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ARTICLE

Classification of kneeling and squatting in workers wearing protective 
equipment: development and validation of a rule-based model using 
wireless triaxial accelerometers 

Svein O. Tjosvolla , Trine M. Seebergb , Marius S. Fimlanda,c , Øystein Wiggend and  
Silje E. Jahrenb 

aDepartment of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU Norwegian University of 
Science and Technology, Trondheim, Norway; bSmart Sensor Systems, SINTEF Digital, SINTEF AS, Oslo, Norway; cUnicare Helsefort 
Rehabilitation Centre, Rissa, Norway; dHealth Research, SINTEF Digital, Trondheim, Norway    

ABSTRACT 
Several professions in industries, such as petroleum, manufacturing, construction, mining, and 
forestry require prolonged work tasks in awkward postures, increasing workers’ risks for muscu
loskeletal pain and injury. Therefore, we developed and validated a rule-based model for classi
fying unilateral and bilateral kneeling and squatting based on 15 individuals wearing personal 
protective equipment and using three wireless triaxial accelerometers. The model provided both 
high sensitivity and specificity for classifying kneeling (0.98; 0.98) and squatting (0.96; 0.91). 
Hence, this model has the potential to contribute to increased knowledge of physical work 
demands and exposure thresholds in working populations with strict occupational safety regula
tions.  

Practitioner summary: Our results indicate that this rule-based model can be applied in a 
human-factors perspective enabling high-quality quantitative information in the classification of 
occupational kneeling and squatting, known risk factors for musculoskeletal pain, and sick leave. 
This study is adapted for working populations wearing personal protective equipment and 
aimed for long-term measurements in the workplace. 

Abbreviations: CUELA: computer-based measurement and long-term analysis of stresses upon 
the musculoskeletal system; OHS: occupational health and safety; PPE: personal protective 
equipment; PPV: positive predictive value; TP: true positive; FP: false positive
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Background 

Several industries require prolonged work in awkward 
postures (Morken, Mehlum, and Moen 2007; Wiggen 
et al. 2011), increasing the risk for musculoskeletal dis
orders, sick leave, and early retirement (Andersen 
et al. 2016; Morken, Mehlum, and Moen 2007). In the 
industrial sector (e.g. petroleum, manufacturing, con
struction, mining, forestry), numerous work operations 
are conducted while kneeling or squatting. The high 
volume and frequency of kneeling or knee-straining 
postures have been associated with pain, musculoskel
etal disorders, and injuries, such as osteoarthritis and 
meniscal tears (Breloff et al. 2019; Brennan-Olsen et al. 
2018; McWilliams et al. 2011). 

Tailored occupational health and safety (OHS) 
measures could reduce and prevent musculoskeletal 
problems. However, self-reported data and observa
tions, the predominant tools for measuring physical 
exposures, suffer from bias and inconsistencies, are 
time-consuming and expensive (Gupta et al. 2017; 
Koch et al. 2016; Kwak et al. 2011). Accordingly, 
objective measurements of physical behaviour using 
movement sensors (i.e. accelerometers and/or gyro
scopes) or video have gained interest in recent years 
(Afzali Arani, Costa, and Shihab 2021; Duncan et al. 
2018; Twomey et al. 2018). 

Microsensor technology enables solutions that can 
objectively measure aspects of physical exposure, such 
as specific activity types, postures, frequency, and 
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duration with a high level of precision and accuracy 
(Duncan et al. 2018; Seeberg et al. 2014; Stewart et al. 
2018; Twomey et al. 2018). Moreover, this methodology 
has been demonstrated to be more cost-effective than 
video-based observations (Trask et al. 2014). The litera
ture on classification methodology based on data from 
movement sensors (i.e. accelerometers and/or gyro
scopes), can be divided primarily into two groups. The 
first is rule-based, where the classification is based on a 
general understanding of the dynamics, kinematics, 
position, posture, and other descriptions of the work 
task. Several studies developing human-activity recog
nition models for the evaluation of physical activity 
have used a rule-based approach (Hendriksen et al. 
2020; Korshoj et al. 2014; Skotte et al. 2014). The second 
group is supervised machine-learning models, trained 
by data sets labelled by experts (Papagiannaki et al. 
2019; Twomey et al. 2018). These approaches can also 
be combined by considering labelled data and machine 
learning to calibrate the parameters in the mechanism- 
based methods or by using selected features instead of 
raw data in the training process of the supervised 
machine-learning models. We developed our model 
with a rule-based approach as this method is widely 
used to classify human movements, is suited for classi
fying simple cases with clear-cut definitions (Chylek 
et al. 2015), has high generalisability, and can easily be 
used in relation to other groups (Vrigkas, Nikou, and 
Kakadiaris 2015). 

Although several models for movement classifica
tion (i.e. lying, standing, walking, running) exist 
(Crowley et al. 2019; Skotte et al. 2014), few have 
been designed to classify lower-limb postures and 
movements (Burdorf et al. 2007; Ditchen et al. 2015; 
Ellegast, Hermanns, and Schiefer 2009; Hendriksen 
et al. 2020; Martin et al. 2015). Thus, a gap exists in 
quantitative exposure thresholds for the lower limb 
(Arvidsson et al. 2021) as opposed to the upper 
limb, where an exposure limit has been proposed 
(Gupta et al. 2021). Hendriksen et al. conducted a 
validation study on a model enabling classification 
of kneeling using accelerometers (Hendriksen et al. 
2020), with the sensor placed just above the tuber 
calcanei on the lower leg. In addition, the workers 
did not wear personal protective equipment (PPE). 
Placing the sensor just above the ankle would 
induce friction and restrict the ability to move the 
foot freely and be uncomfortable in workers wear
ing protective shoes with high shafts. Therefore, we 
wanted to develop a model suitable for long-term 
measurements and adapted for working popula
tions using PPE. To ensure a relevant protocol, we 

conducted several workshops with the ergonomic 
teams from four petroleum companies to gain 
insight into how work was performed, what PPE 
was commonly used, and how its use affected work 
tasks. As there were no models specifically adapted 
to working populations using PPE, we developed 
and validated a rule-based model placing the sen
sor on the lateral aspect just below the head of the 
fibula on the lower leg, thereby avoiding conflict 
with protective shoes with high shafts. This model 
is capable of classifying bilateral and unilateral 
kneeling and squatting using wireless triaxial accel
erometers in individuals wearing PPE. 

Materials and methods 

Participants 

A total of 15 healthy adults were included in this 
laboratory-based experimental study (eight males and 
seven females) with a mean age of 30 ± 5.8 years, 
height 176 ± 11.5 cm, and weight 78 ± 18.8 kg. The 
exclusion criteria for participation were: (1) physical 
disability not allowing kneeling and squatting, (2) ban
dage and/or adhesives allergy, and (3) inability to fol
low verbal instructions. 

This validation study was approved by the 
Norwegian Centre for Research Data (NSD). Oral and 
written consents were given by the participants before 
participation. All the participants were informed that 
they could withdraw from the study at any time with
out giving any reason. 

Instrumentation 

Three AX3 accelerometers (Axivity Ltd., Newcastle 
upon Tyne, UK) were used to detect the acceleration 
of different body segments. Acceleration was recorded 
triaxially with a sample frequency of 100 Hz and a 
dynamic range of ±8 G (1 G¼ 9.8 m/s2). Figure 1 shows 
the positioning of the three accelerometers: (1) 
attached just below the head of the fibula on the 
proximal and lateral aspect of the calf, (2) on the dis
tal, anterior, and medial aspects of the femur (�10 cm 
above the crest of the patella), and (3) just below the 
iliac crest of the hip. Specific software (OmGui version 
1.0.0.43, Axivity Ltd., Newcastle upon Tyne, UK) was 
used to configure the sensors and export recorded 
accelerometer data. Video for validation was recorded 
by a stationary GoPro Hero3þ Silver camera (GoPro, 
Inc., Clearview Way, San Mateo, CA, USA) with a reso
lution of 720p and a frame rate of 30 frames 
per second. 
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Protocol 

The research protocol was initiated with a procedure 
for calibrating sensor orientation and time synchron
isation. This calibration procedure began with the par
ticipants walking back and forth in a straight line 
�3 m each way before standing still for �15 s. Then 
they performed a vertical jump and stood still for 
another 15 s. This calibration sequence was repeated 
at the end of the protocol. Next, participants were 
instructed to perform the following protocol (shown 
in Figure 2):   

1. sit on a chair with legs resting on the floor 
2. sit on the chair with legs under the seat of 

the chair 
3. lie on the floor in a supine position with hip and 

knee flexion 
4. lie on the side with hip and knee flexion 
5. bilateral kneeling 
6. unilateral kneeling with right and left leg 
7. squatting 

All positions seen in Figure 2 were performed four 
times (sets), and 1 min each, with a short break of a 
few seconds standing upright between each position. 

Observations 

Video recordings of the protocol were made to valid
ate the model. The videos were annotated by one 

person marking the activities of the protocol with start 
and end points and the name of the activity. All activ
ities that were not part of the protocol were 
unmarked. An inter-rater reliability test was conducted 
by two individuals with no previous knowledge of the 
project who judged all 15 video recordings of the test 
subjects independently. The raters were asked to iden
tify kneeling and squatting according to the defini
tions provided in the Appendix. The 15 video 
recordings comprised a total of 481 observations (all 
the included positions seen in Figure 2), and a single 
score was assigned to each observation; here, a 1 was 
assigned if the observed posture was kneeling or 
squatting (either bilateral kneeling, unilateral kneeling, 
or squatting), and a 0 if the observed posture was nei
ther kneeling nor squatting but referring to any other 
posture listed in the Appendix (i.e. sitting on chair). 
Each posture was rated from start to finish. The anno
tation of the video recordings was used to investigate 
the ability of the classification models to classify kneel
ing and squatting. 

Data analysis 

Data from the three accelerometers and video record
ings with annotation were synchronised using the cus
tom-made software ActivityPresenter (AutoActive 
Research Environment: https://www.sintef.no/project 
web/autoactive/software-platform/). The classification 
model development and data analysis of the 

Figure 1. Sensor placement on: 1. lower leg, 2. thigh, and 3. hip, as well as the sensor orientation seen in all images. The arrows 
show the direction of positive acceleration with x pointing downward, y to the side, and z into the limb.  

Figure 2. Positions performed during the protocol: 1. sitting on chair, 2. sitting on chair with legs under the seat, 3. lying supine 
on the floor with hip and knee flexion, 4. lying on the side with hip and knee flexion, 5. bilateral kneeling, 6. unilateral kneeling, 
and 7. squatting.  
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synchronised data were performed using MATLABVR 

(R2018b, MathWorks Inc., Natick, MA, USA). The video 
recordings were annotated frame by frame using spe
cialised video annotation research software (Anvil 6.Ink 
2017, Augsburg, Germany) (Kipp 2012). 

Calculation of lower leg and thigh angles 
All accelerometers were virtually rotated during post- 
calibration to have the z-axis pointing forward (while 
standing upright) and the x-axis pointing downward. 
For this rotation, the calibration movements with peri
ods of walking and standing still were used. After 
post-calibration, the angles between the line of gravity 
and the downward axis (x-axis) of the lower leg 
(lower-leg inclination) and of the thigh (thigh inclin
ation) were calculated in the sagittal plane (xz-plane). 
For the thigh and lower leg, 0� refers to the upright 
position parallel to the line of gravity with the x-axis 
pointing down and the z-axis pointing forward. For 
the lower leg, 90� refers to the horizontal position par
allel to the ground with the z-axis pointing down. For 
the thigh, 90� refers to the horizontal position parallel 
to the ground with the z-axis pointing up. The classifi
cation of kneeling and squatting was performed once 
considering all sensors (left and right) where the activ
ity was classified if detected on at least one side 
(either right or left). Furthermore, the classification 
was performed once considering one side only (only 
left or right), and only if detected on the considered 
side of the body (e.g. only left). The classification limits 
were picked slightly larger than the expected values 
to account for variation in sensor positioning and leg 
rotation for different participants, as well as the pos
sible impact from the protective clothes or inclination 
of the surface the participant is kneeling/squatting on 
(not the case in this lab study). 

Classification of kneeling 
Kneeling was defined as a position with at least one 
knee touching the ground. During kneeling, the lower 
leg was close to parallel with the ground, while the 
thigh could be anywhere between resting on the calf 
up to an upright or slightly forward-tilted position. To 
classify kneeling, the idea was, therefore, to detect 
lower-leg inclinations close to parallel with the 
ground, while the thigh inclination was somewhere 
between resting on the calf up to tilting slightly for
ward. Additionally, the value of gravity in the lateral 
direction (y-axis) of the thigh was lower than ±1 G to 
distinguish kneeling from lying on the side. 

Classification of squatting 
Squatting was defined as a position where the lower 
leg was tilted forward, and the thigh was tilted back
ward with the feet on the ground. During squatting, 
the thigh was close to the lower leg. To classify squat
ting, the idea was, therefore, to detect positions where 
the lower leg was tilted forward but not parallel to 
the ground at the same time the thigh was tilted 
backward. Squatting might be mimicked by sitting 
with the lower legs bent under the chair and might 
have some positions similar to kneeling with the lower 
legs almost parallel to the ground. Additionally, the 
value of gravity in the lateral direction (Y-axis of the 
sensor) of the thigh should be lower than ±1 G to dis
tinguish squatting from lying on the side. 

Statistical analysis 

An inter-rater reliability test was performed in SPSS 
(version 26.0.0.0, IBM Corp., USA) and calculated using 
Cohen’s kappa coefficient (Cohen 1960). The Cohen’s 
kappa coefficient was calculated by assigning a single 
score to each observation (see Appendix) in the vid
eos, corresponding to 1 as bilateral kneeling, unilateral 
kneeling, and squatting, and 0 as not kneeling and 
not squatting. 

The sensitivity (percentage of correctly classified 
activity) and specificity (percentage of correctly classi
fied non-activity) were calculated for both models. 
Furthermore, the positive predictive value (PPV) was 
calculated for both kneeling and squatting using the 
following equation: PPV¼ TP/(TPþ FP), where TP is 
the number of true positive and FP is the number of 
false-positive classified activities. The sensitivity and 
specificity were evaluated using sensors on one side 
only (either left or right leg) or for the combined case 
with sensors on both sides (left and right leg). For 
kneeling, all activity not classified as kneeling was clas
sified as ‘other’, and similarly, for squatting, all activity 
not classified as squatting was classified as ‘other’. The 
classified activities and the annotated activities were 
classified for time periods of 1 s (a ‘count’). 

Results 

Observations 

A total of 570 min was observed based on 15 video 
recordings (or a total of 1140 min observed based on 
the two observations of 15 video recordings of one 
leg at a time). Table 1 shows activity counts, total 
time, and mean time in minutes spent kneeling, 
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squatting, and engaging in the other activities 
included in the protocol. 

Inter-rater agreement test 

Agreement between the two observers for bilateral 
kneeling, unilateral kneeling, and squatting was 100%. 

Classification model 

Figure 3 shows the lower-leg and thigh angles for the 
different activities (unilateral and bilateral kneeling, 
squatting, sitting on a chair, and sitting on a chair 
with the legs under the seat of the chair) for all test 
subjects. The model made classifications on windows 
of 1 s, meaning that one count corresponds to 1 s. The 
areas classified as either squatting (dotted lines) or 
kneeling (dashed lines) are indicated. The resulting 
model classifies kneeling or squatting based on 
the following. 

Kneeling: The position was classified as kneeling if 
the angle between the lower leg and the vertical axis 
was >65� and the angle between the thigh and the 
vertical axis was > � 10� and <100�. Additionally, the 
absolute value of the acceleration in the lateral direc
tion of the thigh had to be <0.85 G to avoid classify
ing lying as kneeling. 

Squatting: The position was classified as squatting if 
the angle between the lower leg and the vertical axis 
was >0 and <65�, the angle between the thigh and 
vertical axis was >80 and <150�, and the angle 
between the lower leg and vertical axis (AngleLL) and 
between the thigh and vertical axis (AngleT) were 
larger than the line: AngleLL ¼ 80:6 � 0:62 � AngleT 

[�]. Additionally, the absolute value of the acceleration 
in the lateral direction of the thigh had to be <0.85 G 
to avoid classifying lying as squatting. 

Figure 4 depicts the confusion matrices of the pre
dicted and true activities using sensors on the left or 
right leg only (1) or on both legs (2), as well as the 
overall sensitivity and specificity of the classification 
models for squatting and kneeling. The classification 
model classified most activities correctly, but for 
squatting, several ‘other’ activities were incorrectly 
classified as squatting compared to only a few that 
were incorrectly classified as kneeling. The sensitivity 
and specificity of the kneeling classifications were 
high (>0.98), while for squatting, the sensitivity was 
rather high (>0.96), but the specificity was clearly 
lower (>0.91). PPV of kneeling and squatting were 98 
and 57%, respectively. Ta
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Discussion 

This laboratory study developed and validated a rule- 
based model for classifying bilateral and unilateral 
kneeling and squatting using wireless triaxial acceler
ometers in individuals wearing PPE. The main finding 

was that the model had a very high level of accuracy 
for classifying both kneeling and squatting. 

The sensitivity and specificity for classifying kneel
ing with sensors mounted on one or both sides of the 
body were all above 0.98. For squatting, the sensitivity 

Figure 3. Thigh angle vs. lower-leg angle for different activities for sensors on the left leg (top) and the right leg (bottom). The 
area within the box with a dotted black line indicates the angles classified as squatting, and the area within the box with a 
dashed black line indicates the angles classified as kneeling.  

Figure 4. The confusion matrices for the classification models using sensors on: 1. one side of the body only and on 2. both sides 
of the body. The sensitivity is shown in the green-print numbers in the right-hand columns, and the specificity is shown in the 
green-print numbers in the lower rows for the kneeling and squatting classification models.  
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and specificity were above 0.96 and 0.91, respectively. 
Furthermore, we observed that the classification mod
els with sensors on only one leg performed slightly 
less accurate compared to the classification models 
considering sensors on both legs. Wearing sensors on 
one side of the body only could result in unilateral 
kneeling on the leg without sensors to be classified as 
something other than kneeling (e.g. sitting). Therefore, 
to improve the accuracy of the classification of kneel
ing, we advise mounting sensors on both legs. 
However, this would impose a greater burden on the 
participants. Hence, when it is impractical to measure 
both, the next best option would be mounting the 
sensors on the dominant leg of each person to 
increase the probability of correct classification. The 
dominant leg was defined as the preferred leg with 
which one would kick a ball (van Melick et al. 2017). 

Although the model was able to classify kneeling 
and squatting with a high level of precision and accur
acy, the sensitivity, specificity, and PPV of squatting 
were less accurate than kneeling. The PPV for squat
ting was 57%. Hence, there is a moderate probability 
that the classification of squatting is a false positive 
and would impact the accuracy of the results when 
implemented in real-world conditions. Therefore, we 
would emphasise that this limitation should be consid
ered when classifying squatting in a real-world work
ing environment. The low PPV can partly be explained 
by more ‘other’ activities being similar to squatting 
than the kneeling position in terms of thigh and 
lower-leg angles. ‘Sitting with legs tucked under the 
seat of the chair’, in particular, is a posture similar to 
squatting, and the classified angles for both positions 
overlap (see Figure 3). Additionally, squatting includes 
a greater variation of the position compared to kneel
ing, which increases the probability of misclassifica
tion. Moreover, the participants spent more time 
performing bilateral and unilateral kneeling (12.1 min) 
than squatting (4.1 min) (see Table 1). Consequently, 
there are fewer counts of squatting than of kneeling, 
likely reducing the sensitivity and specificity and, 
thereby, resulting in a lower positive predictive value. 

Kneeling has been validated by only a few previous 
studies. Burdorf et al. objectively measured kneeling 
among floor layers and road workers using wireless 
technology called DynaPort with multiple accelerome
ters placed in belts on the body (Burdorf et al. 2007). 
A few other studies also measured knee-straining pos
tures using wired ambulant measuring devices called 
CUELA (computer-based measurement and long-term 
analysis of stresses upon the musculoskeletal system), 
which is a belt system attached to the clothing and 

containing gyroscopes, potentiometers, and inclinome
ters (Ditchen et al. 2015; Ellegast, Hermanns, and 
Schiefer 2009). However, these studies did not calcu
late sensitivity and specificity, making them less com
pared to our study. Furthermore, attaching the sensors 
to clothes with a belt could cause undesired move
ment of the sensors relative to the skin, thus increas
ing the likelihood of misclassification. A study 
conducted by Martin et al. developed a technical sys
tem for the classification of kneeling in women of 
childbearing age using ActivPal (Martin et al. 2015). 
This study defined kneeling as being on all fours and 
reached a sensitivity and specificity of 91.4 and 98.4%, 
respectively, which is somewhat poorer than our 
model for the classification of kneeling (Martin et al. 
2015). In addition, only two sensors were used, with 
the lower leg sensor mounted on the distal end and 
anterior surface of the tibia (Martin et al. 2015), which 
would not be compatible with protective shoes with 
high shafts. 

The study most comparable to our validation study 
was conducted by Hendriksen et al. (2020). Small dif
ferences were seen when comparing the lower-leg 
angles in our model with that developed by 
Hendriksen et al. Our model classified kneeling as hav
ing the lower-leg angle >65� and the thigh angle in 
the range of � 10–100�, whereas Hendriksen et al. clas
sified kneeling when the lower-leg angle was between 
90 and 135� and the thigh angle was <90�. Also, we 
placed the sensor on the lateral aspect of the lower 
leg, just below the head of the fibula (i.e. higher up) 
to prevent unnecessary pressure and friction to partici
pants wearing protective shoes with high shafts 
(Hendriksen et al. 2020). Furthermore, the participants 
in our study wore a protective suit with knee pads. 
The thickness of the knee pads used in the protective 
suit could have an impact on the angle of the lower 
leg and can explain why we have chosen a lower limit 
of the lower-leg angle and a higher angle for the 
thigh. However, this was not measured and must not 
be interpreted as conclusive. 

This validation study was performed in a laboratory 
setting under controlled conditions, and the sensitivity 
and specificity would likely be lower in real-world con
ditions and long experiments due to, e.g. unpredict
able behaviour of the participants or drift in time 
between sensors. Based on the domain competence 
available in our research group and industrial partner, 
the postures included in the protocol were carefully 
selected as relevant positions that could possibly be 
misclassified as kneeling or squatting (see Figure 2). 
We could have chosen to include more seldom used 
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and easily detectable postures (such as standing with 
one leg on the seat of a chair or climbing a ladder) 
that would have increased the probability of correct 
classification. Still, we believe that the present model 
can accurately classify most cases of kneeling and 
squatting. However, this must be further verified in a 
study with real-world conditions. 

The classification of transitions between activities 
was not performed in this study as our model was 
aimed at quantifying long-term measurements of 
occupational kneeling and squatting since long dura
tions in these postures are associated with musculo
skeletal disorders and injuries. Additionally, the AX3 
sensors do not have an internal time synchronisation 
between each sensor. The sensors may, therefore, drift 
over time, and since transitions between activities are 
of short duration, it might not be possible to classify 
them with the current sensor setup. Nevertheless, to 
some extent, the drift in time could be considered by 
conducting a reference movement (i.e. vertical jump 
in the morning or before initiating a work task) for 
time re-synchronisation, regularly, and to correlate and 
interpolate the different signals in the post-processing 
to allow transitions to be classified. However, in long- 
term measurements, not knowing the behaviour of 
the participants, including controlling reference move
ments are challenging as the participants need to 
remember and mark when it’s conducted without 
supervision. The extra burden on the participant 
would likely affect the feasibility of the study. 
Additionally, the probability of inaccuracy would still 
be high as the drift over time is not necessarily linear. 
To perform reference movements would not be 
applicable to an unsupervised field study with several 
days of 24/7 monitoring, which is the intended usage 
for this classification model. Furthermore, there is cur
rently no sensor system that provides adequate auto
matic time synchronisation for continuous 24/7 
measurements with sufficient battery capacity for 
measurements over several days. 

Our model was developed using rule-based model
ling for the classification of kneeling and squatting as 
these positions seem to be more suitable for use 
when handling less-complex information and clear-cut 
definitions (Chylek et al. 2015; Vrigkas, Nikou, and 
Kakadiaris 2015). However, different methods in 
human-activity recognition exist, and each has 
strengths and limitations. Machine-learning methods 
have advanced in recent years and become more 
widespread in human-activity recognition (Halilaj et al. 
2018; Sanhudo et al. 2021). One reason for not using 
supervised machine-learning models in the 

development of our model is that this approach 
demands a great amount of labelled training data for 
robust classification. Therefore, using this approach 
can be more tedious and resource-intensive. 
Moreover, machine-learning models randomly make 
decisions, which could give different results using the 
same data. This is easier to control when using a sim
pler rule-based model where specific cut-off values 
can be set. In addition, a common problem with 
machine learning is that the algorithm is either too 
flexible or too complex, struggling with differentiating 
between noise and the signal (Zhang, Ballas, and 
Pineau 2018) and, thereby, increasing the risk of 
underfitting or overfitting the data (Roelofs et al. 
2019). Consequently, such models may lack the ability 
to generalise. They perform well on training data with 
known subjects but less well on new data (Halilaj 
et al. 2018). Rule-based models, on the other hand, do 
not require large amounts of training data and can 
easily be generalised to new, unseen data sets and 
subjects (Vrigkas, Nikou, and Kakadiaris 2015). This 
approach uses a set of rules (here, leg angles) to clas
sify different activities, providing the model with a 
high level of accuracy in the classification of the 
respective positions. Additionally, rule-based models 
are much easier to build and verify compared to 
machine-learning models. 

Limitations 

The lack of time synchronisation due to possible drift 
between the sensors is a limitation in this study, as 
transitions cannot be accurately classified, which 
increases the probability of misclassification. However, 
sensor and battery technology are improving rapidly 
and are becoming more efficient. A consequence is 
that future movement sensors will require less power 
and batteries will become smaller with 
enhanced capacity. 

Although a greater age span would most likely 
have influenced the firmness of the skin, adipose tis
sue, and muscle mass, we argue that this would not 
have greatly affected the results as the sensors were 
attached to the skin with medical tape to prevent the 
sensor from moving freely on the body. A large 
amount of adipose tissue or muscle mass could influ
ence some movement of the sensors. However, this 
would not have been several degrees as the sensors 
were fixed to the skin with medical tape and not 
attached directly to clothing. The rather small number 
of participants can be considered a limitation as we 
do not know how well the model will perform on new 
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data. However, the rule-based model is expected to 
be robust and generalisable, and the lab tests were 
performed with PPE to simulate real-world working 
conditions more closely. 

Conclusion 

Using wireless triaxial accelerometers, this study devel
oped and validated a model with high sensitivity and 
specificity for the classification of kneeling and squat
ting in workers wearing personal protective equipment. 
If proven to perform well in real-world conditions, the 
cost-efficiency of this method makes it suitable for 
application in epidemiological studies with large sam
ple sizes. Furthermore, the implementation of this 
model in workplace studies has the potential to contrib
ute to increased knowledge of physical work demands. 
Therefore, we encourage future researchers to apply 
the model and develop guidance for exposure thresh
olds in various working populations, as a dose–response 
relationship with occupational kneeling and squatting 
and knee disorders and injuries is currently unknown. 
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Appendix  

Definition of activities 
Activity Description  

Bilateral kneeling The movement is initiated from a standing position with a squat or a 
lunge. The body is then supported by both knees in front and the 
toes in back or a combination of the front side of the foot and the 
front side of the lower legs resting against the surface. The angle 
between the thigh and the lower legs can be close to 90� or with the 
hamstrings and buttocks resting against the calves, depending on 
what the individual prefers. After staying in the position for �1 min, 
the person rises, ending in a standing position. 

Unilateral kneeling One leg is positioned forward with the foot flat on the ground, and the 
other leg is positioned behind while descending towards the ground. 
When fully descended, the person has his/her right or left leg in front 
with the knee bent, while the other leg is positioned behind and 
resting on the ground, ending in a lunge position. After staying in the 
position for �1 min, the body weight is distributed over the leg in 
front as the person rises to an upright position while taking a step 
forward or backward with the leg resting on the ground and ending in 
a standing position. 

Squatting The person is sitting in a squatting position below 90� knee flexion with 
an upright or crouched torso. The body weight is placed over the 
forefoot with the heels elevated above the ground or with the body 
weight distributed over the entire foot with the soles resting on the 
surface. The feet are nearly parallel to each other in a squatting 
position. After staying in the position for �1 min, the person rises, 
ending in a standing position. 

Sitting When the person’s buttocks are on a chair’s seat, any other object or 
floor with the upper body in a relatively upright position. After staying 
in the position for �1 min, the person rises, ending in a 
standing position. 

Sitting with legs under the seat of the chair When the person is sitting on the chair with his/her legs under the seat 
of the chair, achieving an angle >90� . After staying in the position for 
�1 min, the person rises, ending in a standing position. 

Lying supine on the ground with a hip and knee flexion The person is standing in an upright position, then descends to the 
ground until he/she is in a supine position. Then the person bends 
his/her knees and hips while keeping both feet on the ground. After 
staying in the position for �1 min, the person rises, ending in a 
standing position. 

Lying on the side on the ground with hip and knee flexion The person is standing in an upright position, then descends to the 
surface and lies down on one side, supporting the body with the 
elbow or arm while keeping the hips and knees bent. After staying in 
the position for 1 min, the person rises, ending in a standing position.  
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