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Abrupt depth transitions (ADTs) have recently been identified as potential causes of
‘rogue’ ocean waves. When stationary and (close-to) normally distributed waves travel
into shallower water over an ADT, distinct spatially localized peaks in the probability
of extreme waves occur. These peaks have been predicted numerically, observed experi-
mentally, but not explained theoretically. Providing this theoretical explanation using a
leading-order-physics-based statistical model, we show, by comparing to new experiments
and numerical simulations, the peaks arise from the interaction between linear free and
second-order bound waves, also present in the absence of the ADT, and new second-order
free waves generated due to the ADT.

1. Introduction

Different physical mechanisms have been proposed to explain so-called ‘rogue’ waves on
the ocean surface (Kharif et al. 2008; Dysthe et al. 2008; Onorato et al. 2013; Adcock &
Taylor 2014; Dudley et al. 2019). Rogue waves are typically defined as large waves whose
height exceeds the significant wave height by a factor 2–2.2 (Kharif et al. 2008). Such
waves are of increased interest if they occur more frequently than predicted by a Gaussian
process. A useful proxy for rogue waves therefore is the excess kurtosis of the free surface
relative to a Gaussian process (Mori & Janssen 2006). Physical mechanisms proposed
include random linear dispersive focusing enhanced by weak bound-wave nonlinearity
(Fedele et al. 2016), modulational or Benjamin–Feir instability in deep water(Benjamin
& Feir 1967; Janssen 2003), and abrupt depth transitions (ADTs) among others.

Recently, several authors have shown that rogue waves can form at the top of ADTs
for waves in shallow to intermediate depth, as reviewed in Trulsen et al. (2020). In the
experiments of Trulsen et al. (2012), local peaks of skewness and kurtosis occurred a short
distance after a 1:20 underwater slope when waves travelled from a deeper to a shallower
domain (see also Zhang et al. (2019)). Similar peaks have been observed experimentally
for shoals (Trulsen et al. 2020; Ma et al. 2014) and steps (Bolles et al. 2019). Local peaks
in skewness and kurtosis have also been predicted using reduced-form nonlinear evolution
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equations, such as the KdV equation for variable shallow depth (Sergeeva et al. 2011;
Majda et al. 2019) and the Boussinesq equations (Gramstad et al. 2013; Zhang et al.
2019; Kashima et al. 2014), and by fully nonlinear numerical simulations of the water
wave equations (Ducrozet & Gouin 2017; Viotti & Dias 2014; Zheng et al. 2020; Zhang &
Benoit 2021). The magnitude of the peaks is greatest when the ADT is infinitely steep,
i.e. a step (Zheng et al. 2020). Peaks in skewness and kurtosis only occur for sufficiently
shallow depths (Trulsen et al. 2020; Zheng et al. 2020), corresponding to a depth beyond
the applicability of the nonlinear Schrödinger equation (Zeng & Trulsen 2012), which
correctly predicts the absence of peaks in deeper water (Lawrence et al. 2021).

Two hypotheses have been proposed to explain these peaks. According to the first,
ADTs place the system out of equilibrium; the peaks are the response of a system
that rapidly adjusts to a new equilibrium driven by nonlinear (third and higher-order
in steepness) processes (Trulsen 2018; Viotti & Dias 2014). According to the second
hypothesis, the peaks are formed by second-order effects in steepness (Gramstad et al.
2013; Ducrozet & Gouin 2017; Zhang et al. 2019; Zheng et al. 2020), but the mechanism
by which is not clear.

We develop a statistical model based on the second-order theory for wave propagation
over a step developed in Li et al. (2021b) and validated experimentally in Li et al.
(2021a) that can accurately predict the magnitude and location of the peaks in kurtosis
atop ADTs. Our model confirms the validity of the second hypothesis and demonstrates
the underlying mechanism is one of the interplay of linear free and second-order bound
waves, which are also present in the absence of the ADT, and the second-order free waves
generated due to the ADT.

2. Theoretical model

2.1. Deterministic model (Li et al. 2021b)

Our starting point is the deterministic model for wave group propagation over a step
of (Li et al. 2021b). We consider weakly nonlinear unidirectional water waves on the
surface of a constant density fluid, ignoring surface tension and viscosity, so that the
fluid satisfies potential flow. The ADT (cf. figure 1) takes the form of a discontinuity or
‘step’ in water depth h(x) at x = 0, where h changes from hd for x < 0 to a shallower
value hs for x > 0 with x denoting the horizontal axis. We consider intermediate water
depths (O(kh) = 1 with k the wavenumber) and leading-order approximations to the
water wave equations. Specifically, as in the classical statistical models of Tayfun (1980,
1986), the solutions are valid up to second order in steepness ε = k0A0, where k0 and A0

denote the characteristic wavenumber and amplitude, respectively, and narrow-banded or
valid up to first order in the dimensionless bandwidth parameter, defined as δ = 1/(k0σ0)
with σ0 the characteristic group length.

2.1.1. Incident wave field

The surface elevation of the incident wave field travelling towards the ADT can be
obtained from a combined Stokes and multiple-scales expansion (e.g., Mei et al. (1989)):

ζ(x, t) = ζ(1)(x, t) + ζ(2)(x, t) for x < 0, with (2.1a)

ζ(1)(x, t) = A cosψ0(x, t) and ζ(2)(x, t) = k0A
2[C20,b + C22,b cos 2ψ0(x, t)], (2.1b)

where the superscripts denote the order in ε, A(x, t) the envelope, ψ0 = k0x − ω0t + θ0
the phase, with k0 the carrier wavenumber and ω0 = ω(k0, hd) the angular velocity
obeying linear dispersion, ω(k, h) =

√
gk tanh kh with g gravity, and θ0 the phase. The
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Figure 1. Experimental set-up.

envelope A(x, t) = A(x/cg0 − t) travels at the group velocity cg0 = cg(k0, hd), with
cg(k, h) = (ω/(2k))(1 + 2kh/ sinh 2kh). The coefficients of the bound second-order sub-
harmonic and super-harmonic waves are (e.g., Mei et al. (1989)):

C20,b(kh) =
[
(2gh− c2g)/(2 sinh 2kh) + 2gcg/ω

]
/[4(c2g − gh)], (2.2a)

C22,b(kh) = cosh kh(2 cosh2 kh+ 1)/
(
4 sinh3 kh

)
, (2.2b)

where C20,b(k0hd) and C22,b(k0hd) in (2.1) and we have further assumed the envelope is
long relative to the water depth (as in Mei et al. (1989)).

2.1.2. Transmitted wave field

Upon reaching the ADT (x = 0), the incident wave field is reflected and transmitted.
We focus on the latter here. At first order in ε, the carrier wave on the shallower side
travels at speed cg0s = cg(k0s, hs), where k0s denotes the wavenumber that can be
found by solving ω0 = ω(k0s, hs) and corresponds to a shorter wavelength. In addition,
evanescent waves are generated in the vicinity of the step that vanish exponentially
with distance away from the step. At second order in ε, the sub-harmonic and super-
harmonic bound waves associated with the transmitted wave field must change magnitude
at the step, and additional free sub-harmonic and super-harmonic waves are generated,
which, respectively, travel at the shallow-water speed

√
ghs or satisfy the linear dispersion

relation for ω(k20s, hs) = 2ω0 with k20s the wavenumber of the super-harmonic waves.
Based on Massel (1983), who derived expressions for both linear and second-order

super-harmonic components for a monochromatic wave, and Li et al. (2021b), who
extended this work to narrow-banded wavepackets, the surface elevation on the shallower
side (i.e. for x > 0) is given by (Li et al. 2021b):

ζs(x, t) = ζ(1)s (x, t) + ζ(2)s (x, t) for x > 0, with (2.3a)

ζ(1)s (x, t) = As(x, t) cosψ0s + ζ
(1)
Es , As(x, t) = |T0|A (x/cg0s − t) , (2.3b)

ζ(2)s (x, t) = ζ(20)s + ζ(22)s , (2.3c)

ζ(20)s (x, t) = C
20,bk0sA

2
s + C

20,fk0s|T0|2A2(x/
√
ghs − t) + ζ

(20)
Es , and

ζ(22)s (x, t) = C
22,bk0sA

2
s cos(2ψ0s) + C

22,fk0s|T0|2A2(x/cg22s − t) cos(2ψ0s + ψ
22,f

) + ζ
(22)
Es ,

in which T0 denotes the complex transmission coefficient, the subscripts E, b and f
the evanescent, bound and free waves, respectively. In the first-order term, ψ0s(x, t) =
ψ0(x, t)+(k0s−k0)x+θT0 with θT0 denoting the phase shift due the step (θT0 = arg(T0)).
The second-order bound wave coefficients can be evaluated from (2.2): C20,b(k0shs),
C22,b(k0shs). The second-order free wave coefficients are given by C20,f = |T20,f |/|T0|2
and C22,f = 2ω2

0 |T22,f |/(gk0s|T0|2) with T20, and T22,f the (complex) coefficients for the
sub- and super-harmonic free wave, respectively. T0, T20, and T22,f are obtained from the
boundary conditions at the step (see Li et al. (2021b) for details). In the second-order
terms, cg22s = cg(k20s, hs) is the group velocity of the free super-harmonic envelope,
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ψ22,f (x) = k20sx − 2k0sx + θ
T22,f

− 2θT0 denotes the phase of the free super-harmonic

waves relative to the bound super-harmonic waves with θ
T22,f

the phase shift of the

free super-harmonic waves upon transmission (θT22,f
= arg(T22,f )). To obtain tractable

solutions, Li et al. (2021b) ignore forcing by (small) products linear evanescent waves.

2.2. A new statistical model

To develop a statistical model based on the deterministic model of Li et al. (2021b)
outlined in §2.1, we assume a normally distributed linear incident field ζ̃(1) with variance
µ0, which is both stationary and homogeneous (for x < 0). Specifically, we define a
Rayleigh-distributed envelope Ã and a uniformly distributed phase ψ̃, so that ζ̃(1) =
Ã cos(ψ̃). Tildes denote random variables. The incident wave field on the deeper side
(x < 0) becomes (cf. (2.1)):

ζ̃ = ζ̃(1)+ ζ̃(2) for x < 0, ζ̃(1) = Ã cos ψ̃, and ζ̃(2) = k0Ã
2[C20,b+C22,b cos 2ψ̃]. [2.4a,b,c]

Neglecting the effect of evanescent waves, we obtain on the shallower side (cf. (2.3)):

ζ̃s = ζ̃(1)s + ζ̃(2)s for x > 0, with (2.5a)

ζ̃(1)s = |T0|Ã cos(ψ̃0s) and ζ̃(2)s (x) = ζ̃(20)s (x) + ζ̃(22)s (x), (2.5b)

ζ̃(20)s (x) = k0s|T0|2Ã2
(
C

20,b + C
20,fR20

(x)
)
, ψ̃0s = ψ̃ + (k0s − k0)x+ θT0

, and (2.5c)

ζ̃(22)s (x) = k0s|T0|2Ã2
[
C22,b cos(2ψ̃0s) + C22,fR22(x) cos(2ψ̃0s + ψ

22,f
(x))

]
, (2.5d)

where R20(x) and R22(x) are envelope functions, obtained by expanding the envelope
of the sub- and super-harmonic waves about the center of the transmitted envelope,
respectively. They can be expressed in terms of the focused deterministic envelope A as:

R
20

(x) = A2(x/
√
ghs − x/cg0s)/A2(0), R

22
(x) = A2(x/cg22s − x/cg0s)/A2(0), [2.6a,b]

where A(0) is the central magnitude of the deterministic envelope. The focused
deterministic envelope can be obtained from the energy spectrum S(ω) by A(t) =∫ √

2S(ω) cos((ω−ω0)t)dω. For a Gaussian deterministic envelopeA = a0 exp(−c2g0(x/cg0s−
t)2/(2σ2

0)), we obtain R
20

(x) = exp[−(cg0x/
√
ghs − cg0x/cg0s)

2/σ2
0 ] and R

20
(x) =

exp[−(cg0x/cg22s − cg0x/cg0s)2/σ2
0 ]. A long distance away from the step, R

20
, R

22
→ 0,

and we recover the standard homogeneous result for constant depth (e.g., Tayfun (1986)).

2.2.1. Statistical properties

The skewness s = 〈(ζ̃s − m)3〉/v3/2 and kurtosis κ = 〈(ζ̃s − m)4〉/v2 of the random
surface elevation can be directly obtained from (2.5) with m = 〈ζ̃s〉, v = 〈(ζ̃s−m)2〉 and
〈· · · 〉 the combined expectation operator of random variables Ã and ψ̃ ,

s = 6k0s
√
µ0sC2

(x) +O(µ
3/2
0s ), (2.7)

κ = 3 + 24k20sµ0s

(
κ

2,b
+ κ

2,bf
(x) + κ2,f (x)

)
+O(µ2

0s), (2.8)

where µ0s = |T0|2µ0 denotes the variance of the surface elevation on the shallower side,
C

2
(x) = C

20,b + C
22,b + C

20,fR20
(x) + C

22,fR22
(x) cosψ

22,f
(x), κ

2,b
captures the contri-

bution to kurtosis by bound waves, κ
2,f

by free waves and κ
2,bf

by their combination:

κ
2,b

= 3C2
20,b + 4C

20,bC22,b + 3C2
22,b, (2.9a)

κ
2,f

(x) = 3C2
20,fR

2
20

+ 4C20,fC22,fR20R22 cosψ
22,f

+ 3C2
22,fR

2
22
, (2.9b)

κ
2,bf

(x) = (6C
20,b + 4C

22,b)(C20,fR20
+ C

22,fR22
cosψ

22,f
). (2.9c)
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From (2.5), we can also obtain a second-order accurate expression for wave crests ζ̃c:

ζ̃c(x) = |T0|Ã+ k0s|T0|2Ã2C2(x). (2.10)

In non-dimensional form, ξ̃c = ζ̃c/Hss with Hss = 4
√
µ0s the significant wave height on

the shallower side, the crest elevation has the probability density function (cf. Tayfun
(1980)),

fξ̃c(ξc) =
16u exp (−8u2)

1 + 4εsC2
(x)u

with u =

√
1 + 8εsC2

(x)ξc − 1

4εsC2
(x)

, [2.11a,b]

and εs = k0sHss/2 measures steepness in a random sea. Eq. (2.11) can be integrated to
obtain the exceedance probability (cf. Forristall (2000)),

P (ξ̃c > ξc) = exp
(
−8u2(ξc)

)
. (2.12)

As εs → 0, we recover from (2.11) and (2.12) the Rayleigh distribution. If the
contributions by the second-order free waves are neglected, which is valid in the absence
of, or a long distance away from, a step, then R20 → 0 and R22 → 0, and (2.5), (2.7),
(2.8) and (2.10) reduce to the second-order accurate result for constant depth (Tayfun
1980, 1986).

2.2.2. Rogue wave generating mechanism

As described in §2.1.2, second-order sub- and super-harmonic free waves are released
upon transmission over the ADT. On the shallower side, these free waves co-exist with
the transmitted linear free and their second-order bound waves, which would also be
present for constant depth. Compared to the second-order statistical model for constant
depth (Tayfun 1980, 1986), the additional second-order free waves lead to an increased
likelihood of large waves atop the ADT. The likelihood of large waves is enhanced by the
presence of sub-harmonic free waves (C

20,f
> 0) and beating between the bound and free

super-harmonics, which results in local maxima (Li et al. 2021b). Both these effects only
occur near the top of an ADT, where the second-order free waves are initially generated
and where their envelopes still overlap with the linear envelope. Since both sub-harmonics
and super-harmonics propagate at different group speed from the linear envelope, they
separate over a sufficient distance away from the step. This mechanism locally amplifies
skewness (2.7), kurtosis (2.8), and exceedance probability of crests (2.12).

3. Results

3.1. Experiments and numerical simulations

To validate our statistical model, we have performed laboratory experiments and fully
nonlinear numerical simulations. Experiments were carried out in the Coastal, Ocean
and Sediment Transport (COAST) Laboratory at the University of Plymouth, UK. A
schematic of the experimental set-up (and the numerical wave tank) is shown in Fig. 1.
Two water depths on the deeper side were used: hd = 0.55 m and hd = 0.75 m. Hence,
the water depth on the shallower side hs = hd−0.35 m. The numerical wave tank (Zheng
et al. 2020) is equivalent to the laboratory except that the computational domain has a
total length of 50λ0, where λ0 denotes the carrier wavelength on the deeper side, with a
length of 20λ0 and 30λ0 on the deeper (x < 0) and shallower sides (x > 0), respectively.

In both the experiments and numerics, the (linear) wavemaker was programmed to
generate irregular waves based on JONSWAP spectra for different peak frequencies fp
and water depths (peak enhancement factor γ = 3.3). Four cases are examined with
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Table 1. Parameters of the laboratory experiments and fully nonlinear numerical simulations.
The shallower water depth hs = hd−0.35 m, the bandwidth δ = 1/(k0σ0), Hm0 is the measured
significant wave height of the entire signal (the table shows its value obtained at the first gauge
on the deeper side), Hs = 4

√
µ0 is the significant wave height of the linearised surface elevation

on the deeper side, and the steepness ε = k0Hs/2, Γ (kh) = εC22b(kh)/(kh)3 denotes a parameter
that measures the degree of nonlinearity relative to depth (Toffoli et al. 2007), with C22,b defined
by (2.2b), and N1 and N2 denote the total number of the random realisations per case in
experiments and numerical simulations, respectively.
Case fp [Hz] hd [m] k0hd k0shs Hm0 [m] δ Hs [m] ε Γ (k0hd) Γ (k0shs) N1 N2

A 0.80 0.55 1.6 0.79 0.046 0.12 0.040 0.057 0.0097 0.19 14 14
B 0.60 0.55 1.0 0.57 0.035 0.24 0.029 0.027 0.019 0.26 14 14
C 0.70 0.75 1.6 1.0 0.078 0.22 0.069 0.074 0.013 0.12 8 14
D 0.55 0.75 1.1 0.76 0.079 0.22 0.069 0.052 0.036 0.20 9 14

Figure 2. Spatial variation of skewness s comparing theoretical prediction by (2.7), experiments
and numerical simulations (‘FNPFS’) with λ0s the peak wavelength (step at x = 0). The (small)
error bars for the experiments and the thickness of the blue line for the numerics denote ± one
standard deviation either side of the mean. Panels A-D correspond to the cases in table 1.

parameters presented in Tab. 1. Cases A and C start in deeper water (k0hd = 1.6)
compared to B and D (k0hd = 1.0, 1.1), and cases A and B (k0hd/(k0shs) = 1.9, 1.8)
experience a larger depth transition than C and D (k0hd/(k0shs) = 1.6, 1.5). We examine
skewness and kurtosis (§3.2), followed by wave crest distribution (§3.3).

For each case in Tab. 1, several realisations with different randomised amplitudes
and phases were generated in both experiments and numerical simulations. Random
amplitudes and phases are generated for each frequency component as described in
§2.2. Each of these realisations was ∼ 20 min (1200 s), with frequency spacing ∆f =
1/1800 Hz. The parameters used as input to the statistical model are estimated from
the experimental values measured at the first gauge, before the step. For our (narrow-
banded) model predictions, we have used an estimated, equivalent Gaussian envelope A
to compute the envelope functions R20(x) and R22(x).
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3.2. Skewness and kurtosis

Fig. 2 shows the spatial variation of skewness either side of the ADT (x = 0) for the
four cases in Tab. 1, including the step and the 1:1 and 1:3 slopes (for cases A and
B). In all cases, the transition to a higher equilibrium value of skewness associated
with larger bound waves for shallower depth is associated with sharp peaks. These
sharp peaks, observed in previous studies, occur within one wavelength of the step.
Their magnitudes and locations in both experiments and numerics, which are in good
agreement, are predicted well by our statistical model. The non-uniform spatial resolution
of experimental values is due to the limited number of gauges. We do not observe a
significant difference between the experiments for a step and the 1:1 and 1:3 slopes,
implying that the physics of steep slopes is captured well by our model. The largest
peak is observed when the depth before the step is shallowest and the depth transition
is greatest (case B).

The only significant difference between the numerical simulations and our model in
Fig. 2 arises in the region after the first peak, where we have only few experimental
observations (cases B and D), which agree better with the numerical simulations. These
differences are likely due to violation of the narrow bandwidth assumption in our model
for the broad-banded JONSWAP spectra we have used in the interest of realism, which
causes the smearing out of the super-harmonic beating pattern.

Fig. 3 shows the spatial variation of kurtosis either side of the ADT (x = 0) for cases A-
D. In all cases, the transmission over the ADT is associated with sharp peaks in kurtosis.
In principle, two processes can contribute to kurtosis: third-order processes associated
with modulational (in)stability that drive build-up of phase correlation of the linear signal
(Janssen 2003) on the one hand and second-order bound and free waves on the other
hand; both are captured by the experiments and the numerical simulations but only the
latter by our statistical model. In the cases that are modulationally unstable before the
ADT (A and C with k0hd = 1.6 > 1.36), the kurtosis in experiments and numerics starts
slightly above the linear Gaussian value of 3 with a negligible contribution by second-
order bound waves. In all cases, the kurtosis in experiments and numerics gradually
decays to an equilibrium value slightly below 3 to the right of the ADT corresponding
to the modulationally stable conditions on the shallower side (k0shs < 1.36), where our
second-order accurate statistical model only predicts a small positive contribution to
kurtosis by bound waves (R20 = R22 = 0 for x� σ0s with σ0s = σ0cg0s/cg0).

Crucially, the locations of the peaks in kurtosis are predicted accurately by our (second-
order accurate) model in all cases. So are their magnitudes with the relatively small
differences between numerics and our model potentially arising because of third-order
effects not included in our model, except for the deepest of our cases (case C, with
kshd = 1.6, k0shs = 1.0), for which these third-order effects are of the same order of
magnitude as the (small) second-order peaks predicted by our model. Peaks are more
significant when the water depth is shallower and the depth transition is greater. The
kurtosis for the step and the 1:1 and 1:3 slopes is not significantly different.

3.3. Wave crest distribution

Fig. 4 shows the exceedence probability distribution and the spatial variation of the
probability of rogue waves, defined here as P (ζ̃c > 1.25Hm0) with Hm0 the measured
significant wave height (of the entire signal) for case A (similar results are obtained for
cases B-D). Very good agreement between the experiments, numerical simulations, and
theory is evident. In particular, the agreement is clear at the location of maximum rogue
wave probability (gauge 5b). Minor differences in the rogue wave probability between,
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Figure 3. Spatial variation of kurtosis κ comparing theoretical prediction by (2.8), experiments
and numerical simulations (‘FNPFS’) with λ0s the peak wavelength (step at x = 0). The (small)
error bars for the experiments and the thickness of the blue line for the numerics denote ± one
standard deviation either side of the mean. Panels A-D correspond to the cases in table 1.

on the one hand, the theoretical predictions and, on the other hand, the experiments
and numerics, which are in better agreement, can be observed close to the ADT (0 <
x/λ0s . 0.2) and after the peak (1 . x/λ0s . 3). The former is likely due to evanescent
waves being neglected in our model, whereas the latter is primarily a result of the narrow-
bandwidth assumption we have made (see Li et al. (2021b)).

4. Conclusions

We have presented a statistical model to explain why rogue waves occur atop abrupt
depth transitions (ADTs) in intermediate water depth. The model, based on Massel
(1983) and Li et al. (2021b), includes nonlinearity up to second order in steepness,
assumes narrow-banded irregular waves, represents the ADTs as a infinitely steep
step, and ignores the role of evanescent waves. We have validated our model through
comparison to laboratory experiments and a fully nonlinear numerical simulations of the
water wave equations. In doing so, we have explained the mechanism behind the sharp
peaks in kurtosis, indicative of rogue waves, atop ADTs recently observed by a large
number of authors in experiments and numerical simulations (see e.g., Trulsen et al.
(2020) and references therein). We show that peaks in kurtosis arise from the co-existence
of linear free and second-order bound waves, which are also present in the absence of the
ADT, and the second-order free waves additionally generated due to the ADT. As the
second-order free waves always overlap with the linear waves near the top of the ADT
but travel at different phase and group speeds (from the linear waves), the peaks are
localized and the total wave field becomes in-homogeneous. Compared to (realistically
broad-banded) numerical simulations and experiments, our (narrow-banded) model
provides an accurate prediction of the spatially varying probability distribution of rogue
waves and the associated peaks in skewness and kurtosis atop ADTs and identifies and
explains a new physical mechanism by which rogue waves can arise in the ocean.
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Figure 4. Crest exceedance probability distribution at four locations (top) and the probability
of rogue waves as a function of space (bottom) for case A, comparing the theoretical prediction
by (2.12), experiments and numerical simulations (‘FNPFS’) (step at x = 0).
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