
ar
X

iv
:2

00
6.

04
28

8v
2 

 [
m

at
h.

N
T

] 
 1

6 
M

ar
 2

02
1

LARGE VALUES OF THE ARGUMENT OF THE

RIEMANN ZETA-FUNCTION AND ITS ITERATES

ANDRÉS CHIRRE AND KAMALAKSHYA MAHATAB

Abstract. Let S(σ, t) = 1

π
arg ζ(σ + it) be the argument of the Riemann zeta-function at the point σ + it

in the critical strip. For n ≥ 1 and t > 0, we define

Sn(σ, t) =

∫ t

0

Sn−1(σ, τ) dτ + δn,σ ,

where δn,σ is a specific constant depending on σ and n. Let 0 ≤ β < 1 be a fixed real number. Assuming

the Riemann hypothesis, we establish lower bounds for the maximum of Sn(σ, t + h) − Sn(σ, t) near the

critical line, on the interval Tβ ≤ t ≤ T and in a small range of h. This improves some results of the first

author and generalizes a result of the authors on S(t). We also give new omega results for Sn(t), improving

a result by Selberg.

1. Introduction

In this paper, we make use of the resonance method to improve several omega results related to the

argument of the Riemann zeta-function.

1.1. The functions Sn(σ, t). Let ζ(s) denote the Riemann zeta-function. For 1
2 ≤ σ ≤ 1 and t > 0, we

define

S(σ, t) = 1
π arg ζ

(

σ + it
)

,

where the argument is obtained by continuous variation along straight line segments joining the points

2, 2 + it and σ + it, assuming that the segment from σ + it to 2 + it has no zeros of ζ(s), and with

the convention that arg ζ(2) = 0. If this path has zeros of ζ(s) (including the endpoint σ + it) we define

S(σ, t) = 1
2 limε→0 {S(σ, t+ ε) + S(σ, t − ε)}. Let us define the iterates of the function S(σ, t) in the following

form: setting S0(σ, t) := S(σ, t), we define

Sn(σ, t) =

∫ t

0

Sn−1(σ, τ) dτ + δn,σ for n ≥ 1.

The constants δn,σ depends on σ and n, and are given by

δ2k−1,σ =
(−1)k−1

π

∫ ∞

σ

∫ ∞

u2k−1

. . .

∫ ∞

u3

∫ ∞

u2

log |ζ(u1)| du1 du2 . . . du2k−1,

for n = 2k − 1 with k ≥ 1, and

δ2k,σ = (−1)k−1

∫ 1

σ

∫ 1

u2k

. . .

∫ 1

u3

∫ 1

u2

du1 du2 . . . du2k =
(−1)k−1(1− σ)2k

(2k)!
,
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for n = 2k with k ≥ 1.

1.2. Large values on the critical line. In the case of σ = 1
2 , let us write Sn(t) = Sn(

1
2 , t) to return

to the classical notation (e.g. Littlewood [10] and Selberg [14]). The argument function S(t) is connected

to the distribution of the non-trivial zeros of the Riemann zeta function through the classical Riemann

von-Mangoldt formula

N(t) =
t

2π
log

t

2π
−

t

2π
+

7

8
+ S(t) +O

(

1

t

)

,

where N(t) counts (with multiplicity) the number of zeros ρ = β + iγ of ζ(s) such that 0 < γ ≤ t (zeros

with ordinate γ = t are counted with weight 1
2 ). The behavior of the functions Sn(t) encodes the oscillatory

character of the function S(t) and efforts have been made to establish precise estimates of these functions

(see [4], [5], [6], [8], [10], [11], [14], [15], [19]).

The Riemann hypothesis (RH) states that all the non-trivial zeros of ζ(s) have real part 1
2 . The classical

estimates for Sn(t) under RH are due to Littlewood [10], with the bounds Sn(t) = O(log t/(log log t)n+1).

The most recent refinements of these bounds are due to Carneiro, Chandee and Milinovich [3] for n = 0 and

n = 1, and due to Carneiro and the first author [4] for n ≥ 2 (see also [5]). On the other hand, Selberg1

established, assuming RH, that

Sn(t) = Ω±

(

(log t)1/2

(log log t)n+1

)

, (1.1)

for n ≥ 0. The cases n = 0 and n = 1 were improved by Montgomery [13, Theorem 2] and Tsang [18,

Theorem 5], under RH, respectively:

S(t) = Ω±

(

(log t)1/2

(log log t)1/2

)

, and S1(t) = Ω±

(

(log t)1/2

(log log t)3/2

)

.

Using a new version of the classical resonance method, Bondarenko and Seip [1, Theorem 2], under RH,

refined the order of magnitude of these omega results, showing that

S(t) = Ω

(

(log t)1/2(log log log t)1/2

(log log t)1/2

)

, and S1(t) = Ω+

(

(log t)1/2(log log log t)1/2

(log log t)3/2

)

. (1.2)

Extending the method of Bondarenko and Seip, the first author [6, Corollary 3] established, under RH that

Sn(t) =



















Ω+

(

(log t)1/2(log log log t)1/2

(log log t)n+1/2

)

, if n ≡ 1 (mod 4),

Ω

(

(log t)1/2(log log log t)1/2

(log log t)n+1/2

)

, otherwise.

(1.3)

Using the resonator of Bondarenko and Seip along with suitable kernels and RH, the authors [7, Theorem

1] have improved the result of Montgomery on S(t) by proving

S(t) = Ω±

(

(log t)1/2(log log log t)1/2

(log log t)1/2

)

. (1.4)

1.3. Large values near the critical line. Our main purpose in this paper is to extend the previous results

of Sn(t) to the function Sn(σ, t) near the critical line. We will start by establishing bounds for the extreme

values of the differences Sn(σ, t + h)− Sn(σ, t).

1 In [15, Pages 3 and 4], Selberg commented that these omega results were not established explicitly by Littlewood but can
be proved by the usual methods.
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Theorem 1. Assume the Riemann hypothesis. Let 0 < β < 1 be a fixed real number and n ≥ 0 be a fixed

integer. Let T > 0 be sufficiently large, h ∈ [0, (log logT )−1], and σ ≥ 1
2 . Consider the following two cases:

(i) either

n = 0 and
1

2
< σ ≤

1

2
+

1

log logT
,

(ii) or

n ≥ 1 and
1

2
≤ σ ≤

1

2
+

1

log logT
.

Then2

max
Tβ≤t≤T

δn{Sn(σ, t + h)− Sn(σ, t)} ≫ h
(logT )1/2(log log logT )1/2

(log logT )n−1/2
,

where δn = ±1 if n is odd, and δn = (−1)(n+2)/2 if n is even.

The particular case of n = 1 and σ = 1
2 in Theorem 1 is related to a result of Tsang [18, Theorem 6].

Assuming RH, he proved that

sup
T≤t≤2T

±{S1(t+ h)− S1(t)} ≫ h
(logT )1/2

(log logT )1/2
,

for h ∈ [0, (log logT )−1] (see also [2, p. 252]). Also Theorem 1 allows us to obtain extreme values for the

functions Sn(σ, t), improving a result of the first author [6, Theorem 2] (which is a general form of (1.3)).

Corollary 2. Assume the Riemann hypothesis. Let 0 < β < 1 be a fixed real number and n ≥ 0 be a fixed

integer. Let T > 0 be sufficiently large and suppose that

1

2
≤ σ ≤

1

2
+

1

log logT
. (1.5)

Then

max
Tβ≤t≤T

δn{Sn(σ, t)} ≫
(log T )1/2(log log logT )1/2

(log logT )n+1/2
,

where δn = ±1 if n is even, and δn = (−1)(n+3)/2 if n is odd.

The case n = 0 in Corollary 2 was also studied by Tsang [18, Theorem 2 and p. 382]. He proved under

RH that

sup
T≤t≤2T

±S(σ, t) ≫
(logT )1/2

(log logT )1/2
,

in the range (1.5). Note that for n ≥ 0 and σ = 1
2 , we recover the results in (1.2), (1.3) and (1.4), and we

give new conditional omega results for Sn(t). This improves the estimate of Selberg (1.1) in several cases:

Sn(t) =











































Ω±

(

(log t)1/2(log log log t)1/2

(log log t)n+1/2

)

, if n ≡ 0 (mod4) or n ≡ 2 (mod 4),

Ω+

(

(log t)1/2(log log log t)1/2

(log log t)n+1/2

)

, if n ≡ 1 (mod4),

Ω−

(

(log t)1/2(log log log t)1/2

(log log t)n+1/2

)

, if n ≡ 3 (mod4).

On the other hand, using an argument of Fujii, we can obtain some of these omega results unconditionally,

when n ≥ 3.

2 The notation f ≫ g means that there is a positive constant c > 0 such that f(x) ≥ c g(x).
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Corollary 3. Unconditionally, for n ≥ 3 and n 6≡ 3 (mod4), we have that

Sn(t) = Ω+

(

(log t)1/2(log log log t)1/2

(log log t)n+1/2

)

.

We remark that the case n = 0 and σ = 1
2 has not been explored in Theorem 1. The following result

considers this exceptional case, proving a similar result, but in a shorter range.

Theorem 4. Assume the Riemann hypothesis. Let 0 < β < 1 be a fixed real number. Then

max
Tβ≤t≤T

−{S(t+ h)− S(t)} ≫ h (logT )1/2(log logT )1/2(log log logT )1/2,

for h ∈
[

c (logT )−1/2(log logT )−1/2(log log logT )−1/2, (log logT )−1
]

, with some constant c > 0.

Theorem 4 improves an estimate of Selberg (unpublished3), where he proved under RH that

max
T≤t≤2T

±{S(t+ h)− S(t)} ≫ (h logT )1/2,

for h ∈ [(log T )−1, (log logT )−1].

1.4. Sketch of the proof. Our approach is motivated by the modified version of the resonator of Bon-

darenko and Seip given by the first author in [6, Section 3], and the convolution formula obtained by the

authors in [7]. We start by obtaining certain convolution formulas for log ζ(σ+ i(t+ h))− log ζ(σ+ i(t− h))

in a small range of h. These formulas contain suitable kernels that are completely positive or completely

negative4, and it allows us to pick large positive and negative values. The connection between log ζ(s) and

Sn(σ, t) expresses the convolution formula as two finite sums, of which we must detect which one is the main

term, depending on the parity of n and the new parameters involved. Then, we use the resonator due to the

first author to obtain estimates for the variation of Sn(σ, t) near the critical line. In particular, we highlight

that one of the main technical difficulties of this work, when compared to [1, 6, 7], is in the analysis of

the error terms. With a more delicate computation, we obtain the term h in each of the error term that

appears in the convolution formulas. Finally, the choice of suitable parameters give the necessary control on

the length of the Dirichlet polynomial to apply [1, Lemma 13], and the control on the sign in front of the

variation of Sn(σ, t).

We would like to remark that Bui, Lester, and Milinovich [2] used the version of the resonance method of

Soundararajan [16] to give a new proof of the omega results of Montgomery [13], using the variation of S1(t)

in short intervals. We refer to [12] for another application of the resonance method to show Ω± results.

Throughout this paper we will use the notation log2 T = log logT and log3 T = log log logT . The error

terms that appears in each estimate may depend on n.

2. Convolution formulas

In this section we will obtain certain convolution formulas for Sn(σ, t + h) − Sn(σ, t − h), when n ≥ 1,

related to kernels that are completely positive or completely negative. We will need the following estimate

for ζ′(s)/ζ(s) to prove our convolution formulas.

3 Tsang proved this result of Selberg in [18, Page 388].
4 We say that a function f is completely positive (or completely negative) if f(x) ≥ 0 (or f(x) ≤ 0) for x ∈ R.
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Lemma 5. Assume the Riemann hypothesis. Then for 1
2 < σ ≤ 3 and for sufficiently large t, we have

∫ 3

σ

∣

∣

∣

∣

ζ′

ζ
(α+ it)

∣

∣

∣

∣

dα ≪ (1 + | log(2σ − 1)|)(log t).

Proof. Clearly, the integral from 2 to 3 is bounded. On the other hand, by [17, Theorem 9.6 (A)], uniformly

for 1
2 ≤ ℜ(s) ≤ 2, we have

ζ′(s)

ζ(s)
=

∑

|t−γ|≤1

1

s− ρ
+O(log t),

where the sum runs over the zeros ρ = 1
2 + iγ of ζ(s). We conclude our required upper bound by integrating

the above expression of ζ′(s)/ζ(s) from σ to 2 and using the fact that the number of zeros with ordinate in

[t− 1, t+ 1] is O(log t). �

To simplify the notation, we will write

∆h log ζ(z) = log ζ(z + ih)− log ζ(z − ih),

and

∆hSn(σ, t) = Sn(σ, t + h)− Sn(σ, t − h).

Lemma 6. Assume the Riemann hypothesis. Let 0 < β < 1 be a fixed number. Let α > 0, H ∈ R and T be

sufficiently large. Then for 1
2 < σ ≤ 2, 0 ≤ h ≤ 1 and T β ≤ t ≤ T logT , we have

∫ (log T )3

−(log T )3
∆h log ζ(σ + i(t+ u))

(

sinαu

u

)2

eiHudu

= −πi

∞
∑

m=2

Λ(m)wm(α,H) sin(h logm)

(logm)mσ+it
+O

(

h(1 + | log(2σ − 1)|)e2α+|H|

(logT )3

)

,

where wm(α,H) = max{0, 2α− |H − logm|} for all m ≥ 2, and Λ(m) is the von-Mangoldt function5.

Proof. Our proof closely follows [7, Lemma 2], so we have skipped some of the details in the proof. Using

the Perron’s summation formula, we write

1

2πi

∫ 1+i∞

1−i∞

∆h log ζ(σ + it+ s)

(

eαs − e−αs

s

)2

eHsds

=

∞
∑

m=2

Λ(m)wm(α,H)

(logm)mσ+i(t+h)
−

∞
∑

m=2

Λ(m)wm(α,H)

(logm)mσ+i(t−h)
= −2i

∞
∑

m=2

Λ(m)wm(α,H) sin(h logm)

(logm)mσ+it
.

(2.1)

Note that T β−ε ≤ |t ± h| ≤ T (logT )1+ε, for some ε > 0. Since we assume RH, we can move the path of

integration in (2.1) to lie on the following five paths:

L1 = {1 + iu : (logT )3 ≤ u < ∞}, L2 = {v + i(logT )3 : 0 ≤ v ≤ 1},

L3 = {iu : −(logT )3 ≤ u < (log T )3}, L4 = {v − i(logT )3 : 0 ≤ v ≤ 1},

L5 = {1 + iu : −∞ < u ≤ −(logT )3}.

For each 1 ≤ j ≤ 5, we define the integrals

Ij =
1

2πi

∫

Lj

∆h log ζ(σ + it+ s)

(

eαs − e−αs

s

)2

eHsds.

5 Λ(m) is defined as log p if m = pk with p a prime number and k ≥ 1 an integer, and zero otherwise.
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It takes standard computations to show

|I1|, |I5| ≪
h e2α+|H|

(logT )3
.

Now we estimate I2 and the estimate for I4 is similar. Using Fubini’s theorem and Lemma 5, we have

|I2| ≪

∫ 1

0

∣

∣∆h log ζ(σ + v + i
(

t+ (logT )3)
)∣

∣

(

eαv + e−αv

|v + i(logT )3|

)2

ev|H|dv

≪
e2α+|H|

(log T )6

∫ 1

0

∫ h

−h

∣

∣

∣

∣

ζ′

ζ

(

σ + v + i(t+ u+ (log T )3)
)

∣

∣

∣

∣

du dv

≪
e2α+|H|

(log T )6

∫ h

−h

∫ 1

0

∣

∣

∣

∣

ζ′

ζ

(

σ + v + i(t+ u+ (log T )3)
)

∣

∣

∣

∣

dv du

≪
h(1 + | log(2σ − 1)|)e2α+|H|

(logT )5
.

Finally, the integral I3 gives us the main term:

I3 =
1

2π

∫ (log T )3

−(log T )3
∆h log ζ(σ + i(t+ u))

(

eiαu − e−iαu

iu

)2

eiHudu

=
2

π

∫ (log T )3

−(log T )3
∆h log ζ(σ + i(t+ u))

(

sinαu

u

)2

eiHudu.

�

Before obtaining the required convolution formulas for the differences Sn(σ, t+h)−Sn(σ, t−h) for n ≥ 1,

we need to establish the following connection between ∆h log ζ(z) and ∆hSn(σ, t).

Lemma 7. Assume the Riemann hypothesis. Let n ≥ 1 be a fixed integer, 1
2 ≤ σ ≤ 1, and t, h ∈ R such

that t 6= ±h. Then we have

∆hSn(σ, t) =
1

π
Im

{

in

(n− 1)!

∫ 2

σ

(v − σ)n−1 ∆h log ζ(v + it) dv

}

+O(h).

Proof. For t 6= 0, integration by parts on [5, Lemma 6] gives

Sn(σ, t) =
1

π
Im

{

in

(n− 1)!

∫ ∞

σ

(v − σ)
n−1

log ζ(v + it) dv

}

.

So we have

∆hSn(σ, t) =
1

π
Im

{

in

(n− 1)!

∫ 2

σ

(v − σ)
n−1

∆h log ζ(v + it) dv

}

+
1

π
Im

{

in

(n− 1)!

∫ ∞

2

(v − σ)
n−1

∆h log ζ(v + it) dv

}

,

for t 6= ±h. Finally the bound on the error term follows from the following estimate

∫ ∞

2

(v − σ)
n−1 ∣

∣∆h log ζ(v + it)
∣

∣dv =

∫ ∞

2

(v − σ)
n−1

∣

∣

∣

∣

∣

∞
∑

m=2

Λ(m)

(logm)mv+it

(

1

mih
−

1

m−ih

)

∣

∣

∣

∣

∣

dv

≪

∫ ∞

2

(v − σ)
n−1

∞
∑

m=2

Λ(m)

(logm)mv+1
| sin(h logm)|dv

≤ h
∞
∑

m=2

Λ(m)

mσ+1

∫ ∞

2

(v − σ)
n−1

mv−σ
dv ≪ h.
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Note that for δ ∈ {−1, 1} and δ′ ∈ {−1, 0, 1}, the function

x 7→ 3 δ + 2 δ′ sin(x)

is completely positive or completely negative.

Proposition 8. Assume the Riemann hypothesis. Consider the following two cases:

(i) either we have

n ≥ 1 and 1
2 ≤ σ < 1,

(ii) or

n = 0 and 1
2 < σ < 1.

Let β, γ, δ, δ′ ∈ R be fixed parameters such that 0 < β < 1, δ ∈ {−1, 1}, and we further consider γ, δ′ in the

following two cases:

(i’) either

0 < γ ≤ 1
2 and δ′ ∈ {−1, 1},

(ii’) or
1
2 < γ ≤ 1 and δ′ = 0.

Then for sufficiently large T , T β ≤ t ≤ T logT and 0 ≤ h ≤ 1, we have

∫ (log T )3

−(log T )3
∆hSn(σ, t + u)

(

sin(γu log2 T )

u

)2
(

3 δ + 2 δ′ sin(u log2 T )
)

du

= Im

{

3in+3 δ

∞
∑

m=2

Λ(m) am(T, h)

(logm)n+1mσ+it

}

+ Im

{

in+2 δ′
∞
∑

m=2

Λ(m) bm(T, h)

(logm)n+1mσ+it

}

+ O(h log2 T ),

(2.2)

where the functions am(T, h) and bm(T, h) are defined by

am(T, h) = wm(γ log2 T, 0) sin(h logm) and bm(T, h) = wm(γ log2 T, log2 T ) sin(h logm).

Proof. We apply Lemma 6 with α = γ log2 T , and H = 0, H = log2 T and H = − log2 T . Using the linear

combination

3 δ + 2 δ′ sin(u log2 T ) = 3 δ e0 − i δ′
(

eiu log2 T − e−iu log2 T
)

,

we obtain
∫ (log T )3

−(log T )3
∆h log ζ(v + i(t+ u))

(

sin(γu log2 T )

u

)2
(

3 δ + 2 δ′ sin(u log2 T )
)

du

= −3πi δ

∞
∑

m=2

Λ(m) am(T, h)

(logm)mv+it
− π δ′

∞
∑

m=2

Λ(m) bm(T, h)

(logm)mv+it
+O

(

h(1 + | log(2v − 1)|)

(logT )2−2γ

)

,

(2.3)

when 1
2 < v < 2. Note that for 0 < γ ≤ 1

2 , we have used that wm(γ log2 T,− log2 T ) = 0 for all m ≥ 2.

When γ > 1
2 and δ′ = 0, only the first sum on the right-hand side of (2.3) remains. To obtain the case n = 0,

we take the imaginary part in (2.3). When n ≥ 1, we want to use Lemma 7 in (2.3). For 1
2 ≤ σ < 1, using

7



Fubini’s theorem (justified by [18, Eq. (2.13)] and the fact that the sums involved in (2.3) are finite) we get,

∫ (log T )3

−(log T )3

{
∫ 2

σ

(v − σ)n−1 ∆h log ζ(v + i(t+ u)) dv

}(

sin(γu log2 T )

u

)2
(

3 δ + 2 δ′ sin(u log2 T )
)

du

= −
∞
∑

m=2

Λ(m)

(logm)mit

[

(

3πi δam(T, h) + πδ′bm(T, h)
)

∫ 2

σ

(v − σ)n−1

mv
dv

]

+O

(

h

(logT )2−2γ

)

.

(2.4)

Using [9, §2.321 Eq. 2], we obtain

∫ 2

σ

(v − σ)n−1

mv
dv =

βn−1

mσ(logm)n
−

1

m2

n−1
∑

k=0

βk

(logm)k+1
(2− σ)n−1−k,

where βk = (n−1)!
(n−1−k)! . This implies that for each m ≥ 2, we have

∫ 2

σ

(v − σ)n−1

mv
dv =

(n− 1)!

mσ(logm)n
+O

(

1

m2 logm

)

.

Inserting this in (2.4) and using the estimates |am(T, h)|, |bm(T, h)| ≪ h logm log2 T , it follows that

∫ (log T )3

−(log T )3

{

∫ 2

σ

(v − σ)
n−1

∆h log ζ(v + i(t+ u)) dv

}

(

sin(γu log2 T )

u

)2
(

3 δ + 2 δ′ sin(u log2 T )
)

du

= −3π(n− 1)! δi

∞
∑

m=2

Λ(m) am(T, h)

(logm)n+1mσ+it
− π(n− 1)! δ′

∞
∑

m=2

Λ(m) bm(T, h)

(logm)n+1mσ+it
+O(h log2 T ).

Finally the proof follows by using Lemma 7 and calculating the error terms. �

3. The Resonator

In this section we recall the resonator |R(t)|2 developed in [6, Section 3]. Let

R(t) =
∑

m∈M′

r(m)

mit
, (3.1)

and M′ be a suitable finite set of integers. Let σ be a positive real number and N be a positive integer

sufficiently large such that

1

2
≤ σ ≤

1

2
+

1

log logN
. (3.2)

Let P be the set of prime numbers p such that

e logN log2 N < p ≤ exp
(

(log2 N)1/8
)

logN log2 N. (3.3)

We define f(n) as a multiplicative function supported on square-free numbers such that

f(p) :=

(

(logN)1−σ(log2 N)σ

(log3 N)1−σ

)

1

pσ (log p− log2 N − log3 N)

for p ∈ P , and f(p) = 0 otherwise. For each k ∈
{

1, ...,
[

(log2 N)1/8
]}

, we define the following sets:

Pk :=
{

p ∈ P : ek logN log2 N < p ≤ ek+1 logN log2 N
}

,

Mk :=

{

n ∈ supp(f) : n has at least αk :=
3(logN)2−2σ

k2(log3 N)2−2σ
prime divisors in Pk

}

,

8



and

M := supp(f)\

[(log2 N)1/8]
⋃

k=1

Mk.

3.1. Construction of the resonator. Let 0 ≤ β < 1 and κ = (1− β)/2. Note that κ+ β < 1. Let

1

2
≤ σ ≤

1

2
+

1

log logT
, (3.4)

and N = [T κ], so that σ and N satisfy the relation (3.2). Let J be the set of integers j such that
[

(

1 + T−1
)j
,
(

1 + T−1
)j+1

)

⋂

M 6= ∅,

and we define mj to be the minimum of
[

(1 + T−1)j , (1 + T−1)j+1
)

∩M for j in J . Consider the set

M′ := {mj : j ∈ J },

and finally we define

r(mj) :=

(

∑

n∈M,(1+T−1)j−1≤n≤(1+T−1)j+2

f(n)2

)1/2

for every mj ∈ M′. This defines our Dirichlet polynomial in (3.1).

Let Φ(t) := e−t2/2. We collect the following results proved in [6, Section 3].

Proposition 9. With the notations as above, we have

(i) |R(t)|2 ≤ R(0)2 ≪ T κ
∑

l∈M

f(l)2,

(ii)
∫∞

−∞ |R(t)|2 Φ

(

t

T

)

dt ≪ T
∑

l∈M

f(l)2.

Proof. See [6, Proposition 11] and [6, Lemma 12]. �

Lemma 10. Suppose

G(t) :=
∞
∑

n=2

Λ(n) cn
(log n)nσ+it

is absolutely convergent and cn ≥ 0 for n ≥ 2. Then
∫ ∞

−∞

G(t)|R(t)|2 Φ

(

t

T

)

dt ≫ T
(log T )1−σ(log3 T )

σ

(log2 T )
σ

(

min
p∈P

cp

)

∑

l∈M

f(l)2.

Proof. See [6, Lemma 13]. �

The following result allows us to obtain the error terms in our theorems.

Lemma 11. Assume the Riemann hypothesis, and consider the parameters defined in Proposition 8. Then
∣

∣

∣

∣

∣

∞
∑

m=2

Λ(m) am(T, h)

(logm)n+1mσ

(
∫ ∞

0

m−it|R(t)|2Φ

(

t

T

)

dt

)

∣

∣

∣

∣

∣

≪ hT
(log T )2γ(1−σ)

(log2 T )
n−1

∑

l∈M

f(l)2.

Proof. Using the estimate |am(T, h)| ≪ h logm log2 T , the fact that the sum runs over 2 ≤ m ≤ (logT )2γ ,

and (ii) of Proposition 9 it follows that
∣

∣

∣

∣

∣

∞
∑

m=2

Λ(m) am(T, h)

(logm)n+1mσ

(
∫ ∞

0

m−it|R(t)|2Φ

(

t

T

)

dt

)

∣

∣

∣

∣

∣

≪ hT log2 T
∑

2≤m≤(logT )2γ

Λ(m)

(logm)nmσ

∑

l∈M

f(l)2.

9



Using the prime number theorem (see [5, B.1 Appendix]), we have

∑

2≤m≤(log T )2γ

Λ(m)

(logm)nmσ
≪

(logT )2γ(1−σ)

(log2 T )
n

,

and this implies the desired result. �

4. Proof of Theorem 1

Assume the Riemann hypothesis and consider the parameters defined in Proposition 8, Subsection 3.1.

Throughout this section we will assume that

0 ≤ h ≤
1

2 log2 T
. (4.1)

Using the fact that sin(x) ≫ x for 0 ≤ x ≤ 1, we obtain the bound

sin(h logm) ≫ h logm (4.2)

for m ≤ (logT )2. We integrate (2.2) in the range T β ≤ t ≤ T log T with |R(t)|2 Φ(t/T ), and by (ii) of

Proposition 9 we get

∫ T log T

Tβ

|R(t)|2Φ

(

t

T

)

(

∫ (log T )3

−(log T )3
∆hSn(σ, t + u)

(

sin(γu log2 T )

u

)2
(

3 δ + 2 δ′ sin(u log2 T )
)

du

)

dt

= 3 δ Im

{

in+3
∞
∑

m=2

Λ(m) am(T, h)

(logm)n+1mσ

(
∫ T log T

Tβ

m−it|R(t)|2Φ

(

t

T

)

dt

)

}

+ δ′ Im

{

in+2
∞
∑

m=2

Λ(m) bm(T, h)

(logm)n+1mσ

(
∫ T log T

Tβ

m−it|R(t)|2Φ

(

t

T

)

dt

)

}

+O

(

hT log2 T
∑

l∈M

f(l)2
)

.

(4.3)

We want to complete the integrals that appears on the right-hand side of (4.3), from 0 to ∞. Using the

estimate |am(T, h)| ≪ h logm log2 T , (i) of Proposition 9 and the bound Φ(t) ≤ 1, we have
∣

∣

∣

∣

∣

∞
∑

m=2

Λ(m) am(T, h)

(logm)n+1mσ

(
∫ Tβ

0

m−it|R(t)|2Φ

(

t

T

)

dt

)

∣

∣

∣

∣

∣

≪ hT κ+β log2 T
∑

l∈M

f(l)2

(

∑

m≤(log T )2γ

Λ(m)

(logm)nmσ

)

.

Therefore, using the prime number theorem we get
∣

∣

∣

∣

∣

∞
∑

m=2

Λ(m) am(T, h)

(logm)n+1mσ

(
∫ Tβ

0

m−it|R(t)|2Φ

(

t

T

)

dt

)

∣

∣

∣

∣

∣

≪ hT κ+β (logT )
2γ(1−σ)

(log2 T )
n−1

∑

l∈M

f(l)2 ≪ hT
∑

l∈M

f(l)2.

Similarly, using the decay of Φ(t) we obtain
∣

∣

∣

∣

∣

∞
∑

m=2

Λ(m) am(T, h)

(logm)n+1mσ

(
∫ ∞

T log T

m−it|R(t)|2Φ

(

t

T

)

dt

)

∣

∣

∣

∣

∣

≪ hT
∑

l∈M

f(l)2.

The analysis for bm(T, h) is analogous. Therefore, we can extend the integrals on the right-hand side of (4.3)

from 0 to ∞. Now, we want to estimate the left-hand side of (4.3). Assume that6

max
Tβ

2
≤t≤2T log T

δ∆hSn(σ, t) > 0.

6 In fact, the positivity of the right-hand side of (4.3) will be proved in the following subsections.
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Using (ii) of Proposition 9, it follows that

∫ T log T

Tβ

|R(t)|2Φ

(

t

T

)

(

∫ (log T )3

−(log T )3
∆hSn(σ, t+ u)

(

sin(γu log2 T )

u

)2
(

3 δ + 2 δ′ sin(γ′u log2 T )
)

du

)

dt

≤ log2 T

(

max
Tβ

2
≤t≤2T log T

δ∆hSn(σ, t)

)

∫ (log T )3 log2 T

−(log T )3 log2 T

(

sin(γu)

u

)2(

3 +
2 δ′

δ
sin(γ′u)

)

du

∫ T log T

Tβ

|R(t)|2Φ

(

t

T

)

dt

≪ log2 T

(

max
Tβ

2
≤t≤2T log T

δ∆hSn(σ, t)

)

∫ ∞

−∞

(

sin(γu)

u

)2

du

∫ ∞

0

|R(t)|2Φ

(

t

T

)

dt

≪

(

max
Tβ

2
≤t≤2T log T

δ∆hSn(σ, t)

)

T log2 T
∑

l∈M

f(l)2.

Therefore, we obtain the following relation from (4.3)

3 δ Im

{

in+3
∞
∑

m=2

Λ(m) am(T, h)

(logm)n+1mσ

(
∫ ∞

0

m−it|R(t)|2Φ

(

t

T

)

dt

)

}

+ δ′ Im

{

in+2
∞
∑

m=2

Λ(m) bm(T, h)

(logm)n+1mσ

(
∫ ∞

0

m−it|R(t)|2Φ

(

t

T

)

dt

)

}

+O

(

hT log2 T
∑

l∈M

f(l)2
)

≪

(

max
Tβ

2
≤t≤2T log T

δ∆hSn(σ, t)

)

T log2 T
∑

l∈M

f(l)2.

(4.4)

Let us to analyze the left-hand side of (4.4).

4.1. The case n ≡ 1 (mod 2). We choose the parameters γ = 1/8, δ ∈ {−1, 1} and δ′ = (−1)(n+1)/2. Using

the fact that in+2 = (−1)(n+1)/2 i, we conclude from (4.4) that

3 δ(−1)(n+3)/2 Im

{

∞
∑

m=2

Λ(m) am(T, h)

(logm)n+1mσ

(
∫ ∞

0

m−it|R(t)|2Φ

(

t

T

)

dt

)

}

+Re

{

∞
∑

m=2

Λ(m) bm(T, h)

(logm)n+1mσ

(
∫ ∞

0

m−it|R(t)|2Φ

(

t

T

)

dt

)

}

+O

(

hT log2 T
∑

l∈M

f(l)2
)

≪

(

max
Tβ

2
≤t≤2T log T

δ∆hSn(σ, t)

)

T log2 T
∑

l∈M

f(l)2.

Using the fact that |R(t)|2 and Φ(t) are real and even functions, we have

Re

{

∫ ∞

0

m−it|R(t)|2Φ

(

t

T

)

dt

}

=
1

2

∫ ∞

−∞

m−it|R(t)|2Φ

(

t

T

)

dt. (4.5)

Therefore, by Lemma 11 it follows that

1

2

∞
∑

m=2

Λ(m) bm(T, h)

(logm)n+1mσ

(
∫ ∞

−∞

m−it|R(t)|2Φ

(

t

T

)

dt

)

+O

(

hT (logT )(1−σ)/4 log2 T
∑

l∈M

f(l)2

)

≪

(

max
Tβ

2
≤t≤2T log T

δ∆hSn(σ, t)

)

T log2 T
∑

l∈M

f(l)2.

(4.6)

Note that the sum on the above expression runs over (logT )3/4 ≤ m ≤ (log T )5/4. Then, for (log T )7/8 ≤

m ≤ (logT )9/8 we have that wm(log2 T/8, log2 T ) ≫ logm. Therefore, using (4.2) we conclude bm(T, h) ≫
11



h(logm)2 for (logT )7/8 ≤ m ≤ (log T )9/8. Using (3.3), for each p ∈ P , we have bp(T, h) ≫ h(log p)2, for T

sufficiently large. This implies that

min
p∈P

bp(T, h)

(log p)n
≫ min

p∈P

h

(log p)n−2
≫

h

(log2 T )
n−2

.

Then, using Lemma 10 we have

∞
∑

m=2

Λ(m) bm(T, h)

(logm)n+1mσ

(
∫ ∞

−∞

m−it|R(t)|2Φ

(

t

T

)

dt

)

≫ hT
(logT )1−σ(log3 T )

σ

(log2 T )
σ+n−2

∑

l∈M

f(l)2.

Inserting this estimate in (4.6), it follows that

h
(logT )1−σ(log3 T )

σ

(log2 T )
σ+n−1

≪ max
Tβ

2
≤t≤2T log T

δ∆hSn(σ, t), (4.7)

for any δ ∈ {−1, 1} and h satisfying (4.1). Since that (3.4) holds, we can change the left-hand side of (4.7)

by

h
(logT )1/2(log3 T )

1/2

(log2 T )
n−1/2

.

We replace ∆hSn(σ, t) with Sn(σ, t + 2h) − Sn(σ, t), by changing t − h to t, where the maximum is taken

over T β/3 ≤ t ≤ 3T logT . We obtain the desired result after a trivial adjustment, changing T to T/3 logT

and choosing a slightly smaller β.

4.2. The case n ≡ 0 (mod2). We choose the parameters γ = 2/3, δ = (−1)(n+2)/2 and δ′ = 0. Using the

fact that in+3 = (−1)(n+2)/2 i, we conclude from (4.4) that

3Re

{

∞
∑

m=2

Λ(m) am(T, h)

(logm)n+1mσ

(
∫ ∞

0

m−it|R(t)|2Φ

(

t

T

)

dt

)

}

+O

(

hT log2 T
∑

l∈M

f(l)2
)

≪

(

max
Tβ

2
≤t≤2T log T

δ∆hSn(σ, t)

)

T log2 T
∑

l∈M

f(l)2.

(4.8)

Therefore, using (4.5), Lemma 10 and doing the same procedure as in the previous case, we obtain the

required lower bound.

5. Proof of theorem 4

The proof for the case of S(t) follows the same outline of Theorem 1, but with a slight change in Lemma

6. By [7, Lemma 2], we have that

∫ (log T )3

−(log T )3
log ζ

(

1

2
+ i(t+ u)

)(

sinαu

u

)2

eiHudu =
π

2

∞
∑

m=2

Λ(m)wm(α,H)

(logm)m
1
2
+it

+O

(

e2α+|H|

(logT )3

)

.

Therefore for 0 ≤ h ≤ 1 and for sufficiently large T , we have

∫ (log T )3

−(log T )3
∆h log ζ

(

1

2
+ i(t+ u)

)(

sinαu

u

)2

eiHudu = −πi

∞
∑

m=2

Λ(m)wm(α,H) sin(h logm)

(logm)mσ+it
+O

(

e2α+|H|

(logT )3

)

.

Note that the main difference of this estimate from the Lemma 6 appears in the error term. Computing

exactly as in the preceding cases, we get the following equivalent formula for the equation (4.8),

3 Re

{

∞
∑

m=2

Λ(m) am(T, h)

(logm)m
1
2

(
∫ ∞

0

m−it|R(t)|2Φ

(

t

T

)

dt

)

}

+O

(

T log2 T
∑

l∈M

f(l)2
)
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≪

(

max
Tβ

2
≤t≤2T log T

−∆hS(t)

)

T log2 T
∑

l∈M

f(l)2.

Then, by (4.5) and Lemma 10 we obtain

h (logT )1/2(log2 T )
1/2(log3 T )

1/2 +O(1) ≪ max
Tβ

2
≤t≤2T log T

−∆hS(t).

Here appears the new restriction for h. Choosing h ∈ [c1(logT )
−1/2(log2 T )

−1/2(log3 T )
−1/2, (log2 T )

−1], for

a suitable constant c1, and adjusting T and β, we obtain the desired result.

6. Proof of the corollaries

6.1. Proof of Corollary 2. The proof follows from the following inequality for n ≥ 0,

max
u∈[t,t+h]

±Sn(σ, u) ≥ h−1

∫ t+h

t

±Sn(σ, u)du = h−1 (±{Sn+1(σ, t+ h)− Sn+1(σ, t)}) ,

with h = (log logT )−1, changing T to T/(2 log logT ) and making β slightly smaller.

6.2. Proof of Corollary 3. Under RH, it follows from Corollary 2. If the Riemann hypothesis fails, by [8,

Page 6], we have

Sn(t) ≫ tn−2,

for t sufficiently large. This implies the desired result.
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