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Abstract

This dissertation is a presentation of the research conducted during three years at
the QuSpin Center for Quantum Spintronics, on the cavity-mediation of interac-
tions between ferromagnetic insulators (FI) and superconductors (SC). We begin
with a semiclassical and intuitive demonstration, followed by a comprehensive
derivation of an effective, microscopic theory based on the Matsubara path in-
tegral formalism. Then, we extract the leading-order effects of the SC on the FI,
namely the induction of an effective anisotropy field leading to local reorientation
of the FI spins, and corrections to the FI quasiparticle spectrum. We demonstrate
that the respective effects imprint the FI with information about broken inversion
symmetry in the SC, and momentum anisotropy in its gap. The set-up is applic-
able to spintronic and superconducting circuitry, both of which are energy-efficient
technologies that challenge established electronic technology.

The use of cavity-mediation distinguishes this model from proximity systems,
the conventional stage for FI–SC interactions. It presents an environment in which
the FI and SC can interact without the mutual disruption of their orders associated
with proximity effects. Furthermore, by the application of path integrals, the cav-
ity is integrated out exactly, leaving an exact effective FI–SC theory. Integrating
out the SC, we are readily able to extract influences on the FI an order beyond
mean field theory. The theory moreover takes into account the differing finite
dimensions of the FI, cavity and SC, and also the separation between the FI and
the SC, leaving it versatile for realistic configurations. The path integral formalism
distinguished this approach from conventional theoretical frameworks for analyz-
ing cavity-coupled systems, including classical modelling, Jaynes–Cummings-like
modelling, and in particular approaches involving the Schrieffer–Wolff transform-
ation. Unlike the latter, we are not limited analytically to off-resonant regimes.

The research has resulted in one published paper in which we present the
semiclassical proof of concept that motivates the microscopic inquiry. It has also
resulted in one paper ready for submission, in which the microscopic model is
presented, and the anisotropy field is extracted and estimated numerically. Addi-
tionally, we present here novel, analytical expressions for the corrections to the
FI quasiparticle spectrum, along with promising numerical estimates within an
experimentally detectable range.
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Sammendrag

Denne avhandlingen er en sammenfatning av tre års forskning utført ved QuSpin
Center for Quantum Spintronics, og omhandler kavitetsmedierte vekselvirkninger
mellom ferromagnetiske isolatorer (FI) og superledere (SC). Vi begynner med en
semiklassisk og intuitiv demonstrasjon, etterfulgt av en fullstendig utledning av en
effektiv, mikroskopisk teori basert på Matsubaras stiintegralformalisme. Deretter
trekker vi ut ledende ordens virkning av SC-en på FI-en, nemlig forårsakningen av
et effektivt anisotropifelt som lokalt vender hvert av FI-ens spinn, samt av korreks-
joner i spekteret til FI-ens kvasipartikler. Vi demonstrerer at de respektive virknin-
gene etterlater avtrykk i FI-en av brutt inversjonssymmetri i SC-en, og momentu-
manisotropi i gapet. Oppsettet er anvendbart i spintroniske og superledende kret-
ser, to energibesparende teknologier som utfordrer etablert elektronikk.

Bruken av kavitetsmediering skjelner vår modell fra proksimitetssystem, den
konvensjonelle scenen for FI–SC-vekselvirkninger. Det legger til rette for vek-
selvirkninger mellom FI-en og SC-en uten den gjensidige forstyrrelsen av deres
ordener tilknyttet proksimitetsvirkninger. Videre muliggjør stiintegralmetoden det
å integrere ut kaviteten eksakt, som etterlater en eksakt effektiv FI–SC-teori. Etter
følgelig å integrere ut SC-en, er vi lett i stand til å trekke ut virkninger på FI-en til
en orden over middelfeltteori. Teorien tar dessuten høyde for de ulike, endelige
størrelsene til FI-en, kaviteten og SC-en, samt separasjonen mellom FI-en og SC-
en, som allsidiggjør teorien for realistiske konfigurasjoner. Stiintegralformalismen
særpreger vår framgangsmåte over andre, konvensjonelle rammeverk for kavitet-
skoplede system, blant annet klassisk modellering, Jaynes–Cummings-lik model-
lering, og framgangsmåter som involverer Schrieffer–Wolff-transformasjonen. I
motsetning til sistnevnte er vi ikke begrenset til ikke-resonante regimer.

Forskningen har resultert i én publisert artikkel der vi legger fram det semik-
lassiske konseptbeviset som motiverer videre mikroskopisk oppfølging. Den har
også resultert i en artikkel klar til vurdering, der den mikroskopiske teorien legges
fram, sammen med et uttrykk for anisotropifeltet og et numerisk anslag av dette.
I tillegg presenterer vi her nye, analytiske uttrykk for korreksjonene i spekteret til
FI-ens kvasipartikler, i lag med lovende numeriske anslag i målbar orden.
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Chapter 1

Introduction

Chapter summary: We contextualize, present, and motivate the topic of
research: the derivation of a microscopic theory of cavity-mediated in-
teractions between a ferromagnetic insulator (FI) and a superconductor
(SC), with a particular focus on the impact on the FI. In contrast to con-
ventional proximity systems, this set-up facilitates relatively long-distance
interactions between the FI and the SC without the proximity-induced
mutual disruption of their orders. Our theoretical approach distinguishes
itself from similar works by our application of the Matsubara path integral
formalism, allowing for an exact integrating-out of the cavity, and perturb-
ative treatment of the SC an order beyond mean field theory. We present
relevant literature on similar proposals along with summaries of selected
works. Finally, we provide an overview of the chapters and supplemental
material of the dissertation.

Electronics is foundational to modern technology. Like the flow of water through
canals, it relies on an oftentimes crude transport of electric charges to transmit
and store information [1]. This carries with it energetic losses, of which scatter-
ing events collectively giving rise to Joule heating constitute a significant source.
These manifest as the heating of electronic circuitry conducting electricity. Aside
from ovens and other electrical appliances where this is in fact the purpose, it
constitutes a wasteful aspect, especially in relation to electronic communication.
In a world ever more connected by wires, the exploration of low-dissipation al-
ternatives becomes ever more remuneratory.

Quantum physics is the sharp pair of goggles through which many funda-
mental phenomena of nature are examined and understood. While the field of
electronics bears the weight and limitations of the macroscopic conduction of
electric currents, quantum physics enables the stone-by-stone assembly of new
fields. In particular, the field of spintronics, built on interactions involving particle
spins; and the field of superconductivity, built on various microscopic phenomena,
notably including the pairing of electrons by many-body interactions. From these

1
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fields emerge energy-efficient means of transmitting and storing information, as
compared to conventional electronics. These include the transmission of spin in-
formation between stationary particles (thus limiting transport-related losses) [2],
and the transport of electron pairs energetically protected from scattering [3].

Spintronics and superconductivity are both extensively researched fields. Also
their conjunction has amassed a rich literature: in particular, on the topic of mag-
nets and superconductors interacting via the proximity effect and its inverse across
an interface [4]. These are, respectively, the diffusion of superconducting correla-
tions into the magnet, and the diffusion of magnetic order into the superconductor.
These effects are limited to very small length scales, notably the length scale over
which the electron pairs of the superconductor cohere, the superconducting coher-
ence length [4–7]. This typically limits the proximity effect to nanometer scales [4–
6], or in exceptional cases, upwards of a micrometer [7–9]. The magnet and the
superconductor therefore need to be very closely situated for there to be a mean-
ingful interfacial coupling;1 hence these systems are known as proximity systems.
These constitute the conventional frame for coupling spintronic and supercon-
ducting circuitry.

1.1 Cavity-mediated FI–SC interactions

The research behind this dissertation is a break from this convention, dedicated
entirely to the development of a theoretical model for the cavity-mediated coup-
ling of a ferromagnetic insulator (FI) and a superconductor (SC). The original
idea behind this project was suggested by my supervisor Sol H. Jacobsen. The
literature is rich in applications of cavities to mediate, manipulate and enhance
interactions between magnetic and electric systems. Our project distinguishes it-
self from these by considering the mediated coupling of, specifically, an FI and an
SC. It also distinguishes itself in technical aspects, including:

• The application of path integrals to exactly integrate out the cavity from the
interactions, as well as perturbatively integrating out the SC without limit-
ing ourselves to off-resonant regimes. The latter is a shortcoming of common
approaches involving the Schrieffer–Wolff transformation. This perturbative
treatment of the SC also readily enables us to go one order beyond mean
field theory (Appendix A), which is necessary to resolve corrections to the
FI quasiparticle spectrum (Ch. 7).

• Taking into account the non-conservation of (crystal) momenta, along with
• the interactions of a large range of modes, not only a handful. Both of these

aspects follow from treating the FI, cavity and SC as finite-sized systems
of differing dimensions. By contrast, a common theme in the literature is
treating the cavity as two infinitely extending planes [2, 10, 11]. Further-
more, conservation of momentum may be assumed a priori [11], and the
analysis may be limited to the effects of only one mediating mode [2, 10,

1An interface barrier or interstitial layer may be included.



Chapter 1: Introduction 3

12–14]. These aspects can serve to simplify the analysis, or follow from lim-
iting its scope. For instance, in the context of spectroscopy, corrections to
energy spectra may be limited to narrow resonance regimes involving only
a few interacting modes, and only one or a few cavity modes are further-
more probed for, making it natural to limit analysis to a small subset of
modes [14–17]. On the other hand, Refs. [13, 14] make use of dispersive
coupling to a second cavity mode not meaningfully involved in a mediated
interaction between an FI and a qubit, in order to probe for subsequent
spectral renormalizations, demonstrating an interesting application of ac-
counting for coupling to several cavity modes (see next section for more
details). Furthermore, in Paper II, we demonstrate that a wide range of cav-
ity modes can contribute to a single mediated effect, viz., the SC inducing
an effective anisotropy field across the FI.

• The extraction of said effective anisotropy field across the FI, as the literat-
ure mostly focuses on renormalizations of energy spectra (specifically, anti-
crossings). We demonstrate that this enables the FI to resolve broken inver-
sion symmetry in the SC. Nonetheless, we also extract and analyze correc-
tions to the magnon spectra, and argue for their use as a means to resolve
momentum anisotropy of the superconducting gap. The overall set-up can
be useful in spintronic applications, as a device for remotely2 resolving said
properties of the SC in a spintronic circuit.

1.1.1 Semiclassical motivation

Before embarking on the involved microscopic theory to be presented in the main
body of the dissertation, let us zoom out and explore semiclassically how an elec-
tromagnetic cavity can be harnessed to mediate an interaction between a ferro-
magnet (FM3) and a superconductor. In the following, we outline the proof of
concept of a cavity-mediated remote FM–SC interaction that is covered in greater
detail in Paper I, which is published as a Rapid Communication in Phys. Rev.
B [12]. This proof of concept motivates the development of a microscopic theory,
and demonstrates several important mechanisms in an accessible manner. This
includes how the placement of the FM and the SC enable coupling purely to the
magnetic and electric components of a cavity mode respectively, as well as how
placement serves to select what mode mediates the interaction. It also broadly
demonstrates the use of an FM to remotely probe features of an SC.

Consider the set-up illustrated in Fig. 1.1. A small ferromagnetic sphere (FM)

2Throughout this dissertation, we will use the qualifiers “remote” and “long-distance” to distin-
guish from proximity phenomena.

3In the microscopic theory, we limit ourselves to the more narrow category of ferromagnetic
insulators. In this section and in Ref. [12] (Paper I), we only consider the magnetic aspect of the
FM, neglecting the movement of electrons, electron–magnon scattering and so on. In effect, we are
treating it on par with a ferromagnetic insulator.
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Figure 1.1: Set-up modified from Paper I. A small ferromagnetic sphere (FM) and
a thin superconducting wire (SC) are placed inside a rectangular cavity. They are
respectively placed at a magnetic and electric antinode of a selected cavity mode.
The magnetic (Bcav) and electric (Ecav) field directions are respectively indicated
by arrows and color (direction along x indicated by red (+x) and blue (−x)).
The FM carries a magnetization m, which precesses about the axis of a uniform,
external aligning magnetostatic field Bext ∥ êz . The SC is connected to an external
source of alternating current, and held at some temperature T .

and a thin superconducting wire (SC) is placed inside a rectangular4 cavity. They
are respectively placed at a magnetic (Bcav) and electric (Ecav) antinode of a selec-
ted cavity mode5. The FM carries a magnetization m, which precesses about the
axis of a strong, external magnetostatic field Bext ∥ êz . The precession frequency is
determined by the magnitude of Bext. The SC is connected to an external source of
alternating current (AC), and held at some temperature T around its critical tem-
perature Tc (cf. Ch. 3). Note that in the microscopic theory, we will instead subject
the SC to a direct current (giving rise to equilibrium phenomena compatible with
the path integral approach), so the physical pictures are not directly comparable.

Owing to their small dimensions and suitable placement, the FM and SC are
seen to couple well to the selected cavity mode (covered more rigorously through
Chs. 2–5), and they do so purely to the magnetic and electric component of the
mode, respectively. We subject the SC to an AC at a single frequency ω, which
matches the resonance frequency of the cavity mode. Now, as the SC is cooled
through Tc , the relative population of superconducting (Ns) to normal (Nn) elec-
trons increases (cf. Sec. 3.1). The currents Js and Jn of the populations relate
locally to electric field in the SC by Ohm’s law (Jn ∝ ESC) for normal electrons,
and the London equation (∂tJs ∝ ESC, Eq. (3.1)) for superconducting electrons.

4A rectangle is technically a two-dimensional shape; rectanguloid or rectangular cuboid would
be more accurate terms, but these are semantics.

5More precisely the TE201 mode, as illustrated in Fig. 1.1.
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These relations lead the local electric field to oscillate at a phase between 0 and
π/2 radians relative to the AC drive, depending on the relative populations of
electrons.

Because these fields oscillate at the frequency of the selected mode, and do
so at its electric antinode, they excite it. The nearby Ecav oscillates at the same
phase as the net electric field in the SC wire, relative to the AC drive, owing to the
continuity of the tangential electric field across an interface (Ecav = ESC, since the
electric field is tangential to the wire). This consequently instantiates oscillation
in Bcav near the FM and far away from the SC, perpendicularly to the aligning
field Bext.

By suitable adjustment of |Bext|, the precession frequency of m is also matched
to the resonance frequency of the cavity mode. Solving the dynamical equations
for the m, it is then shown in Paper I that its precession acquires the phase of Bcav.
Information about the superconducting transition has thus been imprinted on the
precessing motion of the magnetization. This demonstrates in simple terms how a
cavity mode can be harnessed to facilitate long-distance interactions between an
FM and an SC, and how the FM can subsequently be used to probe properties of
the SC.

1.1.2 Related works

There is a rich literature on cavity systems. Below, we present a limited overview
of recent theoretical and experimental approaches close to our proposal. We start
with a brief preliminary on anticrossings (or avoided crossings), which are often
probed for in cavity-coupled systems, including the ones presented below. These
are deflection-like features in the energy spectrum of a particle caused by inter-
actions with other particles. Such features present unambiguous indications of
hybridization (i.e., that the interacting particles behave as mixed states) if de-
tectable. For anticrossings to be resolved experimentally, the coupling strength
between the interacting particles must exceed losses. The amplitudes of cavity
modes scale inversely with cavity volume (see Ch. 4); hence cavities are routinely
utilized experimentally to access such strong coupling6 regimes [18, 20–23].

The combined use of a cavity and the collective interactions in a magnetic
lattice to enhance their mutual coupling above losses, has been explored theor-
etically [18, 25–31] and demonstrated experimentally [14–18, 24, 25, 30–36].
As an illustrative example, Y. Tabuchi et al. demonstrated an anticrossing exper-
imentally in the spectrum of a cavity photon (quantum of light) interacting with
a magnon (FI quasiparticle) [14, 17, 24, 25]. They probed this spectrum by way
of transmission spectroscopy, and found that as they let the magnon energy ap-

6Here “strong coupling” is used in the sense that the coupling strength exceeds losses, not in the
sense that some expansion parameter of an interaction Hamiltonian exceeds 1. In cavity-coupled
systems, the latter sense is closely captured by the terms ultrastrong (g/ω ≲ 1) and deep strong
(g/ω ≥ 1) coupling, with g some light–matter coupling strength, and ω the cavity frequency [18,
19]. These are regimes in which higher-order interactions with the cavity become either significant
or dominant, respectively.
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Figure 1.2: Illustration of a typical anticrossing. In the absence of interactions
(dashed lines), the spectra (ω) of two particles (red and dark blue) simply cross
as functions of some variable B. In the presence of interactions (solid lines), the
eigenmodes of the system are two mixed states (indicated by the gradients). The
particles mix considerably, or hybridize, near the crossing point of the bare spec-
tra, leading to a significant renormalization of the spectra here. The degree of re-
pulsion is determined by the strength of the interaction. This particular example
is analogous to the anticrossing found spectroscopically by Y. Tabuchi et al. [14,
17, 24, 25] and others (see text) in the spectrum of a cavity mode (dark blue),
near its crossing point with the spectrum of the uniform magnon mode (red) as
a function of the strength B of an applied magnetostatic field.

proach the photon energy by the adjustment of an applied magnetic field, the
energy by which they excited the photon increasingly also excited the magnon via
the photon, leaving a visual discontinuity in the photon spectrum. By a careful
choice of magnet, cavity, probe and placement of the magnet inside the cavity, the
authors achieved a coupling strength an order of magnitude greater than losses,
enabling the probe to unambiguously resolve the anticrossing.

Others have explored the use of photonic vacuum fluctuations in the cavity
as mediators of interactions, through a variety of theoretical approaches. Ø. Jo-
hansen et al. theoretically demonstrated a mediated coupling between a ferro-
and antiferromagnetic magnon mode by a perturbative diagonalization, using the
Schrieffer–Wolff transformation [2, 10, 31]. This results in an anticrossing in the
magnon spectra near their intersection, despite there being no direct coupling
between the magnons. For a selection of material choices, the magnitude of the
effective coupling was determined numerically, as the theoretical approach was
limited to an off-resonant regime; by contrast, the path-integral approach presen-
ted in this dissertation allows for the effective coupling to be determined analyt-
ically, and is not limited to off-resonant regimes.

Analogously to Johansen et al., F. Schlawin et al. employed a perturbative
Schrieffer–Wolff approach to extract an effective electron pairing potential due to
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mediated interactions of a normal7 metal with itself [11, 18]. This was shown to
give rise to unconventional (Amperean) superconductivity. Their pairing term can
also be extracted from the path-integral approach presented in this dissertation,
without limitations to an off-resonant regime. The pairing term appears explicitly
in Paper II after integrating out the cavity, but we do not explore it in detail in this
dissertation.

Similarly, cavity-mediated interactions have been utilized to induce exotic
pairing in a fermionic gas trapped in an optical lattice [37]. Besides direct cav-
ity mediation, others have furthermore considered superconductivity mediated by
cavity polaritons, i.e. cavity photons hybridized with electromagnetic dipoles such
as phonons (lattice vibrations) [38] or excitons (intraband electron–hole states in
semiconductors) [39–42]. Interactions with cavity photons have also been con-
sidered as a means of enhancing superconductivity by manipulating the distribu-
tion of SC quasiparticles [43, 44].

Y. Tabuchi et al. [13, 14] and D. Lachance-Quirion et al. [24, 45] furthermore
presented a Jaynes–Cummings-like model for the mediated coupling of a magnon
and a qubit8, and demonstrated this experimentally [25, 31]. Again, the mediated
coupling induces an anticrossing in the qubit spectrum at its intersection with the
magnon energy. In order to measure this, they construct a set-up in which the
coupling is predominantly mediated by one specific cavity mode (TE102), whose
frequency is slightly detuned from the crossing point of the magnon and qubit
energies. They then send microwaves into the cavity which are suppressed by the
system, except in the narrow vicinity of the qubit resonance frequency. They then
spectroscopically probe another mode (TE103), which is detuned further away
from the crossing. The great detuning means it does not significantly contribute
to the mediated coupling, so probing it leaves the anticrossing unaffected; how-
ever, the spectrum of the TE103 mode is still renormalized by the qubit. Without
the magnon mode, this renormalization is a constant shift, rendering the anticross-
ing in the qubit spectrum a discernible non-constant feature in the renormalized
TE103 mode spectrum when exceeding losses. Note furthermore that interactions
between only cavity photons and qubits have also been explored extensively in
other works [19, 46–50].

Other cavity-coupled systems considered theoretically include that of two coupled
ferromagnets, modelled classically [51] and with Jaynes–Cummings-like mod-
els [52]; and perturbative evolution of the density matrix, as well as perturb-
ative diagonalization by the non-equilibrium Keldysh path integral formalism, for
coupling a mesoscopic circuit to a cavity [53]. Cavities have furthermore been
explored theoretically as means to introduce frustration (conflicting neighboring
alignment) to ordered spin lattices, to engineer stable quantum spin liquids [54].

Addendum: During revisions of the dissertation August 2022, a recent pub-

7In the context of superconductivity, “normal” means not superconducting.
8They specify that the qubit is superconducting; however, they are using it as a controllable two-

level system, not as a superconductor per se, beyond broad properties such as keeping losses low.
They therefore do not couple an FI and an SC in the sense we are.
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lication [55] has come to our attention in which the Matsubara path integral
formalism is also made use of to construct effective interaction theories for cavity-
coupled identical particles. Note that the work presented in this dissertation con-
cerns cavity-mediated interactions between two non-identical classes of particles
(FI and SC quasiparticles), so it does not fall under their broad category of sys-
tems. They highlight one of the same core advantages of this approach as we do
in Chs. 6 and 7, namely that the formalism allows for an exact integrating-out
of photonic degrees of freedom in actions (Hamiltonians) that are at most bilin-
ear in photon variables (operators); the resulting effective theory is therefore not
limited to perturbative cavity influence.

1.2 Papers, and structure of the thesis

Our research has resulted in two papers: In Paper I (published [12]), we present a
semiclassical proof of concept showing the cavity-mediated impact of the ratio of
resistive current to supercurrent in an SC, on the precession of the magnetization
of a ferromagnet (FM).9 This shows that the phase of the precession can be used
to monitor the superconducting transition, and serves as a conceptual precursor
to the quantum theory developed in the next papers. Next, in Paper II (ready
for submission), we present a microscopic theory of cavity-mediated interactions
between an FI and an SC. In particular, we extract the leading-order effect of the
SC on the FI: the induction of an effective anisotropy field. This field is shown
to resolve broken inversion symmetry in the SC. Additionally, our research has
led to a number of results on corrections to the FI quasiparticle spectra due to
the cavity-mediated interactions with the SC quasiparticles. We present analytical
expressions for these along with a promising numerical analysis in Ch. 7. We argue
for their application to resolving momentum anisotropy of the superconducting
gap in an extended model in Ch. 8.

The microscopic modelling comprises by far been the most involved share of
this research, and its elaboration will therefore also make up the brunt of this dis-
sertation. On the other hand, the semiclassical proof of concept presented in Pa-
per I is a useful and accessible preliminary to the microscopic theory: It outlines
the application of cavities to mediate interactions between an FM and an SC, and
more specifically how a driven10 SC reorients the FI magnetization via a cavity
mode; it furthermore illustrates how the placement of the FM and the SC inside
the cavity, as well as their finite sizes, is utilized to limit contributing interactions.

9Ferromagnets is a broader category than ferromagnetic insulators. For instance, in the context
of magnonics, metallic ferromagnets may give rise to significant damping due to magnon–electron
scattering [14]. We do not consider this in detail in Paper I; in Paper II and throughout this thesis,
we limit ourselves to ferromagnetic insulators, which does away with this complication.

10Note that in Paper I, we apply an alternating current (AC) is to the SC, while in the microscopic
theory, we instead apply a direct current (DC) drive. Unlike an AC, a DC gives rise to an equilibrium
supercurrent that can be analyzed within the framework of the Matsubara path integral formalism
(Ch. 6). The results are therefore not comparable as such, although Paper I is still a useful conceptual
preliminary for the reasons listed above.
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Figure 1.3: Set-up reproduced from Paper II. The origin is indicated by the co-
ordinate axes. A thin ferromagnetic insulator and thin superconductor are placed
spaced apart inside a rectangular, electromagnetic cavity. The FI is subjected to
an aligning external magnetic field Bext that vanishes across the SC; otherwise
the superconductivity would be compromised.11 The cavity is short along the z
direction, and long along the perpendicular x y directions, causing cavity modes
to separate into a band-like structure. The FI and the SC are respectively placed
in regions of maximum magnetic (z = Lz) and electric (z = Lz/2) cavity field of
the ℓz = 1 modes, as defined in Sec. 4.2 and illustrated above by the colored field
cross-section on the right wall.

For reference throughout Chs. 1–6, consider as a starting point the set-up il-
lustrated in Fig. 1.3, which facilitates discussion on how the differing dimensions
of the FI, cavity and SC influence the interactions. In Ch. 7, we will consider a
modified set-up where the FI, cavity and SC share dimensions in the x y plane,
enabling simplifications due to conservation of in-plane momentum.12

In the next three chapters, we give more in-depth introductions to the build-
ings blocks of our system: spin waves (magnons) (Ch. 2), superconductivity (Ch. 3),
and electromagnetism in cavities (Ch. 4). In Ch. 2, we also provide a detailed re-
capitulation of the Fourier transform, as it plays an important role in our model.
Through this review we elaborate on details relating to phases and momentum
non-conservation in finite systems, that are often glossed over in the literature.
Furthermore, in Ch. 5, we derive expressions for the Zeeman and paramagnetic
coupling in the respective (quasi)particle bases. In Ch. 6, we introduce the Mat-
subara path integral formalism, and use it to derive an effective magnon theory
that aggregates the influences of the cavity and the SC. We furthermore derive
expressions that quantify the reorientation of FI spins due to the leading-order
cavity-mediated influence of the SC, namely the induction of an effective aniso-
tropy field. In Ch. 7, we direct our attention to its next-leading-order influence
on the FI, namely to give rise to corrections in the magnon spectrum. Analytical
expressions are derived, and we present numerical results along with an in-depth

11We question the importance of this assumption in Ch. 8 and in the concluding remarks in Pa-
per II. This was anyhow assumed throughout the work behind this thesis, so we keep it here.

12Technically, the in-plane momentum is only conserved within the smallest of the two first Bril-
luoin zones: one of the FI, the other of the SC. The analysis will anyhow be limited to this zone.
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analysis of these. Finally, in Ch. 8, we discuss the results of this research, suggest
applications and continuations, and provide a final summary. All chapters begin
with a chapter summary, except Ch. 8, which itself constitutes a comprehensive
summary of the dissertation. The technical chapters Ch. 2–7 conclude with a list
of key takeaways.

Additionally, in Appendix A, we derive the result on the reorientation of FI
spins by way of mean field theory; this serves to validate the results, and we also
highlight advantages of the path integral approach. In Appendix B, we provide
some analysis of the set-up in Fig. 1.3 based on the Schrieffer–Wolff transforma-
tion for contrast to the path integral approach. In Appendix C, we have attached a
draft for a manuscript on corrections to the magnon spectrum. The results presen-
ted there were based on another approach than the one to be presented in Ch. 7,
and led to overestimates of the magnitude of the corrections. This makes for an
interesting discussion in light of our more resent results, which is presented along
with the draft. Finally, in Appendix D, we provide a supplemental proof to the cal-
culations in Sec. (6.1.4), as a step in showing that a shift in the magnon operators
reflects reorientations of the individual spin quantization axes.



Chapter 2

Magnetism

Chapter summary: Spin waves result from the collective motion of in-
dividual spins in magnetically ordered systems. Here we outline their
quantum-mechanical description, introducing in particular the Holstein–
Primakoff transformation, which maps the spin basis onto a bosonic qua-
siparticle basis (magnons). As it is of particular relevance to our FI, cavity
and SC, we also recapitulate the discrete Fourier transform in order to
elaborate on momentum non-conservation, positional phase factors and
Brillouin zones in lattices of finite dimensions and lattice spacing.

Emerging from the physical phenomenon of spontaneous magnetism, we begin
this introduction to spin waves by turning the wheels back to its familiar origins,
and give a brief review of the quantum-mechanical description of ferromagnetic
order.

Colloquially and historically, the term “ferromagnet” has referred to materi-
als exhibiting a spontaneous magnetic moment. This in distinction to para- and
diamagnets, which exhibit parallel and antiparallel magnetic moments only in
response to applied magnetic fields, but not in their absence. Many naturally
occurring spontaneous magnets contain iron (Latin ferrum), including metallic
iron and a range of iron oxides [56], whence “ferro-”. The historical record on
spontaneously magnetic materials date far back, with e.g. magnetite (Fe3O4 and
FeO·Fe2O3) mentioned in ancient Greek texts dating back as far as 800 BCE [57].
In fact, the term “magnet” originates from the name of this very ore, itself meaning
the “stone ofΜαγνησία1”, a region of Greece rich in deposits [58].

Microscopically, the magnetic moment of such materials result from the con-
structive addition of many small, ordered magnetic moments carried by the con-
stituent particles of the material, often arranged in a lattice. In this technical
context, “ferromagnet” refers to materials exhibiting ferromagnetic ordering: the
parallel ordering of equal, neighboring moments. Originally proposed by L. Néel

1For the physicist, the ability to read Greek is often a work-related accident.

11
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during his research through the mid 1900s [59–61], other spontaneous orderings
are possible: ferrimagnetic order (antiparallel ordering of unequal, neighboring
moments), and antiferromagnetic order (antiparallel ordering of equal, neighbor-
ing spins). In particular, like ferromagnets, ferrimagnets also exhibit a net spon-
taneous magnetic moment, though the antiparallel moments add destructively.
As it turned out, the historically archetypal “ferromagnet” magnetite was, tech-
nically, a ferrimagnet [56]. Of importance to our set-up, another ferrimagnet is
yttrium iron garnet or YIG (Y3Fe5O12), a ferrimagnetic insulator with exception-
ally low losses in ferromagnetic resonance experiments [62–65]. This is due to
the spherical charge distribution of its ions, leading to only weak coupling to lat-
tice vibrations (phonons) [56]. The qualifier “insulator” means the material is a
poor conductor of electricity; in the context of our model, it means we can treat
the constituent particles of the lattice as stationary in response to electromagnetic
fields. While technically a ferrimagnet, we will approximate YIG as a conceptually
simpler ferromagnet in our work.

2.1 Ferromagnetic order

In the following, we give a review of the quantum-mechanical description of fer-
romagnetism, the variety of magnetic ordering to be considered in our model. We
begin with its building block: Originally inferred from experimental evidence [66],
spin S is an intrinsic property of elementary particles in quantum mechanics, along
with mass m and charge q. Importantly, when zon-zero, spin gives rise to a mag-
netic moment µ, rendering the particle a minute magnet:

µ= g
q

2m
S=

gµB

ħh
S, (2.1)

with g the g-factor, a constant of proportionality; and µB ≡ ħhq/2m the Bohr mag-
neton.

As alluded to by its name, spin shares its mathematical description with angu-
lar momentum operators [66], though it is an inherent property of particles, not a
result from rotational mechanics. In particular, spin is quantized, and its Cartesian
components,

S ≡ Sx êx + Sy êy + Sz êz , (2.2)

are subject to the angular momentum algebra. Above, êi are the Cartesian unit
vectors. Letting z be the axis along which the spin is quantized, and |S, s〉 be the
spin eigenstates, the mathematical description reads

S2|S, s〉= ħh2S(S + 1)|S, s〉, Sz|S, s〉= ħhs|S, s〉, (2.3)

S = 0,
1
2

,1,
3
2

, . . . , s = −S,−S + 1, . . . , S − 1, S, (2.4)

[Si , S j] = iħhεi jkSk. (2.5)
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Above, εi jk is the Levi–Civita symbol, the indices i, j, k = x , y, z, and S and s
are the quantum numbers respectively associated with the absolute value and
the z component of the spin. S is also referred to as simply “spin”, distinguished
from S by context. Whether S is integer of half-integer has profound consequences
for identical particles, with the respective categories labeled bosons and fermions.
Whereas identical bosons can share all quantum numbers, fermions cannot.

Elementary particles can be grouped together to form composite systems with
a net spin [66]. In a lattice, the unit cell constitutes such a composite [56]. When a
lattice is subjected to an applied field, the magnetic moment of the unit cells tend
to align with or against the field direction. However, ferromagnets exhibit a spon-
taneous parallel alignment of spins even in the absence of applied fields [56]. This
ferromagnetic order results from the exchange interaction, a spin–spin interaction
favoring parallel alignment. This is captured by the Heisenberg Hamiltonian for
a simple ferromagnetic insulator (FI),

Hex ≡ −J
∑

〈i, j〉

Si · S j . (2.6)

Above, J > 0 is the exchange interaction strength, and Si is the spin vector at
lattice site i. In this simple model, only nearest-neighbor interactions are taken
into account, as indicated by the angle brackets around i, j. Since J > 0, the
energy is minimal for parallel2 neighboring spins Si ∥ S j .

Each lattice site in this simple system has the same spin S (i.e. magnitude
ħh
p

S(S + 1), cf. Eq. (2.3)), but the orientation of each Si may differ. We therefore
include a site index i also on s,

s → si . (2.7)

Hence the eigenstates read |S, si〉 for each spin.

2.2 Spin waves

Observe now that the exchange interaction (2.6) renders the motion of one
spin dependent on that of its neighbor. Like beads on a string, this enables an
ensemble of spins to transmit signals in waves of collective motion. Along with
physical and mediated spin transport, spin waves is one of several magnetic phe-
nomena harnessed in spintronic technology, as distinguished from electronics, tech-
nology that instead relies on charges and charge transport phenomena. Spintronic
technology constitutes a part of the background for the theoretical work presen-
ted in this thesis, presenting low-energy alternatives to memory and processing
applications of conventional electronics [67].

2On the other hand, J < 0 would favor antiferromagnetic order (antiparallel neighboring spins).
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2.2.1 The Holstein–Primakoff transformation

While the quantum number s is either integer or half-integer, its values (2.4) al-
ways differ by integer increments for a given spin S. One may therefore conjecture
that there exists a representation of spins comprised of bosonic excitations, with
s = ±S a baseline from which they are excited. This is indeed affirmed by the
Holstein–Primakoff transformation [2, 68, 69], which maps spin operators onto a
space of bosonic operators known as magnons. This transformation was first used
in 1940 by T. Holstein and H. Primakoff to analyse the variation of the magnetiz-
ation of a ferromagnet, with an external magnetic field. Enabling analysis of the
magnetic system in terms of oscillators, we seek to rewrite the Hamiltonian in
terms of these.

Consider again the FI described by Eq. (2.6). Instead of leaving the alignment
of spins to spontaneous ordering, we direct it by applying a uniform, magneto-
static field Bext = Bext êz along the positive z direction (Bext > 0). This field inter-
acts with the spins via the Zeeman interaction

Hext ≡ −
gµ0

ħh
Bext

∑

i

Siz . (2.8)

Hence the Hamiltonian for the FI reads

HFI ≡Hex +Hext = −J
∑

〈i, j〉

Si · S j −
gµ0

ħh
Bext

∑

i

Siz . (2.9)

With the spins aligned along z, our point of departure is the helical3 spin
operators Si±, defined as

Si± ≡ Si x ± iSi y , Si+ = S†
i−. (2.10)

By defining a helical basis of unit vectors

ê± ≡
1
p

2
(êx ∓ i êy), (2.11)

one finds that

Si =
1
p

2
(Si+ ê+ + Si− ê−) + Si y êy . (2.12)

Working out their algebra based on the spin algebra (2.5), and assessing the ac-
tions of S2

i Si± and SizSi± on |S, s〉, one finds they act to raise and lower the spin
states over a limited range [66, 69]:

Si+|S, si〉= ħh
p

2S

√

√

1−
S − (si + 1)

2S

p

S − si|S, si + 1〉, (2.13)

Si−|S, si〉= ħh
p

2S
Æ

S − (si − 1)

√

√

1−
S − si

2S
|S, si − 1〉. (2.14)

3They are also known as “ladder” or “creation and annihilation” operators.
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Note that Si±|S,±S〉= 0.
This raising and lowering of states is similar, but not identical to the action of

bosonic ladder operators, as their range of eigenstates is bounded only in one dir-
ection. For instance, there may be anywhere between zero and an infinite number
of photons in the same quantum state. The Holstein–Primakoff transformation [2,
68, 69] captures both the similar actions and the dissimilar ranges.

The prefactors of Eqs. (2.13) and (2.14) invites us to introduce new ladder
operators {ηi ,η

†
i }, that relate to Si± by

Si+ ≡ ħh
p

2S

√

√

√

1−
η†

iηi

2S
ηi , (2.15)

Si− ≡ η†
iħh
p

2S

√

√

√

1−
η†

iηi

2S
. (2.16)

They act on |S, si〉 as follows:

ηi|S, si〉=
p

S − si|S, si + 1〉, (2.17)

η†
i |S, si〉=

Æ

S − (si − 1)|S, si − 1〉. (2.18)

In effect, η†
i creates a new particle for each decrement in si relative to si = +S,

and vice versa for ηi . Note the unphysical range: although ηi|S, S〉 = 0, we find
η†

i |S,−S〉 =
p

2S + 1, |S,−S − 1〉, implying the magnitude of Siz can exceed that

of S. The range is truncated by the factor
Ç

1−η†
iηi/2S in Eqs. (2.15) and (2.16)

in an exact analysis of spin systems.
By furthermore assuming bosonic statistics,

[ηi ,η
†
j ] = δi j , (2.19)

and using

S2
i = ħh

2S(S + 1) = S2
iz +

1
2
(Si+Si− + Si−Si+), (2.20)

we find

S2
iz = ħh

2S(S + 1)−
1
2
(Si+Si− + Si−Si+)

= ħh2S(S + 1)−ħh2
�

−(η†
iηi)

2 + 2Sη†
iηi + S

�

= ħh2(S −η†
iηi)

2. (2.21)

This equation has two solutions for Siz . The one consistent with the actions (2.17)–
(2.18) of ηi ,η

†
i is

Siz = ħh(S −η†
iηi). (2.22)

This solution affirms the interpretation of ηi ,η
†
i as ladder operators for bosonic

quasiparticles, with a new particle created for every decrement in si .
4

4The other solution Siz = −ħh(S−η†
iηi)would be consistent with quasiparticles created with each

increment in si starting from si = −S, a natural choice if the aligning field Bext instead had pointed
in the negative z direction.
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2.2.2 Magnons

The factors
Ç

1−η†
iηi/2S contained in the transformation (2.15)–(2.16) yields

a Hamiltonian that is challenging to proceed with analytically. We therefore look
for simplifications.

Under the influence of a sufficiently strong magnetostatic field Bext, all the
spins of the lattice align strongly in the positive z direction. Nearly all si = S, and
thus the number of quasiparticles averaged across the lattice is very small,

〈η†
iηi〉 ≪ 2S, (2.23)

with 〈·〉 the expectation value. This invites a series expansion of
Ç

1−η†
iηi/2S in

orders of η†
iηi/2S [2, 68, 69]. For the rest of the calculations, we will hence only

work to second order in magnon operators, as higher order terms (representing
particle–particle scatterings) are challenging to deal with analytically. Accordingly,
to lowest order,

√

√

√

1−
η†

iηi

2S
≈ 1. (2.24)

Thus, by Eqs. (2.15)–(2.16),

Si+ ≈ ħh
p

2Sηi , (2.25)

Si− ≈ ħh
p

2Sη†
i . (2.26)

Since we intend to rewrite the Hamiltonian (2.9) in terms of the new quasiparticle
basis, we recast the above expressions in a Cartesian basis. By Eq. (2.10),

Sid ≈
ħh
p

2S
2
(νdηi + ν

∗
dη

†
i ), (2.27)

where d = x , y and {νx ,νy}= {1,−i}.

Fourier transform

We now transition from the lattice site basis ηi ,η
†
i to a wave vector (momentum)

basis ηk,η†
k by a Fourier transformation. This is conventional and becomes ad-

vantageous later, as we will look into the interaction between the FI and electro-
magnetic fields, which are also expressed in a momentum basis. ηk,η†

k are termed
magnons [68].

At this point, most texts would simply state the Fourier transform. However,
the models covered in Paper I and II involve multiple subsystems (FI, SC and cavity,
cf. Fig. 1.3) of differing dimensions and placements, giving rise to effects that are
often glossed over, yet are consequential for our model. This includes momentum
non-conservation, Brillouin zones, and phase factors. Covering the Fourier trans-
form in detail is therefore instructional, here in the context of a square FI lattice.
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Figure 2.1: A top-down view of the square FI lattice with a rectangular boundary,
from Fig. 1.3. NFI

d is the number of points in direction d = x , y , and aFI is the
lattice constant. The points are labeled (nx , ny) with nd = 0, . . . , NFI

d − 1. Some
selected points are labeled in the figure.

Fig. 2.1 shows a sketch of the square FI lattice. The number of lattice points are
NFI

x and NFI
y in the respective directions, and the lattice constant is aFI. The lattice

points are labeled by (nx , ny) as shown in Fig. 2.1, with nd = 0, . . . , NFI
d − 1; this

label is equivalent to the lattice index i used so far. Each lattice point is associated
with an operator ηi = ηnx ny

The discrete Fourier transform (dFT5) projects the lattice of operators ηnx ny

onto a discrete orthonormal basis of Fourier harmonics [70]. This transformation
is in general non-trivial for 2D lattices, as the decomposition into harmonics de-
pends on the geometry and boundaries of the lattice.6 We are only interested in
the qualitative impact of the discrete nature of a lattice on our system, so by con-
sidering a square lattice with a rectangular boundary, we avoid a number of com-
plications. In this case, the directions of periodicity are orthogonal and Cartesian.

The dFT can be expressed in terms of real sine or cosine harmonics, or in
terms of complex exponentials [70]. We will return to the real dFT in Sec. 4.2 in
the context of quantizing the electromagnetic field inside a cavity, with reflecting
boundary conditions in the z direction. However, here we will proceed with the
complex dFT, since it is mathematically advantageous that products of exponen-
tials readily combine into a single exponential (eiaei b = ei(a+b)).

By definition, the Fourier components of ηnx ny
are

ηmx my
≡

NFI
x −1
∑

nx=0

NFI
y −1
∑

ny=0

�

1
Æ

NFI
x

e
−i 2πmx nx

NFI
x

�

 

1
q

NFI
y

e
−i

2πmy ny
NFI

y

!

ηnx ny

=
1

p

NFI

NFI
x −1
∑

nx=0

NFI
y −1
∑

ny=0

e
−2πi

�

mx nx
NFI

x
+

my ny
NFI

y

�

ηnx ny
, (2.28)

5Not to be confused with density functional theory (also abbreviated DFT), which is anyhow
never mentioned in this dissertation.

6There are parallels between this discussion and the topic of reciprocal lattices in solid state
physics; however, reciprocal lattices are Fourier transforms of real-space lattices of identical points,
whereas we are concerned with lattices of magnon operators which can assume non-identical (ex-
pectation) values.
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with md = 0, . . . , NFI
d −1. Above, we introduced the number of lattice points NFI ≡

NFI
x NFI

y . The normalization constant 1/
q

NFI
d follows convention in physics, as it

renders the dFT unitary: defining the single-direction transformation matrix

Umd nd
≡

1
q

NFI
d

e
−i

2πmd nd
NFI

d , (2.29)

we have

(U†U)n′
d nd
=

NFI
d −1
∑

md=0

U∗
md n′

d
Umd nd

=
NFI

d −1
∑

md=0

1
q

NFI
d

e
i

2πmd n′d
NFI

d
1

q

NFI
d

e
−i

2πmd nd
NFI

d

=
1

NFI
d

NFI
d −1
∑

md=0

e
−i

2πmd (nd−n′d )

NFI
d =

1

NFI
d

NFI
d −1
∑

md=0

 

e
−i

2π(nd−n′d )

NFI
d

!md

=
1

NFI
d

1− e−2πi(nd−n′
d )

1− e
−2πi

nd−n′d
NFI

d

= 1n′
d nd

. (2.30)

Above, we recognize the sum as a geometric series, and write it in closed form.
In the last equality, we use nd − n′

d ∈ {−NFI
d + 1,−NFI

d + 2, . . . , NFI
d − 2, NFI

d − 1} to
find that the closed form evaluates to zero for all nd − n′

d except nd − n′
d = 0. In

this case, the sum is a sum over ones, and evaluates to NFI
d , which is divided by

the squared normalization constant 1/NFI
d to yield the unit matrix 1.7

Unitarity implies the inverse transformation U−1 = U†. The inverse dFT is
therefore

ηnx ny
=

1
p

NFI

NFI
x −1
∑

mx=0

NFI
y −1
∑

my=0

e
2πi

�

mx nx
NFI

x
+

my ny
NFI

y

�

ηmx my
. (2.31)

Note that the choice of normalization constant ensures unitarity; other common
conventions include normalizing the dFT by a factor 1/NFI

d or 1, which would
result in U†U ̸= 1.

Ranges and the first Brillouin zone

The Fourier transforms are currently expressed in terms of the rather abstract in-
teger parameters md and nd , so we recast them in terms of familiar momentum
and positions variables. Before doing so, we note that the summation ranges of
the inverse transform (2.31) do not correspond to the conventional ranges in the-
oretical physics. In momentum terms (cf. Sec. 2.2.2), these ranges correspond to
[0, 2π/aFI), but conventionally the interval is taken to be (−π/aFI,π/aFI], i.e. the
first Brillouin zone (1BZ).

7The closed form is then technically undefined, but can alternatively be evaluated using
L’Hôpital’s rule with nd − n′

d → 0+.
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To this end, observe that the harmonics of the dFT are all 2π periodic. We
therefore have, e.g.,

exp

�

−2πi
NFI

d

NFI
d

nd

�

= exp

�

−2πi

�

1+
0

NFI
d

�

nd

�

= exp

�

−2πi
0

NFI
d

nd

�

. (2.32)

That is, the Fourier mode corresponding to md = NFI
d gives rise to the same spatial

oscillation on the lattice, as a mode corresponding to md = 0, cf. Fig. 2.2. This
expresses the equivalence of Fourier modes across intervals of the Fourier para-
meters; these intervals are the Brillouin zones [56]. We can use this periodicity to
shift the limits of the sums in Eq. (2.31): the ranges for md can be any set of Nd
consecutive integers, or in momentum terms, any interval of length 2π/aFI.

Figure 2.2: The physical equivalence of the md = NFI
d and md = 0 modes. The

rapidly oscillating wave touches the lattice points at the same height, making it
physically equivalent to the uniform mode.

The conventional momentum interval (−π/aFI,π/aFI] is achieved by shifting
the ranges for md to

md =

¨

−Nd−1
2 , . . . , Nd−1

2 , Nd odd,

−Nd
2 + 1, . . . , Nd

2 − 1, Nd even.
(2.33)

The periodicity also holds for the dFT. While not necessary in order to meet some
convention, it will prove convenient later to shift the summation intervals also for
nd , to the same intervals:

nd =

¨

−Nd−1
2 , . . . , Nd−1

2 , Nd odd,

−Nd
2 + 1, . . . , Nd

2 − 1, Nd even.
(2.34)

In Ch. 5.1, this enables us to readily separate the quantity NFID
FI
kq (Eq. (5.11)) into

a magnitude and a phase. Phases are important for the discussion in Ch. 8, as they
will prove to be limiting factors for a strong result as a function of the separation
of the FI and the SC inside the cavity.

Recasting in terms of physical quantities

We now recast the Fourier transform in terms of position ri and momentum k by
identifying

ri ≡ rnx ny
≡ (x0 + aFInx , y0 + aFIny , Lz)≡ (x , y, Lz), (2.35)

k ≡ (2πmx/lx , 2πmy/l y , 0)≡ (kx , ky , 0), (2.36)
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Figure 2.3: The same square FI lattice as was illustrated in Fig. 2.1. Here we
have included the position vector rFI

0 of the (0,0) point defined by the new
ranges (2.34), relative to the origin.

where (x0, y0, Lz) ≡ rFI
0 is the distance between the (nx , ny) = (0, 0) center point

and the origin of the coordinate system (see Figs. 1.3 and 2.3), and we introduced
the dimensions of the FI

lFI
d ≡ aFI(N

FI
d − 1)≈ aFIN

FI
d . (2.37)

The approximation holds for NFI
d ≫ 1. We thus have

ηk ≡
1

p

NFI

x0+lx/2
∑

x=x0−lx/2

y0+l y/2
∑

y=y0−l y/2

e−i(kx (aFInx+x0−x0)+ky (aFIny+y0−y0))ηri

=
ei(kx x0+ky y0)
p

NFI

x0+lx/2
∑

x=x0−lx/2

y0+l y/2
∑

y=y0−l y/2

e−i(kx x+ky y)ηri

≡
eik·rFI

0

p

NFI

∑

i

ηri
e−ik·ri , (2.38)

where we introduced the sum
∑

i as short-hand for
∑x0+lx/2

x=x0−lx/2

∑y0+l y/2
y=y0−l y/2

. It is

these operators, ηk, that are termed magnons [68]. Similarly, the inverse relation
becomes

ηri
=

1
p

NFI

∑

k

ηkeik·(ri−rFI
0 ), (2.39)

with the sum
∑

k taken over the 1BZ of the FI. The factor e±ik·rFI
0 expresses the

dependency of the Fourier modes on the position of the FI inside the cavity. Note
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that we can technically simplify the expression for ηk by absorbing eik·rFI
0 into

its definition, which is equivalent to moving the origin of the coordinate system
to the center (nx , ny) = (0, 0) of the FI; however, we will also perform Fourier
transforms on other subsystems (cavity and SC) later, and moving the origin will
simply spawn similar positional dependencies elsewhere. This dependency is more
complicated for the real dFT, which will be applied to the cavity electromagnetic
field; we eliminate the latter dependency by leaving the origin in the corner of the
cavity, as illustrated in Fig. 1.3.

2.2.3 Magnon Hamiltonian

We conclude this introductory section on ferromagnetism by recasting the Hamilto-
nian (2.9) in the magnon basis. A similar derivation is found in Ref. [68, Ch. 4].

First, we insert Eqs. (2.22), (2.27) and (2.39) into Hex (Eq. (2.6)). We intro-
duce the nearest-neighbor lattice vectors δ = ±aFI êx ,±aFI êy , substitute the sum
∑

〈i, j〉 for
∑

i

∑

δ, and recast indices accordingly. This substitution is only approx-
imate, since edges and corners of the lattice do not have neighboring points in
certain directions; this only affects length scales on the order of the lattice con-
stant, i.e. momenta at the border of the 1BZ, which are irrelevant to our model.
Then

− J
∑

〈i, j〉

Si · S j ≈ −J
∑

i

∑

δ

Sri
· Sri+δ = −J

∑

i

∑

δ

(SrizSri+δ,z +
∑

d

Sri dSri+δ,d)

≈ −
J

NFM

∑

kk′

∑

δ

∑

i

�

−ħh2 S2

S
η†

kηk′

�

1+ e−i(k−k′)·δ
�

e−i(k−k′)·(ri−rFI
0 )

+
∑

d

�

ħh
p

2S
2

�2�

ν2
dηkηk′ei(k+k′)·(ri−rFI

0 )eik′·δ + (ν∗d)
2η†

kη
†
k′e

−i(k+k′)·(ri−rFI
0 )e−ik′·δ

+ηkη
†
k′e

i(k−k′)·(ri−rFI
0 )e−ik′·δ +η†

kηk′e−i(k−k′)·(ri−rFI
0 )eik′·δ

�

− J
∑

i

∑

δ

ħh2S2.

(2.40)

In the last equality, we neglected a quadrilinear magnon term, since we only con-
sider terms to second order.

The terms in Eq. (2.40) with products of two annihilation or two creation
operators cancel upon summing over d. Note now that

∑

i

eik·ri = NFMδ(k), (2.41)

which can be verified by identifying the sum as a geometric series, as was done in
Eq. (2.30). Gathering the terms, we then find that

−J
∑

〈i, j〉

Si · S j ≈
∑

k

2ħh2JSNd

�

1−
1
2
(γ−k + γk)

�

η†
kηk

− J
∑

k

∑

δ

ħh2Se−ik·δ − J
∑

i

∑

δ

ħh2S2. (2.42)
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Above, Nd = 4 is the number of nearest neighbors on a square lattice, and we
introduced

γk ≡
1

Nd

∑

δ

eik·δ =
1

Nd

∑

δ

cosk ·δ. (2.43)

The second equality follows from inversion symmetry in the FI lattice. The in-
version symmetry also implies γ−k = γk. Furthermore, the factor

∑

k e−ik·δ =
NFIδ(δ) = 0 because δ ̸= 0,8 hence one term vanishes. Finally, the last term
on the right-hand side of Eq. (2.42) is a constant, and is not important for our
analysis, so it is neglected. The exchange interaction is thus recast in the magnon
basis as

−J
∑

〈i, j〉

Si · S j −→
∑

k

2ħh2JSNd (1− γk)η
†
kηk. (2.44)

Analogously, recasting Hext in the magnon basis yields

−
gµB

ħh
Bext

∑

i

Siz =
∑

k

gµBBextη
†
kηk − gµBBextSNFM

−→
∑

k

gµBBextη
†
kηk. (2.45)

In the last step, we again neglected an inconsequential constant term. Thus, the
Hamiltonian (2.9) becomes

HFI −→
∑

k

ħhλkη
†
kηk, (2.46)

where we have introduced the magnon dispersion relation

λk ≡ 2ħhJNδS(1− γk) +
gµB

ħh
Bext. (2.47)

This concludes the introductory part on ferromagnetism, and we move onto
superconductivity.

8Bold 0 is the zero-vector.
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Key takeaways:

• Magnets are systems (usually crystals) of constituent spin-carrying particles.
Ferromagnets exhibit spontaneous parallel ordering of neighboring spins Si .

• Spin waves are collective spin phenomena in spontaneously ordered mag-
nets.

• Magnons (ηk, η†
k) are bosonic quasiparticles and quanta of spin waves.

These relate to the spin basis by the Holstein–Primakoff transformation,
which maps the spin basis onto a bosonic quasiparticle basis, followed by
a Fourier transform. We consider systems with few magnons, allowing for
linearization of the Holstein–Primakoff transformation.

• The discrete Fourier transformation resolves a finite-dimensional system
onto a discrete, orthonormal basis of monochromatic waves. Expressed in
terms of position ri and momenta k, the transformation carries a position-
dependent phase factor e−ik·rFI

0 that is usually glossed over in the literature.
For lattices with finite lattice spacing, Fourier space is additionally divided
into Brillouin zones, across which exist physically equivalent modes.





Chapter 3

Superconductivity

Chapter summary: Below a critical temperature, superconductors exhibit
a vanishing electrical resistivity, and a partial to complete expulsion of
applied magnetic fields. We provide an instructional overview of the Lon-
don, BCS and quasiclassical theories of superconductivity, and elaborate
on the quantum-mechanical implementation of BCS superconductivity in
our microscopic model.

Superconductors are extraordinary materials characterized by their ability to
conduct currents with no electrical resistance, and the partial to complete ex-
pulsion of applied magnetic fields underneath a thin surface layer (the Meiss-
ner effect), below a material critical temperature Tc and applied field strength
Hc [71]. The first observations of the respective effects were made by H. Kam-
erlingh Onnes in 1911 [72], and W. Meissner and R. Ochsenfeld in 1933 [73].
Since then, a number of theoretical models of superconductivity have been pro-
posed, with several breakthroughs taking place during the mid 1900s. However,
many varieties of superconductivity are still inadequately understood theoretic-
ally, and have remained highly active fields of research to date. Its profundity and
intricacy is reflected in the number of Nobel laureates that have been involved
in the field [74–76], including H. Kamerlingh Onnes [77]. In the following, we
provide a chronological outline of the three theories of superconductivity relev-
ant to our research: the classical London theory (used in Paper I), the microscopic
Bardeen–Cooper–Schrieffer theory (used in Paper II and throughout this disserta-
tion), and the Eilenberger and Usadel quasiclassical theories (commonly used to
analyze proximity systems, which we include for contrast to our approach)

3.1 London and BCS theory

One of the earliest and simplest attempts at constructing a theory of superconduct-
ivity, was made by F. London and H. London in 1935. They supposed a portion of

25
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the electrons moved freely through the superconductor, and were therefore only
accelerated by an applied electric field [78].1 This was predicated on the exper-
imental evidence of a persistent current in superconductors even in the absence
of electromagnetic fields. This forms the theoretical background for the two-fluid
model, which we used in the analytics2 of Paper I. Here, the superconductor is
modelled as two parallel channels: one which conducts “normal” electrons (sub-
ject to Ohm’s law), and one which conducts “superconducting” electrons [71].

Specifically, the London brothers assumed the relationship

∂ Js

∂ t
=

1
Λ

E (3.1)

between the persistent (superconducting) current density Js and the electric field
E, for some constant Λ (compare this to Ohm’s law for the “normal” current dens-
ity Jn = σE, with σ the conductivity). Combining this with Maxwell’s equations
for classical electromagnetism, they furthermore found that

∇×
∂ Js

∂ t
= −

1
cΛ
∂H
∂ t

, (3.2)

with c the speed of light, which leads to an exponential suppression of magnetic
field near the surface of the superconductor; the theory thus also accounted for
the Meissner effect. In the absence of electric potentials, Eqs. (3.1) and (3.2) can
be stated succinctly in terms of the vector potential A as 3

Js = −
1

cΛ
A. (3.3)

Λ is usually given asΛ= c2/4πλ2, with λ the London penetration depth, the length
scale of the exponential suppression.

In light of experimental evidence conflicting with London theory upon adding
adding impurities to superconducting Sn, A. B. Pippard developed an extended

1Reading their original paper, they were clearly not particularly fond of this assumption as it
gave rise to mathematical issues and unphysical predictions, but remained pragmatic about it.

2Note that for the numerics, we instead opted for Mattis–Bardeen theory [79]. This is a micro-
scopic theory of conductivity that accounts for anomalies in the conductivity of superconductors
in regimes where the penetration depth is exceeded by the mean free path or the superconducting
coherence length. It is derived from the microscopic BCS theory, an motivated by the phenomeno-
logical Pippard theory of anomalous conductivity in superconductors (the jargon and these theories
are covered later in this section). We made this choice for the sake of accuracy, as Mattis–Bardeen
theory resolves, in particular, optical excitations across the gap near Tc [80], which modifies the res-
ults relative to the two-fluid prediction. However, the two-fluid model captures the overall change
in the conductivity as the superconductor transitions between its normal and superconducting state,
and is considerably simpler to proceed with analytically. We therefore proceeded with the two-fluid
model for the analytics, since it did not influence the conceptual outline of remote monitoring of
the superconducting transition.

3This equation can also be derived from the minimal coupling scheme, requiring that the canon-
ical momentum p = mv+ eA/c = 0 [71, 81]. This is motivated by arguing that the ground state in
the absence of applied fields has zero net momentum, and that for a superconductor, this ground
state criterion persists also upon applying a field.
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theory: while local London theory took Js at position r to scale with A also at r,
he suggested Js at r instead non-locally scaled with A integrated over a volume
around r [71, 82]. The observed phenomenon was analogous to the anomalous
skin effect in normal conductors, in which the conductivity becomes modified as
the skin depth drops below the mean free path ℓ of the electrons [83], and the
non-local dependency of the response would extend over a volume of radius ℓ.
A. B. Pippard similarly introduced a non-local length scale ξ′, which was taken
to scale as (ξ′)−1 = (ξ)−1 + (ℓ)−1 with impurities (ℓ) and a new length specific
to superconductors (ξ). This foreshadowed the first microscopic theory of super-
conductivity, to be presented below, in which ξ found its interpretation as the
superconducting coherence length, the length over which pairs of electrons cohere
in the superconducting state [71, 80]. This is the theory we will elaborate on and
proceed with in this dissertation, entering the model presented in Paper II.

In their landmark paper of 1957 [84], J. Bardeen, L. N. Cooper and J. R.
Schrieffer (BCS) proposed the first microscopic mechanism by which supercon-
ductivity may arise: the pairing of electrons near the Fermi surface by, in gen-
eral, some weak attractive interaction; in their original work, they specifically
considered interactions by the exchange of virtual phonons [68, 84, 85].4 This
gives rise to states (Cooper pairs) that are energetically protected from scattering
by the appearance of a gap ∆ ̸= 0 in the quasiparticle dispersion, the mechanism
behind Joule heating [3]. That is, in a manner similar to how insulators resist the
conduction of electrons due to a gap between the valence and conduction band,
the superconducting gap suppresses low-energy (< 2∆) excitations of electrons
across the Fermi surface. This and extended theories have proven to be successful
descriptions for a wide range of superconducting materials, usually with a crit-
ical temperature Tc within a few Kelvin above absolute zero. For this theory, J.
Bardeen, L. N. Cooper and J. R. Schrieffer were awarded the 1972 Nobel Prize in
physics [74].

3.2 Quasiclassical theory

Lastly in this outline, for contrast to our set-up aimed at long-distance coupling of
an FI and an SC, we mention the quasiclassical theory of superconductivity. This
theory is applicable in a wide range of set-ups, in particular including proximity
systems [3, 7, 86, 87], and distinguishes itself from the aformentioned approaches
in its application of Green’s function methods. It results from a succession of ap-
proximations, starting from a very general theory of superconductivity formulated
by L. P. Gor’kov in 1958, and subsequently built upon by G. M. Eliashberg in 1960.
L. P. Gor’kov took as his point of departure a Hamiltonian with a diagonal elec-
tron term of the form a†a, and a postulated quadrilinear interaction term of the
form a†a′†a′′a′′′, with a (a†) the electron annihilation (creation) operator [88];
G. M. Eliashberg instead considered a phonon-mediated interaction term of the

4Phonons are quanta of lattice vibrations.
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form a†a′(b+ b†), with b, b† the phonon field operators [89]. The physics of the
system was then extracted by considering two-point Green’s functions (electron–
electron correlation functions, i.e. expectation values of two electron operators),
a very powerful approach that allows for strong pairing potentials and systems
out of equilibrium.

However, for many applications, the general Green’s functions carry more in-
formation than necessary, and the general equations of motions can be challenging
to solve. Thus, in a 1968 paper, G. Eilenberger performed a series of approxim-
ations to the equations of L. P. Gor’kov based on the following, often applicable
assumptions: the interesting physics of superconductivity is concentrated in a low-
energy regime near the much greater Fermi energy, and material impurities (giv-
ing rise to scattering) are weak and randomly distributed [3, 86, 90, 91]. This
allows for averaging across microscopic details appearing as rapid oscillations in
the Gor’kov Green’s functions, leaving a slowly varying envelope accounting for
the interesting physics, hence it is known as the quasiclassical approximation [92].
K. D. Usadel furthermore showed that for superconductors with particularly high
concentrations of impurities (diffusive limit), the Eilenberger equations could still
be substantially simplified owing to the suppression of anisotropy in the Green’s
functions due to scattering [93].

The theories of G. Eilenberger and K. D. Usadel, as well as generalizations, find
broad applications in proximity systems. In these systems, superconducting order
diffuses into a neighboring material across an interface (the proximity effect), and
the (e.g. magnetic) order of the neighboring material likewise diffuses into the su-
perconductor (the inverse proximity effect). This diffusion is often disruptive of the
respective orders; for instance, ferromagnetic ordering favors parallel alignment
of neighboring spins (↑↑), but the spins of the electrons in a singlet Cooper pair
are aligned oppositely (↑↓ − ↓↑), so the orders interact disruptively. These effects
are limited to very small length scales near the interface, typically on the order of
nm [4–6], and in anomalous cases upwards of a µm [7–9]. By contrast, our ap-
proach of using a cavity to mediate interactions between an FI and an SC across
comparatively greater length scales, precludes proximity effects from disrupting
their orders.

This concludes the outline of relevant theories of superconductivity, we pro-
ceed to cover superconductivity in our system.

3.3 Superconductivity in our model

As the historical outline suggests, superconductivity is an incredibly diverse and
intricate phenomenon, still with outstanding theoretical questions despite a cen-
tury of inquiry and many breakthroughs. This is reflected in a broad number of
features distinguishing different varieties of superconductivity. However, we are
only interested in the qualitative impact of involving a superconducting gap in our
model. In the model to be presented, we therefore limit ourselves to one of the
simplest varieties: BCS superconductivity with Cooper pairs in the antisymmetric
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spin state ↑↓ − ↓↑, and a gap in the energy spectrum that does not change with
direction in momentum space (i.e., the gap is isotropic); in short, we consider
a singlet s-wave gap.5 In the outlook to be presented in Ch. 8, we furthermore
provide reflections on the anticipated impact of anisotropic gaps on our results,
arguing that such anisotropies could be resolved remotely in the magnon spec-
trum.

We begin by briefly commenting on the geometry of the SC, in analogy with
the detailed treatment of the FI in Sec. 2.2.2. Then, we move onto the description
of the superconductivity itself, or more precisely the BCS pairing Hamiltonian.
Finally, we bring the SC Hamiltonian onto a diagonal form by recasting it in terms
of its eigenmodes (quasiparticle basis).

3.3.1 Geometry and momenta

First, some preliminaries on the geometry of our SC, and the discretization of
particle momenta. With the set-up in Fig. 1.3 in mind, the SC is treated as a square
lattice with a lattice constant aSC, a center position vector rSC

0 , and sites labeled by
j = (nSC

x , nSC
y ); cf. Fig. 3.1. Each lattice site is associated with an electron creation

and annihilation operator, c†
jσ and c jσ respectively, with σ =↑,↓ the spin index.

Figure 3.1: A top-down view of the square SC lattice. The illustration is analogous
to Fig. 2.3. The points are labeled (nSC

x , nSC
y ) with the ranges (3.6) for nSC

d . aFI is
the lattice constant, and rFI

0 is the position vector of the (0,0) point relative to the
origin.

Thus, in analogy with the magnon operators (cf. Sec. 2.2.2, in particular Eq. (2.39)),

5Technically, there are more qualifiers to this gap: it is even-frequency (even in the time coordin-
ate), and single-orbital (electrons are paired within the same orbital) [94]. These details are not
important for us.
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the Fourier transform of the electron operators read

c jσ =
1

p

NSC

∑

px∈(−π/aSC,π/aSC]

∑

py∈(−π/aSC,π/aSC]

cpσeip·(r j−rSC
0 )

≡
1

p

NSC

∑

p

cpσeip·(r j−rSC
0 ), (3.4)

where p ≡ (px , py , 0), and NSC is the number of lattice sites in the SC. r j is the
position of SC lattice site j, given by

r j ≡ rnSC
x nSC

y
≡ (xSC

0 + aSCnSC
x , ySC

0 + aSCnSC
y , Lz/2), (3.5)

nSC
d =

(

−
NSC

d −1
2 , . . . ,

NSC
d −1
2 , NSC

d odd,

−
NSC

d
2 + 1, . . . ,

NSC
d
2 − 1, NSC

d even,
(3.6)

where (xSC
0 , ySC

0 , Lz/2)≡ rSC
0 . The sum

∑

p was introduced as short-hand notation
for the sum over electron momenta inside the 1BZ of the SC. Note that the SC 1BZ
is not the same as the FI 1BZ; both their extensions in momentum space, and the
discretization of momenta of the respective systems, are generally different. The
electron momenta are discretized as

p= (px , py , 0) = (2πmSC
x /l

SC
x , 2πmSC

y /l
SC
y , 0), (3.7)

mSC
d =

(

−
NSC

d −1
2 , . . . ,

NSC
d −1
2 , NSC

d odd,

−
NSC

d
2 + 1, . . . ,

NSC
d
2 − 1, NSC

d even,
(3.8)

where d = x , y labels directions on the lattice, mSC
d are integers labeling modes

within the SC 1BZ, NSC
d are the numbers of lattice points in the respective direc-

tions, and

lSC
d ≡ aSC(N

SC
d − 1)≈ aSCNSC

d (3.9)

are the lengths of the sides of the SC lattice. The total number of SC lattice points
is then

NSC = NSC
x NSC

y . (3.10)

The z component of p is zero because the electrons are confined to a 2D lattice in
the x y plane. Note that the discretization of electron momenta generally differs
from that of magnon momenta k (see Eq. (2.36)). Lastly, the orthogonality relation
is

∑

j

eip·r j = NSCδ(p), (3.11)

corresponding to Eq. (2.41) for the magnons.
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3.3.2 Pairing Hamiltonian

Moving onto the superconductivity itself, we consider one of the simplest pairing
terms, the BCS singlet s-wave:

HBCS = −
∑

p

�

∆pc†
p↑c†

−p↓ +∆
∗
pc−p↓cp↑

�

. (3.12)

The term can be derived as follows, cf. Ch. 3.5 of Ref. [71]: Consider the effective
Cooper pair interaction Hamiltonian

H′
BCS ≡

∑

pp′

Vpp′ c†
p↑c†

−p↓c−p′↓cp′↑. (3.13)

Such a term was derived in a precursory article to the original BCS paper by con-
sidering electron–phonon interactions and performing a partial diagonalization
(Schrieffer–Wolff transformation, cf. Appendix B) [68, 84, 85]; similar terms have
been derived by considering other mediators than phonons, such as photons [11]
and magnons [95]. As it stands, this quadrilinear interaction is difficult to pro-
ceed with analytically. We therefore seek to simplify the calculations by way of
mean-field theory. The pair operators trivially satisfy the relation

c−p↓cp↑ = 〈c−p↓cp↑〉+
�

c−p↓cp↑ − 〈c−p↓cp↑〉
�

, (3.14)

where the angle brackets denote the expectation value, and the parentheses de-
note fluctuations. Assuming a considerable amount of electrons have condensed
into the superconducting state, the fluctuations about the expected number of
pairs is comparatively small (see also the discussion on mean field theory in Ap-
pendix A). Thus, inserting Eq. (3.14) into Eq. (3.13) and neglecting the resulting
bilinear term in the fluctuations, one finds that
∑

pp′

Vpp′

�

〈c−p↓cp↑〉+
�

c−p↓cp↑ − 〈c−p↓cp↑〉
��† �〈c−p′↓cp′↑〉+

�

c−p′↓cp′↑ − 〈c−p′↓cp′↑〉
��

≈
∑

pp′

Vpp′

�

〈c−p′↓cp′↑〉c
†
p↑c†

−p↓ + 〈c−p↓cp↑〉∗c−p′↓cp′↑ − 〈c−p↓cp↑〉∗〈c−p′↓c′p↑〉
�

.

(3.15)

The last term in the summand is constant, and can be neglected for our purposes.
Swapping p and p′ in the second term in the summand, and defining the gap
parameter

∆p = −
∑

p′

Vpp′〈c−p′↓cp′↑〉, (3.16)

the BCS Hamiltonian (3.12) follows. The equation Eq. (3.16) is the self-consistency
equation for the gap, so-called because ∆p appears on both sides of the equation;
explicitly on the left-hand side, and implicitly on the right-hand side, through the
gap-dependent expectation value 〈c−p′↓cp′↑〉. Note that we assume s-wave sym-
metry in our model, i.e. ∆p =∆.
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In our model, we will need to break p-space inversion symmetry, as the leading-
order effect of the SC on the FI (namely, the reorientation of FI spins) otherwise
vanishes. We show this at the end of Sec. 6.1.4, after having derived an expres-
sion for this effect. To this end, we opt to break inversion symmetry here by in-
ducing an equilibrium supercurrent, which can be achieved by passing a direct
current (DC) through the SC [71], as is done in Ref. [96]. A supercurrent distrib-
uted evenly throughout a cross section of the SC in its direction, is the leading
effect of the DC only provided the sample width does not exceed the Pearl length
Λ = λ2/d [71, 96, 97], with λ the effective magnetic penetration depth, and d
the sample depth. This length expresses the cross-sectional area (2Λ)× d of the
SC film over which a screening current (giving rise to the Meissner effect) distrib-
utes, around a normal-metal filament passing the DC. This leading-order effect
is expressed mathematically as the Cooper pairs attaining a finite center-of-mass
momentum 2P,

HBCS = −
∑

p

�

∆pc†
p+P,↑c†

−p+P,↓ +∆
∗
pc−p+P,↓cp+P,↑

�

. (3.17)

To accommodate for this, we pass a thin electric wire carrying the DC through a
small hole in the cavity wall. The dimensions of the wire and hole are assumed
too small to interfere with the cavity modes.

3.3.3 Eigenmodes: Bogoliubov quasiparticles

The BCS Hamiltonian (3.17) is non-diagonal in the electron basis. It is convenient
to absorb this term into a diagonal basis, to reduce the number of terms involved
in the calculations.

For the diagonal electron term, we use the tight-binding expression for a square
lattice, [56]

Hdiag ≡
∑

pσ

ξpc†
pσcpσ. (3.18)

Above, ξp is the tight-binding dispersion

ξp = −2t(cos px aSC + cos py aSC)−µ, (3.19)

where t is the hopping parameter, and µ is the chemical potential. t is given by

t =
ħh2

2m∗a2
SC

, (3.20)

where m∗ is the effective mass of the electrons. This expression is found by series-
expanding ξp in px aSC and py aSC, and equating the p2

x + p2
y term with a would-be

free-electron expression ħh2p2/2m∗ [56].
The simple SC Hamiltonian then reads

HSC ≡Hdiag +HBCS. (3.21)
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Diagonalizing HSC is straight-forward:

HSC =
∑

pσ

ξpc†
pσcpσ −

∑

p

�

∆pc†
p+P,↑c†

−p+P,↓ +∆
∗
pc−p+P,↓cp+P,↑

�

=
∑

p

�

cp+P,↑
c†
−p+P,↓

�†�
ξp+P −∆p
−∆∗

p −ξ−p+P

��

cp+P,↑
c†
−p+P,↓

�

=
∑

p

�

γp0
γp1

�†�
Ep0 0
0 Ep1

��

γp0
γp1

�

=
∑

pm

Epmγ
†
pmγpm, (3.22)

where m = 0,1. The eigenmodes are called Bogoliubov quasiparticles,6 and their
dispersion relations read

Epm =
1
2

�

ξp+P − ξ−p+P + (−1)m
r

�

ξp+P + ξ−p+P

�2
+ 4|∆p|2

�

, (3.23)

They relate to the electron basis by the transformation elements up and vp, defined
via

cp+P,↑ ≡ u∗
pγp0 + vpγp1, c†

−p+P,↓ ≡ −v∗pγp0 + upγp1. (3.24)

Inserting these expressions for cp+P,↑ and c−p+P,↓ into Eq. (3.22), and equating
coefficients in the Bogoliubov quasiparticle basis, we find

∆∗
pvp

up
=

1
2

��

Ep0 − Ep1

�

−
�

ξp+P + ξ−p+P

��

, (3.25)

|vp|2 = 1− |up|2 =
1
2

�

1−
ξp+P + ξ−p+P

Ep0 − Ep1

�

. (3.26)

The latter ensures normalized fermionic statistics for the new quasiparticles:

{γp0,γ†
p′0}= (upu∗

p′ + vpv∗p′)δpp′ = (|up|2 + |vp|2)δpp′ = δpp′ , (3.27)

{γ†
p0,γ†

p′0}= (u
∗
pv∗p′ − v∗pu∗

p′)δpp′ = (u∗
pv∗p − v∗pu∗

p)δpp′ = 0, (3.28)

{γp1,γ†
p′1}= δpp′ , (3.29)

{γ†
p1,γ†

p′1}= 0, (3.30)

{γp0,γ†
p′1}= 0, (3.31)

and so on.
This concludes the introductory part on superconductivity. Next, we give an

introduction to the final subsystem of our set-up: the electromagnetic cavity.

6We will also refer to them as SC quasiparticles.
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Key takeaways:

• Superconducting materials are characterized by a vanishing electrical res-
istance, and the partial to complete expulsion of applied magnetic fields
inside their bulk, below a material critical temperature Tc and critical field
strength Hc .

• London theory is a classical, phenomenological model of superconductiv-
ity. A persistent current (the supercurrent) is taken to be accelerated by an
applied electric field: ∂tJs ∝ E. This is in contrast to Ohm’s law for res-
istive current: Jn ∝ E. In Paper I, we apply the two-fluid model to the
superconductor, by which it is modelled as two parallel channels passing
superconducting and normal electrons according to the respective laws.

• BCS theory is a microscopic theory of superconductivity. Superconductiv-
ity results from the pairing of electrons (Cooper pairs) by some weak at-
tractive interaction (e.g. the exchange of phonons), giving rise to a gap
in the particle spectrum ∆p = −

∑

p′ Vpp′〈c−p′↓cp′↑〉. This protects electrons
(Cooper pairs) energetically from scattering. The corresponding quasiparticle
excitations γp, γ†

p are linear combinations of electrons and holes. This is the
theory with which we proceed in this dissertation.

• Quasiclassical theory of superconductivity is often used to analyze proxim-
ity systems, which stand in contrast to our cavity-based set-up. This is a
Green’s functions formalism involving an electron pairing term, in which
the Fermi wave length is taken to be the dominant length scale (Eilenber-
ger theory), and impurity scattering is furthermore taken to be considerable
(Usadel theory).



Chapter 4

Electromagnetic cavities

Chapter summary: Electromagnetic cavities organize currents and charge
accumulations inside its walls in such a manner that all but a discrete
subset of electromagnetic oscillations are suppressed within the enclosed
volume. In contrast to free-space waves, this subset of modes distribute
electric and magnetic oscillations unevenly in space and remain strong
over considerable distances for sufficiently small cavity volumes. In our
set-up, we utilize these modes to mediate interactions between the FI and
the SC. Here, we outline the classical theory of electromagnetism, and
derive expressions for the quantized cavity gauge field in our system.

Like the history of magnetism—outlined in Sec. 2—the history of electric phe-
noma dates far back. Greek philosopher Thales of Miletus observed in 600 BCE
the ability of rubbed amber (Ancient Greek ἤλεκτρον) to attract light objects [98],
a phenomenon now known as static electricity. The nascence of the modern sys-
tematic inquiry into magnetic and electric phenomena is usually attested to the
middle of the last millennium. During the centuries that followed, they were be-
lieved to be separate phenomena, until a series of experimental observations in-
dicating their interdependency were made by H. C. Ørsted and M. Faraday in the
early 1800s, leading J. C. Maxwell to formulate a unified theory of electric and
magnetic forces [57]. This is expressed in the set of equations now known as the
Maxwell equations, the foundation of classical electromagnetism.

In short, these equations tell us that oscillating electric fields E beget oscil-
lating magnetic fields B, and vice versa. In the absence of losses, it is then easy
to conceive of a scenario in which an initial disturbance in one of the fields, can
occasion an indefinite chain of oscillations. Furthermore, charge densities ρ oc-
casion electric fields, and their movement (current densities J) magnetic fields,
and vice versa. Electromagnetic cavities are systems of conducting walls enclos-
ing a non-conducting volume that organize these interdependencies in a rhythmic
harmony. Upon some initial disturbance of the fields inside the cavity, the fields

35
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will propagate until they reach the vicinity of the walls, instantiating charge ac-
cumulations and currents that give rise to reflected fields. This happens in every
direction of the enclosed volume, mixing waves and suppressing a range of oscilla-
tions, eventually leaving a set of standing waves known as the normal or resonant
modes of the cavity. The smaller the losses in the cavity, the more sharply defined
are these modes with respect to frequencies and spatial distributions, as well as
their longevity and the relative phases of the fields. These modes carry a number
of peculiar features:

• Magnetic and electric oscillations can concentrate in separate parts of the
cavity (cf. Fig. 1.1). This is unlike waves propagating in free space, where
every point along the trajectory of the wave has both a magnetic and electric
oscillation.

• Oscillations instantiated in one part of the cavity can give rise to substantial
oscillations in another. This again in contrast to free-space waves, where the
intensity of a signal diminishes with distance from the source.

• Related to the last point, the amplitude of the field oscillations depend in-
versely on the cavity volume. Therefore, two points inside the cavity can be
far apart, yet oscillations instantiated at one point can occasion substantial
oscillations at the other, if the cavity is sufficiently narrow in the orthogonal
directions. Volume is determined by the lengths of the cavity in all direc-
tions, and for the same volume, one length can be increased provided the
other lengths are decreased proportionally.

These are the properties harnessed in cavitronic systems, i.e. systems that have
electromagnetic circuitry interact with the normal modes of cavities. In our sys-
tems, we make use of all three in order to have magnetic (FI) and electric (SC)
subsystems interact substantially across relatively large distances (≳ µm) as com-
pared to proximity systems (nm–µm). By suitable choices of placement inside the
cavity, they are also made to interact with the magnetic and electric fields sep-
arately owing to the inhomogeneous spatial distribution of the normal modes.
This carries advantages such as simplifying interactions with the resonant modes;
making these interactions particularly strong; and for the SC in particular, keeping
magnetic fields from destructively interfering with the superconducting order.

In the following, we give a technical introduction to electromagnetism in cav-
ities. We begin with classical preliminaries, before we derive the quantized cavity
fields for our specific set-up.

4.1 Classical electromagnetism

The Maxwell equations can be formulated in a number of ways; in particular, they
can be expressed locally in terms of derivatives, meaning the fields and sources can
be considered on a point-by-point basis in spacetime, and solutions determined
uniquely by boundary conditions [99]. Consider therefore a scenario in which
charges and currents only exist at the boundaries of a spacetime volume. The
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eight1 Maxwell equations for the enclosed volume can then be expressed as

∇ ·B=∇ · E= 0, (4.1)

∂tB= −∇× E, (4.2)

∂tE= c2∇× B. (4.3)

We now make some observations. First, we can express the Maxwell equations
in terms of a scalar potentialφ and a vector potential (gauge field) A by identifying
E = −∇φ − ∂tA and B = ∇ × A. This formulation immediately has four of the
Maxwell equations satisfied, leaving

�

−∇2 + ∂ 2
t /c

2
�

A+∇(∇ ·A+ ∂tφ/c
2) = 0, (4.4)

∇ · (∇φ + ∂tA) = 0. (4.5)

Second, these potentials are not unique: For some function Λ, the combined
transformationsφ→ φ−∂tΛ and A → A+∇Λ yield the same physical fields E and
B as before. This expresses redundancy in the formulation in terms of potentials,
or gauge invariance. We can use this to our advantage, simplifying Eqs. (4.4) and
(4.5) by an appropriate choice of Λ (known as fixing the gauge); this is achieved
by imposing another condition of our choice on the potentials. In systems without
charges or currents, the transversal (Coulomb) gauge

∇ ·A= 0 (4.6)

is particularly useful. Eq. (4.5) then reduces to the Laplace equation ∇2φ = 0,
with the well-known solution φ = 0 [99]. We are then left with simply

�

−∇2 + ∂ 2
t /c

2
�

A= 0. (4.7)

Each component of A thus has solutions on the form f+(Q·r+ωQ t)+ f−(Q·r−ωQ t).
These functions are waves of arbitrary shapes and initial locations, propagating
with (−) or against (+) the direction of the wave vector Q, at the speed of light.
The relationship between the angular2 frequency ωQ and Q is readily found by
inserting f± into the equation:

ωQ = c
Æ

Q2. (4.8)

1Keep in mind that one vectorial equation constitutes three scalar equations.
2Why angular frequency, and not simply frequency? This is because we are implicitly employing

the conventional definition of the wave vector. For a sinusoidal wave, it relates to the wave length
λ by the familiar relation |Q| = 2π/λ. It is this conventional factor 2π that leads us to consider
angular frequencies (radians per second), differing from frequencies (revolutions per second) by
precisely this factor.

It is important to not confuse these, as the factor 2π can scale a numerical value by nearly order of
magnitude. In the context of cavity systems, the size of a cavity can determine the energies involved,
which are often expressed in Hz. For a cm-scale cavity, the frequencies involved will be at least on
the order c/(10 cm) ≈ 3 GHz. This not to be confused with an angular frequency of 3 · 109 rad/s,
which would correspond to a frequency of ≈ 477 MHz!
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Thirdly, because derivatives are linear operators (e.g. ∇(a + b) = ∇a +∇b),
it is clear that if A1 and A2 are two solutions to the Maxwell equations for the
vector potential, then so is A1 +A2. This is the superposition principle, which was
alluded to when we touched on standing waves in the introduction to this chapter.
This renders the Fourier transform particularly well suited to analyze the Maxwell
equations: Every physically reasonable solution to these equations can be decom-
posed into a linear combination of Fourier modes (see Sec. 2.2.2), each of which
is a separate solution to the Maxwell equations.

4.2 The cavity gauge field and its quantization

With the classical theory in mind, we proceed in this chapter to derive an ex-
pression for the gauge field inside the rectangular electromagnetic cavity in our
model (Fig. 1.3). The electromagnetic cavity translates mathematically to a set
of boundary conditions that limits the set of waves that can be supported within
its volume. We derive unique solutions for this case. We subsequently quantize
the cavity gauge field by identifying (canonically quantizing) Fourier expansion
coefficients with bosonic quanta (photons), which enter our model as mediators
of the indirect coupling between the FI and the SC.

Our cavity has spatial extensions Lx , L y ≫ Lz in the respective directions, cf.
Fig. 1.3. We employ perfectly reflective boundary conditions for the upper and
lower cavity walls, and periodic boundary conditions for the remaining walls, as
is done in Ref. [11]. The reflective boundary conditions in the z direction resolve
the spatial dependence of the cavity field strength in this direction, while we ig-
nore this dependence in the x and y directions (see Ch. 8 for discussion on this).
There are multiple ways of implementing these boundary conditions. One com-
mon method is to simply directly derive solutions to the Maxwell equations given
the boundary conditions on the volume [100]. We will present another derivation,
in which we implement the boundary conditions by imposing symmetries on the
classical expansion coefficients and Fourier mode functions. This serves to clarify
the mathematical origin of some prefactors and momentum ranges.

Consider a rectangular cavity that is twice the size of the cavity we wish to
study. The larger cavity has dimensions Lx × L y × 2Lz , enclosing a volume 2V ,
where V = Lx L y Lz . The cavity represents a bounded region of continuous space.
Because it is bounded, the Fourier spectrum is discrete; because the region is spa-
tially continuous, the Fourier spectrum is unbounded. As will be shown, upon
imposing symmetries on the Fourier coefficients of the electromagnetic fields, the
complex Fourier transform of the 2V volume with symmetrical coefficients, can
also serve as a description of the actual cavity volume V subject to the desired
boundary conditions.

Consider the classical electromagnetic gauge field Acav inside the cavity volume.
Because there is by assumption no charge imbalance imposed on the cavity (i.e.,
there is no scalar potential), the electric and magnetic fields are entirely described
by Acav (cf. Sec. 4.1). Expressed in terms of its Fourier expansion, by the definition
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of the complex Fourier transform,

Acav(r)≡
∑

QS

√

√

√
ħh

2εωQ(2V )
êS(aQSeiQ·r + a∗

QSe−iQ·r). (4.9)

Above,

Q ≡ (Q x ,Q y ,Qz)

≡ (2πℓx/Lx , 2πℓy/L y , 2πℓz/2Lz)

= (2πℓx/Lx , 2πℓy/L y ,πℓz/Lz) (4.10)

are the momenta (Fourier parameters) of each Fourier mode e±iQ·r labeled by
ℓ ≡ {ℓx ,ℓy ,ℓz}, with ℓx ,ℓy ,ℓz = 0,±1,±2, .... Furthermore, S = x , y, z labels dir-
ections and polarizations, ε is the permittivity of the material filling the cavity,
ωQ = c

p

Q2 is the cavity dispersion relation (Eq. (4.8)), êS is the unit vector in
the S direction, and aQS are classical Fourier expansion coefficients for modes with
linear polarization S and carrying momentum Q. We have extracted the prefactor
Æ

ħh/2εωQ from the expansion coefficients for later convenience, since it renders
one-to-one the correspondence between the expansion coefficients and photon
operators of the quantized field, to be introduced later. Furthermore, the remain-
ing prefactor

p

1/(2V ) is a normalization factor, which we have chosen such that
the Fourier transform (and by extension its inverse) is unitary, cf. Eq. (2.30).

Now, we implement boundary conditions by imposing symmetries. Consider
first the x and y directions, in which opposing walls are separated by lengths
Lx and L y , respectively. We only seek to resolve the effects of a finite separation
of the walls on the Fourier modes; to this end, periodic boundary conditions are
appropriate. These conditions amount to imposing the following periodicities on
the Fourier modes:

e±iQ·(r+Lx êx ) = e±iQ·(r+L y êy ) = e±iQ·r. (4.11)

This symmetry implies that Q x and Q y are discretized as 2πℓx/Lx and 2πℓy/L y ,
and is in fact already a symmetry of the complex Fourier transform. Periodic
boundary conditions can be visualized as connecting the edges of a domain, which
in our case would amount to treating the rectangular cavity as a torus.

Consider now the z direction, for which we assume reflective boundary con-
ditions. To this end, we seek to reduce the complex Fourier transforms in this
direction to real sine or cosine transforms. In principle, both transforms project
functions onto a complete basis on the open interval z ∈ (0, Lz) between the walls,
but the behavior we seek at the boundary will determine the appropriate choice
of transform. Sine transforms are appropriate for clamped end points, like those
of vibrating strings attached to walls; cosine transforms are appropriate for un-
clamped end points, like those of pressure oscillations of sound waves at the inner
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walls of closed resonators. Below, we determine the appropriate behavior by phys-
ical considerations.3

(a)

(b)

Figure 4.1: Illustration of the reflective boundary conditions at a cavity wall, for
the dynamic electric field (E). In (a), the perpendicular electric field is comple-
mented by local charge accumulation of at the inner face of wall. This is in turn
complemented by a local charge accumulation of opposite polarity at the outer
face (not illustrated), which leads to extinguishing of the internal electric field,
while leaving the external field unaffected. In (b), the initial tangential electric
field causes charges to migrate to each end of the wall and accumulate, spawn-
ing an opposite electric field E′. The net tangential electric field at the wall is
then zero. In a perfect conductor, the sequence in (b) happens instantaneously in
response to initial fields, so there is never a tangential electric field at the wall,
leaving no accumulation of charges at the ends.

In the last section, we established that in the transversal gauge, the spatial
oscillations of the electric and magnetic fields are proportional to those of the
vector potential. We can therefore deduce the behavior of the vector potential on
the upper and lower boundaries by instead considering the electric and magnetic
fields [102]:

• For the electric field, at the perfectly reflective inner walls of the cavity,
tangential components of the field are extinguished by the free movement
of charges at the walls (Fig. 4.1b). The tangential components of the field

3The technical, textbook approach to boundary conditions is to integrate the Maxwell equations
over a volume (area) Ω crossing the boundary, followed by the application of Gauss’ (Stokes’) the-
orem to re-express some integrals as going over the surface (line) ∂Ω. Then one shrinks Ω near the
boundary in such a way that the volume (area) goes to zero, while the surface (line) ∂Ω remains
finite, from which conditions on normal (tangential) field components are extracted [99, 101].
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(a)

(b)

Figure 4.2: Illustration of the reflective boundary conditions at a cavity wall, for
the dynamic magnetic field (B). In (a), the tangential magnetic field is comple-
mented by sheet current density J at the inner face of the wall (this continues
into adjacent walls (not illustrated), so there is no accumulation of charges on
this face). The subsequent magnetic field of J spawns an oppositely directed sheet
current at the outer face of the wall (not illustrated), whose field in turn leads
to the cancellation of internal magnetic fields in the cavity wall, leaving the ex-
ternal tangential field untouched. In (b), the initial perpendicular magnetic field
spawns a circulating electric field (E), which at the wall gives rise to a sheet cur-
rent vortex. This vortex spawns an opposite magnetic field B′, which cancels the
net perpendicular magnetic field at the wall. In a perfect conductor, the sequence
in (b) happens instantaneously in response to initial fields, so there is never a
perpendicular magnetic field at the wall.

therefore have clamped end points, i.e. they cannot oscillate spatially. By
contrast, the normal component of the field is complemented by charge
accumulation of opposite polarity at the inner face of the wall (Fig. 4.1a),
which in turn is complemented by an accumulation of positive charges at the
opposite face of the wall. This extinguishes the net electric field inside the
conducting wall, while leaving the outside unaffected, and furthermore pre-
serves charge neutrality. The normal component therefore has unclamped
end points.

• While the above considerations suffice to deduce the proper transformation
of the vector potential, we repeat the exercise by considering the magnetic
field. At the reflective boundaries, the normal component of the magnetic
field will induce sheet current vortices that spawn an equal and oppositely
directed magnetic field (Fig. 4.2b). The net result is that the normal com-
ponent of the magnetic field is extinguished at the boundary. This corres-
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ponds to clamped end points. By contrast, the tangential components of the
magnetic field are complemented by perpendicular sheet currents at the in-
ner face of the wall (Fig. 4.2a). These currents spawn their own magnetic
fields that give rise to oppositely directed sheet currents at the outer face,
spawning yet more magnetic fields of opposite polarity. The net effect is that
internal magnetic fields are extinguished, while the tangential fields at the
boundary are unaffected. This corresponds to unclamped end points.

Note that the behavior at the cavity walls outlined above is only approximate,
as perfectly reflective boundary conditions are only ideal. We have neglected the
influence of e.g. cavity losses, which give rise to some transmission.

Now, write aQS as aℓxℓyℓzS . The appropriate sine and cosine transforms are im-
plemented by imposing the following odd and even symmetries on the expansion
coefficients:

aℓxℓy−ℓz x = −aℓxℓyℓz x , (4.12)

aℓxℓy−ℓz y = −aℓxℓyℓz y , (4.13)

aℓxℓy−ℓzz = aℓxℓyℓzz . (4.14)

Since ωQ = ω|Q|, the prefactor of the summand of Eq. (4.9) is unaffected by
flipping the sign of ℓz . With the symmetries presented above, we find that we can
order the terms of the sum in Eq. (4.9) with respect to ℓz ̸= 0 such that

aℓxℓyℓz x eiQ(ℓxℓyℓz)·r + aℓxℓy−ℓz x eiQ(ℓxℓy−ℓz)·r

= aℓxℓyℓz x

�

eiQ(ℓxℓyℓz)·r − eiQ(ℓxℓy−ℓz)·r
�

= 2iaℓxℓyℓz x ei(Qx x+Q y y) sinQzz, (4.15)

aℓxℓyℓz y eiQ(ℓxℓyℓz)·r + aℓxℓy−ℓz y eiQ(ℓxℓy−ℓz)·r

= aℓxℓyℓz y

�

eiQ(ℓxℓyℓz)·r − eiQ(ℓxℓy−ℓz)·r
�

= 2iaℓxℓyℓz y ei(Qx x+Q y y) sinQzz, (4.16)

aℓxℓyℓzzeiQ(ℓxℓyℓz)·r + aℓxℓy−ℓzzeiQ(ℓxℓy−ℓz)·r

= aℓxℓyℓzz

�

eiQ(ℓxℓyℓz)·r + eiQ(ℓxℓy−ℓz)·r
�

= 2aℓxℓyℓzzei(Qx x+Q y y) cosQzz. (4.17)

We have here gathered one term per opposite half momentum space, and sub-
sequently reduced the range for our sum over Q to the Qz ≥ 0 half-space. In
real space this corresponds to reducing the supposed volume 2V = Lx L y2Lz to
the actual volume V = Lx L y Lz; in other words, mathematically, only the volume
V needs to enter the inverse Fourier transform in order to recover the original
vector potential from its Fourier transform. Note that the Fourier transform can
now serve as a description of either the supposed 2V volume subject to the above
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even and odd symmetries, or the actual volume V subject to reflective boundary
conditions in the z direction.

The terms for which ℓz = 0 (corresponding to the Q xQ y plane in momentum
space) must be handled separately in order to avoid double counting: with ℓz = 0,
we find eiQ(ℓxℓyℓz)·r = eiQ(ℓxℓy−ℓz)·r = eiQ(ℓxℓy 0)·r, because 0 is its own negative.
In other words, there is no complementary term in the sum in Eq. (4.9) with
which the aℓxℓy 0S terms can be paired in the same manner as in Eqs. (4.15)–
(4.17). We take this into account by introducing the following prefactor to the
expressions (4.15)–(4.17):

wℓz
=

¨

1
2 , ℓz = 0,

1 otherwise.
(4.18)

This prefactor only affects Eq. (4.17), since the other Fourier terms are modu-
lated as sine functions with respect to Qz , and are thus anyhow zero for ℓz = 0.
Now, naively, it is tempting to add this prefactor alone to the expressions (4.15)–
(4.17); however, this would render the Fourier transform non-unitary. Collapsing
the supposed volume 2V to V introduces an analogous prefactor to the inverse
transform,

wz =

¨

1
2 , z = 0,

1 otherwise.
(4.19)

Requiring that the Fourier transform be unitary amounts to dividing the net pre-
factor wℓz

wz =
p

wℓz
wz
p

wℓz
wz equally between the Fourier transform and its

inverse, as was done previously with the volume factor 1/V (Eq. (4.9)), and with
the number factor 1/NFI for the magnons (Eq. (2.30)).

Implementing the symmetries above, we can thus write

Acav =
∞
∑

ℓx=−∞

∞
∑

ℓy=−∞

∞
∑

ℓz=0

∑

S=x ,y,z

√

√ ħh
2εωℓ

êS(aℓSuℓS + a∗
ℓSu∗

ℓS)

=
∑

ℓS

√

√ ħh
2εωℓ

êS(aℓSuℓS + a∗
ℓSu∗

ℓS)

=
∑

QS

√

√

√
ħh

2εωQ
êS(aQSuQS + a∗

QSu∗
QS), (4.20)

where now ℓx ,ℓy = 0,±1,±2, ... and ℓz = 0, 1,2, ... (note that by contrast, in
Eq. (4.9), the range for ℓz was −∞, . . . ,∞). Furthermore, we have defined the
normalized mode functions

uQx = uQy =

√

√ 2
V

eiQx x+iQ y y i sinQzz, uQz =
p

wℓz
wz

√

√ 2
V

eiQx x+iQ y y cosQzz.

(4.21)
Note that our derivation of the quantized vector potential with reflective bound-

ary conditions highlights why the prefactor of the mode functions Eq. (4.21) in-
volves the factor

p

2/V = 2
p

1/(2V ) instead of the prefactor
p

1/V which one
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normally expects from the unitary complex Fourier transform. I.e., it originates
from assuming certain reflective symmetries on the Fourier transform of a doubled
volume. It also highlights why the range of the momentum sum in Eq. (4.20) is
restricted to the Qz ≥ 0 half-space, and why there is a special prefactor

p

wℓz
wz

in the mode functions (4.21) which divides ℓz = 0 terms by
p

2 and z = 0 terms
by another

p
2.

4.3 Transversal (Coulomb) gauge

Before we perform the canonical quantization, we must fix the gauge. We seek to
implement transversality

Q ·Acav = 0 (4.22)

directly into our expression for Acav, in order to avoid linear dependence between
photon operators which follow from Gauss’ law in the absence of charges,

∇ · ∂tAcav = 0 ⇒ Q ·
∑

S

aQS êS = Q ·
∑

S

a∗
QS êS = 0, (4.23)

cf. Ref. [100, Eq. (2.13)]. The linear dependencies would otherwise lead to non-
conventional commutator relations after canonical quantization. Our strategy for
achieving this will be to first rotate the original x yz basis to a new Cartesian basis
labeled by 1,2, 3; the original z axis is now aligned with the photon momentum Q
and becomes the 3 axis (cf. Fig. 4.3). Then Eq. (4.22) is immediately satisfied by
neglecting the classical expansion coefficient aQ3, found by an identical rotation
of the original coefficients.

In terms of spherical parameters {Q,θ ,ϕ}, where Q ≡ |Q|, θ ≡ θQ is the polar
angle and ϕ ≡ ϕQ is the azimuthal angle (cf. Fig. 4.3), Q becomes

Q=Q





sinθ cosϕ
sinθ sinϕ

cosθ



 (4.24)

in the original x yz basis. Note that the angles carry a dependency on Q, because
they are defined with respect to this vector. Following Ref. [100], we introduce
the rotated basis





êQ
1

êQ
2

êQ
3



= OQ





êx
êy
êz



 , OQ ≡





cosθ cosϕ cosθ sinϕ − sinθ
− sinϕ cosϕ 0

sinθ cosϕ sinθ sinϕ cosθ



 . (4.25)

Thus êQ
3 = Q/Q by comparison with Eq. (4.24). Equivalently,

êQ
Σ =

∑

S

OQ
ΣS êS , (4.26)
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Figure 4.3: Illustration of the 123 coordinate system, reproduced from Paper II.
Q is a specific photon momentum vector, and q is its component in the x y plane.
θ (single arch) is the polar, and ϕ (double arch) the azimuthal angle associated
with Q in relation to the x yz basis. The 123 axes follows from rotating the x yz
axes by an angle θ about the y axis, followed by rotating by an angle ϕ about
the original z axis. In the drawing, the 1 axis points somewhat outwards, the 2
axis points somewhat inwards and is confined to the original x y plane, and the
3 axis aligns with Q.

whereΣ= 1,2, 3. Furthermore, the rotation matrix is orthogonal (i.e., it preserves
vector dot products),

OQT OQ = I , (4.27)

where T denotes the matrix transpose, and I ≡ I3 is the 3 × 3 identity matrix.
Since the original set of basis vectors is orthonormal, the orthogonality of OQ im-
plies that the new basis is also orthonormal. Furthermore, along with Eq. (4.26),
Eq. (4.27) implies the inverted relationship

êS =
∑

Σ

OQ
ΣS êQ

Σ =
∑

Σ

OQ
ΣS

∑

S′

OQ
ΣS′ êS′

=
∑

S′

êS′

�

∑

Σ

(OQT )SΣOQ
ΣS′

�

=
∑

S′

êS′

�

OQT OQ
�

SS′

=
∑

S′

êS′δSS′ = êS , (4.28)

where δSS′ is the Kronecker delta function.
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Returning to the linear dependency (4.23), we find, using Eq. (4.28), that

Q ·
∑

S

aQS êS = Q ·
∑

S

aQS

∑

Σ

OQ
ΣS êQ

Σ

= Q ·
∑

Σ

�

∑

S

OQ
ΣSaQS

�

êQ
Σ

= Q ·
∑

Σ

aQΣ êQ
Σ

= 0, (4.29)

and likewise for the complex conjugate equation. In the last line, we defined the
expansion coefficients in the rotated basis

aQΣ ≡
∑

S

OQ
ΣSaQS . (4.30)

Since êQ
3 by definition is parallel to Q, the transversality condition (4.29) reduces

to
aQ3 = a∗

Q3 = 0. (4.31)

The relationship of aQS to aQΣ is analogous to the inverse relation in Eq. (4.28),
i.e.

aQS =
∑

Σ

OQ
ΣSaQΣ. (4.32)

Implementing transversality by neglecting aQ3, this reduces to

aQS =
∑

ς

OQ
ςSaQς, (4.33)

with ς = 1, 2. Inserting this into the gauge field (4.20), one finds the gauged
expression for Acav

Acav =
∑

QS

√

√

√
ħh

2εωQ
êS

∑

ς

(OQ
ςSaQςuQS +OQ

ςSa∗
Qςu

∗
QS)

=
∑

Qς

√

√

√
ħh

2εωQ
(aQςuQς + a∗

Qςu
∗
Qς), (4.34)

where we defined the new mode functions

uQς ≡
∑

S

êSOQ
ςSuQS , (4.35)

in accordance with Ref. [100]. Thus we have obtained a gauged expression for
Acav, and may safely proceed to canonically quantize the field (hence ∗ becomes †
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for the Fourier coefficients) with bosonic commutation relations for aQ1, aQ2 and
their Hermitian conjugates:

Acav =
∑

Qς

√

√

√
ħh

2εωQ
(aQςuQς + a†

Qςu
∗
Qς), (4.36)

[aQς, aQ′ς′] = 0, [aQς, a†
Q′ς′
] = δQQ′δςς′ . (4.37)

This concludes the introductory part on electromagnetic cavities. In the next
chapter, we specialize the general expression (4.36) for the vector potential to suit
our set-up.

Key takeaways:

• By the ideally free movement of charges on its walls, electromagnetic cav-
ities suppress all but a discrete subset of standing electromagnetic waves
(normal modes) within its enclosed volume. Losses lead to some transmis-
sion and broadening of spectra.

• In contrast to free-space waves, these modes have an amplitude that per-
sists over relatively long distances, and scale inversely with the enclosed
volume. Electric and magnetic oscillations are furthermore spatially separ-
ated. These features are used in our model to couple the FI and the SC over
unconventionally large distances, respectively via the magnetic and electric
components of the cavity modes.

• The classical cavity gauge field (vector potential) Acav is quantized by identi-
fying Fourier expansion coefficients (aqς, a∗

qς) with photon operators (aqς,

a†
qς), known as canonical quantization.





Chapter 5

Cavity couplings

Chapter summary: We derive expressions for the cavity interactions un-
der consideration, in the various particle bases. Between the FI and the
cavity, we consider the Zeeman coupling; between the cavity and the SC,
the paramagnetic coupling. We subsequently write down the complete FI
and SC Hamiltonians for our system.

So far, we have analysed the FI, cavity and SC without regards to any interac-
tions between these. In this chapter, we provide detailed derivations of the coup-
lings of choice, in the respective particle bases (magnons, photons and Bogoliubov
quasiparticles) introduced in the last chapter.

For the FI placed at a maximum of magnetic field strength of the cavity modes,
the natural coupling to consider is the Zeeman coupling. The Zeeman coupling
was outlined already in the last chapter (Eq. (2.8)), but then with the spins sub-
jected to a classical uniform field. In this chapter, we consider their subjection to
the quantized cavity modes. Because the x y dimensions of the FI and the cavity
generally differ in the set-up in Fig. 1.3, with the FI the smallest, a single magnon
mode with momentum k can couple to photons with a range of in-plane momenta
q, as will be shown in Sec. 5.1.

For the SC placed at the electric field strength maximum, we consider the
paramagnetic coupling, the −eħhp ·A term originating from the minimal coupling
Hamiltonian (ħhp − eA)2/2m, with e and m the electron charge and mass. This
coupling was also considered in Ref. [11] for a normal metal coupling to itself
via a cavity. We neglect the diamagnetic term (eA)2/2m as it was found to be
negligible in Ref. [11] (cf. their Supplemental Material).

49



50

Figure 5.1: Illustration of modes interacting without conservation of (in-plane)
momentum. The cavity is represented by the left and right walls, and the FI by
the red dots. The FI is much smaller than the cavity. The spatial oscillation of
the q ̸= 0 cavity mode (solid black line) appears almost uniform locally across
the FI, nearly corresponding to the (non)oscillation of the k = 0 magnon mode
(solid red line). If the FI and cavity couple, the local near-correspondence of these
particular modes cause them to interact, despite the unequal momenta q ̸= k.
Note that owing to the periodic boundary conditions, the waves are modulated
in-plane as complex exponentials in our model, not sinusoidals as illustrated.

5.1 FI–cavity Zeeman coupling

We start with the interaction coupling the FI to the cavity, recasting it in the bases
of magnons and photons. This Zeeman coupling is given by

HFI−cav ≡ −
gµB

ħh

∑

i

Si ·Bcav(ri). (5.1)

As before, g is the g-factor, which we take to be 2; and µB is the Bohr magneton.
The FI lattice sites are indexed by i with the corresponding position ri , and Si and
Bcav(ri) are the spin and cavity magnetic field at these sites.

We begin by deriving the expression for Bcav(ri) based on the general expres-
sion for the vector potential from the last chapter. Specializing to the set-up in
Fig. 1.3, we set ℓz = 1. The FI is positioned at z ≈ Lz , where uQx = uQy = 0 by
Eq. (4.21). We introduce the momenta q restricted to the x y plane, which relate
to Q as

Q ≡ q+πêz/Lz , (5.2)

cf. Eq. (4.10) and Fig. 4.3. Then

uQς ≡ êzOQ
ςzuQz , uqz(r)≡ −

√

√ 2
V

eiq·r, (5.3)

where r = (x , y, z)T . Then the expression (4.36) for Acav across the FI can be
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written as

Acav

�

�

FM = −
∑

qς

√

√

√
ħh

εωqV
êz(aqςO

q
ςzeiq·r + a†

qςO
q
ςze−iq·r)

= −
∑

qς

√

√

√
ħh

εωqV
êzOq

ςzeiq·r(aqς + a†
−qς)

=
∑

q

√

√

√
ħh

εωqV
êz sinθqeiq·r(aq1 + a†

−q1), (5.4)

where

ωq ≡ωQ

�

�

Q=q+πêz/Lz
=ω0

√

√

√

1+
�

cq
ω0

�2

, ω0 ≡
cπ
Lz

, (5.5)

aqς ≡ aQς

�

�

Q=q+πêz/Lz
, (5.6)

Oq
ςS ≡ OQ

ςS

�

�

Q=q+πêz/Lz
. (5.7)

In writing down the expression Eq. (5.4), we performed the substitution q →−q
(i.e. ϕ → ϕ + π, θ → θ in spherical coordinates) in the terms involving photon
creation operators, and used

O−q
ςz = Oq

ςz , (5.8)

which holds for the relevant 1z and 2z entries of OQ, as defined in Eq. (4.25). In
the final equality of Eq. (5.4), we used that the 2z entry of OQ (cf. Eq. (4.25)) is
0 to reduce the sum over ς. This 0 entry results from the confinement of the 2
axis to the x y plane by its definition, cf. Fig. 4.3. Therefore only 1 components
generally carry a finite z component and thus contribute to the sum, since Acav
points purely in the z direction for z ≈ Lz .

In order to prevent clutter, we have introduced the following notation: Wherever
q enters expressions as an index (i.e., not explicitly, as in eiq·r), it is to be under-
stood as q+πêz/Lz . For instance, aqς has been defined as the annihilation operator
for a photon of polarization ς and momentum q+πêz/Lz , not q.

Thus, Bcav(r)
�

�

FI across the FM becomes

Bcav(r)
�

�

FI =∇×Acav(r)
�

�

FI

=
∑

q

√

√

√
ħh

εωqV
i
�

qy êx − qx êy

�

sinθqeiq·r(aq1 + a†
−q1). (5.9a)

For the calculations based on the set-up in Fig. 1.3, we will use the compacted
expression

Bcav(ri)
�

�

FI =
∑

qd

iν2
dqd̄ êd sinθq

√

√

√
ħh

εωqV
eiq·ri (aq1 + a†

−q1). (5.9b)
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Above, d̄ “inverts” d such that x̄ = y and ȳ = x , and {νx ,νy}= {1,−i} as before.
Note that qd̄ enters the sum with an inverted lower index.

We can now derive an expression HFI−cav in terms of the magnon and photon
bases. Inserting Eqs. (2.27), (2.28) and (5.9b) into Eq. (5.1), one finds

HFI−cav ≈−
gµB

ħh

∑

i

�

1
p

NFI

∑

k

∑

d=x ,y

ħh
p

2S
2
(νdηkeik·(ri−rFI

0 ) + ν∗dη
†
ke−ik·(ri−rFI

0 ))êd

+ħhS
�

1−
1

NFI

∑

kk′

η†
kηk′

S
ei(k′−k)·(ri−rFI

0 )
�

êz

�

·
�

∑

q

∑

d ′=x ,y

iν2
d ′qd̄ ′ êd ′ sinθq

√

√

√
ħh

εωqV
eiq·ri (aq1 + a†

−q1)

�

.

=−
gµB

ħh

∑

kqd

ħh
p

2S
2
ν2

d i

√

√

√
ħh

εωqV
sinθqqd̄

1
p

NFI

· eik·rFI
0

�

∑

i

e−i(k−q)·ri

�

�

νdη−k + ν
∗
dη

†
k

�

�

aq1 + a†
−q1

�

,

(5.10)

where the approximate relation in the first line is due to the linearization of the
Holstein–Primakoff transformation (Sec. 2.2.2).

As was alluded to in Sec. 2.2.2, we must treat the sum over i carefully. In
systems of infinite extent, it normally reduces to a Kronecker (discrete case) or
Dirac (continuous case) delta function like Eq. (2.41), implying conservation of
momentum; however, in the present set-up (Fig. 1.3), we have assumed the FI
and the cavity are finite, and generally do not share dimensions. This gives rise to
coupling between modes carrying different momenta, cf. Fig. 5.1. We introduce a
new quantity DFI

kq that captures this: using Eqs. (4.10), (5.2), (2.35) and (2.36),
we define it via

NFID
FI
kq ≡ei(k−q)·rFI

0

∑

i

e−i(k−q)·ri

≈
∏

d

Nd/2
∑

nd=−Nd/2

exp
�

−i
�

2πmd nd

Nd
−

2πℓd aFInd

Ld

��

≈
∏

d

Nd/2
∑

nd=1

2 cos
�

2π
�

md

Nd
−
ℓd aFI

Ld

�

nd

�

=
∏

d

2
sin
�

πNd
2

�

md
Nd

− ℓd aFI
Ld

��

cos
�

πNd
2

�

md
Nd

− ℓd aFI
Ld

��

sin
�

π
�

md
Nd

− ℓd aFI
Ld

��

≈NFI

∏

d

sinc
�

πNd

�

md

Nd
−
ℓd aFI

Ld

��

̸=NFIδkq. (5.11)
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Above we used that Nd ≫ 1 to simplify calculations; otherwise we would have
had to deal with four separate cases depending on whether Nd are odd or even.
Furthermore, the closed form of the sums is a tabulated result [103].

Upon inspection, one finds with the help of L’Hôpital’s rule that Dkq reduces to
a Kronecker delta function when Ld = ld = aFINd , i.e. when the FI and the cavity
share dimensions, but not in general.1 On the other hand, when the FI becomes
infinitely small, DFI

kq reduces to δk0, implying all cavity modes couple exclusively
to the uniform magnon mode, which is often assumed in cavity implementations,
cf. Paper I and Refs. [10, 14, 15]. Hence

HFI−cav ≈
∑

kd

∑

qς

gkq
d (νdη−k + ν

∗
dη

†
k)(aq1 + a†

−q1). (5.12)

Above, we defined the coupling strength

gkq
d ≡ −gµBqd̄ iν2

d sinθq

√

√

√
SħhNFI

2εωqV
DFI

kqeiq·rFI
0 . (5.13)

Combining Eqs. (2.46) and (5.12), the complete FI Hamiltonian for the set-up
in Fig. 1.3 is then

HFI ≈
∑

k

ħhλkη
†
kηk +

∑

kd

∑

q

gkq
d (νdη−k + ν

∗
dη

†
k)(aq1 + a†

−q1). (5.14)

5.2 Cavity–SC paramagnetic coupling

We now move on to the paramagnetic coupling −qħhp · A. We will derive its ex-
pression in the Fourier transformed electron and photon bases, before recasting
the expression upon introducing the Bogoliubov quasiparticle basis.

Our starting point is the discretized expression also found in the Supplemental
Material of Ref. [11], viz.,

Hcav−SC =
∑

d

∑

j

jd(r j)Ad

�r j+Id
+ r j

2

�

. (5.15)

Here, j ≡ (nSC
x , nSC

y ) labels lattice sites in analogy with the labeling in Fig. 2.1,
with (0, 0) the upper left corner, and (NSC

x −1, NSC
y −1) the lower right corner. The

number of lattice sites in the respective directions are NSC
d . jd(r j) are the Cartesian

components of the discretized electric current operator, at lattice site j with the
position vector r j . They are defined as [11]

jd(r j)≡
iaSCet
ħh

∑

σ

(c†
j+Id ,σc jσ − c†

jσc j+Id ,σ), (5.16)

1More precisely, when the FI and the cavity share dimensions, Dkq equals an infinite sum of
Kronecker delta functions: one for each q that is equivalent to k up to an FI Brillouin zone. We
are anyhow only concerned with the first Brillouin zone, since the interaction strengths decrease
rapidly with increasing |q| due to factors ω−1/2

q entering the coupling constants.
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where aSC is the lattice constant, e is the electric charge, t is the lattice hopping
parameter, and c jσ are the electron operators introduced in Sec. 3.3.1. Further-
more, Id represents a step to the next lattice site in the d direction. For instance,
if j = (1, 1), then j + Ix = (1+ 1, 1) = (2,1). 2

We now proceed to compute the right-hand side of Eq. (5.15). First, the ex-
pression for Acav across the SC. The SC is positioned at z = Lz/2, and we let ℓz = 1.
Then the mode functions (4.21) and (4.35) become

uqx = uqy = i

√

√ 2
V

eiq·r, uqz = 0 ⇒ uqς = i

√

√ 2
V

eiq·r
∑

d

êdOq
ςd (5.17)

where q was defined in Eq. (5.2), and when appearing as an index, must be un-
derstood as q+ πêz/Lz , like before. Then the gauged expression (4.36) for Acav
across the SC becomes

Acav(r)
�

�

SC =
∑

qςd

√

√

√
ħh

εωqV
êd(aqςie

iq·rOq
ςd + a†

qς(−ie−iq·r)Oq
ςd)

=
∑

qςd

i

√

√

√
ħh

εωqV
Oq
ςd êd eiq·r(aqς + a†

−qς)

=
∑

qd

 

∑

ς

i

√

√

√
ħh

εωqV
Oq
ςd(aqς + a†

−qς)

!

êd eiq·r. (5.18)

The last equality is just a reordering of sums which explicitly shows the compon-
ents of the gauged field. As before, d = x , y , and ς= 1, 2. We also used that

O−q
ςd = −Oq

ςd , (5.19)

which holds for the upper left 2× 2 block of Oq, as defined in Eq. (4.25).

We are now equipped to recast Hcav−SC in the Fourier bases. Inserting the

2As with the split of
∑

〈i, j〉 into
∑

i

∑

δ for spin operators on the FI (Sec. 2.2.3), we ignore the
inaccuracy at the boundary, where taking a step can bring us out of the lattice. This overexten-
sion spans a length scale of a single lattice constant, hence only affecting irrelevant high-momenta
regimes.
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gauge field (5.18) and Fourier-basis electron operators (3.4) into Eq. (5.15):

Hcav−SC =
∑

d

∑

j

jd(r j)Ad

�r j+Id
+ r j

2

�

=
∑

j

iaSCet
ħh

∑

dσqς

(c†
j+Id ,σc jσ − c†

jσc j+Id ,σ)i

√

√

√
ħh

εωqV
OQ
ςd(aqς + a†

−qς)e
iq·(r j+δd/2)

=
iaSCet
ħh

∑

dσqςpp′

c†
pσcp′σeiq·rSC

0 DSC
pp′q

�

e−i(p−q/2)·δd − ei(p′+q/2)·δd
�

· i

√

√

√
ħh

εωqV
Oq
ςd(aqς + a†

−qς)

=
∑

pp′σ

∑

qς

gqpp′

ς (aqς + a†
−qς)c

†
pσcp′σ.

(5.20)

Above, we introduced the quantity DSC
p−p′,q, defined analogously to DFI

kq (cf. Eq. (5.11)):

NSCDSC
p−p′,q ≡ ei(p−p′−q)·rFI

0

∑

i

e−i(p−p′−q)·ri

≈ NSC

∏

d

sinc

�

πNSC
d

�

mSC
d − mSC′

d

NSC
d

−
ℓd aFI

Ld

��

̸= NSCδp−p′,q. (5.21)

where mSC′
d has the same range as m′

d . The last line stresses that in general, mo-
mentum is not conserved, with DSC

p−p′,q reducing to a Kronecker delta function only

when Ld = lSC
d = aSCNSC

d . DSC
p−p′,q differs from DFI

kq only in the input p−p′ in place
of k, and the sum over SC lattice points

∑

j in place of FI lattice points
∑

i .
Furthermore, we introduced the coupling constant

gqpp′

ς ≡ −
aSCet
ħh

√

√

√
ħh

εωqV
DSC

p−p′,qeiq·rSC
0

∑

d

�

e−i(p−q/2)·δd − ei(p′+q/2)·δd
�

Oq
ςd .

(5.22)
The Hermiticity of Eq. (5.20) is not trivial, so we briefly present a proof to validate
the recast expression. First, note that

(DSC
p′−p,−q)

∗ = DSC
p−p′,q, ω−q =ωq, O−q

ςd = −Oq
ςd , ⇒ (g−q,p′p

ς )∗ = gqpp′

ς .
(5.23)

The first equality is readily verified by inspection of Eq. (5.21).3 The second equal-
ity follows from ωq = ω|q|. The third equality is valid for the relevant entries of
Oq, viz., the upper left 2×2 block (recall that ς= 1,2 and s = x , y); cf. Eq. (4.25).

3Note that the complex conjugation is technically redundant as DSC
p−p′ ,q is real-valued.
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Furthermore, note that q →−q does not alter the range of the sum
∑

q, since the
ranges of the components qx = Q x and qy = Q y are symmetric with respect to
inversion about 0 (cf. Eq. (4.10)).

Thus,

 

∑

pp′σ

∑

qς

gqpp′

ς (aqς + a†
−qς)c

†
pσcp′σ

!†

=
∑

pp′σ

∑

qς

(gqpp′

ς )∗(a†
qς + a−qς)c

†
p′σ

cpσ

=
∑

pp′σ

∑

qς

(g−q,p′p
ς )∗(a†

−qς + aqς)c
†
pσcp′σ

=
∑

pp′σ

∑

qς

gqpp′

ς (aqς + a†
−qς)c

†
pσcp′σ.

(5.24)

That is, the expression is Hermitian. From the first to the second line, we let p ↔
p′ and q → −q, and used that the summation ranges remain invariant under
these actions. From the second to the last line, we used Eq. (5.23) to rewrite the
coupling constant.

5.2.1 Bogoliubov quasiparticle basis

In Sec. 3.3.3, we diagonalized the SC Hamiltonian by introducing the Bogoliubov
quasiparticle basis (Eq. (3.22)). We now seek to recast also Hcav−SC in terms of this
basis. Shifting the electron momenta ±p → ±p+ P and inserting the Bogolibuov
quasiparticle basis (3.24), we find

Hcav−SC =
∑

pp′

∑

qς

(aqς + a†
−qς)

�

gq,p+P,p′+P
ς c†

p+P,↑cp′+P,↑

+ gq,−p+P,−p′+P
ς c†

−p+P,↓c−p′+P,↓

�

=
∑

pp′

∑

qς

(aqς + a†
−qς)

�

gq,p+P,p′+P
ς (upγ

†
p0 + v∗pγ

†
p1)(u

∗
p′γp′0 + vp′γp′1)

+ gq,−p+P,−p′+P
ς (−v∗pγp0 + upγp1)(−vp′γ

†
p′0 + u∗

p′γ
†
p′1)

�

=
∑

pp′

∑

qς

(aqς + a†
−qς)

�

gq,p+P,p′+P
ς (upγ

†
p0 + v∗pγ

†
p1)(u

∗
p′γp′0 + vp′γp′1)

− gq,−p′+P,−p+P
ς (−v∗p′γp′0 + up′γp′1)(−vpγ

†
p0 + u∗

pγ
†
p1)
�

.

(5.25)
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For the last line, we swapped p ↔ p′. This expression can be compacted as fol-
lows. Using the anticommutator relations (3.27)–(3.31), one finds that

(−v∗p′γp′0 + up′γp′1)(−vpγ
†
p0 + u∗

pγ
†
p1)

= −(−vpγ
†
p0 + u∗

pγ
†
p1)(−v∗p′γp′0 + up′γp′1) + (v

∗
p′ vp + up′u∗

p)δp′p

= −(−vpγ
†
p0 + u∗

pγ
†
p1)(−v∗p′γp′0 + up′γp′1) +δp′p. (5.26)

The last term drops out because
∑

pp′

gq,−p′+P,−p+P
ς δp′p =

∑

p

gq,−p+P,−p+P
ς =

∑

p

gqpp
ς , (5.27)

and gqpp
ς is odd in p (see Eq. (5.22)), hence the sum is 0. Now, inserting Eq. (5.26)

into Eq. (5.25), Hcav−SC can be recast succinctly as

Hcav−SC =
∑

qς

∑

pm

∑

p′m′

gqpp′

ςmm′(aqς + a†
−qς)γ

†
pmγp′m′ , (5.28)

where the coupling constant is now

gqpp′

ςmm′ ≡

 

gq,p+P,p′+P
ς upu∗

p′ − gq,−p+P,−p′+P
ς vpv∗p′ gq,p+P,p′+P

ς upvp′ + gq,−p+P,−p′+P
ς vpup′

gq,−p+P,−p′+P
ς u∗

pv∗p′ + gq,p+P,p′+P
ς v∗pu∗

p′ −gq,−p+P,−p′+P
ς u∗

pup′ + gq,p+P,p′+P
ς v∗pvp′

!

mm′

.

(5.29)

Gathering all terms, the complete SC Hamiltonian for the set-up in Fig. 1.3
thus reads

HSC =
∑

pm

Epmγ
†
pmγpm +

∑

qς

∑

pm

∑

p′m′

gqpp′

ςmm′(aqς + a†
−qς)γ

†
pmγp′m′ . (5.30)

In the next chapter, we gather all terms of the system Hamiltonian, from which
we construct an effective magnon theory.
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Key takeaways:

• With the FI film placed at the upper magnetic antinode of the ℓz = 1 cavity
modes, we consider the Zeeman coupling HFI−cav = − gµB

ħh
∑

i Si · Bcav(ri)
between the FI and the cavity. In the magnon and photon bases, it reads

HFI−cav ≈
∑

kd

∑

qς

gkq
d (νdη−k + ν

∗
dη

†
k)(aq1 + a†

−q1).

The approximate equality is due to the linearization of the Holstein–Primakoff
transformation.

• Likewise, with the SC film placed at the corresponding electric antinode, we
consider the paramagnetic couplingHcav−SC =

∑

d

∑

j jd(r j)Ad

�

[r j+Id
+ r j]/2

�

.
In the photon and SC quasiparticle bases, it reads

Hcav−SC =
∑

qς

∑

pm

∑

p′m′

gqpp′

ςmm′(aqς + a†
−qς)γ

†
pmγp′m′ .

• Notably, because the FI, cavity and SC in-plane dimensions generally differ,
(crystal) momenta are not conserved in the interactions. In other words,
magnons couple to, and SC quasiparticles are scattered by, a range of photonic
modes, not only the modes that conserve momenta. This effect is expressed
in the respective coupling constants through the factors DFI

kq and DSC
p−p′,q: sinc

functions that reduce to the familiar Kronecker delta functions only when
the interacting subsystems share in-plane dimensions.



Chapter 6

Effective magnon theory, and
reorientation of spins

Chapter summary: We introduce the Matsubara path integral formalism,
and use it to collect the interactions between the FI, cavity and SC into an
effective magnon theory. From this theory, we extract the effective aniso-
tropy field induced across the FI, and the subsequent local reorientation
of the FI spins; this is shown to express broken inversion symmetry in the
SC.

Gathering all terms from Eqs. (5.14) and (5.30), the complete system Hamilto-
nian for the set-up in Fig. 1.3 reads

H =
∑

k

ħhλkη
†
kηk +

∑

pm

Epmγ
†
pmγpm +

∑

qς

ħhωqa†
qςaqς

+
∑

kd

∑

q

gkq
d (νdη−k + ν

∗
dη

†
k)(aq1 + a†

−q1)

+
∑

qς

∑

pm

∑

p′m′

gqpp′

ςmm′(aqς + a†
−qς)γ

†
pmγp′m′ , (6.1)

where we have also included the well-known photon field energy term
∑

qςħhωqa†
qςaqς.

The challenge is now to extract the cavity-mediated influence of the FI and the
SC on each other. Our project has been dedicated in particular to the effects that
the SC has on the FI, viz., inducing a reorientation of spins across the FI, as well
as anticrossings in the magnon dispersion. We cover the latter in Ch. 7, and focus
on the former here. In Paper II, we present promising numerical estimates of the
anisotropy field in an arbitrary practical example, with the effect mediated across
130µm, 2–5 orders above the scale of proximity effects (cf. Sec. 3.2) [5–9].

To this end, we seek to aggregate the influences of the photons and SC quasi-
particles on the magnons; i.e., to construct an effective magnon theory. Plain mat-
rix diagonalization does not cut it analytically: First, incorporating the triniliear
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term ((a+a†)γ†γ) into a vector–matrix–vector product is not trivial. Second, even
when ignoring the SC terms, the finite and different dimensions of the FI and the
cavity cause an enormous number of modes to couple: in general, a magnon mode
of momentum k couples to photon modes of all momenta q, which in turn couples
back to every single magnon mode. Even ignoring that the number of photon
modes is infinite, H written as a vector–matrix–vector product would then look
like

H ≈
∑

d
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(6.2)
The inclusion of both the operator (e.g. ηk1

) and its conjugate (η†
k1

) in the vec-

tors accounts for the annihilation–annihilation (ηa) and creation–creation (η†a†)
products in H; cf. Refs. [104, 105]. The energies of the eigenmodes of the system
are the eigenvalues of this enormous 2N × 2N matrix. These are the roots of its
characteristic polynomial, which is of order 2N . Polynomials of order 2N > 4 are
analytically solvable only under particular circumstances, meaning this diagonal-
ization procedure generally falls short for our system.

Another, perturbative approach is to apply mean field theory to decouple the
SC from the remaining system. From this it is possible to extract the leading-
order effect (with respect to the cavity–SC coupling) of the SC on the FI, namely
a leading-order reorientation of its spins. We demonstrate this in Appendix A.

Yet another perturbative approach is to apply the Schrieffer–Wolff transform-
ation in an off-resonant regime; i.e., the frequencies of coupled modes are not
matched, and their difference is much greater than the coupling constant. This
is a unitary transformation that decouples systems up to a desired order in in-
teraction vertices, in favor of an effective theory, which in off-resonant regimes
becomes precise [2, 106]. This was performed in Refs. [2, 10] in conjunction with
the rotating wave approximation, in order to recast the cavity-mediated coupling
of two magnon modes as an effective direct coupling, ultimately to extract renor-
malized dispersions. This off-resonant Schrieffer–Wolff approach was also used
in Ref. [11] in conjunction with mean field theory to extract a cavity-mediated
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electron–electron pairing. All of the aforementioned references demonstrated in-
direct couplings due to vacuum fluctuations in the cavity field. We also attempted
this approach; however, it was eventually discarded in favor of the path integral
approach presented below, which is more versatile for our system. The results and
details on this approach can be found in Appendix B.

Instead, we will favor a Matsubara path integral approach to constructing an
effective theory. As we will see, this approach renders diagonalization a non-issue
to us, as Gaussian integrals do not have to be diagonal in integration variables
in order to be performed. Unlike the Schrieffer–Wolff approach, this approach al-
lows for an exact integrating-out of the cavity, leaving an exact effective FI–SC
theory, as shown in Paper II. The SC can furthermore be integrated out perturb-
atively, leaving us with an effective magnon theory. The order of integration is
inconsequential; in Paper II, we integrate out the cavity first, while below we do
the SC first.

6.1 Matsubara path integral formalism

The Matsubara path integral formalism reformulates expectation values as path
integrals in thermal equilibrium; i.e., we consider a system held uniformly at a
single temperature T , without any time dependency.1 In this case, the density
matrix ρ̂ takes the well-known form [107]

ρ̂ ≡ e−βH/ħh, (6.3)

where β ≡ ħh/kB T is the inverse temperature in units of time. The thermal (i.e.
finite temperature) expectation value of any operator Ô is then

〈Ô〉 ≡
Tr(ρ̂Ô)

Trρ̂
. (6.4)

Here the trace
TrX̂ =

∑

n

〈n|X̂ |n〉 (6.5)

must be understood as a sum over diagonal matrix elements, with |n〉 all the ei-
genstates of the system. We now observe that ρ̂ looks suggestively similar to the
time evolution operator e−iHt/ħh, the operator which by the Schrödinger equation
evolves an initial state ψ(0) to a state ψ(t) = e−iHt/ħhψ(0) at time t assuming
a time-independent H [108]. This time evolution operator serves as the start-
ing point to a path integrals formulation of zero-temperature expectation values,
as explained in detail in Refs. [108–110]. Indeed, by introducing an imaginary

1We expect the main results of our analysis to hold also when the FI, cavity and SC are held
at different temperatures, so long as there are no temperature gradients inside the respective sub-
systems. This because there is no exchange of heat between the subsystems. Implementing this
analytically would require deriving an appropriate expression for ρ̂, which would presumably look
similar to Eq. (6.3), and result in a similar path integral formulation.
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time parameter iτ, the temperature-dependency of the system is absorbed into a
complex time parameter, and we can rewrite the traces in Eq. (6.4) as path in-
tegrals [108, 110]. The partition function (ground state persistence amplitude) Z
then becomes

Z ≡Trρ̂

=〈vac, t =∞|vac, t = −∞〉

=

∫

D[η,η†]

∫

D[a, a†]

∫

D[γ,γ†]e−S/ħh, (6.6)

where e.g.
∫

D[γ,γ†]≡
∏

pm

∫

D[γpm,γ†
pm] (6.7)

is shorthand for the path integrals over every SC quasiparticle mode, and the
Matsubara action

S ≡
1
β

∫ β

0

dτ

�

∑

k

η†
k(τ)ħh∂τηk(τ) +

∑

qς

a†
qς(τ)ħh∂τaqς(τ)

+
∑

pm

γ†
pm(τ)ħh∂τγpm(τ) +H

�

. (6.8)

Note that in reformulating Z as a path integral, the particle operators are replaced
by numbers, more precisely the eigenvalues of coherent states; see Ref. [108]
for details. In the Matsubara action, the bosonic magnon and photon operators
are therefore replaced by complex numbers, and the fermionic SC quasiparticle
operators by Graßmann numbers. Notably, this means that in the context of the
Matsubara action,

[ηk,η†
k′] = 0, (6.9)

[aqς, a†
q′ς′
] = 0, (6.10)

{γpm,γ†
p′m′}= 0; (6.11)

i.e. the numbers always commute (bosons) or anticommute (fermions).
Next, we recast the integral in the action (6.8) as a sum over frequencies,

Matsubara frequencies, by resolving the particles into thermal Fourier modes:

ηk(τ) =
1
p

β

∑

Ωm

ηke−iΩmτ, (6.12)

aqς(τ) =
1
p

β

∑

Ωn

aqςe
−iΩnτ, (6.13)

γpm(τ) =
1
p

β

∑

ωn

γpme−iωnτ. (6.14)
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Above, we introduced the 4-vectors

k ≡ (−Ωm,k), (6.15)

q ≡ (−Ωn,q), (6.16)

p ≡ (−ωn,p), (6.17)

and the Matsubara frequencies read

Ωn =
2nπ
β

(6.18)

for bosons, and

ωn =
(2n+ 1)π

β
(6.19)

for fermions, with n ∈ Z. Note that since ηk, aqς and γpm are dimensionless, the
new variables ηk etc. must have units [

p

β].
Inserting the resolved particles (6.12)–(6.14) into the action (6.8) yields the

terms

SFI
0 ≡

∑

k

ħhλkη
†
kηk, (6.20)

Scav
0 ≡

∑

qς

ħhωqa†
qςaqς, (6.21)

SSC
0 ≡

∑

pm

Epmγ
†
pmγpm, (6.22)

SFI−cav
int ≡

∑

kd

∑

qς

gkq
dς(νdη−k + ν

∗
dη

†
k)(aqς + a†

−qς), (6.23)

Scav−SC
int ≡

1
p

β

∑

qς

∑

pm

∑

p′m′

gqpp′

ςmm′(aqς + a†
−qς)γ

†
pmγp′m′ . (6.24)

In the FI–cavity coupling, we wrote aq1 + a†
−q1 = δς,1(aqς + a†

−qς) for later con-

venience. We furthermore used the orthogonality relation
∫ β

0 dτe−iΩτ = βδΩ,0.
The energies and coupling strengths are now

ħhλk ≡ −iħhΩm +ħhλk, (6.25)

ħhωq ≡ −iħhΩn +ħhωq, (6.26)

Epm ≡ −iħhωn + Epm, (6.27)

gkq
dς ≡ gkq

d δς1δΩmΩn
, (6.28)

gqpp′

ςmm′ ≡ gqpp′

ςmm′δωn′ ,ωn−Ωn
. (6.29)

Note that extracting the factor 1/
p

β in Eq. (6.24) has left all of the quantities
above in units of energy.

We are now equipped to construct an effective action by integrating out the
photonic and fermionic degrees of freedom.
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6.1.1 Integrating out the SC

We begin by integrating the SC out of the problem, leaving us with an effective
FI–cavity action. To this end, we introduce the interaction matrix Σ with elements

Σ
pp′

mm′ ≡
1
p

β

∑

qς

gqpp′

ςmm′(aqς + a†
−qς), (6.30)

and furthermore the diagonal matrix E with elements

Epp′

mm′ ≡ Epmδpp′δmm′ . (6.31)

Hence, the action involving the SC can be written as

SSC ≡ SSC
0 + Scav−SC

int =
∑

pm

∑

p′m′

(E +Σ)pp′

mm′γ
†
pmγp′m′ . (6.32)

The SC sector of the partition function (6.6) is thus a Gaussian integral, which is
readily evaluated [108, 110]:

ZSC ≡
∫

D[γ,γ†]e−SSC/ħh

=

∫

D[γ,γ†]exp



−
1
ħh

∑

pm

∑

p′m′

(E +Σ)pp′

mm′γ
†
pmγp′m′





= det (β(E +Σ)/ħh)
= exp [tr [ln (β(E +Σ)/ħh)]]

= exp
�

tr
�

ln (βE/ħh) + ln
�

1+ E−1Σ
���

. (6.33)

Note that the factor β appearing in the determinant results from the definitions
(6.12)–(6.14) of the transformed variables, which are not dimensionless [108].
This factor ensures that the quantity inside the determinant is dimensionless,
which it should be, since ZSC is dimensionless. Above, the functions exp and ln of
some matrix X must be understood in terms of their series expansion, e.g.

ln(1+ X ) = X −
X 2

2
+ . . . (6.34)

The determinant (det) and trace (tr) of a matrix X are understood as usual. If the
elements of X are X pp′

mm′ , the trace is

trX =
∑

pm

X pp
mm. (6.35)

The general expression for the determinant is not relevant here, although we note
it can be expressed as the product of its eigenvalues (used in Sec. 7.1.2). Further-
more, since E is diagonal, E−1 is simply

(E−1)pp′

mm′ =
δpp′δmm′

Epm
. (6.36)
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a

γ

gγ

Σ E-1

+

+

+++ + ...

Figure 6.1: Interactions resulting from integrating out the SC. Diagrammatically,
they are obtained by joining the ends of the cavity–SC interaction vertex (Σ) and
the Bogolibov quasiparticle propagator (E−1) (above dashed line), such that SC
quasiparticles only appear in internal lines. Of these interactions (below dashed
line), the first two (black) are kept, and the rest (grey) are neglected. Here a
are photons, γ are SC quasiparticles, and gγ is the cavity–SC coupling strength.
Inspired by the corresponding figure in Paper II, courtesy of H. G. Hugdal.

The factor ln (βE/ħh) in the last line of Eq. (6.33) does not depend on any
variables of integration (photons), so we neglect this. Meanwhile, by Eq. (6.34),
the other factor ln

�

1+ E−1Σ
�

represents an infinite series involving products of
E−1Σ to arbitrary order, and Σ is linear in photons. This means the cavity sector
of Z is Gaussian only to second order in this series, beyond which point the eval-
uation of the cavity sector becomes complicated. We therefore truncate the series
by assuming weak coupling between the cavity and the SC, or

1 ≫ |E−1Σ|. (6.37)
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Thus

ZSC ≈exp
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Tr
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=exp
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−
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−
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∑
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ħh
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β

gqpp
ςmm

Epm
(aqς + a†

−qς)

+
∑
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∑

q′ς′
Γ

qq′

ςς′
(aqς + a†

−qς)(aq′ς′ + a†
−q′ς′)
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�

, (6.38)

where we introduced the coefficient

Γ
qq′

ςς′
≡
∑

pm

∑

p′m′

ħh
β

gqpp′

ςmm′ g
q′p′p
ς′m′m

2EpmEp′m′
(6.39)

for later convenience. Hence, integrating out the SC to second order in the cavity–
SC coupling yields an effective action Scav

1 , given by

Scav
1 ≡ −

∑

qς

∑

pm

ħh
p

β

gqpp
ςmm

Epm
(aqς + a†

−qς) +
∑

qς

∑

q′ς′
Γ

qq′

ςς′
(aqς + a†

−qς)(aq′ς′ + a†
−q′ς′).

(6.40)
The interactions contained in ZSC and Scav

1 are illustrated in Fig. 6.1.

6.1.2 Integrating out the cavity

The partition function of the system (6.6) now reads

Z =

∫

D[η,η†]

∫

D[a, a†]exp
�

−(SFI
0 + Scav

0 + Scav
1 + SFI−cav

int )/ħh
�

. (6.41)

We now proceed to integrate out the cavity sector, i.e.

Zcav ≡
∫

D[a, a†]e−Scav/ħh, (6.42)

where the effective cavity action is

Scav ≡ Scav
0 + Scav

1 + SFI−cav
int . (6.43)



Chapter 6: Effective magnon theory, and reorientation of spins 67

This action contains both linear and bilinear photon terms.2 The cavity interacts
with the FI only through the FI–cavity coupling, a linear photon term. This means
we can decouple the cavity and FI sectors by two equivalent methods: a shift of
integration variables followed by cancelling linear terms, which is done in Paper II;
or completing the square followed by a shift of integration variables, which we do
here.

Outlined, the method entails writing a2+2Aa as (a+A)2−A2 for a variable and
A constant, then substituting a′ = a+A and using that the integration measure is
unaffected: da′ = da. With a the photons and A the magnons, the coupling term
2Aa is thus absorbed into the decoupled photons a′, leaving a remainder −A2 that
contains all effective magnon terms.3

Specifically, in our case, absorbing the linear terms leads to a bilinear theory
in the new photon basis

a′
qς ≡ aqς + J−qς/ħhωq, (6.44)

a′†
qς ≡ a†

qς + Jqς/ħhωq. (6.45)

Above, we introduced the source term

Jqς ≡
∑

kd

Gkq
dς(νdη−k + ν

∗
dη

†
k)− sqς, (6.46)

where the quantities Gkq
dς and sqς are coefficients to be determined by requiring

that the original linear terms be absorbed. Then by postulation, the cavity ac-
tion (6.43) can be written as

Scav = Scav
bil + Scav

con, (6.47)

where

Scav
bil ≡

∑

qς

(a†
qς + Jqς/ħhωq)ħhωq(aqς + J−qς/ħhωq)

+
∑

qς

∑

q′ς′
Γ

qq′

ςς′

�

(aqς + J−qς/ħhωq) + (a
†
−qς + J−qς/ħhω−q)

�

·
�

(aq′ς′ + J−q′ς′/ħhωq′) + (a
†
−q′ς′ + J−q′ς′/ħhω−q′)

�

, (6.48)

Scav
con ≡−

∑

qς

JqςJ−qς

ħhωq

−
∑

qς

∑

q′ς′
Γ

qq′

ςς′
J−qςJ−q′ς′

�

1
ħhωq

+
1
ħhω−q

��

1
ħhωq′

+
1
ħhω−q′

�

. (6.49)

2I.e., the terms contain a product of one or two photon variables.
3By comparison, the method in Paper II entails substituting a for a′−A and requiring that linear

terms are cancelled. a = a′ − A implies a′ = a+ A, hence the methods are equivalent.
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Scav
bil contains all bilinear terms with respect to the shifted variables, and Scav

con the
constant remainder. Expanding the parentheses in Scav

bil yields linear terms

Scav
lin ≡

∑

qς

(Jqςaqς + J−qςa
†
qς)

+
∑

qς

∑

q′ς′
Γ

qq′

ςς′

�

�
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�

�

aq′ς′ + a†
−q′ς′

�

+
�

aqς + a†
−qς

� �

J−q′ς′/ħhωq′ + J−q′ς′/ħhω−q′
�

�

=
∑

qς

 

Jqς +
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q′ς′
2Γ qq′

ςς′

�

1
ħhωq′

+
1
ħhω−q′

�

J−q′ς′

!

�

aqς + a†
−qς

�

. (6.50)

In the last line, we used Γ qq′

ςς′
+Γ q′q
ς′ς
= 2Γ qq′

ςς′
, which is seen by inspection of Eq. (6.39).

Meanwhile, the original linear terms in the cavity action (6.43) read

Scav
lin =

∑

kd

∑

qς

gkq
dς(νdη−k + ν

∗
dη

†
k)(aqς + a†

−qς)−
∑

qς

∑

pm

ħh
p

β

gqpp
ςmm

Epm
(aqς + a†

−qς).

(6.51)
By the requirement that these be absorbed, the actions (6.50) and (6.51) are
now equated. We can equate the magnonic and non-magnonic terms separately,
yielding self-consistent equations for Gkq

dς and sqς:

Gkq
dς +

∑

q′ς′
2Γ qq′

ςς′

�

1
ħhωq′

+
1
ħhω−q′

�

Gk−q′

dς′ = gkq
dς, (6.52)

sqς +
∑

q′ς′
2Γ qq′

ςς′

�

1
ħhωq′

+
1
ħhω−q′

�

s−q′ς′ =
∑

pm

ħh
p

β

gqpp
ςmm

Epm
. (6.53)

Recall that these equations are valid only to second order in the cavity–SC
coupling. We can therefore neglect the correction term in the equation for sqς
since it is at most first order in this coupling. We can furthermore perform the
sum over ωn and isolate a Kronecker delta function. This leaves

sqς ≈ −δΩn0

Æ

β
∑

pm

gqpp
ςmmnF (Epm). (6.54)

Here we used the standard Matsubara result [108]

ħh
β

∑

ωn

1
−iħhωn + Epm

= −nF(Epm), (6.55)

with nF the Fermi–Dirac distribution. We can furthermore simplify Eq. (6.52) for
Gkq

dς, since corrections involving the cavity–SC coupling is at most second order
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in this coupling. We can therefore swap Gkq
dς for gkq

dς in the second term on the
left-hand side, yielding

Gkq
dς ≈ gkq

dς −
∑

q′ς′
2Γ qq′

ςς′

�

1
ħhωq′

+
1
ħhω−q′

�

gk−q′

dς′ . (6.56)

Inserting the expression (6.39) for Γ qq′

ςς′
, and summing over or factoring out Kro-

necker delta functions, this reads

Gkq
dς ≈ δΩmΩn
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−
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(Epm − iħhωn)(Ep′m′ − iħh(ωn −Ωn))

·
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1
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+
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d

�

. (6.57)

The sum over ωn can be performed using the Matsubara result

ħh
β

∑

ωn

1
(Epm − iħhωn)(Ep′m′ − iħh(ωn −Ωn))

=
nF (Epm)− nF (Ep′m′ + iħhΩn)

Epm − (Ep′m′ + iħhΩn)
,

(6.58)
which holds provided Epm ̸= Ep′m′ + iħhΩn. We do not consider the special case
where they are equal in this thesis (in which case the Matsubara sum evaluates a
derivative of the Fermi–Dirac distribution). This is further simplified by use of the
definition of the Matsubara frequency (6.18), leading to

nF (Ep′m′ + iħhΩn) =
1

1+ exp
�

β
�

Ep′m′ + iħhΩn

�

/ħh
�

=
1
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βEp′m′/ħh+ i2πm
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=
1
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βEp′m′/ħh
�

= nF (Ep′m′). (6.59)

Inserting the above into Eq. (6.57) then ultimately yields

Gkq
dς ≈ δΩmΩn

�

δς1 gkq
d

−
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d
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. (6.60)

Returning to the cavity partition function (6.42), by the shifts (6.44) and
(6.45), and the recast action (6.47), we now have

Zcav =

∫

D[a, a†]e−Scav/ħh = e−Scav
con/ħh

∫

D[a′, a′†]e−Scav
bil /ħh. (6.61)



70

The integrand is independent of magnons, and therefore inconsequential to the
physics of the FI. We therefore neglect this integral altogether, leaving only the
exponential prefactor.

6.1.3 Effective magnon theory

We are thus left with an effective FI partition function

ZFI ≡
∫

D[η,η†]e−SFI/ħh, (6.62)

where the effective FI action is

SFI ≡ SFI
0 + Scav

con. (6.63)

We proceed to extract the magnon-dependent terms from Scav
con, which contains the

following products of source terms:
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∑
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†
k) +O(η0),

(6.64)

and JqςJ−qς, which is readily found from the expression above. Here O(η0) rep-
resent magnon-independent terms; neglecting these terms, SFI reads, after some
rewriting,

SFI =
∑
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(6.65)

Finally, gathering terms, SFI reads

SFI =
∑

k

ħhλkη
†
kηk+

∑

kd

∑

k′d ′
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(6.66)
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Above, we introduced the effective magnon–magnon coupling

Qkk′

dd ′ ≡ −
∑
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 ,

(6.67)

aggregating FI–cavity–FI interactions to all orders in the Zeeman coupling, and
FI–cavity–SC–cavity–FI interactions to second order in the paramagnetic coupling
(see Fig. 7.1). Furthermore, we introduced the coefficients of the linear magnon
terms

Pk
d ≡ −

∑

qς

�

Gkq
dςs−qς
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+
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∑
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. (6.68)

Since our theory is only valid to second order in the cavity–SC coupling, and
Γ

qq′

ςς′
and s−qς are respectively second (Eq. (6.39)) and first (Eq. (6.54)) order, the

second line in the summand drops out. Furthermore, Gkq
dς contains a second-order

term (see Eq. (6.60)) that also drops out when multiplied by s−qς. Inserting for

Gkq
dς and s−qς, we are then left with

Pk
d ≈ −
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Up to a multiplicative constant, this represents the components (d) of the effective
anisotropy field induced across the FI due to the cavity-mediated interactions with
the SC (see Paper II).

Qkk′

dd ′ can be simplified by the same arguments. Using Eqs. (6.58)–(6.60), we
ultimately find
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.

(6.70)

We now have an effective FI action from which we can extract quantities of
interest. The effective coupling Qkk′

dd ′ gives rise to corrections in the magnon spec-
trum due to interactions with the cavity and the SC. Deriving such corrections is
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involved, so we return to this in more detail in Ch. 7, where we also present numer-
ical results for the corrections. In the following section, we derive the reorientation
of spins effectuated across the FI, due to the effective anisotropy field (6.69).

6.1.4 Reorientation of spins

Repeating the exercise from Sec. 6.1.2, we now seek to complete the square by ab-
sorbing the linear magnon terms in the effective FI action (6.66) into the bilinear
terms.4 This leads to a bilinear theory in a new magnon basis,

η′k ≡ ηk − tk, (6.71)

η′k ≡ η
†
k − t∗k, (6.72)

where tk is a constant. This implies the expectation value 〈η′k〉 = 0, and thus
〈ηk〉 = tk. For a proof, see Appendix D. A finite tk can thus give rise to a finite
expectation value of the in-plane spin components: By Eqs. (2.27), (2.39), (6.12),
(6.71) and (6.72), we have

〈Sid〉=
ħh
p

2S
2
(νd〈ηi〉+ ν∗d〈η

†
i 〉)

=
ħh
p

2S
2

1
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(νd〈ηk〉+ ν∗d〈η
†
−k〉)e

ik·ri

=
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1
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(νd tk + ν
∗
d t∗−k)e

ik·ri

=ħh
√

√ 2S
βNFI

∑

k

ℜ
�

νd tkeik·ri
�

, (6.73)

with ri ≡ (τ, ri). A non-zero 〈Sid〉 indicates that the spin axis of quantization is
tilted away from the z axis, which was assumed to be the axis of quantization when
introducing the magnon basis in the introductory section 2.2. In other words, a
finite tk implies the FI is subjected to an (effective) anisotropy field.

Note that the initial assumption (2.23) on the low number of magnons limits
the range for the magnitude of tk, beyond which our calculations are no longer
consistent. We therefore recast the inequality to highlight this. We opt for an in-
tuitive recasting, expressing the inequality as a condition on the magnitude of the
in-plane spin component. This is done as follows: The expectation value of the in-
plane spin component is

∑

d〈Sid〉êd , hence by Eq. (6.73) its squared magnitude
is

〈Si x〉2 + 〈Si y〉2 =
ħh22S
βNFI

∑

kk′

t∗k tk′ei(k′−k)·ri . (6.74)

4Again, in this context, “linear" and “bilinear" mean the terms contain a product of one or two
magnon variables.
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x
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y

Figure 6.2: Illustration showing the projections of the single-site spin Si onto the
new axis z′ of quantization (〈Siz′〉) and the x y plane (

Æ

〈Si x〉2 + 〈Si y〉2).

Meanwhile, upon introducing the shifts (6.71) and (6.72), the inequality (2.23)
can be written as

®�
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βNFM
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t∗ke−ik·ri
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1
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= 〈η†
iηi〉+

1

ħh22S

�

〈Si x〉2 + 〈Si y〉2
�

≪ 2S. (6.75)

Using 2S ≈ S and the now weaker inequality 〈η′†i η
′
i〉 ≪ 2S, this can be rewritten

as

〈Si x〉2 + 〈Si y〉2 ≪ ħh2(S − 〈η′†i η
′
i〉)

2 ≡ 〈Siz′〉2. (6.76)

Here z′ is the new axis of quantization, and 〈Siz′〉 the corresponding projection of
Si , as illustrated in Fig. 6.2. For very low temperatures, 〈η′†i η

′
i〉 ≈ 0, and 〈Siz′〉 ≈

ħhS. Thus, the inequality reads

〈Si x〉2 + 〈Si y〉2 ≪ ħh2S2. (6.77)
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Equation for tk

Moving on, we now seek to derive an equation from which tk can be determined.
By postulation, the new bilinear theory in the {η′k,η′†k } basis, reads

SFI =
∑

k

ħhλk(ηk + tk)
†(ηk + tk)

+
∑

kd

∑

k′d ′
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∗
d(ηk + tk)

†)

· (νd ′(η−k′ + t−k′) + ν∗d ′(ηk′ + tk′)†) + const., (6.78)

where the last term comprises magnon-independent terms. Expanding the par-
entheses, we get linear magnon terms that by assumption equal the linear terms
in Eq. (6.66). This equality can be divided into one for ηk terms and one for η†

k
terms, which are equivalent up to a Hermitian conjugation. The equality of η†

k-
dependent terms reads
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(6.79)

With some rewriting, we can collect all the coefficients in front of η†
k under the

sum over k. Since η†
k for all k are independent variables of integration, we can

equate coefficients for each k, yielding the self-consistency equation for tk

tk = −
1
ħhλk

�

∑

d

∑

k′d ′

�

Qkk′

dd ′ +Qk′k
d ′d

�

ν∗d(νd ′ t−k′ + ν†
d ′ t

∗
k′) +

∑

d

Pk
d ν

∗
d

�

. (6.80)

We have thus arrived at one of the main results of this thesis: The reorienta-
tion of FI spins due to the presence of the SC inside the cavity, or more precisely
Eq. (6.80). Note the general dependence of tk on k, meaning the spins are reori-
ented locally (i.e. per lattice site).

An expression for the effective anisotropy field, along with a numerical ex-
ample, is presented in Paper II. In Sec. 8.2, we provide reflections on the aniso-
tropy result: we compare it to the response when the SC is in the normal state,
address the issue of cavity modes spatially decohering over the separation dis-
tance of the FI and the SC, and suggest ways of easing constraints on the set-up,
in particular the Pearl length criterion and that the SC be screened from the align-
ing field Bext. Moreover, in Appendix A, we use mean field theory to derive the FI
spin reorientation to leading order in the cavity–SC coupling, which validates the
result (6.80) above.

In Paper II, we furthermore elaborate on why the contributions to the effect-
ive anisotropy field originate from interactions with states in a narrow vicinity of
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the Fermi surface. The extent of this vicinity is determined by the supercurrent
momentum P. This is not a trivial observation based on the general expressions
presented here (Eq. (6.68) for the anisotropy field), but is more readily seen in the
simple example presented in the paper. This is sensible, since the interactions in-
volve scattering of SC quasiparticles, and the low-energy events are concentrated
near the Fermi energy.

The next quantity we seek to extract are the corrections to the magnon spec-
trum due to cavity-mediated interaction with the SC quasiparticles. For practical
purposes, we consider a modified set-up in this case. We therefore address this in
the next chapter.

Trivial result in absence of supercurrent

We conclude this chapter by showing that in the absence of a supercurrent (P= 0),
there is no reorientation of the FI spins. By inspection of Eq. (6.69) for Pk

d , one sees
that for P= 0, the summand is odd in p, as g−q,−p,−p

1mm = −g−qpp
1mm , and E−pm = Epm.

Thus Pk
d = 0. We are then left with the equation

tk = −
1
ħhλk

∑

d

∑

k′d ′

�

Qkk′

dd ′ +Qk′k
d ′d

�

ν∗d(νd ′ t−k′ + ν†
d ′ t

∗
k′) (6.81)

for tk (cf. Eq. (6.80)). Every term in this equation scales with tk, meaning one
solution is tk = 0. This is indeed the solution: Expanding tk in orders of the FI–
cavity and cavity–SC coupling constant, it is clear that to lowest order, the right-
hand side vanishes, and tk = 0. To higher orders, tk is a function of itself to lower
orders; since tk = 0 to lowest order, we therefore have tk = 0 to all orders.

Thus, in the absence of supercurrent, there is no reorientation of FI spins, and
there is also no anisotropy field. This is seen to originate from the odd inversion
symmetry of the summand in the anisotropy field (6.69), which the supercurrent
breaks. From this we can infer that the reorientation (anisotropy field) gauges the
broken inversion symmetry of the SC.
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Key takeaways:

• In the Matsubara path integral formalism, expectation values at thermal
equilibrium are evaluated using imaginary-time path integrals.

• The formalism allows for an exact integrating-out of the cavity photons.
In contrast to common perturbative approaches involving in particular the
Schrieffer–Wolff transformation, the resulting effective theory is valid also
in resonant regimes, i.e. when the magnon energy, or the SC quasiparticle
energy differences, match the photon energy. The formalism furthermore
readily enables us to integrate out the SC sector to second order in the
cavity–SC coupling, an order beyond mean field theory.

• The resulting effective magnon theory (action) reads

SFI =
∑

k

ħhλkη
†
kηk +

∑

kd

∑

k′d ′

Qkk′

dd ′(νdη−k + ν
∗
dη

†
k)(νd ′η−k′ + ν∗d ′η

†
k′)

−
∑

kd

Pk
d (νdη−k + ν

∗
dη

†
k).

In order, it contains bare diagonal magnon terms, bilinear magnon terms ori-
ginating from FI–cavity–FI and FI–cavity–SC–cavity–FI interactions, and lin-
ear magnon terms originating from SC–cavity–FI interactions. The bilinear
terms renormalize the magnon spectrum, the continued analysis of which
is deferred to Ch. 7.

• The linear terms express broken inversion symmetry in the SC. In our set-up,
we break this with a finite supercurrent. These terms represent an effective
in-plane anisotropy field across the FI, resulting in a local reorientation of
the FI spins. This is expressed as a shift tk (t∗k) in the magnon variables ηk

(η†
k) found by absorbing the linear terms into the bilinear terms. The shift

reads

tk = −
1
ħhλk

�

∑

d

∑

k′d ′

�

Qkk′

dd ′ +Qk′k
d ′d

�

ν∗d(νd ′ t−k′ + ν†
d ′ t

∗
k′) +

∑

d

Pk
d ν

∗
d

�

.

A numerical example for the effective anisotropy field is presented in Pa-
per II.



Chapter 7

Anticrossings in the magnon
dispersion

Chapter summary: Applying the effective magnon theory found in the
previous chapter to a revised set-up, we extract an expression for the
renormalized magnon spectrum. The spectrum is modified by a large num-
ber of anticrossings induced by scattering events in the SC. We provide a
numerical analysis of the magnon self-energy for a specific material choice
of the FI and SC, including results within a detectable range. The shape
and magnitude of the self-energy depend in particular on directional de-
rivatives near the SC Fermi surface, and is sensitive to the onset of su-
perconductivity. This suggests the renormalized magnon spectrum can be
used to resolve momentum anisotropy in generalized SC gaps.

The effective FI action (6.66) can in principle be diagonalized to yield new
quasiparticle energies. The new dispersion relations are only affected by the bi-
linear magnon terms, since the linear terms can be absorbed into a new magnon
basis (cf. Eq. (6.78)) without affecting the coefficients of the bilinear terms. Of
particular interest is the effect of the SC on the new FI quasiparticle energies: We
will show that by matching magnon energies with differences in SC quasiparticle
energies, vacuum fluctations in the cavity field will induce anticrossings despite
the FI and the SC not being coupled to each other directly.

The corrections to the magnon spectrum emerge from the effective magnon–
magnon coupling Qkk′

dd ′ (Eq. (6.67)) in the effective action (6.66). The contribu-

tions involving the SC enter via the factor Γ qq′

ςς′
(Eq. (6.39)), and the corresponding

interactions are illustrated in Fig. 7.1a. The remaining contributions to Qkk′

dd ′ are
due to FI–cavity–FI interactions, and are illustrated in Fig. 7.1b. After presenting
our results, we will elaborate in Ch. 8 on the application of these corrections to
remotely resolve anisotropy of generalized SC gaps in the magnon spectrum, for
future work.
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Figure 7.1: Feynman diagrams of the interactions that contribute to the effect-
ive magnon–magnon coupling (6.67), and give rise to corrections in the magnon
spectrum. (a) shows the contributions involving the SC. Here, a magnon (η) is
converted to a photon (a) and back again an arbitrary number of times, due to
the FI–cavity coupling (gη). At some point, the photon is absorbed by an SC qua-
siparticle (γ) via the cavity–SC coupling (gγ), and another photon is subsequently
re-emitted. It then oscillates between a photon and a magnon state an arbitrary
number of times, eventually exiting as another magnon. (b) shows the contribu-
tions that only involve the cavity.

Anticrossings in particle spectra due to indirect, cavity-mediated interactions,
have been demonstrated for a ferro- and antiferromagnetic magnon mode [10],
and a magnon mode and a qubit [13, 14], in both case interacting via a single
cavity mode. Our research distinguishes itself in that we consider an FI coupling
to an SC, and that we consider the individual couplings of every magnon mode,
to a broad range of SC quasiparticle modes, via a range of cavity modes. This
many-particle aspect is inherent to the system as one photon can scatter any SC
quasiparticle state.
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7.1 Deriving quasiparticle energies

To determine corrections to the magnon spectrum, we must derive them. One
common method by which quasiparticle (i.e. eigenmode) energies are derived, is
by diagonalizing the system. The diagonalization of bosonic systems is highly non-
trivial. Care must be taken in order to preserve bosonic commutation relations,
as stressed in Refs. [104, 105], who present a general diagonalization procedure
for many-particle, bilinear, Hermitian Hamiltonians. In the non-Hermitian case
(H† ̸= H)1, which becomes relevant to us when we eventually assess losses, the
diagonalization is even more involved as conjugate quasiparticle operators (b, b̄)
are no longer generally Hermitian conjugates (b̄ ̸= b†). However, they still share
a bosonic commutator relation ([b, b̄] = 1), and relate to opposite complex eigen-
values (±Λ ∈ C) [111–113].

The path integral formalism is a powerful tool in the context of diagonaliz-
ing many-particle systems, or more precisely in extracting quantities that nor-
mally require some level of diagonalization in operator mechanics. In particular,
so long as the terms entering the action are no more than bilinear in the respective
particle types (integration variables), the often convoluted process of diagonaliz-
ing a Hamiltonian can for many purposes be disregarded altogether in favor of
making use of well-known properties of Gaussian integrals. This has already been
demonstrated twice in integrating out both the SC and the cavity in Ch. 6. In this
chapter, we will continue to make use of the properties of Gaussian integrals, this
time in order to extract the quasiparticle energies via the two-point correlation
functions (propagators) of the eigenmodes.

First, inspecting the effective action (6.66), note that a Matsubara basis magnon
ηk or η†

k couples to a finite set of other magnons, even though there are infinitely

many Matsubara frequencies. Qkk′

dd ′ involves a product of delta functions that can
be rewritten as

δω′
n,ωn−Ωn

δωn,ω′
n−Ω′

n
δΩmΩn

δΩ′
mΩ

′
n
= δω′

n,ωn−Ωm
δΩ′

n,−Ωn
δΩmΩn

δΩ′
m,−Ωm

, (7.1)

where ωn,ω′
n are Matsubara frequencies of the SC quasiparticles, Ωn,Ω′

n those of
the photons, and Ωm,Ω′

m those of the magnons. The last delta function δΩ′
m,−Ωm

implies only magnons with frequencies±Ωm couple. In analogy to the treatment of
non-Hermitian Hamiltonians [111–113], we can therefore write the non-Hermitian
effective action (6.66) as an infinite sum of finite vector–matrix–vector products,

1This mathematical jargon means that the eigenvalues of H (i.e. the quasiparticle energies)
are no longer guaranteed to be real valued. Hence the time evolution operator e−iE t/ħh acquires an
exponentially increasing or decreasing part eℑEt/ħh, reflecting changes in the energy of the system
due to e.g. external drives or losses.
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one for each set of coupled modes:

SFI =
∑

Ωm
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≡
∑

Ωm

η†Mη. (7.2)

Here, ηk1
,ηk2

, . . . are N = 2NFI coupled modes (one mode for each Matsubara
frequency ±Ωm and every value of k), andω and ν are N -by-N matrices. So long
as the magnons couple to the photons (the alternative Qkk′

dd ′ = 0 is not interesting
to us), we have Qkk′

dd ′ ̸= 0, hence ν ̸= 0, hence the overall 2N -by-2N matrix cannot
be reduced to an N -by-N matrix.

Suppose now we diagonalized SFI. The diagonal Matsubara basis is {µk, µ̄k},
and the effective action (7.2) can be written as

SFI =
1
2

∑

Ωm

�

µ̄1 µ̄2 . . . µ1 µ2 . . .
�



















G−1
1

G−1
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. . .
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µ̄1
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≡
1
2

∑

Ωm

µG−1µ,

(7.3)

with G−1
ρ the inverse propagators (which are complex numbers, not matrices like

ω and ν), and G−1 is the diagonal matrix of these. The factor 1
2 takes into account

the double counting of modes. The quasiparticle energies are then given by the
poles of Gρ upon analytical continuation for complex values of

z = iħhΩm. (7.4)

In other words, we must find the solutions for z for which

G−1
ρ (z) = 0. (7.5)

The interpretation of the propagator poles as quasiparticle energies is elegantly
presented in Ref. [114], where it is demonstrated by resolving Green’s functions
in many-particle eigenstates.

With the aim of extracting the quasiparticle energies, the challenge we are
faced with now is to arrive at an expression for the inverse propagators in Eq. (7.5).
This would appear to involve diagonalizing the matrix (7.2) in order to determine
the diagonal elements of Eq. (7.3). However, there are methods by which this is
circumvented, of which we mention two below.
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7.1.1 Self-energy approach

The self energy Σk expresses the collective corrections to the energy of a particle
due to interactions with its surroundings, and is a standard object of study in
many-particle physics [115]. It is also the quantity we will proceed to analyze
in this chapter. The self energy is by definition the difference between the bare
particle energy (here ħhλk) and the renormalized particle energy in the presence of
interactions. In the particle propagator, this generally appears as a factor (z−ħhλk−
Σk(z))−1 that diverges form some z [114], which is essentially the condition (7.5),
hence this solution represents a quasiparticle energy.

Eq. (7.5) can be divided into a real and an imaginary part, from which the real
and imaginary part of the quasiparticle energy can be extracted. These represent
the renormalized spectrum and (essentially) the lifetime of the quasiparticle, re-
spectively [114–116]; in this chapter we will only be concerned with the former, as
corrections to the particle energies are only meaningful if they can first be shown
to be detectable. The equation for the renormalized energies therefore reads

ℜ[ħhλk +Σ
k(z)− z] = 0. (7.6)

It seems, then, that we have only supplanted the question of determining the
unknown quantity G−1

ρ (z)with another one, viz., ℜΣk(z). However, as it turns out,
by a suitable configuration of the system and an assumption on weak coupling,
the effective action (6.66) is immediately diagonalized, enabling us to read off
Σk(z) (Sec. 7.3). The weak coupling assumption can then be invoked again to
argue that corrections to the self energy, itself a correction, is negligible. We can
thus replace the quasiparticle energy z entering the argument, by the bare energy
ħhλk. We then straight-away obtain an expression for ℜΣk (Sec. 7.4), which we go
on to compute numerically in an example. With material parameters for Bismuth-
doped YIG (Bi:YIG) (FI) and Nb (SC), we achieve promising results measured
against expected losses (Sec. 7.4.1). Finally, we analyze the correction, attempting
to understand the intricacies that modulate its shape and magnitude (Sec. 7.4.2).

7.1.2 Determinant approach

We present here briefly another approach that was applied in the first attempt
to extract quasiparticle energies from the effective action (6.66). In Appendix C,
we have attached a draft for a manuscript that was written in parallel with these
calculations, which later turned out to be overestimates when compared with the
numerics. We nevertheless find it interesting to include the draft for contrast to
the self-energy approach (Sec. 7.1.1) to be pursued in this chapter: Near the final
step, we replace SC quasiparticle energy differences with a weighted average,
which in effect collapses an enormous number of FI–SC interactions into one. As
we will elaborate on in in Sec. 7.4.2, this step was the source of the overestimation.
This was done in order to make analytical solutions for the quasiparticle energy
equation tractable; in hindsight it is clear the solutions found via the determinant
would have been the same as those found via the self-energy approach, if the
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weak coupling assumption had been invoked in place of introducing the weighted
average (see Appendix C).

The method is based on the following. Consider the determinant detG−1 of
the diagonal matrix in Eq. (7.3). Since this simply equates to the product of the
propagators,

detG−1 =
∏

ρ

G−1
ρ , (7.7)

equating it to zero,

detG−1(z) = 0, (7.8)

amounts to aggregating all the equations (7.5) into one. We now use that G−1

and the non-diagonal matrix M (Eq. (7.2)) must relate by some transformation
matrices

η†Mη= η†(T̄ T̄ −1)M(T −1T )η= (η†T̄ )(T̄ −1MT −1)(T η) = µG−1µ, (7.9)

cf. Refs. [111–113].2 The matrices T and T̄ must be invertible in order for their
inverses to exist, hence detT , det T̄ ̸= 0. Therefore

detG−1(z) = det T̄ −1(z)M(z)T −1(z) = (det T̄ −1(z))(detM(z))(detT −1(z)) = 0
(7.10)

implies

detM(z) = 0. (7.11)

We thus circumvent the issue of having to determine expressions for G−1
ρ (z); in-

stead, we can look for solutions for z satisfying Eq. (7.11). Now we again use
that the determinant of a matrix is the product of its eigenvalues, this time to re-
duce the order of calculations in z. With detM(z) =

∏

ρ mρ(z), the equations for
determining the renormalized spectra are

mρ(z) = 0. (7.12)

This approach is a good starting point for numerical analysis, as deriving the ei-
genvalues (or simply the determinant) from the effective action (6.66) is straight-
forward. Plotting log 1p

detM(z)
for a range of z and (in our case) k immediately

gives an idea of renormalized spectra.
As in the self-energy approach, a prerequisite to obtaining interesting analyt-

ical solutions is a suitable choice of system configuration. We address this in the
next section.

2These references technically concern matrix diagonalization in operator mechanics (not in the
context of path integrals), but our statements here are general and do not invoke operator mech-
anics.
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7.2 Choosing a set-up

We seek system configurations that simplify the effective action (6.66). As it stands,
generally all modes couple to each other. The number of quasiparticles being the
same as the number of particles (including all the cavity and SC modes that were
integrated out in Ch. 6), the number and order of equations (7.5) to be solved
would generally be analytically insurmountable. However, there are system con-
figurations for which modes couple mutually only in small subsets, while coupling
to modes outside these sets are either vanishing or negligible. These subsets can
consequently be considered separately, substantially simplifying our calculations.

Our first task is therefore to find a specific set-up for which the 2N -by-2N
matrix (7.2) reduces to an uncoupled set of small matrices. By inspection of the
action (6.66), we find two particular special cases of interest:

• If the FI is much smaller than the cavity, only k = (Ωm,0) and k = (−Ωm,0)
modes couple.

• If the FI spans the cavity, only +k and −k modes couple.

For the set-up analyzed thus far (Fig. 1.3), we expect the following results:

• If the FI spans the cavity, the aligning external field Bext will invariably pass
through the SC as well, compromising its superconducting properties.3 If
the FI only approximately spans the cavity, there will be space for only a
small SC, and its influence becomes vanishingly small.4 So, we discard these
configurations.

• If the FI is very small, the SC will only affect the k = 0 mode. While this
does give rise to an anticrossing, the anticrossing will not be able to resolve
momentum information about the superconducting gap, aside from a net
contribution by all SC quasiparticle modes. This is because in this case, the
k = 0 mode couples to all relevant photon modes, meaning it aggregates
information about all the scattering events in the SC, regardless of the mag-
nitude and direction of the momentum transfer in each event.

While an anticrossing in itself can be interesting, we instead opt to study a modi-
fied set-up, which not only leads to corrections to the magnon spectrum, but also
leaves each magnon coupled to a minimal set of photons (instead of the entire
range of photons), thus enabling the magnons to distinguish between scattering
events in the SC. This opens the doors to remotely resolving momentum inform-
ation about generalized gaps in the corrections to the magnon spectrum in future
works (to be addressed in Ch. 8). Before addressing this prospect, it is first neces-
sary to establish a measurable correction to the magnon spectra, so we consider
the simpler case of an isotropic gap in this chapter.

The modified set-up is illustrated in Fig. 7.2. As in the previous set-up (Fig. 1.3),

3See Ch. 8 for discussion on this assumption.
4Some of the results to be presented in Sec. 7.4.1 for an SC that spans the entire cavity are

promising, but do not far exceed expected losses. This validates the assertion that a considerably
smaller SC would result in an insignificant response.
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Figure 7.2: Set-up for analyzing corrections to the magnon spectrum due to
cavity-mediated interactions with the SC quasiparticles. The set-up is the same
as in Fig. 1.3, except the FI and the SC span the cavity, and the aligning field Bext
points along the y direction. Note that the axes and origin are the same as in
Fig. 1.3, but omitted here to prevent clutter.

we respectively place an FI and an SC thin film at the top and in the middle of a
cavity with dimensions Lx , L y ≫ Lz . However, we now direct the applied external
field Bext in-plane across the FI. We thus consider a configuration not permitted by
the one in Fig. 1.3: the FI and the SC both spanning the cavity. In this case, only+k
and −k modes couple in the FI, and each magnon mode (k) couples to only two
photon modes (q = ±k)5, in turn carrying information from only two scattering
events on the SC (p ± q scattered to p). This minimally aggregates momentum
information from the SC in the FI, which is promising for the prospect of probing
a generalized SC gap using the FI.

7.3 Effective action

The effective action (6.66) referred to so far was derived based on the set-up in
Fig. 1.3, so we first need to derive the corresponding effective action based on the
set-up in Fig. 7.2. This elicits modifications of the Hamiltonian.

The SC Hamiltonian (5.30) is the same as before, but can be simplified since
the SC spans the cavity; then DSC

p−p′,q ≈ δp′,p−q (limiting ourselves to the SC 1BZ),
so

HSC =
∑

pm

Epmγ
†
pmγpm +

∑

kς

∑

pm

∑

m′

gkp
ςmm′(akς + a†

−kς)γ
†
pmγp−k,m′ , (7.13)

where we have defined gkp
ςmm′ ≡ gk,p,p−k

ςmm′ (see Eq. (5.29)). For completeness, we

5A detail to note here is that this means the magnon k mode couples to the magnon −k mode
via the photons. But, these are the only magnon modes to couple mutually for a given k.



Chapter 7: Anticrossings in the magnon dispersion 85

write this coupling constant out in full for this special case:

gkp
ςmm′ ≡

�

gk,p+P
ς upu∗

p−k − gk,−p+P
ς vpv∗p−k gk,p+P

ς upvp−k + gk,−p+P
ς vpup−k

gk,−p+P
ς u∗

pv∗p−k + gk,p+P
ς v∗pu∗

p−k −gk,−p+P
ς u∗

pup−k + gk,p+P
ς v∗pvp−k

�

mm′

,

(7.14)
where we have reduced the expression (5.22) for gkpp′

ς to

gk
pς ≡

∑

d

Ok
ςd2i

eat
ħh

√

√ ħh
εωkV

sin[aSC(pd + kd/2)]. (7.15)

Here we substituted p → p + k, which reproduces the coupling constant from
Ref. [11].6

The FI Hamiltonian requires more extensive modifications, which we address
in the section below.

7.3.1 Modifying the FI Hamiltonian

Because the aligning field Bext is in-plane, pointing along êy , we first need to
redefine the magnons with respect to this new axis of quantization.

First, we define the helical spin operators

Si± ≡ Siz ± iSi x , Si+ = S†
i−, (7.16)

and perform the Holstein–Primakoff transformation

Si− ≡ η†
iħh
p

2S

√

√

√

1−
η†

iηi

2S
,

Si+ ≡ ħh
p

2S

√

√

√

1−
η†

iηi

2S
ηi . (7.17)

Hence, as before,
Si y = ħh(S −η†

iηi), (7.18)

and assuming a strong aligning field Bext (i.e. few magnons, 〈η†
iηi〉 ≪ 2S),

Si− ≈ ħh
p

2Sη†
i , Si+ ≈ ħh

p
2Sηi . (7.19)

The Cartesian spin components are then

Sid =
ħh
p

2S
2
(νdηi + ν

∗
dη

†
i ), (7.20)

where now d = z, x and {νz ,νx}= {1,−i}.
6Observe then that in Ref. [11], equal transversal dimensions of the normal metal (corresponding

to our SC) and the cavity is implicitly assumed upon invoking conservation of momentum.
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The new magnon basis alters the expression for the Zeeman coupling with the
FI: Inserting Eqs. (7.20), (5.9b) and (2.28) into Eq. (5.1), one finds

HFI−cav =−
gµB

ħh

∑

i

Si ·Bcav(ri)

=−
gµB

ħh

∑

i

�

1
p

NFI

∑

k

∑

d

ħh
p

2S
2
(νdηkeik·ri + ν∗dη

†
ke−ik·ri )êd

+ħhS

�

1−
1

NFI

∑

kk′

η†
kηk′

S
ei(k′−k)·ri

�

êy

�

·

 

∑

q

�

qy êx − qx êy

�

i sinθq

√

√

√
ħh

εωqV
eiq·ri (aq1 + a†

−q1)

!

. (7.21)

Some terms vanish. First, the product of the z components vanishes as Bcav has
no z component at z = Lz (the location of the FI). Secondly, some linear photon
terms vanish, as

gµB

ħh

∑

i

ħhS
∑

q

iqx sinθq

√

√

√
ħh

εωqV
eiq·ri (aq1 + a†

−q1)∝
∑

i

eiq·ri ∝ δq0. (7.22)

Both qx and sinθq in the summand are zero for q = 0, so these linear terms
vanish. More precisely, the sum

∑

i eiq·ri = NFI
∑

0̃δq0̃ (cf. Eq. (7.26)), with 0̃ any
photon momentum q that is equivalent to 0 across FI Brilluoin zones. However,
the coefficient of the linear photon terms scale as qx/

p

|q| for large q, while the
coefficient of the diagonal photon terms scale as ωq ∼ |q|. Hence the influence
of the linear terms on the theory is expected to be vanishingly small for q outside
the 1BZ, i.e. for large q.

We therefore find

HFI−cav =−
gµB

ħh

∑

i

�

1
p

NFI

∑

k

ħh
p

2S
2i
(ηkeik·ri −η†

ke−ik·ri )
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q
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(7.23)
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where we introduced the FI–cavity coupling constants

gηq ≡ −gµBqy sinθq

√

√

√
ħhSNFI

2εωqV
, (7.24)

gηηq ≡ −i gµBqx sinθq

√

√

√
ħh

εωqV
. (7.25)

For the last line of Eq. (7.23), we used
∑

i

e−i(k−q)·ri = NFI
∑

k̃

δqk̃, (7.26)

with k̃ any photon momentum q that is equivalent to k across FI Brilluoin zones.
We then limited the photon momentum range to the FI 1BZ (hence the approx-
imation sign in Eq. (7.23)): as argued below Eq. (7.22) in regards to neglecting
linear photon terms, the coefficients of the interaction terms in Eq. (7.23) also
scale slower with q than the diagonal photon terms, so their influence become
negligible for high photon momenta.

This concludes the modifications for the FI Hamiltonian, and we move onto
deriving the effective action.

7.3.2 Deriving the effective action

The system Hamiltonian for the set-up in Fig. 7.2 is thus

H =
∑

k

ħhλkη
†
kηk +

∑

pm

Epmγ
†
pmγpm +

∑

kς

ħhωka†
kςakς

+
∑
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gηk (η−k −η
†
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−k1) +
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kk′

gηηk′ η
†
kηk−k′(ak′1 + a†

−k′1)

+
∑

kς

∑

pm

∑

m′

gkp
ςmm′(akς + a†

−kς)γ
†
pmγp−k,m′ . (7.27)

We do not need to derive the effective action in order to conclude that the con-
tributions from the scattering terms ∼ η†

kηk−k′(ak′1 + a†
−k′1) are negligible in the

effective theory. It suffices to sketch the terms precipitating from integrating out
the cavity and the SC from the theory:

• Sketched, the initial action contains interaction terms of the following forms:
(η+η†)(a+ a†), η†η(a+ a†) and (a+ a†)γ†γ.

• After integrating out the cavity, the effective interaction terms are of the
forms (η + η†)(η + η†), (η + η†)γ†γ, γ†γγ†γ, (η + η†)η†η, η†ηη†η and
η†ηγ†γ. Only the last three forms are due to the interaction η†η(a+a†). All
the terms involving products of more than two magnon operators are neg-
ligible, since we have assumed a small number of magnons (i.e. 〈η†

iηi〉 ≪
2S), leaving η†ηγ†γ the only form that traces back to η†η(a+ a†).
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• After integrating out the SC, the effective interactions due to η†ηγ†γ are of
the forms (η+η†)η†η and η†ηη†η. These are also negligible due to the low
number of magnons.

Furthermore, the coupling constant gηq scales as
p

NFI with the number of FI lat-
tice points, while gηηq does not, leaving the latter relatively diminished for any
sizable lattice. Hence, we can neglect the terms ∼ η†

kηk−k′(ak′1 + a†
−k′1) from our

initial Hamiltonian altogether. This is convenient, since we may then recycle the
effective action (6.66) with only a few modifications to the sums and coefficients.
Neglecting the linear magnon terms for the reasons argued in the beginning of
Ch. 7, the effective Matsubara action reads

SFI =
∑

k

ħhλkη
†
kηk +

∑

k

Qk(η−k −η
†
k)(ηk −η

†
−k), (7.28)

with
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(7.29)

Above, we used that gηk gη−k = −|gηk |
2 and gkp

1mm′ g
−k,p−k
1m′m = |gkp

1mm′ |2, as can be veri-
fied by inspection of Eqs. (7.14) and (7.24). We furthermore used the Matsubara
result (6.58) along with Eq. (6.59) (note that the special case Epm = Ep−k,m′+iħhΩm

is not interesting. It implies k = 0, in which case Qk = 0 because gη0 = 0, so we
can discard this special case). Finally, we introduced the energy difference

∆Ekp
mm′ ≡ Epm − Ep−k,m′ . (7.30)

Clearly, the terms inside the parenthesis in Eq. (7.29) respectively stem from FI–
cavity–FI and FI–cavity–SC–cavity–FI interactions, cf. Fig. 7.1.

7.3.3 Simplifications

Several contribution to the effective coupling Qk are small, and only serve to com-
plicate further analysis. In the following, we therefore perform a series of simpli-
fications.
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Consider the analytical continuation iħhΩm → z. First, we find numerically
that ħhωk tends to be much greater than ∆Ekp

mm′ in our set-up. Because we are

interested in anticrossings between ∆Ekp
mm′ and ħhλk, we can assume z is on the

order of ∆Ekp
mm′ , and thus z ≪ ħhωk. We can therefore let

1
ħhωk ± z

≈
1
ħhωk

. (7.31)

Figure 7.3: Illustration of an SC quasiparticle (light blue) being scattered by an
incoming photon (dark blue). The quasiparticle type and corresponding band is
labeled m. The scattering can result in the type either persisting or changing (light
blue arrows), with the former generally requiring more energy.

Secondly, we find numerically that the off-diagonal m ̸= m′ elements of the
summand in Qk are very small compared to the diagonal elements. Physically,
these elements originate from scattering processes in which the photon not only
imparts its momentum onto the scattered SC quasiparticle, but also changes its
type, cf. Fig. 7.3. This requires more energy than scattering that preserves the
quasiparticle type, which suppresses the interaction.

Mathematically, this is because the critical current is typically low (associated
with momenta P near the origin of the SC 1BZ); and the coupling is suppressed
at large k due to a factor 1/

p
ωk, and is furthermore modulated slowly as ∼

sin(pd aSC). We can therefore rule out interactions beyond a regime where P,k ≪
p; in this regime, however, the terms in the m ̸= m′ elements in Eq. (5.29) are
seen to nearly cancel. By contrast, in the same regime, the terms in the m =
m′ elements in Eq. (5.29) add constructively. We therefore neglect the m ̸= m′

elements. The regime can be narrowed down further by observing that the factor
nF (Epm)− nF (Ep−k,m) in Eq. (7.29) is highly peaked near the Fermi surface, and
zero everywhere else; we can therefore narrow the range of p down to Fermi
momenta pF , which are usually very large, i.e. P,k ≪ pF .
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With the simplifications thus far, the expression for Qk becomes

Qk ≈ |gηk |
2
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�
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Here “p ≈ pF ” symbolically represents a summation interval around the Fermi mo-
menta; the limits of the interval are left to be determined numerically by gauging
the stability of the sum. Now, we can simplify Qk further by performing the sum
over m. Using E−p1 = −Ep0 (hence ∆Ekp

11 = −∆E−k,−p
00 ), we find
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We now substitute p −→ −(p − k), and shift the range of
∑

p≈pF
back to the SC

1BZ as before. Using −∆E−k,p−k
00 =∆Ekp

00 , we then get
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(7.34)

By inspection of Eq. (5.29), we find that gk,−(p−k)
111 = −gkp

100. Thus, using nF (x)−
nF (−x) = − tanh(β x/2ħh), we finally get
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Having performed the sum over m, we can easily implement the following, final
simplification. Because the external field Bext raises the magnon energy and is
assumed strong, the magnon energy ħhλk can be assumed non-negative for all k.
There will therefore be no anticrossings at negative energies, so we can neglect
negative values of ∆Ekp

00 . Hence

Qk ≈ |gηk |
2
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where
∑′

p≈pF
only sums over p for which ∆Ekp

00 ≥ 0. Note finally that ∆Ekp
00 ≥ 0

implies Ep0 ≥ Ep−k,0, meaning

tanh

�

βEp−k,0

2ħh

�

− tanh
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≤ 0. (7.37)
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With increasing values of z along the real axis, the summand in Eq. (7.36) is
therefore clearly negative for z ≪ ∆Ekp

00 and positive for z ≫ ∆Ekp
00 . Near z ≈

∆Ekp
00 , the summand becomes relatively large before switching its overall sign,

only kept from diverging by an imaginary contribution ℑz owing to losses. In
other words, every term in the sum represents an anticrossing in the renormalized
magnon dispersion, and their number is enormous for any SC larger than a few
lattice points.

7.4 Self energy

With the number of interactions involved, and the high energies associated with
small cavity systems, we anticipate that an assumption |Qk| ≪ |ħhλk| on weak
coupling holds; to linear order in |Qk/ħhλk|, we can thus neglect the off-diagonal
contributions to the eigenmodes in the effective action (7.28). This conveniently
leaves us with a diagonal action from which we can immediately extract the ei-
genmode propagator.

The effective action (7.28) is thus

SFI =
∑

k

ħhλkη
†
kηk −

∑

k

Qk(η−kη
†
−k +η

†
kηk)

=
∑

k

�

ħhλk − (Qk +Q−k)
�

η†
kηk. (7.38)

Since it is diagonal, the renormalized magnon propagator can simply be read off:

G = 1
ħhλk − (Qk +Q−k)

=
1

ħhλk +Σk(z)− z
, (7.39)

where we have defined the self energy

Σk(z)≡ −(Qk +Q−k) = Σk
cav +Σ

k
SC(z), (7.40)

which is divided into the FI–cavity–FI and FI–cavity–SC–cavity–FI contributions

Σk
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, (7.41)
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where we used |g−k,p−k
100 |2 = |gkp

111|
2.

We proceed to solve Eq. (7.6) in order to determine an expression for the
renormalized energy. Observe first that the solution for z is generally

z = ħhλk + ℑz +O
�

|Qk/ħhλk|
�

, (7.43)
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with the imaginary term ℑz representing losses inserted by hand, andO
�

|Qk/ħhλk|
�

representing corrections to the energy. Now, the self energyΣk
SC(z) is already a cor-

rection; corrections to this correction will therefore be of higher order in |Qk/ħhλk|.
We may therefore again invoke the weak coupling assumption |Qk| ≪ |ħhλk|. To
leading order, then,

ℜΣk(z) =ℜΣk(ħhλk + ℑz) +O
�

|Qk/ħhλk|2
�

≈ℜΣk(ħhλk + ℑz). (7.44)

We have thus obtained a leading-order expression for ℜΣk(z), and the equa-
tion (7.6) is immediately solved for the renormalized energies.

In the next section, we investigate numerically whether or not this self energy
is appreciable.

7.4.1 Expected losses, and numerical estimates of the self energy

In general, losses smear and blur features in particle spectra. For instance, in spec-
troscopic probing of cavity mode energies, losses give rise to a finite linewidth [14–
16], which leaves smaller features increasingly indiscernible. We therefore look
for realistic parameter choices that produce self energies in excess of expected
losses (strong coupling7), which indicates that the results are measurable. Below,
we first comment on the expected magnitude of losses, and then present numer-
ical estimates of the self energy (7.42).

Losses are usually cited in units of Hz, meaning energies are divided by 2πħh=
h. For reference, Ref. [14] cites losses of 2.7 MHz for a copper cavity, 2.0 MHz for a
superconducting qubit, and 1.1 MHz for the uniform mode in a YIG sphere, below
1K (the latter increases to about 3.5MHz at 10 K). They achieve a measurable
anticrossing corresponding to a coupling of 47MHz; in another similar set-up,
they achieve discernible features in the spectra corresponding to single-digit MHz
couplings (Ref. [13, Fig. 3]). Furthermore, Ref. [16] cites linewidths of 1.029–
11.84MHz for a range of low cavity modes, and 3.247MHz for the uniform mode
in a YIG sphere, in the mK temperature range. Their couplings are far greater,
at 0.78–7.11 GHz, yielding clear features. Lastly, Ref. [15] cites losses of 3MHz
for a coplanar superconducting Nb cavity, and 50 MHz for the uniform mode in
a Ga-doped YIG crystal. The last figure is exceptionally high because their YIG is
doped with Ga; Ref. [15] stresses that losses are significantly lower in pure YIG.
Their coupling is 450 MHz, again resulting in clear features.

With these numbers as guides, we expect our ℜΣk
SC to be appreciable if it

exceeds ≳ 1 MHz for similar material choices.
As a specific example, consider Bi:YIG (FI) and Nb (SC) inside a 2 mm×2mm×

12µm cavity. The cavity dimensions accommodate for a vertical separation of the
FI and SC of 6µm, an order above the scale of anomalous proximity effects. Bi:YIG
is YIG doped with bismuth, which exhibits smaller linewidths than pure YIG [63].

7As mentioned in the introduction, “strong coupling” is used here in the sense that the coupling
strength exceeds losses, not in the sense that some expansion parameter of an interaction Hamilto-
nian exceeds 1.
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(a)

(b)

Figure 7.4: Real part of the leading-order magnon self energy ℜΣky

SC(ħhλky
) ori-

ginating from interactions with SC quasiparticles, for Bi:YIG (FI) and Nb (SC)
films interacting via a 2mm×2 mm×12µm cavity at T = 6.1K (Tc = 6.0K). This
is a cross-section of k space along the positive ky = 2πmy/l

FM
y axis, along which

the response is greater than the kx axis, because the Zeeman coupling (7.24) is
linear in qy = ky . (a) is plotted assuming a tight-binding electron dispersion,
with Bext = 0.357T; and (b) assuming a 2D electron gas (2DEG) dispersion, with
Bext = 1.231T. We overestimate losses at ℑz/h= 30MHz for good measure. The
remaining parameter inputs are identical and summarized in Table 7.1.

Refs. [117, 118] furthermore reports low in-plane coercivities of only about 0.5–
35mT in nm-thin Bi:YIG films. Coercivity is a measure of how strong an applied
field is needed to demagnetize a magnet. The low coercivity is beneficial here be-
cause we seek to align the spins with an external magnetostatic field (cf. Fig. 7.2)
without compromising the superconductor. For comparison, Ref. [119] reports an
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Figure 7.5: Real part of self energy, with (blue) and without (orange) the contri-
bution from the SC, using a tight binding electron dispersion. The anticrossing-
like feature is evidently somewhat accentuated by appearing on the slope of
ℜΣk

cav. The variation in the bare magnon energy is less than 0.1MHz across this
range, so it does not affect the slope.

out-of-plane critical field of some 1–4 T for nm-thin Nb films, and Ref. [120] sug-
gests the in-plane critical field is much greater. As for the material of the cavity, we
leave it unspecified, only assuming losses are ≳ 1MHz as in Refs. [14–16]. Lastly,
because we consider films and not monolayers, we expect the finite depth of the
film will benefit the coupling strength as it increases the number of FI spins par-
ticipating in the interaction. Since the depth is still much smaller than the other
dimensions in the film as well as Lz (such that the mediating cavity modes do
not vary significantly across the depth), we anticipate the leading effect of the
depth is to multiply the number of lattice sites NFI by the number of layers (com-
pare this to the macrospin approximation [15, 26, 27]). We consider 100 layers,
corresponding to a typical film depth of about 124nm for Bi:YIG.8 Figs. 7.4 and
7.5 show numerical results for the magnon energy correction ℜΣk(ħhλk + ℑz) at
T = 6.1K (Tc = 6.0 K), with the remaining parameters summarized in Tab. 7.1.
Fig. 7.6 shows the self energy for a range of temperatures around Tc , showing a
strong sensitivity to the onset of superconductivity.

The self energy in Fig. 7.4a is on the order of 1–5 MHz, a very promising result
given expected losses. It appears even more pronounced when plotting the full self
energy, cf. Fig. 7.5. On the other hand, the self energy in Fig. 7.4b is only on the
order of 0.05–0.5 MHz. The difference is down to the choice of electron dispersion,
which determines gradients near the Fermi surface. Supercurrent was not needed
to produce a finite result here (in contrast to the results for the effective anisotropy
field derived in Ch. 6, for which a symmetry-breaking supercurrent was required
to yield a finite result), and was therefore not included in the numerics here. Note

8Note also that this is still much smaller than the dimension Lz of the cavity in the same direction,
one of the initial assumptions in our model.
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Table 7.1: Table of numerical parameter values.

YIG/Bi:YIG (FI) Nb (SC)
aFI 12.4 Å [121] aSC 0.330 nm [122]
S 14 [123, 124] Tc0 6.0 K [125]
2ħh2JNδS 6.09meV [126]a t 0.35 eVb

Layers 100 EF 5.32 eV [122]
aBased on the reported spin-wave stiffness. bBased on the tight-binding expression

t = ħh2/2ma2
SC [11, 56], with m the effective electron mass.

finally that while the self energy here is at most on the order 10MHz (Fig. 7.5),
the magnon energy is on the order of tens of GHz (Fig. 7.8), which validates the
weak coupling assumption |Qk| ≪ |ħhλk| since Σk(z) = −(Qk +Q−k) (Eq. (7.40)).

Figure 7.6: Temperature dependence of the tight-binding self energy ℜΣky

SC(ħhλky
)

around the critical temperature Tc = 6K. Note that the T = 7.0 K and T = 6.1 K
curves differ by less than 0.03MHz, so they are indistinguishable here. Below Tc ,
the self energy is rapidly suppressed by the SC gap.

7.4.2 Analyzing the results

The shape, magnitude and peculiarities of the plots in Fig. 7.4 leave much to
unravel. In this section, we reflect over technical aspects of the observed self en-
ergy in order to build an understanding of the results. In light of this analysis, we
furthermore provide an instructional comparison in Appendix C between the self-
energy approach and the results presented here, and a previous attempt at extract-
ing renormalized magnon energies based on the determinant approach outlined
in Sec. 7.1.2, which resulted in overestimated corrections.
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Choice of Bext

First, some comments directly to the plots in Fig. 7.4. The magnetic field strength
Bext was adjusted to achieve good coupling, as the interaction strength depends
on k and by extension the crossing point of the magnon energy (≈ gµBBext at
these energies) with the differences in SC quasiparticle energies.

Figure 7.7: ky dependent part of the coupling (7.29) (specified in Eq. (7.45)),
normalized to unit strength at maximum. Here we neglect slowly-varying ky de-
pendencies because ky aSC ≪ 1, and furthermore disregard the ky -dependencies
entering through the differences in Fermi–Dirac distributions, and the inverse en-
ergy differences (∆Ekp

00 − z)−1. This gives an indication of which my the densest
collection of intersections (see Fig. 7.8) should occur for, in order to achieve the
strongest possible self energy. This is in turn achieved by adjusting the magnitude
of Bext.

A plot of the normalized ky dependent part of the coupling is shown in Fig. 7.7.

Here we neglect the slowly-varying sinusoidal ky dependencies in gkp
1mm because

ky aSC ≪ 1. We furthermore disregard ky dependencies entering via the differ-
ences in Fermi–Dirac distributions (the tanh functions), since this mainly serves
to suppress interactions away from the Fermi surface; and the inverse energy dif-
ferences (∆Ekp

00 − z)−1, which give rise to the anticrossings. Including all factors
involving the cavity dimensions, the factor plotted was then proportional to

|gηky
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. (7.45)

Above, we assumed a square cavity Lx = L y = L, and used that V = L2 Lz , and

NFI ∝ L2 because the FI spans the cavity. We furthermore used that
∑′

p≈pF
is
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symbolically proportional to L2 because the SC spans the cavity (thus increasing
the number of p summed over), and finally, that sinθky

= ky/|Q| and cosθky
=

Qz/|Q|. Treating ky as a continuous variable, this indicates the strongest coupling
occurs at around9

ky =
π

Lz
⇒ my =

L y

2Lz
. (7.46)

With the above cavity dimensions, this works out to my ≈ 83, as seen in Fig. 7.7.
Observe also that all factors L cancel; evidently, because the FI and SC dimen-
sions scale to always span the cavity in this set-up, the coupling strength becomes
approximately10 independent of the transversal cavity dimensions. For small mo-
menta ky ≪ π

Lz
, also the dependency on the remaining cavity dimension Lz van-

ishes.

Gradients near the Fermi level

Recall that the interactions contributing to the self energy (7.42) are concentrated
near the Fermi surface. Noting then that Figs. 7.4a and 7.4b only differ by the elec-
tron dispersion used, the results are seen to be sensitive to details in the SC qua-
siparticle spectra near the Fermi surface. In Fig. 7.4, simple expressions for the
electron energies were used only to illustrate this dependency, because model-
ling the behavior of the material-specific electron bands near the material-specific
Fermi surface is a project in its own right.

By inspection of Eq. (7.42), we readily identify gradients near the Fermi sur-
face to be an important determining factor in the shape and magnitude of the self
energy. These enter via the inverse energy differences (∆Ekp

00−z)−1. To see this, ob-
serve first that contributing interactions are concentrated at the SC Fermi surface,
because this is where low-energy scattering events involving SC quasiparticles are
concentrated (cf. Fig. 7.3). Here the momenta p are generally large. Secondly, in-
teractions involving large photon energies |k| ≫ Qz are rapidly suppressed by
the factor ω−4

k ∝ |k|−4, which is otherwise relatively constant (ωk ≈ cQz for
|k| ≪ Qz) at lower momenta, due to the cavity set-up suppressing interactions via
modes other than those with longitudinal momentum Qz = π/Lz . We can there-
fore safely assume that |k| ≪ |p| for relevant interactions. By the definition (7.30)
of ∆Ekp

00 , then,

∆E
ky p
00 = Ep0 − Ep−ky êy ,0

=
Ep0 − Ep−ky êy ,0

ky
ky

≈ −(∂py
Ep0)ky . (7.47)

9We stress “around”, since there are other ky dependencies that factor in. Importantly, this in-

cludes the anticrossing factors (∆Ekp
00 −z)−1, whose distribution has proven to be an important factor

for the magnitude of the self energy. This is discussed later in this section.
10“Approximately” stressed here because the symbolic scaling of

∑′

p≈pF
with L2 is approximate.
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We recognize this as, essentially, the projection of the gradient of Ep0 at the near-
Fermi momentum p, in the py direction. More precisely, it is the linearization of
the SC quasiparticle energy at this point and in this direction, with the gradient
−(∂py

Ep0) the slope, and ky the variable.

Anticrossings

(a)

(b)

Figure 7.8: Plots showing intersections between the bare magnon energy ħhλky
≈

gµBBext (horizontal blue line), and SC quasiparticle energy differences∆E
ky p
00 for

a wide sample of momenta p near the Fermi surface (faint dark blue). The para-
meter inputs are the same as in Fig. 7.4. (a) is plotted assuming a tight-binding
electron dispersion, with Bext = 0.357T; and (b) assuming a 2DEG dispersion,
with Bext = 1.231 T. Their distribution is evidently very different. Note that the
anomaly in the upper right corner of (b) is only an artefact of the plotting.
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Observe now that the factors (∆Ekp
00−z)−1 clearly codes for localized divergent

features in the self energy, namely anticrossings. The singularities are generally
situated in the complex plane when taking into account losses (ℑz ̸= 0), so the
real part ℜΣk

SC(ħhλk) of the self energy only exhibits drawn-out peaks. The degree
of drawing-out is determined by losses:

1

∆Ekp
00 − z

=
∆Ekp

00 −ℜz + ℑz
�

∆Ekp
00 −ℜz

�2
+ (ℑz)2

. (7.48)

With the remaining factors in Σk
SC(z) (Eq. (7.42)) real, taking its real part makes it

a function of the factors
∆Ekp

00−ℜz
�

∆Ekp
00−ℜz

�2
+(ℑz)2

. As a function of ℜz ≈ ħhλk with constant

losses, we see the divergence is suppressed by the factor (ℑz)2 in the denominator.
The factors (∆Ekp

00 − z)−1 appear in the summand of the sum over momenta p
in Eq. (7.42). This indicates we are dealing with an enormous number of anticross-
ings: in principle, one for every p that gives rise to a positive ∆Ekp

00 (since ∆Ekp
00

crosses ħhλk at positive energies). Numerically, we find that for the inputs that went
into Fig. 7.4, the most pronounced individual anticrossings are no stronger than
single-digit mHz. It is the constructive addition of their enormous number that
results in a net self energy on the order of 0.05–5MHz in Fig. 7.4. This collective
appearance of many small anticrossings furthermore leaves only a resemblance
of a typical single-anticrossing spectrum as seen in spectroscopy [13–17], and as
sketched in Fig. 7.9.

In Fig. 7.8, we have plotted the intersections between ∆E
ky p
00 and ħhλky

for a
broad sample of p. Fig. 7.8a exhibits a higher density of intersections near a single
point (near my = 83) than Fig. 7.8b (near my = 50). This is because the gradients
in the py direction of the SC quasiparticle energy near the Fermi energy are more
evenly distributed in the 2DEG case than in the tight-binding case.

Anticrossings flip sign upon passing the (complex-plane) singularity along the
real axis, and the rate at which they do so depends on the magnitude of the losses.
Whether anticrossings add constructively or destructively therefore depends on
how closely situated they are, relative to losses. This is illustrated with a toy model
in Fig. 7.9, where we add together two equal anticrossings ℜ[ f (x , 0) + f (x ,δ)],
where f (x ,δ) = −[(x−1+δ)−0.1i]−1. f (x ,δ) describes an anticrossing between
a horizontal line at 0, and a diagonal line x −1+δ, with losses of |0.1i|. δ serves
to shift the crossing point away from 1. Observe that for δ = 0.0, the sum is
twice the summand, and retains an overall anticrossing-like appearance. This also
holds for δ = 0.1, with the peaks of the sum only slightly weakened. For δ =
0.2, the sum develops a saddle point. For δ = 0.5, two new peaks appears, and
the overall response is more drawn out and weaker than for smaller values of δ.
Evidently, these peculiarities become apparent only once the distance between the
anticrossings approach or exceed twice the losses 2|0.1i|.

Referring back to Figs. 7.4 and 7.8, then, we can understand that the many
small anticrossings add more constructively in the tight-binding case over the
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2DEG case, owing to the higher density of intersections in a narrow region along
the magnon energy. The toy model furthermore indicates the origin of peculiarit-
ies in the self energies that deviate from a simple anticrossing. Compare the saddle
point feature in Fig. 7.9c to Fig. 7.4a, and the appearance of new peaks in Fig. 7.9d
to the coarseness seen in Fig. 7.4b. Compare also the localized, strong response
for proximal anticrossings in Figs. 7.9a and 7.9d, and the relatively drawn-out and
weaker response for distant anticrossings in Fig. 7.9d, to Figs. 7.4a and Fig. 7.4b,
respectively.

(a) (b)

(c) (d)

Figure 7.9: Toy model illustrating the effect of adding two anticrossings to-
gether. The functions are ℜ f (x , 0) (dashed blue), ℜ f (x ,δ) (dashed orange) and
ℜ[ f (x , 0) + f (x ,δ)] (solid green) where f (x ,δ) = −[(x − 1+ δ)− 0.1i]−1, for
a selection of values for displacements δ (inscribed). For displacements less than
twice the losses δ < 2|0.1i| ((a) and (b)), the anticrossings add constructively
across the range. However, at δ = 2|0.1i| (c), their sum develops a saddle point,
and for δ > 2|0.1i| (d) they begin to add destructively across an intermediate
region. For δ ≥ 2|0.1i|, the sum is visibly less pronounced and more drawn out,
than when δ < 2|0.1i|.
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In Fig. 7.10, we take the toy model a step further, and explore how the toy
self energy evolves with an increasing number of anticrossings, which are also
increasingly spaced apart. The partial sums plotted are ℜg(x , n) = ℜ

∑n
m=0(1+

cos−1[πm/25] − x + 0.1i)−1 for n = 0, 1, . . . , 12. Here the distance between an-
ticrossings increase as a cos−1 function. This is analogous to the distribution of
intersections we found for the 2DEG case (Fig. 7.8b), which is seen as follows.
Neglecting for simplicity the gap, the SC quasiparticle energies equate to the 2DEG
dispersion ξ(p)∝ p2

x + p2
y up to an overall sign. The py -direction gradients at the

Fermi surface are then êy · ∇ξ(pF )∝ pF sinθp, with pF the Fermi momenta, and
θp the polar coordinate. The points of intersection between the magnon energy
ħhλky

≈ const. ≫ 0, and the SC quasiparticle energy differences ∝ ky · pF sinθp

for various near-Fermi momenta p, therefore occur at ky ∝ sin−1 θp up to some
multiplicative factor. Shifting θp by π/2 to make the first intersection occur for
the θp = 0 line, the intersections are distributed as ky ∝ cos−1 θp, as assumed in
the toy model.

Figure 7.10: Toy model illustrating how the partial sums of anticrossings devel-
ops with an increasing number of terms, subject to a specific distribution. The
partial sums are given by ℜg(x , n) =ℜ

∑n
m=0(1+cos−1[πm/25]− x+0.1i)−1 for

n= 0, 1, . . . , 12 (transparency decreasing with n). The spacing between anticross-
ings increase as a cos−1 function, in analogy to the 2DEG case plotted in Fig. 7.8b.
Observe that with an increasing number of terms, the partial sums maintain a
clean and (decreasingly) growing left peak, and develop an increasingly coarse
right peak. The right peak initially grows in magnitude, but eventually decreases
in magnitude and becomes drawn out.
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Thus, observe that certain features seen here are analogous to peculiarities
observed in the 2DEG self energy in Fig. 7.4b (also discernible in the tight-binding
self energy at lower T , cf. Fig. 7.6): a strong and clean left peak, and a rugged,
drawn-out right peak. In the toy model, the clean peak is a result of no anticrossing
occuring for x < 2, and the rugged peak, of the anticrossing being increasingly
spaced apart (compare this to the appearance of new peaks in Fig. 7.9d when
spacing exceeds twice the losses). These observations are in rough agreement
with the observed distributions of intersections (Fig. 7.8) compared to the shape
of the self energies (Fig. 7.4).

One notable discrepancy from this behavior, is that in the 2DEG case (Fig. 7.4b),
the self energy apparently maintains a clean left peak with its maximum at about
my = 75, even though the first intersections (Fig. 7.8b) take place already at
about my = 50, where they are also at their most dense. One important aspect
we have not factored into the toy models, is the variation of the coupling strength
associated with each anticrossing; instead the strength was assumed constant at
1, while the actual coupling strengths resolved across anticrossings in the self en-
ergy (7.42) varies with both p and k; for the latter, see Fig. 7.7, which is seen to
have a peak at a specific ky (my), and taper towards zero on either side.

Behavior near Tc, and probing the gap

Lastly, concerning the technical aspects of the results, we comment on the temper-
ature dependence observed in Fig. 7.6. It is seen that upon approaching the critical
temperature Tc from above, the self energy maintains a relatively constant shape.
As temperatures are lowered past Tc , the response self energy rapidly diminishes.
This is readily understood from inspecting the self energy (7.42): The Fermi–Dirac
functions nF (Ep0) (expressed in the self energy in terms of tanh functions) dimin-
ish rapidly at the onset of superconductivity. In physical terms, this is because
the number of energetically available SC quasiparticle states diminishes rapidly
with the onset of superconductivity, as the electron pairing energy (i.e. the gap)
presents a barrier to low-energy scattering. In mathematical terms, it is because
even near the Fermi surface, a finite gap renders the SC quasiparticle energy non-
zero: Ep0 ≥ |∆p|> 0 (cf. its definition (3.23); we neglect supercurrent (P) in this
discussion, as we did in the numerics). The minimum energy is |∆p|, and so the
maximum tanh(|∆p|) of the Fermi–Dirac functions decreases exponentially with

increasing |∆p|. Using the interpolation formula |∆p| ∝ tanh
�

1.74
q

Tc
T − 1

�

for

an s-wave (isotropic) gap, we see that |∆p| itself initially increases rapidly as T is
lowered below Tc . Overall, the self energy therefore diminishes extremely fast at
the onset of superconductivity.

Keeping this temperature dependence in mind, recall now that the magnon self
energy is sensitive to the gradients of Ep0 near the Fermi surface, with a selectively
strong response to slopes in the py direction. Recall furthermore that this selective
response stems from the coupling constant (7.24) asymmetrically scaling with ky .
This in-plane directional asymmetry is in turn a consequence of the external field
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Bext by design directing FI spins along êy , facilitating magnon excitations in êx .11

Hence, by a specific choice of direction of the easily adjustable external field Bext,
we made the FI selectively resolve gradients of Ep0 in that direction, near its Fermi
surface. Combined with the sensitivity to the onset of superconductivity, this is an
intriguing observation in relation to the prospect of remotely resolving momentum
information about generalized superconducting gaps in spintronic circuitry. We
return to this point in Ch. 8, suggesting continuations of our research.

Key takeaways:

• The magnon spectrum is renormalized by bilinear terms precipitating from
the effective theory derived in Ch. 6. The difference between the bare and
renormalized spectrum is the real part of the magnon self energy ℜΣk.

• Considering a set-up in which the external field Bext across the FI is aligned
with the y direction, and the FI and SC films span the cavity, only +k and
−k magnon modes couple. Combining this with an assumption on weak
coupling, we are able to extract analytical expressions for the self energy.
The part involving the SC reads

Σk
SC(ħhλk+ℑz) =

2|gηk |
2

ħh2ω2
k

∑′

p≈pF

�

|gkp
100|

2 + |gkp
111|

2
� tanh

�

βEp−k,0

2ħh

�

− tanh
�

βEp,0

2ħh

�

∆Ekp
00 −ħhλk + ℑz

.

• In a numerical example where we consider material parameters for Bi:YIG
(FI) and Nb (SC) inside a 2 mm × 2 mm × 12µm, we find a promising self
energy on the order of expected losses when assuming a tight-binding elec-
tron dispersion. Assuming a 2DEG dispersion, the self energy is an order
weaker, and therefore not within currently detectable range, in this arbit-
rary example.

• The amplitude and shape of the self energy depends on the distribution and
density of gradients near the Fermi surface of the SC quasiparticle spectrum.
The directional dependence on the gradients is partially biased in favor of
the direction of Bext.

• The self energy diminishes rapidly as the temperature passes below Tc , i.e.
at the onset of superconductivity.

• Combining the aforementioned dependencies suggests the prospective ap-
plication of the renormalized magnon spectrum as a remote probe for mo-
mentum anisotropy in generalized superconducting gaps.

11Why does this coupling in êx scale with the perpendicular component ky? Because the spins Si

couple to Bcav ∝∇×Acav (cf. sec. 5.1).





Chapter 8

Summary, discussion and outlook

8.1 Overall model

In this dissertation, we have provided a detailed derivation of a microscopic model
for the cavity-mediated interactions between an FI and an SC, emphasizing the
impact on the FI. This is the main result of our research; not only the final effect-
ive FI action (6.66), but also the intermediate result of an effective FI–SC action
(presented in Paper II after integrating out the cavity). This microscopic model
was motivated by a semiclassical proof of concept (Paper I) that demonstrated
the use of cavity mediation to enable the magnetic moment of a ferromagnetic
sphere, to remotely resolve the superconducting phase transition in a supercon-
ducting wire. We have furthermore provided an in-depth analysis of the first and
second order effects of the SC on the FI, with respect to the paramagnetic coup-
ling. These are, respectively, to reorient the spins of the FI (in other words, to
induce an effective anisotropy field), and to renormalize the energy spectrum of
the magnons. Our model is based on the Matsubara path integral formalism; in
contrast to the perturbative Schrieffer–Wolff approach of related works [2, 10,
11], this allows for an exact integrating-out of the cavity, and the results are not
limited to an off-resonant regime.

In deriving the effective FI action (6.66), we perturbed the system only with
respect to the paramagnetic coupling, meaning there is freedom to let the FI and
cavity hybridize without the model breaking down. This flexibility does not carry
over to the results on the magnon self energy in Ch. 7 as weak coupling was even-
tually invoked, but it is applicable to the anisotropy results presented in Paper II.

Moreover, because the cavity facilitates interactions across distances above
the length scales of proximity effects, the FI and SC are not subject to the same
mutual disruption of their orders, such as the breaking of Cooper pairs near the
SC boundary by the FI magnetization. The separation also enables the FI and SC
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to be subjected to different temperatures1 and different drives.
Owing to the placement of the FI and the SC inside the cavity, the cavity modes

only interact with the spin degrees of freedom of the FI, and the momentum de-
grees of freedom of the SC. In effect, the cavity then takes on the role as an effect-
ive spin–orbit coupling between the FI and the SC. This interpretation becomes
apparent during the intermediate calculations when the cavity is integrated out
before the SC, as was done in Paper II.

The model derived in Ch. 6 allows for a broad range of FI, cavity and SC dimen-
sions, as well as placements of the FI and SC inside the cavity. We only constrained
the cavity dimensions, and the placement of the films. The cavity dimensions are
such that Lz ≪ Lx , L y , which renders excitations of the cavity modes in the z dir-
ection energetically unfavorable. The FI and SC films are respectively placed at
the top (z = Lz) and the middle (z = Lz/2) of the cavity, which limits coupling to
Qz = π/Lz cavity modes, and consequently leaves the coupling purely magnetic
(FI) and electric (SC). There are also implicit limitations to the model in the fact
that we have used periodic boundary conditions in the transversal directions for
the cavity modes. As they stand, our results only depend on the relative positions
of the FI and SC. However, in a cavity with reflecting walls in all directions, the
field strengths are modulated as sine and cosine functions in space, not as complex
exponentials with modulus 1 (cf. the discussion on cavity boundary conditions in
Ch. 4). For instance, a cavity wall extinguishes perpendicular components to the
electric field in its vicinity, and the cavity–SC coupling is modified when such ef-
fects are considerable. The absolute positional dependency would be resolved by
imposing reflecting boundary conditions on the cavity modes in all directions.

8.1.1 Coupling to gap fluctuations

In our model, we coupled to the quasiparticles of the SC. This has been demon-
strated to enable extraction of momentum information about the superconducting
gap via the FI in this dissertation and in the papers. In particular, the broken inver-
sion symmetry due to an applied supercurrent gives rise to an effective anisotropy
field; and the onset of superconductivity leads to rapidly suppressed corrections
to the magnon energy, with a directional sensitivity to the gap (note that break-
ing inversion symmetry was not required for this result). An interesting avenue to
pursue with the aim of extracting information about the superconducting gap, is
to instead consider the cavity coupling to fluctuations in the gap. Such a coupling
is considered in a number of papers [127–131]. Take Ref. [129] as an illustrative
example. In order to derive a coupling to fluctuations, they bring the quartic elec-
tron interaction (3.13) directly into the Matsubara path integral, introduce the

1Note, however, that our model takes the system to be held at a single temperature. This is
because the Matsubara formalism is based on the density matrix ρ̂ ≡ e−βH/ħh (cf. Ch. 6) for a canon-
ical ensemble at thermal equilibrium. However, the space separating the FI and SI can be assumed
thermally insulating, so the analysis is expected to hold also for an FI and SC at different temper-
atures.
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gap and its conjugate as auxillary fields via a Hubbard–Stratonovich transform-
ation2, and perturb the exact integrals over the auxillary fields by considering
them as mean-field values plus a perturbation (cf. Eq. (3.14)). Since our model
is based on the same path integral formalism involving the same quartic electron
term, our theory is readily extended to accommodate for a similar coupling to gap
fluctuations.

8.1.2 Effective SC or cavity theory

Lastly on the topic of the model in general, we stress that although we ultimately
extract an effective magnon theory, it is also possible to leave the SC action un-
touched and instead integrate out the FI along with the cavity. This would produce
an effective SC quasiparticle theory, from which the influence of the FI and the cav-
ity on the SC could be extracted. This can even be done without any perturbations
or mean-field approximations, which by contrast was necessary to integrate out
the SC in deriving the effective magnon theory, although for many purposes (like
extracting pairing potentials) it is necessary after the action is derived. We can
sketch the results of integrating out the cavity and FI instead, in that order:

• Starting with an electron theory with a quartic pairing term instead of the
SC quasiparticle theory (which involved a mean-field approximation), the
system Hamiltonian comprises terms of the forms η†η, a†a, c†c, (η+η†)(a+
a†), (a+ a†)c†c and c†cc†c.

• Integrating out the cavity, we get terms of the forms η†η, c†c, (η+η†)(η+
η†), (η+η†)c†c and c†cc†c.

• Finally, integrating out the FI, we get terms of the forms c†c and c†cc†c.

The influences of the FI and cavity on the SC have thus been collected into quartic
electron interaction terms.

The Feynman diagrams for all the interactions that aggregate to c†cc†c terms
would follow quite a simple pattern (Fig. 8.1): besides the a priori electron pairing

2In broad terms, this transformation involves collecting the four electron operators into two
composite operators ρp,ρ†

p (e.g. ρp = c−p↓cp↑, though precisely which two electrons in Eq. (3.13)
are paired is generally arbitrary) in the path integral Z , and multiplying the path integral Z by
1 resolved into a Gaussian integral over an auxillary bosonic field φp,φ†

p. By then shifting the
variables φp,φ†

p, the single integral over the quartic electron interaction (now appearing as ρ†
pρp)

is replaced by a double integral over bilinear electron terms coupled to the auxillary field (φpρ
†
p

and ρpφ
†
p) [108].

Up to this point, everything is exact: the integrals over the composite and auxillary fields are
equivalent to the original integrals over the electron variables. The power of this approach is made
apparent upon applying physical considerations to simplify the integral over the auxillary field. By
a suitable choice of paired electron operators, simplifying assumptions can be made to the auxillary
field. The choices are referred to as channels; the example choice above is the pairing channel, made
here because we recognize its connection to the BCS ordering parameter. From here it is clear that
proceeding with an assumption of small fluctuations (cf. Eq. (3.14)), the integral over the auxillary
field (identified as the BCS gap) can be simplified. Because this has been performed inside a path
integral, the powerful tools of the path integral formalism can be used to analyze the system beyond
leading, mean-field order.
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term, there is a cavity-mediated electron pair interaction involving the exchange
of a single photon (this is the term analyzed in Ref. [11] in an off-resonant re-
gime), and an infinite series of terms in which the exchanged photon oscillates
between a magnon and a photon state an arbitrary number of times. This series
aggregates the influence of the FI on the SC, or more precisely on the electron
pairing. From here, one could proceed by applying e.g. mean-field theory as was
done in Ref. [11], in order to extract corrections to the electron pairing potential
due to the FI. From this one would likely also find renormalizations in the electron
spectra analogous to the ones observed in the magnon spectra in Ch. 7, since it is
a mutual effect.

+

+

+

η

a

gη

c

gc

V

...+

Figure 8.1: Feynman diagrams of the interactions collected into quartic electron
terms in the effective electron theory. Here η are magnons, a photons, c electrons,
V the a priori electron pairing potential, gη the Zeeman coupling and g c the para-
magnetic coupling. The series is infinite, with the photons emitted or absorbed
in the electron scattering events at the ends, oscillating between a magnon and a
photon state an arbitrary number of times in-between (indicated by the ellipsis).

In the context of spectroscopic inquiry, it is of course also possible to instead
integrate out the FI and the SC, leaving an effective cavity action. This avenue
could be interesting to pursue for the purpose of experimental research. For in-
stance, Ref. [13, 14] probed for the indirect coupling between a single magnon
mode and a qubit mediated by a single cavity mode, by spectroscopically probing
another cavity mode that coupled weakly to the qubit. This made the anticrossing
in the qubit spectrum, caused by the mediated interaction with the magnon mode,
to appear as an anticrossing also in the spectrum of the probed mode. This way,
they did not significantly disturb the mediating mode during the spectroscopy.
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8.2 Reorientation of FI spins

In Ch. 6, we showed that the leading effect of the SC on the FI, in orders of the
paramagnetic coupling, is to reorient the spins of the latter, or in other words to
give rise to an effective anisotropy field. In Paper II, we present the anisotropy
field along with a numerical example. In this dissertation, we presented the reori-
entation of the spins, which additionally captures how the FI response is modified
by FI–cavity–FI interactions, mixing magnons of positive and negative k. It fur-
thermore captures the suppression of the response by the magnitude of Bext via
(ħhλk)−1 (cf. Eq. (6.80)), which on the other hand needs to be sufficiently large to
align spins and ensure the validity of the linearization3 of the Holstein–Primakoff
transformation. In order to achieve a finite realignment of spins, we showed it was
necessary to break the inversion symmetry of the SC, which we did by applying a
supercurrent. This supercurrent is notably implemented via the superconducting
gap (see Eq. (3.17)), meaning this effect is a consequence of superconductivity.
This suggests its application in spintronic circuitry to remotely resolve broken SC
inversion symmetry.

Observe that this is not to say there is no magnetic effect of the SC on the
FI as it exits the superconducting state due to temperatures rising above Tc , or
the supercurrent exceeding the critical current. Such a normal-state effect is just
not resolved in our system Hamiltonian. The Biot–Savart law ∇× B = µ0J dic-
tates that a static current density J gives rise to a magnetostatic field B. Since
like Bext it is magnetostatic, we can ignore the influence of the cavity. It is then
clear that the FI will be subjected to an inhomogeneous magnetostatic field also
in the normal-state case. However, this magnetostatic field is first of all expected
to diminish upon entering the superconducting regime as the density of normal
electrons diminishes (cf. Paper I), while the anisotropy field in our research is ex-
pected to stabilize at temperatures well below Tc as a measure of broken inversion
symmetry (see discussion in Paper II). Secondly, the distribution of the normal-
state magnetostatic field is determined by the SC geometry. This differs from the
anisotropy field in our research, whose distribution is determined both by the SC
with which the FI interacts, and by the cavity, through which the interaction is
mediated. In particular, the spatial distribution of the range of mediating photon
modes is determined by cavity geometry. This gives rise to an anisotropy field that
is very different from the magnetostatic field in the normal case. One peculiarity
we highlight in Paper II is that for a certain in-plane separation of the FI and SC,
the effective anisotropy field can reverse its direction relative to the no-separation
case. This effect is more obvious when considering mediation via a single mode
as in Paper I, where the magnetic field can change direction depending on the
position of the magnet inside the cavity.

3I.e., to limit unwanted magnon–magnon scattering, as expressed by higher order terms in the
transformation.
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8.2.1 Spatial decoherence of mediating modes

In the example presented in Paper II for the application of the model, the FI was as-
sumed small relative to the cavity, substantially simplifying the calculations. This
left the FI–SC interaction mediated by a wide range of cavity modes. For the aim
of facilitating long-distance coupling, a significantly limiting factor was the relat-
ive differences in phases between the mediating waves: one range of cavity modes
may contribute to the anisotropy field in one direction, while another may do so in
the other direction, leading to a suppressed net anisotropy field. This results from
the fact that cavity modes of increasing energy also oscillate increasingly fast (re-
call that ωq ∝ |Q|), meaning they spatially decohere over distances; see Fig. 8.2.

This dependency is expressed by the factors eiq·rFI
0 and eiq·rSC

0 that enter via the
coupling constants (5.13) and (5.22). In the anisotropy field, their product enter
as eiq·(rFI

0 −rSC
0 ), where rFI

0 −rSC
0 is recognized as the in-plane separation between the

center points of the FI and the SC. From this it is clear that when considering me-
diation by a range of photon modes (q), increasing separation causes this factor to
increasingly oscillate, ultimately leading to destructive addition when summing
over q.

Figure 8.2: The cavity modes (dark blue) that mediate the interaction start out
spatially coherent at the SC, and decohere over a distance until they reach the FI
(unequal red arrows). The modes are distinguished by faintness. Thus the coher-
ent signals from the SC (equal blue arrows), are received as decoherent signals
by the FI (unequal red arrows), adding destructively to a weak net signal. Ob-
serve that in our model, these wave are complex exponentials with unit length,
not real sinusoidals as might be understood from the illustration. Note also that
this decoherence concerns spatial oscillations, not oscillations in time.

The destructive effect of this oscillation is limited by the suppression of contri-

butions from high-energy photon modes, which is expressed by the factors
DFI

0qDSC
0,−q

ω2
q

entering the expression for the anisotropy field. This is discussed in more detail
in Paper II. This decoherence effect of many modes stands in contrast to the case
of single-mode mediation (cf. Paper I), where strong signals can travel across dis-
tances up to the order of the cavity dimensions. Despite this limitation, in Paper II,
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we were able to extract a promising anisotropy field mediated across 130µm in an
arbitrary practical example, with material parameters for YIG and NB. With para-
meter optimization, we expect this can be made appreciable for a low-coercivity FI
such as Bi:YIG, which is left for future work. The distance is two orders above the
scale of anomalously long-ranged proximity effects reported in the literature [8,
9].

8.2.2 Easing constraints

Broken SC inversion symmetry is prerequisite to obtaining a finite anisotropy field,
as elaborated near the end of sec. 6.1.4. In our model, this purpose was served by
the supercurrent. However, the way in which this was implemented (giving the
Cooper pairs an evenly distributed center-of-mass momentum 2P, cf. the Hamilto-
nian (3.17)) limits the SC dimension perpendicular to the direction of the DC to no
more than the Pearl length λ2/d. As an example, Ref. [125]measures penetration
depths λ as low as around 240 nm for superconducting Nb films of depth d around
8nm, equating to Pearl lengths of µm order for the thinnest films. It furthermore
introduces the complication of needing to pass a DC through the cavity, without
affecting the system. These limiting constrains could be mitigated by breaking in-
version symmetry in other ways. One candidate is to take into account spin–orbit
coupling on the SC and subjecting it to a magnetostatic field instead.

Another important constraint in our model that could be eased, is the require-
ment that the FI and SC do not overlap in-plane (cf. Fig. 1.3). This was assumed so
that the perpendicular field Bext could be passed through the FI, while also being
shielded in order to keep it from interfering with the SC. This was done experi-
mentally in Refs. [13, 14] for the same reason, with a superconducting qubit in
place of an SC as such. However, as we also address in Paper II, certain material
choices may render this constraint unnecessary. For instance, Bi:YIG (FI) exhibits
very low out-of-plane coercivities of only about 0.3–6 mT in nm-thin Bi:YIG films,
as reported in Refs. [117, 118]. Meanwhile, Ref. [119] reports an out-of-plane
critical field of some 1–4T for nm-thin Nb films. In this case the magnitude of
Bext would be sufficiently far below the critical field of Nb to have any meaningful
impact, but would still align the FI spins. However, the SC would then also dis-
tort the spatial distribution of Bext in its vicinity due to the Meissner effect, which
would have to be taken into account.

Alternatively, it could be possible to do away with Bext altogether by limiting
the choice of the FI to materials with out-of-plane magnetic anisotropies (suffi-
ciently thin Bi:YIG is such a material [117, 118]). The mathematical role of Bext
is then instead taken on by the internal magnetization field of the FI.

Easing the constraint on in-plane separation limits the material choices to low-
coercivity ferromagnetic insulators, and high-critical field superconductors. To the
extent that the purpose of the set-up is to resolve broken inversion symmetry of
the SC in the FI, this is not a detrimental trade-off. On the contrary. As noted
above, increasing in-plane separation leads to increasingly decoherent mediation
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of interactions by the various cavity modes, leading to a diminished anisotropy
field. In combination with imposing a minimum separation in order to keep the
FI and SC from overlapping in-plane, this considerably limits the choices of FI
and SC dimensions and placements given any particular cavity dimensions. Doing
away with the requirement of a minimum separation would therefore allow for a
considerably broader selection of system configurations.

8.3 Corrections to magnon spectrum

From the effective magnon theory, we derived the expression (7.42) for the correc-
tions to the magnon spectrum due to mediated interactions with SC quasiparticles.
We subsequently provided an in-depth numerical analysis of the self energy for the
specific material choices of Bi:YIG (FI) and Nb (SC), inside a 2 mm×2mm×12µm
cavity. The cavity dimensions accommodate for a vertical separation of the FI and
SC of 6µm, an order above the scale of anomalous proximity effects. We demon-
strated an anticrossing-like correction to the magnon spectrum, with a magnitude
of 0.05–5MHz (Fig. 7.4). This self energy is the net result of many small, indi-
vidual anticrossings added together, with their many individual sharp peaks atten-
uated by losses. The magnitude was shown to increase with the number and dens-
ity of individual anticrossings sufficiently near the same point along the magnon
spectrum; their density and distribution in turn depends on the gradients near
the Fermi level in the SC quasiparticle spectrum, with the strongest energy cor-
rection occurring for gradients in the direction determined by the easily adjustable
external field Bext. The greater the number of nearly equal gradients in this direc-
tion, the greater the magnon self energy.

With losses in the system expected to be on the order of 1–10MHz based
on experimental cavity set-ups [13–17], the numerical results are promising; the
strongest results of around 5MHz are on the same order as the anticrossing detec-
ted via spectroscopy of a cavity mode in Ref. [13]. On the other hand, the weaker
results, for which the distribution of gradients at the Fermi level is more even, are
not currently within a detectable range in our arbitrary example. More work is re-
quired to determine if the energy corrections can be made larger without relying
on specific Fermi surfaces.

8.3.1 Other gap symmetries

In our model, we considered a simple s-wave superconductor. Here, we argue for
the potential application of the FI, or more precisely the magnon spectrum, as a
means for a spintronic component to remotely resolve the momentum anisotropy
of other categories of superconducting gaps. The cavity-mediation facilitates in-
teractions over distances exceeding those of proximity effects, which therefore do
not involve the disruption of superconducting order present in proximity systems.
Note that by contrast, the FI spin reorientation discussed in the last section can-
not resolve gap anisotropies; the gap enters the anisotropy field (6.69) via the
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cavity–SC coupling constant gqpp′

ςmm and the Fermi–Dirac distribution, but does so
with diagonal indices in p′ = p. This enables q- and p-dependent terms to be
factorized. The photons (q) are therefore unable to differentiate between SC qua-
siparticles (p). The collection of SC modes thus homogeneously contribute to the
FI spin reorientation.

ê⊥

ê||

Bext

FI

Figure 8.3: Bext at an arbitrary in-plane angle α. The parallel and perpendicular
directions are ê∥ and ê⊥, respectively.

In the calculations presented in Ch. 7, we took the external in-plane field Bext
to point in the y direction. This biased the contributing Zeeman coupling (7.24)
towards the component qy of the photon momenta. The model is readily gener-
alized to allow for an arbitrary in-plane direction of Bext, and we show this here.

Let Bext point in an arbitrary direction defined by its polar angleα (see Fig. 8.3).
Then after the Holstein–Primakoff transformation (Sec. 2.2.1), the in-plane, per-
pendicular spin component S⊥ becomes

S⊥ =
ħh
p

2S
2
(−iηi + (−i)∗η†

i )ê⊥ (8.1)

cf. Eq. (7.20). The only formal difference between this component and the com-
ponent Si x that contributed to the interactions in Ch. 7, is its direction ê⊥. In terms
of the x y directions, this unit vector reads

ê⊥ = −êy cosα+ êx sinα. (8.2)

Dotted with Bcav ∝ qy êx − qx êy (Eq. (5.9a)), we find that the coupling constant
(7.24) now does not scale only with qy , but more generally with

ê⊥ · (qy êx − qx êy) = qx cosα+ qy sinα. (8.3)
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Its gradient,

∇q[qx cosα+ qy sinα] = êx cosα+ êy sinα= ê∥, (8.4)

shows that its greatest slope is now generally along ê∥, i.e. Bext, with the same
magnitude as before. Corrections to the magnon energy are now biased towards
gradients in the SC quasiparticle energy pointing in this direction. Note that the
bias does not favor complete alignment with Bext, as seen by considering the other
k-dependent factors entering the self energy (7.42). While the remaining factors
in the Zeeman coupling (7.24) are isotropic in q = k, the paramagnetic coup-
ling (7.15) instead introduces four-fold symmetry. It is seen to favor diagonals
in k space over kx or ky by a multiplicative factor

p
2. This symmetry originates

from the SC lattice geometry, taken to be square in our model for simplicity (the
symmetry is also seen in Ref. [11]). If used as a probe for SC gap anisotropy, the
magnon spectrum would have to be corrected for this lattice-geometry bias in
order to isolate the effect of gap anisotropy.

(a) (b)

Figure 8.4: A circular Fermi level (dashed line) with (a) an s-wave gap, and
(b) a d-wave gap, presenting an energy barrier up to the finite-temperature SC
quasiparticles (cloud). Here we have for simplicity only taken into account the
m= 0 type quasiparticles, which have energies above the Fermi level. Depending
on what directional derivative (red arrows) of the quasiparticle energy is probed
for by an appropriate adjustment of the angle of Bext (hence k bias), the magnon
energy correction will be more or less suppressed by anisotropy in the gap. Note
that directional derivatives from all across p space enter the self energy, not just
the singular points of the arrows at the Fermi level shown here.

The corrections to the magnon spectrum were shown to be rapidly suppressed
by the onset of superconductivity, nearly halving in magnitude through 0.1 K be-
low Tc (Fig. 7.6). However, a range of 0.1 K is well within experimental resolu-
tion. In effect, the magnon spectrum captures a “negative” of the gap, its absence.
Combined with the readily adjustable directional sensitivity to Fermi level gradi-
ents, these energy corrections are promising candidates for detecting momentum
anisotropy of the superconducting gap in remote spintronic circuitry, across dis-
tances exceeding the scales at which proximity effects effectuate disruption of the
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magnetic and superconducting orders; see Fig. 8.4 for a conceptual drawing. Spe-
cifically, we anticipate the directional sensitivity selected by the readily adjustable
field Bext, will lead to greater or lesser suppression of the magnon energy correc-
tions by the gap at the onset of superconductivity. However, while the strongest
numerical results are within a currently detectable range at Tc (i.e. in absence of a
gap), the weaker results are not, and they are only distinguished by details of the
Fermi surface. Before pursuing the question of probing general gaps, it is therefore
first necessary to look for means to enhance the self energy above expected losses,
without relying on favorable material-specific properties of the SC, including in
particular the distribution of directional derivatives of the Fermi surface.

We stress that little work is required to accommodate for anisotropic gaps in
our model. The isotoropy of the gap has only been invoked in the numerics (in Pa-
per II and Secs. 7.4.1 and 7.4.2). The broader quality of even inversion symmetry
in momentum space (along with spin antisymmetry) was assumed when introdu-
cing the pairing Hamiltonian (3.12). The analytics therefore already accomodate
for inversion-symmetric singlet gaps, e.g. the d-wave gap illustrated in Fig. 8.4b.
For inversion-antisymmetric (e.g. p-wave) gaps, it is necessary to follow through
with symmetric (triplet) spin indices in the pairing Hamiltonian (3.12).4

8.3.2 Concluding remarks

In summary, our research has resulted in a versatile model for cavity-mediated
interactions between an FI and an SC. We have demonstrated the theoretical
strengths of the path integral formalism in this context, as compared to common
approaches based on the Schrieffer–Wolff transformation, Jaynes–Cummings-like
modelling, and classical modelling. Ultimately directing our focus towards the
mediated effects of the SC on the FI, we have derived an expression for the re-
orientation of the FI spins in response to broken inversion symmetry in the SC,
and also the correction to the magnon spectrum due to mediated resonances with
the SC quasiparticles. We have moreover presented promising numerical results
along with an in-depth analysis for the latter, within a detectable range weighed
against expected losses. We have also provided a promising numerical example
for the effective anisotropy field (i.e., spin reorientation) in Paper II, in which the
FI and SC were separated by a distance 1–5 orders above the length scales of prox-
imity effects. The long-distance mediation facilitates subjection of the FI and SC
to separate drives and temperatures, as well as interactions without the mutual
disruption of their orders associated with proximity effects, such as the breaking
of Cooper pairs due to the FI magnetization.

The research leaves many interesting avenues to explore in continuations of
the work. This includes refinements such as taking into account reflective bound-
ary conditions in all directions in order to resolve absolute positional dependency

4Technically there exist exotic gaps that are p-wave singlet, and invert some other symmetry, such
as time inversion [132]. However, these gaps are beyond our model, since we have disregarded the
time (and orbital) index altogether.
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inside the cavity; continuations such as analyzing the mediated effect of the FI on
the SC, or both on the cavity; and extensions such as coupling to gap fluctuations,
and considering other categories of the gap than the simple singlet s-wave (an iso-
tropic gap). The latter is suggested in light of observations made in the analysis
of the corrections to the magnon spectrum, viz., their sensitivity to directional
derivates at the Fermi level of the SC, and their rapid suppression by the onset
of superconductivity. We anticipate that combining these properties of the correc-
tions would enable the magnon spectrum to resolve anisotropy in the SC gap. We
stress that the analytics already accommodate for inversion-symmetric anisotropic
gaps, and little work is required to implement inversion-antisymmetric gaps. As
with many other dissertations, we conclude this one with an open ending.
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Macroscale nonlocal transfer of superconducting signatures to a ferromagnet in a cavity
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Cavity spintronics recently heralded nonlocal magnonic signal transfer between magnetic samples. Here we
show that by including superconductors in the cavity, we can make use of these principles to bring composite
superconductor-ferromagnet systems to the macroscale. We analyze how a superconductor’s ac conductivity
influences the spin dynamics of a spatially separated magnet, and we discuss the potential impact on spintronic
applications.

DOI: 10.1103/PhysRevB.102.180506

The field of superconducting spintronics has been gather-
ing pace in the last decade as the promise of achieving low
dissipation spin and charge transport has been increasingly
refined and realized [1–3]. It relies on the proximity effect,
whereby properties of one material can persist in an adjacent
thin film. This places a tight nanometer constraint on the
operational range in most cases. The most anomalously long-
ranged persistence of superconductive signatures is reportedly
up to the micrometer range [4,5]. However, in this Rapid
Communication we highlight the untapped potential of com-
posite superconductor-ferromagnet systems to make use of
advances in cavitronics, and that photon-mediated processes
can enable the detection of centimeter-ranged superconduc-
tive signatures. We provide a readily accessible example to
establish the proof of concept, and discuss multiple directions
for exploration to highlight the potential for innovation in
superconducting spintronic applications.

Cavity spintronics, or cavitronics, is an emerging in-
terdisciplinary field in which microwave or optical cavity
photon modes can couple to magnons (also called spin
waves). Experiments have shown strong coupling of cavity
modes to both ferri- and ferromagnets [6,7]. This is ob-
served as a hybridization of the photon and magnon modes,
indicated by avoided crossings/Rabi splitting in the nor-
mal mode frequency spectrum. It was recently shown that
magnonic interactions between two nonlocal magnetic sam-
ples can be mediated by the cavity modes [8–10]. This
means information encoded in the magnitude and phase of the
spin waves (i.e., spintronic information) can be transmitted
nonlocally over macroscopic length scales. We explore the
question of magnons coupling nonlocally to excitations in a
superconductor.

Light with frequencies above the superconducting gap
breaks Cooper pairs and thus weakens the superconductivity.
However, light can also enhance or induce superconduc-
tivity [11–13]. In-cavity manipulation of a superconductive
component might appear restrictive, demanding effective

*Corresponding author: sol.jacobsen@ntnu.no

screening of the contact wires while maintaining the quality
factor of the cavity, but also this has been achieved experi-
mentally recently [14]. In that case, researchers succeeded in
driving a black box transmon qubit inside a cavity, coupling
the oscillations between the two levels of the qubit to the
microwave cavity modes. The transmon qubit is engineered
by using the nonlinearity of a superconducting Josephson
junction to create an effective two-level system, as in cir-
cuit quantum electrodynamics (QED) [15]. Consequently, this
qubit-cavity coupling generated excitement about the po-
tential prospect of unifying quantum optics and solid state
quantum computing [16,17].

Qubit-cavity coupling demonstrated the feasibility of
screening wiring to a superconducting system inside mi-
crowave cavities. However, superconductivity in that case is
used as a means to generate a two-level system, i.e., realize a
qubit, and not as a means to probe and use the superconductive
signatures themselves. By combining standard approaches for
the electrodynamics of superconductivity, cavity coupling,
and magnetism dynamics, we will here provide a proof of
principle that there is considerable potential to do just that.

We begin by considering the setup illustrated in Fig. 1. It
depicts a microwave cavity containing an electrically screened
thin wire, which has a small exposed superconducting seg-
ment (SC) held at temperature T , connected to an alternating
current (ac) source, as well as a small ferromagnetic sphere
(FM). The internal current density J and electric field ESC of
the SC are treated as uniform; i.e., internal spatial variations
are neglected. The SC and the FM are placed in regions
of maximum electric and magnetic field Ecav and Bcav of a
selected cavity mode, respectively. The dimensions of the SC
and the FM are assumed sufficiently small for the local fields
across their respective regions to be approximately uniform,
and their spatial extension is effectively taken to be linelike
and pointlike at positions rSC and rFM, respectively.

The SC is directed along the y direction, and has a criti-
cal temperature Tc. The ac source produces signal frequency
ω, which is resonant with the cavity frequency and the fre-
quency of the precessing FM magnetization. By lowering T ,
we pass through the superconducting transition and induce

2469-9950/2020/102(18)/180506(5) 180506-1 ©2020 American Physical Society
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FIG. 1. The proposed model for inducing macroscale photon-
mediated superconducting signatures in a magnet (not to scale). The
photonic microwave resonator of dimensions {dx, dy, dz} contains a
short, thin superconducting wire segment (SC) along the y direction
and with a cross-sectional area A, connected to an alternating current
source via screened wiring through the cavity walls, as well as a small
ferromagnetic sphere (FM) with a uniform magnetization m. The FM
and SC are positioned at rFM and rSC, respectively, corresponding
to extrema of the magnetic and electric components of the cavity
modes Bcav and Ecav. Across the SC, Ecav is directed along the y
axis, and across the FM, Bcav is directed along the x axis. The FM
is additionally subjected to a strong external magnetostatic field Bext

such that |Bext| � |Bcav|, which fixes the precessional axis of m along
the z direction. We use the TE201 cavity mode as an example. The SC
current, cavity mode, and FM mode couple resonantly at the input
ac frequency ω. The relative amounts of supercurrent and resistive
currents passed through the SC is modulated by the temperature T .

a change in the superconductors conductivity. This in turn
alters the excitation of the cavity, and the resultant effect
on the spin dynamics in the magnet can be harnessed as a
nonlocal detector. That is, by exploiting the mutually resonant
coupling to the cavity, it is possible to probe the supercon-
ducting transition via a change in the magnonic precession
response. We consider the weak-coupling approximation, in
which the back-action does not alter the physical response
of either system (the back-action cannot alter the established
electromagnetic response of the superconducting transition).

As a concrete example, we consider the TE201 cavity mode,
where Ecav is directed along the y axis over the SC, and Bcav

along the x axis over the FM. Bcav then couples predominantly
to the Kittel mode of the FM, i.e., the uniform mode of
the spherical spin field, quantified by the unit magnetization
vector m. The FM is additionally exposed to a relatively strong
external magnetic field Bext such that |Bext| � |Bcav|, which
fixes the precessional axis of m along the z direction. |Bext|
also regulates the resonance frequency of the spin field mode,
and reduces the impact of Bcav to small perturbations on the
motion of m. The resonance frequency of the TE201 mode
is determined by {dx, dz}, which one may thus match to the
resonance frequency of the Kittel mode and the frequency of
the input ac by adjusting |Bext| and ω.

The current response of a superconductor to an ap-
plied electric field, taking into account both frequency and
temperature, may be derived from microscopic theories
of superconductivity, such as BCS or Eliashberg theory.

Mattis-Bardeen theory is derived from the former [19,20], and
provides accurate descriptions of the optical conductivity of
BCS superconductors. However, these theories are generally
cumbersome to deal with analytically, and will be reserved
for numerical calculations. To analytically model the tran-
sition from resistive to superconducting current in the SC,
we employ the well established framework of the two-fluid
model [21].

The SC is treated as two parallel channels carrying normal
(n) and superconducting (s) electrons, respectively. The su-
perconducting channel is characterized by an asymptotically
infinite relaxation time τs −→ ∞, and the normal channel
assumes a low input frequency ωτn � 1 relative to the relax-
ation time of n electrons. In this case,

dJs(ω,T, t )

dt
= Ns(T )e2

me
ESC(ω,T, t ), (1)

Jn(ω,T, t )

τn
= Nn(T )e2

me
ESC(ω,T, t ), (2)

where me is the electron mass, and Ji and Ni are the current
and electron densities of the respective channels. For sinu-
soidal time dependencies there is therefore a relative phase
difference of ±π/2 between the contributions of Js and Jn
to ESC in a current-driven system. ESC thus acquires a phase
relative to the net current density J = Jn + Js between 0 and
±π/2. We argue that this phase shift can be used to bridge
superconducting and spintronic circuits via nonlocal coupling
to magnons. In this case it can monitor the superconducting
transition, and be implemented as a superconducting switch.
More broadly, it opens the door for wider investigations of
macroscale effects in superconducting circuits.

Upon connecting the SC to an ac source, the net current
density magnitude J (ω, t ) = I exp(iωt )/A, where I is the cur-
rent amplitude, A the SC cross-sectional area, and ω the input
frequency. Inserting into Eqs. (1) and (2), we have

ESC(ω,T, t ) = I

Aσ (ω,T )
exp(iωt ), (3)

where

σ (ω,T ) = e2

me

(
Nn(T )τn − i

Ns(T )

ω

)
≡ σ1(T ) − iσ2(ω,T ).

(4)

The phenomenological temperature dependency of Ni, and by
extension σ1 and σ2, is

Ns(T ) = N[1 − (T/Tc)4], Nn(T ) = N (T/Tc)4, (5)

where N is the total electron density, and T � Tc [21]. For
the purpose of analytic insight we retain this simple form,
although we include the standard temperature modification
of the gap in the numerics [21]. Above Tc, σ reduces to
the normal metal direct current conductivity σ0 ≡ Ne2τn/me.
Note that according to the Mattis-Bardeen theory, σ1 is fre-
quency dependent; near Tc, it has a pronounced coherence
peak at lower frequencies, and a kink at higher frequencies
due to optical excitations across the superconducting gap (see
Fig. 2) [19,20]. Neither feature is captured by the two-fluid
model. Nevertheless, in terms of the relative magnitudes of σ1

and σ2, and their point of intersection marking the boundary
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FIG. 2. Intersections of the real (σ1) and negative imaginary
(σ2) part of the SC conductivity σ = σ1 − iσ2, as a function of
T , for frequency inputs ω. Material parameters for Nb are used
(Tc = 9.26 K) [18]; σ0 is the normal state direct current conductiv-
ity. These plots are generated numerically using the Mattis-Bardeen
theory [19].

between the superconducting and resistive regimes, the two-
fluid model and Mattis-Bardeen theory coincide very well at
the experimentally relevant lower frequencies. Figure 2 thus
shows the predicted temperatures for the transition between
normal and superconducting current [22].

ESC and Ecav are assumed to be purely tangential to the
SC-cavity interface in our setup (see Fig. 1). Thus, by the
continuity of the tangential electric field across any interface,
ESC(rSC, ω,T, t ) = Ecav(rSC, ω,T, t ) at the surface of the SC.
Upon computing the cavity modes by imposing rectangular
boundary conditions on the fields, one finds that across the FM
and specifically for the TE201 mode, Bcav at the FM is [23,24]

Bcav(rFM, ω,T, t ) = Bcav(rFM, ω,T, t )x̂

= −πEcav(rSC, ω,T, t )

iωdz
x̂. (6)

Furthermore, the resonance frequency of the TE201 mode is

ω = c

√(
2π

dx

)2

+
(

π

dz

)2

, (7)

where c is the speed of light in vacuum. With dx and dz given,
this equality for resonant coupling is ensured by tuning ω.

The precessional motion of the FM magnetization vector m
is adequately described by the Landau-Lifshitz-Gilbert (LLG)
equation:

∂m(ω,T, t )

∂t
= −γm(ω,T, t ) × B(ω,T, t )

+ αm(ω,T, t ) × ∂m(ω,T, t )

∂t
. (8)

Here, γ and α are the gyromagnetic ratio and the phenomeno-
logical damping parameter of the LLG equation, respectively.
B is the effective magnetic field inside the FM, including
the external, the demagnetization, and the magnetocrystalline
anisotropy field [25,26]. The latter two are generally influ-
enced by the geometry and crystal structure of the FM, and
may influence ω and the orbit of m. We assume an easy axis

such as 〈111〉 for YIG [27], coinciding with the z direction;
and negligible demagnetization and anisotropy fields relative
to Bext. The latter is reasonably expected to hold down to an
input frequency of 5 GHz [27–30]. The effective magnetic
field across the FM is then

B(ω,T, t ) = Bcav(rFM, ω,T, t ) + Bext ẑ

= −πESC(rSC, ω,T, t )

iωdz
x̂ + Bext ẑ. (9)

When |Bext| � |Bcav|, mz ≈ 1 � |mx|, |my|, to first order.
In Eq. (8), terms of higher order than linear in Bcav, mx,
and my, may then be neglected. In addition, the coupling
between the cavity mode and the FM is resonant by design.
Solving the LLG equation with complex time dependencies
exp (iωt ) in B and m, one finally extracts the real parts as
physical solutions [33]. Note that Bcav oscillates exclusively
along the x axis, which breaks the symmetry of the linearized
LLG equation. The resulting orbits are consequently elliptical.
The expression for m therefore has the form m(ω,T, t ) ≈
ẑ + mp(ω,T, t ), with precessing component

mp(ω,T, t ) = [mx(ω,T )x̂ + my(ω,T )ŷ] exp(iωt ). (10)

Solving Eq. (8) for mx and my and assuming weak damping
α � 1, one finds the phases relative to the input ac [34]:

ϕmx (ω,T ) ≡ arg [mx(ω,T )] ≈ arctan
σ2(ω,T )

σ1(T )
+ α

2
, (11)

ϕmy (ω,T ) ≡ arg [my(ω,T )] ≈ arctan
σ2(ω,T )

σ1(T )
− α

2
− π

2
.

(12)

Reinserting the solutions for mx and my into Eq. (8), then
taking the absolute value of both sides, yields ω = |γBext|.
For a given ω, this equality for resonant coupling is ensured
by tuning Bext.

The phase and magnitude of the magnon precession allows
us to extract measurable spintronic responses to changes in the
superconductor. The magnitude of the precessing component
|Re(mp)| relates to the cone angle of the precession, and is
given by [35].

|Re[mp(ω,T, t )]|

≈ |my(ω,T )|
√

2α cos2

(
ωt + ϕmy + α + π

2
− θ

)
− α + 1,

(13)

where

|my(ω,T )| ≈ |γ |π I
2A|σ (ω,T )|ω2dzα

, (14)

θ ≈ 3π + α

4
. (15)

Within experimental limits such as the critical current of the
SC, |Re(mp)| � 0.1 may easily be achieved by regulating
the input current amplitude I . Above this value, second- and
higher-order corrections of the orbit become significant, and
the full LLG must be employed. Note that for a negligible
α, |Re(mp)| becomes independent of time; the orbit is then
circular with ϕmy −→ ϕmx − π/2.
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FIG. 3. Phase of the magnon precession ϕmx , as a function of T ,
for frequency inputs ω, using the Mattis-Bardeen theory to compute
the SC conductivity. Material parameters for Nb and YIG are used,
with Tc = 9.26 K and α = 10−5 [18,26,31,32]. This phase may be
measured relative to the input signal passed through the SC, and
its value indicates the relative presence of supercurrent and resistive
current in the SC. For this α, ϕmy ≈ ϕmx − π/2.

Plots of ϕmx and |Re(mp)| with realistic parameters using
the Mattis-Bardeen theory are presented in Figs. 3 and 4.
Equations (11) and (12) show as expected that in passing from
a superconducting regime, i.e., σ2 � σ1, to a resistive regime,
i.e., σ2 � σ1, the phase of Re(mp) will shift by −π/2, exactly
corresponding to the simultaneous shift in ESC. Moreover, it
becomes clear from Eqs. (11)–(13) that as the FM damping
α increases, the orbit becomes tilted in the xy plane with
respect to its principal axes, and becomes progressively more
eccentric [34]. The tilting angle between the x axis and the

FIG. 4. The magnitude of the precessing component of the mag-
netization vector |Re(mp)|, as a function of T , for frequency inputs
ω, using the Mattis-Bardeen theory to compute the SC conductiv-
ity. Material parameters for Nb, a microwave cavity, and YIG are
used, with Tc = 9.26 K, α = 10−5, γ = 176 GHz/T, I = 0.6 A,
A = 10−11 cm2, and dz = 5 cm [18,26,31,32]. Within experimental
limits such as the critical current of the SC, the decrease in magnitude
for increasing frequencies may be counteracted by increasing the
input current.

major axis of the elliptic orbit is θ as given by Eq. (15). This
phenomenon may be of particular interest in future works
if one couples the FM and the SC by circularly instead of
linearly polarized light, and if one operates with triplet instead
of singlet superconductivity.

The above coupling mechanism shows clearly that a transi-
tion from the resistive to the superconducting state translates
directly to a measurable nonlocal phase shift in the magnon
precession frequency, with an experimentally resolvable per-
turbation of m of a few percent expected to be possible for
various choices of magnetic and superconducting materials.
The magnon excitations can be incorporated into extended
spintronic circuitry outside the cavity, with no proximity cou-
pling to the SC required. The shift in ϕmx and ϕmy may be
measured, e.g., via Faraday rotation [36,37], or via ac spin
pumping [25,38–41]. The method of Faraday rotation has
sufficient resolution to detect single oscillations in the res-
onance frequency regimes of interest. The phase can then
be measured relative to the ac input signal, as a function of
the input frequency ω. Alternatively, ac spin pumping would
be more easily achieved by changing the geometry of the
ferromagnetic sphere to a film with deposited platinum layer.
The analytics would then require the inclusion of the demag-
netization field and associated shift in resonance, but it would
not otherwise alter the physics.

This work shows that photon-mediated superconducting
signatures are a feasible way to provide a bridging circuit for
spintronic applications. In device design this can feature as a
superconductive switch, but also to monitor the superconduct-
ing transition and critical temperature of the superconductor
directly.

However, the importance of the result also goes beyond
these applications as it opens up a plethora of interesting
investigative avenues. For example, by switching from a con-
ventional singlet superconductor to a triplet source (either
intrinsically p wave or odd-frequency s wave), then there
are no longer two simple coupling relationships to the cav-
ity as in the case of the ac-driven oscillators in Eqs. (1)
and (2). The nature of this coupling remains to be explored,
but it seems plausible in that case that one may employ the
cavity setup to probe and differentiate between the different
current components. This may make cavity spintronics with
superconductors—or super cavitronics—an interesting new
tool for probing unconventional superconductors.

For the physical picture presented above, it is sufficient to
consider a classical description of the coupling. However, it
would be interesting to explore a microscopic picture along
the line of cavity QED as outlined in Ref. [42]. In that case
we can of course not neglect the details of the mesoscopic
circuit by tracing over the mesoscopic degrees of freedom,
meaning the mathematical approach becomes rather involved.
Nevertheless, it is expected to yield valuable insight into the
case of fermionic reservoirs in a cavity.

We thank H. Huebl for useful discussions. We ac-
knowledge funding via the “Outstanding Academic Fellows”
programme at NTNU, the Research Council of Norway Grant
No. 302315, as well as through its Centres of Excellence
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A recent proof of concept showed that cavity photons can mediate superconducting (SC) signatures to a
ferromagnetic insulator (FI) over a macroscopic distance [Phys. Rev. B, 102, 180506(R) (2020)]. In contrast
with conventional proximity systems, this facilitates long-distance FI–SC coupling, local subjection to different
drives and temperatures, and studies of their mutual interactions without proximal disruption of their orders.
Here we derive a microscopic theory for these interactions, with an emphasis on the leading effect on the FI,
namely, an induced anisotropy field. An arbitrary practical example shows an anisotropy field on the order
of microtesla, such that parameter optimization is expected to give detectable results for low-coercivity FIs
such as Bi-YIG. We discuss the implications and potential applications of such a system in the context of
superconducting spintronics.

I. INTRODUCTION

Enabling low-dissipation charge and spin transport, super-
conducting spintronics presents a pathway to reducing en-
ergy costs of data processing, and provides fertile ground for
exploring new fundamental physics [1–3]. Conventionally,
superconducting and spintronic systems are coupled by the
proximity effect, with properties of adjacent materials trans-
ported across an interface. The superconducting coherence
length thus limits the extent to which superconducting prop-
erties can be harnessed in proximity systems, to a range of
nm–µm near interfaces [4–8].

By contrast, cavity-coupled systems offer mediation across
macroscopic distances [9–13]. They also offer interaction
strengths that relate inversely to the cavity volume [14, 15],
which is routinely utilized experimentally to achieve strong
coupling in e.g. GHz–THz cavity set-ups [16–19]. Further-
more, research on the coupling of magnets and cavity photons
shows that the effective interaction strengths scale with the
number of spins involved [9, 20–22], which has been utilized
experimentally to achieve effective coupling strengths far ex-
ceeding losses [11, 13, 23, 24].

Theoretically, a number of methods have been employed
to extract mediated effects in cavity-coupled systems. This
includes classical modelling for coupling two ferromag-
nets [25], and a ferromagnet to a superconductor [10]; appli-
cation of Jaynes–Cummings-like models for coupling a ferro-
magnet and a qubit [12], and two ferromagnets [26]; pertur-
bative diagonalization by the Schrieffer–Wolff transformation
for coupling a ferro- and antiferromagnet [9, 20], and a normal
metal to itself [14]; and perturbative evolution of the density
matrix, as well as perturbative diagonalization by the non-
equilibrium Keldysh path integral formalism, for coupling a
mesoscopic circuit to a cavity [27].

In this paper, we will employ the Matsubara path inte-
gral formalism [28–31] to derive a microscopic theory for
the cavity-mediated coupling of a ferromagnetic insulator (FI)
with a singlet s-wave superconductor (SC). In particular, we
consider the Zeeman coupling to the FI, and the paramag-
netic coupling to the SC. We show that with this approach,
we may exactly integrate out the net mediated effect by the
cavity photons. This is in contrast to the Schrieffer–Wolff ap-

FIG. 1. Illustration of the set-up. A thin ferromagnetic insulator
and thin superconductor are placed spaced apart inside a rectangular,
electromagnetic cavity. The FI is subjected to an aligning external
magnetic field Bext. The cavity is short along the z direction, and
long along the perpendicular xy directions, causing cavity modes to
separate into a band-like structure. The FI and the SC are respectively
placed in regions of maximum magnetic (z = Lz) and electric (z =
Lz/2) cavity field of the `z = 1 modes, as defined in Sec. II B 1 and
illustrated above by the colored field cross-section on the right wall.

proach, which would limit the integrating-out of the cavity to
off-resonant regimes [20]. For instance, a pairing term analo-
gous to the one found via the Schrieffer–Wolff transformation
in Ref. [14] also appears in our calculations, without the lim-
itation to an off-resonant regime. Furthermore, unlike many
preceding works which single out the coupling to the uniform
mode of the magnet [9, 10, 13, 21, 23, 24], we retain the influ-
ence of a range of modes in our model. Their non-negligible
influence when the magnet exceeds a certain size relative to
the cavity, has been emphasized by both experimentalists [24]
and theorists [21].

By a careful choice of cavity dimensions and the placement
of subsystems, we couple the insulator to the momentum de-
grees of freedom of the superconductor. In this case, the cav-
ity acts as an effective spin–orbit coupling. Here, we empha-
size the leading effect of the superconductor on the insulator,
namely, the induction of an anisotropy field. In an arbitrary,
practical example, we achieve a field on the order of µT; pa-
rameter optimization is expected to yield results within a de-
tectable range for an insulator of sufficiently low coercivity
such as Bi-YIG, and is left for future work. Since the cavity
facilitates coupling across unconventionally long distances, it
enables the FI and SC to be held at different temperatures, be
subjected separately to external drives, and have them inter-
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act without the same mutual disruption of their orders associ-
ated with the proximity effect [2, 10], such as the breaking of
Cooper pairs by magnetic fields from the FI. In practical ap-
plications, our system may be used to bridge superconducting
and other spintronic circuitry.

The article is organised as follows. In Section II A we
present the set-up: A cavity with an FI and SC film placed
at magnetic and electric antinodes as shown in Fig. 1, with
no overlap in the xy plane. In Section II B we cover theoret-
ical preliminaries: The quantized gauge field, the magnon-
basis Hamiltonian for the insulator, and the Bogoliubov
quasiparticle-basis Hamiltonian for the superconductor. The
system Hamiltonian is subsequently constructed. In Sec. II C–
II E, we construct an effective magnon theory using the path
integral formalism. Here we exactly integrate out the cav-
ity, and perturbatively the superconductor. In Section III, we
extract from the effective theory the leading effect of the su-
perconductor on the insulator, namely, the induced anisotropy
field. In a practical example, we calculate this field numer-
ically, and find here an induced field on the order of µT in
magnitude. Finally, in Section IV, we give concluding re-
marks, discussing the results and their significance, and an
outlook. In the appendices, we affirm the mathematical con-
sistency of the effective theory with an alternative derivation,
explore a variation of the set-up with the SC placed at the
opposite magnetic antinode, and elaborate on the interpreta-
tion of certain quantities in the effective action as an effective
anisotropy field.

II. THEORY

A. Set-up

Our set-up is illustrated in Fig. 1. We place two thin layers,
one of a ferromagnetic insulator (FI) and one of a supercon-
ductor (SC), spaced apart inside a rectangular electromagnetic
cavity. The dimensions of the cavity are Lx, Ly � Lz , with
Lz on the µm–mm scale, and Lx, Ly on the cm scale. The
aspect ratios render photons more easily excited in the xy di-
rections. The FI is placed at the upper magnetic antinode of
the `z = 1 modes (cf. Sec. II B 1), and the SC at the corre-
sponding electric antinode, as illustrated in Fig. 1. Because
the layers are thin in comparison to Lz , the local spatial vari-
ation of the modes in the z direction is negligible, i.e., the
modes are treated as uniform in the z direction [32].

The FI is locally subjected to an aligning and perpendicular
uniform, external magnetostatic field, which vanishes across
the SC. This was achieved experimentally with external coils
and magnetic shielding in Tabuchi et al. [13]. Furthermore,
the SC is subjected to a supercurrent. This may be realized
by passing a direct current (DC) through small electric wires,
entering the cavity via small holes in the walls and connecting
along the sides of the SC, similarly to Ref. [33]. Provided the
wires and holes are sufficiently small, their influence on the
cavity modes are negligible. Provided the sample width does
not exceed the Pearl length λ2/d [33–35], the leading effect of
the DC is to induce an equilibrium supercurrent with a Cooper

pair center-of-mass momentum 2P, with the magnitude of P
determined by the current. Here λ is the effective magnetic
penetration depth, and d is the sample depth. For Nb thin
films, we expect the Pearl length criterion to be met at widths
of up to 0.1mm for a d down to 1 nm [36].

B. Hamiltonian

In the following, we deduce a Hamiltonian

H ≡ HFI +Hcav
0 +HSC. (1)

for the system illustrated in Fig. 1. We begin by quantizing
the cavity gauge field, and introducing the cavity Hamiltonian
Hcav

0 . Following this, we deduce a Hamiltonian HFI for the
FI in the magnon basis, including the Zeeman coupling to the
cavity. Finally, we deduce a Hamiltonian HSC for the SC in
the quasiparticle basis, including the paramagnetic coupling
to the cavity.

1. Cavity gauge field

We begin by presenting the expression for the quantized
cavity gauge field Acav [15]. Starting from the Fourier de-
composition of the classical vector potential, we impose the
transverse gauge and quantize the field. We employ reflect-
ing boundary conditions at the cavity walls in the z direction,
and periodic boundary conditions at the comparatively distant
walls in the xy directions. The gauge field is thus

Acav ≡
∑

Qς

√
~

2εωQ
(aQς ūQς + a†Qς ū

∗
Qς). (2)

Above,

Q ≡ (Qx, Qy, Qz) ≡ (2π`x/Lx, 2π`y/Ly, π`z/Lz) (3)

are the momenta of each photonic mode, with `x, `y =
0,±1,±2, . . . and `z = 0, 1, 2, . . . . The discretization of Qz

differs from that of Qx and Qy due to the different bound-
ary conditions in the transverse and longitudinal directions.
Furthermore, ς = 1, 2 labels polarization directions, ε is the
permittivity of the material filling the cavity, and

ωQ = c|Q| (4)

is the cavity dispersion relation, with c the speed of light. a†Qς
and aQς are photon creation and annihilation operators, satis-
fying

[aQς , a
†
Q′ς′ ] = δQQ′δςς′ , (5)

where the factors on the right-hand side are Kronecker delta
functions.

Lastly, the mode functions

ūQς ≡
∑

D

êDOQ
ςDuQD (6)
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encapsulate the spatial modulation of the modes. Here, êD is
the unit vector in the D = x, y, z direction. OQ

ςD are elements
of a matrix that rotates the original xyz basis of unit vectors
to a new basis labeled 123, with the 3 direction aligned with
Q (see Fig. 2):



êQ1
êQ2
êQ3


 = OQ



êx
êy
êz


 , (7)

OQ ≡



cos θ cosϕ cos θ sinϕ − sin θ
− sinϕ cosϕ 0

sin θ cosϕ sin θ sinϕ cos θ


 . (8)

Here θ = θQ and ϕ = ϕQ are the polar and azimuthal angles
illustrated in Fig. 2. OQ originates from the implementation
of the transverse gauge, which amounts to neglecting the lon-
gitudinal 3 component of the gauge field. Finally, uQD are
the mode functions in the xyz basis, given by

uQx = uQy =

√
2

V
eiQxx+iQyyi sinQzz, (9)

uQz =

√
2

V
eiQxx+iQyy cosQzz, (10)

where V is the volume of the cavity [37].

FIG. 2. Illustration of the 123 coordinate system. Q is the photon
momentum vector, and q is its component in the xy plane. θ (single
line) is the polar, and ϕ (double line) the azimuthal angle associated
with Q in relation to the xyz basis. The 123 axes results from a
rotation of the xyz axes by an angle θ about the y axis, followed by a
rotation by an angle ϕ about the original z axis. In the illustration, the
1 axis points somewhat outwards and downwards, the 2 axis points
somewhat inwards and is confined to the original xy plane, and the
3 axis aligns with Q.

Our set-up facilitates coupling to the `z = 1 band of cav-
ity modes, as the FI and SC are placed in field maxima as
illustrated in Fig. 1. We will only consider variations of the
in-plane part q of the general momenta Q, defined via

Q ≡ q+ πêz/Lz. (11)

For this reason we will use the subscript q for functions of Q
where the z component is locked to the `z = 1 mode, e.g.

ωq ≡ ωQ

∣∣
Q=q+πêz/Lz

= c

√(
π

Lz

)2

+ q2. (12)

The cavity itself contributes to the system Hamiltonian with
the term

Hcav
0 ≡

∑

qς

~ωqa
†
qςaqς , (13)

where we have disregarded the zero-point energy, since it does
not influence our results.

2. Ferromagnetic insulator

The Hamiltonian of the FI in the cavity is

HFI ≡ Hex +Hext +HFI−cav, (14)

with

Hex ≡ −J
∑

〈i,j〉
Si · Sj , (15a)

Hext ≡ −
gµB

~
Bext

∑

i

Siz, (15b)

HFI−cav ≡ −
gµB

~
∑

i

Si ·Bcav(ri). (15c)

The first term is the exchange interaction: J > 0 is the ex-
change interaction strength for a ferromagnetic insulator, Si

is the spin at lattice site i, and only nearest neighbor interac-
tions are taken into account, as indicated by the angle brack-
ets. The next two terms are Zeeman couplings: g is the gyro-
magnetic ratio, µB is the Bohr magneton, Bext is a strong
(i.e. |Bext| � |Bcav|) and uniform external magnetostatic
field aligning the spins in the z direction, and Bcav(ri) is the
magnetic component of the cavity field at lattice site i. The
corresponding position vector is ri.

It is convenient to transition from the spin basis
{Six, Siy, Siz} to a bosonic magnon basis {ηi, η†i }. This
is achieved with the Holstein–Primakoff transformation [38],
which is covered in detail in Refs. [20, 39].

Each FI lattice site carries spin S. The aligning field Bext

regulates the excitation energy of magnons (cf. Eq. (21)),
hence a sufficiently strong field implies few magnons per lat-
tice site, i.e.

〈η†i ηi〉 � 2S. (16)

We can therefore Taylor-expand the Holstein–Primakoff
transformation, leading to the relations

Siz = ~(S − η†i ηi), (17)

Sid ≈
~
√
2S

2
(νdηi + ν∗dη

†
i ), (18)

where d = x, y and {νx, νy} = {1,−i}.
Now, upon Fourier-decomposing the magnon operators

ηri ≡
1√
NFI

∑

k

ηke
ik·ri , (19)
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we obtain the conventional expression for Hex +Hext in the
magnon basis [39]:

Hex +Hext ≈ HFI
0 ≡

∑

k

~λkη
†
kηk, (20)

where we have introduced the magnon dispersion relation

λk ≡ 2~JNδS

(
1− 1

Nδ

∑

δ

eik·δ
)

+
gµB

~
Bext. (21)

Above, NFI is the total number of FI lattice points, Nδ =
4 is the number of nearest-neighbor lattice sites on a 2D
square monolayer (neglecting edges and corners), and δ =
±aFIêx,±aFIêy are nearest-neighbor lattice vectors. The
magnon momenta are

k ≡ (2πmFI
x /lFIx , 2πmFI

y /lFIy , 0) ≡ (kx, ky, 0), (22)

where mFI
d = −

⌊
NFI

d −1
2

⌋
, . . . , NFI

d −1−
⌊
NFI

d −1
2

⌋
covers the

first Brillouin zone (1BZ), with NFI
d the number of FI lattice

points in direction d, and b·c the floor function. Note that the
set of magnon momenta generally does not overlap with that
of photon momenta in Eq. (3). Observe furthermore that the
magnon energies (21) can easily be regulated experimentally
by adjusting Bext.

Proceeding to the interaction term, we deduce the magnetic
cavity field Bcav(ri) across the FI, which is the curl of the
gauge field at z = Lz:

Bcav(ri)
∣∣
FI

= ∇×Acav(ri)
∣∣
FI

=
∑

qd

iν2dqd̄êd sin θq

√
~

εωqV
eiq·ri(aq1 + a†−q1).

(23)

Above, d̄ “inverts” d such that x̄ = y and ȳ = x. Note that
the photon momentum component qd̄ enters the sum with an
inverted lower index. Observe that only the 1 direction enters
the expression, because Acav at z = Lz points purely along
the z direction. The 2 direction is by definition locked to the
xy plane, and does therefore not contribute at z = Lz .

Inserting Eqs. (17)–(19) and (23) into Eq. (15c), we find

HFI−cav ≈
∑

kd

∑

qς

gkqd (νdη−k + ν∗dη
†
k)(aq1 + a†−q1),

(24)

and hence a complete FI HamiltonianHFI ≈ HFI
0 +HFI−cav.

Above, we defined the coupling strength

gkqd ≡ −gµBqd̄iν
2
d sin θq

√
S~NFI

2εωqV
DFI

kqe
iq·rFI

0 . (25)

DFI
kq quantifies the degree of overlap between magnonic and

photonic modes, and is defined via

NMDM
lMq ≡ ei(lM−q)·rM0

∑

i∈M

e−i(lM−q)·ri

≈ NM

∏

d

sinc
[
πNM

d

(
mM

d

NM
d

− `daM
Ld

)]
.

(26)

Here M = {FI, SC} is a material index, lM represents either
a magnon or a Bogoliubov quasiparticle momentum, rM0 is
the center position of lattice M relative to the origin, and the
photon momentum numbers `d = `x, `y were defined under
Eq. (3). The latter, along with other SC quantities, are defined
in Sec. II B 3. The sum over i is taken over either FI or SC
lattice points, as indicated by M , and the last equality holds
for NM

d � 1.
DFI

kq reduces to a Kronecker delta δkq only when Ld =

ld = aFIN
FI
d , i.e. when the FI and the cavity share dimen-

sions [40]. At the other end of the scale, when the FI be-
comes infinitely small, DFI

kq reduces to δk0, implying all cav-
ity modes couple exclusively to the uniform magnon mode,
which is often assumed in cavity implementations [9, 10, 13,
23].

3. Superconductor

The SC Hamiltonian is

HSC = Hsing +HBCS +Hpara, (27)

with

Hsing ≡
∑

p

ξpc
†
pσcpσ′ , (28a)

HBCS ≡ −
∑

p

(
∆pc

†
p+P,↑c

†
−p+P,↓ +∆∗

pc−p+P,↓cp+P,↑
)
,

(28b)

Hpara ≡
∑

d

∑

j

jd(rj)Ad

(
rj+Id + rj

2

)
, (28c)

Hsing is the single-particle energy, where ξp is the lattice-
dependent electron dispersion, and cpσ and c†pσ are fermionic
operators for an electron of lattice momentum p and spin σ.
The momenta are discretized as

p ≡ (2πmSC
x /lSCx , 2πmSC

y /lSCy , 0) ≡ (px, py, 0), (29)

where mSC
d is defined analogously to mFI

d (see below
Eq. (22)), covering the 1BZ of the SC with NSC

d the number
of SC lattice points in direction d.
HBCS is the BCS pairing term, with ∆p the pairing poten-

tial. The leading order effect of applying a DC across the SC
is to shift the center of the SC pairing potential from p = 0 to
p = P, where 2P is the generally finite center-of-mass mo-
mentum of the Cooper pairs [33, 41, 42]. The maximum value
of P is limited by the critical current of the superconductor.
Hpara is the paramagnetic coupling. jd(rj) is the d compo-

nent of the discretized electric current operator at lattice site j
with the position vector rj , and is defined as [14]

jd(rj) ≡
iaSCet

~
∑

σ

(c†j+Id,σ
cjσ − c†jσcj+Id,σ), (30)

where aSC is the lattice constant, e is the electric charge, t is
the lattice hopping parameter, and cjσ and c†jσ are real-space
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fermionic operators for electrons with spin σ at lattice site j.
They relate to cpσ and c†pσ via

cjσ =
1√
NSC

∑

p

cpσe
ip·rj , (31)

with NSC the total number of SC lattice points. Further-
more, Id represents a unit step in the d direction with re-
spect to lattice labels. For instance, if j = (1, 1), then
j + Ix = (1 + 1, 1) = (2, 1).

Inserting Eqs. (2), (30) and (31) into Eq. (28c) yields

Hpara =
∑

pp′σ

∑

qς

gqpp
′

ς (aqς + a†−qς)c
†
pσcp′σ. (32)

Here, we have introduced the coupling constant

gqpp
′

ς ≡− aSCet

~

√
~

εωqV
DSC

p−p′,qe
iq·rSC0

·
∑

d

(
e−i(p−q/2)·δd − ei(p

′+q/2)·δd

)
Oq

ςd, (33)

where δd ≡ aSCêd are primitive lattice vectors. DSC
p−p′,q is

defined in Eq. (26), quantifying the degree of overlap between
two electron modes and a photon mode. It reduces to δp−p′,q

only when the cavity and the SC share dimensions, as is the
case in Ref. [14].

As we move onto the imaginary time (Matsubara) path in-
tegral formalism in the next sections, it becomes convenient
to eliminate creation–creation and annihilation–annihilation
fermionic operator products. To this end, we absorb the BCS
term (28b) into the diagonal term (28a) by a straight-forward

diagonalization:

Hsing +HBCS

=
∑

p

(
cp+P,↑
c†−p+P,↓

)†(
ξp+P −∆p

−∆∗
p −ξ−p+P

)(
cp+P,↑
c†−p+P,↓

)

=
∑

p

(
γp0
γp1

)†(
Ep0 0
0 Ep1

)(
γp0
γp1

)
.

(34)

Here we introduced the Bogoliubov quasiparticle basis
{γpm, γ†

pm}, with m = 0, 1 and dispersion relations

Epm =
1

2

[
ξp+P − ξ−p+P

+ (−1)m
√

(ξp+P + ξ−p+P)
2
+ 4|∆p|2

]
.

(35)

The elements up and vp of the basis transformation matrix are
defined through [35]

cp+P,↑ ≡ u∗
pγp0 + vpγp1, c†−p+P,↓ ≡ −v∗pγp0 + upγp1.

(36)
Inserting the above into Eq. (34), one finds the relations

∆∗
pvp

up
=

1

2
[(Ep0 − Ep1)− (ξp+P + ξ−p+P)] , (37a)

|vp|2 = 1− |up|2 =
1

2

(
1− ξp+P + ξ−p+P

Ep0 − Ep1

)
, (37b)

which determine up and vp. Recasting Hpara in terms of this
basis yields

Hpara =
∑

pp′

∑

qς

∑

mm′

gqpp
′

ςmm′(aqς + a†−qς)γ
†
pmγp′m′ , (38)

where the coupling constant is now

gqpp
′

ςmm′ ≡
(

gq,p+P,p′+P
ς upu

∗
p′ + gq,p−P,p′−P

ς vpv
∗
p′ gq,p+P,p′+P

ς upvp′ − gq,p−P,p′−P
ς vpup′

−gq,p−P,p′−P
ς u∗

pv
∗
p′ + gq,p+P,p′+P

ς v∗pu
∗
p′ gq,p−P,p′−P

ς u∗
pup′ + gq,p+P,p′+P

ς v∗pvp′

)

mm′

. (39)

This concludes the derivation of the terms entering the sys-
tem Hamiltonian in terms of the various (quasi)particle bases.
We now turn our focus to the construction of an effective FI
theory.

C. Imaginary time path integral formalism

We now seek to extract the influence of the SC on the FI, in
particular the anisotropy field induced across the FI. Diagonal-
izing the Hamiltonian directly, as was done in Eq. (34), would
in this case be very challenging, as it couples many more
modes, and furthermore contains trilinear operator products.

Since the external drives (Bext and the DC) only give rise to
equilibrium phenomena in our system, the Matsubara path in-
tegral formalism of evaluating thermal correlation functions is
valid [28]. This translates the evaluation into a path integral
problem, which is very convenient for our purposes. The path
integral approach facilitates aggregation of the influences of
specific subsystems into effective actions, without explicit di-
agonalization. On this note, for comparison, Cottet et al. [27]
analyze a scenario in which the non-equilibrium Keldysh path
integral formalism is used to analyze the net influence of a
QED circuit on a cavity.
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The starting point is the imaginary time action

S ≡ SFI
0 + Scav

0 + SSC
0 + SFI−cav

int + Scav−SC
int

=

∫
dτ

[∑

k

η†k~∂τηk +
∑

qς

a†qς~∂τaqς

+
∑

pm

γ†
pm~∂τγpm +H

]
. (40)

τ is a temperature parameter treated as imaginary time,
which relates to the thermal equilibrium density matrix
exp(−βH/~), with β ≡ ~/kBT the inverse temperature T in
units of time, andH the system Hamiltonian. The dependence
of the field operators on temperature (τ ) is implied. In formu-
lating the path integral, the magnon, photon and Bogoliubov
quasiparticle operators have been replaced by eigenvalues of
the respective coherent states [28]; i.e. the bosonic operators
have been replaced by complex numbers, and the fermionic
operators by Graßmann numbers. The magnons, photons and
Bogoliubov quasiparticles are furthermore taken to be func-
tions of τ [28]. The integral over τ is taken over the interval
(0, β]. Note that we assume the gap to be fixed to the bulk
mean field value, and therefore do not include a gap action or
integration in the partition function.

We now replace the integral over τ by an infinite sum over
discrete frequencies by a Fourier transform of the magnon,
photon and Bogoliubov quasiparticle operators with respect
to τ . The conjugate Fourier parameters are Matsubara fre-
quencies:

Ωn =
2nπ

β
(41)

for bosons, and

ωn =
(2n+ 1)π

β
(42)

for fermions, with n ∈ Z. The transforms read

ηk =
1√
β

∑

Ωm

η−Ωm,ke
−iΩmτ , (43a)

aqς =
1√
β

∑

Ωn

a−Ωn,qςe
−iΩnτ , (43b)

γpm =
1√
β

∑

ωn

γ−ωn,pme−iωnτ . (43c)

To avoid clutter, we introduce the 3-vectors

k ≡ (−Ωm,k), (44a)
q ≡ (−Ωn,q), (44b)
p ≡ (−ωn,p), (44c)

and the generally complex energies

~λk ≡ −i~Ωm + ~λk, (45a)
~ωq ≡ −i~Ωn + ~ωq, (45b)

Epm ≡ −i~ωn + Epm. (45c)

The actions in (40) then become

SFI
0 =

∑

k

~λkη
†
kηk, (46a)

Scav
0 =

∑

qς

~ωqa
†
qςaqς , (46b)

SSC
0 =

∑

pm

Epmγ†
pmγpm, (46c)

SFI−cav
int =

∑

kd

∑

qς

gkqdς (νdη−k + ν∗dη
†
k)(aqς + a†−qς),

(46d)

Scav−SC
int =

1√
β

∑

qς

∑

pm

∑

p′m′

gqpp
′

ςmm′(aqς + a†−qς)γ
†
pmγp′m′ ,

(46e)

where we introduced the coupling functions

gkqdς ≡ gkqd δς1δΩm,Ωn
, (47)

gqpp
′

ςmm′ ≡ gqpp
′

ςmm′δωn′ ,ωn−Ωn
. (48)

We additionally introduced a redundant Kronecker delta func-
tion δς1 to the coupling (47), which will facilitate the gather-
ing of interaction terms in Eq. (51). We will use the notation
gη and gγ for the magnitudes of the FI–cavity and cavity–SC
coupling, respectively.

We are now equipped to construct effective actions by in-
tegrating out the photonic and fermionic degrees of freedom,
to which end we will consider the imaginary-time partition
function [28, 30]

Z ≡ 〈vac, t =∞|vac, t = −∞〉

=

∫
D[η, η†]

∫
D[a, a†]

∫
D[γ, γ†]e−S/~,

(49)

where e.g.
∫
D[γ, γ†] ≡

∏

pm

∫
D[γpm, γ†

pm] (50)

is to be understood as the path integrals over every Bogoliubov
quasiparticle mode.

D. Integrating out the cavity photons

The order in which we integrate out the cavity and the SC is
inconsequential. We will begin with the cavity, which can be
integrated out exactly. We show that interchanging the order
of integrations leads to identical results in Appendix A.

We gather the interactions between the cavity and FI and
SC,

Scav
int =

∑

q,ς

[Jqςaqς + J−qςa
†
−qς ], (51)
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where we have defined

Jqς =
∑

ks

gkqdς (νdη−k + ν∗dη
†
k)

+
1√
β

∑

pp′

∑

mm′

gqpp
′

ςmm′γ
†
pmγp′m′ . (52)

These interaction terms are illustrated by the diagrams in the
top panel of Fig. 3. Integrating out the cavity modes [28], we
therefore get the effective action

Seff = −
∑

qς

JqςJ−qς

~ωq
. (53)

Inserting the expression for Jqς we get three different terms,
Seff = SFI

1 + SSC
1 + Sint, shown diagrammatically in the

bottom panel of Fig. 3. The first term,

SFI
1 = −

∑

qkk′

∑

ςdd′

gkqdς g
k′−q
d′ς

~ωq

× (νdη−k + ν∗dη
†
k)(νd′η−k′ + ν∗d′η

†
k′), (54)

is a renormalization of the magnon theory due to interactions
with the cavity, resulting in a non-diagonal theory. The second
term,

SSC
1 = − 1

β

∑

qpp′

oo′

∑

ςmm′

nn′

gqpp
′

ςmm′g
−qoo′

ςnn′

~ωq
γ†
pmγp′m′γ†

onγo′n′ ,

(55)

is an interaction term coupling four quasiparticles, similar to
the term found in Ref. [14] for a normal metal coupled to a
cavity, leading to superconducting correlations. Note that un-
like the pairing term found in Ref. [14] via the Schrieffer–
Wolff transformation, the term above is not limited to an off-
resonant regime. In principle it could also lead to renormaliza-
tion of the quasiparticle spectrum and lifetime. Since we are
here concerned with the effects of the cavity and SC on the
FI, we will neglect this term as it only leads to higher order
corrections.

Finally, we have the cavity-mediated magnon-quasiparticle
coupling,

Sint = −
1√
β

∑

kpp′

∑

dmm′

V kpp′

dmm′(νdη−k + ν∗dη
†
k)γ

†
pmγp′m′ ,

(56)

where we have defined the effective FI-SC interaction

V kpp′

dmm′ =
∑

qς

gkqdς g
−qpp′

ςmm′

[
1

~ωq
+

1

~ω−q

]
. (57)

This term is generally nonzero, and we therefore see that the
cavity photons lead to a coupling between the FI and SC, po-
tentially over macroscopic distances. This means that the FI
and SC will have a mutual influence on each other, possibly

Scav
int : a

gη
η + a

gγ

γ

γ

SFM
1 :

Gcav

SSC
1 :

Gcav

Sint :
Gcav

FIG. 3. Feynman diagrams [43] of the bare cavity coupling to the
FI and SC, and the resulting terms in the FI and SC effective actions
after integrating out the cavity photons, where Gcav is the photon
propagator.

leading to experimentally observable changes in the two mate-
rials. We therefore integrate out the Bogoliubov quasiparticles
and calculate the effective FI theory below. We reiterate that
the interaction is exact at this point, not a result of a perturba-
tive expansion.

E. Integrating out the SC quasiparticles — effective FI theory

The full effective SC action comprises the sum SSC
0 +SSC

1 +
Sint. The second term is second order in gγ , but does not
contain FI operators, and will therefore only have an indirect
effect on the effective FI action. In a perturbation expansion of
the effective FI action, the term SSC

1 will therefore contribute
higher order correction terms compared to Sint. We therefore
neglect this term in the following, leading to the SC action

SSC ≈ −
∑

pp′

∑

mm′

γ†
pm(G−1)pp

′

mm′γp′m′ , (58)

where we have defined G−1 = G−1
0 +Σ, with

(G−1
0 )pp

′

mm′ = − Epmδpp′δmm′ , (59)

Σpp′

mm′ =
1√
β

∑

kd

V kpp′

dmm′(νdη−k + ν∗dη
†
k). (60)

Integrating out the SC quasiparticles results in the effective
FI action [28]

SFI = SFI
0 + SFI

1 − ~Tr ln(−βG−1/~). (61)

The Green’s function matrix G−1 contains magnon fields, and
will be treated perturbatively in order to draw out the lowest
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order terms in the effective FI theory. We expand the loga-
rithm to second order in the FI–SC interaction,

ln

(
−βG−1

~

)
≈ ln

(
−βG−1

0

~

)
+G0Σ−

1

2
G0ΣG0Σ,

(62)

where G0 is the inverse of G−1
0 . This expansion is valid when

|G0Σ| � 1, meaning |gηgγ/~ωqEpm| � 1, where we use
shorthand notation for the couplings gη and gγ between cav-
ity photons and η and γ fields respectively. The first term in
Eq. (62) does not contain magnonic fields, and therefore does
not contribute to the FI effective action [44]. The third term
contains bilinear terms in magnonic fields, and gives a correc-
tion to the magnon dispersion of order |[gηgγ/~ωq]

2/Epm|,
a factor of |(gγ)2/~ωqEpm| smaller than the corrections con-
tained in SFI

1 , and will therefore also be neglected. Keeping
only the second term, and using the fact that G0 is diagonal in
both quasiparticle type m and momentum p, we therefore get
the effective FI action to leading order,

SFI =
∑

k

~λkη
†
kηk − gµB

∑

kd

hk
d ·
√

S

2
(νdη−k + ν∗dη

†
k)

+
∑

kk′dd′

Qkk′
dd′ (νdη−k + ν∗dη

†
k)(νd′η−k′ + ν∗d′η

†
k′),

(63)

where we have defined the anisotropy field due to the coupling
to the superconductor,

hk
d = − ~

gµB

√
2

Sβ

∑

pm

V kpp
dmm

Epm
, (64)

and a function

Qkk′
dd′ ≡ −

∑

qς

gkqdς g
k′−q
d′ς

~ωq
. (65)

describing the cavity-mediated self-interaction in the ferro-
magnetic insulator.

III. RESULTS

The main result of our work is the effective magnon ac-
tion (63). The interaction with the cavity and the SC gives rise
to linear and bilinear correction terms to the diagonal magnon
theory, corresponding to an induced anisotropy field and cor-
rections to the magnon spectra.

To extract a specific quantity, we consider the leading order
effect of coupling the FI to the SC via the cavity, namely the
linear magnon term. Physically this can be understood as a
contribution from an additional magnetic field trying to reori-
ent the FI in a direction other than along the z axis. We can
see this explicitly if we Fourier transform the linear magnon
term back to real space and imaginary time,

SFI
lin = − gµB

~

∫
dτ
∑

ri

∑

d

hd(ri, τ)Sid(τ), (66)

where we have used the definition of the in-plane spin compo-
nents in Eq. (18), and defined the real space anisotropy field
components due to the interaction with the superconductor

hd(ri, τ) =
1√
NFIβ

∑

k

hk
de

ik·ri . (67)

Above, we introduced the 3-vector

ri ≡ (τ, ri). (68)

In order for the anisotropy field components to be real, we re-
quire hk

d = (h−k
d )∗. Inserting the expressions for Epm and

V kpp
dmm from Eqs. (45c) and (57) into Eq. (64), and performing

the sum over the Matsubara frequencies [28], we get the fol-
lowing expression for the Fourier transposed anisotropy field
components,

hk
d = −

√
NFIβδΩm0

∑

q,d′

4πaSCet

~εω2
qV Lz

qd̄qd′

|Q|2 ν
2
de

iq·(rFI
0 −rSC

0 )

×DFI
k,qD

SC
0,−qe

−iqd′aSC/2ΠPd′ , (69)

where the dependence on the supercurrent comes in through
the factor

ΠPd =
∑

p

{
sin[(pd + Pd)aSC]|up|2

+ sin[(pd − Pd)aSC]|vp|2
}
tanh

βEp0

2~
. (70)

Notice that the field is finite only for zero Matsubara fre-
quency, meaning that it is time-independent (magnetostatic).
It is possible to show that hk

d = (h−k
d )∗ by letting q→ −q in

the sum in Eq. (69), and using DFI
k,q = (DFI

−k,−q)
∗, DSC

0,−q =

(DSC
0,q)

∗ from the definition in Eq. (26). Observe that in the
case of no DC (i.e. P = 0), the summand in Eq. (70) is odd
in p, and the sum therefore zero, i.e., ΠPd = 0 if Pd = 0.
Hence there is no anisotropy field induced across the FI in
the absence of a supercurrent. This stresses the necessity of
breaking the inversion symmetry of the SC in order to induce
an influence on the FI.

A. Special case: small FM

The anisotropy field (67) generally gives rise to compli-
cated, local reorientation of the FI spins. However, there are
special cases in which it takes on a simple form. In partic-
ular, assume the FI to be very small relative to the cavity,
i.e. `xlFIx , `yl

FI
y � Lx, Ly . In this case, the FI sum (26) be-

comes highly localized around k = 0 for the relevant ranges
of `x and `y , which are limited by the other factors DSC

0q and
(ωq|Q|)−2 found in Eq. (69). We may therefore set k = 0.
For a specified set of material parameters and dimensions, the
validity is confirmed numerically. In this case, Eq. (67) thus
reduces to

hd =
h0
d√

NFIβ
, (71)



9

FIG. 4. Illustration of the set-up used in the example given in
Sec. III A. A small, square FI and SC are placed spaced apart in the
y and z directions inside a comparatively large cavity. Only a small
portion of the cavity length in y is utilized as the contributions by the
various mediating cavity modes add constructively only over short
distances. The FI and SC are nevertheless separated by hundreds
of µm, 2–5 orders larger than typical effectual lengths in proximity
systems.

representing a uniform anisotropy field across the FI. In this
limit we can simplify the expression for the anisotropy field
components,

hd = −
∑

q,d′

2πaSCet

~εω2
qV Lz

ν2dD
FI
0,qD

SC
0,−qΠPd′

qd̄qd′

|Q|2

×
[
cos qxL

sep
x cos qyL

sep
y − sin qxL

sep
x sin qyL

sep
y

]
,

(72)

where we have assumed e−iqd′aSC/2 ≈ 1, which is a good ap-
proximation as long as the cavity dimensions far exceed the
lattice constant and only low |q| contribute to the sum, and
used the fact that DM

0,q [Eq. (26)] is an even function in q. We
have also defined the separation length Lsep

d = (rFI0 −rSC0 )·êd.
Assuming a finite separation between the FI and SC only in
one direction, the last term in the above equation vanishes,
making every remaining factor even in qd, except the product
qd̄qd′ for d̄ 6= d′. The sum over q therefore picks out terms
such that d̄ = d′. In order to get a finite hd we must, there-
fore, have ΠPd̄ 6= 0, i.e., the supercurrent momentum must be
finite in the direction d̄. Hence, in the case that the separation
between the FI and SC is finite in only one direction, applying
a supercurrent in the x direction can only induce an anisotropy
field in the y direction, and vice versa.

We consider the specific case of a small, square FI and SC
displaced along y and z (Fig. 4). In Fig. 5 we show numer-
ically how the effective anisotropy field varies with the su-
percurrent momentum in this special case, using Nb and YIG
as material choices for the FI and SC films, respectively; see
Table I. We furthermore use the interpolation formula [45]

∆ = 1.76kBTc0 tanh(1.74
√

Tc0/T − 1) (73)

for the superconducting gap, and a simple cubic tight-binding
electron dispersion. With the FI and SC center points sepa-
rated by 140 µm in the y direction (meaning they are separated
edge-to-edge by 115 µm in-plane), we find an anisotropy field
with a magnitude of . 1 µT (Fig. 5a). If the constraint on

separating the FI and SC in-plane is eased, the magnitude is
increased by a factor of 1.5 in our specific example (Fig. 5b).
We discuss the latter case in the concluding remarks.

Two factors determine the inhomogeneous distribution of
the responses seen in Fig. 5. First, the anisotropy field is
nearly linear in the components Pd of the supercurrent mo-
mentum, which is seen by expanding the anisotropy field
(see Eq. (70)) around PdaSC = 0 (note that PcaSC ≈ 0.001).
This generally makes the response stronger for larger |P|,
which is as expected, since it relies on breaking the p-
inversion symmetry. This dependency is evident in Fig. 5.

Second, the factor eiq·(r
FI
0 −rSC

0 ) renders the anisotropy field
very sensitive to the separation of the FI and SC center points
in the in-plane directions. This factor expresses that cavity
modes associated with a range of different in-plane momenta
q (i.e., spatial oscillations) with a coherent amplitude at no
in-plane separation (rFI0 − rSC0 = 0), become increasingly
decoherent with increasing separation. Eventually, this deco-
herence causes states in the SC to contribute oppositely, hence
destructively, to the effective anisotropy field. The destructive
addition at finite separation is limited by the range of low-q
cavity modes that contribute to the mediated interaction un-
til the coupling is suppressed by the factor DFI

0qD
SC∗
0q /ω2

qQ
2,

which in turn is determined by the dimensions of the three
subsystems. For sufficiently small separations (determined by
the contributing range of q), this oscillation is mild, and can
be used to change the polarity of the anisotropy field without
extinguishing the response. This is why the polarity of the
response component hx changes between Figs. 5a and 5b.

It is furthermore clear by inspection of Eq. (70) that the
main contributions to the anistotropy field come from states
near the Fermi surface. Series-expanding the expression
in P, most terms are seen to cancel due the odd symme-
try in p that was remarked below Eq. (70). The strongest
asymmetry caused by P is seen to originate from the factor
sin [(pd′ + Pd′)aSC] |up|2 + sin [(pd′ − Pd′)aSC] |vp|2 in the
summand, due to the step-like nature of |up|2 and |vp|2 near
the Fermi surface. This is as expected, since we consider in-
teractions involving the scattering of SC quasiparticles, hence
the low-energy events are concentrated near the Fermi surface.

TABLE I. Table of numerical parameter values.

YIG (FI) Nb (SC)
aFI 1.240 nm [46] aSC 0.330 nm [47]

Tc0 6K [36]
t 0.35 eVa

Pc 3.1× 107 m−1b

EF 5.32 eVc [47]

aBased on the tight-binding expression t = ~2/2ma2
SC [14], with

m the effective electron mass.
bBased on Pc = jcm/~ens [33], with an estimated critical

current jc = 4MA/cm2 [48], and a superfluid density ns =
m/µ0e

2λ2 [35] with a penetration depth λ = 200 nm [36].
cFermi energy for Nb. Does not appear explicitly in Eq. (72), but is

used in the electron dispersion.
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(a)

(b)

FIG. 5. The magnitude and direction (arrows) of the effective
anisotropy field [Eq. (72)] at T = 1K as a function of the super-
current momentum P, for the simple case of a small FI (lFI

x = lFI
y =

10 µm) relative to the cavity (Lx = Ly = 10 cm, Lz = 0.1mm).
The SC dimensions are lSCx = lSCy = 50 µm. The FI and SC center
points are separated by (a) Lsep

y = 140 µm and (b) nothing (placed
directly over each other). Observe the change in both the strength
and direction of the anisotropy field.

IV. CONCLUDING REMARKS

In this paper, we have calculated the cavity-mediated cou-
pling between an FI and an SC by exactly integrating out the
cavity photons. The main result is the effective FI action (63),
in which linear and bilinear magnon terms appear in addition
to the diagonal terms. These respectively correspond to an
induced anisotropy field, and corrections to the magnon spec-
tra. In contrast to conventional proximity systems, the cavity-
mediation allows for relatively long-distance interactions be-
tween the FI and the SC, without destructive effects on order
parameters associated with proximity systems, such as pair-
breaking magnetic fields. The separation furthermore facili-
tates subjection of the FI and the SC to separate drives and
temperatures. In contrast to common perturbative approaches
to cavity-mediated interactions involving the Schrieffer–Wolff
transformation [9, 14, 20] or Jaynes–Cummings-like mod-
els [12, 13, 26], the path-integral approach allows for an ex-

act integrating-out of the cavity, without limitations to off-
resonant regimes. This carries the additional advantage of
allowing for magnon–photon hybridization; that is, we are
not theoretically limited to regimes of weak FI–cavity Zeeman
coupling. We furthermore take into account that the finite and
different FI, cavity and SC dimensions enable interactions be-
tween large ranges of particle modes, which is neglected in
various preceding works [9, 10, 13, 14, 21, 23, 24], although
its importance has been emphasized by both experimentalists
[24] and theorists [21].

In an arbitrary practical example, we estimate numerically
the effective anisotropy field induced by leading-order inter-
actions across a YIG film (FI) due to mediated interactions
with an Nb film (SC). We find it is . 1 µT, mediated across
130 µm edge-to-edge accounting for both in-plane and out-of-
plane separation, inside a 10 cm × 10 cm × 0.1mm cavity
(Fig. 5a). With out-of-plane coercivities in nm-thin Bi-doped
YIG films reportedly as low as 300 µT [49], we anticipate the
response can be made more appreciable relative to Bext with
parameter optimization, which is left for future work. The
separation is 2–5 orders of magnitude greater than the typi-
cal length scales of influence in proximity systems, and fa-
cilitates local subjection to different drives and temperatures.
The main contributions from the SC originate from a narrow
vicinity of the Fermi surface determined by the Cooper pair
center-of-mass momentum 2P. The response is very sensitive
to the in-plane separation of the FI and SC center points due
to the spatial decoherence of the mediating cavity modes over
distances, which in turn depends on the dimensions of the FI,
cavity and SC. For this reason, the in-plane separation of FI
and SC was much smaller than the cavity width.

In Appendix B we have included the calculation of the
anisotropy field when placing the SC at the magnetic antin-
ode at z = 0. Since the vector potential is purely out of plane
in this case, the paramagnetic coupling is zero, and we there-
fore couple the cavity to the SC via the Zeeman coupling. As
shown in the appendix, this results in a much weaker cou-
pling and therefore much smaller anisotropy field. This can
be understood by comparing the effective fields the SC cou-
ples to in the two cases. The strength of the Zeeman cou-
pling is proportional to q × A, which for the lowest cavity
modes gives a field strength proportional to |A|/L. How-
ever, for the paramagnetic coupling, the effective field is pro-
portional to p · A. In both cases, the main contribution to
the anisotropy field originates from a narrow vicinity of the
Fermi level, the extent of which is determined by the magni-
tude of the symmetry-breaking supercurrent (electric antin-
ode) or applied field (magnetic antinode). Thus, we have
a paramagnetic coupling proportional to pF|A|, where pF
is the Fermi momentum. A Fermi energy of 5.32 eV gives
pF ∼ 1010 m−1 � 1/L for cavities with lengths in the mm
to cm range. Together with the fact that the contributing com-
ponents of A are larger for low |q| at the electric antinode
compared with the magnetic antinode, the difference in length
scales leads to a much larger paramagnetic coupling between
cavity and SC compared to the Zeeman coupling, resulting in
a much larger effective FI–SC coupling and anisotropy field.

One important constraint in our model that can potentially
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be eased, is that the FI and the SC cannot overlap in-plane. In
this case, we found a stronger response (cf. Fig. 5b). This was
assumed in order to enable the FI to be subjected to the align-
ing magnetostatic field Bext without affecting the SC, analo-
gously to the experimental set-up in Refs. [12, 13]. Combined
with the eventually destructive contributions of various cav-
ity modes over finite in-plane distances that limited us to us-
ing only a fraction of the cavity width in our example, this
leads to significant constraints on the dimensions and rela-
tive placements of the FI and SC. However, Ref. [50] reports
out-of-plane critical fields of nm-thin Nb films of roughly 1–
4T, while Ref. [49] reports out-of-plane coercivities in nm-
thin Bi-doped YIG films of roughly 3× 10−4 T. An aligning
field can therefore be many orders of magnitude smaller than
the SC critical field with appropriate material choices. One
would then expect the effect of Bext on the SC to be negli-
gible. However, we have not considered here the subsequent
effect of the SC on the spatial distribution of Bext, which was
taken to be uniform across the FI.

Moreover, the Pearl length criterion, which greatly lim-
its SC dimensions, can potentially be disregarded if the odd
p symmetry of the anisotropy field (64) is broken by other
means than a supercurrent. A candidate for this is taking into
account spin–orbit coupling on the SC and subjecting it to a
weak (non-pair breaking) magnetostatic field.

Furthermore, in our set-up, we have considered coupling to
the quasiparticle excitations of the SC. This has partly been
motivated by the prospect of using the FI to probe detailed
spin and momentum information about the SC gap, which
would require an extension of our present model. Another in-
teresting avenue to explore is coupling directly to the gap by
considering fluctuations from its mean-field value. This has
been explored for an FI–SC bilayer, where the Higgs mode of
the SC couples linearly to a spin exchange field [51]. This has
a significant impact on the SC spin susceptibility in a bilayer
set-up.

Despite coupling to the quasiparticles, we find that the
anisotropy field magnitude nearly constant at low tempera-
tures, and rapidly decreases to zero near the critical tempera-
ture. This can be understood from the fact that the symmetry-
breaking supercurrent momentum enters the system Hamilto-
nian via the gap (cf. Eq. (28b)). Hence, when the gap van-
ishes, so does the quantity that breaks the symmetry. On the
other hand, for temperatures substantially below Tc0, the gap
varies little with temperature; the anisotropy field becomes
close to constant, with a magnitude depending on the momen-
tum associated with the inversion symmetry-breaking current
P.

In the normal state, the DC through the SC induces a sur-
rounding magnetostatic field, by the Biot–Savart law. This
differs from the response in the superconducting state by in-
stead being appreciable above Tc0, and by its spatial distribu-
tion; for instance, the magnetostatic field cannot reverse the
field direction as observed between Fig. 5a and 5b.

Lastly, it is seen from Eq. (64) that the SC quasiparticle
modes uniformly affect the anisotropy field in our current set-
up, as the sum over fermion momenta p can be factored out
from the sum over photon momenta q. This limits the reso-

lution of SC features in the anisotropy field, and by extension
the FI. However, to higher order in the calculations, the quan-
tity Gqq′

ςς′ defined in Eq. (A6) enters, with sums over fermion
momenta p and p′ that are inseparable from the cavity mo-
menta q and q′. This quantity is a candidate for extracting
more features of the SC via the FI.
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Appendix A: Integrating out the SC first

The order in which we integrate out the cavity and the SC
is inconsequential. We show this here by integrating out the
SC first, starting from the partition function (49).

We introduce the interaction matrix G with elements

Gpp′

mm′ ≡ 1√
β

∑

qς

gqpp
′

ςmm′(aqς + a†−qς), (A1)

and furthermore the diagonal matrix E with elements

Epp′

mm′ ≡ Epmδpp′δmm′ . (A2)

Hence the action involving the SC can be written as

SSC
0 + Scav−SC

int =
∑

pm

∑

p′m′

(E +G)pp
′

mm′γ
†
pmγp′m′ . (A3)

The part of the partition function (49) which depends on the
SC is a Gaussian integral, and can now be written as [28]

ZSC ≡
∫
D[γ, γ†] exp


−1

~
∑

pm

∑

p′m′

(E +G)pp
′

mm′γ
†
pmγp′m′




≈ exp
[
Tr
[
E−1G− E−1GE−1G/2

]]
.

(A4)

In the last line, we neglected a factor expTr ln (βE/~) that
is constant with respect to the integration variables, and ex-
panded another logarithm to second order in |E−1G|. Hence,
integrating out the SC to second order in the cav–SC coupling
yields an effective action

Scav
1 ≡− ~Tr

[
E−1G− E−1GE−1G/2

]

=− ~√
β

∑

qς

∑

pm

gqppςmm

Epm
(aqς + a†−qς)

+
∑

qς

∑

q′ς′

Gqq′

ςς′ (aqς + a†−qς)(aq′ς′ + a†−q′ς′),

(A5)
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where we introduced the coefficient

Gqq′

ςς′ ≡
~
2β

∑

pm

∑

p′m′

gqpp
′

ςmm′g
q′p′p
ς′m′m

EpmEp′m′
. (A6)

We now proceed to isolate the photonic terms and integrate
out the cavity, i.e., we will perform the integral

Zcav ≡
∫
D[a, a†]e−Scav/~, (A7)

where the effective cavity action is

Scav ≡ Scav
0 + Scav

1 + SFI−cav
int . (A8)

To this end, we introduce the current operator

Jqς ≡ −
∑

kd

Gkq
dς (νdη−k + ν∗dη

†
k) + sqς , (A9)

and perform a shift of integration variables

aqς → aqς + J−qς/~ωq, (A10a)

a†qς → a†qς + Jqς/~ωq. (A10b)

The quantities Gkq
dς (to be distinguished from Gqq′

ςς′ ) and sqς
are coefficients of linear photon terms to be determined.

We now require that the shifts (A10a)–(A10b) absorb the
explicit linear photon terms in the action (A8), leaving only
bilinear and constant terms in the shifted variables. This leads
to self-consistency equations for Gkq

dς and sqς . However, to
second order in |E−1G|, it can be shown that only the lowest-
order expressions for Gkq

dς and sqς affect the anisotropy field
to be extracted at the end, cf. Sec. III. These are

Gkq
dς = gkqdς , (A11)

sqς =
~√
β

∑

pm

gqppςmm

Epm
. (A12)

Hence, the action (A8) can be written as

Scav = Scav
bil + Scav

con (A13)

where

Scav
bil ≡

∑

qς

~ωqa
†
qςaqς +

∑

qς

∑

q′ς′

Gqq′

ςς′ (aqς + a†−qς)(aq′ς′ + a†−q′ς′), (A14)

Scav
con ≡

∑

qς

JqςJ−qς

~ωq
+
∑

qς

∑

q′ς′

Gqq′

ςς′J−qςJ−q′ς′

[
1

~ωq
+

1

~ω−q

] [
1

~ωq′
+

1

~ω−q′

]
. (A15)

Scav
bil contains all bilinear terms with respect to the shifted vari-

ables, and Scav
con all constant terms.

Returning to the integral (A7), by Eq. (A13), we now have

Zcav =

∫
D[a, a†]e−Scav/~ = e−Scav

con/~
∫
D[a, a†]e−Scav

bil /~.

(A16)

The integrand is now independent of magnons, and therefore
inconsequential to the physics of the ferromagnetic insulator.
We can therefore neglect the integral, leaving only the expo-

nential prefactor. We are thus left with an effective FI partition
function

ZFI ≡
∫
D[η, η†]e−SFI/~, (A17)

where the effective FI action is

SFI ≡ SFI
0 + Scav

con. (A18)

Neglecting magnon-independent terms, SFI reads, after some
rewriting,

SFI =
∑

k

~λkη
†
kηk +

∑

kd

∑

k′d′

Qkk′
dd′ (νdη−k + ν∗dη

†
k)(νd′η−k′ + ν∗d′η

†
k′)− gµB

∑

kd

hk
d ·
√

S

2
(νdη−k + ν∗dη

†
k). (A19)

Above, we introduced

Qkk′
dd′ ≡ −

∑

qς


g

kq
dς g

k′−q
d′ς

~ωq
+
∑

q′ς′

Gqq′

ςς′

[
1

~ωq
+

1

~ω−q

] [
1

~ωq′
+

1

~ω−q′

]
gkqdς g

k′q′

d′ς′


 , (A20)
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hk
d = − ~

gµB

√
2

Sβ

∑

pm

V kpp
dmm

Epm
, (A21)

which to leading order in the paramagnetic coupling are indeed the same as Eqs. (64) and (65).

Appendix B: SC at magnetic antinode

FIG. 6. Illustration of the set-up with the SC placed at the mag-
netic antinode. The SC is subjected to an aligning external in-plane
magnetic field BSC

ext. This set-up is otherwise identical to the one
illustrated in Fig. 1.

To compare our results for the FI-SC coupling with the
SC placed at the electric antinode, we examine what happens
when we place the superconductor at a magnetic maximum at
z ≈ 0, cf. Fig. 6. In this case the vector potential A points
purely in the z direction, and therefore does not couple to the
SC via the paramagnetic coupling term used above. We there-
fore couple the SC to the cavity via the Zeeman coupling, and
calculate the resulting anisotropy field across the FI. For the
setup considered in the main text, it was necessary to break the
inversion symmetry to get a finite anisotropy field, achieved,
for instance, by applying a DC current. For the present setup,
it is necessary to break the in-plane spin rotation symmetry,
which can be achieved by applying an in-plane magnetic field
to the SC. This becomes evident when considering the cou-
pling between the cavity and SC. Placing the SC at z ≈ 0, the
cavity magnetic field is purely in-plane, pointing in the oppo-
site direction to the field Eq. (23) at z = Lz , resulting in a
coupling term,

SZeeman =
∑

qpp′

∑

σσ′

gqpp
′

σσ′ (aq1 + a†−q1)c
†
pσcp′σ′ , (B1)

with interaction matrix

gqpp
′

σσ′ = δΩn,ωn−ω′
n

×
√

~µ2
B

εωqV
DSC

p−p′,qe
iq·rSC0 i sin θq(σ × q)σσ′ · êz.

(B2)

This interaction alone would lead to a SC-cavity coupling that
is off-diagonal in quasiparticle basis. The anisotropy field,
corresponding to the diagram for Sint in Fig. 3 with connected
quasiparticle lines will therefore be exactly zero unless one
breaks the spin-rotation symmetry by an in-plane magneto-
static field BSC

ext. The latter can for example be experimen-
tally realized using external coils, as suggested for Bext. In
that case the quasiparticle bands are spin-split, resulting in the
SC term

SSC
0 =

∑

pn

(−i~ωn + Epn)γ
†
pnγpn, (B3)

with the four quasiparticle bands

Epn = (−1)bn/2cEp + (−1)nH, (B4)

with Ep =
√

ξ2p + |∆p|2, n ∈ [0, 1, 2, 3] and H = |µBB
SC
ext|.

The bands are independent of in-plane direction of the field
BSC

ext, with the directional dependence entering through the
coupling between the quasiparticles and the cavity photons,

SSC−cav
int =

1

2
√
β

∑

qpp

∑

nn′

gqpp
′

nn′ (aq1 + a†−q1)γ
†
pnγp′n′ , (B5)

where we have defined the interaction matrix in the Bogoli-
ubov quasiparticle basis

gqpp
′

nn′ = − 1

2
gqpp

′

↑↓ eiφ

(
[u†

pup′ + vpv
†
p′ ][σz + iσy] [u†

pvp′ − vpu
†
p′ ][σ0 − σx]

[v†pup′ − upv
†
p′ ][σ0 + σx] [v†pvp′ + upu

†
p′ ][σz − iσy]

)

nn′

− 1

2
gqpp

′

↓↑ e−iφ

(
[u†

pup′ + vpv
†
p′ ][σz − iσy] [u†

pvp′ − vpu
†
p′ ][σ0 + σx]

[v†pup′ − upv
†
p′ ][σ0 − σx] [v†pvp′ + upu

†
p′ ][σz + iσy]

)

nn′

, (B6)

where σ0 is the 2× 2 identity matrix, and φ is the angle of the
in-plane field relative to the x axis. We have also defined the

functions

up = eiθp

√
1

2

(
1 +

ξp
Ep

)
, (B7a)
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vp = eiθp

√
1

2

(
1− ξp

Ep

)
, (B7b)

which satisfy |up|2 + |v2p| = 1. Here 2θp is the phase of the
order parameter.

Following the same procedure of integrating out the cav-
ity photons and quasiparticles in the SC, we get an expres-
sion identical to Eq. (63), with the only change coming in the
anisotropy field, which is now defined as

hk
d ≡ −

~√
2SβgµB

∑

pn

V kpp
dnn

Epn
, (B8)

with

V kpp′

dnn′ =
∑

q

gkqd1g
−qpp′

nn′

[
1

~ωq
+

1

~ω−q

]
. (B9)

The additional factor of 1/2 in the definition of hk
d is due to the

field integral resulting in the Pfaffian of the antisymmetrized

Green’s function in this case, which is the square root of the
determinant [52]. The reason for this is the necessity of an ex-
panded Nambu spinor, which contains both creation and anni-
hilation operators of both types of quasiparticles when includ-
ing an in-plane field [53].

Inserting Eqs. (B6) and (B9) into Eq. (B8) and performing
the sum over fermionic Matsubara frequencies [28], we get

hk
d =

√
βδΩm0√
2SgµB

∑

qp

gkqd
~ωq

[g−qpp
↑↓ eiφ + g−qpp

↓↑ e−iφ]

×
[
tanh

β(Ep +H)

2~
− tanh

β(Ep −H)

2~

]
, (B10)

where we have used the fact that ωq is even in q. Here it is
clear that the anisotropy field is exactly zero when the in-plane
field is zero, since the last two terms exactly cancel in that
case. Moreover, since the anisotropy field is independent of
the frequency Ωm, we define the time-independent anisotropy
field hk

d =
∑

Ωm
hk
de

−iΩmτ/
√
β. Inserting the expressions

for gkqd and g−qpp
σσ′ from Eqs. (25) and (B2) we get

hk
d = − µB

√
NFI

εV

∑

q

eiq·(r
FI
0 −rSC0 )

DFI
kqD

SC∗
0q sin2 θq

ω2
q

qd̄ν
2
d [qy cosφ− qx sinφ]

∑

p

[
tanh

β(Ep +H)

2~
− tanh

β(Ep −H)

2~

]
.

(B11)

We focus on the anisotropy field averaged across the FI, 〈hd〉 =
∑

i hd(ri, τ)/NFI =
∑

i

∑
k h

k
de

ik·ri/N3/2
FI = h0

d/
√
NFI

(cf. Eq. (67)), rewrite the first sum such that it becomes dimensionless, and transform the second sum into an integral using a
free electron gas dispersion ξk = ~2p2/2m− µ. Assuming cavity dimensions Lx = Ly = L and an s-wave gap, we get

〈hd〉 = −
µBmASC∆0

2π~2εc2V
∑

q

eiq·(r
FI
0 −rSC0 )DFI

0qD
SC∗
0q

`d̄ν
2
d [`y cosφ− `x sinφ][`

2
x + `2y][

`2x + `2y +
(

L
2Lz

)2]2

×
ξmax/∆0∫

−µ/∆0

dx

[
tanh

1.764Tc

(√
x2 + |∆/∆0|2 +H/∆0

)

2T
− tanh

1.764Tc

(√
x2 + |∆/∆0|2 −H/∆0

)

2T

]
. (B12)

Here ASC and ∆0 are the area and zero temperature gap of the
superconductor, respectively, and m the electron mass. `x and
`y are integer indexes corresponding to cavity momentum q.
From the above expression we expect terms even in `d to dom-
inate, resulting in the anisotropy field and expectation values
of the in-plane spin components to have a φ dependence given
by hk

x ∼ 〈Six〉 ∝ − cosφ and hk
y ∼ 〈Siy〉 ∝ − sinφ. This is

in good agreement with numerical solutions of Eq. (B12), as
shown in Fig. 7. Notice, however, that the magnitude of the
anisotropy field is very small, on the order of 10−11 T. This is
several orders of magnitude smaller than the previously con-
sidered setup, and we do not expect this to be a measurable
effect. Here we have neglected the effect of a in-plane finite
separation between the SC and FI by placing them directly
above each other. A finite separation would further reduce the

anisotropy field.
At zero temperature the two hyperbolic tangent functions

in Eq. (B12) are always equal to one, as long as H < ∆0.
Since the field must be below the critical field Hc0 = ∆0/

√
2

in the superconducting state, the two terms in the integral al-
ways cancel exactly at zero temperature. On the other hand,
in the case of temperatures just above the critical tempera-
ture, T & Tc, and µ, ξmax > H , we get the analytical result
4H/∆0 from the integral. Hence we expect the anisotropy
field to increase from zero to the normal state value as tem-
perature increases towards Tc, and that 〈hd〉 increases linearly
with applied field in the normal state. This is found to be
in good agreement with numerical results, see the inset in
Fig. 7 for |H| > Hc. In the numerical calculations we have
assumed µ, ξmax � ∆0, and that the gap’s dependence on
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FIG. 7. Absolute value (contour plot) and direction (arrows) of the
averaged anisotropy field as a function of applied field strength and
direction. The anisotropy field points opposite the applied field over
the SC, following a cosφ and sinφ dependence for the x and y com-
ponent respectively. The inset shows the absolute value of the in-
plane projection as a function of the field strength. The temperature
is set to T = 0.5Tc0. The cavity dimensions are Lx = Ly = L =
10 cm and Lz = 1mm, and the FI and SC have sides of length
0.001L and are placed at the center of the cavity.

temperature and applied field is described by Eq. (73) mul-
tiplied with

√
1− (H/Hc)2 [45, 54], and the critical field

depends on temperature as Hc = Hc0[1 − (T/Tc0)
2] [35],

where Tc0 is the critical temperature for zero field. Below
the critical temperature and field, the field-dependence of the
anisotropy field is more complicated due to the additional ef-
fect of reducing the superconducting gap, see inset in Fig. 7.
The difference in temperature and applied field-dependence
of the anisotropy field between the normal and superconduct-
ing state could therefore in principle be a way of detecting the
onset of superconductivity without directly probing the super-
conductor, though the anisotropy field calculated here is too
small to be detectable.

Appendix C: Linear terms as an anisotropy field

In this appendix, we take a closer look at the interpretation
of the linear magnon terms as interactions with an effective
anisotropy field. Consider an FI in an inhomogeneous applied
field,

H = −J
∑

〈i,j〉
Si · Sj −

∑

i

Hi · Si. (C1)

Above, Hi = (Hx
i , H

y
i , H

z) is the inhomogeneous external
field, with Hz assumed homogeneous and much larger than
Hx

i , H
y
i . We therefore assume ordering in the z direction

when performing the Holstein–Primakoff transformation, re-

sulting in the Fourier-transformed Hamiltonian

H = E0 +
∑

k

[
~λkη

†
kηk − hkη

†
k − h∗

kηk

]
. (C2)

Here ~λk is the dispersion defined in Eq. (21), the classical
ground state energy is

E0 = −~SNFI [J~SNδ +Hz] , (C3)

and the momentum-dependent in-plane magnetic energy

hk =

√
S

2NFI
~
∑

i

(Hx
i + iHy

i )e
−ik·ri . (C4)

Since the applied field has in-plane components, the z di-
rection is not the exact ordering direction in the ground state,
leading to a non-diagonal Hamiltonian with linear terms. To
get rid of these terms, we translate the fields according to

ηk → ηk + tk,

η†k → η†k + t∗k,
(C5)

and require that linear terms cancel. Translating the fields
leads to the Hamiltonian

H → E0 +
∑

k

{
~λkη

†
kηk + [~λktk − hk]η

†
k

+ [~λkt
∗
k − h∗

k]ηk + ~λkt
∗
ktk − hkt

∗
k − h∗

ktk

}
,

(C6)

and we therefore require

tk =
hk

~λk
. (C7)

The resulting diagonal Hamiltonian is

H = E0 +
∑

k

[~λkη
†
kηk − ~λkt

∗
ktk]. (C8)

The last term in the above equation results in a renormal-
ization of the classical ground state,

E0 → E0 −
∑

k

~λkt
∗
ktk

= E0 −
∑

i,j,k

S~2(Hx
i + iHy

i )(H
x
j − iHy

j )
2eik·(rj−ri)

2NFI~λk
.

(C9)

In the case of constant in-plane components, this simplifies to

E0 = − ~SNFI

{
J~SNδ +

[
Hz +

(Hx)2 + (Hy)2

2Hz

]}

≈ − ~SNFI [J~SNδ + |H|] , (C10)

where the approximation in the last line is valid in the limit
|Hx|, |Hy| � |Hz|. This is as expected, since the classi-
cal ground state is generally oriented along H, not Hz . The
translation of magnon operators in Eq. (C5) can therefore
be understood as a local rotation of the spin ordering ansatz
due to small inhomogeneous in-plane fields, valid in the limit
|Hx,y

i | � |Hz|.
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Appendix A

Mean field theory

Appendix summary: Using mean field theory, the spin reorientation (6.80)
can be reproduced to first order in the paramagnetic coupling. We demon-
strate this here, and compare it to the path integral result.

After introducing all the quasiparticle bases, the full system Hamiltonian reads

H =
∑

k

ħhλkη
†
kηk +

∑

pm

Epmγ
†
pmγpm +

∑

qς

ħhωqa†
qςaqς

+
∑

kd

∑

q

gkq
d (νdη−k + ν

∗
dη

†
k)(aq1 + a†

−q1)

+
∑

qς

∑

pm

∑

p′m′

gqpp′

ςmm′(aqς + a†
−qς)γ

†
pmγp′m′ . (A.1)

We now separate γ†
pmγp′m′ into an expectation value and a fluctuation (cf. Eq. (3.14)):

γ†
pmγp′m′ = 〈γ†

pmγp′m′〉+
�

γ†
pmγp′m′ − 〈γ†

pmγp′m′〉
�

≡ 〈γ†
pmγp′m′〉+δ(γ†

pmγp′m′).
(A.2)

This relation is exact. The mean-field approach amounts to assuming that the
fluctuation is small, usually expressed as “δ(γ†

pmγp′m′) ≪ 〈γ†
pmγp′m′〉”.1 In our

case, this assumption is justified by considering a weak cavity–SC coupling. Then

1More rigorously, in order to quantify δ(γ†
pmγp′m′) (whose expectation value is zero:

〈δ(γ†
pmγp′m′)〉= 〈γ†

pmγp′m′〉 − 〈γ†
pmγp′m′〉= 0), one can instead consider its root mean square (rms):

rms(δ(γ†
pmγp′m′))≡

Ç

〈(δγ†
pmγp′m′)†δγ†

pmγp′m′〉

=
r

〈γ†
p′m′γpmγ

†
pmγp′m′〉 − |〈γ†

pmγp′m′〉|2. (A.3)

We can then formulate the mean-field criterion rigorously as an rms version of the Ginzburg cri-
terion [133], namely

rms(δ(γ†
pmγp′m′))≪ 〈γ†

pmγp′m′〉. (A.4)
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the corrections to the diagonal SC theory will be small compared to the leading-
order (non-interacting) mean field value,

〈γ†
pmγp′m′〉= nF (Epm)δpp′δmm′ . (A.5)

We can therefore disregard the fluctuations δ(γ†
pmγp′m′), which in effect de-

couples the SC from the rest of the system in the Hamiltonian (A.1). We therefore
discard the diagonal SC terms. Since we are ultimately interested in the effect on
the magnons, and the magnons only couple to the ς= 1 photons, we also discard
ς= 2 photons. Thus, the Hamiltonian reads

H =
∑

k

ħhλkη
†
kηk +

∑

q

ħhωqa†
q1aq1

+
∑

kd

∑

q

gkq
d (νdη−k + ν

∗
dη

†
k)(aq1 + a†

−q1) +
∑

q

Γq(aq1 + a†
−q1), (A.6)

where we introduced
Γq ≡

∑

pm

gqpp
ςmmnF (Epm). (A.7)

The Hamiltonian has thus acquired linear photon terms. If absorbed into the bilin-
ear magnon and photon terms, it does not only lead to a shift in the photon oper-
ators: Because of the Zeeman coupling, a shift in the photon theory aq1 → aq1+sq
will also lead to linear terms in the magnon theory, proportional to sq and s∗−q. In
order to completely absorb the new linear photon term, it is therefore necessary
to also shift the magnon theory ηk → ηk + tk. We identify tk as analogous to the
quantity (6.80) we found for the reorientation of the FI spins.

Neglecting a contribution to the zero-point energy, the bilinear magnon and
photon theory therefore reads

H =
∑

k

ħhλk(ηk + tk)
†(ηk + tk) +

∑

q

ħhωq(aq1 + sq)
†(aq1 + sq)

+
∑

kd

∑

q

gkq
d (νd(η−k + t−k) + ν

∗
d(ηk + tk)

†)((aq1 + sq) + (a−q1 + s−q)
†).

(A.8)

Isolating all the linear operator terms, and requiring that they absorb the linear
terms in Eq. (A.6), yields
∑

q

ħhωq(a
†
q1sq + aq1s∗q) +

∑

kd

∑

q

gkq
d (aq1 + a†

−q1)(νd t−k + ν
∗
d t∗k) =

∑

q

Γq(aq1 + a†
−q1),

(A.9)
∑

k

ħhλk(η
†
k tk +ηk t∗k) +

∑

kd

∑

q

gkq
d (sq + s∗−q)(νdη−k + ν

∗
dη

†
k) = 0. (A.10)

Since all operators aq1, a†
q1, ηk and η†

k are linearly independent, we can gather
their coefficients and equate them to zero separately. From the first line, we find

sq =
1
ħhωq

�

Γq −
∑

kd

∑

q

gkq
d (νd t−k + ν

∗
d t∗k)

�

. (A.11)
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Inserting the expression for Γq, the second line then yields the following self-
consistency equation for tk:

tk = −
1
ħhλk

∑

dq

2gkq
d ν

∗
d

ħhωq

�

−
∑

k′d ′

gk′,−q
d ′ (νd ′ t−k′ + ν∗d ′ t ′∗k ) +

∑

pm

g−qpp
1mm nF (Epm)

�

.

(A.12)
This is seen to be equivalent to Eq. (6.80). Recall that tk was the shift in the
Matubara basis ηk, so tk and tk relate by

tk =
1
p

β

∑

Ωm

tke−iΩmτ. (A.13)

To all orders in the coupling constants, tk carries a factor δΩm0 originating from
Pk

d (Eq. (6.69)), so we find that

tk =
t(0,k)
p

β
. (A.14)

This is a straight-forward validation of the anisotropy result. However, this
does not imply that the mean field theory captures the broad results of the path
integral approach. Observe that from this mean field theory, we are only able to
extract the anisotropy field to leading order in the cavity–SC coupling. Meanwhile,
the path integral approach has enabled us to readily extend the theory to second
order. We demonstrated the use of going to this order when deriving corrections to
the magnon spectrum in Ch. 7, where it is necessary to go to this order to capture
the contributions from the SC. Moreover, with the path integral approach, we are
readily able to integrate out the effect of the mediator (the cavity), leaving an
exact effective FI–SC theory (see Paper II). This is a very interesting result in its
own right, and provides a route to accurately extract influences on the SC (such
as the pairing potential induced by interactions with the cavity [11]). While mean
field theory offers a fast way to the leading-order result, it is not a replacement
for the path integral approach.





Appendix B

Schrieffer–Wolff transformation

Appendix summary: Preceding the Matsubara path integral approach
presented in the main thesis, we eliminated the cavity from the calcu-
lations by way of a perturbative Schrieffer–Wolff approach. Aiming to ex-
tract effects of the SC on the FI, this approach did not come to fruition for
the reasons discussed at the end of this appendix. As it is a common ap-
proach in similar works, we provide an instructional comparison between
these calculations, and those resulting from mean field theory and the
path integral approach.

Not all research ends in positive results. In this section, instead of exactly in-
tegrating out the cavity by means of the Matsubara path integral formalism, we
will do so approximately by means of the Schrieffer–Wolff transformation. While
leaving some open questions, and not turning out particularly fruitful for the pur-
pose of extracting renormalized magnon energies or the induced anisotropy field
across the FI, it can still be valuable for a reader to see the approach and its results
for our system. This transformation was used in Ref. [10] to extract renormalized
magnon energies as a function of an applied magnetostatic field, for a ferro- and
antiferromagnetic magnon mode coupled via a cavity. It was also used it Ref. [11]
to extract an effective electron–electron pairing potential in a normal metal in-
duced by interactions with a cavity, giving rise to Amperean superconductivity.

A Schrieffer–Wolff transformation likewise involves rotating a Hamiltonian
using a unitary matrix S, such that

H′ ≡ eSHe−S = eS(H0 +Hint)e
−S . (B.1)

Here H0 ≡HFI
0 +Hcav

0 +HSC
0 comprises the free terms, and Hint ≡HFI−cav+Hcav−SC

comprises the interaction terms. The unitarity of S ensures that the eigenvalues
of the H remain the same after the transformation [2]. By the Hadamard lemma,
this expression may be series expanded in powers of S, yielding

eS(H0 +Hint)e
−S =H0 +Hint + [S,H0 +Hint] +

1
2!
[S, [S,H0 +Hint]] + . . . (B.2)
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The series is now truncated at second order; as will be shown, the expansion in
S is equivalent to an expansion in resonance parameters of the form g/δ, where
g is the FI–cavity or cavity–SC coupling strength, and δ the difference between
magnon or SC quasiparticle energies, and photon energies, respectively. Trunca-
tion is therefore justified by limiting energies to off-resonant regimes.

The trick is now to eliminate Hint by choosing S such that

[H0, S] =Hint = −[S,H0]. (B.3)

Inserting this into Eq. (B.2), one may readily verify that

H′ ≈H0 +
1
2
[S,Hint]. (B.4)

Hint is then eliminated in favor of 1
2[S,Hint], which contains the effective FI–SC

interaction.
Following Refs. [2, 11, 106], we postulate a general form for S

S ≡
∑

kqd

gkq
d

�

aq1(A
kq
1 νdη−k + Akq

2 ν
∗
dη

†
k) + a†

−q1(A
kq
3 νdη−k + Akq

4 ν
∗
dη

†
k

�

+
∑

pp′

∑

qς

∑

mm′

gqpp′

ςmm′(B
pp′q
ςmm′,1aqς + Bpp′q

ςmm′,2a†
−qς)γ

†
pmγp′m′ (B.5)

where Akq
i and Bpp′q

ςmm′,i are coefficients. In the following, we will deal with a number
of commutators. We will make use of the following commutator identities, with
A, B, C , D operators:

[A, BC] = [A, B]C + B[A, C], (B.6)

[AB, C] = A[B, C] + [A, C]B, (B.7)

[AB, C D] = A[B, C]D+ [A, C]BD+ CA[B, D] + C[A, D]B, (B.8)

[A, B + C] = [A, B] + [A, C], (B.9)

[A, B] = 2AB − {A, B}. (B.10)

The last identity is particularly useful for commutators of fermionic operators, the
braces denoting the anticommutator. Inserting now the system Hamiltonian (6.1)
and the postulated form (B.5) for S into Eq. (B.3), one finds the coefficients

Akq
1 = −Akq

4 =
1

ħh(−ωηk −ωq)
, Akq

3 = −Akq
2 =

1

ħh(−ωηk +ωq)
, (B.11)

Bpp′q
ςmm′,1 =

1
(−1)mEp − (−1)m′ Ep′ −ħhωq

, Bpp′q
ςmm′,2 =

1
(−1)mEp − (−1)m′ Ep′ +ħhωq

.

(B.12)
By inspection of S in Eq. (B.5), it becomes clear that the truncation of the series
in Eq. (B.2) is justified if the denominators of the coefficients (B.11) and (B.12)
are much larger than the coupling constants.



Chapter B: Schrieffer–Wolff transformation 157

+

+

η agη a

γ

gγ

+ +

+

Figure B.1: Leading order effective interactions resulting from the Scrieffer–Wolff
transformation, cf. Eq. (B.17). Magnons η) and photons (a) interact via the Zee-
man coupling (gη), and photons and SC quasiparticles (γ) via the paramagnetic
coupling (gγ). Diagrammatically, the effective interactions can be obtained by
joining the ends of the building blocks in the first line. Note that the first and the
last term do not appear in the Matsubara path integral after integrating out the
cavity (see Ch. Chapter 6 and in particular Paper II, where the cavity is integ-
rated out first); this because these terms are there handled by a substitution of
photon variables that decouples the cavity, which is subsequently neglected, leav-
ing only the diagrams with internal photon lines. Inspired by the corresponding
figure in Paper II, courtesy of H. G. Hugdal.

[S,Hint] remains to be computed. This involves the following commutators:

[aq1(A
kq
1 νdη−k + Akq

2 ν
∗
dη

†
k) + a†

−q1(A
kq
3 νdη−k + Akq

4 ν
∗
dη

†
k, (νd ′η−k′ + ν∗d ′η

†
k′)(aq′1 + a†

−q′1)]

= δ−kk′

�

aq1(νdν
∗
d ′A

kq
1 − ν∗dνd ′Akq

2 ) + a†
−q1(νdν

∗
d ′A

kq
3 − ν∗dνd ′Akq

4 )
�

(aq′1 + a†
−q′1)

+δq,−q′(νd ′η−k′ + ν∗d ′η
†
k′)
�

(Akq
1 − Akq

3 )νdη−k + (A
kq
2 − Akq

4 )ν
∗
dη

†
k

�

,

(B.13)

[aq1(A
kq
1 νdη−k + Akq

2 ν
∗
dη

†
k) + a†

−q1(A
kq
3 νdη−k + Akq

4 ν
∗
dη

†
k, (aq′ς′ + a†

−q′ς′
)γ†

pmγp′m′]

= δq,−q′δ1,ς′

�

(Akq
1 − Akq

3 )νdη−k + (A
kq
2 − Akq

4 )ν
∗
dη

†
k

�

γ†
pmγp′m′ ,

(B.14)
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[(Bpp′q
ςmm′,1aqς + Bpp′q

ςmm′,2a†
−qς)γ

†
pmγp′m′ , (νd ′η−k′ + ν∗d ′η

†
k′)(aq′1 + a†

−q′1)]

= δq,−q′δς,1(B
pp′q
ςmm′,1 − Bpp′q

ςmm′,2)(νd ′η−k′ + ν∗d ′η
†
k′)γ†

pmγp′m′ , (B.15)

[(Bpp′q
ςmm′,1aqς + Bpp′q

ςmm′,2a†
−qς)γ

†
pmγp′m′ , (aq′ς′ + a†

−q′ς′
)γ†

p̃m̃γp̃′m̃′]
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pp′q
ςmm′,1 − Bpp′q

ςmm′,2)γ
†
pmγp′m′γ

†
p̃m̃γp̃′m̃′
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−qς)(γ
†
pmγp̃′m̃′δp′p̃δm′m̃ − γ†

p̃m̃γp′m′δpp̃′δmm̃′).
(B.16)

Gathering terms, we then find that the perturbed Hamiltonian (B.4) becomes

H′ ≈H0 +
1
2
[S,Hint]

=
∑

k

ħhλkη
†
kηk +

∑

pm

Epmγ
†
pmγpm +
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(B.17)

In the second equality above, the terms in the first line are the unperturbed particle
energies; in the second line, photon self-interactions via magnons; in the third
line, magnon self-interactions via photons; in the fourth and fifth line, magnon–SC
quasiparticle interactions via photons; in the sixth line, a quasiparticle (electron)
pairing term analogous to the main result in Ref. [11]; and finally, in the seventh
line, various photon–quasiparticle interactions mediated by a virtual quasiparticle
(photon–quasiparticle scattering, and quasiparticle pair annihilation/creation).
Diagrams of these effective interactions are found in Fig. B.1.

B.1 Extracting results

We now ask how we can proceed from Eq. (B.17), in order to extract the influence
of the SC on the FI. Note first that the Schrieffer–Wolff transformation did not
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decouple the cavity from the remaining system, leaving a term of the form (a +
a†)(a+a†)(γ†γ−γ†γ). However, these terms, as well as the γ†γγ†γ pairing terms,
will only couple to magnons to higher orders in the expansion parameters. We can
therefore neglect these, leaving the cavity uncoupled, and the SC and FI coupling
only via the (η+η†)γ†γ terms:

H′ ≈
∑

k

ħhλkη
†
kηk +

∑

pm

Epmγ
†
pmγpm

+
1
2

∑

kqd

gkq
d

�
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†
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1 − Akq

3 )νdη−k + (A
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2 − Akq

4 )ν
∗
dη

†
k

�

+
∑

pp′

∑

mm′

g−qpp′

1mm′
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1 − Akq

3 + (B
pp′,−q
ςmm′,1 − Bpp′,−q

ςmm′,2))νdη−k

+ (Akq
2 − Akq

4 + (B
pp′,−q
ςmm′,1 − Bpp′,−q

ςmm′,2))ν
∗
dη

†
k

�

γ†
pmγp′m′

�

.

(B.18)

B.1.1 Second Schrieffer–Wolff transformation

Performing a second Schrieffer–Wolff transformation with a rotation matrix of the
form S′ ∼ (η+η†)γ†γ in a similar attempt to decouple the FI and SC is tempting,
but would not be fruitful. Including the off-diagonal magnon terms in the interac-
tion Hamiltonian, it would be of the form H′

int ∼ (η+η
†)(η+η†) + (η+η†)γ†γ.

Then the commutator [S′,H′
int] ∼ (η + η

†)γ†γ + (η + η†)(η + η†)γ†γ + γ†γγ†γ.
Clearly this transformation would fail to decouple the FI and SC.

In relation to the SC, this additional Schrieffer–Wolff transformation could
be useful for eventually extracting corrections to the electron pairing potential
due mediated interactions with the magnons. These corrections would enter via
the γ†γγ†γ terms. However, these corrections would be limited to off-resonant re-
gimes; we have already outlined how an exact effective SC theory can be construc-
ted using the path integral approach in the main thesis (see Sec. 8.1.2), without
limitations to off-resonant regimes.

B.1.2 Mean field theory

Another way forward is mean field theory (cf. Appendix A). Assuming weak inter-
actions, γ†

pmγp′m′ can be replaced by its leading-order expectation value 〈γ†
pmγp′m′〉=

nF (Epm)δpp′δmm′ . In effect, this decoupled the FI and the SC, leaving behind lin-
ear magnon terms. We can thus extract the leading-order anisotropy field across
the FI due to the SC, by absorbing the linear magnon terms into the bilinear terms,
as was done in Sec. 6.1.4.

However, we demonstrated in Appendix A that one can apply mean field the-
ory already to the initial system Hamiltonian to extract precisely this quantity. To
this end, the Schrieffer–Wolff transformation is therefore redundant.
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We conclude this appendix here, as we transitioned to the path integral ap-
proach of the main thesis around this point in the research. Unlike the Schrieffer–
Wolff approach, the path integral formalism makes short work of the cavity: since
the system action (see Ch. 6) is no more than bilinear in the photon variables,
the corresponding path integral is Gaussian, allowing us to exactly integrate out
the cavity without reference to the Schrieffer–Wolff constraint on off-resonance
(cf. Paper II). The path integral formalism furthermore enabled us to readily go
an order beyond mean field theory with respect to the cavity–SC coupling.



Appendix C

Draft on corrections to the
magnon spectrum

In light of the results and analysis presented in Ch. 7 on corrections to the magnon
spectrum, it is instructional to contrast this with a previous attempt by us at deriv-
ing renormalized magnon energies analytically, which led to overestimated energy
corrections. A draft for a manuscript written in parallel with these calculations is
attached below in this appendix. There we proceeded with the approach outlined
in Sec. 7.1.2, amounting to solving the equation mρ(z) = 0 (Eq. (7.12)) for the
eigenvalues of the effective action matrix, in order to determine the renormalized
energies.

In order to extract analytical solutions to mρ(z) = 0, it was necessary to reduce
its order in z. The step that ultimately yielded a different answer from what was
presented above, is seen to be the replacement of ∆Ekp

00 with a weighted average

〈∆Ekp
00 〉. This enabled extraction of the factor (〈∆Ekp

00 〉 − z)−1 from the sum over
p, and rendered analytical solutions to z attainable. Proceeding with these solu-
tions numerically, we were able to produce promising energy corrections of almost
30MHz for a set of parameter inputs specified in the draft. However, in light of
the discussion on the importance of the distribution of intersections between the
magnon energy and the SC quasiparticle energy differences, it is clear that repla-
cing∆Ekp

00 with 〈∆Ekp
00 〉 equates to collecting all the different intersections into one

for all. This leads to a maximal constructive addition of individual anticrossings,
and leads to a large overestimation of the actual self energy.

For comparison, the self energy approach presented in this thesis involves the
same issues, but solves them differently. First, the issue of extracting eigenmode
propagators from the non-diagonal effective action (7.28) is achieved by assuming
weak coupling |Qk| ≪ |ħhλk|, which immediately brings the action to a diagonal
form. The propagators can then be read off directly. Second, the analogous issue
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of Eq. (7.6) being of enormous order1 in z is solved again by invoking the weak
coupling assumption, enabling us to replace z by the magnon energy in the ex-
pression for the self energy (Eq. (7.44)). The solutions following either approach
is seen to converge if weak coupling is invoked in place of replacing ∆Ekp

00 with

〈∆Ekp
00 〉. Ultimately, the analytical expression obtained for the self energy in this

thesis evidently provides more accurate information about the shape and mag-
nitude of the correction, than when the correction is approximated by collecting
all anticrossings into one.

1The order reflects the number of mutually interacting particles. This number was elaborated
on in Sec. 7.2. The brunt of this order stems from the magnon modes coupling to the entire range
of SC quasiparticle modes via scattering on photons.
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I. INTRODUCTION

Superconducting and spintronic technology are two
promising low-loss alternatives to electronics (insert refs),
while cavities allow for careful engineering of elec-
tromagnetic interactions via volume-dependent interaction
strengths [1] (insert refs), isolated regions of either magnetic
and electric fields (insert refs), long-distance mediated inter-
actions [2, 3], and more.
When two coupled systems approach resonant frequen-

cies, the eigenmode energies exhibit deflection where the
dispersion relations of the uncoupled systems would other-
wise cross. These are anticrossings, or avoided crossings:
regimes in which the particles of the respective subsystems
hybridize. The magnitude of the anticrossing is determined by
the interaction strength. The literature is rich in experimen-
tal and theoretical research involving anticrossings, includ-
ing the hybridization of directly coupled magnons and cavity
photons [3–9], and cavity-mediated coupling of magnons and
qubits [3], and ferro- and antiferromagnetic magnons [10, 11].

In this paper, we derive, theoretically and numerically, anti-
crossings in the magnon dispersion relation of a ferromagnetic
insulator, due to cavity-mediated interactions with a supercon-
ductor. We find an experimentally tangible anticrossing for a
micrometer cavity. For practical applications, this can serve
as a preliminary for designing a bridge for superconducting–
spintronic circuitry, with the insulator able to resolve momen-
tum information from the superconductor quasiparticle ener-
gies.

II. THEORY

Including the well-known photon term Hcav
0 ≡∑

q ~ωqa
†
qaq, the Hamiltonian for the system of a fer-

romagnetic insulator (FI), cavity (cav) and superconductor
(SC) illustrated in Fig. 1 reads

H ≡ HFI
0 +HFI−cav +Hcav

0 +Hcav−SC +HSC
0 , (1)

where the labels indicate free terms and interactions. In this
section, we first expand upon the set-up, and proceed to spec-
ify the remaining terms of H. Then, we use the Matsubara
path integral formalism to construct an effective magnon the-
ory. Thence we extract dispersion relations for the quasiparti-
cles of the diagonal theory by equating the determinant of the
effective theory to zero, corresponding to divergences in the

FIG. 1. Illustration of the set-up. A thin ferromagnetic insulator is
placed at the top (z = Lz), and a thin superconductor in the middle
(z = Lz/2), inside a rectangular, electromagnetic cavity. The FI and
SC span the cavity. The FI is subjected to an external magnetostatic
fieldBext in the y direction. The cavity is short along the z direction
(Lz), and long along the perpendicular xy directions, causing cav-
ity modes to separate into a band-like structure. Combined with the
placement of the FI and SC, this facilitates coupling to only a subset
of cavity modes, modulated in the z direction as illustrated on the
right wall.

propagators of the diagonal theory. We limit these solutions to
energies near the magnon energy. Finally, from these we ex-
tract the magnitude of the anticrossing between the magnons
and the SC quasiparticles, to be plotted numerically and com-
pared with expected losses in the next section.

A. Set-up

Consider a rectangular, electromagnetic cavity, inside of
which is placed a thin ferromagnetic insulator (FI) at the top
(z = Lz), and a thin superconductor (SC) in the middle
(z = Lz/2). For simplicity, we treat both as square lattice
monolayers, with respective lattice constants aFI and aSC.
The FI and the SC span the cavity, which has dimensions
Lz ≪ Lx, Ly . The small Lz increases interaction strengths
proportional to 1/

√
V , with V = LxLyLz the cavity volume;

along with the placement of the FI and SC, it furthermore fa-
cilitates coupling to the subset of cavity modes modulated in
the z direction as illustrated in Fig. 1, as exciting modes in
this direction becomes energetically unfavorable. We are only
interested in the positional dependency of the FI and SC in
the z direction, so we employ reflective boundary conditions
for the upper and lower wall of the cavity, and mathemati-
cally simpler periodic boundary conditions for the orthogonal
directions.
We subject the FI to an external magnetostatic fieldBext =

Bextêy , We can potentially drop this field for YIG which can
be achieved using external coils [3, 6–8]. We furthermore
subject the SC to a supercurrent, which can be achieved by
passing DC through thin wires entering the cavity through
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small holes in the walls, too small to affect the cavity modes.
The leading effect of the DC is to induce an equilibrium su-
percurrent with a Cooper pair center-of-mass momentum 2P,
provided the sample width does not exceed the Pearl length
λ2/d, with λ the effective magnetic penetration depth, and d
the sample depth. Specify if this criterion is met in our set-up

With this set-up in mind, we proceed to construct a system
Hamiltonian.

B. Hamiltonian: FI

We here present the expressions for the terms of the FI
Hamiltonian in the magnon basis, coupling to the cavity by
the Zeeman coupling.

Each FI lattice site i is spin-S, with spin vector Si. The ex-
ternal field Bext leads us to consider a magnon basis {ηi, η†i }
defined with respect to the y axis. By the Holstein–Primakoff
transformation, when assuming a low number ⟨η†i ηi⟩ ≪ 2S
of magnons per lattice site, the Cartesian components of the
spin read Siy = ~(S − η†i ηi), Sid ≈ ~

√
2S
2 (νdηi + ν∗dη

†
i ) in

the magnon basis [11–13]. Here d = z, x and {νz, νx} =
{1,−i}.

Resolved in its Fourier components, the magnon operator is
ηri ≡ ∑

k ηke
ik·ri/

√
NFI with NFI the number of FI lattice

sites, k = (kx, ky, 0) the magnon momenta, and
∑

k running
over the first Brillouin zone (1BZ) of the FI. Include comment
on neglecting positional prefactor exp(ikr0)? The exchange
interaction and the Zeeman coupling toBext can then be writ-
ten on the diagonal form [11–13]

HFI
0 ≡

∑

k

~λkη
†
kηk, (2)

where we have introduced the magnon dispersion relation

λk ≡ 2~JNδS

(
1− 1

Nδ

∑

δ

cosk · δ
)
+

gµB

~
Bext. (3)

Here, J > 0 is the ferromagnetic exchange interaction
strength,Nδ = 4 the number of nearest neighbors on a square
lattice, g the gyromagnetic ratio and µB the Bohr magneton.
Lastly, δ = {±aFIêx,±aFIêy} are nearest-neighbor lattice
vectors.

We move onto the FI–cavity Zeeman interaction. In spin
basis, the term reads HFI−cav ≡ −gµB

∑
i Si · Bcav(ri)/~.

Here, the cavity magnetic field is Bcav(ri), with ri the posi-
tion of FI lattice site i. In the transversal gauge, Bcav across
the FI (z = Lz) reads [1, 14]

Bcav(ri)
∣∣
FI

=
∑

q

i(qy êx − qxêy) sin θq

√
~

εωqV
eiq·ri(aq + a†−q),

(4)

where q = (qx, qy, 0) is the in-plane photon momentum, ε is
the permeability of the cavity, and ωq = c

√
(π/Lz)2 + q2

is the photon dispersion. Note that q is only a component of

the photon momentum Q ≡ πêz/Lz + q. The factor sin θq
originates from the implementation of the transversal gauge,
with θq the polar angle of Q [14]. Lastly, {aq, a†q} is the
photon basis; note that we do not resolve this into two linear
polarization directions orthogonal toQ [14], because only one
couples to the FI in our set-up.
Inserting the above along with the magnon-basis Cartesian

spin components intoHFI−cav, we find [15, 16]

HFI−cav ≈
∑

k

gηk(η−k − η†k)(ak + a†−k), (5)

where we introduced the FI–cavity coupling constant

gηk ≡ −gµBky sin θk

√
~SNFI

2εωkV
. (6)

In deriving Eq. (5), we used the Fourier kernel∑
i e

−i(k−q)·ri = NFI
∑

k δqk, with δqk the Kroe-
necker delta function. We also neglected a scattering term
∼ η†kηk−k′(ak′ + a†−k′), which only results in vanishing
contributions to the effective magnon theory due to the low
number of magnons.

C. Hamiltonian: SC

Moving onto the SC, we here similarly present the terms
of the SC Hamiltonian in the Bogoliubov quasiparticle basis,
coupling to the cavity by the paramagnetic coupling.
We consider an s wave superconductor with an equilib-

rium supercurrent. In the electron basis {cpσ, c†pσ}, the non-
interacting SC Hamiltonian reads HSC

0 ≡ ∑
p ξpc

†
pσcpσ′ −

∑
p

(
∆pc

†
p+P,↑c

†
−p+P,↓ +∆∗

pc−p+P,↓cp+P,↑
)
, with p =

(px, py, 0) the electron momenta, σ =↑, ↓ the spin index, ξp
the single-electron energy, and ∆p the superconducting gap.
This is readily diagonalized by a Bogoliubov quasiparticle ba-
sis {γpm, γ†

pm}, yielding

HSC
0 =

∑

pm

Epmγ†
pmγpm, (7)

where m = 0, 1 indexes the quasiparticle type, and the ener-
gies are

Epm =
1

2

[
ξp+P − ξ−p+P

+ (−1)m
√
(ξp+P + ξ−p+P)

2
+ 4|∆p|2

]
.

(8)

The electron and Bogoliubov quasiparticle bases relate
via [17]

cp+P,↑ ≡ u∗
pγp0 + vpγp1, c†−p+P,↓ ≡ −v∗pγp0 + upγp1,

(9)
and the absolute values of the transformation coefficients up

and vp satisfy

|vp|2 = 1− |up|2 =
1

2

(
1− ξp+P + ξ−p+P

Ep0 − Ep1

)
. (10)
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Moving onto the interaction term, we use the same dis-
cretized coupling as was used in Ref. [1]. We only need to
include photons polarized in the same direction as the ones
coupling to the FI, cf. Eq. (5). In electron basis, the coupling
reads

Hcav−SC =
∑

pσ

∑

q

gqp(aq + a†−q)c
†
pσcp−q,σ, (11)

with the coupling constant

gqp ≡2iaSCet
~

√
~

εωqV

·
∑

b

sin [(pb − qb/2)aSC]O
q
b .

(12)

Above, e is the elementary charge, t is the tight-
binding hopping parameter, b = x, y, and Oq

b =
(cos θq cosϕq, cos θq sinϕq)b is a part of a larger rotation
matrix that aligns the original z direction withQ [1, 14]. Here
ϕq is the azimuthal angle ofQ.

RecastingHpara in terms of the {γpm, γ†
pm} basis is now a

straight-forward exercise. Note first that the physics is antic-
ipated to be concentrated at the Fermi surface, hence for rel-
evant momenta, |P|, |q| ≪ |p| ≈ |pF |, the Fermi momenta.
Then coupling between different quasiparticle typesm nearly
vanishes, so it is neglected. We are then left with

Hcav−SC =
∑

pm

∑

q

gqpm (aq + a†−q)γ
†
pmγp−q,m, (13)

where the coupling constant is now gqpm ≡ (gq,p+Pupu
∗
p−q+

gq,p−Pvpv
∗
p−q, g

q,p−Pu∗
pup−q + gq,p+Pv∗pvp−q)m.

D. Matsubara path integral formalism

Having specified all terms in H, we now aim to construct
an effective magnon theory from which to extract anticross-
ings in the renormalized magnon dispersion relation. To this
end, we employ the Matsubara path integral formalism to inte-
grate out the photonic and fermionic degrees of freedom. The
Matsubara action reads [18–20]

S ≡
∫ β

0

dτ

[∑

k

η†k~∂τηk +
∑

q

a†q~∂τaq

+
∑

pm

γ†
pm~∂τγpm +H

]
, (14)

where τ is an imaginary-time parameter, and β = ~/kBT
is the inverse temperature T in units of time. The parti-
cle operators have now been replaced by complex (bosons)
and Graßmann (fermions) numbers. The integral is now con-
verted into a sum over Matsubara frequencies by decompos-
ing the particles into thermal Fourier modes, i.e. ηk(τ) =∑

Ωm
ηke

−iΩmτ/
√
β and similarly for the other particles.

Here Ωn = 2nπ/β, n ∈ Z, are the bosonic Matsubara fre-
quencies; for the fermions, they are ωn = (2n − 1)π/β.

We furthermore introduced the 4-vector k = (−Ωm,k), and
do the same for the other momenta: q = (−Ωn,q) and
p = (−ωn,p). The partial derivatives ~∂τ in Eq. (14) are
thus integrated into the diagonal particle terms as e.g.

∫ β

0

dτ
∑

k

η†k~(∂τ + λk)ηk =
∑

k

η†k~λkηk, (15)

where we used the Fourier kernel
∫ β

0
dτ exp(−iΩτ) = βδ(τ),

with δ(τ) the Dirac delta function. We also defined

λk ≡ −iΩm + λk, (16)

and likewise define ωq ≡ −iΩn + ωq and Epm ≡ −i~ωn +
Epm.
Moving on, the imaginary-time partition function reads

Z ≡
∫

D[η, η†]
∫

D[a, a†]
∫

D[γ, γ†]e−S/~, (17)

where
∫
D[. . . ] is shorthand for the path integrals over ev-

ery particle mode. In constructing an effective magnon the-
ory, we need to account for the influences of

∫
D[a, a†] and∫

D[γ, γ†] on
∫
D[η, η†]. The former is readily accounted

for by a shift of integration variables aq → aq + J−q/~ωq

and a†q → a†q + Jq/~ωq, with Jq a current operator that ag-
gregates the interactions with the cavity. This decouples the
cavity from the remaining system, leaving behind an exact ef-
fective addition −∑q JqJ−q/~ωq to the action, containing
effective FI–FI, SC–SC and FI–SC interaction terms.
The fermionic integral is then performed perturbatively,

to order O
[
(gηgγ/~ωqEpm)2

]
. To this order, the effective

SC–SC term (analogous to the pairing term found for a nor-
mal metal in Ref. [1]) does not influence the magnon the-
ory, so it is neglected. The remaining SC terms are bilin-
ear in the {γpm, γ†

pm} basis, hence the
∫
D[γ, γ†] path in-

tegral is Gaussian. This evaluates to a determinant, which by
det(1 + X) = expTr ln(1 + X) = expTr(X − X2/2 +
O
[
(gηgγ/~ωqEpm)3

]
) is reinserted into the magnon theory

as more effective additions to the action.
Now, effective magnon terms with products of more than

two η’s and η†’s, i.e. trilinear and higher order terms, can be
neglected on account of the low number of magnons. Fur-
thermore, linear terms can be removed from the theory by a
shift of variables without affecting the quantity of interest, the
particle dispersions. We are thus left with a bilinear magnon
theory with an effective action

SFI =
∑

k

~λkη
†
kηk +

∑

k

Qk(η−k − η†k)(ηk − η†−k), (18)

with

Qk ≡|gηk|2
(

1

~ωk
+

2~2ω2
k

(~2ω2
k + ~2Ω2

m)2

·
∑

pm

|gkpm |2nF (Epm)− nF (Ep−k,m)

∆Ekp
m − i~Ωm

)
.

(19)
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FIG. 2. 2
√

|B| as a function of k, in units of Hz. We have assumed
cavity dimensions Lx = Ly = 10 µm, Lz = 1 µm and temperature
T = 1K. The remaining parameters are material; these are summa-
rized in Tab. I for YIG (FI) and MgB2 (SC). The losses are expected
to be ≤ 10MHz, which the maxima of 2

√
|B| exceed. For maxi-

mum anticrossing, ~λk and ⟨∆Ekp
0 ⟩p need to be tuned to cross at

the k of maximum 2
√

|B|. This can be achieved by tuning the ex-
ternal field Bext; we find that this must be (insert values). Note that
the coupling is asymmetric (hence (a) and (c) are not the same up to
a rotation, and (b) is visibly offset from the direction of P) because
the Zeeman coupling (6) is asymmetric. The Zeeman coupling is
furthermore linear in qy = ky , hence the horizontal line for ky = 0
where the coupling is extinguished.

Above, we introduced the energy difference

∆Ekp
m ≡ Epm − Ep−k,m. (20)

We lastly note that this action can be recast on vector–matrix–
vector form as [21–25]

SFI =
∑

k

η†kMkηk. (21)

with ηk ≡ (ηk, η−k, η
†
k, η

†
−k)

T the vector of coupled magnon
modes, andMk the matrix collecting coefficients.

We can thus move onto the objective, namely, to extract the
anticrossings incurred to the magnon dispersion in the effec-
tive theory.

E. Anticrossings

The summand under
∑

Ωm
in the effective action (18) is

now analytically continued to complex values of z ≡ i~Ωm.
If we had diagonalized the effective theory, the energies of the
eigenmodes would be the solutions for z for which the propa-
gators diverges [20]. These relate inversely to the matrix G−1

of the diagonal theory, hence proportionally to 1/ detG−1.
Divergent regimes thus corresponds to detG−1(z) = 0. Since
G−1 relates to M by an invertible transformation, we can
equivalently solve for detM(z) = 0. Finally, we can reduce

the order of this equation in z by using detM =
∏

ρ mρ, with
mρ the eigenvalues of M. Here ρ is the eigenmode index.
These can be shown to come in duplicate pairs [21–25], hence
we only label ρ = ±. Thus, we need to solvem±(z) = 0.
As the equation stands, the solutions are numerically, but

not analytically tangible. We therefore look for simplifica-
tions. First, we note that there is a solution for every particle
coupling directly (photons) or indirectly (fermions) to a given
magnon mode. We can therefore reduce the number of solu-
tions by assuming z ≈ ~λk ≪ ~ωq, hence ~ωq ± z ≈ ~ωq.
Hence, after performing the sum overm,

Qk ≈ |gηk|2
(

1

~ωk
+

2

~2ω2
k

·
∑

p

|gkp0 |2
tanh

(
βEp−k,0

2~

)
− tanh

(
βEp,0

2~

)

∆Ekp
0 − i~Ωm

)
.

(22)

Furthermore, the energies ∆Ekp
0 give rise to a large num-

ber of anticrossings with ~λk, with maximal anticrossings at
certain values of p, with a decreasing and ultimately negligi-
ble anticrossing at nearby values. We therefore instead extract
the net anticrossing due to all these anticrossings, by replac-
ing all ∆Ekp

0 with a single weighted average only depending
on k, meaning we are left with only a single anticrossing, and
hence only two solutions tom±(z) = 0 near the anticrossing.
Finally, because a sufficiently strong fieldBext renders ~λk

positive for all k (cf. Eq. (3)), the anticrossing of interest will
occur at positive energies, so we can limit

∑
p in Eq. (22) to p

for which∆Ekp
0 is positive. Then we do not have to take into

account that the difference in tanh functions goes from be-
ing negative to positive as ∆Ekp

0 goes from being positive to
negative. Thus, we substitute∆Ekp

0 for the weighted average

⟨∆Ekp
0 ⟩p

≡
∑

p |gkp0 |2
(
tanh

(
βEp−k,0

2~

)
− tanh

(
βEp,0

2~

))
∆Ekp

0

∑
p |gkp0 |2

(
tanh

(
βEp−k,0

2~

)
− tanh

(
βEp,0

2~

)) .

(23)

The eigenvalues m± of Mk in Eq. (21) are readily found.
With the shorthand notation λ ≡ ~λk, E ≡ ⟨∆Ekp

0 ⟩p, A ≡
2
|gη

k|2
~ωk

and

B ≡ 4

~2ω2
k

∑′

p

|gkp0 |2
(
tanh

(
βEp−k,0

2~

)
− tanh

(
βEp,0

2~

))
,

(24)
The positive solutions tom±(z) = 0 read

z± ≡
(
1

2

(
λ2 − 2λA+ E2 + 2B

)

± 1

2

√
(λ2 − 2λA− E2 + 2B)

2
+ 8Bλ(E + λ)

) 1
2

.

(25)
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At the center of the anticrossing, using E2 = λ2 − 2λA ≈ λ2

and |B| ≪ λ, these eigenmode bands reduce to

z± ≈ λ±
√

|B|, (26)

hence the magnitude of the anticrossing is quantified by 2
√
B.

III. RESULTS AND DISCUSSION

For 2
√

|B| to be measurable, it needs to exceed losses in
the system. Losses are usually cited in units of Hz, meaning
energies are divided by 2π~ = h. For reference, Refs. [3, 6, 7]
report losses of 1–12MHz for low modes of Cu or supercon-
ducting Nb cavities, the uniform mode of various YIG sam-
ples, and a superconducting qubit. Ref. [6] reports losses of
50MHz in a Ga-doped YIG crystal, but stresses that losses in
pure YIG are significantly smaller. Hence, 2

√
|B|/2π~ ≳

10MHz is expected to be measurable for similar material

choices. In Fig. 2, we compute 2
√

|B| numerically for a mi-
crometer cavity and for a specific supercurrent momentum P,
yielding upwards of 2

√
|B| = 29MHz. Include also numer-

ics.

TABLE I. Table of numerical parameter values.
Numerical parameters
YIG (FI) MgB2 (SC)

(include words on how the results extend to other gaps (p,
d wave etc.). include corresponding numerics.)
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Appendix D

Proof that 〈η′k〉= 0

We want to show 〈η′k〉 = 0 (cf. Sec. 6.1.4). To see this, note first that 〈η′k〉 =
1p
β

∫ β

0 dτ〈η′k〉e
iΩmτ by the inverse of Eq. (6.12). It therefore suffices to show

〈η′k〉= 0. Now, the corresponding action SFI′ for the magnon theory in the {η′k,η′†k }
basis is the same as SFI (Eq. (6.66)) less the linear magnon terms. Adding a source

term
∫ β

0 dτ
∑

k(J
∗
kη

′
k+ Jkη

′†
k ) =

∑

k(J
∗
kη

′
k+ Jkη

′†
k ) to the action, the quantity 〈η′k〉

can thus be evaluated using the path integral result [110]

〈η′k〉=
1

ZFI

δZFI

δJ∗
k

�

�

�

�

J=J∗=0

, (D.1)

with δ indicating the functional derivative, and J = J∗ = 0 shorthand for set-
ting all sources to zero. Absorbing these source terms into the remaining action
produces a partition function of the form

ZFI = exp

�

∑

kk′

F∗(Jk, J∗
k )Mkk′ F(Jk′ , J∗

k′)

�

∫

D[η′,η′†]e−SFI′/ħh, (D.2)

where F is some function of Jk and J∗
k , M is some matrix, and the path integ-

ral is independent of the sources. It now suffices to note that F(Jk, J∗
k )|J=J∗=0 =

F(0, 0) = 0 since there would be no source terms to absorb in this case. Thus

〈η′k〉 ∝
δZFI

δJ∗
k

�

�

�

�

J=J∗=0

=
∑

k′k′′

�δF∗(Jk′ , J∗
k′)

δJ∗
k

Mk′k′′ F(Jk′′ , J∗
k′′)

+ F∗(Jk′ , J∗
k′)Mk′k′′

δF(Jk′′ , J∗
k′′)

δJ∗
k

�

ZFI

�

�

�

�

J=J∗=0

=0, (D.3)

since all terms in the second line contain either F(0, 0) or F∗(0,0). Hence 〈η′k〉=
〈ηk〉 − tk = 0.
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