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Abstract 
Learning from previous events represents a crucial element to improve the design and operations 
of industrial processes, especially considering the many variables characterizing the functioning 
of a plant. This learning process aims to reduce the frequency of incidents and/or mitigate their 
severity, which are both continuous and open challenges. 

This paper is grounded on a large incident repository, i.e., the Major Hazard Incident Data Service 
(MHIDAS) database, which was developed in 1986 by the Health and Safety Executive (HSE) to 
provide a reliable source of data on major hazard incidents involving hazardous materials. The 
database includes more than 9000 reports collected over five decades(1950s-1990s). This paper 
aims to provide a novel understanding of the industrial incidents reported in MHIDAS and unveil 
possible ways of exploring occupational/operational incidents through descriptive and quantitative 
analyses. Consequently, this paper proposes the implementation of Business Intelligence (BI) tools 
to facilitate dynamic data visualization and Machine Learning (ML) algorithms for the extraction 
of knowledge from different data entries. Therefore, after engineering the MHIDAS data model, a 
set of BI dashboards was designed and complemented with a ML-driven categorization of 
incidents through representative key variables for occupational/operational incidents. 

The manuscript describes the process necessary to create a BI model for safety data management 
in an industrial context, and its integration with ML solutions that may support an in-depth multi-
variate investigation of reported data. The investigation  provides evidence on the importance of a 
precise reporting of safety events, thus unveiling the potential for lessons learned in the process 
industry.  
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1. Introduction 

Occupational Safety and Health (OSH) should be a widespread and necessary concern for all 
companies globally and across all economic sectors (Adaku et al., 2021; Blanc and Escobar 
Pereira, 2020; Sarkar and Maiti, 2020). Traditionally, accidents are defined either as the 
consequence of unsafe acts or unsafe physical working conditions, or failures of technological 
systems (Dekker, 2019; Stefana et al., 2019; Väyrynen et al., 2015).  

Occupational safety is a branch of safety science aiming to provide the employers with a clean and 
safe operational environment, free from known dangers. Law and standards help employers to 
prevent workplace injuries, illnesses, and deaths (Dekker, 2019; Manuele, 2008). Previous 
research in this area mainly focused on five key points: (i) Comprehensive and widening OSH 
both as a specific process and as embedded in the work system and processes; (ii) Total quality by 
employers’ participation; (iii) Excellence in leadership and management; (iv) Regulation-based 
and voluntary reporting; (v) Effectiveness of policies (Väyrynen et al., 2015). In addition to 
traditional developments, modern advocacy towards occupational safety promotes increasing 
interest in establishing consistent safety efforts and taking more effective precautions against 
hazards (Sarkar and Maiti, 2020). Exemplary recent research conducted in this area describe the 
paths for a successful implementation of COHSMS (Certified Occupational Health and Safety 
Management System) through internal contextual elements that need to be approved before 
starting a certification request (Uhrenholdt Madsen et al., 2020).  

Operational safety is a field of safety science that focuses on prevention, mitigation, and response 
to major accidents. While these terms are sometimes used interchangeably, it remains clear that 
operational safety is a broader branch that encompasses process safety. In this regard, operational 
risk assessment refers to the overall process of risk identification, risk analysis, and risk evaluation 
during operational phases(Monteiro, 2020; Monteiro et al., 2020; Yang et al., 2018). For each 
identified risk, the risk manager should develop and implement strategies that: (i) seek to prevent 
or minimize the occurrences causing losses; (ii) investigate, evaluate, defend, and settle claims 
resulting from such occurrences; and (iii) establish risk financing mechanisms to pay for the losses 
(Blanc and Escobar Pereira, 2020; Dekker, 2019). 

Over recent years, the approaches in operational risk management have been oriented towards 
considering precautions and engineering work processes against hazards. Some examples refer to 
the analysis of the impact an organizational structure may receive in case of a major incident 
(Monteiro, 2020; Monteiro et al., 2020). These analyses can be extended through systemic 
modeling, as documented in an operational risk management restricted to project management 
(Abdulkhaleq et al., 2015). A consistent and systematic analysis is therefore required to ensure the 
highest possible capability for reducing adverse events and preventing major consequences in case 
of safety events (Micán et al., 2019; Zhang et al., 2019). 

The analysis of an incident should involve an in-depth data management that spans over technical, 
human, and organizational issues (Lees’, 2012). In turn, a thorough investigation is expected to 
generate a large quantity of data stored in dedicated reporting systems. Ideally, these reports should 
be standardized to allow a higher data quality and the systematic recreation of events, while still 



ensuring a certain level of flexibility to deal with different industries and domains (Marle and 
Vidal, 2016). To ensure organizational or even inter-organizational learning, incidents must be 
registered in dedicated database. On this basis, safety reporting systems are used to manage the 
data surrounding accidents and injuries in the workplace and among the clients of an organization. 
Common elements reported in safety reporting systems relate to the event, including date, time, 
nature of the event, cause, injuries, name of injured parties, description of the event, location, 
witnesses, medical care required and mitigation (Lees’, 2012; Zarei et al., 2019).  

Specifically, this paper focuses on MHIDAS database, whose structure is discussed in the 
‘Exploring MHIDAS database’ section. MHIDAS includes a large repository of industrial 
incidents reports from all continents. The use of safety reports stored in MHIDAS has been relevant 
since its early adoption and it has improved over time, as proven by different applications (Carol, 
Vilchez, and Casal 2002). Some examples include: the analysis of past events to support and 
improve risk prevention for future industrial processes and to determine critical factors for 
undesired events (Tauseef et al., 2011; Villafañe et al., 2011); the study of the cascading nature of 
incidents as for the domino theory (Abdolhamidzadeh et al., 2011; Swuste et al., 2019); and a risk 
assessment in industrial facilities, focused on main variables for reactive severity evaluation 
(Paltrinieri et al., 2020). 

Despite ad hoc modeling solutions, the design of a database-wide Business Intelligence (BI) 
solution can be used to fully grasp information hidden in reported incident data, thus empowering 
flexible analyses. BI usually involves the delivery and integration of relevant and useful business 
information in an organization (Chaudhuri et al., 2011; Sharda, 2020; Watson and Wixom, 2007). 
Consequently,  BI can improve the decision-making processes at all levels of management by 
integrating different data sources to a unique and consistent environment for safety analysis 
(Dorsey et al., 2020; Patriarca et al., 2016). In many cases, such decisions are routinely automated, 
thus eliminating the need for managerial interventions. BI prospered since computer applications 
moved away from transaction processing and monitoring activities towards problem analysis and 
solution applications. Nowadays many of the BI activities are performed through cloud-based 
technologies, in many cases accessed through mobile devices. The growth in hardware, software, 
and network capacities facilitated the implementation of the above-mentioned solutions. However, 
it is also possible to identify further developments that contributed to this expansion, some of the 
main are (Al-Aqrabi et al., 2015; Ciampi et al., 2021): (i) Gain Insights into data behavior to 
improve the visibility of the data and to group communication and collaboration teams. (ii) To 
Turn Data into Actionable Information: a BI system can help to better understand the implications 
of various processes and enhance the ability to identify suitable opportunities for the data, thus 
allowing  to make plans for a successful future, by providing analytical support and overcoming 
cognitive limits in processing and storing information. (iii) To Improve efficiency in the data 
model in order to manage a large quantity of data services by improving data management 
(Ariyachandra and Watson, 2005; Sharda et al., 2018).  

The application of BI is a novel and still unexplored topic in safety management despite its leading 
role in modern enterprise management. In regard to safety domains, previous works exploited the 
potential of database management for the identification of behaviors or factors for a more efficient 



risk prevention and safer environment system (Morgan, 2021). Moreover, BI allows to manage 
efficiently large sets of data, i.e., data collected from failures and undesired events in industrial 
processes (Jamshidi et al., 2017). 

In addition to BI, Machine Learning (ML) can be further adopted to build algorithms that rely on 
a collection of examples of some phenomena. ML has several practical applications in modern 
industrial settings (De Felice et al., 2019; Zhu et al., 2021), and it can be the key to unlocking the 
value of safety data, fostering a proactive operational and occupational risk management 
(Edwards, 2016; Khan et al., 2019). Practical examples of ML adoption in safety management 
refer to predictions of system’s losses and other risks in undesired cases (Paltrinieri et al., 2019). 

Based on this stream of knowledge, this paper highlights both occupational and operational 
features of reported safety data, as available in MHIDAS. To this extent, this paper aims to 
investigate how BI tools can be used to support the analysis of reported industrial incidents and 
disclose occupational/operational data. This aim is then complemented by ML solutions with the 
purpose of investigating potential clustering of diverse events into a manageable set of categories 
that may economically represent occupational/operational key variables. The presented paper 
provides a methodological discussion and a roadmap for BI and ML techniques adoption in safety 
domain. Hence, it supports a dynamic multivariate analysis based on an underlying structured data 
model.  

The remainder of the paper is structured as follows. Section 2 provides a brief summary of the 
database used in this research, including its history and structure. Section 3 explains the 
methodology developed for the analysis, with specific references to the BI and ML solutions. 
Section 4 presents the analysis applied on MHIDAS, from the creation of the BI data model, the 
corresponding descriptive analysis, and the subsequent integration with ML-driven clustering 
algorithms. Finally, Section 5 provides managerial implications, and Section 6 summarizes 
weaknesses and strengths of the proposed approach. 

2. Exploring MHIDAS database 

The manuscript is grounded on data available in the MHIDAS database, a repository that includes 
reports of all types of accidents in industrial settings related to hazardous materials (Harding, 
1997). 

The MHIDAS database was created following the 1970's investigation by the United Kingdom 
(UK) Health and Safety Executive (HSE) on operational hazards. The study was carried out by the 
Safety and Reliability Directorate (SRD) of the UK Atomic Energy Authority (AEA) and became 
the most comprehensive non-nuclear application of risk assessment techniques at the time, 
revealing several areas where reliable data were not available (Harding, 1997).  

A study was then commissioned by the HSE to collect information. The scope of the study was 
widened to include toxic releases, and, eventually, to cover "those incidents involving hazardous 
materials that resulted in or had the potential to produce an off-site impact". The importance of 
this study was reinforced by the occurrence of several major accidents (Seveso, 1976, Mexico City 
and Bhopal, 1984). 



The operating version of MHIDAS was launched in 1986 by UKAEA (as SRD) and the UK HSE. 
The database draws on public domain information sources (press cuttings, magazine articles, 
journals, published reports) to ensure that the information can be widely disseminated, and it has 
been continuously updated since its inception. There are currently records of over 9000 incidents 
worldwide, including information on incidents that occurred prior to the launch of the database. 
The database was intended to provide a twofold usage: 

• Learning from past incidents: to see what has happened, how it happened and what 
consequences it brought. This first usage is meant both for designers, to avoid falling into 
replicating previous mistakes, and for emergency planners, to appreciate the type and scope 
of incident that they may be expected to cope with. 

• Where possible in terms of sample size, developing metrics for incident frequencies to use 
for reactive or even proactive risk assessment. 

Regarding the information on MHIDAS, the database contains a detailed compilation of all the 
parameters necessary to know precisely what happened and how the accident can be described. 
Table 1 presents the main fields available in MHIDAS to collect information. From an operational 
safety perspective, one of the most notable features of MHIDAS  is that the database registers one 
record for each substance involved in an accident. Therefore, the number of registrations for an 
accident equates to the number of substances involved in that accident (Llopart, 2001). 

Table 1. Description of each parameter used on MHIDAS database (Llopart, 2001) 

CODE MEANING DESCRIPTION 

AB Abstract Brief summary of the incident, with detailed information. 

AN Record number Registration number on the database. 

CR Contributor Source of incident information. 

DA Date of incident Date of the incident in the form DD/MM/YY or close to a previous or later date. 

DG Damage Estimate (in dollars) of the material damage caused by the incident. 

GC General causes General cause of incident e.g., Mechanical, Impact, etc. 

IS Ignition source Code associated with the ignition source, which in its case, activates the 
fire/explosion, such as hot surface, cigarette, etc. 

IT Incident type Code associated with the actual incidents that occurred, with historical evolution in 
case there is more than one (fire/explosion), such as fire, pool fire, etc. 

KW Key words Indication, by means of a series of codes, of whether there is additional information 
available on some additional aspects. 



LO Location of 
incident Indicates the location of the incident by three positions: City / Region / Country. 

MC Material code Code used to reference the material name, i.e., UN Numbers. 

ME Major event  N: major accidents involving death and/or damage. Y: accidents that do not specify 
death and/or damage 

MH Material hazard Field used to associate the most likely risk for each material or situation, whether it 
occurs, such as TO (toxic), FI (combustible), EX (explosive), etc. 

MN Material name Substance name involved in the accident. 

NP People affected Estimate number of fatalities, injured, or evacuated for consequences of the 
incident. 

OG Origin Where the incident originated, such as, transport, process plant, etc. 

PD Population 
density Indicates the population density of the affected area. 

QY Quantity of 
material Estimation of the amount of material involved in the accident. 

RA References 
available 

Amount of documentation such as articles or texts available about the incident for 
review. 

SC Specific causes Specific cause of the incident, such as "overheat", "overload", etc. 

 

3. Methods 
This section introduces the concepts of descriptive Business Analytics and the nature of data, along 
with strategies to manage information through Extraction-Transformation-Loading processes. 
These processes represent the preliminary steps for the construction of data models that allow to 
perform descriptive analyses, while also constituting the basis for Machine Learning algorithms, 
i.e. hierarchical clustering on occupational/operational data. 

3.1. Business Analytics 
The word "analytics" has largely replaced the previous individual components of computerized 
decision support technologies that have been available under various labels in the past. Analysis 
combines computer technology, management science techniques, and statistics to solve real 
problems (Sharda, 2020). For this reason, the Business Analytics (BA) process concerns the ability 
to use information in ways that can improve the way the organization functions. Moreover, BA 
aims to boost the ability to manage the access and the availability of information to assess business 



needs, identify data sources, and effectively manage the flow of information within an appropriate 
framework (Loshin, 2013).  

Safety data is usually defined as the capability of going beyond raw data to extract information, 
i.e., referring to the notion of safety intelligence (Patriarca et al., 2019). All these applications are 
made possible by the analysis and interrogation of the data gathered by an organization. The level 
of analysis can involve statistical analysis to better understand the patterns. Moreover, this process 
can be followed by a further step to develop forecasts or models to predict customer response to a 
specific marketing campaign or ongoing service or product offerings. When an organization has a 
comprehensive vision of ongoing situations and possible future ones,  it can also use other 
techniques to make the best decisions under specific circumstances (Sharda, 2020).  Figure 1 
represents a graphic overview of these three levels of analysis. By observing the presented figure, 
it is possible to notice that the three levels can be considered as inter-dependent steps, since one 
type of analytical application leads to another. Moreover, the figure suggests that there is some 
overlap between the three types of analysis, where the descriptive side relies on finding out the 
structure of past data (i.e., what happened), while the predictive (i.e., what will happen) and 
prescriptive (i.e., what should I do) sides seek to give a sense of prevention and/or improvement 
to the analyzed process data  (Sharda et al., 2018). 

 

Figure 1. Types of analytics, and scope of the current manuscript (orange boxes). 

In the figure, the orange boxes highlight the BA analyses used for the subsequent analyses of the 
incidents studied in the MHIDAS database, which provides a description of the incidents reports 
data by means of the business reports. 

3.2. Business Intelligence 
There is significant value embedded within the collective of sets of information available for safety 
analysts, and waiting to be discovered and exploited. However, to access this hidden treasure, 



analysts must first adjust their way of thinking about data, information, and ultimately, actionable 
knowledge (Loshin, 2013). In this context, Business Intelligence (BI) can be a solution. BI is an 
umbrella term that combines architectures, tools, databases, analytical tools, applications, and 
methodologies (Chaudhuri et al., 2011). Historically, data is the raw material that fuels operational 
activities and transaction systems. Therefore, limiting the use of those data sets to their original 
purposes is now an obsolete approach. Today, and for the foreseeable future, data utility is 
expanding to support operational activities, as well as tactical and strategic decisions (Chen et al., 
2012). The process of BI is based on the transformation of data to information, then to decisions, 
and finally to actions. 

Descriptive analytics 
To reach a robust BI analysis, it is firstly necessary to know what is happening in an organization 
and to understand underlying trends and behaviors. The first step of this process involves the 
consolidation of data sources and the availability of all relevant data in a form that enables 
appropriate reporting and analysis. From this data infrastructure, it is then possible to develop 
appropriate queries, reports, and alerts using various reporting tools and techniques. 

The nature of data 
Data is the main ingredient for any BI, data science, and business analytics initiative. It can be 
defined as the raw material used from decision technologies to produce information, insight, and 
knowledge. Although data were once perceived as a big challenge to collect, store, and manage, it 
is now widely considered as one of the most valuable assets of an organization, with the potential 
to create invaluable insight to better understand customers, competitors, and business processes 
(Al-Aqrabi et al., 2015; Watson and Wixom, 2007). 

Before proceeding with the safety analysis of the MHIDAS database, it is therefore necessary to 
explore data in a structured way. At the highest level of abstraction, data can be classified as 
structured and unstructured (or semi-structured). Unstructured/semi-structured data consists of any 
combination of text, images, voice, and Web content. These data will be discussed in more detail 
in the chapter on text mining and web mining. Structured data refers to data that uses data mining 
algorithms and can be classified as either categorical or numeric. Figure 2 shows the representation 
of the data taxonomy for the database MHIDAS. 

 



 

Figure 2. Taxonomy of relevant data types for the MHIDAS database 

Data Warehousing 
Data warehouse (DW) is a subject-oriented, integrated, nonvolatile, time-variant collection of data 
supporting management decisions. In other words, a DW is a pool of data produced to support the 
BI process. Data is usually structured to be readily available in the right form for analytical 
processing activities (online analytical processing, data mining, querying, reporting, and other 
decision support applications). DWs provide access to data for complex analysis, knowledge 
discovery, and decision making. They support high-performance demands on an organization’s 
data and information (Elmasri and Navathe, 2011; Inmon, 2005).  

MHIDAS reflects some feature of a DW  (Inmon, 2014): 

• Subject oriented: Data are organized by detailed subject, which remains relevant for 
safety analysts.  

• Integrated: Integration is closely related to subject orientation. MHIDAS is an integrated 
DW because incorporated the information of many contributors. 

• Time variant (time series): The warehouse supports historical data. 

• Nonvolatile: Users cannot change or update the data. 

• Client/server: The DW uses the client/server architecture to provide easy access for end 
users. Namely, MHIDAS provided information on Occupational Safety and Health on a 
CD-ROM (OSH-ROM), which back in the 1990s represented a state-of-the-art solution. 

• Include metadata: The DW contains metadata about data organization and information 
on how to effectively use those data. 



Whereas a DW is a repository of data, data warehousing includes the entire process. Data 
warehousing is a discipline that results in applications providing decision support capability, 
allowing ready access to business information, and creating business insight.   

3.2.1.Extraction-Transformation-Loading process 
The Extraction-Transformation-Loading (ETL) process allows to obtain quality data from DW 
information, hence facilitating the decision-making process. According to (Wang and Strong, 
1996), quality dimensions are organized into four categories, namely (Souibgui et al., 2019): 

• Intrinsic quality dimensions, which include accuracy, reputation, believability, and 
provenance. They rely on internal characteristics of the data during evaluation.  

• Contextual quality is more information than data oriented, since it refers to attributes that 
are dependent to the context in which data is produced or used. It comprises: amount of 
data, relevance, completeness, and timeliness quality dimensions.  

• Representational quality is related to the way data is perceived by its users and it relies 
on understandability, consistency, and conciseness quality dimensions. 

• Accessibility allows measuring the ease of access to data and it covers accessibility and 
security dimensions. 

 
Many reasons stand behind the need of a data integration phase within the decision system: 
heterogeneous formats; ambiguous or difficultly interpretable data formats; obsolete databases 
used by legacy systems; and ever-changing data source’s structure. These characteristics of data 
sources make data quality uncertain. Several studies have been conducted with the purpose of 
identifying different quality issues within the data integration process (Souibgui et al., 2019). Most 
of these studies agree that data quality faces different challenges. Indeed, ETL is a crucial part in 
the data warehousing process where most of the data cleansing and curation are carried out. 
However, the ETL process is not a one-time event. In fact,  since data sources change over time, 
the data warehouse have to be periodically updated. Moreover, the constant change of business 
implies the need to change the DW system in order to maintain its value as a tool for decision 
makers. As a result, the ETL changes and evolves as well, and it should be therefore designed for 
ease of modification. A solid, well-designed, and documented ETL system is the foundation of a 
successful data warehouse project (El-Sappagh et al., 2011).  
 
A well designed ETL process extracts data from data sources and enforces data quality standards 
to allow developers and end-users to use the extracted data for applications and to make strategic 
decisions, respectively (Kimball and Caserta, 2011). In other words, the data is extracted from the 
source systems and it undergo a sequence of transformations before being loaded into the DW. 
The repository of the systems containing the sources of data for a DW can vary from spreadsheets 
to mainframe systems. The complex transformations are usually implemented in procedural 
routines. The design of an ETL process generally consists of six tasks (Trujillo et al., 2003): 

1. Selecting the sources for extraction: the data sources (usually several different and 
heterogeneous data sources) to be used in the ETL process are defined. 



2. Transforming the sources: once the data have been extracted from the data sources, they 
can be transformed, or new data can be derived. Some of the common tasks of this step 
are: filtering data, converting codes, calculating derived values, changing the different data 
formats, generating automatically sequences of numbers (surrogate keys), etc. 

3. Joining the sources: different sources can be joined in order to load together all the data 
into a unique target. 

4. Selecting the target to load: the target (or targets) to be loaded is selected. 
5. Mapping source attributes to target attributes: the attributes (fields) to be extracted from 

the data sources are mapped to the corresponding target attributes. 
6. Loading the data: the target is populated with the transformed data. 

3.2.2.Constructing the BI model  
After providing access to the DW, and processing data through an ETL process, additional 
operations might be conducted, e.g.,filtering, joining, and aggregation, to create a model where 
BA is applicable (Chaudhuri et al., 2011). Implementing a BI system requires careful planning to 
assure that the system meets the users’ expectations. This process usually includes the following 
basic steps (Oracle, 2004): 

I. Identifying End-User requirements: For this purpose, end-users are identified as safety 
and risk management researchers who will analyze the data. The questions that the BI 
system needs to answer can be summarized as: What information is currently available? 
What additional information is required? How should the information be presented? These 
answers must refer to MHIDAS incidents and should be explored both at the individual 
and aggregated level. 

II. Identifying the Data Source: MHIDAS database is available in a .txt file on the 
Occupational Safety and Health CD-ROM (OSH-ROM), which was built in the early 2000s 
and historically distributed and developed by the National Institute for Occupational Safety 
and Health (NIOSH), the UK HSE, and the UK AEA. 

III. Designing the data model: The data model was developed through an ad hoc ETL process 
(fully detailed in the ‘Extraction-Transformation-Loading process’ section), involving the 
following sub-steps: 
a. Creating the Data Store: data are extracted from the source and imported into the 
software to create the data warehouse included in the workspace. Different data sources 
can be connected through specific data relationships (e.g., One to one, One to many, Many 
to one, Many to many). 
b. Generating the Summary Data: Some of the data (ideally the most frequently queried 
data) is summarized and stored following a data maintenance procedure.  This is done by 
creating and managing the required queries with a specific programming language. 
c. Preparing the data for client access and granting access to end-users: Users should have 
database access rights in order to view and manipulate the data. After the datastore is ready 
for client access, it is possible to distribute the software and provide documentation to the 
end-users, where needed. For the sake of simplicity, the client's tools are not present in this 
contribution but they are freely accessible at the following link: http://bit.ly/MHIDAS2021  



IV. Creating and Distributing Reports: It is possible to develop reports. The reports created 
for this research show the parameters employed to describe what occurred in the incidents 
and share them with the subject community, i.e., safety analysts. 

 
The data obtained from the MHIDAS database was managed as a snowflake/hub and spoke BI 
model to deal with more than 9000 industrial incident reports worldwide. Each reported event in 
MHIDAS had maximum 21 parameters (either textual, categorical, or numerical) used to describe 
the respective event in a structured and systematic way. Following the data model development, a 
set of BI/ML solutions was proposed in dedicated reports. 

3.3. Data clustering through Machine Learning 
Clustering is an important unsupervised learning task aimed at investigating a collection of items 
by grouping them into subsets (clusters). For instance, items within a same cluster are more closely 
related (similar) to each other than items contained in different clusters (Kingrani et al., 2017; Mur 
et al., 2016).  
Before delving into pragmatical clustering applications, it is important to describe some debugging 
processes, often referred to as outlier identification, i.e., an approach used to separate isolated 
points from the more representative one.  

3.3.1.Outliers  
The outlier detection algorithms are supervised learning methods and they are particularly 
effective for applications in which label information is either hard to obtain or unreliable. In fact, 
outlier detection identifies data points that are different from the remaining data, i.e., the algorithm 
identifies anomalies in the dataset (Aggarwal, 2017; Kriegel et al., 2011). Most of the approaches 
to the problem of outlier detection identified in the existing literature are based on density 
estimation methods or on nearest neighbour methods (Abe et al., 2006; Bouguessa, 2015; Breunig 
et al., 2000).  

An important aspect of an outlier detection technique is the nature of the desired outlier, i.e., Point 
Outliers, Contextual Outliers and Collective Outliers (Chandola et al., 2009). This research 
focused on Collective Outliers in which it was possible to separate the most extreme points of the 
dataset. Collective anomalies have been explored in literature for sequence data (Chawla and Sun, 
2006; Warrender et al., 1999), graph data, and spatial data (Shekhar et al., 2001). It should be noted 
that while point anomalies can occur in any dataset, collective anomalies can occur only in datasets 
containing related data instances (Lazarevic and Kumar, 2005). The techniques used to detect 
collective anomalies are different than those used for point and contextual anomaly detection, and 
they require a separate detailed discussion (Singh and Upadhyaya, 2012). 

Isolation Forest 
Isolation Forest (iForest) (Liu et al., 2008) is an advantageous outlier identification algorithm since 
it does not rely on building a profile for data in order to find non-conforming samples (Hariri et 
al., 2019). In an Isolation Forest algorithm, data is sub-sampled and processed in a tree structure 
based on random cuts in the values of randomly selected features in the dataset (Ding and Fei, 
2013; Ramaswamy et al., 2000). iForest is a method inspired by Random Forest (Menze et al., 
2011). It was proven that iForest can outperform current state-of-the-art outlier detection 
approaches in several applications, relying on a mechanism called isolation (Susto et al., 2017): a 
procedure that through iterative partitioning of the input space aims to separate a new observation 

https://www.sfedu.ru/documents/ias10g/bi.1012/b13970/examples.htm#BABFFHCG


from the rest of the data at hand. The iForest algorithm is therefore applied in this research since 
it is very accurate and it also has several advantages compared to other methodologies (Ding and 
Fei, 2013; Hariri et al., 2019): 

• It does not require a model to describe the input output relationship of the monitored 
process. 

• It is computationally efficient with respect to common density or distance-based monitoring 
approaches. 

• Low memory requirement. 
• Natural parallel computing implementation. 
• It identifies the anomalies by isolating outliers in the data. 

The iForrest procedure is represented by an ensemble of 𝑡𝑡 binary trees (random partition). The 
anomalies produce mean paths (from root to leaves) which are longer normal attributes. Given a 
dataset 𝑋𝑋 = {𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛}, 𝑥𝑥 ∈ ℝ𝑝𝑝 , each Isolation Tree (iT) is obtained by selecting a random 
subset 𝑋𝑋′ ⊂ 𝑋𝑋(𝜓𝜓 = |𝑋𝑋′|) of attributes and by dividing 𝑋𝑋′ by randomly selecting a feature 𝑞𝑞 and a 
split value 𝑞𝑞

¯
 until the node has only one instance, where 𝜓𝜓 is the given dataset. This characteristic 

of iTs enables to implement subsampling, thus making this model capable of scaling up so as to 
handle extremely large sets of data and high dimensional problems. Furthermore, the iForest 
defines an Anomaly Score (AS) 𝑠𝑠, i.e., a quantitative index that defines the ”outlierness” degree 
of an observations The AS is defined for an observation 𝑥𝑥 by (Ding and Fei, 2013; Xu et al., 2017): 

𝑠𝑠(𝑥𝑥,𝜓𝜓) = 2
�−

𝐸𝐸�ℎ(𝑥𝑥)�
𝑐𝑐(𝜓𝜓) �

∈ [0,1] (1) 

𝐸𝐸(ℎ(𝑥𝑥)) is the average of  ℎ(𝑥𝑥) over the 𝑡𝑡. 

𝑐𝑐(𝜓𝜓) = 𝐸𝐸(ℎ(𝑥𝑥)|𝜓𝜓)  is an adjustment factor that considers the cardinality of the 
subsampled dataset.  

3.3.2.Hierarchical clustering 
This paper employs hierarchical clustering, which is currently adopted in various settings  
(Bouguettaya et al., 2015; Murtagh and Contreras, 2012). In fact, instead of building cluster 
hierarchies based on raw data points, the developed hierarchical clustering establishes a hierarchy 
based on a group of centroids. Such hierarchical algorithms can be easily divided into two groups 
of methods. The first group contains linkage methods, which were employed to obtain the results 
presented in this paper. The second group includes hierarchical clustering methods that ensure the 
specification of cluster centers (as an average or a weighted average of the member vectors of the 
cluster) (Murtagh and Contreras, 2012).  

Distance 
In clustering algorithms, distance metrics play an important role since they are the basic element 
to compute the similarity between two objects in a specific domain. All of the supervised and 
unsupervised algorithms use distance metrics to understand the patterns in the input data 
(Aggarwal et al., 2001; Reddy et al., 2018). In general, distance metrics employ functions 
describing the distance between sets of elements in the dataset. Several distance metrics can be 
used in a clustering algorithm, and they should be therefore carefully chosen to avoid introducing 



errors or misinterpretations. The most common metric is the Euclidean distance, as it flexible and 
usable in different contexts. Moreover, this metric is significant for hierarchical clustering, since 
it reflects a low-dimensional space (Milligan and Cooper, 1985), and it is therefore applied in the 
present research. 

The Euclidean distance is a basic distance metric used to identify the first and second nearest 
neighbor for each of the obtained descriptors. If the distance is small, the elements are presumably 
similar, and vice versa. The formula for the calculation of the Euclidean distance is defined by 
(Burkov, 2019; Reddy et al., 2018): 

𝑑𝑑(𝑎𝑎, 𝑏𝑏) = ‖𝑎𝑎 − 𝑏𝑏‖ = �(𝑎𝑎 − 𝑏𝑏)′(𝑎𝑎 − 𝑏𝑏) = �� (𝑎𝑎𝑖𝑖 − 𝑏𝑏𝑖𝑖)
𝜓𝜓

𝑖𝑖=1
 (2) 

where 𝑎𝑎, 𝑏𝑏 are the two different descriptors vectors, and 𝜓𝜓  is the dataset given. 

Ward's minimum variance method  
In the following analyses, the Ward's minimum variance method was applied, as it tends to create 
compact, uniformly sized clusters. Although Ward's method is much less computationally 
intensive than other methods, it is still appropriate for most purposes (Bouguettaya et al., 2015).   
 
Ward’s method can be defined and implemented recursively by means of the Lance–Williams 
algorithm. Therefore, if points 𝑖𝑖 and 𝑗𝑗 are agglomerated into cluster 𝑖𝑖 ∪ 𝑗𝑗, it is sufficient to specify 
the new dissimilarity between the cluster and all other points (clusters). The formula explaining 
this procedure is defined by (Murtagh and Contreras, 2012): 

𝑑𝑑(𝑖𝑖 ∪ 𝑗𝑗,𝑘𝑘) = 𝛼𝛼𝑖𝑖𝑑𝑑(𝑖𝑖,𝑘𝑘) + 𝛼𝛼𝑗𝑗𝑑𝑑(𝑗𝑗,𝑘𝑘) + 𝛽𝛽𝑑𝑑(𝑖𝑖, 𝑗𝑗) + 𝛾𝛾|𝑑𝑑(𝑖𝑖,𝑘𝑘) − 𝑑𝑑(𝑗𝑗, 𝑘𝑘)| (3) 

Where 𝛼𝛼𝑖𝑖 ,𝛼𝛼𝑗𝑗 ,𝛽𝛽 and 𝛾𝛾 define the agglomerative criterion 
The cluster size and distance function refer to the cluster algorithm’s definition. For that purpose, 
the Ward's Minimum Variance method from the Lance-Williams formula has been implemented: 
 

𝛼𝛼𝑖𝑖 =
|𝑖𝑖| + |𝑘𝑘|

|𝑖𝑖| + |𝑗𝑗| + |𝑘𝑘| (4) 

𝛼𝛼𝑗𝑗 =
|𝑗𝑗| + |𝑘𝑘|

|𝑖𝑖| + |𝑗𝑗| + |𝑘𝑘| (5) 

𝛽𝛽 =
−|𝑘𝑘|

|𝑖𝑖| + |𝑗𝑗| + |𝑘𝑘| 
(6) 

𝛾𝛾 = 0 (7) 
 
 



Where | . | is the absolute value of the points. 
 
Other update formulas exist that allow the implementation of agglomerative methods, e.g., 
complete link, single link or median method. The Euclidean distance should be used for 
equivalence between the approaches. For example, having 𝑎𝑎 and 𝑏𝑏 be two points (m-dimensional 
vectors: objects or cluster centers) which have been agglomerated, and 𝑐𝑐  another point, it is 
possible to use squared Euclidean distances to update Lance–Williams dissimilarity formula. 

𝑑𝑑2(𝑎𝑎 ∪ 𝑏𝑏, 𝑐𝑐) =
𝑑𝑑2(𝑎𝑎, 𝑐𝑐)

2
+
𝑑𝑑2(𝑏𝑏, 𝑐𝑐)

2
−
𝑑𝑑2(𝑎𝑎, 𝑏𝑏)

2
=
‖𝑎𝑎 − 𝑐𝑐‖2

2
+
‖𝑏𝑏 − 𝑐𝑐‖2

2
−
‖𝑎𝑎 − 𝑏𝑏‖2

4
 (8) 

 
It is possible to define the new cluster center (𝑎𝑎 + 𝑏𝑏)/2, thus obtaining a distance from point 𝑐𝑐  

𝑑𝑑(𝑎𝑎 ∪ 𝑏𝑏, 𝑐𝑐) = �𝑐𝑐 −
𝑎𝑎 + 𝑏𝑏

2
�
2

 (9) 

where ‖ . ‖ is the norm in Euclidean metric. 
 

4. Results 

4.1. Data model 
The Facts Table including all the parameters sharing a One-to-One relationship with the accident 
identification (ID in figure defined by Record) was crucial for the implementation of the model. 
In fact, in the branches, the data model presented several Many-to-One relationships, where the 
number of parameters was higher than the accident ID (hazardous, origin, causes, incident type, 
ignition source, specific causes, keywords, general causes, material code). Figure 3 presents a 
visual representation of the data model architecture realized using the Crow’s Foot notation, in 
line with Table 1. 
 



 

Figure 3. MHIDAS data model (PK = Primary Key) 

4.2. General overview 
Firstly, a general descriptive analysis of the incidents reported in the MHIDSA database was 
performed. Figure 4 shows a line chart presenting the annual occurrence of incidents identified 
through the above-mentioned analysis. 

 

Figure 4. Development over the time of the collected incidents in the MHIDAS database 

Furthermore, a geographical analysis was performed to complement the temporal analysis. The 
results are presented in Figure 5, where the color of the bubbles indicate the overall economic 



damage resulting from the incidents, while the size of the bubble represents the total number of 
fatalities caused by the accidents. This map presents, albeit generally, some aggregated highly 
abstract result on occupational and operational hazardous events. 

 

Figure 5. Worldwide distribution by Economic Damage [$] (bubbles’ color) and number of 
fatalities (bubbles’ size) 

The temporal and geographical analyses were then followed by the analysis of the clustering of 
the incidents reported in the MHIDAS database. In fact, this analysis allows to investigate the 
hazardous events at more granular levels. Subsequently, occupational, operational, and aggregated 
data analyses were performed. 

4.3. Occupational analyses 
Firstly, a scatter plot was implemented to identify the incidents related to occupational issues: the 
number of fatalities was plotted on the x-axis and the number of injuries was plotted on the y-axis 
(cf. Figure 6). Furthermore, since the size of the bubble represents the number of incidents related 
by each type of hazard, this graph allowed to represent the occupational impact of different hazards 
in terms of fatalities and injuries. On this basis, it was possible to isolate the most serious hazards, 
i.e., Fire (50.426 injured and 13.349 fatalities), Toxic (58.712 injured and 3.173 fatalities) and 
Explosive (11.734 injured and 4.618 fatalities). 



 

Figure 6. Classification of incidents by hazard. 

Table 2 represents the data obtained in the scatter plot, sorted by the number of incidents related 
to each of the hazards found in the MHIDAS database. 

Table 2. Classification by hazard of the incidents 

Hazard Number of Incident Injured Fatalities 

FI, fire 5.801 50.426 13.349 

TO, toxic 2.174 58.712 3.173 

CO, corrosion 1.128 6.888 202 

EX, explosive 539 11.734 4.618 

OX, oxidizing 501 4.949 168 

CD, cold 88 540 109 

AS, asphyxiant 56 267 56 

RA, radiation 6 30 1 

 

 

By observing the presented table, it is possible to note that the ratio between the number of fatalities 
and the number of injured is not uniform across hazardous substance. In fact, the most serious 
hazards in terms of incident occurrence are Fire (5.801), Toxic (2.174) and Corrosion (1.128). This 
new prioritization shows that Corrosion-related events are more frequent than Explosion-related 
ones, but they have minor occupational consequences.  



To further deepen this occupational-oriented analysis, Figure 7 presents a stacked bar chart where 
each bar represents the ratio percentage of fatalities and injured workers for relevant parameters. 
By observing Figure 7, it is possible to make some considerations: (i) the higher relative percentage 
of fatalities is connected to explosives (28,24%) and the lowest relative percentage of fatalities is 
connected to corrosion (2,85%) (cf. Figure 7A);  (ii) External causes are associated with the highest 
relative percentage of fatalities (21,49%) and Instrumental causes  are associated with the lowest 
relative percentage of fatalities (10,07%) (cf. Figure 7B).   

 

Figure 7. Proportion ratio by hazard and general causes of the fatalities and injured. 

Furthermore, a classification of different materials was performed to emphasize their occupational 
impact on fatalities and injuries in the reported accidents. The results of this analysis are presented 
in Figure 8. The x-axis of the scatter plot shows the number of fatalities, the y-axis shows the 
number of injuries, and the size of the bubble represents the number of incidents related to a 
specific material. As a result of the previous observations on the relation between material and 
economic damage, it is possible to highlight that the most critical materials are Chlorine (12.039 

A 

B 



injured and 131 fatalities), LPG (4.504 injured and 1.948 fatalities), and Crude oil (1.247 injured 
and 1.259 fatalities) 

 

Figure 8. Classification the incidents by material. 

Table 3 represents the data sorted by the number of incidents related to each material. 

Table 3. Classification by material of the incidents 

Material Number of Incidents Fatalities Injured 

CRUDE OIL 754 1.259 1.247 

OIL 345 437 742 

GASOLINE 326 384 1.146 

CHLORINE 324 131 12.039 

CHEMICALS 315 246 1.275 

NATURAL GAS 315 611 2.096 

AMMONIA 290 260 4.368 

LPG 271 1.948 4.504 

PETROL 262 672 2.549 

PROPANE 235 177 1.309 



 

4.4. Operational analyses 
Within the MHIDAS database, 339 materials were related to industrial incidents. Subsequently, a 
Pareto analysis was performed to examine which of the identified materials had a greater economic 
impact. Figure 9, supplemented by Table 4, represents the materials with higher economic damage 
reported on MHIDAS. In this context, Crude oil represents the 46,59% of the total of economic 
damage and, in conjunction with Oil, Butane and Propane, it accounts for  69,08% of the total of 
economic damage. 

 

 

Figure 9. Pareto classification of materials sorted by economic damage [$] 

Table 4. Classification of materials with higher economic damage 

Material Economic damage 

CRUDE OIL $3.310.060.000,00 

OIL $609.760.000,00 

BUTANE $557.950.000,00 



PROPANE $430.230.000,00 

HYDROCARBON GAS $415.750.000,00 

HEXANE $386.790.000,00 

FUEL OIL $372.690.000,00 

PETROL $360.770.000,00 

NATURAL GAS $334.680.000,00 

ETHYLENE OXIDE $326.300.000,00 

 

 

Furthermore, it is possible to extract additional information about the economic damage with 
respect to materials. In fact, by isolating the first four materials identified by Pareto analysis (cf. 
Figure 9), it is possible to identify the amount of discharges for each of the identified materials: 
2.572.253,15 Long Tons of Crude oil discharges (50,35% of all discharges, i.e., 5.108.287,10 Long 
Tons) posing Fire, Explosive and Toxic hazards; 297.150,69 Long Tons of Oil discharges (5,81% 
of the total releases) posing Fire and Toxic hazards;15.062,00 Long Tons of Butane discharges 
(0,29% of the total) posing Fire hazards; 32.756,71 Long Tons of Propane discharges (0,64% of 
the total) posing Corrosion, Fire and Explosive hazards. Subsequently, a further analysis was 
performed to prioritize critical materials based on their root origin (see Figure 10):  the x-axis of 
the chart presents the economic damage [$], the y-axis presents the quantity of material [Long 
Tons], the size of the bubbles defines the number of incidents triggered by group of material, and 
the color of the bubbles represents the group of material (Top 5 materials classified with regard to 
the economic damage [$]). For demonstration purposes, such analysis was restricted to records 
involving a specific quantity of material (1000 Long Tons or less) and a specific economic damage 
(100.000$ or less). 



 

Figure 10.Classification the incidents by group material and origin of those 

Although the two parameters, i.e., economic damage and quantity of material, do not have a linear 
relationship, it is possible to observe that many incidents involve minor material discharges (i.e., 
Petroleum Gases or Petroleum Crude Oil). 

4.5. Integrated Occupational/Operational analyses 
To perform the integrated occupational and operational analyses, a metric parameter called 
Potential Equivalent Fatality (PEF) was used to integrate the computations regarding fatalities and 
injured workers. A complete description of PEF is outlined in (Edwin et al., 2016; Paltrinieri and 
Khan, 2016). However, for the purpose of the analysis, the PEF number was here modified 
according to the data available in MHIDAS, since the database does not include exposure data or 
death ratio due to hazards, nor information on different severity levels related to injuries. For the 
sake of simplicity, all the injuries found in MHIDAS were considered as major injuries. The 
resulting simplified formulation was: 

𝑃𝑃𝐸𝐸𝑃𝑃 = 𝑃𝑃𝑡𝑡 + 0,1 ∗ 𝐼𝐼𝑗𝑗 (10) 
𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑎𝑎𝑡𝑡𝑎𝑎𝐹𝐹𝑖𝑖𝑡𝑡𝑖𝑖𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝐹𝐹𝑑𝑑𝑖𝑖𝐹𝐹𝑡𝑡ℎ𝐹𝐹𝑖𝑖𝐹𝐹𝑐𝑐𝑖𝑖𝑑𝑑𝐹𝐹𝐹𝐹𝑡𝑡  

𝐼𝐼𝑗𝑗 = 𝐼𝐼𝐹𝐹𝑗𝑗𝐼𝐼𝐹𝐹𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝐹𝐹𝑑𝑑𝑖𝑖𝐹𝐹𝑡𝑡ℎ𝐹𝐹𝑖𝑖𝐹𝐹𝑐𝑐𝑖𝑖𝑑𝑑𝐹𝐹𝐹𝐹𝑡𝑡  

Moreover, a standardization algorithm was implemented within the economic damage parameter 
because of the significant differences between their ranges, which caused trouble computing a 
good cluster in the dataset. Furthermore, the z-scores algorithm was used. This paradigm allowed 



to rescale the parameter values so as to provide them with the properties of a standard normal 
distribution, with 𝜇𝜇 = 0and  𝜎𝜎 = 1, where 𝜇𝜇 is the sample mean (the average value of the feature, 
averaged over all the examples in the training data) and 𝜎𝜎 is the standard deviation from the sample 
mean. 

Z-scores of the features were calculated as follows: 

𝑥𝑥
^(𝑗𝑗)

←
𝑥𝑥(𝑗𝑗) − 𝜇𝜇(𝑗𝑗)

𝜎𝜎(𝑗𝑗)  (11) 

 

where 𝜇𝜇(𝑗𝑗) is the sample mean of the values of feature 𝑗𝑗, and 𝜎𝜎(𝑗𝑗) is the standard deviation of the 
values of feature 𝑗𝑗 from the sample mean. 

After defining the metrics used for the comprehensive analysis, the clustering algorithm was 
developed to link Economic Damage [$] and PEF, respectively, in order to find potential 
classification strategies. Following the theoretical description proposed in the ‘Outliers’ section, 
an outlier algorithm was implemented to isolate the points called disasters.  

The results of the analysis performed with the iForest algorithm suggested that incidents with a 
PEF greater than 100 or an economic damage greater than $50.000.000,00 should be considered 
outliers, and thus studied separately. Figure 11 summarizes the results of iForest, where a 1% 
contamination parameter was set to isolate the previously mentioned incidents. After the 
application of this algorithm, the number of accidents identified in the resulting dataset decreased 
from 9993 to 9893. In fact, the outliers isolated 100 incidents that where included in the 1% 
contamination parameter established. These 100 incidents represent extreme events, namely 
disasters in either occupational or operational terms (or both). Some notable examples are:  

• Record 6017: economic damage of $2.000.000.000 and 0 PEF in a rural area. Disaster 
caused by Human and Impact factor caused by Fire hazard combined with Crude Oil 
releases. Exxon Valdez company located in Valdez, Alaska (USA). 

• Record 3454: economic damage of $370.000.000 and 7 PEF in an unknown population 
density area. Disaster caused by Fire hazard and hydrocarbon gas releases. Plant located in 
La Mede (France). 

• Record 9098: 3000 PEF in an urban area. Disaster involving Fire and Toxic releases, 
caused by human components and reactions with the hydrocarbon gas involved. Plant 
located in Bhopal, Madhya Pradesh (India). 

• Record 7536: 1300 PEF in an urban area. Disaster involving Explosive hazard with 
dynamite. Plant located in Cali (Colombia). 



  

Figure 11. Differentiation of the incidents and disasters in the MHIDAS database. 

Furthermore, a hierarchical cluster algorithm was applied with Ward’s method (8) for centroids 
based on Euclidean distance (2). Subsequently,  combinations were defined and sorted according 
to their silhouette scores, following the methodology described in the ‘Constructing the BI model’ 
section. Figure 12 shows the results of the silhouette values that can be used to determine the 
optimal number of clusters by selecting the combination with the highest average silhouette, i.e., 
cluster 4 (cf. Figure 13). 

 

Figure 12. Silhouette values to determine the optimal number of the cluster (4). 
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After determining the optimal number of clusters and verifying that the silhouettes of each group 
were feasible (average silhouette scores C1:0,93; C2:0,016; C3:0,67; C4:0,19), the four obtained 
clusters were reported in a two-dimensional occupational/operational graph. The cluster is 
thoroughly described in Figure 13 and Table 5. 

 

Figure 13. Cluster with the four groups selected for the analysis. 

Table 5. Description of the group of clusters 

Color Name Description 

Red H-OP, L-OC High operational, Low occupational 

Green H-OC, L-OP High occupational, Low operational 

Orange M-OP, M-OC Medium operational, Medium occupational 

Blue L-OP, L-OC Low operational, Low occupational 

 

 

The red zone represents incidents with high operational damage and low occupational damage, 
i.e., incident with a high economic damage and low PEF number. On the other hand, the green 
zone represents a high PEF number (occupational damage) and low economic damage (operational 
damage). Finally, the orange and blue zones represent incidents related with both issues, i.e., 
incidents with different values of occupational and operational damage. 

H-OP, L-OC 

H-OC, L-OP 

M-OP, M-OC 

L-OP, L-OC 



This analysis allows to make further observations. Namely, Figure 14 shows a timeline illustrating 
the proportion ratio of the type of incident and it specifies the name of the clusters for each year. 
By observing this figure, it is possible to notice a decrease of with H-OP, L-OC and M-OP, M-OC 
incidents over the time. In fact, in the 1960s the proportion ratio of the above-mentioned incidents 
was the highest: M-OP, M-OC incidents had a peak in 1961. i.e., 7 incidents, accounting for the 
33,33% of the total amount of incidents (21 incidents), while the peak of H-OP, L-OC incidents 
was recorded in 1963, when the 3 incidents accounted for the  20% of the total number of accidents 
(over the 15). Contrastingly, L-OP, L-OC incidents increased over the time. In fact, in 1951 and 
1954 only 8 L-OP, L-OC 8 incidents were recorded, while in 1998 the number of L-OP, L-OC 
incidents was 122 incidents, i.e., 97,6% of the 125 incidents. 

 

Figure 14. Behavior over the time by the incidents 

The results of the clustering can be further extended to focus on a specific country, in the attempt 
to understand the evolution over time of incident criticalities and related reporting actions. For 
example, Figure 15 proposes an analysis of the United State of America (USA) over 5 decades 
(1950s-1990s). This analysis illustrates the higher number of L-OP, L-OC incidents over time. In 
the 1950s, the proportion ratio of L-OP, L-OC was the 80.19% , in the1960s the L-OP, L-OC 
incidents accounted for 76.35% of the total (113 incidents), in the 1970s the percentage of L-OP, 
L-OC incidents was 77.62% (274 incident), in the 1980s 536 L-OP, L-OC incidents were reported, 
i.e., 87.58% of the total, and in the 1990s the proportion ratio of L-OP, L-OC incidents was 96.48%  
(631 incidents). The remaining types of incidents do not have a particular behavior or evident trend 
to highlight. 

 



 

Figure 15. Incident occurrence in USA over the decades 

5. Discussion 
The development of a BI safety data model (as the one presented in Figure 3) can significantly 
contribute to manage safety data in large-scale industrial systems. BI safety models should in fact 
represent a data structure that allows a better documentation, so as to enhance dynamic analyses 
and reduced bias through faster and efficient querying systems supporting safety decision-making 
processes. The implementation of BI implies managerial implications for regulatory institutions 
and enterprises. 
BI models might benefit from aggregated analysis to design safety guidelines and ensure their 
development over time following a data-driven perspective. An example of this data-intensive 
guideline design process can be identified in the analysis of the  distribution specific accidents in 
diverse regions (e.g. Figure 5) which in turn supports the identification of main criticalities, and 
the detection of location-based patterns. 
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1970s 1980s 

Legend: 
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At enterprise level, BI implementation could spotlight relevant interpretations to improve the 
safety/risk management in industrial settings and support safety decision-making processes. For 
example, at occupational level, it is possible to detect underlying causal factors, as presented in 
Figure 6 and Table 2, where Fire were highlighted as the critical hazard involving the highest 
number of accidents and fatalities reported on MHIDAS. Furthermore, this analysis can be 
complemented with considerations on the materials involved, and/or the type of industry. 
Therefore, learning from other companies operating in similar conditions allows to identify and 
follow best practices in order to avoid recurring factors. 
On other hand, these results can be interpreted in larger performance management contexts, by 
implementing Data Warehousing to collect multiple data sources, which can also be enterprise-
based. For example, the results presented in Figure 15 can be complemented with metrics that 
extend the analysis into other areas, i.e., development index, economic metrics, demographic (by 
industry or population) density, seeking out a sustainable and safer resilient system. In this case, 
multiple models require robust ontological relationships to create a consistent data model (Mao et 
al., 2020). 

From an analytical perspective, these positive results can be further discussed in terms of future 
research. On the one hand, it would be interesting to investigate the depth and numerosity of the 
parameters that should be studied and reported in case of industrial incidents. MHIDAS for 
example may be considered as an oversimplified reporting system in terms of human and 
organizational elements, thus requiring a more systemic approach in this field. This objective may 
be achieved by complementing the structure of the database with a logic relying on systemic 
methods, e.g., FRAM method (Patriarca et al., 2020), STAMP model (Leveson, 2011), and PRAF 
(Jain et al., 2018).  

On the other hand, there are several additional algorithms that should be tested and validated. For 
instance, starting from the descriptive research dimension employed in this research, other 
predictive analyses can be developed to explain or forecast behaviors referred to specific 
parameters. Furthermore, text mining on incident narratives represents a promising area (Cheng et 
al., 2013), as well as the use of dedicated algorithms to understand patterns and support 
recommendations on the usage of specific materials under certain operating conditions 
(Anandarajan et al., 2019; Marshall and Wallace, 2019). These results are only the firsts step 
towards more complex IT applications for safety management, indicating a way forward for a 
wider industrial safety learning. In this regard, they also constitute the basis for other optimizations 
techniques, according to previous researches in this area (Paltrinieri et al., 2020). 

The novel safety intelligence capacity strengthens cross-learning (Fruhen et al., 2014), i.e. BI is 
implemented to promote safety knowledge obtained from different companies, thus empowering 
intra- and inter-entities information sharing. We believe that the idea behind MHIDAS can be 
extended to other safety repositories, e.g., Analysis, Research and Information on Accidents 
(ARIA) or Major Accident Reporting System (eMARS). Moreover, a data-driven environment can 
also increase company awareness on industrial risk management, thus supporting safety culture 
measurements (Cooper Ph.D., 2000; Guldenmund, 2000). 



6. Conclusion 
The presented study provides a methodological discussion and a description of BI and ML 
techniques, which shows the potential for their large-scale adoption with regards to safety in 
industrial settings. Safety and loss prevention are multi-dimensional problems, involving a large 
set of variables that tightly interact to sustain the plant’s functioning. When referring to reporting 
actions, those variables have to be studied jointly through informative data structures that permit 
to unleash the potential behind real data. BI was helpful in this regard, supporting a multi-variable 
dynamic analysis based on an underlying structured data model. BI represents an efficient way to 
provide answers, or even stimulate further questions relying on previous data. This structured 
analysis also allows a progressive enhancement of meta-knowledge to improve the quality of the 
investigations and data gathering. Although the case study was based on real events stored in the 
MHIDAS database and therefore outdated (1950s-1990s), it provided evidence on the significance 
of these results for modern incident reporting systems. Consequently, this analysis showed that 
with the help of BI tools it is possible to obtain a set of dashboards, thus providing a visual-
descriptive analysis of extensive data information reported in a database and classifying/isolating 
relevant features (e.g., occupational, operational, mixed events). The developed analyses can 
provide useful information for different key users, supporting decision-making and cost-benefit 
analysis at different levels (Paltrinieri et al., 2012). We believe that these exemplary results may 
motivate organizational-wide adoptions of BI and ML within safety management systems, an area 
currently under-developed. The combination of BI with ML solutions provides a promising staging 
area for safety intelligence in industrial safety, thus paving the way for a bright research path in 
loss prevention. 
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