtract x from all uncovered values in the

matrix and add it to any elements covered twice. Then go back to step 3.

When the algorithm is finished, select a zero in each row and column such that each only con-

tains one zero. Remove any dummy rows or columns. The final matrix is now the ideal assign-

ment in the original matrix.

The following theory, with some minor tweaks, is taken from chapter 3 in the preproject, found

in appendix C

3.5 Computer vision

Computer vision (CV) deals with how a computer can understand digital images and videos

without the help of humans. CV is a very complex problem, and much time and effort are put

into this field each year. Some CV uses are object detection, video tracking, and image restora-

tion [33].

CHAPTER 3. THEORY 17

3.5.1 Camera

In CV, the input is often captured using a camera in the form of images or video. Cameras can

have different hardware, resulting in, among other things, different frame rates, resolution, and

shutter speeds. In addition, the light in the shot, surrounding medium, and space can also affect

the camera. Therefore it is essential to look at all these variables to get the best camera for the

right task [29].

3.5.2 Thermal camera

Instead of using visible light like conventional cameras, thermal cameras use infrared (IR) ra-

diation. These cameras typically work in the wavelength of 1 micrometer (1µ) to 16µ. These

wavelengths mean that the camera captures heat instead of visible light. Therefore, the cameras

have many applications ranging from military use to surveillance to data center monitoring.

One of the biggest benefits of thermal cameras is better visibility in the dark [41]. There are

several ways to visualize thermal images, as seen in figure 3.2 and 3.3.

Figure 3.2: Thermal with colors Figure 3.3: Thermal in grayscale

CHAPTER 3. THEORY 18

3.5.3 Digital image

A computer typically represents a two-dimensional image with a two-dimensional array that

contains all the pixels in a picture. For instance, a picture with a size of four by four pixels, for a

total of 16 pixels, will have the array as shown in table 3.1. Each spot in the array can typically

store 8 bits. 8 bits gives 28 = 256, meaning a value from zero to 255 can be stored [44].

[[p(0,0) p(0,1) p(0,2) p(0,3)]

[p(1,0) p(1,1) p(1,2) p(1,3)]

[p(2,0) p(2,1) p(2,2) p(2,3)]

[p(3,0) p(3,1) p(3,2) p(3,3)]]

Table 3.1: Pixel placement in a picture

Storing an image is often done in grayscale or Red, Green, Blue (RGB) format. With grayscale,

each pixel gets a value from zero to 255 that contains the intensity of light in that pixel. A pixel

value of zero is black, 127 is gray, and 255 is white. The advantage of grayscale is the reduced

size due to fewer pixels but still containing the essential information in the image. Grayscale

also benefits from easier data code to process the images, as the arrays are less complex. A

disadvantage is the loss of information about the colors in an image. A good use for grayscale is

when the object to detect does not depend on colors. An example of this is to recognize different

shapes like circles and squares [44]. An example of a 4x4 image is in table 3.2 with the pixel values

shown as an image in figure 3.4.

[[0 0 0 0]

[100 100 100 100]

[200 200 200 200]

[255 255 255 255]]

Table 3.2: Grayscale array Figure 3.4: Grayscale image

CHAPTER 3. THEORY 19

The RGB format normally contains three channels where each channel represents a color. Table

3.3 represents a 4x4 RGB image and in figure 3.5, the colors from the pixel values are shown.

As before, the value in each element is usually from zero to 255. The first element in a pixel

represents the intensity of red. The second element represents green and the last blue. So an

pixel with value [0 0 0] = black, [255 0 0] = red, [0 255 0] = green, [0 0 255] = blue, [255 255 255]

= white and any other combination gives the rest of the possible colors for a total of 16,777,216

different colors. The advantage of RGB is that there is a lot more information in the picture to use

for the detection. The disadvantage is that the image gets bigger and more complex. Good uses

of RGB are when the system is dependent on colors, such as making a system that can detect

traffic lights [44].

[[[0 0 0] [0 0 0] [0 0 0] [0 0 0]]

[[255 0 0] [255 0 0] [255 0 0] [255 0 0]]

[[0 255 0] [0 255 0] [0 255 0] [0 255 0]]

[[0 0 255] [0 0 255] [0 0 255] [0 0 255]]]

Table 3.3: RGB array Figure 3.5: RGB image

3.5.4 Image processing

Image processing uses an algorithm to highlight desired information in the image. These can

be easy tasks such as scaling or changing an RGB picture to grayscale or vice-versa to more ad-

vanced tasks such as image enhancement and image restoration to the most advance as feature

extraction with more [40].

3.5.5 Feature extraction

Feature extraction takes an image through an algorithm that highlights some exciting parts or

traits in the image. Feature extraction minimizes redundant data and speeds up training, and

the time it takes to make predictions. There are many methods for extracting different features,

and all have their own set of uses. For example, some of the methods used in feature extraction

and object recognition are edge- and corner detection [68].

CHAPTER 3. THEORY 20

• Edge detection is to find the edges in an image. Edge detection detects discontinuities in

brightness in the image, and there are several methods for achieving this. In figure 3.6 an

example of the Canny method can be seen [42].

Figure 3.6: Edge detection example [42]

• As in edge detection, corner detection has several methods. However, the main idea is to

take a small window over every pixel and see if there is a change in the pixel values in all

directions [15]. The main idea is visualised in figure 3.7.

Figure 3.7: Corner detection example [15]

3.5.6 Region of interest

A region of interest (ROI) in an image is a part of the image of extra interest. Making an ROI usu-

ally means cutting away some parts of the image to reduce the size, change the aspect ratio or

highlight some parts more. As a result, the bandwidth required for each image can be reduced,

often achieving a higher frame rate when running detection [34].

CHAPTER 3. THEORY 21

3.6 Machine learning

Machine learning (ML) uses algorithms on data to learn more and more over time. ML can be

several things, such as computer vision and recognizing the difference between a person and a

dog. It could also be complex pattern recognition to help solve cancer and so on [14]. Figure 3.8

displays the difference between artificial intelligence (AI), ML, and deep learning (DL).

Figure 3.8: Difference between AI, ML and DL [74]

3.6.1 Training

Supervised and unsupervised are two methods used for learning in ML. Supervised learning is

when the dataset is labeled and fed into the algorithms to train. The algorithm then adjusts its

weights until the model performs appropriately. For example, object detection and classifica-

tion often use supervised learning. Unsupervised learning is when a model gets a new dataset

to analyze. When analyzing, the model finds patterns or data grouping without interaction from

a human [14].

CHAPTER 3. THEORY 22

3.6.2 Neural networks

Using neural networks is a way to perform ML. Figure 3.9 shows an easy example of a neural

network. A neural network consists of an input layer, one or more hidden layers, and an output

layer, and neurons connect each of these layers [8]. The following sections will explain these

building blocks.

Figure 3.9: Neural network

3.6.3 Input layer

The input layer is the entering point of raw data. For instance, the input layer can be a neuron

for each pixel in a picture. The data is often preprocessed to fit the total number of neurons in

the input layer. For example, preprocessing can scale a picture up or down in size or make an

ROI. After preprocessing, the network is ready to send the data to the hidden layer [8].

3.6.4 Hidden layer

The hidden layer does the main work of a neural network. Each hidden layer tries to learn some-

thing about the data by minimizing a cost function. An example is to think that the first hidden

layer learns edge detection, the subsequent learns corner detection, and the next something

else until there are no more hidden layers. The example is not exactly what is going on, but it is

the main idea. The result is a complex problem broken down into more minor problems [8].

CHAPTER 3. THEORY 23

3.6.5 Output layer

The output layer returns a value for each of the neurons in the output layer. For instance, if the

network displayed in figure 3.9 is an image classification between dogs and cats, the output layer

will then output the confidence about each class. For example, the output can be [0.97 0.03], the

model is then 97% sure the image is a dog and 3% sure it is a cat [8].

3.6.6 Neurons in deep learning

Each neuron, the colored circles in figure 3.9, are connected as shown in the figure. Each of

these connections contains a weight that is a positive or negative number. When a value gets

sent from one layer to the next, it gets multiplied by its weight. The neuron in the next layer

then sums all the inputs from all the neurons in the previous layer.

After summing up the value, it gets to an activation function. The job of the activation func-

tion is to map the sum to the desired value. For example, using the unit step function, figure

3.10, will map all negative values to zero and all positive values to one. The activation function,

in different ways, generally maps the output of a neuron in a range between zero and one. This

process occurs in every neutron until the output gets to the output layer. The connection be-

tween neurons can also contain a bias. Bias is just a number that shifts the activation function

left or right. [45]. Figure 3.10 shows some of the most common activation functions.

Figure 3.10: Activation functions [65]

CHAPTER 3. THEORY 24

3.6.7 Backpropagation

When training a model, the weights and biases need to be adjusted, which is called backpropa-

gation. First, the network is given input and goes through the procedure explained in the previ-

ous paragraph. Then, the error at every neuron is calculated and saved often using:

Er r or = 1

2
∗ (pr edi ct i on −actual)2 (3.8)

Then the backpropagation process starts using gradient descent to update the weights and bi-

ases. This process starts at the output layer and goes back towards the input layer, and repeats

until the desired performance level is achieved [30]. A typical way to update the weight and bias

at each neuron is using this formula:

New weight = old weight− (
∂Error

∂old weight
) (3.9)

3.6.8 Convolutional neural network

A convolutional neural network (CNN) is a DL algorithm often used for image classification. The

CNN can take an image as an input and learn its features with enough training without the need

for human help [66]. Figure 3.11 shows an example of the structure of a CNN. The following

sections will explain the different layers.

Figure 3.11: CNN for classifying handwritten digits [66]

CHAPTER 3. THEORY 25

3.6.9 Convolution layer

The convolution layer’s job is to apply a filter to the input. This filter extract features such as

edges and corners. Extracting features later in the layers gives more high-level features. There-

fore adding a convolution layer to several places in the network makes the model more robust,

as both high-level and low-level features are needed. The two methods for extracting features

are the same padding and valid padding. The input is either increased in size or the same with

the same padding. With valid padding, the input data is reduced [66].

3.6.10 Pooling Layer

The pooling layer reduces the size of the data and extracts dominant features. The two methods

used are max pooling and average pooling. The max pooling returns the maximum value from

the image portion covered by the filter. Average returns the average of these values. The most

common is max pooling since this also performs a noise reduction [66]. In figure 3.12 the meth-

ods are shown. The max pooling takes some values, here four values, and returns the maximum.

Average does the same but returns the average of these four values instead.

Figure 3.12: Max and average pooling [66]

CHAPTER 3. THEORY 26

3.6.11 Fully Connected Layer

The last layer in a CNN is the fully connected layer. This is often a neural network and works as

described in the chapter 3.6.2. When training, the layer adjust its weights and biases with the

help of backpropagation. The fully connected layer also gives the final value of the prediction

[66]. As with all ML there are several ways to solve the problem. Some popular architectures are

ResNet, AlexNet and YOLO [66].

3.6.12 Single stage detectors

When talking about state-of-the-art object detectors, there are mainly two types called single-

and two-stage detectors [73]. This thesis uses the YOLO [6] detector, and this is a single-stage

detector. Therefore the following paragraph will only explain YOLO.

YOLO works by dividing the image into X smaller grids, and for each grid, predicts bounding

boxes and the confidence of each bounding box. Because the work happens in a single network,

without any region proposal, it is a single-stage detector. The benefit is that it increases speed

drastically but often reduces accuracy compared to two-stage detectors [72]. Since speed is one

of the most important aspects of detecting a person falling, a single-stage detector was chosen.

In figure 3.13 a visual representation of single- and two-stage detectors can be seen. The benefit

of a two-stage detector is often the accuracy, but this comes with a speed reduction.

Figure 3.13: Difference in single- (a) and two-stage (b) detector [48]

CHAPTER 3. THEORY 27

3.6.13 Data augmentation

Data augmentation is to create new data by either using the existing data or creating new syn-

thetic data. Synthetic data is data created artificially. Data augmentation with existing data can

be flipping a picture horizontal or vertical, rotating the picture, changing the colors, and differ-

ent scales with more. Augmentation can be done either offline or online. Offline is when data

augmentation happens before training a model and is mainly used with a smaller dataset since

this will increase the size of the dataset. For instance, by rotating each picture 90° , the dataset

will double in size and can quickly run into space limitations when using multiple augmenta-

tions. Online augmentation is when the augmentation happens during training, like rotating a

picture. The framework often has built-in support for doing this. Online augmentation is usu-

ally used for larger datasets since no new data is created [24].

3.6.14 Transfer learning

Transfer learning takes a pre-trained model that is already trained on a dataset. For instance, a

model trained on the COCO dataset [10] that has over 200 000 labeled images with objects like

boats, persons, dogs with many more, and take this knowledge on a new dataset like thermal

images. There are several benefits from this. The pre-trained models are often trained on an

extensive dataset with excellent hardware. This achieves a good starting point for a new model

and usually means that a new dataset can be smaller and gain a better result [39].

3.6.15 Evaluation

When evaluating a model, it is important with a measurement that is equal for all models. In

the following sections, the most standard methods will be explained, and to understand these

methods, some abbreviation needs explanation:

• True positive (TP): Both the real observation and prediction are positive.

• True negative (TN): Both the real observation and prediction are negative.

• False positive (FP): Real observation is negative, but the prediction is positive.

• False negative (FN): Real observation is positive, but the prediction is negative.

CHAPTER 3. THEORY 28

3.6.16 Precision

Precision is the percentage of the predictions that are correct [32]:

Pr eci si on = T P

T P +F P
(3.10)

3.6.17 Recall

Recall calculates how good the model is at finding all the positives [32]:

Recal l = T P

T P +F N
(3.11)

3.6.18 Intersection over union

Intersection over Union (IoU) is how much the prediction overlaps with the ground truth.

I oU = Area of overlap

Area of union
(3.12)

So when the IoU threshold is 0.5, the overlap needs to be over 50% to be classified as a true

positive, and if the threshold is one, it needs to be a perfect overlap [32]. Figure 3.14 shows an

example of IoU.

Figure 3.14: Explanation of IoU [32]

CHAPTER 3. THEORY 29

3.6.19 Mean average precision

Average precision (AP) or mean average precision (mAP) is often synonymous and is calculated

by finding the area under the precision-recall curve. Sometimes the AP is calculated for each

class, and then mAP is calculated by taking the average of the APs [32]. Figure 3.15 shows an

example of how a precision-recall curve can look.

AP =
∫ 1

0
p(r)dr (3.13)

Figure 3.15: Example of precision-recall curve [32]

3.6.20 Total loss

Total loss is how well the model performs. The closer the loss is to zero, the better. When the

model is training, it is this total loss it tries to reduce when changing its weights. If the total loss

is very close to zero, overfitting can often occur [28].

Overfitting and underfitting

If a model’s performance is terrible, then overfitting or underfitting may have caused the prob-

lem. Overfitting is when the model learns the dataset so well that the model can not generalize

and performs poorly when presented with new data. Overfitting may not be easy to spot due to

good performance on the training data. Underfitting is when there is insufficient data for the

model to generalize. Underfitting is often easier to spot due to bad performance on the training

data [7].

CHAPTER 3. THEORY 30

3.7 Programming language

Programming language is a formal language that makes it possible to write human text to a

computer. The programming language’s compiler makes the text into computer instruction and

executes the code. Therefore, it is possible to make advanced programs and algorithms with

minimal knowledge of computers [36].

3.7.1 Python

Python is an interpreted high-level, general-purpose programming language. The language fo-

cuses on code readability and is an object-oriented language. Python often gets described as a

“batteries included” language for its substantial standard library and its easy access. As a result,

python consistently ranks as one of the most popular programming languages [62].

3.7.2 Framework

A framework is a software or code that someone already has written. The code often emphasizes

useability and makes it easy to manipulate for the user, and is often open-source, which means

that everyone has access to the code and is allowed to change it.

There are several benefits of this. One such benefit is accelerated development. The amount

of knowledge needed to succeed is lowered. The code is usually more efficient and easier to

debug [27]. An example of a framework is Darknet [63].

Chapter 4

Materials and methods

This chapter starts with an explanation of the project approach. After this comes a presenta-

tion of the different materials used, such as cameras and hardware. Then a list of the different

software and libraries used is presented. Next is the implementation of the dataset, the label-

ing, DeepStream, the convolution neural network, Deep SORT, and the different methods for

detecting a person falling. Last is the implementation of how to save and plot the data.

4.1 Project approach

As mentioned, this thesis is done in collaboration with the company Zebop Avalon [3]. Zebop

Avalon owns most of the equipment used and was responsible for installing the thermal camera

on Solsiden. In exchange, Zebop Avalon can use the knowledge and software developed in this

paper.

Bi-weekly a meeting with Zebop Avalon and the supervisor was held. Here the progress and

any problems were presented and discussed. In addition, the offices of Zebop Avalon were often

used as a workplace to get closer to people who could help with problems and discuss solutions.

31

CHAPTER 4. METHOD 32

4.2 Material

4.2.1 Camera on Solsiden

The camera mounted on Solsiden is a thermal camera from FLIR called A700. The camera has

a FOV of 24° x 18°and can deliver thermal video in grayscale and color. It also films in standard

RGB color at the same time. The camera delivers the thermal images at 30 frames per second

FPS, with a resolution of 640 × 480 [17]. Figure 4.1 displays the camera .

Figure 4.1: Thermal camera [17]

4.2.2 Cameras for the dataset

Due to the camera on Solsiden being permanently mounted, there was a need for other cameras

to collect data from other locations than Solsiden. FLIR also provided these cameras, and is

called Boson 640 [16] and E96 [18]. The latter camera is a handheld camera that makes it easy

to film in all locations due to its size and that it runs on a battery. The Boson 640 captures video

at 60 FPS at a resolution of 640 × 512. The E96 captures video at 30 FPS at a resolution of 640 ×

480. Figure 4.2 and 4.3 shows the two cameras.

Figure 4.2: Boson 640
Thermal camera [16]

Figure 4.3: E96 hand-
held camera [18]

CHAPTER 4. METHOD 33

4.2.3 Hardware

When finalizing the product, a FLIR Bridge [22] will be used as a hub to connect to the camera

and run the software. The hardware inside this hub is based on a Jetson Nano [53]. Therefore, a

Jetson Nano was used under development as this is much cheaper and offers the same experi-

ence.

The Jetson Nano is a small but powerful device with a size of only 70 mm x 45 mm, and fig-

ure 4.4 illustrates a Nano. The Nano comes with a four-core Central Processing Unit (CPU), 4GB

of ram, and a Graphics processing unit (GPU) with 128 CUDA Cores [53].

Figure 4.4: Jetson Nano [53]

Since the Nano has limited performance, a more powerful computer was used for training and

some of the development. This computer contains an Nvidia 1080ti GPU with 11 GB of RAM

and 3584 CUDA Cores [51] and is 28 times as many cores as the Nano. The other components

in the computer are 24 GB RAM at a speed of 3200 MHz. In addition, an Intel i7 7700k CPU with

four cores, eight threads, and a clock speed of 4.2 GHz with a boost to 4.5 GHz [35].

CHAPTER 4. METHOD 34

4.3 Software and libraries

The listed software and libraries below have been used throughout this project.

4.3.1 Software

• Overleaf - A web page editor for LATEX that gives the authors tools like real-time collabora-

tive, spell checking and cloud-based storing [55]. Used to write the report and works as a

backup system for the report.

• Git - A free open source distributed version control system [26]. Used to store important

code.

• Draw.io - A free web page editor for making flowcharts, charts, and diagrams. [12]. It was

used to make figures for explanations.

• VLC - A free open source media player with a rich set of functions [80]. It was used to save

video from the thermal cameras.

• LabelImg - A graphical image annotation tool [78]. Used to label images for ML model

training.

• Visual studio code - An integrated development environment (IDE) made by Microsoft

that enable tools like debugging, syntax highlighting, intelligent code completion and

have git implemented into it [47]. Used as the IDE to write python code.

• DeepStream - A software development kit from Nvidia used to develop AIs on Jetson

Nanos [52]. It was used to implement optimized object detection and object tracking on a

Jetson Nano.

CHAPTER 4. METHOD 35

4.3.2 Python libraries

The libraries below, combined with visual studio code [47], have been used to develop the soft-

ware needed for this thesis.

• OpenCV - An open source computer vision library for real-time computer vision [54].

Used to read and manipulate captured video from the thermal camera.

• Numpy - A library used for high-speed mathematical operations and include support for

large, multi-dimensional arrays and matrices [50].

• Darknet - An open source framework used with the YOLO object detection [63]. Used to

run YOLO object detection.

• Deep SORT - Used with YOLO to achieve Realtime Tracking [82].

• Pandas - Open source data analysis and manipulation tool for python [56]. Used to save

and load data points.

• Matplotlib - Used to display and save various plots from data points [43].

4.4 Implementation

The following sections explain the implementation of the different parts of the system. It starts

with labeling the dataset. Then a look at how the YOLO model works and the training imple-

mentation. After this is the implementation of Deep SORT and detection of a person falling,

and last is the implementation of data analysis with saving and plotting data. All of the source

code can be found in appendix A. Unfortunately, the dataset can not be shared due to Zebop

Avalon using it in their product. Due to grayscale’s advantages, all images captured for training

and testing use grayscale.

CHAPTER 4. METHOD 36

4.4.1 Dataset

The dataset was done in collaboration with Zebop Avalon, and contains 3249 labeled thermal

pictures, with the labels person, car, dog, boat, truck, falling person, and bus. It was filmed in

different locations, both indoors and outdoors, with different cameras and conditions. After the

data was collected, the frames from the video were extracted for labeling. The number of ex-

tracted frames depended on the movement in the video. For example, if the video contained

fast movement, more frames were extracted than videos with less movement. This was to opti-

mize the data collected to get as useful data as possible from minimum data. Figure 4.5 shows

different pictures from the dataset in different locations.

Figure 4.5: Pictures from the dataset

CHAPTER 4. METHOD 37

Labeling

The software used for labeling images is called LabelImg [78]. All objects in the label category

mentioned in the last section were labeled by drawing a bounding box around each object visi-

ble in each image. The software then generates a .txt file for each image in the YOLO format [1].

This .txt file contains information about what objects are in the image and where the bounding

box is. First is the label number, and then is the center’s x and y coordinates of the bounding

box, plus the width and height of the bounding box. All the coordinates values are normalized

between 0 to 1. So if an image contains a person that is class 0 and a person falling, that is class

1. So the file for one image will look like this, without the top row, as this is just for explanation:

Class x y width height

0 0.692145 0.291546 0.114853 0.151257

1 0.141592 0.401254 0.351217 0.115789

Some examples of pictures labed can be seen in figure 4.6

Figure 4.6: Labeled images

CHAPTER 4. METHOD 38

4.4.2 DeepStream

DeepStream is a closed source software development kit (SDK) from Nvidia. An SDK is a set of

development tools that allows developers to develop applications for a specific hardware plat-

form, computer system, operating system, or similar, like the Jetson Nano. It speeds up devel-

opment but does not need to be open-source, which can significantly reduce the customization

wanted in a system [52].

DeepStream gives the ability to run platform-specified optimized object detection models and

object tracking with minimal effort. DeepStream works by building a pipeline of predefined ob-

jects. The pipeline can be customized as wished but can only contain objects Nvidia has made

available. These objects include, with more, an encoder, decoder, object detection, and object

trackers. The source code for running DeepStream can be found in appendix A.1. A simplified

pipeline of the pipeline used in this project can be seen in figure 4.7. A short explanation of each

object:

• Decoder takes the input and makes it ready for the pipeline. It accepts a saved file or a

Real-Time Streaming Protocol (RTSP) stream from a camera.

• Object detection, YOLO runs here.

• Object tracker, Deep SORT runs here.

• Analytics, make it possible to add line crossing warning, overcrowd alarm with more.

• On screen display makes it possible to draw boxes, rectangles, and text on the video.

• Encoder and sink output the pipeline’s output as an RTSP stream so that it can be viewed

on another computer using VLC or something similar.

Figure 4.7: DeepStream pipeline

CHAPTER 4. METHOD 39

4.4.3 Hardware

The Jetson Nano was used to test the object detection and object tracker early on. However, due

to DeepStream being a closed SDK, the development changed to the other computer that could

use an open-source Deep SORT. This gave full access to Deep SORT and other system parts that

would otherwise be closed by DeepStream. This was done because of the limited time of the

project. It could be done on the Nano as well but would take more time due to the unfamiliarity

of DeepStream.

4.4.4 Convolution neural network

Since the system should be able to run on the Nano, the YOLOv4-tiny model was used instead

of the regular YOLOv4 model. The difference between the model is the size of the models. The

tiny model is a smaller model with fewer layers in several places. An example of this is that the

tiny model has two “YOLO head” layers, whereas the regular YOLO model has three. A smaller

model makes the tiny model run much faster and therefore, able to run better on hardware with

minimal computational power as the Nano has [67].

The architecture in figure 4.8 splits into three main parts. First is the backbone called CSPDark-

net53, then is the neck that uses a Feature Pyramid Network (FPN), and last is the head that uses

YOLO. The backbone’s job is to extract features and give this to the FPN that builds a feature map

from all the features. The last stage does the predictions and outputs the bounding boxes [67].

Figure 4.8: Yolov4-tiny architecture [67]

CHAPTER 4. METHOD 40

Training the YOLO model

For training the YOLO model in darknet [63], this tutorial [76] was used as inspiration. This tu-

torial shows everything needed to start training a model, from how to correctly save and label

the dataset, change and make the correct setup files, and start the training. The dataset was split

into 80% for training and 20% for validation. The online data augmentation used when training

was to change saturation, exposure, and some color variation, but it did not change any angle of

the images. The model was set to run for 56000 iterations with a batch size of 64 and a subdivi-

sion of 16. The batch size decides how many images are used for one iteration. The subdivision

divides the batch images into smaller sizes, here
64

16
= 4, and then feeds four and four images

to processing. When all the 64 images have been through processing, a new iteration will begin

with 64 new images, and so on. During and when the training is finished, a set of checkpoints

are stored. These checkpoints are called .weights files and are used to do the detection later. The

weight file called XXXXXX_best.weights was used when testing the performance of the models.

CHAPTER 4. METHOD 41

4.4.5 Deep SORT

The object tracker uses the Deep SORT algorithm in this thesis because of the research done in

the previous work chapter 2, and because it was possible to implement Deep SORT in Deep-

Stream. In figure 4.9 the architecture of the Deep SORT pipeline can be seen.

Figure 4.9: Deep SORT architecture. Figure based on [37]

The Kalman filter takes in the center of the bounding boxes, the height of the image, the aspect

ratio, and their respective velocities in image coordinates. The job of the Kalman filter is to esti-

mate where a bounding box will be in the next frame from the inputs. Then this information is

sent to the association metrics block to find the same object between frames. Mahalanobis dis-

tance looks at the distance between predicted Kalman states and newly arrived measurements,

and Deep Appearance Descriptor is a neural network trained to recognize features between ob-

jects. The outputs from these two methods then go to the Hungarian algorithm that assigns

a tracker ID based on the bounding box overlap of predicted, and actual bounding boxes [82].

The code used to run Deep SORT in this thesis is built from the theAIGuysCode Github [77] that

makes it possible to run Deep SORT with YOLOv4. This code was altered to the needs of this

thesis, like saving data points and line detection, with more.

CHAPTER 4. METHOD 42

4.4.6 Detection of a person falling

Several methods for the detection of a falling person were implemented. The different methods

can work together and produces a more precise system. The implementation of these methods

will be explained in the following sections.

Object detection

The first method is object detection. This method is the backbone of the other methods and,

therefore, the most important. The method uses the YOLO neural network to detect different

objects. This method can raise the alarm when a label seen as a falling person is detected. The

bounding boxes from YOLO are sent to the Deep SORT algorithm for tracking purposes in each

frame.

Line detection

This method uses a predefined line, such as the red line in figure 4.10, to detect if something

has crossed it. At each frame, the system draws an invisible line, shown in black in figure 4.10,

through the middle of all the bounding boxes in the frame. An alarm can be made if the invisible

line crosses the red line. The implementation does not care what label the object has, but this

can easily be changed to be only for a person, a person falling, or both. The source code can be

found in appendix A.2

Figure 4.10: Line crossing check

CHAPTER 4. METHOD 43

Adaptive line

The adaptive line calculates the mean walking trajectory every 20th second from the Deep SORT

history. It then makes a line that goes through the mean trajectory and moves it 200 pixels down

in the front and 50 pixels in the back due to the camera angle. The adaptive line gives a line that

gets updated every 20 seconds and will fit better and better the movement pattern of people as

time goes on. The source code can be found in appendix A.3

Relative movement detection

The movement detection looks at the history of the movement of an object given by the object

tracker. The movement is relative because it is not a depth camera. The movement detection

takes the last bounding box pixel coordinates and the second last box and calculates the distance

with:

di st ance =
√

(poi nt2x −poi nt1x)2 + (poi nt2y −poi nt1y)2 (4.1)

If this distance is under 1, the object is standing still. If it is between a set threshold, the object

is moving slowly, and last if the distance is above the threshold, the object is moving fast. Due

to this being relative movement, an object that moves one meter and is far away will travel a

smaller distance than an object closer to the camera. The source code can be found in appendix

A.2

CHAPTER 4. METHOD 44

4.4.7 Data analysis

In the following sections, the implementation of the data analysis will be explained. First is the

training of a new model, and then how data points were saved and later plotted.

Data analysis YOLO model

A new model was created to get the best possible data from Solsiden. A total of 61 images were

extracted from the used fall video. Before labeling, the images were flipped horizontally to avoid

the model overfitting too much on the data. An example of a picture before (left) and after (right)

the flip can be seen in figure 4.11. The model learned from the best weights from the previous

model and had the same setup as before. The 61 flipped images were used as training data, and

the 61 original images were used for validation.

Figure 4.11: Flipped images

Saving data points

The Deep SORT [82] code was modified to store data points by making an array that contained

arrays. At each frame, the x and y coordinates of each bounding box’s midpoint in that frame get

added to the correct array. The correct array corresponded to which object tracker ID number

the bounding box had. By doing it this way, the arrays to an already known ID would expand,

and if a new ID were detected, it would add a new array to the main array. After the video had

ended, Pandas [56], a python library, was used to save the array to a .csv (Comma Separated

Values) file.

CHAPTER 4. METHOD 45

Figure 4.12 shows an example layout of a file. The first row shows the number of each data.

Rows one to six are all an array containing all the data points of that ID. The video used here

contained five different tracked objects with various amounts of data points saved for each. The

source code can be found in appendix A.2

Figure 4.12: Example of stored data points

Plot

Pandas were used to load the data from the .csv file. After the initial loading of the data, Pandas

build the arrays back together to make it easier to access and iterate through the data. Then the

data was given to several methods that each made a plot highlighting something interested in

the data, such as plotting all the saved trajectories in the same picture. Matplotlib [43] was used

to plot the different plots, and the source code of all the different plots is in appendix A.4

Chapter 5

Result

First in this chapter is a brief look at the DeepStream result. DeepStream is a short section due

to the development shifted away from DeepStream. Then is a look at the result from training the

model. After this, the result from the various methods for detecting a person falling is presented.

Last is a look at the performance of Deep SORT and plotting relevant data from Deep SORT.

5.1 DeepStream

The following video, https://youtu.be/EfhruB82EKE, shows a running version of the DeepStream

pipeline. The YOLO model running is old, so the performance is not as good as later models. fig-

ure 5.1 shows an example of the DeepStream performance

Figure 5.1: DeepStream performance

46

https://youtu.be/EfhruB82EKE

CHAPTER 5. RESULT 47

An early version of the line intersection check shows in the video, and figure 5.2. Due to having

an old detection model and being very early in development, some bugs were present that were

fixed later in the development when switching to the other hardware. For example, bugs such

as the line check do not always detect a person crossing.

Figure 5.2: DeepStream line intersection

5.2 Object detection training

In figure 5.3 the training progress of the model from zero to 56000 iteration is shown. The train-

ing time was about nine hours, and the final mAP and loss were 39%-40% and about 0.2, respec-

tively.

Figure 5.3: Training

CHAPTER 5. RESULT 48

The mAP mentioned last section can be somewhat misleading. As seen in figure 5.4 not all ob-

jects that was labeled was in the dataset. This is because the complete dataset contains over

70000 RGB images from the COCO dataset [10] that contains all the labeled objects. These

images was removed due to time limitation as this would bring the training time from nine

hours to weeks. So a more correct mAP would be
92.49%+100%+81.96%

3
= 91.48% instead

of
92.49%+100%+0%+0%+0%+81.96%+0%

7
= 39.2% as the figure 5.3 shows.

Figure 5.4: Training score

5.3 Detection of a falling person

The following sections present the results of the different methods for detecting a person falling.

The following 2-minute and 27-second video was used to obtain all the results listed in the fol-

lowing sections https://youtu.be/KQ4kELgAeyw.

https://youtu.be/KQ4kELgAeyw

CHAPTER 5. RESULT 49

5.3.1 Object detection

The backbone of all the detection methods is object detection. Therefore, it must be as best as

possible. In the video, a total of five persons are falling into the water, as shown in figure 5.5.

The system detects a person falling correctly in picture 1 and 3 of the five falls in figure 5.5. In

picture 2 and 4, it detects a person and contains a good history of the person falling. The system

did not detect anything during the last fall.

1 2

3 4

5

Figure 5.5: Detection of a falling person

CHAPTER 5. RESULT 50

5.3.2 Line detection

As long as the object detection makes a bounding box that crosses the line, it will be detected.

It only needs one frame and works 100% of the time. The line check can easily make an alarm,

and in figure 5.6 an example of this can be seen with the warning saying “A person has crossed

the line” in the top right corner when someone has crossed the line.

Figure 5.6: Line crossing check

CHAPTER 5. RESULT 51

5.3.3 Movement detection

In this system, the movement detection was unstable. For example, in figure 5.7, which is back to

back frames, it is possible to see that both the color, therefore the ID, and label of the bounding

box changed. The fall history cannot be captured correctly when this happens, and the move-

ment detection is not working. Furthermore, the object detection sometimes only recognizes a

few frames of a fall, and the movement detection will not get enough data to work. However, as

seen in pictures 1, 2, and 4 in figure 5.5 sometimes it works better, and a person moving fast can

be detected.

Figure 5.7: Movement detection

5.4 Deep SORT result

The Deep SORT algorithm managed to run at ≈ 9 FPS. A max-age of 20 was used to obtain the

following result. The max-age tells Deep SORT how many frames an object can be missing from

the frame before a new ID is made when and if the object returns. The 2-minute and 27-second

video made 219 ID trajectories with different lengths. The shortest trajectory was one point, and

the longest was 2782 points.

CHAPTER 5. RESULT 52

5.5 Trajectory analysis

The results from the new YOLO model will be presented in the following sections. First, how it

did under the training phase, and then the data analysis results.

5.5.1 New YOLO model

The new model was transferred learned from the best weights from the previous model. There-

fore it starts its training at iteration ≈ 33600 and not zero, as shown in figure 5.8. The training

time was circa three hours and gave a model with 25% mAP and a loss close to zero.

Figure 5.8: All trajectories extracted from a video

The same problem as the previous model occurs here also with not all labels being present in

the dataset. So a more correct mAP, as shown in figure 5.9, is
84.34%+91.38%

2
= 87.86% instead

of the 25% mAP in the previous figure 5.8.

Figure 5.9: All trajectories extracted from a video

CHAPTER 5. RESULT 53

5.5.2 Data analysis

This video shows the performance of the new model, https://youtu.be/tMXxFmUmMcw. The

data collected from this video is used to plot the figures in the following sections. The source

code for all plots can be found in appendix A.4.

5.5.3 Plot of trajectories

Figure 5.10 shows all the trajectories extracted from the video. Each trajectory has its color and

corresponds to one tracker ID from Deep SORT. The total number of tracker IDs was 69, with

lengths from three to 4277 data points in each tracker ID.

Figure 5.10: All trajectories extracted from the video

Several things were done to see if it was possible to distinguish a person falling from a person not

falling from the Deep SORT data. First was dividing the data into falling or not falling trajectories

as shown in figure 5.11. Plot (1) shows all trajectories. It is the same trajectories as in figure

5.10, but in a graph instead. Plot (2) shows all trajectories categorized by the software as a non

falling trajectory. The vertical trajectories are the trajectories from when the people climb up

https://youtu.be/tMXxFmUmMcw

CHAPTER 5. RESULT 54

the ladder from the water. Finally, plot (3) shows all trajectories categorized by the software as

falling trajectories. A total of six trajectories were categorized as this. However, it was only five

falls in the recorded video. The extra fall is due to an ID switch in the last fall.

1 2

3

Figure 5.11: (1) All trajectories (2) Non fall trajectories (3) Trajectories from fall

CHAPTER 5. RESULT 55

To further analyze the movement, four trajectories from a fall and four from a non fall were

divided into their X and Y values and plotted as shown in figure 5.12. The red lines are the Y

values that the four non falling trajectories had, and the yellow dashed lines show the X values

of a person that is not falling. The green dashed lines show the X value when falling, and the

blue lines show the Y value.

Figure 5.12: X and Y values compared between non falling and falling trajectories

CHAPTER 5. RESULT 56

One additional relevant piece of data is when a person is climbing up the ladder. Figure 5.13

shows one such trajectory. Taking this trajectory and splitting it into X and Y values gives the

figure 5.14. From this figure, it is possible to see the Y value steadily growing as time goes on and

the person is climbing. However, the X value stays relatively steady.

Figure 5.13: A climbing trajectory Figure 5.14: X and Y values of a person climbing

Appendix B shows more plots highlighting different movement patterns.

Chapter 6

Discussion

The following sections will discuss the different solutions and results obtained in the previous

chapters.

6.1 Hardware and YOLO model

The system’s limitation to run on a Nano made choosing between various detection models

impossible. However, removing this limitation opens several new possibilities to improve the

system’s performance. The computational power of the Nano seems to limit the performance a

lot. Instead of using a small computer close to the camera, the camera can stream the video to

a more powerful computer. In this way, the performance will improve due to a more powerful

computer, and it could be possible to change to a full-size YOLO model that will also perform

better. A problem with this approach is the cost of such a system. The increased price means

that it may not be economically beneficial when looking at it from a business standpoint. An-

other problem with this approach is the loss of frames when streaming the data. Losing frames

when a person is falling means that the system can not detect a person, and in the worst case, a

person falling can go undetected.

Looking at the training performance of the YOLOv4-tiny model on the validation set, the model

scored 92.49% on detecting a person, 100% on detecting a car, and 81.96% on detecting a person

57

CHAPTER 6. DISCUSSION 58

falling. Dropping the car label due to few test samples, only nine images, the mAP of the system

is
92.49%+81.96%

2
= 87.23%. Using this data, the training graph, and the result, nothing points

to overfitting or underfitting of the model. However, the validation data says that it was 1705

true positive (TP) and 139 false positive (FP) detection for a person. For a person falling, it was

81 TP and 19 FP. This data indicates a lack of falling person data in the dataset.

6.2 Dataset

The used dataset contains 3249 thermal images with two working labels, dropping the label

car since there were so few images and the other labels since there were zero objects in the

dataset. Alexey Bochkovskiy, one of the creators of the YOLOv4 models, writes on Github [2] that

to improve the object detection performance, the dataset should contain at least 2000 different

images for each class. When looking at the used dataset, it is possible to see that it has potential

for improvement. Since the falling person class is so important, this class should contain even

more pictures, possibly in the ten thousand range and not in the hundred range as it does now.

Gathering and labeling so many pictures is a very time-consuming job and way out of the scope

of this thesis. However, the used dataset shows good potential and is a good starting point to

continue expanding the dataset.

6.3 Detection of a falling person

In the video used for testing, five people were falling. The system detected a fall in at least one

frame in four of the five falls, and the last fall was probably not detected due to some corrupt

frames. This result shows that the system would have raised the alarm correctly in all the tests

and could have saved this person’s life if the falls were accidental and they needed help.

6.3.1 Object detection

Since object detection is the backbone of all the detection methods, it is the most crucial aspect

to use time and effort to improve. Improving the dataset and using better hardware and longer

time to train on the dataset will improve the object detection. Better object detection will also

CHAPTER 6. DISCUSSION 59

improve all the other methods, and the system will be more robust. Regardless, the object de-

tection shows good potential for the system and works as proof that it is worth investing time

and money in the project to make a system that can save countless lives.

6.3.2 Line detection

The line detection method for detecting a falling person works very well. As long as the object

detection detects an object at the line check, it works 100% of the time, and raising the alarm can

easily be done. The line check now works as long as an object crosses it. This can be changed to

be a specific object. Combining the line check and Deep SORT makes it possible to look at the

direction of an object crossing the line. Directions make it possible to remove false positives,

such as when a person is climbing up the ladder and is not falling. Also, using the adaptive line,

the system can learn and adapt to people’s movement patterns over time. This gives a system

that is automated and is robust to changes in movement patterns and locations.

6.3.3 Movement detection

The movement detection has massive potential if everything works correctly. It can be extended

to look at the expected movement patterns and make an alarm if someone deviates too much

from the expectations. This will also make the line detection obsolete as the movement detec-

tion will work better and without a defined strict line. The movement detection presented in

this thesis looks at the absolute relative movement of objects. However, splitting the relative

movement into X-direction movement and direction Y-movement may be favorable, as a fall

will significantly change Y movement.

The result shows that the movement detection is unstable. The detection and tracker are not

working well enough to gather the necessary history or a bad history of objects. The uncertainty

makes it difficult to raise the alarm correctly. A possible solution is to combine the movement

detection and object detection only to raise the alarm if the object moving fast is also a falling

person or a person moving above a set threshold in only Y-direction. Doing this will also com-

pliment the object detection making it more precise.

CHAPTER 6. DISCUSSION 60

6.4 Deep SORT

The result from the Deep SORT algorithm is a bit difficult to validate due to a challenging video

scenario with much occlusion. For example, one tricky part is to know if the ID switching was

incorrect or due to the object reaching its max-age parameter. However, there are things to try

to import the Deep SORT. The original Deep SORT uses a neural network trained to extract and

recognize people in RGB images. A way to improve the Deep SORT in thesis would be to train

a new network trained on thermal images. This would mean a new dataset for this purpose.

How much this would improve Deep SORT is hard to tell due to the uncertainty in how well the

network can get and recognize features in thermal images.

Deep SORT gives the system much valuable information that can help in making the system

even more automated. For example, the information about regular movement patterns can be

beneficial for making a system that can learn and adapt over time. This will lift the performance

and the overall usability of the system. However, the high computational power needed to run

Deep SORT and if the information gathered is wrong or lacking, it can be beneficial to drop Deep

SORT to redirect the computational power elsewhere. For instance, for the object detection to

gain a higher FPS. It can also be reasonable to look at other trackers that are not so dependent

on features since there are fewer features in thermal images than in RGB images. The FPS reach

in this thesis strongly contradicts the result achieved in Doan [13] and can point to some error

in the implementation of the Deep SORT, or maybe the used Github [77] code has some faulty

code. This discrepancy should be looked into because the system, as of now, can not run as a

real-time system.

CHAPTER 6. DISCUSSION 61

6.5 Trajectory analysis

When looking at the plot of all trajectories, it is easy to see where the majority of movement is.

The majority of the movement goes along the pier, either from the left or right side. This will be

the mean trajectory and can work to raise the alarm if an object is deviating too much.

Comparing a person falling and a non falling person shows a distinct difference in movement.

If a person is walking, the Y value gets a very consistent value as the movement when walking

is almost only in the X-direction. The X value steadily increases or decreases and depends on

whether the object walks towards the camera or away. When a person falls, the X and Y value

increases very fast. The rapid change in the values is similar in all four falling trajectories. This

difference makes it easy to distinguish between a person falling and walking and can easily make

for an alarm that looks for such movement.

A person climbing up a ladder also gives a very distinct trajectory movement. The movement is

steady in X value, as the ladder is vertical. However, the Y value steadily decreases as the per-

son moves upwards on the ladder. The movement is different both from a person falling and a

person walking. Using all this information, it would be possible to make a system that can dis-

tinguish between all three relevant movements in this thesis. The movement can be split into

allowed movement patterns if a person is walking or climbing and into patterns that will raise

the alarm, such as falling or some unknown pattern.

A possible challenge is that the movement patterns may vary if the camera angle and position

change. Due to this, the system needs unique adjustments at each location. Therefore, imple-

menting such a system can be challenging, time-consuming, and expensive.

CHAPTER 6. DISCUSSION 62

6.5.1 New YOLO model

When looking at the training result and other data such as the mAP on
84.34%+91.38%

2
=

87.86% for the new model, it is nothing that directly points to overfitting or underfitting. The

system should work as best as possible in new places without seeing the place before. There-

fore, it seems not fair to use the model to look at object detection performance. However, the

new model can be used to show a proof of concept on the trajectory analysis part. It even gives

a more accurate trajectory as it detects the objects better.

Chapter 7

Conclusion and future work

7.1 Conclusion

This thesis shows that it is possible to develop a system that uses several methods to detect a

person falling into the water. The methods use different approaches and can be used on their

own or complement each other to make a more robust system. The object detection works with

an mAP of 87.23% on the validation set. A system that combines object detection and the line

check will work every time as long as an object is detected at the line crossing. The Deep SORT

algorithm is not running in real-time and has a lot of improvement potential with gathering cor-

rect data. However, improving Deep SORT can give the system much helpful information that

can make a system that can automatically adapt to changes in behavior or locations.

The trajectory analysis shows that it is easy to distinguish the movement pattern of a person

falling, walking, or climbing. A system can interpret the analysis to look at typical movement

patterns and make an alarm when someone deviates too much from a set path. As more trajec-

tories are recorded and analyzed, such a system can also learn over time.

The overall result is that the system can detect a person falling into the water. However, the

system needs further improvement and optimization, such as increasing the dataset size. Nev-

ertheless, investing time and resources into this system could make it so that no accidents will

go unseen and save countless lives.

63

CHAPTER 7. CONCLUSION AND FUTURE WORK 64

7.2 Further work

Some improvements can be implemented to increase the system’s reliability and automation.

The following list shows suggestions for further development and improvement of the system.

• Improve the dataset, focusing on increasing the number of images containing a person

falling

• Improve the speed of the system to make it real-time. Either by fixing or changing the

tracker or dropping the tracker and focusing only on object detection

• Make the system more reliable to detect more people and reduce false positives. It can

be done by using more powerful hardware, training a more complex detection model, or

training a model longer and on a better dataset

Bibliography

[1] AlexeyAB. Yolo format, 07 2018. URL https://github.com/AlexeyAB/Yolo_mark/

issues/60. accessed 11.03.22.

[2] AlexeyAB. How to improve object detection, 01 2022. URL https://github.com/

AlexeyAB/darknet#how-to-improve-object-detection. accessed 24.05.22.

[3] Zebop Avalon. Zebop avalon, 09 2021. URL https://www.zebopavalon.com/. accessed

12.09.21.

[4] Nilesh Barla. The complete guide to object tracking, 05 2022. URL https://www.v7labs.

com/blog/object-tracking-guide. accessed 22.05.22.

[5] Alex Bewley, ZongYuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online

and realtime tracking. CoRR, abs/1602.00763, 2016. URL http://arxiv.org/abs/1602.

00763.

[6] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed

and accuracy of object detection. CoRR, abs/2004.10934, 2020. URL https://arxiv.org/

abs/2004.10934.

[7] Jason Brownlee. Overfitting and underfitting with machine learning algorithms, 08 2019.

URL https://machinelearningmastery.com/overfitting-and-underfitting-

with-machine-learning-algorithms/. accessed 15.09.21.

[8] cdeterman. what is a ’layer’ in a neural network, 02 2016. URL https://stackoverflow.

com/a/35347548. accessed 27.10.21.

[9] Maxence Chaverot, Maxime Carré, Michel Jourlin, Abdelaziz Bensrhair, and Richard Grisel.

65

https://github.com/AlexeyAB/Yolo_mark/issues/60
https://github.com/AlexeyAB/Yolo_mark/issues/60
https://github.com/AlexeyAB/darknet#how-to-improve-object-detection
https://github.com/AlexeyAB/darknet#how-to-improve-object-detection
https://www.zebopavalon.com/
https://www.v7labs.com/blog/object-tracking-guide
https://www.v7labs.com/blog/object-tracking-guide
http://arxiv.org/abs/1602.00763
http://arxiv.org/abs/1602.00763
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://stackoverflow.com/a/35347548
https://stackoverflow.com/a/35347548

BIBLIOGRAPHY 66

Object detection on thermal images: Performance of yolov4 trained on small datasets,

10 2021. URL https://www.esann.org/sites/default/files/proceedings/2021/

ES2021-130.pdf. accessed 15.01.22.

[10] COCO. Coco dataset, 09 2021. URL https://cocodataset.org/#home. accessed 15.09.21.

[11] Anushka Dhiman. Object tracking using deepsort in tensorflow 2, 10 2020.

URL https://medium.com/analytics-vidhya/object-tracking-using-deepsort-

in-tensorflow-2-ec013a2eeb4f. accessed 06.03.22.

[12] diagrams. draw.io, 09 2021. URL https://www.diagrams.net/. accessed 12.09.21.

[13] Thanh-Nghi Doan and Minh-Tuyen Truong. Real-time vehicle detection and counting

based on yolo and deepsort, 2020. URL https://ieeexplore.ieee.org/stamp/stamp.

jsp?tp=&arnumber=9287483.

[14] IBM Cloud Education. Machine learning, 07 2020. URL https://www.ibm.com/cloud/

learn/machine-learning#toc-machine-le-K7VszOk6. accessed 08.10.21.

[15] Maël Fabien. Local features, detection, description and matching, 03 2019. URL https:

//maelfabien.github.io/computervision/cv_4/#. accessed 30.09.21.

[16] FLIR. Boson 640, 11 2021. URL https://www.flir.com/products/boson/?model=

20640A018. accessed 03.11.21.

[17] FLIR. Flir a400/a700, 10 2021. URL https://www.flir.com/products/a400-a700-

science-kits/?model=85902-0202. accessed 06.10.21.

[18] FLIR. Flir e96, 01 2022. URL https://www.flir.eu/products/e96/8. accessed 28.01.22.

[19] FLIR. Flir one gen 3, 05 2022. URL https://www.flir.com/products/flir-one-gen-

3/?vertical=condition20monitoring&segment=solutions. accessed 16.05.21.

[20] FLIR. Build safer, smarter cars with thermal cameras, 05 2022. URL https://www.flir.

com/oem/adas/. accessed 11.05.22.

[21] FLIR. Free teledyne flir thermal dataset for algorithm training, 01 2022. URL https://

www.flir.com/oem/adas/adas-dataset-form/. accessed 15.01.22.

https://www.esann.org/sites/default/files/proceedings/2021/ES2021-130.pdf
https://www.esann.org/sites/default/files/proceedings/2021/ES2021-130.pdf
https://cocodataset.org/#home
https://medium.com/analytics-vidhya/object-tracking-using-deepsort-in-tensorflow-2-ec013a2eeb4f
https://medium.com/analytics-vidhya/object-tracking-using-deepsort-in-tensorflow-2-ec013a2eeb4f
https://www.diagrams.net/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9287483
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9287483
https://www.ibm.com/cloud/learn/machine-learning#toc-machine-le-K7VszOk6
https://www.ibm.com/cloud/learn/machine-learning#toc-machine-le-K7VszOk6
https://maelfabien.github.io/computervision/cv_4/#
https://maelfabien.github.io/computervision/cv_4/#
https://www.flir.com/products/boson/?model=20640A018
https://www.flir.com/products/boson/?model=20640A018
https://www.flir.com/products/a400-a700-science-kits/?model=85902-0202
https://www.flir.com/products/a400-a700-science-kits/?model=85902-0202
https://www.flir.eu/products/e96/8
https://www.flir.com/products/flir-one-gen-3/?vertical=condition20monitoring&segment=solutions
https://www.flir.com/products/flir-one-gen-3/?vertical=condition20monitoring&segment=solutions
https://www.flir.com/oem/adas/
https://www.flir.com/oem/adas/
https://www.flir.com/oem/adas/adas-dataset-form/
https://www.flir.com/oem/adas/adas-dataset-form/

BIBLIOGRAPHY 67

[22] FLIR. Flir bridge, 01 2022. URL https://www.flir.eu/products/bridge/?model=

T131369. accessed 28.01.22.

[23] William Franklin. Kalman filter explained simply, 12 2020. URL https://

thekalmanfilter.com/kalman-filter-explained-simply/. accessed 04.06.22.

[24] Arun Gandhi. Data augmentation how to use deep learning when you have limited data

part 2, 05 2021. URL https://nanonets.com/blog/data-augmentation-how-to-use-

deep-learning-when-you-have-limited-data-part-2/. accessed 30.09.21.

[25] Luiz Gatelli, Gabriel Gosmann, Felipe Fitarelli, Guilherme Huth, Anderson A. Schwert-

ner, Ricardo de Azambuja, and Valner J. Brusamarello. Counting, classifying and track-

ing vehicles routes at road intersections with yolov4 and deepsort, 2021. URL https:

//ieeexplore.ieee.org/document/9557244.

[26] git. git, 09 2021. URL https://git-scm.com/. accessed 12.09.21.

[27] Ekta Goel. Software framework vs library, 09 2020. URL https://www.geeksforgeeks.

org/software-framework-vs-library/. accessed 09.09.21.

[28] Google. Descending into ml: Training and loss, 02 2020. URL https://developers.

google.com/machine-learning/crash-course/descending-into-ml/training-

and-loss. accessed 25.09.21.

[29] Tom Harris. How cameras work, 09 2021. URL https://electronics.howstuffworks.

com/camera.htm. accessed 02.09.21.

[30] HMKCODE. Backpropagation step by step, 11 2019. URL https://hmkcode.com/ai/

backpropagation-step-by-step/. accessed 09.10.21.

[31] Tan Jie Hng, Eric Lim Weilie, Chong Shao Wei, and Sutthiphong Srigrarom. Relative ve-

locity model to locate traffic accident with aerial cameras and yolov4, 2021. URL https:

//ieeexplore.ieee.org/document/9611963.

[32] Jonathan Hui. map (mean average precision) for object detection, 03 2018. URL

https://jonathan-hui.medium.com/map-mean-average-precision-for-object-

detection-45c121a31173. accessed 25.09.21.

https://www.flir.eu/products/bridge/?model=T131369
https://www.flir.eu/products/bridge/?model=T131369
https://thekalmanfilter.com/kalman-filter-explained-simply/
https://thekalmanfilter.com/kalman-filter-explained-simply/
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/
https://ieeexplore.ieee.org/document/9557244
https://ieeexplore.ieee.org/document/9557244
https://git-scm.com/
https://www.geeksforgeeks.org/software-framework-vs-library/
https://www.geeksforgeeks.org/software-framework-vs-library/
https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss
https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss
https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss
https://electronics.howstuffworks.com/camera.htm
https://electronics.howstuffworks.com/camera.htm
https://hmkcode.com/ai/backpropagation-step-by-step/
https://hmkcode.com/ai/backpropagation-step-by-step/
https://ieeexplore.ieee.org/document/9611963
https://ieeexplore.ieee.org/document/9611963
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

BIBLIOGRAPHY 68

[33] IBM. What is computer vision?, 09 2021. URL https://www.ibm.com/topics/computer-

vision. accessed 02.09.21.

[34] STEMMER IMAGING. Region of interest (roi), 09 2021. URL https://www.stemmer-

imaging.com/en-pl/knowledge-base/region-of-interest-roi/. accessed 08.09.21.

[35] Intel. Intel® core™ i7-7700k processor, 01 2022. URL https://www.intel.com/

content/www/us/en/products/sku/97129/intel-core-i77700k-processor-8m-

cache-up-to-4-50-ghz/specifications.html?wapkw=7700k. accessed 21.01.2022.

[36] JavaTpoint. Programming language, 09 2021. URL https://www.javatpoint.com/

programming-language. accessed 02.09.21.

[37] Ritesh Kanjee. Deepsort — deep learning applied to object tracking, 08 2020. URL

https://medium.com/augmented-startups/deepsort-deep-learning-applied-

to-object-tracking-924f59f99104. accessed 14.03.22.

[38] Ed Kochanek. Are we in the golden age of thermal imaging?, 05 2022. URL https:

//irinfo.org/10-01-2015-kochanek/. accessed 16.05.21.

[39] Simeon Kostadinov. What is deep transfer learning and why is it becoming so popular?, 11

2019. URL https://towardsdatascience.com/what-is-deep-transfer-learning-

and-why-is-it-becoming-so-popular-91acdcc2717a. accessed 15.09.21.

[40] Nishant Kumar. Digital image processing basics, 07 2021. URL https://www.

geeksforgeeks.org/digital-image-processing-basics/. accessed 29.09.21.

[41] Lynred. Infrared technology and thermal cameras: How they work, 09 2021.

URL https://www.lynred.com/blog/infrared-technology-and-thermal-cameras-

how-they-work. accessed 08.09.21.

[42] MathWorks. Edge detection methods for finding object boundaries in images, 09 2021. URL

https://www.mathworks.com/discovery/edge-detection.html. accessed 30.09.21.

[43] Matplotlib. Matplotlib: Visualization with python, 03 2022. URL https://matplotlib.

org/. accessed 04.03.22.

https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.stemmer-imaging.com/en-pl/knowledge-base/region-of-interest-roi/
https://www.stemmer-imaging.com/en-pl/knowledge-base/region-of-interest-roi/
https://www.intel.com/content/www/us/en/products/sku/97129/intel-core-i77700k-processor-8m-cache-up-to-4-50-ghz/specifications.html?wapkw=7700k
https://www.intel.com/content/www/us/en/products/sku/97129/intel-core-i77700k-processor-8m-cache-up-to-4-50-ghz/specifications.html?wapkw=7700k
https://www.intel.com/content/www/us/en/products/sku/97129/intel-core-i77700k-processor-8m-cache-up-to-4-50-ghz/specifications.html?wapkw=7700k
https://www.javatpoint.com/programming-language
https://www.javatpoint.com/programming-language
https://medium.com/augmented-startups/deepsort-deep-learning-applied-to-object-tracking-924f59f99104
https://medium.com/augmented-startups/deepsort-deep-learning-applied-to-object-tracking-924f59f99104
https://irinfo.org/10-01-2015-kochanek/
https://irinfo.org/10-01-2015-kochanek/
https://towardsdatascience.com/what-is-deep-transfer-learning-and-why-is-it-becoming-so-popular-91acdcc2717a
https://towardsdatascience.com/what-is-deep-transfer-learning-and-why-is-it-becoming-so-popular-91acdcc2717a
https://www.geeksforgeeks.org/digital-image-processing-basics/
https://www.geeksforgeeks.org/digital-image-processing-basics/
https://www.lynred.com/blog/infrared-technology-and-thermal-cameras-how-they-work
https://www.lynred.com/blog/infrared-technology-and-thermal-cameras-how-they-work
https://www.mathworks.com/discovery/edge-detection.html
https://matplotlib.org/
https://matplotlib.org/

BIBLIOGRAPHY 69

[44] Maximinusjoshus. Understanding the concept of channels in an image, 04 2021. URL

https://medium.com/featurepreneur/understanding-the-concept-of-channels-

in-an-image-6d59d4dafaa9. accessed 29.09.21.

[45] Nick McCullum. Deep learning neural networks explained in plain english, 06 2020.

URL https://www.freecodecamp.org/news/deep-learning-neural-networks-

explained-in-plain-english/. accessed 27.10.21.

[46] Vidushi Meel. What is object tracking? – an introduction, 03 2022. URL https://viso.

ai/deep-learning/object-tracking/. accessed 22.03.22.

[47] Microsoft. Visual studio code, 02 2022. URL https://code.visualstudio.com/. ac-

cessed 02.02.22.

[48] Vanessa Ndonhong, Anqi Bao, and Olivier Germain. Wellbore schematics to structured

data using artificial intelligence tools, 04 2019. URL https://www.researchgate.net/

publication/308320592_Fast_Single_Shot_Detection_and_Pose_Estimation. ac-

cessed 12.10.21.

[49] NRK. Henter opp døde mennesker fra nidelva hvert eneste år, 11 2019. URL

https://www.nrk.no/trondelag/henter-opp-dode-mennesker-fra-nidelva-

hvert-eneste-ar-1.13911303. accessed 02.09.21.

[50] NumPy. What is numpy?, 06 2021. URL https://numpy.org/doc/stable/user/

whatisnumpy.html. accessed 12.09.21.

[51] Nvidia. 1080ti, 09 2021. URL https://www.nvidia.com/en-gb/geforce/graphics-

cards/geforce-gtx-1080-ti/specifications/. accessed 11.09.21.

[52] Nvidia. Deepstream sdk, 01 2022. URL https://developer.nvidia.com/deepstream-

sdk. accessed 28.01.22.

[53] Nvidia. Jetson nano developer kit, 01 2022. URL https://developer.nvidia.com/

embedded/jetson-nano-developer-kit. accessed 21.01.2022.

[54] opencv. opencv, 09 2021. URL https://opencv.org/. accessed 12.09.21.

https://medium.com/featurepreneur/understanding-the-concept-of-channels-in-an-image-6d59d4dafaa9
https://medium.com/featurepreneur/understanding-the-concept-of-channels-in-an-image-6d59d4dafaa9
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/
https://viso.ai/deep-learning/object-tracking/
https://viso.ai/deep-learning/object-tracking/
https://code.visualstudio.com/
https://www.researchgate.net/publication/308320592_Fast_Single_Shot_Detection_and_Pose_Estimation
https://www.researchgate.net/publication/308320592_Fast_Single_Shot_Detection_and_Pose_Estimation
https://www.nrk.no/trondelag/henter-opp-dode-mennesker-fra-nidelva-hvert-eneste-ar-1.13911303
https://www.nrk.no/trondelag/henter-opp-dode-mennesker-fra-nidelva-hvert-eneste-ar-1.13911303
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1080-ti/specifications/
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1080-ti/specifications/
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://opencv.org/

BIBLIOGRAPHY 70

[55] Overleaf. About us, 09 2021. URL https://www.overleaf.com/about. accessed 12.09.21.

[56] Pandas. Pandas, 03 2022. URL https://pandas.pydata.org/. accessed 04.03.22.

[57] Addie Ira Borja Parico and Tofael Ahamed. Real time pear fruit detection and counting

using yolov4 models and deep sort. Sensors, 21(14), 2021. ISSN 1424-8220. doi: 10.3390/

s21144803. URL https://www.mdpi.com/1424-8220/21/14/4803.

[58] Kristian Fjelde Pedersen, Anders Vatland, Christian Peter Bech Aschehoug, and Rune

Nordmo. Ttk4115: Linear system theory, 07 2021. URL https://www.wikipendium.no/

TTK4115_Linear_System_Theory#kalman-filtering. accessed 04.06.22.

[59] Laura Pennington. Using the hungarian algorithm to solve assignment problems, 11

2021. URL https://study.com/academy/lesson/using-the-hungarian-algorithm-

to-solve-assignment-problems.html. accessed 04.06.22.

[60] Selva Prabhakaran. Mahalanobis distance – understanding the math with exam-

ples (python), 04 2019. URL https://www.machinelearningplus.com/statistics/

mahalanobis-distance/. accessed 04.06.22.

[61] Narinder Singh Punn, Sanjay Kumar Sonbhadra, and Sonali Agarwal. Monitoring COVID-

19 social distancing with person detection and tracking via fine-tuned YOLO v3 and deep-

sort techniques. CoRR, abs/2005.01385, 2020. URL https://arxiv.org/abs/2005.

01385.

[62] Python. Python, 09 2021. URL https://www.python.org/about/. accessed 02.09.21.

[63] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.com/

darknet/, 2013–2016. accessed 12.09.21.

[64] Redningsselskapets. Redningsselskapets drukningsstatistikk, 05 2022. URL https://rs.

no/drukning/. accessed 19.05.21.

[65] riptutorial. Activation functions, 10 2021. URL https://riptutorial.com/machine-

learning/example/31624/activation-functions. accessed 09.10.21.

[66] Sumit Saha. A comprehensive guide to convolutional neural networks, 12 2018. URL

https://www.overleaf.com/about
https://pandas.pydata.org/
https://www.mdpi.com/1424-8220/21/14/4803
https://www.wikipendium.no/TTK4115_Linear_System_Theory#kalman-filtering
https://www.wikipendium.no/TTK4115_Linear_System_Theory#kalman-filtering
https://study.com/academy/lesson/using-the-hungarian-algorithm-to-solve-assignment-problems.html
https://study.com/academy/lesson/using-the-hungarian-algorithm-to-solve-assignment-problems.html
https://www.machinelearningplus.com/statistics/mahalanobis-distance/
https://www.machinelearningplus.com/statistics/mahalanobis-distance/
https://arxiv.org/abs/2005.01385
https://arxiv.org/abs/2005.01385
https://www.python.org/about/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://rs.no/drukning/
https://rs.no/drukning/
https://riptutorial.com/machine-learning/example/31624/activation-functions
https://riptutorial.com/machine-learning/example/31624/activation-functions

BIBLIOGRAPHY 71

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way-3bd2b1164a53. accessed 09.10.21.

[67] Sergio Saponara, Abdussalam Elhanashi, and Zheng Qinghe. Developing a real-time social

distancing detection system based on yolov4-tiny and bird-eye view for covid-19. Journal

of Real-Time Image Processing, pages 1–13, 02 2022. doi: 10.1007/s11554-022-01203-5.

accessed 12.03.22.

[68] ScienceDirect. Feature extraction, 09 2021. URL https://www.sciencedirect.com/

topics/engineering/feature-extraction. accessed 30.09.21.

[69] Seaborn. seaborn: statistical data visualization, 03 2022. URL https://seaborn.pydata.

org/. accessed 24.03.22.

[70] Wu. Shaoji. Approach to auto-recognition of human trajectory in squares using machine

learning-based methods - an application of the yolo-v3 and the deepsort algorithm, 2021.

URL http://papers.cumincad.org/data/works/att/ecaade2021_021.pdf. accessed

23.03.22.

[71] Aditya Singh. Top 5 object tracking methods, 11 2021. URL https://medium.com/

augmented-startups/top-5-object-tracking-methods-92f1643f8435. accessed

22.03.22.

[72] Petru Soviany and Radu Tudor Ionescu. Optimizing the trade-off between single-stage and

two-stage object detectors using image difficulty prediction, 08 2018. URL http://arxiv.

org/abs/1803.08707. accessed 12.10.21.

[73] Petru Soviany and Radu Tudor Ionescu. Optimizing the trade-off between single-stage

and two-stage object detectors using image difficulty prediction, 03 2022. URL https:

//arxiv.org/abs/1803.08707. accessed 04.03.22.

[74] Suman. Artificial intelligence, 10 2019. URL https://ai.stackexchange.com/

questions/15859/is-machine-learning-required-for-deep-learning. accessed

08.10.21.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.sciencedirect.com/topics/engineering/feature-extraction
https://www.sciencedirect.com/topics/engineering/feature-extraction
https://seaborn.pydata.org/
https://seaborn.pydata.org/
http://papers.cumincad.org/data/works/att/ecaade2021_021.pdf
https://medium.com/augmented-startups/top-5-object-tracking-methods-92f1643f8435
https://medium.com/augmented-startups/top-5-object-tracking-methods-92f1643f8435
http://arxiv.org/abs/1803.08707
http://arxiv.org/abs/1803.08707
https://arxiv.org/abs/1803.08707
https://arxiv.org/abs/1803.08707
https://ai.stackexchange.com/questions/15859/is-machine-learning-required-for-deep-learning
https://ai.stackexchange.com/questions/15859/is-machine-learning-required-for-deep-learning

BIBLIOGRAPHY 72

[75] Kristin Sørdal. Derfor drukner flest eldre, 07 2021. URL https://www.vi.no/helse/

derfor-drukner-flest-eldre/74019234. accessed 19.05.21.

[76] techzizou. Train a custom yolov4 object detector on windows, 08 2021. URL https://

techzizou.com/train-a-custom-yolov4-object-detector-on-windows/. accessed

06.02.21.

[77] theAIGuysCode. yolov4-deepsort, 08 2021. URL https://github.com/theAIGuysCode/

yolov4-deepsort. accessed 31.03.22.

[78] Tzutalin. Labelimg, 07 2021. URL https://github.com/tzutalin/labelImg. accessed

12.09.21.

[79] LYNRED USA. Visible vs. thermal detection: Advantages and disadvantages, 02

2022. URL www.lynred-usa.com/homepage/about-us/blog/visible-vs-thermal-

detection-advantages-and-disadvantages.html. accessed 15.02.22.

[80] videolan. Vlc features, 09 2021. URL https://www.videolan.org/vlc/features.html.

accessed 12.09.21.

[81] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with

a deep association metric. CoRR, abs/1703.07402, 2017. URL http://arxiv.org/abs/

1703.07402.

[82] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with

a deep association metric, 03 2017. URL https://github.com/nwojke/deep_sort. ac-

cessed 04.03.22.

https://www.vi.no/helse/derfor-drukner-flest-eldre/74019234
https://www.vi.no/helse/derfor-drukner-flest-eldre/74019234
https://techzizou.com/train-a-custom-yolov4-object-detector-on-windows/
https://techzizou.com/train-a-custom-yolov4-object-detector-on-windows/
https://github.com/theAIGuysCode/yolov4-deepsort
https://github.com/theAIGuysCode/yolov4-deepsort
https://github.com/tzutalin/labelImg
www.lynred-usa.com/homepage/about-us/blog/visible-vs-thermal-detection-advantages-and-disadvantages.html
www.lynred-usa.com/homepage/about-us/blog/visible-vs-thermal-detection-advantages-and-disadvantages.html
https://www.videolan.org/vlc/features.html
http://arxiv.org/abs/1703.07402
http://arxiv.org/abs/1703.07402
https://github.com/nwojke/deep_sort

Appendices

73

Appendix A

Source code

https://github.com/dr0nn1/masterThesis

A.1 DeepStream

https://github.com/dr0nn1/masterThesis/tree/main/DeepStream

A.2 deepSort

https://github.com/dr0nn1/masterThesis/blob/main/deepSORT/object_tracker.py

A.3 Adaptive line and line intersection

https://github.com/dr0nn1/masterThesis/tree/main/deepSORT/tools

A.4 Data analyse

https://github.com/dr0nn1/masterThesis/blob/main/deepSORT/csvReader.py

74

https://github.com/dr0nn1/masterThesis
https://github.com/dr0nn1/masterThesis/tree/main/DeepStream
https://github.com/dr0nn1/masterThesis/blob/main/deepSORT/object_tracker.py
https://github.com/dr0nn1/masterThesis/tree/main/deepSORT/tools
https://github.com/dr0nn1/masterThesis/blob/main/deepSORT/csvReader.py

Appendix B

Data analyse pictures

All the plots that were made but not used in the report, due to not being relevant or good enough.

All the source code for the plots is in appendix A.4

Figure B.1 shows the mean trajectory calculated from the data.

Figure B.1: Mean trajectory

75

APPENDIX B. DATA ANALYSE PICTURES 76

Figure B.2 shows the heat map of the the movement. The brighter the more (X,Y) coordinates

are in that spot.

Figure B.2: Heat map

Figure B.3 shows number of times a X and Y coordinate is present in the data. Left side is X and

right side is Y.

Figure B.3: Number of times a coordinate is present

APPENDIX B. DATA ANALYSE PICTURES 77

Figure B.4 shows a heat map of distance between two points and their location in the image.

The brighter the bigger distance.

Figure B.4: Distance between points heat map

Figure B.5 shows number of times a distance between two points occur.

Figure B.5: Number of times a distance occur

Appendix C

Preproject

78

Detection of a person in water from thermal images

Petter Drønnen

TTK4551

Faculty of Information Technology and Electronics

Norwegian University of Science and Technology

Norway

December 20, 2021

Supervisor 1: Annette Stahl Pages / Appendix

53 / 0

i

Preface

The intriguing part of this project was to build a system from the ground up that both could be

used in a commercial product and also help prevent drownings. If the system is used correct in

the future it can help save lives, and minimize unnecessary accidents of people drowning.

This report was written on Gløshaugen campus - NTNU in Trondheim for NTNU in the sub-

ject TTK4551 7.5 SP. The project started late august 2021 and finished in late December 2021.

The project is an introduction to the master thesis that will be written next semester. The report

is written by a student taking the two year master course Cybernetics and Robotics.

Trondheim, December 20, 2021

Petter Drønnen

ii

Acknowledgement

I would like to thank all the contributors to this project, and especially I would like to thank:

• My supervisor Annette Stahl at NTNU for guidance throughout the project

• All the great people working at Zebop Avalon for giving me the opportunity, guidance and

hardware.

• Family and friends who have supported me throughout this period.

• Fellow students for good discussions about the project.

People working with and at Zebop Avalon posing for the thermal camera on Solsiden

iii

Summary

In this thesis a new dataset for thermal images is presented containing person, person falling in

the water and person in the water. The dataset is extracted from 13 videos and contains a total

of 2265 images. From this several models were trained, and compared to both each other and

their untrained version. The frameworks used in this paper were Tensorflow and Darknet. The

models compared were Faster-RCNN and Single Shot Detector from Tensorflow, and YOLO and

YOLO tiny from Darknet.

The results proved that a model trained on thermal images performed better than a model only

trained on RGB images. However the training also introduced more errors. This can be a indi-

cation of overfitting. The overall best performing model was the YOLO model. The YOLO tiny

model achieved 100% FPS boost compared to the YOLO model without to much compromising

the performance, and can therefore be a good choice if there are hardware limitations.

With this mention there are still many improvements to be made such as improving the dataset.

Contents

Preface . i

Acknowledgement . ii

Summary . iii

Acronyms . vii

1 Introductions 1

1.1 Problem description . 1

1.2 Motivation . 2

1.3 Background . 3

1.4 Aim and objectives . 3

1.5 Approach and contributions . 4

1.6 Structure of the Report . 4

2 Previous work 5

2.1 Object detection . 5

2.2 Thermal camera object detection . 7

3 Theory 9

3.1 Computer vision . 9

3.1.1 Camera . 9

3.1.2 Thermal camera . 9

3.1.3 Digital image . 10

3.1.4 Image processing . 11

3.1.5 Feature extraction . 12

3.1.6 Region of interest . 13

iv

CONTENTS v

3.2 Machine learning . 13

3.2.1 Training . 14

3.2.2 Neural networks . 14

3.2.3 Input layer . 15

3.2.4 Hidden layer . 15

3.2.5 Output layer . 15

3.2.6 Neurons . 15

3.2.7 Backpropagation . 16

3.2.8 Convolutional neural network . 17

3.2.9 Convolution layer . 17

3.2.10 Pooling Layer . 17

3.2.11 Fully Connected Layer . 18

3.2.12 Single- and two-stage detectors . 18

3.2.13 Data augmentation . 19

3.2.14 Transfer learning . 20

3.2.15 Evaluation . 20

3.2.16 Precision . 21

3.2.17 Recall . 21

3.2.18 Intersection over union . 21

3.2.19 Mean average precision . 22

3.2.20 Total loss . 22

3.3 Programming language . 23

3.3.1 Python . 23

3.3.2 Framework . 23

4 Method 24

4.1 Project approach . 24

4.2 Materials . 25

4.2.1 Camera . 25

4.2.2 Hardware . 25

4.3 Software and libraries . 26

CONTENTS vi

4.3.1 Software . 26

4.3.2 Python libraries . 26

4.4 Testing . 27

4.4.1 Convolution neural network testing . 27

4.4.2 Framework testing . 27

4.5 Implementation . 28

4.5.1 Data . 28

4.5.2 Extracting frames . 28

4.5.3 Dataset . 28

4.5.4 Labeling . 29

4.5.5 Convolution neural network . 29

4.5.6 Pipeline test . 31

4.5.7 Stock versus trained models . 31

4.5.8 Test on new data . 32

5 Result 33

5.1 Pipeline test . 33

5.2 Stock versus trained models . 36

5.3 Test on new data . 39

6 Discussion 42

6.1 Dataset . 42

6.2 Test results . 42

6.2.1 Pipeline test . 42

6.2.2 Stock versus trained models . 43

6.2.3 Test on new data . 43

6.3 Model . 44

6.4 Framework . 44

7 Conclusions 45

7.1 Further work . 46

Bibliography 47

CONTENTS vii

Abbreviations

FOV Field of view

ML Machine learning

AI Artificial intelligence

CV Computer vision

IR Infrared

CNN Convolutional Neural Network

IoU Intersection over union

TF TensoFlow machine learning software from google

YOLO Your Only Look Once, state-of-the-art real-time object detection.

SSD Single Shot Detector

GPU Graphics processing unit

CPU Central Processing Unit

FPS Frames per second

mAP mean average precision

List of Figures

1.1 A person falling into the water . 1

1.2 Overview . 2

1.3 Camera placement . 3

2.1 Solsiden with a normal camera . 7

2.2 Solsiden in thermal . 7

3.1 Thermal with colors . 10

3.2 Thermal in grayscale . 10

3.3 Edge detection example [32] . 12

3.4 Corner detection example [12] . 12

3.5 Difference between AI, ML and DL [54] . 13

3.6 Neural network . 14

3.7 Activation functions [47] . 16

3.8 CNN for classifying handwritten digits [49] . 17

3.9 Max and average pooling [49] . 18

3.10 Difference in single- (a) and two-stage (b) detector [37] 19

3.11 Explanation of IoU [21] . 21

3.12 Example of precision-recall curve [21] . 22

4.1 Thermal camera [13] . 25

4.2 Labeling . 29

4.3 Faster-RCNN [7] . 29

4.4 SSD [30] . 30

viii

LIST OF FIGURES ix

4.5 YOLO [26] . 30

5.1 Faster-RCNN training . 34

5.2 SSD training . 34

5.3 YOLO training . 35

5.4 Faster-RCNN training . 36

5.5 SSD training . 37

5.6 YOLO training . 37

5.7 YOLO tiny training . 39

List of Tables

3.1 Pixel placement in picture . 10

3.2 Grayscale array . 11

3.3 RGB array . 11

5.1 Training score test 1 . 33

5.2 Training score test 2 . 36

5.3 Test examples. The red boxes are the ground truth 38

5.4 Evaluation of images from recording . 40

5.5 Evaluation of images from Solsiden . 40

5.6 Test examples . 41

x

Chapter 1

Introduction

1.1 Problem description

This study aims to use thermal cameras with different machine learning methods to detect a

person falling in to the water. This will later be used to automatically tell the rescue service

about an incident and hopefully reduce the number of drowning accidents. The figure 1.1 shows

a person falling in the water that should be detected by the system.

Figure 1.1: A person falling into the water

1

CHAPTER 1. INTRODUCTIONS 2

A thermal camera was chosen due to its performance compared to normal cameras when it

comes to environments with low visibility or poor lightning. This can be particular important

when it comes to potentially hazardous remote areas such as a harbour at night.

1.2 Motivation

Each year in Norway about 100 people drowns under different circumstances [59], and each year

one or more of these people drowns in Trondheim [38]. Through Trondheim, as seen in figure

1.2, a river called Nidelva runs. The arrows shows the direction the river flows. This river have

strong under water currents, and it’s here most of these accidents happens in Trondheim. So

why not try to use technology to save some of these people?

Figure 1.2: Overview

CHAPTER 1. INTRODUCTIONS 3

1.3 Background

In this video [4] the fire and rescue service in Trondheim shows how difficult it’s to swim in

Nidelva due to the currents. The Norwegian Society for Sea Rescue [46] also want the govern-

ment to make the same zero death vision for drowning accidents as it has for deaths in the traffic.

The figure 1.3 shows the camera placement and field of view (FOV). The thermal camera is

placed on “Blomsterbrua”, a bridge in Trondheim, and is looking towards Solsiden.

Figure 1.3: Camera placement

1.4 Aim and objectives

The aim for this thesis is to lay a good foundation for the following master thesis. Therefore

several milestones should be achieved. This will be used as arguments for the choices taken in

the master thesis. The following milestones should be achieved:

• Create a new original dataset for thermal images

• Develop a system to detected the following classes: "people", "people falling" and "people

in the water"

• Testing of different machine learning models and framework for detecting these behaviors

CHAPTER 1. INTRODUCTIONS 4

1.5 Approach and contributions

In this project the approach will be as the following. First the data will be collected. This collect-

ing of data will happen throughout the project when it seems necessary. This can be different

locations, different scenarios etc. After the first data is collected it needs to be preprocessed and

labeled. When this is ready several models will be tested against each other to see which model

fits best the requirements. This will lay the ground work for which models that should proceed

to the master thesis.

The main contributions of this paper are a) comparing several different convolutional neural

networks pretrained on RGB images and models trained on thermal images. Also the different

frameworks are compared. b) a new original dataset for thermal images with persons, persons

falling and persons in the water labeled.

1.6 Structure of the Report

The rest of the report is structured as follows:

Chapter 2 - Previous work: Gives an introduction to work done by others in this field

Chapter 3 - Theory: Gives an introduction to the theoretical background needed

Chapter 4 - Method: Methods used to perform the different test are presented

Chapter 5 - Result: The different results are presented

Chapter 6 - Discussion: A discussion on the different results are presented

Chapter 7 - Conclusions: The report is concluded

Chapter 2

Previous work

2.1 Object detection

The state of object detection has improved a lot in the last years with the help of methods such

as convolutional neural network. Much time and research are still invested in object detection,

and today’s performance with model architecture such as Faster R-CNN, YOLO, EfficientDet and

SSD are historical good when both comparing them on speed and accuracy. Object detection on

thermal images is a sub branch of the normal way, and has not so much time and research put

into it. However in the recent years several promising area of application has been researched

such as surveillance and the use in autonomous cars.

When comparing models used in object detection the two most common methods are speed

on the detection and mean average precision (mAP) often on the COCO dataset. mAP is just a

measure for how good a model is, the higher the better from 0-100, and the COCO dataset [9] is

a dataset with over 200 000 labeled images with 80 object categories.

5

CHAPTER 2. PREVIOUS WORK 6

In Zhang [63] the authors used Multi-block Local Binary Pattern to achieve real-time and robust

objects classification in diverse camera viewing angles. This report was written before deep

learning become widespread. Local Binary Pattern is a simple method that goes through each

pixel in an image and looks at its neighbors with a threshold and consider the result as a binary

number. The result in the paper was real-time performance with an accuracy of around 80% on

a test dataset.

In Sreenu [53] the authors present a review of how others have used video surveillance to do

for instance abnormal behavior detection or crowd analysis. The report has its main emphasis

on deep learning methods, and convolutional neural networks was the most used method such

as the YOLO algorithm.

In Bochkovskiy [3] the authors took the YOLOv3 model and improved it in to the YOLOv4 model.

The result was 65.7% mAP with a intersection over union (IoU) at 50% at a speed of ∼65 FPS with

a Tesla V100 GPU on the COCO dataset. This result is a 10% mAP improvement over the YOLOv3

with 12% higher FPS.

In Tan [55] the authors developed several models called EfficientDet. The models ranges from

EfficientDet-D0 to EfficientDet-D7 where D0 is smallest and D7 is the biggest. The D7 achieved

state of the art performance with a mAP of 52.2% on the COCO dataset. The models also often

performed better and were smaller than models in the same size region.

In Brunner [6] the authors used an unmanned ground vehicle that was equipped with both a

normal camera and a thermal camera. The main goal was to perform visual-SLAM. The best

method presented in this paper was combining both normal and thermal before running state-

of-the-art visual-SLAM on the data. This resulted in better performance especially in low-visibility

conditions.

CHAPTER 2. PREVIOUS WORK 7

2.2 Thermal camera object detection

Thermal cameras can have several benefits compared to normal cameras. The main benefit is

its improved visibility at nights due to looking at heat radiation rather than light. However due to

this difference some problems can occur when trying to detect persons. In the following section

some papers that uses thermal cameras for different proposes are listed. In figure 2.1 and 2.2 a

side by side comparison of normal and thermal in the dark can be seen.

Figure 2.1: Solsiden with a normal camera Figure 2.2: Solsiden in thermal

In Munir [36] the authors presented a method for fusing normal images and thermal images to

transfer the low-level features from normal images to thermal. The method uses a generative

adversarial network to fuse the images together, and the authors saw an improvement over de-

tecting only on the thermal images.

In Rodin [48] the authors used a fixed wing Unmanned Aerial Systems equipped with a ther-

mal camera to conduct Search And Rescue at the ocean. A Gaussian Mixture Model (GMM) was

first used on the images in order to discriminate foreground objects from the background and

then given to a CNN to detect either boats, pallets, human or buoys. The final accuracy achieved

on the test dataset was 92.5%.

CHAPTER 2. PREVIOUS WORK 8

In Schedl [50] the authors used a drone with a thermal camera to try find persons in the for-

est when performing search and rescue operations. The authors did see an improvement when

combining multi-perspective recordings before classification compared to single images. The

CNN used was YOLO and achieved 96% accuracy on their test dataset.

In Ippalapally [24] the authors trained two different MobileNet models, MobileNet V1 and Mo-

bileNet V2, and tested it on thermal images. The MobileNet architecture is one of the smallest

and fastest. The result the authors got on their dataset was an average precision of 33.2 and 35.1

with IoU at 0.50 for V1 and V2 respectively.

In Kristo [28] the authors tested how good several models could work with detecting persons

in thermal images. They also tested under different circumstances like fog and bad weather.

In one of the tests several models were compared where faster R-CNN scored the highest with

98,86% mAP on their dataset with 7,097 frames per second (FPS). YOLOv3 scored about one

percent lower at 97,93% mAP, but had 27,472 FPS.

Chapter 3

Theory

3.1 Computer vision

Computer vision (CV) deals with how a computer can understand digital images and videos

without the help of humans. This is a very complex problem and much time and effort is put

into this field each year. Some examples of what CV can be used for is object detection, video

tracking and image restoration [22].

3.1.1 Camera

In CV a camera is often used as the input as either an image or video. Camera can also have

different hardware that will result different frame rates, resolution and shutter speed with more.

The light in the shoot, surrounding medium and space also effect the camera. Therefore all this

effects needs to be accounted for to see what field the camera is best suited to work in [19].

3.1.2 Thermal camera

Instead of using visible light like conventional cameras the thermal cameras uses infrared (IR)

radiation. These cameras normally works in the wavelength of 1 micrometre (1µ) to 16µ. This

means that the camera see heat instead of light. Therefore the cameras have a large set of appli-

cations ranging from military use to surveillance to data center monitoring. This is because the

9

CHAPTER 3. THEORY 10

thermal cameras often works better in some conditions like in the dark [31]. There are several

ways too visualise thermal images, and two of these can be seen in figures 3.1 and 3.2 below.

Figure 3.1: Thermal with colors Figure 3.2: Thermal in grayscale

3.1.3 Digital image

A computer normally represent a two dimension image with an two dimension array that con-

tains all the pixels in a picture. For instance a picture that has a height of 4 pixel and width of 4

pixel, for a total of 16 pixel, have their own spot in the array as shown in table 3.1. Each spot can

normally store 8 bits. 8 bits gives 28 = 256, meaning a value from zero to 255 can be stored [33].

[[p(0,0) p(0,1) p(0,2) p(0,3)]

[p(1,0) p(1,1) p(1,2) p(1,3)]

[p(2,0) p(2,1) p(2,2) p(2,3)]

[p(3,0) p(3,1) p(3,2) p(3,3)]]

Table 3.1: Pixel placement in picture

CHAPTER 3. THEORY 11

Usually images are either stored in grayscale format or red green blue (RGB) format. With

grayscale each pixel gets its own value from zero to 255 that contain the intensity of light in

that pixel. This means a value of zero is black, 127 is gray and 255 is white [33]. An example of a

4x4 image can be seen in table 3.2

[[0 0 0 0]

[100 100 100 100]

[200 200 200 200]

[255 255 255 255]]

Table 3.2: Grayscale array

The RGB format normally contains three channels were each channel representing a color as

seen in table 3.3, this is a 4x4 image. As before the value in each element is usually from zero to

255. The first element in a pixel represent the intensity of red. The second element represent

green and the last blue. So an pixel with value [0 0 0] = black, [255 0 0] = red, [0 255 0] = green,

[0 0 255] = blue, [255 255 255] = white and any other combination gives the rest of the possible

colors for a total of 16,777,216 different colors [33].

[[[0 0 0] [0 0 0] [0 0 0] [0 0 0]]

[[100 100 100] [100 100 100] [100 100 100] [100 100 100]]

[[200 200 200] [200 200 200] [200 200 200] [200 200 200]]

[[255 255 255] [255 255 255] [255 255 255] [255 255 255]]]

Table 3.3: RGB array

3.1.4 Image processing

Image processing is to use a algorithm on a image to do some work on the image. This can be

easy task such as scaling or changing a RGB picture to grayscale or vice-versa to more advance

such as image enhancement and image restoration to the most advance as feature extraction

with more [29].

CHAPTER 3. THEORY 12

3.1.5 Feature extraction

Feature extraction is to take an image through an algorithm that highlight some interesting parts

or traits in the image. The reason that this is used is to minimize redundant data and speed up

training and the time it takes to make a predictions. There are many methods for extracting

different features, and all have there own set of uses. Some of the methods used in feature ex-

traction and object recognition are edge- and corner detection [51].

• Edge detection is to find the edges in an image. This is done by detecting discontinuities

in brightness in the image, and there are several methods for achieving this. In figure 3.3

an example of the Canny method can be seen [32].

Figure 3.3: Edge detection example [32]

• Corner detection, as in edge detection, has several methods that can be used. However

the main idea is to take a small windows over every pixel and see if there are a change in

the pixel values in all directions [12]. The main idea is visualised in figure 3.4.

Figure 3.4: Corner detection example [12]

CHAPTER 3. THEORY 13

3.1.6 Region of interest

A region of interest (ROI) in a image is a part of the image that is of extra interest. This usually

means to cut away some part of the image to either reduce the size, change aspect ratio or high-

light some parts more. Therefore the bandwidth required for each image can be reduced and a

higher frame rate can often be achieved [23].

3.2 Machine learning

Machine learning (ML) is to use algorithms on data to learn more and more over time. This can

be several things such as computer vision and recognizing the different between a person and a

dog. It can be complex pattern recognition to help solve cancer and so on [11]. The difference

between artificial intelligence (AI), ML and deep learning (DL) can be seen in the figure 3.5.

Figure 3.5: Difference between AI, ML and DL [54]

CHAPTER 3. THEORY 14

3.2.1 Training

Supervised and unsupervised are two methods used for learning in ML. Supervised learning is

when the dataset is labeled and fed into the algorithms to train. The algorithm then adjust its

weights until the model perform appropriately. This is often used in problems such as object

detection and classification. Unsupervised learning is when a model is given a new dataset to

analyze. When analysing the model finds patterns or data grouping without interaction from a

human [11].

3.2.2 Neural networks

Using neural network is a way to perform ML. The way neural networks are build up is often

compared with the human brain. An easy example of a neural network can be seen in the figure

3.6 below. A neural network consist of an input layer, one or more hidden layers and a out-

put layer. Each of this layers are connected to each other with the help of neurons [8]. In the

following sections the building blocks will be explained.

Figure 3.6: Neural network

CHAPTER 3. THEORY 15

3.2.3 Input layer

The input layer is where the raw data is first entered. This can for instance be a neuron for each

pixel value in a picture. The data is often preprocessed to fit the total number of neurons in the

input layer. This can be to scale a picture up or down in size. When this is done the network is

ready to send the data to the hidden layer [8].

3.2.4 Hidden layer

It’s in the hidden layer the work is done in a neural network. Here each layer is trying to learn

something about the data by minimizing a cost function. The easiest way to think about this

is that for example the first hidden layer learn edge detection, the next corner detection and so

on. This is not exactly what is going on, but it’s the main idea. The results is therefore a complex

problem broken down to smaller problems [8].

3.2.5 Output layer

The output layer returns a value for each of the neurons that is in the output layer. For instance

if the network displayed in figure 3.6 is a image classification between dogs and cats, the output

layer will then output the confident about each class. The output can be [0.97 0.03], the model

is then 97% sure the image is a dog and 3% sure it’s a cat [8].

3.2.6 Neurons

Each neuron, the colored circles in figure 3.6, are connected to each other as shown in the same

figure. Each of this connection contains a weight that is a positive or negative number. When a

value is sent from a layer to the next layer the value is multiplied with its weight. The neuron in

the next layer then sum all the inputs from all the neurons in the previous layer.

CHAPTER 3. THEORY 16

The value from this sum is then sent to an activation function, some of the most common are

shown in figure 3.7. The connection between neurons can also contain an bias. This is just a

number that shift the activation function either left or right. The activation function is used to

keep the output of a neuron in a range normally between zero and one. This process occur in

every neutron until an output is given in the output layer [34].

Figure 3.7: Activation functions [47]

3.2.7 Backpropagation

When training a model the weights and biases needs to be adjusted, and this processes is called

backpropagation. First the network is given an input and goes through the procedure explained

in the previous paragraph. The error at every point is calculated and saved often using:

Er r or = 1

2
∗ (pr edi ct i on −actual)2 (3.1)

Then the backpropagation processes starts using gradient descent to update the weights and

biases. This processes starts at the output layer and goes backwards towards the input layer, and

repeats until a desired performance level is achieved [20]. A normal way to update the weight

and bias at each neuron is using this formula:

New weight = old weight− (
∂Error

∂old weight
) (3.2)

CHAPTER 3. THEORY 17

3.2.8 Convolutional neural network

Convolutional neural network (CNN) is a deep learning algorithm often used for image classifi-

cation. The CNN can take a image as a input and learn it features with enough training without

the need of human help [49]. The figure 3.8 shows an example of the structure of a CNN. The

different layers will be explained in the next sections.

Figure 3.8: CNN for classifying handwritten digits [49]

3.2.9 Convolution layer

The convolution layer job is to apply a filter on the input. This filter extract features such as edges

and corners. The later the layers are in the network the more high level features are extracted.

Therefore adding convolution layer several places in the network makes the model more ro-

bust. The two methods for extracting features are same padding and valid padding. With same

padding the input is either increased in size or the same. With valid padding the input data is

reduced [49].

3.2.10 Pooling Layer

The pooling layer is used to reduce the size of the data and also extracting dominant features.

The two methods used are max pooling and average pooling. The max pooling returns the max-

imum value from the portion of the image covered by the filter. Average returns the average of

these values. The most common is max pooling since this also performs a noise reduction [49].

CHAPTER 3. THEORY 18

In the figure 3.9 the methods are shown. The max pooling takes a number of values, here used

four values, and returns the maximum. Average does the same, but returns the average of these

four values instead.

Figure 3.9: Max and average pooling [49]

3.2.11 Fully Connected Layer

The last layer in a CNN is the fully connected layer. This is often a neural network and works as

described in the chapter 3.2.2. When training, the layer adjust its weights and biases with the

help of backpropagation. The final output is also given here [49]. As with all ML there are several

ways to solve the problem. Some popular architecture are ResNet, AlexNet and YOLO [49].

3.2.12 Single- and two-stage detectors

When talking about state-of-the-art object detectors single- and two-stage detectors are most

often mention. The two-stage first uses a Region Proposal Network to extract region of interest

from the image. This regions are then sent further in the network where object detection is done.

The benefits of a two-stage detector it its accuracy.

CHAPTER 3. THEORY 19

A single-stage detector does all this in one stage. This increases speed drastically, but often

reduces accuracy [52]. In the figure 3.10 a visual representation of the methods can be seen.

Figure 3.10: Difference in single- (a) and two-stage (b) detector [37]

3.2.13 Data augmentation

Data augmentation is to create new data by either using the existing data or create new syn-

thetic data. Synthetic data is data created artificial. When using existing data it can be tech-

niques such as flipping a picture horizontal or vertical, rotating the picture, change the colors,

CHAPTER 3. THEORY 20

different scales with more. This can be done either offline or online. Offline is when data aug-

mentation happens before training a model, and is most used with a smaller dataset since this

will increase the size of the dataset. For instance if each picture is rotated 90° the dataset will

double in size, and can than fast run in to space limitations when multiple augmentations are

used. Online augmentation is when the augmentation happens during training, and is often

done by the framework. This is often used for larger dataset since no new data is created [14].

3.2.14 Transfer learning

Transfer learning is to take a pretrained model that is trained on a dataset, for instance the COCO

dataset [9] that has over 200 000 labeled images with objects like boats, persons, dogs with many

more, and take this knowledge on a new dataset like thermal images. There is several benefits

from this. The pretrained models are often trained on a very large dataset with very good hard-

ware. This means a good starting point for a new model can be achieved easy. It often also

means that the new dataset can be smaller and achieve a better result [27].

3.2.15 Evaluation

When evaluating a model it’s important with a measurement that is equal for all models. In

the following sections the most standard methods will be explained. For understanding these

methods some abbreviation needs explanation:

• True positive (TP): Both the real observation and prediction is positive.

• True negative (TN): Both the real observation and prediction is negative.

• False positive (FP): Real observation is negative, but prediction is positive.

• False negative (FN): Real observation is positive, but prediction is negative.

CHAPTER 3. THEORY 21

3.2.16 Precision

Precision is the percentage of the predictions that are correct [21]:

Pr eci si on = T P

T P +F P
(3.3)

3.2.17 Recall

Recall calculates how good the model is to find all the positives [21]:

Recal l = T P

T P +F N
(3.4)

3.2.18 Intersection over union

Intersection over union (IoU) is how much the prediction overlaps with the ground truth.

I oU = Area of overlap

Area of union
(3.5)

So when the IoU threshold is 0.5 the overlap needs to be over 50% to be classified as a true

positive, and if the threshold is one it need to be a perfect overlap [21]. An example of IoU is

shown in the figure 3.11 below.

Figure 3.11: Explanation of IoU [21]

CHAPTER 3. THEORY 22

3.2.19 Mean average precision

Average precision (AP) or mean average precision (mAP) are often synonymous with each other,

and is calculated by finding the area under the Precision-recall curve. Sometimes the AP is cal-

culated for each class, and then mAP is calculated by taking the average of the APs [21]. Below

in the figure 3.12 an example of how a precision-recall curve can look is shown.

AP =
∫ 1

0
p(r)dr (3.6)

Figure 3.12: Example of precision-recall curve [21]

3.2.20 Total loss

Total loss is how good the model performs, the closer to zero the better. When the model is

training it’s this total loss it tries to reduce when changing its weights. If the total loss is very

close to zero, overfitting can often occur [17]. Overfitting will be explained in the next section.

Overfitting and underfitting

If a models performance is bad than overfitting or underfitting can be the cause. Overfitting is

when the models learns the dataset so good that when new data is presented the model can not

generalize and therefore performs bad. This can be difficult to spot due to good performance on

the training data. Underfitting is when there is not enough data for the model to be generalize.

This is often easier to spot due to bad performance on the training data [5].

CHAPTER 3. THEORY 23

3.3 Programming language

Programming language is a formal language that makes it possible to write human text to a

computer. The compiler of the programming language makes this text into computer instruc-

tion and execute the code. Therefore it’s possible to make advance programs and algorithms

with minimal knowledge of computers [25].

3.3.1 Python

Python is an interpreted high-level general-purpose programming language. The language fo-

cuses on code readability and is a object-oriented language. Python is often described as a “bat-

teries included” language for its huge standard library and its easy access. Python consistently

ranks as one of the most popular programming languages [43].

3.3.2 Framework

A framework is software or code that is already written. The code is written in a such way that it’s

easy to manipulated for the user, and is often open source. Meaning that everyone have access

to the code and are allowed to change it.

There are several benefits of this. One such benefit is accelerated development. The amount

of knowledge need to succeed is lowered. The code is usually more efficient and easier to debug

[16]. An example of a framework is TensorFlow [18].

Chapter 4

Materials and methods

4.1 Project approach

As mention before this is a project done as a preproject before the master thesis next semester.

This project is also done in collaboration with the company Zebop Avalon [2]. This means they

will help with hardware and knowledge, but in return the software developed in project can be

used by them.

Every other Monday a meeting with the supervisor and at least one member of Zebop Avalon

was held. In this meeting the progress of the project was presented and if any problem had oc-

curred these was discussed. Every Wednesday the offices at Zebop Avalon was used as a work-

place. This was to get closer to people that could help and to discus problems.

24

CHAPTER 4. METHOD 25

4.2 Materials

4.2.1 Camera

The camera used is a thermal camera from FLIR called Boson 640. The camera can deliver ther-

mal video in both grayscale and color, and it also films in normal RGB color at the same time.

The camera delivers the thermal images at 60 frames per second, with a resolution of 640 × 512

[13]. The camera can be seen in the 4.1 figure below.

Figure 4.1: Thermal camera [13]

4.2.2 Hardware

The computer used for training and testing the different models is equipped with a Nvidia 1080ti

Graphics processing unit (GPU). This GPU have 11 GB of RAM and 3584 CUDA Cores that can

be used for ML [40]. The rest of the computer contains 24 GB RAM at a speed of 3200 MHz. A

Intel i7 7700k Central Processing Unit (CPU) with 4 cores, 8 threads and clock speed of 4.2 GHz

with a boost to 4.5 GHz.

CHAPTER 4. METHOD 26

4.3 Software and libraries

The listed software and libraries below has been used throughout this project.

4.3.1 Software

• Overleaf - A web page editor for LATEX that gives the authors tools like real time collabora-

tive, spell checking and cloud-based storing [42].

• Git - A free open source distributed version control system [15].

• Draw.io - A free web page editor for making flowcharts, charts and diagrams. [10].

• VLC - A free open source media player with a rich set of functions [61].

• LabelImg - A graphical image annotation tool [60].

• Visual studio code - An integrated development environment made by Microsoft that en-

able tools like debugging, syntax highlighting, intelligent code completion and have git

implemented into it [35].

4.3.2 Python libraries

The libraries below has been used in combinantion with visual studio code.

• OpenCV - An open source computer vision library for real-time computer vision [41].

• Numpy - a library used for very fast mathematical operations, and include support for

large, multi-dimensional arrays and matrices [39].

• TensorFlow - An open source framework used for ML developed by Google [18]

• Darknet - An open source framework used with the YOLO object detection [44].

CHAPTER 4. METHOD 27

4.4 Testing

There were several tests conducted during the project. The next sections will explain the differ-

ent test approaches.

4.4.1 Convolution neural network testing

When testing several CNN a standard way to measure the performace was needed. The follow-

ing evaluation metrics were used when CNNs were compared:

• mAP

• Inference time

• FPS

• Performance on a standard dataset for testing

4.4.2 Framework testing

Both TensorFlow and Darknet were tested and compared. Both of these have a lighter version of

itself called TensorFlow Lite [57] and YOLO tiny [45] that is made for mobiles and devices with

small computing power. When comparing these framework the biggest factors to compare are:

• Compatibility

• Speed

• Performance of CNN

CHAPTER 4. METHOD 28

4.5 Implementation

4.5.1 Data

Since the camera on Solsiden was not mounted until late November, a different place was needed

to collect relevant data. The place chosen was Grilstad in Trondheim. This location has a sim-

ilar layout to Solsiden with a fence and a two to three meter drop to the water. The data was

collected during one sessions with different movements, number of people in the frame, people

falling and in the water. This was to get a wide variety of data that could be useful for training.

4.5.2 Extracting frames

The camera captures a video with 60 frames per second (FPS). This means that in one second

60 images are taken. Therefore a video lasting one minute gives a maximum of 60 frames * 60

seconds = 3600 images. Taking this into account the number of frames extracted from each

video was optimized for getting the best images from minimum data. When the video contain

little action like walking, every 20. frame was extracted. When the video contain more rapid

moved like a person falling every fifth frame was extracted. The first scenario gives a new frame

every
20

60
= 0,33s ≈ 333ms and the second scenario

5

60
= 0,083s ≈ 83,33ms. The software used

for extracting frames was VLC [61].

4.5.3 Dataset

There was several thousand frames extracted from the videos, but only the frames containing

one or more persons, a person falling or a person in the water could me used as this is the labels

used. After removing the pictures that could not be used, the total dataset contain 2265 images.

These images were manual labeled with every person, person falling and person in the water.

CHAPTER 4. METHOD 29

4.5.4 Labeling

The software used for labeling was LabelImg [60], and an example of labeling a picture with a

person falling can be seen in the figure 4.2. The software saved the data in the PASCAL VOC

format that is used in the TF models, and was later transformed with software to the YOLO

format so that both types of framework could be used.

Figure 4.2: Labeling

4.5.5 Convolution neural network

Faster-RCNN

Faster-RCNN is a two-stage detector, and the architecture can be seen in the figure 4.3 below. In

the figure the VGG16 network is used to extract features. This can be change to several different

networks [7].

Figure 4.3: Faster-RCNN [7]

CHAPTER 4. METHOD 30

SSD

Single Shot Detector is a single-stage detector, and the architecture can be seen in the figure 4.4

below. Also here the VGG16 network can be change to several different networks [30].

Figure 4.4: SSD [30]

YOLO

You only look once (YOLO) is a single-stage detector, and the architecture can be seen in the

figure 4.5 below.

Figure 4.5: YOLO [26]

CHAPTER 4. METHOD 31

4.5.6 Pipeline test

Three models were trained in the first test. Two in TensorFlow and one in darknet. TensorFlow

have many pretrained models that can be found on this site [58], and from here the two mod-

els trained were SSD ResNet50 V1 FPN 640x640 (RetinaNet50) and Faster R-CNN ResNet101 V1

640x640. From this one can see that they uses a ResNet50 and ResNet101 respectively instead of

a VGG16 network as shown in figure 4.3 and 4.4. In darknet a YOLOv4 model was trained. The

pretrained model was found on this website [1], and is called YOLOv4.conv.137 and consist of

137 convolutional layers.

When making the pipeline for training and testing using TF this tutorial [62] was used for help.

The same is true for darknet with this tutorial [56]. The dataset used consisted of 2265 images

that was split in to 80% training and 20% test sets. The TF models used online data augmenta-

tion with random horizontal flip. The YOLO model didn’t use any form of data augmentation.

Since Tensorflow and darknet uses some different dependencies some problems can occur. Per-

forming this first test with the pipeline should eliminate this kind of problems, both now and in

the future. This will lower the time it takes to train new models in the future.

4.5.7 Stock versus trained models

Since all the data was used in the pipeline test and this can lead to uncertainties when it comes

to the result some new models where trained from scratch to exclude this uncertainties. The

models used in this test were the same as in the last test, but some changes to the dataset were

made. One video containing a person falling into the water was left out from both the training

and test datasets. This was 233 images so the new dataset consisted of 2032 images. This dataset

was then spilt in to 80% training and 20% test sets as before.

When leaving a video out of both the training and test sets it’s easier to get a more correct re-

sult due to the models has never seen the data before. Doing it this way the stock and trained

models gets a more fair comparison.

CHAPTER 4. METHOD 32

4.5.8 Test on new data

The third test consisted of the models trained in the second test and their stock versions. A new

YOLO tiny model was also trained for this test using the same dataset as the second test. A new

standard validation dataset was also made consisting of eight pictures from the recording left

out in the second test, and includes person, person falling and person in water images. It also

contains twelve new, never before seen, pictures from the camera at Solsiden. In the pictures

from Solsiden only people on land is present. The test was manually conducted where each pic-

ture was tested and the result written down.

Due to the data in the dataset being quite similar it’s important to test how good the model

is to generalize with data that is different and has never seen before. This test will focus on how

good the model can generalize the data from Grilstad when performing on data from Solsiden.

Chapter 5

Result

5.1 Pipeline test

In this test the main focus was on the pipeline performance rather than the model performance,

this will be talked about in the next section 5.2. From the table 5.1 below the most important

results from the first test are listed. Due to the models having slightly different configurations

the training time varies from four to seven hours. The models were trained at night without

supervision, and all finished without any problems the first time training.

Name Training time Recall mAP @ IoU 0.50 mAP @ IoU 0.75 mAP Inference time

Faster-RCNN ca. 4 hours 0.6095 0.9944 0.8151 0.6621 ca. 144 ms

SSD ca. 7 hours 0.5562 0.9827 0.6648 0.6077 ca. 97 ms

YOLO ca. 6 hours 0.98 0.9945 0.6439 - ca. 24 ms

Table 5.1: Training score test 1

33

CHAPTER 5. RESULT 34

In the figures 5.1 and 5.2 below the training process of the TF models can be observed. The

models trained for a total of 25 000 epochs, and had a steady fall in loss through this period. The

Faster-RCNN loss for the training ended at a value of 0.008, and the test dataset ended on 0.057.

The loss for the SSD model ended at a value of 0.18, and the loss for the test dataset ended on

0.32.

Figure 5.1: Faster-RCNN training

Figure 5.2: SSD training

CHAPTER 5. RESULT 35

In the figure 5.3 below one can see the training loss versus the mAP of the YOLO model during

its training period. The model trained for a total of 6000 epochs, and had a fast decline in loss

at the beginning before stabilizing relativity fast on a low loss results. From the figure it can be

seen that the highest mAP achieved was 99% and a loss of about 0.2.

Figure 5.3: YOLO training

CHAPTER 5. RESULT 36

5.2 Stock versus trained models

In the table 5.2 the results from the second test are listed. From this table one can see that the

Faster-RCNN has the highest mAP with 0.75 IoU and the second highest 0.5 IoU, but also has

the highest inference time at 144 ms. The YOLO model has the highest mAP with 0.50 IoU and

the lowest inference time with 24 ms. The YOLO also outperforms the two other models when it

comes to the recall with a 0.98 out of 1.

Name Training time Recall mAP @ IoU 0.50 mAP @ IoU 0.75 mAP Inference time

Faster-RCNN ca. 4 hours 0.6047 0.9922 0.8098 0.6644 ca. 144 ms

SSD ca. 7 hours 0.5876 0.9789 0.7564 0.6586 ca. 97 ms

YOLO ca. 6 hours 0.98 0.9925 0.6424 - ca. 24 ms

Table 5.2: Training score test 2

In the figure 5.4 the loss at each epoch during training for the second test is shown. The most

important thing to look at when it comes to performance is the loss at the end. For the Faster-

RCNN the training loss ended on 0.0054 and the evaluate ended on 0.055, this is a 10.19 times

difference.

Figure 5.4: Faster-RCNN training

CHAPTER 5. RESULT 37

In the figure 5.5 the loss during training for the SSD model is shown. The same benchmark

applies here with the training loss ending on 0.2 and the evaluate ending on 0.3242, a 1.62 times

difference.

Figure 5.5: SSD training

Darknet presents the training evolution different than TF, here the figure 5.6 represent the train-

ing loss versus the mAP of the YOLO model during its training period. From the figure it can be

seen that the highest mAP achieved was 99% and ending with a loss of about 0.3.

Figure 5.6: YOLO training

CHAPTER 5. RESULT 38

In the table 5.3 below four frames from the video are shown. The red boxes shows the ground

truth of the predictions, and the boxes with labels show the model prediction. From the table

one can see that all the stock models are struggling to predict any results. The threshold for

showing a prediction was 50%. The best performing model was the Faster-RCNN with a 100%

correctness, and the YOLO on second place with one missed prediction.

Stock

Faster-

RCNN

Faster-

RCNN

Stock

SSD

SSD

Stock

YOLO

YOLO

Table 5.3: Test examples. The red boxes are the ground truth

CHAPTER 5. RESULT 39

To show the complete result a video was made that shows the stock and trained models running

parallel on the whole video for easier comparison. The result can be seen in the following video

https://youtu.be/Bwc606nS7Hw. The FPS on the stock YOLO model was about 21 and 31 FPS

with the trained model. The stock Faster-RCNN had ca. 6 in FPS versus the trained with about

7 FPS. The SSD models had about 4 FPS with the stock model and 10 FPS on the trained model.

All stock models suffer from lower FPS than their trained versions, and the reason for this is that

the stock models have 80 labels to check for instead of three labels on the trained models.

5.3 Test on new data

In the figure 5.7 the loss versus the mAP for the YOLO tiny model during its training period can

be seen. The loss ended on ca. 0.1 with the highest mAP on 96%, and the training took about

one hour. In this video, https://youtu.be/D4SaMiFgGJ0, the model running on the video left out

from the dataset can be seen. The average FPS on the whole video was 65.

Figure 5.7: YOLO tiny training

CHAPTER 5. RESULT 40

In the first part of this test eight new pictures from the left out dataset was used. The result was

equivalent to that of the second test where the trained models outperforms the stock models. In

table 5.4 the performance of the models on the eight images used are listed.

Name TP FP FN Precision Recall

Stock Faster R-CNN 1 0 13 1 1/14

Faster R-CNN 14 0 0 1 1

Stock SSD 0 0 14 N/A N/A

SSD 7 0 7 1 1/2

Stock YOLO 2 0 12 1 1/7

YOLO 14 0 0 1 1

YOLO tiny 12 0 2 1 6/7

Table 5.4: Evaluation of images from recording

In the second part the models were tested on new images. In table 5.5 the performance on the

twelve images extracted from Solsiden are listed. Both the stock and trained SSD model did not

do a single detection. The result was done without a strict defined ground truth so result may

vary a little, but gives a overall impression.

Name TP FP FN Precision Recall

Stock Faster R-CNN 25 2 23 25/27 25/48

Faster R-CNN 47 20 5 47/67 47/52

Stock SSD - - - N/A N/A

SSD - - - N/A N/A

Stock YOLO 58 3 6 58/61 29/32

YOLO 71 25 0 71/96 1

YOLO tiny 56 8 7 7/8 8/9

Table 5.5: Evaluation of images from Solsiden

CHAPTER 5. RESULT 41

Two pictures from part one and two, a totalt of four, was used to give a visual presentation of

the result. In the table 5.6 below the images from this test are shown, and easily compared.

One thing to notice is the false positives in Faster-RCNN, YOLO and YOLO Tiny models when

performing on the Solsiden images.

Stock

Faster-

RCNN

Faster-

RCNN

Stock

SSD

SSD

Stock

YOLO

YOLO

YOLO

Tiny

Table 5.6: Test examples

Chapter 6

Discussion

6.1 Dataset

The dataset was only recorded during one session with nice weather.Therefore the dataset lack

images with external noise such as rain, snow and fog that can often occur in Trondheim. The

dataset also only includes seven videos of a person falling. Taking into account that a person

uses about 640ms to fall two meters and every fifth frame is extracted at a interval of 83,33ms.

This gives us about
640

83,33
= 7 images per video and a total of 49 pictures of a person falling.

When comparing this to the total dataset
49

2265
∗ 100 = 2.1%. Given there are three different

labels this number should be closer to 33.33%. However the dataset can give an indication on

which model performs the best and fastest with some few remarks.

6.2 Test results

6.2.1 Pipeline test

Since all the data was used in this test the performance is difficult to evaluate. Therefore the

test focused more on testing the pipeline and making it ready for the next test. The result from

this was that the remaining test was faster to perform, and when a new dataset was made the

training process could start in a few minutes. Fixing all the dependencies in this test also made

42

CHAPTER 6. DISCUSSION 43

it a lot easier to avoid errors in the remaining tests. One thing to point out is how low the loss

was in the Faster-RCNN model. This is often correlated to overfitting. A problem on the TF

models and probably the YOLO one too is the big deviation on the loss for the train and eval-

uate datasets. This is often called generalization gap, and the smaller the better and is often a

overfitting problem. A better dataset can help minimizing this error.

6.2.2 Stock versus trained models

In this test the same indication of overfitting can be seen from the training data, with the worst

being the Faster-RCNN with a ten times difference between the training and evaluating. It’s

also possible to see on the video that for instance the faster-RCNN model almost frame perfect

changes label from person to person falling. This can be a very good model, but can easily also

be overfitting. From the video it’s also possible to see that the trained models have improved

a lot when it comes to detection of people, and all the stock models performs very bad. The

biggest take away from this test is how much faster the YOLO model is compared to the other

models, and performance is close to the best which is the faster-RCNN model.

6.2.3 Test on new data

The YOLO tiny model performed surprising well, and had a 100% increase in FPS over the nor-

mal YOLO model that was already much faster then the other models. Detection wise the model

also performed very good. When evaluating the two small test datasets it can be seen that the

training helps the models improve their performance. However the training also cause more

false positive, i.e errors in the dataset from Solsiden, indicating overfitting.

The performance validation for the dataset on Solsiden was conducted without a strict ground

truth. However there are still some points to be made out from this. The stock models per-

formed much better on the Solsiden test then the original dataset. Probably the biggest reason

for this is that the images from Solsiden more close resembles the RGB images used for training,

in the form of shapes and contrast. The stock YOLO model performed so well that it could be

used in a real system, and makes a great foundation for a trained model.

CHAPTER 6. DISCUSSION 44

6.3 Model

As mention the time it takes for a person to fall into the water is very short, and therefore speed

of the models are incredible important. As stated before it takes about 600 ms to fall two meters,

and to be sure a person is captured when falling at least two frames should be taken in this time.

This gives a new frame every 300 ms, and a FPS of
1

0.3
≈ 4. This is the bare minimum, and a FPS

that is two or three times this is desirable. Here the two YOLO models stands out both in speed

and performance. Since this test was running on a powerful computer, and that may not be true

in the future, the YOLO tiny model may be the only viable option to get enough frames to detect

a fall.

6.4 Framework

Since there are no real benchmark for framework the comparison will be based on personal ex-

perience. The hardest part of both framework was the installation and getting the right depen-

dencies. After that the training procedure felt the same in terms of difficult. Both framework also

seems to have the same compatibility, and with theirs smaller version limited hardware should

be no problem. TF have more models in their model zoo and seems more popular compared to

darknet. A quick google search on tensorflow gives about 60 300 000 results versus darknet at 11

900 000 results, even with darknet other meaning included. However due to the performance

and the speed of the YOLO models it’s hard not to continue using one of these.

Chapter 7

Conclusions

From the results it’s possible to see that a varied dataset is important, and the presented dataset

has a lot of improvement potential when it comes to an evenly distributed number of images per

label. Further the results from the pretrained and trained models shows that training a model

on thermal images improve theirs results, but can also lead to more false predictions. This error

can be a result from overfitting, and a better dataset can minimize this. Since inference speed is

very important to detect a person falling in water a model with high speed seems to be the best

choice. Here the YOLO models stands out both in accuracy and speed, and seems like the best

choice to use in further development. If the solution need to run on limit hardware the YOLO

tiny model can be a good choice due to it being by far the smallest and fastest model tested.

When is comes to framework the TensorFlow framework seems to be the most popular, but also

here due to the speed of the models in the darknet framework it seems like the best choice. All

in all this thesis gives a good starting point for further development in the master thesis.

With the results from this preproject the master thesis will benefit in several ways. Firstly, since

the pipeline is finished the time it takes to trained new models are almost zero. Secondly the

need for more data is clear, and this gathering of new data can start as soon as possible. While

gathering more data the focus can shift over to other methods that can compliment the ML like

a motion tracker that can see if a person goes from a safe to a unsafe area. This will make the

machine learning even more robust.

45

CHAPTER 7. CONCLUSIONS 46

7.1 Further work

There are several things that can be improved and hopefully will be in the master thesis:

• Improve the dataset

• Test solutions on different hardware

• Extract the data from the predictions to raise an alarm when someone is falling in the

water

• Implement motion tracking or some other method to help with predictions

• Live test on Solsiden

Bibliography

[1] AlexeyAB. Yolov4 pre-release, 05 2020. URL https://github.com/AlexeyAB/darknet/

releases. accessed 21.10.21.

[2] Zebop Avalon. Zebop avalon, 09 2021. URL https://www.zebopavalon.com/. accessed

12.09.21.

[3] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed

and accuracy of object detection. CoRR, abs/2004.10934, 2020. URL https://arxiv.org/

abs/2004.10934.

[4] Trøndelag brann-og redningstjeneste IKS. elvrespekt, 08 2021. URL https://www.

facebook.com/watch/?v=371537721215435&ref=sharing. accessed 28.09.21.

[5] Jason Brownlee. Overfitting and underfitting with machine learning algorithms, 08 2019.

URL https://machinelearningmastery.com/overfitting-and-underfitting-

with-machine-learning-algorithms/. accessed 15.09.21.

[6] Christopher Brunner, Thierry Peynot, Teresa Vidal-Calleja, and James Underwood. Selec-

tive combination of visual and thermal imaging for resilient localization in adverse con-

ditions: Day and night, smoke and fire, 11 2012. URL https://doi.org/10.1002/rob.

21464. accessed 15.12.21.

[7] Xander CAI. How does faster r-cnn work: Part i, 4 2021. URL https://www.lablab.top/

post/how-does-faster-r-cnn-work-part-i/. accessed 21.10.21.

[8] cdeterman. what is a ’layer’ in a neural network, 02 2016. URL https://stackoverflow.

com/a/35347548. accessed 27.10.21.

47

BIBLIOGRAPHY 48

[9] COCO. Coco dataset, 09 2021. URL https://cocodataset.org/#home. accessed 15.09.21.

[10] diagrams. draw.io, 09 2021. URL https://www.diagrams.net/. accessed 12.09.21.

[11] IBM Cloud Education. Machine learning, 07 2020. URL https://www.ibm.com/cloud/

learn/machine-learning#toc-machine-le-K7VszOk6. accessed 08.10.21.

[12] Maël Fabien. Local features, detection, description and matching, 03 2019. URL https:

//maelfabien.github.io/computervision/cv_4/#. accessed 30.09.21.

[13] FLIR. Boson 640, 11 2021. URL https://www.flir.com/products/boson/?model=

20640A018. accessed 03.11.21.

[14] Arun Gandhi. Data augmentation how to use deep learning when you have limited data

part 2, 05 2021. URL https://nanonets.com/blog/data-augmentation-how-to-use-

deep-learning-when-you-have-limited-data-part-2/. accessed 30.09.21.

[15] git. git, 09 2021. URL https://git-scm.com/. accessed 12.09.21.

[16] Ekta Goel. Software framework vs library, 09 2020. URL https://www.geeksforgeeks.

org/software-framework-vs-library/. accessed 09.09.21.

[17] Google. Descending into ml: Training and loss, 02 2020. URL https://developers.

google.com/machine-learning/crash-course/descending-into-ml/training-

and-loss. accessed 25.09.21.

[18] Google. Tensorflow, 09 2021. URL https://www.tensorflow.org/. accessed 09.09.21.

[19] Tom Harris. How cameras work, 09 2021. URL https://electronics.howstuffworks.

com/camera.htm. accessed 02.09.21.

[20] HMKCODE. Backpropagation step by step, 11 2019. URL https://hmkcode.com/ai/

backpropagation-step-by-step/. accessed 09.10.21.

[21] Jonathan Hui. map (mean average precision) for object detection, 03 2018. URL

https://jonathan-hui.medium.com/map-mean-average-precision-for-object-

detection-45c121a31173. accessed 25.09.21.

BIBLIOGRAPHY 49

[22] IBM. What is computer vision?, 09 2021. URL https://www.ibm.com/topics/computer-

vision. accessed 02.09.21.

[23] STEMMER IMAGING. Region of interest (roi), 09 2021. URL https://www.stemmer-

imaging.com/en-pl/knowledge-base/region-of-interest-roi/. accessed 08.09.21.

[24] Rohan Ippalapally, Sri Harsha Mudumba, Meghana Adkay, and Nandi Vardhan H. R. Object

detection using thermal imaging, 2020.

[25] JavaTpoint. Programming language, 09 2021. URL https://www.javatpoint.com/

programming-language. accessed 02.09.21.

[26] Sungrae KIM and Hyun Kim. Zero-centered fixed-point quantization with iterative retrain-

ing for deep convolutional neural network-based object detectors. IEEE Access, PP:1–1, 01

2021. doi: 10.1109/ACCESS.2021.3054879. accessed 21.10.21.

[27] Simeon Kostadinov. What is deep transfer learning and why is it becoming so popular?, 11

2019. URL https://towardsdatascience.com/what-is-deep-transfer-learning-

and-why-is-it-becoming-so-popular-91acdcc2717a. accessed 15.09.21.

[28] Mate Krišto, Marina Ivasic-Kos, and Miran Pobar. Thermal object detection in dif-

ficult weather conditions using yolo. IEEE Access, 8:125459–125476, 2020. doi: 10.

1109/ACCESS.2020.3007481. URL https://ieeexplore.ieee.org/stamp/stamp.jsp?

tp=&arnumber=9133581.

[29] Nishant Kumar. Digital image processing basics, 07 2021. URL https://www.

geeksforgeeks.org/digital-image-processing-basics/. accessed 29.09.21.

[30] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang

Fu, and Alexander C. Berg. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015.

URL http://arxiv.org/abs/1512.02325. accessed 21.10.21.

[31] Lynred. Infrared technology and thermal cameras: How they work, 09 2021.

URL https://www.lynred.com/blog/infrared-technology-and-thermal-cameras-

how-they-work. accessed 08.09.21.

BIBLIOGRAPHY 50

[32] MathWorks. Edge detection methods for finding object boundaries in images, 09 2021. URL

https://www.mathworks.com/discovery/edge-detection.html. accessed 30.09.21.

[33] Maximinusjoshus. Understanding the concept of channels in an image, 04 2021. URL

https://medium.com/featurepreneur/understanding-the-concept-of-channels-

in-an-image-6d59d4dafaa9. accessed 29.09.21.

[34] Nick McCullum. Deep learning neural networks explained in plain english, 06 2020.

URL https://www.freecodecamp.org/news/deep-learning-neural-networks-

explained-in-plain-english/. accessed 27.10.21.

[35] Microsoft. Visual studio code, 09 2021. URL https://code.visualstudio.com/. ac-

cessed 12.09.21.

[36] Farzeen Munir, Shoaib Azam, Muhammd Aasim Rafique, Ahmad Muqeem Sheri, Moongu

Jeon, and Witold Pedrycz. Exploring thermal images for object detection in underexposure

regions for autonomous driving, 2021.

[37] Vanessa Ndonhong, Anqi Bao, and Olivier Germain. Wellbore schematics to structured

data using artificial intelligence tools, 04 2019. URL https://www.researchgate.net/

publication/308320592_Fast_Single_Shot_Detection_and_Pose_Estimation. ac-

cessed 12.10.21.

[38] NRK. Henter opp døde mennesker fra nidelva hvert eneste år, 11 2019. URL

https://www.nrk.no/trondelag/henter-opp-dode-mennesker-fra-nidelva-

hvert-eneste-ar-1.13911303. accessed 02.09.21.

[39] NumPy. What is numpy?, 06 2021. URL https://numpy.org/doc/stable/user/

whatisnumpy.html. accessed 12.09.21.

[40] Nvidia. 1080ti, 09 2021. URL https://www.nvidia.com/en-gb/geforce/graphics-

cards/geforce-gtx-1080-ti/specifications/. accessed 11.09.21.

[41] opencv. opencv, 09 2021. URL https://opencv.org/. accessed 12.09.21.

[42] Overleaf. About us, 09 2021. URL https://www.overleaf.com/about. accessed 12.09.21.

BIBLIOGRAPHY 51

[43] Python. Python, 09 2021. URL https://www.python.org/about/. accessed 02.09.21.

[44] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.com/

darknet/, 2013–2016. accessed 12.09.21.

[45] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv, 2018. URL

https://pjreddie.com/darknet/yolo/. accessed 13.10.21.

[46] Redningsselskapet. Redningsselskapet krever nullvisjon for drukningsulykker, 09 2021.

URL https://kommunikasjon.ntb.no/pressemelding/redningsselskapet-krever-

nullvisjon-for-drukningsulykker-?publisherId=89422&releaseId=17915950.

accessed 25.09.21.

[47] riptutorial. Activation functions, 10 2021. URL https://riptutorial.com/machine-

learning/example/31624/activation-functions. accessed 09.10.21.

[48] Christopher Dahlin Rodin, Luciano Netto de Lima, Fabio Augusto de Alcantara Andrade,

Diego Barreto Haddad, Tor Arne Johansen, and Rune Storvold. Object classification in ther-

mal images using convolutional neural networks for search and rescue missions with un-

manned aerial systems. In 2018 International Joint Conference on Neural Networks (IJCNN),

pages 1–8, 2018. doi: 10.1109/IJCNN.2018.8489465.

[49] Sumit Saha. A comprehensive guide to convolutional neural networks, 12 2018. URL

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way-3bd2b1164a53. accessed 09.10.21.

[50] David C. Schedl, Indrajit Kurmi, and Oliver Bimber. Search and rescue with airborne optical

sectioning. Nature Machine Intelligence, 2(12):783–790, Nov 2020. ISSN 2522-5839. doi:

10.1038/s42256-020-00261-3. URL http://dx.doi.org/10.1038/s42256-020-00261-

3.

[51] ScienceDirect. Feature extraction, 09 2021. URL https://www.sciencedirect.com/

topics/engineering/feature-extraction. accessed 30.09.21.

[52] Petru Soviany and Radu Tudor Ionescu. Optimizing the trade-off between single-stage and

BIBLIOGRAPHY 52

two-stage object detectors using image difficulty prediction, 08 2018. URL http://arxiv.

org/abs/1803.08707. accessed 12.10.21.

[53] Sreenu and Saleem Durai. Intelligent video surveillance: a review through deep learning

techniques for crowd analysis, 12 2018. URL https://doi.org/10.1186/s40537-019-

0212-5. accessed 15.12.21.

[54] Suman. Artificial intelligence, 10 2019. URL https://ai.stackexchange.com/

questions/15859/is-machine-learning-required-for-deep-learning. accessed

08.10.21.

[55] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient object

detection, 2020.

[56] techzizou. Train a custom yolov4 object detector on windows, 08 2021. URL https://

techzizou.com/train-a-custom-yolov4-object-detector-on-windows/. accessed

21.10.21.

[57] TensorFlow. Deploy machine learning models on mobile and iot devices, 10 2021. URL

https://www.tensorflow.org/lite. accessed 13.10.21.

[58] TensorFlow. Tensorflow 2 detection model zoo, 05 2021. URL https://github.

com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_

detection_zoo.md. accessed 21.10.21.

[59] Fram tid i nord. Så mange døde av drukning i 2018, 01 2019. URL https:

//www.framtidinord.no/nyheter/2019/01/10/S%C3%A5-mange-d%C3%B8de-av-

drukning-i-2018-18219965.ece. accessed 02.09.21.

[60] Tzutalin. Labelimg, 07 2021. URL https://github.com/tzutalin/labelImg. accessed

12.09.21.

[61] videolan. Vlc features, 09 2021. URL https://www.videolan.org/vlc/features.html.

accessed 12.09.21.

[62] Lyudmil Vladimirov. Tensorflow 2 object detection api tutorial, 06 2021. URL https:

BIBLIOGRAPHY 53

//tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/. ac-

cessed 21.10.21.

[63] Lun Zhang, Stan Z. Li, Xiaotong Yuan, and Shiming Xiang. Real-time object classification

in video surveillance based on appearance learning. In 2007 IEEE Conference on Computer

Vision and Pattern Recognition, pages 1–8, 2007. doi: 10.1109/CVPR.2007.383503.

D
etection of a person in the w

ater from
 therm

al im
ages

Petter Tafjord D
rønnen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Petter Tafjord Drønnen

Detection of a person in the water
from thermal images

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
June 2022

M
as

te
r’s

 th
es

is

	Preface
	Acknowledgement
	Summary
	Sammendrag
	Acronyms
	Introductions
	Problem description
	Motivation
	Background
	Aim and objectives
	Contributions
	Structure of the Report

	Previous work
	Object detection and object tracking
	Data visualization and analysis

	Theory
	Object tracking
	Kalman filter
	Mahalanobis distance
	Hungarian algorithm
	Computer vision
	Camera
	Thermal camera
	Digital image
	Image processing
	Feature extraction
	Region of interest

	Machine learning
	Training
	Neural networks
	Input layer
	Hidden layer
	Output layer
	Neurons in deep learning
	Backpropagation
	Convolutional neural network
	Convolution layer
	Pooling Layer
	Fully Connected Layer
	Single stage detectors
	Data augmentation
	Transfer learning
	Evaluation
	Precision
	Recall
	Intersection over union
	Mean average precision
	Total loss

	Programming language
	Python
	Framework

	Method
	Project approach
	Material
	Camera on Solsiden
	Cameras for the dataset
	Hardware

	Software and libraries
	Software
	Python libraries

	Implementation
	Dataset
	DeepStream
	Hardware
	Convolution neural network
	Deep SORT
	Detection of a person falling
	Data analysis

	Result
	DeepStream
	Object detection training
	Detection of a falling person
	Object detection
	Line detection
	Movement detection

	Deep SORT result
	Trajectory analysis
	New YOLO model
	Data analysis
	Plot of trajectories

	Discussion
	Hardware and YOLO model
	Dataset
	Detection of a falling person
	Object detection
	Line detection
	Movement detection

	Deep SORT
	Trajectory analysis
	New YOLO model

	Conclusion and future work
	Conclusion
	Further work

	Bibliography
	Appendices
	Source code
	DeepStream
	deepSort
	Adaptive line and line intersection
	Data analyse

	Data analyse pictures
	Preproject

