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Abstract
The design of robust orbitally stabilizing feedback is considered. From a known
orbitally stabilizing controller for a nominal, disturbance-free system, a robus-
tifying feedback extension is designed utilizing the sliding-mode control (SMC)
methodology. The main contribution of the article is to provide a construc-
tive procedure for designing the time-invariant switching function used in the
SMC synthesis. More specifically, its zero-level set (the sliding manifold) is
designed using a real Floquet–Lyapunov transformation to locally correspond
to an invariant subspace of the Monodromy matrix of a transverse lineariza-
tion. This ensures asymptotic stability of the periodic orbit when the system is
confined to the sliding manifold, despite any system uncertainties and external
disturbances satisfying amatching condition. The challenging task of oscillation
control of the underactuated cart–pendulum system subject to both matched-
and unmatched disturbances/uncertainties demonstrates the efficacy of the
proposed scheme.
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1 INTRODUCTION

Orbital stabilization is the utilization of time-invariant feedback to generate an asymptotically stable limit cycle in the
resulting autonomous closed-loop system, corresponding to the closed orbit of a desired periodic motion.1 It is a natural
way of phrasing the task of feedback design in applicationswhere the desired operatingmode is oscillatory, and it can have
several benefits compared with trajectory tracking methods, especially for nonlinear systems which are underactuated
and nonminimum phase. For instance, it makes stability analysis a far more tractable problem as the closed-loop system
is time-invariant, as opposed to time-varying. Moreover, it lessens the burden on the control action as it does not need
to ensure the “timing” of the motion, in the sense that the system’s states do not need to converge to the desired orbit in
phase with a time-varying reference trajectory.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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There exist severalmethods for designing orbitally stabilizing feedback for different classes of systems in the literature;
see, for example, References 2-10, to name but a few. Thesemethods share a primary goal: to simultaneously generate and
stabilize self-induced oscillations via continuous feedback. This means that a precise mathematical model of the system
to be controlled is generally required for these methods to be successfully applied. Indeed, since the resulting closed-loop
system is autonomous, any unknown disturbance or model discrepancies (e.g., due to unmodeled dynamics or uncertain
parameters), may significantly alter its behavior. Thus, if not taken into consideration, unknown perturbations can result
in a change of both the shape and location of the induced limit cycle, or even lead to the instability of the desired motion.
Yet, with the exception of a few methods that are either only applicable for a very limiting class of systems11 or only
ensure asymptotic orbital stability of some of the system’s states,12 most orbital stabilization methods are not designed
specifically with robustness in mind.

This lack of robustness can be problematic, as uncertainty and unknown disturbances will often be an inherent
part of many such tasks. For instance, in dynamic manipulation of compliant objects, say, rolling an orange on the
palm of a robotic hand, trying to accurately model all the complex phenomena of the contact between the interacting
objects is not only a daunting task, it will often be infeasible in practice. A more realistic strategy is to instead use a
model which is “good enough” to generate an approximate motion and to design a nominal feedback for it, whereas
the remaining disturbances and uncertainties are lumped together and compensated for by a robustifying feedback
extension.*

In regard to the design of such an extension, the slidingmode control (SMC)methodology, with its well-known insen-
sitivity to bounded perturbations satisfying a matching condition,13 is especially well suited. It consists of twomain steps:
1) the construction of a switching function, whose zero-level set defines a slidingmanifold onwhich the system has desired
properties; and 2) the design of a control law which ensures that the sliding manifold is reached in finite time despite of
any matched perturbations.

There exist a large array of different strategies14-16 to solve the latter problem provided that the switching surface
is given. Thus the question we are looking to answer in regard to robust orbital stabilization is the following: How to
construct a time-invariant switching function that defines a sliding manifold upon which the system’s states converges
to a desired orbit? The main contribution of this article is to provide a new constructive procedure for designing such
a function. This procedure is applicable for a large class of nonlinear systems, including underactuated mechanical
systems.

We begin by stating a detailed problem formulation and provide an outline of the proposed solution in the next section.

1.1 Notation

R denotes the reals and R+ denotes the nonnegative reals. In denotes the n × n identity matrix, while 0n×m is a n ×m
matrix of zeros, with 0n = 0n×n. Given two column vectors w and v, the shorthand notation [w; v] = [wT, vT]T is used. For
any z = [z1; z2 … ; zn] ∈ Rn, ||z||p ∶= (∑n

i=1|zi|p) 1
p denotes the p-norm onRn, with ||z|| = ||z||2 the Euclidean norm. For a

smoothmapping h ∶ Rn → Rm, we denote byDh(x) = [ 𝜕h
𝜕x1

(x), … ,
𝜕h
𝜕xn

(x)] its Jacobianmatrix at x ∈ Rn. ||h(x)|| = (||x||k)
if ||h(x)|| ≤ c||x||k as ||x|| → 0 for some c > 0. A† ∈ Rm×n denotes the pseudo- (Moore–Penrose) inverse of a full-rank
matrixA ∈ Rn×m. Positive semidefinite (PSD) and positive definite (PD)matrices are denoted by≽ 0 and≻ 0, respectively.
The eigenvalues of A ∈ Rn×n with the smallest and largest real part are denoted by 𝜆min(A) and 𝜆max(A), respectively.
GivenM ∈ Cn×n, we denote byM its (elementwise) complex conjugate. For a ∈ R, sgn(a) ∈ {−1, 0, 1} and sat(a) ∈ [−1, 1]
denote the signum and saturation functions, respectively.

2 PROBLEM FORMULATION AND OUTLINE OF THE PROPOSED
SOLUTION

2.1 Problem formulation

Consider a nonlinear control-affine system with an unknown, matched perturbation:

*Although not part of the focus of this article, it may often be advantageous to complement the robust feedback with an adaptive scheme to estimate
uncertain parameters.



FREDRIK SÆTRE et al. 8077

ẋ = f (x) + g(x) (u + Δ(x, t)) . (1)

Here x(t) ∈ Rn denotes the state at time t ∈ R+, u(t) ∈ Rm represents the control inputs, m < n, while the perturbation
term Δ ∶ Rn × R+ → Rm, consisting of system uncertainties and unknown external disturbances, has a known upper
bound:† ||Δ|| ≤ ΔM for all x ∈ Rn and t ∈ R+. We assume f ∶ Rn → Rn to be 2 (twice continuously differentiable) and
that the columns of g(⋅) ∈ Rn×m, denoted gi ∶ Rn → Rn, i ∈ {1, … ,m}, are linearly independent and (locally) Lipschitz
continuous.

It will be assumed that a bounded, T-periodic solution x⋆(t) = x⋆(t + T) of the nominal (i.e., perturbation-free)
and undriven (i.e., u ≡ 0) system is known for some T > 0; that is ẋ⋆(t) = f (x⋆(t)) and 0 < ||f (x⋆(t))|| <∞ for
all t ∈ R+. It will further be assumed that a 2-mapping k ∶ Rn → Rm is known, satisfying k(x⋆(t)) ≡ 0, which
(locally) renders x⋆(t) an exponentially orbitally (Poincaré) stable1,17 solution of the nominal closed-loop system,
described by

𝜒̇ = f (𝜒) + g(𝜒)k(𝜒), 𝜒 ∈ R
n. (2)

That is to say, if

𝜂⋆ ∶=
{
x ∈ R

n| x = x⋆(t), t ∈ [0,T)
}

(3)

denotes the corresponding periodic orbit, and if we define the distance dist(x, 𝜂⋆) ∶= infy∈𝜂⋆ ||x − y||, then this stability
concept is understood in the following sense.

Definition 1 (orbital stability). A solution x⋆(⋅) (resp. its orbit 𝜂⋆) of the autonomous system (2) is said to be orbitally
stable (resp. stable) if, for every 𝜖 > 0, there is a 𝛿 = 𝛿(𝜖) > 0, such that for any solution x(⋅) of (2) satisfying dist(x(t0), 𝜂⋆) <
𝛿, it is implied that dist(x(t), 𝜂⋆) < 𝜖 for all t ≥ t0. The solution (resp. its orbit) is said to be asymptotically orbitally stable
(resp. asymptotically stable), if it is orbitally stable (resp. stable), and there is an open tubular neighborhood  (r) ∶=
{x ∈ Rn ∶ dist(x, 𝜂⋆) < r} of the orbit 𝜂⋆ for some r > 0, such that x(t0) ∈  (r) implies dist(x(t), 𝜂⋆) → 0 as t → ∞. The
solution (resp. its orbit) is said to be exponentially orbitally stable (resp. exponentially stable) if there exist constants
𝜆,C > 0, such that dist(x(t), 𝜂⋆) ≤ Ce−𝜆(t−t0) for all t ≥ t0.

The fact that k(⋅) renders x⋆(⋅) an exponentially orbitally stable solution of the disturbance-free system (2) does of
course in no way guarantee that it will also be an (asymptotically) orbitally stable solution of (1) in the presence of the
matched perturbation given by g(x)Δ(x, t). In fact, it may no longer be a solution of the closed-loop system at all. For this
reason, we consider the task of utilizing the knowledge of k(⋅) to instead design a robust controller which also renders
x⋆(⋅) an asymptotically orbitally stable solution of the system (1). We do this by searching for a time-invariant switching
function, whose zero-level set defines a sliding manifold/surface upon which all solutions sufficiently close to the desired
orbit converges to it. More precisely, we are looking to solve the following problem using our prior knowledge of the
nominal feedback k(⋅).

Problem 1. Find a time-invariant, 2 switching function 𝜎 ∶ Rn → Rm such that if restricted to the sliding manifold,
defined by

Σ ∶= {x ∈ R
n ∶ 𝜎(x) = 0m×1}, (4)

then, for any x within some tubular neighborhood of the orbit 𝜂⋆, the system (1) experiences the equivalent control15

ueq = k̂(x) − Δ(x, t), (5)

where k̂ ∶ Rn → Rm is a 1 mapping satisfying k̂(y) ≡ 0 and Dk̂(y) = Dk(y) for all y ∈ 𝜂⋆. That is, the first-order
approximations of k̂(⋅) and k(⋅) along 𝜂⋆ are equal.

†While the restrictions upon Δ(⋅) are here taken to be quite conservative for simplicity, they can be somewhat relaxed. For example, the proposed
scheme can be easily extended to a disturbance term of the form Δ ∶ Rn × Rm × R+ → Rm for which ||Δ(x,u, t)|| ≤ Δ0 + Δu||u|| + 𝛼(x, t) is satisfied
given known constants Δ0,Δu ∈ R+ and a known function 𝛼 ∶ Rn × R+ → R+.
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Remark 1. The use ofUtkin’s equivalent controlmethod15 ensures that the control “experienced” by the systemwhen con-
fined to the manifold (4) corresponds to (5), which is both disturbance rejecting and asymptotically orbitally stabilizing.
Thus anymotion (of reduced order) of the system (1) in slidingmodemay be considered to evolve as if ẋ = f (x) + g(x)k̂(x).
The mapping k̂(⋅) is considered rather than the known feedback k(⋅) as it allows for an added level of flexibility in the
design of the switching function (adding or removing higher order terms), but still keeping the local orbitally stabilizing
feedback properties.

Notice also the absence of an explicit form of a sliding mode control law in Problem 1. Indeed, as previously stated,
the main focus of this article is not the design of slidingmode controllers per se, but rather the design of slidingmanifolds
on which the orbit (3) is asymptotically stable. Of course, if such a manifold is given, then some sort of sliding mode
control law (be that a relay-type, unit-vector, higher-order, etc.) is necessary in order to bring the system’s states onto it
in finite time. While the choice of such a control law is important in regard to aspects such as, for example, chattering
attenuation and the required assumptions upon the unknown disturbance term, it does not affect the corresponding
equivalent control (5), which instead is completely determined by the choice of switching function. Hence the tasks of
designing and stabilizing the corresponding sliding manifold may be considered separately, with our focus in this article
mainly on the former.

2.2 Outline of the proposed solution

It is well known that the local (general) behavior of a smooth nonlinear system about one of its hyperbolic equilib-
rium points can be determined by the corresponding (Jacobian) linearization about this point (the Hartman–Grobman
theorem). In particular, the invariant subspaces of the linearization correspond to locally invariant manifolds of
the nonlinear system (cf. theorem 6.1 in Reference 18). This local equivalence may also be utilized for the pur-
pose of designing robust controllers for nonlinear systems subject to matched disturbances. For instance, one can
attempt to design the switching function used in the SMC synthesis such that its zero-level set locally corresponds
to a stable invariant subspaces of the linearization of a nominal model of the system about the desired hyperbolic
equilibrium.‡:

The approach we suggest in this article for solving Problem 1 is based on similar ideas. Namely on the local equiva-
lence between the stable invariant manifolds of the nominal (nonlinear) closed-loop system (2) and the stable invariant
subspaces of the corresponding first-order approximation system along the orbit (3). How to utilize these ideas as to con-
struct a time-invariant switching function 𝜎(⋅) may not be immediately obvious, however. Indeed, linearizing (2) along
the solution x⋆(t) just results in a time-varying (periodic) system which evidently will have the nonvanishing solution
ẋ⋆(t). This implies that one must find a real invariant subspace of appropriate dimension among the remaining (n − 1)
independent solutions. However, any annihilator of such a subspace will be time-varying in general. Thus, as to obtain a
solution to Problem 1, one first needs to construct such a subspace, and then, more importantly, design from its annihila-
tor the time-invariant switching function 𝜎(⋅). The main contribution of this article is to provide a constructive procedure
for doing so.

More specifically, we suggest for this purpose the following three-step approach§

1) Transverse linearization: Derive the linear periodic system corresponding to the first approximation (linearization)
along the nominal orbit of the dynamics of a set of (n − 1) transverse coordinates, whose origin correspond to the
nominal orbit;

2) Floquet–Lyapunov transformation: Transform this linear periodic system into a linear time-invariant system through
a real Floquet–Lyapunov factorization of its state transition matrix;

3) Invariant subspace-based switching function design: Construct a switching function for this linear time-invariant sys-
tem, corresponding to an annihilator of one of its real invariant subspaces whose codimension equals the number of
controls.

‡Some further complementary comments regarding the use of invariant subspaces of a linearization for the design of switching functions are provided
in Appendix A.1.
§This idea is inspired by the method proposed by Freidovich and Gusev19 in regard to a specific procedure for mechanical systems. The approach in
this article builds upon and generalizes their ideas, as well as expand their applicability to a larger class of systems by providing a constructive
procedure for obtaining solutions to Problem 1.



FREDRIK SÆTRE et al. 8079

2.2.1 Outline

This three-step approach is presented in a top-to-bottom way through the next three sections: We first demonstrate how
to use invariant subspaces to design switching functions for stabilizing the origin of linear time-invariant systems in
Section 3, corresponding to step 3) above. Then in Section 4 the same is done for linear time-periodic systems using
Floquet–Lyapunov transformations, which is used in step 2). We then solve Problem 1 directly in Section 5 for nonlinear
systems of the form (1) using a set of transverse coordinates and the linearization of their dynamics, with the article’s
main result stated in Section 5.2.

The remainder of the article is then organized as follows. A suggestion for a simple unit vector-based slid-
ing mode control law for the nonlinear system is given in Section 5.3, which is briefly compared with a Lya-
punov redesign based controller in Section 5.4. Then the concrete task of stabilizing upright oscillations of
the cart–pendulum system subject to both matched- and unmatched uncertainties is considered as an illustra-
tive example in Section 6. Lastly, we state some concluding remarks and possible direction for further work in
Section 7.

Note that some supplementary material which may be useful for implementing the proposed procedure is provided
in Appendix A. Also note that the proofs of all the statements in this article, except those in Section 3, are found in
Appendix B.

3 INVARIANT SUBSPACE-BASED SWITCHING FUNCTION DESIGN FOR
LTI SYSTEMS

In this section, we will show how invariant subspaces can be used to construct switching functions for linear
time-invariant (LTI) systems with matching perturbations:

ẏ = Ay + B (u + Δ(y, t)) , y ∈ R
n, u ∈ R

m. (6)

Here A ∈ Rn×n is constant, B ∈ Rn×m is of full rank and Δ(⋅) ∈ Rm is unknown, but has a known upper bound as before.
Under the assumption of the stabilizability of the pair (A,B), we will now consider the following task.

Problem 2. Given a matrix K ∈ Rm×n such that Acl ∶= A + BK is a Hurwitz (stable) matrix, find a full-rank matrix S ∈
Rm×n such that when restricted to the manifold

Σ ∶= {y ∈ R
n ∶ 𝜎(y) ∶= Sy ≡ 0} (7)

the system (6) experiences the equivalent control ueq = Ky − Δ(y, t).
It is important to note that Problem 2 of course differs from Problem 1 in the sense that it considers the stabilization

of the origin of (6), whereas Problem 1 considers the task of stabilizing a (nontrivial) periodic orbit. The motivation for
this problem is nevertheless the same, namely, the design of a sliding manifold on which the stability of the nominal
closed-loop system is preserved and matched perturbations are rejected.

Lemma 1. If S ∈ Rm×n is such that

1. det(SB) ≠ 0,
2. Sy = 0⇒ SAcly = 0,

then it is a solution to Problem 2.

Proof. Following the equivalent control approach,15 we set Sẏ∗ ≡ 0 when y∗ is confined to the sliding manifold (7) to
obtain S

[
Ay∗ + B

(
ueq + Δ

)] ≡ 0. By adding and subtracting BKy∗ inside the brackets, this can be equivalently rewritten
as

S
[
Acly∗ + B

(
ueq + Δ − Ky∗

)] ≡ 0.
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Since Sy∗ = 0 implies SAcly∗ = 0 (condition 2.) and the square matrix SB is nonsingular (condition 1.), the above equal-
ity must correspond to the unique equivalent control ueq = Ky∗ − Δ. Hence (6) evolves as if ẏ∗ = Acly∗ when in sliding
mode. ▪

The fact that such a solution Smust be nonsingular (condition 1.) and be such that SAcly = 0 if Sy = 0 (condition 2.)
implies that Smust be a left annihilator of a real invariant subspace of Acl (see, e.g., Appendix A.2 for more details). The
existence of such a matrix S therefore boils down to the existence of such a subspace, for which there are three obvious
possibilities:

S1. There does not exist any real invariant subspace of Acl satisfying the conditions of the lemma, that is, either no
subspace of codimensionm or rank SB < m for any annihilator;

S2. There exists exactly one subspace of codimensionm satisfying the conditions of the lemma;
S3. There exist more than one such subspace.

It is important to note that there is no guarantee that such a subspace will exist in general for an arbi-
trary stabilizing matrix K. Thus, in the case of situation S1, one is forced to either find an alternative feedback
matrix K, use alternative methods to construct S directly¶, design a robustifying feedback extension utilizing other
approaches (e.g., through Lyapunov redesign techniques14,17,20) or to use dynamic methods such as integral sliding mode
control.13

Having the possibility to choose a particular surface among many, as in situation S3, is of course the most desirable.
Indeed, this provides one with the possibility to pick a subspace having certain properties, such as choosing the subspace
which has the fastest convergence (that whose largest (negative) exponent has the largest magnitude). This also provides
motivation for utilizing this approach beyond just for robustification purposes, in the sense that it can also be used to
drive the system onto a prespecified subspace having some desired properties.

3.1 Sliding mode control design for reaching surfaces constructed based on Lemma 1

Should a sliding surface satisfying Lemma 1 be found, then the next step is to design some feedback controller which
ensures that the sliding manifold (7) is reached in finite time. For both the sake of completeness and to motivate the
control design we propose for the nonlinear system in Section 5.3, we provide the following statements.

Lemma 2. Let S ∈ Rm×n satisfy Lemma 1 and suppose u is taken as

u = Ky + (SB)−1v (8)

in (6) for some v ∈ Rm. Then the dynamics of 𝜎 ∶= Sy outside of the sliding manifold Σ are given by

𝜎̇ = 𝜎𝜎 + v + SBΔ(y, t), (9)

where the constant matrix 𝜎 ∶= SAclS† is Hurwitz.

Proof. Firstly, we may always write y = S†𝜎 + (In − S†S)y. Here S† is taken as the unique Moore–Penrose pseudoinverse
of S, that is, SS† = Im, although any full-rank right-inverse may be used instead. Using this in 𝜎̇ = Sẏ together with the
fact that SAcl(In − S†S)y ≡ 0m×1 for all y ∈ Rn if S satisfies Lemma 1, one obtains (9) by inserting (8) into (6).

Secondly, since S annihilates a stable invariant subspace of Acl, spanned by a set of its (real) generalized eigenvectors,
the matrix𝜎 ∈ Rm×m is necessarily Hurwitz, with its spectrum a subset of the spectrum of Acl. Indeed, if S⟂ ∈ Rn×(n−m)

is a basis of ker{S}, then there exists a nonsingular matrix Y ∈ Rm×m, a possibly singular matrix Z ∈ R(n−m)×m and a block
diagonal Hurwitz matrix Λ ∈ Rn×n such that Acl = VΛV−1 is a real Jordan form [21, ch. 3.4] of Acl, with V = [S⟂, S⟂Z +

¶Knowledge of a stabilizing matrix K is of course not needed for constructing a sliding manifold for LTI systems. Indeed, there exist several
well-known approaches for designing the matrix S directly; see, for example, chapter 2.2 in Reference 13 or chapter 7 in Reference 15.
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S†Y ] and V−1 = [(S†⟂ − ZY−1S)T; (Y−1S)T]. By partitioning Λ as

Λ =

[
Λ11 Λ12

Λ21 Λ22

]
, Λ11 ∈ R

(n−m)×(n−m), Λ12 ∈ R
(n−m)×m, Λ21 ∈ R

m×(n−m), Λ22 ∈ R
m×m,

one can show that 𝜎 = SAclS† = Y [Λ22 − Λ21Z]Y−1. Due to the specific structure of the real Jordan form and the fact
that S⟂ spans an invariant subspace of Acl, namely S⟂ = S⟂Λ11, we must here haveΛ21 ≡ 0m×(n−m). Hence the eigenvalues
of𝜎 are the eigenvalues of Λ22, which in turn correspond to a subset of the spectrum of Acl. ▪

There exist several control strategies in the literature whichmay here be used to ensure that the origin of (9) is reached
in finite time despite of the perturbation Δ. As an example of such a controller, we provide the following unit-vector
approach.13

Proposition 1. Let𝜎 ∶= SAclS† be as in Lemma 2 and let P = PT ∈ Rm×m be the unique positive definite (PD) solution to
the Lyapunov equationT

𝜎P + P𝜎 = −Q for some symmetric PD matrix Q ∈ Rm×m . Then the control law (8) with

v =

{
− 𝜇 𝜎||𝜎|| if ||𝜎|| ≠ 0,

0 if ||𝜎|| = 0,
for some 𝜇 ≥ 1

𝜆min(P)

[1
2
𝜇⋆ + 𝜆max(P)||SB||ΔM

]
, 𝜇⋆ > 0, (10)

guarantees that the sliding manifold (7) is reached in finite time.

Proof. It is well known that 𝜎 being Hurwitz guarantees the existence of a unique solution Rm×m ∋ P = PT ≻ 0 to the
Lyapunov equation.17 Consider, therefore, the Lyapunov function candidate V𝜎 ∶= 𝜎TP𝜎, such that by (9),

d
dt
V𝜎 = 𝜎T

(
T
𝜎P + P𝜎 −

2𝜇||𝜎||P
)
𝜎 + 2𝜎TPSBΔ(y, t)

≤ −𝜆min(Q)||𝜎||2 + 2 [𝜆max(P)||SB||ΔM − 𝜇𝜆min(P)] ||𝜎||.
From the lower bound of 𝜇 one consequently obtains d

dt
V𝜎 ≤ −𝛼V𝜎 − 𝛽

√
V𝜎 with 𝛼 ∶= 𝜆min(Q)∕𝜆max(P) and 𝛽 ∶=

𝜇⋆∕
√
𝜆max(P). Using standard argument (see, e.g., ch. 14.1.1 in Reference 17) it can therefore be concluded that the slid-

ing manifold Σ is reached in finite time, with the settling time ts satisfying the inequality ts ≤ 2𝛼−1 ln
(
𝛼𝛽−1

√
V𝜎(0) + 1

)
;

see Reference 22. ▪

We remark that, while the well-known chattering effect13,15 is the main drawback of the controller (10), methods
for alleviating and attenuating this effect using continuous approximations of (10) do exist; see, for example, References
14,17,20. Although note that these methods only ensure convergence to a boundary layer of the sliding manifold. Alter-
natively, the structure of (2) may also allow (depending on the disturbance) for the possibility of utilizing multivariable
supertwisting algorithms.16,23

4 LINEAR PERIODIC SYSTEMS AND FLOQUET–LYAPUNOV
TRANSFORMATIONS

Consider now a linear time-periodic (LTP) system

ẏ = A(t)y + B(t) (u + Δ(y, t)) , t ∈ R+, y ∈ R
n, u ∈ R

m, (11)

with continuous, bounded, T-periodic matrix functions A(t) = A(t + T) and B(t) = B(t + T) of minimal period T > 0. As
before, Δ(⋅) ∈ Rm is unknown but has known upper bound ΔM .
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In a similar manner to the LTI systems in the previous section, let us assume that a continuous, T-periodic matrix
function K ∶ R+ → Rm×n is known such that the origin of the disturbance-free closed-loop system, given by

𝜒̇ = Acl(t)𝜒, Acl(t) ∶= A(t) + B(t)K(t), (12)

is exponentially stable. Letting ΨAcl(⋅) ∈ Rn×n denote the state-transition matrix (STM), that is, the unique solution to

d
dt
ΨAcl(t, t0) = Acl(t)ΨAcl(t, t0), ΨAcl(t0, t0) = In, (13)

then it is well known that this is equivalent to all the eigenvalues of theMonodromy matrix

Acl ∶= ΨAcl(T, 0) (14)

having magnitudes strictly less than one.
Assuming knowledge of such a matrix K(⋅), we will in this section consider the following Problem.

Problem 3. Find a 1 matrix function S ∶ R+ → Rm×n, such that the forward invariance of the relation S(t)y(t) ≡ 0 for
all t ≥ t0 corresponds to the system (11) experiencing the equivalent control ueq(t) = K(t)y(t) − Δ(y(t), t) for all t ≥ t0.

Although this problem is naturally more challenging than Problem 2 as the matrix S(⋅) might be time-varying
(periodic), solutions can be found using the knowledge of the state-transition matrix.

Lemma 3. Let X0 ∈ Rn×(n−m) be of full rank and suppose the 1 matrix function S ∶ R+ → Rm×n is a left annihilator of the
range space of ΨAcl(t, 0)X0 at time t, that is ||S(t)ΨAcl(t, 0)X0p|| ≡ 0 for all p ∈ R(n−m) and any t ≥ 0. Then S(t) is a solution
to Problem 3 if rank [S(t)B(t)] = m for all t ∈ R+. Moreover, if S(t) is to be T-periodic, that is, S(t) = S(t + T) for any t ≥ 0,
then X0 must be a basis of an invariant subspace of Acl of codimension m.

Proof. See Appendix B.1. ▪

The question of how to generate and numerically construct such a matrix function S(⋅) therefore arises. For this pur-
pose, suppose we can smoothly transform the LTP system (11) into an LTI one. This would allow us to readily use the
theory outlined in the previous section, in particular Lemma 1. We demonstrate how this can be achieved utilizing a
Floquet–Lyapunov (FL) transformation next.

4.1 Floquet–Lyapunov transformations

Let A ∶ R+ → Rn×n be a bounded and continuous matrix function and consider the linear time-varying (LTV) system:

ẏ = A(t)y, y ∈ R
n, t ∈ R+. (15)

Denote by ΨA(⋅) the STM, that is, y(t) = ΨA(t, 𝜏)y(𝜏) for all t, 𝜏 ∈ R+ (see (13)), and suppose there exists a real, constant,
n × nmatrix F and a nonsingular, 1 matrix function L ∶ R+ → Rn×n such that ΨA(⋅) can be factorized as follows:

ΨA(t, 0) = L(t)eFt ∀t ∈ R+. (16)

The induced coordinate transformation y(t) = L(t)z(t) is then said to be a (real)Lyapunov transformation, while the system
(15) is said to be real-reducible, in the sense that ż = Fz is time-invariant.

While it is well known that not all LTV systems are reducible, Floquet24 demonstrated that all linear time-periodic
(LTP) systems are. Thus, if A(t) is T-periodic and L(t) = L(t + cT) for some integer c, then y(t) = L(t)z(t) is referred to as a
cT-periodic Floquet–Lyapunov (FL) transformation, while (16) will be referred to as a cT-periodic FL factorization.

In the following, we will therefore take the matrix A(⋅) ∈ Rn×n in (15) to be both continuous and T-periodic, that is,
A(t) = A(t + T). It is known that a real, 2T-periodic FL factorization always exists for LTP systems of the form (15).25-27
The following statement demonstrates this fact (see also theorem 3.1 in Reference 26 for a generalization of this theorem.)
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Theorem 1 (real FL transformation25). If A(t) = A(t + T) in (15) is continuous, then there always exists a real, con-
tinuously differentiable, nonsingular matrix function L(t), as well as real, commuting matrices F and Y, that is, FY = YF,
satisfying

L(t + 2T) = L(t), L(t + T) = L(t)Y , Y 2 = In,

such that (16) holds for the LTP system (15).

The existence of real, T-periodic FL factorizations, however, depends on the spectrum of theMonodromymatrixA.
That is to say, since any such factorization (16) naturally must satisfy

A = ΨA(T, 0) = eFT , (17)

the existence of a real matrix F is dependent on the existence of a real (matrix) logarithm ofA, that is, logA = FT.
Using this, together with the fact thatΨA(t, 0) is nonsingular for all t ∈ R+, the following statement is just a well-known,
straightforward consequence of theorem 1 in Reference 28.

Lemma 4. The LTP system (15) has a real, T-periodic FL factorization of the form (16) if, and only if, each Jordan block
corresponding to an eigenvalue of A with negative real part appears an even number of times.

Note that some methods for obtaining FL factorizations are briefly discussed in Appendix A.3.

4.2 Switching surface design for LTP systems

The next statement demonstrates how an FL factorization can be used to solve Problem 3.

Proposition 2. Let the pair (L(t),F) be a real, cT-periodic FL factorization of the closed-loop system (12) for some positive
integer c, and suppose the matrix F has a real invariant subspace Λ of codimension m, that is FΛ ⊆ Λ. Then the matrix
function S(t) ∶= ŜL−1(t) is a solution to Problem 3 if rank [S(t)B(t)] = m for all t ∈ [0, cT) and Ŝ ∈ Rm×n is a full-rank
left-annihilator of Λ, that is Ŝz = 0 for all z ∈ Λ.

Proof. See Appendix B.2. ▪

Remark 2. This statement may easily be extended to any real-reducible linear time-varying system.

Recall from Theorem 1 that a real FL factorization always exists for c = 2, whereas the existence of a T-periodic fac-
torization follows from Lemma 4. The following statements demonstrates that a 2T-periodic factorization may result in
a T-periodic S(t).

Corollary 1. Let the triplet (L(t),F,Y ) denote a real, 2T-periodic FL factorization of the closed-loop system (12) as
in Theorem 1 and let the conditions of Proposition 2 hold. Then the matrix function S(t) ∶= ŜL−1(t) is T-periodic if
Ŝ = ŜY .

This is just a consequence of the fact that L−1(T) = Y . For Ŝ = ŜY to be satisfied, however, it is clear that the rows of
Ŝ must be linear combinations of the left eigenvectors of Y corresponding to its unitary eigenvalues. This may of course
also sometimes be possible even when Y ≠ In as Y 2 = In (the matrix Y is involutory), and hence all its eigenvalues satisfy
𝜆2Y = 1.

5 SLIDING MANIFOLD DESIGN FOR NONLINEAR SYSTEMS

By taking inspiration from the statements in the previous sections, we now turn our attention back to the nonlinear
system (1) and to Problem 1. In this regard, we begin by defining the following continuous and bounded, T-periodic
matrix functions:

A(t) ∶= Df (x⋆(t)), B(t) ∶= g(x⋆(t)), K(t) ∶= Dk(x⋆(t)), and Acl(t) ∶= A(t) + B(t)K(t).
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Moreover, we let the corresponding state-transitionmatrix (STM)ΨAcl(⋅) andMonodromymatrixAcl be defined accord-
ing to (13) and (14). Let us also briefly recall the purpose behind Problem 1: To find a sliding variable 𝜎 ∶ Rn → Rm

such that when in sliding mode sufficiently close to 𝜂⋆, the equivalent control is given by ueq = k̂(x) − Δ(x, t), where
Dk̂(x⋆(t)) ≡ K(t) for all t ∈ [0,T). To see why this is desirable, we insert the equivalent control into the dynamical system
(1) to obtain

ẋ𝜎 = f (x𝜎) + g(x𝜎)k̂(x𝜎).

This is the so-called ideal sliding equation, whose first-order approximation system along the solution x⋆(⋅) is necessarily
equivalent to that of the nominal system (2), namely, d

dt
𝛿x = Acl(t)𝛿x. By the Andronov–Vitt theorem,1,29 it therefore fol-

lows that x⋆(⋅) is an asymptotically orbitally stable solution of the ideal slidingmode equation. As we can tie the solutions
of this system to those of (1) when in sliding mode using Utkin’s equivalent control method,15 the following statement
can be concluded.

Lemma 5. Let 𝜎 ∶ Rn → Rm be a solution to Problem 1. Then there is exists a tubular neighborhood of the nominal orbit
𝜂⋆, such that if the states of the system (1) are restricted to the slidingmanifold Σ ∶= {x ∈ Rn ∶ 𝜎(x) = 0m×1}within , then
all solutions of (1) converges to 𝜂⋆, or equivalently, x⋆(⋅) is rendered asymptotically orbitally stable therein.

The following conditions upon such a solution to Problem 1 may then be stated.

Lemma 6. Let 𝜎 ∶ Rn → Rm be 2 and define the T-periodic matrix function S(t) ∶= D𝜎(x⋆(t)). If 𝜎(x⋆(t)) ≡ 0, as well as

1. det[S(t)B(t)] ≠ 0,
2. S(t)x = 0⇒

[
Ṡ(t) + S(t)Acl(t)

]
x ≡ 0,

are satisfied for all t ∈ [0,T), then 𝜎(⋅) is a solution to Problem 1.

Proof. See Appendix B.3. ▪

Remark 3. It is not difficult to see that condition 2. together with the fact that S(t) = D𝜎(x⋆(t))must be T-periodic, implies
by Lemma 3 that S(t) must be a left-annihilator of the range space of ΨAcl(t, 0)X0, with X0 a basis of a real invariant
subspace of the Monodromy matrixAcl of codimension m. This has an important implication: only the eigenvalues of
the Monodromy matrix that correspond to its subspace with basis X0 need to have magnitude less than one. Hence there
may exist a sliding manifold on which all solution are asymptotically orbitally stable even though the feedback k(⋅) is not
fully orbitally stabilizing but asymptotically stabilizes a particular subspace of the first-order approximation system.

AlthoughLemma6provides sufficient conditions for amapping to be a solution to Problem1, it does not provide a con-
structive procedure for obtaining it. We therefore demonstrate next how one can design such a switching function using
a Floquet–Lyapunov transformation, by first transforming the orbital stabilization problem into the task of stabilizing an
origin through a change to so-called transverse coordinates.

5.1 Preliminaries: Transverse coordinates and projection operators

Let the curve xs ∶  → 𝜂⋆, with  ∶= [0, sT), denote a 2-smooth regular parameterization of the orbit (3), that is
|| (s(t))|| > 0 and x⋆(t) ≡ xs(s(t)) (18)

holding for all t ∈ [0,T), with (s) ∶= d
ds
xs(s). Here s ∶ [0,T) →  is a homeomorphism, strictly monotonically increasing

in time, with its nominal time evolution over  is governed by the autonomous differential equation
ṡ = 𝜌(s), (19)

given a known strictly positive, 1 function 𝜌 ∶  → R+ such that f (xs(s)) = 𝜌(s) (s). One can therefore consider the curve
parameter s = s(t) simply as a rescaling of time along the orbit 𝜂⋆, with s = t if one takes 𝜌 = 1 on [0,T). There are twomain
benefits of allowing for such more general parameterizations, for which 𝜌(s) = ||f (xs(s))||∕|| (s)|| ≢ 1, rather than just
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keeping to the time parameterization: First, it adds some flexibilitywhenplanning suchmotions, as one can fix the interval
, whereas [0,T) will vary depending on the period T. For example, in the case of second-order systems, it allows one to
specify a path parameterized by s, and let the traversal velocity along the path be determined by (19). Second, it can be
helpful in regard to a so-called projection operator—amappingwhich can be used to recover the corresponding “position”
along the orbit, given only knowledge of the system’s states within some neighborhood.We provide the definition of such
operators next.

Definition 2. A mapping p ∶ Rn ⊃  →  is said to be a projection operator onto the curve xs ∶  → 𝜂⋆ if it is 2
within an open tubular neighborhood  of the orbit 𝜂⋆ and it is a left inverse of the curve, that is, s ≡ p(xs(s)) for all
s ∈ .

In order to also have somemeasure of the deviation from the orbit, wewill further assume that a set of (n − 1) so-called
transverse coordinates, denoted by x⟂ = x⟂(x), are known for the orbit 𝜂⋆.*

Definition 3. A 2, vector-valued function x⟂ ∶ Rn → Rn−1 is a vector of transverse coordinates for the orbit 𝜂⋆ if

||x⟂(y)|| = 0 and rank [D ⟂ (y)] = n − 1

holds for all y ∈ 𝜂⋆.

Note that at least one such set of coordinates is guaranteed to exist as the orbit 𝜂⋆ is closed.30 Moreover, from
their definition and the definition of the projection operator p(⋅), it follows that they together constitute a valid change
of coordinates, in the sense that the mapping x → (p(x), x⟂(x)) is a diffeomorphism in a neighborhood of the desired
orbit.

Themain value of such a set of transverse coordinates, however, follows from thewell-known fact that the exponential
stability of the orbit (3) is equivalent to the exponential stability of the origin of their dynamics in a closed-loop system4,30

Therefore, our task will now be to utilize the knowledge of the stabilizing feedback k(⋅) of the nominal system (2) to find a
matrix function S⟂ ∶  → Rm×n which solves Problem 3 for the linear-periodic system corresponding to the linearization
of the dynamics of the coordinates x⟂ along the orbit. We will show next that if such a matrix function can be found, then
𝜎(x) ∶= S⟂(p(x))x⟂(x) can be taken as a solution to Problem 1.

5.2 Main result: Transverse coordinates-based switching function design

Let x⟂ denote a vector of transverse coordinates by Definition 3. Considering the nonlinear system (1), their dynamics are
given by

d
dt
x⟂ = f⟂(x) + g⟂(x)(u + Δ(x, t)), (20)

where the functions f⟂(x) ∶= D ⟂ (x)f (x) and g⟂(x) ∶= D ⟂ (x)g(x) both are derived using the chain rule.
A key part of our approach utilizes the corresponding transverse linearization, which is short for the first-order

approximation (linearization) of the transverse dynamics (20) along the nominal solution.30,31

Lemma 7 (transverse linearization4,7,32). The linear, T-periodic system

d
dt
𝛿x⟂ = A⟂(s(t))𝛿x⟂ + B⟂(s(t))u, (21)

where A⟂(s) ∶= Df⟂(xs(s))(Dx⟂)†(xs(s)) and B⟂(s) ∶= g⟂(xs(s)), corresponds to the linearization of the transverse dynamics
(20) when omitting the perturbation (i.e., for Δ = 0) along the curve xs ∶  → 𝜂⋆.

With this in mind, note that the transverse linearization of (2) can be written as a differential equation in terms of s
using (19):

*Rather than a (minimal) set of (n − 1) transverse coordinates, only minor modifications are needed in order to extend the proposed scheme to also
work for an excessive number of transverse coordinates; see, for example, References 6,7,29.
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d
ds
𝛿x⟂ = 1

𝜌(s)
[A⟂(s) + B⟂(s)K⟂(s)] 𝛿x⟂ =∶ 1

𝜌(s)
Acl⟂(s)𝛿x⟂. (22)

Here the term involving thematrix functionK⟂(s) ∶= Dk(xs(s))(Dx⟂)†(xs(s)) is obtained from the first-order approximation
of k(⋅) in terms of (x⟂, p) about a point xs(s) ∈ 𝜂⋆, using the fact that ||k(y)|| = ||Dk(y)f (y)|| = ||Dk(y) (p(y))|| = 0 for all
y ∈ 𝜂⋆, as well as that (x⟂, p) → h(x⟂, p) = x is a diffeomorphism in a neighborhood of 𝜂⋆, with Reference 7

𝜕h
𝜕x⟂

|||x=xs(s) = (In −  (s)Dp(xs(s))) (Dx⟂)†(xs(s)) and 𝜕h
𝜕p

|||x=xs(s) =  (s).

We will denote by Ψcl
⟂(⋅) the state transition matrix corresponding to (22):

d
ds

Ψcl
⟂(s) =

1
𝜌(s)

Acl⟂(s)Ψ
cl
⟂(s), Ψcl

⟂(0) = In−1, s ∈ .

As the periodic orbit of (2) is (locally) exponentially stable if, and only if, the origin of transverse linearization is asymptot-
ically stable,4,30 it follows that all the (n − 1) characteristic multipliers, that is, the eigenvalues of the Monodromymatrix||
cl

⟂ ∶= Ψcl
⟂(sT), necessarily have magnitudes strictly less than one.

This leads us to the main result of this article.

Theorem 2. Suppose the state transitions matrix of (22) admits a real, sT-periodic FL factorization:

Ψcl
⟂(s) = L(s)esF .

Further suppose that there exists a full-rank matrix Ŝ ∈ Rm×n such that

1. det[ŜL−1(s)B⟂(s)] ≠ 0,
2. Ŝz = 0⇒ ŜFz = 0,

are satisfied for all s ∈ . Then, for any projection operator p(⋅) (see Definition 2), the following function solves
Problem 1:

𝜎(x) ∶= S⟂(p(x))x⟂(x) with S⟂(s) ∶= ŜL−1(s). (23)

As a consequence, the desired solution (18) is (locally) asymptotically orbitally stable when restricted to the sliding manifold

Σ ∶=
{
x ∈ R

n ∶ 𝜎(x) = 0m×1
}
.

Proof. See Appendix B.4. ▪

Remark 4. The existence of a real sT-periodic FL factorization is assumed in Theorem 2 rather than a 2sT-periodic factor-
ization, which, as we recall, is always guaranteed to exist. This restriction is due to the image of the projection operator
p(⋅) being equal to [0, sT). More precisely, given a triplet (L(t),F,Y ) corresponding to a real, 2sT-periodic factorization (see,
e.g., Theorem 1 or theorem 3.1 in Reference 26), we would be limited to only recovering the subinterval [0, sT) through
p(⋅), but by our definition of S⟂(s) and considering a factorization as in Theorem 1, we would naturally require continuity
of S⟂(⋅) at s = sT . This then corresponds to the same condition as in Corollary 1, namely,

S⟂(sT) = ŜY = S⟂(0) = Ŝ.

Hence the rows of Ŝmust then be linear combinations of the eigenvectors of Y corresponding to its unitary eigenvalues,
which is trivially true whenever Y = In−1, that is, when one has a sT-periodic factorization.

||Note here that while the state transition matrix with s-parameterization is only defined for s ∈ , one can simply take Ψ̂cl
⟂(t, 0) ∶= Ψcl

⟂(s(t)) for
t ∈ [0.T), such that, for example, Ψ̂

cl
⟂(t + kT, 0) = Ψcl

⟂(s(t))(cl
⟂)

k for t ∈ [0,T).
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Remark 5. The existence of an FL factorization of course does not in turn imply the existence of a (unique) real invariant
subspace of F satisfying the conditions of the theorem; see the discussion after Lemma 1.

Remark 6. In the special cases when the dynamical system (1) is so-called transversely feedback linearizable,2,33 then one
can instead simply utilize the theory outlined in Section 3, in particular Lemma 1, in order to find a solution to Problem 1.
More specifically, since there then exist (at least locally) transverse coordinates and a smooth feedback transformation
u = a(x) + b(x)v, v ∈ Rm, such that the transverse dynamics (20) can be written as d

dt
x⟂ = Ax⟂ + B

(
v + (b(x))−1Δ(x, t)

)
,

where the pair (A,B) is controllable, the statements in Section 3 are evidently readily applicable.

5.3 Some comments regarding stabilization of the sliding manifold

Although it is the design of slidingmanifolds which is themain focus of this article, wewill, in this section, briefly demon-
strate how the presented scheme allows for adding a robustifying feedback extension to an existing orbitally stabilizing
feedback. The following statement may act as a useful stepping stone toward the design of such extensions.

Lemma 8. For some projection operator s = p(x), let

𝜎(x) ∶= S⟂(p(x))x⟂(x) = ŜL−1(p(x))x⟂(x)

be a switching function according to Theorem 2. If the controller in (1) is taken as

u = k(x) + v, v ∈ R
m, (24)

then the dynamics of 𝜎(x) outside of the sliding manifold Σ are given by

𝜎̇ = 𝜎𝜎 + S⟂(s)
[
B⟂(s) + B̃⟂(x⟂, s)

]
(v + Δ(x, t)) + R𝜎(x⟂, s) with s = p(x), (25)

and where 𝜎 ∶= ŜFŜ† ∈ Rm×m is Hurwitz, while ||B̃⟂(x⟂, s)|| = (||x⟂||) and ||R𝜎(x⟂, s)|| = (||x⟂||2) for all s ∈ .

Proof. See Appendix B.5. ▪

Remark 7. The known nominal feedback k(x) does not have to be included in (24) due to the equivalent control (5) when
confined to the sliding manifold. However, its inclusion has two clear benefits: 1) it allows reducing the magnitude of the
gains used in the (discontinuous) extension v, which may help to alleviate chattering; and 2) it can increase the rate of
convergence to the sliding manifold, especially when the system states are far away from it.

The next step is then to design a feedback extension v ∈ Rm in (24) such that the sliding manifold Σ ∶= {x ∈  ∶
𝜎(x) ∶= S⟂(p(x))x⟂(x) ≡ 0} is reached in finite time. In a similar manner to the control law proposed in Proposition 1 for
the LTI system, we will suggest for this purpose a unit-vector approach:

v =

{
− 𝜁(x)(S⟂(p(x))B⟂(p(x)))−1 𝜎(x)||𝜎(x)|| , if 𝜎 ≠ 0,

0m×1 if 𝜎 = 0,
(26)

where 𝜁 ∶ Rn → R+ is 1. While there is no general guarantee for the feasibility such a control scheme due to the
nonlinearity of the problem, we derive some conditions upon the gain 𝜁 and the nonlinear system in general in the
following.

Since 𝜎 is Hurwitz, denote by P = PT ∈ Rm×m the unique positive definite (PD) solution to T
𝜎P + P𝜎 = −2Q for

some symmetric PD matrix Q ∈ Rm×m, and consider the Lyapunov function candidate V𝜎 ∶= 2−1𝜎T(x)P𝜎(x). We have

V̇𝜎 = 2−1𝜎T

[
T
𝜎P + P𝜎 − 2 𝜁||𝜎||P

]
𝜎 + 𝜎TPW

≤ − (𝜆min(Q)||𝜎|| + 𝜆min(P)𝜁 − 𝜆max(P)||W ||) ||𝜎||,
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whereW ∶= −S⟂B̃⟂(S⟂B⟂)−1𝜁 𝜎||𝜎|| + S⟂(B⟂ + B̃⟂)Δ + R𝜎 . Since S⟂B⟂ is nonsingular for all s ∈ , there exist (known) pos-
itive constants c0, ĉ0 > 0 such that ||S⟂(s)B⟂(s)|| ≤ c0 and ||(S⟂(s)B⟂(s))−1|| ≤ ĉ0. Furthermore, we will assume that a pair
of smooth class functions (see def. 4.2 in Reference 17), denoted by c1, c2 ∶ R+ → R+, are known such that for all s ∈ :

||S⟂(s)B̃⟂(x⟂, s)|| ≤ c1(||x⟂||) and ||R𝜎(x⟂, s)|| ≤ c2(||x⟂||). (27)

Then W has the following known upper bound: ||W || ≤ 𝜁 ĉ0c1(||x⟂||) + (c0 + c1(||x⟂||))ΔM + c2(||x⟂||). We may therefore
ensure that V̇𝜎 is (locally) negative definite by taking 𝜁 as to satisfy

𝜁 >
𝜆max(P)(c0 + c1(||x⟂||))ΔM + 𝜆max(P)c2(||x⟂||) − 𝜆min(Q)||𝜎||

𝜆min(P) − 𝜆max(P)ĉ0c1(||x⟂||) .

For some 0 < 𝜐 ≪ 1, this is always possible within

 (𝜐) ∶=
{
x ∈  ∶ ||x⟂(x)|| ≤ c−11

(
𝜆min(P)(1 − 𝜐)
𝜆max(P)ĉ0

)}
, (28)

as then 0 < 𝜐𝜆min(P) ≤ 𝜆min(P) − 𝜆max(P)ĉ0c1(||x⟂||) for all x⟂ ∈  (𝜐). Indeed, taking

𝜁(x) =
√
𝜆max(P)

𝜐𝜆min(P)

[
𝜇⋆ +

√
𝜆max(P) ((c0 + c1(||x⟂(x)||))ΔM + c2(||x⟂(x)||))] (29)

ensures that V̇𝜎 < −𝜇⋆
√
V𝜎 − V𝜎𝜆min(Q)∕𝜆max(P) for all x⟂ ∈  (𝜐) ∖ {0}.

It is important to note that this alone does not guarantee that the sliding manifold will be reached, as the system
states may escape  (𝜐) beforehand. This can be resolved through additional assumptions, for example requiring local
input-to-state stability of the transverse dynamics

d
dt
x⟂ = f⟂(x) + g⟂(x)(k(x) + v + Δ(x, t)) (30)

with respect to the input (v + Δ), for v taken within a certain admissible range.
For the sake of brevity, we will here simply assume the forward invariance (see Definition 4 in the Appendix) of (𝜐)

with respect to (30). The above may then summarize as follows.

Proposition 3. Let the conditions in Lemma 8 be satisfied and consider (30) with the feedback extension (26). Suppose that
by taking 𝜁 ∶ Rn−1 → R+ satisfying (29) for some 𝜐 ∈ (0, 1), the tube (𝜐) is forward invariant with respect to the transverse
dynamics (30). Then any solution of the nonlinear system (1) starting inside (𝜐) reaches the sliding manifold (4) in finite
time.

5.4 Comparison to a Lyapunov redesign controller

Suppose the symmetricmatrix functionR⟂ ∶  → R(n−1)×(n−1) is the unique PD solution to the periodic Lyapunov equation

𝜌(s) d
ds
R⟂(s) + Acl⟂(s)

TR⟂(s) + R⟂(s)Acl⟂(s) = −Q⟂(s) (31)

for some symmetric, continuous, PDmatrix functionQ⟂ ∶  → R(n−1)×(n−1), where we have used Ṙ(s(t)) = 𝜌(s(t)) d
ds
R(s(t)).

Then by defining 𝜉(s, x⟂) ∶= BT
⟂(s)R⟂(s)x⟂, the following Lyapunov redesign controller17 (LRC) provides an alternative

robustifying feedback extension:

u = k(x) − 𝜁(x)Ξ(p(x), x⟂), Ξ(s, x⟂) ∶=
⎧⎪⎨⎪⎩

𝜉(s,x⟂)||𝜉(s,x⟂)|| if ||𝜉(s, x⟂)|| ≠ 0,

0m×1 if ||𝜉(s, x⟂)|| = 0.
(32)
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Here 𝜁 ∶ Rn → R+ is a smooth function which must be taken sufficient large as to dominate the disturbance term Δ,
while p(⋅) is some projection operator.

The inspiration for this controller comes from References 14 and 20, and is based on the fact that V̂⟂ = xT⟂R⟂(p(x))x⟂
will be a Lyapunov function for the orbit of the nominal nonlinear system (2). Hence for 𝜁 taken sufficiently large, it
guarantees local negative definiteness of the time derivative of V̂⟂ despite of any matched disturbances.

There are some key behavioral differences between the LRC (32) and the proposed SMC. For instance, while the
SMC (26) is designed as to reach the sliding manifold and render it invariant, the sole purpose of the LRC (32) is
to ensure the local negative definiteness of the derivative of the Lyapunov function V̂⟂. One may therefore expect
the LRC to locally ensure strict contraction of the Lyapunov function candidate at the expense of having little prior
knowledge of its convergence rate to the target obit. The proposed SMC, on the other hand, will locally ensure a
specific convergence rate (depending on the magnitude of the characteristic exponents of the chosen invariant sub-
spaces) when in sliding mode, but with little control over the contraction toward the target orbit when in the reaching
phase.

6 CASE STUDY: OSCILLATION CONTROL OF THE CART–PENDULUM
SYSTEM

In order to construct a switching surface of the form (23) utilizing the method outlined in Section 5, the following four
basic ingredients first have to be obtained:

1) A desired periodic solution of a nominal model of the system, parameterized on the form (18);
2) A projection operator recovering the parameterizing variable of this solution (see Definition 2);
3) A set of transverse coordinates for the solution (see Definition 3); and lastly,
4) An exponentially orbitally stabilizing state feedback k(⋅) for the nominal (disturbance-free) system.

In order to both demonstrate how these ingredients can be obtained and then used in the synthesis of a robust
orbitally stabilizing feedback,wewill in this section consider the concrete example of oscillation control of thewell-known
cart–pendulum system. We will utilize the virtual constraints approach of Reference 8 for both trajectory generation and
orbital stabilization for the nominal system.

Note that Appendix A.4 contains a brief outline of this approach, together with some related statements which may
be used to obtain these ingredients for mechanical (Euler–Lagrange) systems with nq degrees of freedom and one degree
of underactuation.

6.1 Systemmodel

The system consists of an unactuated pendulum attached to a cart. The cart is situated on a ramp of constant inclination
𝜓 and is driven by an external force uf . The schematic of the system and the coordinate convention used is shown in
Figure 1.

We will differentiate between the “real” (actual) model of the system dynamics, which we do not know exactly, and
a nominal (approximation) model which we will use to construct a desired periodic solution and to design a nominal
feedback.

6.1.1 Real dynamical model

The real equations of motion of the system are given by

(mc +mp)ẍc +mplp cos(𝜑)𝜑̈ −mplp sin(𝜑)𝜑̇2 + g(mc +mp) sin(𝜓) = uf − 𝜐csign(ẋc) + dx(t), (33a)

(mpl2p + Jp)𝜑̈ +mplp cos(𝜑)ẍc −mplpg sin(𝜑 − 𝜓) = −𝜐psign(𝜑̇) + dp(t). (33b)
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F IGURE 1 Schematic of the cart–pendulum system

Here g = 9.81 m s−2 is the gravitational acceleration,mc andmp denote the mass of the cart and pendulum bob, respec-
tively; lp is the length of the pendulum and Jp is its moment of inertia; 𝜐c and 𝜐p are dry friction coefficients; while dx(t)
and dp(t) are smooth, bounded, time-varying disturbances.

6.1.2 Nominal (disturbance-free) model used for trajectory generation and in the nominal
feedback synthesis

The following assumptions are made for the nominal system: zero inclination of the ramp (𝜓 = 0), no friction (𝜐c = 𝜐p =
0), unit masses (mc = mp = 1), the pendulum is as a point mass of unit length (lp = 1 and Jp = 0) and zero disturbances
(dx = dp = 0).

The equations of motion for the nominal system are then described by

2ẍc + cos(𝜑)𝜑̈ − sin(𝜑)𝜑̇2 = uf , (34a)

𝜑̈ + cos(𝜑)ẍc − g sin(𝜑) = 0. (34b)

6.2 Trajectory generation

Using the nominal model of the cart–pendulum system (34), our goal is now to plan a periodic trajectory which corre-
sponds to oscillations of pendulum about its up-right position. As in Reference 8 (see also Appendix A.4), we will for this
purpose look for a solution along which, for q ∶= [xc;𝜑], one has q⋆(t) ≡ Φ(𝜃⋆(t)) for some function 𝜃⋆(t) and where

Φ(𝜃) ∶=

[
− a sin(𝜃)

𝜃

]
, a ∈ R. (35)

That is, a solution along which 𝜃⋆(t) ≡ 𝜑⋆(t) and x⋆c (t) + a sin(𝜑⋆(t)) ≡ 0 hold for all t ∈ R+.
Assuming the invariance of q = Φ(𝜃), such that q̇ = Φ′(𝜃)𝜃̇ and q̈ = Φ′(𝜃)𝜃̈ + Φ′′ (𝜃)𝜃̇2, with Φ′ = d

d𝜃
Φ and where we

have dropped the ⋆-superscript for readability, we may rewrite (34) as

(1 − 2a) cos(𝜃)𝜃̈ + (2a − 1) sin(𝜃)𝜃̇2 = uf , (36a)

(1 − acos2(𝜃))𝜃̈ + a cos(𝜃) sin(𝜃)𝜃̇2 − g sin(𝜃) = 0. (36b)

It follows that q⋆(t) ≡ Φ(𝜃⋆(t)) is a solution to (34) only if 𝜃⋆(t) is a solution to (36b), with the corresponding nominal
control input u⋆f (t) given by (36a) with 𝜃̈ substituted from (36b). As we are interested in oscillations about the up-right
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equilibrium of the pendulum, which corresponds to (𝜃, 𝜃̇) = (0, 0), we will utilize the fact that this is an equilibrium point
of type center for (36b) provided that a > 1 (see proposition 1 in Reference 8). Moreover, we will later also utilize the fact
that the function I = I(𝜃, 𝜃̇, 𝜃0, 𝜃̇0), defined by

I = 1
2
(1 − acos2(𝜃))

[
(1 − acos2(𝜃))𝜃̇2 − (1 − acos2(𝜃0))𝜃̇

2
0 + 2g(cos(𝜃) − cos(𝜃0))

]
, (37)

is zero along any solution of (36b) with initial conditions (𝜃0, 𝜃̇0) (see, e.g., Proposition 6 in the Appendix).

6.3 Choosing a parameterization and projection operator

Suppose that aT-periodic solution 𝜃⋆(t) = 𝜃⋆(t + T) of (36b) has been foundwhich encircles its (center) equilibriumpoint
(0, 0). The next step is then to obtain a regular parameterization and a projection operator##. In this regard, first note
that we cannot use 𝜃 to parameterize the curve as 𝜃̇⋆(t) will not be strictly positive everywhere along the orbit. Thus we
instead note that the time derivative of s⋆(t) = atan2(−𝜃̇⋆(t), 𝜃⋆(t)), with atan2(⋅) denoting the four-quadrant arctangent
function, is given by

d
dt
ṡ⋆(t) =

𝜃̇
2
⋆(t) − 𝜃⋆(t)𝜃̈⋆(t)
𝜃2
⋆
(t) + 𝜃̇2⋆(t)

.

It follows that if ṡ⋆(t) > 0 for all t ∈ [0,T), then we can take 𝜌 ∶ [0, 2𝜋) → R+ satisfying ṡ⋆(t) ≡ 𝜌(s⋆(t)). Moreover, abusing
notation by considering 𝜃⋆(⋅) and 𝜃̇⋆(⋅) as functions of s, it allows us to use the parameterization s → (𝜃⋆(s), 𝜃̇⋆(s)) such
that

xs(s) =

[
Φ(𝜃⋆(s))

Φ′(𝜃⋆(s))𝜃̇⋆(s)

]
and p(x) = atan2(−𝜑̇, 𝜑) (38)

correspond, respectively, to a regular parameterization (18) and a projection operator (see Definition 2) for the target
motion.

6.4 Feedback transformation and transverse coordinates

Given a periodic solution to (36b) with initial condition (𝜃0, 𝜃̇0), we have the following candidates for transverse
coordinates:

x⟂ =
⎡⎢⎢⎢⎣
y
ẏ
I

⎤⎥⎥⎥⎦ ∶=
⎡⎢⎢⎢⎣

xc + a sin(𝜑)
ẋc + a cos(𝜑)𝜑̇

1
2
𝛼(𝜑)

[
𝛼(𝜑)𝜑̇2 − 𝛼(𝜑0)𝜑̇20 + 2g(cos(𝜑) − cos(𝜑0))

]
⎤⎥⎥⎥⎦ , (39)

where 𝛼(𝜑) ∶= 1 − acos2(𝜑). Indeed, by (37), one has ||x⟂(xs(s))|| ≡ 0 for all s ∈ , while both x⟂ and its Jacobian matrix
are locally well defined if acos2(𝜃⋆(t)) ≠ 1 for all t ∈ [0,T).

In order to linearize the dynamics of these coordinates, we first introduce the feedback transformation

uf =
sin(𝜑)(2a − 1)
1 − acos2(𝜑)

(
𝜑̇2 − g cos(𝜑)

)
+ 1 + sin2(𝜑)
1 − acos2(𝜑)

u, u ∈ R. (40)

This transformation is partially feedback linearizing, in the sense that it results in ÿ = u.†† Thus the transverse dynamics
can be written as d

dt
x⟂ = Â⟂(𝜑(t), 𝜑̇(t))x⟂ + B̂⟂(𝜑(t), 𝜑̇(t))u, where

##Choosing a projection operator is not strictly necessary already at this stage, but it can be convenient to do so while simultaneously choosing the
parameterization.
††Notice from ÿ = u the possibility of prestabilizing the (y, ẏ)-subspace by taking u = û − k̂yy − k̂ẏẏ for any constant gains k̂y, k̂ẏ > 0.
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Â⟂(𝜑, 𝜑̇) ∶=
⎡⎢⎢⎢⎣
0 1 0
0 0 0
0 0 𝜑̇

2a cos(𝜑) sin(𝜑)
1−acos2(𝜑)

⎤⎥⎥⎥⎦ and B̂⟂(𝜑, 𝜑̇) ∶=
⎡⎢⎢⎢⎣

0
1

− 𝜑̇(1 − acos2(𝜑)) cos(𝜑)

⎤⎥⎥⎥⎦ .
The transverse linearization (see (21)) may then be obtained by simply using the previously found parameterization s →
(𝜃⋆(s), 𝜃̇⋆(s)), that is: A⟂(s) = Â⟂(𝜃⋆(s), 𝜃̇⋆(s)) and B⟂(s) = B̂⟂(𝜃⋆(s), 𝜃̇⋆(s)).

6.5 Designing an orbitally stabilizing feedback for the nominal system

The design of a nominal feedback, corresponding to k(⋅) in Problem 1, is then last piece of the puzzle which is required
before we can apply the proposed sliding mode control synthesis. For this purpose, we will utilize the following
well-known statement (see, e.g., Reference 25).

Proposition 4. Suppose there exists a symmetric, positive definite (SPD) matrix function R⟂ ∶ [0, sT) → R(n−1)×(n−1) which
for all s ∈ [0, sT) is the solution to the periodic Riccati differential equation (PRDE)

𝜌(s) d
ds
R⟂(s) + AT

⟂(s)R⟂(s) + R⟂(s)A⟂(s) + Q(s) − R⟂(s)B⟂(s)Γ−1(s)BT
⟂(s)R⟂(s) = 0 (41)

given smooth SPD matrix functions Q(s) ∈ R(n−1)×(n−1) and Γ(s) ∈ Rm×m. Then the origin of the closed-loop
system

d
dt
𝛿x⟂ =

[
A⟂(s(t)) − B⟂(s(t))Γ−1(s(t))BT

⟂(s(t))R⟂(s(t))
]
𝛿x⟂

corresponding to taking u = K⟂(s)𝛿x⟂ in (21) with

K⟂(s) ∶= −Γ−1(s)BT
⟂(s)R⟂(s), (42)

is exponentially stable.
It follows that if K⟂(⋅) is taken according to (42), then taking u = k(x) = K⟂(p(x))x⟂ in (1) for some projection operator

p(⋅) renders the desired orbit (3) an exponentially stable limit cycle of the disturbance-free system (2).

6.6 Constructing a switching function for the cart–pendulum system

In this subsection, we will now design a switching function of the form (23) for the cart–pendulum system. We will
consider the periodic orbit corresponding to (35) with 𝜃⋆(t) = 𝜃⋆(t + T) the solution to (36b) for

a = 1.5 and (𝜃0, 𝜃̇0) = (0, 0.5). (43)

Using (37), one can find that the amplitude of the induced oscillations of the pendulum is approximately 0.113 rad,
such that the transverse coordinates are well defined within a neighborhood of the nominal orbit (acos2(𝜑) > 1 for|𝜑| < √

(1∕a) ≈ 0.62 rad).
Using the transverse coordinates (39) and the feedback transformation (40), as well as using the parameterization

and projection operator given by (38) (note that these are then also locally well defined), a nominal LQR feedback con-
troller was designed for the system using Proposition 4: The PRDE (41) with Q = I3 and Γ = 0.1 was solved using the
method proposed in Reference 34, in which R⟂(s) was approximated by a truncated Fourier series of order 100 for 500
evenly spaced sampling points. The elements of the matrix K⟂(s) = [Ky(s),Kẏ(s),KI(s)] found from (42) are shown in
Figure 2.
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F I GURE 2 Elements of the nominal feedback matrix K⟂(s) given by (42) found by solving the PRDE (41)

In order to construct a switching function of the form (23), we therefore need to find: 1) a real 2𝜋-periodic FL factor-
ization of the state-transition matrix of (22), and then 2) a full-rank left-annihilator of a real invariant subspace of F of
codimensionm.‡‡

To find an FL factorization (L(s),F,Y ) for (22), we used the boundary value problem formulation proposed in Refer-
ence 35.§§ This resulted in Y = I3, that is, L(𝜏) was 2𝜋-periodic as required, while the found matrix F was approximately
given by

F ≈
⎡⎢⎢⎢⎣
0.0843 1.1269 0.8987
− 3.4618 −4.4920 −3.1910
0.4531 0.4799 −0.0735

⎤⎥⎥⎥⎦ .
The three real eigenvalue-eigenvector pairs of this F are in turn approximately given by

(𝜆1, 𝜐1) ≈
⎛⎜⎜⎜⎝−2.97,

⎡⎢⎢⎢⎣
− 0.32
0.94
− 0.11

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ , (𝜆2, 𝜐2) ≈

⎛⎜⎜⎜⎝−1.06,
⎡⎢⎢⎢⎣
0.68
− 0.73
0.04

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ , (𝜆3, 𝜐3) ≈

⎛⎜⎜⎜⎝−0.45,
⎡⎢⎢⎢⎣
0.02
− 0.63
0.78

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ .

The matrix F therefore has three real invariant subspaces of codimension one:

span{𝜐1, 𝜐2}, span{𝜐1, 𝜐3}, and span{𝜐2, 𝜐3}.

However, only the subspace span{𝜐2, 𝜐3} had an annihilator that satisfied the nonzero-determinant condition in
Theorem 2. We therefore took Ŝ such that Ŝ𝜐2 = Ŝ𝜐3 ≡ 0 (i.e., Ŝ ≈ [0.62, 0.61, 0.48]). The corresponding matrix function
S⟂(s) = ŜL−1(s) = [Sy, Sẏ, SI] is shown in Figure 3, in which (S⟂(s)B⟂(s)) can be seen to be separated from zero.

Note here that span{𝜐2, 𝜐3} consists of the two one-dimensional subspaces whose eigenvalues have the smallest mag-
nitude. Since solutions of the nominal (disturbance-free) system under just the LQR feedbackmay also partly correspond

‡‡Since the system is mechanical, the dimension of the transverse dynamics will always be odd, that is, (n − 1) = 2nq − 1. Thus by Statement 10 in
Appendix A.2, the system (22) must then have at least one such subspace. Although there is no guarantee that this subspace has an annihilator such
that S⟂(s)B⟂(s) is nonsingular everywhere.
§§An initial condition for F was found by integrating (13) and using (A3) in the Appendix.
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F IGURE 3 Elements of the designed switching function S⟂ given by (23). Here (S⟂B⟂) is seen to be nonsingular

to the subspace spanned by 𝜐1, it is therefore to be expected that the convergence close to the orbit will be somewhat
slower in general when confined to the induced sliding manifold.

6.7 Simulation results

Using the above designed switching function, we will now compare in simulations the control law (24) with feed-
back extension (26) to both the nominal LQR and the Lyapunov redesign controller (LRC) given by (32). These were
implemented as follows:

uLQR = K⟂(s)x⟂, s = p(x), (LQR)

uSMC = K⟂(s)x⟂ − 𝜇1 sat (𝜎(s, x⟂)∕𝜖) , 𝜎(s, x⟂) ∶= S⟂(s)x⟂, (SMC)

uLRC = K⟂(s)x⟂ − 𝜇2 sat (𝜉(s, x⟂)∕𝜖) , 𝜉(s, x⟂) ∶= BT
⟂(s)R⟂(s)x⟂. (LRC)

Here the saturation function sat(⋅) was used with 𝜖 = 10−3 rather than the signum function in order to mitigate
chattering.17 The gains 𝜇1, 𝜇2 > 0 in the SMC and LRC were taken as constants to facilitate the comparison between
the controllers, as well as to highlight the effects of these gains with respect to the magnitude of any matched
disturbances.

Each controller was tested on the system (33) for three different scenarios: without any perturbations (corresponding
to the nominal system (34)), with only matched perturbations, and with both matched and unmatched perturbations.
Table 1 contains the parameters used in the dynamic model for each of these scenarios. The initial conditions were taken
as

(xc(0), 𝜑(0), ẋc(0), 𝜑̇(0)) = (0.1, 0.4,−0.1,−0.2).

Figure 4 shows the simulation results when implemented on the nominal system (34), with the gains of the SMC and
LRC taken as (𝜇1, 𝜇2) = (0.5, 0.5). Both the convergence to the orbit and the control inputs are seen to be fairly similar
for all the control laws. As seen in (D), however, the LRC quickly drives the states close to the manifold 𝜉 ≡ 0 such that
uLRC remains close to zero. This results in a slightly slower convergence to the target orbit for the LRC than the other two
controllers. The SMC, on the other hand, can be seen in (C) to have a larger overshoot than the other controllers with
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(A) (B)

(C) (D)

F IGURE 4 (Nominal model) Simulation results showing the performance of each controller, with (𝜇1, 𝜇2) = (0.5, 0.5), when
implemented on the disturbance-free system; SMC (—-), LRC (− ⋅ −), LQR(− −), and target orbit (… )

TABLE 1 Parameters of the cart–pendulum system (33) used in simulation for the three considered scenarios
Types
of perturbations mc (kg) mp (kg) lp (m) Jp (kg m2) 𝝍 (rad) 𝝊c (N) 𝝊p (N m) dx(t) (N) dp(t) (N m)

No perturbations (nominal case) 1 1 1 0 0 0 0 0 0

Only matched perturbations 1 1 1 0 0 0.25 0 0.1 sin(t) 0

Matched and unmatched perturbations 1.2 1.2 0.9 0.2 5𝜋∕180 0.25 0.1 0.1 sin(t) 0.1 sin(t)

respect to the projection operator–based distance measure ||x − xs(p(x))||, before eventually having a similar convergence
rate to that of the nominal LQR after reaching the sliding manifold.

Figure 5 shows the performance of the three controllers when subject to only matched perturbations. The per-
turbation term had the upper bound ΔM ≤ 0.35 (see Table 1) and the gains of the SMC and LRC were again taken
as (𝜇1, 𝜇2) = (0.5, 0.5). As seen in (A), the LQR is unable to ensure convergence to the target orbit and instead set-
tles into a perturbed orbit having a lower amplitude, whereas both the SMC and LRC are able to almost completely
reject the disturbances. The effects of increasing the gains of both controllers can be seen in Figure 6. As one would
expect, increasing the gain for the SMC is seen to decrease the time needed to reach the sliding manifold, slightly
speeding up the convergence, but at the expense of both larger overshoot and increased peak actuator forces. The
opposite behavior may be observed when increasing the gains of the LRC; it can be seen that the system’s states are
driven faster toward the manifold 𝜉 ≡ 0, leading to slightly slower convergence to the target orbit, but reducing the
overshoot.
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(A)

(C) (D)

(B)

F IGURE 5 (Matched perturbations) Simulation results showing the performance of each controller, with (𝜇1, 𝜇2) = (0.5, 0.5), when
subject to only matched perturbations; SMC (—-), LRC (− ⋅ −), LQR(− −), and target orbit (… )

(A) (B)

F IGURE 6 Gain comparison for the SMC (A) and LRC (B) when subject to matched disturbances; 𝜇i = 0.5 (—-), 𝜇i = 5 (− ⋅ −), and
𝜇i = 10 (− −)
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(A)

(C) (D)

(B)

F IGURE 7 (Matched and unmatched perturbations) Simulation results showing the performance of each controller, with
(𝜇1, 𝜇2) = (4, 4), when subject to both matched and unmatched disturbances; SMC (—-), LRC (− ⋅ −), LQR(− −), and target orbit (… )

Figure 7 shows the response of the systemunder the three controllers for (𝜇1, 𝜇2) = (4, 4)when subject to bothmatched
and unmatched perturbations. The system under the LQR is seen to become unstable as the controller was unable to
keep the angle of the pendulum within the region where the feedback (40) and the third transverse coordinate are well
defined, corresponding to |𝜑| < √

(1∕a) ≈ 0.62 rad. To stay within this region, both the gain of the SMC and LRC had to
be increased, with the SMC needing the largest increase for the considered initial conditions. It can again be seen from
(B) and (C) in Figure 7 that the SMC is initially more aggressive than the LRC, leading to high peaks in the force applied
to the cart and to larger a larger overshoot with respect to the target orbit. After the transient phase, however, the SMC
settles into an orbit that is closer to the nominal orbit on average and which requires slightly less control forces than the
settling orbit of the LRC.

Figure 8 shows the results for the different scenarios when taking in (40) the pure sliding mode controller given by

u = −𝜇1sat(𝜎(s, x⟂)∕𝜖).

The gain had to be increased tomaintain a similar performance in all three scenarios:𝜇1 = 2 for both the nominal case and
with only matched perturbations, while it was increased to 𝜇1 = 6 for the case also including unmatched perturbations.
The similarity of these results compared with those under the controller (SMC) indicates that the equivalent control
when confined to the manifold indeed corresponds to that of design controller (LQR) used in the switching function
synthesis.

In order to test the sensitivity of the control scheme to measurements noise, we added a small amount of white
noise (signal-to-noise ratio of 50 dB) to the state measurements passed to the controller for the same scenarios as
in Figure 8. The obtained responses are shown in Figure 9. It can be seen that, while the measurement noise leads
to chattering in the control signals if 𝜖 is not increased, it has little effect upon the overall response in all three
scenarios.
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(A) (B)

F IGURE 8 System response with only the sliding mode controller. The gain was taken as 𝜇1 = 2 for both the nominal case (—-) and
with only matched disturbances (− ⋅ −), while 𝜇1 = 6 when subject to both matched and unmatched disturbances (− −)

(A) (B)

F IGURE 9 The same scenarios as in Figure 8 but with white noise added to the measurements passed to the controllers

7 CONCLUDING REMARKS AND FUTURE DIRECTIONS

The task of robustifying a known orbitally stabilizing feedback controller was considered in this article. For this
purpose, a new constructive procedure for generating a switching function was proposed, allowing for the use of
sliding mode control extensions for disturbance rejection. The designed switching function corresponded to an anni-
hilator of a real invariant subspace of the Monodromy matrix of the first-approximation (linearization) of a nominal
model of the system. It was constructed using a real Floquet–Lyapunov transformation of state-transition matrix
of the linearized dynamics of a set of transverse coordinates along the nominal orbit. This design was comple-
mented with a suggestion for a unit-vector based approach for stabilizing the corresponding sliding manifold in finite
time.

The feasibility and advantages of the proposed scheme was demonstrated using simulations by considering the chal-
lenging task of stabilizing oscillations about the up-right equilibrium of the cart–pendulum system subject to both
matched- and unmatched perturbations. The proposed sliding mode controller (SMC) was compared with a Lyapunov
redesign controller (LRC) constructed using the knowledge of a Lyapunov function candidate of the nominal system. Both
controllers were shown on a numerical example to reject matched perturbations and to also handle certain unmatched
perturbations provided the gains were taken sufficiently large. The simulation results demonstrated that whereas the
SMC approach had a faster rate of convergence toward the nominal orbit than the LRC during the transient, it might have
larger deviations away from it compared with the LRC.
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The contributions of this article lays the foundation for further research in several directions, including the following.
Numerical construction of the switching function: At presented, the proposed scheme rests on two major assumptions:

1) the existence of a real Floquet–Lyapunov factorization of minimal periodicity; and 2) the existence of a real invariant
subspace of the Monodromy matrix satisfying certain conditions. Thus the design of numerically tractable solutions for
both evaluating their existence and for their construction are important next steps.

Alternative sliding mode controllers:A unit-vector controller was suggested for the robustifying feedback extension. In
practice, a continuous approximation of this controller must be utilized in order to mitigate chattering. However, such an
approximation can only ensure convergence to a boundary layer of the slidingmanifold. Exploring alternative continuous
sliding mode controllers, such as variants of the supertwisting algorithm,16,23 is therefore of interest.

Generic design using an excessive set of transverse coordinates: The suggested scheme requires knowledge of a set of
transverse coordinates. While such coordinates may always be found (using, e.g., the virtual constraints approach for
mechanical systems), their construction will often require additional numerical steps. Extending the approach of this
article to also allow for the use of a more generic excessive set of transverse coordinates may therefore be of some value,
as such coordinates can be computed knowing just a regular parameterization of the orbit and a projection operator that
defines a Moving Poincaré section; see, for example, References 7 and 29.

Extension to hybrid systems and to nonperiodic motions: The concept of orbital stabilization is not strictly limited to
only periodic motions. For instance, it may be applied to certain finite-time trajectories (e.g., point-to-point motions) or
to the quasi-periodic motions that arise in hybrid dynamical system (e.g., walking gaits of bipedal robots). The method
proposed in this article may therefore be used for such tasks as well, provided that the transverse linearization along the
motion is real reducible.
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APPENDIX A. SUPPLEMENTARY MATERIAL

A.1 On constructing stable invariant manifolds from the first-order approximation
We first provide a definition.

Definition 4. Let h ∶ Rn → Rn be 2. A set Λ ⊂ Rn is said to be forward invariant with respect to

ẏ = h(y), y ∈ R
n, t ∈ R

+, (A1)

if for any solution y(⋅) of (A1) satisfying y(t0) ∈ Λ for some t0 ∈ R+, y(t) ∈ Λ for all t ≥ t0.

In the particular case when h(⋅) is a linear map of the form h(y) = Hy for some H ∈ Rn×n, then it is well known that
Λd ⊂ Rn is a real invariant, d-dimensional subspace of (A1) if, and only if,HΛd ⊆ Λd andΛd is spanned by d real, linearly
independent vectors v1, … , vd ∈ Rn.¶¶

By the Hartman–Grobman theorem, this may also be used to locally approximate the stable invariant manifolds of
nonlinear systems of the form (A1). Indeed, suppose h(0) = 0 such that (A1) may be written as

ẏ = Ĥy + ĥ(y), (A2)

where Ĥ ∶= Dh(0) has no eigenvalues on the imaginary axis and the 1-mapping ĥ ∶ Rn → Rn satisfies ||ĥ(y)|| = (||y||2).
Then any (real) d-dimensional, exponentially stable invariant subspace of Ĥ implies the existence of an exponentially
stable (locally) invariant manifold of the same dimension for the nonlinear system (A1) about its origin.18

This fact is also useful in regard to designing switching functions whose zero-level set has desired properties. For
instance, suppose that Λ(n−m) ⊂ Rn is a real, stable invariant subspace of Ĥ of codimension m(< n); that is Ĥy ∈ Λ(n−m)

for all y ∈ Λ(n−m), or equivalently ĤΛ(n−m) ⊆ Λ(n−m). Let the vectors 𝜐1, 𝜐2, … , 𝜐(n−m) ∈ Rn form a basis of Λ(n−m). At the
same time, these vectors must also span the (n −m)-dimensional nullspace of some full-rank matrix S ∈ Rm×n, that is
S𝜐i = 0 for all i ∈ {1, … , (n −m)}. Or in other words: there exists a matrix S ∈ Rm×n of full rank such that Sy = 0m×1 if,
and only if, y ∈ Λ(n−m).

Suppose, therefore, that the right-hand side of (A1) is complemented by the term B(u + Δ) where u ∈ Rm are con-
trols, Δ ∈ Rm a perturbation and B ∈ Rn×m is such that SB ∈ Rm×m is nonsingular. Further suppose that a feedback u
can be designed such that, despite the higher-order terms, it brings the system’s states onto and renders invariant the
sliding manifold {y ∈ Rn ∶ 𝜎(y) ∶= Sy ≡ 0}. Since this manifold corresponds to a stable invariant subspace of Ĥ, there
must consequently exists a nonzero neighborhood of the origin in which the states exponentially convergence toward it
regardless of the disturbance, and despite Ĥ possibly also having eigenvalues with positive real parts.

A.2 On constructing real invariant subspaces for LTI systems
Consider the following task: For anymatrixA ∈ Rn×n, find all its real invariant subspaces of dimension d < n. That is, find
any subspace Λd ⊂ Rn spanned by d linearly independent vectors v1, v2, … , vd ∈ Rn such that Ax ∈ Λd for all x ∈ Λd.

It is well known that any (possibly complex) invariant subspace of a matrix A ∈ Rn×n is spanned by its generalized
eigenspaces.36 For example, given a real eigenvalue 𝜆r ofA, any vector in the eigenspace 𝜆r ∶= ker (𝜆rIn − A) spans a real,
one-dimensional invariant subspace of A, while if dim(𝜆r ) = d > 1, then the basis vectors of 𝜆r can be used to generate
real invariant subspaces of all dimensions up to and including d.

More generally, one can utilize the fact that any real, square matrix has a real Jordan form [21, thm. 3.4.1.5]: there
exists a nonsingular matrix V ∈ Rn×n and a block diagonal matrix J ∈ Rn×n such that AV = VJ. In this regard, let
Jr1, … , Jrkr denote the blocks of J corresponding to the real eigenvalues of A, and let V

r
i = [vri,1, … , vri,kri

] ∈ R
n×kri denote

the corresponding columns of V such that AVr
i = Vr

i J
r
i . Note that this is equivalent to a Jordan chain:(

A − In𝜆ri
)
vri,1 = 0,

(
A − In𝜆ri

)
vri,2 = vri,1, …

(
A − In𝜆ri

)
vri,kri = vri,(kri−1).

Thus for any positive integer 𝜇 ≤ kri , one may construct a real invariant, 𝜇-dimensional subspace of A spanned by the
real, linearly independent generalized eigenvectors vri,1, v

r
i,2, … , vri,𝜇. Furthermore, given two different such generalized

¶¶Note that a brief outline of how one can construct such subspaces using the matrix’s real Jordan form is provided in Appendix A.2.
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eigenspaces, denoted {vri,1, v
r
i,2, … , vri,kri

} and {vrj,1, v
r
j,2, … , vrj,krj

}, one can construct invariant subspaces of any dimension

less than or equal to kir + kjr; for example, Λ3 = span {vri,1, v
r
j,1, v

r
j,2}, with i ≠ j, would be a three-dimensional invariant

subspace, and so on.
For the complex conjugate eigenvalue pairs of A, denoted {𝜆ci , 𝜆

c
i}, this, however, cannot be applied directly as the

corresponding generalized eigenspaces, that is n
𝜆ci
∶= ker

(
𝜆ci In − A

)n, are then spanned by complex generalized eigen-
vectors vri,1, v

r
i,2, … , vci,kic

. In order to generate real invariant subspace from these complex eigenspaces, one can instead use

the fact that for any vci ∈  ci , its complex conjugate satisfies vci ∈ n
𝜆ci
∶= ker

(
𝜆ci In − A

)n
. Thus for a complex eigenvalue 𝜆ci

and its corresponding eigenvector vci , the space spanned by {Re[v
c
i ], Im[vci ]} is a two-dimensional invariant subspace of A.

In terms of the real Jordan form, let Jc1, … , Jrkc be the Jordan blocks corresponding to the complex conjugate eigen-

value pairs {𝜆ci , 𝜆
c
i} for i = 1, … , kc. Then forVc

i = [ c
1 , … , c

kc
] ∈ Rn×2kc where c

i ∶=
[
Re[vci,1], Im[vci,1]

]
∈ Rn×2, one has

AVc
i = Vc

i J
c
i , such that for any positive integer 𝜇 ≤ kc, one can construct a real invariant subspace of even dimension 2𝜇,

spanned by  c
1 , c

1 , … , c
𝜇,. Hence pairs of complex conjugate eigenvalues may only generate invariant subspaces of even

dimension, from which the two following well-known statements can be concluded.

Lemma 9. A matrix A ∈ Rn×n has real invariant subspaces of all even dimensions less than n, while it has real invariant
subspaces of odd dimensions if, and only if, it has at least one real eigenvalue.

Lemma 10. If n is odd, then A ∈ Rn×n has real invariant subspaces of all dimensions less than n.

A.3 On constructing Floquet–Lyapunov factorizations
There are several ways of computing real (cT-period) Floquet–Lyapunov (FL) factorization for LTP systems. These are
mainly grouped into either direct- or indirect methods. In the case of direct approaches (see, e.g., Reference 27) one uses
knowledge of the state transitionmatrix to find L(⋅) and F directly from (16). The existence of a realmatrix F in Theorem 1,
for instance, then follows from the fact that the Monodromy matrix,A, is real; indeed, using lemma 3 in Reference 27,
we have

2
A = AA = eTBeTB = eT(B+B) = e2TF (A3)

such that F = (B + B)∕2 for some possibly complex matrix B.
In the indirect approach suggested in Reference 35, on the other hand, one assumes that F ∈ Rn×n satisfying (16) is

known for some cT-periodic matrix L(t), such that (B1) or (B2) can be solved for either L(t) or L−1(t), respectively, using
that L(0) = L−1(0) = In. Indeed, the converse is also true.25

Corollary 2. If there exists a matrix F ∈ Rn×n and a cT-periodic, nonsingular matrix function L ∶ R+ → Rn×n, L(0) = In,
satisfying the matrix differential equation (B1), then (16) is a real, cT-periodic FL factorization of (13).

One therefore has two natural options for finding an FL factorization:

1) Integrate (13) to find the Monodromy matrix and then obtain F from (A3), such that L(t) can be found either from
(16) directly or by integrating (B1);

2) Or as suggested in Reference 35: Find both F and L(t) simultaneously by solving (B1) as a boundary value problem
using L(0) = L(cT) = L(t)Y for some k ∈ {1, 2}, and by taking Ḟ = 0.

See also References 37 and 38 for alternative ways of computing real factorizations.

A.4 Trajectory planning for underactuated mechanical systems using virtual constraints
We will now briefly demonstrate how the virtual constraints-approach of Reference 8 (see also References 9,31) can be
used to plan periodic trajectories of underactuated mechanical systems39,40 with one degree of underactuation.

The equations of motion of such systems may be written on the form:39

M(q)q̈ + C(q, q̇)q̇ + G(q) = B̂û. (A4)
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Here q ∈ R
nq are the generalized coordinates, q̇ = d

dt
q the generalized velocities, x ∶= [q; q̇] ∈ Rn with n = 2nq is the state

vector, û ∈ Rm denotes them = nq − 1 control inputs,M(⋅) is the symmetric, positive definite inertia matrix, C(⋅) consists
of centrifugal and Coriolis terms, G(⋅) is a vector of potential forces, while the constant matrix B̂ ∈ R

nq×m has full rank.

Constructing a periodic trajectory
To plan a periodic trajectory for (A4), we introduce the vector functionΦ(𝜃) = [𝜙1(𝜃); … ;𝜙nq(𝜃)]. It consist of 3-smooth
scalar synchronization functions𝜙i(⋅)which are built up of a finite number of basis functions. The idea behind introducing
Φ(𝜃) is to specify a specific synchronization of the generalized coordinates in terms of the scalar variable 𝜃, hereafter
referred to as themotion generator (MG). For simplicity, theMG 𝜃 will be assumed to correspond to one of the generalized
coordinates, that is 𝜃 ≡ qi for some i ∈ {1, … ,nq}.# It is interesting to note that the invariance of such a relation then
corresponds to a (forced) strict mode of the mechanical system; see def. 3 in Reference41.

For an underactuated system, it is important to note that the time evolution of the MG cannot be any for a specific
choice of the synchronization function Φ(⋅). Indeed, suppose that for some choice of Φ(⋅) and 𝜃 the system of (A4) has a
nontrivial, bounded, T-periodic trajectory (q⋆(t), û⋆(t)) = (q⋆(t + T), û⋆(t + T)) whose orbit 𝜂⋆, as defined by (3), admits
a reparameterization

q⋆(t) = Φ(𝜃⋆(t)), q̇⋆(t) = Φ′(𝜃⋆(t))𝜃̇⋆(t), ∀t ∈ [0,T), (A5)

with Φ′(𝜃) = d
d𝜃
Φ (𝜃). This implies that 𝜃⋆(t) in (A5) must be a solution of the so-called reduced dynamics.

Proposition 5 (reduced dynamics8). Assume the invariance of the relations q = Φ(𝜃) in (A5), and consequently
also q̇ = Φ′(𝜃)𝜃̇ and q̈ = Φ′(𝜃)𝜃̈ + Φ′′ (𝜃)𝜃̇2. Then 𝜃(t) is the solution of a second-order differential equation of the
form

𝛼(𝜃)𝜃̈ + 𝛽(𝜃)𝜃̇2 + 𝛾(𝜃) = 0 (A6)

in which the smooth scalar functions 𝛼(⋅), 𝛽(⋅) and 𝛾(⋅) are defined as

𝛼(𝜃) ∶= B̂⟂M (Φ(𝜃)) Φ′(𝜃), 𝛽(𝜃) ∶= B̂⟂M (Φ(𝜃)) Φ′′(𝜃) + B̂⟂C
(
Φ(𝜃),Φ′(𝜃)

)
Φ′(𝜃), 𝛾(𝜃) ∶= B̂⟂G (Φ(𝜃)) ,

with B̂⟂ ∈ R1×n a full-rank left annihilator of B̂, that is B̂⟂B̂ = 01×m.
It follows that any periodic solution 𝜃⋆(t) = 𝜃⋆(t + T), T > 0, of the reduced dynamics (A6), given a choice ofΦ(𝜃) and

initial conditions (𝜃0, 𝜃̇0), defines a periodic solution of (A4).
Another important property of the reduced dynamics equation (A6) is the fact that, if 𝛼(𝜃) ≠ 0, then it is integrable,

with the integrating factor given by 𝛼(𝜃)𝜓(𝜃, 𝜃0) where

𝜓(𝜃0, 𝜃) ∶= exp
⎛⎜⎜⎝−2

𝜃

∫
𝜃0

𝛿(𝜐)
𝛼(𝜐)

d𝜐
⎞⎟⎟⎠ , 𝛿(𝜃) ∶= 𝛽(𝜃) − d

d𝜃
𝛼(𝜃).

From this, the following statement, which is a slight reformulation of theorems 1 and 2 in Reference 8, can be easily
deduced.

Proposition 6. Let 𝜃⋆(t) = 𝜃⋆(t + T) be a bounded, T-periodic solution of (A6) corresponding to the initial conditions (𝜃0, 𝜃̇0)
on which 𝛼(𝜃) ≠ 0. Then the function I = I(𝜃, 𝜃̇, 𝜃0, 𝜃̇0), defined by

I ∶= 1
2
𝛼2(𝜃)𝜃̇2 − 𝜓(𝜃0, 𝜃)

⎡⎢⎢⎣12𝛼2(𝜃0)𝜃̇20 −
𝜃

∫
𝜃0

𝜓(𝜐, 𝜃0)𝛼(𝜐)𝛾(𝜐)d𝜐
⎤⎥⎥⎦ (A7)

vanishes on the nominal orbit 𝜂⋆. Moreover,

#The geometric relations q1 = 𝜙1(𝜃), … , qnq = 𝜙nq (𝜃), 𝜃 = 𝜃(q), are commonly referred to as virtual (holonomic) constraints by the fact that they are
not inherent physical constraints imposed on the system, but rather must be enforced and kept invariant by some control action.
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d
dt
I = 𝜃̇

(
𝛼(𝜃)U − 2 𝛿(𝜃)

𝛼(𝜃)
I
)

(A8)

is the time derivative of I(⋅) along a solution (𝜃(t), 𝜃̇(t)) of 𝛼(𝜃)𝜃̈ + 𝛽(𝜃)𝜃̇2 + 𝛾(𝜃) = U.

Given a choice of synchronization functions and initial conditions (𝜃0, 𝜃̇)), one can therefore find 𝜃̇ (if it exists) from
(A7) for any value of 𝜃 instead of having to integrate (A6).

Choosing a regular parameterization and a projection operator
Suppose a periodic trajectory of the form (A5) has been found. The next step is then to obtain from it a parameterization of
the form (18). That is to say, we need to find a T-periodic, strictly monotonically increasing scalar variable s ∶ [0,T) → 
and a 1-function 𝜌 ∶  → R+ such that we have (𝜃⋆(s⋆(t)), 𝜃̇⋆(s⋆(t))) and ṡ⋆(t) = 𝜌(s⋆(t)) > 0 for all t ∈ [0,T).

For periodic trajectories where 𝜃̇⋆ > 0 for all t ∈ [0,T), an obvious candidate is then to take s = 𝜃 and find 𝜌(𝜃) = 𝜃̇⋆(𝜃)
from (A7). However, this is not possible for solutions of (A6) which orbits an equilibrium point 𝜃e of type center42, as
then 𝜃̇⋆ will also become negative along 𝜂⋆. In these cases, one may pick s depending on the choice of projection operator
(see Definition 2). For example, an operator of the form (𝜃, 𝜃̇) → s is given by eqs. 8-9 in Reference 4, while the following
family of implicitly defined local operators

p(x) = arg min
s∈

(x − xs(s))TΛ(s)(x − xs(s)) (A9)

whereΛ ∶  → Rn×n is some smooth, symmetric PDmatrix function||||, may be used for any parameterization of the form
(18), including the time parameterization (A5).

Transverse coordinates and the linearized transverse dynamics
Suppose now a desired trajectory (A5) has been found, together with a regular parameterization xs; → 𝜂⋆ and a pro-
jection operator p(⋅) (e.g., as (38) for the cart–pendulum). The next step is then to find a set of transverse coordinate (see
Definition 3) and to linearize their dynamics. To this end, we will assume in the following that the MG may be taken
as 𝜃 ∶= qnq . This assumption allows us to define the (n − 1) transverse coordinates x⟂ = [y; ẏ; I], where y ∈ R

nq−1 and its
derivative ẏ ∈ R

nq−1 are defined as

y ∶= Ly (q − Φ(𝜃)) , ẏ ∶= Ly
(
q̇ − Φ′(𝜃)𝜃̇

)
, Ly ∶= [Inq−1, 0m×1], (A10)

and with I given by (A7). Indeed, x⟂ evidently vanishes along the solution (A5), while the corresponding Jacobian matrix

Dx⟂(x) =
⎡⎢⎢⎢⎣
Inq−1 −LyΦ′(𝜃) 0nq−1 0(nq−1)×1
0nq−1 −LyΦ′′(𝜃)𝜃̇ Inq−1 −LyΦ′(𝜃)
01×(nq−1) 𝜕𝜃I 01×(nq−1) 𝛼2(𝜃)𝜃̇

⎤⎥⎥⎥⎦ , 𝜕𝜃I = 𝛼(𝜃)(𝛽(𝜃)𝜃̇2 + 𝛾(𝜃)) − 2𝛿(𝜃)
𝛼(𝜃)

I,

has (full) rank equal to 2nq − 1 = n − 1 when evaluated along 𝜂⋆ (simply note that 𝜕𝜃I(x⋆) = −𝛼2(𝜃⋆)𝜃̈⋆.
Before we can linearize the dynamics of x⟂, we first need to rewrite (A4) on a form similar to (1) for which ẋ⋆ = f (x⋆).

We therefore introduce the smooth mappings w ∶ Rn → Rm andW ∶ Rn → Rm×m which are such that, for all t ∈ [0,T),
one has w(x⋆(t)) ≡ û⋆(t) andW(x⋆(t)) is nonsingular. Taking, therefore,

û = w(x) +W(x)u (A11)

one can rewrite (A4) on the (disturbance-free) form of (2) with

f (x) =

[
q̇

M−1(q)
[
B̂w(x) − C(q, q̇)q̇ − G(q)

]] , g(x) =

[
0n×m

M−1(q)B̂W(x)

]
.

||||If d
dt
xs(s) = f (xs(s)) (c.f. (2)), then Λ(⋅) in fact only needs to be PSD and satisfy f (xs(s))Λ(s)f (xs(s)) > 0 for all s ∈ .
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Consequently, the linearized transverse dynamics may then be found using Lemma 7, such that a nominal state feedback
controller can be designed utilizing, for example, Proposition 4.

APPENDIX B. PROOFS OF STATEMENTS

B.1 Proof of Lemma 3
First note that at each time t ∈ R+ one must have

d
dt

[S(t)ΨAcl(t, 0)X0] = Ṡ(t)ΨAcl(t, 0)X0 + S(t)Acl(t)ΨAcl(t, 0)X0 = 0

which implies the relation Ṡ(t)ΨAcl(t, 0)X0 = −S(t)Acl(t)ΨAcl(t, 0)X0.
Now assuming the forward invariance of S(t)y(t) = 0, it follows that

d
dt

(S(t)y(t)) = Ṡ(t)y + S(t)
(
A(t)y + B(t)(ueq + Δ)

) ≡ 0.

Therefore, as if S(t)y(t) = 0 then y(t) = ΨAcl(t, 0)X0p for some p ∈ Rn−m, we obtain, using the above relation,

−S(t)Acl(t)y + S(t)
(
A(t)y + B(t)(ueq + Δ)

)
= S(t)B(t)

[
ueq + Δ − K(t)y

] ≡ 0.

Due to the assumption that rank [S(t)B(t)] = m, the equivalent control is then uniquely given by ueq = K(t)y − Δ.
To derive the stated condition for the T-periodicity of S(⋅), recall the following property of the STM43: ΨAcl(t + T, 0) =

ΨAcl(t, 0)Acl . Thus if S(t) = S(t + T) for all t ≥ 0, then

||S(t)ΨAcl(t, 0)X0p|| = ||S(t + T)ΨAcl(t + T, 0)X0p|| = ||S(t)ΨAcl(t, 0)AclX0p|| ≡ 0

for any p ∈ R(n−m) and all t ≥ 0. It follows that there must be some nonsingular matrix N ∈ R(n−m)×(n−m) such that
AclX0 = X0N, or equivalently, the columns of X0 form a basis of an invariant subspace ofAcl .

B.2 Proof of Proposition 2
Assume, without loss of generality, that the relation 𝜎(t) = S(t)y(t) ≡ 0 is forced for t ≥ 0. Following the equivalent control
approach,13,15 we then assume that, for all t ≥ 0,

𝜎̇(t) = Ŝ
[
dL−1
dt

(t)y + L−1(t)
(
A(t)y + B(t)(ueq + Δ)

)] ≡ 0.

Here the derivative d
dt
L−1(t) can be determined by first substituting (16) into (13) in order to obtain

d
dt
L(t) = Acl(t)L(t) − L(t)F. (B1)

Since d
dt
L−1(t) = −L−1(t)L̇(t)L−1(t) for any smooth, nonsingular square matrix function L(⋅), it therefore follows that

d
dt
L−1(t) = −L−1(t)Acl(t) + FL−1(t). (B2)

Hence the above reduces to

𝜎̇ = Ŝ
[
FL−1(t)y − L−1(t)

(
Acl(t) − A(t)

)
y + L−1(t)B(t)(ueq + Δ)

]
= Ŝ

[
Fz − L−1(t)B(t)K(t)y + L−1(t)B(t)(ueq + Δ)

]
= ŜFz + S(t)B(t)

[
ueq − K(t)y + Δ

] ≡ 0.
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Now, asΛ is F-invariant and Ŝ annihilatesΛ, we here have that Ŝz = ŜFz ≡ 0 for all z ∈ Λ. Therefore, as we have assumed
that [S(t)B(t)] is invertible, it follows that the equivalent control corresponds to ueq(t) = K(t)y(t) − Δ(y(t), t) as desired.

B.3 Proof of Lemma 6
In order to show convergence to 𝜂⋆ within some nonzero tubular neighborhood when restricted to Σ, let 𝜏 ∶ Rn → [0,T)
denote the solution to the implicit equation

𝜏(x) = arg min
𝜏∈[0,T)

||x − x⋆(𝜏)||2, (B3)

for a given x ∈ Rn about 𝜂⋆. By similar arguments as for example those given in the work of Leonov29, the time derivative
of 𝜏 = 𝜏(x) is well defined in a neighborhood of 𝜂⋆ and its dynamics may be written as7,30

𝜏̇ = 1 + f||(𝜏, x̃) + g||(𝜏, x̃)u,
where x̃ ∶= x − x⋆(𝜏) and f||(𝜏, 0) = 0. Any 2-function x → h(x)may then be written on the form

h(x) = h(x⋆(𝜏)) + Dh(x⋆(𝜏))x̃ + Rh(x)

for x in a small neighborhood of 𝜂⋆, where Rh is 1 and satisfies ||Rh(x)|| = (||x̃||2). We can therefore take
𝜎(x) = S(𝜏)x̃ + R𝜎(x), f (x) = f (x⋆(𝜏)) + A(𝜏)x̃ + Rf (x) and k(x) = K(𝜏)x̃ + Rk(x),

where we have used that 𝜎(x⋆(t)) = k(x⋆(t)) ≡ 0. Hence, by differentiating 𝜎(⋅) with respect to time, one obtains

𝜎̇(x) = Ṡ(𝜏)x̃ + S(𝜏)(ẋ − ẋ⋆(𝜏)) +
d
dt
R𝜎(x)

= Ṡ(𝜏)x̃ + S(𝜏) (f (x) + g(x) [u + Δ]) + d
dt
R𝜎(x)

=
[
Ṡ(𝜏) + S(𝜏)A(𝜏)

]
x̃ + S(𝜏)g(x) [u + Δ] + R̂

=
[
Ṡ(𝜏) + S(𝜏)A(𝜏)

]
x̃ + S(𝜏) (B(𝜏) + g̃(x)) [u + Δ] + R̂,

where g̃(x) ∶= g(x) − g(x⋆(𝜏)), R̂ ∶= S(𝜏)Rf + d
dt
R𝜎 , and where we have used that S(𝜏)ẋ⋆(𝜏) = S(𝜏)𝜏̇ d

d𝜏
x⋆(𝜏) ≡ 0. By adding

and subtracting S(𝜏)B(𝜏)K(𝜏)x̃, the above may be equivalently rewritten as

𝜎̇(x) =
[
Ṡ(𝜏) + S(𝜏)Acl(𝜏)

]
x̃ − S(𝜏)(B𝜏)K(𝜏)x̃ + S(𝜏) (B(𝜏) + g̃(x)) [u + Δ] + R̂.

With this in mind, suppose Σ is rendered forward invariant such that 𝜎(x) = S(𝜏)x̃ + R𝜎(x) ≡ 0 and consequently also
𝜎̇(x) ≡ 0 following the equivalent control approach15. This implies that x̃ = XS(𝜏) − S†(𝜏)R𝜎(x) for someXS(𝜏) ∈ ker{S(𝜏)}
and in which S†(𝜏) is a right inverse of S(𝜏) such that S(𝜏)S†(𝜏) = Im for all 𝜏 ∈ [0,T). Using condition 2. in Lemma 6, the
equivalent control, ueq, must therefore satisfy[

Im + (S(𝜏)B(𝜏))−1S(𝜏)g̃(x)
]
(ueq + Δ) = K(𝜏)x̃ − (S(𝜏)B(𝜏))−1

[(
Ṡ(𝜏) + S(𝜏)Acl(𝜏)

)
S†(𝜏)R𝜎(x) + R̂

]
Since we have assumed the columns of g(⋅) to be locally Lipschitz in some region containing the orbit, there necessar-
ily exists a Lipschitz constant lg > 0 such that ||g̃(x)|| ≤ lg||x̃|| holds therein. It follows that for sufficiently small x̃, the
matrix function Λ(x) ∶= Im + (S(𝜏)B(𝜏))−1S(𝜏)g̃(x) is nonsingular. This, in turn, implies that, locally, it is of the form
ueq = k̂(x) − Δ with

k̂(x) ∶= Λ−1(x)
(
K(𝜏)x̃ − (S(𝜏)B(𝜏))−1

[(
Ṡ(𝜏) + S(𝜏)Acl(𝜏)

)
S†(𝜏)R𝜎(x) + R̂

])
.

What remains is therefore to show that k̂(⋅) is equal to k(⋅) in the first approximation along 𝜂⋆. Indeed, if this is the case,
then necessarily ueq = −Δ(x⋆(t), t) on 𝜂⋆ ⊂ Σ, illustrating the insensitivity to the matched disturbance.
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To this end, we first note that Λ−1(x⋆(t)) = Im for all t ∈ [0,T). Moreover, since the Jacobian matrix of x̃ evaluated
along the nominal motion is given by References 7,29Dx̃(x⋆(t)) = In − ẋ⋆(t)ẋT⋆(t)∕||ẋ⋆(t)||2, as well as that ||K(t)ẋ⋆(t)|| ≡ 0
for all t ∈ [0,T), the relation K(t)Dx̃(x⋆(t)) ≡ K(t) always holds. Since all the terms inside the brackets on the right-hand
inside of the expression for k̂(⋅) are necessarily of order no less than two with respect to x̃ as ||x̃|| → 0, we can conclude
that Dk̂(x⋆(t)) ≡ K(t), and thus k̂(⋅) equals k(⋅) in the first-order approximation as desired.

B.4 Proof of Theorem 2
It is here enough to show that (23) satisfies the requirements in Lemma 6. In this regard, ||𝜎(xs(s))|| ≡ 0 is trivially satisfied
as ||x⟂(xs(s))|| ≡ 0, whereas D𝜎(xs(s))g(xs(s)) = S⟂(s)Dx⟂(xs(s))g(xs(s)) = S⟂(s)B⟂(s) demonstrates that rank [S(t)B(t)] = m
holds as well.

In order to show that condition 2. in Lemma 6 also holds for any x ∈ ker{S(s(t))}, we note that (B2) for (22) may be
written as

𝜌(s) d
ds
L−1(s) = −L−1(s)Acl⟂(s) + FL−1(s), (B4)

where we recall that 𝜌(s) ∶= ||f (xs(s))||∕|| (s)|| is such that ṡ = 𝜌(s) and  (s) ∶= d
ds
xs(s). We therefore obtain

Ṡ(s(t)) = d
dt

(
ŜL−1(s)Dx⟂(xs(s))

)
= S⟂(s)

[(
−Acl⟂(s) + L(s)FL−1(s)

)
Dx⟂(xs(s)) + 𝜌(s)

d
ds
Dx⟂(xs(s))

]
.

Now, since S(s) = ŜL−1(s)Dx⟂(xs(s)), it follows that x ∈ ker{S(s)} corresponds to either x ∈ span{f (xs(s))} or x =
(Dx⟂)†(xs(s))L(s)(In − Ŝ†Ŝ)x. Taking therefore x = f (xs(s)) and using that Dx⟂(xs(s))f (xs(s)) ≡ 0, it is easy to see that
condition 2. in Lemma 6 is satisfied as

d
dt

[
Dx⟂(xs(s))f (xs(s))

]
= 𝜌(s)

[
d
ds
Dx⟂(xs(s))

]
f (xs(s)) + Dx⟂(xs(s))Acl(s)f (xs(s)) = 0.

Hence we need only demonstrate that the following always holds:[
Ṡ(s) + S⟂(s)Dx⟂(xs(s))Acl(s)

]
(Dx⟂)†(xs(s))L(s)(In − Ŝ†Ŝ) = 0n. (B5)

From the definition of the matrix function Acl⟂ (see (22)), it can be shown that

Acl⟂(s) =
[
Dx⟂(xs(s))Acl(s) + 𝜌

d
ds
Dx⟂(xs(s))

]
(Dx⟂)†(xs(s)).

Using this together with the above expression for Ṡ(s), (B5) therefore reduces to

S⟂(s)
[
L(s)FL−1(s)Dx⟂(xs(s))

]
(Dx⟂)†(xs(s))L(s)(In − Ŝ†Ŝ) = ŜF(In − Ŝ†Ŝ) = 0

where we have used that ŜFz ≡ 0 for all z ∈ ker{Ŝ} = {z ∈ Rn ∶ z = (In − Ŝ†Ŝ)z}, This concludes the proof***.

B.5 Proof of Lemma 8
Firstly, since the nominal exponentially orbitally stabilizing feedback k(⋅) is 2 and satisfies k(x⋆) ≡ 0, one may write
k(x) = K⟂(s)x⟂ + Rk(x⟂, s) in which ||Rk(x⟂, ⋅)|| = (||x⟂||2). Using this, together with Lemma 7 and the fact that f⟂(⋅) is
continuously differentiable (as f (⋅) and x⟂(⋅) are assumed to be 2) we may then rewrite (20) on form:

d
dt
x⟂ = Acl⟂(s)x⟂ +

[
B⟂(s) + g̃⟂(x⟂, s)

]
(v + Δ(x, t)) + R⟂, s = p(x). (B6)

***Alternatively, the statement can be proven by utilizing the fact that (22) is real reducible (the existence of a real FL factorization has been assumed) in
order to invoke theorem 25 in the work ofMassera.44 This allows one to conclude that the origin of the transverse dynamics (20) is locally asymptotically
stable when in sliding mode, and, therefore, by proposition 1.5 from Hauser and Chung30, that the solution x⋆(⋅) is exponentially orbitally stable.
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Here R⟂ ∶= Rf⟂ (x⟂, s) + g(x)Rk(x⟂, s) and g̃⟂ ∶= g⟂(x⟂, s) − B⟂(s) satisfy, respectively, ||R⟂(x⟂, s)|| = (||x⟂||2) and||g̃⟂(x⟂, s)|| ≤ lg̃⟂ ||x⟂|| for all s ∈ , with lg̃⟂ > 0 a Lipschitz constant for g̃⟂, whose (local) existence is guaranteed as Dx⟂
is 1 and the columns of g(⋅) are locally Lipschitz. Differentiating (23) with respect to time and using (B4), we therefore
obtain

𝜎̇ = Ṡ⟂(s)x⟂ + S⟂(s)
[
Acl⟂(s)x⟂ +

[
B⟂(s) + g̃⟂(x⟂, s)

]
(v + Δ) + R⟂

]
= Ŝ

[
−L(s)−1Acl⟂(s) + FL−1(s)

] ṡ
𝜌(s)

x⟂ + S⟂(s)
[
Acl⟂(s)x⟂ +

[
B⟂(s) + g̃⟂(x⟂, s)

]
(v + Δ) + R⟂

]
.

As ṡ = Dp(x)ẋ and 𝜌(s) = Dp(xs(s)f (xs(s)) = f (xs(s))∕|| (s)||, we may here, in the same manner as with (B6), take
ṡ = 𝜌(s) + Df||(xs(s)) (In −  (s)Dp(xs(s))) (Dx⟂)†(xs(s))x⟂ + g||(x)(v + Δ(x, t)) + Rf||(x⟂, s), s = p(x), (B7)

where f||(x) ∶= Dp(x)f (x) and g||(x) ∶= Dp(x)g(x), while ||Rf||(x⟂, s)|| = (||x⟂||2); see Reference 4 or 7 for more details.
Since one can always write x⟂ = L(s)Ŝ†𝜎 + (In−1 − L(s)Ŝ†S⟂(s))x⟂, as well as that ŜF(In−1 − Ŝ†Ŝ) ≡ 0, it follows from

the expression above that 𝜎̇ can be written on the form (25) with

B̃⟂(x⟂, s) = g̃⟂(x⟂, s) + L(s)
(
d
ds
L−1(s)

)
x⟂g||(x),

R𝜎(x⟂, s) = S⟂(s)
[
R⟂(x⟂, s) + L(s)

(
d
ds
L−1(s)

)
x⟂

(
Df||(xs(s)) (In −  (s)Dp(xs(s))) (Dx⟂))†(xs(s))x⟂ + Rf|| (x⟂, s)

)]
.

Lastly, since Ŝ annihilates a stable invariant subspace of F, spanned by a set of its (real) generalized eigenvectors, 𝜎 must
necessarily be Hurwitz with its spectrum a subset of the spectrum of F; see the proof of Lemma 2 for more details.


