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Executive Summary

The research on fixed-wing vertical take-off and landing drones (VTOL) is growing rapidly, with

an increasing focus on agile control systems and cost-reducing measures. This thesis aims to

contribute to this research by presenting various sensorless control schemes that makes it pos-

sible to lock the propellers of a fixed-wing drone in order to prevent them from being damaged

during takeoff and landings and to achieve better aerodynamic properties during flight to re-

duce energy expenditure.

With the aim of developing a sensorless control system to lock the drone propellers into a fixed

position, a simulation environment was created using MATLAB’s Simulink where a permanent

magnet synchronous motor designed by Alva Industries could be simulated. By using a control

system that was first developed in the specialization project, various estimation methods were

implemented in the simulation environment to make the sensorless control system meet the

requirements defined in the thesis. The implemented estimation methods were based on non-

linear observers, high frequency current injections, stator mounted Hall sensors and Kalman

filters which was used as feedback to the control system in an effort to replace the need of en-

coders and in that way contribute to reduction of system costs.

After simulating and optimizing the control system using different estimation methods, it was

found that only two of them gave satisfactory results. These were the ones based on the nonlin-

ear observers and the Extended Kalman filter coupled with Hall sensors. By using the nonlinear

observers as feedback, which performs poorly at low speeds, the propeller was magnetically

locked into position by applying a fixed voltage to the stator windings. This method has its lim-

itations as it is based on open loop control and therefore cannot guarantee that the propeller is

locked into the desired position. On the other hand, the method involving the Extended Kalman

filter coupled with Hall sensors is based on closed loop control and can to a greater extent ensure

that the propeller is locked into the desired position. In addition, a commonly used method for

estimating the rotor position at low speeds using high frequency current injections was found

unsuitable for the motor designed by Alva due to small motor inductances.

In conclusion, two different methods were found that can lock the propeller into a fixed po-

sition without the use of an encoder. Nevertheless, only one of them can guarantee that the

propeller is locked and remains locked in the correct position. For further research, it is pro-

posed to verify the simulated results practically and conduct an energy analysis of the different

control methods.
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Chapter 1

Introduction

1.1 Background and motivation

Over the last decade, the use of drones has increased significantly in both industrial and private

use. In order to utilize drones to the fullest, the selection of motors and control systems are of

great importance. Permanent magnet synchronous motors (PMSM) is a widely used option for

driving the propellers in drones due to their high efficiency and torque-to-weight ratio, and this

thesis will explore the possibilities of simulating and controlling such a motor while driving a

propeller.

Figure 1.1: Illustration of a fixed-wing drone during horizontal flight operations

1
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In addition to achieving precise motor control, it is also desired that the propellers not in use are

able to lock themselves into fixed positions in order to improve the aerodynamics of the drone

so that it runs more efficiently and in that way extend the range of the drone. Such a scenario is

illustrated in figure 1.1 which shows a fixed-wing drone during horizontal flight where only the

pushing propeller is being used. It can be seen that the drone will have the least air resistance

when the lifting propellers are aligned in the same direction as the relative air stream and it is

therefore desired to lock the lifting propellers in this orientation. Additionally, such a locking

mechanism can be used as an equipment protective measure for the pushing propeller during

take-off and landings in order to prevent the propeller from hitting any surroundings.

Usually when performing motor control for PMSMs, it is common to use an encoder to measure

the speed and position of the rotor/propeller. However, the use of such measuring instruments

increases system costs and may not always be available for use due to limited space and/or

harsh operating environments. As a result of this, the thesis will also explore the possibilities

of performing motor control using estimation methods such as nonlinear observers, high fre-

quency current injections, extended Kalman filter and Hall sensors in an effort to replace the

need of an encoder.

1.2 Literature study

In this section it is done a brief study of existing estimation methods of the rotor shaft-position,

while also discussing the suitability of these methods in relation to the thesis. This study, along

with the experience from the preliminary project thesis [1], will form the basis for the work that

has been carried out over the semester.

Firstly, the article Position Sensorless Permanent Magnet Synchronous Machine Drives—A Re-

view [24] was reviewed in order to get an overview of the different sensorless control schemes

that have been developed over the years. From this article it was found that model-based es-

timators using the principle of back electromotive force work well at medium to high speeds,

where the article by Ortega et.al [14] proposed a suitable model-based observer for our system.

However, such estimators depend on the rotational speed of the rotor and will therefore work

poorly for position control which will be used to lock the propellers of the drone. As a result,

other methods involving high frequency current injections and Kalman filters were explored in

an attempt to find estimators that can operate at low speeds. From this, a high frequency current

injection-based method proposed by Qiao et.al [25] was found suitable for the surface-mounted

PMSM simulated in this thesis. Additionally, the articles [7] and [12] proposed methods of im-

plementing a Kalman filter which could be used to estimate the states of our system.
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1.3 Objectives

The main objectives of this thesis are:

1. Acquire a fully functional model of a PMSM in Simulink

2. Develop a robust control system that allows for both velocity- and position control of the

PMSM while using encoder feedback

3. Implement sensorless control where the encoder is replaced by estimators of the rotor-

shaft speed and position without comprising the performance of the control system

4. Use the sensorless control system to lock the drone propeller in a fixed position when not

being operated

1.4 Approach

The scientific approach in this thesis is to develop a simulation environment that allows for

experimentation using different control methods and motor drives. In coordination with Alva

Industries, it was desired to design the simulation environment for the PMSM as closely as pos-

sible to one of Alva Industries’ own motors. This was done by using specified motor parameters

supplied by Alva Industries together with knowledge of the load characteristics of a propeller.

1.5 Contributions

The main contribution of this thesis is to develop a simulation environment for control of PMSMs

such that advanced testing can be simulated before it is performed practically. Additionally, the

thesis contributes to the research of controlling drones as it explores various control methods

that can have a cost-reducing effect without compromising performance. Finally, the thesis

contributes to the research dedicated to extending the flight time of drones.





Chapter 2

Theoretical background

Chapter 2 introduces the different components of the system and describes key concepts needed

to understand the work that has been carried out in this thesis.

2.1 Linear state-space representation

The dynamics of a linear and time-invariant system are described in state-space representation

as:

ẋ(t ) = Ax(t )+Bu(t ) (2.1a)

y(t ) = Cx(t ) (2.1b)

where x(t ) ϵ Rn are the states, u(t ) ϵ Rp are the control inputs and y(t ) ϵ Rq are the outputs of the

model. The state matrix A ϵ Rnxn , input matrix B ϵ Rnxp and output matrix C ϵ Rqxn are constant

matrices [4].

2.2 Nonlinear state-space representation

The dynamics of a state-space model of a nonlinear system are described by:

ẋ(t ) = f(x,u) (2.2a)

y(t ) = g(x,u) (2.2b)

where f ϵ Rn and g ϵ Rl are vector functions describing the nonlinear model [4].

5
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2.3 Discretization of continuous LTI-systems

2.3.1 Exact discretization

In order to numerically analyze continuous LTI-state space systems, it is necessary to transform

the system from a continuous-time state variable description into a discrete-time state variable

description.

The following continuous-time LTI-state space system from section 2.1:

ẋ(t ) = Ax(t )+Bu(t ) (2.3a)

y(t ) = Cx(t ) (2.3b)

can be discretized, assuming zero-order hold for the input u, into:

x[k +1] = Adx[k]+Bdu[k] (2.4a)

y[k] = Cdx[k] (2.4b)

where,

Ad = eAT (2.5a)

Bd =
(∫ T

τ=0
eAτdτ

)
B (2.5b)

Cd = C (2.5c)

and T is the fundamental sample time of the discretization [4].

2.3.2 Euler discretization

Exact discretization may sometimes be difficult to implement due to the heavy matrix exponen-

tial and integral operations involved. It is easier to calculate an approximate discrete model,

which can be accurate for small enough time steps T . An example of such an approximate dis-

crete model is found by using Euler’s forward method:

ẋ = x[k +1]−x[k]

T
(2.6)
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Hence, the continuous-time state equation is approximately equal to:

ẋ = Ax[k]+Bu[k] (2.7)

such that the discretized system can be expressed as:

x[k +1] = (I+AT )x[k]+T Bu[k] (2.8)

This is known as the discretized system using Euler discretization. Expressed in the discrete form

from equation 2.4, the system matrices is now defined as [4]:

Ad = (I+AT ) (2.9a)

Bd = T B (2.9b)

Cd = C (2.9c)
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2.4 The Kalman Filter

The Kalman filter is an algorithm that uses measurements observed over time, including ran-

dom noise and other inaccuracies, and produces estimates of unknown variables that tend to

be more accurate than those based on a single measurement alone. Kalman filters have been

demonstrating its usefulness in various applications over the years due to its relatively simple

form and small computational cost, and remains as one of the most powerful state estimation

algorithms in present-day. The original Kalman filter was designed for linear dynamical systems

where the process and measurement noise is assumed to be white, but several extensions of the

filter has been developed since such as the Extended Kalman filter (EKF) and the Unscented

Kalman filter (UKF) which are designed to work on nonlinear systems [12].

2.4.1 Problem definition

The Kalman filter is a recursive estimator, meaning that only the estimated state from the previ-

ous time step and the current measurement are needed to compute the estimate for the current

state. The estimated states of the discrete-time Kalman filter is based on linear dynamical sys-

tems in state space format, and the process model defines the evolution of the states from time

tk−1 to time tk as:

xk = Fxk−1 +Buk +wk (2.10)

where F is the state transition matrix applied to the previous state vector xk−1, B is the control-

input matrix applied to the control vector uk , and wk is the process noise vector that is assumed

to be zero-mean Gaussian with the covariance Q , i.e., wk ∼N (0, Q).

The process model is paired with the measurement model that describes the relationship be-

tween the states and the measurements at the current time step tk as:

zk = Hxk +vk (2.11)

where zk is the measurement vector, H is the measurement matrix and vk is the measurement

noise vector that is assumed to be zero-mean Gaussian with the covariance R , i.e., vk ∼N (0, R).

The role of the Kalman filter is to provide an estimate of xk at time tk , given the initial estimate

of x0, the series of measurement, z1,z2, . . . ,zk , and the information of the system described by

F, B, H, Q and R. Although the covariance matrices are supposed to reflect the statistics of the

noises, the true statistics of the noises is not known or not Gaussian in many practical applica-

tions. Therefore, Q and R are usually used as tuning parameters in order to achieve the desired

performance of the filter [12].
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2.4.2 Kalman Filter Algorithm

The Kalman filter consists of two stages: prediction and update. The algorithm of the Kalman

filter is summarized as follows [12]:

Prediction step:

x̂−
k = Fx̂+

k−1 +Buk (2.12a)

P−
k = FP+

k−1FT +Q (2.12b)

Update step:

ỹk = zk −Hx̂−
k (2.13a)

Kk = Pk
−HT(R+HP−

k HT)−1 (2.13b)

x̂+
k = x̂−

k +Kkỹk (2.13c)

P+
k = (I−KkH)P−

k (2.13d)

In the above equations, the hat operator means an estimate of a variable e.g. x̂ is an estimate of

x. The superscripts – and + denote predicted (prior) and updated (posterior) estimates, respec-

tively. The predicted state estimate is evolved from the updated previous state estimate through

the state-space model. The new term Pk is called the state error covariance-matrix and it esti-

mates the uncertainty associated with the estimated state. The state covariance matrix consists

of the variances associated with each of the state estimates and the correlation between the er-

rors in the state estimates. One can observe that the error covariance becomes larger in the

prediction step due to the summation of Q. In practical terms, this means that the Kalman filter

becomes more uncertain of the state estimate after the prediction step because of the process

noise in the system.

In the update stage, the measurement residual ỹk is calculated first. The measurement residual

is the difference between the true measurement zk and the estimated measurement Hx̂−
k . The

residual ỹk is then multiplied by the Kalman gain Kk to provide a correction to the predicted

estimate. After the updated state estimate is obtained, the Kalman filter calculates the updated

error covariance P+
k which will be used in the next time step. One can see that the error covari-

ance becomes smaller in the update step, meaning that the filter is more certain of the state

estimate after measurements have been utilized.

It is important to note that the Kalman filter is derived based on the assumption that the process

and measurement models are linear, meaning that they can be expressed with the matrices F,

B, and H, and the process and measurement noise are Gaussian. Hence, a Kalman filter only

provides optimal estimate if the assumptions are satisfied [12].
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2.5 The Extended Kalman Filter

Suppose you have a nonlinear dynamic system where you are not able to define either the pro-

cess model or measurement model using state-space representation as in 2.10 and 2.11. From

the last section it is known that the original Kalman filter is designed for linear systems, mean-

ing that a nonlinear system has to be linearized around an operating point before a Kalman filter

can be applied. These linearizations become increasingly inaccurate once the system leaves the

linearization point, ultimately rendering the Kalman filter dysfunctional as the prediction step

will contribute to errors because of an inaccurate system model. The Extended Kalman filter

provides us an efficient way of dealing with such nonlinear systems [12].

The extended Kalman filter can be viewed as a nonlinear version of the original Kalman filter

that linearizes the nonlinear model about a current estimate. Suppose we have the following

models for state transition and measurement:

xk = f(xk−1,uk)+wk (2.14)

zk = h(xk−1)+vk (2.15)

where f is the function of the previous state xk−1 and the control input uk that provides the

current state xk. h is the measurement function that relates the current state xk to the measure-

ment zk. wk and vk are Gaussian noises for the process model and the measurement model with

covariance Q and R, respectively.

Extended Kalman Filter Algoritm

In order to linearize the nonlinear model it is necessary to calculate the Jacobian matrix, a first-

order partial derivative of a vector function with respect to a vector, of the nonlinear model in

each time step as:

Fk−1 = ∂f
∂x

∣∣∣
x̂+k−1,uk

(2.16)

Hk = ∂h
∂x

∣∣∣
x̂−k

(2.17)

In doing so, the Jacobian matrix evaluated at the current estimate becomes the state transition

matrix in the Extended Kalman filter. After the state transition matrix is defined, the Extended

Kalman filter algorithm becomes very similar to that of the original Kalman filter.
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Prediction step:

x̂−
k = f(x̃+

k−1,uk) (2.18a)

P−
k = Fk−1P+

k−1FT
k−1 +Q (2.18b)

Update step:

ỹk = zk −h(x̂−
k ) (2.19a)

Kk = Pk
−HT

k(R+HkP−
k HT

k)−1 (2.19b)

x̂+
k = x̂−

k +Kkỹk (2.19c)

P+
k = (I−KkHk)P−

k (2.19d)

The main difference from the Kalman filter is that the Extended Kalman filter obtains the pre-

dicted state estimate and predicted measurement by the nonlinear functions f(xk−1,uk) and

h(xk), respectively. Additionally, the state transition matrix Fk−1 is evaluated at every time step.

For good EKF performance the choice of the covariance matrices Q, R and P0 is crucial. Co-

variance matrices give the statistical description of the model inaccuracy. Matrix Q represents

the statistical description of the model, matrix R indicates the magnitude of measurement noise,

matrix P0 contains the information of variances at the initial conditions and mainly affects the

convergence rate of the EKF in the transient condition. Since these are usually unknown, in

most cases the EKF matrices are designed and tuned by trial-and-error procedures [7].
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2.6 Permanent Magnet Synchronous Motor

A Permanent Magnet Synchronous Motor is a brushless alternating current (AC) synchronous

motor whose field excitation is provided by permanent magnets, and has a sinusoidal back elec-

tromotive force (EMF). PMSMs are typically used in applications requiring high-performance

motor drives due to their high efficiency and torque-to-weight ratio, and is therefore suitable

for driving the propellers of a fixed-wing drone. Given that the rotor is always magnetized due

to the permanent magnets, it is only needed to generate a rotating magnetic field in the stator

to be able to set the rotor in motion. This is achieved by applying a three phase voltage to the

three phase winded stator, where each phase is shifted 120 degrees from another. By applying

different voltages to each winding over time, it is possible to induce a rotating magnetic field in

which the permanent magnetic poles of the rotor locks onto, ultimately producing torque and

making the rotor rotate at the synchronous speed of the stator magnetic field [9].

PMSMs comes in different variations depending on how they are constructed. The two main

variants are divided into: surface-mounted PMSM (SPMSM) and interior-mounted PMSM (IPMSM).

Figure 2.1: Cross-section of PMSM variations with inspiration from D. Ocen [19]

The difference between the two variations are related to how the permanent magnets are fixed

to the rotor. SPMSMs have magnets mounted on the surface of the rotor, while IPMSMs have

magnets embedded into the rotor as seen in figure 2.1. As a result of this, SPMSMs have a uni-

form air gap flux density making the motor non-salient, meaning that the motor inductances

do not change depending on the rotor position. IPMSMs does not have a uniform air gap flux,

eventually making the motor salient and giving rise to phenomena such as position dependent

motor inductances and reluctance torque [9]. The motor which is simulated in this thesis is a

SPMSM.
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Power Circuit

The power circuit of the PMSM in this thesis consists of a battery used as power source and a

three phased inverter that transforms the supply voltage from DC into AC.

Figure 2.2: Illustration of a power circuit used in drones with permission from MDPI [13]

The three phase Voltage Source Inverter (VSI) used in this thesis consists of six transistors placed

in a two-level topology as showed in figure 2.2 - with the goal of producing a three phased sinu-

soidal voltage where the frequency and amplitude is adjustable.

The inverter uses Space Vector Modulation (SVM) to emulate the three phase sinusoidal volt-

age. SVM is chosen over sinusoidal pulse width modulation (SPWM) due to its more efficient

use of the DC-link voltage available from the battery and less harmonic distortion [11]. The si-

nusoidal voltages the inverter is meant to emulate are supplied from the control system shown

in figure 2.4, where SVM is used in the PWM generator in order to determine the duty cycles of

each transistor in the inverter.
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2.6.1 Modelling PMSMs in Stationary abc-Reference Frame

The dynamics of PMSMs in the abc-reference frame can be found by inspecting the stator wind-

ings of the motor. Throughout the derivation of the mathematical model, the following assump-

tions are made: the three-phase system is balanced (sum of voltages and currents in the star

point are always zero), magnetic saturation is neglected, the induced EMF is sinusoidal and

eddy currents (currents due to change in magnetic fields) and hysteresis losses (losses due to

reversal of magnetism in a ferromagnetic material) are negligible [10].

By using Kirchoff’s circuit laws, it is possible to express the voltage balances of the stator by

the following equations:

va = Rsia + d

d t
ψa (2.20a)

vb = Rsib +
d

d t
ψb (2.20b)

vc = Rsic + d

d t
ψc (2.20c)

where vabc is the voltage across each winding, iabc the current in each winding and d
d tψabc is the

rate of change for the magnetic flux in each stator winding. In vector form this can be expressed

as:

vabc = Rsiabc +
d

d t
Ψabc (2.21)

The three stator windings and the permanent magnet both contribute to the total flux linkage

in each winding by:

Ψabc = Lsiabc +λs (2.22)

where Ls is the self and mutual inductances of the stator and λs is the flux through the stator

windings due to the permanent magnet. The permanent magnet fluxes λs linking the stator

windings are defined as:

λs =

 λm cos(θe )

λm cos(θe −2π/3)

λm cos(θe +2π/3)

 (2.23)

where λm is the permanent flux linkage and θe is the angle of the magnetic axis of the rotor in

reference to the α-axis. The inductance matrix, Ls, is expressed as:

Ls =

Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc

 (2.24)
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Laa = Ls +Lm cos(2θe )

Lbb = Ls +Lm cos(2(θe −2π/3))

Lcc = Ls +Lm cos(2(θe +2π/3))

Lab = Lba =−Ms −Lm cos(2(θe +π/6))

Lbc = Lcb =−Ms −Lm cos(2(θe +π/6−2π/3))

Lac = Lca =−Ms −Lm cos(2(θe +π/6+2π/3))

where θe is the electrical rotor position, Ls is the stator self-inductance per phase, Lm is the

stator inductance fluctation and Ms is the stator average mutual inductance [16].

Electro-mechanical relation

The mathematical model of the system can be completed by the electro-mechanical relation

expressed by the torque equilibrium:

J
d

d t
ωm = τm −Bωm −τL (2.25)

where J is the load inertia, ωm is the rotor speed, τm is the motor generated torque, B is the

viscous coefficient of the load and τL is the load torque.

The relation between the electrical angle of the rotor and the rotor speed is defined as:

d

d t
θe = Nωm (2.26)

where θe is the electrical angle of the rotor, ωm is the rotor speed and N is the number of pole

pairs in the PMSM.
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2.6.2 Modelling PMSMs in Synchronous dq-Reference Frame

So far it has been established a set of equations which describe the dynamics of PMSMs. How-

ever, these equations depend on the rotor position and makes the system quite involved to work

with. If the system is transformed into a synchronous reference frame rotating with the mag-

netic axis of the rotor, all terms that involve the time-dependent rotor position (θe ) will disap-

pear. The transformation which enables this is called the Clarke-Park Transformation [18].

Sdq0 = TSabc (2.27)

The Clarke-Park transform T is used to transform voltage, current, etc. from a stationary abc-

reference frame into a rotating dq-reference frame. Here, S represents voltage, current, etc. in

each of the respective reference frames. The direct-quadrature-reference frame is fixed to θe

such that the d-axis is always aligned with the north pole of the rotor permanent magnet, while

the q-axis remains orthogonal to the d-axis. The Clarke-Park transformation itself is defined as:

T = 2

3

 cos(θe ) cos(θe −2π/3) cos(θe +2π/3)

−sin(θe ) −sin(θe −2π/3) −sin(θe +2π/3)

1/2 1/2 1/2

 (2.28)

where θe is the angle of the magnetic axis relative to the a-axis of the stator. By applying the

Clarke-Park transformation to the equations from 2.20, the dynamic model of the motor is ex-

pressed in the dq-reference frame. The set of equations then becomes:

vd = Rsid +Ld
d

d t
id −Nωmiq Lq (2.29a)

vq = Rsiq +Lq
d

d t
iq +Nωm(id Ld +λm) (2.29b)

τm = 3

2
N (iqλm + id iq (Ld −Lq )) (2.29c)

J
d

d t
ωm = τm −Bωm −τL (2.30)

where,

Ld = Ls +Ms +3/2Lm is the stator d-axis inductance.

Lq = Ls +Ms −3/2Lm is the stator q-axis inductance.

ωm is the mechanical rotational speed.

N is the number of rotor permanent magnet pole pairs.

τm is the rotor torque.

λm is the permanent flux linkage.
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Lastly, it is desired to transform the system into a nonlinear state-space representation as de-

scribed in section 2.2:

d

d t
id =−Rs

Ld
id + Lq

Ld
Nωmiq + 1

Ld
vd (2.31a)

d

d t
iq =−Rs

Lq
iq − Ld

Lq
Nωmid − λm Nωr

Lq
+ 1

Lq
vq (2.31b)

d

d t
ωm = 1

J

(
3

2
N

(
iqλm + id iq (Ld −Lq )

)−Dmωm −TL

)
(2.31c)

d

d t
θe = Nωm (2.31d)

where θe is the rotor electrical angle, x(t ) =
[

id iq ωm θe

]T
is the state vector and

u(t ) =
[

vd vq

]T
is the input vector.
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2.7 Field-Oriented Control

Field-Oriented Control (FOC), also known as vector control, is a technique used to control PM

motors and AC induction motors. Field-oriented control remains today as one of the most com-

monly used control methods of PM motors due to its efficiency and smooth operations across

the wide speed range, which is why it will be used to control the PMSM in this thesis. Other

methods that also could have been used in order to control the PMSM include direct torque

control (DTC) or voltage-frequency scalar control (V/f). These control methods can be easy to

implement, but have the disadvantages of large torque ripples and poor dynamic performance,

respectively [8].

Figure 2.3: Cross section of a PMSM during FOC with permission from Texas Instruments [6]

In simple terms, field-oriented control is a motor control technique where the system is trying

to orient the stator flux vector to a specific angle relative to the rotor flux vector, as shown in fig-

ure 2.3. The optimal angle of orientation depends upon what characteristic of the motor needs

to be maximized. The most common use of field-oriented control is to maximize the motor’s

torque per amp. This is achieved when the stator flux vector is 90 degrees shifted away from the

rotor flux vector. As the stator flux vector is determined by the motor currents, one can simply

control the torque of the motor by controlling the motor currents [6].

In order to make use of field-oriented control, it is necessary to know the position of the mag-

netic axis of the rotor in order to know which direction the stator flux vector should be pointed.

This can be found in different ways, two of which will be explored in this thesis:

- Using an encoder/Hall sensors to measure the position of the rotor

- Using an observer in order to estimate the position of the rotor
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Figure 2.4: Block diagram of a FOC system with inspiration from MathWorks [15]

Figure 2.4 gives an insight to what a field-oriented control system might look like. The control

system (blue) consists mainly of three parts: signal processing, the control loop and the PWM-

generator. As seen in the figure above, there are two controllers in the control loop: the current

controller and the speed controller. The current controller is considered as the inner control loop

and uses two PI-controllers to control both motor torque iq and motor flux id . The speed con-

troller is considered as the outer control loop and uses a PI-controller to control the motor speed.

The physical system (grey) consists of a battery which supplies a three phase power inverter

with DC voltage where the inverter transform the voltage from DC to AC. The inverter is con-

trolled by the control system which regulates the power flow to the PMSM. The measurements

that are taken from the physical system and used in the control system are: the motor currents,

motor voltage and rotor position (only when encoder feedback is being used).
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Signal processing and dq-transformations

Figure 2.5: Transformations related to the control system with permission from Texas Instru-
ments [2]

With the raw measurements taken from the physical system shown in figure 2.4, it is necessary to

transform the current measurements into another reference frame before any form of control is

implemented. It is desired that the stator flux vector is shifted 90 degrees from the magnetic axis

of the rotor if one wants to maximize torque per amps. However, the measured motor currents

are sinusoidal making it near impossible for a simple PI-controller to keep up with a sinusiodal

reference. The solution to this problem is to transform the measured currents from the station-

ary abc-reference frame to the rotationary dq-reference frame where the magnetic axis of the

rotor is the rotating reference as discussed in section 2.6.2. It turns out that in the dq-reference

frame, the components of the stator flux vector remain constant, making it much simpler for a

PI-controller to keep track of a reference.

Once the control process is completed, the output voltage from the controller is transformed

back to the stationary abc-reference frame before it is applied to the motor via the inverter [21].

The field-oriented control process is visualized in figure 2.5.
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Clarke-transformation

The transformations needed in order to transform the sinusoidal currents into constant DC-

components are the Clarke- and Park-transformations. The Clarke-transformation transforms

the three phase currents into two orthogonal components.

The α and β-components of the Clarke-transformation is given by:

iα = ia (2.32a)

iβ =
1p
3

ia + 2p
3

ib (2.32b)

and the inverse Clarke-transformation is given by:

va = vα (2.33a)

vb =−1

2
vα+

p
3

2
vβ (2.33b)

vc =−1

2
vα−

p
3

2
vβ (2.33c)

Park-transformation

The Park-transformation transforms the two orthogonal current components from the Clarke-

transformation into two new orthogonal components, d and q. The interesting part is that the

d-component is always aligned with the magnetic axis of the rotor. Since the q-component of

the current is orthogonal to the d-axis, it becomes directly proportional to the induced motor

torque. In other words, if one controls the magnitude of the q-current component then one

controls the motor torque. Since the d-component does not contribute to torque, it is usually

kept at zero unless it is desired to increase the motor speed above its design rating.

The d- and q-components of the Park-transformation is given by:

id = iα cosθe + iβ sinθe (2.34a)

iq =−iα sinθe + iβ cosθe (2.34b)

and the inverse Park-transformation is given by:

vα = vd cosθe − vq sinθe (2.35a)

vβ = vq cosθe + vd sinθe (2.35b)

where θe is the angle between the magnetic axis of the rotor and the a-axis.
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2.8 Incremental encoder

An encoder is a sensor which is mounted on the shaft of the rotor and gives information about

the position of the rotor axis. The working principle of an incremental optical encoder consists

of a disc mounted on the rotor-shaft of the motor with a given number of slits in it. On one side

of the disc there is a light source, and on the other side light-receiving elements that produce

pulses every time they detect light. It is common to use three light detecting elements. Two

of the elements, namely A and B, are shifted by 90◦ and used to determine the direction of the

rotation. This is done by inspecting if A lags B or if A leads B. The third element, Z, is used as

an initialisation pulse and occurs once every revolution. The pulses are then used to trigger a

counter which can be used to extract information about the position of the rotor axis. If A leads

B, the counter increases and if A lags B, the counter decreases.

The angular position of the rotor-axis can be expressed as:

θm = 2π
Pc

Pt
(2.36)

where Pc is the number of pulses counted and Pt is the total number of slits.

There exists encoders using other working principles such as magnetic or absolute encoders.

Absolute encoders have memory related to each slit such that it measures the absolute angle

of the rotor-axis directly. Incremental encoders only measure the relative movement of the ro-

tor shaft in regard to the start up position, meaning that incremental encoders have to use an

external signal or the Z-pulse in order to measure the absolute angle of the rotor-axis [3].
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2.9 Hall effect sensor

A Hall effect sensor detects the presence and magnitude of magnetic fields by using the Hall

effect. These devices have a range of applications, with Hall effect sensors often used in au-

tomation systems to detect position, distance and speed. The working principle of Hall effect

sensors is based on applying a constant current through a semiconductor. In the presence of

a magnetic field perpendicular to the direction of the current, the charge carriers are deflected

by the Lorentz force, producing a difference in electric potential between the two sides of the

semiconductor. This voltage difference is proportional to the strength of the magnetic field.

Figure 2.6: Placement of Hall sensors in a PMSM with permission from Texas Instruments [22]

There are two main types of Hall effect sensors: those with analogue outputs, and those that

have digital outputs. Analogue sensors use a continuous voltage output that increases within

a strong magnetic field and decreases in a weaker field. The digital output Hall sensor has a

Schmitt trigger, which is a circuit that converts analog signals into digital signals. Due to the

Schmitt trigger, when the magnetic flux passing through the Hall sensor exceeds the sensor’s

threshold value, the output of the Hall sensor switches from ’off’ to ’on’. The digital Hall sen-

sors can also be separated into two types depending on their working principles: bipolar and

unipolar. Bipolar devices need a positive magnetic field (which comes from the south pole of

a magnet) to operate them, and use the negative field (from the north pole) to release them.

Unipolar devices only need a single magnetic south pole to both operate and release them as

they move in and out of the magnetic field [20].

Figure 2.6 shows how digital, unipolar Hall sensors can be utilized to detect the position and

rotational speed of the rotor.
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2.10 Sensorless Permanent Magnet Synchronous Motor Drives

Due to the potential benefits in terms of system costs and improved reliability by eliminating the

need for encoders in control systems, sensorless control methods have attracted much attention

from both academic and industrial enterprises. Consequently, several sensorless control meth-

ods have been developed over the years for the whole speed range of PMSMs - each method

with its own strengths and weaknesses.

Figure 2.7: Overview of different sensorless control schemes [24]

Figure 2.7 gives an overview of the different sensorless control schemes that has been devel-

oped. It shows that the control methods are roughly split into two categories: Saliency-Based

and Model-Based methods. For medium and high-speed applications, model-based methods

use the techniques of back EMF or flux estimators to obtain the rotor position so that field-

oriented control can be implemented. However, these methods fail in the low-speed region as

the magnitude of the back EMF is directly proportional to the motor speed. Hence, the rotor

position can not be estimated during low-speed motor applications due to low signal-to-noise

ratio and other factors such as modeling uncertainty and inverter nonlinearities.

In order to expand sensorless control into the low- to-zero speed range, saliency-based meth-

ods have been developed using techniques such as high-frequency signal injection (HFI) in order

to extract the rotor position. These methods take advantage of the salient property of PMSMs

where the inductances change depending on the position of the rotor. This change in induc-

tance can then be used to estimate the rotor position. However, there are negative effects to the

injection of high frequent signals such as increased losses, torque ripples and accoustic noise.

Besides, the maximum output voltage of an inverter at a higher operating speed range could

possibly limit the additional injected signal. Consequently, it is recommended to use saliency-

based methods with signal injection only at low and zero-speed ranges [24].
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2.11 Model-Based Nonlinear Observer

In order to perform field-oriented control for medium and high-speed ranges, the nonlinear ob-

server proposed by Ortega et.al [14] will be used to estimate the position and speed of the rotor.

This nonlinear observer is chosen because it is suitable for SPMSMs and because it is the same

method that has been physically implemented at NTNU for the control of a motor supplied by

Alva Industries.

The nonlinear observer estimates the rotor position (θe ) by using the dynamic equations of the

PMSM introduced in section 2.6.1 together with voltage and current measurements from the

motor. The motor dynamics in the αβ-reference are defined as:

Ls i̇αβ =−Rsiαβ+ωeψ

[
sin(θe )

−cos(θe )

]
+vαβ (2.37)

where iαβ is the stator current, vαβ is the motor terminal voltage, θe the electrical angle of the

rotor, ωe the electrical speed of the rotor, Rs is the stator resistance, Ls is the stator inductance

and ψm is the permanent magnet flux linkage.

Furthermore, a new state observer is defined in [14] as:

x = Lsiαβ+ψm

[
cos(θe )

sin(θe )

]
(2.38)

Let,

y ≡−Rsiαβ+vαβ (2.39)

Then it follows from 2.37, 2.38 and 2.39 that:

ẋ = Ls i̇αβ−ωeψm

[
sin(θe )

−cos(θe )

]
= y (2.40)

Reducing the dynamics to the simple form ẋ = y. To introduce the nonlinear position observer,

the vector function η :R2 →R2 is defined as:

η(x) = x−Lsiαβ (2.41)

In view of 2.38, its Euclidean norm is equal to:

∥∥η(x)
∥∥2 =ψ2

m (2.42)
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Consider then the nonlinear observer:

˙̂x = y+ γ

2
η(x̂)

[
ψ2

m −∥∥η(x̂)
∥∥2

]
(2.43)

Using 2.38, one can define: [
cos(θ̂e )

sin(θ̂e )

]
= 1

ψm
(x̂−Lsiαβ) (2.44)

From this, one can extract θ̂e which is an estimate of the rotor position θe .

θ̂e = tan−1
(

x̂2 −Lsiβ
x̂1 −Lsiα

)
(2.45)

Speed observer

Given that an estimate of the rotor position is acquired, it can be further used to estimate the

rotor speed. However, it is not desirable to obtain a speed estimate through numerical differen-

tiation of the position estimates. Instead, a PLL-type PI tracking controller suggested in [14] is

used to estimate the speed:

ż1 = Kp (θ̂m − z1)+Ki z2 (2.46a)

ż2 = θ̂m − z1 (2.46b)

ω̂e = Kp (θ̂m − z1)+Ki z2 (2.46c)

where ω̂e is an estimate of the rotor speed ωe .
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2.12 Low-Speed HFI Observer

Based on an observability analysis performed by Vaclavek et.al [23], an observability condition

in order for SPMSMs to be fully observable is defined under the assumptions that the electrical

parameters of the machine are known and constant, load torque and inertia is unknown and the

rotor speed is constant or slowly varying:

ωe ̸= 0 (2.47)

This condition clearly demonstrates that model-based sensorless control techniques fail at speeds

near zero in the case of SPMSMs, hence the need for saliency-based sensorless methods.

High-Frequency Square-Wave Voltage Injection

For the low-to-zero speed range, the observer from 2.11 will be replaced with the high-frequency

current injection-based position observer proposed by Qiao et.al [25]. This observer is chosen

because it is specifically designed for SPMSMs, uses a simple pulsating square-wave signal and

allows for higher frequency injections in comparison to other similar methods such as high-

frequency sinusoidal injections.

Figure 2.8: Block diagram of pulsating square-wave injection inspired from Qiao et.al [24]

Figure 2.8 shows the block diagram of the pulsating square-wave injection control scheme. The

only thing added to the control system from section 2.7 is the square-wave voltage generator

that injects voltage into the d-component of the PMSM supply voltage.
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High-Frequency Impedance Model of an PMSM

The high-frequency current injection-based position observer is derived from the dynamic equa-

tions of the PMSM and uses current measurements from the motor to estimates the rotor posi-

tion. The dynamics of a PMSM expressed in the dq-rotating reference frame is repeated below:[
vd

vq

]
=

[
Rs +Ls p −ωr e Ls

ωr e Ls Rs +Ls p

][
id

iq

]
+

[
0

ωr eλm

]
(2.48)

where p is the derivative operator, vd and vq are the stator voltages, id and iq are the stator

currents, ωr e is the rotor electrical rotating speed in rad/s, Ls is the stator inductance, Rs is the

stator resistance and λm is the permanent flux linkage.

If high-frequency pulsating voltage signals, vd ,h and vq,h , whose frequency is sufficiently higher

than the rotor speed, are injected into the machine stator windings, high-frequency currents,

id ,h and iq,h , will be generated. Due to their high frequency, the derivatives of these signals can

be quite large. Hence, when considering the high-frequency components of the system, the off-

diagonal cross-coupling terms in 2.48 are sufficiently smaller than the diagonal terms and can

be ignored. Similarly, in the low-speed region and at standstill, the back EMF term can also be

neglected. As a result, the high-frequency model of the PMSM in the low-speed region can be

expressed as: [
vd ,h

vq,h

]
=

[
Zd ,h 0

0 Zq,h

][
id ,h

iq,h

]
(2.49)

where Zd ,h = Rd ,h + jωhLd ,h and Zq,h = Rq,h + jωhLq,h are the d-axis and q-axis high-frequency

impedances and ωh is the frequency of the injected signals [25].



CHAPTER 2. THEORETICAL BACKGROUND 29

Injection of High-Frequency Pulsating Signals

In this section, the high-frequency impedance model expressed in 2.49 is used to derive the

expressions for the induced high-frequency currents which is later used to estimate the rotor

position. Firstly, the conventional position estimation scheme using pulsating sinusoidal volt-

age injection is briefly presented. That method is highly dependent on rotor saliency and is

therefore not effective for SPMSMs. To solve this problem, a position estimation method in-

dependent on rotor spatial saliency is proposed by Qiao et.al [25]. The proposed method is

first discussed based on a sinusoidal voltage injection, before a square-wave voltage injection

scheme is put forward in order to improve the upper bandwidth of the sensorless speed control.

Figure 2.9: Relationships among the α−β stationary reference frame, the ideal d − q rotating
reference frame and the estimated γ− δ rotating reference frame with inspiration from Qiao
et.al [25]

The angle between γ-axis and α-axis is defined as the estimated position, θ̂r e , as shown in fig-

ure 2.9. The error between the actual and estimated positions is denoted as ∆θ. A sinusoidal

pulsating voltage vector described by 2.50 is injected into the estimated γ−δ rotating reference

frame:

vγδ,h =
[

vγ,h

vδ,h

]
=Vh

[
cos(ωh t )

0

]
(2.50)

where ωh and Vh are the frequency and amplitude of the injected voltage vector.
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Projecting Vγδ,h onto the dq-axes, the resulting voltage vector, Vdq,h, can be expressed as:

vdq,h =
[

vd ,h

vq,h

]
=

[
cos(∆θ) sin(∆θ)

−sin(∆θ) cos(∆θ)

][
vγ,h

vδ,h

]
= vγ,h

[
cos(∆θ)

−sin(∆θ)

]
(2.51)

According to 2.49 and 2.51, the induced high-frequency currents in the ideal dq-reference frame

can be determined: [
id ,h

iq,h

]
= vγ,h

[
cos(∆θ)/Zd ,h

−sin(∆θ)/Zq,h

]
(2.52)

In conventional HFI methods, the position information is extracted from the induced current

signal in the estimated rotating reference frame as follows:

[
iγ,h

iδ,h

]
=

[
cos(∆θ) −sin(∆θ)

sin(∆θ) cos(∆θ)

][
id ,h

iq,h

]
= vγ,h

 cos2(∆θ)
Zd ,h

+ sin2(∆θ)
Zq,h

(Zq,h−Zd ,h )
2Zd ,h Zq,h

sin(2∆θ)

 (2.53)

From equation 2.53, it can be seen that iδ,h is a function of the position tracking error ∆θ. How-

ever, the magnitude of iδ,h depends on the rotor saliency. If the saliency is small, as in an SPMSM

where,

Zq,h −Zd ,h ≪ Zq,h +Zd ,h

the method suggested in 2.53 will not be effective for position estimation due to the low signal-

to-noise ratio of the saliency related signal. To solve this problem, a better position observation

method which has low dependence on the rotor saliency is needed for SPMSMs in the low-speed

region.
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Saliency Independent Position Observer

In the proposed method, the rotor position is obtained from the induced current vector, iαβ,h,

in the αβ-reference frame as follows:

iαβ,h =
[

iα,h

iβ,h

]
=

[
cos(θr e ) −sin(θr e )

sin(θr e ) cos(θr e

][
id ,h

iq,h

]

=Vh cos(ωh t )

cos(∆θ)
Zd ,h

cos(θr e )+ sin(∆θ)
Zq,h

sin(θr e )
cos(∆θ)

Zd ,h
sin(θr e )− sin(∆θ)

Zq,h
cos(θr e )

 (2.54)

If the position error ∆θ is small enough such that sin(∆θ) ≈ 0 and cos(∆θ) ≈ 1, then 2.54 can be

simplified as: [
iα,h

iβ,h

]
≈ Vh cos(ωh t )

Zd ,h

[
cos(θr e )

sin(θr e )

]
(2.55)

As shown in 2.55, if the rotating frequency of the machine is much smaller than the frequency

of the injected signal, the envelopes of iαβ,h are position dependent signals. If the envelopes are

extracted, the rotor position can be obtained.

Since for an SPMSM the difference between Zd ,h and Zq,h can be neglected (i.e., Zd ,h ≈ Zq,h ≈
Zs,h , equation 2.54 can be simplified as follows:[

iα,h

iβ,h

]
= Vh cos(ωh t )

Zs,h

[
cos(θr e −∆θ)

sin(θr e −∆θ)

]
= Vh cos(ωh t )

Zs,h

[
cos(θ̂r e )

sin(θ̂r e )

]
(2.56)

Equations 2.55 and 2.56 are both simplified versions of 2.54. Although they are derived based on

different assumptions, both of them indicate that the rotor position information can be directly

obtained from the envelopes of iαβ,h if a high-frequency pulsating voltage vector is injected in

the γ−δ reference frame:

θ̂r e =−tan−1

(
ĩβ,h

ĩα,h

)
(2.57)

where ĩα,h and ĩβ,h are the envelopes of iα,h and iβ,h .
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Square-Wave Signal Injection

As described by 2.55 and 2.56 in the proposed method, to extract the rotor position informa-

tion, only the envelopes of iαβ,h are needed. Since the envelopes are mainly constituted by the

extremes of the current waveforms, it is more sensible to use a square-wave signal instead of a

sinusoidal one. The highest frequency of the injected square-wave signal is at least more than

twice the frequency of the sinusoidal signal, hence allowing the position observer to operate at

higher rotational speeds. If the reference values of the voltages vd and vq can be updated twice

per PWM cycle, the highest frequency of injected square-wave signal is equal to the PWM fre-

quency.

A square-wave voltage vector expressed as:

vγδ,h =
[

vγ,h

vδ,h

]
=Vh

[
(−1)n

0

]
(2.58)

can be injected into γ and δ axes, where n is the index of the PWM cycles. When n is odd:[
vd ,h

vq,h

]
=Vh

[
−cos(∆θ)

sin(∆θ)

]
and

[
id ,h

iq,h

]
=Vh

[
−cos(∆θ)/Zd ,h

sin(∆θ)/Zq,h

]
(2.59)

Then: [
iα,h

iβ,h

]
=Vh

−cos(∆θ)
Zd ,h

cos(θr e )− sin(∆θ)
Zq,h

sin(θr e )

−cos(∆θ)
Zd ,h

sin(θr e )+ sin(∆θ)
Zq,h

cos(θr e )

 (2.60)

If Zd ,h ≈ Zq,h ≈ Zs,h , equation 2.60 can be further simplified as:[
iα,h

iβ,h

]
= Vh

Zs,h

[
−cos(θr e −∆θ)

sin(θr e −∆θ)

]
= Vh

Zs,h

[
−cos(θ̂r e )

sin(θ̂r e )

]
(2.61)

When n is even: [
vd ,h

vq,h

]
=Vh

[
cos(∆θ)

−sin(∆θ)

]
and

[
id ,h

iq,h

]
=Vh

[
cos(∆θ)/Zd ,h

−sin(∆θ)/Zq,h

]
(2.62)

Then, [
iα,h

iβ,h

]
=Vh

 cos(∆θ)
Zd ,h

cos(θr e )+ sin(∆θ)
Zq,h

sin(θr e )

−cos(∆θ)
Zd ,h

sin(θr e )+ sin(∆θ)
Zq,h

cos(θr e )

 (2.63)
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If Zd ,h ≈ Zq,h ≈ Zs,h , equation 2.63 can be further simplified as:[
iα,h

iβ,h

]
= Vh

Zs,h

[
cos(θr e −∆θ)

−sin(θr e −∆θ)

]
=− Vh

Zs,h

[
−cos(θ̂r e )

sin(θ̂r e )

]
(2.64)

According to 2.61 and 2.64, the final expression for the iαβ,h can be expressed as:[
iα,h

iβ,h

]
= Vh

Zs,h

[
cos(θr e −∆θ)

−sin(θr e −∆θ)

]
= (−1)n Vh

Zs,h

[
−cos(θ̂r e )

sin(θ̂r e )

]
(2.65)

Then by detecting the envelopes of the current components in 2.65, the estimated rotor position

can be extracted as follows [25]:{
ĩα,h =− Vh

Zs,h
cos(θ̂r e )

ĩβ,h = Vh
Zs,h

sin(θ̂r e )
and θ̂r e =−tan−1

(
ĩβ,h

ĩα,h

)
(2.66)

where ĩα,h and ĩβ,h are the envelopes of iα,h and iβ,h .
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2.13 Propellers

Propellers are used in drones to make them capable of flying and are connected to the rotor-

shaft of the motor. The propellers create upward thrust that accelerates the drone, working as a

load for the motor we are simulating. In this thesis it is therefore necessary to be able to model

the load that the motor experiences from the propellers.

The torque from the propellers can be modeled by the following equations:

J = 2πVa

ωmD
(2.67a)

Q = ρD5

4π2
(CQ,0 +CQ,1 J )ω2

m (2.67b)

where J is the advanced ratio, Va true airspeed, ωm the rotor velocity, D the propeller diameter,

ρ density of air, CQ,0 and CQ,1 the parametrization parameters of the torque coeffisient CQ [5].





Chapter 3

Modelling

Chapter 3 describes the work that has been carried out over the course of this thesis. This in-

cludes the modelling of a PMSM using Simulink and the development of a sensorless control

system that utilizes different estimators to control the simulated motor.

3.1 Modelling the Permanent Magnet Synchronous Motor

By using templates already developed by MathWorks [17], a great amount of time was saved

during the modelling phase of the motor. If it were not for the existing templates, one would

have to model the motor manually by using Simulink blocks and the equations from 2.29. As

there already exists precise motor models available and that simulating the motor is the main

scope of this thesis, it made sense to use the templates from MathWorks so that more time could

be spent on researching the control system of the motor. However, the template provided by

MathWorks was greatly modified in order resemble the motor designed by Alva Industries.

Figure 3.1: The physical motor model in Simulink

Once a functional motor model was acquired, one simply had to enter the specific motor param-

eters of the motor that was going to be simulated. The torque estimator was developed using

the equations from section 2.13 regarding the modelling of propellers.

36
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Power circuit

The power circuit consists of a battery and an inverter. The battery is modelled by a battery block

integrated in Simulink while the three phase inverter is modelled by six ideal semiconductor

switches in a two-level topology. The duty cycle of each ideal semiconductor switch is supplied

from the SVPWM generator in figure 3.2.

3.2 Development of the control system

The control system is based on the principle of field-oriented control from section 2.7 and con-

sists of multiple nested controllers dependent on the type of control one wishes to implement

e.g. torque control, speed control etc. Regardless, field-oriented control must always have an

inner control loop where the motor current is controlled which again controls the rotor torque

and flux. The current-controller is considered by many as the most complex part of the control

system because it is here the current is transformed from a stationary reference frame into a

rotating reference frame in order to simplify the control process. Once the inner control loop

controlling the torque and flux is established, it is possible to add outer control loops that con-

trol other entities such as rotor speed and position.

Current controller

The inner control loop controlling the motor current is realized by two separate PID-controllers,

one controlling the rotor torque and another controlling the rotor flux. The quadrature current,

iq , has a reference which is determined by an outer loop (speed control) while the direct current,

id , has a reference of zero as there is no desire to alter the rotor flux. The output voltages of the

current controller is transformed back into the stationary abc-reference and used as a reference

for the SVPWM generator which determines the duty cycles of each transistor in the DC/AC-

inverter supplying the motor with power.

Figure 3.2: Current control
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Speed- and position controller

The outer control loop controlling the rotor speed consists of a simple PID-controller where the

speed reference is given by the user or another outer control loop such as a position controller.

The output of the speed controller becomes the reference for the quadrature current, iq in the

inner control loop described in section 3.2.

Figure 3.3: Speed control

If desired, position control can also be added. The position controller, which also consists of a

PID-controller, outputs a speed reference for the speed controller in figure 3.3.

Figure 3.4: Position control
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3.3 Implementing the Sensorless Observers

Given that encoders increase system costs and reduce the robustness of the system, it is de-

sirable to explore the possibilities of using sensorless feedback i.e. using estimators instead of

direct encoder measurements.

3.3.1 Implementing the Nonlinear Observer

Figure 3.5: Nonlinear observer implemented in Simulink

The estimation of the rotor position θ̂e and rotor speed ω̂e using the nonlinear observer is im-

plemented by using motor current- and voltage measurements together with the equations sug-

gested in section 2.11.

The unwrap angle-function from the MATLAB-library is used to prevent large spikes in the

speed estimate each time the rotor position jumps between [0,2π] or [−π,π]. In addition, a low-

pass filter is added to the speed estimate in order to reduce the noise produced when deriving

the rotor speed from the rotor position. Finally, the estimators of the rotor speed and position

replace the encoder feedback in the control loops mentioned above.
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3.3.2 Implementing the HFI Observer

Model-based sensorless control techniques, such as the nonlinear observer suggested above,

fail at speeds near zero in the case of SPMSMs. As a result, high-frequency current injections is

needed in order to perform sensorless control in the low-to-zero speed range. The square-wave

HFI observer proposed in section 2.12 is implemented in the control system as shown below:

Figure 3.6: The HFI observer implemented into the control system

From the control system introduced in figure 3.2, it has now been added a square-wave signal

which is injected into the d-axis voltage and a HFI estimator-block. The square-wave signal is

the main component of the HFI scheme and allows us to obtain high-frequency current com-

ponents which is used by the HFI estimator to estimate the rotor position. The low-pass filter

added to iabc is used to filter out these high-frequency currents so that they do not interfere with

the performance of the control system.

Figure 3.7: Modelling the square-wave voltage Vh

The high frequency square-wave voltage, Vh , is constructed as the sum of two square-wave gen-

erators that are in opposite phases and sign. In that way, a square-wave voltage alternating

between [−Vh ,Vh] with frequency ωh is created.
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The HFI estimator-block which estimates the rotor position is shown below:

Figure 3.8: Estimation of the rotor position θe

The block inputs the currents iα, iβ and the injection voltage Vh . The current signals are both

passed through a band-pass filter with natural frequencyωw so that the high-frequency current

components iα,h and iβ,h can be isolated. The injection voltage Vh is used to demodulate the

current signals and the envelope detector extracts the envelopes of the high-frequency current

components.

Figure 3.9: The envelope detector

The envelope detector demodulates the current signals by taking the product of the current

signals and the sign of the injection voltage. Secondly, a second order low-pass filter is used

to outline the current envelopes before the position estimate is calculated by using the arctan-

function:

θ̂r e = tan−1

(
ĩβ,h

ĩα,h

)
(3.1)
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3.4 Implementing the Kalman Filter

The Extended Kalman Filter

Seeing that the dynamics of the PMSM described in section 2.6.1 are nonlinear, the use of the

extended Kalman filter is necessary for this system. The dynamics are repeated here so that the

matrices Fk , B, H, Q and R can be derived:

d

d t
id =−Rs

Ld
id + Lq

Ld
Nωmiq + 1

Ld
vd (3.2a)

d

d t
iq =−Rs

Lq
iq − Ld

Lq
Nωmid − λm Nωm

Lq
+ 1

Lq
vq (3.2b)

d

d t
ωm = 1

J

(
3

2
N

(
iqλm + id iq (Ld −Lq )

)−Dmωm −TL

)
(3.2c)

d

d t
θe = Nωm (3.2d)

Let the state vector x, the input vector u and the output vector y be defined as:

x =
[

id iq ωm θe

]T
, u =

[
vd vq

]T
, y =

[
id iq

]T
(3.3)

If one assumes that the rotor velocity is constant during the sampling period T , one can instead

set d
d tωm = 0. The plant model is then defined as:

f(x) =


f1

f2

f3

f4

=


− Rs

Ld
id + Lq

Ld
Nωmiq

− Rs
Lq

iq − Ld
Lq

Nωmid − λm Nωm
Lq

0

ωm

 , Bc =


1

Ld
0

0 1
Lq

0 0

0 0

 (3.4)

As discussed in section 2.5, the extended Kalman filter linearizes the nonlinear model about the

current estimate. Now that the plant model is defined in equation 3.4, it is necessary to calculate

the Jacobian matrix in order to find the linearized state transition matrix Fk−1 to be used in the

Kalman filter:

Fc = ∂f(x)
∂x

∣∣∣
x=xk−1

=


∂ f1
∂id

∂ f1
∂iq

∂ f1
∂ωm

∂ f1
∂θm

∂ f2
∂id

∂ f2
∂iq

∂ f2
∂ωm

∂ f2
∂θm

∂ f3
∂id

∂ f3
∂iq

∂ f3
∂ωm

∂ f3
∂θm

∂ f4
∂id

∂ f4
∂iq

∂ f4
∂ωm

∂ f4
∂θm

=


− Rs

Ld

Lq

Ld
Nωm

Lq

Ld
Niq 0

−Ld
Lq

Nωm − Rs
Lq

−Ld
Lq

Nid − λm N
Lq

0

0 0 0 0

0 0 1 0

 (3.5)
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Using Euler discretization from section 2.3.2, the state transition matrix Fk−1, the input matrix

B and the output matrix H is defined as:

Fk−1 = eFc T ≈ I +FcT =


1−T Rs

Ld
T

Lq

Ld
Nωm T

Lq

Ld
Niq 0

−T Ld
Lq

Nωm 1−T Rs
Lq

−T Ld
Lq

Nid −T λm N
Lq

0

0 0 1 0

0 0 T 1

 (3.6)

B = T Bc =


T

Ld
0

0 T
Lq

0 0

0 0

 (3.7)

H = Hc =
[

1 0 0 0

0 1 0 0

]
(3.8)

Furthermore, it is necessary to define the matrices Q, R and P0. For simplicity, it is assumed that

the matrices are diagonal:

Q =


Q1 0 0 0

0 Q2 0 0

0 0 Q3 0

0 0 0 Q4

 , R =
[

R1 0

0 R2

]
, P0 =


P1 0 0 0

0 P2 0 0

0 0 P3 0

0 0 0 P4

 (3.9)

Adding of Hall sensors

If Hall sensors are used in the Kalman filter, then the output matrix H and measurement noise

covariance matrix R will change from time to time as the Hall sensors do not continuously sup-

ply the Kalman filter with new measurements. When Hall pulses are registered in the Kalman

filter, the matrices become:

H =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 R =


R1 0 0 0

0 R2 0 0

0 0 R3 0

0 0 0 R4


Between the Hall sensor pulses, the Kalman filter will only use current measurements in the

update-step so that the matrices are reduced to:

H =
[

1 0 0 0

0 1 0 0

]
R =

[
R1 0

0 R2

]
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Implementing the Extended Kalman Filter

Finally, the algorithm defined in equations 3.10 and 3.11 is implemented in Simulink using MAT-

LAB blocks:

Figure 3.10: The Extended Kalman filter in Simulink

Prediction step:

x̂−
k = f(x̃+

k−1,uk) (3.10a)

P−
k = Fk−1P+

k−1FT
k−1 +Q (3.10b)

Update step:

ỹk = zk −h(x̂−
k ) (3.11a)

Kk = Pk
−HT

k(R+HkP−
k HT

k)−1 (3.11b)

x̂+
k = x̂−

k +Kkỹk (3.11c)

P+
k = (I−KkHk)P−

k (3.11d)

The initial state x0 and covariance matrix P0 are set by defining the initial conditions for each of

the unit delay blocks.
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3.5 Modelling the Hall effect sensors

A cost-effective way to obtain information about the rotor position is to use Hall sensors inte-

grated in the stator of the motor which can then be used to detect the rotor’s permanent mag-

nets. In that way, the Hall sensors can be used to both detect the position of the rotor as well

as estimating the speed. Such Hall effect sensors are implemented by comparing the rotor an-

gle to the angles where the Hall sensors are mounted. Once the rotor is close to a Hall sensor,

|θe −θhal l | <α, a boolean signal is set high.

Figure 3.11: Six Hall sensors implemented in Simulink

In the figure above there is mounted six Hall sensors. Given that θe ϵ [−π,π], this means that the

six Hall sensors must be mounted at:

θhall =
[

0 π
3

2π
3 π −2π

3
−π
3

]
.

The value of α is important because it gives the Hall sensors (simulink) enough time to detect

the rotor position. The value ofα depends on the characteristics of the Hall senor, which should

be selected based on the nominal rotor speed. A high nominal rotor speed requires a large α

and vice versa. By using a too small α, neither of the Hall sensors will work and by using a too

large α, one will receive inaccurate measurements. In figure 3.11, the value of α was set to 0.01.
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Speed Estimator based on Hall sensors

If Hall sensors are used to detect the position of the rotor, then it can also be useful to use the

Hall sensors to estimate the rotor speed. This can be achieved by measuring the time between

each Hall sensor pulse. Given that we know the distance the rotor must rotate before a new Hall

sensor pulse occurs, the rotor speed can be estimated according to the following equation:

ω̂m = θh

N · th
(3.12)

where ω̂m is the estimated mechanical rotor speed in radians per second, θh is the electrical

angle between each Hall sensor in radians, N is the number of pole pairs and th is the measured

time between each Hall sensor pulse.

The accuracy of the speed estimation depends on how many Hall sensors are used, meaning

that one has to prioritize either accuracy or cost. In any case, at least two Hall sensors should

be used so that you get both precise speed estimates and the ability to determine the direction

the rotor is rotating. The implementation of a speed estimator using two Hall sensors are shown

below:

Figure 3.12: Simulink implementation of speed estimator based on Hall sensors

The speed estimator works in the way that one uses a timer that is reset after each Hall sensor

pulse. Just before the timer is reset, the measured time is transferred to the MATLAB function

speed estimator where the speed is estimated according to equation 3.12.
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The direction the rotor rotates in is determined by the simulink blocks shown below:

Figure 3.13: Logic used in order to determine rotational direction

Here, S-R latches are used in order to remember which Hall sensor was last active. In this way,

you can determine the direction of rotation by checking if hall 1 leads or lags hall 2 or if the same

Hall sensor becomes active twice in a row. By using more than two Hall sensors, it becomes even

easier to determine the direction of rotation as the direction is determined by which Hall sensors

become active in succession.

Position Estimator based on Hall sensors

It is also possible to implement a continuous position estimator based on Hall sensors by inte-

grating the speed estimate. In this estimator, the position will be updated at each Hall sensor

pulse but between the pulses the position is determined by the integrator. The following equa-

tion describe how the electrical rotor position is estimated between the Hall pulses:

θ̂+e = θ̂−e + ω̂e ·Ts (3.13)

where θ̂+e is the updated position estimate, θ̂−e is the last position estimate, ω̂e is the speed esti-

mate and Ts is the sample time.





Chapter 4

Simulation and results

Chapter 4 describes the results obtained from the simulations that have been carried out in this

thesis. The simulation of the system is meant to reflect typical motor operations of a PMSM

that is used to drive a drone propeller. This includes starting up the motor, running the motor

at a given speed and locking the propeller into a fixed position when it is not in use. Firstly, an

encoder was used as feedback to control the motor and later estimators using techniques such

as nonlinear observers, HFI and EKF were used in an attempt to replace the encoder.

Parameters of the physical system

Table 4.1: Parameters used in the modelling of the Alva motor

Symbol Parameter Value Unit

Pp Peak power 3.1 kW
Vn Nominal voltage 44 V
N Pole pairs 14
Ke Back EMF constant (Y-wound) 8.03 mV/rpm
Rs Phase resistance 19.9 mΩ
Ld Direct axis inductance 2.64 µH
Lq Quadrature axis inductance 2.64 µH
Jm Rotor inertia 0.01 kgm2

CQ,0 Parametrization parameter of torque 0.0078
CQ,1 Parametrization parameter of torque −0.0058
D Propeller size (diameter) 40 cm
Va Air speed (assumed constant) 20 m/s
ρ Air density 1.225 kg/m3

Ts Fundamental sample time in Simulink 5 µs
fsw Switching frequency of inverter 20 kHz

49
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4.1 Simulation using Encoder Feedback

The plots below show the performance of the control system while using direct encoder mea-

surements as feedback.
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Figure 4.1: System response using encoder measurements

From figure 4.1 it can be seen that the speed controller works well with a fast response and little

overshoot when the speed reference jumps from 0 to 1000 rpm. After 750 milliseconds, the mo-

tor is no longer needed and it is desired to control the rotor position so that it remains fixed at

zero degrees. The controller then switches from speed control to position control with a refer-
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ence of zero degrees. After approximately 250 milliseconds the reference is met, and the rotor is

kept at zero degrees until the control system switches back to speed control at 2000 milliseconds.

It can be pointed out that the speed reference shortly jumps to -800 rpm due to the disconti-

nuity that occurs when the angle has completed a full rotation. This has however little to say

for the overall performance of the control system but could have been removed by slowing the

motor down before switching to position control such that no angle discontinuities occur at this

time or by implementing the method of smallest signed angle which finds the shortest distance

between two angles (this method was unfortunately discovered after all the plots were made

and therefore not included).

The tuning parameters of the control system used to achieve the desired system response is

listed below:

Table 4.2: Parameters used to tune the control system

Symbol Parameter Value

Kcp Proportional gain for inner current loop 1

Kv p Proportional gain for outer speed loop 10
Kvi Integrator gain for outer speed loop 200

Kpp Proportional gain for outer position loop 25

Tsc Sample time for current loop 10 µs
Tsv Sample time for velocity loop 100 µs
Tsp Sample time for position loop 1 ms
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4.2 Simulation using Nonlinear Observer

The nonlinear observer from section 2.11 was simulated first in an attempt to replace the en-

coder. Before the observer could be used as feedback, it had several parameters that needed to

be tuned so that the observer accurately estimates the measurements from the encoder. Using

the control system described in the last section, the tuning process was completed by compar-

ing the observer estimates to the measurements of the encoder until a satisfactory result was

obtained.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

time

-200

-150

-100

-50

0

50

100

150

200

D
e
g
re

e
s

Tuning of Nonlinear Observer

Estimated

Measured

0 0.5 1 1.5 2 2.5 3

time

-400

-200

0

200

400

600

800

1000

1200

R
P

M

Tuning of Nonlinear Observer
Estimated

Measured

Figure 4.2: Estimation of rotor position and speed

When increasing the observer gains, the estimates became more noisy and if they were reduced

the estimates became more inaccurate. The tuning parameters of the observer was found to be

optimal at:

Symbol Parameter Value

γ Observer gain in theta estimation 109

Kp Observer gain in omega estimation 500

From figure 4.2 it can be established that the observer was adequately tuned as it accurately

estimates both the rotor position and speed with some noise present.
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Simulation using Nonlinear Observer as feedback

The system was then simulated using the nonlinear observer as feedback instead of the encoder.

The same control routine was performed and the results are shown in the figures below:
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(a) Time axis is changed in the second figure to focus on the position estimate during standstill operations

Figure 4.3: Estimation of rotor speed and position

From figure 4.3 it can be seen that the nonlinear observers work well as feedback during high-

speed operations, but fails as the speed gets close to zero during position control. This is ex-

pected as the model-based observers are dependent on the speed of the rotor, thus making

them unsuitable for position control.
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Replacing the Position Controller

In order to be able to lock the rotor/propeller in a fixed position while using the nonlinear ob-

servers as feedback, a new control algorithm had to be implemented to replace the position

controller. By mounting a Hall sensor in the direction it is desired to lock the propeller, the rotor

can be locked by applying a constant voltage to the stator windings once the Hall sensor detects

the rotor. The simulation results using this control algorithm is plotted below:
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Figure 4.4: Estimation of rotor position and speed

From figure 4.4 it can be seen that the system response is still fast and accurate with an overshoot

of approximately 8% and a settling time of 300 milliseconds while using estimators as feedback.
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From around 750 milliseconds, it is desired to lock the rotor into a fixed position. The speed

controller is then used to slow down the rotor as much as possible by using the lowest speed

reference the nonlinear observer would allow (175 rpm) in order to reduce mechanical stress on

the motor and ease the process of locking the rotor into the correct position. At around 950 mil-

liseconds, the Hall sensor detects the rotor at zero degrees and the rotor is locked into position

with no offset. At 2000 milliseconds, the motor is needed again and the control system switches

back to speed control and operates normally.

The tuning parameters of the control system used to achieve the system response in figure 4.4

is listed below:

Table 4.3: Parameters used to tune control system using nonlinear observer as feedback

Symbol Parameter Value

Kcp Proportional gain for inner current loop 1

Kv p Proportional gain for outer velocity loop 3
Kvi Integrator gain for outer velocity loop 35

Tsc Sample time for current loop 10 µs
Tsv Sample time for velocity loop 100 µs
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4.3 Simulation using HFI Observer

The sensorless control method implemented in the last section satisfied the requirements set in

the thesis regarding control of a drone propeller. However, there are some clear drawbacks to

the rotor-locking control algorithm which it is desirable to improve. Firstly, the instantaneous

locking of the rotor from driving speed may cause mechanical stress on the motor which ulti-

mately may shorten the life span of the motor. Secondly, there are no ways of knowing whether

or not the rotor locked into the correct position as the control algorithm is based on open loop-

control where no feedback is used in the control system. This leads to cases where the constant

locking voltage may be too low so that the rotor does not lock into the desired position, or that

the voltage is too high so that unnecessary power is used to lock the rotor.

In order to improve the rotor-locking of the propeller, the low-speed HFI observer from section

2.12 was introduced to the control system in an effort to lock the rotor by using closed loop-

position control instead. Given that the HFI observer should be able to obtain the position of

the rotor for low- and zero speeds, it was expected a similar result from the control system as in

figure 4.1 when encoder feedback was used.

Before the HFI observer could be used as feedback in the control system, several parameters

had to be determined first. Again, these parameters are tuned while using encoder feedback

during the tuning process. Using the following parameters during the tuning process, the esti-

mation results over the next pages were obtained:

Table 4.4: Parameters used to tune HFI observer

Symbol Parameter Value

Vh Amplitude of the injected voltage 20 V
ωh Frequency of injected voltage 500 Hz
ωl p Natural frequency of low pass filter 250 Hz
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The rotor position is estimated in the HFI observer by the following equation:

θ̂r e =−tan−1

(
ĩβ,h

ĩα,h

)
(4.1)

where ĩα,h and ĩβ,h are the envelopes of the high frequency current components iα,h and iβ,h .

The envelopes were extracted from the high frequency currents as shown below:
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Figure 4.5: Envelope extraction from high frequency current components
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Finally, the electrical position of the rotor was estimated by taking the inverse tangent of the

current envelopes as described in equation 4.1:
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Figure 4.6: Estimation of rotor position using HFI

In order to estimate the rotor speed during low-speed operations, the same speed observer that

was used for the nonlinear observer was implemented. This gave the following results:
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Figure 4.7: Estimation of rotor speed using HFI
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Simulation using HFI observer as feedback

From the figures given in the last section, it could be confirmed that the HFI observer accurately

estimated both the rotor position and speed and was ready to be used as feedback in the control

system.
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Figure 4.8: Estimation of rotor position and speed during observer feedback

From figure 4.8 it appears that the observer is not able to estimate the rotor position or speed

while being used as feedback in the control system. By analyzing the plots of the high frequency

current components in figure 4.9, it can be seen that the envelopes no longer have a sinusoidal

shape and contain a great amount of noise.
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Figure 4.9: Envelopes of the high frequency current components

From the figures above it seems that the envelope signal is lost in all the noise, which again

means that the rotor position can not be estimated. In order to fix this issue, the parameters

set in table 4.4 were changed multiple times over. Unfortunately, neither of the changes ended

up yielding a different result. Ultimately, it was tried to simulate the HFI observer on a different

motor in order to find out what the problem might be.
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Simulation using HFI Observer as feedback for a different PMSM

The template that was acquired from MathWorks already had a predefined PMSM which made

it easy to simulate motor drives without having to know any specific motor parameters. By

using these predefined parameters, the HFI technique from the last section could be tested on

a different motor.

Table 4.5: Parameters for the predefined PMSM

Symbol Parameter Value Unit

Pp Peak power 14 kW
Vn Nominal voltage 44 V
N Pole pairs 2
ψm Permanent magnet flux linkage 0.04 Wb
Rs Phase resistance 5 mΩ
Ld Direct axis inductance 100 µH
Lq Quadrature axis inductance 300 µH
Jm Rotor inertia 0.01 kgm2

CQ,0 Parametrization parameter of torque 0.0078
CQ,1 Parametrization parameter of torque −0.0058
D Propeller size (diameter) 40 cm
Va Air speed (assumed constant) 20 m/s
ρ Air density 1.225 kg/m3

Ts Fundamental sample time in Simulink 5 µs
fsw Switching frequency of inverter 20 kHz

The HFI observer was also adjusted to fit the predefined motor. The following observer param-

eters was found appropriate:

Table 4.6: Parameters used to tune HFI observer for the predefined PMSM

Symbol Parameter Value

Vh Amplitude of the injected voltage 20 V
ωh Frequency of injected voltage 1000 Hz
ωl p Natural frequency of low pass filter 500 Hz
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The results from using HFI observer feedback are shown below:
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Figure 4.10: System response using HFI feedback

As seen in the figures above, both the speed and position-controller clearly works while using

HFI observer feedback on another motor. The current envelopes and the position- and speed

estimates from the HFI observer are plotted on the next couple of pages.
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From figure 4.11 we see that the current envelopes remain sinusoidal while the HFI observer is

being used as feedback:
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Figure 4.11: Envelopes of the high frequency current components

Having sinusoidal and well defined current envelopes gives rise to accurate position- and speed

estimates as shown on next page.
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Figure 4.12: Estimation of rotor position and speed during observer feedback

From figure 4.12 it can be seen that the HFI technique works well for another motor. Besides

the size difference and number of pole pairs, the only difference between the two motors is that

Alva’s motor is a SPMSM while the predefined motor is a IPMSM due to the fact that the direct-

and quadrature axis inductances are not equal. In order to find out if the difference in direct-

and quadrature inductance affects the HFI estimation, the system was simulated again using

other values for the direct axis inductance.
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By letting the direct axis inductance slowly approach the value of the quadrature axis induc-

tance, it could be determined how the inductance difference affects the HFI estimation:
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Figure 4.13: Estimation of rotor position for different values of Ld
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From figures shown in 4.13, it can be seen that the accuracy of the HFI estimation decreases

with decreasing inductance difference. Once the inductance difference (Lq −Ld ) becomes less

than 50 µH or 0.167 p.u, the observer becomes incapable of estimating the rotor position. The

signal carrying the information of the rotor position from equation 2.66 is in fact dependent on

the inductance difference, meaning that if the inductance difference is small then the position

signal is easily lost to noise. This explains why the HFI observer worked fine for the motor de-

signed by Alva Industries (SPMSM) during the tuning process in figure 4.7, but failed once the

observer was used as feedback because of the introduced noise shown in figure 4.8.

Ultimately, this means that the results from the saliency independent HFI observer proposed

by Qiao et.al [25] could not be replicated for the motor designed by Alva Industries due to small

motor inductances.
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4.4 Simulation using Hall Sensors

This far, sensorless methods involving both model-based and saliency-based observers have

been used in order to control the motor during high and low-speed operations. However, only

the model-based nonlinear observer along with a Hall sensor has yielded results. In the end, it

seems that one has to abandon the idea of using sensorless methods in order to precisely control

the motor designed by Alva Industries during low-speed operations.

Simulation using three Hall sensors

First, an attempt was made to obtain precise motor control during low-speed operations by us-

ing Hall sensors together with the integrator introduced in section 3.5 as feedback. By using

three Hall sensors, a common configuration for BLDC-motors, the following results were ob-

tained:
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Figure 4.14: System response while using Hall sensor-based feedback
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From figure 4.14 it can be seen that the Hall sensors work well for speed control, but that difficul-

ties arise under position control. Due to the few pulses the Hall sensors provide at low speeds,

the speed estimate becomes inaccurate which results in the rotor oscillating around the desired

position with a maximum error of approximately 60◦.

The estimated states provided by the Hall sensors compared to the measured states are plot-

ted below:
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Figure 4.15: Estimation of rotor speed and position using Hall sensors
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4.5 Simulation using Extended Kalman Filter and Hall sensors

When using Hall sensors and a integrator as feedback, we got a maximum error of approximately

60◦. This is not necessarily good enough as 90◦is the biggest error one can have when controlling

the position of a propeller. One way to improve this is by combining the Hall sensors with an

extended Kalman filter where current- and voltage measurements together with knowledge of

the motor load are taken into account.

Simulation using EKF with a single Hall sensor

As with the other observers, the Extended Kalman filter also has to be tuned so that it fits the

simulated system. This involves determining the inputs of the matrices Q, R and P0. The system

was simulated using encoder feedback in order to tune the Kalman filter:
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Figure 4.16: Estimation of rotor speed and position using EKF
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Using trial and error, the following tuning parameters was found fitting for the extended Kalman

filter using current measurements and a single Hall sensor to measure the rotor position:

Q =


0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

 , R =

10−8 0 0

0 10−8 0

0 0 10−7

 , P0 =


10−3 0 0 0

0 10−3 0 0

0 0 10−3 0

0 0 0 10−3


Given that the measurements have little noise in the simulated environment, the measurement

covariance matrix R is small relative to the process noise covariance matrix Q - meaning that we

want the Kalman filter to emphasize the measurements more than the predicted estimates.

From figure 4.17 it is visible that the EKF estimates both the rotor speed and position well dur-

ing the first two seconds. However, the EKF does not have any measurements that can be used

to correct deviations between the estimated and real rotor speed. Ultimately, this results in an

incorrect speed estimate which in turn affects the position estimate since the position is esti-

mated by integrating the rotor speed. Naturally, by having such deviations the EKF can not be

used as feedback to the control system in its given form.
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Simulation using EKF with two Hall sensors

From the results obtained using a single Hall sensor, the EKF clearly needed input related to

the rotational speed of the rotor. Thus, two Hall sensors was used instead of one and the speed

estimator based on Hall sensors from section 3.5 was implemented as well. After another tuning

process, the new R-matrix was found to be:

R =


10−8 0 0 0

0 10−8 0 0

0 0 6·10−2 0

0 0 0 10−7


Yielding the following results while using the EKF as feedback:
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Figure 4.17: System reponse while using EKF as feedback

The system now works for both speed and position control. As there are few pulses from the Hall

sensors at low speeds, a maximum error of approximately 20◦ occurs under position control.
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It is also interesting to see how the Kalman filter estimates the speed and position of the rotor

based on the measurements it has available.
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Figure 4.18: Estimation of rotor speed and position using EKF

As seen in the top figure of 4.18, the Kalman filter uses the speed measurements from the Hall

sensors to improve the speed estimate. As the speed decreases, the filter gets fewer and fewer

measurements which in turn leads to more inaccurate estimates. In the second figure we see

how the rotor position is both overestimated and underestimated by the Kalman filter during

position control due to few Hall sensor pulses, ultimately leading to the error seen in figure 4.17.
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Simulation using EKF with three Hall sensors

By using three Hall sensors, it is possible to get even more accurate speed and position esti-

mations. Since an extra Hall sensor was being used, the speed estimation would become more

precise which in turn lowers the R-value associated with the speed measurements in the noise

matrix R:

R =


10−8 0 0 0

0 10−8 0 0

0 0 2·10−2 0

0 0 0 10−7


This gives rise to the following system response:
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Figure 4.19: System reponse while using three Hall sensors and EKF as feedback

From figure 4.19 it can be seen that the speed controller has a faster and smoother response and

that the error during position control is almost eliminated with a maximum error of 8◦.
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The plots below compare the real states to the estimated ones:
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Figure 4.20: Estimation of rotor speed and position using EKF and three Hall sensors

From figure 4.20 it can be seen that the speed estimate has improved, especially about low

speeds. This makes the position estimate more accurate so that the position error in figure 4.19

is kept within an acceptable limit.

Based on the results in this section, the position error during the locking-phase can be reduced

by adding more and more Hall sensors until a satisfactory result is obtained.





Chapter 5

Conclusion and future work

Chapter 5 will conclude the work conducted in the thesis, before presenting recommendations

for future work.

Conclusion

The purpose of the project was to develop a sensorless control system for a permanent mag-

net synchronous motor used to drive a propeller so that both the system costs as well as the

energy efficiency of a drone were improved. As presented in Chapter 4, it was found that only

two of the proposed estimation methods gave satisfactory control results. These were the ones

based on the nonlinear observers and the Extended Kalman filter coupled with Hall sensors. By

using the nonlinear observers as feedback, which performs poorly at low speeds, the propeller

was magnetically locked into position by applying a fixed voltage to the stator windings. This

method has its limitations as it is based on open loop control and therefore cannot guarantee

that the propeller is locked into the desired position. On the other hand, the method involving

the Extended Kalman filter coupled with Hall sensors is based on closed loop control and can

to a greater extent ensure that the propeller is indeed locked into the desired position. From the

simulations, it was found that the EKF control algorithm had a maximum error of 8◦during the

locking phase of the propeller, which was well within the requirements set in this thesis.

A surprising result was that the high frequency current injection-control scheme failed as this

was predicted to be the solution to the shortcomings of the nonlinear observer during low-speed

operations. As a result, the extended Kalman filter coupled with the Hall sensors was used as an

alternative solution.
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Recommendations for Future Work

Recommendations for future work involve determining the accuracy of the simulated motor

model relative to the physical motor. This can be done by comparing results from the simulated

system and the physical system under equal operating conditions. In addition, it is also recom-

mended to test the developed control methods physically in order to verify the results from the

thesis. Finally, it would be interesting to see the results of an analysis related to how much en-

ergy is saved by using the different control algorithms developed in this thesis in order to reduce

wind resistance of a fixed-wing drone.
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Appendix A

MATLAB code

A.1 Initializing parameters of the model

1 %% Parameters for PMSM motor model
2

3 clear;
4 %% Machine Parameters
5 Vnom = 44; % Motor voltage [V]
6 Ld = 2.64e-6; % Stator d-axis inductance [H]
7 Lq = 2.64e-6; % Stator q-axis inductance [H]
8 Rs = 19.9e-3; % Stator resistance per phase [Ohm]
9 BEMF = 8.03e-3; % Back -EMF constant wye -wound [V/rpm]

10 p = 14; % Number of pole pairs
11 rad = 30/pi; % BEMF from V/rpm to V*s/rad
12 psim = BEMF*rad/p; % Permanent magnet flux linkage [Wb]
13 Cdc = 0.001; % DC-link capacitor [F]
14 Jm = 0.01; % Inertia motor [kg*m^2]
15

16 % First order approximation of propeller torque coeffisient:
17 Cq0 = 0.0078; % Constant coeffisient
18 Cq1 = -0.0058; % First order coeffisient
19

20 D = 0.4; % Propeller size (diameter) [m]
21 rho = 1.225; % Air density [kg/m^2]
22 Va = 20; % Air speed assumed constant [m/s]
23
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24 Vdc_on = 24; % Voltage threshold to activate the inverter
25

26 %% Control Parameters
27 Ts = 5e-6; % Fundamental sample time [s]
28 fsw = 2e4; % PMSM drive switching frequency [Hz]
29

30 Tsi = 1e-5; % Sample time for current control loops [s]
31 Tso = 1e-4; % Sample time for outer control loop [s]
32 Tpc = 1e-3; % Samle time for position control [s]
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A.2 Estimation of rotor position - nonlinear observer

1 function [theta , x] = Estimate_theta(i_ab , v_ab , x_input)
2 dt = 5e-6; % Step -length
3

4 L = 3/2 * 2.64e-6; % Stator inductance
5 R = 3/2 * 0.0199; % Stator resitance
6

7 L_ia = L * i_ab (1); % Inductive voltage a
8 L_ib = L * i_ab (2); % Inductive voltage b
9 R_ia = R * i_ab (1); % Resistive voltage a

10 R_ib = R * i_ab (2); % Resistive voltage b
11

12 lambda_2 = 0.0055^2; % Flux linkage squared
13 gamma_half = 1e9*0.5; % Observer gain
14

15 % Error:
16 err = lambda_2 - (( x_input (1) - L_ia )^2 + (x_input (2) - L_ib )^2);
17 % State Observer 1:
18 x1_dot = -R_ia + v_ab (1) + gamma_half * (x_input (1) - L_ia) * err;
19 % State Observer 2:
20 x2_dot = -R_ib + v_ab (2) + gamma_half * (x_input (2) - L_ib) * err;
21

22 % Forward euler of state observers:
23 x = [x_input (1) + x1_dot * dt , x_input (2) + x2_dot * dt];
24

25 theta = atan2(x(2) - L_ib , x(1) - L_ia); % Estimation of theta
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A.3 Estimation of rotor speed - nonlinear observer

1 function [omega , z_output] = Estimate_omega(theta , z)
2 dt = 5e-6; % Step -length
3

4 Kp = 500; % Observer gain P
5 Ki = 0; % Observer gain I
6

7 % State observer 1:
8 z1_dot = Kp * (theta - z(1)) + Ki * z(2);
9

10 % State observer 2:
11 z2_dot = theta - z(1);
12

13 % Forward euler of state observers:
14 z_output = [z(1) + z1_dot * dt; z(2) + z2_dot * dt];
15

16 omega = Kp * (theta - z(1)) + Ki * z(2); % Estimation of omega
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A.4 Prediction step of EKF

1 function [x_prediction , P_prediction] = Prediction(x_correction ,
2 P_correction , u)
3

4 % Machine Parameters:
5 Ld = 2.64e-6; % Stator d-axis inductance [H]
6 Lq = 2.64e-6; % Stator q-axis inductance [H]
7 Rs = 19.9e-3; % Stator resistance per phase [Ohm]
8 BEMF = 8.03e-3; % Back -EMF constant wye -wound [V/rpm]
9 p = 14; % Number of pole pairs

10 rad = 30/pi; % BEMF from V/rpm to V*s/rad
11 psim = BEMF*rad/p; % Permanent magnet flux linkage [Wb]
12 Jm = 0.01; % Inertia motor [kg*m^2]
13 Ts = 5e-6; % Fundamental sample time [s]
14

15 % Propeller parameters:
16 Cq0 = 0.0078; % Constant coeffisient
17 Cq1 = -0.0058; % Linear coeffisient
18 D = 0.25; % Propeller diameter
19 rho = 1.225; % Air density
20 Va = 20; % Air speed
21

22 % Calculating load torque:
23 if x_correction (3) ~= 0 % Avoid dividing by zero
24 Jad = 2*pi*Va/( x_correction (3)*D); % Advanced ratio
25 torque = rho*D^5/(4* pi^2)*( Cq0 + Cq1*Jad)* x_correction (3)^2;
26 else
27 torque = 0;
28 end
29

30

31

32

33

34

35
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36 % x = [i_d , i_q , omega , theta], u = [v_d , v_q]
37

38 % Prediction step:
39 x1 = x_correction; % Create a shorter var. to make room in script
40

41 K1 = Ts*[-Rs/Ld*x1(1) + Lq/Ld*p*x1(3)*x1(2) + 1/Ld*u(1)
42 -Rs/Lq*x1(2) - Ld/Lq*p*x1(3)*x1(1) - psim*p*x1(3)/Lq + 1/Lq*(2)
43 1/Jm *(3/2*p*(psim*x1(2)+(Ld-Lq)*x1(1)*x1(2)) - torque)
44 x1(3)*p];
45

46 x_prediction = x_correction + K1;
47

48 % Calculate Jacobian:
49 F = [1-Ts*Rs/Ld Ts*p*x1(3) Ts*p*x1(2) 0
50 -Ts*p*x1(3) 1-Ts*Rs/Lq -Ts*p*x1(1)-Ts*psim*p/Lq 0
51 0 0 1 0
52 0 0 Ts*p 1];
53

54 % Define the Q-matrix:
55 Q = diag ([0.1 0.1 0.1 0.1]);
56

57 % Update error covariance matrix:
58 P_prediction = P_correction*F*P_correction ’ + Q;
59 end



APPENDIX A. MATLAB CODE 88

A.5 Update step of EKF

1 function [x_correction , P_correction ]= Correction(x_prediction , P_prediction , y, hall_sensor)
2

3 % y = [i_d , i_q , omega], where omega is estimated by the Hall sensors
4

5 % Only i_d and i_q are continously measured:
6 y_measurements = [y(1); y(2)];
7

8 % Define the H-matrix:
9 H = [1 0 0 0

10 0 1 0 0];
11

12 % Define the R-matrix:
13 R = diag ([1e-8 1e-8]);
14

15 % If a hall pulse is detected , change the H and R-matrices:
16 if hall_sensor
17 H = [1 0 0 0
18 0 1 0 0
19 0 0 1 0
20 0 0 0 1];
21

22 R = diag ([1e-8 1e-8 2e-2 1e-7]);
23 end
24

25 % Measured rotor position is determined by the different hall sensors:
26 if hall_sensor (1)
27 y_measurements = [y(1); y(2); y(3); 0];
28

29 elseif hall_sensor (2)
30 y_measurements = [y(1); y(2); y(3); 2*pi/3];
31

32 elseif hall_sensor (3)
33 y_measurements = [y(1); y(2); y(3); -2*pi/3];
34 end
35



APPENDIX A. MATLAB CODE 89

36 % Calculate Kalman -gain
37 K = P_prediction*H’*(H*P_prediction*H’ + R)^( -1);
38

39 % Update step:
40 x_correction = x_prediction + K*( y_measurements - H*x_prediction );
41

42 % Update error covariance matrix:
43 P_correction = (eye(4)-K*H)* P_prediction *(eye(4)-K*H)’ + K*R*K’;
44 end
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A.6 Hall-based estimator

1 function [theta , omega]= Hall_estimator(hall , theta_in , time)
2

3 Ts = 5e-6; % Fundamental sample time
4

5 if time == 0 % Avoid division by zero
6 omega = 0;
7 else
8 omega = 2*pi /(3*14* time); % mech.speed = distance/time*num of pp
9 end

10

11 % Any hall pulses will update the position estimate:
12 if hall (1)
13 theta = 0;
14

15 elseif hall (2)
16 theta = 2*pi/3;
17

18 elseif hall (3)
19 theta = -2*pi/3;
20

21 % Between hall pulses , the position is estimated by:
22 else
23 theta = theta_in + omega*Ts;
24

25 % Boundaries of the rotor angle:
26 if theta > pi
27 theta = -pi;
28 elseif theta < -pi
29 theta = pi;
30 end
31 end
32 end
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