
Matej Mnoucek

Evolving Transformer Architectures
for Time Series Forecasting

Master thesis, Spring 2022

Artificial Intelligence Group
Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical Engineering

i

Abstract

Transformer-based neural network architectures have recently demonstrated state-
of-the-art performance in many Natural Language Processing tasks. Further-
more, there have been successful attempts to apply the same principles to prob-
lems beyond the scope of NLP. A particularly interesting application area is time
series forecasting as there is a great potential for improving the current techniques
and the research to date has rarely considered Transformer-based architectures
for forecasting. However, manual design and optimization of neural network ar-
chitectures and their hyperparameters has proven to be difficult, time-consuming
and mainly driven by trial and error.

This work explores the use of evolutionary computation to design Transformer-
based architectures suitable for time series forecasting. The proposed neural ar-
chitecture search system is capable of performing an automated evolution-driven
search to determine the optimal architectural components as well as their param-
eterization and internal structure. The performance of the evolved architectures
is assessed by experiments which compare the achieved forecasting accuracy with
accuracies of common forecasting methods. A selection of time series benchmarks
is used as a base for the comparison. The main contributions consist of the men-
tioned system and the final discovered architecture. The work also introduces a
genetic representation for evolving Transformer-based architectures which can be
seen as another contribution.

ii

Preface

The following document presents a master thesis that was produced as the final
work required to obtain Master of Science degree in Informatics at the Norwegian
University of Science and Technology. First of all, I would like to thank Prof.
Pauline Catriona Haddow for the time and effort dedicated to supervision. Her
deep knowledge of the field, constructive feedback and endless curiosity vastly
improved the quality of this work. In addition, for the entire duration of the
project, I was honored to be part of NTNU CRAB Lab which is the place where
most scientific debates and group brainstorming took place. Therefore, a huge
thank you goes to all members of the lab, not only for their help and support but
also for their everlasting optimism.

The thesis investigates the idea of using neural evolution for evolving Transformer-
based architectures. More specifically, the focus is on time series and the aim is
to provide a solution which achieves state-of-the-art forecasting performance.

Matej Mnoucek Trondheim, June 8, 2022

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Preliminary Process . 1
1.3 Goals and Research Questions . 2
1.4 Research Method . 3
1.5 Contributions . 3
1.6 Structured Literature Review . 5

1.6.1 Identification of Research 5
1.6.2 Selection of Primary Studies 7
1.6.3 Quality Assessment . 8

1.7 Thesis Structure . 8

2 Background Theory 11
2.1 Evolutionary Algorithms . 11

2.1.1 Representation . 12
2.1.2 Population . 12
2.1.3 Fitness Function and Selection 13
2.1.4 Mutation and Crossover . 13

2.2 Artificial Neural Networks . 15
2.2.1 Convolutional Neural Network 18
2.2.2 Recurrent Neural Network 19

2.3 Time Series . 21
2.3.1 Time Series Components 21
2.3.2 Decomposition and Smoothing 22

2.4 Time Series Forecasting . 23
2.4.1 Classical Models . 23
2.4.2 Neural Network Models . 24
2.4.3 Model Evaluation . 24

2.5 Attention and Transformer Architecture 25

iv Contents

2.5.1 Sequence to Sequence Models 25
2.5.2 Attention Mechanism . 26
2.5.3 Transformer Architecture 26

3 Related Work 31
3.1 Neuroevolution . 31
3.2 Neural Architecture Search . 33

3.2.1 Search Space . 34
3.2.2 Search Strategy . 37
3.2.3 Performance Estimation Strategy 39

3.3 Transformer Architecture Search 41
3.3.1 Search Space . 41
3.3.2 Search Strategy . 43
3.3.3 Performance Estimation Strategy 44

3.4 Transformer Modifications . 44
3.4.1 Architecture Variations . 45
3.4.2 Layer Normalization . 46
3.4.3 Attention Modelling . 47
3.4.4 Feed Forward Sub-layer . 50
3.4.5 Positional Encoding and Embedding 51
3.4.6 Masked Pretraining . 53

3.5 Transformers for Time Series Forecasting 53
3.6 Time Series Forecasting Methods 56
3.7 Forecasting Benchmarks . 57

4 Method and System Design 59
4.1 Design Framework . 59
4.2 Design Decisions . 60
4.3 Transformer Architecture Selection 61
4.4 Attention Models Comparison . 62
4.5 Genotype Encoding Design . 63

4.5.1 Search Space . 64
4.5.2 Parameters . 67
4.5.3 Modules . 67

4.6 Neural Architecture Search System Design 68
4.6.1 Search Strategy . 68
4.6.2 Performance Estimation Strategy 70
4.6.3 System Configuration . 74
4.6.4 Result Presentation . 74

4.7 Transformer Architecture Evolution 74
4.7.1 Transformer Building Blocks 75

Contents v

4.7.2 Attention Modules . 75
4.7.3 Convolution Modules . 76
4.7.4 Feed Forward Modules . 76
4.7.5 Activation Modules . 76
4.7.6 Positional Encoding Modules 76
4.7.7 Normalization Modules . 76
4.7.8 Dropout Modules . 76

4.8 Forecasting Methods Comparison 81

5 Experiments and Results 83
5.1 Experimental Plan . 83
5.2 Experimental Setup . 84

5.2.1 Datasets . 85
5.2.2 Evaluation Metrics . 87
5.2.3 Training of Models . 88

5.3 Experimental Results . 89
5.3.1 Phase 1: Transformer Architectures 89
5.3.2 Phase 2: Attention Models 97
5.3.3 Phase 3: Genotype Encoding 105
5.3.4 Phase 4: Forecasting Methods Comparison 118

6 Conclusion and Future Work 127
6.1 Discussion . 127
6.2 Limitations . 129
6.3 Future Work . 130

Bibliography 131

Appendices 149

vi Contents

Acronyms

ANN Artificial Neural Network 32

ANOVA Analysis Of Variance 87, 88, 93, 100, 110, 115, 122

APE Added positional encoding xv, 51, 52, 76, 79

ARIMA Autoregressive Integrated Moving Average 24, 118, 121–126

ARMA Autoregressive Moving Average 24

BERT Bidirectional Encoder Representations from Transformers 46

CNN Convolutional Neural Network 18, 24, 34, 35, 56

CPPN Compositional Pattern Producing Networks 32

DL Deep Learning 33

DNN Deep Neural Network 33

DSR Design Science Research ix, 3–5

EA Evolutionary Algorithms 38, 61

GPT Generative Pre-trained Transformer 45, 51, 53

GPU Graphics Processing Unit 84

GRU Gated Recurrent Unit 21, 24

HyperNEAT Hypercube-Based Indirect Encoding for Neuroevolution of Aug-
menting Topologies 32

JSON JavaScript Object Notation 74

LN Layer Normalization 46, 76

viii Acronyms

LSTM Long Short-term Memory 20, 21, 24, 38, 56, 81, 118, 123–126

MAE Mean Absolute Error xvi–xviii, 24, 25, 87, 88, 93, 94, 97, 98, 101, 103,
121–126

MAM Modified attention matrix 51–53, 75, 76

MAPE Mean Absolute Percentage Error 25

MoE Mixture-of-Experts 51

MSE Mean Squared Error 25, 88

MTS Multivariate Time Series 55

NAO Neural Architecture Optimization 38

NAS Neural Architecture Search xi, 31, 33, 35, 37, 38, 42, 43, 59–61, 68, 130

NEAT Neuroevolution of Augmenting Topologies x, 31, 32

NLP Natural Language Processing 1, 2, 45, 46, 53, 61

RL Reinforcement Learning 37, 43, 61

RMSE Root Mean Squared Error xvi–xviii, 25, 87, 88, 93, 94, 97, 99, 102, 103,
121–126

RNN Recurrent Neural Network 19, 24, 43, 56, 81, 123–126

SLR Structured Literature Review 5

TCN Temporal Convolutional Network 56, 122–126

TDE Time Delay Embedding 54

List of Figures

1.1 DSR Knowledge Contribution Framework [55] 4

2.1 The general process of evolutionary algorithms [41]. 12

2.2 Two examples of n-point crossover operator for n “ 1 and n “ 2 [41]. 14

2.3 An illustration of a biological neuron describing its main parts [51]. 15

2.4 A single perceptron with four inputs, bias and activation func-
tion [51]. 16

2.5 An example of deep neural network with one hidden layer [51]. . . 16

2.6 Examples of various activation function alternatives [51]. 17

2.7 1D convolution with r1,´1, 1s kernel over r5, 6, 6, 2, 5, 6, 5s vec-
tor [134]. 19

2.8 The folded (left) and unfolded (right) illustration of recurrent neu-
ral network structure. xt represents input sequence, ht hidden
states and yt elements of the potential output sequence [152]. . . . 20

2.9 An example discrete time series showing sales of The Australian
red wine between years 1980 and 1991 [15]. 21

2.10 Monthly beverage shipments time series showing clear signs of sea-
sonality [112]. 22

2.11 An example of sentence translation by sequence to sequence model.
The encoder on the left takes in a sentence and encodes it into a
context vector (hidden state). The decoder on the right uses the
hidden state to produce the translated sentence [51]. 25

2.12 Bindings from decoder (green) to encoder (orange) via attention
in sequence to sequence models. Each attention link has its own
set of trainable weights [141]. 27

2.13 A simple example of self-attention in a sequence of words: What
does it refer to in this sentence? The darker the color on the left is,
the higher the attention score i.e. the more focus the corresponding
word gets [3]. 28

x List of Figures

2.14 Left: Scaled dot-product attention. Right: Multi-head attention
which allows parallel execution of multiple independent attention
calculations [159]. 29

2.15 Transformer architecture diagram. The model consists of two
stages: encoder and decoder. Encoder is made by stacking several
encoder layers. Each layer contains two sub-layers: Multi-head at-
tention and Feed forward sub-layer. Similarly, decoder is made
up of decoder layers and contains the same two sub-layers. In
addition, decoder includes another multi-head attention sub-layer
which performs attention over the outputs of the encoder stack.
The three arrows pointing to the bottom of each multi-head at-
tention sub-layer represent key, value and query vectors (in this
order). Finally, the input sequence is provided in a form of input
embedding with positional encoding added to it [159]. 30

3.1 Mapping from genotype to phenotype in NEAT. Genotype is di-
vided into two types of genes: node genes and connection genes.
Node genes represent neurons and their types while connection
genes describe connections between neurons including their weights
and innovation numbers [147]. 32

3.2 Left: Chain-structured architecture example. Each layer consumes
the result of the previous layer. The only exception is the in-
put layer. Right: Multi-branch architecture example which also
includes branches and skip connections. Each colored rectangle
corresponds to a network layer [43]. 34

3.3 Left: Two different kinds of blocks/cells which encapsulate found
or hand-crafted architectural patterns. Right: Stacking blocks/cells
to produce a complete network architecture [43]. 35

3.4 Left: The complete NASNet structure made of alternating Nor-
mal cells and Reduction cells. Middle: An illustration showing
skip connections (omitted in the first diagram). Right: Detailed
example of an evolved cell [195]. 36

3.5 An illustration of One-shot architecture search process. Left: An
example of One-shot model with one input node (0), one output
node (4) and three hidden nodes (1,2,3). The edges represent op-
erations that are applied to nodes. The model is trained as a whole
including all nodes and operations. Right: To obtain a candidate
architecture, the one-shot model is sampled to produce a sub net-
work. Relevant weights of the one-shot model are transferred to
the candidate architecture to avoid the need for training [44]. . . . 41

List of Figures xi

3.6 Search space cell of The Evolved Transformer. Each of the blocks
(violet) ordered and stacked within the cell (green) outputs a hid-
den state which is added to a hidden state pool. Other blocks can
then select two hidden states produced by the preceeding blocks as
input. These inputs are then fed into the left and right branches
(red) of the corresponding block [143]. 42

3.7 Left: post-norm variant of the Transformer layer, Right: pre-norm
variant of the Transformer layer [85]. 47

3.8 The fixed attention pattern of Longformer. The picture illustrates
how elements attend to other elements. Both vertical and hori-
zontal axis represent elements of the same sequence, therefore, the
diagonal line shows attention to the element itself [11]. 48

3.9 The attention pattern of Big Bird Transformer. Three fixed atten-
tion patterns were combined into one [182]. 48

3.10 A stack of alternating cross-attention modules and transformer-
style self-attention blocks. The byte array represents the original
input while latent array is its low-dimensional projection (at least
in the beginning) [68]. 50

3.11 Use of a sliding window for training examples generation [170]. . . 54

4.1 The framework used to design evolution-driven NAS system and
obtain a Transformer-based architecture for time series forecasting. 60

4.2 A diagram illustrating Genotype, Genotype layer, Genotype cell
and Genotype module concepts and the relations between them. . . 66

4.3 Visualization of a Genotype layer representing one layer of pre-
norm (section 3.4.2) Transformer encoder (section 3.4.1). Squares
with labels represent Genotype modules. Modules of the same
color belong to the same Genotype cell. 73

5.1 Visualization of the three types of time series included in Synthetic
dataset. Upper left: single sine wave, Upper right: composed sine
waves, Bottom center: composed sine waves with noise. 85

5.2 Examples of Noam optimizer learning rate scheduling. The curves
show schedules of three combinations of embedding size and warmup
steps. The vertical axis represents learning rate while the horizon-
tal axis shows the current training step index. 88

xii List of Figures

5.3 Example forecasts of one training example from Synthetic dataset
produced by all architecture variants. Blue color represents the
model input, orange color the true values and green color the
forecasted values. Top left: encoder-decoder, top right: Informer
encoder-decoder, center left: decoder-only, center right: encoder-
only, bottom: merged encoder-only. 95

5.4 Example forecasts of one training example from the sub-sampled
Libra dataset produced by all architecture variants. Blue color
represents the model input, orange color the true values and green
color the forecasted values. Top left: encoder-decoder, top right:
Informer encoder-decoder, center left: decoder-only, center right:
encoder-only, bottom: merged encoder-only. 96

5.5 Example forecasts of one training example from Libra dataset pro-
duced by encoder-only architecture with different attention mod-
els. Blue color represents the model input, orange color the true
values and green color the forecasted values. Top left: Big Bird
attention, top right: Longformer attention, center left: Conformer
attention, center right: Reformer attention, bottom left: Adaptive
span attention, bottom right: TransformerXL attention. 104

5.6 Visualisation of evolved Genotype layers extracted from the best
genotype found during each search run which used 3 modules per
branch genotype variant. 110

5.7 Visualisation of evolved Genotype layers extracted from the best
genotype found during each search run which used Unlimited mod-
ules per branch (encoder seeded) genotype variant. 111

5.8 Plots showing the development of control metrics during all evo-
lutionary searches performed in the first experiment of Phase 3.
The columns represent survivor fitness, the introduced progressive
hurdles and difference factor. Each row belongs to one evaluated
genotype variant ordered as follows: 1 module per branch, 3 mod-
ules per branch, Unlimited modules (randomly initialized), Unlim-
ited modules (seeded with Transformer encoder). 113

5.9 Visualisation of evolved Genotype layers extracted from the best
genotype found for each genotype variant. Left: 1 module per
branch, Middle left: 3 modules per branch, Middle right: Unlimited
modules per branch, Right: Unlimited modules per branch (encoder
seeded). 116

List of Figures xiii

5.10 Plots showing the development of control metrics during all evo-
lutionary searches performed in the second experiment of Phase
3. The columns represent survivor fitness, the introduced progres-
sive hurdles and difference factor. Each row belongs to one eval-
uated genotype variant ordered as follows: 1 module per branch,
3 modules per branch, Unlimited modules (randomly initialized),
Unlimited modules (seeded with Transformer encoder). 117

5.11 Visualisation of the Genotype layers stacked inside the three evolved
architectures used in this experimental phase. Left: The evolved
architecture #1, Center: The evolved architecture #2, Right: The
evolved architecture #3. 119

5.12 The internal structure of Conformer attention module [59]. 119

xiv List of Figures

List of Tables

1.1 Structured Literature Review – Grouping of relevant search terms
used during the in-depth literature search 5

1.2 Structured Literature Review – Inclusion criteria 8
1.3 Structured Literature Review – Quality criteria table 8

4.1 A list of Transformer hyperparameters. 62
4.2 A list of Transformer attention models (part 1). 63
4.3 A list of Transformer attention models (part 2). 64
4.4 A list of genotype hyperparameters. 65
4.5 Selection criteria for tournament selection. 69
4.6 Available layer level mutations. 69
4.7 Available cell mutations. The layer within which cell mutation

takes place is selected randomly. 70
4.8 Available module mutations. The layer and cell within which mod-

ule mutation takes place are selected randomly. 71
4.9 Genotype and module parameter mutations. 72
4.10 Crossover operators for all genotype levels. 72
4.11 A list of modules encapsulating core building blocks of Transformer. 75
4.12 A list of all possible augmentations in multi-head attention mod-

ule. Placement column specifies where in the attention module
can the particular augmentation be applied. 77

4.13 A list of modules encapsulating the common uses of convolution. . 78
4.14 A list of modules that provide activation functions. 79
4.15 A list of modules which implement APE positional encodings. . . . 79
4.16 A list of modules providing different kinds of normalization. 80
4.17 A list of dropout modules. 80

5.1 The equations which produced the series included in Synthetic
dataset. Each equation was parametrized by the corresponding
set of parameter values. 86

xvi List of Tables

5.2 The first sub-sampled Libra benchmark variant presented as in-
dices of the randomly selected time series in each category. 87

5.3 The second sub-sampled Libra benchmark variant presented as
indices of the randomly selected time series in each category. . . . 87

5.4 The list of parameters used as a genotype during Transformer hy-
perparameter search. The type column specifies the used evolvable
parameter types as defined in subsection 4.5.2 89

5.5 The setup of the evolutionary hyperparameter search. 90

5.6 Results of Transformer hyperparameter search on Synthetic dataset.
The notation stands for: mean ± std. Note: Some of the values
come from a predefined set, so mean and std need to be interpreted
accordingly. 91

5.7 Results of Transformer hyperparameter search on sub-sampled Li-
bra dataset. The notation stands for: mean ± std. Note: Some of
the values come from a predefined set, so mean and std need to
be interpreted accordingly. 92

5.8 The sets of hyperparameters for Transformer variants evaluation
chosen based on the results of hyperparameter search described
in section 5.3.1. 92

5.9 The setup used for the Transformer variants evaluation experiment. 93

5.10 Results of Transformer architecture comparison using MAE metric
on combinations of datasets and forecasting horizons specified Ta-
ble 5.9. The notation stands for: mean ± std. The best (lowest)
values are shown in bold. 94

5.11 Results of Transformer architecture comparison using RMSE met-
ric on combinations of datasets and forecasting horizons speci-
fied Table 5.9. The notation stands for: mean ± std. The best
(lowest) values are shown in bold. 94

5.12 The setup used for the attention models comparison experiment. . 97

5.13 Results of attention models evaluation using MAE metric on com-
binations of datasets and forecasting horizons specified Table 5.12.
The notation stands for: mean ± std. The best (lowest) values are
shown in bold. 98

5.14 Results of attention models evaluation using RMSE metric on com-
binations of datasets and forecasting horizons specified Table 5.12.
The notation stands for: mean ± std. The best (lowest) values are
shown in bold. 99

List of Tables xvii

5.15 Results of attention models evaluation using MAE metric on com-
binations of datasets and forecasting horizons specified Table 5.12.
This time, encoder-only was used as the host architecture. The no-
tation stands for: mean ± std. The best (lowest) values are shown
in bold. 101

5.16 Results of attention models evaluation using RMSE metric on com-
binations of datasets and forecasting horizons specified Table 5.12.
This time, encoder-only was used as the host architecture. The no-
tation stands for: mean ± std. The best (lowest) values are shown
in bold. 102

5.17 Selected attention models sorted based on metrics obtained for
the listed dataset/forecasting horizon combinations. The metrics
values were extracted from Table 5.16 and Table 5.15. 103

5.18 The base configuration shared by both genotype encoding evalua-
tion experiments. 105

5.19 A list of genotype parameters used in both encoding evaluation
experiments. The type column specifies the used evolvable param-
eter type as defined in subsection 4.5.2 106

5.20 The probabilities of applying mutation and crossover operators
used in both experiments. The utilized operators are described
in section 4.6.1. The operators marked with ˚ form children of the
nearest higher listed operator without a ˚ i.e. the higher listed
operator needs to get selected first for the child operators to be
eligible for selection (probabilities multiply). The values that differ
for some configurations are highlighted in bold. 108

5.21 Modules used for the first experiment. 109

5.22 Results of genotype encoding variants comparison. The notation
stands for: mean ± std. The best (highest) value is shown in bold. 109

5.23 Modules used for the second experiment of Phase 3. 114

5.24 Results of genotype encoding variants comparison. The notation
stands for: mean ± std. The best (highest) value is shown in bold. 115

5.25 A list of the compared forecasting methods and evolved architec-
tures including the used hyperparameters. 118

5.26 The values of parameters attached to the modules used by the
evolved architectures utilized in this experimental phase. 120

5.27 Setup and configuration of the forecasting methods and architec-
tures comparison experiment. 121

5.28 Results of forecasting methods and architectures comparison on
Libra Economics dataset. Every cell shows the values of MAE
and RMSE metrics separated by a comma. The notation stands
for: mean ± std. The best (lowest) values are shown in bold. . . . 123

xviii List of Tables

5.29 Results of forecasting methods and architectures comparison on
Libra Finance dataset. Every cell shows the values of MAE and
RMSE metrics separated by a comma. The notation stands for:
mean ± std. The best (lowest) values are shown in bold. 124

5.30 Results of forecasting methods and architectures comparison on
Libra Human access dataset. Every cell shows the values of MAE
and RMSE metrics separated by a comma. The notation stands
for: mean ± std. The best (lowest) values are shown in bold. . . . 125

5.31 Results of forecasting methods and architectures comparison on Li-
bra Nature and demographics dataset. Every cell shows the values
of MAE and RMSE metrics separated by a comma. The notation
stands for: mean ± std. The best (lowest) values are shown in bold.126

6.1 The configuration of evolvable parameters attached to the modules
used in Experiment 1 (section 5.3.3) performed during Phase 3
(subsection 5.3.3). 153

6.2 The configuration of evolvable parameters attached to the modules
used in Experiment 2 (section 5.3.3) performed during Phase 3
(subsection 5.3.3). 154

6.3 The configuration of evolvable parameters attached to the modules
used in Experiment 2 (section 5.3.3) performed during Phase 3
(subsection 5.3.3). 155

Chapter 1

Introduction

This chapter describes the general background and motivation of this work (sec-
tion 1.1) while also providing insight into the preliminary process that sparked
interest in this area (section 1.2). Moreover, Structured Literature Review Proto-
col used to search for relevant literature is provided (section 1.6). In addition, the
chapter presents the main hypothesis, goal and research questions (section 1.3),
specifies the used research methods (section 1.4), summarizes contributions (sec-
tion 1.5) and concludes with a description of the thesis structure (section 1.7).

1.1 Background and Motivation

Transformer-based neural network architectures have recently demonstrated state-
of-the-art performance in many Natural Language Processing tasks. Further-
more, there have been successful attempts to apply the same principles to prob-
lems beyond the scope of NLP. A particularly interesting application area is time
series forecasting as there is a great potential for improving the current techniques
and the research to date has rarely considered Transformer-based architectures
for forecasting. However, manual design and optimization of neural network ar-
chitectures and their hyperparameters has proven to be difficult, time-consuming
and mainly driven by trial and error.

1.2 Preliminary Process

As mentioned in the previous section (section 1.1), NLP has been the most promi-
nent application area for Transformer-based architectures so far. However, these
architectures have also shown promising results when applied to computer vi-

2 Goals and Research Questions

sion, audio and video processing or even biological sequence analysis problems.
As Transformers represent sequence to sequence models, it appears that any data
which can be encoded in a sequence can exploit the capabilities of these powerful
architectures. Therefore, time series seem to be a logical candidate as they form
sequences by definition and their accurate forecasting is a difficult problem to
tackle.

In comparison to other areas, attempts to use Transformer-based models for time
series forecasting seem quite rare. When there is such research, it usually strug-
gles with choosing the appropriate input embedding method, positional encoding,
attention model, setting hyperparameters etc. as most of these techniques were
originally proposed for NLP and cannot be trivially tested and adapted.

For these reasons, it seems that there is some space for trying out automated ways
of designing or adapting Transformer-based architectures to new application ar-
eas. Thus, in this thesis, it was decided to explore evolution-driven optimization
of Transformer-based architectures for time series forecasting.

1.3 Goals and Research Questions

The aim of the work is to explore the potential of evolving Transformer-based
architectures for time series forecasting. Therefore, this gives a rise to the main
research driving hypothesis:

Hypothesis Neural evolution is capable of designing Transformer-based neural
network architectures achieving state-of-the-art performance in time series
forecasting.

The hypothesis is supported by the project goal which is accompanied by several
related research questions:

Goal Investigate evolution of Transformer-based architectures for time series
forecasting.

Research question 1 What combination of Transformer encoder and decoder
stages achieves better forecasting accuracy?

Research question 2 Which attention models capture long-term dependencies
in time series the best?

Research question 3 What genotype encoding is suitable for representing Trans-
former-based architectures?

Research question 4 How does the accuracy of the evolved architectures com-
pare to other time series forecasting methods?

Introduction 3

1.4 Research Method

The research captured in this document combines two research strategies, specifi-
cally, Design Science Research (DSR) methodology as described and summarized
by Vaishnavi and Kuechler [158] and Experiments [115]. The role of the first strat-
egy is to guide the creation of artifacts which constitute important contributions
of this work (see section 1.5). The second strategy provides a matter for mea-
surable quality assessment of the produced artifacts. The combination of both
strategies is expected to bring concise and complete answers to the initially posed
research questions. As Vaishnavi and Kuechler suggest, the research process was
split into five phases:

1. Awareness of Problem: The first phase was focused on the definition
of the research problem to study. In this case, there was no thesis topic
proposal to start with, therefore, the activity was an integral part of the
research effort. A detailed description of the process can be found in sec-
tion 1.2. In addition, the main hypothesis, goal and research questions were
also defined during this phase (section 1.3).

2. Suggestion: During the suggestion phase, a design framework and a solu-
tion proposal were made. The results are presented in chapter 4.

3. Development: The development phase was concerned with artifact cre-
ation i.e. the actual implementation of the proposed system.

4. Evaluation: In the evaluation phase, the second strategy i.e. Experiments
starts to get involved. Experiments were defined and performed to obtain
answers to the initially posed research questions (chapter 5).

5. Conclusion: This phase constitutes the grand finale of the research ef-
fort. The obtained results were consolidated, discussed and compared with
the expected outcomes (chapter 6). Besides that, various realizations and
findings occurring during the research process were assessed and addressed.

1.5 Contributions

Based on Design Science Research Knowledge Contribution Framework proposed
by Gregor and Hevner [55], this research falls into the Exaptation category as
it takes known solutions (Transformer-based neural network architectures) and
applies them to a new problem domain (time series forecasting) in an innovative
way (adaptation by evolutionary computation). See details in Figure 1.1.

4 Contributions

Figure 1.1: DSR Knowledge Contribution Framework [55]

The presented work makes several contributions to the field of research. For a
better readability, they are organized in a list:

1. Transformer-based architectures for time series forecasting: As one
of the main objectives of this work is to investigate automated creation of
Transformer-based architectures suitable for time series forecasting, the ob-
tained strong architectures form a contribution.

2. Evolution-driven neural architecture search system for designing
Transformer-based architectures: To enable neural evolution to dis-
cover well-performing architectures, an evolutionary system which searches
the vast space of possible solutions needs to be designed. The system pre-
sented in this work was designed as a standalone tool with reusability and
modularity in mind, therefore, it constitutes a contribution.

3. Genotype encoding for Transformer-based architectures: To tackle
the problem of evolving Transformer-based architectures beyond their known
shapes and forms, a custom genotype encoding was designed to enable ef-
ficient search.

Introduction 5

1.6 Structured Literature Review

The following section presents how relevant literature and research was discovered
via Structured Literature Review (SLR). At first, the section shows identification
of proper search queries, continues with search strategy description and finally
explains the quality evaluation of the discovered research. Based on the review
results, relevant and required knowledge was extracted and used during the design
and evaluation of the created artifacts. The actual review was performed during
Suggestion phase of Design Science Research strategy (see section 1.4).

1.6.1 Identification of Research

This subsection explains how suitable keywords and areas of relevant research
were discovered. At first, an exploratory literature search was performed to iden-
tify search terms commonly used in connection with the research of interest.
The terms which tend to retrieve the desired kind of literature were then orga-
nized into groups and used in the following in-depth search. Table 1.1 lists the
final groups of keywords used for the construction of search queries. Short com-
mentary and justification of each group can be found below Table 1.1.

Group 1 Group 2 Group 3

Transformer Time series Evolutionary algorithms
Attention Forecasting Neuroevolution

Evolving
Search

Group 4 Group 5

Sequence to sequence Embedding
Neural network Encoding
Deep learning Positional
Architecture

Table 1.1: Structured Literature Review – Grouping of relevant search terms
used during the in-depth literature search

6 Structured Literature Review

Group 1: The first group consists of two important keywords which fre-
quently appear in literature concerning Transformer-based ar-
chitectures. Hence, the presence of this group biases the search
towards relevant papers.

Group 2: The second group reduces the vast search space further by lim-
iting the search scope to time series and relevant forecasting
methods.

Group 3: The next group brings the evolutionary computation aspect
to the mix. It contains several keywords commonly found in
papers presenting research from this area.

Group 4: The fourth group includes more general and potentially relevant
terms from machine learning to ease the strong specificity and
narrow focus enforced by the previous groups.

Group 5: The last group presents encoding and embedding keywords
which represent important concepts closely tied to Transformer-
based architectures.

During both literature searches, the online libraries listed below were used to
retrieve publications for the provided search queries:

• Google Scholar

• ACM Digital Library

• Science Direct

• Engineering Village

• Semantic Scholar

• IEEE Xplore Digital Library

In the first iteration of in-depth search, the search query was constructed by com-
bining keywords from all groups. Basically, all terms from each individual group
were joined by OR operator and then the resulting strings were concatenated by
AND operator. The query looked as follows:

Introduction 7

(Transformer OR Attention) AND (Time-series OR Forecasting) AND (Evo-
lutionary algorithms OR Neuroevolution OR Evolving OR Search) AND (Se-
quence to sequence OR Neural network OR Deep learning OR Architecture) AND
(Embedding OR Encoding OR Positional).

However, the employed query did not perform so well. It turned out that it
becomes too specific which hinders the discovery of many relevant papers. There-
fore, it was necessary to execute several additional independent searches which
did not involve all groups at once, but only a carefully crafted subset of them.
The list below shows the combinations which yielded the best results:

• (Group 1) AND (Group 2) AND (Group 3)

• (Group 1) AND (Group 3) AND (Group 4)

• (Group 1) AND (Group 4) AND (Group 5)

• (Group 1) AND (Group 2)

• (Group 1) AND (Group 5)

Some of the retrieved high impact research papers referenced literature that was
not discovered by the search yet still relevant. These sources were either influen-
tial papers themselves but for a broader area of research, or showcased interesting
ideas potentially useful for this work. For that reason, the forward snowballing
method [166] was employed to capture such literature.

1.6.2 Selection of Primary Studies

The group of primary studies constitutes a subset of all found literature which
satisfies explicit criteria of relevance. The search queries presented in subsec-
tion 1.6.1 already managed to filter out most of the irrelevant research, however,
there still are studies which do not satisfy the desired level of relevance.

For that reason, the studies obtained during all searches were also subjected
to evaluation based on inclusion criteria. Each source must satisfy at least one
of the provided criteria otherwise it is discarded. Satisfying more than one cri-
teria is preferable but not strictly required. This selection process significantly
reduced the number of considered studies down to a manageable subset. The
used inclusion criteria are listed in Table 1.2.

8 Thesis Structure

ID Inclusion criteria

IC 1 The study’s main concern are Transformer-based architectures.

IC 2 The study’s main concern is time series forecasting.

IC 3 The study concerns evolutionary computation.

IC 4 The study focuses on neuroevolution.

IC 5 The study focuses on neural architecture search.

IC 6
The study concerns embedding or encoding in relation

to Transformer-based architectures.

Table 1.2: Structured Literature Review – Inclusion criteria

1.6.3 Quality Assessment

Finally, the remaining studies were subjected to quality assessment process to de-
termine preferable and reliable research. Each study was evaluated based on the
extent to which it satisfies each quality criteria listed in Table 1.3. The criteria
are mostly of a general nature measuring the overall quality of each study from
academic perspective. However, this time the evaluation was not used to exclude
any studies but to obtain a quality score internally used to rank and order the
retrieved studies.

ID Quality criteria

QC 1
The study has a clear statement of the aim

of the research.

QC 2
The study is put into context with other studies

and research.

QC 3
The study conducts a set of documented experiments

and presents their findings.

QC 4 The study contains a discussion of the results.

Table 1.3: Structured Literature Review – Quality criteria table

1.7 Thesis Structure

The document is divided into several chapters:

Chapter 2 – Background Theory: introduces a set of theoretical knowl-
edge needed to reason about concepts presented in this thesis.

Introduction 9

Chapter 3 – Related Work: presents and discusses the relevant research
collected during Structured Literature Review.

Chapter 4 – Method and System Design: introduces a system design frame-
work, explains the employed techniques and solutions and provides further details
about the design and implementation process.

Chapter 5 – Experiments and Results: describes and conducts experiments
to validate the developed system and evaluate the evolved architectures. The
results are further analyzed by methods of statistical analysis.

Chapter 6 – Conclusion and Future Work: assesses the final outcomes
of the work and discusses them in the light of the initially posed hypothesis, goal
and research questions. Apart from that, limitations of this work and possible
future work proposals are presented.

10 Thesis Structure

Chapter 2

Background Theory

In this chapter, the relevant background theory is presented in the amount needed
to understand concepts introduced in later chapters. The first section presents
the basics of evolutionary algorithms (section 2.1). The next section defines artifi-
cial neural networks and provides examples of relevant architectures (section 2.2).
The following sections introduce time series (section 2.3) and basic time series
forecasting methods (section 2.4). The last section describes Transformer archi-
tecture (section 2.5).

2.1 Evolutionary Algorithms

Evolutionary computing is a special area of computing inspired by the process
of natural evolution i.e. survival of the fittest. In other words, an environment
can host only a limited number of individuals, hence, individuals that manage
to adapt to the environment better have a greater chance of survival [41]. Evo-
lutionary algorithm constitutes a synthetic recreation of the natural evolution
process. In contrast to natural evolution, artificial evolution is an optimization
and/or design process that attempts to find solutions to predefined problems [47].

There are many variants of evolutionary algorithms but the core principles mostly
stay the same. A population of candidate solutions is initialized to provide an
environment for evolution. The population is then subjected to an iterative pro-
cess of artificial evolution. At first, parents are selected for reproduction based
on some predefined fitness measure. Next, the selected parents are recombined
and mutated to produce offspring. The offspring is then evaluated based on the
same fitness measure and forced to compete for survival with their parents. After
survivors are determined, they are added back to the general population. The

12 Evolutionary Algorithms

whole cycle repeats until a termination condition is reached. For illustration, the
cycle is shown in Figure 2.1. The optimization process is driven by two main
factors: recombination and mutation which creates diversity in the population
and constructs novel candidate solutions and selection which acts as a force im-
proving the general quality of solutions within the population.

Figure 2.1: The general process of evolutionary algorithms [41].

2.1.1 Representation

One of the first tasks when building a genetic algorithm is choosing an appropriate
solution representation. The representation is commonly referred to as phenotype
while its encoding in a genetic algorithm is called a genotype. Genotype is some-
times also called chromosome. Mapping from genotype space to phenotype space
needs to be explicitly defined to enable transformation from one into another.
In the following paragraph, a few common representations are given as examples.

The binary representation is one of the simplest available. The genotype is rep-
resented as a list of zeros and ones i.e. a bit string. Another popular option
is integer representation in which the binary numbers are replaced by integers.
Similarly, real-valued representation uses floating-point values instead of bits or
integers. There also exist more complex representations such as tree-based repre-
sentations.

2.1.2 Population

The sole purpose of a population is to hold a set of candidate solutions. The
main properties of populations are: the selected genotype representation and the

Background Theory 13

number of candidates it should hold i.e. the population size. There exist two
common population models: generational and steady-state model. In a gener-
ational model, each genotype survives for exactly one generation. The entire
population is replaced by genotypes selected from among the new offspring. In
contrast, in a steady-state model the population is not replaced all at once, only
several individuals are. The portion of the population which gets replaced is often
called the generational gap.

2.1.3 Fitness Function and Selection

The fitness function describes the quality of candidate solutions. Frequently, it
is merely a function which labels genotypes with a single numerical value repre-
senting their quality. Usually, the higher the number is, the better the solution.
The purpose of fitness functions is to allow comparison of different solutions and
to enable selection. Selection usually happens twice during one iteration of evolu-
tion loop. The first time, it is for parent selection and later for survivor selection.

The objective of the parent selection is to select high quality candidate solutions
which will undergo further reproduction. A basic approach is fitness proportional
selection in which solutions are selected based on their absolute fitness. However,
this approach often causes premature convergence as good solutions quickly take
over ruining diversity of the population. Therefore, different selection methods
usually based on probabilities are preferred. One example is rank-based selection.
Another popular method is tournament selection. The tournament selection al-
lows selection of parents without calculating fitness for the entire population. It
is based on sampling only a small portion of the population within which the
selection takes place.

For the survivor selection, most of the parent selection strategies can be used
as well. However, survivor selection often encapsulates not just selection but also
a replacement operation as there is a need to identify older solution which will
be replaced by the new survivor. An example strategy is age-based replacement
which marks the oldest solutions in population for replacement or fitness-based
replacement where the deciding factor is the fitness of the old and new solution.

2.1.4 Mutation and Crossover

The role of mutation and crossover is to create new candidate solutions based
on already existing ones. Mutation is an unary operator which takes in a candi-
date solution and returns its mutated (modified) version. The mutated version
is known as a child or offspring. The operator is always stochastic and intro-
duces novelty to the solutions. In contrast, crossover is a binary operator which

14 Evolutionary Algorithms

consumes two so-called parents and combines their information into one or more
offspring. Crossover is also a stochastic operator but it does not introduce any
novelty. Only the information available in parents can be present in offspring.
Both operators depend on the chosen genotype representation. In the following
paragraphs, we will present a few example operators for some of the representa-
tions described in subsection 2.1.1.

For the binary representation, there exists a common and simple mutation oper-
ator. The operator treats every bit in the string separately and with a certain
probability each individual bit gets flipped. When it comes to crossover, there is
a few alternatives available. The first option is to use n-point crossover. At first,
the operator randomly generates n split point indices from the r1, l ´ 1s range
where l is the length of the chromosome. Then it alternates between the first
and second parent and chooses genotype segments defined by the split points.
The process is illustrated in Figure 2.2. For n “ 1 special case, the operator
is called one-point crossover. Uniform crossover is another popular crossover
operator. This one resembles the presented mutation as it also treats each bit
independently and randomly picks a parent from which the bit gets inherited.

Figure 2.2: Two examples of n-point crossover operator for n “ 1 and n “ 2 [41].

In the case of integer-based representation, the appropriate mutation operator
depends on the type of represented values. Random resetting is used when the
values represent cardinal attributes. Basically, a set of possible values is defined
beforehand and when the mutation occurs, a new value is drawn from the set.
If the values represent ordinal attributes, creep mutation is more suitable. This
operator with a certain probability adds or subtracts a small value from each
number in the genotype. When it comes to crossover, most of the approaches
used for binary representation are also applicable to integer-based representation.

Background Theory 15

2.2 Artificial Neural Networks

Artificial neural networks were inspired by neural networks which make up hu-
man brain and are to a large extent responsible for human cognitive abilities [51].
The fundamental building block of these networks is an artificial neuron which
also draws inspiration from its biological counterpart. The real neurons are com-
plex cells of similar structure and behaviour which can be specialized for various
different tasks. They work as information processing units. Essentially, electri-
cal signals travel to neuron cell body via several dendrites. Inside the body, the
signals are added together and compared to a threshold. If the resulting signal is
greater than the threshold, a new signal is sent through neuron’s axon. As stated
earlier, neurons build up whole networks and they do so by binding together via
dendrites and axons. A simplified illustration of a biological neuron can be seen
in Figure 2.3.

Figure 2.3: An illustration of a biological neuron describing its main parts [51].

The foundations for mathematical model of biological neurons were laid by per-
ceptron [132]. A diagram is shown in Figure 2.4. Every perceptron input is
a single numerical value multiplied by another value called weight. The scaled
inputs are then added together and the result is passed through an activation
function. There also exists a special input called bias which is in fact a scalable
constant.

Like biological neurons, artificial neurons can also be linked together to form a
network. However, in artificial neural networks we generally group neurons to
layers first. One layer is enough to produce a valid and complete network. Such
layer is usually called output layer. If a neural network has more than one layer,
the additional layers are called hidden layers [51]. If a network has one or more

16 Artificial Neural Networks

Figure 2.4: A single perceptron with four inputs, bias and activation function [51].

hidden layers, it is commonly referred to as deep neural network. Connections
between neurons in different layers can be realized in multiple ways. A common
configuration is that each neuron in one layer receives input from each neuron
in the previous layer. Such configuration is called fully-connected layer or fully-
connected neural network. An example of a deep neural network made from fully
connected layers can be seen in Figure 2.5.

Figure 2.5: An example of deep neural network with one hidden layer [51].

Activation functions are non-linear functions which constitute an important part
of artificial neural networks. Their role is to introduce non-linear operations to
the chain of so far only linear operations (multiplication and addition within

Background Theory 17

neurons) to prevent networks from collapsing into a mathematical equivalent of
a single neuron [51]. There are many different options available. A group of acti-
vation functions which are composed of several linear segments is called piecewise
linear activation functions. The most prominent representative of this group is
Rectified Linear Unit or ReLU and its derivatives such as leaky ReLU or para-
metric ReLU. Other commonly used functions are Sigmoid, Tanh, Swish or ELU
which belong to the smooth activation functions category. All the presented func-
tions and a few other alternatives are visualized in Figure 2.6.

Figure 2.6: Examples of various activation function alternatives [51].

So far, artificial neural networks have been described as a simple collection of
artificial neurons. However, in order to make them work, they also need to be
trained i.e. their weights need to be tuned to minimize the so-called network loss

18 Artificial Neural Networks

or prediction error. Arguably, the most common training method is backgropa-
gation. This technique utilizes gradient descent to decide how to adjust network
weights in order to improve the loss [54]. Additionally, neuroevolution has also
been used as an alternative to backpropagation [47]. To train a neural network,
we also need a labelled dataset which contains training examples. During the
training process, the network is fed with training examples which provide basis
for determining its loss. This kind of training is known as supervised learning.

A neural network can suffer from overfitting, if, simply put, is trained for too
long. Essentially, the network learns the dataset used for training so well that
it becomes tuned only to that data and performs poorly when applied to new
data. The techniques used to delay the onset of overfitting are called regulariza-
tion methods. A common regularization method is called dropout. With a certain
probability, dropout randomly disables neurons within the network. This makes
it harder for the network to learn the training dataset precisely. There also exist
more sophisticated regularization methods such as batch normalization or layer
normalization.

2.2.1 Convolutional Neural Network

Convolutional neural networks (CNN) have become a popular choice for pro-
cessing grid-like data such as images as they are capable of learning hierarchies
of spatial features ranging from low to high level patterns [174]. Their design
was inspired by the model of visual cortex commonly used in neuroscience. In
comparison to simple fully-connected networks, these networks simply prepend
fully-connected layers with additional layers performing convolution and pooling.

If to use a fully-connected layer for image processing directly, then for an im-
age with n pixels, there will be n neurons with n2 weights needed. For larger
images, this quickly becomes infeasible. In addition, fully-connected layers do
not take local pixel adjacency into account. Therefore, a solution was proposed
where each neuron in a layer receives input only from a small local region of the
image [134]. Also, as we expect images to exhibit spatial invariance, we can keep
the same region connection weights for each neuron [54]. This modification es-
sentially transforms neurons into feature detectors which are capable of detecting
the same features no matter where they appear in the input image.

In a nutshell, Convolutional neural network is a network that relies on spatially
local connections and uses a pattern of weights replicated across neurons in each
convolutional layer [134]. The replicated pattern of weights is commonly known
as kernel and the process of applying this kernel to an image is called convolution.

Background Theory 19

Convolution is denoted by ˚ operator, so a simple 1D convolution z “ x ˚ k is
defined as follows:

zi “

l
ÿ

j“1

kjxj`i´pl`1q{2 (2.1)

where x is an input vector and k is a kernel vector of size l. An example of the
convolution process is shown in Figure 2.7 where r1,´1, 1s kernel is applied to
r5, 6, 6, 2, 5, 6, 5s input vector. The example also introduces a new concept called
stride. If you look closely, the kernel is applied around every second number
which corresponds to stride “ 2. However, stride greater than 1 has a side effect
which is reducing the size of the original input.

Figure 2.7: 1D convolution with r1,´1, 1s kernel over r5, 6, 6, 2, 5, 6, 5s vec-
tor [134].

Apart from convolutional layers, pooling layers are also used. Pooling is an
operation used to summarize results of several adjacent neurons from the pre-
vious layer [134], in essence, downsample the input. There are two main types
of pooling: max-pooling and average-pooling. The result of max-pooling is the
maximum value present in the input whereas average-pooling returns the average
value. Aside from reducing the input dimensions, the second objective of polling
is to progressively decrease the number of subsequent learnable weights.

The rest of the network is composed of one or more fully-connected layers. The
last layer often is a softmax layer which outputs probabilities for image classi-
fication. However, the possible configurations of convolutional neural networks
are not limited to the softmax case only.

2.2.2 Recurrent Neural Network

Recurrent neural networks (RNN) are networks explicitly designed to handle
processing of ordered sequences [51]. They introduced a concept of recurrent
cells with hidden states where hidden states hold a compressed representation

20 Artificial Neural Networks

of the inputs processed so far i.e. serve as memory. These cells are commonly
classified as recurrent layers. Similarly to Convolutional neural networks, weight
sharing is also utilized. However, this time it is across different parts of the
network which allows generalization to inputs of various lengths [54]. Thanks to
the recurrent dependencies in the network, predictions need to be done iteratively
in time steps. After one input element is processed, the hidden state needs to be
updated before the next input processing can take place. For each input, there
is an output produced. However, in some use cases the intermediate outputs
are discarded as only the final output is needed. An illustration of the network
structure is shown in Figure 2.8.

Figure 2.8: The folded (left) and unfolded (right) illustration of recurrent neural
network structure. xt represents input sequence, ht hidden states and yt elements
of the potential output sequence [152].

For training of recurrent neural networks, a special version of backpropagation
called backpropagation through time is used. Unfortunately, the training process
often suffers from vanishing or exploding gradients problem which occurs when
gradients become extremely small or large during backpropagation. These condi-
tions significantly hinder further learning capabilities of the network. To combat
this problem, improved versions of recurrent cells were proposed.

A popular alternative to recurrent cells is Long short-term memory (LSTM) cell
which in addition to hidden state (short-term memory) incorporates additional
memory for long-term information storage (long-term memory). In comparison
to recurrent cell, LSTM differs in two fundamental ways: 1.) the same long-term
memory is cloned from time step to time step which reduces accumulation of
gradient multiplications and leads to fewer vanishing or exploding gradients, 2.)
cell structure includes three gating units (or gates) which regulate the flow of
information within the cell [51]. The input gate determines which elements in

Background Theory 21

the long-term memory get updated by input data from the current time step.
The output gate selects long-term memory elements which should be moved to
short-term memory. Finally, the forget gate decides which long-term memory
elements are erased i.e. set to zero. There also exist a slightly modified variant
of LSTM called Gated recurrent unit (GRU).

2.3 Time Series

A time series is defined as a set of observations xt, where each observation was
taken at a specific time t. Discrete time series is time series for which the set of
times when observations were made, T0, is a discrete set. In contrast, continuous
time series are produced when observations are continuously recorded over a time
interval e.g. when T0 “ r0, 1s [15]. An example of discrete time series can be seen
in Figure 2.9. Literature also differentiates between time series that is univariate
i.e. consist of only one observed variable varying over time and multivariate
which follows many variables [22].

Figure 2.9: An example discrete time series showing sales of The Australian red
wine between years 1980 and 1991 [15].

2.3.1 Time Series Components

Time series are commonly affected by four main components (sometimes also
called variations): trend, seasonality, cyclicity and irregularities [101]. Trend is
a long-term increase or decrease in values of observations. Increase in values is

22 Time Series

referred to as upward trend and decrease as downward trend. Seasonal component
captures when a certain pattern periodically repeats after a known and fixed
period. Seasonality usually refers to variations within one year i.e. patterns
that repeat monthly, weekly, daily etc. The concept is illustrated in Figure 2.10.
Cyclic component also describes a recurring pattern but not necessarily after a
fixed period of time. Also, the period might be longer than one year. Finally, the
remaining series of residual value changes are known as irregular component [112].

Figure 2.10: Monthly beverage shipments time series showing clear signs of sea-
sonality [112].

2.3.2 Decomposition and Smoothing

To represent time series as a composition of components, three types of decompo-
sition models are commonly used. The first model is called Multiplicative model
and is defined as follows:

Yt “ Tt ˆ St ˆ Ct ˆ It (2.2)

where Yt represents the original observation value at t, Tt the trend component
value at t, St the seasonal fluctuation, Ct the cyclic fluctuation and It the irregular
variation at t. Similarly, Additive model is defined as:

Xt “ Tt ` St ` Ct ` It (2.3)

The third model is known as Mixed model and is a combination of both previous
models [32]. To identify trend of a time series, various smoothing methods are

Background Theory 23

available. Smoothing attempts to remove short-term fluctuations and leave out
the long-term trend component [15]. One popular method is Moving average:

SMmapxtq “
1

2k ` 1

k
ÿ

i“´k

xt´i (2.4)

where k is the order of moving average i.e. the amount of applied smoothing.
Simply put, trend estimate at time t is determined by the average of observation
values within the window defined by k. Another common method is Exponential
smoothing as defined below:

SMepxtq “

8
ÿ

i“0

αp1 ´ αqixt´i (2.5)

where α is a smoothing constant such that 0 ă α ă 1.

2.4 Time Series Forecasting

The simplest form of forecasting is point forecast which is an attempt to estimate a
future value of some variable of interest. These estimates are rarely perfect, hence,
include some amount of forecast error. Therefore, we sometimes use prediction
interval instead of a single value. A prediction interval has upper and lower
bound between which the estimated value is expected to lie with some defined
probability [22]. Other important aspects of forecasting are forecast horizon and
forecast interval [112]. The forecast horizon is the number of future periods which
we intend to produce estimates for and forecast interval is the period of time
between individual forecasts. The next few sections describe the most common
models for time series forecasting.

2.4.1 Classical Models

Classical models are mostly statistical methods used to forecast an observation
at t ` 1. However, these methods usually require time series to be stationary.
Stationary time series is time series which shows no systematic change in mean,
no systematic change in variance and that had all strictly periodic variations re-
moved [112].

Firstly, Moving average model and Autoregressive model are defined [66] as they
constitute important building blocks for the later presented models. Moving
average model of order p (MA(p)) is defined as:

xt “ c ` εt ` ϕ1ϵt´1 ` ϕ2ϵt´2 ` ¨ ¨ ¨ ` ϕpϵt´p (2.6)

24 Time Series Forecasting

where ϵt is white noise, ϵt´i are residual errors and ϕi are weights. Residual
error is the difference between actual value and predicted value calculated as
ϵt “ xt ´ x̂t. Similarly, Autoregressive model of order q (AR(q)):

xt “ c ` εt ` θ1xt´1 ` θ2xt´2 ` ¨ ¨ ¨ ` θqxt´q (2.7)

where ϵt is white noise, xt´i are past values of the observed variable and θi are
weights. The first combined model is ARMA(p,q) of order p, q which is simply a
combination of MA(p) and AR(q). The equation looks as follows:

xt “ c` εt ´θ1ϵt´1 ´θ2ϵt´2 ´ ¨ ¨ ¨ ´θpϵt´p `θ1xt´1 `θ2xt´2 ` ¨ ¨ ¨ `θqxt´q (2.8)

A variant of ARMA which has the benefit of being able to handle non-stationary
time series is called ARIMA. The model adds differencing to the mix and is usually
defined as ARIMA(p,d,q) where d is the degree of first differencing. Shown as an
equation:

x1
t “ c` εt ´θ1ϵt´1 ´θ2ϵt´2 ´ ¨ ¨ ¨ ´θpϵt´p `θ1x

1
t´1 `θ2x

1
t´2 ` ¨ ¨ ¨ `θqx

1
t´q (2.9)

2.4.2 Neural Network Models

Neural network models have also been used to tackle forecasting problems. In
order to do so, the employed network needs to be able to consume and process
sequential data. RNNs together with LSTMs and GRUs are some of the possible
candidates. Thanks to their recurrent connections they are capable of capturing
temporary dependencies in time series data and thus provide reasonable esti-
mates. Another option is to use CNNs which have also shown potential in time
series forecasting.

2.4.3 Model Evaluation

For model evaluation and comparison, it is important to consider an appropriate
performance metric. A very common and essential metric is the accuracy of
future forecasts. The set of standard measures of accuracy [66] includes mean
absolute error defined as:

MAE “
1

n

n
ÿ

i“0

|xi ´ x̂i| (2.10)

where n is the number of observations, xi an actual observation value and x̂i

the value predicted by a model. Mean absolute error is simple but a scale-
dependent metric. Scale-dependent means that the error is expressed in the units
of the underlying series which makes it hard to compare a model across different

Background Theory 25

series [67]. Other popular scale-dependent metrics are mean squared error and
root mean squared error which are in fact quite similar:

MSE “
1

n

n
ÿ

i“0

pxi ´ x̂iq
2 RMSE “

g

f

f

e

1

n

n
ÿ

i“0

pxi ´ x̂iq
2 (2.11)

In comparison to MAE, MSE and RMSE are more sensitive to outliers i.e. weight
large errors more than the smaller ones. The fourth presented method is mean
absolute percentage error which belongs among percentage error metrics. These
metrics are scale independent, therefore, safe to use for comparisons across dif-
ferent series. MAPE is calculated as follows:

MAPE “
1

n

n
ÿ

i“0

|
xi ´ x̂i

xi
| (2.12)

The resulting value is in percentage.

2.5 Attention and Transformer Architecture

Attention mechanism was initially designed to mitigate vanishing gradients prob-
lem of Recurrent neural networks in sequence to sequence models. However,
Vaswani et al. [159] discovered that attention can also be used in non-recurrent
models. Their novel architecture called Transformer has surpassed several recur-
rent models in terms of predictive performance.

2.5.1 Sequence to Sequence Models

Figure 2.11: An example of sentence translation by sequence to sequence model.
The encoder on the left takes in a sentence and encodes it into a context vector
(hidden state). The decoder on the right uses the hidden state to produce the
translated sentence [51].

26 Attention and Transformer Architecture

Sequence to sequence model was first proposed by Sutskever et al. [151] as a
generic solution for sequence to sequence mapping. The main motivation was the
fact that one sequence does not necessarily map to another sequence on element
to element basis. An example is e.g. language translation where relevant words
in the input sentence might occur at different places in the translated sentence.
The lengths of the sentences might differ too. For these reasons, sequence to
sequence models consist of two stages: encoder and decoder. Encoder processes
input and encodes its representation into a fixed length hidden state (sometimes
also called context vector). In contrast, decoder takes the hidden state as in-
put and produces the desired output sequence. A simple illustration is provided
in Figure 2.11. These models are often autoregressive which means that in ad-
dition to the provided input sequence, their decoder also consumes its previous
outputs to further generate new elements.

2.5.2 Attention Mechanism

Attention mechanism or simply attention is an extension originally proposed for
sequence to sequence models. In their work, Bahdanau et al. [5] and Luong et al.
[100] argued that the propagation of hidden state constitutes a bottleneck which
hinders performance of recurrent models. They suggested allowing the decoder to
bind directly to different parts of the encoder to facilitate easier information flow
and allow for bypassing the hidden state entirely if needed. As demonstrated in
their experiments, this technique has improved performance of the tested models.
An illustration of this attention binding is shown in Figure 2.12.

2.5.3 Transformer Architecture

Inspired by the improvements brought by attention mechanism, Vaswani et al.
[159] proposed an architecture without recurrent connections relying solely on
attention. Their experiments showed that the model can perform better than
recurrent models while being more parallelizable and requiring less time to train.
The architecture is called Transformer and is built as autoregressive sequence to
sequence model i.e. consists of separate encoder and decoder stages. The com-
plete architecture diagram is shown in Figure 2.15.

The job of the encoder stage is to process and encode the input sequence (source
sequence). Transformer’s encoder is made up of 6 identical stacked layers. Each
layer consists of two sub-layers placed in the following order: multi-head attention
and fully-connected feed forward neural network. In addition, there are residual
connections allowing bypass of each sub-layer followed by layer normalization.

Background Theory 27

Figure 2.12: Bindings from decoder (green) to encoder (orange) via attention in
sequence to sequence models. Each attention link has its own set of trainable
weights [141].

The decoder stage uses its previously generated outputs (target sequence) as
input sequence in order to generate a new target sequence element. It is formed
as a stack of 6 layers too. However, apart from the same sub-layers as the encoder
stage has, there is a third multi-head attention sub-layer placed in between the
two existing sub-layers. This sub-layer allows attention to bind to the outputs
of the encoder stack. Residual connections with layer normalization are present
around sub-layers in the same way as they are in the encoder stage. Importantly,
the first multi-head attention sub-layer is masked to prevent it from attending to
subsequent target sequence tokens. This ensures that prediction of a new target
sequence element at position i can only attend to known outputs at positions less
than i.

In the context of Vaswani et al. [159] work, attention is used to determine re-
lations between elements in both the source sequence and the target sequence.
Self-attention is a special case of attention which considers only a single sequence
and the relations between elements in it. Figure 2.13 illustrates the concept on
a simple example.

28 Attention and Transformer Architecture

Figure 2.13: A simple example of self-attention in a sequence of words: What
does it refer to in this sentence? The darker the color on the left is, the higher
the attention score i.e. the more focus the corresponding word gets [3].

To calculate self-attention, query (Q), key (K) and value (V) vectors are cre-
ated by linearly transforming the input representation of each element. Then,
attention scores are determined by taking a dot product between query of the
considered element and keys of all other elements. Next, the obtained scores
are passed though softmax to obtain attention weights. Finally, the weights are
multiplied by value vectors to obtain the actual attention values. In a similar
way, attention can be calculated for cases when the query comes from a different
sequence than keys and values e.g. when attention between source and target
sequence is considered. In other words, attention is calculated as a weighted sum
of values where each weight is determined by a compatibility function describing
the relationship between the corresponding query and key. This particular atten-
tion calculation is called scaled dot-product attention as shown in Figure 2.14 and
defined in Equation 2.13 where dk represents the dimension of the query vector.

AttentionpQ,K, V q “ softmaxp
QKT

?
dk

qV (2.13)

In addition, Vaswani et al. [159] found beneficial to use multiple (h “ 8) attention
heads to linearly project queries, keys and values multiple times, each time with a
different learned projection. This allows a Transformer model to express several

Background Theory 29

Figure 2.14: Left: Scaled dot-product attention. Right: Multi-head atten-
tion which allows parallel execution of multiple independent attention calcula-
tions [159].

learned attention functions in parallel as demonstrated in Equation 2.14. The
projections are represented by parameter matrices: QW q

i , KW k
i and VW v

i . An
illustration of multi-head attention concept is provided in Figure 2.14.

MultiHeadpQ,K, V q “ concatphead1, head2, . . . headhq

where headi “ AttentionpQW q
i ,KW k

i , V W v
i q

(2.14)

Before a sequence can enter a Transformer model, it needs to be preprocessed
by input embedding. Input embedding converts each sequence element into a
vector representation of dimension de which is then used by the model. de is
often referred to as embedding dimension. As the model contains no recurrence,
information about positions of elements in the input sequence is lost. For that
reason, the model adds absolute positional encoding to the input embedding to
be able to reason about element distances. More specifically, sine and cosine
functions of different frequencies were used. The actual functions are shown
in Equation 2.15.

PEppos,2iq “ sinppos{100002i{dmodelq

PEppos,2i`1q “ cosppos{100002i{dmodelq
(2.15)

30 Attention and Transformer Architecture

Figure 2.15: Transformer architecture diagram. The model consists of two
stages: encoder and decoder. Encoder is made by stacking several encoder layers.
Each layer contains two sub-layers: Multi-head attention and Feed forward sub-
layer. Similarly, decoder is made up of decoder layers and contains the same two
sub-layers. In addition, decoder includes another multi-head attention sub-layer
which performs attention over the outputs of the encoder stack. The three ar-
rows pointing to the bottom of each multi-head attention sub-layer represent key,
value and query vectors (in this order). Finally, the input sequence is provided
in a form of input embedding with positional encoding added to it [159].

Chapter 3

Related Work

In the following chapter, research relevant for the scope of this work is pre-
sented. The chapter starts with an introduction to evolution of artificial neural
networks (section 3.1) and puts emphasis on Neural Architecture Search (sec-
tion 3.2). Next, section 3.3 discusses the application of NAS to Transformer-
based architectures. In section 3.4, improvements and modifications proposed
for Transformer architectures are reviewed. Finally, as this work focuses on time
series, section 3.5 reviews research concerning the use of Transformers for fore-
casting, section 3.6 reviews state-of-the-art forecasting methods and section 3.7
presents time series forecasting benchmarks.

3.1 Neuroevolution

The artificial evolution of neural networks, also termed Neuroevolution, has been
widely studied in literature. The early works focused primarily on evolving neu-
ral network weights, but the focus quickly shifted towards more ambitious goals
such as evolving network topology alongside the weights [179, 57]. The technique
has proven successful in a variety of applications [113, 53].

Noticeable advancements came to the field with the introduction of Neuroevo-
lution of Augmenting Topologies or NEAT for short [147]. NEAT is a method
for genetically encoding and evolving both the topology and weights of a neu-
ral network. It does so by starting with a minimal topology and incrementally
adding more genes to evolve more complex topological structures. This approach
biases the search towards minimal solutions which in turn reduces the number
of parameters to optimize. An important contribution of the work was solving
the problem of Competing Conventions i.e. that the same solutions might get

32 Neuroevolution

represented in different ways [111]. Competing Conventions pose a problem es-
pecially during crossover operations when they greatly increase the likelihood of
producing a damaged offspring. NEAT employs innovation numbers which are
assigned to specific genes to enable correct alignment during crossover. As shown
in Figure 3.1, direct encoding differentiating between node genes and connection
genes is used. Another crucial concept of NEAT is speciation which groups in-
dividuals based on the similarity of their topologies. The speciation guarantees
that the newly introduced individuals have time to evolve their structures before
competing with more complex individuals from the rest of the population. These
enhancements made NEAT performance-wise superior to other commonly used
neuroevolution methods at the time.

Figure 3.1: Mapping from genotype to phenotype in NEAT. Genotype is divided
into two types of genes: node genes and connection genes. Node genes represent
neurons and their types while connection genes describe connections between
neurons including their weights and innovation numbers [147].

After NEAT was published [147], several papers suggesting improvements or ex-
tensions of the work appeared. HyperNEAT [146] suggests replacing direct encod-
ing of NEAT with indirect encoding based on Compositional Pattern Producing
Networks (CPPN). The new encoding expresses connectivity patterns in hyper-
space which are then mapped to lower-dimensional space to produce the actual
network connectivity. Because of that, HyperNEAT is able to efficiently encode
much larger ANNs by utilizing regularities and repeating patterns. Apart from
the efficient representation, the nature of CPPN enables HyperNEAT to further
scale the produced networks with no additional evolution needed.

A different approach to evolving larger networks was taken by CoDeepNEAT [110].
In CoDeepNEAT, nodes of the genotype no longer represent individual nodes in

Related Work 33

the produced network but whole layers. Therefore, each node needs to hold sev-
eral so-called hyperparameters which determine layer properties (e.g. type of
the layer, number of neurons or activation function). Also, the encoded edges
do not possess weights anymore. They simply express how nodes (layers) are
connected together. To convert the genotype into a DNN, the genotype graph
needs to get traversed while replacing its nodes with layers of the corresponding
configuration. In addition, genotypes also contain global hyperparameters which
control the training of the produced DNNs (e.g. learning rate or the chosen op-
timizer). The assembled networks are trained via backpropagation for a fixed
number of epochs. On top of that, CoDeepNEAT employs hierarchical decom-
position into modules and blueprints. Modules are smaller parts of networks
which are put together via blueprints. Both concepts are evolved in two sepa-
rate populations where blueprints hold pointers to modules. The motivation is
that repetitive modular structures can be evolved more efficiently. The approach
taken by CoDeepNEAT is also commonly known as neural architecture search.

3.2 Neural Architecture Search

The goal of Neural Architecture Search (NAS) is to search for optimal neural
network topology given the problem of interest [65]. Although NAS can be seen
as a subfield of Neuroevolution (section 3.1), the motivation differs slightly. There
are two main motivating factors [130]:

• The design of novel neural architectures is a manual, time-consuming and
error-prone process.

• The process heavily depends on researcher’s prior experience and knowledge
which introduces biases.

In addition, NAS is often connected to Deep Learning (DL) which has achieved
great success in many fields such as natural language processing, computer vi-
sion or machine translation [54], but has proven to be difficult to design good
Neuroevolution-based solutions for [49].

As the research field concerning NAS is very broad, it was decided to split this
section based on different stages of NAS. The first part (subsection 3.2.1) shows
various approaches to search space design which determines what architectures
can be represented. The second part (subsection 3.2.2) details the possible ways
of exploring the search space in order to find the optimal solution. Finally, the
last part (subsection 3.2.3) concerns evaluation of performance of the candidate
architectures.

34 Neural Architecture Search

3.2.1 Search Space

A well-designed search space should reduce the effort needed to find a good
architecture while staying flexible and reasonably constrained to enable efficient
search. On the other hand, introducing too many constrains might bring a great
amount of human bias which often prevents discoveries of novel architectures.

Chain-structured search space

One of the simplest solutions is chain-structured search space [44]. This kind of
search space models the architecture as a sequence of n layers where each layer
receives input from its preceding layer. An illustration is shown in Figure 3.2.
The search space parameter set usually consists of:

1. The maximum number of layers

2. The type of the operations of each layer

3. The hyperparameters of each layer operation

This design was applied by Baker et al. [7]. They used reinforcement learning
agent to iteratively choose CNN layers to generate high-performing architectures
for image classification. Similarly, work by [149] utilizes Cartesian genetic pro-
gramming for the same task.

Figure 3.2: Left: Chain-structured architecture example. Each layer consumes the
result of the previous layer. The only exception is the input layer. Right: Multi-
branch architecture example which also includes branches and skip connections.
Each colored rectangle corresponds to a network layer [43].

Related Work 35

Multi-branch search space

Modern human-designed architectures often introduce new concepts which help
to improve their performance. A particularly interesting enhancement was pro-
posed by He et al. [61]. Their work suggests using skip connections to allow better
propagation of gradients in deep neural networks. This technique was proven ef-
fective and also found its way to NAS.

Search space design inspired by skip connections is often called multi-branch
search space [44]. An example is shown in Figure 3.2. This approach was em-
ployed by Elsken et al. [42] in their work about searching for well-performing
CNN architectures via hill climbing, and their paper utilizing multi-objective ar-
chitecture search which apart from predictive performance also considers network
parameter count [43]. An influential work of Zoph and Le [194] also fits in this
category. In contrast to the previous work, they utilized multi-branch search
space together with a recurrent neural network-based controller which produces
the candidate architectures.

Figure 3.3: Left: Two different kinds of blocks/cells which encapsulate found or
hand-crafted architectural patterns. Right: Stacking blocks/cells to produce a
complete network architecture [43].

36 Neural Architecture Search

Cell-based search space

Another search space category proposed by some recent works is cell or block-
based search space. In this case, the final architecture is composed of repeated
patterns commonly referred to as cells or blocks. The core idea is to search only
for the cell or block architecture and compose the final architecture by stacking
them together. For illustration, see Figure 3.3.

The papers of Zoph et al. [195] and Zhong et al. [189] follow exactly this strategy.
The former designed its own search space called NASNet search space (see Fig-
ure 3.4) which was used to evolve a novel NASNet architecture for image classifi-
cation. The latter utilizes block-wise generation which essentially means stacking
evolved blocks to produce the final architecture. In addition, the work of Liu
et al. [88], Cai et al. [18], Pham et al. [119], Luo et al. [98], Liu et al. [89] and
Zhang et al. [187] also benefit from a similar search space design.

Figure 3.4: Left: The complete NASNet structure made of alternating Normal
cells and Reduction cells. Middle: An illustration showing skip connections (omit-
ted in the first diagram). Right: Detailed example of an evolved cell [195].

Unfortunately, cell-based search space introduces a new problem to solve. Namely,
how to decide the macro architecture i.e. how many cells to stack, which kinds of
cells and how to connect them to produce the actual architecture. For complete-
ness, the inner structure of cells is sometimes referred to as micro architecture.
To provide an example, each NASNet cell of Zoph et al. [195] consumes outputs
of two previous cells and is later stacked into a sequential model. In contrast,
Cai et al. [18] uses macro structures of known manually designed architectures
and uses its custom cells within them.

Related Work 37

Another issue is how to optimize both the macro architecture as well as the
micro architecture together and ideally at the same time. Joint optimization can
prevent creation of sub-optimal architectures in which a well-performing cell gets
trapped in a badly designed macro architecture and vice versa [44].

Hierarchical search space

Liu et al. [87] proposes using a hierarchical search space which defines multiple
levels for optimization. The first level defines atomic primitive operations, the
second level defines connections between operations from the first level, the third
level defines connections between patterns from the second level etc. In fact,
cell-based search space can be seen as a special case of hierarchical search space
with just two levels.

3.2.2 Search Strategy

After a suitable search space representation has been selected, the next step is
to pick an appropriate search strategy. The main role of a search strategy is to
sample promising candidate architectures from the search space. There have been
many attempts using various methods, hence it was decided to review only the
strategies that are potentially relevant to the goal of this work.

Reinforcement learning

The first strategy utilizes Reinforcement learning (RL), so it is referred to as Re-
inforcement learning-based search strategy. To formulate NAS as a RL problem,
the agent is repeatedly asked to pick an action i.e. choose a network layer or
cell until the whole network is built. The reward is determined by the estimated
performance of the produced architecture. The presented works usually differ in
agent’s policy representation and in the way they optimize it.

Zoph and Le [194] opted for a recurrent neural network-based controller which im-
plements the architecture generation policy. The controller iteratively generates a
sequence of tokens which encode hyperparameters of the produced network. RE-
INFORCE policy gradient method [165] was used to train the controller network.
In contrast, their later work [195] used Proximal Policy Optimization. A similar
controller design was chosen by Baker et al. [7] but they employed Q-learning
algorithm for training. Similarly, Zhong et al. [189] also chose Q-learning.

Cai et al. [17] suggest to model the search as sequential decision process. In
their paper, they propose to use a partially assembled architecture as the current

38 Neural Architecture Search

state which is then mutated by actions applying network morphisms [26]. Ad-
ditionally, LSTM was used to allow compression of variable length architectures
into a fixed-length encoding.

Gradient-based strategy

Another popular approach utilizes gradients, therefore, it was named Gradient-
based search strategy. If the search space can be expressed as differentiable and
continuous, gradients can be used to guide the search [65]. For the search space
transformation, Liu et al. [88] employed softmax relaxation technique. The same
approach was later used by Dong and Yang [39], Shin et al. [142] and Wu et al.
[167]. Alternatively, Ha et al. [60] demonstrated the use of a hypernetwork i.e.
a network which generates weights of another network in order to encode candi-
date networks into the continuous space. In the work of Luo et al. [99], Neural
architecture optimization (NAO) method makes use of LSTM-based decoder and
encoder to perform the search space transformation.

Evolutionary algorithms

A great number of strategies fall into Evolutionary algorithms-based search strat-
egy category. In contrast to Neuroevolution (section 3.1), NAS-related approaches
usually employ backpropagation for weight optimization and use evolution only
for the optimization of the architecture itself. Evolutionary algorithms (EA)
hold a population of candidate solutions (i.e. architectures) which undergo sev-
eral iterations of evolution. During each evolution round, one or more solutions
are sampled and subjected to crossover and/or mutation operations to produce
offspring. In the context of NAS, crossover and mutations usually provide modi-
fications to the architecture topology, for instance, adjusting hyperparameters or
introducing new skip connections. The fitness of the newly created offspring is
evaluated based on performance metrics. Model perplexity or validation accuracy
are common examples of such metrics.

The typical point of divergence lies in how different works select parents for
reproduction, create offspring and make space for them in the population. In
both cases [128, 129], Real et al. adopted tournament selection [52] to sample
parents, whereas Elsken et al. [43] used multi-objective genetic algorithm, there-
fore, could sample parents directly from the pareto front. Also, [128, 129] differs
in the approach to individual replacement. The former replaces the oldest in-
dividual while the latter substitutes the worst-performing one. Zhu et al. [192]
employed a special variant of crossover and mutation operators which are guided
by information obtained incrementally during the evolution process.

Related Work 39

To conclude, let’s look at how different search strategies perform. Real et al. [129]
focused on comparison of Reinforcement learning-based strategies, Evolutionary
algorithms-based strategies and random search (which is considered a baseline).
They reached the conclusion that both strategies produce equally good results
while being consistently better than random search. In addition, evolution turned
out to be better at finding more compact models. Liu et al. [87] focused only
on Evolutionary algorithms-based strategies and random search achieving results
similar to Real et al. [129].

3.2.3 Performance Estimation Strategy

Search spaces (subsection 3.2.1) are used to produce candidate architectures that
are sampled by Search strategies (subsection 3.2.2). To inform and guide the
search process, predictive performance of the produced models needs to be eval-
uated. The default approach is to fully train a given model for a fixed number of
epochs to obtain its performance estimate. However, this technique may impose
a high computational burden on the search process. Therefore, more efficient
Performance estimation strategies were developed.

Reduced training fidelity

One of the popular strategies is to reduce training fidelity and use the approximate
results as a proxy performance metric. To speed up training, Klein et al. [76]
opted for using only a subset of the available training data. In contrast, Zoph
et al. [195] and Zela et al. [183] trained their models for a small number of epochs
and additionally retrained the final models. Yang et al. [177] proposed to train all
models for a fixed number of epochs and then assign additional training time to
well-performing models. However, Zela et al. [183] also observed that the greater
the difference between in-search training setup and the final training setup is,
the more skewed and less representative the proxy metric becomes. Hence, they
advise to reduce training fidelity with care to prevent inclusion of biases.

Learning curve extrapolation

Another similar approach relies on learning curve extrapolation. The idea is that
the initial learning curve accurately describes the trend a model would follow if
trained further. That’s why training of unpromising models can be stopped early
on. The work of Klein et al. [76] takes advantage of this technique. A subtly
different kind of extrapolation appears in the paper by Liu et al. [86]. They
trained a surrogate model capable of predicting performance based on architec-
tural properties of simple cell-based architectures. The surrogate model was then

40 Neural Architecture Search

used to predict performance of substantially larger architectures during an ac-
tual training process. Similarly, Baker et al. [8] used several regression models for
performance prediction and compared the obtained accuracies. Domhan et al.
[38] employed a weighted probabilistic model for the same task.

Network morphism

Network morphism technique proposes weight initialization of candidate archi-
tectures based on weights of similar already trained architectures. This idea was
investigated by Wei et al. [164] and further utilized by Cai et al. [17] and Li
et al. [82]. The goal is to transform one network into another while completely
preserving its function i.e. make the morphed network inherit knowledge from its
parents. Because of that, time-consuming training from scratch can be avoided.
Usually, there is still some fine tuning required but the training duration is greatly
reduced.

One-shot architecture search

One-shot architecture search constitutes another important group of methods. In
this case, all candidate architectures are inherited from a super network called
one-shot model. The one-shot model is trained only once and weight inheritance
is used while sampling candidate architectures from it (these are simply sub
networks of the one-shot model). No further training of sampled architectures
is needed. Details of the process are explained in Figure 3.5. Brock et al. [14],
Bender et al. [12] and Cai et al. [19] utilized this technique. On the other hand,
weight sharing often introduces bias. One-shot models tend to underestimate
performance of the best sampled architectures [12]. Another limitation is that
the fixed and a priori defined super network noticeably constraints the search
space. Also, during the sampling operation, the whole one-shot model needs to
reside in memory which might cause issues with handling large networks.

Estimation without training

There have also been attempts to estimate neural network performance with-
out any training. Mellor et al. [109] used overlaps of activations between data
points in mini-batches to determine performance score of untrained networks.
They claim that networks can be uniquely identified by a binary code which
corresponds to the activation pattern of rectified linear units. Then, Hamming
distance between binary codes can be used to obtain a matrix which takes dis-
tinctive forms for well-performing networks. Lopes et al. [95] and Wu et al. [169]
employed a similar solution. Lopes et al. [96] aimed to eliminate unpromising

Related Work 41

Figure 3.5: An illustration of One-shot architecture search process. Left: An
example of One-shot model with one input node (0), one output node (4) and
three hidden nodes (1,2,3). The edges represent operations that are applied to
nodes. The model is trained as a whole including all nodes and operations.
Right: To obtain a candidate architecture, the one-shot model is sampled to
produce a sub network. Relevant weights of the one-shot model are transferred
to the candidate architecture to avoid the need for training [44].

networks right after initialization. For that purpose, they used a zero proxy es-
timator based on Jacobian covariance of input data points. In the end, their
method can also be seen as a variant of Mellor et al. [109] approach.

3.3 Transformer Architecture Search

Several works attempted applying Neural Architecture Search (section 3.2) to
Transformers and the derived Transformer-based architectures. Apart from search-
ing for complete architectures, a common approach is to limit the focus to a sub-
set of Transformer components. A popular candidate is the attention mechanism
i.e. searching for more efficient or better performing variants of it. In addition,
there is an active area of research focused on evolving efficient transformers for
resource-constrained environments.

3.3.1 Search Space

Similarly to subsection 3.2.1, this section is also divided into categories based
on different search space types. For the definition of the categories, consult the
mentioned subsection. The topic is the same as in subsection 3.2.1, however, this
time, the section focuses on Transformer-based architectures.

42 Transformer Architecture Search

Multi-branch search space

Chen et al. [25] used a variant of multi-branch search space while searching for
Vision Transformer architectures specialized on image processing. Interestingly,
the search space used in their work was made dynamic and evolved alongside the
architectures. In another paper of Chen et al. [24], a similar search space type
was also used. They split the Transformer architecture into stackable building
blocks with variable hyperparameters. The parameters are then adjusted during
the search process.

Cell-based search space

An influential paper by So et al. [143] describes the use of NAS to search for a
better alternative to the vanilla Transformer [159]. They proposed a cell-based
search space based on NASNet [195] including modifications allowing represen-
tation of Transformer architectures. The search space cell structure is shown
in Figure 3.6. Kim et al. [73] employed the same search space type while evolving
architectures for automatic speech recognition. Furthermore, Jing et al. [69] used
it as a foundation for Transformer-based architecture search framework.

Figure 3.6: Search space cell of The Evolved Transformer. Each of the blocks
(violet) ordered and stacked within the cell (green) outputs a hidden state which
is added to a hidden state pool. Other blocks can then select two hidden states
produced by the preceeding blocks as input. These inputs are then fed into the
left and right branches (red) of the corresponding block [143].

Related Work 43

3.3.2 Search Strategy

The majority of search strategies used in connection with Transformers seem
to be based on evolutionary algorithms. However, a few papers also employed
reinforcement learning or one-shot search.

Reinforcement learning

Liu et al. [90] investigated the use of Transformers together with convolution and
simple multi-layer perceptrons. The intention was to search for their optimal
combination to obtain an architecture suitable for vision tasks. To perform the
search, they employed reinforcement learning and used a simple RNN-based con-
troller. Zhu et al. [193] also used RL to navigate through the search space. Their
goal was to automatically design Transformer architectures optimized for natural
language processing.

Evolutionary algorithms

Tsai et al. [157] focused on finding fast and efficient Transformers with a help of
evolutionary algorithms. They suggested decomposing Transformer into series of
blocks with hyperparameters which can be adjusted by the evolution process. So
et al. [144] also tackled the problem of searching for efficient Transformer alter-
natives, however, in contrast to the previously mentioned work, they performed
evolutionary search on a lower level. Their search space consisted of primitives
that define a TensorFlow program. The architecture discovered during the per-
formed search is called Primer. In comparison to vanilla Transformer, the main
differences are: squaring of ReLU activations and adding depthwise convolution
after each query, key and value projection in the attention sub-layers.

Guan et al. [58] proposed a framework for automatic design of self-attention
models called AutoAttend. In their work, NAS was used to search for optimal
attention models as well as to optimize the macro architecture of Transformer.
The attention model search was designed in the same way as the macro architec-
ture search, therefore, the search space and search strategy were reused directly.
Additionally, The Evolved Transformer [143], Global and Local Image Trans-
former [23] and Transformer for neural machine translation by Feng et al. [46]
also utilized evolutionary search.

Gradient-based search

Zhao et al. [188] explored the possible ways of applying differentiable architecture
search to Transformers. However, their efforts were quickly hindered by too high
memory requirements. To deal with this problem, they decided to split the

44 Transformer Modifications

network into n reversible networks which allow their inputs to be reconstructed
from their outputs. Thanks to this technique, the memory needed for storing
the network decreased significantly and differentiable architecture search became
possible. Mandava et al. [107] investigated trade-offs between different orderings
of multi-head attention and feed-forward modules in Transformers. To search
for an optimal solution, they also used differentiable architecture search method
inspired by the work of Wu et al. [167].

3.3.3 Performance Estimation Strategy

For Transformer-based architectures, sophisticated performance estimation strate-
gies seem to be utilized to a much lesser degree. To obtain an evaluation score,
most of the works simply default to training of candidate models from scratch
and using their validation accuracy as a performance metric. Nevertheless, there
is a few noticeable exceptions.

Reduced training fidelity

Because the search for complete Transformer architectures was proved to be time-
consuming, a speedup method called Progressive Dynamic Hurdles was proposed
by So et al. [143]. During training, the method dynamically allocates more train-
ing steps to models with promising evaluation metric values (such as perplexity
or accuracy). The same technique was also utilized by Kim et al. [73].

One-shot search

Several papers used one-shot search to avoid training of individual architectures
by sampling them from an already trained super network. The set includes papers
from Tsai et al. [157], Chen et al. [24] or the work of Guan et al. [58].

3.4 Transformer Modifications

As Transformer architectures started to get more widely used, their weaknesses
were revealed. In some cases, the weaknesses even hindered applications to new
problems. The main issue is that attention calculation has Opn2q complexity in
both memory and time, so it becomes difficult to process long sequences. Other
difficulties include keeping track of very long dependencies between sequence
elements, making the model smaller or designing efficient positional encoding.
For that reason, numerous improvements and modifications were proposed. The
most influential ones are described in the following subsections.

Related Work 45

3.4.1 Architecture Variations

After the first Transformer was introduced (subsection 2.5.3), new lines of re-
search focused on improving the architecture appeared. Surprisingly, the most
successful works either proposed relatively minor architectural changes or uti-
lized a scaled up variant of the Transformer encoder or decoder stage only. It
is worth mentioning that apart from the architectural modifications, the per-
formance improvements of many of the presented architectures are also due to
masked pretraining [35] which is explained in a separate subsection 3.4.6.

Encoder-decoder

The original encoder-decoder Transformer by Vaswani et al. [159] is an auto-
regressive model. In auto-regressive models, the element being produced has
access to all previously produced elements via attention i.e. the context to the
left from the current element. An encoder-decoder configuration similar to the
original Transformer was used by Raffel et al. [125] who explored the possibilities
of transfer learning. They managed to reach state-of-the-art results on several
NLP benchmarks even though their model was not trained from scratch on all
measured tasks. The work of Song et al. [145] had a similar focus and also utilized
the full encoder-decoder variant. Fedus et al. [45] focused on scaling up the Trans-
former architecture and improving its performance on larger datasets by routing
data within the model. Borgeaud et al. [13] optimized the encoder-decoder vari-
ant for retrieval of knowledge from textual documents. Their approach performed
especially well on knowledge intensive tasks such as question answering.

Decoder-only

Decoder-only Transformer variants are also auto-regressive i.e. have the left con-
text available. Some of the most prominent representatives are the three versions
of Generative Pre-trained Transformer i.e. GPT [122], GPT2 [123] and GPT3 [16]
which perform text generation. At the time, they managed to advance state-of-
the-art in several tasks such as machine translation, reading comprehension or
document summarization. Building on the learnings from GPT3, PaLM archi-
tecture [29] scales up the decoder even further reaching hundreds of millions of
learnable parameters and improved performance.

Encoder-only

The main feature of encoder-only variants is that the models are no longer auto-
regressive i.e. produce the whole output sequence at once. The input sequence
is also processed in one go which allows all elements to access both left and right
contexts enhancing model learning capabilities. The first proposed encoder-only

46 Transformer Modifications

model is called BERT [35] which stands for Bidirectional Encoder Represen-
tations from Transformers. The model was trained and evaluated on popular
NLP benchmarks reaching state-of-the-art or beyond performance on them. The
solution was further improved by Liu et al. [93] who found that BERT was signif-
icantly undertrained and can perform even better. However, the model became
quite large which made its proper training even harder. Hence, Lan et al. [78]
came up with measures for lowering model memory consumption and increasing
its training speed.

3.4.2 Layer Normalization

Layer normalization (LN) and residual connections are mechanisms which help
neural networks to stabilize training and avoid degeneration of gradients. In the
original Transformer, both mechanism are used extensively (section 2.5). Addi-
tionally, there exists research investigating the optimal use of such mechanisms in
Transformers which already proposed alternative solutions. The alternatives usu-
ally challenge the placement of layer normalization within the network or suggest
different ways of performing normalization.

Layer Normalization Placement

There are two common variants of Transformer layer each using a different place-
ment of layer normalization: pre-norm and post-norm. The former places LN
right before attention or feed forward sub-layer, so the residual connection goes
around it while the latter places LN in between the blocks formed by residual con-
nections. For clarity, both variants are illustrated in Figure 3.7. The post-norm
option was used in the original Transformer while pre-norm was adopted by some
later works [27, 162]. Xiong et al. [171] discovered that gradients near the last
layer in post-norm Transformers become quite large which might explain the diffi-
culties with Transfomer training and the need for learning rate warmup. The pre-
norm Transformers do not suffer from the same problem. Unfortunately, Wang
et al. [162] showed that post-norm Transformers are more performant.

Alternative Normalizations

Raffel et al. [125] found beneficial to use a simplified version of layer normalization
which rescales gradients but applies no additive bias. Xu et al. [173] noticed
that the learnable parameters of LN do not bring any measurable improvement
and can even increase the risk of overfitting. For that reason, they proposed
AdaNorm: a normalization technique with no learnable parameters. Nguyen and
Salazar [114] suggested using scaled l2 normalization instead of LN as it is more

Related Work 47

Figure 3.7: Left: post-norm variant of the Transformer layer, Right: pre-norm
variant of the Transformer layer [85].

parameter efficient and was shown to perform equally well. Shen et al. [140]
investigated why batch normalization performs poorly in Transformers. Based
on their learnings, they proposed PowerNorm: a batch normalization technique
optimized for Transformers.

3.4.3 Attention Modelling

To mitigate the Opn2q attention complexity, alternative attention modelling ap-
proaches were proposed. A common technique is to restrict the number of ele-
ments to attend to by imposing a specific access pattern. Other models try to
approximate the calculated attention scores. Additionally, attempts to replace
the attention model with other constructs were also proposed.

Fixed Attention Patterns

Some of the early modifications suggest limiting the elements available for at-
tention calculation by imposing a fixed mask pattern on them. Qiu et al. [120]
split the input sequence into fixed blocks which reduced the attention complex-
ity to Opb2q where b ăă n and b stands for the block size. Another approach
is to attend only at predefined intervals which was employed by Beltagy et al.
[11]. Longformer (as they call the architecture) combines sliding attention win-
dow with global attention which results in sparse attention pattern. This allows

48 Transformer Modifications

the lower levels of the model to capture local patterns while higher levels can
focus on modelling of the global ones. The resulting attention pattern is shown
in Figure 3.8.

Figure 3.8: The fixed attention pattern of Longformer. The picture illustrates
how elements attend to other elements. Both vertical and horizontal axis repre-
sent elements of the same sequence, therefore, the diagonal line shows attention
to the element itself [11].

Similarly, Zaheer et al. [182] combined three different types of fixed attention
patterns in their Big Bird Transformer : global attention which defines a subset
of elements that can attend to the whole sequence, window attention which allows
attention to nearby tokens and random attention that attends to randomly chosen
elements. An illustration of the final pattern is given in Figure 3.9. In addition,
Child et al. [27] employed a similar technique in their Sparse transformer.

Figure 3.9: The attention pattern of Big Bird Transformer. Three fixed attention
patterns were combined into one [182].

Related Work 49

Learnable Attention Patterns

In addition to fixed patterns, learnable patterns were also used. Reformer by
Kitaev et al. [74] relies on locality-sensitive hashing to reduce the attention com-
plexity from Opn2q to Opn logpnqq. The hashing works as a similarity measure
which clusters tokens into chunks efficiently. Routing Transformer [133] utilizes
k-means clustering algorithm to obtain a similar grouping of tokens. A similar
clustering approach was also used by Vyas et al. [160]. Zhu et al. [191] suggested
using two separate attention models whose outputs get combined. The first model
employs a learnable projection to capture long-term dependencies while the sec-
ond short-term model focuses on local relations between elements. Sukhbaatar
et al. [150] proposed an attention mechanism which is capable of learning the
optimal attention span. Furthermore, Tay et al. [154] achieved attention sparsity
by learning how to sort blocks of elements extracted from the input sequence.

Approximation of Attention

A typical representative of attention approximation is Linformer [163] which ap-
proximates attention values by a low-rank matrix. The original n2 attention
matrix is decomposed into n ˆ k where k ăă n. Based on these learnings, the
authors propose a new attention mechanism which reduces Opn2q complexity
down to Opnq in both time and space. Choromanski et al. [28] also employed a
similar kind of attention approximation. Perceiver proposed by Jaegle et al. [68]
uses cross-attention module to project input into a fixed-dimensional latent bot-
tleneck array. This trick enables efficient handling of large inputs as it effectively
decouples the model from the input size. Attention is then calculated iteratively
by stacking several cross-attention modules interleaving with latent self-attention
blocks. In fact, Perceiver can be seen as a variant of recurrent neural network.
Figure 3.10 shows the architecture in more detail. Finally, Katharopoulos et al.
[70] and Peng et al. [118] suggested using kernel-based dot product attention in-
stead of softmax attention which allowed reduction of complexity to Opnq.

Alternatives to Attention

Among the vast amount of research which aims to improve the attention mech-
anism, there exist a few papers that question the actual importance of it. Zhai
et al. [185] introduced Attention Free Transformer which eliminates the need for
scaled dot product attention. Instead, they proposed combining keys and values
with a set of learned position biases and multiplying them by queries. In their
experiments, they managed to obtain performance competitive to vanilla Trans-
former. Lee-Thorp et al. [80] replaced self-attention with Fourier Transforms

50 Transformer Modifications

Figure 3.10: A stack of alternating cross-attention modules and transformer-style
self-attention blocks. The byte array represents the original input while latent
array is its low-dimensional projection (at least in the beginning) [68].

while retaining up to 97% of the original Transformer classification accuracy.
Synthesizer by Tay et al. [153] successfully substitutes attention with random
alignment matrices. As well as the previous papers, they reach competitive per-
formance. Bello [10] replaces attention with a set of linear functions termed
lambdas and also obtains promising results. Gulati et al. [59] proposed using
convolution in addition to the standard multi-head attention to improve captur-
ing of the local element context. The convolution module was placed in between
attention and feed forward sub-layers. Finally, Wu et al. [168] experimented with
using lightweight convolutions instead of attention.

Additional Memory

Leveraging a global memory module that can access several elements at once is
another verified approach. Set Transformer introduced by Lee et al. [79] uses
inducing points method which forms a temporary memory and holds context for
future processing. Dai et al. [33] proposed Transformer-XL which in order to
preserve history maintains a memory of past activations at each layer. When
these activations become too old, they are discarded. Compressive Transformer
by Rae et al. [124] builds on similar principles, however, instead of discarding
the memory, it compresses it. Extended Transformer Construction [2] and Long-
former [11] also used some form of a global memory.

3.4.4 Feed Forward Sub-layer

Aside from attention and layer normalization, feed forward sub-layer constitutes
another important building block of Transformer layers. Modifications to this

Related Work 51

sub-layer usually attempt to expand the capacity of its fully-connected layers (to
increase the amount of information they are able to absorb) or to pick a more
suitable activation function.

Fully-connected layers

Shazeer et al. [138] demonstrated the use of Mixture-of-Experts (MoE) technique
in neural networks. MoE applies conditional computation, where parts of a net-
work are activated based on the supplied input sequence i.e. different sequences
might get routed through a different part of the network. Yang et al. [176] and
Fedus et al. [45] proposed MoE-based feed forward sub-layer optimized for the
use in Transformers. Yang et al. [178] discovered that feed forward sub-layers are
not being used efficiently in Transformer decoders. They also showed that the
sub-layer can be removed with little to no loss of performance.

Activation function

The default activation function used in the vanilla Transformer is ReLU. Ra-
machandran et al. [126] tried to replace ReLU with SiLU [127] and experi-
enced consistent improvements in performance. GPT [122] replaced ReLU with
GELU [63] which then became a popular choice even for more recent language
models [34, 62]. So et al. [144] conducted Transformer architecture search and
discovered that squaring ReLU activations leads to a better performance. Other
common choices include LeakyReLU [172] and ELU [30] activation functions.

3.4.5 Positional Encoding and Embedding

Positional encoding is a way of encoding positional relations of elements in a
sequence while positional embedding refers to a n-dimensional vector represent-
ing positional encoding. Positional encoding techniques have been studied even
before the introduction of Transformer architecture, so there is a wide variety
of solutions to draw inspiration from. Moreover, alternatives and improvements
tailored specifically to Transformers have also been proposed.

The positional encoding methods presented below can be divided into two groups
based on how they supply the encoding/embedding to Transformer models:

1. Added positional encoding (APE): Add positional embedding to the
input of the model.

2. Modified attention matrix (MAM): Inject positional encoding directly
to attention matrices inside Transformer layers.

52 Transformer Modifications

Attention matrix refers to n2 attention scores matrix used in vanilla multi-head
attention (and some other attention models) which holds scores representing at-
tention between all sequence elements. The scores they are then passed through
softmax to obtain the final attention weights (see subsection 2.5.3).

Absolute positional encoding

Absolute positional encoding encodes the absolute position of an element within
a sequence. The original Transformer paper [159] utilizes fixed sinusoidal po-
sitional encoding which is an example of absolute encoding (subsection 2.5.3).
The encoding is added to the model input embedding (APE). The effectivity of
sinusoidal encodings was also verified by Liu et al. [92]. Yan et al. [175] noticed
that dot product of two sinusoidal positional embeddings depends only on their
relative distance and also that the embedding is unaware of direction. To allevi-
ate these issues, they proposed direction and distance-aware positional encoding.
Li et al. [83] claimed that variance of sinusoidal positional embeddings depends
on the actual position i.e. tends to be small for lower positions and tends to be
large for later positions. To mitigate the problem, maximum variances positional
embedding was introduced.

An alternative to fixed sinusoidal encoding is learnable absolute positional en-
coding. Devlin et al. [34] and Liu et al. [93] used a generic learnable embedding
which learned element positions from scratch without any kind of positional en-
coding provided beforehand. Kitaev et al. [74] proposed a parameter-efficient
learned embedding called axial position embedding. In fact, their embedding en-
capsulates two different kinds of embeddings. The first embedding is used to
encode larger segments while the second embedding determines positions within
each segment. Liu et al. [92] modelled positional information with a continu-
ous dynamic model and injected it into attention matrices in each encoder layer
(MAM). Based on their experiments, this approach outperforms sinusoidal abso-
lute encodings.

Relative positional encoding

Relative positional encoding is a positional encoding method which encodes el-
ement positions relative to other elements in a sequence ignoring their absolute
position. He et al. [62] added relative positional biases to attention matrices in
all Transformer layers (MAM). Raffel et al. [125] used a combination of learnable
positional encoding and relative positional biases. The resulting encoding was
also injected directly to attention matrices (MAM). However, the learned com-
ponent was shared. Chang et al. [21] investigated a combined use of convolutions

Related Work 53

with relative positional encoding. Their efforts were successful as they detected
improved performance in natural language understanding tasks.

Combined positional encoding

Combined positional encoding represents techniques which combine certain forms
of absolute positional encoding (section 3.4.5) and relative positional encoding
(section 3.4.5). Su et al. [148] introduced MAM positional encoding which uses
a rotation matrix to encode element positions. The matrix encodes absolute
positions directly but also holds implicit relative positional biases. Ke et al.
[72] discovered that adding positional encoding to the input embedding intro-
duces mixed correlations between the two information sources. For that reason,
they proposed untied position embeddings injected directly into attention matri-
ces (MAM). The untied approach opted for modelling both absolute and relative
encoding separately and adding them together just before they are provided to
the model. Shaw et al. [137] concluded that relative encoding improves per-
formance in machine translation tasks whereas the combination of relative and
absolute encoding does not bring any benefits.

3.4.6 Masked Pretraining

Transformer pretraining is an approach suggesting training of Transformer mod-
els in two consecutive steps. In the first step, the models are pretrained on large
datasets (e.g. large corpora in NLP) which makes them learn universal repre-
sentations beneficial for downstream tasks [121]. After pretraining, the models
are fine-tuned for a given task on a smaller dataset of interest. The popular
masked pretraining technique was pioneered by Devlin et al. [34] who proposed
pretraining of Transformer encoder-only models by randomly masking out cer-
tain portions of sentences and asking the model to predict the masked sections.
After that, the model was fine-tuned for a number of benchmark tasks in which it
surpassed performance of non-pretrained models. The same method was further
refined by He et al. [62] and Liu et al. [93]. A similar technique was applied
to GPT decoder-only models [122, 123, 16] improving their performance signif-
icantly. Additionally, Zerveas et al. [184] successfully performed pretraining on
time series datasets.

3.5 Transformers for Time Series Forecasting

Despite the fact that Transformers were originally proposed for solving natural
language processing problems, their span has recently expanded to new domains.

54 Transformers for Time Series Forecasting

They are now being used to tackle problems in different fields such as image pro-
cessing [40] or biological sequence analysis [131]. As the goal of this work is to
apply Transformers to time series forecasting, this section presents some of the
early attempts and highlights concepts potentially applicable to this work.

Wu et al. [170] used Transformer to forecast influenza-like illness epidemics. The
employed architecture was taken from the work of Vaswani et al. [159] but in-
cluded a few minor modifications. The forecasted time series were encoded via
time delay embedding (TDE) which embeds their values into d-dimensional vec-
tors that Transformers can process. The embedding definition is shown in Equa-
tion 3.1.

TDEd,τ pxtq “ pxt, xt´τ , ..., xt´pd´1qτ q (3.1)

where xt is time series data at the timestamp t, d is the dimension of the em-
bedding vector and τ is the time lag. To obtain training examples for the model,
fixed-length windowing was used to extract pairs of consecutive time series patches
created by sliding a window over the full time series. The technique is illustrated
in Figure 3.11.

Figure 3.11: Use of a sliding window for training examples generation [170].

Zhou et al. [190] introduced Informer, a custom designed Transformer-based ar-
chitecture optimized for long time series forecasting. The first proposed enhance-
ment is the use of a fixed attention pattern-based ProbSparse attention model

Related Work 55

which lowers the attention complexity to Opn logpnqq in both time and mem-
ory usage. Secondly, Informer relies on attention distilling method which uses
convolution to incrementally filter out elements that obtain low attention scores.
This approach helps with handling of long sequences as the number of considered
elements decreases with every Transformer layer. Finally, Informer is not used
in autoregressive manner. The whole forecast is produced at once which avoids
accumulation of forecast errors.

Grigsby et al. [56] explored the use of Transformers for multivariate time series
(MTS) forecasting. They proposed converting MTS into a flat spatiotemporal
sequence in which each token represents a value of a single time series at a given
timestamp. This makes the model capable of learning interactions between space,
time, and the actual series values properly. The authors chose positional embed-
ding based on Time2Vec [71] which uses value timestamps to capture long-term
seasonal patterns or periodicity. Their model architecture was heavily inspired
by Performer [28] and Informer [190] Transformers.

Zerveas et al. [184] also focused on multivariate time series but in contrast
to Grigsby et al. [56] they used only the encoder part of Transformer. The
work investigated the potential benefits of masked pretraining with time series
datasets. Evaluation on multiple benchmarks showed that the pretrained encoder
performs significantly better than the other currently available methods used for
time series regression and classification. The difference was most noticeable on
small datasets containing only several hundreds of training examples.

Cai et al. [20] examined the use of Transformers for traffic forecasting. For
that purpose, they customized the vanilla Transformer [159] and proposed Traf-
fic Transformer. One of their main contributions was a detailed analysis of posi-
tional encodings for time series forecasting. In the end, they merged several kinds
of encodings together (each capturing different time series features such as con-
tinuity or periodicity). In addition, they enhanced the model by including graph
convolutional neural networks-based layer for capturing spatial dependencies.

Another attempt was made by Yi et al. [180] who used Transformers for tourism
demand forecasting. Their model is nearly identical to Vaswani et al. [159] and
used input encoding similar to Wu et al. [170]. They also performed in-depth
comparison of the model with other time series forecasting methods.

Shen and Wang [139] suggested combining attention with convolution to achieve
better efficiency and enhance the locality of the model. For that reason, they
designed CSPAttention block which splits signal into two paths. One path ap-
plies convolution and the second one performs self-attention. The architecture

56 Time Series Forecasting Methods

is in fact based on Informer [190] with one noticeable difference. In the distill-
ing operation of Informer, regular convolutions are replaced with dilated causal
convolutions. This enables exponential widening of the receptive field. The final
proposed enhancement is passthrough mechanism which is in fact a simple resid-
ual connection around multiple encoder layers.

Some general improvements to Transformer architecture for time series forecast-
ing were proposed by Li et al. [84]. They developed self-attention mechanism
based entirely on causal convolutions which excels at capturing local context.
In addition, to mitigate the Transformer memory bottleneck, they introduced
LogSparse Transformer which was showed to capture long-term dependencies
well while keeping the memory usage at Opn logpnq2q.

3.6 Time Series Forecasting Methods

In addition to classical methods (subsection 2.4.1) and simple neural network-
based models (subsection 2.4.2), more sophisticated time series forecasting meth-
ods are being introduced. Flunkert et al. [48] proposed DeepAR methodology
which uses RNN and LSTM networks trained on a large number of related time
series to improve forecasting accuracy on the time series of interest. Bai et al.
[6] investigated application of convolutional neural networks (subsection 2.2.1)
to sequence modelling and discovered that a relatively simple CNN outperforms
RNNs on several benchmark tasks such as language modelling. The prosposed
architecture is referred to as Temporal Convolutional Network or simply TCN.
An important part of the architecture are causal convolutions which ensure that
at time t convolution can only access sequence elements from time t´1 or earlier.

Oreshkin et al. [116] introduced N-BEATS neural architecture specialized for fore-
casting built as a deep stack of fully-connected layers. Different groups of layers
focus on different time series components (subsection 2.3.2) which makes expla-
nation and interpretation of the produced forecasts easier. Taylor and Letham
[155] came up with a modular regression model with interpretable parameters
which can be tuned by experts who have the appropriate domain knowledge of
the forecasted time series. The model is referred to as Prophet. The same model
was further improved by Triebe et al. [156] who incorporated neural networks
into it producing a hybrid NeuralProphet model connecting classical methods
with deep learning while also being superior in accuracy.

Related Work 57

3.7 Forecasting Benchmarks

Most of the available time series forecasting benchmarks were initially released as
forecasting competitions aiming to compare accuracy of various forecasting meth-
ods. A well-known series of competitions are Makridakis competitions also known
as Mx. The first M1 competition [135] contained 1001 real-world time series col-
lected primarily from firms and industries. The second M2 competition [104] con-
sidered 26 time series only but put more emphasis on the evaluation of forecasting
methods. The competition lasted for almost 4 years during which the organizers
collected additional data that were then used for the methods evaluation. Later,
a similar M3 [103] and recently also M4 [105] and M5 [102] competitions took
place. Crone et al. [31] took 111 time series from the M3 competition and set
up a new NN3 competition targeting neural network-based forecasting methods.
To raise awareness about the importance of energy forecasting, Global Energy
Forecasting competition was held in 2012 [64]. Also, Athanasopoulos et al. [4]
proposed another competition focused on forecasting of tourism data.

Bauer et al. [9] argued that most of the forecasting competitions use very homo-
geneous datasets which hinders objective evaluation of the compared forecasting
methods. To illustrate the issue, they showed that e.g. majority of M3 time series
are less than 100 samples long or that M4 series have mostly short frequencies of
seasonality. For that reason, they proposed Libra, a forecasting benchmark which
evaluates forecasting methods on a diverse set of time series coming from various
domains and sources. The benchmark consists of four categories of time series
(economics, finance, human access and nature and demographics) each contain-
ing 100 different series. Bauer et al. also conducted statistical analysis of the
benchmark to support their claims about the diversity and heterogeneity of the
time series included in it.

58 Forecasting Benchmarks

Chapter 4

Method and System Design

This chapter presents a framework used to design the evolution-driven system
for neural architecture search and subsequently obtain competitive Transformer-
based architectures for time series forecasting. The chapter is split into several
sections describing individual phases of the framework as explained in section 4.1.
Apart from these, there is one extra section discussing the explicit design decisions
made (section 4.2). The work presented in this chapter maps to Suggestion and
Development phases of Design Science Research methodology (section 1.4).

4.1 Design Framework

The proposed framework defines several phases each representing a step towards
the design of evolution-driven NAS system and creation of Transformer-based
architectures for time series forecasting. All phases are illustrated in Figure 4.1.
The first phase focuses on selecting a well-performing Transformer variant to act
as a base for genotype encoding design (section 4.3). The second phase com-
pares attention models and selects a subset suitable for use with time series (sec-
tion 4.4). The third phase deals with genotype encoding design (section 4.5).
The fourth phase covers design of the neural architecture search system later
used to evolve Transformer-based architectures (section 4.6). The fifth phase
gathers learnings from all previous phases in order to evolve a strong architec-
ture for forecasting (section 4.7). Notice that the diagram shows a recurrent
connection on this phase as the evolution might require several attempts before
it produces a well-performing architecture. Finally, the last phase compares the
evolved architectures with other common forecasting methods (section 4.8). If the
architectures reach the desired accuracy, the framework terminates, otherwise, it
starts over as some decisions made along the way may need to be reconsidered.

60 Design Decisions

Figure 4.1: The framework used to design evolution-driven NAS system and
obtain a Transformer-based architecture for time series forecasting.

4.2 Design Decisions

Design and implementation of the described NAS system were guided by several
design decisions made beforehand. These decisions are either based on findings
made during literature review (chapter 3) or simply represent attempts to lower
the complexity of the system.

Univariate Time Series without Timestamps

The system supports only univariate time series without timestamps. If a se-
ries has timestamps assigned, they are ignored, however, the data can still be
used. This keeps the system more flexible as time series with timestamps are not
available in all datasets.

Method and System Design 61

Time Series Embedding

Transformers were designed to process sequences of elements encoded as vectors.
Unfortunately, elements in univariate time series are represented as scalars i.e.
their vector representation needs to be built explicitly. To address this issue, an
approach used by Zhou et al. [190] and Grigsby et al. [56] was utilized. Uni-
variate time series are split into equally long patches which creates vectors that
can be consumed by the model. In addition, each vector is passed through a
fully-connected layer to adapt the patch sizes to the embedding dimension of
a Transformer model.

Search Strategy

The conducted literature review (chapter 3) revealed that several search strategies
(subsection 3.2.2) are applicable in the context of NAS. Some of the strategies,
primarily Reinforcement learning (section 3.3.2) and Evolutionary algorithms
(section 3.3.2), have also been successfully applied to Transformer architectures.
In the proposed system, it was decided to employ strategy based on Evolutionary
algorithms (section 3.2.2). There are several works supporting this decision.
Firstly, Maziarz et al. [108] concluded that EA are capable of beating RL-based
strategies consistently. Additionally, multiple papers demonstrated evolution of
Transformer architectures for a wide-variety of tasks such as neural machine
translation [46], speech recognition [73] or NLP [143].

4.3 Transformer Architecture Selection

The first phase of the framework focuses on selecting a Transformer architecture
suitable for time series forecasting. The subsection 3.4.1 has presented three pos-
sible alternatives: encoder-decoder, encoder-only and decoder-only. Additionally,
there are two other variations which seem to be worth comparing. Zhou et al.
[190] proposed a modification of the encoder-decoder variant to make it more
efficient when used for regression. This variant was dubbed Informer encoder-
decoder. Also, Zerveas et al. [184] suggested to concatenate all hidden states of
encoder-only models before passing them through the final fully-connected re-
gression layer. This variant is referred to as merged encoder-only. More details
about both variants can be found in section 3.5. To sum up, this phase aims to
compare these five alternatives and determine which variant should be used as a
base architecture for genotype encoding design. The comparison is done in two
consecutive steps: 1.) hyperparameter search to determine optimal setup for all
variants and 2.) training and evaluation of each variant on benchmark datasets.

62 Attention Models Comparison

Parameter Type Description

patch size int
Size of patches that a time series is
divided into before entering the model

embedding dim int
Embedding dimension of the
Transformer model

head count int
Number of heads in multi-head
attention sub-layer

layer count int
Number of stacked encoder and/or
decoder layers inside the model

forward expansion int
Expansion ratio of fully-connected
layers inside the feed forward sub-layer

dropout
probability

float
The probability of dropout in the
Transformer model

Table 4.1: A list of Transformer hyperparameters.

In the first step, evolutionary algorithm-based approach is used as there are
several works which confirmed its suitability for Transformer hyperparameter
search [24, 46]. Hyperparameters are encoded as a simple list of values which
makes it possible to use basic and well-established crossover and mutation opera-
tors (see section 2.1 and subsection 2.1.4). The list of considered hyperparameters
is provided in Table 4.1. To obtain fitness of a candidate, the candidate is first
trained on a training dataset and then evaluated on a test dataset. The accu-
racy obtained on the test dataset serves as fitness. Unfortunately, this kind of
evaluation is quite time-consuming, so tournament selection was used to avoid
evaluation of many candidates (subsection 2.1.3).

In the second step, the discovered hyperparameters are used to parametrize all
five variants which are then fully-trained and evaluated for forecasting accuracy
on several benchmark datasets. The best performing architecture is selected as
a base for later phases.

4.4 Attention Models Comparison

The goal of the second phase is to determine a subset of attention models which
perform well when used in time series forecasting Transformers. The candi-
date models were selected from the set of models described in subsection 3.4.3.

Method and System Design 63

The chosen models are listed in Table 4.2 and Table 4.3. The approach is simple,
a Transformer architecture with fixed hyperparameters is used as a host for all
models to compare. Then, several Transformer instances differing only in the used
attention model are trained on a train dataset and evaluated on a test dataset.
The accuracy obtained on the test dataset serves as a measure of attention model
performance. The resulting subset of models is utilized in the following phases.

Attention model Description

Passthrough attention
Dummy model which performs no attention
modelling. It is included to form a baseline.

Multi-head attention
Original attention model proposed in the first
Transformer [159] (subsection 2.5.3).

Longformer attention
A model using a fixed attention pattern
(section 3.4.3) which combines global attention
with local sliding window attention [11].

Big Bird attention

Also employs a fixed pattern (section 3.4.3). In
comparison to Longformer, it works with blocks
of elements and adds attention at random
locations in the pattern [182].

Long-short attention
A model aggregating two independent attentions
to better capture both long and short-term
dependencies [191] (section 3.4.3).

Reformer attention
An efficient attention model based on
locality-sensitive hashing [74] (section 3.4.3).

Routing attention
A model capable of learning sparse patterns
dynamically (section 3.4.3) by routing attention
via k-means clustering [133].

Adaptive span
attention

Multi-head attention extension capable of
learning an optimal attention span [150]
(section 3.4.3).

Table 4.2: A list of Transformer attention models (part 1).

4.5 Genotype Encoding Design

The third phase concentrates on genotype (and phenotype) encoding design. The
main requirement of the encoding is that it needs to be capable of representing
all concepts found in the Transformer architectures of interest. In addition to the

64 Genotype Encoding Design

Attention model Description

Linformer attention
A model which approximates attention by a
low-rank matrix [163] (section 3.4.3).

Performer attention
Employs a custom kernel method called Fast
Attention Via Orthogonal Random features to
approximate attention [28] (section 3.4.3).

TransformerXL
attention

Attention model that injects a form of relative
positional encoding to its keys and queries [33]
(section 3.4.3).

Attention free full
attention

A model which eliminates the need for dot
product-based attention. Instead, it uses a
simpler multiplication of keys, values and
queries [185] (section 3.4.3).

FNet attention
Replaces attention with Fourier Transforms [80]
(section 3.4.3).

Synthesizer attention
Substitutes attention with random alignment
matrices [153] (section 3.4.3).

Conformer attention
A model which combines attention with
convolution [59] (section 3.4.3).

Table 4.3: A list of Transformer attention models (part 2).

actual design, this phase also aims to determine the optimal configuration of all
aspects of the encoding.

4.5.1 Search Space

From the search spaces presented in subsection 3.2.1 and applied to Transform-
ers in subsection 3.3.1, only multi-branch search spaces (section 3.2.1 and sec-
tion 3.3.1), cell-based search spaces (section 3.2.1 and section 3.3.1) and hier-
archical search spaces (section 3.2.1) constitute feasible options for the neural
architecture search system.

The core structure of the search space being designed was inspired by the work
of Zoph et al. [195], Real et al. [128], and Real et al. [129] who utilized variants
of NASNet search space (see section 3.2.1 for more details). However, similarly
to So et al. [143], the search space was enhanced to allow representation of the
original Transformer stages (subsection 2.5.3) and to express new concepts found
in the recent Transformer-based architectures (described in section 3.4).

Method and System Design 65

The search space consists of 4 levels of concepts organized in a hierarchy. All
concepts are illustrated in Figure 4.2. The root concept is referred to as Genotype
and represents the whole Transformer decoder or encoder stage. Each Genotype
has several evolvable hyperparameters which define various aspects of the repre-
sented architecture. A list and description of them is provided in Table 4.4. More
details about how evolvable parameters work is provided in the following subsec-
tion 4.5.2. In addition to hyperparameters, Genotype holds a layer representation
called Genotype layer. Genotype layer is conceptually identical to Transformer
layer. Each Genotype holds one Genotype layer which is stacked x amount of
times as defined by hyperparameters i.e. output of one layer constitutes input
to the following layer. The purpose of the layer is to hold a number of Genotype
cells which represent its internal structure and to keep a list of hidden states.
Each element in the hidden state list stores output of one Genotype cell. Zeroth
state is an exception to this rule as it is used to represent input of the layer. Each
Genotype cell has two inputs which come from the hidden state list. Every cell
can use any of the preceding cells’ outputs or the layer input (i.e. first hidden
state in the list) as its own inputs.

Parameter Type Description

patch size int
Size of patches that a time series is
divided into before entering the model

embedding dim int
Embedding dimension of the
represented Transformer model

layer count int
Number of stacked layers which make
up the encoder or decoder

use memory bool
If to use inter-layer memory as
proposed by Dai et al. [33] (details
provided in section 3.4.3)

merge before
regression

bool

The number of sequence elements
which are passed to the final
fully-connected layer for regression.
True stands for all elements [184] while
false means just the first one [34].

dropout
probability

float Global dropout probability

Table 4.4: A list of genotype hyperparameters.

66 Genotype Encoding Design

The internal structure of each cell is made up of two independent branches. Each
branch keeps a stack of Genotype modules which represent concepts commonly
found in Transformer architectures. More detailed description of the module
concept is provided in subsection 4.5.3. Several ways of stacking modules in each
branch were proposed. Zhang et al. [187] suggested to always use two modules,
one per each branch. So et al. [143] proposed using at 3 modules per each branch
but their presence is optional. However, the modules have defined categories
which must be preserved e.g. the first module must perform normalization and
the third module must always be an activation function. This work introduces
another alternative which does not restrict the number of modules per branch nor
their types. After both input states are passed through their respective branch,
the results are merged together via addition and sent out as the cell output.

Figure 4.2: A diagram illustrating Genotype, Genotype layer, Genotype cell and
Genotype module concepts and the relations between them.

To build and host an actual Transformer model which can be trained and used,
the system introduces Phenotype concept. Phenotype is structured in the same
way as Genotype is i.e. has Phenotype layer, Phenotype cell and Module in-
stances, however, it is built based on primitives of the utilized machine learning
library. The library is called PyTorch [117]. The role of the phenotype is two-
fold: 1.) to provide abstraction from the machine learning library, 2.) to host
additional logic which is not a subject to evolution. In this case, the additional
logic consists of modules dealing with time series patch embedding (section 4.2)

Method and System Design 67

and regression. Still, these fixed modules can be controlled indirectly via Geno-
type hyperparameters. Additionally, Phenotype has two user defined parameters
which specify input and output sizes of the model. These sizes are usually set
based on the dimensions of training examples (section 4.6.2). Thanks to the sim-
ilarity of Phenotype and Genotype concepts, genotype to phenotype conversion
is in fact pure mapping.

The described representation is capable or representing Transformer encoder or
decoder while keeping flexibility to evolve architectures that go beyond the com-
monly used Transformer configurations which aligns with the goals of this work.

4.5.2 Parameters

As mentioned in the previous section (subsection 4.5.1), the system has a concept
of evolvable parameters. These parameters themselves hold information about
how they can be mutated. They are used to evolve hyperparameters of Geno-
types or to parametrize Genotype modules. Four parameter types are available:

1. Constant parameter: The simplest of all parameters, represents a con-
stant value that cannot be changed.

2. Set parameter: A parameter that can take any value from a provided set
of values. Mutation samples a new value from the set.

3. Range parameter: A parameter which can sample any value from a given
range. It needs to be numerical.

4. Neighbourhood parameter: This parameter uses a concept of limits
and steps. When the parameter is mutated, its value can be changed by
`step or ´step. If the value reaches one of the limits, it’s clamped to the
range defined by them. The parameter also needs to be numerical.

4.5.3 Modules

This section presents the concept of modules. For clarification, the section makes
no difference between Genotype and Phenotype modules, as the latter is in fact
an instance of the former. The main purpose of modules is to encapsulate con-
cepts found in Transformer-based and other architectures potentially suitable for
time series forecasting. The system provides a wide variety of modules (see sec-
tion 4.7) which leaves the evolution with a great freedom to select modules that
are the most suitable. In contrast to the definition of Transformer structure by
layers and cells, modules represent model behaviour.

68 Neural Architecture Search System Design

Each module has one input and one output, both having the same shape. The
actual dimensions are: (batch size, input size, embedding dimension) where in-
put size is identical to Phenotype input size and embedding dimension represents
Transformer embedding size (subsection 2.5.3). Every module has the same in-
put and output dimensions which allows every module to be used in place of
every other module. Modules can define a list of evolvable parameters (subsec-
tion 4.5.2) which alter their behavior. Examples of such parameters are: kernel
size, activation function or dropout probability. The hyperparameters defined on
genotype/phenotype level are passed to each module as constants, however, their
values can be overridden by module parameters if needed. Also, modules have
metadata attached such as their name or category.

4.6 Neural Architecture Search System Design

The fourth phase describes the design of the evolution-driven NAS system which
builds on the genotype encoding introduced in the previous phase (section 4.5).

4.6.1 Search Strategy

As explained and justified in section 4.2, the employed search strategy utilizes
genetic algorithms. The following sections present details about selection (sec-
tion 4.6.1) and the proposed mutation (section 4.6.1) and crossover (section 4.6.1)
genetic operators.

Selection

Similarly to Zhu et al. [192], tournament selection is used to avoid costly eval-
uation of many genotypes to obtain their fitness for comparison. In this case,
four tournament selection criteria were considered as listed and described in Ta-
ble 4.5. The simple best and worst fitness criteria were inspired by the work
of So et al. [143] and Kim et al. [73] who successfully applied them to evolution
of Transformer-based architectures. Oldest genotype criterion was introduced
by Real et al. [129] who argued that it makes the evolutionary search more re-
silient to noise.

Mutation

Mutation operators heavily depend on the used genotype representation (subsec-
tion 4.5.1). The used hierarchical representation allows and potentially requires
different types of mutations for each of its levels. For that reason, the employed

Method and System Design 69

Selection criteria Applicability Description

best fitness

parent selection

survivor selection
replacement selection

Genotype with the
highest fitness is selected.

worst fitness replacement selection
Genotype with the lowest
fitness is selected.

oldest genotype replacement selection
Genotype with the lowest
creation timestamp is
selected.

random genotype replacement selection
Random genotype is
selected.

Table 4.5: Selection criteria for tournament selection.

operators were designed for each level separately. There are three basic muta-
tion levels: layer, cell, and module. The operators available for each level are
presented in Table 4.6, Table 4.7 and Table 4.8 respectively.

Layer mutation Description

add empty layer
Empty genotype layer is added to the
genotype.

duplicate layer
Random genotype layer is duplicated and
inserted back at a random index.

swap two layers Two genotype layers swap their placement.

remove layer Random genotype layer is deleted.

Table 4.6: Available layer level mutations.

In addition to mutations on different genotype levels, modules or genotypes them-
selves can hold several evolvable parameters which affect their behavior (subsec-
tion 4.5.2). Hence, two mutation operators dedicated to modifying the parame-
ters were also included. The first operator alters genotype-level parameters while
the second one performs changes of parameters on randomly selected modules.
A brief summary is given in Table 4.9.

70 Neural Architecture Search System Design

Cell mutation Description

add empty cell
Empty genotype cell is added at a random place
within a genotype layer. Its inputs are randomly
selected from the pool of hidden states.

duplicate cell

Randomly selected cell is duplicated and
inserted at a random place within a genotype
layer. The inputs of the new cell are randomly
selected from the pool of hidden states.

swap two cells
The placement of two randomly selected cells is
swapped. Their inputs are swapped too.

change cell inputs
The inputs of a randomly selected genotype cell
are reselected from the pool of hidden states.

remove cell Randomly selected cell is removed.

Table 4.7: Available cell mutations. The layer within which cell mutation takes
place is selected randomly.

Crossover

Crossover operators were derived from the designed mutations (section 4.6.1).
There are three provided operators which are basically extensions of mutation
operators to two genotypes. A summary is given in Table 4.10.

4.6.2 Performance Estimation Strategy

To obtain the fitness of candidate architectures, each candidate is trained from
scratch on a training dataset and then evaluated on a test dataset. The final
test loss value serves as a measure of architecture quality i.e. fitness (the lower
the loss, the better the candidate is). Unfortunately, this method is very time
and resource consuming. Several alternatives and modifications of the perfor-
mance estimation process were proposed attempting to alleviate the issue (sub-
section 3.2.3). A common choice for Transformer-based architectures seems to be
One-shot search (section 3.3.3) i.e. sharing weights from a pretrained super net-
work (section 3.2.3). However, Yu et al. [181] argues that weight sharing decreases
performance and leads to inaccurate evaluation of candidates. For that reason,
it was decided to stick to training from scratch while employing methods which
can make the approach more efficient (section 4.6.2).

Method and System Design 71

Module mutation Description

add module
Module selected from a list of available
modules is added at a random place within a
genotype cell.

duplicate module
Randomly selected module is duplicated and
inserted at a random place within a genotype
cell.

swap two modules
The placement of two randomly selected
modules is swapped.

swap module for new
Randomly selected module is swapped with a
new module selected from a list of available
modules. The old module is discarded.

remove module Randomly selected module is removed.

Table 4.8: Available module mutations. The layer and cell within which module
mutation takes place are selected randomly.

Training Examples

Time series datasets need to be turned into training examples before they can
be used for model training. An approach utilized by Wu et al. [170], Zhou et al.
[190] and Yi et al. [180] uses a sliding window to create patches of consecutive
series values followed by patches which act as labels (see section 3.5). The same
technique was implemented in the designed system.

Initialization of Population

Given the complex genotype representation (subsection 4.5.1), there needs to be
some focus on a proper population initialization. While using a similar repre-
sentation, So et al. [143][144] experienced problems with random initialization.
The search struggled to find strong architectures and often failed to converge.
The issues were mitigated by using a form of smart initialization. The search
was warm started by seeding the initial population with the original Transformer
architecture. In a similar way, Tsai et al. [157] seeded the population with the
encoder stage of Transformer. The search system described in this work also has
the option to include known Transformer models in the initial population.

72 Neural Architecture Search System Design

Parameter mutation Description

modify genotype parameter
Randomly selected genotype parameter is
assigned a new value randomly selected
from its list of available values.

modify module parameter
Randomly selected module parameter is
assigned a new value randomly selected
from its list of available values.

Table 4.9: Genotype and module parameter mutations.

Crossover Level Description

swap random layers layer
Swap randomly selected layers
between two genotypes.

swap random cells cell
Swap randomly selected cells between
two genotypes.

swap random branches cell
Swap a randomly selected cell branch
between two genotypes.

Table 4.10: Crossover operators for all genotype levels.

Progressive Dynamic Hurdles

The Progressive Dynamic Hurdles method was first proposed by So et al. [143]
and later used by Kim et al. [73] and So et al. [144]. The core idea is to stop
training of badly performing candidates early, so they do not waste additional
resources nor take more time to evaluate. The method is based on allocation
of additional training steps to promising candidates and constitutes the default
option in the designed system.

Each candidate is allocated an initial number of training steps s0. After k1 itera-
tions of the evolutionary loop, mean fitness of the whole population is calculated
and used to establish a hurdle h1. Then, only the candidates which have fitness
higher or equal to the established hurdle get an additional amount of training
steps s1. The rest of the candidates is not trained beyond s0 training steps. The
situation repeats until k1 ` k2 iterations is reached. At that point, mean fitness
of the population is calculated again and a new hurdle h2 is put in place. Then,
only the candidates with fitness higher than h2 can train for s0 ` s1 ` s2 training

Method and System Design 73

steps. The whole process repeats until a max number of training steps is reached
or the evolutionary loop terminates. In the designed system, k1, k2, k3... are usu-
ally set to the same value and the number of training steps represents epochs
that a candidate model can train for.

Difference Factor

Difference factor is a custom metric created to track diversity in the population.
As the evaluation of candidates is expensive, the metric is able to provide assess-
ment of diversity without the need to train all candidates in the population and
evaluate them for fitness. Under the assumption that the same genotype always
reaches the same fitness when trained, the metric pair-wise compares all geno-
types in the population and calculates the mean amount of difference between
them. The result is a value between 0 and 1, where 1 means max theoretical di-
versity and 0 means that all genotypes are identical. Source code for the metric
calculation is provided in Appendix (section 6.3).

Figure 4.3: Visualization of a Genotype layer representing one layer of pre-norm
(section 3.4.2) Transformer encoder (section 3.4.1). Squares with labels represent
Genotype modules. Modules of the same color belong to the same Genotype cell.

74 Transformer Architecture Evolution

4.6.3 System Configuration

The neural architecture search system can be configured via JSON configuration
files. There are four types of configuration files available: dataset config which
determines what dataset is used and how it is transformed into training examples,
evaluation config specifying metrics used for evaluation and configuring Progres-
sive Dynamic Hurdles (section 4.6.2), evolution config which configures the main
aspects of evolution including initialization, tournament selection, crossover and
mutations, genotype config which defines a template Genotype (subsection 4.5.1)
with evolvable parameters (subsection 4.5.2) for population initialization and fi-
nally module registry providing a list of modules (section 4.7) that can be utilized
by evolution.

4.6.4 Result Presentation

To save system configurations, track metrics and store the discovered architec-
tures, TensorBoard [1] is used. During each evolution run, survivor fitness, differ-
ence factor (section 4.6.2) and the established hurdles (section 4.6.2) are recorded
per iteration and can be viewed live as the search progresses. All data is also
stored to disk, so it can be inspected even after the search finishes. In addi-
tion, the system includes a custom tool for Genotype visualisation. The tool was
designed to render Genotype as a graph showing its internal structure and place-
ment of modules. An example of a Genotype representing Transformer encoder
is shown in Figure 4.3.

4.7 Transformer Architecture Evolution

The goal of the fifth phase is to evolve a strong Transformer-based architecture by
using the system designed in the previous phase (section 4.6). So far, the system
is still missing an important ingredient which in fact makes it work: a diverse
set of modules which encapsulate concepts found in successful Transformer-based
and other architectures used for time series forecasting.

The following sections present the available modules category by category while
providing a brief description of them and justification for their inclusion in the
system. In general, modules vary in complexity. Some modules represent only
a simple concept such as an activation function while other modules contain
complex architectural blocks.

Method and System Design 75

4.7.1 Transformer Building Blocks

In order to represent a complete Transformer, several core modules are needed.
All these modules were extracted from the original Transformer architecture pro-
posed by Vaswani et al. [159] (subsection 2.5.3). The list of modules is provided
in Table 4.11.

Module Description

Sinusoidal absolute
positional encoding

This module encapsulates the absolute positional
encoding method from vanilla Transformer.

Multi-head attention
Implementation of scaled dot product multi-head
attention i.e. the core concept of Transformer.

Feed forward

Feed forward stack in Transformer consists of
two fully connected layers and ReLU activation
function in between. Embedding dimension of
the module input is first expanded by the first
fully-connected layer, activation function is
applied and the second layer squeezes the
dimension back to its original size. The
expansion ratio used by the layers is commonly
called forward expansion.

Layer normalization A module performing layer normalization.

Table 4.11: A list of modules encapsulating core building blocks of Transformer.

4.7.2 Attention Modules

The attention models selected in the second phase (section 4.4) are also included
in this phase but encapsulated in modules. As a reminder, the list of models is
provided in Table 4.2 and Table 4.3. Additionally, several augmentations for ei-
ther attention scores or key, query and value matrices were proposed. Simply put,
augmentations are optional components which perform data preprocessing. Most
of the provided augmentations are various forms of MAM positional encodings
which were presented in subsection 3.4.5. To keep the attention modules sim-
ple, these augmentation options were built only into multi-head attention module
(the attention model used in the original Transformer, see Table 4.11). The list
of available augmentations is given in Table 4.12.

76 Transformer Architecture Evolution

4.7.3 Convolution Modules

The concept of convolution (subsection 2.2.1) played an important role in many
works related to Transformers (section 3.4.3). Convolution is also used in neural
architectures for time series forecasting (section 3.6). For that reason, several
modules encapsulating common uses of convolution are included. The modules
are listed and described in Table 4.13.

4.7.4 Feed Forward Modules

In addition to Feed forward module based on the original Transformer, a single
fully-connected layer is included as a separate module called Single feed forward.
This allows the evolutionary search to manipulate even such simple concepts and
potentially combine them into new architectural patterns.

4.7.5 Activation Modules

Several activation functions were included as independent modules. The subset
was chosen based on the findings from section 3.4.4. Along with a brief descrip-
tion, the function modules are enumerated in Table 4.14.

4.7.6 Positional Encoding Modules

The positional encoding methods presented in subsection 3.4.5 are of two kinds:
MAM and APE. MAM encoding methods have already been included as aug-
mentations proposed for multi-head attention module (subsection 4.7.2). The
promising APE candidates are provided as modules. The list of included APE
encodings is given in Table 4.15.

4.7.7 Normalization Modules

The original Transformer architecture (subsection 2.5.3) relies on a normalization
technique called Layer Normalization. However, more recent works proposed
alternative normalizations for Transformers (subsection 3.4.2). To capture their
potential suitability for time series forecasting architectures, several promising
candidates were built into modules. The modules are described in Table 4.16.

4.7.8 Dropout Modules

The last group of modules consists of dropout modules. These modules encap-
sulate three dropout variants which might be helpful in Transformers. As usual,
the list of modules is provided in a table, Table 4.17.

Method and System Design 77

Augmentation Placement Description

Rotary positional
encoding

key, query or
value matrix

Positional encoding represented by
a rotation matrix [148]

TUPE absolute
positional encoding

key, query or
value matrix

Transformer with Untied Positional
Encoding [72] uses two different
ways of adding positional encoding.
The first way proposes adding
absolute positional encoding
directly to key and query matrices.

Spatial depth-wise
convolution

key, query or
value matrix

The work of So et al. [144] found
beneficial to postprocess key, query
and value matrices with spatial
depth-wise convolution.

DeBERTa relative
positional encoding

attention
scores

Fixed relative positional encoding
added directly to attention scores
as used in DeBERTa [62]

T5 relative
positional encoding

attention
scores

Learnable relative positional
encoding added to attention scores
as used in T5 Transformer [125]

TUPE relative
positional encoding

attention
scores

The second way of adding
positional encoding in TUPE [72]
i.e. add relative positional bias to
attention scores.

Table 4.12: A list of all possible augmentations in multi-head attention module.
Placement column specifies where in the attention module can the particular
augmentation be applied.

78 Transformer Architecture Evolution

Module Description

Convolution 1D
Convolution performed over embedding
dimension for each sequence element separately.

Convolution 2D
Convolution performed over all sequence
elements and their embeddings at the same time.

Max pooling 1D
Max pooling performed over embedding
dimension for each sequence element separately.

Max pooling 2D
Max pooling performed over all sequence
elements and their embeddings at the same time.

Depth-wise separable
convolution

Convolution which splits channel-wise and
spatial-wise computation into two independent
steps. Sequence length is interpreted as the
spatial dimension while embeddings are
represented as channels.

Inverted bottleneck

A module similar to Transformer Feed forward
module (Table 4.11) which uses convolutions
instead of fully-connected layers. This variant
was introduced by Liu et al. [94].

CoordConv

The module provides functionality similar to
Convolution 2D. In addition, before applying
convolution, it adds two channels representing
element position in the 2D input. One channel
represents vertical position while the second one
horizontal position. This modification was
originally proposed by Liu et al. [91]

Table 4.13: A list of modules encapsulating the common uses of convolution.

Method and System Design 79

Module Description

ELU
Exponential Linear Unit originally proposed
by Clevert et al. [30]

GeLU
Gaussian Error Linear Unit introduced
by Hendrycks and Gimpel [63]

ReLU
Rectified Linear Unit which was used in the
original Transformer [159].

SiLU Sigmoid Linear Unit also known as Swish [127].

Leaky ReLU
An activation function based on ReLU which
allows a small slope for negative values.

Squared ReLU
An enhancement of ReLU activation discovered
by neural architecture search [144].

Table 4.14: A list of modules that provide activation functions.

Module Description

Axial positional
encoding

Positional encoding capable of efficiently storing
long sequences [74].

BERT learned
positional encoding

Positional encoding by Devlin et al. [35] which is
learned completely from training data.

Simple absolute
positional encoding

A simple positional encoding which adds bias
ranging 0 ´ 1 to all embedding dimensions based
on element positions.

Table 4.15: A list of modules which implement APE positional encodings.

80 Transformer Architecture Evolution

Module Description

AdaNorm
Layer normalization which contains no learnable
parameters [173].

PowerNorm
Batch normalization adapted for use in
Transformers [140].

Scaled L2
normalization

L2 normalization scaled by a single parameter
leads to a better performance of
Transformers [114].

Root mean square
layer normalization

A more lightweight version of layer
normalization [186].

Table 4.16: A list of modules providing different kinds of normalization.

Module Description

Alpha Dropout
Dropout method which maintains mean and
standard deviation [75].

Dropout
Randomly zeros out values in the embedding
dimension.

Dropout 2D
Randomly zeros out whole elements in the
sequence.

Table 4.17: A list of dropout modules.

Method and System Design 81

4.8 Forecasting Methods Comparison

The last phase focuses on the evaluation of the architectures produced during
the previous phase (section 4.7). For this purpose, several commonly used fore-
casting methods are trained on the same dataset together with the evolved ar-
chitectures, and their forecasting accuracy on the corresponding test dataset is
evaluated and compared. The set of considered methods was decided based on
the reviews conducted in subsection 2.4.1, subsection 2.4.2 and section 3.6 and
includes: ARIMA, Temporal Convolutional Network. Recurrent Neural Network,
LSTM and N-BEATS. Additionally, the original Transformer (subsection 2.5.3)
is also included to see if the evolved architectures outperform it. Unfortunately,
Prophet and NeuralProphet methods from section 3.6 cannot be utilized as they
require time series annotated with timestamps (section 4.2).

82 Forecasting Methods Comparison

Chapter 5

Experiments and Results

This chapter presents experiments conducted to gain knowledge about using
Transformers for time series forecasting and to verify the effectivity and efficiency
of the designed neural architecture search system. In section 5.1, experimental
plan describing the conducted experiments is introduced. In the next section (sec-
tion 5.2), experimental setup provides details about the used time series datasets
and evaluation metrics. The result of each experiment is described in section 5.3.
The experiments were performed during Evaluation phase of Design Science Re-
search methodology (section 1.4).

5.1 Experimental Plan

The experiments were conducted in phases which map to certain phases of the
design framework introduced in Method and System Design (chapter 4). The
purpose of each phase is to gradually build understanding of the behaviour of
Transformer-based architectures when used for forecasting time series. One phase
can be split into multiple experiments to impose logical grouping or emphasize
iterative buildup of knowledge. Each phase and the corresponding experiments
are described below. More detailed description of each experiment is provided
in section 5.3 which also presents experimental results.

• Phase 1: The goal of the first experimental phase is to select a Transformer
variant suitable for time series forecasting in order to obtain a base archi-
tecture for genotype encoding design. As described in section 4.3, there are
several alternatives to choose from.

– Transformer hyperparameter search: The first experiment aims
to find the optimal values of hyperparameters for all candidate variants

84 Experimental Setup

to allow their fair comparison. The values are obtained by performing
evolutionary hyperparameter search.

– Transformer architecture evaluation: The second experiment
conducts forecasting accuracy comparison by evaluating the optimally
parametrized candidate variants on several datasets.

• Phase 2: The second phase focuses on alternative attention models and
the assessment of their performance in time series forecasting Transformers.
The best-performing variant from the previous phase is used as a host for
comparing the attention models preselected in section 4.4. The discovered
strong models are then included in the later evolutionary search as modules.

– Attention model evaluation: The attention models are one by one
injected in the architecture selected during Phase 1 parametrized by
the same hyperparameters. Then, the forecasting performance of all
instances is measured on several datasets and compared.

• Phase 3: The third phase tries to determine the optimal genotype encod-
ing configuration capable of evolving the Transformer variant from Phase 1
beyond its commonly used variations while producing architectures achiev-
ing better time series forecasting accuracy.

– Genotype representation comparison: The genotype encoding
designed in section 4.5 has several aspects which can be tweaked. This
experiment seeks to find the optimal configuration of these aspects to
produce encoding which evolves the most performant architectures.

• Phase 4: The last phase compares the time series forecasting methods pre-
sented in section 4.8 with Transformer-based architectures evolved by the
neural architecture search system described in section 4.6 and section 4.7.

– Time series forecasting methods comparison: Several time se-
ries forecasting methods are used to compare their performance against
the evolved Transformer-based architectures. All methods and archi-
tectures are evaluated on the same benchmark dataset.

5.2 Experimental Setup

This section presents datasets, evaluation metrics and other configuration used
by all experiments unless specified otherwise. The experiments were run on
Amazon EC2 [106] cloud service using g4dn.xlarge virtual instances equipped
with Nvidia T4 GPUs featuring 16 GB of memory and specialized Tensor cores
to accelerate training of neural network-based models.

Experiments and Results 85

5.2.1 Datasets

Two types of datasets were used: 1.) a custom designed Synthetic dataset that
provides simple time series which are easy to explain and reason about and
2.) datasets sampled from Libra benchmark (section 3.7) providing a reasonable
proxy for real-world time series.

Synthetic dataset consists of three synthetic time series: 1.) single sine wave,
2.) composed sine waves and 3.) composed sine waves with noise. For illustra-
tion, the series are shown in Figure 5.1. The series were generated based on the
equations and parameter values provided in Table 5.1. In contrast to the fixed
parameters, the length of each series can be specified as needed. Throughout the
experiments, the length of all series was set to 5000 elements. The series were
also designed and verified (by Augmented Dickey-Fuller test [37]) to be stationary
(subsection 2.4.1) in order to keep the forecasting difficulty of the dataset low.

Figure 5.1: Visualization of the three types of time series included in Synthetic
dataset. Upper left: single sine wave, Upper right: composed sine waves, Bottom
center: composed sine waves with noise.

86 Experimental Setup

Series Definition Parameter values

Single sine
wave

ypxq “ sinp2πfxq ¨ a f “ 0.002, a “ 1.0

Composed
sine waves

ypxq “ sinp2πf1xq ¨ a1 `

sinp2πf2xq ¨ a2

f1 “ 0.002, a1 “ 1.0,
f2 “ 0.03, a2 “ 0.5

Composed
sine waves
with noise

ypxq “ sinp2πf1xq ¨ a1 `

sinp2πf2xq ¨ a2 ` N pµ, σ2q

f1 “ 0.002, a1 “ 1.0,
f2 “ 0.03, a2 “ 0.5
µ “ 0, σ “ 1

Table 5.1: The equations which produced the series included in Synthetic dataset.
Each equation was parametrized by the corresponding set of parameter values.

By default, Libra benchmark is split into 4 categories (Economics, Finance, Hu-
man access, Nature and demographics) with 100 time series per category. As
training a model on the whole benchmark takes a long time, the full benchmark
did not serve well as a proxy for candidate architecture performance during neu-
ral architecture search. In addition, preliminary testing has shown that using the
whole benchmark and forcing a model to learn all time series at once results in
poor performance for all tested forecasting methods. For that reason, two sub-
sampled variants of the benchmark containing only 10 time series per category
were introduced. The first variant was used to estimate the performance of can-
didate architectures during evolutionary searches whereas the second variant was
employed for comparing accuracy of forecasting methods in the last experimental
phase. The series were randomly sampled under one assumption: the selected
series need to be able to produce at least n training examples i.e. have a certain
minimal length. Optionally, each series can be cropped to contain only the first
k samples to further reduce the size of the sub-sampled benchmarks. For both
benchmarks, n and k were kept constant during all experiments to ensure fair
comparisons. More specifically, n was set to 100 and k to 5000. The indices of the
series selected for the first benchmark are provided in Table 5.2 and the indices
of the series used in the second benchmark are listed in Table 5.3.

Stationarity of any of the time series in Libra benchmark is not guaranteed and
in reality, it does not hold for many of them. Based on Augmented Dickey-Fuller
test [37], only 20% of the series in Economics, 12% in Finance, 72% in Human
access and 75% in Nature and demographics category is stationary.

The series of all used datasets/benchmarks were deliberately subjected to only
a minimal amount of data preprocessing. The intention is to force the evolved
models to learn representations from raw time series in order to make them easily

Experiments and Results 87

Libra category Randomly sampled time series indices

Economics [71, 86, 69, 75, 70, 83, 80, 74, 81, 77]

Finance [63, 96, 49, 39, 71, 18, 99, 66, 82, 17]

Human [86, 56, 46, 21, 67, 5, 2, 92, 68, 97]

Nature [0, 91, 39, 70, 23, 42, 73, 1, 53, 24]

Table 5.2: The first sub-sampled Libra benchmark variant presented as indices
of the randomly selected time series in each category.

Libra category Randomly sampled time series indices

Economics [68, 84, 73, 88, 87, 79, 72, 76, 26, 85]

Finance [61, 81, 72, 41, 57, 94, 83, 53, 19, 88]

Human [99, 27, 65, 20, 17, 69, 47, 61, 13, 38]

Nature [33, 62, 66, 55, 46, 43, 26, 92, 18, 20]

Table 5.3: The second sub-sampled Libra benchmark variant presented as indices
of the randomly selected time series in each category.

applicable and transferable. Preliminary testing showed that the sole normaliza-
tion of values to 0.0 ´ 1.0 range is sufficient. To generate training examples,
the windowing method selected in section 4.6.2 was used. The length of the
first patch maps to the model input size while the length of the second patch
represents the model output size i.e. the forecasting horizon. Before training,
the produced examples are shuffled but in a deterministic way. This is done to
mitigate a problem dubbed floating fitness observed on models getting trained
on the same examples but in a different order. In some cases, this caused models
to suddenly perform better or worse even though no changes were made to them
yet. To obtain a separate training and test set, the set of all training examples
was split by 80:20 ratio in favor of the training set.

5.2.2 Evaluation Metrics

To compare the performance of different candidate architectures or forecasting
methods, two evaluation metrics were used throughout all experiments: MAE
and RMSE. The second metric was included to allow better assessment of out-
liers in predictions. For explanation of the metrics, see subsection 2.4.3. If there
was a need to compare metric values, One-way or Two-way ANOVA [36] meth-
ods were used to ensure that only statistically significant differences are being

88 Experimental Setup

considered. The former method was applied in cases which dealt with one in-
dependent variable whereas the latter in cases that included two independent
variables. Importantly, ANOVA assumes homogeneity of variances i.e. that the
variances between the considered groups are equal and that the residuals (also
called experimental error) are approximately normally distributed. Therefore, be-
fore each application of ANOVA, Shapiro-Wilk test [136] was used to confirm the
normal distribution of residuals and Levene’s test [81] to check the homogeneity
of variances. The p-value defining statistical significance was set to 0.05.

5.2.3 Training of Models

For models training, AdamW [97] optimizer with β1 “ 0.9, β2 “ 0.98, λ “ 0.01
and ϵ “ 1e-9 was used. To avoid potential training instabilities (section 3.4.2),
learning rate was scheduled based on the same algorithm as proposed by Vaswani
et al. [159]. The so-called Noam optimizer modifies learning rate based on the
number of warmup steps w and the embedding size of the model. In the ex-
periments, w was set to 1000. Figure 5.2 shows a few example learning rate
schedules based on three combinations of warmup steps and embedding sizes.
The loss function used during training was Smooth L1 [50] loss which represents
a compromise between MAE, and MSE/RMSE while also being able to deal with
exploding gradients problem better. For all performed training runs, the batch
size was set to 16.

Figure 5.2: Examples of Noam optimizer learning rate scheduling. The curves
show schedules of three combinations of embedding size and warmup steps. The
vertical axis represents learning rate while the horizontal axis shows the current
training step index.

Experiments and Results 89

5.3 Experimental Results

The following sections walk through all experimental phases described in sec-
tion 5.1 while presenting results of the experiments conducted during each of
them.

5.3.1 Phase 1: Transformer Architectures

The first phase presents results of the experiments aiming to select a suitable
Transformer architecture variant as described in section 4.1. The first section
shows and assesses the obtained Transformer hyperparameters whereas the sec-
ond section compares and discusses the accuracy achieved by each of the candi-
date architectures.

Ex1: Transformer hyperparameter search

To conduct the hyperparameter search, the list of parameters shown in Table 5.4
was used as a genotype. Parameter types and their available values were set
based on preliminary testing to make sure the configuration is not too restrictive.
Other aspects of the evolutionary search were configured as specified in Table 5.5.

Parameter Parameter type Available values

patch size Set [1, 5, 10, 25, 50]

embedding dim Set [8, 16, 32, 64, 128]

head count Set [1, 2, 4, 8]

layer count Range (1, 16), step: 1

forward expansion Range (1, 8), step: 1

dropout probability Range (0.0, 0.5), step: 0.05

Table 5.4: The list of parameters used as a genotype during Transformer hyper-
parameter search. The type column specifies the used evolvable parameter types
as defined in subsection 4.5.2

The search was executed two times. The first run used Synthetic dataset while
the second run utilized the first sub-sampled Libra benchmark. The results of
the former search are shown in Table 5.6 and of the latter in Table 5.7. Let’s
first focus on the results of the first search (Synthetic dataset). Embedding dim
is mostly trending between 32 and 64 with merged encoder-only variant being
the only exception to this rule with its value of 8. The situation is similar with

90 Experimental Results

Concept Configuration (value)

datasets for evaluation [Synthetic, sub-sampled Libra 1]

model input size 200

model output size 50

iterations 150

population size 80

initialization genotypes with randomized values

parent selection best fitness tournament (size: 2)

survivor selection best fitness tournament (size: 2)

replacement selection worst fitness tournament (size: 2)

crossover uniform (probability: 0.3)

mutation randomly change value (probability: 0.1)

evaluation epochs 5

search repeated 10x per dataset/architecture combination

Table 5.5: The setup of the evolutionary hyperparameter search.

patch size, where merged encoder-only performed the best with the patch size of
50 while the rest of architectures were mostly between 1 and 10. Decoder-only
is also worth mentioning as the patch size of 1 was selected for it during every
run. Head count is mostly between 2 and 4 apart from encoder-decoder which
was trending between 4 and 8. Layer count of encoder-only and merged encoder-
only was the lowest, only between 1 and 2 layers. The remaining architectures
were around 5 (encoder-decoder), 7 (encoder-decoder) and almost 12 (Informer
encoder-decoder). The last number is unusually large given the fact that in both
encoder-decoder variants, this number sets the number of layers for both encoder
and decoder i.e. results in double the number of layers in total. Forward ex-
pansion was mostly between 2 and 3 but around 5 for encoder-decoder which
is close to its default value. The lowest value i.e. 1 was selected for Informer
encoder-decoder. This seems to somewhat counteract the high number of layers
in Informer encoder-decoder as mentioned earlier. Dropout probability was very
low in general, all architectures were between 0.01 and 0.02 while decoder-only
being the only exception with the value of 0.08.

The results on the sub-sampled Libra dataset differed slightly. When it comes to
embedding dim, apart from encoder-decoder, there is a noticeable increase suggest-
ing that more complex series need larger embedding sizes. The most prominent

Experiments and Results 91

Params
Encoder
decoder

Informer
encoder
decoder

Decoder
only

Encoder
only

Merged
encoder
only

embedding
dim

64±0 57.6±12.8 57.6±12.8 38.4±12.8 8±0

patch size 3.4±2 1.8±1.6 1±0 7±2.45 50±0

head count 6.4±2 2.4±0.8 2±1.1 2.6±1.2 2.8±0.1

layer count 4.8±0.75 11.8±4.12 7.4±2.73 1.6±0.8 1.6±0.5

forward
expansion

4.6±1.36 1±0 3±1.26 2.6±0.8 2.4±0.5

dropout
probability

0.03±0.02 0±0 0.15±0.08 0.01±0.01 0.01±0.01

Table 5.6: Results of Transformer hyperparameter search on Synthetic dataset.
The notation stands for: mean ± std. Note: Some of the values come from
a predefined set, so mean and std need to be interpreted accordingly.

increases are in the case of merged encoder-only and decoder-only. Patch size
also changed. For encoder-decoder, Informer encoder-decoder and decoder-only,
all runs selected 1. Also, the patch size of merged encoder-only was lowered to val-
ues between 5 and 10. For all architectures, head count became very similar and
was trending between 4 and 8. This also seems to reflect a need to capture more
complex patterns in the data. Layer count values mostly increased, especially
for encoder-only and merged encoder-only architectures for which they increased
around 4x. In contrast, Informer encoder-decoder went down to roughly half of
the layer count selected for Synthetic dataset. In general, the situation of for-
ward expansion is very similar to head counts. The values increased and became
more uniform, mostly within the range of 4-5. Finally, dropout probability stayed
nearly unchanged compared to Synthetic dataset. Based on these findings, it
appears that the architectures started to slightly overfit the Synthetic dataset,
therefore, the results obtained on sub-sampled Libra dataset are likely closer to
truly optimal hyperparameters.

92 Experimental Results

Params
Encoder
decoder

Informer
encoder
decoder

Decoder
only

Encoder
only

Merged
encoder
only

embedding
dim

57.6±12.8 22.4±7.84 89.6±31.4 51.2±15.7 38.4±12.8

patch size 1±0 1±0 1±0 7±2.45 6.67±2.36

head count 5.8±2.86 6±2.53 6.4±1.96 5.6±1.96 5.83±3.08

layer count 7.8±3.12 6.4±0.8 12.2±2.23 8.8±1.72 7.4±1.96

forward
expansion

6.6±2.33 4.6±0.5 5±1.9 6.6±0.8 6.2±2.23

dropout
probability

0.03±0.02 0±0 0.03±0.02 0.02±0.01 0.01±0.01

Table 5.7: Results of Transformer hyperparameter search on sub-sampled Libra
dataset. The notation stands for: mean ± std. Note: Some of the values come
from a predefined set, so mean and std need to be interpreted accordingly.

Ex2: Transformer architecture evaluation

The second experiment utilizes hyperparameters from the first experiment to
establish a fair comparison of the candidate architecture variants. To perform
the comparison, two sets of hyperparameters were created, one for Synthetic
dataset and one for the sub-sampled Libra dataset. The values closest to mean
values presented in Table 5.6 and Table 5.7 were selected producing two sets of
hyperparameters per architecture. If the selection was a tie between two values,
the lower one was selected. The sets are listed in Table 5.8.

Dataset
Encoder
decoder

Informer
encoder
decoder

Decoder
only

Encoder
only

Merged
encoder
only

Synthetic
[64, 1, 4,
8, 7, 0.03]

[64, 1, 2,
12, 1, 0]

[64, 1, 2,
8, 3, 0.15]

[32, 5, 2,
2, 3, 0.01]

[8, 50, 2,
2, 2, 0.01]

Libra
[64, 1, 4,
8, 7, 0.03]

[16, 1, 4,
6, 5, 0]

[64, 1, 8,
12, 5, 0.03]

[64, 5, 4,
9, 7, 0.02]

[32, 5, 4,
7, 6, 0.01]

Table 5.8: The sets of hyperparameters for Transformer variants evaluation cho-
sen based on the results of hyperparameter search described in section 5.3.1.

Experiments and Results 93

Concept Configuration

datasets for evaluation [Synthetic, sub-sampled Libra 1]

evaluation metrics [MAE, RMSE]

model input size 200

model output sizes
(forecasting horizons)

[1, 20, 50]

trained for epochs 10

evaluation repeated
10x per dataset, horizon and
variant combination

Table 5.9: The setup used for the Transformer variants evaluation experiment.

The evaluation setup is shown in Table 5.9. The comparison was performed using
three different forecasting horizons to assess the suitability of each architecture for
a wider variety of forecasting problems. Also, both evaluation metrics from sub-
section 5.2.2 were used. The results are presented in Table 5.10 and Table 5.11.
As the tables show, merged encoder-only achieved the best performance on all
tested datasets, forecasting horizons and for both evaluation metrics. One-way
ANOVA confirmed that the differences in both metrics are statistically signifi-
cant. For that reason, merged encoder-only was selected as the base architecture
for the following experiments and genotype design. To provide more insight into
how forecasts produced by the different variants looked like, Figure 5.3 displays
forecasts of one training example from Synthetic dataset and Figure 5.4 shows
forecasts of one example from the sub-sampled Libra dataset.

94 Experimental Results

Transformer
variant
(MAE)

Synthetic
1

Synthetic
20

Synthetic
50

Libra 1 Libra 20 Libra 50

encoder
decoder

0.0203 ±
0.0063

0.0432 ±
0.0135

0.0796 ±
0.0268

0.0964 ±
0.0054

0.1481 ±
0.0234

0.1731 ±
0.0222

informer
encoder
decoder

0.0288 ±
0.0092

0.0187 ±
0.004

0.0176 ±
0.0021

0.0757 ±
0.0067

0.0782 ±
0.0021

0.0961 ±
0.0069

decoder only
0.0171 ±
0.0011

0.0233 ±
0.006

0.0249 ±
0.0068

0.0836 ±
0.0057

0.1097 ±
0.0068

0.154 ±
0.0131

encoder only
0.0174 ±
0.0061

0.017 ±
0.0022

0.019 ±
0.0031

0.0657 ±
0.0032

0.0734 ±
0.0006

0.0842 ±
0.0012

merged
encoder only

0.0126 ±
0.0013

0.0157 ±
0.001

0.0151 ±
0.0012

0.0645 ±
0.0024

0.068 ±
0.0015

0.0759 ±
0.0018

Table 5.10: Results of Transformer architecture comparison using MAE metric
on combinations of datasets and forecasting horizons specified Table 5.9. The
notation stands for: mean ± std. The best (lowest) values are shown in bold.

Transformer
variant
(RMSE)

Synthetic
1

Synthetic
20

Synthetic
50

Libra 1 Libra 20 Libra 50

encoder
decoder

0.0203 ±
0.0063

0.0511 ±
0.016

0.0965 ±
0.0333

0.0964 ±
0.0054

0.1819 ±
0.0257

0.2099 ±
0.0267

informer
encoder
decoder

0.0288 ±
0.0092

0.0223 ±
0.0044

0.0211 ±
0.0023

0.0757 ±
0.0067

0.1038 ±
0.0028

0.1249 ±
0.0074

decoder only
0.0171 ±
0.0011

0.0273 ±
0.0061

0.0306 ±
0.0078

0.0836 ±
0.0057

0.1347 ±
0.0057

0.1859 ±
0.0165

encoder only
0.0174 ±
0.0061

0.0206 ±
0.0024

0.023 ±
0.0035

0.0657 ±
0.0032

0.0966 ±
0.0008

0.1104 ±
0.0018

merged
encoder only

0.0126 ±
0.0013

0.0191 ±
0.001

0.0187 ±
0.0014

0.0645 ±
0.0024

0.0891 ±
0.0016

0.0998 ±
0.002

Table 5.11: Results of Transformer architecture comparison using RMSE metric
on combinations of datasets and forecasting horizons specified Table 5.9. The
notation stands for: mean ± std. The best (lowest) values are shown in bold.

Experiments and Results 95

Figure 5.3: Example forecasts of one training example from Synthetic dataset
produced by all architecture variants. Blue color represents the model input,
orange color the true values and green color the forecasted values. Top left:
encoder-decoder, top right: Informer encoder-decoder, center left: decoder-only,
center right: encoder-only, bottom: merged encoder-only.

96 Experimental Results

Figure 5.4: Example forecasts of one training example from the sub-sampled Li-
bra dataset produced by all architecture variants. Blue color represents the model
input, orange color the true values and green color the forecasted values. Top left:
encoder-decoder, top right: Informer encoder-decoder, center left: decoder-only,
center right: encoder-only, bottom: merged encoder-only.

Experiments and Results 97

5.3.2 Phase 2: Attention Models

The goal of the second phase is to perform a comparison of alternative attention
models presented in section 4.4 to assess their suitability for time series forecast-
ing. The phase consists of only one experiment which carries out the comparison.

Ex1: Attention model evaluation

To evaluate and compare the alternative attention models, a setup similar to the
second experiment (section 5.3.1) from phase 1 (subsection 5.3.1) was used. How-
ever, as the objective is to measure the ability of each model to extract optimal
relations between elements, the size of training examples and forecasting horizons
were increased significantly to construct more challenging forecasting situations
and put more strain on the attention models inside Transformers.

The model input size was increased to 400 and and the tested horizons were ex-
panded to 100, 200 and 400. Preliminary testing also considered larger examples
but encountered problems with fitting all training data into Nvidia T4’s memory
(section 5.2). The models were tested while injected into the best-performing
Transformer architecture variant from the previous phase (subsection 5.3.1) i.e.
merged encoder-only replacing the original multi-head attention. The attention
models listed in section 4.4 were swapped in one by one creating several merged
encoder-only instances. These instances were then trained and independently
evaluated after training. All experimental setup details are listed in Table 5.12.
The obtained results are presented in Table 5.13 and Table 5.14. The former
table presents evaluation based on MAE while the latter uses RMSE metric.

Concept Configuration

datasets for evaluation [Synthetic, sub-sampled Libra 1]

evaluation metrics [MAE, RMSE]

host architecture merged encoder-only

model input size 400

model output sizes
(forecasting horizons)

[100, 200, 400]

trained for epochs 10

evaluation repeated
10x per dataset, horizon and
attention model combination

Table 5.12: The setup used for the attention models comparison experiment.

98 Experimental Results

Merged
encoder
only (MAE)

Synthetic
100

Synthetic
200

Synthetic
400

Libra
100

Libra
200

Libra
400

passthrough
attention

0.0143 ±
0.0009

0.0153 ±
0.0014

0.0139 ±
0.001

0.1059 ±
0.0015

0.1177 ±
0.0018

0.1688 ±
0.0075

multi-head
attention

0.0149 ±
0.0013

0.0139 ±
0.0005

0.0142 ±
0.0011

0.0773 ±
0.0027

0.0993 ±
0.025

0.2479 ±
0.0714

adaptive span
attention

0.0143 ±
0.0011

0.0144 ±
0.0009

0.014 ±
0.0006

0.0869 ±
0.0035

0.1018 ±
0.0102

0.1987 ±
0.0256

attention free
full attention

0.0147 ±
0.0012

0.0146 ±
0.0019

0.0141 ±
0.0007

0.1041 ±
0.0021

0.1153 ±
0.0021

0.1659 ±
0.0074

big bird
attention

0.0152 ±
0.0015

0.0144 ±
0.0007

0.0139 ±
0.0006

0.0817 ±
0.0047

0.0857 ±
0.0047

0.2011 ±
0.0364

conformer
attention

0.0159 ±
0.0025

0.015 ±
0.0009

0.0155 ±
0.0014

0.0689 ±
0.0026

0.0733 ±
0.002

0.1567 ±
0.0085

synthesizer
attention

0.0148 ±
0.0013

0.0148 ±
0.0013

0.0155 ±
0.001

0.1058 ±
0.0011

0.1215 ±
0.0038

0.1991 ±
0.0296

performer
attention

0.018 ±
0.0036

0.0149 ±
0.0006

0.0149 ±
0.0011

0.1034 ±
0.0029

0.1143 ±
0.0047

0.209 ±
0.0506

fnet attention
0.0151 ±
0.0017

0.0166 ±
0.0024

0.0159 ±
0.0014

0.0967 ±
0.0031

0.1038 ±
0.0021

0.1431 ±
0.0019

routing
attention

0.0154 ±
0.0016

0.0143 ±
0.0006

0.015 ±
0.0007

0.0817 ±
0.0008

0.0938 ±
0.0027

0.1815 ±
0.0223

linformer
attention

0.0144 ±
0.0018

0.0148 ±
0.0007

0.0148 ±
0.0014

0.0879 ±
0.0026

0.1054 ±
0.0108

0.231 ±
0.0451

reformer
attention

0.0153 ±
0.001

0.0132 ±
0.0

0.013 ±
0.0

0.0835 ±
0.0

0.0935 ±
0.0

0.2222 ±
0.0

long-short
attention

0.0141 ±
0.0008

0.0154 ±
0.002

0.0142 ±
0.0008

0.082 ±
0.0018

0.0915 ±
0.01

0.1888 ±
0.0198

longformer
attention

0.0149 ±
0.0011

0.0147 ±
0.0014

0.0149 ±
0.001

0.0779 ±
0.0034

0.083 ±
0.0029

0.1807 ±
0.0217

transformer-xl
attention

0.0148 ±
0.0006

0.0143 ±
0.0005

0.0141 ±
0.0006

0.0815 ±
0.0023

0.0911 ±
0.0075

0.2277 ±
0.0479

Table 5.13: Results of attention models evaluation using MAE metric on combi-
nations of datasets and forecasting horizons specified Table 5.12. The notation
stands for: mean ± std. The best (lowest) values are shown in bold.

Experiments and Results 99

Merged
encoder only
(RMSE)

Synthetic
100

Synthetic
200

Synthetic
400

Libra
100

Libra
200

Libra
400

passthrough
attention

0.0177 ±
0.0011

0.0189 ±
0.0015

0.0173 ±
0.0012

0.131 ±
0.0013

0.1453 ±
0.0018

0.2058 ±
0.0083

multi-head
attention

0.0184 ±
0.0016

0.0173 ±
0.0006

0.0177 ±
0.0013

0.1009 ±
0.0031

0.126 ±
0.0282

0.3004 ±
0.0824

adaptive span
attention

0.0176 ±
0.0012

0.0179 ±
0.001

0.0175 ±
0.0007

0.1111 ±
0.0034

0.1292 ±
0.0114

0.2416 ±
0.0269

attention free
full attention

0.0181 ±
0.0014

0.018 ±
0.0022

0.0175 ±
0.0008

0.1289 ±
0.0024

0.1427 ±
0.0023

0.2036 ±
0.0092

big bird
attention

0.0187 ±
0.0016

0.0179 ±
0.0009

0.0173 ±
0.0007

0.1062 ±
0.005

0.1114 ±
0.0056

0.2478 ±
0.0445

conformer
attention

0.0194 ±
0.0029

0.0186 ±
0.001

0.0193 ±
0.0017

0.0913 ±
0.0029

0.0977 ±
0.0021

0.1935 ±
0.0105

synthesizer
attention

0.0182 ±
0.0013

0.0183 ±
0.0015

0.0191 ±
0.0012

0.1307 ±
0.0012

0.1502 ±
0.0039

0.2437 ±
0.0359

performer
attention

0.0214 ±
0.0035

0.0184 ±
0.0008

0.0184 ±
0.0013

0.1284 ±
0.003

0.1428 ±
0.0052

0.2533 ±
0.0585

fnet attention
0.0185 ±
0.002

0.0204 ±
0.0028

0.0197 ±
0.0016

0.1214 ±
0.0033

0.1318 ±
0.0025

0.1746 ±
0.0021

routing
attention

0.0188 ±
0.0018

0.0178 ±
0.0007

0.0186 ±
0.0008

0.1059 ±
0.001

0.1206 ±
0.0028

0.2226 ±
0.0255

linformer
attention

0.0177 ±
0.0019

0.0184 ±
0.0008

0.0183 ±
0.0017

0.1128 ±
0.003

0.1334 ±
0.0115

0.2816 ±
0.0529

reformer
attention

0.019 ±
0.0012

0.0165 ±
0.0

0.0162 ±
0.0

0.1082 ±
0.0

0.1208 ±
0.0

0.2788 ±
0.0

long-short
attention

0.0174 ±
0.0009

0.019 ±
0.0023

0.0177 ±
0.0009

0.1065 ±
0.002

0.1182 ±
0.0119

0.2325 ±
0.023

longformer
attention

0.0184 ±
0.0013

0.0182 ±
0.0015

0.0184 ±
0.0012

0.102 ±
0.0041

0.1082 ±
0.0028

0.2229 ±
0.0237

transformer-xl
attention

0.0182 ±
0.0007

0.0178 ±
0.0006

0.0175 ±
0.0006

0.1053 ±
0.0022

0.1174 ±
0.0091

0.2744 ±
0.0503

Table 5.14: Results of attention models evaluation using RMSE metric on com-
binations of datasets and forecasting horizons specified Table 5.12. The notation
stands for: mean ± std. The best (lowest) values are shown in bold.

100 Experimental Results

The obtained evaluation metrics allow for ordering of the attention models in
order to determine a subset of models to be utilized in the following experiments.
Unfortunately, ANOVA test showed non-significant difference between the metrics
of tested attention models. After some investigation, it was concluded that the
used merged encoder-only architecture is likely capable of capturing some degree
of element relations through the final fully-connected layer (section 4.3) which
has access to all sequence elements at once. Hence, the influence of the utilized
attention model becomes less prominent. To counteract this problem, it was
decided to perform the experiment once more but use the more standard encoder-
only architecture which does not have the possibility of relating elements via the
last layer. The results of the repeated experiment run are presented in Table 5.13
and Table 5.14. The experiment configuration stayed the same apart from the
mentioned change of the host architecture.

Experiments and Results 101

Encoder
only (MAE)

Synthetic
100

Synthetic
200

Synthetic
400

Libra
100

Libra
200

Libra
400

passthrough
attention

0.1172 ±
0.0031

0.1137 ±
0.0025

0.1211 ±
0.0034

0.1861 ±
0.0009

0.1947 ±
0.0006

0.2178 ±
0.0008

multi-head
attention

0.018 ±
0.0017

0.0192 ±
0.0027

0.0198 ±
0.0018

0.0921 ±
0.0034

0.1212 ±
0.0057

0.1564 ±
0.009

adaptive span
attention

0.0217 ±
0.0036

0.0205 ±
0.0016

0.0195 ±
0.0004

0.1041 ±
0.0013

0.1272 ±
0.0075

0.1674 ±
0.0081

attention free
full attention

0.1168 ±
0.0026

0.1149 ±
0.0038

0.1207 ±
0.0031

0.1889 ±
0.0047

0.2004 ±
0.0034

0.2199 ±
0.0019

big bird
attention

0.0167 ±
0.001

0.0185 ±
0.0013

0.019 ±
0.0015

0.0872 ±
0.0014

0.1144 ±
0.0041

0.1455 ±
0.004

conformer
attention

0.0173 ±
0.001

0.0182 ±
0.0008

0.0173 ±
0.0012

0.0757 ±
0.0025

0.0823 ±
0.0024

0.1556 ±
0.0123

synthesizer
attention

0.0406 ±
0.0088

0.0418 ±
0.0128

0.0458 ±
0.0118

0.1554 ±
0.0093

0.163 ±
0.0028

0.2039 ±
0.009

performer
attention

0.0216 ±
0.0017

0.0216 ±
0.0018

0.0247 ±
0.0027

0.1034 ±
0.0029

0.1143 ±
0.0047

0.209 ±
0.0506

fnet attention
0.0346 ±
0.0042

0.0327 ±
0.0043

0.0356 ±
0.0023

0.1243 ±
0.0028

0.1355 ±
0.002

0.1941 ±
0.0024

routing
attention

0.0217 ±
0.0017

0.0239 ±
0.0048

0.0209 ±
0.0019

0.1019 ±
0.0047

0.1374 ±
0.0066

0.1722 ±
0.0056

linformer
attention

0.0174 ±
0.0019

0.0183 ±
0.0028

0.0185 ±
0.0014

0.1268 ±
0.0034

0.1411 ±
0.0068

0.187 ±
0.0086

reformer
attention

0.0224 ±
0.0004

0.0232 ±
0.0

0.0204 ±
0.0

0.0944 ±
0.0

0.1145 ±
0.0

0.1661 ±
0.0

long-short
attention

0.0194 ±
0.0009

0.0178 ±
0.0013

0.0191 ±
0.0018

0.1011 ±
0.0042

0.118 ±
0.0029

0.1834 ±
0.0074

longformer
attention

0.0169 ±
0.002

0.0185 ±
0.001

0.0172 ±
0.0015

0.0871 ±
0.0023

0.1127 ±
0.0046

0.1514 ±
0.0083

transformer-xl
attention

0.0179 ±
0.0015

0.0198 ±
0.0015

0.0197 ±
0.0019

0.104 ±
0.0041

0.1334 ±
0.0044

0.1675 ±
0.0076

Table 5.15: Results of attention models evaluation using MAE metric on com-
binations of datasets and forecasting horizons specified Table 5.12. This time,
encoder-only was used as the host architecture. The notation stands for: mean
± std. The best (lowest) values are shown in bold.

102 Experimental Results

Encoder only
(RMSE)

Synthetic
100

Synthetic
200

Synthetic
400

Libra
100

Libra
200

Libra
400

passthrough
attention

0.1349 ±
0.0036

0.1342 ±
0.003

0.1428 ±
0.0041

0.2119 ±
0.0008

0.224 ±
0.0005

0.252 ±
0.0007

multi-head
attention

0.0218 ±
0.0019

0.0234 ±
0.0031

0.0241 ±
0.0022

0.1175 ±
0.0034

0.1514 ±
0.0062

0.1917 ±
0.0093

adaptive span
attention

0.0259 ±
0.004

0.0249 ±
0.0019

0.0238 ±
0.0005

0.1297 ±
0.0014

0.1579 ±
0.0087

0.2025 ±
0.0093

attention free
full attention

0.1346 ±
0.0029

0.1356 ±
0.0045

0.1426 ±
0.0039

0.2156 ±
0.0053

0.2306 ±
0.0045

0.2533 ±
0.0018

big bird
attention

0.0203 ±
0.0011

0.0226 ±
0.0015

0.0232 ±
0.0017

0.1121 ±
0.0018

0.144 ±
0.0047

0.1798 ±
0.0035

conformer
attention

0.0209 ±
0.001

0.0223 ±
0.001

0.0213 ±
0.0014

0.1003 ±
0.0021

0.1077 ±
0.0021

0.1885 ±
0.0122

synthesizer
attention

0.0477 ±
0.0097

0.0499 ±
0.0151

0.0546 ±
0.0138

0.1863 ±
0.0103

0.1979 ±
0.0029

0.2395 ±
0.008

performer
attention

0.0259 ±
0.002

0.0262 ±
0.0021

0.0299 ±
0.0031

0.1284 ±
0.003

0.1428 ±
0.0052

0.2533 ±
0.0585

fnet attention
0.0407 ±
0.0045

0.0393 ±
0.0051

0.0426 ±
0.0028

0.1514 ±
0.0029

0.1659 ±
0.0024

0.2306 ±
0.0025

routing
attention

0.0261 ±
0.002

0.0287 ±
0.0055

0.0255 ±
0.0022

0.1273 ±
0.0044

0.1709 ±
0.007

0.2073 ±
0.0052

linformer
attention

0.0212 ±
0.0023

0.0223 ±
0.0031

0.0227 ±
0.0016

0.1544 ±
0.0042

0.1729 ±
0.0069

0.2237 ±
0.0092

reformer
attention

0.027 ±
0.0005

0.0281 ±
0.0

0.0249 ±
0.0

0.1192 ±
0.0

0.1464 ±
0.0

0.2019 ±
0.0

long-short
attention

0.0235 ±
0.001

0.0218 ±
0.0016

0.0234 ±
0.0021

0.127 ±
0.0047

0.1496 ±
0.003

0.2198 ±
0.0079

longformer
attention

0.0207 ±
0.0023

0.0226 ±
0.0012

0.0212 ±
0.0017

0.1124 ±
0.0028

0.1424 ±
0.005

0.1847 ±
0.0092

transformer-xl
attention

0.0218 ±
0.0018

0.024 ±
0.0017

0.0241 ±
0.0022

0.13 ±
0.0043

0.1656 ±
0.0045

0.2031 ±
0.0074

Table 5.16: Results of attention models evaluation using RMSE metric on com-
binations of datasets and forecasting horizons specified Table 5.12. This time,
encoder-only was used as the host architecture. The notation stands for: mean
± std. The best (lowest) values are shown in bold.

Experiments and Results 103

The second experiment run produced the desired statistically significant differ-
ences in metrics. When comparing the results of both runs, the difference quickly
becomes apparent. For example, passthrough attention model (i.e. no attention)
performs much worse in encoder-only than in merged encoder-only which implies
that attention modelling plays more important role in the former architecture.

To obtain a subset of attention models for further experiments, the evaluated
models were incrementally sorted based on both metrics values from the second
run (encoder-only host architecture), dataset type and forecasting horizon. The
first sorting was done based on results from Libra 400 (dataset and horizon), the
second based on Libra 200 and the final on based on Libra 100. The reasoning
behind it is that Libra dataset represents a reasonable proxy to real-world time
series and 400 forecasting horizon constitutes the most challenging situation for
modelling attention. From the list of sorted models, it was decided to take the
better half i.e. 7 out of 14 available models. The selected models together with
metric values extracted from Table 5.15 and Table 5.16 are listed and ordered
in Table 5.17. In addition, a training example with forecasts illustrating be-
haviour of the selected models is shown in Table 5.17.

Selected attention
models (MAE, RMSE)

Libra 400 Libra 200 Libra 100

big bird attention 0.1455, 0.1798 0.1144, 0.144 0.0872, 0.1121

longformer attention 0.1514, 0.1847 0.1127, 0.1424 0.0871, 0.1124

conformer attention 0.1556, 0.1885 0.0823, 0.1077 0.0757, 0.1003

multi-head attention 0.1564, 0.1917 0.1212, 0.1514 0.0921, 0.1175

reformer attention 0.1661, 0.2019 0.1145, 0.1464 0.0944, 0.1192

adaptive span attention 0.1674, 0.2025 0.1272, 0.1579 0.1041, 0.1297

transformer-xl attention 0.1675, 0.2031 0.1334, 0.1656 0.104, 0.13

Table 5.17: Selected attention models sorted based on metrics obtained for the
listed dataset/forecasting horizon combinations. The metrics values were ex-
tracted from Table 5.16 and Table 5.15.

104 Experimental Results

Figure 5.5: Example forecasts of one training example from Libra dataset pro-
duced by encoder-only architecture with different attention models. Blue color
represents the model input, orange color the true values and green color the fore-
casted values. Top left: Big Bird attention, top right: Longformer attention,
center left: Conformer attention, center right: Reformer attention, bottom left:
Adaptive span attention, bottom right: TransformerXL attention.

Experiments and Results 105

5.3.3 Phase 3: Genotype Encoding

The third experimental phase aims to compare different variations of genotype
encoding as presented in section 4.5. The goal is to select the genotype con-
figuration which produces the most performant Transformer-based architectures
optimized for time series forecasting. Another aspect to consider is the ability
of each genotype variant to effectively utilize concepts and architectural patterns
not commonly present in Transformers. For that reason, this phase is split into
two experiments. The first experiment (section 5.3.3) focuses on the evaluation of
genotype configurations while optimizing the original Transformer architecture
given only its own components. The second experiment (section 5.3.3) broad-
ens the scope and considers additional concepts, components and architectural
patterns. The concepts, components and patterns come in as various modules
originally introduced in section 4.7. To perform both of the experiments, the
neural architecture search system described in section 4.5 was utilized.

Concept Configuration

dataset for evaluation sub-sampled Libra 1

model input size 400

model output size
(forecasting horizon)

50

iterations 400

population size 150

cell initialization 2 cells per layer

smart initialization
8x pre-norm Transformer encoder
seeded in the initial population

parent selection best fitness tournament (size: 2)

survivor selection best fitness tournament (size: 2)

replacement selection worst fitness tournament (size: 4)

new hurdle after
iterations

40

max epochs to train for 8

evaluation repeated 4x per encoding variant

Table 5.18: The base configuration shared by both genotype encoding evaluation
experiments.

106 Experimental Results

The subsection 4.5.1 introduced three variants of the described encoding based
on how modules can be stacked in Genotype cell branches. To make referring to
different variants easier, each of them was named based on the number of mod-
ules it allows: 1 module per branch, 3 modules per branch and Unlimited modules
per branch. Additionally, section 4.6.2 claims that smart initialization based on
seeding the initial population with known Transformer models has a great ef-
fect on the results produced by the search. Hence, to evaluate the influence of
initialization and decouple its contribution from the genotype encoding effects,
the first two variants were initialized randomly while the Unlimited modules per
branch variant was considered in two forms: 1.) randomly initialized, 2.) ran-
domly initialized and seeded with 8 instances of pre-norm Transformer encoder
(section 3.4.2). To recapitulate, four alternatives based on three genotype encod-
ing variants were considered and evaluated in this phase.

Details about the setup shared by both experiments are provided in Table 5.18.
The search was performed using the first sub-sampled Libra dataset only. The
model input size was set to 400 (larger size than in the first experimental phase,
subsection 5.3.1) giving the candidate models more input data and enabling po-
tentially better forecasts. The forecasting horizon was set to 50 which represents
a challenging forecasting problem. When it comes to Progressive Dynamic Hur-
dles (section 4.6.2) configuration, new hurdles were introduced every 40 iterations
giving the candidate models that surpass them more time to train. Each passed
hurdle means one more epoch a candidate model can train for. The base amount
was 1 epoch and the maximum amount was 8 epochs. The random initialization
of genotype variants was configured to create layers containing exactly two cells
as that is the same number of cells as in the original Transformer layer. Never-
theless, the number of cells can be altered by evolution during the search.

Parameter Parameter type Available values

patch size Set [1, 5, 10, 25, 50]

embedding dim Set [16, 32, 64]

layer count Range (1, 8), step: 1

merge before
regression

Set [true, false]

use memory Constant false

Table 5.19: A list of genotype parameters used in both encoding evaluation
experiments. The type column specifies the used evolvable parameter type as
defined in subsection 4.5.2

Experiments and Results 107

As presented in subsection 4.5.1, each genotype can have several evolvable hy-
perparameters. A list of hyperparameters used in the following experiments is
provided in Table 5.19. The available parameter values were derived based on the
results from Phase 1 (subsection 5.3.1). The inclusion of merge before regression
parameter was motivated by findings from the previous phase (subsection 5.3.2)
i.e. by the fact that performance of encoder-only Transformer variant is affected
by the number of output values entering the final fully-connected layer. The pa-
rameter allows evolution to decide if to use just one output value (encoder-only)
or a concatenation of all values (merged encoder-only). Unfortunately, prelimi-
nary testing showed that use memory parameter needs to be fixed to false. If set
to true, the search would often run out of GPU memory as the feature proved to
claim most of the available memory.

An important thing to emphasize is that the number of Transformer layers is
specified explicitly by a hyperparameter. Even though the neural architecture
search system is capable of evolving each layer independently, preliminary test-
ing revealed that searches of this kind are more unstable and, as the complexity
of the search space increases drastically, can easily take several weeks to finish.
For that reason, it was decided to stick to evolving one Transformer layer only
which is then replicated layer count times to produce the final model.

All genetic operators from section 4.6.1 were used, apart from the ones ma-
nipulating Genotype layers. These are not needed as the layers are not evolved
independently in this phase. The probabilities of applying certain operators to
different genotype variants are listed in Table 5.20. The intention was to keep
the probabilities as similar as possible, however, some of them needed to be re-
stricted (i.e. have their probability set to 0.0) as their application could violate
the constraints imposed on the number of modules per branch.

108 Experimental Results

Genetic operator
probability

1 module
per branch

3 modules
per branch

Unlimited
modules per
branch

perform cell mutation 0.2 0.2 0.2

˚ add empty cell 0.0 0.0 0.1

˚ duplicate cell 0.1 0.1 0.1

˚ swap two cells 0.2 0.2 0.2

˚ change cell inputs 0.2 0.2 0.2

˚ remove cell 0.1 0.1 0.2

exchange cells crossover 0.2 0.2 0.2

exchange branches crossover 0.2 0.2 0.2

perform module mutation 0.3 0.3 0.3

˚ add new module 0.0 0.0 0.1

˚ duplicate module 0.0 0.0 0.1

˚ swap two modules 0.2 0.2 0.2

˚ swap module for new 0.2 0.2 0.2

˚ remove module 0.0 0.0 0.2

perform parameter mutation 0.3 0.3 0.3

˚ change genotype parameter 0.1 0.1 0.1

˚ change module parameter 0.2 0.2 0.2

Table 5.20: The probabilities of applying mutation and crossover operators used
in both experiments. The utilized operators are described in section 4.6.1. The
operators marked with ˚ form children of the nearest higher listed operator with-
out a ˚ i.e. the higher listed operator needs to get selected first for the child
operators to be eligible for selection (probabilities multiply). The values that
differ for some configurations are highlighted in bold.

Experiments and Results 109

Ex1: Encoding evaluation on Transformer modules

The first experiment employs only modules encapsulating concepts from the orig-
inal Transformer. In addition to these, Single feed forward module implementing
a single fully-connected layer and Generic passthrough no-op module helping to
create residual connections were included. All used modules are shown in Ta-
ble 5.21. Also, their evolvable parameters are listed and described in Appendix
(section 6.3). To replicate the positional encoding approach of the original Trans-
former, Sinusoidal absolute positional encoding is added to the model input and
its module is then frozen i.e. cannot be modified by evolution. That way, only
the internal encoder-only structure can be evolved.

Module category Included modules

passthrough Generic passthrough (empty module)

attention Multi-head attention

feed forward Single feed forward, Feed forward

activation ReLU

normalization Layer normalization

positional encoding Sinusoidal absolute positional encoding

Table 5.21: Modules used for the first experiment.

Genotype variation Best genotype fitness

1 module per branch -0.004215 ± 0.000120

3 modules per branch -0.00363 ± 0.000096

Unlimited modules per
branch

-0.004275 ± 0.000293

Unlimited modules per
branch (encoder seeded)

-0.00346 ± 0.000044

Table 5.22: Results of genotype encoding variants comparison. The notation
stands for: mean ± std. The best (highest) value is shown in bold.

As the neural architecture search proved to be very time consuming (cca 24-72
hours per one execution), it was repeated only four times per each genotype vari-
ant. The results are listed in Table 5.22 which shows the mean fitness of the

110 Experimental Results

best genotypes obtained during every run. One-way ANOVA confirmed that the
differences in fitness are statistically significant, however, it was discovered that
the data violated the assumption of normally distributed residuals. Nevertheless,
Knief and Forstmeier [77] confirmed that ANOVA and other Gaussian methods
stay remarkably robust even when the normality assumption is violated. For
that reason, the results are considered valid. As can also be seen in the table,
Unlimited modules (encoder seeded) variant scored the best, however, it performs
only slightly worse than the 3 modules per branch variant which was initialized
randomly. On the other hand, one can argue that the restrictions over the place-
ment of modules introduce relatively strong bias towards vanilla Transformer-like
architectures. Hence, to assess differences in the produced architectures, the best
genotypes of both 3 modules per branch and Unlimited modules (encoder seeded)
variants were visualized for comparison.

Figure 5.6: Visualisation of evolved Genotype layers extracted from the best
genotype found during each search run which used 3 modules per branch genotype
variant.

Experiments and Results 111

Figure 5.7: Visualisation of evolved Genotype layers extracted from the best
genotype found during each search run which used Unlimited modules per branch
(encoder seeded) genotype variant.

Figure 5.6 shows Genotype layers extracted from the best 3 modules per branch
genotypes. The first thing to notice, is that the evolved layers are very simi-
lar. All four layers have ReLU activation placed as the last module in all cell
branches, apart from one case, always use layer normalization as the first mod-
ule in all cell branches and very often combine feed forward type of a module
in parallel with the multi-head attention module. Also, the number of cells in
each layer is either 2 or 3. This seems to confirm the theory suggesting that
there is some amount of bias towards vanilla Transformer-like architectures. In
contrast, the Genotype layers of Unlimited modules (encoder seeded) variant are
more diverse. A prominent difference is the fact that all the shown layers include
unbroken residual path which connects their inputs to their outputs. Similar to

112 Experimental Results

the previous variant, cell branches often start with layer normalization, however,
there are also several occurrences of layer normalization being the last module in
a cell branch. This configuration is not possible in 3 modules per branch variant.
Additionally, a ”sandwich” configuration consisting of two layer normalization
modules and either feed forward or multi-head attention module in between is
also a common pattern.

To sum up, both of these well-performing variants evolved slightly different pat-
terns. Unlimited modules (encoder seeded) variant showed more flexibility and
achieved slightly better results. However, a very limited set of modules was used
in this experiment. Hence, to further assess the qualities of all 4 variants, a sec-
ond experiment considering substantially larger list of modules was performed.
The experiment is described in the following section (section 5.3.3). Additionally,
Figure 5.8 provides a deeper insight into how all searches conducted during this
experiment looked like. The figure shows three plots per each genotype variant
illustrating how survivor fitness, progressive hurdles and difference factor metric
developed during each search.

Experiments and Results 113

Figure 5.8: Plots showing the development of control metrics during all evolution-
ary searches performed in the first experiment of Phase 3. The columns represent
survivor fitness, the introduced progressive hurdles and difference factor. Each
row belongs to one evaluated genotype variant ordered as follows: 1 module per
branch, 3 modules per branch, Unlimited modules (randomly initialized), Unlim-
ited modules (seeded with Transformer encoder).

114 Experimental Results

Ex2: Encoding evaluation on multiple module sets

In the second experiment, the number of available modules was increased signif-
icantly. This experiment focuses on the evaluation of genotype encoding flexi-
bility and the ability to evolve architectures beyond what is known or used in
Transformer-based architectures. The available modules are listed in Table 5.23.
A detailed list of their evolvable parameters is also provided in Appendix (sec-
tion 6.3). The set of included attention modules is based on the results of Phase 2
(subsection 5.3.2). This time, positional encoding is not added explicitly and it
is up to the evolutionary search to decide if and where to place it.

Module category Included modules

passthrough Generic passthrough (empty module)

attention

Big Bird attention, Longformer attention,
Conformer attention, Multi-head
attention, Reformer attention, Adaptive
span attention, TransformerXL attention

feed forward Single feed forward, Feed forward

activation
ELU, GeLU, ReLU, SiLU, Leaky ReLU,
Squared ReLU

normalization
Layer normalization, AdaNorm,
PowerNorm, Scaled L2 normalization,
Root mean square layer normalization

positional encoding

Sinusoidal absolute positional encoding,
Axial positional encoding, BERT learned
positional encoding, Simple absolute
positional encoding

convolution

Convolution 1D, Convolution 2D, Max
pooling 1D, Max pooling 2D, Depth-wise
separable convolution, Inverted
bottleneck, CoordConv

dropout Alpha Dropout, Dropout, Dropout 2D

Table 5.23: Modules used for the second experiment of Phase 3.

As in the first experiment of this phase, the search was repeated 4 times per
genotype variant. With more modules available, the duration of each search
increased noticeably (up to cca 48-96 hours per one execution). The search results
are shown in Table 5.24. In this case, the differences between the individual

Experiments and Results 115

variants are much smaller than in Experiment 1 (section 5.3.3). Also, ANOVA
confirmed that there are no significant differences between all tested variants.
Hence, even though there are some trends observed in the first experiment, it
is not possible to confidently conclude which genotype variant performs better.
Therefore, it was decided to investigate the experiment results further but employ
a more qualitative approach i.e. visually compare the genotypes which obtained
the highest fitness per each variant.

Genotype variation Best genotype fitness

1 module per branch -0.002105 ± 0.000837

3 modules per branch -0.002892 ± 0.000289

Unlimited modules per
branch

-0.002587 ± 0.000644

Unlimited modules per
branch (encoder seeded)

-0.002862 ± 0.000129

Table 5.24: Results of genotype encoding variants comparison. The notation
stands for: mean ± std. The best (highest) value is shown in bold.

Figure 5.9 displays Genotype layers extracted from the highest fitness genotypes
per each genotype variant. They are listed in the same order as the genotype
variants in Table 5.24 i.e. from left to right: 1 module per branch, 3 modules
per branch, Unlimited modules per branch, Unlimited modules per branch (en-
coder seeded). The first thing to notice is that the first and third Genotype
layers are very similar. Ignoring that the first genotype can host just one module
per branch, the only remaining difference is the placement of GeLU activation
(after Inverted bottleneck) in contrast to the placement of Layer normalization
(before Inverted bottleneck). Apart from these differences, the Genotype layers
are identical and also quite simple compared to the rest. The second Genotype
layer is very similar to the layers that the same genotype variant evolved when it
had only the vanilla Transformer modules available. This confirms some degree
of bias towards Transformer-like architectures as also seen in the first experiment.

A similar pattern can be seen in genotypes produced by the last variant which
had the initial population seeded with pre-norm encoder-only. The correspond-
ing evolved Genotype layer uses only the modules which were available in the
first experiment even though there was more modules available during this ex-
periment. Similarly, this seems to be due to the bias introduced by seeding the
initial population. Most likely, the search gets trapped in a local optimum which

116 Experimental Results

resembles the original Transformer encoder. In addition, the structure of the
evolved Genotype layer is also similar to structures of layers discovered during
the first experiment while using the same genotype variant.

As also provided in Experiment 1, Figure 5.10 shows the evolution of control
metrics during all searches performed in this experiment. The figure shows three
plots per each genotype variant illustrating how survivor fitness, progressive hur-
dles and difference factor metric developed during each search.

Figure 5.9: Visualisation of evolved Genotype layers extracted from the best
genotype found for each genotype variant. Left: 1 module per branch, Middle
left: 3 modules per branch, Middle right: Unlimited modules per branch, Right:
Unlimited modules per branch (encoder seeded).

Experiments and Results 117

Figure 5.10: Plots showing the development of control metrics during all evolu-
tionary searches performed in the second experiment of Phase 3. The columns
represent survivor fitness, the introduced progressive hurdles and difference fac-
tor. Each row belongs to one evaluated genotype variant ordered as follows:
1 module per branch, 3 modules per branch, Unlimited modules (randomly initial-
ized), Unlimited modules (seeded with Transformer encoder).

118 Experimental Results

5.3.4 Phase 4: Forecasting Methods Comparison

The last experimental phase utilizes the best architectures evolved during the pre-
vious phase (subsection 5.3.3) and compares their forecasting performance with
state-of-the-art forecasting methods presented in section 4.8. The top 3 highest
fitness architectures from the third experimental phase are included to assess their
forecasting capabilities and determine if there are significant differences in their
performance. For convenience, all compared methods and architectures are listed
in Table 5.25 together with their hyperparameters. The hyperparameters of the
evolved architectures were also optimized by evolution during Phase 3.

Forecasting method Configuration

ARIMA p = 3, q = 3, d = 2

Recurrent Neural Network
hidden dimension = 64,
number of layers = 2, dropout = 0.1

LSTM
hidden dimension = 64,
number of layers = 2, dropout = 0.1

Temporal Convolutional Network
hidden dimension = 25,
number of layers = 8, kernel size = 17,
dropout = 0.1

N-BEATS

hidden dimension = 128,
stack types = [Generic stack, Generic stack],
theta dimensions = [8, 8],
blocks per stack = 6

Pre-norm encoder-only variant
embedding dimension = 32, patch size = 5,
head count = 4, layer count = 7,
forward expansion = 6, dropout = 0.1

The evolved architecture #1

embedding dimension = 64,
patch size = 1, layer count = 6,
merge before regression = true,
use memory = false

The evolved architecture #2

embedding dimension = 64,
patch size = 5, layer count = 6,
merge before regression = true,
use memory = false

The evolved architecture #3

embedding dimension = 64,
patch size = 5, layer count = 6,
merge before regression = true,
use memory = false

Table 5.25: A list of the compared forecasting methods and evolved architectures
including the used hyperparameters.

Experiments and Results 119

Figure 5.11: Visualisation of the Genotype layers stacked inside the three evolved
architectures used in this experimental phase. Left: The evolved architecture #1,
Center: The evolved architecture #2, Right: The evolved architecture #3.

Apart from the hyperparameters, the structures of the evolved Genotype layers
stacked inside the evolved architectures also impact performance. The Genotype
layers belonging to the three considered architectures are shown in Figure 5.11.
Surprisingly, all layers rely heavily on convolution and quite little on attention.
The only attention module they all utilized is Conformer attention which is built
as a series of point-wise and depth-wise convolutions interleaved with normaliza-
tions and activations. To provide a full picture, the internal structure of Con-
former module is shown in Figure 5.12. Additionally, the layers of all architectures
are similar in structure and utilize almost the same set of modules which primar-
ily consists of Convolution 2D and Inverted bottleneck modules. Also, most of
the modules inside Genotype layers have parameters attached. The values of all
parameters are presented in Table 5.26.

Figure 5.12: The internal structure of Conformer attention module [59].

120 Experimental Results

Architecture Module Parameter Branch Value

#1 Conformer attention dropout left 0.1

#1 Inverted bottleneck kernel size right 12

#1 Inverted bottleneck dilation right 3

#1 Inverted bottleneck forward expansion right 2

#1 Convolution 2D kernel width left 3

#1 Convolution 2D kernel height left 6

#1 Convolution 2D horizontal dilation left 1

#1 Convolution 2D vertical dilation left 1

#2 Conformer attention dropout left 0.0

#2 Convolution 2D kernel width left 12

#2 Convolution 2D kernel height left 6

#2 Convolution 2D horizontal dilation left 1

#2 Convolution 2D vertical dilation left 2

#2 Inverted bottleneck kernel size right 6

#2 Inverted bottleneck dilation right 1

#2 Inverted bottleneck forward expansion right 4

#3 Conformer attention dropout left 0.0

#3 Convolution 2D kernel width left 12

#3 Convolution 2D kernel height left 6

#3 Convolution 2D horizontal dilation left 1

#3 Convolution 2D vertical dilation left 2

#3 Conformer attention dropout right 0.0

#3 Convolution 2D kernel width right 12

#3 Convolution 2D kernel height right 6

#3 Convolution 2D horizontal dilation right 1

#3 Convolution 2D vertical dilation right 2

Table 5.26: The values of parameters attached to the modules used by the evolved
architectures utilized in this experimental phase.

Experiments and Results 121

The one and only experiment conducted in this phase uses a setup similar to
the setups used by experiments in Phase 1 and 2 (subsection 5.3.1, subsec-
tion 5.3.2). Details are provided in Table 5.27. The first important difference
is the use of the second sub-sampled Libra dataset to eliminate the advantage
the evolved architectures would have if they were evaluated on the same dataset
as they were optimized on during evolution. Another detail to mention is the use
of the same pregenerated training examples for training of all compared methods
and architectures. This aims to eliminate the influence of different training exam-
ple generation methods as they might affect the achieved forecasting accuracies.
The only exception to this rule is ARIMA. To keep the ARIMA method effective,
it needs to be fit to only one time series at once. For that reason, ARIMA is hard
to train on multiple series as it is done for the other compared methods. Hence,
ARIMA was considered to be a baseline and was given a slight advantage. The
method was trained and evaluated on each time series in the dataset separately
and the mean value of the obtained accuracies was used as the final forecasting
performance measure. Finally, it was decided to evaluate all methods on each
Libra category separately in order to gain more insight into how the methods
and architectures perform in different domains.

Concept Configuration

dataset for evaluation sub-sampled Libra 2

evaluation metrics [MAE, RMSE]

model input size 400

model output sizes
(forecasting horizons)

[1, 20, 50]

trained for epochs 20

evaluation repeated
10x per method, Libra category
and forecasting horizon
combination

Table 5.27: Setup and configuration of the forecasting methods and architectures
comparison experiment.

Ex1: Forecasting Methods Comparison

The results of this experiment are provided in the four tables below (Table 5.28,
Table 5.29, Table 5.30, Table 5.31). The tables compare metrics that each of
the considered forecasting methods obtained on one category of the second sub-

122 Experimental Results

sampled Libra dataset. The cells of each table display the means of MAE and
RMSE metrics and the corresponding standard deviations. As usual, ANOVA
was used to ensure that the differences between means are statistically significant.

To start with a more general assessment, all Transformer-based architectures
(including the pre-norm encoder-only) demonstrated a competitive performance
in time series forecasting. In addition, the evolved architectures turned out to be
mostly performance-wise superior to the other state-of-the-art forecasting meth-
ods. In fact, in all four categories, at least one of them was always the best
performing option for the 20 and 50 forecasting horizon case. For the forecasting
horizon of size 1, the differences were less pronounced. In the Economics category,
all Transformer-based architectures were surpassed by N-BEATS. In general, N-
BEATS was the best performing method if not considering Transformer-based
architectures. In the Finance category, all methods were slightly outperformed
by ARIMA. However, given the training advantage it had, it is a negligible dif-
ference. The results achieved by TCN were usually among the worst. This is
a surprising finding as TCN is conceptually close to the evolved architectures
which also rely on convolution.

When it comes to the evolved architectures only, the number #2 performed the
worst. It usually managed to perform slightly better or at least on par with the
vanilla pre-norm encoder-only, however, it never surpassed the other evolved ar-
chitectures. Based on the metrics, the architecture number #1 performs better
with longer forecasting horizons. In 3 out of the 4 Libra categories, it reached
the lowest forecast error on the 20 and 50 forecasting horizon cases. In contrast,
the number #3 architecture was stronger in the forecasting horizon 1 case and
dominated in 2 out of 4 categories. To sum up, the evolved Transformer-based
architectures number #1 and #3 seem to be good candidates for real-world time
series forecasting.

Experiments and Results 123

Libra -
Economics

Forecasting
horizon: 1

Forecasting
horizon: 20

Forecasting
horizon: 50

ARIMA
0.2067 ± 0.0,
0.2067 ± 0.0

0.7841 ± 0.0,
0.9003 ± 0.0

2.0252 ± 0.0,
2.3889 ± 0.0

RNN
0.0552 ± 0.0008,
0.0552 ± 0.0008

0.0666 ± 0.001,
0.0879 ± 0.001

0.0692 ± 0.0005,
0.0971 ± 0.0005

LSTM
0.0499 ± 0.0032,
0.0499 ± 0.0032

0.065 ± 0.0022,
0.0873 ± 0.0018

0.0678 ± 0.0008,
0.0992 ± 0.0009

TCN
0.0834 ± 0.0027,
0.0834 ± 0.0027

0.1317 ± 0.0025,
0.1702 ± 0.0024

0.1349 ± 0.0008,
0.175 ± 0.0004

N-BEATS
0.0437 ± 0.003,
0.0437 ± 0.003

0.0549 ± 0.0009,
0.07 ± 0.001

0.064 ± 0.0014,
0.0853 ± 0.0029

Pre-norm
encoder-only

0.0812 ± 0.0292,
0.0812 ± 0.0292

0.0628 ± 0.0019,
0.0834 ± 0.0025

0.0642 ± 0.0018,
0.0873 ± 0.0031

The evolved
architecture #1

0.065 ± 0.0189,
0.065 ± 0.0189

0.0342 ± 0.0079,
0.0419 ± 0.0086

0.0463 ± 0.017,
0.0583 ± 0.022

The evolved
architecture #2

0.0452 ± 0.0056,
0.0452 ± 0.0056

0.0549 ± 0.0091,
0.0704 ± 0.0145

0.179 ± 0.1214,
0.2119 ± 0.1135

The evolved
architecture #3

0.0481 ± 0.0063,
0.0481 ± 0.0063

0.052 ± 0.0018,
0.0653 ± 0.0021

0.0579 ± 0.0105,
0.0772 ± 0.0169

Table 5.28: Results of forecasting methods and architectures comparison on Libra
Economics dataset. Every cell shows the values of MAE and RMSE metrics
separated by a comma. The notation stands for: mean ± std. The best (lowest)
values are shown in bold.

124 Experimental Results

Libra - Finance
Forecasting
horizon: 1

Forecasting
horizon: 20

Forecasting
horizon: 50

ARIMA
0.0091 ± 0.0,
0.0091 ± 0.0

0.0741 ± 0.0,
0.0882 ± 0.0

0.2549 ± 0.0,
0.3199 ± 0.0

RNN
0.0221 ± 0.0076,
0.0221 ± 0.0076

0.0274 ± 0.0014,
0.031 ± 0.0013

0.0342 ± 0.001,
0.0394 ± 0.0009

LSTM
0.0115 ± 0.0005,
0.0115 ± 0.0005

0.0295 ± 0.0017,
0.0329 ± 0.0017

0.0297 ± 0.0008,
0.0345 ± 0.0009

TCN
0.0162 ± 0.0013,
0.0162 ± 0.0013

0.0255 ± 0.0016,
0.0287 ± 0.0016

0.0309 ± 0.0015,
0.0355 ± 0.0015

N-BEATS
0.0105 ± 0.0033,
0.0105 ± 0.0033

0.018 ± 0.0028,
0.0211 ± 0.0031

0.0181 ± 0.0029,
0.0221 ± 0.0035

Pre-norm
encoder-only

0.0093 ± 0.0006,
0.0093 ± 0.0006

0.0222 ± 0.0012,
0.0254 ± 0.0013

0.0227 ± 0.0024,
0.0269 ± 0.0027

The evolved
architecture #1

0.0096 ± 0.0012,
0.0096 ± 0.0012

0.0155 ± 0.0022,
0.018 ± 0.0022

0.0152 ± 0.0028,
0.0181 ± 0.0032

The evolved
architecture #2

0.0194 ± 0.0167,
0.0194 ± 0.0167

0.0154 ± 0.0048,
0.018 ± 0.0052

0.014 ± 0.004,
0.0169 ± 0.0046

The evolved
architecture #3

0.0107 ± 0.0016,
0.0107 ± 0.0016

0.0118 ± 0.0009,
0.0142 ± 0.0011

0.012 ± 0.0007,
0.0147 ± 0.0008

Table 5.29: Results of forecasting methods and architectures comparison on Li-
bra Finance dataset. Every cell shows the values of MAE and RMSE metrics
separated by a comma. The notation stands for: mean ± std. The best (lowest)
values are shown in bold.

Experiments and Results 125

Libra - Human
access

Forecasting
horizon: 1

Forecasting
horizon: 20

Forecasting
horizon: 50

ARIMA
0.0519 ± 0.0,
0.0519 ± 0.0

0.5146 ± 0.0,
0.6166 ± 0.0

1.4105 ± 0.0,
1.6809 ± 0.0

RNN
0.0424 ± 0.0025,
0.0424 ± 0.0025

0.0511 ± 0.0025,
0.0645 ± 0.0024

0.0526 ± 0.0015,
0.0699 ± 0.0015

LSTM
0.0379 ± 0.0007,
0.0379 ± 0.0007

0.0418 ± 0.0007,
0.0554 ± 0.0007

0.0463 ± 0.0007,
0.0629 ± 0.0007

TCN
0.0416 ± 0.0027,
0.0416 ± 0.0027

0.0484 ± 0.0007,
0.0626 ± 0.001

0.0522 ± 0.0007,
0.0702 ± 0.0008

N-BEATS
0.0336 ± 0.0011,
0.0336 ± 0.0011

0.0416 ± 0.0012,
0.0551 ± 0.0014

0.0445 ± 0.0008,
0.0607 ± 0.0008

Pre-norm
encoder-only

0.0356 ± 0.0006,
0.0356 ± 0.0006

0.038 ± 0.0008,
0.0502 ± 0.0009

0.0386 ± 0.0005,
0.0531 ± 0.001

The evolved
architecture #1

0.0366 ± 0.0037,
0.0366 ± 0.0037

0.0183 ± 0.0004,
0.0226 ± 0.0005

0.0127 ± 0.0008,
0.0157 ± 0.001

The evolved
architecture #2

0.0358 ± 0.0033,
0.0358 ± 0.0033

0.0304 ± 0.0008,
0.039 ± 0.0011

0.0232 ± 0.0012,
0.0301 ± 0.0013

The evolved
architecture #3

0.0332 ± 0.0026,
0.0332 ± 0.0026

0.0295 ± 0.0016,
0.0379 ± 0.0019

0.0257 ± 0.0006,
0.0338 ± 0.0007

Table 5.30: Results of forecasting methods and architectures comparison on Libra
Human access dataset. Every cell shows the values of MAE and RMSE metrics
separated by a comma. The notation stands for: mean ± std. The best (lowest)
values are shown in bold.

126 Experimental Results

Libra - Nature
and
demographics

Forecasting
horizon: 1

Forecasting
horizon: 20

Forecasting
horizon: 50

ARIMA
0.1350 ± 0.0,
0.1350 ± 0.0

0.8663 ± 0.0,
1.0184 ± 0.0

2.1679 ± 0.0,
2.5999 ± 0.0

RNN
0.0611 ± 0.0053,
0.0611 ± 0.0053

0.063 ± 0.0005,
0.0833 ± 0.0005

0.0678 ± 0.0013,
0.0916 ± 0.0012

LSTM
0.049 ± 0.0015,
0.049 ± 0.0015

0.0573 ± 0.0005,
0.0763 ± 0.0004

0.06 ± 0.0008,
0.0839 ± 0.0008

TCN
0.0764 ± 0.0018,
0.0764 ± 0.0018

0.0952 ± 0.0065,
0.1254 ± 0.008

0.0975 ± 0.0083,
0.1311 ± 0.0089

N-BEATS
0.0493 ± 0.0019,
0.0493 ± 0.0019

0.0564 ± 0.0013,
0.0731 ± 0.0014

0.0607 ± 0.0022,
0.0811 ± 0.0026

Pre-norm
encoder-only

0.0513 ± 0.0026,
0.0513 ± 0.0026

0.0475 ± 0.0008,
0.0619 ± 0.001

0.0488 ± 0.0008,
0.0642 ± 0.0011

The evolved
architecture #1

0.0484 ± 0.003,
0.0484 ± 0.003

0.0191 ± 0.0016,
0.0239 ± 0.002

0.0183 ± 0.0017,
0.0241 ± 0.0019

The evolved
architecture #2

0.0446 ± 0.0031,
0.0446 ± 0.0031

0.038 ± 0.0022,
0.0481 ± 0.0026

0.0293 ± 0.0012,
0.0383 ± 0.0014

The evolved
architecture #3

0.0411 ± 0.0014,
0.0411 ± 0.0014

0.0387 ± 0.0005,
0.0491 ± 0.0003

0.0341 ± 0.0004,
0.0442 ± 0.0006

Table 5.31: Results of forecasting methods and architectures comparison on Libra
Nature and demographics dataset. Every cell shows the values of MAE and RMSE
metrics separated by a comma. The notation stands for: mean ± std. The best
(lowest) values are shown in bold.

Chapter 6

Conclusion and Future
Work

In this chapter, the designed artifacts (chapter 4) and the obtained experimental
results (chapter 5) are discussed in the context of the hypothesis, research goal
and research questions of this work. Then, an assessment of limitations of the
presented solutions is provided. Finally, the opportunities for future work are
outlined. The content of this chapter maps to the Conclusion phase of Design
Science Research.

6.1 Discussion

This section discusses and reflects on the experimental results, designed artifacts
and other knowledge obtained in this work. The section is split into subsections
which map to the research questions, the main goal and the hypothesis of the
work. Each of them of is addressed separately.

Research question 1 What combination of Transformer encoder and decoder
stages achieves better forecasting accuracy?

The first research question was answered in the first experimental phase which
compared 5 different Transformer variants and managed to reach a statistically
significant conclusion. After obtaining the optimal hyperparamters for each ar-
chitectural variant, merged encoder-only achieved the best forecasting accuracy
on all tested datasets and for all considered forecasting horizons. Therefore,
encoder-based architectures, based on the result of the conducted experiments,
constitute the best option for time series forecasting.

128 Discussion

Research question 2 Which attention models capture long-term dependencies
in time series the best?

The second research question was addressed by the second experimental phase.
The phase compared a set of attention models discovered during the literature
review while focusing on their ability to deal with long-term dependencies in time
series. The models were tested in the merged encoder-only variant where they
replaced the original attention model forming several architectural instances dif-
fering in the used attention model. The experiments comparing these instances
on a combination of difficult datasets and long forecasting horizons produced
a statistically significant ordering of the attention models which represented their
suitability for time series forecasting and the ability to capture long-term depen-
dencies. The later experimental phases used this knowledge to exclude models
that did not perform well. To sum up, based on these experimental results and
the obtained ordering, it is possible to form a subset of more suitable attention
models. The size of the set can be specified as needed.

Research question 3 What genotype encoding is suitable for representing Trans-
former-based architectures?

The third research question was addressed by the third experimental phase. The
base of the genotype encoding used in this work was designed as a part of the neu-
ral architecture search system while having certain aspects that can be tweaked.
The third experimental phase consisted of two experiments that attempted to de-
termine the optimal configuration of the genotype encoding. The first experiment
revealed promising results of certain genotype encoding configurations, however,
the more general comparison case from the second experiment showed that it
cannot be concluded which configuration works the best. Nevertheless, all geno-
type configurations were later used to evolve Transformer-based architectures and
proved to be capable of producing strong architectures for time series forecast-
ing. For that reason, it is possible to conclude that the designed encoding is at
least one of the possible encodings suitable for representing Transformer-based
architectures.

Research question 4 How does the accuracy of the evolved architectures com-
pare to other time series forecasting methods?

The comparison experiment performed during the fourth experimental phase
demonstrated that the best evolved architectures are capable of performing on
par or even surpass the accuracy of the commonly used state-of-the-art forecast-
ing methods on univariate time series without timestamps.

Conclusion and Future Work 129

Goal Investigate evolution of Transformer-based architectures for time series
forecasting.

Based on the fact that during this work, a neural architecture search system for
evolving Transformer-based architectures was designed, implemented and suc-
cessfully used to evolve architectures which managed to outperform state-of-
the-art forecasting methods, it is concluded that the investigation was thorough
enough to produce the planned outcomes. On the other hand, there are still
limits and future work opportunities as outlined in the following sections.

Hypothesis Neural evolution is capable of designing Transformer-based neural
network architectures achieving state-of-the-art performance in time series
forecasting.

The designed artifacts and conducted experiments showed that neural evolution
truly is capable of producing state-of-the-art forecasting architectures based on
Transformer concepts. Hence, the hypothesis is considered to be confirmed.

6.2 Limitations

The most constraining limitation of the proposed neural architecture search sys-
tem is probably the amount of time needed to run a single evolutionary search.
The system spends most of its run time training and evaluating candidate mod-
els, therefore, a more efficient way of estimating the performance of candidate
models i.e. a faster performance estimation strategy would be beneficial. If that
was the case, more optimal architectures can potentially be discovered as it would
be possible to run the search for more iterations, with larger populations and/or
including more modules in it. Also, it might then become feasible to run a search
utilizing the independent evolution of individual Transformer layers which has a
potential to further improve the produced architectures.

Nextly, evolutionary algorithms were chosen as the search strategy to employ,
however, the other presented strategies can constitute a better fit for designing
Transformer-based architectures. Also, the same goes for the Transformer archi-
tecture variant selected as a base for genotype encoding design. It is probably
worth exploring how well would the other variants perform when utilized by the
neural architecture search system. The last point brings up another limitation
which is the limited support for representing Transformer variants in the designed
encoding. In this work, the encoding was used for representing just the encoder-
only and merged encoder-only variants.

130 Future Work

Finally, the NAS system currently supports only univariate time series with-
out timestamps. Extending the support to multivariate time series would require
just a minor modification of the system and can possibly expand its application
area as many time series datasets contain multivariate time series and there is a
demand for forecasting these kinds of time series. Additionally, there is the lack
of support for timestamped time series which is another potential improvement
worth considering. Timestamps can be very useful when forecasting time series
containing a lot of seasonality or other kinds of periodic patterns.

6.3 Future Work

In fact, all the limitations presented in the previous section (section 6.2) can be
seen as opportunities for future work. The alternative performance estimation
strategies presented subsection 3.2.3 and subsection 3.3.3 constitute some of the
possible strategies that can be implemented and evaluated in the designed neural
architecture search system. A particularly interesting approach presented in sec-
tion 3.2.3 is the nearly instant performance estimation without training method
by Mellor et al. [109]. Successful application of this technique would result in a
massive speed up of the evolutionary searches. When it comes to the alternative
Transformer variants, the designed genotype can likely be adapted to represent
any of them. The modified genotype would then be evaluated for its capability
to evolve strong Transformer-based architectures for time series forecasting.

Apart from addressing the actual limitations, new research directions can be
investigated. A tempting research goal might be focusing on evolving architec-
tures for resource constrained environments or simply taking the efficiency of
the evolved architectures into account. The works of Tsai et al. [157], So et al.
[144] and Wang et al. [161] have already laid some foundation for automated
design of efficient Transformers. Finally, the masked pretraining approach pre-
sented in subsection 3.4.6 and applied to Transformers by Zerveas et al. [184] can
likely be used as a performance estimation strategy on its own or at least com-
plement the trainining of candidate architectures to obtain more accurate eval-
uation. Also, the same technique can be employed to pretrain the final evolved
architectures attempting to push their forecasting performance even further.

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A
system for large-scale machine learning,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 2016,
pp. 265–283. [Online]. Available: https://www.usenix.org/system/files/
conference/osdi16/osdi16-abadi.pdf

[2] J. Ainslie, S. Ontanon, C. Alberti, V. Cvicek, Z. Fisher, P. Pham,
A. Ravula, S. Sanghai, Q. Wang, and L. Yang, “Etc: Encoding long and
structured inputs in transformers,” 2020.

[3] J. Alammar, Jun 2018. [Online]. Available: https://jalammar.github.io/
illustrated-transformer/

[4] G. Athanasopoulos, R. J. Hyndman, H. Song, and D. C. Wu, “The
tourism forecasting competition,” International Journal of Forecasting,
vol. 27, no. 3, pp. 822–844, 2011, special Section 1: Forecasting with
Artificial Neural Networks and Computational Intelligence Special Section
2: Tourism Forecasting. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S016920701000107X

[5] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2015.

[6] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” ArXiv, vol.
abs/1803.01271, 2018.

[7] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” 2017.

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://www.sciencedirect.com/science/article/pii/S016920701000107X
https://www.sciencedirect.com/science/article/pii/S016920701000107X

132 Bibliography

[8] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural archi-
tecture search using performance prediction,” arXiv: Learning, 2018.

[9] A. Bauer, M. Züfle, S. Eismann, J. Grohmann, N. Herbst, and
S. Kounev, “Libra: A benchmark for time series forecasting methods,” in
Proceedings of the ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 189–200. [Online]. Available:
https://doi.org/10.1145/3427921.3450241

[10] I. Bello, “Lambdanetworks: Modeling long-range interactions without
attention,” in International Conference on Learning Representations, 2021.
[Online]. Available: https://openreview.net/forum?id=xTJEN-ggl1b

[11] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document
transformer,” 2020.

[12] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le,
“Understanding and simplifying one shot architecture search,” in
Proceedings of the 35th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, J. Dy and A. Krause,
Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 550–559. [Online]. Available:
https://proceedings.mlr.press/v80/bender18a.html

[13] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican,
G. van den Driessche, J.-B. Lespiau, B. Damoc, A. Clark, D. de Las Casas,
A. Guy, J. Menick, R. Ring, T. W. Hennigan, S. Huang, L. Maggiore,
C. Jones, A. Cassirer, A. Brock, M. Paganini, G. Irving, O. Vinyals, S. Osin-
dero, K. Simonyan, J. W. Rae, E. Elsen, and L. Sifre, “Improving language
models by retrieving from trillions of tokens,” ArXiv, vol. abs/2112.04426,
2021.

[14] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: One-shot model
architecture search through hypernetworks,” 2017.

[15] P. Brockwell and R. Davis, Introduction to Time Series and Forecasting,
ser. Springer Texts in Statistics. Springer International Publishing, 2016.
[Online]. Available: https://books.google.no/books?id=P3fhDAAAQBAJ

[16] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

https://doi.org/10.1145/3427921.3450241
https://openreview.net/forum?id=xTJEN-ggl1b
https://proceedings.mlr.press/v80/bender18a.html
https://books.google.no/books?id=P3fhDAAAQBAJ

Bibliography 133

[17] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Efficient architecture
search by network transformation,” 2017.

[18] H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu, “Path-level network trans-
formation for efficient architecture search,” 2018.

[19] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” 2019.

[20] L. Cai, K. Janowicz, G. Mai, B. Yan, and R. Zhu, “Traffic transformer:
Capturing the continuity and periodicity of time series for traffic
forecasting,” Transactions in GIS, vol. 24, no. 3, pp. 736–755, 2020.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.
12644

[21] T. A. Chang, Y. Xu, W. Xu, and Z. Tu, “Convolutions and self-attention:
Re-interpreting relative positions in pre-trained language models,” 2021.

[22] C. Chatfield, The Analysis of Time Series: An Introduction with R,
ser. Texts in statistical science. Chapman & Hall/CRC, 2019. [Online].
Available: https://books.google.no/books?id=-i2owwEACAAJ

[23] B. Chen, P. Li, C. Li, B. Li, L. Bai, C. Lin, M. Sun, J. Yan, and W. Ouyang,
“Glit: Neural architecture search for global and local image transformer,”
CoRR, vol. abs/2107.02960, 2021.

[24] M. Chen, H. Peng, J. Fu, and H. Ling, “Autoformer: Searching transform-
ers for visual recognition,” 07 2021.

[25] M. Chen, K. Wu, B. Ni, H. Peng, B. Liu, J. Fu, H. Chao, and H. Ling,
“Searching the search space of vision transformer,” 11 2021.

[26] T. Chen, I. Goodfellow, and J. Shlens, “Net2net: Accelerating learning via
knowledge transfer,” 2016.

[27] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences
with sparse transformers,” 2019.

[28] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos,
P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser, D. Belanger, L. Colwell,
and A. Weller, “Rethinking attention with performers,” 2021.

[29] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,
S. Tsvyashchenko, J. Maynez, A. B. Rao, P. Barnes, Y. Tay, N. M. Shazeer,

https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12644
https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12644
https://books.google.no/books?id=-i2owwEACAAJ

134 Bibliography

V. Prabhakaran, E. Reif, N. Du, B. C. Hutchinson, R. Pope, J. Brad-
bury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya,
S. Ghemawat, S. Dev, H. Michalewski, X. Garćıa, V. Misra, K. Robinson,
L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov,
R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai,
M. Pellat, A. Lewkowycz, E. O. Moreira, R. Child, O. Polozov, K. Lee,
Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. S.
Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling
language modeling with pathways,” ArXiv, vol. abs/2204.02311, 2022.

[30] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (elus),” arXiv: Learning, 2016.

[31] S. F. Crone, M. Hibon, and K. Nikolopoulos, “Advances in forecasting
with neural networks? empirical evidence from the nn3 competition on
time series prediction,” International Journal of Forecasting, vol. 27, no. 3,
pp. 635–660, 2011, special Section 1: Forecasting with Artificial Neural
Networks and Computational Intelligence Special Section 2: Tourism
Forecasting. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0169207011000616

[32] E. Dagum and S. Bianconcini, Seasonal Adjustment Methods and Real Time
Trend-Cycle Estimation. Springer, 08 2016.

[33] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and R. Salakhut-
dinov, “Transformer-xl: Attentive language models beyond a fixed-length
context,” CoRR, vol. abs/1901.02860, 2019.

[34] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” ArXiv, vol.
abs/1810.04805, 2019.

[35] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” ArXiv, vol.
abs/1810.04805, 2019.

[36] J. Devore and K. Berk, Modern Mathematical Statistics with Applications,
ser. Springer Texts in Statistics. Springer New York, 2011. [Online].
Available: https://books.google.no/books?id=cv3pcEJ7amMC

[37] D. Dickey and W. Fuller, “Distribution of the estimators for autoregressive
time series with a unit root,” JASA. Journal of the American Statistical
Association, vol. 74, 06 1979.

https://www.sciencedirect.com/science/article/pii/S0169207011000616
https://www.sciencedirect.com/science/article/pii/S0169207011000616
https://books.google.no/books?id=cv3pcEJ7amMC

Bibliography 135

[38] T. Domhan, J. T. Springenberg, and F. Hutter, “Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation of
learning curves,” in IJCAI, 2015.

[39] X. Dong and Y. Yang, “Searching for a robust neural architecture in four
gpu hours,” 2019.

[40] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,
and N. Houlsby, “An image is worth 16x16 words: Transformers for image
recognition at scale,” 2021.

[41] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
2nd ed. Springer Publishing Company, Incorporated, 2015.

[42] T. Elsken, J.-H. Metzen, and F. Hutter, “Simple and efficient architecture
search for convolutional neural networks,” 2017.

[43] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective neural
architecture search via lamarckian evolution,” 2019.

[44] T. Elsken, J.-H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997–2017, 2019.

[45] W. Fedus, B. Zoph, and N. M. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” ArXiv, vol.
abs/2101.03961, 2021.

[46] B. Feng, D. Liu, and Y. Sun, Evolving Transformer Architecture
for Neural Machine Translation. New York, NY, USA: Association
for Computing Machinery, 2021, p. 273–274. [Online]. Available:
https://doi.org/10.1145/3449726.3459441

[47] D. Floreano and C. Mattiussi, Bio-Inspired Artificial Intelligence: Theories,
Methods, and Technologies. The MIT Press, 2008.

[48] V. Flunkert, D. Salinas, and J. Gasthaus, “Deepar: Probabilistic forecast-
ing with autoregressive recurrent networks,” ArXiv, vol. abs/1704.04110,
2017.

[49] E. Galván and P. Mooney, “Neuroevolution in deep neural networks: Cur-
rent trends and future challenges,” CoRR, vol. abs/2006.05415, 2020.

[50] R. B. Girshick, “Fast r-cnn,” 2015 IEEE International Conference on Com-
puter Vision (ICCV), pp. 1440–1448, 2015.

https://doi.org/10.1145/3449726.3459441

136 Bibliography

[51] A. Glassner, Deep Learning: A Visual Approach. No Starch Press, 2021.
[Online]. Available: https://books.google.no/books?id=NgTyDwAAQBAJ

[52] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in Foundations of Genetic
Algorithms, ser. Foundations of Genetic Algorithms, G. J. RAWLINS,
Ed. Elsevier, 1991, vol. 1, pp. 69–93. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780080506845500082

[53] F. Gomez and R. Miikkulainen, “Solving non-markovian control tasks with
neuro-evolution,” in IJCAI, 01 1999, pp. 1356–1361.

[54] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016, http://www.deeplearningbook.org.

[55] S. Gregor and A. Hevner, “Positioning and presenting design science re-
search for maximum impact,” MIS Quarterly, vol. 37, pp. 337–356, 06
2013.

[56] J. Grigsby, Z. Wang, and Y. Qi, “Long-range transformers for dynamic
spatiotemporal forecasting,” 2021.

[57] F. Gruau, “Automatic definition of modular neural networks,” Adaptive
Behavior - ADAPT BEHAV, vol. 3, pp. 151–183, 09 1994.

[58] C. Guan, X. Wang, and W. Zhu, “Autoattend: Automated attention
representation search,” in Proceedings of the 38th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
M. Meila and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021,
pp. 3864–3874. [Online]. Available: https://proceedings.mlr.press/v139/
guan21a.html

[59] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented transformer for speech recognition,” ArXiv, vol.
abs/2005.08100, 2020.

[60] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” 2016.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[62] P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced bert
with disentangled attention,” ArXiv, vol. abs/2006.03654, 2021.

https://books.google.no/books?id=NgTyDwAAQBAJ
https://www.sciencedirect.com/science/article/pii/B9780080506845500082
https://www.sciencedirect.com/science/article/pii/B9780080506845500082
http://www.deeplearningbook.org
https://proceedings.mlr.press/v139/guan21a.html
https://proceedings.mlr.press/v139/guan21a.html

Bibliography 137

[63] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochastic regu-
larizers with gaussian error linear units,” ArXiv, vol. abs/1606.08415, 2016.

[64] T. Hong, P. Pinson, and S. Fan, “Global energy forecasting competition
2012,” International Journal of Forecasting, vol. 30, no. 2, pp. 357–363,
2014. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0169207013000745

[65] Y.-Q. Hu and Y. Yu, “A technical view on neural architecture search,”
International Journal of Machine Learning and Cybernetics, vol. 11, 04
2020.

[66] R. Hyndman and G. Athanasopoulos, Forecasting: principles and practice.
OTexts, 2014. [Online]. Available: https://books.google.cz/books?id=
gDuRBAAAQBAJ

[67] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679–688,
2006. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0169207006000239

[68] A. Jaegle, F. Gimeno, A. Brock, A. Zisserman, O. Vinyals, and J. Car-
reira, “Perceiver: General perception with iterative attention,” CoRR, vol.
abs/2103.03206, 2021.

[69] K. Jing, J. Xu, and H. X. Zugeng, “Nasabn: A neural architecture search
framework for attention-based networks,” in 2020 International Joint Con-
ference on Neural Networks (IJCNN), 2020, pp. 1–7.

[70] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, “Transformers are
rnns: Fast autoregressive transformers with linear attention,” in ICML,
2020.

[71] S. M. Kazemi, R. Goel, S. Eghbali, J. Ramanan, J. Sahota, S. Thakur,
S. Wu, C. Smyth, P. Poupart, and M. Brubaker, “Time2vec: Learning a
vector representation of time,” 2019.

[72] G. Ke, D. He, and T.-Y. Liu, “Rethinking positional encoding in language
pre-training,” 2021.

[73] J. Kim, J. Wang, S. Kim, and Y. Lee, “Evolved Speech-Transformer:
Applying Neural Architecture Search to End-to-End Automatic Speech
Recognition,” in Proc. Interspeech 2020, 2020, pp. 1788–1792. [Online].
Available: http://dx.doi.org/10.21437/Interspeech.2020-1233

https://www.sciencedirect.com/science/article/pii/S0169207013000745
https://www.sciencedirect.com/science/article/pii/S0169207013000745
https://books.google.cz/books?id=gDuRBAAAQBAJ
https://books.google.cz/books?id=gDuRBAAAQBAJ
https://www.sciencedirect.com/science/article/pii/S0169207006000239
https://www.sciencedirect.com/science/article/pii/S0169207006000239
http://dx.doi.org/10.21437/Interspeech.2020-1233

138 Bibliography

[74] N. Kitaev, Lukasz Kaiser, and A. Levskaya, “Reformer: The efficient trans-
former,” 2020.

[75] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” ArXiv, vol. abs/1706.02515, 2017.

[76] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast bayesian
optimization of machine learning hyperparameters on large datasets,” 2017.

[77] U. Knief and W. Forstmeier, “Violating the normality assumption may be
the lesser of two evils,” bioRxiv, 2018.

[78] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Al-
bert: A lite bert for self-supervised learning of language representations,”
ArXiv, vol. abs/1909.11942, 2020.

[79] J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. W. Teh, “Set
transformer: A framework for attention-based permutation-invariant neural
networks,” 2019.

[80] J. Lee-Thorp, J. Ainslie, I. Eckstein, and S. Ontañón, “Fnet: Mixing tokens
with fourier transforms,” CoRR, vol. abs/2105.03824, 2021.

[81] H. Levene, “Robust tests for equality of variance. in ‘contributions to prob-
ability and statistics’.(eds i olkin, sg ghurye, w hoeffeling, wg madow, hb
mann) pp. 278–292,” 1960.

[82] C. Li, J. Peng, L. Yuan, G. Wang, X. Liang, L. Lin, and X. Chang, “Block-
wisely supervised neural architecture search with knowledge distillation,”
11 2019.

[83] H. Li, A. Y. C. Wang, Y. Liu, D. Tang, Z. Lei, and W. Li, “An augmented
transformer architecture for natural language generation tasks,” 2019.

[84] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan,
“Enhancing the locality and breaking the memory bottleneck of transformer
on time series forecasting,” 2020.

[85] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” ArXiv,
vol. abs/2106.04554, 2021.

[86] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” 2018.

Bibliography 139

[87] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu, “Hi-
erarchical representations for efficient architecture search,” 2018.

[88] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” 2019.

[89] J. Liu, S. Zhou, Y. Wu, K. Chen, W. Ouyang, and D. Xu, “Block proposal
neural architecture search,” Trans. Img. Proc., vol. 30, p. 15–25, jan 2021.
[Online]. Available: https://doi.org/10.1109/TIP.2020.3028288

[90] J. Liu, H. Li, G. Song, X. Huang, and Y. Liu, “Uninet: Unified ar-
chitecture search with convolution, transformer, and MLP,” CoRR, vol.
abs/2110.04035, 2021.

[91] R. Liu, J. Lehman, P. Molino, F. P. Such, E. Frank, A. Sergeev, and
J. Yosinski, “An intriguing failing of convolutional neural networks and
the coordconv solution,” in NeurIPS, 2018.

[92] X. Liu, H.-F. Yu, I. Dhillon, and C.-J. Hsieh, “Learning to encode position
for transformer with continuous dynamical model,” 2020.

[93] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” ArXiv, vol. abs/1907.11692, 2019.

[94] Z. Liu, H. Mao, C. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet
for the 2020s,” in A ConvNet for the 2020s, 2022.

[95] V. Lopes, S. Alirezazadeh, and L. A. Alexandre, “Epe-nas: Efficient perfor-
mance estimation without training for neural architecture search,” in Ar-
tificial Neural Networks and Machine Learning – ICANN 2021, I. Farkaš,
P. Masulli, S. Otte, and S. Wermter, Eds. Cham: Springer International
Publishing, 2021, pp. 552–563.

[96] V. Lopes, M. Santos, B. Degardin, and L. Alexandre, “Guided evolution
for neural architecture search,” 10 2021.

[97] I. Loshchilov and F. Hutter, “Fixing weight decay regularization in adam,”
ArXiv, vol. abs/1711.05101, 2017.

[98] R. Luo, F. Tian, T. Qin, and T.-Y. Liu, “Neural architecture optimization,”
in NeurIPS, ser. NIPS’18. Red Hook, NY, USA: Curran Associates Inc.,
2018, p. 7827–7838.

[99] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture
optimization,” 2019.

https://doi.org/10.1109/TIP.2020.3028288

140 Bibliography

[100] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” 2015.

[101] A. Mahmoud and A. Mohammed, A Survey on Deep Learning for Time-
Series Forecasting. Cham: Springer International Publishing, 2021, pp.
365–392. [Online]. Available: https://doi.org/10.1007/978-3-030-59338-4
19

[102] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The m5 competition:
Background, organization, and implementation,” International Journal
of Forecasting, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0169207021001187

[103] S. Makridakis and M. Hibon, “The m3 competition: results,
conclusions and implications,” International Journal of Forecasting,
vol. 16, no. 4, pp. 451–476, 2000. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0169207000000571

[104] S. Makridakis, C. Chatfield, M. Hibon, M. Lawrence, T. Mills,
K. Ord, and L. F. Simmons, “The m2-competition: A real-
time judgmentally based forecasting study,” International Journal
of Forecasting, vol. 9, no. 1, pp. 5–22, 1993. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/016920709390044N

[105] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The m4 competition:
100,000 time series and 61 forecasting methods,” International Journal
of Forecasting, vol. 36, no. 1, pp. 54–74, 2020, m4 Competition.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0169207019301128

[106] E. M. Malta, S. Avila, and E. Borin, “Exploring the cost-benefit of
aws ec2 gpu instances for deep learning applications,” in Proceedings
of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing, ser. UCC’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 21–29. [Online]. Available: https:
//doi.org/10.1145/3344341.3368814

[107] S. Mandava, S. Migacz, and A. F. Florea, “Pay attention when required,”
CoRR, vol. abs/2009.04534, 2020.

[108] K. Maziarz, M. Tan, A. Khorlin, M. Georgiev, and A. Gesmundo,
“Evolutionary-neural hybrid agents for architecture search,” 2020.

https://doi.org/10.1007/978-3-030-59338-4_19
https://doi.org/10.1007/978-3-030-59338-4_19
https://www.sciencedirect.com/science/article/pii/S0169207021001187
https://www.sciencedirect.com/science/article/pii/S0169207021001187
https://www.sciencedirect.com/science/article/pii/S0169207000000571
https://www.sciencedirect.com/science/article/pii/S0169207000000571
https://www.sciencedirect.com/science/article/pii/016920709390044N
https://www.sciencedirect.com/science/article/pii/S0169207019301128
https://www.sciencedirect.com/science/article/pii/S0169207019301128
https://doi.org/10.1145/3344341.3368814
https://doi.org/10.1145/3344341.3368814

Bibliography 141

[109] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural
architecture search without training,” 2021. [Online]. Available: https:
//openreview.net/forum?id=g4E6SAAvACo

[110] R. Miikkulainen, J. Z. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat, “Evolving
deep neural networks,” CoRR, vol. abs/1703.00548, 2017.

[111] D. J. Montana and L. Davis, “Training feedforward neural networks using
genetic algorithms,” in Proceedings of the 11th International Joint Confer-
ence on Artificial Intelligence - Volume 1, ser. IJCAI’89. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1989, p. 762–767.

[112] D. Montgomery, C. Jennings, and M. Kulahci, Introduction to Time
Series Analysis and Forecasting, ser. Wiley Series in Probability and
Statistics. Wiley, 2015. [Online]. Available: https://books.google.no/
books?id=-qaFi0oOPAYC

[113] D. Moriarty and R. Miikkulainen, “Efficient reinforcement learning through
symbiotic evolution,” Machine Learning, vol. 22, 01 1995.

[114] T. Q. Nguyen and J. Salazar, “Transformers without tears: Improving the
normalization of self-attention,” ArXiv, vol. abs/1910.05895, 2019.

[115] B. Oates, Researching Information Systems and Computing. SAGE Pub-
lications, 2006.

[116] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-beats: Neural
basis expansion analysis for interpretable time series forecasting,” ArXiv,
vol. abs/1905.10437, 2020.

[117] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in NeurIPS, 2019.

[118] H. Peng, N. Pappas, D. Yogatama, R. Schwartz, N. A. Smith, and L. Kong,
“Random feature attention,” CoRR, vol. abs/2103.02143, 2021.

[119] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” 2018.

[120] J. Qiu, H. Ma, O. Levy, S. W. tau Yih, S. Wang, and J. Tang, “Blockwise
self-attention for long document understanding,” 2020.

https://openreview.net/forum?id=g4E6SAAvACo
https://openreview.net/forum?id=g4E6SAAvACo
https://books.google.no/books?id=-qaFi0oOPAYC
https://books.google.no/books?id=-qaFi0oOPAYC

142 Bibliography

[121] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained models
for natural language processing: A survey,” ArXiv, vol. abs/2003.08271,
2020.

[122] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” OpenAI, 2018.

[123] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Lan-
guage models are unsupervised multitask learners,” in OpenAI, 2019.

[124] J. W. Rae, A. Potapenko, S. M. Jayakumar, and T. P. Lillicrap, “Com-
pressive transformers for long-range sequence modelling,” CoRR, vol.
abs/1911.05507, 2019.

[125] C. Raffel, N. M. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” ArXiv, vol. abs/1910.10683, 2020.

[126] Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation func-
tions,” 2017.

[127] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: a self-gated activation
function,” arXiv: Neural and Evolutionary Computing, 2017.

[128] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and
A. Kurakin, “Large-scale evolution of image classifiers,” 2017.

[129] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for
image classifier architecture search,” 2019.

[130] P. Ren, Y. Xiao, X. Chang, P. Huang, Z. Li, X. Chen, and X. Wang,
“A comprehensive survey of neural architecture search: Challenges and
solutions,” CoRR, vol. abs/2006.02903, 2020.

[131] A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo, M. Ott, C. L.
Zitnick, J. Ma, and R. Fergus, “Biological structure and function emerge
from scaling unsupervised learning to 250 million protein sequences,”
Proceedings of the National Academy of Sciences, vol. 118, no. 15, 2021.
[Online]. Available: https://www.pnas.org/content/118/15/e2016239118

[132] F. Rosenblatt, “The perceptron: a probabilistic model for information stor-
age and organization in the brain.” Psychological review, vol. 65 6, pp.
386–408, 1958.

[133] A. Roy, M. Saffar, A. Vaswani, and D. Grangier, “Efficient content-based
sparse attention with routing transformers,” 2020.

https://www.pnas.org/content/118/15/e2016239118

Bibliography 143

[134] S. J. Russell and P. Norvig, Artificial Intelligence: a modern approach,
4th ed. Pearson, 2020.

[135] S. S. Makridakis and M. Hibon, “Accuracy of forecasting: An empirical
investigation,” Journal of the Royal Statistical Society. Series A (General),
vol. 142, 01 1979.

[136] S. S. SHAPIRO and M. B. WILK, “An analysis of variance test for
normality (complete samples),” Biometrika, vol. 52, no. 3-4, pp. 591–611,
dec 1965. [Online]. Available: https://doi.org/10.1093/biomet/52.3-4.591

[137] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative position
representations,” 2018.

[138] N. M. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” ArXiv, vol. abs/1701.06538, 2017.

[139] L. Shen and Y. Wang, “Tcct: Tightly-coupled convolutional transformer
on time series forecasting,” 2021.

[140] S. Shen, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer, “Rethinking
batch normalization in transformers,” ArXiv, vol. abs/2003.07845, 2020.

[141] T. Shi, Y. Keneshloo, N. Ramakrishnan, and C. Reddy, “Neural abstractive
text summarization with sequence-to-sequence models,” 12 2018.

[142] R. Shin, C. Packer, and D. X. Song, “Differentiable neural network archi-
tecture search,” in ICLR, 2018.

[143] D. R. So, C. Liang, and Q. V. Le, “The evolved transformer,” 2019.

[144] D. R. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V. Le, “Primer:
Searching for efficient transformers for language modeling,” 2021.

[145] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mass: Masked sequence
to sequence pre-training for language generation,” in ICML, 2019.

[146] K. Stanley, D. D’Ambrosio, and J. Gauci, “A hypercube-based encoding for
evolving large-scale neural networks,” Artificial life, vol. 15, pp. 185–212,
02 2009.

[147] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002. [Online]. Available: http://nn.cs.utexas.edu/?stanley:ec02

https://doi.org/10.1093/biomet/52.3-4.591
http://nn.cs.utexas.edu/?stanley:ec02

144 Bibliography

[148] J. Su, Y. Lu, S. Pan, B. Wen, and Y. Liu, “Roformer: Enhanced trans-
former with rotary position embedding,” ArXiv, vol. abs/2104.09864, 2021.

[149] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming ap-
proach to designing convolutional neural network architectures,” 2017.

[150] S. Sukhbaatar, E. Grave, P. Bojanowski, and A. Joulin, “Adaptive attention
span in transformers,” CoRR, vol. abs/1905.07799, 2019.

[151] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” 2014.

[152] A. Tadjer, A. Hong, and R. Bratvold, “Machine learning based decline
curve analysis for short-term oil production forecast,” Energy Exploration
& Exploitation, vol. 39, p. 014459872110117, 05 2021.

[153] Y. Tay, D. Bahri, D. Metzler, D. Juan, Z. Zhao, and C. Zheng, “Syn-
thesizer: Rethinking self-attention in transformer models,” CoRR, vol.
abs/2005.00743, 2020.

[154] Y. Tay, D. Bahri, L. Yang, D. Metzler, and D.-C. Juan, “Sparse sinkhorn
attention,” 2020.

[155] S. J. Taylor and B. Letham, “Forecasting at scale,” PeerJ Prepr., vol. 5, p.
e3190, 2017.

[156] O. Triebe, H. Hewamalage, P. Pilyugina, N. P. Laptev, C. Bergmeir, and
R. Rajagopal, “Neuralprophet: Explainable forecasting at scale,” ArXiv,
vol. abs/2111.15397, 2021.

[157] H. Tsai, J. Ooi, C.-S. Ferng, H. W. Chung, and J. Riesa, “Finding fast
transformers: One-shot neural architecture search by component composi-
tion,” 2020.

[158] V. Vaishnavi and B. Kuechler, “Design science research in information sys-
tems,” Association for Information Systems, 01 2004.

[159] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[160] A. Vyas, A. Katharopoulos, and F. Fleuret, “Fast transformers with clus-
tered attention,” CoRR, vol. abs/2007.04825, 2020.

[161] H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han, “Hat:
Hardware-aware transformers for efficient natural language processing,”
ArXiv, vol. abs/2005.14187, 2020.

Bibliography 145

[162] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao,
“Learning deep transformer models for machine translation,” ArXiv, vol.
abs/1906.01787, 2019.

[163] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer: Self-
attention with linear complexity,” 2020.

[164] T. Wei, C. Wang, Y. Rui, and C. W. Chen, “Network morphism,” 2016.

[165] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3–4,
p. 229–256, may 1992. [Online]. Available: https://doi.org/10.1007/
BF00992696

[166] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE ’14. New York, NY, USA: Association for
Computing Machinery, 2014. [Online]. Available: https://doi.org/10.1145/
2601248.2601268

[167] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” 2019.

[168] F. Wu, A. Fan, A. Baevski, Y. N. Dauphin, and M. Auli, “Pay less attention
with lightweight and dynamic convolutions,” CoRR, vol. abs/1901.10430,
2019.

[169] M.-T. Wu, H.-I. Lin, and C.-W. Tsai, “A training-free genetic neural
architecture search,” in Proceedings of the 2021 ACM International
Conference on Intelligent Computing and Its Emerging Applications, ser.
ACM ICEA ’21. New York, NY, USA: Association for Computing
Machinery, 2022, p. 65–70. [Online]. Available: https://doi.org/10.1145/
3491396.3506510

[170] N. Wu, B. Green, X. Ben, and S. O’Banion, “Deep transformer models for
time series forecasting: The influenza prevalence case,” 2020.

[171] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang, Y. Lan,
L. Wang, and T.-Y. Liu, “On layer normalization in the transformer archi-
tecture,” ArXiv, vol. abs/2002.04745, 2020.

[172] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” ArXiv, vol. abs/1505.00853, 2015.

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/3491396.3506510
https://doi.org/10.1145/3491396.3506510

146 Bibliography

[173] J. Xu, X. Sun, Z. Zhang, G. Zhao, and J. Lin, “Understanding and improv-
ing layer normalization,” ArXiv, vol. abs/1911.07013, 2019.

[174] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional
neural networks: an overview and application in radiology,” Insights into
Imaging, vol. 9, pp. 611 – 629, 2018.

[175] H. Yan, B. Deng, X. Li, and X. Qiu, “Tener: Adapting transformer encoder
for named entity recognition,” 2019.

[176] A. Yang, J. Lin, R. Men, C. Zhou, L. Jiang, X. Jia, A. Wang, J. Zhang,
J. Wang, Y. Li, D. Zhang, W. Lin, L. Qu, J. Zhou, and H. Yang, “M6-t:
Exploring sparse expert models and beyond,” 2021.

[177] S. Yang, Y. Tian, X. Xiang, S. Peng, and X. Zhang, “Accelerating evo-
lutionary neural architecture search via multi-fidelity evaluation,” CoRR,
vol. abs/2108.04541, 2021.

[178] Y. Yang, L. Wang, S. Shi, P. Tadepalli, S. Lee, and Z. Tu, “On the sub-layer
functionalities of transformer decoder,” in FINDINGS, 2020.

[179] X. Yao, “A review of evolutionary artificial neural networks,” International
Journal of Intelligent Systems, vol. 8, no. 4, pp. 539–567, 1993.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/int.
4550080406

[180] S. Yi, X. Chen, and C. Tang, “Tsformer: Time series transformer for
tourism demand forecasting,” 2021.

[181] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, “Evaluating the
search phase of neural architecture search,” 2019.

[182] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontañón,
P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed, “Big bird: Trans-
formers for longer sequences,” CoRR, vol. abs/2007.14062, 2020.

[183] A. Zela, A. Klein, S. Falkner, and F. Hutter, “Towards automated deep
learning: Efficient joint neural architecture and hyperparameter search,”
2018.

[184] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff,
“A transformer-based framework for multivariate time series representation
learning,” 2020.

https://onlinelibrary.wiley.com/doi/abs/10.1002/int.4550080406
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.4550080406

Bibliography 147

[185] S. Zhai, W. Talbott, N. Srivastava, C. Huang, H. Goh, R. Zhang, and J. M.
Susskind, “An attention free transformer,” CoRR, vol. abs/2105.14103,
2021.

[186] B. Zhang and R. Sennrich, “Root mean square layer normalization,” in
NeurIPS, 2019.

[187] H. Zhang, Y. Jin, R. Cheng, and K. Hao, “Efficient evolutionary search
of attention convolutional networks via sampled training and node inher-
itance,” IEEE Transactions on Evolutionary Computation, vol. 25, no. 2,
pp. 371–385, 2021.

[188] Y. Zhao, L. Dong, Y. Shen, Z. Zhang, F. Wei, and W. Chen,
“Memory-efficient differentiable transformer architecture search,” CoRR,
vol. abs/2105.14669, 2021.

[189] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise
neural network architecture generation,” 2018.

[190] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series fore-
casting,” 2021.

[191] C. Zhu, W. Ping, C. Xiao, M. Shoeybi, T. Goldstein, A. Anandkumar, and
B. Catanzaro, “Long-short transformer: Efficient transformers for language
and vision,” in NeurIPS, 2021.

[192] H. Zhu, Z. An, C. Yang, K. Xu, and Y. Xu, “EENA: Efficient evolution of
neural architecture,” 2019.

[193] W. Zhu, X. Wang, X. Qiu, Y. Ni, and G. Xie, “Autotrans: Automat-
ing transformer design via reinforced architecture search,” CoRR, vol.
abs/2009.02070, 2020.

[194] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2017.

[195] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” pp. 8697–8710, 2018.

148 Bibliography

Appendices

Appendix A: Difference Factor

This section provides the source code used to calculate the difference factor met-
ric described in section 4.6.2. The calculation is split into several functions which
evaluate differences between different parts of the designed genotype encoding
(section 4.5). The source code of all functions is provided in the following envi-
ronments: 6.3.1, 6.3.2, 6.3.3, 6.3.4, 6.3.5 and 6.3.6.

def parameter_difference_factor(
parameter1: IParameter, parameter2: IParameter, eps=1e-5

) -> float:
if parameter1.get_type() != parameter2.get_type():

return 1.0

param1_allowed_values = parameter1.get_allowed_values()
param2_allowed_values = parameter2.get_allowed_values()
if param1_allowed_values != param2_allowed_values:

return 1.0

param1_value = parameter1.get_value()
param2_value = parameter2.get_value()
parameter1_index = param1_allowed_values.index(param1_value)
parameter2_index = param2_allowed_values.index(param2_value)

param_diff_factor = abs(parameter1_index - parameter2_index) / (
len(param1_allowed_values) - 1 + eps

)
return param_diff_factor

Source code 6.3.1: The implementation of parameter difference factor function
which calculates the difference between values of two evolvable parameters.

150

def module_difference_factor(
module1: GenotypeModule, module2: GenotypeModule, eps=1e-5

) -> float:
if module1.get_category() != module2.get_category():

return 1.0
If a module is from the same category but not the same module, return 0.75
if module1.get_module_path() != module2.get_module_path():

return 0.75

module1_parameters = module1.get_parameters()
module2_parameters = module2.get_parameters()
if len(module1_parameters) == 0 or len(module2_parameters) == 0:

return 0.0

param_diff_factors = []
for idx in range(len(module1_parameters)):

module1_param = module1_parameters[idx]
module2_param = module2_parameters[idx]
diff_factor = parameter_difference_factor(module1_param, module2_param, eps)
param_diff_factors.append(diff_factor)

Compensate for the "same category, different module" case from above
module_diff_factor = mean(param_diff_factors) * 0.75
return module_diff_factor

Source code 6.3.2: The implementation of module difference factor function which
calculates the difference between two Genotype modules.

def branch_difference_factor(
cell1: GenotypeCell, cell2: GenotypeCell, branch: GenotypeModuleBranch, eps=1e-5

) -> float:
cell1_branch_module_count = cell1.module_count(branch)
cell2_branch_module_count = cell2.module_count(branch)
min_number_of_modules = min(cell1_branch_module_count, cell2_branch_module_count)

module_diff_factors = []
for idx in range(min_number_of_modules):

module1 = cell1.get_module(branch, idx)
module2 = cell2.get_module(branch, idx)
diff_factor = module_difference_factor(module1, module2, eps)
module_diff_factors.append(diff_factor)

mean_diff_factor = mean(module_diff_factors) if len(module_diff_factors) > 0 else 0
module_count_difference = abs(

cell1_branch_module_count - cell2_branch_module_count
) / (max(cell1_branch_module_count, cell2_branch_module_count) + eps)
branch_diff_factor = mean([mean_diff_factor, module_count_difference])
return branch_diff_factor

Source code 6.3.3: The implementation of branch difference factor function which
calculates the difference between two branches of Genotype cell.

Appendices 151

def cell_difference_factor(cell1: GenotypeCell, cell2: GenotypeCell, eps=1e-5) -> float:
cell1_left_branch_module_count = cell1.module_count(GenotypeModuleBranch.LEFT)
cell2_left_branch_module_count = cell2.module_count(GenotypeModuleBranch.LEFT)
left_branch_min_number_of_modules = min(

cell1_left_branch_module_count, cell2_left_branch_module_count
)

cell1_right_branch_module_count = cell1.module_count(GenotypeModuleBranch.RIGHT)
cell2_right_branch_module_count = cell2.module_count(GenotypeModuleBranch.RIGHT)
right_branch_min_number_of_modules = min(

cell1_right_branch_module_count, cell2_right_branch_module_count
)

if (
left_branch_min_number_of_modules == 0
and right_branch_min_number_of_modules == 0

):
return 0.0

left_branch_diff_factor = branch_difference_factor(
cell1, cell2, GenotypeModuleBranch.LEFT, eps

)
right_branch_diff_factor = branch_difference_factor(

cell1, cell2, GenotypeModuleBranch.RIGHT, eps
)
cell_diff_factor = mean([left_branch_diff_factor, right_branch_diff_factor])
return cell_diff_factor

Source code 6.3.4: The implementation of cell difference factor function which
calculates the difference between two Genotype cells.

152

def layer_difference_factor(
layer1: GenotypeLayer, layer2: GenotypeLayer, eps=1e-5

) -> float:
layer1_cells = layer1.cells()
layer2_cells = layer2.cells()
min_number_of_cells = min(len(layer1_cells), len(layer2_cells))

if min_number_of_cells == 0:
return 0.0

cell_diff_factors = []
for idx in range(min_number_of_cells):

cell1 = layer1_cells[idx]
cell2 = layer2_cells[idx]

Consider the difference between inputs of the compared cells
left_cell_input_index_diff_factor = abs(cell1[0] - cell2[0]) / (

max(len(layer1_cells), len(layer2_cells)) + eps
)
right_cell_input_index_diff_factor = abs(cell1[1] - cell2[1]) / (

max(len(layer1_cells), len(layer2_cells)) + eps
)
index_diff_factor = mean(

[left_cell_input_index_diff_factor, right_cell_input_index_diff_factor]
)

cell_diff_factor = cell_difference_factor(cell1[2], cell2[2], eps)
cell_diff_factors.append(mean([index_diff_factor, cell_diff_factor]))

layer_diff_factor = mean(cell_diff_factors)
return layer_diff_factor

Source code 6.3.5: The implementation of layer difference factor function which
calculates the difference between two Genotype layers.

Appendices 153

def genotype_difference_factor(
genotype1: Genotype, genotype2: Genotype, eps=1e-5

) -> float:
Genotype hyperparameters
genotype1_params = genotype1.parameters()
genotype2_params = genotype2.parameters()

param_diff_factors = []
for idx in range(len(genotype1_params)):

param1 = genotype1_params[idx]
param2 = genotype2_params[idx]
diff_factor = parameter_difference_factor(param1, param2, eps)
param_diff_factors.append(diff_factor)

Genotype layer
There is only one Genotype layer per Genotype stacked k times as defined by hyperparameters
genotype1_layer = genotype1.get_layer(0)
genotype2_layer = genotype2.get_layer(0)
layer_diff_factor = layer_difference_factor(genotype1_layer, genotype2_layer, eps)

genotype_diff_factor = mean([layer_diff_factor] + param_diff_factors)
return genotype_diff_factor

Source code 6.3.6: The implementation of genotype difference factor function
which calculates the difference between two Genotypes.

Appendix B: Module Parameters Configuration

The experiments performed during the third experimental phase (subsection 5.3.3)
utilized several Genotype modules some of which had evolvable parameters at-
tached. Table 6.1 lists parameters of the modules used in the first experiment
(section 5.3.3) while Table 6.2 and Table 6.3 describe parameters of the modules
utilized in the second experiment (section 5.3.3).

Module Parameter Type Allowed values Description

Multi-head attention head count Set [1, 2, 4, 8]
Number of attention
heads

Feed forward
forward
expansion

Set (1, 8), step: 1
Expansion ratio of
the fully-connected
layers

Feed forward dropout Range (0.0, 0.3), step: 0.05 Dropout probability

Table 6.1: The configuration of evolvable parameters attached to the modules
used in Experiment 1 (section 5.3.3) performed during Phase 3 (subsection 5.3.3).

154

Module (part 1) Parameter Type Allowed values Description

Big Bird attention head count Set [1, 2, 4, 8]
Number of attention
heads

Longformer attention head count Set [1, 2, 4, 8]
Number of attention
heads

Longformer attention dropout Range (0.0, 0.3), step: 0.05 Dropout probability

Conformer attention dropout Range (0.0, 0.3), step: 0.05 Dropout probability

Reformer attention head count Set [1, 2, 4, 8]
Number of attention
heads

Reformer attention
chunk length
divider

Set [2, 4, 8]

Length of chunks of
clustered elements
specified relative to
the model input size

Reformer attention dropout Range (0.0, 0.3), step: 0.05 Dropout probability

Adaptive span
attention

head count Set [1, 2, 4, 8]
Number of attention
heads

Adaptive span
attention

span length
init

Range (0.0, 1.0), step: 0.5
Initial length of the
attention span

Adaptive span
attention

span ramp Set [10, 20, 40, 80]
Length of the soft
mask ramp on each
side of the span

TransformerXL
attention

head count Set [1, 2, 4, 8]
Number of attention
heads

Multi-head attention head count Set [1, 2, 4, 8]
Number of attention
heads

Multi-head attention
query
preprocess

Set

[None, Rotary
positional encoding,
TUPE absolute
positional encoding,
Spatial depth-wise
convolution]

Augmentation
applied to the query
matrix

Multi-head attention
key
preprocess

Set

[None, Rotary
positional encoding,
TUPE absolute
positional encoding,
Spatial depth-wise
convolution]

Augmentation
applied to the key
matrix

Multi-head attention
value
preprocess

Set

[None, Rotary
positional encoding,
TUPE absolute
positional encoding,
Spatial depth-wise
convolution]

Augmentation
applied to the value
matrix

Multi-head attention
scores
preprocess

Set

[None, DeBERTa
relative positional
encoding, T5
relative positional
encoding, TUPE
relative positional
encoding]

Augmentation
applied to the
attention scores
matrix

Table 6.2: The configuration of evolvable parameters attached to the modules
used in Experiment 2 (section 5.3.3) performed during Phase 3 (subsection 5.3.3).

Appendices 155

Module (part 2) Parameter Type Allowed values Description

Convolution 1D kernel size Set [3, 6, 12]
Size of the
convolution kernel

Convolution 1D dilation Set [1, 2, 3]
Spacing between the
kernel elements

Convolution 2D kernel width Set [3, 6, 12]
Width of the
convolution kernel

Convolution 2D kernel height Set [3, 6, 12]
Height of the
convolution kernel

Convolution 2D
horizontal
dilation

Set [1, 2, 3]
Horizontal spacing
between the kernel
elements

Convolution 2D
vertical
dilation

Set [1, 2, 3]
Vertical spacing
between the kernel
elements

Depth-wise separable
convolution

kernel size Set [3, 6, 12]
Size of the
convolution kernel

Depth-wise separable
convolution

dilation Set [1, 2, 3]
Spacing between the
kernel elements

Inverted bottleneck kernel size Set [3, 6, 12]
Size of the
convolution kernel

Inverted bottleneck dilation Set [1, 2, 3]
Spacing between the
kernel elements

Inverted bottleneck
forward
expansion

Set [1, 2, 4, 8]
Expansion ratio of
the convolution
layers

CoordConv kernel size Set [3, 6, 12]
Size of the
convolution kernel

CoordConv dilation Set [1, 2, 3]
Spacing between the
kernel elements

Max pooling 1D kernel size Set [3, 6, 12, 24]
Size of the pooling
kernel

Max pooling 2D kernel width Set [3, 6, 12, 24]
Width of the
pooling kernel

Max pooling 2D kernel height Set [3, 6, 12, 24]
Height of the
pooling kernel

Alpha Dropout dropout Range (0.0, 0.3), step: 0.05 Dropout probability

Dropout dropout Range (0.0, 0.3), step: 0.05 Dropout probability

Dropout 2D dropout Range (0.0, 0.3), step: 0.05 Dropout probability

Feed forward
forward
expansion

Range (1, 8), step: 1
Expansion ratio of
the fully-connected
layers

Feed forward activation Set
[ELU, GeLU, Leaky
ReLU, ReLU, SiLU,
Squared ReLU]

Activation function
placed in between
the fully connected
layers

Feed forward dropout Range (0.0, 0.3), step: 0.05 Dropout probability

Table 6.3: The configuration of evolvable parameters attached to the modules
used in Experiment 2 (section 5.3.3) performed during Phase 3 (subsection 5.3.3).

	Introduction
	Background and Motivation
	Preliminary Process
	Goals and Research Questions
	Research Method
	Contributions
	Structured Literature Review
	Identification of Research
	Selection of Primary Studies
	Quality Assessment

	Thesis Structure

	Background Theory
	Evolutionary Algorithms
	Representation
	Population
	Fitness Function and Selection
	Mutation and Crossover

	Artificial Neural Networks
	Convolutional Neural Network
	Recurrent Neural Network

	Time Series
	Time Series Components
	Decomposition and Smoothing

	Time Series Forecasting
	Classical Models
	Neural Network Models
	Model Evaluation

	Attention and Transformer Architecture
	Sequence to Sequence Models
	Attention Mechanism
	Transformer Architecture

	Related Work
	Neuroevolution
	Neural Architecture Search
	Search Space
	Search Strategy
	Performance Estimation Strategy

	Transformer Architecture Search
	Search Space
	Search Strategy
	Performance Estimation Strategy

	Transformer Modifications
	Architecture Variations
	Layer Normalization
	Attention Modelling
	Feed Forward Sub-layer
	Positional Encoding and Embedding
	Masked Pretraining

	Transformers for Time Series Forecasting
	Time Series Forecasting Methods
	Forecasting Benchmarks

	Method and System Design
	Design Framework
	Design Decisions
	Transformer Architecture Selection
	Attention Models Comparison
	Genotype Encoding Design
	Search Space
	Parameters
	Modules

	Neural Architecture Search System Design
	Search Strategy
	Performance Estimation Strategy
	System Configuration
	Result Presentation

	Transformer Architecture Evolution
	Transformer Building Blocks
	Attention Modules
	Convolution Modules
	Feed Forward Modules
	Activation Modules
	Positional Encoding Modules
	Normalization Modules
	Dropout Modules

	Forecasting Methods Comparison

	Experiments and Results
	Experimental Plan
	Experimental Setup
	Datasets
	Evaluation Metrics
	Training of Models

	Experimental Results
	Phase 1: Transformer Architectures
	Phase 2: Attention Models
	Phase 3: Genotype Encoding
	Phase 4: Forecasting Methods Comparison

	Conclusion and Future Work
	Discussion
	Limitations
	Future Work

	Bibliography
	Appendices

