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Abstract

Cutoff walls are extensively applied as seepage and contaminant leakage obstruction structures.

However, stochastic defects can exist within cutoff walls due to randomness in the construction

of cutoff walls and faciliate the penetration of polluted groundwater through cutoff walls. To as-

sess the contaminant leakage risk, definition and judge criterion for breakthrough time of cutoff

walls with inhomogeneous Dirichlet boundary conditions are derived, and breakthrough time

diagrams are plotted, which are based on the normalized analytical solution to one-dimensional

linear steady seepage and transient contaminant advection-diffusion coupled process. The an-

alytical solution also verifies its finite element method counterpart. For the purpose of assess-

ing the contaminant leakage risk in a realistic way, a nonlinear model with nonconstant cross-

sections along the penetration channel is obtained, which can be combined with planar and

spacial models for cutoff walls with random defects, and a finite difference method algorithm

for the nonlinear model is proposed, while an algorithm by Adomian decomposition method is

also included for a trial.

Keywords: Construction errors; Cutoff wall; Contaminant leakage; Risk assessment; 1D seepage

and contaminant advection-diffusion coupled process; Analytical solution; Breakthrough time;

Nonlinear model; Adomian decomposition method
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Chapter 1

Introduction

Cut-off walls widely serve as curtains to prevent groundwater from flowing into excavation pits

and minimize drainage requirement for the pits (Groundwater Engineering Limited). They also

function as waterproof structures to exclude contaminated water from non-polluted ground

water (Figure 1.1) (U.S. EPA, 1978; Sembenelli and Sembenelli, 1999; Croce and Modoni, 2007).

Figure 1.1: Cutoff wall to prevent waste leachate from flowing into non-contaminated groundwater

However, construction errors can happen due to imperfection and randomness in construction
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CHAPTER 1. INTRODUCTION 3

technology and quality (Wu et al., 2015a,b; Tan and Lu, 2017), which can lead to existence of

untreated zones, i.e. windows through which groundwater can seep directly (Figure 1.2). It can

result in an increase in flow rate around the untreated zones (Amos et al., 2020), and in seri-

ous situations bring about hazardous consequences, such as ground collapse, building tilting,

land subsidence and breach of pipelines, etc (Pujades et al., 2012, 2016; Conway, 2016; Liu et al.,

2018).

As the concern for environmental protection has been publicly raised, to minimize the poten-

tial threat to environmental and public health due to contaminant leakage in the ever-increasing

dump sites, it is essential to investigate the contaminant leakage risk for imperfect cut-off walls

by developping reasonable models.

The leakage risk for 1D linear steady seepage and transient contaminant advection-diffusion

coupled process is assessed by breakthrough time, and a nonlinear model for the steady seepage

and transient contaminant advection-diffusion coupled process is developped, of which the

cross-sectional area is nonconstant. The FDM algorithm as a numerical method is given and a

trial on the ADM method is included as well.
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(a) (b)

(c) (d)

Figure 1.2: Two widely used cutoff walls : (a) jet-grouted cutoff wall (perfect); (b) jet-grouted cutoff wall (with
defects); (c) diaphragm wall (perfect); (d) diaphragm wall (with defects) (Pan et al., 2021)



Chapter 2

Literature review

Within the scope of cutoff walls, cases for leakage resulted accidents, the parameters for con-

struction defects, currently applied methods to assess the leakage risk and researches for con-

taminant leakage problems are collected and reviewed in this chapter to give an overall impres-

sion on the detrimental consequences of seepage and contaminant leakage in cutoff walls and

emphasize on the necessity to perform the risk assessment for the seepage and contaminant

leakage problems.

2.1 Cases for hazards due to leakage in cutoff walls

Cases for the accidents in dams, excavation pits and landfills due to the leakage are reviewed in

this section.

2.1.1 Cases for hazards due to leakage in dams

Three sinkholes were found to be at the top of the Unmun Dam in Korea and the leakage was

augmented as the precipitation increased (Lee et al., 2005). By back analysis, Sembenelli (2016)

verified piping to be blamed for the leakage under a sandfill dam, which led to its failure. The

Fountain of Gazelles dam in Biskra, Algeria suffered from leakage in its right part according to

Ratiat et al. (2020), which put the dam in a dangerous situation. The detrimental consequences

caused by seepage in dams were discussed by Adamo et al. (2020), in which sloughing, piping,

erosion and instability can result from the daylighting of the flow at the downstream surface of

dams and be intensified by leakage due to earthquakes or uneven settlement of dams.

5
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2.1.2 Cases for hazards due to leakage in excavations

It was reported by Shin et al. (2006) that slurry flowed in the subway tunnel under construction

in Seoul, resulting in the collapse of the tunnel in downtown areas. According to Tan and Lu

(2017), in a deep excavation of a subway station in Shanghai, an outbreak of underground water

happened unexpectedly and submerged the pit, causing the ground and buildings in the vinicity

to fall steeply, which was due to the carelessness on the previous small leakage and the imper-

fection in the waterproof structure components (Figure 2.1(a)). A serious water leakage incident

occured during the construction of the tunnels LUO09 in Kaohsiung, which was due to the pip-

ing in the tunnel as stated by Cheng et al. (2019) and can be seen in 2.1(b). The width of the

actual overlapped zones of jet grouted mass is less than the design value due to the inclination

of the jet grouted columns, which spawned leakage susceptible zones.

(a) (b)

Figure 2.1: In-situ photos for excavation leakage accidents: (a) pit corner in the northwest on July 7, 2013 in a
subway station in Shanghai (Tan and Lu, 2017); (b) north and south cave-ins in tunnels LUO09 in Kaohsiung (Cheng
et al., 2019)

2.1.3 Cases for hazards due to contaminant leakage in landfills

The yearly leakage from the Ano Liosia landfill in Greece resulted in the undergound water pol-

lution, makng it not drinkable and not safe for agriculture, which was based on Fatta et al. (1999).

Abu-Rukah and Al-Kofahi (2001) reported that in northern Jordan, leachate from the El-Akader

dump landfills caused a significant harm to the adjacent underground water system. 43 cases

of contaminants of emerging concern (CEC) in 10 regions in China were reviewed by Qi et al.

(2018), of which the distribution map can be seen in Figure 2.2, and the awareness that adjacent

aquifers be protected from the leachate were stated.
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Figure 2.2: Distribution of cases with CECs in landfill leakage in China (Qi et al., 2018)

2.2 Construction errors in cutoff walls

The major causes and relevant statistical parameters for the construction errors in JGCOW are

discussed in this section.

2.2.1 Construction errors in JGCOW

The geometric imperfection in JGCOW can be characterized by certain random parameters. As

can be seen in Table 2.1 and Figure 2.3, there are two types of geometric imperfections in JG-

COW, i.e. orientation imperfection and diameter imperfection of jet-grouted columns, of which

the orientation imperfection is characterized by the azimuth angle α and inclination angle β

(Croce and Modoni, 2007; Flora et al., 2012; Modoni et al., 2016; Pan et al., 2017). The azimuth

angle is assumed to be uniformly distributed within [0,π], since a jet-grouting machines can tilt

its mast in any direction during the jet-grouting(Pan et al., 2019a).

Some statistical data for the diameter D and inclination angle β of JGCOW in several types of

soils are collected in Table 2.2, where COV(D) is the coefficient of variation of column diameter
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Table 2.1: Random parameters representing construction errors in JGCOW

Orientation imperfection [◦◦◦] Diameter variation [m]

Azimuth α Inclination β Diameter D

(a)

(b)

Figure 2.3: Two categories of geometric imperfections in JGCOW: (a) azimuth α and inclination angle β; (b) varia-
tion of column diameter D (Pan et al., 2019a)

and S.D.(β) is the standard deviation of column inclination.

Table 2.2: Statistical data for the geometric randomness in JGCOW (Pan et al., 2021)

No.
Type of
natural soil

Average
diameter
[m] COV(D) S.D.(β) Details References

1 Clay-silt
Sand
Gravel

- 0.02-0.05
0.02-0.10
0.05-0.25

- - Croce et al. (2004)

2 Sandy clay 1.1 0.06-0.09 - From field diameter data at different
depths, horizontal column

De Wit et al. (2007)

3 Silty sand

Sandy gravel

0.71-1.11

1.06-1.20

0.06

0.19

0.07◦ Vertical columns at Vesuvius site
(0.07◦ was from Isola Serafini site)
Vertical columns at Polcevera site

Croce and Modoni (2007)

4 Silty sand 2.5 - 0.16◦ Vertical columns at Barcelona site Eramo et al. (2012)
5 Sandy clay 0.38

0.48
0.75

0.13

0.17

-
-
0.17◦

Vertical column with lower water content
Vertical column with lower water content
(Sub) Horizontal column

Arroyo et al. (2012)
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2.2.2 Construction errors in diaphram wall

According to Castaldo et al. (2018), the inclination angle φ, the excavation height H and the

overlapping dimension d between two adjoined diaphram walls are the statistical parameters

for the leakage estimation, which are illustrated in Table 2.3 and Figure 2.4. The inclination

angle φ follows the truncated Gaussian distribution in Equation 2.1:

φ∼ N (µφ,σφ,− ∣∣φ(hcontr ol )
∣∣ ,+ ∣∣φ(hcontr ol )

∣∣), (2.1)

where µφ is the mean value, σφ is the standard deviation and − ∣∣φ(hcontr ol )
∣∣ and +

∣∣φ(hcontr ol )
∣∣)

are the lower and upper bounds of the inclination angle φ.

Table 2.3: Random parameters representing construction errors in adjoining diaphram walls

Inclination angle [◦◦◦] Excavation height [m] Overlapping dimension [m]

φ H d

Figure 2.4: Two inclined adjoining diaphram walls (Castaldo et al., 2018)
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2.3 Leakage risk assessment

Multi researches have been done to evaluate the leakage risk in cutoff walls and the methods are

classified into analytical, experimental, numerical and TDA methods in general.

2.3.1 Analytical methods

With the steady-state flux equations, Devlin and Parker (1996) stated that there are a best range

of hydraulic conductivities for cutoff wall material in which the outward diffusive flux can be

countered balanced by an inward dispersive and advective flux.

Wang et al. (2021) developed a theoretical model, which was the combination of the statistical

3D model from field experiments and a simple seepage model, to assess the leakage through the

windows in JGCOW, which was justified by program simulation and in-situ inspection. Based on

the theoretical equations, the parametric design of JGCOW can be performed and the amount

of leakage can be estimated.

2.3.2 Experimental methods

Liu et al. (2019) assessed the utility of the distributed optical fiber temperature measurement

system to monitor the leakage in diaphragm barriers by experiments.

A mini-scaled landfill cutoff wall model made of polyvinyl alcohol-bentonite-fly ash-cement

(PBFC) was used to simulate the accurate deformation in the cutoff wall experimentally by Dai

et al. (2020) for leakage control. The results of the numerical simulation by ANSYS were com-

pared with the measured data from the test, and the comparison showed difference.

2.3.3 Numerical methods

Castaldo et al. (2018) assessed the leakage probability in reinforced concrete retaining walls due

to construction imperfections and trench instability. By Bayesian updating, suggestions on the

effectiveness and importance of the monitoring phase for the reduction of the failure probabil-

ity are given.
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In-situ alignment data about vertical and inclined JGCOW were collected to model the 3D JG-

COW with the statistical method by Cheng et al. (2020), in which the non-overlapped areas were

inspected.

Hwang et al. (2019) gave suggestions on the specifications for the waterproof walls with bottom

and vertical parts by program simulation for the seepage-advection-dispersion process.

Hekmatzadeh et al. (2019) innovated the combination of the concept of random field theory

with the lattice Boltzmann method to simulate a two-dimensional advection-dispersion process

in a probablistic way, in which the chemical reaction is also considered.

2.3.4 Three-dimensional Discretized Algorithm

Pan et al. (2017, 2019a) used a three-dimensional discretized algorithm (TDA) to simulate the

construction errors in JGCOW with one-dimensional steady state seepage and proposed di-

mensionless design charts and design procedures for engineers to determine the parameters

for excavation with acceptable flow rate and the least treatment volume.

It was further shown by Pan et al. (2019b) that in the JGCOW case the TDA has a strong con-

nection with random finite element method (RFEM) and much lower computational cost when

compared with 3D RFEM. An analogical research for diaphragm walls is conducted by Pan and

Fu (2019).

Moreover, Pan et al. (2021) extended the TDA to quantitatively estimate the transient-state dis-

charge rate through defective cut-off walls.

2.4 Contaminant leakage in cutoff walls

The harmful substances in the waste landfills and other poisonous mass bodies can be carried

by the water from rainfall or underground flow to adjoining unpolluted zones, which can be im-

peded by watertight structures ,such as JGCOW and slurry trench cutoff walls. However, since

defects might be within the waterproof structures, it is necessary to evaluate the risk and per-
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form the risk assessment for the contaminant leakage.

Studies about the leachate from dump sites to date have been focusing on the application of

analytical and numerical methods, the cutoff wall material and field test and case study, which

shall be reviewed later.

2.4.1 Works done

A 2D analytical method was established by Ding et al. (2020) to explain the migration of organic

pollutants through an underground system with a cutoff barrier, while another 2D analytical

model was introduced by Peng et al. (2020) to study the transient diffusion behavior of the com-

taminant from an organic pollutant source in an aquifer-CGCW system and the service effec-

tiveness of a CGCW in a comprehensive way.

As for numerical simulation, Inazumi et al. (2009) and Shishido and Inazumi (2019) evaluated

the environmental feasibility, which is the prevention of polluted water migration, by compar-

ing a 3D arrangement and distribution of the hydraulic conductivity of the joint sections in the

steel pipe sheet pipe (SPSP) cutoff wall with another part using the equivalent hydraulic con-

ductivity. Zhan et al. (2013) used a finite difference model based on a trash landfill to study the

time for the COD contaminant to go through the cutoff wall under different paramenters and

materials. Inazumi et al. (2017) quantitatively assessed the pervasion of the harmful leachate in

landfills near the coast where the watertightness of the waterproof side walls is harmed as the

walls perished.

Experiments were carried out by Rowe and Abdelatty (2013) to inspect the movement of pollu-

tants through a circular opening in a geomembrane connected directly to a geosynthetic clay

liner (GCL) and nearby silty sand. Koh (2018) suggested that the underground cement cutoff

wall can effectively stop the transport of leachate from rubbish landfill by visual examination

and experiments. Naveen et al. (2018) conducted a number of batch and column tests, of which

the results were put into the fuidyn-POLLUSOL model to simulate the movement of foul water

to adjacent water bodies. Beneficial experience can be learned from Feng et al. (2020), in which

an integrated method was taken to assess and restrain the migration of harmful leachate from
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the MSW landfill to the underground project in the vicinity.

Soil-bentonite (SB) cutoff walls are proven to be effective in the containment of contaminants.

Wang et al. (2016) conducted column and batch experiments to look into the adhesion and mi-

gration of Pb(II) in soil-bentonite modified by Chinese loess, which is a effective absorbent to

collect heavy metals on the surface of the loess. Environmental hazards due to the previous

landfills and areas exposed to pollution are considered by Koda and Osinski (2017) by in-situ

and laboratory hydraulic conductivity tests for vertical SB cutoff walls and the remediations for a

landfill in Poland are included. The in-situ data in the backfill of an experimental soil-bentonite

cutoff wall was collected by Evans and Ruffing (2017) to understand its behavior in a more thor-

ough manner. Adsoprtion data collected formerly and numerical migration stimulations were

utilized to study the performance of the zeolite-enhanced soil-bentonite cutoff wall regarding

the prevention of the transport of potassium (K) and zinc (Zn) by Hong et al. (2017). Chemical

compatibility of SB barriers under the influence of compound pollutants is researched using the

model backfills according to Xu et al. (2019). Du et al. (2015) examined the hydraulic conduc-

tivity and capability of compression of clayey soil/Ca-bentonite barriers in the context of lead

contamination, which was also the pollution source in the laboratory work on the properties of

sand/sodium hexametaphosphate-amended bentonite (SHMP-SB) backfills in cutoff barriers

by Fu et al. (2021).

2.4.2 Limitation

Although many works have been done about the pollutants migration, the current methods are

mainly deterministic, while in reality the orientation and deformation of the waterproof barri-

ers and the randomness due to construction and geological conditions shall be emphasized.

The aim of the thesis is to develop a risk assessment criterion and a nonlinear model to evaluate

the transport of contaminant mass in cutoff walls with stochastic construction errors, which are

simulated by models for cutoff walls with random construction defects. With the results of the

coupled model, it is hopeful to give useful suggestions for the contaminant leakage problems in

the cutoff walls.



Chapter 3

Methodology and derivations

The TDA method by Pan et al. (2017, 2019a, 2021) is reviewd in the chapter, which is a numerical

method to simulate the anamolistic apertures in the JGCOW due to randomness in the jetgrout-

ing of the JGCOW. The leakage risk is assessed by coupling with the discretized cross-sectional

areas and solving the 1D diffusion or advection-diffusion governing equations. The numerical

methods to solve the 1D governing equations are the FDM method by Pan et al. (2021) and the

FEM method by Schirén (2018).

As for the works by the thesis, the detailed derivation of the analytical solution to the 1D linear

steady seepage and transient contaminant advection-diffusion coupled equation with inhomo-

geneous Dirichlet boundary conditions is given, which is obtained by the method of separation

of variables (Brown and Churchill, 1993; Mojtabi and Deville, 2015) and a change of variable

technique (Guerrero et al., 2009), and the result agrees with the 1D solution in test case 1 in

Guerrero et al. (2009), which is obtained by integral transform technique. With the analogical

solution, the hydraulic gradient for the 1D linear transient seepage process is proved to be Jacobi

theta equation, as well as the contaminant flux for the 1D linear transient contaminant diffusion

process derived later.

It is done in the thesis that the time and contaminant flux are normalized to simplify the equa-

tions and faciliate the plotting of relevant diagrams. A different definition to understand the

Péclet number is given which is based on the characteristic time for the normalization of time.

The definition of breakthrough time for 1D linear steady seepage and transient contaminant

14
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advection-diffusion coupled process with inhomogenous boundary conditions is given, and the

judge criteria for breakthrough time with different ranges of Péclet number is derived.

The contribution by the thesis also includes a model which governs the 1D nonlinear steady

seepage and transient contaminant advection-diffusion coupled process is derived, where the

cross-sectional area along the path is noncontant, and the boundary conditions for the seep-

age process are inhomogeneous Dirichlet boundary conditions. A FDM algorithm to solve the

governing equation is given and the ADM method is applied to give a trial to the governing

equation.

3.1 TDA method

To assess the seepage leakage or the contaminant leakage risk due to stochastic construction

defects in JGCOW, the combination of the TDA 3D model and algorithms to solve the seepage

or contaminant advection-diffusion governing equation is necessary.

3.1.1 TDA 3D model

As a numerical method, the 3D model shall give the discretized cross-sectional areas in each

groundwater channel in the JGCOW and provide the characteristic waterproofness for the JG-

COW with or without penetration.

3.1.1.1 Statistical characteristics

As previously mentioned, the parameters for geometric imperfections for JGCOW consist of the

azimuth angle α, inclination angle β and diameter of columns D , where α and β are indepen-

dent from each other. The inclination angle β is normally distributed with the mean value being

zero (Croce and Modoni, 2007; Arroyo et al., 2012). The orientation parameters, i.e. the az-

imuth angle α and inclination angle β are independently identically distribution (IID) parame-

ters (Modoni et al., 2016).

To state the correlation among the azimuth angleα and inclination angleβ for adjoining columns,

Pan et al. (2019a) suggested a random field with autocorrelation structure other than a collec-
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tion of IID random numbers to supplement the earlier reaserches where only the mean value

and coefficient of variation (COV) were considered (Croce and Modoni, 2007; Modoni et al.,

2016).

The scale of fluctuation (SOF) of orientation parameters is considered as well, which describes

the correlation among close-by columns, and is approximately defined as the largest distance

between two points which have a certain degree of similarity. The 2D random field is defined by

Equation 3.1 (Pan et al., 2019a)

ρ
(
∆x,∆y

)= e
−π

[(
∆x
δx

)2+
(
∆y
δy

)2
]
, (3.1)

where ∆x and ∆y are the distances between two points and δx and δy are the SOFs in x and y

directions respectively.

The relations between column diameter D and jet-grouting parameters along with other soil

properties have been researched (Modoni et al., 2006; Ho, 2007; Flora et al., 2013; Shen et al.,

2013), and the diameter D should vary greatly along each column as the natural soils are strati-

fied, making columns calabash shaped (Figure 2.3(b))(Pan et al., 2019a).

As the horizontal SOFs of soil properties are usually considerably greater than the vertical ones

(Phoon and Kulhawy, 1999), it is reasonable to regard the randomness in column diameter D

as the result of the stratification in soil profiles, which can be simulated by a stochastic process

where the vertical SOF is applied (Pan et al., 2019a).

3.1.1.2 3D model for the evaluation of geometric errors

Pan et al. (2019a) developed a 3D model, which adopted thousands of Monte Carlo simulations

to evaluate the construction errors in JGCOW to consider the randomness of orientation and

diameter of jet-grouting columns concurrently (Figure 3.1).

It can be seen in Figure 3.2(a) that the JGCOW is discretised into the same sized small cubes

with eight nodes on the vertexes of each cube. The horizontal planes (x-y plane) and vertical

planes (x-z) are called "layers" and "slices" respectively, where "slices" along the y-direction are
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Figure 3.1: One typical realisation of JGCOW with construction errors (Pan et al., 2019a)

parallel to the JGCOW plane. The treated area, which is the grey part in Figure 3.2(b), is used to

examine whether there are any nodes located there. If so, the nodes will be noted as "treated",

otherwise "untreated".

The groundwater is assumed to flow through the slices perpendicularly, and the cross-sectional

areas of the untreated zone in each slice are calculated by counting the number of nodes in un-

treated zones. The area is proportional to the number of untreated nodes, and one node should

represent an area which is the area for one surface of a small cube (Figure 3.2(c)).

Each slice in the model will be integrated to determine whether the JGCOW is penetrated by

the untreated zones. The JGCOW is thought to be penetrated a window, i.e. an continuous un-

treated zone if any two arbitrary consequent slices are found to be overlapped (Figure 3.2(d)),

and penetration only happens in the third scenario.
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(a) (b)

(c)

(d)

Figure 3.2: Discretization of JGCOW: (a) 3D view; (b) vertical plane view at the i-th layer; (c) horizontal plane view
at the j-th layer; (d) overlapping situations for JGCOW (Pan et al., 2019a)

To give an direct impression, the algorithm in flow chart can be seen in Figure 3.3.

3.1.1.3 Estimation of minimum thickness

The minimum thickness represents the waterproof capacity of the JGCOW when the wall is con-

tinuous (Croce and Modoni, 2007). By determining the number of treated nodes along the y-

direction in each layer, the minimum thickness is obtained which is the minimum value in all

layers (Figure 3.4) (Pan et al., 2019a).
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Figure 3.3: Flowchart for TDA (Pan et al., 2019a)

(a)
(b)

Figure 3.4: Illustrations for representative thickness: (a) thickness of the wall by scanning the number of treated
nodes (Pan et al., 2019a); (b) example of wall thickness distribution (Pan et al., 2021)

3.1.2 TDA for steady seepage

Pan et al. (2019a) noted that the minimum thickness is zero once the JGCOW is penetrated.

Therefore, it is not reasonable to evaluate the water-proofness of penetrated JGCOWs by the

minimum thickness. To give an appropriate solution, the sizes of the windows along with the

flow rate are selected to be appropriate to assess the water-proofness of JGCOW (Modoni et al.,
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2016; Pan et al., 2017).

The steady state flow through the JGCOW is considered mainly as a 1D process (Modoni et al.,

2016) and is governed by Darcy’s law (Pan et al., 2017)

Q = ki
(
y
)

A
(
y
)

, (3.2)

where Q is the flow rate of groundwater through the JGCOW, k is the coefficient of permeability

for the untreated soil, i
(
y
)= dh

d y is the hydraulic gradient through a slice with coordinate y , h is

water head and A
(
y
)

is the stochastically generated untreated cross-sectional area in the slice

with coordinate y for one continuous window.

Since i
(
y
)= dh

d y , Equation 3.2 becomes

Q

A
(
y
)d y = kdh. (3.3)

To be in accordance with the principle of flow continuity, the inflow and outflow through the

window in each slice shall not change. By integrating, Equation 3.3 is∫ 0

Tw all

Q

A
(
y
)d y =

∫ 0

∆H
kdh, (3.4)

where Tw all is the nominal thickness of the JGCOW and ∆H is the constant water head differ-

ence between the two sides of the JGCOW.

Therefore, Equation 3.4 can be expressed as

Q = k∆H

Tw all
Ã (Tw all ) , (3.5)

where Ã (Tw all ) = 1
1

Tw all

∫ Tw all
0

1
A(y) d y

is the harmonic average area along the seepage path.

To calculate Ã (Tw all ) numerically, the discritized harmonic average area is shown as

Ã (Tw all ) = 1
1
n

∑n
j=1

1
A j

, (3.6)
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where A j is the cross-sectional area of the flow way at the j th slice when the JGCOW is divided

into n slices equally.

To faciliate the application of flow rate, its normalized form is defined as (Modoni et al., 2016)

Ω= QTw all

k∆H Aw
= Ã (Tw all )

Aw
, (3.7)

where Aw is the area of JGCOW.

By summing up the flow rates through the windows between each adjoining columns, the total

flow rate for the whole JGCOW shall be calculated (Pan et al., 2019a).

3.1.3 TDA for transient seepage and diffusion process

The Laplace’s equation, which is also the Fick-Jacobs diffusion equation, decribes the general

transient seepage or diffusion process, which is shown in Equation 3.8 (Pan et al., 2021):

A
∂φ

∂t
= ∂

∂y

(
D A

∂φ

∂y

)
, (3.8)

where t is the time coordinate for the process, φ
(
y, t

)
is the potential for the process, which can

have different definitions in various scopes, and D is the coefficient of diffusivity.

Although in reality Equation 3.8 is not sufficient to describe the seepage process since the diffu-

sion coefficient D can be of great difference between treated and untreated soils, for simplicity

here D is regarded as the constant coefficient of the consolidation for the seepage process, which

has relations to the permeability coefficient k, constrained modulus mv , and bulk unit weight

of water γw . Properties of D in seepage along with its other definitions and properties in heat

transfer can be seen in Table 3.1.

The coefficient of volume compressibility mv is defined in Equation 3.9 according to Tyagi et al.

(2017):

mv =
(
1+ν′)× (

1−2ν′
)

E ′× (1−ν′) , (3.9)

where E ′ is the effective Young’s modulus, ν′ is the Possison’s ratio of the treated soil (Lambe and
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Table 3.1: Parameters in Laplace’s equation for two engineering scopes (Pan et al., 2021)

Parameter Symbol Seepage Heat transfer

State value φ Water head
unit: m

Temperature
unit: K

Coefficient of diffusivity
unit: m2/s

D Dw = k
γw mv

k- coefficient of permeability
(unit: m/s);
γw - unit weight of water
(unit: kN/m3);
mv - compressibility coefficient
(unit: m2/kN )

DT = k
ρc

k- thermal conductivity
(unit: W/m/K);
ρ- density
(unit: kg/m3);
c- specific heat capacity
(unit: J/kg/K)

Discharge rate q unit: m3/s unit: W

Whitman, 1969).

To study the groundwater flow, φ
(
y, t

)
is regarded as the water head in the following procedure,

although the results are applicable for heat transportation as well.

Since the cross-sectional area A
(
y
)

is random and continuous, it is possible to solve Equation

3.8 only numerically, and a FDM alogirthm is derived by Pan et al. (2021). Equation 3.8 is thus

rewritten as
A

D

∂φ

∂t
= d A

d y

∂φ

∂y
+ A

∂2φ

∂y2
. (3.10)

The time and space are discretized (Figure 3.5), and the space is segmented in accordance to the

slices. Therefore, by difference methods the differential parts in Equation (3.10) can be substi-

tuted by 

∂φ

∂t
=
φm+1

j −φm
j

∆t
d A

d y
= A j+1 − A j−1

2∆y

∂φ

∂y
=
φm

j+1 −φm
j−1

2∆y

∂2φ

∂y2
=
φm

j+1 −2φm
j +φm

j−1

∆y2

, (3.11)

and Equation 3.10 is reformed into Equation 3.12:

A j

D

φm+1
j −φm

j

∆t
= A j+1 − A j−1

2∆y

φm
j+1 −φm

j−1

2∆y
+ A j

φm
j+1 −2φm

j +φm
j−1

∆y2
, (3.12)
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Figure 3.5: 1D Finite difference method (FDM) model with cross-sectional area varying in space (Pan et al., 2021)

where A j is the cross sectional area at the j th slice (Figure 3.6), φm
j is the water head at the j th

slice and mth time node, ∆t = T
M is the time interval, where T is the total time for the transient

flow process and M is the number of time intervals, ∆y = Tw all
N is the length of the segment in

space, where N is the number of the segments in the y direction.

Figure 3.6: Untreated cross-sectional area along the seepage path (Pan et al., 2021)

By rearranging Equation 3.12, Equation 3.13 is derived:

φm+1
j =φm

j + D∆t

∆y2

(
A j−1 +4A j − A j+1

4A j
φm

j−1 −2φm
j + −A j−1 +4A j + A j+1

4A j
φm

j+1

)
. (3.13)

When t = tm , (N +1) unknowns and (N −1) equations can be obtained from Equation 3.12. The

Dirichlet boundary conditions are added as well to solve Equation 3.13, which can be seen in
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Equation 3.14: 
φm

0 = H

φm
N = 0

,m = 1,2, ..., M . (3.14)

When t = 0, the water head at the upstream side is H , while water heads at all other nodes are

zero, which can be seen in Equation 3.15:
φ0

0 = H

φ0
j = 0

, j = 1,2, ..., N . (3.15)

Thus (N +1) equations are obtained and (N +1) unknowns, i.e. (N +1) φm
j can be solved.

The discharge rate qm
j at the j th node and mth time point can be calculated by Equation 3.16:

qm
j = k

φm
j+1 −φm

j−1

2∆y
A j , (3.16)

where k is the coefficient of conductivity.

Since there might be more than one penetration flow path, the total discharge rate is calculated

by summing up all the discharge rates at each flow passage way separately, which is also men-

tioned in Pan et al. (2017, 2019a).

When there are no windows in the cutoff wall, the discharge rate is significantly lower than that

when there is penetration (Pan et al., 2021), and the water-proofness shall be represented by the

minimum thickness (Croce and Modoni, 2007; Pan et al., 2019b).

3.2 FEM for 1D linear transient advection-diffusion process

Equation 3.8 can be applied in contaminant diffusion problems as well, although in real foul

water leakage problems, advection and diffusion need to be considered together. The advec-

tion process is the bulk movement of the groundwater which carries the contaminants with the

groundwater as well, and the diffusion process describes the spread of contanminants in the

groundwater (Pan et al., 2021).



CHAPTER 3. METHODOLOGY AND DERIVATIONS 25

In the contaminant transportation process, the coefficient of diffusivity D is defined as Dc , of

which the unit is m2/s.

Since the process is 1D, the location coordinate along the advection-diffusion path is denoted

as x.

Modifying and adding an advection term to Equation 3.8 yields

A
∂u

∂t
+ ∂ (Avu)

∂x
= ∂

∂x

(
D A

∂u

∂x

)
, (3.17)

where u (x, t ) is the contaminant concentration, of which the unit is mg/m3, and v (x, t ) is the

cross-sectionally average seepage velocity along the advection-diffusion path, i.e. the velocity

of the flow passing through the voids in the soil mass.

To simplify Equation 3.17, let A, v and D be constants, and Equation 3.17 becomes

∂u

∂t
+ v

∂u

∂x
= D

∂2u

∂x2
. (3.18)

When v in Equation 3.18 is 0, no advection happens, and it becomes the governing equation for

the pure diffusion process.

Since Equation 3.17 and 3.18 can be applied in heat transfer process as well, a FEM algorithm by

Schirén (2018) is used to solve Equation 3.18 numerically, and the relevant heat related param-

eters are replaced by the concentration related parameters.

The pollutant flux, which is the amount of pollutant transported through a unit cross-sectional

area of soil per unit time, consists of the advection and diffusion parts. The pollutant flux due to

advection is defined as the product of the porosity of soil n, pollutant concentration u and the

seepage velocity v :

Ja = nuv. (3.19)
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According to Fick’s first law, the pollutant flux due to diffusion in soil is

Js =−nD
∂u

∂x
, (3.20)

when the soil is saturated.

The total pollutant flux J is then the sum of Ja and Js

J = n

(
uv −D

∂u

∂x

)
. (3.21)

When u at the j th location node and the mth time point is known as um
j , the pollutant flux J at

the j th location node and the mth time point shall be calculated as

J m
j = n

(
vum

j −D
um

j+1 −um
j−1

2∆x

)
. (3.22)

where ∆x = Tw all
N , and N is the number of segments.

By letting the seepage velocity be 0, the pollutant flux in the pure diffusive situation can be

obtained in an analogical way.

3.3 1D steady seepage and transient pollutant advection-diffusion coupled

process

The seepage process and pollutant advection-diffusion process are coupled by the seepage ve-

locity, and the illustration for the coupled process is shown in Figure 3.7.

To describe the process, a coupled equation governing equation shall be derived and an analyt-

ical or numerical method to solve the equation is necessary.

For the 1D linear governing equation with inhomogeneous Dirichlet boundary conditions, the

analytical results are given and the contaminant flux is normalized, upon which the definition

and judge criterion of breakthrough time are obtained.
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Figure 3.7: Illustration for the seepage and pollutant advection-diffusion coupled process

For the nonlinear scenario, the 1D transient contaminant advection-diffusion equation which is

coupled with the inhomogeneous Dirichlet boundaried steady seepage process is deduced, and

the FDM algorithm as the numerical solution and the ADM algorithm as the semi-analytical

solution to the governing equation are given, although the ADM method is only feasible for few

types of 1D nonlinear channels.

3.3.1 1D linear pollutant advection-diffusion problem

When the cross-sectional area along the advection-diffusion is a constant, it shall be removed

from Equation 3.17, and it is possible to solve the resultant equation analytically with a constant

seepage velocity v . The properties of the porous medium are regarded as uniform to faciliate the

deduction, which means the hydraulic conductivity k, porosity n, and coefficient of diffusivity

for seepage and contaminant diffusion Dw and Dc respectively are all constants.
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3.3.1.1 Coupled equations and solution

The 1D coupled process, which is with the inhomogeneous Dirichlet boundary conditions, is

described by the following coupled equation system:
∂φ

∂t1
= Dw

∂2φ

∂x2

∂u

∂t2
+ ∂ (vu)

∂x
= Dc

∂2u

∂x2

(0⩽ x ⩽ L, t2 ⩾ t1 ⩾ 0) , (3.23)

whereφ (x, t1) is the water head, u (x, t2) is the pollutant concentration, t1 is the time coordinate

in the seepage process, t2 is the time coordinate in the pollutant advection-diffusion process,

t2 = t1 +∆t , where ∆t is the time difference between the starting times of the processes, L is

the length of the advection-diffusion path, which is equivalent to the nominal thickness of the

cutoff wall Tw all , v (x, t1) = k
n
∂φ
∂x is the seepage velocity, Dw = k

γw mv
is the constant coefficient

of diffusivity for seepage process, and Dc is the constant coefficient of diffusivity for pollutant

diffusion process.

The boundary conditions for the groundwater seepage and pollutant advection-diffusion pro-

cess are shown in Equation 3.24 and 3.25 respectively:
φ (0, t1) = Hu

φ (L, t1) = Hd

(t1 > 0) , (3.24)


u (0, t2) =Cu

u (L, t2) =Cd

(t2 > 0) , (3.25)

where Hu and Hd are the constant upstream and downstream water head respectively, and

Cu and Cd are the constant upstream and downstream pollutant concentration respectively

(Hu > Hd ⩾ 0, Cu >Cd ⩾ 0).

The coupled process described by Equation 3.23 with its boundary conditions can be intuitively

seen in Figure 3.8.

Since the boundary conditions are constant, the steady states exist for the two processes. In re-
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Figure 3.8: Illustration for the coupled 1D advection-diffusion process

ality, the contaminant leakage usually happens with the steady groundwater flow, which means

∆t is large enough for the seepage process to be steady. Denote the steady water head as φs (x)

and let t1 in the seepage equation to be sufficiently large, i.e. ∂φ
∂t1

≡ 0, the seepage equation in

Equation 3.23 becomes
d 2φs

d x2
= 0 (0⩽ x ⩽ L) . (3.26)

Solving the ODE gives φs (x) = Hu − is x, where is = ∆H
L is the steady hydraulic gradient and

∆H = Hu −Hd is the difference between the upstream and downstream water heads. Thus the

steady seepage velocity vs is

vs =−k

n

dφs

d x
= k∆H

nL
. (3.27)

Therefore it is reasonable to transform the coupled equation system into

∂u

∂t
+ vs

∂u

∂x
= Dc

∂2u

∂x2 (0⩽ x ⩽ L, t ⩾ 0) . (3.28)

The initial condition is

u(x,0) =Cd (0⩽ x ⩽ L). (3.29)

Then the illustration for Equation 3.28 is shown in Figure 3.9.

When ∂u
∂t ≡ 0, i.e. the pollutant advection-diffusion process is in steady state, Equation 3.28

becomes

vs
dus

d x
= Dc

d 2us

d x2
(0⩽ x ⩽ L), (3.30)

where us (x) is the steady pollutant concentration at location x.
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Figure 3.9: Illustration for the 1D pollutant advection-diffusion process with constant seepage velocity and initial
condition

The solution to Equation 3.30 is

us (x) =Cu + ∆C

ePe −1

(
1−e

Pe
L x

)
, (3.31)

where ∆C =Cu −Cd > 0 and Pe = vs L
Dc

= k∆H
nDc

is the constant Péclet number which measures the

importance of the advection process over the diffusion process in the transportation of pollu-

tant mass.

To transform the inhomogeneous boundary conditions into homogeneous boundary condi-

tions, a technique by Brown and Churchill (1993) is used. Denote uh (x, t ) = u (x, t ) − us (x),

which still satisfies the Burgers equation, and boundary conditions become homogeneous:
uh(0, t ) = 0

uh(L, t ) = 0
(t > 0) . (3.32)

The new initial condition is

uh(x,0) =Cd −us (x) = ∆C

ePe −1

(
e

Pe
L x −ePe

)
. (3.33)

According to Guerrero et al. (2009), uh(x, t ) can be tranformed as

uh(x, t ) = w(x, t )eαx+βt , (3.34)

where α= vs
2Dc

= Pe
2L and β=− v2

s
4Dc

=−Dc
4

(Pe
L

)2
.
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Then Equation 3.28 is reduced to

∂w

∂t
= Dc

∂2w

∂x2
(0⩽ x ⩽ L, t ⩾ 0). (3.35)

The boundary conditions therefore become
w (0, t ) = 0

w (L, t ) = 0
(t > 0) . (3.36)

and the initial condition for Equation 3.35 is

w(x,0) = e−αxuh(x,0) = ∆C

ePe −1

[
e

Pe
2L x −e

Pe
L

(
L− x

2

)]
. (3.37)

By the method of separation of variables and set w(x, t ) = X (x)T (t ), the solution to Equation

3.35 is (Brown and Churchill, 1993; Mojtabi and Deville, 2015)

w(x, t ) =
∞∑

j=0

[
B j sin

(
jπx

L

)
+C j cos

(
jπx

L

)]
e
−

(
jπ
L

)2
Dc t

. (3.38)

Substituting the boundary conditions 3.36 into Equation 3.38 gives C j = 0, and Equation 3.38

becomes

w(x, t ) =
∞∑

j=1
B j sin

(
jπx

L

)
e
−

(
jπ
L

)2
Dc t

. (3.39)

Using the initial condition 3.37 gives

∞∑
j=1

B j sin

(
jπx

L

)
= ∆C

ePe −1

[
e

Pe
2L x −e

Pe
L

(
L− x

2

)]
. (3.40)

Multiplying sin
(

kπx
L

)
at both sides of Equation 3.40, where k ∈Z+, it can be obtained that

∞∑
j=1

B j sin

(
jπx

L

)
sin

(
kπx

L

)
= ∆C

ePe −1
sin

(
kπx

L

)[
e

Pe
2L x −e

Pe
L

(
L− x

2

)]
. (3.41)

The definite integral of both sides of Equation 3.41 from 0 to L yields

∞∑
j=1

B j

∫ L

0
sin

(
jπx

L

)
sin

(
kπx

L

)
d x = ∆C

ePe −1

∫ L

0
sin

(
kπx

L

)[
e

Pe
2L x −e

Pe
L

(
L− x

2

)]
d x. (3.42)
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Applying the product to sum formulas of trigonometry gives

∫ L

0
sin

(
jπx

L

)
sin

(
kπx

L

)
d x =−1

2

∫ L

0

{
cos

[(
j +k

)
πx

L

]
−cos

[(
j −k

)
πx

L

]}
d x. (3.43)

When j ̸= k, the right side of Equation 3.43 becomes

∫ L

0

{
cos

[(
j +k

)
πx

L

]
−cos

[(
j −k

)
πx

L

]}
d x = 0. (3.44)

When j = k, it becomes

∫ L

0

{
cos

[(
j +k

)
πx

L

]
−cos

[(
j −k

)
πx

L

]}
d x =

∫ L

0

[
cos

(
2kπx

L

)
−1

]
d x =−L. (3.45)

Then the left side of Equation 3.43 is

∫ L

0
sin

(
jπx

L

)
sin

(
kπx

L

)
d x =


0, j ̸= k

L

2
, j = k

, (3.46)

and Equation 3.42 becomes

Bk

∫ L

0
sin2

(
kπx

L

)
d x = ∆C

ePe −1

∫ L

0
sin

(
kπx

L

)[
e

Pe
2L x −e

Pe
L (L− x

2 )
]

d x. (3.47)

The result of the integral part at the right side of Equation 3.47 is∫ L

0
sin

(
kπx

L

)[
e

Pe
2L x −e

Pe
L

(
L− x

2

)]
d x = 4kπL

Pe2 + (2kπ)2

(
1−ePe) . (3.48)

Combining Equation 3.46, 3.47 and 3.48 gives

Bk =− 8kπ∆C

Pe2 + (2kπ)2
. (3.49)

Therefore, w (x, t ), uh (x, t ) and u (x, t ) can be obtained by backstepping, which can be seen in

Equation 3.50, 3.51 and 3.52 respectively, and Equation 3.52 agrees with the result of the first

test case in Guerrero et al. (2009).

w (x, t ) =−8π∆C
∞∑

j=1

j

Pe2 + (
2 jπ

)2 sin

(
jπx

L

)
e
−

(
jπ
L

)2
Dc t

(3.50)
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uh (x, t ) =−8π∆C
∞∑

j=1

j

Pe2 + (
2 jπ

)2 sin

(
jπx

L

)
e

Pe
2L x− Dc

(2L)2 [Pe2+(2nπ)2]t
(3.51)

u(x, t ) =Cu + ∆C

1−ePe

(
e

Pe
L x −1

)
−8π∆C

∞∑
j=1

j

Pe2 + (2 jπ)2
sin

(
jπx

L

)
e

Pe
2L x− Dc

(2L)2

[
Pe2+(2 jπ)2

]
t

(3.52)

When vs approaches 0, Pe goes to 0, and the Burgers equation is reduced to the equation of

the Fick’s second law, of which the solution 3.53 can be obtained by letting Pe in Equation 3.52

approach 0:

u(x, t ) =Cu − ∆C

L
x − 2∆C

π

∞∑
j=1

1

j
e
−

(
jπ
L

)2
Dc t

sin

(
jπx

L

)
. (3.53)

Similarly, when the initial condition for the seepage equation in Equation 3.23 is

φ(x,0) = Hd (0⩽ x ⩽ L), (3.54)

the seepage equation can be solved as

φ(x, t ) = Hu − is x − 2∆H

π

∞∑
j=1

1

j
e
−

(
jπ
L

)2
Dw ts sin

(
jπx

L

)
, (3.55)

where ts is the time coordinate for the seepage process.

The hydraulic gradient is obtained through the derivation of Equation 3.55:

i (x, t ) =−is

[
1+2

∞∑
j=1

e
−

(
jπ
L

)2
Dw ts cos

(
jπx

L

)]
=−isϑ3

(
z, q

)
, (3.56)

whereϑ3
(
z, q

)= 1+2
∑∞

j=1 q j 2
cos

(
2 j z

)
is a Jacobi theta function, with z = π

2L x and q = e−(
π
L

)2Dw ts

(Jacobi, 1829; Whittaker and Watson, 1962).

The value of seepage velocity is

v = vs

[
1+2

∞∑
j=1

e
−

(
jπ
L

)2
Dw ts cos

(
jπx

L

)]
= vssϑ3

[ π
2L

x,e−(
π
L

)2Dw ts
]

(3.57)

Let ts approach positive infinity and it is verified that v = vs .
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3.3.1.2 Derivation of normalized polltant flux

It is necessary to normalize the time and pollutant flux to simplify the formulas and faciliate the

plotting of the pollutant flux diagrams.

3.3.1.2.1 Theoretical normalized pollutant flux

According to Equation 3.21, the total pollutan flux for the coupled process described by Equa-

tion 3.28 shall be obtained as

J = n

(
uvs −Dc

∂u

∂x

)
. (3.58)

The steady concentration gradient can be obtained from the deriviation of Equation 3.31:

∂us

∂x
= ∆C

L

Pe

1−ePe
e

Pe
L x , (3.59)

therefore the steady contamination gradient at the upstream inlet is

∂us

∂x
= ∆C

L

Pe

1−ePe
, (3.60)

and the contamination gradient at the downstream outlet in steady state is

∂us

∂x
= ∆C

L

Pe

1−ePe
ePe. (3.61)

The concentration at the downstream outlet is assumed to be 0, hence the steady total pollutant

flux at the upstream inlet Jsu is

Jsu = n

(
Cu vs +Dc

Cu

L

Pe

ePe −1

)
= nDc

Cu

L

(
Pe+ Pe

ePe −1

)
=λJspd , (3.62)

and the downstream flux Jsd is

Jsd = nDc
Cu

L

Pe

ePe −1
ePe =λJspd , (3.63)

where Jspd = nDc
∆C
L = nDc

Cu
L is the steady pollutant flux when there is only diffusion, i.e. the
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pure diffusion flux, and the ratio of Jsd to Jspd is defined as

λ= Jsd

Jspd
= Pe

ePe −1
ePe. (3.64)

Apparently the steady pollutant fluxes at the upstream inlet and downstream outlet are equal.

Since the cross-sectional area is uniform, in steady state the conservation law of pollutant mass

is verified.

It can be seen from Figure 3.10 that when Pe ⩽ 0.1, λ is approximately 1, and when Pe > 5, λ is

close to Pe. Therefore the approximation of Jsd can be obtained in Equation 3.65:

0.01 0.1 1 10 100

1

10

100

Figure 3.10: Plot of the ratio of downstream flux Jsd to the pure diffusion downstream flux Jspd versus the Péclet
number Pe


Jsd = Jspd when Pe⩽ 0.1

Jsd =λJspd when 0.1 < Pe < 5

Jsd = PeJspd when Pe⩾ 5

. (3.65)
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The derivation of Equation 3.52 gives the transient concentration gradient, which is in Equation

3.66:

∂u

∂x
=− Cu

L

{
λePe

( x
L −1

)

+8π
∞∑

j=1

j

Pe2 + (
2 jπ

)2

[
jπcos

(
jπx

L

)
+ Pe

2
sin

(
jπx

L

)]
e

Pe
2L x− Dc

(2L)2

[
Pe2+(2 jπ)2

]
t

}, (3.66)

where the minus value of ∂u
∂x means the transportation of pollutant is towards the positive x-

direction.

The transient pollutant flux is

J =nCu vs

{
1+ 1

1−ePe

(
e

Pe
L x −1

)
−8π

∞∑
j=1

j

Pe2 + (2 jπ)2
sin

(
jπx

L

)
e

Pe
2L x− Dc

(2L)2

[
Pe2+(2 jπ)2

]
t

}
+nDc

Cu

L

{
λePe

( x
L −1

)
+

8π
∞∑

j=1

j

Pe2 + (
2 jπ

)2

[
jπcos

(
jπx

L

)
+ Pe

2
sin

(
jπx

L

)]
e

Pe
2L x− Dc

(2L)2

[
Pe2+(2 jπ)2

]
t

}

=PeJspd

{
1+ 1

1−ePe

(
e

Pe
L x −1

)
−8π

∞∑
j=1

j

Pe2 + (2 jπ)2
sin

(
jπx

L

)
e

Pe
2L x− Dc

(2L)2

[
Pe2+(2 jπ)2

]
t

}
+ Jspd

{
λePe

( x
L −1

)

+8π
∞∑

j=1

j

Pe2 + (
2 jπ

)2

[
jπcos

(
jπx

L

)
+ Pe

2
sin

(
jπx

L

)]
e

λ
2L x− Dc

(2L)2

[
Pe2+(2 jπ)2

]
t

}

=Jspd

{
λ+8π

∞∑
j=1

j

Pe2 + (
2 jπ

)2

[
jπcos

(
jπx

L

)
− Pe

2
sin

(
jπx

L

)]
e

Pe
2L x− Dc

(2L)2

[
Pe2+(2 jπ)2

]
t

}

=Jsd

{
1+ 8π

λ

∞∑
j=1

j

Pe2 + (
2 jπ

)2

[
jπcos

(
jπx

L

)
− Pe

2
sin

(
jπx

L

)]
e

Pe
2L x− Dc

(2L)2

[
Pe2+(2 jπ)2

]
t

}
.

(3.67)

To normalize time t , define the characteristic time for normalization as T = L2

Dc
, and the normal-

ized time is t̂ = t
T . Therefore the Péclet number is defined in another way as Pe = vs T

L , which

indicates Pe is the ratio of the distance the advection wave has traveled at a velocity vs within

the characteristic time T to the length L. The pollutant flux is normalized as Ĵ = J
Jsd

, which is

shown in Equation 3.68:

Ĵ = 1+ 8π

λ

∞∑
j=1

j

Pe2 + (
2 jπ

)2

[
jπcos

(
jπx

L

)
− Pe

2
sin

(
jπx

L

)]
e

Pe
2L x−

[( Pe
2

)2+( jπ)2
]

t̂
. (3.68)
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Therefore, the normalized transient pollutant fluxes at the upstream inlet and the downstream

outlet can be derived as Equation 3.69 and 3.70 respectively:

Ĵu = 1+ 8π2

λ

∞∑
j=1

j 2

Pe2 + (
2 jπ

)2 e
−

[( Pe
2

)2+( jπ)2
]

t̂
(3.69)

Ĵd = 1+ 8π2

λ

∞∑
j=1

(−1) j j 2

Pe2 + (
2 jπ

)2 e
Pe
2 −

[( Pe
2

)2+( jπ)2
]

t̂
. (3.70)

Let Pe in Equation 3.68 be 0, and the normalized flux in pure diffusion scenario is

Ĵpd = 1+2
∞∑

j=1
e−( jπ)2 t̂ cos

(
jπx

L

)
=ϑ3

( π
2L

x,e−π2 t̂
)

. (3.71)

The normalized transient upstream and downstream pollutant fluxes in pure diffusion scenario

are expressed in Equation 3.72 and 3.73 respectively:

Ĵpdu = 1+2
∞∑

j=1
e−( jπ)2 t̂ =ϑ3

(
0,e−π2 t̂

)
(3.72)

Ĵpdd = 1+2
∞∑

j=1
(−1) j e−( jπ)2 t̂ =ϑ3

(π
2

,e−π2 t̂
)

. (3.73)

3.3.1.2.2 Numerical normalized pollutant flux

The normalized pollutant flux is

Ĵ m
j =

J m
j

Jsd
= 1

Cuλ

[
Peum

j − N

2

(
um

j+1 −um
j−1

)]
. (3.74)

Thus the normalized upstream pollutant flux is

Ĵ m
2 = 1

Cuλ

[
Peum

2 − N

2

(
um

3 −um
1

)]
, (3.75)

and the normalized downstream pollutant flux is

Ĵ m
N−1 =

1

Cuλ

[
Peum

N−1 −
N

2

(
um

N −um
N−2

)]
. (3.76)
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3.3.1.3 Breakthrough time

The breakthrough time tb is defined as the time required for the pollutant concentration at

the downstream outlet to reach a regulated limit value (Chen et al., 2015; Ding et al., 2020). In

some scenarios, when there are huge amounts of water at the downstream outlet to dilute the

leakachate, such as lake or sea, the pollutant concentration at the downstream outlet is 0, which

is also the boundary condition for Equation 3.23. Therefore the definion by Chen et al. (2015)

needs to be modified.

The pollutant mass discharge rate MDR is defined as the amount of pollutant mass passing

through a cross-section per unit time, and is the product of the pollutant flux and the cross-

sectional area. It is necessary to regulate the limit value for the pollutant discharge rate at the

downstream outlet, which is denoted as MDRlim here, and the breakthrough time is defined as

the time required for the pollutant discharge rate at the downstream outlet to reach MDRlim.

Denote the cross-sectional area as A and the normalized limit for pollutant mass discharge rate

is �MDRlim = MDRlim
AJsd

= MDRlimL
nDcCuλA . When �MDRlim > 1, which means the steady pollutant mass dis-

charge rate at the downstream outlet MDRsd = AJsd is larger than MDRlim, penetration hap-

pensm, and the judge criterion is defined as

Ĵbd =�MDRlim, (3.77)

where Ĵbd is the downstream flux at the breakthrough time tb , and Equation 3.77 indicates that

the breakthrough time tb is the critical moment when the downstream pollutant flux reaches a

cartain proportion of the steady pollutant flux, which is �MDRlim.

Subsititution of Equation 3.70 gives

1−�MDRlim + 8π2

λ

∞∑
j=1

(−1) j j 2

Pe2 + (
2 jπ

)2 e
Pe
2 −

[( Pe
2

)2+( jπ)2
]

t̂b = 0, (3.78)

where t̂b is the normalized breakthrough time.

Since Ĵd is monotonous regarding t̂ , when Pe, �MDRlim are known, t̂b can be calculated by check-

ing the sign changing location in the numerical array of the left hand side of Equation 3.78 as a
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function regarding the normalized time t̂ .

However, from Table 3.2 it can be seen that the value of Pe can vary from 0 to 1×106 when the

water head difference ∆H is regarded to range from 0 meter to 20 meters, and when Pe is too

large or too small, it is difficult to calculate the lefthand side of Equation 3.78 numerically. Thus

approximations is necessary to obtain t̂b in these two situations.

Table 3.2: Typical parameters for Qizishan landfill in Suzhou (Zhan et al., 2013)

Soil
layers

Hydraulic
conductivity
k
unit: cm/s

Coefficient of
diffusivity
Dc

unit : m2/s

Distribution
coefficient
K
unit : mL/g

Dispersivity
α

unit: m

Porosity
n
unit : %

Dry
density
ρd

unit : g/cm3

Plain fill 8×10−4 6×10−10 1 0.1 44 1.5
Silty clay 1.4×10−4 3.5×10−10 3 0.1 41 1.6
Highly-moderately
weathered bedrock 2.8×10−5 2.5×10−10 3 0.1 20 2.0
Slightly-none
weathered bedrock 1×10−8 1.5×10−10 5 0.1 20 2.5
Low quality
waterproof curtain 1×10−6 2.5×10−10 5 0.1 35 2.2
Standard quality
water proof curtain 1×10−7 2×10−10 5 0.1 30 2.3
High quality
water proof curtain 1×10−8 1.5×10−10 5 0.1 30 2.4
Anti pollution dam 1×10−8 2.5×10−10 5 0.1 30 2.4

3.3.1.3.1 When Pe is large enough

The diffusion process is negligible in this situation and the governing equation becomes

∂u

∂t
+ vs

∂u

∂x
= 0 (0⩽ x ⩽ L, t ⩾ 0) . (3.79)

With the inhomogeneous Dirichlet boundary conditions 3.25 and initial condition 3.29, the so-

lution to Equation 3.79 is simply
u (x, t ) =Cu when x − vs t ⩽ 0

u (x, t ) =Cd when x − vs t > 0
(0⩽ x ⩽ L, t ⩾ 0) . (3.80)
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Therefore it is obvious that the normalized breakthrough time t̂b = L
vs T = 1

Pe when penetration

happens, and the judge criterion for penetration is shown in Equation 3.81:

�MDRlim = MDRlim

nCu vs A
= MDRlim

PeJspd A
⩽ 1. (3.81)

3.3.1.3.2 When Pe is small enough

The advection process is ignored in this situation, and only the diffusion process is considered.

Thus, Equation 3.73 is applied for the breakthrough time calculation, and the judge criterion is

shown in Equation 3.82:

1−�MDRlim +1+2
∞∑

j=1
e−( jπ)2 t̂b = 0. (3.82)

It can be seen that Equation 3.82 does not include Pe and �MDRlim is the only parameter, which

means when Pe is small enough, it is considered to be not concerned with the breakthrough

time.

3.3.2 1D nonlinear pollutant advection-diffusion problem

When the cross-sectional area is assumed to be a variable A (x), the governing equation becomes

nonlinear, and a different method should be applied to find the solution.

3.3.2.1 Derivation of governing equation

Since the seepage process is generally regarded to be in steady state when coupled with the

pollutant advection-diffusion process, the seepage velocity shall be defined as a variable vs (x).

Therefore the nonlinear governing equation should be

A
∂u

∂t
+ ∂ (Avsu)

∂x
= Dc

∂

∂x

(
A
∂u

∂x

)
(0⩽ x ⩽ L, t ⩾ 0) . (3.83)

Since vs (x) = k
n is (x), Equation 3.83 becomes

A
∂u

∂t
+ k

n

∂ (Aisu)

∂x
= Dc

∂

∂x

(
A
∂u

∂x

)
(0⩽ x ⩽ L, t ⩾ 0) , (3.84)

where is (x) is the steady hydraulic gradient.
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From Equation 3.2 it can be obtained that:

A (x) is (x) = Qs

k
, (3.85)

where Qs is the constant steady flow rate.

Substitution of Equation 3.85 into Equation 3.84 yields

A
∂u

∂t
+ Qs

n

∂u

∂x
= Dc

∂

∂x

(
A
∂u

∂x

)
(0⩽ x ⩽ L, t ⩾ 0) , (3.86)

where Qs = k∆H
L Ã (L) is obtained from Equation 3.5, of which the boundary conditions are Equa-

tion 3.24, and Ã (L) = 1
1
L

∫ L
0

1
A(x) d x

is the harmonic average area along the advection-diffusion path.

Therefore Equation 3.86 is the governing equation for the nonlinear pollutant advection-diffusion

process with inhomogeneous Dirichlet water head boundary conditions.

Expanding Equation 3.86 gives
∂u

∂t
+ r

∂u

∂x
= Dc

∂2u

∂x2
, (3.87)

where r (x) = 1
A

(
Qs
n −Dc

d A
d x

)
.

Substitution of Qs and Ã (L) into r (x) gives

r (x) = 1

A

(
Qs

n
−Dc

d A

d x

)
= 1

A

[
k∆H

nL
Ã (L)−Dc

d A

d x

]
. (3.88)

3.3.2.2 FDM for the nonlinear governing equation

The FDM method, which is similar to the FDM algorithm in Pan et al. (2021), is applied to dis-

cretize Equation 3.87.

The time and space are divided into M and N segments respectively, and the finite-differenced

results are shown in



CHAPTER 3. METHODOLOGY AND DERIVATIONS 42



∂u

∂t
=

um+1
j −um

j

∆t

r j = Dc

A j L

[
k∆H

nDc
Ã (L)− N

2

(
A j+1 − A j−1

)]
∂u

∂x
=

um
j+1 −um

j−1

2∆x

∂2u

∂x2
=

um
j+1 −2um

j +um
j−1

∆x2

, (3.89)

where um
j is the pollutant concentration at the j th location node and mth time node, ∆x = L

N ,

∆t = Ttot
M , Ã (L) = 1

1
N+1

∑N
j=0

1
A j

and Ttot is the total time for the process.

Subsititution of Equation 3.89 into Equation 3.87 yields

um+1
j −um

j

∆t
+ r j

um
j+1 −um

j−1

2∆x
= Dc

um
j+1 −2um

j +um
j−1

∆x2
, (3.90)

Rearrangement of Equation 3.90 gives

um+1
j = um

j + Dc∆t

∆x2

[(
1− r j∆x

2Dc

)
um

j+1 −2um
j +

(
1+ r j∆x

2Dc

)
um

j−1

]
. (3.91)

When the boundary and initial conditions are known, such as the inhomogeneous Dirichlet

boundary conditions in Equation 3.92 and the initial condition in Equation 3.93, um
j can be

solved by Equation 3.91: 
um

0 =Cu

um
N =Cd

,m = 1,2, ..., M , (3.92)


u0

0 =Cu

u0
j =Cd

, j = 1,2, ..., N . (3.93)

Since the steady seepage velocity at location x is vs (x) = Qs
n A(x) = k∆H

nL A(x) Ã (L), the discretized

steady seepage velocity at the j th location node is

(vs) j =
k∆H

nL A j

Ã (L)

A j
, (3.94)



CHAPTER 3. METHODOLOGY AND DERIVATIONS 43

and the discretized pollutant flux at the j th location node and mth time node is

J m
j = k∆H

L

Ã (L)

A j
um

j −nDc

um
j+1 −um

j−1

2∆x
. (3.95)

The pollutant mass discharge rate MDRm
j at the j th node and mth time point can be calculated

by Equation 3.96:

MDRm
j = k∆H

L
Ã (L)um

j −nDc

um
j+1 −um

j−1

2∆x
A j . (3.96)

The downstream pollutant mass discharge rate is approximated as

MDRm
N−1 =

k∆H

L
Ã (L)um

N−1 −nDc
um

N −um
N−2

2∆x
AN−1. (3.97)

When multi advection-diffusion paths exist, the total pollutant mass discharge rate at the down-

tream outlet is the sum of all individual downstream pollutant mass discharge rates.

Since the discretized cross-sectional areas A j for a channel in flow penetrated cutoff walls can be

obtained from the simulation of randomly defective JGCOW and diaphragm walls by TDA (Pan

et al., 2019a,b) or other models, the nonlinear algorithm can be coupled with the discretized

cross-sectional areas A j to assess the leakage risk for cutoff walls with stochastic construction

errors in a more realistic way.

3.3.2.3 A trial on the nonlinear governing equation with ADM

The Adomian decomposition method (ADM) (Adomian, 1984, 1986a,b, 1988, 1989, 1994, 1997)

is applied to give a trial on Equation 3.87.

Define Lt u = ∂u
∂t , Lxx = ∂2u

∂x2 and Nu = r ∂u
∂x .

The method by Mamaloukas (2000) is used, and rearranging Equation 3.87 gives

Lt u = DLxxu −Nu, (3.98)

and

Lxxu = D−1 (Lt u +Nu) . (3.99)
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Applying the inverse operators L−1
t (.) = ∫

(.)d t and L−1
xx (.) = ∫ ∫

(.)d xd x on both sides of Equa-

tion 3.98 and 3.99 respectively gives

u = a0 +L−1
t (DLxxu −Nu) , (3.100)

and

u = b0 +D−1L−1
xx (Lt u +Nu) , (3.101)

where a0 and b0 are the solutions to the equations ∂u
∂t = 0 and ∂2u

∂x2 = 0 with the boundary and

initial conditions be Equation 3.25 and 3.29 respectively.

The solutions to ∂u
∂t = 0 and ∂2u

∂x2 = 0 are


a0 =Cd

b0 =Cu − ∆C

L
x

. (3.102)

Adding Equation 3.100 and 3.101 together and dividing by 2 gives

u = C̄ − ∆C

2L
x + 1

2

[
L−1

t (DLxxu −Nu)+D−1L−1
xx (Lt u +Nu)

]
, (3.103)

where C̄ = Cu+Cd
2 is the average value for the upstream and downstream water heads.

Denote u0 = a0+b0
2 and the parametrized form of Equation 3.103 becomes

u = u0 + µ

2

[
L−1

t (DLxxu −Nu)+D−1L−1
xx (Lt u +Nu)

]
, (3.104)

where µ is the parameter for parametrization.

Thus u and Nu are decomposed as

u =
∞∑

j=0
µ j u j (3.105)

and

Nu = r
∂u

∂x
=

∞∑
j=0

µ j P j , (3.106)

where P j are the Adomian polynomials.
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Substituting Equation 3.105 and 3.106 into 3.104 gives

∞∑
j=0

µ j u j =u0 + µ

2

{
L−1

t

[
D
∂2

∂x2

( ∞∑
j=0

µ j u j

)
−

∞∑
j=0

µ j P j

]

+D−1L−1
xx

[
∂

∂t

( ∞∑
j=0

µ j u j

)
+

∞∑
j=0

µ j P j

]}
.

(3.107)

By comparing both sides of Equation 3.107, Equation 3.108 it can be obtained that (Cherruault,

1989; Cherruault et al., 1992)

u1 = 1

2

[
L−1

t

(
D
∂2u0

∂x2
−P0

)
+D−1L−1

xx

(
∂u0

∂t
+P0

)]
u2 = 1

2

[
L−1

t

(
D
∂2u1

∂x2
−P1

)
+D−1L−1

xx

(
∂u1

∂t
+P1

)]
...

u j+1 = 1

2

[
L−1

t

(
D
∂2u j

∂x2
−P j

)
+D−1L−1

xx

(
∂u j

∂t
+P j

)]
. (3.108)

Subsitituting Equation 3.105 into 3.106 gives

Nu =
∞∑

j=0
µ j P j = r

∂u

∂x
= r

∞∑
j=0

µ j u j . (3.109)

Since P j can be expressed as P j = P j
(
u0,u1, ...,u j

)
when r (x) is known, Equation 3.110 can be

obtained: 

P0 = r u0

P1 = r u1

...

P j = r u j

. (3.110)
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Therefore by iteration, Equation 3.111 can be obtained:

u0 = C̄ − ∆C

2L
x = ∆C

2

(
C̃ − x

L

)
P0 = r∆C

2

(
C̃ − x

L

)
u1 = ∆C

4

{[
r
(x

L
− C̃

)]
t + 1

D

[∫ x

0

∫ x

0
r
(
C̃ − x

L

)
d xd x

]}
...

, (3.111)

where C̃ = 2C̄
∆C = Cu+Cd

Cu−Cd
.

When Cd = 0, Equation 3.111 becomes



u0 = 1− Cu

2L
x = Cu

2

(
1− x

L

)
P0 = rCu

2

(
1− x

L

)
u1 = Cu

4

{[
r
(x

L
−1

)]
t + 1

D

[∫ x

0

∫ x

0
r
(
1− x

L

)
d xd x

]}
...

. (3.112)

In the u1 equation in Equation 3.111 and 3.112, the integration for r
(
C̃ − x

L

)
is non-elementary

for the majority of the cross-sectional area function A (x), and only few A (x), such as A (x) = ex

and A (x) = kx +d (kx +d > 0), can make u1 and its following iterated equations be elemen-

tary. Therefore the ADM method is not efficient in solving the nonlinear governing equation as

a semi-analytical method, and more techniques are required to supplement the method.



Chapter 4

Case study

4.1 Breakthrough time

The results of the normalized breakthrough time t̂b under different Pe and �MDRlim are plotted as

diagrams in Figure B.1, B.2 and B.3, with examples to illustrate the application of the diagrams.

4.1.1 Breakthrough time diagrams

200 terms in series are applied in the calculation of Equation 3.78 and 3.82 by Matlab®. The log-

arithm of normalized breakthrough time versus the logarithm of Pe diagram is shown in Figure

B.3, and it can be seen that when �MDRlim is a fixed value, as Pe increases, t̂b decreases, which

indicates that the increase of advection process shall enhance the transportation of pullutant

mass and reduce the normalized breakthrough time.

As Pe increases from 10 to 100, the curves tend to be linear, thus the curves are plotted as lines

converging at (500,0.002) when Pe is larger than 100. Obviously Pe = 500 is the defined critical

point to be large enough, and the subsequent diagram is shown in Figure B.1, where t̂b = 1
Pe is

plotted as a line in the logarithm of ordinate and abscissa. In the exact situation the curves will

intersect at the infinity and be infinitely close to t̂b = 1
Pe as Pe approches infinity.

In Figure B.3, when Pe is close to 1, t̂b is tending to be steady, thus Pe = 1 is chosen to be the

critical point for being small enough. When Pe ⩽ 1, it is regarded that the varying of Pe does

not affect t̂b anymore and in Figure B.2 the red dash dot line represents this situation, where
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other curves for different values of Pe are plotted as well in the �MDRlim versus the logarithm of

t̂b chart. It is obvious that when �MDRlim is extremely close to 0 and 1, the curves become steep.

When �MDRlim = 0, t̂b shall be 0, while when �MDRlim = 1, it shall take infinite time for the process

to reach steady state.

4.1.2 Examples

Deploying Figure B.1, B.2 and B.3 shall give quick rough estimation of breakthrough time with

various parameter values, or suggestions for parameter determination when the required break-

through time is known.

Three examples are shown below to illustrate the application of the breakthrough time dia-

grams, and the necessary data are shown in Table 4.1. The soils in example 1, 2, 3 are the soil

of standard quality waterproof curtain, highly-moderately weathered bedrock and silty clay re-

spectively, which are referred from in Table 3.2, and the values of the hydraulic conductivity k,

coefficient of diffusivity Dc and porosity n of the soils are also referred.

Table 4.1: Data for examples as illustration for the application of breakthrough time diagrams

Example

Hydraulic
conductivity
k
unit: m/s

Waterhead
difference
∆H
unit : m

Coefficient of
diffusivity
Dc

unit : m2/s

Porosity
n
unit : %

Length
L
unit : m

Upstream
contaminant
concenctration
Cu

unit : mg/m3

Cross-sectional
area
A
unit : m2

Contaminant
mass discharge
rate limit
MDRlim

unit : mg/s

1 1.0×10−9 1.2 2.0×10−10 30 0.5 3.5×105 1.5 8.0×10−4

2 2.8×10−5 0.8 2.5×10−10 20 - 2.0×105 - -
3 1.4×10−6 0 3.5×10−10 41 3.0 1.5×105 - 1.0×10−5

4.1.2.1 Example 1

It is known form Table 4.1 that Pe = k∆H
nDc

= 20, and T = L2

Dc
= 1.25×109 s = 39 years. The steady

downstream pollutant flux is Jsd = 8.4× 10−4 mg/
(
m2 · s

)
, thus the normalized pollutant mass

discharge rate is �MDRlim = MDRlim
AJsd

= 0.63. By linear interpolation it is known that the normalized

breakthrough time t̂b = 0.054−0.044
0.8−0.5 × (0.63−0.5)+ 0.044 = 0.048 from Figure B.3. Therefore the

breakthrough time tb = t̂bT = 1.9 years. By Equation 3.70 the analytical result t̂b is 0.048 as well,

which agrees with the result by interpolation method with the diagrams.
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4.1.2.2 Example 2

In example 2, Pe = k∆H
nDc

= 4480, and the breakthrough time should be t̂b = 1
Pe = 2.23× 10−4. If

penetration happens, when the breakthrough time is required to be more than 30 years, the

length of the process L should be more than 0.49 meters.

4.1.2.3 Example 3

Since ∆H = 0 in example 3, Pe = 0, which indicates this is a pure diffusion scenario. The time

base T = L2

Dc
= 2.57 × 1010 s = 815.4 years and the downstream pollutant flux is Jspd = 7.2 ×

10−5 mg/
(
m2 · s

)
. When the required breakthrough time is 50 years, the normalized break-

through time t̂b = 50
815.4 = 0.0613. From Figure B.2 it is known that �MDRlim = 0.009, and the

maximum cross-sectional area is A = MDRlim�MDRlim
Jspd = 15.4 m2.

4.2 Theoretical verification of the 1D FEM algorithm

Since Equation 3.28 can be solved analytically, it is possible to compare the results by the 1D

FEM alogorithm (Schirén, 2018) with the theoretical solutions, which shares the same advection-

diffusion governing equation. The verificaion in Schirén (2018) is not perfect, thus it is applied

here to give another trial.

4.2.1 Parameter setup

There are 100 terms in series for the simulation of analytical normalized pollutant fluxes based

on Equation 3.69, 3.70, 3.72 and 3.73 by Matlab®. To simplify the verification, the length of the

path L is set to be 1 meter, the diffusion coefficient Dc is 5× 10−10 m2/s, and the characteris-

tic time for normalization T is thus 8 billion seconds, which is approximately 253.7 years. The

length L is discretized into 100 equal segments.

The steady seepage velocities for case verification is shown in Table 4.2.

Table 4.2: Steady seepage velocities for analytical verification

Case No. 1 2 3

Steady seepage velocity [m/s] 5×10−11 5×10−10 5×10−9

Péclet number Pe 0.1 1 10
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4.2.2 Results and interpreation

To facilitate the comparision between the theoretical and FEM results, the normalized pollutant

fluxes for case 1, 2 and 3 are plotted in Figure 4.1, 4.2 and 4.3 respectively, where the normal-

ized pollutant fluxes at the upstream inlet and downstream outlet are both included. Here the

pollutant fluxes in the pure diffusion scenario are normalized based on the steady downstream

pollutant flux in the advection-diffusion process to give an intuitive impression on the contri-

bution of the advection process over the diffusion process in the transportation of the pollutant

mass.
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Figure 4.1: Plot for normalized pollutant flux in case 1

The analytical results agrees well with the FEM results, and in 3 cases all curves converges when
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Figure 4.2: Plot for normalized pollutant flux in case 2

time is large enough, which verifies the conservation law of pollutant mass. The results for the

pure diffusion scenario are the same in 3 cases.

When vs is relatively small as 5×10−11 m/s in case 1 (Figure 4.1), the Péclet number is 0.1, and

the diffusion process domains the advection-diffusion process, where the difference between

the analytical and FEM results are negligible. It takes approximately 60% of T , i.e. 152.2 years

for the process to be steady.

In Figure 4.2, it can be seen that when the steady seepage velocity is larger as 5×10−10 m/s,

Pe = 1, and the advection process is no longer ignorable. The normalized upstream fluxes with

the contribution of advection are smaller than those in pure diffusion scenario, while the nor-
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Figure 4.3: Plot for normalized pollutant flux in case 3

malized downstream fluxes are larger than the pure diffusion downstream fluxes. The shapes for

the two downstream fluxes curves are simliar, and they are approximately synchronized regard-

ing the same level of �MDRlim, which means for the same �MDRlim, the normalized breakthrough

time are almost equal for the two downstream curves, and this verifies that when Pe⩽ 1 it is rea-

sonable to regard the advection-diffusion process as pure diffusion process for the calculation

of normalized breakthrough time.

When the seepage velocity is as large as 5×10−9 m/s (Figure 4.3), the differences are significantly

larger, which means the normalized fluxes for the advection-diffusion process are significantly

larger than those for the pure diffusion process, and it takes much less time, i.e. approximately

25%T for the fluxes with the contribution of advection to reach steady state than those without
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the contribution of advection.



Chapter 5

Results and discussion

The definition and judge criterion for the breakthrough time in the scenario of cutoff walls with

inhomogeneous Dirichlet boundary conditions are given, and the breakthrough time diagrams

for the 1D linear steady seepage and transient contaminant advection-diffusion coupled pro-

cess are given to serve as risk assessment tools for contaminant leakage problem.

The analytical solution for 1D linear steady seepage and transient contaminant advection-diffusion

coupled process agrees well with the results by FEM for 3 cases with different Péclet numbers,

which proves the validity of the FEM method.

When the pollutant concentration at the downstream is not zero, the equations for the pollutant

flux and the breakthrough time need to be modified.

As the nonlinear model is given, the FEM algorithm shall be modified to include the noncon-

stant cross-sections and be compared with the given FDM algorithm. The model shall be com-

bined with the TDA 3D model for JGCOW and diaphragm wall or other models for defective

cutoff walls to evaluate the contaminant mass discharge rate. The breakthrough time for non-

linear situations can thus be determined with the given definition and judge criterion, and the

analogical breakthrough time diagrams shall be plotted to function as tools for the contaminant

leakage risk assessment regarding cutoff walls with construction errors.

Although the ADM algorithm for the nonlinear model is given, it is only feasible for few types of
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1D channels, therefore an improvement shall be applied for the ADM algorithm.

The development of the nonlinear model and the breakthrough time as a risk assessment crite-

rion is consistent with the aim of the thesis, which is to evaluate the pollutant mass discharge

rate in cutoff walls with random construction errors. Since the time is limited, the parametric

study for the integration of the nonlinear model with stochastically defective cutoff wall simu-

lations is not performed in the thesis.



Chapter 6

Conclusion and future perspectives

The summary and conclusion for the results of the works by the thesis are listed:

1. The breakthrough time diagrams are plotted as contaminant leakage risk assessment tools

and the model with its FDM and ADM algorithms regarding 1D nonlinear steady seepage

and transient contaminant advection-diffusion coupled process are proposed.

2. In linear scenarios, the analytical solution and FEM algorithm shall be valid as they verify

each other.

3. Since the definition and judge criterion for contaminant breakthrough time of defective

cutoff walls can be applied in the nonlinear scenarios as well, the combination of the non-

linear model with 2D and 3D simulations of cutoff walls with construction errors shall be a

realistic and promising way to perform contaminant leakage risk assessment.

The recommendations for future study are listed as short-term, medium-term and long-term

recommendations:

• Short-term: The nonlinear steady seepage and transient contaminant advection-diffusion

coupled model shall be integrated with the TDA stochastic 3D model or other models for

defective cutoff walls to assess the contaminant leakage risk by determining the break-

through time and plot the breakthrough time diagrams. The definition of Péclet number

in nonlinear scenario shall be studied to obtain a profound understand regarding the pro-

cess. Other numerical methods, e.g. FEM method and lattice Boltzmann method shall be

applied to solve the model and be compared with the given FDM method.
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• Medium-term: In the thesis, only the value of the varying cross-sectional area and the

cross-sectionally average seepage velocity is considered, while the shape of the cross-section

and the tortuousness of the path for the process shall influence the motion of groundwater

together with the contaminants in the groundwater. Thus it is necessary to develop more

realistic models and algorithms to describe the process.

• Long-term: Fractal geometry can be applied to simulate complex channels, which can

be combined with the seepage and contaminant advection-diffusion coupled process to

simulate the groundwater flow and contaminant transportation in medium with complex

channels.

.



Appendix A

Acronyms

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

ADM Adomian Decomposition Method

CEC Contaminants of Emerging Concern

CGCW Composite Geomembrane Cut-off Wall

COD Chemical Oxygen Demand

COV Coefficient of Variation

FDM Finite Difference Method

FEM Finite Element Method

GCL Geosynthetic Clay Liner

IID Independently Identically Distribution

JGCOW Jet-Grouted Cut-Off Wall

MSW Municipal Solid Waste

ODE Ordinary Differential Equation

PBFC Polyvinyl Alcohol-Bentonite-Fly ash-Cement
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RFEM Random Finite Element Method

SHMP Sand/Sodium Hexametaphosphate (SHMP)

SB Soil-bentonite

SPSP Steel Pipe Sheet Pipe

TDA Three-Dimensional Discretized Algorithm



Appendix B

Breakthrough time diagrams

B.1 Pe as abscissa (Pe⩾ 500)

500 1000 10000

0.0001

0.001

0.002

Figure B.1: Diagram of normalized breakthrough time t̂b versus Péclet number Pe when Pe⩾500
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B.2 �MDRlim as abscissa
(
0.1%⩽�MDRlim ⩽ 99.9%

)

0.1 10 20 30 40 50 60 70 80 90 99.9
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Figure B.2: Diagram of normalized breakthrough time t̂b versus normalized limit for pollutant mass discharge rate�MDRlim when 0.1%⩽�MDRlim ⩽ 99.9%
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B.3 Pe as abscissa (1 < Pe < 500)

1 10 100

0.001

0.01

0.1

1

Figure B.3: Diagram of normalized breakthrough time t̂b versus Péclet number Pe when 1<Pe<500
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