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Abstract

With rapid progress in the field of legged robots and robots than can jump and
land, there will be a growing need for attitude stabilization of falling objects. Atti-
tude stabilization is a control problem of vast interest across many fields, but the
main solutions to this date are bases on having aerial flaps, wings or thrusters.
These solutions are not well adapted to the four-legged robots in free-flight, and
there is a need to develop new solutions. The solution proposed throughout this
thesis aims to stabilize the attitude by rotating the robot legs, and thus utilizing the
centrifugal force. The system dynamics were modeled in Longitudinal and Lateral
dynamics, followed by the process of implementing a control scheme fit to stabilize
the attitudes. The attitude stabilization problem was solved with an MPC control
architecture that makes the predictions based on the linearized system dynamics
models, with the system plant outputs as the correcting input signal. A rigorous
tuning process with emphasis on promoting short rise and settling times ensured a
control scheme which succeeded in rapid stabilization of the attitude angles. Sim-
ulation results for the MPC control task of stabilizing the attitude angles showed
that it was able to robustly track a reference signal of 0° when the initial attitude
angle was between −30° and 30°, with rise and settling times of < 0.75 and < 3
seconds.
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Sammendrag

Med rask fremgang innen roboter med fire ben og roboter som kan hoppe og
lande, vil det være et økende behov for attitudestabilisering av fallende gjen-
stander. Attitudestabilisering er et kontrollproblem av stor interesse på tvers av
mange felt, men hovedløsningene frem til idag er basert på å ha luftklaffer, vinger
eller thrustere. Disse løsningene er dårlig tilpasset de firbeinte robotene i fritt
fall, og det er behov for å utvikle nye løsninger. Løsningen som foreslås gjennom
denne oppgaven har som mål å stabilisere attituden ved å rotere robotbena, og
dermed utnytte sentrifugalkraften. Systemdynamikken ble modellert i longitud-
inell og lateral dynamikk, etterfulgt av prosessen med å implementere en kontrol-
larkitektur tilpasset for å stabilisere attitudene. Attitudestabiliseringsproblemet
ble løst med en MPC-kontrollarkitektur som gjør prediksjoner basert på de linear-
iserte systemdynamikkmodellene, med systemets tilstandsverdiene som korriger-
ende inngangssignal. En nøye tuningsprosess med vekt på å fremme korte rise- og
settling-tider sørget for en kontrollstruktur som lyktes i rask stabilisering av atti-
tudevinklene. Simuleringsresultater for MPC-kontrollprosessen viste at den var i
stand til å tracke et referansesignal på 0°, på en robust måte, når den opprinnelige
attitudevinkelen var mellom −30° og 30°, med rise- og settling-tider på< 0, 75 og
< 3 sekunder.
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Chapter 1

Introduction

Attitude stabilization is an essential part of control for dynamic systems like water
surface, underwater, and aerial vehicles. For some dynamical systems, it is used to
track a specific path and remain on course. This is the case for surface vehicles, for
example. Other systems perform attitude stabilization because it is crucial for the
welfare and security of the system to, for example, not fall over or have a skewed
attitude. This is particularly important for aerial vehicles, where deviations in the
intended attitude can lead to significant consequences.

For some dynamical systems that fall towards the ground, attitude stabilization
must be used to prevent a skewed fall. Such a fall might damage or break the
system’s mechanical parts. This thesis’s project revolves around the four-legged
quadruped robot, which is meant to be able to both jump and fall. The falling
process is particularly crucial because the robot parts could break if the robot
does not land correctly. The quadruped robot has no air compression actuators or
wings to smooth the landing and accordingly depends on a correct attitude place-
ment to not fall to ground side-ways for example.

1.1 Purpose

Attitude stabilization as a concept is relatively old. However, it is a rather new and
experimental control problem for falling objects without the use of air dynamics.
The attitude of an aircraft is stabilized by moving several flaps of the aircraft and
with thrusters. Both methods utilize the dynamics of the air in order to change the
attitude [1]. A four-legged robot in free flight has to stabilize the attitude without
such methods, as the thrusters add unnecessary weight, and the time spent in the
air is too short to use moving flaps. Since quadruped robots and jumping robots
are relatively new concepts, there has not yet been experimented much with the
attitude control problem. As quadruped and jumping robots are becoming increas-
ingly popular, there is a growing need to figure out how to solve this control and
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stabilization problem.

1.2 Problem Description

The quadruped robotic system will have neither flaps, tails, or thrusters. Each leg
is equipped with three actuators. One is placed at the top of the leg to imitate the
hip abduction/adduction motion. The second actuator is positioned at the same
place as the first and is responsible for the hip flexion/extension motion. The last
actuator is placed at the robot’s knee and is responsible for the leg’s knee flex-
ion/extension.

The hypothesis is that the robotic system can stabilize the attitude solely by the
motion of the legs. Each actuator will have a mass, and there will also be a mass
placed at the robot’s feet. Combined with a rotation, these masses will create a
force extending along the attached arm. These forces will impact the main body of
the robot and hence the attitude angles of the robot. It is unknown if this method
is sufficient for stabilizing the attitude, nor to what extent the attitude can be sta-
bilized solely by the motion of the legs. These questions are nonetheless the main
topic of this thesis.

To stabilize the robot’s attitude by rotating the leg actuators, there is first a need to
model the system dynamics. Following the modeling, a control architecture that
can handle the inevitable nonlinear system dynamics is needed. Several mathem-
atical models can represent the system dynamics, but they should be modeled as
accurately as possible. As for the control architecture, the complexity of the sys-
tem dynamics will set demands and limitations to the type of controller scheme.
Both PID and MPC controllers will be evaluated and tested before concluding with
the optimal choice based on the results.

The specific problem that this thesis aims to solve is to control the attitudes φ
and θ in two separate controllers for initial angular rotations ranging between
−30° and 30°. With attitude control, the threshold for steady-state error is set at
1°. The response time will have to be faster than for most process control systems,
as the control happens mid-air, and the response time threshold is set at 1 second.
Still, the control can not be faster than what can be handled robustly, implying
that the attitude rotations and the actuator rotations will have to be stabilized
and converge to some value. Angular oscillations, besides an overshoot, are not
allowed for the control problem to be deemed sufficiently robust. Stability proofs
will not be considered, but signs of instability and robustness will be discussed.
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1.3 Related Work

There are few, if any, public papers on attitude stabilization of legged robots dur-
ing free flight. There are instead examples of attitude stabilization of dynamical
systems using the principle of rotating masses. Trung-Dung Chu and Chih-Keng
Chen have implemented an MPC controller scheme to stabilize a gyroscopic inver-
ted pendulum [2]. Although not entirely coincident with the attitude stabilization
process focused on in this project, they have generated stabilizing torque from the
flying gimbals, using the principle of centrifugal force. The same principle will be
used to control the attitude rotations during this project. However, instead of gim-
bals, the weighted knee actuators and weights on the feet will create a centrifugal
force when rotated.

There are a wide variety of papers dedicated to the explicit MPC and its features.
Ø. Hegrenæs, J. T. Gravdahl, and P. Tøndel evaluate its use for controlling the at-
titude of a micro-satellite in the paper [3]. The micro-satellite will be modeled
and then linearized around some equilibrium point to use the linearized models
for the MPC. This modeling, linearizing, and control implementation method will
also be used for the robotic system in this project. The results showed great po-
tential, especially if the system was subjected to constraints.

Another piece of important work has been conducted by S. J. Qin, and T. A. Badg-
well in the paper [4]. Their work focuses on exploring the different varieties of
MPC controllers and describing how they work and for what use they work best.
The paper gives insight into how the MPC scheme reacts to different environ-
mental features and how the system, in turn, reacts to different parameter set-
tings and tuning. This paper do not bring up attitude stabilization specifically, but
it gives important knowledge as to how a successful MPC controller scheme can
be set up and tuned.

1.4 Outline

The dynamical system has to be modeled before diving into control theory and
methods for developing an attitude stabilizing control scheme. First, the system
will be split into two 2D frames describing longitudinal and lateral dynamics. The
method of Lagrange will be used for both of the 2D systems to establish the non-
linear models. Secondly, these nonlinear models will be evaluated and validated
through a simulation process to determine if they accurately can describe the real-
life system. Following the validation, two different attitude control strategies will
be proposed, the PID and the MPC, to solve the attitude control problem. Both
of the strategies will be implemented and simulated in Matlab before discussing
their results. Finally, the outcome of the attitude control problem process in this
thesis will be evaluated, along with possible imperfections and mistakes with the
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method made along the way, before reflecting on the way forward for this control
problem.

Lastly, Table 1.1 below includes the main symbols used throughout this thesis,
along with a description and numeric value, if any.

Symbol Description Value
θ Pitch - attitude angle about y-axis (−90°, 90°)
φ Roll - attitude angle about x-axis (−90°, 90°)
g Gravity constant 9.81m/s2

m Mass of main body with hip actuators 8 kg
m2l/r Left/Right side knee-actuator mass 0.4 kg
m3l/r Left/Right side foot mass 0.3 kg

h Height of the robot’s main body 0.15 m
l Length of the robot’s main body 0.3 m
w Width of the robot’s main body 0.3 m
l1 Upper leg link 0.15 m
l2 Lower leg link 0.15 m

q1l Left-side hip abduction/adduction actuator rotation angle (−90°, 90°)
q1r Right-side hip abduction/adduction actuator rotation angle (−90°, 90°)
q2l Left-side hip flexion/extension actuator rotation angle (−90°, 90°)
q2r Right-side hip flexion/extension actuator rotation angle (−90°, 90°)
q3l Left-side knee flexion/extension actuator rotation angle (−90°, 90°)
q3r Right-side knee flexion/extension actuator rotation angle (−90°, 90°)
q System state vector Specified when used

Table 1.1: Table of the symbols used throughout the thesis for the links and rigid
parts of the robot, along with attitude and actuator angular rotations.
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Chapter 2

Theory

2.1 Rigid Body Kinematics

Rigid body kinematics describes the kinematics of systems where the objects do
not change shape due to the environment. This system is an idealization based on
the idea that some bodies do not deform. This approximation works well as long as
the changes in shape are minimal compared to the general motion of the body [5].

The assumption that rigid bodies do not deform implies that the distance between
each particle-pair of the body remains the same. The body consisting of these
particles must, for that reason, move in uniform. If the position of one particle in
the body is known, the positions of all other particles are consequently known as
well. This simplifies the kinematic calculations as the velocity, acceleration, and
force vectors for all the particles in the rigid body can be reduced to only one set
of vectors for the entire rigid body.

There follows specific characteristics regarding rigid body motion from the state-
ments above. The first states that all rigid body lines, a line being the vector from
one point to another in the body, have the same angular velocity ω and angular
acceleration α. The other states that all rigid body motion can be decomposed into
the translation of a single point and the rotation about that single point. Regarding
the kinematic calculations, these characteristics imply that it is only necessary to
evaluate one single point of the body. In addition, the motion is easily calculated
as long as the translation and rotation of said point are known.

A vector can be expressed in several coordinate frames, and it is often helpful
in robotics to have several coordinate frames for the system. Two of the most
used coordinate frames are the Inertial-frame and the BODY frame. The inertial
frame stands still regarding the dynamic system, whereas the BODY coordinate
frame follows a point in the dynamical system. In other words, the BODY frame
follows the same rotations as the rigid body, whereas the Inertial frame does not.
[6].
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A vector va in frame a can be expressed in frame b by means of a rotation matrix
from a to b, written Rb

a, as seen in Equation 2.1.

v b = Rb
ava (2.1)

This rotation matrix, Rb
a, consists of the elements ri j = bi a j , which are called

direction cosines. These rotation matrices can transform all the vectors in one
coordinate frame to any arbitrarily coordinate frame, as long as the angular rota-
tions between the two coordinate frames are known. It is also possible to go the
opposite direction if that is needed, because the inverse of the matrix in 2.1 is
rotation matrix from frame b to a, as seen in Equation 2.2 below.

Rb
a = (R

a
b)
−1 = (Ra

b)
T (2.2)

The rotation matrix addresses the rotation from one frame to another. It does
not specify any translation from one point to another, which might be helpful
in some cases. In order to include both a change in rotation and position, the
Homogeneous Transformation Matrix can be utilized. The Transformation mat-
rix presents both the rotation and position of a coordinate frame with respect to
a reference frame. This is particularly helpful in robotics and control systems in
general. This is because each rigid body of the system can be expressed in terms
of the preceding rigid body by switching the coordinate frame using the trans-
formation matrix. For example, in the case of robotic manipulators, a coordinate
frame is fixed to each manipulator link with respect to the precedent link. The
difference in rotation between the rigid bodies is addressed, as well as the dis-
placement vector. The matrix consists of the rotation matrix from the reference
coordinate system to the new coordinate system and the displacement vector, r a

ab,
which describes the vector from the origin of the reference frame to the origin of
the new coordinate frame, relative to the reference frame. Equation 2.3 shows
how the matrix is set up.

T b
a =

�

Rb
a r b

ab

0 1

�

(2.3)

The homogeneous transformation matrices can be used in combination, such
that a transformation from frame a to b, and then from b to c will give the trans-
formation from a to c, as derived in Equation 2.4, retrieved from the book [6].

T b
a T c

b =

�

Rb
a r b

ab

0 1

��

Rc
b r c

bc

0 1

�

=

�

Rc
a r c

ac

0 1

�

= T c
a

(2.4)
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The Equation 2.4 shows how to move between the rigid bodies in the system
by multiplying the transformation matrices. The orientation and position of the
frame of rigid body k can be found by the transformation matrix T k

k−1 with re-
spect to the precedent rigid body, and so forth. The position and rotation of k
with respect to the original reference frame are then found by multiplying all the
transformation matrices between the frame of k and the original reference frame.

A 3D coordinate system defined by axes x , y , and z has three rotational angles.
The angle φ about the x-axis, θ about the y-axis, andψ about the z-axis. In rigid-
body motion, these angles are commonly used and referred to as the angles roll,
pitch, and yaw, respectively. The resulting rotation matrix Rb

a from frame a to b is
given by Equation 2.5.

Ra
b = Rz(ψ)R y(θ )Rx(φ) (2.5)

The rotation matrix describes the rotation about the axes z, y , and x and is
a combination of the individual rotation matrices with respect to these rotational
angles. Knowing the position and velocity vector in one frame and the transform-
ation matrix between that frame and another means the position and velocity can
be expressed in the frame, as seen by Equation 2.1. This is valid for all position
and velocity vectors, and is helpful in further calculations.

The velocity of a point is defined as the derivative of the position with respect
to time. Hence, the velocity vector is the position vector derivative. Given a posi-
tion vector in frame a, pa, the position in frame b is again given as:

pb = Rb
apa (2.6)

Using the expression above to find the velocity vector in frame b, gives:

v b = ṗb = Rb
a ṗa + Ṙb

apa (2.7)

Equation 2.7 shows how to find the velocity vectors in a new frame, given the
original position vector and the rotation matrix [6].

The acceleration vectors become increasingly complex as more "links" are in-
volved in the equation. Both linear and angular accelerations might be present in
the system and need to be derived from linear velocities and angular velocities,
respectively. Depending on the method used for modeling the system, there might
not be a need to derive the accelerations. This is one of the benefits of using the
method of Lagrange in order to derive the Equations of Motion, as opposed to the
traditional Newton-Euler method.

The equations of motion is a widely used term for the motion equations of a rigid-
body system. It is a set of differential equations for the velocity and angular velo-
city of the system. The foundation of the Newton-Euler method are Newton’s laws
and the theories of rotational dynamics, often credited to Euler [6]. The different
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position and motion vectors and forces, moments, and torques are differentiated
or manipulated to reach the desired resulting differential equations of motion.

Depending on the system, these calculations can be very complex, long, and dif-
ficult. Another option for finding the equations of motion is using the Lagrangian
method.

2.2 Lagrangian Dynamics

The method of Lagrange is bases around the kinetic energy T and the potential
energy U . It takes the difference between the two energies as given below:

L = T − U (2.8)

where L is called the Lagrangian. The method relies on algebraic operations
on the energy equations, using generalized coordinates [6]. Given the Lagrangian
L, the next step is to find some differential expressions involving this Lagrangian,
to resolve the equation below.

d
d t

�

δL
δq̇

�

−
δL
δq
= 0 (2.9)

The q represents the states of the system in Equation 2.9. The equation consists
of the vectors L, q and q̇, and will give as many equations as there are states in q
as a result. The resulting set of equations will be equal to the one derived using
Newton’s law F = ma, but it is much simpler for many cases to use the Lagrangian
method over the Newton-Euler method. After having found each partial derivative
involved in Equation 2.9, in addition to the time-derivatives, it remains only to set
them into the equations. In addition, the kinetic and potential energies, T and U ,
are scalars and usually easy to find, while finding and determining all the forces
can be challenging. Especially when several variables are involved and forces point
in different and varying directions. [7]. This system described using Equation 2.9
assumes the only forces involved are those conservative forces due to the potential
energy, such as the forces due to gravity. However, these are rarely the only forces
involved in many robotic applications. The different actuators are driven by a force
τi , and these forces must be included in the equations as well. Thus, a complete
set of equations can be found by

d
d t

�

δL
δq̇

�

−
δL
δq
= τ (2.10)

where τ is the set of generalized actuator forces. Some of these will be zero,
such as for the position states, while some will have a value, such as those states
that represent the joint positions, usually actuator angles or actuator position [6].

The equations resulting from solving Equation 2.10 are of a form where some
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parts depend on the double derivatives, q̈ , some are dependent on the derivatives,
q̇ , and some are only dependent on the original variables or constants. Because
of these characteristics of the equations of motion, it is possible to rewrite the set
of equations into the form below, which is particularly helpful when working with
manipulators:

M(q)q̈ + C(q , q̇)q̇ +τg(q) = τ (2.11)

The matrix M in Equation 2.11 is not dependent on any derivatives and is the
only matrix involved with the double derivatives. It is referred to as the inertia-
matrix, or sometimes mass-matrix, and it is a positive definite matrix. This is be-
cause it originates from the inertia- or mass-part of the Kinetic energy. Kinetic
energy is defined as the energy an object has because of its motion, [8], and is
usually written for one state as below:

T =
1
2

mv2 (2.12)

where m is the mass of the object [9]. This equation assumes the velocity is
linear. If the system is also subject to an angular velocity, the kinetic energy will
include the rotational kinetic energy. Letting ω be the rotational velocity and I
the moment of inertia, the rotational kinetic energy will be:

Trot =
1
2

Iω2 (2.13)

This equation is the result of the same principle used for linear kinetic energy;
the kinetic energy of the object is equal to the work done on the object, known
as the work-energy principle [10]. For a system with both linear and rotational
kinetic energy, the total kinetic energy will be the combined sum of these two. Seen
as angular velocity ω can be written using the linear velocity v if the rotational
radius r is known, as ω= v

r , both kinetic energies can be written using the linear
velocity. The total kinetic energy is then simplified to

T =
1
2

m∗v2 (2.14)

where m∗ represents the sum of the mass used in linear kinetic energy and the
moment of inertia I divided by the radius r. This is the case for a single-variable
system.

However, in multi-variable systems, the equation for kinetic energy can be written:

T =
1
2

q̇ T M(q)q̇ (2.15)

The M-matrix in Equation 2.15 is the same mass-matrix or inertia matrix, as
in Equation 2.11.
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The C-matrix in Equation 2.11 is called the Coriolis matrix and deals with the
Coriolis and centrifugal terms. These terms and forces are present in systems that
do not only have linear velocity and acceleration but that also involve rotational
changes and angular velocities and accelerations. The terms in C originate from

the part d
d t

�

δL
δq̇

�

in Equation 2.10 which only involves the kinetic energies. The

kinetic energy of the original position will often only include one derivative vari-
able for each state, such as for the velocity of x , y , and z that are often denoted u,
v, and w. The derivative of the partial derivative from those expressions will, for
that reason, only result in a double derivative. The position of the links, however,
is often dependent on the position of the precedent link, and the velocity vector
will, for this reason, be dependent on one or more derivative variables. The result-
ing time-derivative of the partial derivatives will, for this reason, not necessarily
be an expression involving the double derivative but an expression involving two
or more variable derivatives. This is why the C matrix often has many zeros, for
the original position states and on the diagonals, and non-zeroes elsewhere [6].

The vector τg denotes the gravitational forces working on the system, and it ori-
ginates from the partial derivatives of the potential energy; δU

δq , which comes from

the potential part of the expression δU
δq . These are the terms and forces due to grav-

ity working on the rigid bodies. Lastly, τ denotes the actuator torques as described
earlier.

These are general patterns the Equations of Motion for manipulators take and
are a natural starting point for modeling or working with manipulators or robotic
links. Writing the equations in this form also allows for extracting the double de-
rivative of the states, q̈ , effectively. Since M is a positive, definite matrix, there is
no complication in taking the inverse of it. Other than that, it might be cumber-
some and time-consuming depending on the size [9].

2.3 PID

PID-controls are a type of feedback-controllers, as described in the section above.
They are still the most common form of feedback controllers, and an industry
standard for process control problems [11].

The PID-controller in itself is a simple and easy to implement type of controller.
The algorithm for the controller is written as:

u(t) =
�

Ke(t) + Ti

∫ t

0

e(τ)dτ+ Td
de(t)

d t

�

(2.16)

In Equation 2.16, K , Ti and Td are gains, while e(t) is the time-dependent
error between the actual variable-value and the desired reference value. The al-
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gorithm’s output is then u(t), which gives the control actuation. As seen in the
algorithm, three parts decide the output u; the error itself, the integral of the er-
ror, and the derivative of the error, each with its own control gain. This gives the
control algorithm its name, P for proportional, I for integral, and D for derivat-
ive. The three different terms can be seen as control actions based on the error’s
present state, past state, and future state, which will be explained more in detail.

The proportional control part takes the present value for error, e(t), and decides
a control action based on its size. As the K-gain is set to negative, the algorithm
will give an output that opposes the error. The thought is that the control action
will drive the system towards a zero-valued error. This is, however, rarely the case
with only proportional control. It is proven that there will always be a steady-
state error, a constant error when the system is in a steady-state, in proportional
control. In addition, a higher gain K will decrease the error e(t), but it will also
lead to larger and quicker oscillations, as the control output u(t) gets larger with
larger K .

Figure 2.1: System response with a proportional control. Illustration retrieved
from [11].

The Illustration 2.1 shows the response of a system using only proportional
control. It corresponds accurately with the described theory, where the system re-
sponse oscillates more as the K gain gets larger and how it approaches the desired
value more as K gets larger. It is also clear that there will be a steady-state error
with only proportional control.

The integral term works differently than the proportional term. With increasing
time, the integral value over the error will increase. This is why the integral term
is referred to as past state control action. The longer in time there exists an error,
the higher value will the integral term give, and in turn, the higher in value will
the output u(t) be, as opposed to the proportional control term, which stays con-
stant with constant error-value. With the integral term, the steady-state error can
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be eliminated, and the response of the control is generally more effective with an
integral term. Decreasing the gain Ti will increase the integral action. However,
the decrease in Ti also leads to an increase in oscillations of the system, and there
is, for this reason, no benefit in having a too low integral gain.

Figure 2.2: System response using proportional and integral control. K = 1. Il-
lustration retrieved from [11].

The Illustration 2.2 shows the response of a particular system with both pro-
portional and integral control. It is clear that a decrease in the gain Ti leads to
more oscillation of the system but also a smaller steady-state error. Increasing
the Ti gain towards infinity, as is shown, is equivalent to not having any integral
effect at all, as the response is the same as for the Illustration 2.1 with K equal to 1.

The derivative term is also called the damper term because it has a damping
effect on the system’s behavior. Both increases in the proportional term and in-
tegral term lead to a system more prone to larger oscillations. The derivative term
can dampen these oscillations and provide a smoother system response, with a
good choice for the gain Td . Choosing it either too small or too large will give
little damping effect on the system, meaning there is usually an interval for Td in
which the effect of the derivative control term works best [11].

A common technique for achieving a good result is to set the derivative term to
zero first and then choose the proportional and integral gain such that the sys-
tems response is close to the desired value, meaning the error is as close to zero
as possible, perhaps with a certain margin. This will lead to an oscillatory system,
and then the damper gain Td is chosen to minimize these oscillations.

The PID control described in this section is the standard, basic PID control al-
gorithm. There are several variations and changes possible in order for it to suit
the control problem at hand better. It is, for example, possible to leave the gains
non-constant and create an adapting PID controller. It is also possible to use dif-
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ferent techniques and theories to find the best-suited control gains K, Ti and Td .
However, several control problems might be better solved with a different con-
trol algorithm than the PID controller. This tends to be the case for MIMO con-
trol problems with multiple inputs and outputs. With an increasing number of
variables and an increasing complexity in the mathematical model of the system,
the PID struggles to control in a satisfying manner. In addition, it might become
challenging to combine the controls correctly for systems with multiple control
outputs. Either way, the PID controller is a good starting point for determining
what type of control algorithm is needed and observing how the system responds
to different control scenarios.

2.4 MPC

The PID controller works on many control problems but might struggle as the vari-
ables and complexity increase, as mentioned above. Another option for control is
the Model Predictive Control - MPC controller. The Model Predictive Controller is
a much more advanced technique but also more effective for MIMO-systems, or
multiple input, multiple output systems [12].

The MPC controller uses a model of the dynamic system in addition to noise and
disturbance models, and/or current state measurements, to estimate the control-
ler state and predict future output values of the plant. These predicted outputs are
then subjected to a quadratic programming optimization problem in order to de-
termine the control moves [12], [13]. In other words, the MPC-algorithm analyses
the input-output relationship and dynamics of the particular system to determ-
ine the control input variables. The MPC algorithm allows for multi-input, multi-
output, and inequality constraints on the input and output variables, which is one
of the benefits of using it for multi-variable control problems. The algorithm is
highly dependent on having an accurate system model since this model is the basis
for the predictions. If the predictions are off, the control algorithm will struggle
to perform as good predictions, and the system will not behave as wanted. This
makes the MPC-control much more complex and prone to errors compared to, for
example, the PID-controller. However, in return, it has proven to perform much
better for many multi-variable problems if the process model is accurate enough
[12]. The objectives of the MPC algorithm have been summarized by Qin and
Badgwell, and go as follows:

1. Prevent violations of input and output constraints.
2. Drive some output variables to their optimal set points, while maintaining other
outputs within specified ranges.
3. Prevent excessive movement of the input variables.
4. Control as many process variables as possible when a sensor or actuator is un-
available. ([12])
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Figure 2.3: Block diagram illustrating the model predictive control - MPC. Re-
trieved from [12, p. 415]

Figure 2.3 shows the composition of the MPC algorithm. The bottom term
called Residuals denotes the difference between the model outputs and the pro-
cess outputs. With the previous control inputs, these residuals are used in the
prediction step, which predicts the next system outputs based on the model. The
set-point calculations block is used for calculating the desired state outputs. This
includes an optimization scheme in order to determine the control set points. The
optimization objective might be to maximize a profit function or minimize a cost
function. This block will be discussed more in detail further down. The inequality
constraints on the control inputs and output variables can also be included in this
block or in the block denoted Control Calculations. As seen from the illustration,
the residuals act as the feedback signal of the loop, whereas the error e(t) acts as
a feedback signal for the PID controller. It is still possible to look at the feedback
signal Residuals as the error, as it is the error between expected or predicted out-
put and actual output. The objective of the MPC in using these various blocks is
to find a sequence of control moves or control inputs in order for the predicted
outputs to move towards the desired set points in the most efficient way while
satisfying the constraints set on the input and output variables [12].

2.4.1 Prediction Step

The Prediction block and the MPC algorithm is dependent on having a system
model of a form where the output y is the present system state output given the
model. The model can be represented in several different way, for example as a
discrete-time state space system:

x (k) = Ax (k− 1) + Bu(k− 1)

y(k) = C x (k)
(2.17)

It can also be represented as a transfer matrix, or a convolutional type model
[14]. These are all linear representations and assume the process model can be
written linearly. The next step is rewriting the discrete-time process model into a
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step response model. Continuing with the state space representation from Equa-
tion 2.17, the output y can be rewritten as:

Y = Gx +HU + Fu

Y =











y(t + 1)
.
.
.

y(t + N)











(2.18)

The vector Y in Equation 2.18 is the predicted output for all steps from one
step forward and until a set value N. In the same way, the vector U denotes all
future control inputs from the next time step and until time step N.

U =











u(t + 1)
.
.
.

u(t + N)











(2.19)

The vectors x and u are the current states and control inputs, x (t) and u(t).
The matrices G, H and F are the model matrices, made out of the state-space
system [15]. They are written below as:
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(2.20)

The matrices in Equation 2.20 are made up of the matrix A, B and C retrieved
from the state-space model. The output Y of these calculations now represents the
predicted outputs for several steps, from the next step to step number N . This MPC
algorithm analyzes the behavior of the process over a horizon in time and is then,
hopefully, able to choose the control variables in a manner such that the predicted
response has the qualities and characteristics that are wanted [14], [15].
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2.4.2 Optimization Function

The block in Figure 2.3 denoted Set-point calculations include an optimization
function. The objective of this block is to produce a sequence of set points or
targets for the states of the process to follow. These are a set of optimum tar-
gets, meaning they have been found using an optimization algorithm in order for
the process to have an optimal behavior. They are calculated so that they either
maximize or minimize an economic objective function [12]. The cost function to
minimize, if this is the optimization problem goal, is usually a quadratic problem
function on the form written below:

min∆U

N−1
∑

k=0

(y(k+ 1)− r (t))T Q(y(k+ 1)− r (t)) + (u(k)− u(k− 1))T R(u(k)− u(k− 1))

s.t. : umin ≤ u(k)≤ umax , k = 0, ...., N − 1

∆umin ≤ u(k)− u(k− 1)≤∆umax , k = 0, ..., N − 1

ymin ≤ y(k)≤ ymax , k = 1, ..., N
(2.21)

The problem involves minimizing the first line in Equation 2.21 above for the
control inputs u and state outputs y , while not violating the constraints set at the
lines two, three and four. The constraints can include control input, control input
rate and state output constraints. The matrices Q and R contain the weights set
for the control input rates and state outputs, to prioritize which reference values
to follow for the state outputs, and penalize control input rate moves.
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Chapter 3

Mathematical Modeling

In order to both observe and control the attitude of the robot’s main body, there
is a need to derive the mathematical models describing the system. The system
in this project consists of the robot torso and the four robot legs, each equipped
with three degrees of freedom. The system is a highly complex and nonlinear
3D system, for which mathematical modeling can be rather challenging. The res-
ulting equations of motion will also be coupled, further complicating the solution.

There are several options for tackling the problem of finding good, representative
mathematical models. Since the system exists in 3D, the most accurate models
would also be 3D models. This is, however, more complex and time-consuming
than modeling in 2D. It is also possible to split the system into several 2D systems,
develop the mathematical models for each of the 2D cases and evaluate them in-
dependently. This is a considerable simplification but will nonetheless help un-
derstand and develop the equations. The 2D models are, for that reason, a good
starting point, regardless of which modeling solution is to be used in the end.

The attitude angles roll, pitch and yaw, respectively [φ,θ ,ψ] describe the rota-
tion around the axes x , y and z. The mathematical modeling will continue using
Euler angles, because that it is the most familiar angular representation. However,
they suffer from singularities from some sets of angles, when the middle angle of
the roll, pitch, yaw sequence is +/−90°. Since the system is split into 2D-frames,
this singularity will not be an issue. Additionally, if the switch to a 3D-system was
made later, the assumption is that the attitude angles lie below the +/− 90° in-
terval anyway.

The robot composition can then be split into three different 2D scenes with one
attitude angle present in each scene. The roll rotation around the x-axis is present
in the 2D plane y − z, the pitch rotation around the y-axis is present in the x − z
plane, while the yaw rotation around the z-axis is in the x − y plane. The mo-
tions in the x − z plane are usually referred to as the longitudinal motions, with
the x-axis named the longitudinal axis. The motions in the y − z plane are re-
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ferred to as the lateral motions, with the lateral axis y . These are the primary 2D
scenes and motions to be evaluated, as they relate to the roll angle φ and pitch
angle θ , which are the most important attitude angles for the landing of the robot.
The movement in these two 2D-scenes are illustrated for longitudinal dynamics
in Figure 3.1, and for the lateral dynamics in Figure 3.2.

3.1 Longitudinal

Figure 3.1: Longitudinal sketch of robotic system, with the attitude angle θ about
the y-axis.

Figure 3.1 illustrates the quadruped robot in 2D when the x and z axis are re-
garded. The axis x , y , and z make up the inertial coordinate frame. This co-
ordinate frame is independent of the robot’s motion and thus remains constant
no matter how the robot moves. In this case, the z-axis points vertically upwards
from the ground and is naturally always pointed in the opposite direction of the
gravity constant g, which points downwards to the ground. The ground, in this
case, is the x-axis. As it is only 2D, the y-axis is not considered, but the x- and
y-axis make up the ground plane. In Figure 3.1, the y-axis stands orthogonal to
both the x- and z-axis and points directly inwards to the screen, following the
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right-hand rule [16]. The angle θ shown in the figure follows the common nota-
tion described in Section 2.1, where θ is the rotational angle about the y-axis and
is usually referred to as the pitch angle for rigid-body kinematics. The angle of
θ is positive when the rotation is counter-clockwise and negative when there is
a clockwise rotation. This is again a common notation. This rotation makes up a
part of the robot’s attitude, which is wished to control. As there is no direct force
or actuator to control the rotation of θ , it is necessary to control the robot legs
such that the rotational angle changes. This is only possible because the legs have
inertia and hence contribute to a force on the robot’s main body.

As the scene is in 2D, only two robot legs are shown, and they are differed by
denoting the leg closest to the z-axis as the left leg and the leg furthest from
the z-axis as the right leg. The variable m represents the mass of the main body
of the robot and the masses of all the hip actuators. It is simplified because all
these masses are assumed to make up a point mass placed in the exact, geometric
middle of the robot body. The masses m2 are the mass of the knee actuators, and
the masses m3 are the masses of the feet. The mass on each foot is necessary for
the bottom part of the leg to have sufficient moment of inertia to help contribute
to the changes in the rotation of the robot body. The robot-leg links are assumed
to be massless, such that there is only mass at the bottom of each link, and these
are again assumed to be point masses.

The angles q2l and q2r represent the angles of the hip flexion-extension actuators
placed in the hips of the robot legs. q2l denotes the left leg’s hip flexion-extension
angle, while q2r denotes the angle on the right legs. The upper leg is assumed to
have zero rotation in q2l and q2r if the leg is parallel to the height vector of the
main robot body. If the rotation θ is zero, the vector from the hip actuator shown
in the figure to the knee actuator will be parallel to the z-axis. The angles q2l and
q2r are also defined such that a positive angle rotates counter-clockwise while a
negative angle rotates clockwise. Looking at Figure 3.1, this implies that both of
the angles q2l and q2r , in this case, are negative angles.

The angles q3l and q3r represent the angles of the knee flexion/extension actuator
joints. As with the angles q2l and q2r , each leg will have one knee flexion/exten-
sion actuator joint. The two legs in this 2D-frame closest to the z-axis are denoted
as left legs, and consequently, the knee flexion/extension angle is denoted q3l .
The other two legs furthest from the z-axis are the right legs and have a knee
flexion/extension angle denoted q3r . Similarly, as with the q2l and q2r angles,
the legs behind are disregarded in the figure, and only the two legs in front are
illustrated.

In order to make Figure 3.1 less crowded and confusing, a few variables have
been omitted from the illustration. The gravity constant g points directly down-
wards, parallel to the z-axis since this frame is an Inertial frame. The sizes and
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lengths are also missing from the illustration. The robot’s main body has a length
l that is parallel to the x-axis when θ is zero. This is the scalar length from the
robot’s left side closest to the z-axis to the right side of the robot furthest from the
z-axis. The height of the robot’s main body, h, denotes the scalar length from the
bottom of the robot’s body, the horizontal side closest to the x-axis, and the upper
side of the robot body, the side furthest from the x-axis. The four robot legs have
equal geometric composition. The length of the upper leg, from the hip actuators
to the knee actuators, is denoted l1, while the length of the bottom leg, from the
knee actuator to the foot, is denoted l2. Because it is assumed that all the weight of
the legs is placed in the actuators and the bottom part of the feet, there is no need
to know the geometric composition of the leg links l1 and l2, except for the length.

The dynamics of the two legs not shown will in this 2D calculation be equival-
ent to those shown, where the leg behind the left leg has equal dynamics as the
left leg and the same regarding the leg behind the right leg. The reason for this
is the exclusion of the y-axis, meaning the position of the legs behind will not
depend on any other variables than the same variables for the position of the legs
in front. To simplify the 2D calculations, they are assumed to have equal motions
in this longitudinal 2D frame. Using that they have equal motions in this longit-
udinal 2D frame, there is no need to model both front and behind legs. The legs
behind are hence ’merged’ with the legs in front by adding the masses from the
legs behind with the legs in front. For the left legs, this implies that the mass of
the knee flexion/extension actuator joint of the front left leg now has twice the
original mass. The same goes for the foot mass and then similarly for the right
legs. This is quite a significant simplification, but the control results should not
change too much because of it.

The dynamics of the robot in this 2D-frame can be found by using either the
Newton-Euler method or the method of Lagrange, described in Section 2.1 and
Section 2.2, respectively. In order to choose the preferred method, it might be
beneficial first to decide the state vector. The state vector for the Longitudinal dy-
namics includes the 2D-position, [x , z], and the rotational angle θ . These states
determine the position of the robot’s main body. Next, to determine the legs’ po-
sitions, it is only necessary to include the actuator joint angles. The state vector
now includes the variables; [x , z,θ , q2l , q2r , q3l , q3r]. The positions of the legs
behind are assumed to be equal to the positions of the legs in front and are thus
excluded. Since all velocities are assumed to be direct derivatives of the main body
and angular positions, there is no need to include velocities in the state vector. The
final state vector consists of seven variables, a somewhat large number of states.
The forces working on the robot are also quite complex, as the robot rotates with
the θ angle, and the main body of the robot is subject to forces caused by the
rotation of the actuator joints. These qualities of the problem favor the method
of Lagrange over the Newton-Euler method. It is possible to derive the Equations
of Motion using Newton-Euler. However, it will most likely be more difficult and
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time-consuming than using Lagrange and a bit unnecessary when it has already
been proven that the two methods produce the same result.

The method of Lagrange is described in Section 2.2 and involves finding the kin-
etic and potential energy of the system. Finding the kinetic energy involves the
velocities of the system or the derivative of the positions. As the system rotates
around the y-axis with the angle θ , it might be helpful to first find the rotational
matrices from the middle of the robot body in the Inertia frame to the different
masses of the system. The rotational matrices can then be used to derive the trans-
fer matrices, which will simplify the calculations later. The first step is then to find
the different rotational and transfer matrices.

3.1.1 Left Legs

The left-side legs will have a different θ -based rotational matrix than the right-
side legs. This is easily seen following the rotational matrix convention found in
[6, p. 221] in equations 6.98-6.100.

The rotational matrix about θ can be found using the convention found in [6,
p. 221]. Following the same procedure of vector multiplication as in equations
6.98-6.100 on that same page, the matrix elements can be found. First, the Iner-
tial frame is set as the frame a, with unit vectors a1, a2 and a3. The BODY-frame,
where the x-axis follows the length of the robot’s main body is now called frame
b, with unit vectors b1, b2 and b3. As it is a rotation about the y-axis, all vectors
in the x-z plane multiplied with the y-vector will be equal to zero. The y-vector
in frame a multiplied with the y-vector in frame b, (a2 · b2), will be equal to 1.
The remaining elements will be as follows:

a1 · b1 = [1,0, 0] · [cosθ , 0, sinθ]T = cosθ

a1 · b3 = [1,0, 0] · [− sinθ , 0, cosθ]T = − sinθ

a3 · b1 = [0,0, 1] · [cosθ , 0, sinθ]T = sinθ

a3 · b3 = [0,0, 1] · [− sinθ , 0, cosθ]T = cosθ

(3.1)

The resulting rotation matrix is then the matrix with the elements found above,
and will look like below:

Rθ =





cosθ 0 − sinθ
0 1 0

sinθ 0 cosθ



 (3.2)

Since this frame is a 2D-frame, and the plan is to perform the longitudinal
calculations only in 2D for this part, it is not necessary to include the y-row of the
rotational matrix. It can then be simplified to a 2x2 matrix:
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�

cosθ − sinθ
sinθ cosθ

�

(3.3)

The matrix above is used in a transformation matrix to give the transformation
from the origin of the Inertial frame to the origin of the BODY frame. The origin
of the Inertial frame has the coordinates [x , z] = [0, 0]. The origin of the BODY
frame is the point about which the θ angle rotates. This is where the robot’s main
body mass is placed in this 2D frame. This point has the coordinates [x , z] in
the Inertial frame, and [0,0] in the BODY frame. Following the convention for
Transformation matrices explained in Section 2.1, this implies that the vectorial
displacement between the two points is the vector [x , y]. The Transformation
matrix, which consists of the rotational matrix and the vector displacement, then
becomes:

T B
I =





cosθ − sinθ x
sinθ cosθ z

0 0 1



 (3.4)

The next step is finding the Transformation matrix from this point in the
middle of the robot’s body in the BODY-frame and to the point where the left
hip actuators are placed, as illustrated with the white circle in Figure 3.1. For sim-
plicity, the size of the actuator is neglected so that the point is placed precisely at
the left bottom corner of the square robot body. This point is also regarded as in
the BODY frame, and there is no rotation between the two points involved in the
Transformation. The rotation matrix then becomes:

R2
1 =

�

1 0
0 1

�

(3.5)

The rotation matrix above is an identity matrix of the size of the position vector
(2x2). An identity matrix multiplied with a vector is equal to the same vector, such
that I v = v . This means that this rotation matrix will not change the rotation of
the position vector, which is correct. The displacement from the middle of the
robot’s body and to the bottom left corner, when both points are regarded in the
BODY frame, is the vector given below:

�

− l
2
−h

2

�

(3.6)

The variables l and h are as described before the length of the main body and
the height of the main body, respectively. The resulting Transformation matrix
based on this rotation matrix and displacement vector is given below:

T1
0 =





1 0 − l
2

0 1 −h
2

0 0 1



 (3.7)
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The transformation from the origin of the Inertial frame to the bottom left
corner of the robot in the BODY frame is then given by the matrix multiplication
of the two transformation matrices, T B

I and T1
0 . This is not necessary for further

calculations here, but it might give an idea as to whether the transformations are
correct or not. The resulting transformation matrix is given below:

T1
I = T B

I T1
0 =





cosθ − sinθ x − l
2 cosθ + h

2 sinθ
sinθ cosθ z − l

2 sinθ − h
2 cosθ

0 0 1



 (3.8)

The resulting transformation matrix illustrates how the rotations are multi-
plied when multiplying several transformation matrices, while the displacements
are added together but multiplied with the previous rotation.

The next significant point is the position of the knee actuator on the left leg. In fig-
ure 3.1, this actuator is also illustrated as a white circle. The situation is simplified
by assuming the mass of the leg limb, l1, has no mass and that all the mass of the
actuator, m2, is placed in a single point at the bottom of the leg limb. This means
the scalar length between the previous point, the hip actuator at the bottom left
corner of the robot, and the point of the knee mass is precisely the length of the
leg limb l1. There is no rotation between the frames at these points since they are
both in the same frame; BODY. The BODY frame only follows the position of the
robot’s main body, and the changes in the legs do not affect this BODY frame. The
rotation matrix between the points is equal to the rotation matrix, R2

1, which is
just the 2x2 Identity matrix. The knee-actuator point’s displacement is dependent
on the angle q2l , which follows the counter-clockwise direction when positive.
The leg limb l1 and the stippled line in Figure 3.1 given by the angle q2l form a
right triangle. This right triangle gives the basis for computing the displacements
in x and z directions. The displacement vector is given below:

�

l1 sin(q2l)
−l1 cos(q2l)

�

(3.9)

The rotation matrix with the displacement vector gives the Transformation
matrix, T2

1 .

T2
1 =







1 0 l1 sin(q2l)

0 1 −l1 cos(q2l)

0 0 1






(3.10)

The last point to evaluate is the feet of the robot leg, as illustrated as a small
white circle in Figure 3.1 at the bottom of the robot legs. The mass m3 is placed
here and again assumed to be a point mass at the very bottom of the leg limb called
l2. The leg limb is assumed to have no mass. Similarly, as with the transformation
from the bottom left corner of the robot body to the knee actuator, there is no
rotation, and the rotation matrix is the 2x2 Identity matrix. The displacement of
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the point mass m3 from the point mass m2 is dependent on both the angle q2l
and q3l . This is more easily seen if the angle θ is zero. The displacement is found
with the help of the right triangle that is formed from the angle q2l +q3l , and the
leg limb l2. The resulting displacement vector is given below:

�

l2 sin(q2l + q3l)
−l2 cos(q2l + q3l)

�

(3.11)

Inserting this displacement vector and rotation matrix into the transformation
matrix gives the resulting transformation matrix from the knee actuator to the foot
of the robot legs.

T3
2 =







1 0 l2 sin(q2l + q3l)

0 1 −l2 cos(q2l + q3l)

0 0 1






(3.12)

The transformation matrices T B
I , T1

0 , T2
1 and T3

2 give the transformations from
the origin of the Inertia frame, [x , y] = [0,0], to the different points on the left
side of the robot, (left, bottom corner of the robots main body, knee actuator,
and foot). In order to find a specific transformation, the transformation matrices
between that point and the origin are multiplied to give the resulting transform-
ation matrix from the origin and to the point. The right-most or third column of
the transformation matrices represents the vectorial displacement seen from the
original frame. This implies that a matrix multiplication of the matrices between
the origin in the Inertial frame and an arbitrarily point b in the BODY-frame gives
a transformation matrix T bBODY

Io
of which the third column gives the position of

point b in Inertial frame. The Transformation matrices give a method for finding
the different positions of the robot parts when multiplied together.

In order to derive the kinetic energy of the system, the velocities of the differ-
ent rigid bodies are needed. The velocity is needed for all parts with mass, which
with the simplifications made, the robot’s main body, the knee actuators, and the
feet are all modeled as point masses. The velocities can be found by taking the
time-derivative of the positions. The next step is to retrieve the positions of the
left side knee actuator and the left side foot from the transformation matrices and
then take the time-derivative of these positions.

The position of the robots main body is already known to be the position vec-
tor:

�

x
z

�

(3.13)

The time derivative of this position is just the angular velocities along the x-
axis and z-axis, such that the velocity vector can be written as:
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vm =

�

ẋ
ż

�

=

�

u
w

�

(3.14)

The notations u and w are common for representing the linear velocities, but
the notations with ẋ and ż will be used forward in order to keep the relationship
between the position [x , z] and the derivatives clear.

The position of the mass m2 or knee-actuator illustrated as the white circle in
Figure 3.1 is found by multiplying the transformation matrices T B

I , T1
0 , T2

1 , as
they are the transformation matrices between the origin in Inertial frame and the
position of m2 in BODY frame. The resulting transformation matrix T2

I is given
below as:

T2
I =





cosθ − sinθ x + cosθ l1 sin(q2l) + sinθ l1 cos(q2l)−
l
2 cosθ + h

2 sinθ
sinθ cosθ z + sinθ l1 sin(q2l)− cosθ l1 cos(q2l)−

l
2 sinθ − h

2 cosθ
0 0 1





(3.15)
The position of the left side mass m2 in the Inertial frame is then found by

extracting the two first elements of the third column, such that the position is
given as the vector below:

pm2l
=

�

x + cosθ l1 sin(q2l) + sinθ l1 cos(q2l)−
l
2 cosθ + h

2 sinθ
z + sinθ l1 sin(q2l)− cosθ l1 cos(q2l)−

l
2 sinθ − h

2 cosθ

�

(3.16)

The derivative and velocity of the position pm2l
are found by taking the time

derivative of the position vector given above in Equation 3.16. This can be done
using the Symbolic Variables in Matlab and defining the different variables as sym-
bols. In addition to the variables x , z, theta and q2l , the derivatives are defined as
well, as d x , dz, d theta and dq2l . Matlab has a function called diff, which allows
for finding the differentiation of an expression. The function diff(f, x) returns
the partial derivative of the expression f with respect to the symbolic variable x.
It does, however, not take into account the time derivative of x. If the expression
is changed to diff(f, x) ·dx, it will give the partial derivative of f with respect to
x, which again is differentiated with respect to time. In order to differentiate the
complete expression with respect to time, the different partial derivatives are ad-
ded together. The final expression for velocity along the x-axis can then be found
using Matlab symbolic, and the function below:

v_x = diff(f_x, x)dx + diff(f_x,z)dz + diff(f_x, theta)dtheta +
diff(f_x, q2_l)dq2_l

The same can be done for the velocity along the z-axis, and the two expres-
sions make up the velocity vector of the mass m2, vm2l

.
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The feet masses, m3, are positioned at the bottom of the legs, and are assumed
to be a point masses. The length from m2 and m3, with the assumption that they
are both point masses, is then the length of the bottom leg limb, l2. The position
in Inertial frame, as an expression of the variables x , z, l1, l2, q2l , q3l and θ , is
found using the same method as with the position of m2. The matrices multiplied
above give the transformation matrix from the origin in the inertial frame to the
mass m2. If the transformation matrix from the mass m2 to m3, T3

2 from Equation
3.12, is included in the matrix multiplication, the resulting transformation matrix
T3

I will give the transformation from the origin in inertial frame to the mass m3
in inertial frame. Hence, it is sufficient to multiply the matrix T2

I , which is already
calculated, with the transformation matrix T3

2 . This resulting transformation mat-
rix T3

I is given below:

T3
I =





cosθ − sinθ px m2 + cosθ l2 sin(q2l + q3l) + sinθ l2 cos(q2l + q3l)
sinθ cosθ pz m2 + sinθ l2 sin(q2l + q3l)− cosθ l2 cos(q2l + q3l)

0 0 1





(3.17)
The transformation matrix in Equation 3.17 is simplified by interchanging the

expressions for the position of m2 by the variables pxm2 and pzm2. The remaining
expressions of the third column of the transformations matrix give the change in
position from the mass m2 to m3 in the Inertial frame. These expressions are the
result of the rotation about θ multiplied with the translation vector from mass m2
to m3.

The position of the point mass m3 is found in the same way as with m2 by ex-
tracting the two first elements of the third column of the transformation matrix
T3

I . The position vector p3ml is then given as below:

p3ml =

�

px m2 + cosθ l2 sin(q2l + q3l) + sinθ l2 cos(q2l + q3l)
pz m2 + sinθ l2 sin(q2l + q3l)− cosθ l2 cos(q2l + q3l)

�

(3.18)

The velocity of the point mass m3 is found by taking the time derivative of the
position vector p3ml in Equation 3.18. In the same manner as with m2, this can be
solved using Symbolic variables in Matlab, with the function diff(f, x). The par-
tial derivative is taken for all time dependant variables in the position vector and
then added together using Matlab. As opposed to with m2, the time-dependant
variable q3l has to be included in this expression. The vector that results from
this differentiation will be the velocity vector of the point mass m3 and is here
denoted vm3l

.

The velocity vectors of the masses on the left hand side of the robot, m, m2 and
m3, are calculated and denoted vm , vm2l

and vm3l
. The first velocity vector gives
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the velocity of the center of mass of the robot, while the vectors vm2l
and vm3l

give those of the point masses m2 and m3, respectively.

3.1.2 Right Legs

The legs on the right side of Figure 3.1 have very similar dynamics as the ones
on the left side. The figure of the Longitudinal plane shows that the relationship
between the point mass m2 on the right side, and the bottom right corner of the
robot’s body, where the right hip actuators are placed, is equal to the relationship
between the point mass m2 on the left side and the bottom left corner of the robot.
The angle q2r is different from q2l , but the dependency between the angle and
the point mass m2 is equal on the left and right sides. In addition, the relationship
between the point masses m2 and m3 on the right side is equal to the relationship
between the two masses on the left side, except for an angle interchange, from
q3l to q3r . This simplifies the calculations because the transformation matrices
from the bottom right corner of the robot to the mass m2 on the right side will
be equal to the transformation matrix T2

1 from the bottom left corner to the left
side mass m2, except with the angle q2r instead of q2l . The same applies to the
transformation matrix from the right side mass m2 to m3, where q2l and q3l are
switched for q2l and q3l in the transformation matrix T3

2 given in Equation 3.12.
The rotation matrix about the y-axis with rotation θ is the same as before, Rθ in
Equation 3.2. Additionally, the transformation matrix from the origin in the Iner-
tial frame to the center of mass in the BODY frame is the same as before, T B

I .

The transformation matrix from the center of mass in the BODY frame to the
bottom right corner of the robot body in the BODY frame is the only transforma-
tion matrix that is not similar to the ones for the left side. The rotation matrix in
this transformation matrix will be the same 2x2 Identity matrix, but the displace-
ment vector will be a vector from the middle of the robot’s body and to the right
instead of to the left. However, only the displacement along the x-axis is differ-
ent. It will have a positive sign as the vector follows the positive direction of the
x-axis instead of a negative sign as in the left-hand side transformation matrix.
The transformation matrix from the middle of the robot’s main body to the bottom
right corner is given below:

T1
0 =





1 0 l
2

0 1 −h
2

0 0 1



 (3.19)

The transformation matrix from the bottom right corner of the robot body to
the right knee actuators is equal to the one for the left side, except with a change
in angle:
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T2
1 =







1 0 l1 sin(q2r)

0 1 −l1 cos(q2r)

0 0 1






(3.20)

The last transformation matrix from the right side mass m2 to m3 is equal to
the one for the left side, except with the angles q2r and q3r instead of q2l and
q3l .

T3
2 =







1 0 l2 sin(q2r + q3r)

0 1 −l2 cos(q2r + q3r)

0 0 1






(3.21)

Since the transformation matrix, T B
I from the origin in the Inertial frame to

the center of mass in the BODY frame is equal to before, all the transformation
matrices are found.

The position vectors of the right side masses m2 and m3 are found similarly as
for the left side masses by multiplying the transformation matrices between the
origin in the Inertial frame and the point mass. The two first elements of the third
column of the resulting transformation matrices give the position vectors, pm2r

and pm3r
. The velocity vectors vm2r

and vm3r
are found by taking the time de-

rivative of the position vectors, while the velocity vector vm is equal to the one
derived for the left side, and given in Equation 3.14.

3.1.3 LaGrange calculation

The method of Lagrange or Lagrangian mechanics is described in Section 2.2. It
is a different formulation from the Newton-Euler mechanics but tries to solve the
same problem; formulating the dynamics of a system. The Lagrangian, L, is the
function that results from taking the difference between the kinetic energy T and
the potential energy U . The kinetic energy T is the sum of all kinetic energies
of the particles in the system. With the assumption of point masses for the robot
system, this includes the center of mass of the robot and the points where the
masses m2 and m3 are placed. Another assumption is that all forces involved are
conservative, such as the force due to gravity. The potential energy, U , will, in this
scenario, be the summation of all potential energies of the masses, which will be
functions of the position vectors.

The total kinetic energy T is the sum of all kinetic energies, where each kinetic
energy Ti can be written as in Equation 2.14 from Section 2.1. In this 2D case, the
velocity v will be a vector, and the expression will then be as written below:

Ti =
1
2

v T mi v (3.22)
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The vector v in the expression above will be the time derivatives of the position
of the masses, which were calculated in the previous section, while the mass m
will be the mass of particle i. The total kinetic energy of the system is then the
summation of all these kinetic energies with the velocities as expressed in the
previous section.

T =
1
2

v T
mmvm +

1
2

v T
m2l

m2vm2l
+

1
2

v T
m3l

m3vm3l
+

1
2

v T
m2r

m2vm2r
+

1
2

v T
m3r

m3vm3r

=
1
2

�

m||vm||2 +m2

�

||vm2l
||2 + ||vm2r

||2
�

+m3

�

||vm3l
||2 + ||vm3r

||2
��

(3.23)

Equation 3.23 above gives the total kinetic energy of the longitudinal system.
The potential energy U is the sum of the potential energies of each particle, or
in this system, each point mass. The only force that can contribute to potential
energy in this system is gravity. The Inertial coordinate frame is defined such that
the gravity constant g points directly downwards and is parallel to the z-axis.
Because of this, the position in z for each particle, with the mass of the particle, is
sufficient for calculating the total potential energy. With the notation pmz

for the
position of the center of mass m in z-direction, and similarly for the masses m2
and m3, the total potential energy U can be expressed as below:

U = mgpmz
+m2 gpm2lz +m2 gpm2rz

+m3 gpm3lz +m3 gpm3rz
(3.24)

The Lagrangian L is then calculated as below, using the total kinetic energy T
and total potential energy U .

L= T − U (3.25)

The state vector was set to be the vector [x , z,θ , q2l , q2r , q3l , q3r]T . The Lag-
rangian L is then a one-dimensional function of these seven states and the con-
stants for length, mass, and gravity. Following the Lagrangian method described
in Section 2.2, the next step is to find a set of derivatives of this Lagrangian L. The
final object with the Lagrangian method is to solve the equation given below,

d
d t

�

δL
δq̇

�

−
δL
δq
= τ (3.26)

where q represents the state vector consisting of seven states, and q̇ represents
the derivatives of these states. When the partial derivatives are taken over these
seven states and derivatives, the final expression from Equation 3.26 on the left-
hand side will be a vector with the same number of rows as there are states in
the state vector. The actuator torque vector is the variable τ on the right-hand
side. The actuator angles will have a torque variable τi , which includes the states
[q2l , q2r , q3l , q3r], while the other states that are not directly subjected to such
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actuator input will have a zero-valued τi-variable. These are the states [x , z,θ].
The partial and time derivatives can be calculated by hand or by a program using
symbolic variables. Considering the system’s complexity and the number of states,
using a computer program to derive these expressions might be less challenging.
The calculations will be less prone to errors that easily could occur when they are
performed by hand. Again for this task, Matlab has the built-in Symbolic toolbox
package that can perform the computations. The variables in the state vector:



















x
z
θ
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q2r
q3l
q3r



















(3.27)

are defined with syms in Matlab, as well as the derivatives of the states:



















ẋ
ż
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˙q2l
˙q2r
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˙q3r



















(3.28)

The Lagrangian L resulting from the computed kinetic and potential energy
is defined in Matlab, with the variables defined with syms. Following this, all the
partial derivatives δL

δq̇i
and δL

δqi
are computed for each state qi and each state de-

rivative qi . This is done with the built-in Matlab function diff(f,x), by setting
the lagrangian L for the function f , and the state qi or the state derivative qi for

x . The time derivative of the state derivative partial derivatives, d
d t

�

δL
δq̇i

�

, can be

computed by the diff-function. This time the f -function in diff is replaced with
the partial derivative δL

δq̇i
, while the differentiation parameter will be d t. This is

the same as taking the partial derivative with respect to the time-dependent vari-
ables, multiplied with the partial derivative of the time-dependant variables with
respect to time, as seen below:

dU
d t
=
∑

�

δU
δqi

dqi

d t
+
δU
δq̇i

dq̇i

d t

�

(3.29)

Replacing U in the equation above with δL
δq̇i

and computing will give the needed
time derivatives of the state derivative partial derivatives.

Since the variables τi are control variables, all the expressions needed for the
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lagrangian computations are found. The final computed lagrangian equation will
then be as written below:



















































d
d t

�

δL
δ ẋ
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�
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�
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�
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�
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(3.30)

Equation 3.30 above gives the symbolic result of the Lagrangian equations.
Each row in the equation answers to one of the states. The three first states, x , z
and θ , have zero torque input, while the angular states of the leg actuators, q2l ,
q2r , q3l and q3r , each have a torque input τi .

The system of equations in 3.30 follows the properties of the Lagrangian dynam-
ical systems described in Section 2.2. Some of the terms in the equation depend
only on the double derivative q̈ and the state q , while others are dependent on
the states q and the state derivatives q̇ . Lastly, some terms of the equation depend
only on the states q or on none of the states. The system of equations can be
written in the form of Equation 2.11:

M(q)q̈ + C(q , q̇)q̇ +τg (q) = Bu (3.31)

This is done by reordering the system of equations and extracting the correct
terms into the matrices M and C , and the vector taug . The matrix M nxn, referred
to as the inertia matrix with n being the number of states, consists of the terms
related to the acceleration of the states. The Coriolis matrix Cnxn is non-zero for
systems that are subjected to rotational changes and angular velocities and accel-
erations. The vector τnx1

g originates from the partial derivatives δU
δqi

, with U being

the potential energy of the system. Lastly, the vector τnx1 is equal to before, with
zero for the three first states and a torque value τi for the four last states. The
vector u consists of the torque values from τ, while the B-matrix maps the con-
trol inputs from u.

Extracting the different terms into the matrices and vectors M , C and τg can
easily be done in Matlab, using the built-in functions collect(f,x) and coeffs.
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The first function rearranges the function f so that the terms involving the vari-
able x are gathered in x , x2, x3, etc. The second function returns the coefficients
of a function with respect to set of chosen symbolic variables.

When the system of equations from Equation 3.30 is rewritten in the form of 3.31
with the matrices and vectors M , C and τg , the vector consisting of the double
derivatives of the states, q̈ is only present once in the equation. These are the
state accelerations of the system and can be extracted from the equation by mov-
ing around on matrices and vectors. The inertia matrix M is a positive definite
matrix, and it is possible to take the inverse of M . The equation for finding q̈ will
be as written below:

q̈ = M(q)−1
�

Bu − C(q , q̇)q̇ −τg (q)
�

(3.32)

3.2 Lateral

Figure 3.2: Lateral sketch of robotic system, with the attitude angle φ about the
x-axis.

Figure 3.2 illustrates the quadruped robot in the lateral 2D frame. The robot’s
view in this frame is directly from the front, as opposed to viewing the robot’s
side in the longitudinal frame. The y-axis follows the horizontal line while the
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z-axis remains the upward axis, similarly to the longitudinal frame. This coordin-
ate frame disregards the dynamics along the x-axis. The gravity constant g points
downwards and is parallel to the z-axis. The angle φ rotates around the x-axis
with the positive angle rotation rotating counterclockwise, as shown in the figure.
The φ rotation is often referred to as the roll angle, and its derivative is referred
to as the roll rate p. φ makes up the second of the robot’s attitude angles.

The robot legs shown in this illustration are divided into left legs and right legs
as in the longitudinal frame. The legs behind are not shown but assumed in this
frame to have the same motion as the legs in front, such that the dynamics can
be simplified to a robot with two legs that each have the mass of two legs. The
masses m2 are placed at the knee actuators of the legs and are assumed to be
point masses. The masses m3 are placed at the bottom of the legs and assumed to
be point masses. The robot links are assumed to be massless.

The angles q1l and q1r represent the hip abduction/adduction angles. This is the
angle for the hip swing-up, as illustrated in the figure. The angle q1l represents
the left angle, while q1r represents the right angle. They are defined such that
a positive angle rotates anti-clockwise and vice versa. For Figure 3.2, this means
that the angle q1r is positive, while the angle q1l is zero.

Some variables are omitted from the figure to leave it less crowded. The robot’s
main body has the same height h as before, while the width, being the horizontal
angle following the x-axis, is denoted w. The lengths of the legs remain as before,
with l1 as the upper leg and l2 the length of the lower leg.

The dynamics of the robot in the lateral 2D-frame can be found using the method
of Lagrange, described in Section 2.2. The state vector includes the 2D-position,
[y, z], and the rotational angle φ. Additionally, the states of the angles q1l and
q1r need to be included. The state vector becomes: [y, z,φ, q1l , q1r] and has five
states. In order to use the method of Lagrange, the kinetic and potential energies
of the system are needed, and the dynamical system is again split into a left and
right side to determine the positions of the masses, followed by the velocities of
the masses.

3.2.1 Left Legs

The position of the masses on the left side can be found using the same method
as in the longitudinal frame. The Inertial frame is defined with the origin at the
point [y, z] = [0,0]. The origin of the BODY frame is the position of the center of
the mass of the robot’s main body, with the y-axis parallel to the horizontal sides
of the robot body (following the stippled line projected by the angle φ). The first
step in computing the Lagrangian equations is to find the transformation matrices
between the origin in the Inertial frame and the different masses.
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The transformation matrix from the origin in the Inertial frame to the center of
mass in the BODY frame is dependent on the rotational matrix describing the ro-
tation about the x-axis, φ. By observation of the Figures 3.1 and 3.2, it is evident
that the rotational matrix will look somewhat similar to the one for the angle θ ,
except where the cosines and sines are placed in the 3x3 matrix. Since this is a
rotation about the x-axis, the first row in the matrix will look like: [100], while
all other elements regarding x will be zero. The last four elements in the bottom
right corner will be the cosine/sine expression, and the final rotational matrix will
look like below:

Rφ =





1 0 0
0 cosφ − sinφ
0 sinφ cosφ



 (3.33)

The frame is a 2D-frame with the x-axis excluded, and the matrix above can
then be simplified to a 2x2 matrix that only includes the cosine and sine expres-
sions:

Rφ =

�

cosφ − sinφ
sinφ cosφ

�

(3.34)

The vectorial translation from the origin in the Inertial frame to the origin
in the BODY frame is given by the vector [y, z]. Following the convention for
transformation matrices from Section 2.1, the transformation matrix given the
rotation matrix in Equation 3.34 and the translation vector will be as written
below:

T B
I =





cosφ − sinφ y
sinφ cosφ z

0 0 1



 (3.35)

The next step is to find the transformation matrix from the origin in the BODY
frame to the point where the left hip actuators are placed. This will be at the
bottom left corner of the robot’s main body, given that the mass of the actuator is
a point mass. This point is taken in the same BODY frame as the previous point.
Hence there is no rotation between the points. The rotational matrix between
these points simply becomes the 2x2 identity matrix. The displacement between
these points, when they are both regarded in the same frame, is the vector given
below:

�

−w/2
−h/2

�

(3.36)

The variables w and h are the width and height of the robot’s body, as described
earlier. The transformation matrix based on this rotation matrix and displacement
vector is given below as:
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T1
0 =





1 0 −w
2

0 1 −h
2

0 0 1



 (3.37)

The next position that is needed is where the knee actuator is placed. In Figure
3.2, this is illustrated as a white circle in the middle of the robot’s leg, but it is
again assumed to be a point mass. The scalar length between this point and the hip
actuator is the length of the upper leg, l1. This point is in the same BODY frame as
before, and again there is no rotation between this point and the last. The rotation
matrix is the 2x2 identity matrix, while the displacement in y and z depends on
the hip actuator rotation q1l . Following the rules for right triangles, it is found
that the displacement along the BODY frames y-axis will be l1 sin(q1l), and the
displacement along with the frames z-axis will be−l1 cos(q1l). The transformation
matrix T2

1 will then be as written below:

T2
1 =





1 0 l1 sin(q1l)
0 1 −l1 cos(q1l)
0 0 1



 (3.38)

The last position needed is the point of the foot, at the very bottom of the
robot’s leg. This is illustrated as a white circle in Figure 3.2 and is assumed to be a
point mass. The scalar length between this point and the mass placed at the knee
will be the length of the bottom leg part, l2. There is no rotation between these
two points, as they are still considered in the BODY frame, and the rotation matrix
will be the 2x2 identity matrix. The displacement is only dependent on the length
of the bottom leg part and the angle q1l . The displacement vector is computed
to be: [l2 sin(q1l),−l2 cos(q1l)]. The transformation matrix, T3

2 , will be as written
below:

T2
1 =





1 0 l2 sin(q1l)
0 1 −l2 cos(q1l)
0 0 1



 (3.39)

The transformation matrices found in this section give the transformation from
the origin in the Inertial frame to the different points on the left side of the robot
in the lateral 2D frame. The transformation to a point is found by multiplying the
transformation matrices between the point and the origin of the Inertial frame. As
in the section for the longitudinal frame, the position of the point is found in the
third column of the transformation matrices. The two first elements of the third
column represent the position (or change in position) along the y-axis and z-axis,
respectively. The positions of the knee actuator mass and foot mass are found by
this method, multiplying the transformation matrices between origin and point
and then extracting the two first elements of the third column. For simplicity, the
positions will be referred to as pm , pm2l

and pm3l
.
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To compute the kinetic energy of the system, the velocity vectors of the masses
are needed. To find the velocity vectors, it suffices to take the time derivative of
the position vectors pm , pm2l

and pm3l
. This can be done with Symbolic Matlab,

as before, or computed by hand. For simplicity and to avoid common calculation
errors, it is computed with Matlab, and the differentiation function diff(f,x).
The first velocity vector, vm , is simply the derivative of the vector [y, z]T and will
be as written below:

vm =

�

ẏ
ż

�

(3.40)

The remaining two velocity vectors, vm2l
and vm3l

are found by taking the
time derivative of pm2l

and pm3l
in Matlab.

3.2.2 Right legs

The right legs will be the legs on the right side in Figure 3.2. These are the legs fur-
thest away from the z-axis. The angle of the hip actuator will for these legs be the
angle q1r , instead of q1l . The only difference between these legs and the left legs
is the second transformation matrix, from the center of mass in the BODY frame
to the right-side hip actuator instead of the left hip actuator. This transformation,
T1

0 , will have zero rotation because both points are in the same BODY frame, while
the displacement vector will be a vector that goes from the center of mass to the
bottom right corner of the robot main body. The resulting transformation matrix
will then be as written below:

T1
0 =





1 0 w
2

0 1 −h
2

0 0 1



 (3.41)

The transformation matrix T B
I will be equal to the ones used in the calculations

for the left legs, and the matrices T2
1 and T3

2 will be equal as well, except with the
change in angle from q1l to q1r . The transformation matrices are written below:

T B
I =





cosφ − sinφ y
sinφ cosφ z

0 0 1



 , T2
1 =





1 0 l1 sin(q1r)
0 1 −l1 cos(q1r)
0 0 1





T3
2 =





1 0 l2 sin(q1r)
0 1 −l2 cos(q1r)
0 0 1





(3.42)

The position vector of the center of mass pm will be equal to the one computed
for the left side. The same applies to the velocity vector vm . The position vectors of
the right side masses m2 and m3 are found using the same method as the left side
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masses by multiplying the transformation matrices and extracting the first two
elements of the third column in the third column matrices. The resulting position
vector are denoted pm2r

and pm3r
. The velocity vectors vm2r

and vm3r
are found

by taking the time derivative of the position vectors, pm2r
and pm3r

, in Matlab
with the function diff(f, x).

3.2.3 LaGrange calculation

The method of Lagrange will be used for the lateral dynamics in the same way
as for the longitudinal dynamics. The Lagrangian L is found by subtracting the
potential energy U from the kinetic energy T .

The total kinetic energy T is the sum of all the kinetic energies involved in this
system in 2D. When the velocity vector for each mass of the robot is known, each
kinetic energy part will take the form below:

Ti =
1
2

v T mi v (3.43)

where v is the velocity vector of the mass mi . These vectors are already com-
puted in the section above by differentiation of the position vectors. Summarizing
the kinetic energies for the masses m, m2l , m3l , m2r and m3r will give the total
kinetic energy of the system, T .

The total potential energy U is the sum of the potential energies of each particle
in the system, or in this case, the sum of the potential energies for each point
mass. The only force contributing to potential energy in this system is the gravity
force caused by the gravity constant g. The gravity constant points directly down-
wards, parallel to the z-axis in the inertial frame. Each potential energy part will
then take the form as written below:

Ui = mi gpmiz (3.44)

where pmiz is the position along the z-axis for the mass mi , and g is the grav-
ity constant. Summarizing the potential energy parts will give the total potential
energy of the system, U .

The Lagrangian L is computed as before with the equation:

L = T − U (3.45)

The state vector, q , for this system was set to be the positions in [y, z]-coordinates,
and the angles φ, q1l and q1r , and the Lagrangian will be a function of these five
states. The next step is to solve the Lagrange equation:

d
d t

�

δL
δq̇

�

−
δL
δq
= τ (3.46)
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The vector q is the state vector consisting of the five states, while q̇ is the vector
that consists of the derivatives of the states. The vector τ consists of the actuator
torques and will have zero for the elements associated with the position states
and φ, and a torque variable τi for the actuator angle states, q1l and q1r . The
partial derivatives and time derivatives are calculated with the symbolic toolbox in
Matlab in the same manner as for the longitudinal dynamics. All time-dependent
variables are defined with syms, and then the different derivatives for each state
qi and each time derivative state q̇i are computed with the function diff. The
variables τi are control variables and do not need any computation in this step.
The final computed Lagrange equations will look like the system below:



































d
d t

�

δL
δ ẏ

�

− δL
δ y

d
d t

�

δL
δż

�

− δL
δz

d
d t

�

δL
δφ̇

�

− δL
δφ

d
d t

�

δL
δ ˙q1l

�

− δL
δq1l

d
d t

�

δL
δ ˙q1r

�

− δL
δq1r
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0

0

0

τ1l

τ1r























(3.47)

Equation 3.47 above gives the symbolic result of the Lagrange equations. Each
row in the final system is associated with one of the states from q . The three first
states will have zero torque input, while the two last angular states each have a
torque input τi . This system of equations has the same characteristics as other
systems of equations of motion described in Section 2.2, in the sense that it can
be rewritten in the form below:

M(q)q̈ + C(q , q̇)q̇ +τg (q) = Bu (3.48)

This is done by reordering the system in Equation 3.47 and extracting the dif-
ferent terms into the matrices M , C and the vector τg . The vector u consists of
the input torques τi , and the matrix B maps these control inputs correctly. This is
done in the same way as for the longitudinal dynamics, and the resulting matrices
M and C will be 5x5 matrices, while the vector τg will be a 5x1 vector.

When the system of equations from Equation 3.47 is rewritten into the matrices
and vectors M , C , τg , B and u, the vector for the double derivative of the states,
q̈ , can be found by rearranging the terms in Equation 3.48. The final equation for,
q̈ will be as written below:

q̈ = M(q)−1
�

Bu − C(q , q̇)q̇ −τg (q)
�

(3.49)
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Chapter 4

Validation of Mathematical
Models

Mathematical Model Validation is defined as the process of determining the degree
of how accurate a mathematical model is to the real-life system it tries to describe
[17]. This process is accomplished by comparing predictions from a model to ex-
perimental results. A hypothesis or prediction of how the real-life system would
behave when subjected to some action or event is compared to the result of the
mathematical model when the model is subjected to the same actions or events.
This comparison will evaluate how trustworthy the model is and how it might
differ from the real-life system.

Mathematical model validation is related to how accurate the models need to
be. With a higher need for accuracy, the more critical the validation will be, and
the more time should be spent on this part to ensure the model can be used for the
intended purpose. The 2D models that were found in the previous chapter will be
the basis on which the control laws will depend. The different control laws, such
as a PID algorithm or an MPC control law, will have different needs for accur-
acy. PID does not necessarily depend on having a perfectly accurate model, while
the MPC algorithm will perform predictions based on the mathematical models.
For this reason, accurate modeling is much more critical when using MPC than a
common PID control. Since the goal is to control the attitude angles of a complex
robotic system, it is highly likely that the PID control proves insufficient and that
an MPC will perform better. Consequently, it is reasonable to assume that a model
of decent accuracy is needed later when determining what control law to use.

In order to determine the accuracy of the model, a series of experiments or tests
is often conducted, tailored to the specific system and model. This is also how
the longitudinal and lateral mathematical models will be evaluated. Some of the
tests that will be performed are to observe how the moments of inertia around
the robot affect the attitude angles and robot motions. Other tests are performed
to determine the robot’s motions when all initial conditions are zero.
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4.1 Validation Experiments

The first set of Validation Experiments aims to determine how the different masses
around the robot body and in the legs affect the attitude angles and motion. In
other words, the goal is to observe how the moments of inertia originating from
the masses in the leg actuators affect the overall motion of the robot’s body.

If one of the actuators on the leg rotates counter-clockwise, the resulting
torque will point upwards. Following the same notion, a torque that points directly
upwards caused by the rotation of an actuator will lead to a counter-clockwise ro-
tation about the center of mass. To sum this up, a counter-clockwise, or positive,
rotation of one of the actuator angles will contribute to a counterclockwise, or
positive, rotation about the center of mass, and vice versa. The force is depend-
ent on the mass of a rotating object, in this simplified case, a point mass for each
actuator. The more mass there is, the bigger the force will be. If there is no mass,
there will be no force. To test how well the mathematical model correlates to the
theory, each mass of the legs should be tested ’in isolation’. All the masses are set
to a value very close to zero, except for one. Torque is then applied to the different
legs to observe if it is correct that the leg parts without mass do not contribute
to a rotation in the attitude angle when rotated. At the same time, the leg part
with mass does contribute to a rotation in the attitude angle when rotated. It is
difficult to determine a threshold for when the results are satisfactory but to set a
reasonable limit; the massless leg parts should not contribute to an attitude angu-
lar rotation of more than 0, 5° for the mathematical models to be deemed accurate.

When the actuators are viewed as pendulums, there will be a tension force, T ,
working from the end of the pendulum where the mass is placed, along with the
link towards the top part of the pendulum. However, this will no longer be the
case when the robot is in free fall and there is no angular velocity of the pendu-
lum. The tension force is present when there is tension on the link, usually caused
by the pendulum mass being subjected to the gravity force G, while the top of
the pendulum is fastened. In a free fall, both the robot body and the legs will fall
towards the ground with the same acceleration g. Hence there will be no tension
in the link caused by gravity. When the mass moves with an angular velocity ω,
there will again be a tension force, T , present. This is simply because the end of
the pendulum has a different motion than the top of the pendulum. The resulting
net force working from the mass of the pendulum and upwards will be as given
below:

F =
mv2

l
(4.1)

This force will have an impact at the top of the pendulum and, for this reason,
impact the attitude angle and motion of the robot. Since the force works in the
direction of the link of the pendulum, the impact of the force on the robot body is
dependent on where the mass is placed. For example, if the actuator angle of the
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pendulum is positive and is moving in some direction, the force will point back-
ward. However, if the angle is negative, the force will point forwards (positive x or
y-direction). Since the center of mass of the robot’s body is placed in the middle
of the robot body, the left leg will have a force working from behind, while the
right leg will have a force pointing from the front. A positive angle of q2l when the
actuator is moving in some direction with angular velocity ω will lead to a force
contributing towards a negative θ or φ angle as long as q2l remains positive. On
the other hand, a positive angle of q2r will lead to a force contributing towards a
positive θ or φ angle when an angular motion is present. The contribution on the
θ and φ angle will change sign somewhere on the negative angle side of the left
leg and the positive angle side of the right leg. This will happen when the force
vector following the link passes under the center of the mass. Precisely at what
angle this will happen can be calculated, but it will have to happen before q2l
reaches −90° from the positive side and before q2r reaches 90° from the negative
side.

The force equation above describes how the force is dependent on mass m, the
velocity v , and the length of the pendulum arm l. The linear velocity v is related
to the angular velocity ω in a manner described by the equation below

v = rω (4.2)

where r denotes the radius of the pendulum circle. This radius will have the
same length as the length l from the force equation, which leads to a new way of
writing the force equation for F :

F =
mv2

r
=

m(rω)2

r
= mrω (4.3)

The equation above is proportional to the radius r, such that a small radius
length should result in a minimal force F . If the length is zero, there would be no
force, regardless of how large the angular velocity ω is. To test this theory on the
mathematical models, the leg lengths l1 and l2 are tested in ’isolation’ in the same
way as for the masses, such that only one of the four leg parts have a value at
the same time. In contrast, the remaining other three leg parts are set to a value
very close to zero. The same tests are conducted for the masses by rotating the
different actuator angles to observe how this affects the robot’s attitude angles
and overall motion. The threshold is set to the same limit as for the test with the
masses, where the actuators with zero-length leg parts should not contribute to
an attitude angular rotation of more than 0,5°.

The last validation experiment aims to determine if the mathematical models cor-
relate correctly to Newton’s first law, which states that a body at rest or with con-
stant speed will remain at rest or with constant speed unless a force acts upon it.
The quadruped robot is in free flight and is, for this reason, not at rest nor a con-
stant speed. However, as the gravitational force only acts in a straight line parallel
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to the z-axis, there should be no change in the motions along the x- and y-axis
when there is no other force acting than the gravitational force. The object of the
validation experiment is to verify that when the actuator angles have no velocity,
there will be no change in any of the angles of the robot, neither the actuator
angles nor attitude angles. The threshold for when the mathematical models are
deemed accurately enough is set to 0, 1°. If either actuator angle or attitude angle
has a change of more than 0,1°, the mathematical models need to be revisited
and changed.

The threshold limits from the different validation experiments can be summed
up in the table below:

Threshold Limits during 10 seconds
Actuator with no mass +/- 0.5°

Actuator with no scalar leg length +/- 0.5°
Zero initial rotation +/- 0.1°

Table 4.1: Table of threshold limits for the attitude angles and zero-initial condi-
tion actuator angles

Table 4.1 above gives the threshold limits from the three different validation
experiments. The threshold limits for the two first experiments apply to the atti-
tude angles. In contrast, the limit for the last validation experiment applies to all
actuator angles and the attitude angles.

4.2 Set Up

The mathematical models need to be simulated over time to perform the valida-
tion experiments given in the previous section. This can be done using a computa-
tional program, preferably one where it is feasible and easy to solve the differen-
tial equations found in chapter 3 over time. This method is chosen to simulate the
models because of previous experience and knowledge with Matlab’s ODE-solvers
in Matlab. The ODE solver ode45 is a good starting point to test the simulation of
models as it is viewed by many as the general-purpose nonstiff differential equa-
tion solver. A stiff differential equation is a differential equation for which certain
numerical methods are numerically unstable for solving it. Whether or not these
differential equations are stiff is not known, but it is at the same time not that im-
portant. Nonstiff differential equation solvers can still solve them, but it will take
more time, and they might need to make the step size very small. If the ode45
solver takes an unreasonably long time to solve the equations or comes to a halt,
it is time to consider changing the ODE solver to another more suitable for solving
stiff equations.

The program in Matlab is set up around the differential equation given below:
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q̈ = M−1(Bu − C q̇ −τg ) (4.4)

where the matrices and vectors M , C , B, and τg were found in the previ-
ous chapter. The ODE solver ode45 solves a differential equation over a determ-
ined timespan, tspan, with a set of initial conditions, x0. The differential equation
solver also needs an ode function as input, which is a function that takes a column
vector x as input, and returns the column vector ẋ . This is where the differential
equations found earlier are added, and the input x is usually only the state vector
that in this system is denoted q . Since the vector of variables q̈ is a double de-
rivative, the ode45 solver will integrate the equations in order to find the vector
of variables, q̇ . It only retrieves the first derivative. However, the actual states q
need to be found as well. This can be done by rearranging the system of equations
and using the fact that the derivative of the state qi is the derivative state q̇i . The
state vector used in ode45 will then be double in length compared to the original
state vector and will have the general form following the equation below:

ẋ1 = x2

ẋ2 = ẍ1 = q̈1

ẋ3 = x4

ẋ4 = ẍ3 = q̈2

.

.

.

(4.5)

The pattern of Equation 4.5 is continued for all of the states in the state vector
q , and the system of equations is then the combination of the double derivatives
and the second derivatives. The differential equation ode45 can then be used with
this as the state vector, and it will return the integrated states q and the derivative
states q̇ .

Ode45 is set up with an ode function as described above and a time span of 10
seconds. The initial conditions x0 is a vector of the initial conditions for each of
the states returned by the ode function, that in this case, will be twice the size of
the original state q . The vector x0 will include both the initial conditions for the
state derivatives q̇ and the states and can be changed in order to, for example,
give the actuator angles initial velocities. Additionally, the torques τi can be set
to different values in the vector u. The masses and lengths in the equations are
defined as constant at the top of the program, such that they can easily be changed
throughout the validation experiments.
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4.3 Longitudinal

The first validation experiment is verifying that the moments of inertia behave
correctly by setting the different masses to zero and rotating the robot legs in dif-
ferent directions.

In the first test, all the actuator masses m2 and m3 on the left and right legs
are set to 0.0001, except the left side mass of the knee actuator, m2l , which is
set to have the original value, 2 · 0.4kg. All the leg lengths l1 and l2 have their
original value. There is no input u on any of the actuator angles. Lastly, the initial
conditions for x and z are set to 3m and 10m, respectively. The initial angular
value of θ is set to 20°. All other initial conditions are set to zero, except the angle
q2l , which is set to 10°, and the angular velocity of the left side actuator angle
q2l , dq2l , which is set to 5 degrees per second.
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Figure 4.1: Simulation of the situation where only the left side mass m2l has
a non-zero value. The attitude angle θ is given a start value, and the angular
velocity dq2l has a start value. The left side knee actuator, q2l has a start value
of 10°

Figure 4.1 above shows the first described situation, where only the left side
knee actuator has a non-zero mass. When the rotation angle of q2l start at with
a positive angle, 10°, and is given an initial angular velocity for dq2l , the force
caused by the link tension will contribute to a negative rotation of the attitude
angle θ , as described in the previous section. This is also the case in the simula-
tion, as the angle θ starts at 20° and slowly decreases to a negative valued angle.
Observing the right-side plots of the angular velocities, they follow the states on
the left side well, with an increase in the left side q2 angle and a decrease of the
right side q2 angle.

To verify how the force contributing to the change of θ is dependant on the po-
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sition of the rotating mass m2, the following simulation scenario is equal to this
previous scenario in Figure 4.1, except the start value of the angle q2l which now
begins at −70° instead. The results are shown below.

0 1 2 3 4 5 6 7 8 9 10

x

20

30

40

th
e
ta

0 1 2 3 4 5 6 7 8 9 10

x

-60

-40

-20

q
2

l

0 1 2 3 4 5 6 7 8 9 10

x

0

50

q
2

r

0 1 2 3 4 5 6 7 8 9 10

x

-20

-10

0

q
3

l

0 1 2 3 4 5 6 7 8 9 10

x

-100

-50

0

q
3

r

0 1 2 3 4 5 6 7 8 9 10

x

5

10

15

d
q
2

l

0 1 2 3 4 5 6 7 8 9 10

x

0

10

20

30

40

d
q
2

r

Figure 4.2: Simulation of the situation where only the left side mass m2l has
a non-zero value. The attitude angle θ is given a start value, and the angular
velocity dq2l has a start value. The left side knee actuator, q2l , has a start value
of −70°

The plots in Figure 4.2 show that the attitude angle θ increases in value with
the angular velocity dq2l instead of decreasing as in the previous scenario. The
mass m2 on the left side is placed much further to the left side, and the force
vector following the link from mass m2 to the hip actuator will travel below the
center of mass of the robot body, as explained in the previous section. The plots
fit well with the theory.

The scenario simulated in the following plots shows instead how the system be-
haves when it is the right hip angle q2r that has an initial angular velocity of 5
degrees per second. In contrast, the left side angular velocity dq2l has zero initial
value. The masses have the same value as before, with only the left side mass
m2 having a non-zero value. The results over ten seconds are shown in the plots
below.
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Figure 4.3: Simulation of the situation where only the left side mass m2l has
a non-zero value. The attitude angle θ is given a start value, and the angular
velocity dq2r has a start value of 5 °

s .

The plots in Figure 4.3 show how the angular velocity of the right side mass
m2 has no effect on the attitude angle θ , nor any real effect on any of the other
angles either. There are minor changes in the states shown in the left plot, but
apart from the angle q2r , they are so small that they most likely stem from nu-
merical errors of the Matlab computation and not any real change. The results
from these plots fit very well with the theory and hypothesis of how the system
would behave. Only the angular rotation of a mass would be able to change the
rotation of θ , while the angular rotation of massless parts has no effect.

The same validation experiment is performed for the same scenario with initial
angular velocity for the masses m3l and m3r , meaning the variables dq3l and
dq3r were tested with initial values. The results showed that neither of these an-
gular velocities affected the attitude angle θ . The result for θ is well within the
threshold limit of +/− 0.5°.

This validation experiment was tested for the scenario where only the left side
mass m3 had a non-zero value. The initial value for θ was still set to 20°, and the
initial value for the left side angular velocity q3l was set to 5 degrees per second,
while the rest of the initial conditions were set to zero. The results are shown in
the plots below.
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Figure 4.4: Simulation of the situation where only the left side mass m3l has
a non-zero value. The attitude angle θ is given a start value, and the angular
velocity dq3l has a start value.

Figure 4.4 shows that the left side mass m3 in combination with the angular
velocity of the mass, dq3l , affected the attitude angle. This fits well with the the-
ory. Setting the angular velocity dq2l to some initial condition instead had about
the same effect as dq3l . This makes sense as an angular velocity dq2l would also
mean an angular velocity of the mass m3. Setting the other angular velocities,
dq2r and dq3r , to some initial velocity instead did not affect the change of θ .
Again, this follows the theory well.

The next step was to repeat this process for the right side masses m2 and m3
and vary the initial conditions for all the angular velocities. The results from this
process showed the same as this one that only the actuators’ angular velocity that
affected the mass’s position could lead to a change in the attitude angle θ . Addi-
tionally, the results confirmed that the right side masses with an angular velocity
generally lead to a positive rotation of the attitude angle θ , except when larger
than about 70°. It would instead lead to a negative rotation of θ .

The second validation experiment involves the lengths of the links in the robot
legs. According to Equation 4.3, the tension force F from the mass following the
link is proportional to the link length. Setting this length very close to zero should
have minimal effect on the attitude angle θ , even when the angular velocity is
very large.

In the first test, all the leg links, l1 and l2 are set to 0.0001m, except the left
side upper leg link l1, which has the original value, 0.15m. The masses in this
validation experiment have their original values as well. The left side angular ve-
locity dq2l has an initial value of 5 degrees per second. The simulation results are
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shown in the plot below.
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Figure 4.5: Simulation of the situation where only the left side upper link l1 has a
non-zero value. The attitude angle θ is given a start value of 20°, and the angular
velocity dq2l has a start value of 5 °

s

Figure 4.5 above shows how the value of θ decreases when the left side angle
q2l has an angular velocity. If the angular velocity dq2l is set to zero, and dq2r
instead set to the same initial condition, 5 °

s , the simulation results will be as below:
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Figure 4.6: Simulation of the situation where only the left side upper link l1 has a
non-zero value. The attitude angle θ is given a start value of 20°, and the angular
velocity dq2r has a start value of 5 °

s

The plots in Figure 4.6 above shows how angular velocity of the right side
angle q2r has no effect on the attitude angle θ . This fits well with the theory be-
cause the right side leg links l1 and l2 are close to zero. There will then be no

48



tension force affecting the robot’s body.

Testing with initial values for the angular velocities for q3l and q3r gives res-
ults as expected. There will be no effect on the attitude angle θ unless the leg link
rotating has a non-zero length.

Setting the length of the left side bottom leg link l2 to the original value and
setting the rest close to zero had the same effect as for the masses. The angular
velocities on the left side, both by dq2l and dq3l , affected the attitude angle θ ,
while the right side angular velocities had no effect. This is because the left side
angular velocities in this scenario are combined with a length l2, even though the
leg link l1 might be zero.

The same validation experiment is performed for the right side leg links, and the
results are as expected. The link l1 in combination with an angular velocity for the
angle q2r had an effect on θ , and the link l2 in combination with an angular ve-
locity for either q2r or q3r had an effect on θ . The left side angular velocities had
no effect. All results from this validation experiment are well within the threshold
limit of 0.5° during ten seconds, and this part of the model validation is verified.

The last validation experiment aims to see how the model behaves when there
is no other initial motion than the inevitable falling motion caused by gravity. If
there are no initial rotations in the system, it should stay like this. All masses m2
and m3, and links l1 and l2 have their original values again. The attitude angle
θ has an initial rotation of 20°, and the rotations q2l , q2r , q3l and q3r have the
initial values [−20°, 20°,−10°, 10°].
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Figure 4.7: Simulation of the situation where all initial angular velocities are set
to zero. The actuator angles have initial values, and θ has an initial value of 20°
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The plots in Figure 4.7 illustrates how all the actuator angles and attitude
angle remains constant at their initial values. This confirms the theory that the
system remains constant unless when introduced to a motion.

The validation experiments performed on the longitudinal models showed that
the models under simulation correlate well with the theory and expectations. All
resulting values were kept well below the threshold limits, and the accuracy of
the longitudinal models have a satisfactory accuracy.

4.4 Lateral

The validation experiments performed for the longitudinal dynamics need to be
performed again for the lateral dynamics in the y − z 2D coordinate frame.

The first experiment tests how well the rotation of leg masses m2 and m3 cor-
relate to the theory. This is tested in the same way as for the lateral dynamics, by
setting each mass close to zero, except for one, and varying the different angular
velocities to see how it affects the change of attitude angleφ. The results for when
only the left side mass m2 has a value and the left side angular velocity dq1l has
an initial value are shown in the plots below.
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Figure 4.8: Simulation of the situation where only the left side mass m2l has a
non-zero value. The attitude angle φ is given a start value of 20°, and the angular
velocity dq1l has a start value of 3. The right side hip actuator q1r has initial value
of 70°.

The plots in Figure 4.8 show that the angular velocity of the left side mass m2
very much affects the angle of φ. This answers well to the theory behind Equation
4.3. Instead, setting the initial condition of the right side angular velocity dq1l to
a value did not affect the motion of the robot’s main body. This follows that the
right side masses m2 and m3 have values close to zero. This validation experiment
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is repeated for all the masses. The results showed that the system behaves sim-
ilarly to the longitudinal dynamical system. Only the angular velocity of masses
with values not equal to zero affected the rotation of the attitude angle φ. The
results were well within the threshold limits of 0,5 degrees per second, and the
model following these experiments is deemed accurate enough.

The second validation experiment targets the link lengths l1 and l2. The proced-
ure is to let all the link lengths have a value close to zero except for one and then
vary the initial angular velocities. The plots below show the scenario simulation
where only the right side link length l1 has a length, while the others are close to
zero. The left side angular velocity dq1l is then given an initial value of 4 degrees
per second.
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Figure 4.9: Simulation of the situation where only the right side link l1 has a non-
zero length value. The attitude angle φ is given a start value of 20°, the angular
velocity dq1l has a start value of 3, while the right side actuator q1r has an initial
value of 10.

The plots in Figure 4.9 above show how there is minimal effect on the attitude
angle φ when only the angular velocity dq1l has a value. The small changes in
the left side angles are probably due to numerical calculation errors following the
computations. Either way, the change is well within the threshold limit of+/−0.5°
during ten seconds. The validation experiment is repeated with an initial value for
the right side angular velocity dq1r instead, which changed the attitude angle φ,
as expected. This procedure was then repeated for all the left- and right-side link
lengths l1 and l2, and the results showed that only the angular velocity of masses
related to a link with a value well over zero had any effect on the motion of the
robot and the attitude angle φ.

The last validation experiment aims to confirm that when there are no initial ve-
locities in the system, it will continue to stay at rest, except for in the z-direction
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as it is in free fall. The plots of this simulation are shown below:
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Figure 4.10: Simulation of the situation where all initial angular velocities are
set to zero. The actuator angles have initial values of 20°, and φ has an initial
value of 20°.

The plots in Figure 4.10 confirm that when there are no initial angular velo-
cities, the system remains at rest, and none of the angles of the system change.
This correlates with the theory.

The validation experiments performed on the lateral dynamical model confirmed
that the model is well within all the threshold limits, and the model is deemed
accurate enough to continue.
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Chapter 5

PID Control

The mathematical models describing the system’s longitudinal and lateral coordin-
ates were evaluated and validated through experiments. The results from the ex-
periments implied that the models followed the physical system very well and that
they were accurate enough to continue using for the following processes. Since
the mathematical models are in place, the next phase is to evaluate what control-
ler should be used to control the attitude angles θ and φ. There are many options
for controllers, but some are more suitable than others, depending on the system.
It is becoming more and more popular in modern applications to develop control-
lers based on machine learning. However, the machine learning methods rely on
large amounts of data. Additionally, they are based on not needing to know or un-
derstand why the controller works or not. It takes away the theoretical guarantees
so well developed for classical control theory. In classical control theory, there are
methods to determine the stability of closed-loop systems or regions of stability.
This is why the methods of machine learning will not be considered for solving
the control problem of this problem. Instead, both the PID and MPC controllers
will be evaluated and tested.

The PID controller is widely used for process control, mainly because it is simple to
implement and understand. If the system works with a PID control, there is often
no good reason to use another control scheme. However, it will likely not produce
good results for all systems because it is simple and trivial. The more complex the
system becomes, the harder it gets to implement and tune a PID controller that
will give good results. The tuning part of the PID is another topic entirely, as there
are multiple schemes and techniques to follow in order to tune it correctly. Still,
many ends up having to resort to the trial and error scheme, for the most part,
either way. Sometimes, the PID controller is difficult to use on some systems be-
cause there is no golden rule as to how it should be tuned. The description given
for the different controller gains in the theory section is a good starting point, but
there is no guarantee that this will provide decent results.

The longitudinal and lateral dynamics have already been simulated in Matlab
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using the ODE solver ode45. The PID controller algorithm can be added to this
already developed Matlab program. The ode45 solver takes an ode function as in-
put. This ode function is where the equations to be integrated are described, and
the user makes it. The ode function takes the previous state values, q, as input. It
performs the necessary computations based on the equations of motion found in
Section 3 using these previous state values. The input vector u that contains the
actuator torques τi are also set in this ode function. The PID controller implement-
ation is also done in this ode function, either by directly performing the necessary
calculations in this function file or calling another function that performs the PID
calculations. In order to keep the Matlab program files tidy, it seemed the most
reasonable to use a new function file for the PID calculations.

5.1 Longitudinal

The state vector for the longitudinal dynamics is given below:



















x
z
θ

q2l
q2r
q3l
q3r



















(5.1)

The main object of the control law is to control the attitude angle θ . There
are several other objects of using a PID controller, such as controlling the speed
of the actuators or the position of the actuator’s angles. However, as the control
of θ is the most important object, it seems more reasonable to not focus on other
control objectives unless it is clear that it can solve the central object without other
constraints or interests. This is why other objective goals are disregarded for the
moment, and the physical constraints are ignored. When using a PID controller
to perform this, a reference θr is needed for θ to describe what angle θ should
approach. The general algorithm of the PID controller is given below:

u(t) = K
�

e(t) +
1
Ti

∫ t

0

e(τ)dτ+ Td
de(t)
det

�

(5.2)

where e(t) gives the error or the difference between the present value and the
reference value. The gain K , Ti , and Td are the design parameters that need to be
tuned, and the output of the function, u(t), gives the control inputs for the system.

In the longitudinal dynamical system, the vector u will consist of the four dif-
ferent actuator inputs u2l , u2r , u3l and u3r , for each of the actuators present in
this system. Since the errors in the positions are disregarded in this first step, it
makes no sense to set the error e(t) to the difference between the actuator angle
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states and their reference. The only error e of interest is the attitude angle θ . In
order to determine if it seems possible to control the attitude with a PID control,
the e(t) is chosen to be the attitude θ angle and is hence equal for all the four
actuators at all times. However, the different controller gains can change and be
different and will act as the method for tuning the controller. To sum this up, the
PID controller split into the four actuator PID controllers can be written as below:

u2l(t) = K2l

�

e(t) +
1

Ti2l

∫ T

0

e(τ)dτ+ Td2l

de(t)
d t

�

u2r(t) = K2r

�

e(t) +
1

Ti2r

∫ T

0

e(τ)dτ+ Td2r

de(t)
d t

�

u3l(t) = K3l

�

e(t) +
1

Ti3l

∫ T

0

e(τ)dτ+ Td3l

de(t)
d t

�

u3r(t) = K3r

�

e(t) +
1

Ti3r

∫ T

0

e(τ)dτ+ Td3r

de(t)
d t

�

(5.3)

These PID controllers for the actuators in longitudinal dynamics are imple-
mented in a separate Matlab function file, which takes in the reference signal θr
and the current value of θ . The function file returns these control input values,
which are used in the simulation file that uses the ode45 solver to simulate the
states of the system over time.

The tuning of the gains is the most challenging part, and it seemed wise to follow
the principle of setting the derivative gain Tdi

to zero and varying the two other
gains until the system response meets the reference signal. It is then most sub-
ject to oscillations, and the derivative gain is then varied and increased to lower
the oscillations. Apart from this method, the trial and error method needs to be
performed to find the best response possible.

5.2 Lateral

The state vector for the lateral dynamics is given below:











y
z
φ

q1l
q1r











(5.4)

The attitude angle for these dynamics is the angle φ. The principle of the PID
controller is as before, but with a new main objective. The goal is to control the
attitude rotation φ. The control input vector u contains the two different control
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inputs u1l and u1r , which are are torque inputs for the actuator q1l and q1r . The
method for controlling this angle is the same as for the longitudinal dynamics,
and the PID control laws for the two actuators can be written as below:

u1l(t) = K1l

�

e(t) +
1

Ti1l

∫ T

0

e(τ)dτ+ Td1l

de(t)
d t

�

u1r(t) = K1r

�

e(t) +
1

Ti1r

∫ T

0

e(τ)dτ+ Td1r

de(t)
d t

�

(5.5)

These control laws are implemented in a separate Matlab function file, which
takes the reference angle φr and the current value for φ. The function file returns
the control inputs used in the simulation file, where the ode45 solver is used to
simulate the states of the system over time.

The tuning of the gains follows the same principle of varying the integral and
constant gains until the system response hits the reference signal and then tuning
the derivative gain to minimize the oscillations of the response. The results are
shown in the result section.
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Chapter 6

Model Predictive Control - MPC

The final objective of making a control law, any control law, is to control a set of
states. In the case of the quadruped robot in free flight, the states to be controlled
are mainly the attitude angles θ ,φ, andψ. Additionally, the derivatives should go
towards zero such that the robot is stabilized. In this project,ψ is omitted to focus
entirely on the two others. The final control algorithm should be able to control
both of these attitudes. If this algorithm is only one single algorithm that handles
both attitudes or if it is split up into separate algorithms is something that needs
to be decided, and there are pros and cons to both choices.

When considering the process of building a reliable controller, the simpler is often
better. The PID controllers from the previous section already had 3 tuning vari-
ables for each actuator. The MPC - Model Predictive Controller, will have more,
such as sample time, prediction and control horizons, and weights for the in-
put and output variables. Splitting the two attitude angle control laws into two
separate controllers minimizes complexity. In addition, the mathematical models
are already made for the two separate coordinate frames. The controllers can be
tuned separately, with a much smaller state vector for each, compared to the state
vector for the combined controller. This is a considerable advantage when tuning
and finding the correct configurations. The downside is that the split control al-
gorithm does not include the whole system for each control algorithm. A solution
that works for one isolated part of the system might experience difficulties when
employed on the whole system. This is simply because the isolated controller does
not account for all the states and characteristics of the system.

Still, the benefits of splitting the controllers into two separate MPC controllers
appear to be a better choice for this system. The quadruped robot has the char-
acteristic that the motions of the legs can be split into two separate 2D frames,
longitudinal and lateral, where the dynamics of the two frames are very minimally
dependent on the states of the other frame, when the actuator angles are relat-
ively small. This is why the solution for this project will be based on having two
separate MPC controllers for the attitude control of θ and φ.
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The next problem is deciding whether the MPC controllers will be nonlinear MPC
controllers, NMPC, or if the mathematical models should be linearized around
some equilibrium to use a regular MPC controller. There are benefits, and disad-
vantages to both methods [18]. The regular MPC optimization problem is gener-
ally a linear or quadratic program. These are convex problems, for which there will
exist a global minimum that most computers will be able to solve unless the mod-
els are unreasonably large and complex. This is not the case for nonlinear MPC
optimization problems, for which it is rarely possible to guarantee a global solu-
tion. The optimization problem may have several local minimum points, and the
computational cost will increase with these points. The development of the nonlin-
ear models and the nonlinear state estimators can also be challenging. However,
for many systems, successful implementation of a nonlinear MPC control scheme
has performed better and more efficiently than a linear MPC control scheme [18].
M. Kamel, M. Burri, and R. Siegwart write in [19] that for their trajectory track-
ing of Micro Air Vehicles, the NMPC showed better disturbance rejection, step
response tracking, tracking performance, and computational effort than the MPC.
The NMPC involves a much more accurate system representation than the MPC.
This is why it has the potential to outperform the MPC. However, the disadvant-
ages of potentially not finding good local minimum points in the optimization
problem or sufficiently good nonlinear models and state estimators are why the
choice fell on a regular MPC controller scheme.

The MPC uses a set of linear models, and since the Equations of Motion are non-
linear, they need to be linearized. The linear models of the MPC controllers will be
a state-space system of the form ẋ = Ax +Bu. As of now, the equations of motion
are on the form

q̈ = M(q)−1
�

Bu − C(q , q̇)q̇ −τg (q)
�

(6.1)

The overall method of linearizing the equations of motion and translating the
equations to a state-space system of the form above has two general steps.

The first step is to linearize the equations of motion using a linearization method.
This can be done in several ways, among which a popular method is a jacobian lin-
earization. This linearization is based on the Taylor expansion series but neglects
all higher than 1st order terms. This leaves only the terms written below:

δ̇x = f (x , u)| x̄ ,ūδx +
d f
d x
| x̄ ,ūδx +

d f
du
| x̄ ,ūδu (6.2)

However, since it is about an equilibrium point, the term f (x , u)| x̄ ,ūδx will be
equal to zero. The expression is then left with one term for the partial derivative
with respect to the states, and one with respect to the input u. The term for the
partial derivative with respect to x ,
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d f
d x

(6.3)

is the jacobian of the system, with respect to the states, and when replacing
the states with the equilibrium states and the inputs u with the equilibrium inputs,
the result will be the state space matrix A:

A=
d f
d x
| x̄ ,ūδx (6.4)

In the same way, the state space matrix B will be the jacobian of the system
with respect to the input u, when the states and inputs are replaced with their
equilibrium value,

B =
d f
du
| x̄ ,ūδu (6.5)

When the equilibrium states are found, the method is to find the two jacobians
of the system and then replace the states and inputs with their equilibrium values.

The second step is to expand the state-space system. The equations of motion
are of the second derivatives of the states, q̈ , so that when performing the first
step described above, the state space system will be in the form: q̈ = Aq̇ + Bu.
However, the system will need to include both the derivative states q̇ as well as
the states q . The method of finding the state q from the equations of motion is as
written below:

ẋ1 = q̇1 = x2

ẋ2 = q̈1

ẋ3 = q̇2 = x4

ẋ4 = q̈2

(6.6)

The structure of the method described above results in a state vector that
has twice the size of the original state vector, and it will return both the time
derivative of the states, as well as the time derivative of the derivative states, as
written below:

q1

q̇1

q2

q̇2

.

.

.

(6.7)
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To perform this, the A and B matrices found when linearizing will be expanded
such that every other line of the matrices will be devoted to the states q . The A
matrix will have the size 2n× 2n, where n denotes the number of states, and the
B-matrix will have the size 2n×m, where n is the number of states, while m gives
the number of inputs.

The linearized models of the system are used in the prediction block of the MPC
controllers. The actual mathematical models, or equations of motion, are used as
the plant of the system. However, to verify how the linearization works, the MPC
controller is first tested with the linearized models as both the prediction and plant
models. If this does not produce good results, there is no point in continuing with
these models, and the linearization should be revisited. The first MPC algorithm
scheme will then have the form as shown below.

Figure 6.1: MPC Controller scheme with the linearized model as both prediction
model and plant

If the results from the MPC controller scheme in Figure 6.1 are good, the next
step would be to add the actual plant of the system to the controller scheme.
For this project, as there are no real-life signals or sensors in use, the plant of
the system will be the complete mathematical model, meaning the equations of
motion derived in Chapter 3. The predictions in the MPC controller scheme will
still use the linearized model for the predictions, but the predicted control inputs
u will be the input of the plant, which outputs the system states. These plant states
will act as the feedback of the controller scheme in order to correct the errors. The
resulting MPC algorithm scheme will have the form as below:
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Figure 6.2: MPC Controller scheme, where the linearized model act as prediction
model inside the MPC controller block. The plant equations are the equations of
motion derived in Section 3

The actual MPC controller block in Figure 6.2 can be made with the MPC Tool-
box extension in Matlab Simulink. This solution largely simplifies developing the
MPC controller because the Toolbox performs all the necessary computations it-
self. What remains for the user is to define the linear models to be used and the
tuning parameters. The models will be the linearized state-space system, while
the tuning parameters must be appropriately determined.

The tuning parameters of the MPC controller include the sample time Ts, the pre-
diction horizon n, the control horizon m, and the penalty matrices used in the cost
function for the optimization problem. These penalty matrices consist of weights
for all manipulated variables, control inputs u, and output signals. The output sig-
nals will be the states fed back to the MPC controller.

The common way of determining the parameters is to tune the MPC step-by-step
and only change one parameter at a time [20]. There is also a consensus about
the order in which the parameters are tuned. It is ordinary to set the sample time
Ts first, followed by the prediction horizon n. This is because these parameters
affect the step response time, and depending on the system, there might be a de-
sired step response time for the closed-loop system. A rough guideline is to set
the sample time Ts between 10% and 25% of the desired closed-loop response
time [21]. However, as the sample time decreases, the computational complexity
increases drastically, such that an optimal choice is a balance between the per-
formance and computational effort. The prediction horizon n will be the number
of future control intervals for the MPC to compute at the prediction step at each
time interval. Naturally, a smaller sample time results in more rapid control inter-
val computations, and a larger prediction horizon results in more computation per
time step. A general tip if a response time T is desired is to choose the prediction
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horizon n such that T = n · Ts.

The next step is usually to determine the control horizon m. Matlab’s MPC Tool-
box default is to set the control horizon to two. A general rule is to set m such
that m << n, but most importantly, the control horizon should be smaller than
the prediction horizon. This is to ensure that all predicted control inputs affect
the output variables before the end of the prediction horizon. Another reason for
keeping the control horizon short is to seek internal stability. The longer the con-
trol horizon, the more time it takes to solve the optimization problem, and the
more information is discarded, the longer the control horizon is.

Following the determination of sample time, prediction, and control horizon, comes
the decision-making process of determining the penalty matrices for the cost func-
tion for the optimization problem. The MPC solves an optimization problem at
each control interval, where the solution determines the control input variables.
The optimization problem in the Matlab MPC controller is a quadratic problem of
the form:

J(zk) = Jy(zk) + Ju(zk) + J∆u(zk) + Jε(zk) (6.8)

The cost function in Equation 6.8 above aims to minimize the cost J , where
zk is the control decision that will be decided in the Quadratic Program.

The term Jy includes the output signal weights or the weights of the system states.
The controller aims to keep selected output signals at their reference tracks, and
the weights determine how important a state’s reference tracking is. A higher
weight implies it is more important that the specific state follows the reference
track, while a lower weight implies lower importance. This can be used to prior-
itize the different states according to how important it is that they follow their
reference tracks. Zero ensures no control action is taken to follow the track, while
one implies average priority. Five or above implies above average priority.

The term Ju involves the weights of the manipulated variables or control inputs u.
It may sometimes be necessary that the control inputs follow specific references,
and these weights are used to prioritize this, as with the weights of Jy . However,
in this situation, there is initially no need for the control inputs to follow specific
references, such that all the weights in Ju are set to zero.

The term J∆u is a matrix created to penalize manipulated variable moves. These
are in Matlab MPC referred to as the manipulated variable rate weights, and the
higher the weight, the higher the penalty for large control input moves. The de-
fault is set at 0.1, but it might be beneficial for some systems to have smaller
control input moves, such that the rate weights should be increased. Smaller con-
trol input moves usually provide more robust controllers.
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The last term, Jε(zk) includes the constraint violation weights. If the MPC control-
ler includes constraints for the states or control inputs, these weights determine
how much slack and penalty should be given for each specific constraint. How-
ever, no constraints will be set in the lateral or longitudinal MPC. It would be
more beneficial for the MPC controllers to work well without setting any con-
straints. One of the reasons for this is that the need for setting constraints often
is a sign that the parameters are not properly tuned. For example, it might be too
aggressive, and the weight choices should be revisited. The second reason is the
quadratic optimization problem because it grows in complexity with the number
of constraints. The constraints limit the space for possible control actions, and the
optimal solution might violate a constraint. A solution could be to opt for soft
constraints, which can be violated when necessary, although, the optimal method
should not need constraints, which is why they are not set during this project.

The last tuning parameters available in Matlab’s MPC control designer are two
sliding bars. These sliding bars are directly connected to the performance of the
MPC and simplify some of the tunings for the user.

The first slider is the Closed-Loop Performance slider, which, when moved further
to the left, ensures a more robust performance, and when moved to the right, en-
sures a more aggressive performance. When moving the slider towards the left,
the manipulated variable rate weights are increased, and the output signal weights
are decreased.

The second slider is the State Estimation slider, which, when moved further to
the left, leads to slower state estimations, and when moved to the right, leads
to faster state estimations. When moving the slider to the right, the gains for the
disturbance models are increased, while the gains for noise models are decreased.
This is a way of tuning the responses to be faster because the time spent on state
estimation is shortened. When working with a linearized model for a nonlinear
system, the developed noise models of the MPC might be quite extensive because
the MPC controller interprets there to be much noise because the output signals of
the plant are different from the predicted outputs. When decreasing the weights
of the noise models, this is less emphasized, and the time spent on improving the
state estimations is cut down.

6.1 Lateral

The linearization of the lateral dynamics will be performed as described above.
The linearization needs to be done about an equilibrium point, x̄ , for which the
differential equations are equal to zero. This equilibrium point will have φ̄, ¯̇φ, ¯̇q1l

and ¯̇q1r equal to zero, since the point of the controller scheme is to stabilize the
robot about zero attitude angle φ. Naturally, the input torques u1l and u1r should
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be zero. The position states y and z are not decided by the actuator angles or de-
rivatives and, in turn, do not affect the actuator angels, attitude angle, or angle
derivatives. This is why the differential equations for y and z are excluded from
the state space system, leaving a state vector of six states (three angular states and
three angular velocity states) instead of ten states. A computer calculation com-
putes the remaining angles q1l and q1r in Matlab to determine for what values
the differential equations will be zero. The result of solving the system of differen-
tial equations for q1l and q1r in Matlab fives that both angles at the equilibrium
point are zero. The equilibrium point is zero for all states in the state vector and
all control inputs.

The A matrix formed using the features above will be a somewhat empty mat-
rix. All elements from the linearization will be zero, while the elements for the
system states will form an identity matrix. This will not work very well because
the double derivatives of the states with this state-space system will be independ-
ent of all other states. The linearization needs to be changed. The first step is to
perform a small angle approximation of some of the angles. This is described in
the Article from [22], and the main concept is that when some angle θ is small, the
sine of the angle can be approximated to the angle, while the cosine of the angle
can be approximated to one. This approximation is summed up in the equation
below:

sinθ ≈ θ
cosθ ≈ 1

(6.9)

The assumption for the system is that the attitude angle φ is small enough
to use small angle approximation as described above. Additionally, the angular
expression below are approximated as described below:

sin(φ − q1r)≈ φ − q1r

sin(φ + q1l)≈ φ + q1l

cos(φ − q1r)≈ 1

cos(φ + q1l)≈ 1

cos(q1l)≈ 1

cos(q1r)≈ 1

sin(q1l)≈ q1l

sin(q1r)≈ q1r

(6.10)

The next step is to evaluate the equilibrium point. The differential equations
and states are very much dependent on the actuator angular velocities, and setting
them to zero will eliminate many terms. The actuator angular velocities dq1l and
dq1r are set to have the equilibrium value −0.001 instead of zero to let the terms
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dependent on these angular velocities not be zero. The final linearization with
these updates will have the matrices A and B as written below.

A=















0.0276 0 0.0138 −0.0001 −0.0138 0.0001
1 0 0 0 0 0

−0.0165 0 0.0082 0.0001 0.0082 −0.0001
0 0 1 0 0 0

0.0165 0 0.0082 −0.0001 −0.0082 0.0001
0 0 0 0 1 0















(6.11)

B =















−14.0910 14.0910
0 0

31.6544 −10.4904
0 0

−10.4904 31.6544
0 0















(6.12)

The matrices C and D are related to the system’s output, as written below

y = C x + Du (6.13)

where y denotes the output vector, x is the state vector, and u is the control
input vector. Since both the angle states q1l , q1r andφ, and the angular velocities
dq1l , dq1r and dφ are wanted, the C matrix will be the 6x6 identity matrix. There
are no control inputs that affect the output, meaning the matrix D will have all
elements equal to zero. The matrix D will have the size 6x2 since there are six
states and two control inputs. These matrices are summed up below:

C =















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1















, D =















0 0
0 0
0 0
0 0
0 0
0 0















(6.14)

The tuning of the MPC controller begins with deciding how long the response
needs to be. Since the robotic system depends on controlling the actuator angles
mid-air, the response time has to be much faster than for most process control sys-
tems. Given that the control will happen during the time span of a few seconds,
the response time should be well under 0.5 seconds to give the controller time
to both reach the reference value and stabilize. As a minimal response time, 0.1
seconds is chosen as the value for determining sample time Ts and prediction ho-
rizon n.

If the response time T is set at 0.1 seconds, the sample time Ts will be chosen
from the 10 − 25% interval of [0.01,0.025] seconds. The initial test for sample
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time should start at one of the ends and is therefore chosen to be 0.01 seconds.
The prediction horizon n follows the general rule T = n · Ts, such that the initial
value of n will be 10.

The output state weights that determine the priority of the reference tracking
of the output states should follow the controller’s objective. It is essential that the
attitude angle φ follows the reference value, while the actuator angles do not
need to follow a reference. However, the actuator angle velocities, or derivatives
of the actuator angles, should converge to zero when φ has reached its reference.
As an initial tuning, the output state φ will have a weight of one, while the actu-
ator angle velocities will have weights of 0.2. The remaining states will have zero
for weight. These values will make up the penalize matrix Q, which penalized
error between output signals and reference trajectory [23]. The Q matrix will, in
this case, look like below, following the same state pattern as for the state space
system, with the order of states as [dφ,φ, dq1l , q1l , dq1r , q1r]T .

Q =





















0 0 0 0 0 0

0 1 0 0 0 0

0 0 0.20 0 0 0

0 0 0 0 0 0

0 0 0 0 0.2 0

0 0 0 0 0 0





















(6.15)

The Q matrix has to be positive semi-definite but should generally also be
positive definite [4]. Because of the zeroes along the diagonal of the matrix, this
Q-matrix is only positive and semi-definite. To change this, one can either omit
the states that will not follow a reference, such as dφ and the actuator angles, or
one could give them a minimal value in the Q-matrix. However, it will not make
any difference in practice, even though leaving them in the Q-matrix generally is
not a good practice.

The control input rate weights, or manipulated variable rate weights, form the
diagonal of the penalize matrix R. This matrix penalizes the manipulated vari-
able moves, depending on the sizes of the weights. With the weights of 0.1, the
R-matrix will look like below:

R=

�

0.1 0
0 0.1

�

(6.16)

This R-matrix needs to be positive definite, which means each rate weight has
to have a value above zero.

The initial tuning parameters can be summarized in the table below:
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Ts n m wφ wdq1l
wdq1r

w∆u1l
w∆u1r

0.01 10 2 1 0.2 0.2 0.1 0.1

Table 6.1: First set of tuning parameters for lateral MPC.

It is eventually clear that the initial weights for state outputs are insufficient.
The priority of φ needs to be higher in order for it to track the reference properly.
Following the guide for prioritizing state output weighting, the weight of φ is set
to five, which implies above average priority. At the same time, the weights of the
angular actuator velocities are decreased, such that they are not a priority unless
φ already tracks its reference. These weights are set to 0.02, which indicates low
priority. The control inputs’ rate weights seem reasonable, and there is no immedi-
ate need to alter these weights. A few tests with higher values and distinct values
for the control input rate weights showed not much change for the φ-response
with the changes. The new Q-matrix will look like below:

Q =





















0 0 0 0 0 0

0 5 0 0 0 0

0 0 0.02 0 0 0

0 0 0 0 0 0

0 0 0 0 0.02 0

0 0 0 0 0 0





















(6.17)

and the seconds set of tuning parameters are given in Table 6.2 below.

Ts n m wφ wdq1l
wdq1r

w∆u1l
w∆u1r

0.01 10 2 5 0.02 0.02 0.1 0.1

Table 6.2: Second set of tuning parameters for lateral MPC.

Finally, there might be a problem with the computational complexity of the
MPC, mainly because the sampling time Ts is set relatively low. If the prediction
step does not have enough time to perform all necessary computations before the
next time step, the system behavior might differ from what would be expected.
The State Estimation slider might come in handy because it can speed up the
computational time and ensure the prediction step has sufficient time to perform
all necessary operations. If this step is necessary or not will be visible through the
tests and experiments.

6.2 Longitudinal

The longitudinal dynamics’ linearization will follow the same procedure as for the
lateral dynamics. The state-space system state vector will be the combination of all
the angular states and the angular velocities, such that the state vector will include
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the ten states [dθ ,θ , dq2l , q2l , dq2r , q2r , dq3l , q3l , dq3r , q3r]. The longitudinal
linearization will also have the same issue regarding the equilibrium point when
the point is zero for all the states, as the lateral dynamics had. This is why small-
angle approximation is used for the attitude angle θ , as well as for the terms
below:

sin(θ − q2r)≈ θ − q2r

sin(θ + q2l)≈ θ + q2l

cos(θ − q2r)≈ 1

cos(θ + q2l)≈ 1

cos(q2l)≈ 1

cos(q2r)≈ 1

sin(q2l)≈ q2l

sin(q2r)≈ q2r

cos(q3l)≈ 1

cos(q3r)≈ 1

sin(q3l)≈ q3l

sin(q3r)≈ q3r

(6.18)

The equilibrium point is initially the point for which all the states are zero.
However, this results in a very sparse A-matrix such that the equilibrium angular
velocity states instead are changed to have the value −0.001. The final linear-
ization for the longitudinal dynamics will have the matrices A and B as written
below.

A=































0.0378 0 0.0189 −0.0001 −0.0189 0.0001 0.0089 0 −0.0089 0
1 0 0 0 0 0 0 0 0 0

−0.0126 0 −0.0063 0.0001 0.0063 0 −0.003 0.0004 0.003 0
0 0 1 0 0 0 0 0 0 0

0.0126 0 0.0063 0 −0.0063 0.0001 0.003 0 −0.003 0.0004
0 0 0 0 1 0 0 0 0 0

−0.0252 0 −0.0126 0 0.0126 −0.0001 −0.0059 −0.0008 0.0059 0
0 0 0 0 0 0 1 0 0 0

0.0252 0 0.0126 −0.0001 −0.0126 0 0.0059 0 −0.0059 −0.0008
0 0 0 0 0 0 0 0 1 0































(6.19)
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B =































−8.2305 8.2305 −16.4609 16.4609
0 0 0 0

97.1879 −8.2990 −177.8464 0.0686
0 0 0 0

−8.2990 −97.1879 0.0686 −177.8464
0 0 0 0

−177.8464 0.0686 483.1962 −16.5295
0 0 0 0

0.0686 −177.8464 −16.5295 483.1962
0 0 0 0































(6.20)

The C matrix will be the 10x10 identity matrix, while the D matrix will be the
10x4 zero-input matrix. These are given below.

C =































1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1































, D =































0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0































(6.21)

The tuning process follows the theoretical background behind the MPC con-
troller scheme and the tuning already performed for the lateral MPC. The sample
time Ts should be small enough to follow the system dynamics, and with a value of
0.01 for the lateral case, it is natural to choose the longitudinal sample time equal
to that. The prediction horizon n is initially set at 10, and the control horizon at
the default value of 2.

The weights of the state outputs are set such that the attitude angle θ has priority
in tracking the reference value. The actuator angles should eventually converge
to some values and not oscillate, but not in a manner that hinders θ in tracking its
reference. This is solved by setting the reference of the actuator angle velocities to
zero and giving these output states a weight. As an initial tuning, the output state
θ will have a weight of one, while the actuator angular velocities dq2l , dq2r , dq3l
and dq3r are given a weight of 0.2. The remaining states will have a weight of
zero, rendering the Q-matrix positive semi-definite but not positive definite. The
Q-matrix will have the form as written below.
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Q =











































0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0.2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.2 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.2 0

0 0 0 0 0 0 0 0 0 0











































(6.22)

The initial rate weights for the control input moves will have the default values
of 0.1. With these weights, the R-matrix will look like below.

R=







0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1






(6.23)

The initial tuning parameters can be summarized in the table below:

Ts n m wφ wdq2l
wdq2r

wdq3l
wdq3r

w∆u2l
w∆u2r

w∆u3l
w∆u3r

0.01 10 2 1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1

Table 6.3: Initial set of tuning parameters for longitudinal MPC.

Later during the simulation and experiments, it becomes clear that the weights
chosen are not sufficiently tuned. As for the lateral case, the weight of θ will be in-
creased from 1 to 5, while the actuator angular velocity weights will be decreased
to 0.02. This is done to ensure the controller properly tracks the θ -reference as the
highest priority and that deviating from the angular velocity references is allowed
to achieve that.

The rate weights of the control inputs were too low, and the closed-loop system
was not robust enough. By increasing the weights of the control inputs, the penalty
for large control moves is higher such that the responses will become smoother
and less aggressive. The rate weights of the u3-control inputs were increased more
than the u2-control inputs because it is a more wanted behavior that the hip ac-
tuators and hip motion will contribute more towards the attitude control than
the knee-actuator movements. This is partly because the system is less complex if
there are only two main contributors to attitude control. It is also because it is not
wanted for the landing that the bottom leg parts have a large angle away from
the top leg parts. The control inputs u2l and u2r will have a new rate weight of
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0.127, while the control inputs u3l and u3r will have rate weights of 0.38. The
updated Q- and R-matrices will then be as written below.

Q =











































0 0 0 0 0 0 0 0 0 0

0 5 0 0 0 0 0 0 0 0

0 0 0.02 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.02 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.02 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.02 0

0 0 0 0 0 0 0 0 0 0











































(6.24)

R=







0.127 0 0 0
0 0.127 0 0
0 0 0.38 0
0 0 0 0.38






(6.25)

Another change made for the tuning parameters regards the prediction hori-
zon n. There appears to be no difference in simulation when decreasing the predic-
tion horizon from 10 to 8. As a prediction horizon of 8 ensures less computational
complexity and memory usage, the choice fell on lowering it to 8. Lowering n fur-
ther had a negative effect on performance in terms of response time. Increasing it
above 10 had the same negative performance effect.

The second set of tuning parameters can be summarized in the table below:

Ts n m wφ wdq2l
wdq2r

wdq3l
wdq3r

w∆u2l
w∆u2r

w∆u3l
w∆u3r

0.01 8 2 5 0.02 0.02 0.02 0.02 0.127 0.127 0.38 0.38

Table 6.4: Second set of tuning parameters for longitudinal MPC.
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Chapter 7

Results

7.1 PID Control

The results from the PID control scheme described in the PID chapter are shown
in the plots below. The first set of plots shows the overall best results from the
lateral PID control scheme over three seconds. The configuration of the PID gains
and initial conditions of states are given in Table 7.1 below. All initial derivatives
are equal to zero, and the states not shown in the table are also zero.

Lateral
y z φ q1l q1r K Ti Td

3 m 10 m 20° 20° 20 ° 0.570 1630 0.333

Table 7.1: Lateral initial state conditions and PID controller gains

Table 7.1 above give the PID gains K , Ti and Td for the lateral PID control-
ler. The gains are equal for both actuator controllers q1l and q1r . The simulation
was also tested with varying controller gains for the two actuators, but it did not
improve the results. These controller gains are the gains that led to the so-far
best results found. There are most likely gains that could improve the response
further, but through extensive testing, no combination was found that led to sat-
isfying results. It did not seem like there was any point in continuing with the
PID controllers. The results from the gains in the table above are shown below in
figure 7.1.
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Figure 7.1: Simulation results from the Lateral PID controller scheme, with gains
and initial conditions as described in Table 7.1

Figure 7.1 above show the system response from the PID controller with the
described initial conditions and controller gains. The robot has an initial free flight
height of 10 meters, as given by z, and an initial attitude angle φ of 20°. When
observing the plots, the first thing to note is that the response is too slow. Almost
a full second passes without any change in φ. In addition, when it does rotate and
reach the reference angle 0, it does not stabilize on the value but switches direc-
tion again. The actuator angles q1l and q1r also have slow response in the be-
ginning but quickly travel towards tremendous values. The time duration of three
seconds is too short to observe what happens further with the actuator angles,
but it seems evident that the system response is unstable. In order to achieve a
quicker response time for the attitude angle φ, the controller gains need to be
higher, which leads to even more unstable system response. To sum this up, either
the system response will be much too slow or much too unstable.

The final controller gains and initial conditions for the longitudinal PID controller
scheme are given in Table 7.2 below. All initial angular velocities are set to zero.
Additionally, all controller gains are equal for the actuator PID controllers of q2l
and q2r , while the control inputs u3l and u3r are set to zero.
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Longitudinal
x z θ q2l q2r q3l q3r K Ti Td

3 m 10 m 20° -20° 20° 0 0 0.006 0.15 10

Table 7.2: Longitudinal initial state conditions and PID controller gains

The results from the longitudinal PID controller scheme given the controller
gains and initial conditions as given in the table above and the control scheme
described above are given in the plots below.
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Figure 7.2: Simulation results from the Longitudinal PID controller scheme, with
gains and initial conditions as described in Table 7.2

The plots in Figure 7.2 show the simulation of the attitude angle θ , actuator
angles, the angle derivatives, and the height above ground, z, over a time period
of 4 seconds. In the same way, as with the lateral PID controller, the response of
this system is much too slow with this PID controller. The plot of z shows that the
robot reaches the ground somewhere between one and two seconds, which means
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the response has to be stable at zero before this. The system does not achieve this
but only reaches zero after about 2.2 seconds. In addition, it is unstable, which is
seen especially in the plot of the angle derivatives. They oscillate continuously and
fast, even after the attitude angle θ reaches zero. When the controller gains are
configured for a faster response, the system becomes even more unstable, making
it a poor choice. The actuator inputs u3l and u3r were set to zero, but adding a
PID controller for these made the system even harder to control. This is why the
choice to set them at zero was made to focus on the u2l and u2r controllers solely.

7.2 Model Predictive Control

7.3 lateral
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Figure 7.3: Simulation results from lateral MPC controller, when prediction
model is the linearized lateral state space system. The reference signal is
[1,1, 1,1, 1,1, 1,1, 1,1]T followed by - [0,0, 0,0, 0,0, 0,0, 0,0]T after one second.
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The plots in Figure 7.3 above show the simulation of the lateral linearized state-
space system with the MPC controller scheme. Both the prediction plant and sys-
tem plant is the linearized system. The MPC controller has a prediction horizon of
10 steps and a control horizon of 2 steps. The sample time is 0.075 seconds. The
control input rate weights are 0.1. The output responses are weighted such that
the attitude angle φ has a weight of one, while the angular velocities dq1l and
dq1r have weights 0.2. There are no constraints on either control input or output
signals. The plots show that φ reaches the reference value of zero with a rise time
of 1 second. The angular velocities dq1l and dq1r and the angular velocity of φ
all go towards zero. This attitude angle follows the reference well but is too slow
to reach the reference value of one 57° before changing direction to reach the
reference of zero. However, the MPC controller is too aggressive as the actuator
angle q1r goes well above 90°, which is a hard limit for the actuator angles. It
is also interesting to observe the actuator angular velocities, as they were meant
to follow the references of one and then zero. However, they do not follow these
references because they have lower weights than the attitude angle φ and behave
such that the φ angle acts as wanted instead.
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Figure 7.4: Simulation results from the lateral MPC controller, when the same
control inputs u are fed into the Equations of Motion as well as the lin-
earized model. The reference signal is [1,1, 1,1, 1,1, 1,1, 1,1]T followed by -
[0,0, 0,0, 0,0, 0,0, 0,0]T after one second.

The plots above in Figure 7.4 show the same situation as the last plots, but
when the control inputs u1l and u1r are fed in as inputs to the lateral Equations of
Motion as well. The reference is still the same as before, one for all states until one
second and zero afterwards. When comparing the two simulation results to the
left and right, it is clear that the controller performs much better on the linearized
model than on the actual Equations of Motion. The attitude angle φ at the right
side plot somewhat follows the direction until about two seconds but continues
way below zero. The actuator angles and angular velocities are drastically high
and oscillatory. Overall, the MPC controller performs very poorly for the lateral
system. The controller scheme still uses the linearized model as both prediction
and model input, and the next step would be to change this.
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Figure 7.5: Simulation result of lateral MPC controller with plant outputs as the
feedback signals to the MPC controller. Tuning parameters are equal to before,
while the reference signals is [0,0, 0,0, 0,0, 0,0, 0,0]T at all times.

In the simulation in Figure 7.5 above, the output feedback signal to the MPC
controller has been switched from the linearized model outputs to the system
plant outputs. The reference signal has been changed from a step function to a
vector of zeros, such that each step has zero as reference value. Additionally, the
attitude angle φ has been given an initial value of 20°. The MPC controller has
equal tuning parameters as before. This change drastically improved the system
responses. φ follows the reference, although very slow, and the angular velocities
appear to converge towards zero. Additionally, the control inputs are low and
appear to converge towards zero as well.
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Figure 7.6: Simulation results of lateral MPC controller, when sample time Ts has
been changed from 0.075 to 0.01 from the previous plots.

The plots in Figure 7.6 show the results of changing the sample time from
0.075 to 0.01. The remaining MPC controller parameters are left unchanged, and
the plots clearly show that the response is slower than before. Both angular velo-
cities, actuator angles, and φ has slower responses. The control inputs have signi-
ficantly lower values than before, explaining the sluggish responses. Nonetheless,
the closed-loop system seems robust, and the responses follow their references,
although much too slow.
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Figure 7.7: Simulation results of lateral MPC controller with the effect of the
State Estimation slider.

Figure 7.7 above shows the effect of the state estimation slider in the MPC de-
signer. When the slider is moved further to the right, meaning faster state estim-
ation, the responses are significantly faster. Additionally, the control input values
are larger, resulting in more control action in general. Still, the responses persist
in being robust and smooth but too slow.
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Figure 7.8: Simulation results of lateral MPC controller without the effect of the
State Estimation slider, but with a decrease in prediction horizon from 10 to 8.

The slider is changed back so that there is no effect of the sped-up state es-
timation. However, the prediction horizon is decreased from 10 to 8. The effect of
lowering the prediction horizon to 8 did not have any visible effect. However, it
was kept at 8 because a lower horizon has lower memory usage and complexity
than a higher horizon. The weights of the output variables have been changed as
well. The weight of φ is set at five, while the weight of the angular velocities is
set to 0.02. Compared to Figure 7.6, the response is much quicker, but the initial
response time is still slower than with the sped-up state estimation effect shown in
Figure 7.7. The actuator angles do not stabilize during the period of five seconds,
even though the control inputs go towards zero.
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Figure 7.9: Simulation results of lateral MPC controller with the effect of the
State Estimation slider combined with the decrease in prediction horizon from
10 to 8.

The plots in Figure 7.9 above show the results of combining the MPC controller
from the previous plots with the effect of the state estimation slider from the
MPC Control Designer options. The slider is moved from the initial, middle point
towards the right, such that it reaches just over 3/4 of the sliding bar. The effect
is seen in the plots, where φ has a significantly faster response while the system
proceeds to stay robust and stable. The control inputs stay low, under |1|Nm,
and the actuator angles stabilize around 40° and −40°, which is well beneath
their threshold limit of +/−90°. The angular velocities and the control inputs go
towards zero after about 2.5 and 1.5 seconds, respectively. The response of the
attitude angle φ has an overshoot of 3° and a rise time of 0.55 seconds. The
steady-state error is close to zero but has a minor deviation of x°. The results
of these parameter settings are overall very good, but the settling time of 2.5
seconds is slightly longer than wanted.
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Figure 7.10: Simulation results of lateral MPC controller with even more effect
of the State Estimation slider.

In the simulation in the plots in Figure 7.10 above, the state estimation slider
is slid even further to the right, almost at the right end of the slider bar. The
response difference compared to the last set of plots is distinct. The rise time
and settling time are shorter, with 0.3 and 1.5 seconds, respectively. However,
the overshoot is now almost 2° bigger at 5°. The response of the control inputs
has slightly larger values, but they still converge to zero, along with the angular
velocities. The actuator angles converge to about the same values as the previous
plots. For the most part, it is only the response of φ that can determine which of
the state estimation slider values give the best result. The response of φ in the
plots in Figure 7.9 have a smaller overshoot but a longer rise and settling time.
All three parameters say something about the controller’s performance, but how
to prioritize their importance depends on the specific control situation.
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Figure 7.11: Simulation result of lateral MPC controller, with initial condition for
φ −25°, instead of 20°.

The initial φ value in the plots in Figure 7.11 above is set to −25° instead
of 20°. The response proves that the controller performs virtually equal to the
sign of the initial φ value. The MPC controller is equal to the controller from the
simulation in Figure 7.9.
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Figure 7.12: Simulation result of lateral MPC controller, with initial angular ve-
locities for q1l and q1r of 20° and −10°, respectively.

The plots in Figure 7.12 above show the case where the actuator angular ve-
locities dq1l and dq1r are given initial values of 20° and −10° respectively. The
plots show that the response of φ tracks the reference value of zero very well,
while the angular velocities are not able to converge to zero but instead to 10 and
−10 degrees per second. This results in actuator angles that continue to grow,
well past the point where φ has converged. The plots show in addition that the
control inputs converge to zero.
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Figure 7.13: Simulation result of lateral MPC controller with a step of [20°,−15°]
as reference signal for φ.

In the simulation shown in the plots in Figure 7.13 above, the reference signal
for φ is given a value of 20° for two seconds, and a value of −15° for the remain-
ing time. The initial value of φ is set to zero, along with the rest of the state’s
initial values. The resulting φ response tracks the reference fast and accurately.
There is a small steady-state error for the 20° reference value and next-to-nothing
for the −15° reference value. Additionally, the overshoots are less than 4°, and
the settling times are short. The actuator angels can almost converge for the 20°
reference value, but not fast enough before the reference value is changed. They
converge to zero and 35° for the second’s reference value of −15°. These left
side plots individually are satisfactory, while the plots to the right show signs of
weakness regarding the MPC controller. The plot of the control inputs shows that
the actuators reach substantial values for a short amount of time, both at the be-
ginning and after two seconds, which coincide with the times when the reference
value changes. This results in very large values for the angular velocities at the
same time periods. Depending on the type, the actuators might be able to reach
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values of 10Nm. However, the actuator velocities of well over 200 degrees per
second seem unlikely and, not to mention harmful for the mechanical parts in-
volved.

7.4 Longitudinal
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Figure 7.14: Simulation results of the longitudinal MPC controller, when
both prediction model and plant is the linearized longitudinal state space
model. The reference signal is [1, 1,1,1, 1,1, 1,1, 1,1]T followed by -
[0,0, 0,0, 0,0, 0,0, 0,0]T after one second.

The plots in Figure 7.14 show the simulation of the longitudinal linearized state-
space system found in the previous section. A simple MPC controller scheme is im-
plemented as described with the Matlab MPC toolbox. Most of the tuning paramet-
ers for the MPC controller were kept at their default values, except the sampling
time Ts, which was set to 0.075 seconds. The default control input weights were
set to zero, and the default control input rate weights were set to 0.1 for all the
control inputs u2l , u2r , u3l and u3r . The weight for the attitude angle θ was set
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to 1, as the control of this angle is the main goal of the controller. The actuator
angle velocities were given a weight of 0.2 each. The control horizon was kept
at the default value of 2, while the prediction horizon was set to 10. The refer-
ence signal was as for the lateral case equal to 1 for all output states. After one
second, the reference signal was set to zero for all output states. The plots show
that the attitude angle θ follows the references to a certain degree but that the
response is too slow for the angle to reach the reference value of 57° before one
second has passed and a new reference signal takes over. Their weights for the
angular velocities are also set to 1 up until one second. However, the plots show
how the responses of these angular velocities do not follow this reference signal
but instead behave such that θ can reach its reference value. The angular velocit-
ies follow the reference signal well for the zero reference signal after one second,
and they all go towards zero. The attitude angle θ converges to zero, while the
actuator angles converge to 60°. There is no overshoot of the θ response, and
both the rise and settling time are relatively fast, at about one second. The two
parameters are equal because there is no overshoot.
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Figure 7.15: Simulation results of the longitudinal MPC controller, when the con-
trol inputs u are fed into the longitudinal Equations of Motion, as well as the
linearized plant. The reference signal is [1,1, 1,1, 1,1, 1,1, 1,1]T followed by -
[0,0, 0,0, 0,0, 0,0, 0,0]T after one second.

The plots above in Figure 7.15 show the same situation as the previous plots,
but the control inputs u2l , u2r , u3l and u3r are fed in as inputs to the Equations
of Motion as well. The reference and control parameters have the same values as
before. It is clear from the plots that the controller scheme performs much better
for the linearized plant than for the Equations of Motion. The linearized plant is
used for the prediction models, and these output signals are still the signals fed
into the MPC controller. It is clear from the plots that the linearized plant and
the Equations of Motion differ because the two signal responses from the same
control inputs are very different. It is hard to tell how much they differ since a
small deviation in accuracy for the MPC controller can cause quite big changes.
One thing that is clear from the plots is that the actuator angles q3l and q3r
behave more independently from the actuator angles q2l and q2r than what is
translated by the left side plots. The linearized plant response to the left makes it
seem like the left and right side actuator angles always have the same response.
The right-side plots show that this is not the case. Additionally, the right side
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angular velocities are dominated by large oscillations, while the angular rotations
seem to reach tremendous values and be unstable. The MPC controller, as it is,
performs very poorly for the longitudinal Equations of Motion, and some upgrades
are needed for it to perform better.
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Figure 7.16: Simulation results of the longitudinal MPC controller, when the
states from the Equations of Motion are fed into the MPC controller. The ref-
erence signal is [1, 1,1, 1,1, 1,1, 1,1,1]T followed by - [0,0, 0,0, 0,0, 0,0, 0,0]T

after one second.

The plots in Figure 7.16 above show the simulation of the situation where the
output signals from the plant are fed back into the MPC controller instead of the
outputs from the linearized model. The MPC controller is equal to before. The ini-
tial attitude angular rotation of θ was set to 25°. The MPC controller struggles very
clearly with tracking the references and rendering a robust and stable system. All
references are highly oscillatory and reach unreasonably large values. Especially
the plot of the angular velocities shows how the signals oscillate between 6000
and −6000 degrees per second.

90



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

10

15

20

25

30

35

40

45

D
e

g
re

e
s

Theta

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

N
m

Control Inputs

u2
l

u2
r

u3
l

u3
r

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

0

10

20

30

40

50

60

70

80

90

D
e

g
re

e
s

Actuator Angles

q2
l

q2
r

q3
l

q3
r

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-80

-60

-40

-20

0

20

40

60

80

100

D
e

g
re

e
s
 p

e
r 

s
e

c
o

n
d

Angular Velocities

dtheta

dq2
l

dq2
r

dq3
l

dq3
r

Figure 7.17: Simulation results of the longitudinal MPC controller, when the
states from the Equations of Motion are fed into the MPC controller. The
sample time Ts is changed from 0.075 to 0.01. The reference signal is still
[1,1, 1,1, 1,1, 1,1, 1,1]T followed by - [0,0, 0,0, 0,0, 0,0, 0,0]T after one second.

The simulation in the plots in Figure 7.17 above has a new sample time Ts of
0.01 seconds as opposed to the previous value of 0.075 seconds. This smoothed
the responses, as can be seen when comparing the responses to the previous plots.
The prediction horizon was set to 8 instead of 10, but this change did not make a
visible difference in the signal responses. The right side plots show that the angular
velocities and control inputs have drastically improved responses compared to
before. There are no longer large oscillations or unreasonably large output values.
However, the plots still show some issues around the time of the reference signal
change. The angular velocities oscillate very rapidly for a short time, after about
one second. The actuator angles and θ also show that the trajectory change is far
from smooth.
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Figure 7.18: Simulation results of the longitudinal MPC controller. The
sample time Ts is changed from 0.075 to 0.01. The reference signal is
[0,0, 0,0, 0,0, 0,0, 0,0]T .

The plots in Figure 7.18 above show the simulation when the reference signal
is changed to simply being zero for all states at all times. The MPC controller
and initial θ value are equal to before. The plot of θ shows that the response
is far too slow. The response reaches 6° after five seconds, while it should have
reached 0° after at most two seconds. The control inputs converge to zero, while
the angular velocities converge to values between −6° and 8°. Since θ does not
reach the reference value during the simulation time, there is no view of what
happens after this reference value is reached.
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Figure 7.19: Simulation results of the longitudinal MPC controller. The weights
of the output signals are set to [θ = 5, dq2l=dq2r = dq3l = dq3r = 0.02]. The
reference signal is [0, 0,0, 0,0, 0,0, 0,0, 0]T .

The plots in Figure 7.19 show the result of increasing the weight of the state
θ to 5 and decreasing the weight of the actuator angular velocities to 0.02. Com-
pared to the previous plots, the response of θ is faster, while the responses of
the angular velocities have much larger values instead of residing around zero.
Additionally, the angular velocity responses can converge to zero, along with the
control inputs. The actuator angles have smooth responses and stay well within
their limit of +/90°. Although the response of θ is faster than before, the rise time
is still four seconds, which is far too long.
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Figure 7.20: Simulation results of the longitudinal MPC controller. The rate
weights of the manipulated variables are changed to [u2l = u2r = 127, u3l =
u3r = 0.38]. The reference signal is [0,0, 0,0, 0,0, 0,0, 0,0]T .

The plots in Figure 7.20 show that there is no visible change in θ of increasing
the rate weights of the manipulated variables from 0.1 to u2l = u2r = 0.127 and
u3l = u3r = 0.38. There are, however, changes in the other three plots, where
the control inputs have slightly smaller values, and the actuator angles for the
q2 actuators converge to larger angles than before. In contrast, the q3 actuator
angles converge to smaller angles. Overall, the change did not aid the response
of θ for this scenario, but the other responses might have become slightly more
robust as the control inputs are smaller than before.
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Figure 7.21: Simulation results of longitudinal MPC controller with the effect of
the State Estimation slider. The reference signal is [0,0, 0,0, 0,0, 0,0, 0,0]T .

The plots in Figure 7.21 above show the effect of the state estimation slider
from the MPC designer toolbox in Matlab. The slider is moved to the right such
that it reaches 3/4 of the bar. The system’s response becomes much quicker, with
a rise and settling time for θ of 0.65 and 2.5 seconds. The response of θ follows
the reference closely after 2.5 seconds, with close to zero steady-state error. As for
the lateral case, there is a slight overshoot in the θ -response plot. The overshoot
reaches about 5° at most, slightly higher than wanted. The control inputs and
the angular velocities converge to zero, while the actuator angles all converge to
angles between −40° and 40°.
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Figure 7.22: Simulation results of longitudinal MPC controller with a step refer-
ence signal of 20° initially, followed by 30° after two seconds.

The plots in Figure 7.22 above show that the θ response is able to track the
a step reference signal of 20° up until two seconds, and 30° after two seconds.
The response is fast, with rise times of well under 0.5 seconds, and the steady-
state errors are negligible. Evaluating θ isolated will leave an impression of an
MPC controller which performs very well. However, the plot of the control inputs
and angular velocities shows that their response values are very large and slightly
oscillatory. Especially the angular velocities have unreasonably high accelerations
at the very beginning.
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Figure 7.23: Simulation result of longitudinal MPC controller, with initial angular
velocities for q2l and q2r of 10° and −10°, respectively.

The plots in Figure 7.23 above show the case where the actuator angular velo-
cities dq2l and dq2r are given initial values of 10° and−10° respectively. The plots
show that the response of θ tracks the reference value of zero very well, while the
angular velocities are not able to converge to zero but instead to values between
10 and −10 degrees per second. This results in actuator angles that continue to
grow, well past the point where θ has converged. The plots show in addition that
the control inputs converge to zero. The overshoot is smaller here than before,
but the initial condition for φ is smaller, which is most likely the reason.

Mutual for the lateral and longitudinal MPC schemes is that only an interval of
initial conditions for the attitude angles results in proper reference tracking. The
plots of these limits for when the controller is unable to stabilize the attitudes
are unfortunately not presented in this thesis. The lateral MPC struggled when
the initial condition set on φ increased above ∼ 33° or decreased below ∼ −33°.
The interval for the initial condition on φ for lateral MPC was set to [−32°, 32°]
to ensure one degree of buffer at each end of the interval. The longitudinal MPC
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began to struggle already at ∼ 31° and ∼ −31°, and thus the interval was set to
[−30°, 30°]. Common features for both MPC schemes outside these intervals were
oscillations, large control inputs, and actuator angular rotations.
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Chapter 8

Discussion

The main object of the controllers developed during this project was to control
the attitude angles towards some reference angle θr or φr . It was excepted that
this would be possible as long as the initial attitude angle did not differ too much
from the reference angle. The hypothesis for the angular difference for which
it would be possible to control the angle was an interval of +/− 35°. The robot
system in question consists of the pitch attitude angle θ and the roll attitude angle
φ since the yaw angle ψ is omitted. However, the two attitude angles θ and φ
were split into two control schemes and regarded separately. The two different
sets of models for the lateral and longitudinal dynamics were implemented in
several control schemes. The first controller that was developed and tested was
the PID controller. The second was a simple MPC controller where the predictions
were made with the linearized models. The last controller scheme was an output
feedback MPC controller, where an output feedback controller was added to the
system output states. The results and tuning variables for these controllers are
given in the previous chapter.

8.1 PID

The PID controller scheme was split into two separate controllers; one for the lat-
eral dynamics and one for the longitudinal dynamics. The final gains K , Ti and Td
for the best results are given in Tables 7.1 and 7.2, along with the initial angular
and position states for the two dynamical systems.

The best result for the lateral dynamical system is plotted in Figure 7.1. As ex-
plained in the Results Chapter, the response of the dynamic system is slow. Over
one second passes before the attitude angle φ has any significant change in ro-
tation. PID-controller gains generally work such that increasing the K results in
a faster and more aggressive response, while increasing the integral gain (de-
creasing Ti) results in a response that minimizes the steady-state error or the gap
between the reference value and steady-state response value. However, the re-
sponse in these plots does not reach closer than about 2.5° to the reference value
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0°, and the response is already unstable. It is only able to rest at this value for one
second before the φ response again increases. In addition, the actuator angles q1l
and q1r are rapidly decreasing and pass −400°, or over one whole rotation. The
response is neither close enough to the reference value nor stable. An increase in
the proportional or integral gain only resulted in a higher instability, oscillations
on both angular velocities and φ, and a shorter time period where the angle φ
could stay at the steady-state value. This is where an increase in the derivative
gain Td would be natural since this term dampens the oscillations because it pen-
alizes rapid velocity changes. However, the derivative term could not sufficiently
dampen the oscillations or minimize actuator angle changes. The effect of the
decrease in derivative gain for this system was a delay in the system response.
Intuitively, it makes sense that the PID controller scheme proves to be insufficient
for the control problem.

The best result for the longitudinal dynamical system is plotted in Figure 7.2.
The system response for the longitudinal system differs a bit from the response
for the lateral dynamical system. The system response is faster but also much
more unstable. It was challenging to control the longitudinal dynamical system to
avoid large oscillations and, at the same time, reach the reference signal. This is
also clear when comparing the results and the PID gains. The integral term for the
longitudinal PID controller is a magnitude of five higher than the lateral integral
term. This was necessary for the θ response to be able to reach the zero-valued
reference signal. However, this caused large and rapid oscillations in the system,
which is clear from the angle derivatives plot. The rotation of θ is able to oscillate
around close to zero after 2.5 seconds, but this happens at the cost of large actu-
ator angle velocity changes. This behavior is unacceptable for such a system with
mechanical parts involved, as these would be damaged. This response is with a
very large damper term Td . The damper gain is much larger than the one used
for the lateral PID controller, but it is still not possible to dampen the system’s
oscillations. The alternative is to decrease the integral term (increasing Ti), but
this resulted in a system response that could not reach the reference rotation θr .
Overall, these plots show the best possible result in terms of reaching the refer-
ence signal. The PID controller is insufficient for controlling the attitude angle θ
for the longitudinal dynamics.

The dynamics are complex, non-linear and to a large degree, coupled. Each state
of the system is dependent on the other states, including the double derivatives
and derivatives of the other states. The controller scheme makes no prognosis or
hypothesis as to how the system will behave, resulting in a PID controller that has
to control ’blindly’. The more complex and coupled a dynamical system becomes,
the more beneficial it will be to have some prediction step to the controller, and
the PID controller has none. This is the main problem of the basic PID control-
ler. There is no way of knowing whether a configuration is smart or not for the
system’s behavior without further investigating how the system will behave to dif-
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ferent control inputs. A solution could be to spend more time evaluating how the
system behaves with different motions. How does the system behave when the
legs move slowly to the left or right, or faster to the left or right. How should
the legs move in order to control the system correctly? This is an extensive task,
but it would, as a result, be possible to develop different PID controllers for the
different motion scenarios of the system. It would also be necessary to include
the angular derivatives somehow because they need to go towards zero for the
system to exclude oscillations. However, it seems more reasonable to switch to a
prediction-based controller that takes both the states and the angular derivative
states as input.

8.2 MPC - Model Predictive Control

As for the PID controller scheme, the MPC controller was split into two separate
controllers; one to handle the lateral dynamics and one to handle the longitudinal
dynamics. The MPC controller schemes were developed in Matlab Simulink with
the MPC toolbox block. This MPC block in Simulink needs a model plant used to
compute the predictions. The lateral and longitudinal dynamics predictions are
based on the linearized lateral and longitudinal state space systems.

The first set of plots for lateral and longitudinal MPC, Figures 7.3 and 7.14, show
how well the attitude angles φ and θ are able to track their references. The at-
titude responses are very similar; each of them reaches up to ∼ 50° of the first
reference value before the reference is changed to zero. Their settling times have
about the same length, and there are no overshoots. The MPC schemes in these
scenarios are able to perform so well because the system for which it makes pre-
dictions is equal to the plant of the systems. Additionally, there is no noise or dis-
turbance present, such that the predicted output states from the MPC controllers
will be equal to the actual plant outputs. This, however, does not say much of how
the controllers will perform for the actual system plants - the Equations of Motion.

The following set of plots, from Figures 7.4 and 7.15, show the side by side com-
parisons of the linearized models and the Equations of Motion. As the same control
inputs are fed into both the models and the plants, a perfectly modeled system
would produce the same outputs as the plants. However, since this is not the case
because of the linearization, the signal outputs are very different. This is as ex-
pected since the linearization of the Equations of Motion removed a large portion
of the system dynamics. Even though the results are as expected, it proves how
important the tuning process will be. The results from the first set of plots, with
only the linearized models present, are from zero amount of parameter tuning.

The following sets of plots have MPC controllers where the output state feed-
back has replaced the linearized models as feedback to the MPC controllers. The
Figures 7.5 and 7.16 show the immediate result of this without any further tuning
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or changes. The lateral MPC performs decently only with this immediate change,
and the attitude angleφ is able to track the reference signal, although very slowly.
The longitudinal MPC performs very poorly in comparison. This might be because
the longitudinal MPC reference is still a step response, while the reference for
the lateral MPC is set to be zero for all states. It makes more sense to compare
the lateral MPC scheme from Figure 7.5 with the longitudinal MPC scheme from
Figure 7.17, as both of these have zero as reference value. Both of these sets of
plots have attitude responses that are able to track their references, although very
slowly. Both magnitudes of the control inputs are relatively low, but the magnitude
of the longitudinal control inputs lies about 10 times higher than for the lateral
case. The reason for this could be the fact that the initial θ value is 5° higher than
the initial φ value, such that the control inputs need to be larger to control the
rotation. Another reason might be that two of the angular velocities of the lon-
gitudinal MPC scheme have initial values of 30 degrees per second. The control
inputs are much larger during the time period where these angular velocities are
large and shrink after these velocities approach closer to zero. It appears to be
a deliberate control action move to guide these velocities towards 5 and −5 de-
grees per second, such that the control inputs at the beginning are much larger for
the very purpose of bringing the velocities quickly towards 5 and −5 degrees per
second, respectively. These velocity changes are reflected in the plot of actuator
angles in Figure 7.17, where it is clear that the rotation of q2r changes direction
the moment its actuator angular velocity move under zero degrees per second. It
makes sense that these are the longitudinal control actions taken when evaluating
the theory behind the movement of the attitude angles. When the control object-
ive is to bring the attitude θ from 25° to 0°, the left side legs will want to rotate
with a positive rotation such that the force from the movement of the actuator
points back on the robot’s body, and the attitude angle is shifted downwards. The
right side legs move the opposite direction to somewhat dampen the movement,
and smooth out the response. It is clear that the left side legs rotate slightly faster
and for longer than the right side legs, meaning they are the main contributors
for the attitude rotation change.

The plots in Figures 7.6 and 7.18 show the MPC controllers when the sample time
is changed to 0.01 for both lateral and longitudinal MPC. When comparing the at-
titude responses to the previous plots, they both respond slower, even though the
expectation was for the opposite to happen. A decrease in sample time Ts means
that the optimization problem at runtime is solved more often, and generally, this
leads to improved performance in terms of both response time (or bandwidth) and
robustness. The response time intuitively makes sense because each new predic-
tion happens faster than before, while improved robustness shows that the phase
and gain margins are improved. As the sample time gets small, the controller can
react faster to unexpected changes, which is the reason for improved robustness.
It is clear from the longitudinal plots that the decreased sample time has led to
smoother control inputs and thus smoother system responses in general. The ro-
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bustness of the system seems to have improved with this change. This is, however,
the only noticeable improvement. Both longitudinal and lateral MPC responses
are slower than before, which opposes most of the reasoning behind lowering the
sample time. It appears as if the sample time has decreased below the point where
the optimization problem can complete within each sampling period. Since the
optimization problems are not completed during the prediction steps, the outputs
can not be expected to have the expected responses. It is difficult to determine
what result has come from the optimization problems. A possible solution is to
use a suboptimal optimization solution instead of waiting for the optimal solu-
tion. This is achieved by decreasing the complexity and size of the optimization
problem.

Another critical remark about the plots regards the output signal weighting. Only
the attitude angles and actuator angular velocities have weights, with the atti-
tude angle weights a magnitude of five times the weights of the actuator angular
velocities. These plots show how this affects the controllers to guide the attitude
angles and the angular velocities towards their reference, although slower and
less aggressive. The actuator angles have no weight and are free to move without
any penalty. It is, however, still expected that they eventually converge to some
angle because the reference of the actuator angular velocities is zero.

There are other possible solutions to shortening the response time before opt-
ing for a suboptimal solution. Figure 7.8 shows how the φ response of lateral
MPC changes when the prediction horizon is decreased from 10 to 8. Compared
to Figure 7.6, the response almost reaches the reference of zero after five seconds,
compared to previously only reaching 6°. This substantiates the theory of the
optimization problems not finishing on time. When the prediction horizon de-
creases, there are fewer control intervals to be solved during each time interval
and a higher chance of solving the optimization problems on time. This appears
to be the case for this MPC controller because the result of lower computational
complexity is a drastically shorter attitude rise time. The prediction horizon for
longitudinal MPC was also decreased, but this did not have the same result as for
the lateral MPC.

Apart from the sample time being too low for the optimization problems to fin-
ish on time, the responses of the attitude angles might not be aggressive enough
because the weighting of the output states does not emphasize the importance of
reference tracking for the attitude angles. The plots in Figure 7.19 show just how
much the weighting affects the responses. The plots here compared to the plots
from Figure 7.18 show that the attitude response is considerably more aggressive
and with a faster response time when the weight is changed from 1 to 5. Addition-
ally, the weights of the actuator angular velocities are lowered to 0.02, allowing
them to stray further and for a longer amount of time away from their reference
of zero. This allows the actuator angles to grow larger as well. The key difference
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is the weight matrix Q, which previously had a dilemma regarding the control
moves. Before, the R-matrix translated that the attitude angle should have prior-
ity and that the control moves should behave as such. At the same time, however, it
translated that the angular velocities should approach zero and not stray far from
the reference. Since the attitude state had priority, the result was a very half-way
reference tracking of θ and actuator angular velocities that rapidly approached
zero but were not able to converge there because the attitude never reached its
reference during the simulation time. The control movements wanted are contra-
dictory, which is partly why the response is slow. The new weighting hierarchy
clarifies for the controller that the actuator angular velocities are allowed to stray
for their reference to better track the θ reference.

The plots in Figure 7.20 compared to Figure 7.19 shows that there is hardly any
difference for the θ response when the rate weights for the control inputs are
increased. Increasing these rate weights results in an R-matrix with larger values
along the diagonal and a higher penalty for control input moves. This is reflected
in the control inputs plot, where the control inputs have lower values than be-
fore. This results in the actuator angles that converge to smaller values, especially
for the q2-angles, which now converge to 10° and −11° compared to previously
converging to 25° and −30°. However, the change in θ is minimal, which means
the increased control input rate weights have not limited the response. This again
means that the controller can operate well under these increased rate weights, and
there are more benefits in keeping them increased than decreasing them again in
regards to robustness. If a situation comes up where the controller would want
to move the control inputs rapidly, these rate weights ensure the system behaves
more robustly than if there were no penalty given in these rapid movements.

The longitudinal set of plots from Figure 7.21 along with the lateral plots from
Figures 7.7, 7.9 and 7.10 show the effect of the state estimation slider from the
the Matlab MPC Designer toolbox. It is clear from the longitudinal results that the
change towards a suboptimal solution drastically sped up the process. The rise
time decreased from 4 seconds to just above 0.5 seconds. However, for the lateral
case, a decrease in the prediction horizon was also needed to reach a response
time of the same time period as for the longitudinal case. It would be more expec-
ted of the longitudinal case to have these results, given that the complexity and
size are larger for the longitudinal system than for the lateral system. However,
the results clearly show that it is the lateral MPC that struggles with this. For the
longitudinal case, the improvement of lowering the optimization complexity is im-
mediate. This supports the claim that the prediction step did not have sufficient
time to solve the optimization problem. A suboptimal optimization problem was
needed for that given time interval. The slider allows the MPC controller to re-
gard the output states fed back as less affected by random noise and more affected
by disturbances. This fits well with what is happening because there is no noise
present in the system but rather a constant difference between prediction models
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and plant models. This difference can be viewed as a disturbance by the control-
ler because it is constant. When it is regarded as noise instead, the MPC control-
ler state estimations make alterations to better answer to noise being present.
However, this does not relate well to the problem because it is not true that the
difference comes from noise. It is possible to say that the inaccuracy between the
linearized models and plants are some of the reason why the prediction step takes
too long to compute. Suppose the difference between the lateral linearized model
and plant is larger compared to the longitudinal linearized model and plant. In
that case, it explains why the lateral MPC struggles more with an optimization
problem that takes too long to solve. This theory should have been tested as well.

Another remark on the results concerns the response overshoots. When evalu-
ating the best results from lateral and longitudinal MPC schemes, the attitude
responses have overshoots of between 3° and 5°. Given the strict requirements set
on the rise time of the responses, overshoot will be challenging to avoid. Minim-
ized overshoot and decreased rise time are often conflicted, meaning achieving
both will be difficult, if not impossible. Some systems have specific demands set
on overshoot, where the lowest possible overshoot is the goal. However, it makes
little to no difference for the robotic system in question if the attitude angle lies
below or above the reference value. It is, however, important that the attitudes can
closely track their reference within a short amount of time. This is why a slightly
higher overshoot is preferred over a higher rise time, and the overshoot accept-
ance limit can be set at as high as 5°.

The plots in Figure 7.11 shows that the lateral MPC has equal performance when
the initial φ value has a negative rotation instead of a positive rotation. As there
are no dynamic differences between one or the other side, and the robot is sym-
metric, this follows the expectation for the system behavior. The same experiment
was conducted for the longitudinal MPC, and the simulation showed that also
longitudinal MPC had a comparable performance for both positive and negative
initial θ values.

The plots in Figures 7.13 and 7.22 show that the MPC controllers are able to
track the attitude references when the reference signal consists of a step. Both
simulations show that the attitude angles can closely follow the reference signals
and maintain a short rise and settling time. However, the control inputs are visibly
more aggressive than in the previous plot. There are no signs of direct instability
since all signals can converge, and there are no unnecessary oscillations. However,
the rapid and large control movements are a sign that the system’s robustness has
a lower priority than a fast response. For a robotic system without unexpected
changes in the environment, this should, in general, not be a problem. However,
it would be wise to alter either the state estimation slider bar or the sample time
Ts such that the behavior is slightly less aggressive. This is because oscillations
are a very unwanted behavior for the mechanical parts, and any signs that might

105



point towards the possibility of oscillations should be considered.

Figures 7.12 and 7.23 show that when the actuator angular velocities are given
initial values, the angular velocities struggle with converging to zero. This theory
was tested for a few cases. It appeared that the velocities struggled with conver-
ging to zero only when a left side angular velocity and a right side angular velocity
had different initial values. The reason for this is unclear, and does not translate
well through the plots. This problem should be tested further if the wish is to con-
tinue with these MPC controllers. However, for the real-life robotic system, there
will rarely be the case that the actuator angular velocities have initial values when
falling. They will most likely stay still, until a reference for the attitude angle is
set and the control scheme begins.

The lateral and longitudinal MPC were able to track the attitude references within
their given initial condition intervals, as long as there were no initial conditions
set on the actuator angular velocities. The further away from the reference the
attitude angles begin, the larger the control moves will be when the MPC para-
meters remain unchanged. An option is to revisit the parameter tunings and alter
them to ensure a more robust system. However, this would, in turn, result in de-
creased performance for the smaller angular initial conditions in terms of rise and
response time. The optimal performance of the MPC depends on what it is meant
to be used for, as it is impossible to achieve a short response time and robustness,
and at the same time, have an MPC that would work for all initial angular con-
ditions. The choice fell on faster response time for the attitude initial conditions
intervals described in the result chapter. Lateral with the interval: [ 32°, −32°]
and longitudinal with the interval: [ 30°, −30°].
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Chapter 9

Conclusion

The main objective of this master’s thesis was to show that it is possible to sta-
bilize the attitude of a quadruped robotic system during free-flight solely by the
rotation of the legs. The legs are each equipped with three actuators and a mass
at the foot, such that the rotations create centrifugal forces, which in turn affect
the attitude of the robot’s main body.

The dynamics of the robotic system were split into two sections; one describing
the longitudinal motions and one describing the lateral motions. The longitud-
inal and lateral models describing the dynamics were found using the Lagrangian
method before validating them through simulation experiments.

The attitude stabilization was achieved by testing PID and MPC control schemes,
with parameters and tuning found through theoretical evaluation combined with
testing. The results showed that the PID appeared insufficient for the task early
on, while the MPC showed potential. Therefore, the PID controller scheme was
rejected, and the focus shifted entirely towards tuning the lateral and longitudinal
MPC parameters as best as possible.

The lateral and longitudinal MPC features needed to promote fast system response
and settling time and, at the same time, ensure a robust closed-loop system re-
sponse. Short rise and settling times were achieved by meticulously tuning the
sample times and prediction horizons along with the weights of the output states.
Increased robustness was promoted by an increase in control input rate weights,
such that larger control moves were penalized stricter. The lateral and longitud-
inal MPC results showed that it is possible to stabilize the attitude by rotating
the robot legs. Additionally, both MPC schemes were able to control their attitude
angle to zero for initial attitude angle rotations between −30° and 30°, with rise
times below 0.75 seconds and settling times below 3 seconds. Both MPC schemes
showed clear signs of robustness with initial conditions of zero on angular velo-
cities. Angular velocities and control inputs converged to zero, while the attitude
angles closely tracked their reference. However, the MPC schemes showed signs
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of struggle with initial angular velocities set on the actuator angular velocities.
Actuator angular velocities were not able to converge to zero, resulting in grow-
ing actuator angles.

With rapid progress in the field of legged robots and robots than can jump and
land, there will be a growing need for attitude stabilization of falling objects. Mu-
tually for most of these robots is their weight limitations and short fall time, such
that the traditional attitude stabilizer actuators like thrusters and flaps are ineffec-
tual. This is the main reason why the methods and results presented in this thesis
are so promising. The individual results themselves are not yet sufficient for real-
life employment, but it proves that it is possible to solve this control problem with
this method.

During the thesis project, several choices could have been made to change the
outcome of the results. Some of these choices would be natural to continue work-
ing on for further work. If the process were to be continued, an option would be to
choose a nonlinear MPC instead of the explicit MPC. It became clear that the rela-
tionship between linearized and dynamical models was weak. It points towards a
poor linearization process, but it also promotes the idea of switching to nonlinear
MPC instead.

Additionally, it would have been beneficial to experiment more with the simu-
lations to evaluate how robust the closed-loop systems were. This is an important
aspect if the MPC controllers ever were planned to be used in real-life. However,
there was not enough time to prioritize this along with the process of determining
how far the attitude could be controlled. Additionally, the yaw angle ψ should be
included, such that a third MPC scheme is implemented for the dynamics in the
x− y-frame. Lastly, the situation evaluated throughout the project is an ideal situ-
ation without noise, disturbances, air, or wind. This is far from the case in real life,
and a natural next step would be first to introduce disturbances and noise to the
simulation and alter the tuning parameters after that. It would then be feasible to
test the MPC schemes on a real-life robotic system and make further alterations.
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