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Abstract

Most flows are turbulent in nature, yet fluids exhibit a plethora of inherent
responses to applied stress. Fluids that respond in a linear manner, such as
water and air, are labelled as Newtonian, whereas the majority of them that do
not are often called non-Newtonian. Some of these fluids show instantaneous
deformation in directions perpendicular to the applied stress, others present
elastic recovery, or yield-stress (plasticity), and some even flow more easily
under increasing shear stress. The latter, a type of shear-dependent rheology
known as shear-thinning or pseudoplastic behaviour, is one of the most common
non-Newtonian fluid behaviours in numerous industrial settings. Consequently,
the understanding of turbulent flows of these fluids; i.e., those exhibiting shear-
dependent rheology, is fairly important for a good number of engineers and
scientists.

The present thesis is concerned with the investigation of turbulent flows
corresponding to generalized Newtonian (GN) fluids. The aim is to study the
mean-flow properties, and the features of some coherent structures; more spe-
cifically, turbulent vortices. For this purpose, the numerical simulations of two
distinct flows are considered: turbulent channel flow, and turbulent flow in a
baffled stirred tank with a Rushton-type impeller. Here, a GN fluid refers to
an idealization of a real fluid presenting shear-dependent rheology as its most
characteristic rheological feature. GN fluids are modelled through a so-called
constitutive equation, where the response to stress is made proportional to it
through a material function (apparent shear viscosity) depending on the rate
of deformation. In this work, the Carreau model is selected to incorporate the
GN fluid rheology into the momentum equation.

Key accomplishments of this thesis include: (i) the displaying of drag re-
ducing features in turbulent channel flow for a slight-to-moderate degree of
shear-thinning, even in the absence of other non-Newtonian behaviours (e.g.,
extensional thickening, or elastic effects); (ii) the discovery of qualitative sim-
ilarities between turbulent pipes and turbulent channels of GN fluids, which
hints to the possibility of having a universal near-wall behaviour for these in-
ternal flows even after complex effects are introduced; (iii) the analysis of quasi-
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streamwise vortices, and of the near-wall self-sustaining process in turbulent
channel flow of a shear-thinning fluid; (iv) the presentation of the mean mo-
mentum balance analysis (see, e.g., Klewicki, 2013) for turbulent channel flow
of GN fluids; (v) the study of turbulent vortices in a baffled stirred tank with
(potential) important implications for dispersed systems; among other findings.

Keywords: Turbulent flows, numerical simulations, mean-flow properties, co-
herent structures.



Preface

Our own experience provides the basic material for our imagination,
whose range is therefore limited. It will not help to try to imagine that
one has webbing on one’s arms, which enables one to fly around at
dusk and dawn catching insects in one’s mouth; that one has very poor
vision, and perceives the surrounding world by a system of reflected
high-frequency sound signals; and that one spends the day hanging
upside down by one’s feet in an attic. In so far as I can imagine this
(which is not very far), it tells me only what it would be like for me to
behave as a bat behaves. But that is not the question. I want to know
what it is like for a bat to be a bat.

Nagel (1974).

The present thesis is submitted to the Norwegian University of Science and
Technology (NTNU) for partial fulfilment of the requirements for the degree
of philosophiae doctor. The doctoral work spanned from August 2018 to May
2022. Most of it (ca. 3.5 years) has been performed in the Environmental Engin-
eering and Reactor Technology Group at the Department of Chemical Engineer-
ing. The remaining part of the work (ca. 05. years) has been carried out at the
Department of Chemistry and Chemical Engineering, Chalmers University of
Technology (Gothenburg, SE). The work has been supervised by Prof. Jannike
Solsvik, and co-supervised by Profs. Helge I. Andersson, and Ronnie Andersson.
The thesis is an article-based one, consisting of four chapters (either motiv-
ational, explanatory, or synoptic in nature), and four research papers (listed
next, and collected at the end of the document). Most research, in connection
to this thesis, has been economically supported by the Research Council of Nor-
way (RCN, grant no. 274398). Additional funding (1 year) has been provided
by the Department of Chemical Engineering in connection with teaching duties.

v



vi A. A. Arosemena: Turbulent flows of GN fluids

Paper I. Turbulent channel flow of generalized Newtonian fluids at a low
Reynolds number.
Arturo A. Arosemena, Helge I. Andersson, and Jannike Solsvik.
J. Fluid Mech. 908, A43 (2021).
Contributions: All authors contributed to the conceptualization of the
work. A. A. A. performed the numerical experiments, computed the dif-
ferent statistics during post-processing, and wrote the draft. H. I. A. and
J. S. supervised the work, and reviewed the final draft. All authors con-
tributed to editing the manuscript.

Paper II. Effects of shear-thinning rheology on near-wall turbulent struc-
tures.
Arturo A. Arosemena, Ronnie Andersson, Helge I. Andersson, and Jan-
nike Solsvik.
J. Fluid Mech. 925, A37 (2021).
Contributions: A. A. A., R. A. and J. S. conceptualized the work. A. A.
A. computed the different statistics, and wrote the draft. R. A., H. I. A.
and J. S. supervised the work, and reviewed the final draft. All authors
contributed to editing the manuscript.

Paper III. Velocity–vorticity correlations and the four-layer regime in tur-
bulent channel flow of generalized Newtonian fluids.
Arturo A. Arosemena and Jannike Solsvik.
Eur. J. Mech. B Fluids 91, 1–8 (2022).
Contributions: A. A. A. conceptualized the work, computed the different
statistics, and wrote the draft. J. S. supervised the work, and reviewed
the final draft. Both authors contributed to editing the manuscript.

Paper IV. Characterization of vortical structures in a stirred tank.
Arturo A. Arosemena, Haider Ali, and Jannike Solsvik.
Phys. Fluids 34, 5.0083843 (2022).
Contributions: A. A. A. and J. S. conceptualized the work. H. A. performed
the numerical simulation, and wrote the section describing the numerical
experiments. A. A. A. computed the different statistics, and wrote the
remaining part of the draft. J. S. supervised the work, and reviewed the
final draft. All authors contributed to editing the manuscript.

Trondheim, 31.05.2022.
Arturo A. Arosemena.

https://doi.org/10.1017/jfm.2020.903
https://doi.org/10.1017/jfm.2021.657
https://doi.org/10.1016/j.euromechflu.2021.08.006
https://doi.org/10.1063/5.0083843


Acknowledgements

In life, a fair amount of events take place, and some are more significant than
others simply because what they represent. A PhD education, for instance,
marks the end of our formal training in academia. Moreover, I am of the opin-
ion that after a PhD, most researchers are humbled by the realization that we
know pretty much nothing about pretty much everything. Perhaps, this is the
most valuable lesson. Continue learning is the only way forward if one wants to
‘see a bit through the smoke’, so to speak. Moving away from this opinion/re-
flection, it is a fact that my work would not be possible without the assistance
of certain people and organizations. I am deeply grateful to all of you, and I
am going to proceed with some punctual and personal acknowledgments. If I
have not mentioned someone in particular, which may have had an impact in
my work, I apologize beforehand. Please know that I also thank you.

First of all, I would like to thank my supervisors. I am deeply grateful for
your mentorship. Jannike, thank you for the opportunity to work in this project,
for backing my ideas, for checking my manuscripts, for being patient with me,
and for always be willing to help. I have no complaints. It is difficult to teach,
start your own group, and to supervise several PhD candidates, all at the same
time. You manage to do it and do it well. Helge, thank you for always paying
attention to my work, for helping me correcting many mistakes in my writings,
and for your guidance during our first peer-review. The blow to my psyche
after some initial comments from the referees was pretty much mended thanks
to you. Also, it is incredible to me how you manage to follow my ideas, even
when I am not able to explain them well. In such cases, you have helped me to
clarify them. I am very grateful to you for this. Ronnie, thank you for receiving
me in Chalmers, for your patience, and for taking the time to discuss our work
on a weekly basis despite your many other duties. I hope we can work together
once again at some point in the future.

Also, I would like to thank the professors, researchers, and other PhD can-
didates within the Reactor Technology group at IKP, and within the Thermo
Fluids group at EPT, whom have interacted with me during the last four years.
You have made my stay at NTNU more interesting, and altogether more enjoy-

vii



viii A. A. Arosemena: Turbulent flows of GN fluids

able. A special thanks go to my office mates, initially Canberk and now Davide.
Last but certainly not least, I thank my family and friends for their support.

I am forever indebted to my grandmother, Lelys, and my mother, Mitzy, for
raising me. Mum, without doubt, you are the best person I know. Thank you
for your devotion, unconditional support and love, and for showing me, what
good parenthood actually looks like. Despite the distance and lack of constant
communication, I am sure that not a day goes by without you sending me your
care. Finally, I would like to thank my wife, Angelica, for accompanying me and
for sacrificing so much for us. You are a joy to the eyes and soul.

Financial support for this work was provided by the Department of Chem-
ical Engineering at NTNU, and by the Research Council of Norway through the
FRINATEK project: ‘Fundamental investigation of non-Newtonian fluid flow in
bioprocessing’, grant no. 274398. Numerical simulations were performed on re-
sources provided Sigma2, part of the Norwegian Competence Centre for HPC,
through grant no. NN9646K and no. NN9771K. I am also quite grateful to NTNU
and its IT division for the resources provided in the local cluster, IDUN.



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Generalized Newtonian (GN) fluids . . . . . . . . . . . . . 5
1.1.3 Wall-bounded shear flows of GN fluids . . . . . . . . . . . 9
1.1.4 Coherent structures and their identification . . . . . . . . 18

1.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 DNS of turbulent channel flow of GN fluids . . . . . . . . . . . . . 25
2.2 LES of turbulent flow of GN fluids in a baffled tank stirred by a

Rushton turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 Summaries of papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

ix





Nomenclature

The following nomenclature, mentioned in more than one chapter of this thesis,
is listed here for convenience. In the appended articles, the nomenclature may
be different, but it is always clearly defined therein.

Abbreviations

3D Three-dimensional.

DNS Direct numerical simulations.

GN Generalized Newtonian.

LES Large-eddy simulations.

NS Navier–Stokes.

PDF Probability density function.

Greek letters

α Flow index; see equation (1.3).

γ̇ Strain rate.

Λ Time constant; see equation (1.3).

µ Fluid dynamic viscosity/apparent viscosity.

µ0 Zero-shear-rate-viscosity; see equation (1.3).

µ∞ Infinite-shear-rate-viscosity; see equation (1.3).

µc Characteristic viscosity. In this work, it is taken as the nominal
value of µ at the wall, µw, for the channel flow.

ρ Fluid density.
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τw Total mean shear stress at the wall; see equation (1.9).

τx y Total mean shear stress; see equation (1.10).

Other symbols

( )+ Property in ‘inner’, or ‘wall’ units.

b Exponent in Carreau-Yasuda fluid model; see equation (1.3).

H = y/h Wall-normal coordinate, y , in ‘outer’ units.

h Channel half-height. More generally, outer-length scale in a
wall-bounded flow.

`= µc/ (ρuτ) Viscous, or inner-length scale in a wall-bounded flow.

Reτ = h/` Frictional Reynolds number.

uτ Friction velocity; see equation (1.11).



Chapter 1

Introduction

. . . theory is what gives meaning to observation. . . Tomorrow, it may
be wrong. Even so, it deserves to be regarded as one of the better things
of which man is capable.

Lumley (1992).

Observation and critical thinking have led humanity to prosper for the last thou-
sands of years. Our inherent curiosity and ingenuity have allowed us to create
wonders. Nonetheless, our discoveries and technological advances pall when
considering all still unknown to us. Fluid flow phenomena is plagued with ex-
amples. For instance, we use different devices to transport through air and wa-
ter, yet during this process, we waste enormous amounts of energy, create noise
and pollute the environment. Moreover, in certain branches of fluids dynamics
the lack of knowledge is more pronounced than in others. In terms of flow re-
gimes, consider turbulent against laminar flow or in terms of fluid properties,
consider Newtonian versus non-Newtonian behaviour.

The primary aim of the present thesis is to improve–even if only slightly and
with several limitations–our basic understanding about the mechanics and pos-
sible coherence of turbulent flows of Newtonian and shear-dependent viscosity
fluids; the later, a type of non-Newtonian rheology.

1.1 Background

1.1.1 Turbulence

Flows perceived as ‘smooth’ are known as laminar flows whereas their oppos-
ite (chaotic or irregular) as turbulent flows. Of course, there are some flows
in transition where turbulent spots are somewhat intermittent within ordered,

1
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Figure 1.1: The Yellow River Breaches its Course by Ma Yuan.

laminar regions. Most flows in nature and technological applications are turbu-
lent whilst laminar ones occur only as fairly rare exceptions (Monin & Yaglom,
1971, p. 2). ‘Turbulent’ are the various motions of the air and water in our sur-
roundings. From typical wind gusts in the earth’s atmosphere, cumulus clouds
and water currents below the surface of the oceans, to more dangerous geo-
physical events such as tropical cyclones (hurricanes and typhoons), tsunamis
and extreme storm waves (also called rogue or killer waves). In engineering
applications, examples of turbulent flow include both external flows around
aircraft, automobiles, building and sea vessels, and internal flows in pipelines,
combustion engines and chemical reactors. In the latter example, turbulence
can be crucial for mixing (molecular diffusion) and homogenization (macro-
mixing or stirring) of fluid mixtures, and for influencing the chemical reactions
rates in liquids or gases.

The previous paragraph highlights the ubiquitous nature of turbulent flows
and their technological importance but does not clarify the actual meaning nor
origin of the word ‘turbulence’. From a historical point of view, humans have
probably observed and documented turbulence as a distinct regime for centur-
ies. Paintings from all over the world constitute evidence of such awareness.
Representative examples are The Yellow River Breaches its Course (ca. 1222) by
Ma Yuan (see figure 1.1), The Great Wave off Kanagawa (ca. 1830–1832) by Kat-
sushika Hokusai and Starry Night (1889) by Vincent Van Gogh. Also, related to
art, the work of Leonardo da Vinci (1452–1519) is often referenced when tra-
cing back the origin of the study of turbulence physics. In particular, because
of his depictions of wake flows and the usage of the word turbolenza in his
writings. However, it is known that Leonardo employed this word rather am-
biguously and in occasions, with a meaning that is not according to its modern
usage in fluids mechanics (Marusic & Broomhall, 2021).
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In a scientific context, studies about turbulence probably began at the very
beginning of the nineteenth century with observations about what French en-
gineers called eaux courantes or open-channel flows (Darrigol, 2005, p. 219).
In 1822, just after proposing his equations for viscous-fluid motion, Claude-
Louis Navier made some distinction between ‘linear’ and ‘nonlinear’ flows and,
a decade or so later, Adhémar Barré de Saint-Venant opposed ‘regular’ to ‘tu-
multuous’ flows. Afterwards, studies about pressure drops in pipes gained more
popularity and by the 1860s, the experiments of hydraulic engineers like Got-
thilf Hagen and Henry Darcy made clear that the character of the flow in very
narrow pipes was potentially different from that in large pipes (Eckert, 2021).
Nevertheless, during the nineteen century and regarding precise characteriza-
tion of transition to turbulence in pipe flows, the work of Osborne Reynolds is
likely the most influential. Reynolds (1883) is remembered for the experimental
apparatus and his interpretation of dye-streak visualization results but, actually,
it is Reynolds publication from 1895 which is the most noteworthy. Reynolds
(1895) contributions consisted in: (i) clarification of the nondimensional para-
meter, mentioned in his previous paper, which is responsible for the transition
from laminar regime to turbulence in incompressible flow (later called Reyn-
olds number by Sommerfeld, 1908), (ii) decomposition of the flow into aver-
age and fluctuating parts (nowadays called Reynolds decomposition), leading
to the averaged momentum equations, and (iii) the deduction of the turbulent
kinetic energy equation on which Reynolds observed that the terms comprising
products of Reynolds stress and mean velocity gradient represented a trans-
fer of kinetic energy from the mean flow to turbulence (Jackson & Launder,
2007). An interesting and to some extent paradoxical fact is that the Reynolds
decomposition led to the Reynolds stress tensor, and to the so-called closure
problem in turbulence which was initially tackled using eddy-viscosity models
based on Joseph Boussinesq hypothesis for the mixing in thin shear layers. The
hypothesis was proposed in 1872 by Boussinesq, and published in 1877, several
years before Reynolds (1895). Boussinesq (1877) is also remarkable because of
the recognition of higher momentum transfer in what he denoted as ‘tumultu-
ous movements’. The phrase being a clear trace of Saint-Venant influence in
Boussinesq work.

To conclude this brief summary about the start of turbulence studies, it is
relevant to point out that neither Boussinesq nor Reynolds have used the word
‘turbulence’ in their publications. Aside ‘tumultuous movements’, Boussinesq
used phrases such as ‘eddy agitations’ and ‘liquid eddy theory’ whereas Reyn-
olds employed others such as ‘sinuous paths’, ‘sinuous motion’ and ‘irregular
eddies’ (Schmitt, 2007). The introduction of the phrase ‘turbulent flow’ and
the abstract concept of turbulence to the literature of fluid mechanics is attrib-
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uted to Willian Thomson, known as Lord Kelvin (Davidson et al., 2011, p. xi).
From an etymological point of view, ‘turbulent’ appears to come from the Latin
words turba meaning turmoil, stir or its complement turbulentus meaning full
of stir. On the other hand, ‘turbulence’ appears to come from the Latin word
turbulentia meaning perturbation or trouble.

The preceding discussion makes clear that it is difficult to precisely define
turbulence. A more fruitful endeavour is perhaps to simply point out some of
the major qualitative features of turbulent flows. These are:

• Irregularity or apparent stochastic/random nature. Turbulent flows ex-
hibit chaotic fluctuations in time and space. The fluctuations in space are
three-dimensional and thereby, turbulence is also rotational.

• A wide range of scales. Turbulent flows are characterized for swirling-
like flow patterns of different sizes. For instance, in atmospheric flows,
relevant scales range from hundreds of kms to parts of a mm (Tsinober,
2013, p. 7).

• High diffusivity. Turbulent flows are strongly diffusive which causes rapid
mixing and enhancement transport of momentum, energy and mass.

• Large Reynolds numbers. Turbulent flows take place when the ratio of
nonlinear inertia to viscous forces is large, i.e., at high Reynolds numbers.

• Dissipation of kinetic energy into heat. Viscous shear stresses perform de-
formation work, increasing the internal energy, at the expenses of kinetic
energy of the turbulence (Tennekes & Lumley, 1972, p. 3). For sustaining
turbulent flows, a continuous supply of energy is required.

• Unpredictability. Small changes in initial conditions produce large changes
to the subsequent motions (Davidson, 2015, p. 12).

The above list is based on our current understanding of turbulence and may
change with time. For instance, ideas such as coherent structures, the inverse
cascade process, the footprint of the initial conditions in asymptotic (mature)
turbulence, and the usefulness of two dimensional turbulence as a first approx-
imation when studying large-scale motions in the atmosphere and oceans, were
at some point controversial to say the least. Moreover, the list is not all-inclusive
and is only intended as a summary of some of the most important and general
features of all turbulent flows. Certain classes or families of turbulent flows have
their own additional features. Such features have been addressed (to some de-
gree) by numerous researchers including physicists, mathematicians and engin-
eers during the twenty century and close to the first quarter of the twenty-first
century. In fact, with respect to studies about turbulence and turbulent flows,
the existing literature is quite overwhelming; in the search engine Semantic
Scholar, the word ‘turbulence’ and phrases such as ‘turbulent channel flow’ and
‘turbulent boundary layer’ lead to about 476 000, 350 000 and 325 000 results,
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respectively.
Considering the amount of publications related to turbulence and even

when limiting ourselves to particular families of flows for a type of fluid, it
seems unrealistic to provide a comprehensive assessment of previous contri-
butions. The following subsections, specifically 1.1.3-1.1.4, only review some
of the most important studies for the present thesis. For a systematic but con-
cise description of key developments in turbulence research, before the advent
of massive computations (roughly up to mid-1970s), the epilogue of Davidson
et al. (2011) is recommended.

1.1.2 Generalized Newtonian (GN) fluids

Similar to the laminar-turbulent dichotomy in case of flow regime, fluids are
classified as Newtonian and non-Newtonian. Newtonian fluids are those flow-
ing regularly according to Newton linear law of friction; i.e., fluids where the
response (rate of deformation with time) to the applied stress is linear. Non-
Newtonian are the remaining, complex, majority of fluids. The recent review of
Ewoldt & Saengow (2022) about designing complex fluids starts with: ‘To be
Newtonian is restrictive; to be non-Newtonian is everything else’. The phrase
conveys this significant fact; most fluids in industry and everyday life are non-
Newtonian. Typical examples are polymer solutions, drilling fluids, fresh con-
crete, honey, ketchup, toothpaste and biological fluids such as blood or saliva.
Of course, this fact (majority of fluids being non-Newtonian) does not dimin-
ish the importance of Newtonian fluids and the study of their rheology; i.e.,
deformation and flow. Ultimately water and air, the most important fluids for
humanity, exhibit Newtonian behaviour.

The continuum-level aspects of a fluid, whether Newtonian or not, depends
on its microscopic structure. For instance, in case of polymer solutions, the rhe-
ological properties and resulting macroscopic behaviour are dependent on the
molecular architecture of the constituent molecules (e.g., molecular weight,
chain branching, and electrical charge distribution), the polydispersity of the
solution, and the interactions between solute and solvent (Bird & Wiest, 1995).
A further complication is that different microscopic configurations may lead to
similar rheological features. There are even handbooks about rheological modi-
fiers (e.g., polymers, particles, and droplets) for given solvents in the literature;
see e.g., Ash & Ash (2006). Nonetheless, in the present thesis, the molecular
approach is considered out of scope and a ‘material agnostic’ approach is taken.
Basically, attention is paid to the macroscopic rheological behaviour of the fluid
and not to its microscopic composition.

Under the idealization of fluids as continuous media, non-Newtonian rhe-
ological response to stress is incorporated into the momentum equation by
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means of a so-called constitutive equation. The idea is to use a fundamental
relationship which expresses the stress tensor in terms of various kinematic
tensors (Bird & Wiest, 1995). In principle, the issue is similar to the closure
problem in turbulence where–depending of the type of flow and which effects
are to be captured–a particular model is used for the turbulent or Reynolds
stress. Naturally in the case of closures for non-Newtonian fluid behaviour, the
deciding factor is(are) the dominant rheological feature(s). Real fluids show a
spectrum of responses to both shear and normal stresses, while non-Newtonian
models include only the most important ones for a given flow under consider-
ation. C. W. Macosko (Macosko, 1994, p. 4) remarked four key phenomena in
rheology: (i) viscoelasticity, (ii) shear-thinning, (iii) shear normal stresses, and
(iv) extensional thickening. Viscoelasticity is the concurrence of both viscous
(either Newtonian or not) and elastic (either linear or not) effects in a material
subjected to deformation. Shear-thinning describes a non-Newtonian fluid be-
haviour where the apparent viscosity decreases with flow strength (either stress
or strain rate). ‘Shear normal stresses’ is the terminology used to describe the
occurrence of normal stress differences in a fluid under simple shear. The dra-
matic ‘Weissenberg effect’, in which a fluid climbs up a rotating rod, occurs
because of such inequality of normal stresses. Finally, extensional thickening
refers to the increase of extensional viscosity (also known as Trouton viscosity)
with flow strength in a fluid subject to elongation and/or shear. Any proposed
constitutive equation should attempt to describe these four important rheolo-
gical responses. In such endeavour of being as much comprehensive as possible,
the 8-constant Oldroyd model (Oldroyd, 1958) is perhaps the most successful.
Nevertheless, the 8-constant Oldroyd model has been rarely implemented. Gen-
erally speaking, the utility of the constitutive relations in hydrodynamic prob-
lem solving has been inversely proportional to the complexity of the relation
(Bird, 1976).

Though the four key phenomena are important, shear-thinning is probably
the most important one for many engineering applications (Bird et al., 1987, pp.
106–107). To illustrate, consider a common problem in the petroleum industry.
During the transportation of waxy crude oil and gas condensate mixtures in sub-
sea pipelines, as soon as the temperature is lower than the wax appearance tem-
perature, paraffin crystals start to precipitate in the crude oil (Pedersen & Røn-
ningsen, 2000). These precipitations bring about a number of interconnected
challenges, such as reduction of the effective pipe diameter, variations of pres-
sure drop in the pipeline, and the appearance of non-Newtonian behaviour in
the suspension. Regarding the latter, a volume fraction of wax particles of even
a few tenths of a percent causes pronounced shear-thinning behaviour (Røn-
ningsen, 2012). The importance and wide-spread occurrence of shear-thinning



Chapter 1: Introduction 7

phenomenon is seen as well from the non-Newtonian examples mentioned in
the introductory paragraph to this section. Most of them are known to exhibit
some degree of shear-thinning. In the following lines, the discussion is centred
around shear-thinning and related phenomena.

The recognition of different rheological behaviours has led not only to nu-
merous models but also to classification schemes beyond the Newtonian–non-
Newtonian fluid distinction. Such schemes are convenient for grouping rheolo-
gical features albeit, at the same time, they are quite arbitrary and to some
extent confusing when doing systematic reading of the available literature. For
example, when considering fluid categories according to their main response in
simple shear flow, some authors broadly classify fluids as time-dependent and
time-independent fluids (see e.g., Ionescu et al., 2020) whereas others recog-
nize viscoelasticity as an additional category (see e.g., Chhabra & Richardson,
2008; Irgens, 2014, p. 5 and p. 8, respectively). Nevertheless, none of the two
classification schemes cover effects such as differences of normal stresses in
shear, for instance. Moreover, although the mentioned key phenomena are per-
haps the most important ones, these are to date only a fraction of all observed
rheological phenomena. A more broad yet still arbitrary and not all-inclusive or-
ganization for macroscopic rheological behaviour of fluids, could be based upon
the four key phenomena. Furthermore, rheological phenomena commonly lis-
ted in the time-dependent and time-independent fluid categories (e.g. thixo-
tropy and shear thickening), in a sense, are all related to the shear-thinning
phenomenon (Ewoldt & Saengow, 2022). The following rheological behaviours
can be grouped in the category of ‘related to shear-thinning phenomenon’:

• Shear-thickening. It is the opposite behaviour to shear-thinning; i.e., an
increase of viscosity with flow strength. Morris (2020) is recommended
for a review on recent developments and current issues.

• Yield stress. It is, basically, shear-thinning behaviour to the extreme. That
is, solid-like-to-fluid transition at a particular critical stress or range of
stresses (Ewoldt & Saengow, 2022).

• Thixotropy. It refers to reversible, time-dependent, shear-thinning beha-
viour; i.e., decrease of viscosity with time at high flow strength and sub-
sequent recovery with time at low flow strength (Larson & Wei, 2019).
The opposite phenomenon from thixotropy is called anti-thixotropy or
rheophexy; i.e., reversible, time-dependent increase in viscosity (Mewis
& Wagner, 2009).

Figure 1.2 shows the difference between Newtonian, shear-thinning, and the
other phenomena grouped as related to shear-thinning behaviour.

Returning to the topic of constitutive equations and considering the re-
sponses illustrated in figure 1.2, it seems generalizing Newton’s law of friction
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Figure 1.2: Illustration of response to simple shear for: (a) Newtonian, shear-
dependent and yield-stress rheological behaviours and (b) time-dependent
rheological behaviours related to shear-thinning.

is the simplest approach to account for shear-thinning/thickening fluid beha-
viour. The empiricism consists into changing the proportionality constant (dy-
namic viscosity) to a material function (apparent viscosity) depending on the
rate of deformation. Under such rationale, one can write

τGN
i j = 2µSi j , (1.1)

where, τGN
i j is the viscous stress tensor, µ= µ (γ̇) is the apparent dynamic viscos-

ity solely depending on the strain rate γ̇=
�

2Si jS ji

�1/2
, and Si j =

�

∂ ui/∂ x j +
∂ u j/∂ x i

�

/2 is the strain rate tensor. Here, ui denotes the velocity component
in the i direction. Also, when index notation is used, subscript i (or any other
subscript) takes the value 1, 2 or 3 to represent the component in the x , y or
z direction of the Cartesian coordinate system, respectively; e.g., (x1, x2, x3) =
(x , y, z) and (u1, u2, u3) = (u, v, w). Equation (1.1) is the constitutive equation
for time-independent, purely viscous (inelastic and without a yield-stress) fluids
known as generalized Newtonian or GN fluids. It is stressed that GN fluids are
only an idealization of real fluids presenting shear-dependent viscosity as their
most characteristic rheological feature. In addition, from a reverse viewpoint
and since constant viscosity can be interpreted as a viscosity function whose
value is the same for every γ̇-value, Newtonian fluids can also be viewed as a
particularisation of GN fluids.

Many models have been proposed for µ (γ̇); the most widely used are:

• Power-law model (de Waele, 1923; Ostwald, 1925). In this model, the ap-
parent viscosity is described with a function that is proportional to some
power of γ̇; i.e.,

µ (γ̇) =Mγ̇α−1. (1.2)
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The power-law model has two parameters to be fitted experimentally: (i)
M [Pa · sα] known as the consistency index and (ii) α [−] known as the
power-law or flow index. M is related to the magnitude of the viscosity.
On the other hand, α controls the macroscopic rheological behaviour.
When α = 1 Newtonian behaviour is recovered. If α < 1 the fluid is
said to be shear-thinning, whereas if α > 1 the fluid is said to shear-
thickening. The power-law model has two bad features (Bird, 1976): (i)
it gives unrealistic values for the viscosity at low and high values of γ̇
and (ii) no characteristic time, useful to characterize the fluidity of the
material, can be constructed from M and α.

• Carreau-Yasuda model (Carreau, 1968; Yasuda, 1979). The model cor-
rects the undesirable features of the power-law fitting, and reads

µ= µ∞ + (µ0 −µ∞)
�

1+ (Λγ̇)b
�(α−1)/b

. (1.3)

The Carreau-Yasuda model is more complex since it has five paramet-
ers to be fitted experimentally (Morrison, 2001, p. 231): (i) µ∞ [Pa · s]
known as the infinite-shear-rate-viscosity; i.e., asymptotic value attained
as γ̇ gets large, (ii) µ0 [Pa · s] known as the zero-shear-rate-viscosity; i.e.,
constant value approached as γ̇ gets small, (iii) Λ [s] is a time constant for
the fluid and determines the shear rate at which the plateau for µ0/µ∞
ends/begins, (iv) b [−] is an exponent that affects the shape of the trans-
ition between zero-shear-rate plateau and the power-law-like region of
the viscosity rheogram, and (v) α [−] is still the power-law index. With
b = 2, equation (1.3) is known as the Carreau model which describes vis-
cosity data well enough for most engineering applications (Bird, 1976).

Figure 1.3 displays two viscosity profiles for ‘normal whole blood’ (Cho & Ken-
sey, 1991); one corresponding to power-law and the other to the Carreau model.
From this figure, one can note some of the aforementioned features of the two
models. Other models such as the Eyring (Ree et al., 1959) or Spriggs (Spriggs,
1965) models have been used but most studies have concentrated on the power-
law or the Carreau models (Macosko, 1994, p. 87).

1.1.3 Wall-bounded shear flows of GN fluids

Wall-bounded shear flows refer to turbulent flows bounded (at least in part)
by one or more solid surfaces (Pope, 2000, p. 264), and in which the mean
velocity is predominantly one-dimensional in nature (Davidson, 2015, p. 105).
This family includes both internal and external flows, such as those mentioned
at the start of subsection 1.1.1. Therefore, the study and understanding of wall-
bounded turbulent flows is of enormous technological importance. For instance,
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Figure 1.3: Comparison of viscosities calculated using the power-law and Car-
reau models for blood. Parameters for the two models as given in Cho & Kensey
(1991).

about half the energy spent in transporting fluids through pipes and channels,
or moving vehicles through air and water, is dissipated by turbulence in the
immediate vicinity of walls (Jiménez, 2012). Furthermore, as highlighted in
subsection 1.1.1, scientific work about turbulence probably began with obser-
vations about pipe flow (a type of turbulent shear flow limited by walls), and in
certain aspects, wall-turbulence is more accessible than other problems in tur-
bulence. Let us think about Kolmogorov’s theory of locally isotropic turbulence
(Kolmogorov, 1941a,b); i.e, turbulence where all statistics are invariant un-
der translations, rotations and reflections of the spatial coordinate system and
shifts in time. The theory follows Richardson’s phenomenology of an energy
cascade (see Richardson, 1922, p. 66), where energy is transferred from the
largest scales to the smallest ones through a self-similar ‘inertial’ cascade (see
e.g., schematic representation in Jiménez, 2004, p. 596), until it is dissipated
by viscosity. Kolmogorov’s theory of the small scales has been quite successful
in predicting an energy spectrum which closely approximates the experimental
observations, not only for isotropic turbulence but for small-scale turbulence in
general (Jiménez, 2013). Nevertheless, this theory does not answer a funda-
mental question: how energy enters the cascade in a first place?. Conversely in
shear flows, the source of energy is clear (gradient of the average/mean velo-
city), and energy enters turbulence through the interaction of that source with
the transverse velocity fluctuations (Jiménez, 2013).

Our discussion about wall-bounded turbulence starts with the so-called clas-
sical theory found in most textbooks (see e.g., Monin & Yaglom, 1971; Tennekes
& Lumley, 1972; Pope, 2000; Davidson, 2015). The theory concerns canonical
wall-bounded turbulent flows (smooth pipes, channels and constant-pressure
boundary layers), and in what follows, it is presented for the simplest case of
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Figure 1.4: Turbulent plane channel flow.

a fully developed plane turbulent channel flow. The initial focus is on central
issues such as the balance of mean forces, mean velocity profiles and scaling.

Consider turbulent flow through a rectangular smooth duct of height 2h
which is unidirectional driven by a pressure gradient. The duct is extremely
long (L/h � 1) and wide (W/h � 1); a plane channel, and it is at rest with
respect to the Cartesian coordinate system. The streamwise, wall-normal, and
spanwise directions are denoted by x , y and z, respectively. Hence, with the
exception of the pressure that decreases from entrance to exit, derivatives of
mean quantities with respect to x are assumed to be zero. All derivatives with
respect to z are also assumed to be zero. Moreover, the mean flow is considered:
(i) stationary and (ii) to be in the x− y plane since it is driven in the x direction.
A sketch of the turbulent plane channel flow is shown in figure 1.4. The only
non-zero mean velocity is the streamwise component, u (y), since continuity
requires the y component to be zero everywhere if it is zero at the impermeable,
non-slip walls. Then, for an incompressible GN fluid at constant temperature,
the relevant equations are the x and y mean-momentum equations which read

0=
dτR

x y

dy
−
∂ p
∂ x
+

dτGN
x y

dy
, (1.4)

and

0=
dτR

y y

dy
−
∂ p
∂ y
+

dτGN
y y

dy
. (1.5)

These equations are obtained by introducing the Reynolds decomposition into
the Navier–Stokes equations, and then averaging in the homogeneous direc-

tions and time. Here, τR
i j = −ρu′

iu
′
j is the turbulent stress or so-called Reynolds

stress tensor, ( ) and ( )′ are used to indicate the mean (averaged in time and
homogeneous directions) and fluctuating parts of a scalar, vector or tensor field,
respectively, ρ is GN fluid density, and p is the mean pressure.



12 A. A. Arosemena: Turbulent flows of GN fluids

Integration of equation (1.5), from the wall (y = 0) to a position y in the
channel, yields

p (x , y) = τy y (y)−τGN
y y w
+ pw (x) , (1.6)

where, τy y = τR
y y + τGN

y y . Since v′ = 0 at y = 0, τR
y y is zero at the wall. Also,

τGN
y y w

= τGN
y y (y = 0), and pw = p (x , y = 0). Because τy y is independent of

x and τGN
y y w

is a constant, it follows that ∂ p/∂ x = dpw/dx . In consequence,
equation (1.4) can be re written as

dpw (x)
dx

=
dτx y (y)

dy
= constant, (1.7)

where the total mean shear stress, τx y (y) = τR
x y + τGN

x y . For this flow there is
no mean acceleration, so equation (1.7) amounts to a balance of mean forces:
the axial normal stress gradient is balanced by the cross-stream shear-stress
gradient (Pope, 2000, p. 267). Once again, integrating from the wall (y = 0)
to a position y in the channel, results in

τx y (y)−τw =
dpw

dx
y. (1.8)

At the centre of the channel (y = h), τx y must be zero due to symmetry reasons.
Hence, if y = h, equation (1.8) simplifies to

dpw

dx
= −
τw

h
, (1.9)

which is the aforementioned constant. Finally, considering result (1.9), equa-
tion (1.8) recasts to

τx y (y) = τw

�

1−
y
h

�

. (1.10)

Thus, for a given constant (negative) mean pressure gradient, channel half-
height and regardless of the type of fluid (e.g., Newtonian or shear-dependent),
equation (1.10) gives the total mean shear stress profile for the plane channel.
The importance of the mean shear stress (and more specifically of τw) is not to
be overlooked. From a practical point of view, a closed channel is but a carrier
that allows the transport of fluid from one location to another. For this purpose,
one can connect the channel to the discharge of another carrier; directly impos-
ing a flow rate. Alternatively, a mechanical device (e.g., a pump) can be used
to increase the fluid pressure at the channel’s entrance. However, as seen from
equation (1.9), the increase in pressure should be large enough such that the
resulting pressure gradient balanced out the resistance exerted by the enclos-
ing walls. In other words, τw is the skin friction; i.e., the resistance to flow due
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to viscous effects (recall that u′
i = 0 at y = 0). Based on τw, it is also custom-

ary to define different skin-friction coefficients such as c f = τw/
�

0.5ρuc
2� and

C f = τw/
�

0.5ρub
2�. Here, uc = u (y = h) is the mean velocity at the channel

centre, and ub =
∫ h

0 u (y)dy/h is the bulk velocity. It can be seen that the mean
velocity profile is required for calculating either of these reference velocities.
Furthermore, uc , ub, and u (y) in general, may be used in flow rate estima-
tions. Hence, the determination of the mean velocity profile is quite important
as well.

In principle, solving equation (1.10) would yield the mean velocity profile,
yet to solve this equation we need to know the distribution for the turbulent
shear stress. The situation is even more complicated for shear-dependent rhe-
ology, since we also need the distributions for µ and 2µ′S′

x y ; the later arising
due to viscosity fluctuations. At this point, one possibility is to introduced clos-
ures for the different terms (e.g., mixing length theory for τR

x y). Another pos-
sibility would be to use dimensional analysis and asymptotic observations. Con-

sidering that both τR
i j and τGN

i j contribute to the total mean shear stress, it is
reasonable to expect that these contributions are not always of the same order-
of-magnitude. Moreover, the boundary conditions already hinted to a flow sub-
division of at least two regions with their corresponding sets of scaling paramet-
ers. The non-slip condition at the wall give rise to a viscous-dominated region of
characteristic length `� h, whereas far away from it, there is another region
with characteristic length h where inertial effects are dominant. As the ratio
Reτ = h/` increases; the so-called frictional Reynolds number, the behaviour of
these two regions is expected to be more and more distinct. Therefore, treating
the flow in a piece-wise fashion, we have (at least) an inner-layer region where
y/h � 1, and an outer-layer region where y/` � 1. Of course, if the length-
scale ratio Reτ is large enough, it should be possible to encounter an overlap
region where both conditions hold simultaneously (Tennekes & Lumley, 1972,
p. 147).

For the inner-layer region (y/h � 1), equation (1.10) may be re written as

−ρu′v′ +µ
du
dy
+µ′

�

∂ u′

∂ y
+
∂ v′

∂ x

�

≈ τw ≡ ρu2
τ, (1.11)

where, uτ is a friction velocity based on τw and ρ. Taking uτ and µc as char-
acteristic velocity and viscosity, leads us to a characteristic viscous-length ` =
µc/ (ρuτ). For this dimensional group, and because in the plane channel u is a
function of y only, the solution has the functional form

u
uτ
= f (y/`) , y/h � 1. (1.12)
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Figure 1.5: Distribution of −u′v′/u2
τ for turbulent channel flow of a Newto-

nian fluid against: (a) y/` and (b) y/h. Dotted, dashed, and continuous lines
styles correspond to Reτ ≈ 2000 (Hoyas & Jiménez, 2006), 5200 (Lee & Moser,
2015), and 10000 (Hoyas et al., 2022), respectively.

The same is expected for any other statistical turbulence quantity (e.g., u′v′/u2
τ =

f2 (y/`) as seen in figure 1.5 (a), µ/µc = f3 (y/`), and so on). For shear-
dependent viscosity (as for many other types of non-Newtonian rheology), there
is no consensus about the characteristic viscosity. For Newtonian rheology, µc is
simply the dynamic viscosity at a given temperature. Equation (1.11) is known
as the law of the wall and was postulated by Prandtl (1925) for fluids with
constant viscosity. Also, normalized quantities based on the dimensional group
corresponding to the inner-layer region are often called inner or wall units, and
are denoted by the superscript +. For example, y+ = y/` and u+ = u/uτ.

On the other hand, for the outer-layer region (y/`� 1), towards the chan-
nel centre and where viscous effects are fairly negligible; see figure 1.5 (b),
equation (1.10) simplifies to

−
u′v′

u2
τ

≈
�

1−
y
h

�

. (1.13)

Thus, uτ and h appear to be the relevant characteristic velocity and length for
the outer-layer region. In consequence, we would expect functional forms of
the type g (y/h) such as equation (1.13). In case of the mean velocity profile,
it is customary to express its departure from the centreline value as

uc − u
uτ

= F (y/h) , y/`� 1. (1.14)

This expression is due to von Kármán (1930) and it is known as the velocity
defect law.
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Now, let us consider the overlap region (also known as the inertial sublayer),
where H = y/h � 1 and y+ � 1 hold simultaneously. Here, equation (1.10)
results in

−
u′v′

u2
τ

≈ 1 ≡ constant, (1.15)

which is consistent with the assumption of having descriptions of the type
g
�

y+
�

and G (H) that are valid at the same time. Following the approach of
Millikan (1938), and matching the wall-normal gradients of equations (1.12)
and (1.14), we obtain

uτ
`

d f
�

y+
�

dy+
= −

uτ
h

dF (H)
dH . (1.16)

Multiplying by y/uτ, this becomes

y+
d f

�

y+
�

dy+
= −HdF (H)

dH = constant ≡
1
κ

. (1.17)

On the integration, and subsequent substitution into (1.12) and (1.14), we find

u
uτ
=

1
κ

ln y+ + A,
uc − u

uτ
= −

1
κ

ln y+ + B, `� y � h. (1.18)

This is the log-law of the wall, κ is known as the von Kármán constant, and A, B
are the additive constants. At present, there is considerable evidence that these
constants are probably flow-dependent (see, e.g., Nagib & Chauhan, 2008;
Marusic et al., 2010; Smits et al., 2011). Nevertheless, in case of Newtonian
fluids, most of the reported values for κ and A are generally within 5% of
0.41 and 5.2, respectively (Pope, 2000, p. 274). The log-law is extremely pop-
ular since it has proved to be an excellent fit to the experimental data, but it
has its detractors (Davidson, 2015, p. 125). Some researchers have proposed
the use of a power-law with Reτ-dependent coefficients for the overlap region
(see, e.g., Buschmann & el Hak, 2003). In this regards, recently, Oberlack et al.
(2022) claimed to have shown that the profile of u in the overlap region (there,
400® y+ ® 2500) is indeed logarithmic. In summary, equations (1.12), (1.14)
and (1.18) are the mean velocity distributions in the limit of Reτ → ∞, for
the classical two-layer region description with a single overlap. The start of the
inner-layer region and up to y+ ≈ 5 is often referred to as the viscous sublayer,
and there u ≈ y+. This thin-layer is observed as well in turbulent wall-bounded
flow of shear-dependent fluids (Singh et al., 2018). The region between viscous
sublayer and the log-law region is called buffer layer. The start of the log-law is
not very distinct, but it seems to be somewhere in the interval 30® y+ ® 400.
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The same can be said about the end of the log-law, which seems to be within
the interval 0.1®H ® 0.25.

The two sets of parameters corresponding to the classical inner-/outer-layer
description have not been entirely successful in the scaling of wall-bounded
turbulence statistics (see, e.g., section about raw statistical quantities in Spalart
& Abe, 2021). These scaling failures have led to corrections of the classical
description and to empirical scaling of some quantities based on Reτ (see, e.g.,
Luchini, 2017, 2018; Spalart & Abe, 2021), and to alternative approaches such
as a three-layers region description with two overlap layers (e.g., Afzal & Bush,
1985; Sreenivasan & Sahay, 1997), and a four-layer region description (Wei
et al., 2005). On a personal level, the latter is found particularly appealing
since the starting point of the analysis is the mean differential statement of
dynamics (Klewicki, 2013); i.e., equation (1.4) instead of equation (1.10). This
is the actual governing equation (momentum) of the problem we attempt to
solve (turbulent flow field). Furthermore, the ideas of Wei et al. (2005) can be
extrapolated to explore different effects in the canonical wall-bounded flows
(see e.g., White et al., 2018; Wei, 2018), and to improve our understanding of
more complex flows (see e.g., Wei, 2020).

Up to this point and broadening the arguments of the classical theory to
include shear-dependent rheology, we have outlined some central issues about
wall-bounded turbulent flows. However, we have yet to address another matter
of importance: how is the shear-dependency of the viscosity affecting these cent-
ral issues?. Of course, we should consider which fluids are to be compared in a
first place. For instance, in polymeric solutions, some authors are of the opin-
ion that the polymeric solution is to be compared to the pure solvent (Lumley,
1969) whereas others have taken as a benchmark fluid, a hypothetical Newto-
nian fluid having about the same shear viscosity as the polymeric solution at
the wall (e.g., Draad et al., 1998; Warholic et al., 1999; Ptasinski et al., 2001).
In our opinion, since viscous effects are known to be particularly important in
the regions of high mean shear near the wall (y+ ® 50, see definition of the
‘viscous wall region’ in Pope, 2000, pp. 270–271), it does seem reasonable to
compare Newtonian and shear-dependent fluids having about the same shear
viscosity at the wall, and under the same operational conditions (same flow rate
or streamwise pressure gradient). In what remains of the subsection, we will
highlight some differences between a shear-thinning fluid and a corresponding
Newtonian benchmark fluid, in terms of frictional drag, mean velocity distri-
bution, and mean shear stress. The discussion about the differences between a
shear-thickening fluid and its Newtonian benchmark fluid are omitted since as
previously remarked, this is simply the opposite behaviour to shear-thinning.

As commented earlier, it is customary to present the skin friction in a nondi-
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mensional form; e.g., C f . From a physical point of view, C f is the ratio between
skin friction and a measure of the mean fluid kinetic energy per unit volume. In
consequence, a(an) decrease(increase) of C f implies a(an) decrease(increase)
of the skin friction drag respect to the measure of available mean kinetic energy.
Thus, C f can be used to define a decrease or increase in the level of drag with
respect to a benchmark case. Assuming shear-thinning rheology results in drag
reduction (DR), we defined the level of DR as (Gyr & Bewersdorff, 1995, p. 9)

DR%=
C f ,N − C f ,P

C f ,N
× 100%. (1.19)

Here, the subscripts ‘N’ and ‘P’ stand for Newtonian and pseudoplastic (another
name used to describe shear-thinning behaviour) fluid cases, respectively. When
comparing fluids at the same τw, equation (1.19) can be rewritten as

DR%=

�

1−
�

ub,N

ub,P

�2�

× 100%, (1.20)

which is to be a positive percentage amount in case of drag reduction. In con-
sequence, we expect ub,P > ub,N . Likewise, in case of a given flow rate, DR is
reflected in τw,P < τw,N . The fact that the bulk velocity is larger for a given
τw, implies an enhancement of u towards the core of the wall-bounded flow
when comparing a shear-thinning fluid case with the corresponding Newto-
nian fluid benchmark. Moreover, assuming logarithmic behaviour occurs in a
overlap region and the same ` is used in the scaling, an upshifted log-law profile
is expected for such shear-thinning fluid case. On the other hand, with respect
to the mean shear stress and for the same τw, there should be a redistribution
in the contributions of τR

x y and τGN
x y . In case of a shear-thinning fluid, because

of the local increase in viscosity as we move from the wall and due to larger

wall-normal streamwise velocity gradients, we can expect τGN
x y,P > τ

GN
x y,N , and

therefore τR
x y,P < τ

R
x y,N , in regions where viscous effects cannot be neglected.

Another point to remark is that for shear-dependent rheology, τGN
x y may be split

into a contribution due to mean quantities and another based on the correla-
tion between the fluctuations in viscosity and the fluctuations in the shear rate.
That is

τGN
x y = τN

x y +τNN
x y , (1.21)

where, τN
x y = 2µSx y and τNN

x y = 2µ′S′
x y . The latter term being nonzero since

µ 6= constant. Here, it is reasonable to ponder how large is this new nonlinear
contribution with respect to the traditional viscous term, i.e., τN

x y . For a shear-

thinning fluid case, τNN
x y and τN

x y are of opposite sign and at most, τNN
x y /τ

N
x y ≈



18 A. A. Arosemena: Turbulent flows of GN fluids

α−1 (Collins, 1990, pp. 59–61). Naturally, this is still constrained to τGN
x y = τw

at the wall, thus for α < 1, the ratio is smaller in magnitude than α− 1.
Finally, in regards to wall-bounded flows of GN fluids, there is still much

more that can be discussed, e.g., turbulence intensities, budgets for the Reyn-
olds stresses, intermittency, anisotropy, Reynolds number effects, or the similar-
ities and differences between the canonical flows, among many other interest-
ing topics. Even so, we stop here with our briefing since the subsection is meant
for outlining only some of the most fundamental aspects that can be discussed
without relying too much on experimental and numerical data of previous stud-
ies.

1.1.4 Coherent structures and their identification

In subsection 1.1.3, we considered some key aspects about the classical mean-
field theory of wall-bounded turbulence. From a practical perspective, such ap-
proach is possibly the most useful. Indeed, it is customary to design and select
engineering devices using estimations based on relevant flow statistics rather
than on individual realizations of the flow. Nonetheless, the traditional view
has an important drawback; it provides limited insight into the flow dynam-
ics. This has brought forth a complementary approach where one hopes that at
least part of the dynamics can be described in terms of a relatively small num-
ber of more elementary processes than the full Navier–Stokes (NS) equations
(Jiménez, 2018). The basic idea is that there are regions of space and time (sig-
nificantly larger than the smallest local scales) within which the flow field has a
characteristic coherent pattern (Pope, 2000, p. 322). These patterns, known as
coherent structures (CS) or organized motions, make important contributions
to the statistics of the flow (Marusic & Adrian, 2012). In consequence, beyond
our desire to find order in apparent disorder (Hussain, 1986), the study of CS
is also technologically driven; we hope to understand these structures in order
to modify them and achieve engineering goals such as, reduction of drag in
pipes and enhancement of mixing in chemical reactors. It is worth comment-
ing that the structural view probably started with Theodorsen (1952, 1955),
who proposed a horseshoe vortex as the central structural element (Lozano-
Durán, 2015, p.11); see figure (1.6). Interestingly, Theodorsen ideas about the
importance of horseshoe vortices in turbulence initially received a lukewarm re-
ception from the community (Adrian, 2007) and were even very much opposed
by some groups (see Lumley & Davis, 2003, p. 6). At higher Reynolds numbers,
horseshoes are known as hairpins vortices (see, e.g., Head & Bandyopadhyay,
1981).

Efforts to isolate organized motion usually proceed in two ways (Cantwell,
1981): (i) inferences based on statistics and construction of entities repres-
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Figure 1.6: Structure labelled as horseshoe vortex by Theodorsen (1955).
From Theodorsen (1955), copyright ©1955 Springer Fachmedien Wiesbaden.

enting the most probable state of the flow, which are not necessarily observ-
able instantaneously or individually (Hussain, 1986), and (ii) identification of
instantaneous flow structures. Naturally, both descriptions may be related; a
strong instantaneous event occurring often enough should leave traces in a
related statistical representation. Moreover, statistics are also required for the
characterization of the structures identified instantaneously. These connections
between statistical representations and actual structures are (unfortunately) of-
ten reflected in the terminology used when discussing CS. For instance, some
works use ‘eddies’ to denote a statistical construct, whereas others for denoting
large-scale motions visualized instantaneously, or simply as a synonym for vor-
tices. To avoid potential misunderstandings, the term eddy(ies) is left for infer-
ences about statistics and corresponding stochastic constructs. In what follows,
some of the most well-known coherent motions in wall-bounded turbulence are
introduced.

Wall-bounded flows are inhomogeneous and anisotropic, and as seen be-
fore, the wall segregates them into layers that are studied separately (Jiménez,
2012). Up to the upper edge of the buffer layer, the dominant structural fea-
tures are streaks (low- and high- speed regions of streamwise velocity) and
quasi-streamwise vortices/rolls involved in a self-sustaining process (Robinson,
1991; Panton, 2001; Jiménez, 2013). The streaks carry turbulent kinetic energy
whereas the vortices, organize both the dissipation and the momentum transfer
(Jiménez, 2013); one can consider a vortex with an orientation other than wall
normal as a ‘pump’ that transport momentum across the mean velocity gradi-
ent (Robinson, 1991). In regards to the self-sustaining or regenerative process,
the consensus is that the rolls cause the streaks by ‘pumping’ away fluid from
the wall (Blackwelder & Eckelmann, 1979) however, there is still some degree
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of uncertainty about how the streaks generate the rolls. A compelling possib-
ility is that newborn streaks undergo meandering motion, breakdown and the
perturbations created by the disrupted streaks generate the rolls through non-
linear interactions (see, e.g., Hamilton et al., 1995; Jiménez & Pinelli, 1999;
Schoppa & Hussain, 2002). Recent evidence (Lozano-Durán et al., 2021) seems
to suggest that among the various possible mechanisms leading to the break-
down of the streaks, non-modal transient growth (Schoppa & Hussain, 2002)
is sufficient for sustaining realistic wall turbulence.

It is hypothesized that a similar but more disorganized dynamical scen-
ario to the one describe above occurs away from the wall (see, e.g., Flores
& Jiménez, 2010; Cossu & Hwang, 2017; Lozano-Durán et al., 2020). The
energy-containing structures are still streak, although internally turbulent ones
of much larger size than in the buffer layer as studied by Sillero (2014), whereas
the momentum transfer related structures are not the individual vortices any
longer (Jiménez, 2013). The role of organizing the Reynolds stresses is taken
by vortex clusters (del Álamo et al., 2006) and tangential Reynolds-stress struc-
tures (Lozano-Durán et al., 2012), which are three-dimensional (3D) analogues
of the sweeps and ejections in the classical quadrant analysis (Wallace et al.,
1972). All these structures (large streaks, vortex clusters and 3D Reynolds-stress
events) may be separated into attached and detached (background) families
based on their minimum distance from the wall (see del Álamo et al., 2006),
and are self-similar in the log-law region. When considering a statistical con-
struct based on neighbouring attached sweep-ejection pairs of similar size, the
underlying composite structure consists of a sweep, an ejection to one side of
it, and a vortex cluster in-between (see Lozano-Durán, 2015, sec. 3.6.1). The
composite structure sits in the interface between low- and high-velocity streaks
and it is compatible with a single streamwise large-scale roller (Jiménez, 2013,
2018). These self-similar attached streaks/rollers in the log-law region are con-
sistent with Townsend’s attached-eddy model (Townsend, 1976, pp. 152–154).
For a recent review about attached-eddy models of wall-turbulence, Marusic
& Monty (2019) is suggested. It is worth commenting that organized pack-
ets of hairpins have been shown to exist in the log-law region (Adrian, 2007),
although they tend to be more common at relatively low Reynolds numbers
and become disorganized as the Reynolds number increases (Jiménez, 2018).
Additionally, regarding statistical descriptions outside the inner-layer, Jiménez
(2013) remarked that the so-called large-scale motions (LSM, Adrian, 2007;
Smits et al., 2011) are probably the aforementioned composite structures. There
are also very-large-scale motions (VLSM, Kim & Kim, 1999) or superstructures
(Hutchins & Marusic, 2007a) which are even larger than the LSM. The LSM
and VLSM descriptions may be particularly relevant at high Reynolds numbers,
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where they have been associated with a significant amount of turbulent kinetic
energy and tangential Reynolds stress (Guala et al., 2006; Balakumar & Ad-
rian, 2007). These motions have an influence in the inner-layer region (Hoyas
& Jiménez, 2006; Hutchins & Marusic, 2007b). The clearest manifestation of
such influence is, perhaps, the known scaling failures of some statistics as men-
tioned in subsection 1.1.3.

In general, advances in the study of CS in wall-bounded turbulence has be-
nefited from three modern developments (see Jiménez, 2018): (i) linear ap-
proximations coming from stability analyses of transitional flows (see, e.g.,
Schmid & Henningson, 2001; Schmid, 2007), (ii) computation of nonturbu-
lent nonlinear solutions of the NS equations (see, e.g., Kawahara et al., 2012;
Graham & Floryan, 2021), and (iii) direct numerical simulations (DNS) of wall-
bounded turbulent flows. Approaches (i) and (ii) have been useful in shad-
ing light on the interactions between structures; i.e., the mechanisms of self-
sustainment of turbulence, whereas approach (iii), in principle, has allowed us
to capture all the flow complexities. Initially, DNS were restricted to low Reyn-
olds numbers (Kim et al., 1987), but with more powerful computers, current
simulations (Oberlack et al., 2022) are fairly closer to the largest well-resolved
experimental results (Samie et al., 2018). The main disadvantages of DNS are
the computational time and the requirement for enough storage to save large
amounts of data, in case dynamical analyses are of interest. Nonetheless, once
stored, the spatially resolved sequences of 3D flow fields can be interrogated
forwards and backwards in time to potentially answer ‘any’ question (Jiménez,
2018). As a result, DNS seem particularly appealing for studying structural co-
herence, yet precisely, how do we approach CS identification?

A classical approach to CS identification consists into isolating individually
connected regions by thresholding some intense property (Jiménez, 2018). The
considered property should be either relevant for what we aim to study (e.g.,
energy content, or momentum), or alternatively, an indicator for a particular
type of CS already associated with our aim. Moreover, it would be even better
if the considered property is quadratic and not linear (e.g., enstrophy vs. vorti-
city magnitude for vortex detection). The probability density function (PDF) of
any quantity is made more intermittent by representing it in terms of a higher
power of its variable, and it is more easy to threshold a more intermittent prop-
erty, for which high intensity is more localized (Jiménez, 2018). Subsequently,
the next point to address is how to select the threshold for isolating the CS. If
the threshold is too low, most of the property of interest is captured but it is
almost impossible to distinguish the CS individually. Conversely, for a very high
threshold, only a few very intense structures accounting for a small fraction of
the property of interest are detected. The percolation transition between these
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two limits is typically sharp and may be used to define a threshold that includes
a significant fraction of the property of interest while still segmenting the flow
into individual structures (Jiménez, 2018). This systematic way of choosing a
threshold was introduced by Moisy & Jiménez (2004) and has been successfully
implemented for analysing CS in wall-bounded turbulence by del Álamo et al.
(2006); Lozano-Durán et al. (2012); Sillero (2014), among others. It is import-
ant to remark that a threshold based on the percolation transition is only one
among many possible threshold choices (Jiménez, 2018). Furthermore, the per-
colation transition results into a range of thresholds spanning about a decade
and the selection of a given threshold within that range should be accompanied
by a sensitivity analysis of the obtained results.

Finally, although the structures mentioned thus far have been reported for
wall-bounded flows of Newtonian fluids, it is reasonable to anticipate the same
same near-wall structures and interactions for shear-dependent rheology, just
that with some degree of modification. For instance, assuming shear-thinning
viscosity yields drag reduction when compared to a Newtonian base case, one
can expect enhancement of the energy-containing structures and suppression
of the momentum-transfer related ones. Recall that for a given τw, ub,P > ub,N

and τR
x y,P < τ

R
x y,N ; see subsection 1.1.3.

1.2 Aims

The objective of this thesis is to improve our understanding in terms of the
mechanics, and possible structural coherence of turbulent flows of Newtonian
and shear-dependent viscosity fluids. Here, ‘mechanics’ is short for ‘statistical
fluid mechanics’, and refers to the traditional approach of studying the flow stat-
istics (e.g., means, standard deviations, correlations, and so on). Conversely,
‘structural coherence’ is referring to the study of CS (e.g., streaks, or quasi-
streamwise vortices); i.e., their identification and characterization. In this re-
gard, particular attention is paid to vortical structures. Vortices are quite relev-
ant in chemical engineering (e.g., consider their role in mixing, or their interac-
tions with fluid particles in turbulent dispersions). Also, the research is focused
(slightly) more towards comparing the results of Newtonian and shear-thinning
fluids. The latter is, perhaps, the most common type of time-independent non-
Newtonian behaviour (Chhabra & Richardson, 2008, p. 6).

To accomplish the above, first, numerical simulations of turbulent chan-
nel flow of GN fluids at a target Reτ are considered. Such configuration is se-
lected not only for its technological importance, but also, because it has been
extensively studied for Newtonian fluid rheology. In essence, the idea is to ex-
plore what changes (or not) in the canonical channel flow if the working fluid
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presents even a slight-to-moderate degree of shear-dependent viscosity as its
main rheological feature. Next, a further step in complexity is taken by con-
sidering the numerical simulations of turbulent flow of GN fluids in a baffled-
stirred tank; a device commonly used in numerous industries for chemical and
biochemical processes. The analyses in the stirred tank are limited to the study
of vortical structures. The investigation of turbulent statistics in the agitated
vessel is being continued elsewhere.

Altogether, this work aims to contribute to the exiting literature on shear-
dependent viscosity fluids, turbulent channel flows, and stirred tank reactors.

1.3 Outline of thesis

Beyond this section, the thesis is organized into three more chapters. Chapter 2
briefly describes the numerical methodology and experiments. Chapter 3 provi-
des a summary of each research article, with synopses of the main findings.
Finally, chapter 4 concludes the thesis, remarking as well some limitations of
this work and providing some suggestions for future ones. The research articles
(papers I – IV) are included in full (as displayed in the journals) at the end of
the thesis.





Chapter 2

Numerical simulations

The principal role of computers in fluid dynamics should be to give
physical insight into dynamics, not to generate “realistic” flows or to
extol the minor virtues of one numerical scheme over another.

Orszag & Israeli (1974).

The interest in the computation of turbulent flows probably started with V.
Bjerknes in 1912 who hinted at the possibility of numerical weather forecasting
(Hunt, 1998, p. xxi) but more concretely with Richardson (1922) who proposed
the use of finite differences for discretizing the equations of weather prediction.
At that time, computing was performed by individuals with the aid of slide rules
and calculating machines, and Richardson fantasized with the idea of thousands
of them in a large hall under coordination of a chief forecaster acting like an
orchestra conductor (Richardson, 1922, p. 219). Nowadays, computing is per-
formed by efficient electronic machines working in parallel within a network,
and numerical methodologies for problem solving of turbulent flows consist of
either Reynolds-averaged Navier–Stokes (RANS) equations modelling, or fully
time-dependent simulations such as DNS and large-eddy simulations (LES). In
this thesis, DNS and LES are implemented for simulating turbulent flows of GN
fluids. In the following, some practical details about setting-up DNS and LES
are outlined, and the considered numerical experiments are briefly explained.

2.1 DNS of turbulent channel flow of GN fluids

In DNS, the NS equations are numerically solved for all the scales of motions
with initial and boundary conditions appropriate for the flow under consider-
ation, and with each simulation producing a single realization (Pope, 2000, p.

25
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344). Turbulence statistics are then computed on the fly, or afterwards based
on collected flow fields. Details such as: grid resolution, domain size, time step-
ping, simulation time, number of stored flow fields (if they are to be collected
for post-processing) and frequency of their storage, are some of the most com-
mon aspects to keep in mind while doing DNS. These aspects are closely related
with the disadvantages mentioned for DNS in subsection 1.1.4; i.e., computa-
tional cost and storage requirement. The determination of the latter is perhaps
more straightforward than the determination of the former. In case flow fields
are to be collected, to an approximation, the storage requirement is given by
the product of: (i) the total number of data points (in space and time) to be
saved, (ii) the total number of components of the fields to be saved (e.g., velo-
city and pressure fields), and (iii) the amount of bytes (B) that are necessary to
save each component in, e.g., a .dat or a .ascii file. For instance, considering
250×109 data points, the three velocity components and pressure to be saved,
and about 8 B per component, results in 8 TB of data.

Now, let us explore the computational cost for DNS of a wall-bounded flow,
such as turbulent channel flow (see figure 1.4). To an approximation, the re-
quired computational time

�

Tcomp

�

is given by

Tcomp = FLOP of simulation
�

1
FLOP/s of machine

�

, (2.1)

where, FLOP stands for ‘floating-point-operations’, and Tcomp is the ratio between
the total number of computer operations required for the simulation to the the-
oretical peak FLOP/s of the used machine. Today, a standard computer node
has CPU- and GPU-capabilities of (at least) about 1 GFLOP/s and 1 TFLOP/s,
respectively, whereas massive HPC-systems have capabilities of (at least) about
1 PFLOP/s. On the other hand, the number of required computer operations
depends on the total number of data points and the number of FLOP per data-
point which varies from computer code to computer code. The total number of
data points

�

Nx yzt

�

is given by

Nx yzt = Nx Ny NzNt , (2.2)

where,

Nx =
Lx

∆x
∼

Ah
D` ≡

�A
D

�

Reτ, (2.3)
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D` ≡

�
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D
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Reτ, (2.4)
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Lz
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Bh
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�B
D

�

Reτ, (2.5)
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and

Nt =
Tsim

∆t
∼

Tsim

η/uτ
∼

Tsim

h/uτ
Re3/4
τ ≡ CRe3/4

τ . (2.6)

Here, Lx , L y and Lz , and ∆x ,∆y and ∆z are the computational domain and
grid resolution in the x-, y- and z-direction, respectively. Tsim and ∆t repres-
ent simulation time and time stepping, respectively, and η is the Kolmogorov’s
length scale. A,B,C and D are constants larger than 1. Therefore,

Nx yzt ∼
2ABC
D3

Re15/4
τ . (2.7)

Assuming 1×104 FLOP per data-point are required, which is about 10 times the
number of operations per data-point in DNS of homogeneous isotropic turbu-
lence (Pope, 2000, p. 348), and that 2ABC/D3 ≈ 500, close to 8.9×1017 FLOP
are needed for Reτ ≈ 1000. For a 1 GFLOP/s computer, this results in ≈ 28
years, whilst for a 1 TFLOP/s computer, in ≈ 10 days. In case of a 1 PFLOP/s
cluster, computing time reduces to ≈ 15 minutes.

Next, let us discuss the constants appearing in expression (2.7). In principle,
A and B should be � 1 such that the simulated duct flow approaches ideal
plane channel flow. Periodic boundary conditions are imposed in the stream-
wise and spanwise directions. The period is the size of the computational box,
and we would like it to be as large as possible to avoid unphysical behaviour
related to periodicity near the boundaries. In practice, computational capab-
ilities are limited and thus, the computational domain is set as large as it is
feasible. Regarding this point, two questions come to mind: how large should
be the computational box to properly reproduce one-point turbulence statistics?;
i.e., the so-called minimal flow units (Jiménez & Moin, 1991) and, how large is
to be the computational domain to capture the largest scales in the flow?. It has
been found that A≈ 500/Reτ and B ≈ 100/Reτ seem to be sufficient for repro-
ducing one-point statistics up to the upper-edge of the buffer layer (Jiménez
& Moin, 1991; Jiménez, 2013), whereas A ≈ 6 and B ≈ 3 seem to define the
box size resulting in correct one-point statistics in the log-law region (Flores &
Jiménez, 2010) and perhaps even at all wall-normal distances (Lozano-Durán
& Jiménez, 2014). Meanwhile, the other question is still somewhat open. Con-
sidering the existence of very-large but narrow velocity structures, e.g. up to
10 − 20h long in the outer-layer region, it does seem reasonable to use a box
size with A ≈ 25 and B ≈ 9.5 just like Hoyas & Jiménez (2006) as the stand-
ard computational box for simulations. Nonetheless, even for the relatively low
Reτ ≈ 550 in a very-large box (A ≈ 190 and B ≈ 19), only about 80% of
the streamwise kinetic energy at y/h = 1 is captured by a closed contour in
the corresponding premultiplied two-dimensional spectrum (Lozano-Durán &
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Parameter N180/D180 P180
Lx/h 12.57 18.85
L y/h 2.00 2.00
Lz/h 6.28 7.85

TA/ (h/uτ) 30.00 30.00
∆x+ 9.88 14.81
∆y+min 0.22 0.22
∆y+max 4.62 4.62
∆z+ 4.94 6.17

∆t/ (h/uτ) 0.20 0.20

Table 2.1: Parameters of the DNS. D180 and P180 refer to the shear-thickening
and shear-thinning fluid cases whilst N180 refers to the base Newtonian case.
All cases at Reτ = 180.

Jiménez, 2014). With respect to the constant C, it should be � 1 as well. Actu-
ally, the simulation time comprises an initialization time (TS), and an averaging
time (TA). TS is a transient period where the flow evolves from the initial con-
ditions, and depends on how the simulation is initialized (e.g., from a laminar
field with superimposed small perturbations, or from another turbulent flow
field). TA is the time required for the convergence of turbulence statistics, start-
ing after TS , and once the instantaneous flow fields are representative states of
the turbulent channel flow (e.g., once equation (1.10) starts to be approxim-
ately fulfilled). Typically only TA is reported, and estimations of the computa-
tional cost are based on it rather than on the total simulation time. For proper
convergence of the statistics corresponding to structures of size λ, TA is to be
proportional to their characteristic period, λ/uτ, and inversely proportional to
the number of structures that can occupy the computational domain, Lx Lz/λ

2

(del Álamo, 2005, p. 27). Hence,

TA ∼
λ/uτ

Lx Lz/λ2
≡

λ3

uτLx Lz
. (2.8)

For example, in case of the largest structures being of size 3Lx/4, where Lz =
Lx/2 and Lx = 25h, TA/ (h/uτ) ≈ 21. From equation (2.8), one can also note
that a lower TA is required for larger computational boxes. Finally, D ∼ O (η).
In practice, η ∼ ∆y < ∆z < ∆x . Moreover, although ∆t ∼ η/uτ, due to the
implemented numerical scheme, we may require an even lower time stepping
for numerical stability considerations.

The previous discussion allows one to realize that the setup of the differ-
ent parameters in DNS requires care and, although it is a somewhat technical
matter, it is not trivial at all. Here, DNS of incompressible, turbulent flow of GN
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Figure 2.1: Viscosity rheogram and error indicator for the considered cases:
(a) normalized viscosity, µ/µc , against normalized strain-rate, γ̇/ (uτ/`), in
a log-log plot for the considered GN fluids and (b) error indicator for the
channel flow simulations, εchannel as defined in Vinuesa et al. (2016). In (a),
black, blue and red line styles are used for cases N180, D180 and P180,
respectively. Also, µc is the nominal viscosity at maximum strain rate. In
(b), markers , and represent cases N180, D180 and P180, respectively,
whereas , and correspond to Kim et al. (1987), Moser et al. (1999) and
del Álamo & Jiménez (2003), respectively. Note that marker overlaps .

fluids between two long and wide parallel plates at a distance 2h are considered.
The geometrical configuration of the duct is intended as an approximation to
plane channel as described in subsection 1.1.3. The flow is driven by a constant
pressure gradient, physical non-slip and impermeability boundary conditions
are imposed at the walls, and periodicity is set in the directions parallel to the
wall. Table 2.1 summarizes the parameters of the different numerical experi-
ments. Three cases are studied: (i) N180, (ii) D180, and (iii) P180 correspond-
ing to Newtonian, slight shear-thickening, and slight shear-thinning behaviours
at a Reτ = 180, respectively. The Carreau model, equation (1.3) with b = 2,
was selected to incorporate the shear-dependent viscosity in cases D180 and
P180. See figure 2.1(a) and table 2.2. Figure 2.1(b), displaying the root-mean-
square norm of the difference between computed τx y/τw and 1− y/h , εchannel
as defined in Vinuesa et al. (2016), is given as an overall indicator of the er-
ror in the simulations. Details about the implemented code for performing the
DNS and the reasons for selecting the parameters shown in table 2.1 are given
in subsection 2.2 of paper I. In the remaining part of this subsection, let us dis-
cuss the considerations behind the selected value for Reτ, and the rheological
behaviour of cases D180 and P180.

In experiments of wall-bounded flows, choosing suitable Reynolds numbers
is imperative. Not only because it determines the flow regime, but also the sep-
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Parameter D180 P180
µ∞/µ0 0.001 0.001
µ0/µc 0.561 1.782
Λ/ (h/uτ) 0.100 0.100
α 1.200 0.800

Table 2.2: Carreau model parameters for shear-dependent GN fluids con-
sidered in the DNS. D180 and P180 refer to the shear-thickening and shear-
thinning fluid cases at Reτ = 180. The characteristic viscosity, µc , is taken as
µw which is the constant dynamic viscosity of the Newtonian base case; i.e.,
µw = µ≡ ρuτh/Reτ = 1/180 [Pa · s].

aration between turbulent scales. In fact, since Reτ = h/`, it is not surprising
that criteria for the existence of the log-law region are based upon a minimal
Reτ-value. As commented in subsection 1.1.3, the start/end of the log-lag region
is not very distinct. Even so, it is perhaps safe to assume that the log-law exits
and holds from y+ ≈ 150 to H ≈ 0.15; i.e. at no less than Reτ ≈ 1000, and it is
only appreciably wide if Reτ is substantially higher (Vela-Martín et al., 2021).
Therefore, it does seem appropriate to consider a Reτ ¦ 1000 when carrying-
out DNS of wall-bounded flows of Newtonian fluids and, probably, of GN fluids
in general. Nevertheless, what about the computational cost?. Aside the cost
associated with Nx yzt , it is good to keep in mind that the implementation of
any constitutive equation accounting for non-Newtonian behaviour is accom-
panied by an increase in the number of FLOP per data-point. Furthermore, the
resources available to us may also impose additional restrictions: is our code
running in a parallel or serial manner?, is it CPU- or GPU-based?, and even in
the ideal case of a GPU-based code running in parallel, where CPUs are only
used for intercommunication between computer nodes, what are the number of
GPU/CPU-hours allocated to us?. Most industrialized countries have powerful
HPC-capabilities, however these resources are always in high demand by dif-
ferent groups in all kind of disciplines. These restrictions and the general grow
of the computational cost (due to the increase of FLOP per data-point with the
implemented constitutive equations) are likely the reasons why most numer-
ical simulations of non-Newtonian fluids are performed at fairly low Reτ. For
instance, most DNS of channel flow of viscoelastic fluids are at Reτ = O

�

102
�

(Xi, 2019), with some rare attempts at higher Reτ (Thais et al., 2013; Pereira
et al., 2017). In case of DNS of wall-bounded flows where the fluid viscos-
ity is purely shear-dependent, Reτ = 750 for pipe flow is probably the largest
achieved to date (Singh et al., 2018). Here, due restrictions imposed by the
available resources, a frictional Reynolds number matching the one used in the
seminal work of Kim et al. (1987) is selected.
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Regarding the parameters of the Carreau model–once again equation (1.3)
with b = 2–in cases D180 and P180 (see table 2.2), their selection is made
bearing in mind two key points: (i) the cases should exhibit a noticeable yet
slight degree of shear-dependency in terms of their viscosity such that, even for
such a low Reτ and in case α < 1, the flow remains fully turbulent, and (ii) the
fluids should have the same nominal shear viscosity at the wall as the Newto-
nian case for comparison purposes. Point (i) is achieved by setting Λ and α. The
shear-dependency of the profiles is made ‘noticeable’ by taking a small enough
time constant, such that the power-law-like region covers a significant range of
strain rate values. Meanwhile, a ‘slight’ degree of shear-thinning/thickening be-
haviour is attained by choosing a power-law index not much lower/larger than
1. On the other hand, key point (ii) is achieved by setting µ0. For given Λ, b and
α, equation (1.3) would have two unassigned parameter; µ∞ and µ0. However,
by definition, µ∞ is much lower/larger than µ0 for shear-thinning/thickening
fluid behaviour. Assuming µ∞ is of no consequence for the considered range
of γ̇; i.e. µ∞ is much lower/larger than µw for P180/D180, allows us to find
a value for µ0 for the desired nominal shear viscosity at the wall. It is emphas-
ized that the assigned value to the ratio µ∞/µ0 in the simulations, as shown
in table 2.2, it is only used for convenience. In reality, µ0 and µ∞ are usually
within one or two orders of magnitude and, of course, this ratio is larger than
1 for shear-thickening fluids.

2.2 LES of turbulent flow of GN fluids in a baffled tank
stirred by a Rushton turbine

In LES, the largest energy-containing scales are fully resolved, whilst the smal-
lest, more isotropic ones, are modelled. In consequence, LES are a sort of in-
between DNS and traditional turbulence modelling. The success of LES rests on
the fact that, at least on average, the energy and the information mostly travel
from the largest to the smallest scales (Davidson, 2015, p. 398); i.e., in a so-
called direct cascade. Moreover, LES are quite appealing for many applications
where the transfer of, e.g., momentum, heat and chemical pollutants are seemly
dominated by the largest scales (Davidson, 2015, p. 399), yet the complexity of
the flow and/or the geometry involved make it too expensive for DNS. In gen-
eral, computational cost and storage capabilities are still issues in LES, though
considerably less so than in DNS due to loosening in grid resolutions and time
stepping constrains.

For this thesis, LES of turbulent flow of GN fluids in a baffled-stirred tank
are considered. A schematic representation of the stirred vessel is shown in fig-
ure 2.2, whereas most of the parameters of the simulations are summarized
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Figure 2.2: Geometrical configuration of the stirred tank considered in the
LES: (a) cross-sectional view and (b) top view.

in table 2.3. The tank diameter, T , is set to 24 [cm], and operates at 600 or
800 revolutions per minute (rpm). The working fluid has ρ = 1×103

�

kg/m3
�

and it is either water with µ = 1 × 10−3 [Pa · s], or 0.2 wt% carboxymethyl
cellulose (CMC) solution displaying shear-thinning behaviour. The rheology of
the CMC 0.2% solution is taken into account through the Carreau model with
µ0 = 97.40 × 10−3 [Pa · s], µ∞ = 14.80 × 10−3 [Pa · s], Λ = 0.2815 [s], and
α = 0.6892. See figure 2.3. Further details about the simulations and the im-
plemented numerical procedure are given in subsection II of paper IV.

The flow fields obtained from the LES are then used as input data for the
investigation of vortical structures (larger than the dissipative scales) in the
agitated vessel. The vortical structures are identified through a fully frame in-
variant version of an Eulerian local region-type method (see Epps, 2017), which
also considers that the stirred flow is inhomogeneous in all spatial directions.
Here, the final objective is to explore some characteristic aspects of the identi-
fied vortices; e.g., their size, number density, and shape.

It is worth pointing out that the numerical experiments for these LES are
designed with different aims in mind, not all of them relevant for the present
thesis; e.g., exploring scaled-up effects once a larger tank size is considered, or
drawing comparisons with laboratory-based measurements. Therefore, instead
of the Reynolds number, the experiments for the LES are conceived for a match-
ing rotational speed of the impeller; an easy to control operational condition in
the laboratory even for different working GN fluids.
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Parameter W600/C600 W800/C800
H/T 1.000 1.000
C/T 0.292 0.292
D/T 0.292 0.292
Di/T 0.217 0.217
hb/T 0.063 0.063
tb/T 0.008 0.008
wb/T 0.075 0.075
DS i/T 0.042 0.042
DSo/T 0.050 0.050
tb f /T 0.042 0.042
wb f /T 0.104 0.104

TA/
�

T/utip

�

3.115 4.154
∆t/

�

T/utip

�

1.833× 10−3 2.444× 10−3

Remix = ρN D2/µa 49.000/1.144× 103 65.333/1.616× 103

Table 2.3: Parameters of the LES. W600/C600 and W800/C800 refer to wa-
ter/CMC 02.% case where the tank operates at 600 [rpm] and 800 [rpm], re-
spectively. T denotes the tank diameter and utip represents the tip speed of the
impeller. Remix is a mixing Reynolds number based on the impeller rotational
speed N , the impeller diameter D, and µa for an average strain rate according
to the Metzner–Otto correlation for a Rushton-type stirrer; see Metzner & Otto
(1957).

10−3 10−2 10−1 100 101 102 103 104 105
0.001

0.01

0.1

1

γ̇/
�

utip/T
�

µ/µ0

Figure 2.3: Normalized viscosity, µ/µ0, against γ̇/
�

utip/T
�

for the GN fluids
considered in the LES. Black and red line styles are used to represent the pro-
files corresponding to water and CMC 0.2%. Here, µ0 = 97.40 × 10−3 [Pa · s]
and utip/T = 10 [1/s].





Chapter 3

Summaries of papers

Turbulence research, in common with other sciences at some point in
their development, has changed from a subject driven by the need for
good data, to one driven by the need for new ideas.

Jiménez (2018).

In this part of the thesis, summaries of the attached papers are given. The idea is
to provide an accessible (for readership with a background in turbulence) and
concise (ca. 250–500 words) overview of each research article with a synopsis
of the corresponding main findings. In general terms, papers I and III are about
statistical fluid mechanics of turbulent channel flow of GN fluids. On the other
hand, papers II and IV are about structural coherence. The latter in a stirred
tank reactor operating under turbulent flow conditions and with GN fluids. The
former in turbulent channel flow of GN fluids. Also, papers I – III are based upon
the DNS briefly explained in section 2.1, whereas paper IV is based on the LES
outlined in section 2.2.

Paper I

In paper I, the governing equations (conservation of mass and momentum)
are introduced, and the procedure followed to perform the DNS is out-
lined. To our knowledge, these DNS of turbulent channel flow of GN fluids
are the first reported in a peer-reviewed journal. The paper also presents
the averaged governing equations, and the Reynolds stress budgets equa-
tions. The latter are shown in terms of production, transport, and dissip-
ation rates; akin to how the budgets are traditionally displayed for New-
tonian fluids (see, e.g. Mansour et al., 1988). Subsequently and based
on the collected flow fields, several typical turbulence statistics are com-
puted, presented and examined for each case. These include first (expect-
ation), second and higher order central moments of the velocity field, and
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the mean shear stress profiles. In addition, a quadrant analysis (Wallace
et al., 1972) is carried out, the Reynolds stress budgets are discussed,
and anisotropy invariant maps (Lumley & Newman, 1977; Antonia et al.,
1991) are reported.

In terms of findings, the paper revealed that shear-thinning rheology (op-
posite trends observed with shear-thickening) leads to several features
associated with the so-called low-drag-reduction regime (LDR, see War-
holic et al., 1999). Compared to the Newtonian benchmark case: (i) there
is an increase in bulk velocity, (ii) the streamwise turbulence intensity
is enhanced, whilst the cross-sectional ones are suppressed and overall,
there is a higher degree of anisotropy, and (iii) the Reynolds shear stress,
as well as the production rate of turbulent kinetic energy, decreases. The
findings are consistent with those reported for DNS of turbulent pipe flow
of GN fluids (Gavrilov & Rudyak, 2016; Singh et al., 2017, 2018), and for
turbulent channel flow of viscoelastic fluids at the LDR; albeit with some
characteristic differences in the latter case. In contrast to a viscoelastic
fluid (see, e.g. Dimitropoulos et al., 2001; Ptasinski et al., 2003) and with
shear-thinning: (i) the new mean shear stress component opposes the tra-
ditional mean viscous shear stress, and (ii) compared to the Newtonian
base case, there is an increase in the peak of the traditional mean viscous
dissipation rate (in absolute magnitude) at the channel wall.

Altogether, the effect of having shear-thinning fluid behaviour (and of a
strain-rate-dependent rheology in general) is found particularly import-
ant within the inner-layer region. Furthermore, we are of the opinion
that similar to other drag-reducing flows, the changes in the turbulence
statistics are connected to changes in the dominant near-wall structures.

Paper II

Paper II is an extension of paper I, and focuses on changes in the near-wall
structures with strain-rate-dependent rheology compared to the bench-
mark case; specifically with shear-thinning behaviour. The paper starts
presenting the profiles for mean velocity and Reynolds shear stress. These
are practical indicators for grasping the underlying changes in the struc-
tural features. An/A increase/decrease in mean velocity/Reynolds shear
stress with shear-thinning possibly implies an enhancement/suppression
of the dominant energy carrier structures/momentum transfer organiz-
ing structures; i.e., velocity streaks/quasi-streamwise vortices in the vi-
cinity of the wall. Afterwards, the paper proceeds to present and discuss
statistical evidence about the effects of the fluid rheology over the quasi-
streamwise vortices. Part of the findings are grounded directly on flow-
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field-based statistics, such as two-point correlations and vorticity intens-
ities, and part on statistics of the instantaneous, 3D vortical structures.
The structures are identified by thresholding the Q-criterion (Hunt et al.,
1988), which is normalized by its standard deviation to account for in-
homogeneities in the flow (Nagaosa & Handler, 2003). The effects over
the velocity streaks are found in previous publications (see, e.g., Singh
et al., 2017, 2018), yet are also given as an appendix in paper II for com-
pleteness. Finally, towards the end of the paper and in the spirit of De
Angelis et al. (2002), the correlations between each velocity component
and each involved viscous force, one related to the mean viscosity and
the other to the fluctuations in viscosity for the shear-thinning case, are
examined. Here, the aim is to gain insight into the potential disruption
of the near-wall self-sustaining process (see, e.g., Hamilton et al., 1995;
Jiménez & Pinelli, 1999) with shear-thinning behaviour.

Considering the collective evidence and in comparison with the bench-
mark case, paper II shows that quasi-streamwise vortices appear to depart
from the wall, diminish in population and strength, and grow in size with
shear-thinning rheology. More specifically, the vortical structures are still
comprised of wall-attached and wall-detached families (del Álamo et al.,
2006), and those wall-attached seem to maintain about the same shape
regardless of the fluid rheology. However, the ones confined to the region
where viscous effects are thought important appear more elongated and
thus, larger in size for the drag-reducing fluid case. Furthermore, with
respect to the regenerative cycle near the wall, its character does seem to
remain unchanged. Near-wall vortices cause the velocity streaks and their
instability, for instance, result in the formation of the quasi-streamwise
vortices. The difference is that with shear-thinning rheology, the viscosity
increases as we move away from the wall, and a new force arises due to
viscosity fluctuations. These two factors appear to be leading to less en-
ergetic streamwise-oriented vortices and more stable and thicker streaks,
respectively.

Paper III

Paper III is another extension of paper I, and for the most part considers:
(i) the relative contributions of the vortex-stretching and advective trans-
port terms (Tennekes & Lumley, 1972, p. 80) to the wall-normal gradi-
ent of the Reynolds shear stress, and (ii) the identification and extension
of regions where viscous effects are important from a mean dynamics
perspective (Klewicki, 2013). Point (ii) is addressed by considering the
wall-normal distribution of the stress gradients in the Reynolds-averaged
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streamwise momentum equation for the turbulent channel.

Overall, the article coveys how points (i) and (ii) differ for the differ-
ent GN fluid cases. Paper III reveals that both velocity–vorticity products
are affected by the strain-rate-dependent rheology. It is found that com-
pared to the Newtonian case and with, e.g., shear-thinning behaviour:
(a) the peak in the advective transport term in the very near wall region
(considered related to the outward motion of the sublayer streaks, see
Klewicki et al., 1994) is suppressed, and (b) there is an general atten-
uation of the vortex-stretching term (associated with a change-of-scale
effect, see Tennekes & Lumley, 1972, p. 80). From a physical perspect-
ive, (a) potentially implies the velocity streaks are more stable, whilst
(b) implies a decrease in the range of turbulent scales. On the other
hand, the mean momentum balance analysis revealed that a four-layer
structure (Wei et al., 2005) persists for all GN fluid cases, albeit with the
starting point and extension of some layers being affected by the strain-
rate-dependent rheology. For instance, in case of shear-thinning fluid be-
haviour and compared to the benchmark case, the upper bound of the
intermediate layers is further away from the wall. This suggests an exten-
sion of the region, where as a whole, viscous effects are still important.
Moreover, the trend is found strikingly similar to the one seen with an in-
crease of frictional Reynolds number in wall-bounded flows of Newtonian
fluids (see, e.g., Klewicki et al., 2012; Chin et al., 2014). The finding hints
that the strain-rate-dependent rheology should be taken into account for
the scaling of the intermediate layers. A scaling factor, on an empirical
basis, is proposed.

Paper IV

Paper IV may be considered as a ‘leap’ in complexity from the others since
it involves a highly three-dimensional flow which is fully inhomogeneous,
though it has some connection to paper II. That is, it also concerns the
study of vortical structures for both, Newtonian and shear-thinning flu-
ids. The paper begins with a brief account about what has been studied
in previous stirred-tank-investigations (not only those referring to vor-
tical structures) for readership not familiar with the topic. Next, paper IV
proceeds to describe the numerical experiments, the implemented pro-
cedure for the simulations, and the methodology used for identifying the
instantaneous, 3D structures. Essentially, the vortex identification is per-
formed using a material objective (i.e., observer-independent) version of
the Q-criterion. The criterion, as other Eulerian local region-type methods
(see, e.g., Epps, 2017), can be objectivized by considering a net version
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of the velocity gradient tensor (Liu et al., 2019; Haller, 2021). In addi-
tion, and as in paper II, the objectivized criterion is normalized by its
standard deviation to account for the inhomogeneities in the flow. After-
wards, for the identified vortices, paper IV presents and discusses stat-
istics (e.g., cumulative distribution functions, or PDFs) in connection to
aspects such as: size, number density, shape, distribution and organiza-
tion in space, and correlation with the kinetic energy due to turbulence
and the periodic passage of the blades. To our knowledge, some of these
aspects have been rarely investigated or have not been addressed at all
for turbulent flow in a stirred tank. The paper finalizes with a summary of
our main findings, and some potential implications for liquid–liquid and
gas–liquid dispersed systems. It is worth commenting that the article also
explores the influence of changing the rotational speed of the tank, and
the rheology of the working fluid. However, due to disparity in the res-
ulting Reynolds numbers, the latter is difficult to set apart from possible
Reynolds numbers effects. As displayed in table 2.3, for a given rotational
speed of the tank, the mixing Reynolds number is one order of magnitude
larger for the Newtonian fluid than for the shear-thinning one.

In general, together with other findings, paper IV revealed: (i) the number
density of the smallest identified structures (about an order of magnitude
less than the tank diameter) is the largest in the impeller region and
the ones adjacent to it; specifically, towards the radial discharge and the
lower circulation loop (see, e.g., Chhabra & Richardson, 2008, p. 404),
(ii) for the same tank regions, vortices having similar size seem to be or-
ganized in pairs, and the probability of encountering several pairs nearby
is rather high, and (iii) tube-like structures are as probably to appear as
spherical blobs if not more so; the likelihood of finding sphere-like struc-
tures is larger only in the most energetic regions of the tank.





Chapter 4

Conclusion and outlook

We have learned a lot by studying pipes, boundary layers, and chan-
nels, and there are still gaps in our knowledge. . . I would suggest,
in fact, that we may have reached a point of diminishing returns
in studying canonical flows. It may be more fruitful to begin to test
our knowledge of wall-bounded flows by examining more complicated
flows. We might ask the question “Do we have enough insight into the
structure of wall-bounded flows to manipulate the energetic motions
and reduce drag, or enhance heat transfer?” Or, “What fundamental
understanding might we gain by such experiments?”

Smits (2020).

The present thesis has the goal of improving our understanding about turbu-
lent flows of Newtonian and shear-dependent viscosity fluids, particularly those
with shear-thinning behaviour. Towards this end, the following contributions
are highlighted:

• For turbulent channel flow, it has been shown that even a slight to moder-
ate degree of shear-thinning results in drag-reducing features regardless
of any other rheological behaviour (e.g., extensional thickening, or elastic
effects).

• Considering the results of Gavrilov & Rudyak (2016); Singh et al. (2017,
2018), several qualitative similarities have been found for internal wall-
bounded flows (pipes and channels), when considering a particular type
of GN fluid. This hints to the possibility of having universal near-wall
behaviour for channel and pipe flows, even when more complex effects
are introduced.

• For turbulent channel flow, it has been revealed that the character of the
near-wall self-sustaining process, reported for Newtonian fluids, remains
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unchanged with shear-thinning rheology. Vortices in the vicinity of the
wall still cause the streaks, and the ‘breakdowns’ of velocity streaks (for
instance) result in the formation of the quasi-streamwise vortices. The
difference is that with shear-thinning rheology, the near-wall momentum
transfer organizing structures appear to be suppressed whilst the ener-
getic structures are seemly enhanced.

• Through a mean momentum balance analysis (Klewicki, 2013) for chan-
nel flow, it has been displayed that the overall region where viscous effects
are important may, indeed, vary with the type of fluid rheology. Further-
more, the findings strongly suggest that proper scaling at the intermediate
layers in turbulent channel flow, and possibly in wall-bounded flows in
general, should take into account the shear-dependent viscosity in case
of shear-thinning/thickening fluids.

• For the more complex turbulent flow in a stirred tank reactor, it has been
shown that vortical structures mostly appear in sphere-like or tube-like
forms. In case of shear-thinning fluid rheology, they also tend more to-
wards ribbon-like shapes (see Moisy & Jiménez, 2004, for the termino-
logy). These observations contrast with some common views about tur-
bulent vortices in stirred tank reactors. For instance, in theoretical mod-
els for breakup and coalescence of fluid particles (see, e.g., Liao & Lu-
cas, 2009, 2010; Solsvik et al., 2013, for reviews of these models), it is
common to represent the turbulent vortices interacting with the drops or
bubbles as spherical structures.

At this juncture, it would be wise to point out two important limitations of
this work (probably more exist, yet to be foreseen). First, the performed tur-
bulent channel flow simulations are at a fairly low frictional Reynolds num-
ber. As commented in chapter 2, a substantially high value for the frictional
Reynolds number is required when studying all regions in wall-bounded flows.
Second, for both the channel flow and the stirred-tank-flow simulations, the
non-Newtonian rheology is implemented through a constitutive equation where
the viscosity solely depends on the second invariant of the strain rate tensor. A
long-standing criticism for this approach (see, e.g., Oliveira & Pinho, 1998) is
that since a turbulent flow is 3D, and considering GN fluids may be seen as par-
ticularisation of Reiner–Rivlin fluids (see, e.g. Macosko, 1994, pp. 83–84), the
viscosity should also be function of the third invariant of the strain rate tensor.
Of course, this reasoning somewhat weakens when recalling that such particu-
larisation is only possible after discarding the second normal stress coefficient in
the Reiner–Rivlin fluid equation. Nevertheless, it is certainly a possibility that
using a more complex constitutive equation may depict shear-dependent vis-
cosity behaviour in a more realistic manner. To date, we still cannot reproduce
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all experimental observations of rheological complexity for the viscous stress,
lacking even important phenomenology (Ewoldt & Saengow, 2022).

Finally, on a personal note, I would like to conclude this work with some sug-
gestions for future investigations. The following tentative topics and research
questions come to mind:

• Simulations of turbulent wall-bounded flows of GN fluids at higher fric-
tional Reynolds numbers. In case of moderate shear-dependent behaviour,
how high should be the Reynolds number for studying the low-lag region?;
what are the characteristics of coherent structures such as vortex clusters
and 3D-quadrant events?; what can be said about the scaling of intermedi-
ate layers in terms of Reynolds number and shear-dependency?; altogether,
how similar or different is the turbulence in a wall-bounded flow for shear-
dependent fluids compared to Newtonian ones?, and is it possible to gain
new insight about canonical wall-bounded flows?.

• Simulations of turbulent wall-bounded flows of shear-thinning fluids in
a more complex setup. What about introducing competing drag-reducing
mechanisms of different nature?, e.g. using riblet-mounted surfaces; what
about considering a multiphase scenario?, e.g. adding small solid or fluid
particles, or considering a free surface; what about introducing rotational,
thermal, or magnetic effects?; what about the introduction of obstacles or
changes in geometry?; e.g. effect of changing the aspect ratio of a duct with
secondary flow, or a sudden contraction of the geometry; what about com-
binations of any of the prior?.

• Simulations of turbulent wall-bounded flows of shear-thinning fluids with
related phenomena, and other key phenomena. How does the turbulent
flow change in case of thixotropy?; how does it change with shear normal
stresses, viscoelasticity, extensional thickening, or combinations of these phe-
nomena?; what constitutive equation reproduces the largest number of key
phenomena without exponentially increasing the number of floating point
operations to be performed?; what numerical scheme(s) may be implemen-
ted to solve such equation in a manner that the overall computational cost
is significantly reduced?.

• Turbulence modelling of turbulent wall-bounded flows of GN fluids. Des-
pite the constant increase of computational capabilities, from an applied
perspective, is it worth to invest in the turbulence modelling of these flows?;
if so, what model(s) should we invest in and what kind of information is
required?; would it be possible to use the fitted models in more complex
flows?

• High-fidelity simulations of turbulent flows in stirred tank reactors work-
ing with GN fluids at matching Reynolds number. Is the mixing Reynolds
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number the most appropriate for characterizing turbulence in stirred tanks?;
what is the isolated effect of changing the GN rheology on the turbulence of
a stirred tank reactor operating at a given Reynolds number?; how does the
turbulent flow changes when introducing further complexities?, e.g., per-
turbation devices, electric currents, chemical reactions, microorganisms, or
mass and heat transfer in general.

A curious situation in research, compared to engineering or design, is that one
ends up with further questions rather than answers. For most of us, this makes
our day-to-day quite engaging and entertaining. Continuous learning is cer-
tainly pleasing.
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Several studies concerning the turbulent pipe flow of generalized Newtonian (GN)
fluids may be found in the literature, but not for channel flow, although that has
been extensively studied for other types of non-Newtonian fluids, such as those with
viscoelastic effects. Direct numerical simulations corresponding to statistically converged
turbulent channel flow of GN fluids at a low frictional Reynolds number have been
performed. The shear-dependent viscosity is introduced through the Carreau fluid model,
and results corresponding to the Newtonian fluid case are compared to those of moderate
shear-thickening and shear-thinning fluid behaviour. The different statistics studied reveal
that shear-dependent fluid rheology appears mainly to affect the flow within the inner
layer region and with shear-thinning behaviour; suppressing near-wall structures such
as quasi-streamwise vortices and low-speed streaks, inhibiting turbulence generating
events and leading to different drag reduction features. These include: enhancement of
streamwise turbulence intensity and suppression of the other cross-sectional intensities,
decrease of the Reynolds shear stress (leading to a lessening in turbulent production),
decrease in energy redistribution between individual components of the Reynolds stress
tensor through the velocity–pressure gradient term and overall increase in turbulence
anisotropy at both small and large scales. In particular, it is noted that at the channel
centre ‘rod-like’ turbulence states, a known low-Reynolds-number behaviour, are more
clearly seen with shear-thinning fluid rheology.

Key words: turbulence simulation

1. Introduction

Shear-dominated wall-bounded turbulent flows such as in pipes, channels and boundary
layers are of utmost importance. Approximately 25% of the energy used in industry is
destined to transport fluids through pipes and channels, or to propel vehicles in air or
water, and approximately a quarter of that energy is irreversibly dissipated near walls
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(Jiménez 2013). Furthermore, in many industrial settings, such as bioreactors in
biochemical plants or the drilling machines used in petroleum extraction, the transported
fluid is non-Newtonian. A non-Newtonian fluid has non-uniform viscosity, which may
depend on shear stress history and/or strain rate in a nonlinear manner, and it is typically
classified within three main groups (see e.g. Irgens 2014): (i) time-independent fluids,
in which fluid viscosity is not a function of time, (ii) time-dependent fluids and (iii)
viscoelastic fluids consisting of materials with partial elastic recovery but also with
viscous features.
The interest in non-Newtonian flows has increased since Toms (1948) reported frictional

drag reductions in turbulent pipe flows due to a small amount of polymer additives. The
first explanation of the drag reduction phenomenon may be attributed to Lumley (1969,
1973). He reasoned that the expansion of molecules, mainly within the buffer layer, leads
to an increase in effective viscosity, the dampening of small eddies, the reduction of the
Reynolds shear stress, the thickening of the sublayer and the consequent drag reduction.
Results reported by Achia & Thompson (1977) also supported the idea about stretched
molecules leading to less ‘bursting’ (Kline et al. 1967) and thus less turbulent kinetic
energy production and subsequent drag reduction. The other explanation for frictional
drag reduction, put forward by Tabor & de Gennes (1986), attributes the decrease in drag
to the elasticity of the polymer additives and argues that the increase in effective viscosity
is rather small and therefore negligible.
Many studies (e.g. Den Toonder et al. 1997; De Angelis, Casciola & Piva 2002; Min

et al. 2003b; Ptasinski et al. 2003; Escudier, Nickson & Poole 2009; Shahmardi et al.
2019) have been committed to understand variations of drag in turbulent pipes, ducts and
channels of polymeric solutions where viscoelastic effects are important. However, for
a wide range of materials, the non-Newtonian rheology is mostly strain-rate-dependent
and viscoelastic effects may be neglected (Rudman et al. 2004). Generalized Newtonian
(GN) fluids are a class of time-independent, purely viscous, non-Newtonian fluids
commonly encountered in numerous engineering and commercial applications, e.g. fluids
in bioreactors displaying shear-thinning behaviour, drilling fluids, cosmetics or food
products. In a GN fluid, the stress tensor due to viscous effects, τij,vis, is given by

τij,vis = 2μSij, (1.1)

whereμ = μ(γ̇ ) is the apparent dynamic viscosity, which solely depends on the strain rate
γ̇ = (2SijSji)

1/2, and Sij is the strain-rate tensor. Note as well that certain materials flow
like a GN fluid once a certain yield-stress value is exceeded. Such materials are called
time-independent yield-stress or viscoplastic fluids.
Experimental studies about turbulent flows of GN fluids have primarily focused on

friction factor measurements and one-point statistics. Metzner & Reed (1955) and Dodge
& Metzner (1959) proposed correlations for the Fanning friction factor based on an
alternative definition for the Reynolds number. Park et al. (1989) reported an increase
in the mean velocity and axial turbulence intensities and a decrease in the tangential
intensities, in pipe flows, caused by shear-thinning behaviour in GN fluids. Pinho &
Whitelaw (1990) and Pereira & Pinho (1994) additionally reported a suppression of the
radial turbulence intensities and a delay in transition from laminar to turbulent flow due to
shear thinning. Rudman & Blackburn (2003) presented similar findings and also compared
turbulent flows of GN fluids with those of yield-stress fluids. In Rudman & Blackburn
(2003) it is recognized that even a small amount of elasticity may importantly affect the
results.
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Experimental issues such as the difficulty in removing unwanted plastic and viscoelastic
effects from solutions with polymer additives and the necessity of specialized equipment
to study non-Newtonian fluids, which are mostly not optically transparent (Gavrilov &
Rudyak 2016a), have motivated a growing interest in numerical studies. Direct numerical
simulation (DNS) is particularly appealing because it does not require closures for
turbulence modelling and allows us to include/exclude plastic and elastic effects from
the employed rheological model. Nonetheless, despite their industrial relevance and the
advantages of direct simulations, few DNS studies about turbulent flows of GN fluids are
available in the literature.
Rudman & Blackburn (2003), Rudman et al. (2004) and Rudman & Blackburn (2006)

presented the first group of DNS studies for turbulent flows of GN and yield-stress
fluids. In agreement with the experimental investigations for turbulent pipe flows, an
increase in the mean axial velocity, delay in transition to turbulence, suppression of
radial and tangential turbulence intensities and enhancement of the axial intensity with
shear thinning were noted. Also, the decrease in the root-mean-square (r.m.s.) values
of the axial vorticity fluctuations and reduced turbulence production with shear-thinning
behaviour were documented. Gavrilov & Rudyak (2016a) showed similar results but in
addition reported an increase in turbulent kinetic energy with increasing shear thinning
and, motivated by the work of Escudier et al. (2009), studied for the first time large-scale
anisotropy of a purely viscous GN fluid flow through anisotropy-invariant maps (Lumley
& Newman 1977) of the Reynolds stress anisotropy tensor. Here the noted increase
in anisotropy near the wall with shear thinning is attributed to a suppression of the
mechanism of redistribution of fluctuation energy between individual components of the
Reynolds stress tensor, but the corresponding budgets, showing such decrease in energy
redistribution, are not actually presented. Also, small-scale anisotropy (see e.g. Antonia,
Kim&Browne 1991; Yeung &Brasseur 1991), equally important for realizable turbulence,
is not studied.
More recently, Singh, Rudman & Blackburn (2017b) considered the influence of

increasing shear-thinning behaviour of GN fluids, in turbulent pipes flows, on first- and
second-order statistics. In the same publication and likely motivated by the work of
Ptasinski et al. (2003), the mean and turbulent kinetic energy budgets are presented for
the first time. However, the individual budgets of the second moments of the velocity
fluctuations are not shown. The budgets for the Reynolds stresses not only allow us to
understand how the different terms contribute to the corresponding stresses, and to the
overall turbulent kinetic energy, but also are necessary to directly evaluate closure models
for turbulence. Singh et al. (2017b), based on the joint probability distributions of the
axial and wall-normal velocity fluctuations at some wall-normal positions, suggested as
well that shear-thinning rheology suppresses contributions from ‘sweeps’ and ‘ejections’
(Wallace, Eckelmann & Brodkey 1972) to the Reynolds shear stress. Nonetheless, in the
publication, the cause for the variation with rheology in the contributions from those
physical events is not explained.
Singh, Rudman & Blackburn (2017a), on the other hand, studied the effect of yield

stress on a turbulent pipe flow of a GN fluid. Here, it is found that the effect of increasing
the yield stress is similar to an increase in shear-thinning behaviour, with the important
difference that the new stress, arising due to fluctuations in viscosity, increases as the
pipe’s core is approached. Subsequently, Singh, Rudman & Blackburn (2018) considered
Reynolds-number effects on a turbulent pipe flow of a GN fluid. In this investigation,
up to a moderate frictional Reynolds number, it is reported that rheological effects are
still present. In the paper, it is also noted that the mean viscosity profile appears to be



908 A43-4 A. A. Arosemena, H. I. Andersson and J. Solsvik

Reynolds-number-independent. Finally, with respect to recent DNS studies of turbulent
flows of GN fluids, Zheng et al. (2019) compared finite-volume-scheme-based predictions
obtained using OpenFOAM, for low-order statistics in a turbulent pipe flow, with
high-order spectral-element DNS code results. The study reported that turbulence statistics
predicted by OpenFOAM for shear-thinning fluids usually differ by less than 10%.
In addition, direct simulations of GN fluid flow based on lattice Boltzmann methods

have been performed as well, e.g. Gabbanelli, Drazer & Koplik (2005), Yoshino et al.
(2007), Wang & Ho (2011) and more recently Chen & Shu (2020). However, those studies
are generally limited to the laminar flow regime.
Other non-DNS numerical studies are based either on large-eddy simulations or on

solving the time-averaged governing equations with some closure for the Reynolds stress
tensor and the correlation term appearing with non-Newtonian rheology. Consider, for
instance, Malin (1997), Cruz & Pinho (2003), Sungkorn, Derksen & Khinast (2012), Ohta
& Miyashita (2014), Gnambode et al. (2015) and Gavrilov & Rudyak (2016b).
In this work, results from DNS of statistically converged turbulent channel flow

corresponding to GN fluids, at a low Reynolds number, are presented and qualitatively
compared to those of turbulent channel flow of viscoelastic fluids and another canonical
flow of GN fluids such as turbulent pipe flow. In the results sections, aside from examining
first- and second-order statistics of GN fluid flows, physical motions contributing to the
turbulence production are considered in detail to comprehend how changes with rheology,
in dominating fluctuations and their large intermittent values, cause variations in the
shear stress budget and more specifically in the Reynolds shear stress. Also, all relevant
non-zero Reynolds stress budgets for turbulent channel flow of GN fluids are presented
for the first time, allowing us, for example, to better understand the decrease/increase in
energy redistributed from streamwise fluctuations with shear thinning/shear thickening.
Furthermore, not only large-scale but also small-scale anisotropy of turbulent GN fluid
flow is appraised and, finally, at the end of the paper, the different reported drag-reducing
features with shear-thinning behaviour are discussed in light of variations noted in the
near-wall structures, i.e. quasi-streamwise vortices and velocity streaks.

2. Formulation

2.1. Governing equations and characteristic scales
Consider the equations, in a Cartesian coordinate system and index notation, governing
mass and momentum conservation in the absence of external forces for a GN fluid, i.e.

∂ui
∂xi

= 0, (2.1)

∂ui
∂t

+ ∂(uiuj)
∂xj

= 1
ρ

∂

∂xj
(−pδij + 2μSij), (2.2)

where streamwise, wall-normal and spanwise directions are denoted by x = (x1, x2, x3) =
(x, y, z), the corresponding instantaneous velocity field by u = (u1, u2, u3) = (u, v,w)

and the pressure by p. Here t denotes time, ρ is the density of the incompressible,
isothermal GN fluid, δij is the Kronecker delta and Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the
aforementioned strain-rate tensor.
For GN fluids, shear-thinning and shear-thickening behaviours may be reproduced

through different rheological models (constitutive equations to relate apparent viscosity
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and strain rate) such as the power-law (PL) or the Carreau fluid models. In both
models, certain parameters are to be specified based on experimental data obtained
from a rheogram. Regarding particularities of such models, for example, PL is simpler
but leads to non-physical results at large and low shear-rate values whilst the Carreau
fluid model may be considered a truncated power-law introduced to avoid this issue. The
apparent viscosity for the Carreau fluid model (see e.g. Irgens 2014) is given by

μ = μ∞ + (μ0 − μ∞)[1 + (Λγ̇ )2](α−1)/2, (2.3)

where μ∞ and μ0 are the ‘infinite’ and ‘zero’ shear-rate viscosities, respectively, Λ is a
time constant and α is the flow index, which for shear thinning is to be less than unity and
for shear thickening more than unity.
Considering a characteristic velocity Uc, viscosity μc, length Lc, time Lc/Uc and stress

ρU2
c for the flow, (2.1)–(2.3) can be rewritten in non-dimensional form as

∂ui
∂xi

= 0, (2.4)

∂ui
∂t

+ ∂(uiuj)
∂xj

= ∂

∂xj

(
−pδij + 2β

Re
Sij

)
, (2.5)

β = μ∞
μc

+
(

μ0

μc
− μ∞

μc

)
[1 + (Λγ̇ )2](α−1)/2, (2.6)

where Re = ρUcLc/μc is the Reynolds number and β = μ/μc is the viscosity ratio
between the apparent fluid viscosity and the characteristic viscosity. Observe that, for
simplicity, the same notation as in (2.1)–(2.3) has been used in (2.4)–(2.6).
For wall-bounded shear flows, typically Uc = uτ and Lc = h in the outer layer and

Lc = μc/(ρuτ ) in the inner layer; see for instance Pope (2000). Here uτ and h refer to the
wall friction velocity and the outer length scale, respectively. Regarding the characteristic
viscosity, its selection is not clear and is open to debate within the scientific community
(see e.g. Rudman et al. 2004). Here, as in Pinho &Whitelaw (1990), Ptasinski et al. (2003)
and Singh et al. (2017a), the nominal wall viscosity μw is taken as characteristic viscosity,
i.e. μc = μw. The complete set of governing equations for a GN fluid is given by (2.4)
and (2.5) and a constitutive equation for the apparent viscosity such as (2.6). It is worth
mentioning that α = 1, in the aforementioned constitutive equation, allows us to recover
Newtonian fluid behaviour.

2.1.1. Averaged governing equations
Introducing the Reynolds decomposition, i.e. splitting the variables into an ensemble

average ¯( ) and a fluctuating component ( )′, as ui = ūi + u′
i, p = p̄ + p′, β = β̄ + β ′ and

Sij = S̄ij + Sij
′, into (2.4) and (2.5) and taking the average leads to

∂ ūi
∂xi

= 0, (2.7)

Re
[
∂ ūi
∂t

+ ∂(ūiūj)
∂xj

]
= −Re

∂ p̄
∂xi

+ ∂

∂xj

(
2β̄S̄ij + 2β ′S′

ij − u′
iu

′
j

)
, (2.8)

where, in comparison with the Reynolds-averaged Navier–Stokes equations for a
Newtonian fluid, a new non-Newtonian term (2β ′S′

ij) arises. This new viscous stress,
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denoted as ‘turbulent viscous stress’ in Singh et al. (2017b), due to fluctuations in viscosity,
is analogous to the recognized polymer stress in Ptasinski et al. (2001, 2003). Therefore,
the total mean shear stress τ̄ = τ̄12 for a GN fluid is given by

τ̄ = 2β̄S̄12 + 2β ′S′
12 − u′

1u
′
2. (2.9)

Since in a GN fluid the viscosity depends on the velocity gradient, through the
strain rate, its fluctuating part is not expected to vanish at the wall (·|w). Thus,
τ̄ |w = 2(β̄S̄12 + β ′S′

12)|w.

2.1.2. Reynolds stress budget equations
The transport equation for the correlation of the velocity fluctuations, u′

iu
′
k,

corresponding to a GN fluid is deduced in a similar manner as it is deduced for a
Newtonian fluid. Thus, the added products (u′

iD(u′
k)/Dt + u′

kD(u′
i)/Dt) are time-averaged.

Here D( )/Dt = ∂( )/∂t + ūj∂( )/∂xj is the material time derivative.
The transport equation for the velocity correlation, see for instance Pinho (2003) or

appendix A, in non-dimensional form is given by

Re
D
Dt

(
u′
iu

′
k

)
= Re

[
−u′

iu
′
j
∂uk
∂xj

− u′
ku

′
j
∂ui
∂xj

− ∂

∂xj

(
u′
iu

′
ju

′
k

)]
+ β̄

∂2

∂xj∂xj

(
u′
iu

′
k

)
− Re

(
u′
i
∂p′

∂xk
+ u′

k
∂p′

∂xi

)
− 2β̄

∂u′
i

∂xj

∂u′
k

∂xj

+
(

∂β̄

∂xj

)[
∂

∂xj

(
u′
iu

′
k

)
+ u′

i

∂u′
j

∂xk
+ u′

k

∂u′
j

∂xi

]

+
(

∂β ′

∂xj

) [
∂

∂xj

(
u′
iu

′
k

) + u′
i

∂u′
j

∂xk
+ u′

k

∂u′
j

∂xi

]
+ β ′ ∂2

∂xj∂xj

(
u′
iu

′
k

)
− 2β ′ ∂u

′
i

∂xj

∂u′
k

∂xj
+

(
∂β ′

∂xj

)[
u′
i

(
∂uk
∂xj

+ ∂uj
∂xk

)
+ u′

k

(
∂ui
∂xj

+ ∂uj
∂xi

)]
+ β ′

[
∂2

∂xj∂xj

(
u′
iuk

) + ∂2

∂xj∂xj

(
uiu′

k

)]
− 2β ′

[
∂u′

i

∂xj

∂uk
∂xj

+ ∂ui
∂xj

∂u′
k

∂xj

]
− β ′

[
uk

∂2u′
i

∂xj∂xj
+ ui

∂2u′
k

∂xj∂xj

]
. (2.10)

As can be seen from (2.10), several new terms have arisen due to the non-Newtonian
rheology. To facilitate the later discussion, the new terms are labelled as follows:

(i)

Pik = −Re
[
u′
iu

′
j
∂uk
∂xj

+ u′
ku

′
j
∂ui
∂xj

]
=⇒ total production rate, (2.11)

(ii)

TTik = −Re
∂

∂xj

(
u′
iu

′
ju

′
k

)
=⇒ turbulent transport rate, (2.12)
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(iii)

MDik = β̄
∂2

∂xj∂xj

(
u′
iu

′
k

)
=⇒ mean viscous diffusion rate, (2.13)

(iv)

Πik = −Re
(
u′
i
∂p′

∂xk
+ u′

k
∂p′

∂xi

)
=⇒ velocity–pressure gradient transport rate,

(2.14)
(v)

Mε ik = 2β̄
∂u′

i

∂xj

∂u′
k

∂xj
=⇒ mean viscous dissipation rate, (2.15)

(vi)

Mvik =
(

∂β̄

∂xj

) [
∂

∂xj

(
u′
iu

′
k

)
+ u′

i

∂u′
j

∂xk
+ u′

k

∂u′
j

∂xi

]
=⇒ mean viscosity gradient transport rate, (2.16)

(vii)

Tvik =
(

∂β ′

∂xj

)[
∂

∂xj

(
u′
iu

′
k

) + u′
i

∂u′
j

∂xk
+ u′

k

∂u′
j

∂xi

]
=⇒ turbulent viscosity gradient transport rate, (2.17)

(viii)

TDik = β ′ ∂2

∂xj∂xj

(
u′
iu

′
k

) =⇒ turbulent viscous diffusion rate, (2.18)

(ix)

Tεik = 2β ′ ∂u
′
i

∂xj

∂u′
k

∂xj
=⇒ turbulent viscous dissipation rate, (2.19)

(x)

T̃vik =
(

∂β ′

∂xj

) [
u′
i

(
∂uk
∂xj

+ ∂uj
∂xk

)
+ u′

k

(
∂ui
∂xj

+ ∂uj
∂xi

)]
=⇒ turbulent viscosity gradient transport rate related to mean flow,

(2.20)

(xi)

T̃Dik = β ′
[

∂2

∂xj∂xj

(
u′
iuk

) + ∂2

∂xj∂xj

(
uiu′

k

) − uk
∂2u′

i

∂xj∂xj
− ui

∂2u′
k

∂xj∂xj

]
=⇒ turbulent viscous diffusion rate related to mean flow, and (2.21)
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(xii)

T̃εik = 2β ′
[
∂u′

i

∂xj

∂uk
∂xj

+ ∂ui
∂xj

∂u′
k

∂xj

]
=⇒ turbulent viscous dissipation rate related to mean flow. (2.22)

The overall equation is recast as

Bik = Pik + Tik − εik, (2.23)

where total dissipation εik and transport Tik rates, contributing to budget Bik = ReD(u′
iu

′
k)/

Dt, are given by
εik = Mε ik + Tε ik + T̃εik (2.24)

and
Tik = TTik + MDik + Πik + Mvik + Tvik + TDik + T̃vik + T̃Dik, (2.25)

respectively. The transport equation for the turbulent kinetic energy is found by taking the
summation of the diagonal components of (2.23) and dividing the resulting expression
by 2. Also, the transport equation for the velocity correlation u′

iu
′
k corresponding to a

Newtonian fluid may be recovered from (2.23) by considering constant viscosity.
It is worth pointing out that, in the following sections, the results are presented

in inner (viscous) units unless otherwise specified. Consequently, all variables are
non-dimensionalized with μc = μw, Lc = (μw/ρ)/uτ and Uc = uτ and are identified as
{ }+ quantities.

2.2. Numerical set-up, computational domain and grid resolution
Direct numerical simulations of a statistically converged plane turbulent channel flow of
GN fluids at a low frictional Reynolds number, Reτ = ρuτh/μw, have been performed.
A turbulent channel flow is statistically stationary and homogeneous in the spanwise
and streamwise directions. Since the flow is restricted by the channel walls, non-slip
and impermeability boundary conditions are imposed at the walls. In the homogeneous
directions, periodic boundary conditions may be employed if the domain is large enough
to contain the largest structures in the flow.
DNS requires resolution of all spatial and temporal scales within the flow. Typically,

a domain is considered sufficiently large if two-point correlations of the turbulent
fluctuations decay close to zero at a separation of half the period in the homogeneous
directions (see Moin &Mahesh 1998). Regarding the grid resolution for DNS, it should be
fine enough to capture the smallest scales in proximity to the wall. Generally, the resolution
is O(η), η being the Kolmogorov length scale. In Kim, Moin & Moser (1987) and Moser,
Kim & Mansour (1999), the grid resolution is considered adequate if there is an evident
scale separation, i.e. energy density at high wavenumbers is several decades lower than the
one at low wavenumbers and if no energy pile-up is happening at the smallest scales.
The numerical simulations have been carried out using a finite-volume method on

a collocated grid. Central differencing is used for the spatial discretization whilst the
Crank–Nicolson scheme is employed for the discretization in time. The numerical
procedure is based on an implicit, two-time-step advancement technique where the
Poisson equation for the pressure is solved with an efficient multigrid method (see Emvin
1997). For more details regarding the numerical procedure and the FORTRAN 77 code,
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GN fluid case Lx/h Lz/h 
x+ 
y+
min 
y+

max 
z+ μ∞/μ0 μ0/μw Λ(Uc/Lc) α

P180 6π 2.5π 14.81 0.22 4.62 6.17 1 × 10−3 1.782 0.1 0.8
N180 4π 2π 9.88 0.22 4.62 4.94 — 1 — 1.0
D180 4π 2π 9.88 0.22 4.62 4.94 1 × 10−3 0.561 0.1 1.2

TABLE 1. Parameters of the simulation. Here Lx and Lz are the periodic streamwise and spanwise
dimensions of the computational domain, Ly = 2h is the domain in the wall-normal direction,

x+ and 
z+ are the constant grid spacings in inner units corresponding to the streamwise
and spanwise directions whilst 
y+

min and 
y+
max are the minimum and maximum grid spacings

in inner units corresponding to the wall-normal direction. P180 and D180 refer to the shear
thinning or pseudo-plastic and shear thickening or dilatant fluid cases whilst N180 refers to the
base Newtonian case.

2.0

1.5

1.0

0.5
10–2 10–1 100

β

γ +·

FIGURE 1. Viscosity rheogram. The flow index α is equal to 0.8 and to 1.2 for cases P180
and D180, respectively, whilst Λ(Uc/Lc) = 0.1 for both non-Newtonian cases. The profiles
corresponding to P180 and D180 are identified by red and cyan colours, respectively.

called CALC-LES, see, for instance, Davidson & Peng (2003) and Davidson (2018). The
GN fluid rheology has been incorporated into the code through the Carreau fluid model
and the simulation parameters are summarized in table 1. A viscosity rheogram, β versus
γ̇ +, is also shown in figure 1. For all GN fluid cases, a target Reτ = 180 is considered. For
cases N180 and D180, a computational box as in Kim et al. (1987) is used. For case P180,
a larger computational domain is employed since structures of larger size than those in the
Newtonian case are expected. See, for instance, Rudman & Blackburn (2006) and Singh
et al. (2017b).
Synthetic turbulence (Davidson 2007) has been used to initialize case N180, whilst

the simulations for the non-Newtonian cases have been initialized using a flow field
corresponding to the Newtonian case at the same target Reτ and the initial transients
have been discarded. Statistically steady state is considered to have been achieved once
a linear profile for τ̄ is observed (Vinuesa et al. 2016). The initial transient time is over
200 convective time units, and 150 flow fields saved every ≈ 0.2 eddy turnover times have
been considered to compute the statistics.
With respect to the computational domain, for all cases, the two-point correlations

between turbulent fluctuations, i.e. Rij = u′
i(x, t)u′

j(x + r, t)/ u′
i(x, t)u′

j(x, t), where r is
the separation vector between the two points, appear to be decreasing with increasing
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FIGURE 2. Normalized two-point correlations Rij: streamwise separation at (a) y+ ≈ 5.07 and
(b) y+ ≈ 154.96, spanwise separation at (c) y+ ≈ 5.07 and (d) y+ ≈ 154.96. Line styles ‘—–’,
‘- - -’ and ‘· · ·’ are used to identify R11,R22 and R33, respectively. Profiles corresponding to
P180, N180 and D180 are identified by red, black and cyan colours, respectively.

separation in the homogeneous directions and the employed domains are deemed
adequate; see figure 2. Note that, since the two-point correlations are related to the
integral length scales, as expected, more elongated/larger structures are present in case
P180 and finer structures in case D180 when compared with the Newtonian base case.
Such observation is further supported by the instantaneous flow structures shown in
figure 3. As can be seen, longer low-speed streamwise velocity streaks are observed for
the shear-thinning case. Figure 3 also suggests that, for all fluid cases, the turbulent flow
regime is achieved despite the low frictional Reynolds number used for the simulations.
To check the grid resolution, pre-multiplied one-dimensional spectral energy densities

based on the presented two-point correlations are considered; see figure 4. Here, for
all cases, an evident energy drop-off is occurring as the wavenumber increases and
the maximum value in the different spectral energy densities is expected close to the
wavenumbers corresponding to the respective integral length scales. For instance, the
maximum in the pre-multiplied energy spectrum based on the two-point correlation for
u′ is expected at a wavenumber corresponding to the longitudinal integral length scale.
Note as well that the pre-multiplied spectra corresponding to case P180, when compared
to the results from cases N180 and D180 for the same number of modes, are presenting
lower maximum amplitudes due to the increase in the computational domain for that case.
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(b)(a)

(d )(c)

( f )(e)

FIGURE 3. Contours of instantaneous streamwise velocity fluctuations normalized by frictional
velocity at y+ ≈ 5.07 (a,c,e) and y+ ≈ 154.96 (b,d, f ): (a,b) P180, (c,d) N180 and (e, f ) D180.
White and black represent positive and negative fluctuations, respectively.

In addition, whilst considering the computational resolution, a length scale based on
the mean viscosity and the total dissipation rate has been computed; see figure 5. For
the Newtonian case, this is the Kolmogorov length scale. For cases P180 and D180,
since Kolmogorov’s first similarity hypothesis (see e.g. Pope 2000) is stated for constant
viscosity, such length scale η̃ = (μ̄/ρ)3/4/ε

1/4
k , where εk = (ε11 + ε22 + ε33)/2 is the total

mean dissipation rate (see Bradshaw & Perot (1993) and Bradshaw (1995) for a note
about true dissipation), is analogous to η in the regions with minor variation in the mean
viscosity profile, i.e. in the near-wall region and close to the channel’s centre (see § 3.1).
As seen from figure 5, for N180, 
y+

min < η+ in the near-wall region and 
y+
max ≈ O(η+)

at the channel’s centre. Similar trends are noted for the non-Newtonian fluid cases when
comparing the wall-normal grid resolution with η̃+.
Based on the energy drop-off previously noted and on the η+ and η̃+ values, the

computational resolution appears to be adequate for the different cases. Also, a verification
with published data for the Newtonian case is presented in appendix B.

3. Results

3.1. Low-order statistics
The mean (averaged in time and in homogeneous directions) streamwise velocity profile
ū+ and its diagnosis function y+dū+/dy+ are presented in figure 6. In the same figure,
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FIGURE 4. Pre-multiplied one-dimensional spectral energy density: against normalized
streamwise wavenumber kxh at (a) y+ ≈ 5.07 and (b) y+ ≈ 154.96, and against normalized
spanwise wavenumber kzh at (c) y+ ≈ 5.07 and (d) y+ ≈ 154.96. Line styles ‘—–’, ‘- - -’ and
‘· · ·’ are used to identify results corresponding to E11,E22 and E33 spectral energy densities,
respectively. Profiles corresponding to P180, N180 and D180 are identified by red, black and
cyan colours, respectively.

the mean viscosity profile μ̄+ = β̄ and an analogous quantity to the diagnosis but for the
mean viscosity, y+dβ̄/dy+, are presented as well.
To discuss variations against the wall-normal coordinate y+, the classical flow-region

subdivision based on case N180 is considered: there is an inner region, comprising a
viscous sublayer ( y+ � 5); a buffer region (5 � y+ � 55); a quite limited – if it exists
at all – log region (55 � y+ � 62); and a remaining outer region. Within the viscous
sublayer, for all cases, ū+ ≈ y+ and for y+ � 10, minor deviation for the non-Newtonian
cases is noted in ū+ and β̄ when compared to case N180. For y+ � 10, ū+ increases with
decreasing flow index α, and a larger bulk velocity, implying a lower friction factor for
a common driving pressure gradient, is observed. Also, as evidenced by the diagnosis
function, the starting point of the log region and the corresponding y+dū+/dy+ ≈ 1/κ ,
where κ is the von Kármán constant, increase with decreasing flow index.
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FIGURE 5. Kolmogorov’s length scale η+ and analogous length scale η̃+, for the
non-Newtonian cases, against y+. Profiles corresponding to P180, N180 and D180 are identified
by red, black and cyan colours, respectively.
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FIGURE 6. First-order statistics: (a) ū+, (b) y+dū+/dy+, (c) β̄ and (d) y+dβ̄/dy+ versus y+.
Profiles corresponding to P180, N180 and D180 are identified by red, black and cyan colours,
respectively.

Regarding β̄, for y+ � 10, it deviates rapidly from the corresponding constant
Newtonian value, as expected. Since β̄ appears to behave in a log manner within a certain
y+ range, an analogous diagnosis function based on β̄ has been considered. On a first
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impression, such a log region in the mean viscosity ( y+dβ̄/dy+ ≈ Γ ) indeed occurs but
different slopes Γ for cases P180 and D180 are observed; see figure 6(d).
For the outer layer region, the velocity defect profile ū+( y/h = 1) − ū+ shown in

figure 7(a) is apprised. From the velocity defect profile, it is clear that larger mean
centreline velocity values are observed with decreasing flow index. Also, it appears that,
in the outer layer region ( y+ � 62 or y/h � 0.35), all curves collapse. Such behaviour
suggests independence of the velocity defect profile in the outer region and that differences
in the mean velocity profiles between the different cases (P180, N180 and D180) are most
likely due to differences in the flow within the inner region. This observation has also been
made by Singh et al. (2018).
Distribution in the i direction (i = 1, 2, 3) of the r.m.s. values of the velocity

fluctuations and the vorticity fluctuations, i.e. r.m.s.(u+
i ) = (u′

i)
2
1/2

/uτ and r.m.s.(ω+
i ) =

(ω′
i)
2
1/2

[μw/(ρu2τ )], respectively, is presented in figure 8. The r.m.s. values corresponding

to fluctuations in viscosity r.m.s.(β) = (μ′)21/2/μw are also shown in figure 8. The r.m.s.
values for the velocity fluctuations appear to be affected by the rheology mainly outside
the viscous sublayer. The streamwise turbulence intensity increases with decreasing
flow index whilst the opposite is observed in the spanwise and wall-normal turbulence
intensities for the same trend. The wall-normal position at which a peak in the streamwise
turbulence intensity appears moves slightly from the wall with decreasing flow index.
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With respect to the r.m.s. values of the vorticity fluctuations, in the near-wall region,
there is an increase in the spanwise component whilst a decrease is observed for the
other two components with decreasing flow index. Thus, we anticipate an increase in
the magnitude of the mean viscous dissipation since, for homogeneous turbulence, the
enstrophy is approximately equal to the ratio between mean viscous dissipation rate and
mean kinematic viscosity. At a wall-normal position within the buffer region ( y+ ≈ 10),
the opposite is then observed for the r.m.s. values of the spanwise vorticity fluctuation,
i.e. the r.m.s. value decreases with shear thinning. Moreover, after such a point, the r.m.s.
values of all vorticity fluctuations appear to decrease with decreasing flow index.
It is interesting to note that the presented results suggest an overall increase in the

anisotropy of the velocity and vorticity correlation tensors, u′
iu

′
k and ω′

iω
′
k, with shear

thinning (see § 3.5).
Regarding the r.m.s. values corresponding to fluctuations in viscosity, similar to the

mean viscosity profile, the distribution appears to be approximately constant in the viscous
sublayer and then it starts to increase with y+ up to a certain value within the inner region.
After such a wall-normal position, the r.m.s. values of the viscosity fluctuations start to
decrease more rapidly. Here, the plateau in β̄ and r.m.s.(β) within the viscous sublayer
is likely due to small variations in the mean strain rate and its r.m.s. values, respectively
(see figure 7b). Note that, altogether, r.m.s.(β) is larger for case P180, suggesting larger
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fluctuations from β̄ with shear thinning. It is also noted that the peak in r.m.s.(β) moves
from the wall with shear thinning.
Finally, it is worth pointing out some qualitative similarities with channel flow of

viscoelastic fluids, which is another type of drag-reducing fluid. Compared to the
Newtonian case and as with shear thinning, there is a noticeable increase in the mean
streamwise velocity with viscoelasticity. Also for Reτ < 1000, a minimal – if any –
presence of a log-law region is observed (Thais, Gatski & Mompean 2012). With respect
to the turbulence intensities, compared to the Newtonian case and as with shear thinning,
Ptasinski et al. (2003) and Min, Choi & Yoo (2003a) reported an enhancement of
the streamwise turbulence intensity and a decrease of the wall-normal and spanwise
turbulence intensities with viscoelasticity and in the case of small drag reduction (SDR)
regime (see Warholic, Massah & Hanratty 1999). In contrast, the same publications
reported a decrease in all turbulence intensities with viscoelasticity for the large drag
reduction (LDR) regime. On the other hand, regarding low-order statistics reported for
other canonical flows of GN fluids, it is worth mentioning that Singh et al. (2017b) showed
similar trends with shear thinning for pipe flow. For α < 1, there is an increase in the
mean axial velocity, mean viscosity and axial turbulence intensity whereas both radial and
azimuthal turbulence intensities decrease.

3.2. Mean shear stress budget
For a statistically stationary fully developed flow of an incompressible GN fluid, the total
mean shear stress τ̄+ (see § 2.1.1) is given by

τ̄+ = τ̄+
vis + τ̄+

tur + τ̄+
GN, (3.1)

where τ̄+
vis = β̄dū+/dy+, τ̄+

tur = −u′v′/u2τ and τ̄+
GN = 2β ′S′

12
+ are the viscous stress, the

turbulent or Reynolds shear stress and the new stress due to fluctuation in viscosity,
respectively. Owing to the constant pressure gradient driving the flow, the total mean shear
stress is linear, i.e. τ̄+ = 1 − y+/Reτ .
The different contributions to the total mean shear rate are shown in figure 9. As can be

seen, the mean viscous stress increases in the shear-thinning case. Since τ̄+
vis depends on β̄

and dū+/dy+, its increase can be discussed considering figure 6(b,c). For y+ � 10, there is
minor variation in the mean viscosity and in the mean streamwise velocity gradient. Thus,
the increase in τ̄+

vis for the shear-thinning case is attributed to a small increase in both
quantities. For y+ > 10, outside the viscous sublayer, the increase in the mean viscous
stress is mostly due to β̄, which quite significantly increases in the shear-thinning case due
to the higher ‘zero’ shear-rate viscosity (see viscosity rheogram, figure 1). In the near-wall
region where the turbulent stress is close to zero, the decrease/increase in the viscous
stress component due to shear thickening/shear thinning is compensated by the new stress
component. Note that the sign of τ̄+

GN depends on the sign of α − 1. Outside the viscous
sublayer, the new stress starts to decrease and the viscous stress is then compensated by
the turbulent stress component. Thus, for example, an increase in the viscous stress due
to shear thinning is compensated by a decrease in the Reynolds shear stress. It is also
interesting to note that τ̄+

tur, for all cases, appear to collapse in the outer region, suggesting
that the cross-correlation u′v′/u2τ is independent of the rheology in that region.
Finally, it is worth contrasting the mean shear stress budget corresponding to

the shear-thinning fluid with the budget of a drag-reducing polymer solution, i.e. a
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viscoelastic fluid. Compared to the Newtonian case and as with shear thinning, there is
a significant overall reduction in the Reynolds shear stress with polymer additives (Min
et al. 2003a; Ptasinski et al. 2003). In addition, Ptasinski et al. (2003) reported that the
polymer stress, arising due to viscoelastic effects, is always positive but relatively small
and mainly important near to the wall for SDR, whereas for LDR, this contribution is
large and important across the whole channel. Note that, in contrast, the analogous τ̄+

GN is
always negative for shear thinning and mainly important close to the wall. On the other
hand, regarding Reynolds stress budgets reported for other canonical flows of GN fluids,
Singh et al. (2017b) presented similar trends with shear thinning for pipe flow. For α < 1,
the mean viscous stress slightly increases near the wall and more noticeably in the buffer
layer region whereas the Reynolds shear stress decreases for all y+ and a new negative
stress arises in the total mean stress balance.

3.3. Quadrant analysis
To improve our understanding of the generation of Reynolds shear stress and the related
production of turbulent kinetic energy, a quadrant analysis (Wallace et al. 1972) is carried
out. Contributions to the cross-correlation −u′v′ are classified according to the sign
of the velocity fluctuations into four categories or quadrants: Q1 (u′ > 0, v′ > 0), Q2
(u′ < 0, v′ > 0), Q3 (u′ < 0, v′ < 0) and Q4 (u′ > 0, v′ < 0), and each of the quadrant
motions is associated with a physical event: positive production of turbulent kinetic energy
arises due to low-speed fluid moving from the wall (Q2 events) and high-speed fluid
moving towards the wall (Q4 events). Such motions have been visualized, see for instance
Kline et al. (1967) and Corino & Brodkey (1969), and denoted as ejection and sweep
events, respectively. Q1 and Q3 motions, which correspond to high-speed fluid reflected
outwards from the wall and low-speed fluid deflected towards the wall, account for
negative production of turbulent kinetic energy, and in the absence of a better terminology
may be called outwards and wallwards interactions (Wallace 2016).
The quadrant-conditioned contributions to the Reynolds shear stress are presented in

figure 10 for the different cases. In the following discussion, changes in quadrant event
contributions with shear thinning are also considered in light of variation with decreasing
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flow index in the skewness and flatness profiles corresponding to the velocity fluctuations.
The profiles are shown in figure 11.
From the non-fractional contributions to −u′v′/u2τ , a decrease in contributions from

all quadrants’ events with shear thinning is observed. This trend is consistent with the
perceived decrease in Reynolds shear stress with shear thinning seen in § 3.2. Also,
from the non-fractional contributions, it is noted that the wall-normal position at which
contributions from sweep and ejection events coincide has moved slightly from the wall
for the shear-thinning case. A similar behaviour – with shear thinning – is then expected for
the peaks corresponding to maximum production and maximum turbulent kinetic energy
(see § 3.4).
Observing the fractional quadrant contributions, it is noticed that, for all fluid cases,

sweep events appear to dominate in the very near-wall region whilst ejection events
contribute more to −u′v′/u2τ after the y+ position where the contributions due to Q2 and
Q4 motions are approximately the same. Within the viscous sublayer where quite large
intermittency is present, a more pronounced increase in the fractional Q1 contribution
is observed for the shear-thinning case. Such an increase, mainly compensated by
fractional contributions due to Q4 events, is expected since the correlation between
u′ > 0 and v′ > 0 appears to vary little with rheology (see non-fractional contribution
profiles) and the overall Reynolds shear stress is decreasing with shear thinning even
within such a very near-wall region. As reflected in the normalized skewness profiles,
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large positive streamwise and wall-normal velocity fluctuations appear to dominate more
with shear thinning and, as shown in the non-fractional contributions, lead to a decrease in
contributions from Q2 and Q4 events, which decreases the overall Reynolds shear stress.
Outside the viscous sublayer but before the wall-normal position where Q2 and Q4

contributions are approximately the same, there is little variation in the non-fractional
contributions due to Q1 and Q3 events with rheology. The decrease in contribution
from sweep and ejection events, together causing the decrease in −u′v′/u2τ , appears to
be related to the appearance of more dominant large positive streamwise fluctuation and
less dominant negative wall-normal fluctuations with shear thinning, as reflected in the
normalized skewness profiles. After the point with equal contributions from Q2 and Q4
events but before a position y+ ≈ 30–35 where ejection events dominate due to large
intermittent v′ > 0 values for all GN fluids, the decrease in Reynolds shear stress with
shear thinning appears to be linked to a slight increase in dominant u′ > 0 and v′ < 0
signals.
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Finally, after the position y+ ≈ 30–35, non-fractional contributions due to Q1, Q2 and
Q3 events almost do not vary with rheology, and the observed decrease in −u′v′/u2τ for
the shear-thinning case is attributed to a decrease in the contribution from sweep events
with shear thinning. Here, such behaviour is likely to be due to more dominant u′ < 0 and
v′ > 0 signals with decreasing flow index, as reflected in the corresponding normalized
skewness profiles.

3.4. Reynolds stress budgets
The Reynolds stress budgets, corresponding to the equations presented in § 2.1.2, are
considered. The total production, transport and dissipation rates corresponding to budgets
B+
ik of the relevant non-zero stresses in a fully developed turbulent channel flow, for the

different GN fluid cases, are shown in figure 12. The turbulent kinetic energy budget B+
k

and the turbulent kinetic energy profile k+ = u′
iu

′
i/(2u

2
τ ) are presented in figure 13.

For all cases, and as expected, the interaction between −u′v′/u2τ and mean shear causes
a production rate in budget B+

11. Since the mean velocity gradients increase with shear
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thinning (see ū+ profile in § 3.1), the decrease in P+
11, in its near-peak region, is attributed

to the observed decrease in Reynolds shear stress with decreasing flow index (see τ̄+
tur in

§ 3.2). Note as well that, as commented in § 3.3, the peak in production at y+ ≈ 12 for
the Newtonian case has moved slightly from the wall with shear thinning. In budget B+

11,
the energy from the production region is then distributed through T+

11 towards and away
from the wall. At the wall, a good portion of the transported energy from the maximum
production region is then dissipated at a rate ε+

11. Everywhere P
+
11 is balanced by T

+
11 − ε+

11.
Note that, consistently with the decrease in the production rate with shear thinning, the
amount of energy that is irreversibly dissipated decreases with decreasing flow index.
Since budgets B+

22 and B+
33 do not contain a production term, their source is energy

being redistributed from budget B+
11. Here, an apparent decrease in redistribution of energy

from B+
11 to B+

22 and B+
33, reflected in the decrease of T+

11, T
+
22 and T+

33, is occurring
with decreasing flow index. This observation is consistent with the noticed increase
in streamwise turbulence intensity and the decrease in the spanwise and wall-normal
intensities with shear thinning, seen in § 3.1.
For budget B+

12, the interaction between wall-normal turbulence intensities and mean
shear yields production. Owing to the aforementioned decrease in the wall-normal
intensities with decreasing flow index, there is a decrease in the production rate P+

12 with
shear thinning. This observation is consistent with the noted decrease in Reynolds shear
stress with decreasing flow index. As for the B+

11 budget, the source from the production
region is transported towards and away from the wall through T+

12. However, different
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from that budget, little of that source (even less so for the shear-thinning fluid case) is
‘dissipated’ at a rate ε+

12 and mostly is balanced by T+
12.

The balance of the turbulent kinetic energy budget B+
k is based on the terms appearing

in B+
11, B

+
22 and B

+
33, where budget B

+
11 with turbulent production dominates over the others.

Thus, the balance of B+
k and the corresponding observations are similar to those made for

budget B+
11. It is interesting to note that most variations in the terms of B+

k with rheology
appear to be restricted to the inner layer region. Also, with respect to the total dissipation
rate, since from the r.m.s. values of the vorticity fluctuations (see § 3.1) an increase in
the magnitude of the mean viscous dissipation rate is expected with shear thinning, the
overall decrease in the magnitude of ε+

k appears to be due to the non-Newtonian terms
contributing to it.
Regarding k+, as expected, there is an increase with shear thinning and, similar to the

production rate, its peak has moved slightly from the wall with decreasing flow index.
The increase in turbulent kinetic energy may be explained by considering the deficit in
redistribution of energy from budget B+

11 to B
+
22 and B

+
33 with shear thinning, since it causes

the observed increase in anisotropy between the turbulence intensities. The profile of k+

may also be understood while examining the total production and dissipation rates. Within
the region where production exceeds dissipation and the transport rate T+

k is negative, there
is an increase in how much P+

k exceeds −ε+
k with decreasing flow index. This is reflected

by an increase in the turbulent kinetic energy profile within the same region.
Contributions from the different terms in (2.23) to total transport and dissipation

rates for budgets B+
11, B

+
12 and B+

k are shown in figures 14–16. Contributions to budgets
corresponding to the other diagonal components of u′

iu
′
k, i.e. B

+
22 and B+

33, are presented in
appendix C.
For the transport rate T+

11, the traditional terms Π+
11, TT

+
11 andMD+

11 contribute the most.
The velocity–pressure gradient term Π+

11 notably decreases in magnitude with decreasing
flow index. This behaviour is to be expected since redistribution of energy to budgets
B+
22 and B+

33 decreases with shear thinning. The mean viscous diffusion MD+
11, which

constitutes the largest contribution to T+
11, appears to be mainly affected by rheology within

the viscous sublayer and increases with decreasing flow index. Since the mean viscosity
varies little for y+ � 10, such an increase is attributed to an increase of diffusion of u′u′/u2τ
with shear thinning. The turbulent transport TT+

11, on the other hand, is mainly affected
outside the viscous sublayer but within the inner layer region by rheology. Here TT+

11
mostly decreases in magnitude with decreasing flow index.
The non-Newtonian transport term mainly affecting T+

11 within the viscous sublayer is
T̃D

+
11. Since, in the very near-wall region, the fluctuations in viscosity are rather small (see

the r.m.s.(β) profile in § 3.1), the diffusion of u′ū/u2τ is considered the reason for the large
magnitude in T̃D

+
11 within this region. Also, the turbulent viscous diffusion rate related

to mean flow decreases the total transport rate T+
11 with shear thinning. Other transport

terms such as TD+
11, Tv+

11 and Mv+
11 related to fluctuation in viscosity, their gradients and

gradients in the mean viscosity either decrease or increase with rheology at different
wall-normal positions but almost do not affect the total transport rate. The remaining
transport term T̃v

+
11 increases with decreasing flow index and appears to be mainly relevant

in the inner region outside the viscous sublayer. In this region both gradients of fluctuations
in viscosity and advected gradients of the mean streamwise velocity are expected to
contribute to T̃v

+
11.

For the total dissipation rate ε+
11, Mε+

11 and T̃ε
+
11 appear to contribute the most. The

mean viscosity increases with decreasing flow index; however, at the wall and in the
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very near-wall region, the mean viscosity is almost unaffected by rheology. Therefore,
the increase of magnitude in Mε+

11 with shear thinning is mainly attributed to an increase
in the autocorrelation of streamwise velocity fluctuation gradients. This observation is
consistent with the increase in the r.m.s. values of the spanwise vorticity fluctuations at
the wall and very near it with shear thinning (see § 3.1). Outside the viscous sublayer
and mainly for y+ � 10, the mean viscosity starts to increase in a more noticeable manner
with decreasing flow index, and contributes more to the increase in magnitude of the mean
viscous dissipation rate within that region.
The non-Newtonian dissipation rate T̃ε

+
11 increases in magnitude with decreasing flow

index and mainly affects ε+
11 in the inner region, specially within the viscous sublayer.

In the vicinity of the wall, the fluctuations in viscosity are fairly small and the large
magnitude observed for T̃ε

+
11 is attributed to the correlation between mean streamwise

velocity gradients and streamwise velocity fluctuation gradients. Note that the decrease in
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12, T̃D

+
12 and TD+

12;
(c) line styles ‘—–’, ‘- - -’ and ‘· · ·’ are used for −Mε+

12, −T̃ε
+
12 and −Tε+

12; and (d) line styles
‘—–’, ‘- - -’ and ‘· · ·’ are used for T̃v

+
12, Mv+

12 and Tv+
12. Profiles corresponding to P180, N180

and D180 are identified by red, black and cyan colours, respectively.

the magnitude of ε+
11 at the wall with shear thinning is mainly attributed to dissipation at

rate T̃ε
+
11, since the magnitude ofMε+

11 is increasing with decreasing flow index. The other
non-Newtonian dissipation rate Tε+

11 also causes the decrease in the magnitude of the total
dissipation rate ε+

11 with shear thinning. Nonetheless, compared to T̃ε
+
11, it is smaller in

magnitude. The dissipation rate Tε+
11 arises due to interactions between fluctuations in

viscosity and squared streamwise velocity fluctuation gradients.
For the transport rate T+

12, the important terms appear to be the velocity–pressure
gradient term and the turbulent transport rate. Most of the production P+

12 is balanced
by Π+

12 and TT+
12. Within the inner region, the mean viscous diffusion rate appears to

contribute in no significant manner to the rate T+
12 and, even less so, other non-zero

transport terms associated to the non-Newtonian rheology.
The total ‘dissipation’ rate ε+

12 is quite low and it is mainly due to the mean viscous
‘dissipation’ rate Mε+

12. The rate Tε+
12 presents the opposite sign to Mε+

12 for the same
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non-Newtonian fluid case, whilst the rate T̃ε
+
12 either increases or decreases the total rate

ε+
12, depending on which part of the inner region is being considered. Nonetheless, none of
the ‘dissipation’ rates appearing with non-Newtonian rheology contribute considerably to
the total rate ε+

12.
Regarding the terms contributing to the total transport and dissipation rates in budget

B+
k , the observed trends with rheology are the same as those noted for T+

11 and ε+
11, since

the terms in budget B+
11 contribute the most to the turbulent kinetic energy budget. The

profile of rate Π+
k is, of course, different from the profile of the velocity–pressure gradient

term in budget B+
11, but the trend of a decrease in magnitude with shear thinning, due to

less energy being redistributed, is the same.
Also, it is worth mentioning some similarities found with the budgets reported for

another type of drag-reducing fluid, namely a viscoelastic fluid. For the channel flow of a
viscoelastic fluid, Dimitropoulos et al. (2001) showed that the most significant changes
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in budget B+
k relative to Newtonian values are observed in the turbulence production,

mean viscous dissipation and turbulence transport rates. Compared to the Newtonian
case and as with shear thinning, there is a decrease in the production term and in the
absolute peak values for the turbulent transport term with viscoelasticity. In addition,
opposite to the behaviour seen for shear thinning, Dimitropoulos et al. (2001) reported
a decrease in the mean viscous dissipation with shear thinning. The paper also shows
that viscoelastic terms, contributing to B+

k , are relatively small when compared to the
production, mean diffusion or mean viscous dissipation rates. Regarding the individual
budgets, Dimitropoulos et al. (2001) revealed that viscoelastic effects are most pronounced
in the velocity–pressure gradient term. Compared to the Newtonian case and as with shear
thinning, in the budget B+

11, the rate Π+
11 is reduced with viscoelasticity, in particular close

to the region of maximum production. The paper also reported a significant reduction
in rate Π+

12 of budget B+
12. Note that figure 15(a) shows a similar behaviour with shear

thinning. On the other hand, regarding budgets reported for other canonical flows of GN
fluids, Singh et al. (2017b) presented the budget B+

k for pipe flow and reported similar
trends with shear thinning. For α < 1, there is a decrease of turbulence production in
the buffer layer region, whereas the magnitude of the turbulence transport and mean
viscous dissipation rates increase in the near-wall region. Also for shear thinning, in
pipe flow, the magnitude of the total dissipation rate is decreased due to contributions
from the non-Newtonian terms. It is worth commenting that an apparent inner region
dependence on the flow index for the budget B+

k is also reported by Singh et al. (2017b) for
pipe flow.
In summary, some of the most relevant findings are as follows.

(i) Rheological variations affecting the Reynolds shear stress and the mean shear lead
to shear-dependent changes in the production rate P+

11 and therefore also in P+
k .

(ii) With shear thinning, the decrease in P+
11 is reflected by a decrease in the amount of

energy redistributed through Π+
11 to budgets B+

22 and B+
33.

(iii) Such decrease in energy redistribution with decreasing flow index results in an
increase of large-scale turbulence anisotropic behaviour (see figure 8a).

(iv) The lessening of production with shear thinning also leads to a decrease in the total
dissipation rate ε+

11 and consequently in ε+
k .

(v) Since the mean dissipation rates Mε+
11 and Mε+

k actually increase with decreasing
flow index, the noted decrease in the corresponding total dissipation is attributed to
the non-Newtonian contributions, in particular to T̃ε

+
11 and T̃ε

+
k , respectively.

(vi) Finally, note that, for all budgets, the terms associated with non-Newtonian rheology
appear to be mainly important within the inner layer region.

3.5. Invariant analysis
All turbulent flows of practical interest are anisotropic, and drag-reducing fluids are known
to have an even higher degree of anisotropy compared to Newtonian fluids (Escudier
et al. 2009). The analysis of invariants corresponding to relevant tensors are typically
performed to determine their degree of anisotropy and to identify realizable states of
turbulence. To study the anisotropic behaviour of turbulence in GN fluids, for both large-
and small-scale motions, an invariant analysis is presented. Any symmetric tensor σik, such
as the strain-rate tensor or the Reynolds stress tensor, may be decomposed into an isotropic
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and a traceless deviatoric part. The non-dimensional anisotropy tensor aik is then given by

aik = σik

σjj
− 1

3
δik (3.2)

and since the anisotropy tensor is traceless (aii = 0), the relevant non-zero invariants are

− IIa = 1
2aikaki, IIIa = 1

3aikakjaji, (3.3a,b)

which are denoted as the second and third invariants of aik, respectively.
Lumley & Newman (1977) introduced an anisotropy invariant map (AIM) consisting of

a −II versus III plot to investigate the anisotropy of the Reynolds stress tensor. Such a
map, nowadays called the Lumley triangle, was originally based on the invariants of bik,
the Reynolds stress anisotropy tensor, defined by

bik = u′
iu

′
k

u′
ju

′
j

− 1
3
δik. (3.4)

Analogous AIMs have been used to study small-scale anisotropy by considering
quantities such as the dissipation rate and the vorticity correlation tensor, see for instance
Mansour, Kim & Moin (1988), Antonia et al. (1991) and Barri & Andersson (2010). Here,
the anisotropy tensors corresponding to the vorticity correlation and the total dissipation
rate are given by

cik = ω′
iω

′
k

ω′
jω

′
j

− 1
3
δik (3.5)

and

dik = εik

εjj
− 1

3
δik, (3.6)

respectively. Additionally, an anisotropy tensor eik, for the mean viscous dissipation only,
may be given by

eik = Mεik

Mε jj
− 1

3
δik. (3.7)

In all the mentioned AIMs, realizable turbulent states are constrained within certain
limiting values; see figure 17. At the origin, −IIa = IIIa = 0, all elements of a
non-dimensional anisotropy tensor aik vanish and three-component isotropic turbulence
(3C-IT) is found. If one diagonal component of aik is void of the corresponding
property (energy or enstrophy, for example), e.g. a11 = −1/3, and the two other diagonal
components are equal, e.g. a22 = a33 = 1/6, then two-component isotropic turbulence
(2C-IT) is encountered. Finally, one-component (1C) turbulence corresponds to a situation
where all of the corresponding property is within a diagonal component, e.g. a11 = 2/3.
In the −IIa versus IIIa plot, the origin is connected to the 1C and 2C-IT points through

the relationship IIIa = ±2(−IIa/3)3/2 marking all cases of axisymmetric turbulence
(i.e. two diagonal components of aik are equal and all off-diagonal components have
vanished). The 2C-IT and 1C points, meanwhile, are connected by the line −IIa =
3IIIa + 1/9 where two-component (2C) states reside. With the aim of adding physical
context to the limiting states in the Lumley triangle, consider, for example, axisymmetric
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deformation created by passing initially isotropic turbulence through a hypothetical
slip-free axisymmetric nozzle or diffuser (see the same example as in Hanjalić & Launder
(2011)). If the streamwise strain rate is ∂ ū/∂x and the symmetry axis corresponds to the
spanwise z axis, then continuity and axisymmetry considerations lead to −0.5∂ ū/∂x =
0.5∂v̄/∂y = ∂w̄/∂z. In a similar manner, the stress field will remain axisymmetric through
the contraction/expansion, i.e. b22 = b33 = −b11/2 and thus the resulting invariants are
IIb = 3b211/4 and IIIb = b311/4. Eliminating b11 then yields the previous relationship
IIIb = ±2(−IIb/3)3/2; marking all cases of axisymmetric turbulence. The positive region
(right-hand side in Lumley triangle) corresponds to axisymmetric expansion, which in
the limit results in the 1C state, i.e. v′v′ = w′w′ = 0. On the other hand, the negative
region corresponds to axisymmetric contraction and in the extreme limit results in the 2C
isotropic turbulence state, i.e. u′u′ = 0.
The Lumley triangles for the different defined anisotropy tensors are presented in

figure 18. In the same figure, the corresponding turbulence triangles (Choi & Lumley
2001) are shown as well. The map ζ 2 = −II/3 versus ξ 3 = III/2 is used to emphasize the
region in the proximity of the isotropic state. As noted by Emory & Iaccarino (2014), the
Lumley triangle appears to provide more insight while studying states near the 1C and
2C limiting states whilst the turbulence triangle stretches the lower left quadrant of the
Lumley triangle and focuses on the regions near the 2C-IT and 3C-IT limits.
For all GN fluids, the considered invariants vary from the 2C state limit in the vicinity of

the wall to nearly isotropic at the channel’s centre. Near the wall, the wall-normal diagonal
component of the considered symmetric tensors are negligible, e.g. v′v′ ≈ ω′

2ω
′
2 ≈ 0, and,

as y+ increases, the data transition from the upper boundary to the right-hand boundary of
the Lumley triangle. With shear thinning, in comparison to the Newtonian case, a larger
maximum value for −II is observed on the anisotropy invariant maps corresponding to bik,
cik and dik. In the AIMs, the movement of the data towards the 1C limit with shear thinning
is attributed to the deficit in energy redistribution from budget B+

11 to budgets B+
22 and

B+
33, mentioned in § 3.4. In the case of the Reynolds stress tensor, for instance, near-wall

behaviour (see figure 19) displays the expected increase in the streamwise component
u′u′/u2τ and the decrease of the wall-normal and spanwise components with shear thinning.
Such increase of u′u′/u2τ , with decreasing flow index, is reflected in the Lumley triangle
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with near-wall 2C states closer to the 1C point. In a similar manner, the increase in ω′
3ω

′
3

and in the magnitude ofMε11 with shear thinning yield the observed movement of the data
towards the 1C limit in the respective AIMs.
Opposite to the mean dissipation, the data of the total dissipation in the vicinity of the

wall do not approach states closer to the 1C limit with decreasing flow index. Owing to
the non-Newtonian terms contributing to the total dissipation rate, there is a decrease in
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the magnitude of ε+
11 with shear thinning (as seen in § 3.4) causing the observed behaviour

in the corresponding Lumley triangle.
For all GN fluids, after the location of the maximum in the different AIMs, the transition

to anisotropic states occurs closer to the axisymmetric limit where III > 0 takes place
because one diagonal component is larger than the other two. Consider, for example,
the streamwise component of the Reynolds stress in comparison with the other lateral
components (see turbulence intensity profiles in § 3.1). Note that an actual axisymmetric
state only occurs once the off-diagonal components of the corresponding anisotropy tensor
are zero (e.g. b12 = u′v′ = 0 at the channel’s centre).
As seen from the turbulence triangles, the data corresponding to bik, cik, dik and eik

move closer to the axisymmetric limiting states with shear thinning. This observation
is consistent with the decrease in the off-diagonal components corresponding to the
different anisotropy tensors with shear thinning. See, for instance, the variation of the
Reynolds shear stress with shear thinning in § 3.2. It is also observed that there is no
appreciable difference in the turbulence triangles describing the mean viscous dissipation
rate anisotropy and the total dissipation rate anisotropy in proximity to the axisymmetric
limit. This behaviour is consistent with the observed decrease in the non-Newtonian terms
contributing to ε+

11 in the outer layer region.
To complement the anisotropy analysis, the Lumley flatness (Lumley 1979) F =

1 + 27III + 9II and the axisymmetric parameter (Lee & Reynolds 1985) A =
III/[2(−II/3)3/2] are shown in figure 20. The Lumley flatness allows one to easily
distinguish between 2C line states (F = 0) and 3C-IT (F = 1). Meanwhile, the
axisymmetric parameter is a compact way to quantify axisymmetric modes: A = −1
corresponds to axisymmetric states where III < 0 and the correlation tensor (e.g. u′

iu
′
k

or ω′
iω

′
k) has a smaller diagonal component than the other two equal ones; whilst A = 1

corresponds to axisymmetric states where III > 0 and the correlation tensor has one
larger diagonal component than the other two equal ones. Here terminology such as
‘rod-like’ or ‘cigar-shaped’ turbulence and ‘disk-like’ or ‘pancake-shaped’ turbulence is
used while considering A = 1 and A = −1 states of the vorticity correlation anisotropy
tensor, respectively. Alternative terminology is omitted here to avoid misunderstanding;
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see, for instance, Simonsen & Krogstad (2005) where it is clarified that notation used for
the axisymmetric states refers to the shape of the symmetrical second-order tensor with
zero trace σik under study, e.g. the Reynolds stress tensor or the vorticity correlation tensor.
With the exception of the very near-wall behaviour in the total dissipation rate, the

overall increase in anisotropy with decreasing flow index at the channel’s centre and
elsewhere is reflected by larger −II values in the AIMs and consequently lower Lumley
flatness. For all GN fluids, the profiles corresponding to the axisymmetric parameters
show that, close to the end of the viscous sublayer, i.e. before the buffer layer region, the
state A = 1 is approached. This observation is consistent with the noticed transition from
the upper boundary to the right-hand boundary in the AIMs. After the maximum value
of −II is achieved on the respective maps, Ab, Ad and Ae remain relatively close to the
A = 1 state (especially as the flow index decreases) although there is a localized decrease
in the axisymmetric parameters, most noticeable forAb, in the outer layer. This behaviour
is observed on the respective turbulence triangles as a sudden but short deviation from the
near-right boundary region towards the centre of the map, more clearly seen for increasing
flow index.
With respect to the Ac scalar, an apparent change from a cigar-shaped axisymmetric

state, at the end of the viscous sublayer, to a disk-like state (IIIc < 0, Ac = −1), within
the buffer region, is noticed. The wall-normal position at which the pancake-shaped
axisymmetric mode is observed appears to move slightly away from the wall with
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shear thinning. After such point, it is difficult to point out a trend inAc since oscillations at
different y+ positions are noted. Nonetheless, states closer to disk-like turbulence appear to
be more frequent, especially with decreasing flow index. Interestingly enough, close to the
channel’s centre, rod-like states are suddenly approached. This observation is consistent
with the presented ζ versus ξ map and the slight dominance of the spanwise vorticity
autocorrelation ω′

3ω
′
3 over ω′

1ω
′
1 and ω′

2ω
′
2 near the channel’s centre as seen in § 3.1.

4. Discussion and final remarks

Direct numerical simulations for statistically converged turbulent channel flow of
GN fluids at a low Reynolds number have been performed. A GN fluid presents
time-independent rheology and is free of plastic effects. In the simulation, GN fluid
rheology has been incorporated through a relatively simple constitutive equation,
the Carreau fluid model. To investigate the difference between Newtonian and
shear-dependent fluid behaviour, the flow index α is varied. Here, when a trend is
associated to shear thinning α < 1, the opposite trend is associated to shear thickening
α > 1. Note that the selected rheological model is likely to be of no consequence since, for
the same rheology characterization at large strain rates, quite similar statistics are expected
even if a different rheological model is implemented (see e.g. Singh, Rudman & Blackburn
2016).
Through different statistics and analyses, it is found that shear-dependent fluid rheology

seems to affect the channel flow mainly within the inner layer region. As we move
further away from the viscous sublayer, the monotonic increase in the apparent fluid
viscosity for α < 1 leads to drag reduction. For a constant driving pressure gradient, a
decrease in the friction factor with decreasing flow index is reflected by an increase in the
mean streamwise velocity for y+ � 10 and in consequence higher mean bulk velocity∫ h+

0 ū+ dy+/h+ and flow rate. The diagnosis function also reveals that the limited log
region starts further away from the wall and with a slightly larger slope with shear-thinning
fluid rheology. This thickening of the buffer layer is consistent with the observed increase
in streamwise turbulence intensity and the shift in its peak value for α < 1.
The previous well-known drag-reducing-related characteristics are attributed to changes

in the near-wall structures within the buffer layer region for shear-thinning fluid rheology.
Quasi-streamwise vortices (rolls) are suppressed; as figure 8(b) shows, shear-thinning
effects reduce the intensity of the streamwise vorticity fluctuations and also move the
location of the local minimum and maximum values towards the channel’s centre.
These two extrema locations correspond to the average locations of the edge and centre,
respectively, of the near-wall rolls (Moser & Moin 1984). Hence, the quasi-streamwise
vortical structures not only decrease in intensity but also grow in size and depart from
the wall.
The suppression of the near-wall streamwise rolls is accompanied by variations in the

high- and low-speed fluid alternating regions (streaks) in the spanwise direction. It is
recognized that there is an interaction between the rolls and the mean spanwise vorticity
which induces low-speed streamwise streaks (see e.g. § 4.2.6 in Davidson 2015). These
streaks eventually begin to oscillate and lift away from the wall during the so-called burst
process. Each burst contains one or more ejections of low-speed fluid resulting from the
same streak instability (Luchik & Tiederman 1987). Since burst or ejection events occur
in a quasi-periodic manner, particular attention is paid to statistical quantities such as
the average time between bursts and average spanwise spacing of the near-wall streaks.
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As seen in figure 2(c), for α < 1, the location of the minimum in the two-point correlation
of the streamwise fluctuating velocity occurs at a larger spanwise separation, and a similar
trend (not shown here) was found at other wall-normal positions within the buffer layer
region. Note that the location of this minimum is the mean distance between a high-speed
and a low-speed streak; thus the average streak spacing is twice such distance (Moser
& Moin 1984). Since, for shear-thinning fluid rheology, a larger average streak spacing
is found, a larger average time between bursts is expected and, in consequence, there
is an inhibition of the related turbulence generating event. As revealed by the quadrant
analysis, the decrease in Reynolds shear stress – leading to a reduction in the production
of turbulent kinetic energy – arises due to a decrease from all positive production events
but, within the buffer layer, especially due to a diminishing in contributions from ejection
events.
Another common characteristic of drag-reducing flow, such as the decrease in the

spanwise and wall-normal turbulence intensities, is explained from the Reynolds stress
budgets. In connection to the decrease in turbulence production with shear thinning, there
is a decrease in the velocity–pressure gradient terms, which are commonly split into
a pressure–transport term and an energy redistributive pressure–strain rate term. Thus,
since the velocity–pressure gradient terms play a dominant role in the redistribution of
energy from streamwise to wall-normal and spanwise directions, their decrease leads to the
observed trends for the turbulent intensities and consequently to an increase in anisotropy
at the largest scales with α < 1. The budgets also show that, although the magnitude of the
mean viscous dissipation Mε+

k increases with shear thinning, the overall dissipation rate
ε+
k decreases in magnitude since there is less energy available for irreversible dissipation
at the wall; hence the importance of the non-Newtonian terms, in particular the turbulent
viscous dissipation rate related to the mean flow, whilst studying the total dissipation in
GN fluids.
Turbulence anisotropy variations at both large and small scales due to the

non-Newtonian rheology are studied through anisotropy invariant maps. The presented
analysis reveals an overall increase in anisotropy for the Reynolds stress, vorticity
correlation and mean viscous dissipation with shear thinning. In contrast to the mean
viscous dissipation, in the near-wall region, the anisotropy of the total dissipation rate
decreases with shear thinning due to non-Newtonian effects. On the other hand, regarding
the data closer to the axisymmetric limits, as one moves from the wall towards the
channel’s centre, states closer to the axisymmetric limit where III > 0 are seen for the
Reynolds stress budgets and the dissipation rates. In the case of vorticity correlation,
states between rod-like and disk-like turbulence are seen in the direction of the channel’s
centre. Here, states closer to disk-like or pancake-shaped turbulence appear to be preferred,
especially with decreasing flow index. Finally, at the channel’s centre, rod-like turbulence
is approached. This observation is consistent with the slight dominance of the spanwise
vorticity correlation over the other two components for all GN fluid cases. Anisotropy at
the smallest scales is a recognized behaviour at low Reynolds numbers (Andersson, Zhao
& Variano 2015) and appears to be even more noticeable with shear thinning.
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Appendix A. Transport equation corresponding to u′
iu

′
k for channel flow of a GN fluid

This appendix contains the derivation of the transport equation for the correlation of
the velocity fluctuations, u′

iu
′
k, corresponding to a GN fluid, and it is deduced in a similar

manner as it is deduced for a Newtonian fluid. Start out from the averaged momentum
conservation equation for a GN fluid, which reads

Dui
Dt

= − 1
ρ

∂ p̄
∂xi

+ 1
ρ

∂

∂xj

(
2μ̄Sij + 2μ′S′

ij

)
+ ∂

∂xj

(
−u′

iu
′
j

)
. (A 1)

Subtracting (A 1) from the transport equation for the instantaneous velocity component
ui, i.e.

∂

∂t

(
ui + u′

i

) + (
uj + u′

j

) ∂

∂xj

(
ui + u′

i

)
= − 1

ρ

∂

∂xi

(
p̄ + p′) + 1

ρ

∂

∂xj

[
2

(
μ̄ + μ′) (

Sij + S′
ij

)]
(A 2)

yields a transport equation for the fluctuating velocity component u′
i. Thus

∂u′
i

∂t
+ uj

∂u′
i

∂xj
+ u′

j
∂ui
∂xj

+ u′
j
∂u′

i

∂xj

= − 1
ρ

∂p′

∂xi
+ 1

ρ

∂

∂xj

(
2μ̄S′

ij + 2μ′Sij + 2μ′S′
ij − 2μ′S′

ij

)
+ ∂

∂xj

(
u′
iu

′
j

)
. (A 3)

In a similar manner, an equation for the other fluctuating velocity component u′
k is

obtained

∂u′
k

∂t
+ uj

∂u′
k

∂xj
+ u′

j
∂uk
∂xj

+ u′
j
∂u′

k
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= − 1
ρ
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+ 1
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∂xj

(
2μ̄S′

kj + 2μ′Skj + 2μ′S′
kj − 2μ′S′

kj

)
+ ∂

∂xj

(
u′
ku

′
j

)
. (A 4)

Multiplying (A 3) by u′
k, (A 4) by u′

i and adding the products yields a transport equation
for u′

iu
′
k once the resulting equation has been averaged. In consequence, the transport

equation for u′
iu

′
k reads

D
Dt

(
u′
iu

′
k

)
= −u′

iu
′
j
∂uk
∂xj

− u′
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′
j
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(
u′
iu

′
k

)
− 1

ρ

(
u′
i
∂p′
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+ u′

k
∂p′

∂xi

)
− 1

ρ
(2μ̄)

∂u′
i

∂xj

∂u′
k

∂xj
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+ 1
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(A 5)

In (A 5), the last two terms may be rewritten as

1
ρ
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(A 6)

and, finally, (A 5) may be reformulated as
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. (A 7)

Note that (2.10) is the non-dimensionalized form of (A 7).
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FIGURE 21. Verification for case N180: (a) mean (averaged in time and in homogeneous
directions) streamwise velocity profile ū+, (b) turbulence intensities r.m.s.(u+

i ), (c) shear stress
profiles τ̄+ (lines ‘—–’ total stress, ‘· · ·’ viscous stress and ‘- - -’ turbulent stress) and (d) r.m.s.
values of vorticity fluctuations r.m.s.(ω+

i ). In (b,d), the x , y and z components are denoted by
‘—–’, ‘- - -’ and ‘· · ·’, respectively. Results from Kim et al. (1987) and Moser et al. (1999) are
identified by ‘◦’ and ‘×’ markers, respectively.

Appendix B. Verification

The results corresponding to case N180 shown in figure 21 agree with those reported by
Kim et al. (1987) and Moser et al. (1999). Contributions to the turbulent kinetic energy
budget in figures 13(a) and 16(a–c) and the η+ profile presented in figure 5 also appear to
agree qualitatively with the profiles reported by Mansour et al. (1988) and Antonia et al.
(1991), respectively.
Observed trends for non-Newtonian results presented in § 3 agree with those reported

in previous studies, e.g. Rudman & Blackburn (2006), Gavrilov & Rudyak (2016a) and
Singh et al. (2017b), for turbulent pipe flows.

Appendix C. Contributions to budgets B+
22 and B+

33

Contributions from the different terms in (2.23) to total transport and dissipation rates
for budgets B+

22 and B+
33 are shown in figures 22 and 23. For transport rate T+

22, the
velocity–pressure gradient, the turbulent transport and the mean viscous diffusion rates
contribute the most. The rate Π+

22, which is the source of energy for budget B+
22, decreases

with decreasing flow index as expected. Similar to the production rate P+
11 in budget B

+
11, the
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FIGURE 22. Contributions to T+
22 and −ε+

22 in budget B+
22: (a) line styles ‘—–’ and ‘- - -’ are

used for Π+
22 and TT

+
22; (b) line styles ‘—–’ and ‘· · ·’ are used forMD+

22 and TD
+
22; (c) line styles

‘—–’ and ‘· · ·’ are used for −Mε+
22 and −Tε+

22; and (d) line styles ‘- - -’ and ‘· · ·’ are used for
Mv+

22 and Tv+
22. Profiles corresponding to P180, N180 and D180 are identified by red, black and

cyan colours, respectively.

energy in Π+
22 is transported towards and away from the wall, mainly through the turbulent

transport rate. Since there is less energy to be distributed with shear thinning, within the
inner region, the magnitudes of TT+

22 andMD+
22 decrease with shear thinning as well. With

respect to the non-Newtonian terms, the transport rate TD+
22 decreases with decreasing

flow index whilst Mv+
22 and Tv+

22 increase. However, these terms are rather small and do
not contribute significantly to the total transport rate.
The total dissipation rate ε+

22 balancing T
+
22 is mainly due to the mean viscous dissipation

rate Mε+
22, which presents the same trends of Π+

22 with rheology, i.e. it decreases in
magnitude with decreasing flow index. The other non-zero contribution to rate ε+

22,
although fairly low in magnitude, is Tε+

22. This non-Newtonian dissipation rate increases
in magnitude with shear thinning.
For transport rate T+

33, mainly the pressure–velocity gradient term and the mean viscous
diffusion (especially very close to the wall) are important. As for budget B+

22, less energy
is redistributed from budget B+

11 with decreasing flow index. The magnitudes of Π+
33 and

consequently of TT+
33 and MD+

33 decrease with shear thinning. Other non-zero transport
terms, associated with the non-Newtonian rheology, do not contribute much to rate T+

33.
As for Tε+

22, the mean viscous dissipation rate contributes the most to the total rate Tε+
33

and decreases in magnitude with shear thinning since there is less energy that may be
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FIGURE 23. Contributions to T+
33 and −ε+

33 in budget B+
33: (a) line styles ‘—–’ and ‘- - -’ are

used for Π+
33 and TT

+
33; (b) line styles ‘—–’ and ‘· · ·’ are used forMD+

33 and TD
+
33; (c) line styles

‘—–’ and ‘· · ·’ are used for −Mε+
33 and −Tε+

33; and (d) line styles ‘- - -’ and ‘· · ·’ are used for
Mv+

33 and Tv+
33. Profiles corresponding to P180, N180 and D180 are identified by red, black and

cyan colours, respectively.

dissipated. The other non-zero dissipation rate Tε+
33 is small in comparison to Mε+

33 and
shows the opposite behaviour with decreasing flow index.
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Turbulent channel flow simulation of a shear-thinning fluid is considered – see Arosemena
et al. (J. Fluid Mech., vol. 908, 2021, p. A43) – and compared with a Newtonian base
case to reveal the effects of the shear-dependent rheology on the near-wall structures.
Analyses of different flow statistics revealed that, for the shear-thinning fluid case, the
streamwise vortices appear to grow in size, depart from the wall and present a lessening in
their intensity. Information regarding variations in the quasi-longitudinal vortices is also
obtained from three-dimensional structures identified through a normalized Q-criterion.
With shear-thinning rheology, it is shown that the structures are comprised of wall-attached
and -detached families which are taller than for a Newtonian fluid. Also, for a given
height, the structures appear to be longer, with approximately the same width and overall
larger volume for the shear-thinning fluid case; albeit their fractal dimension remains
the same when compared to the Newtonian base case. Moreover, it is observed that
the number density of vortical structures decreases with shear-thinning fluid behaviour.
These observations, in conjunction with the known changes to the longitudinal velocity
structures which appear to be less streaky, more spanwise separated and thickened
with shear-thinning rheology, strongly suggest that the near-wall self-sustaining process
has been disrupted. As we move slightly away from the wall and with shear-thinning
behaviour, the local increase in viscosity seems to lead to less energetic vortices whereas
the streaks are provided with an additional source of energy due to fluctuations in viscosity.
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1. Introduction

Turbulence is ever present in nature and in numerous man-made processes. Wall-bounded
turbulent flows, in particular, are extremely important for technological applications. Close
to 25% of the energy used in industry is destined to transport fluids in pipes and channels,
or to propel vehicles through air or water, and approximately a quarter of that energy is
irreversibly dissipated by turbulence in regions close to walls (Jiménez 2013). Moreover,
in several industrial settings, the transported fluid is non-Newtonian. A non-Newtonian
fluid exhibits non-constant viscosity which may depend on shear stress and/or strain rate
history in a nonlinear manner and can be classified within three main groups (Irgens 2014):
(i) time-independent fluids, which are further divided into viscoplastic/yield-stress fluids
and purely viscous fluids, (ii) time-dependent fluids and (iii) viscoelastic fluids consisting
of materials with both elastic and viscous effects.
Considering the previous context, this work focuses on purely viscous fluids and is an

extension of the turbulent channel flow study of Arosemena, Andersson & Solsvik (2021).
Our aim is to explore the changes on the near-wall turbulent structures, in particular
the quasi-streamwise vortices, due to shear-thinning fluid behaviour; a non-Newtonian
rheology exhibiting drag-reducing features.

1.1. Rheological drag reduction in generalized Newtonian fluids
Although elastic effects are present in several drag-reducing fluids, within a given range
of particle concentration and for certain polymer solutions such effects are negligible; e.g.
consider the variations of the elastic recovery index (Durán et al. 2000) in solutions with
a concentration of less than 2.5 wt% of carboxymethyl cellulose reported by Benchabane
& Bekkour (2008). Generalized Newtonian (GN) fluids are a type of time-independent,
purely viscous fluids which stress tensor due to viscous effects, τijvis, is given by

τijvis = 2μSij, (1.1)

where μ = μ(γ̇ ) is the apparent dynamic viscosity solely depending on the strain rate
γ̇ = (2SijSji)

1/2 and Sij is the strain rate tensor. GN fluids are commonly encountered
in various industrial and commercial applications and those of non-Newtonian nature are
classified into pseudoplastic/shear-thinning and dilatant/shear-thickening fluids based on
the observed trend in their apparent viscosity with increasing strain rate. Regarding the
shear-thinning fluids, they exhibit decreasing apparent viscosity with increasing strain
rate and are frequently found in bioreactors, in drilling activities within the petroleum
industry and are used as additives in cosmetic and food products. Polymer solutions with
shear-thinning behaviour such as those with concentrations of carboxymethyl cellulose,
xanthan gum and polyacrylamide, are also commonly used for turbulent flow experiments
of drag-reducing non-Newtonian fluids (Escudier et al. 2001).
Many experimental (Park et al. 1989; Pinho & Whitelaw 1990; Pereira 1994) and

numerical (Rudman & Blackburn 2003, 2006; Gavrilov & Rudyak 2016) studies have
reported features common to the low drag reduction (LDR) regime (Warholic, Massah &
Hanratty 1999), such as enhancement of streamwise turbulence intensity and suppression
of other cross-sectional intensities, decrease in Reynolds shear stress and overall reduction
of turbulent production with shear-thinning fluid behaviour. More recently, and based on
observations of the Reynolds stress budgets and to the overall turbulent kinetic energy,
for turbulent pipe (Singh, Rudman & Blackburn 2017) and channel (Arosemena et al.
2021) flows, strain-rate-dependent rheology has been found to be mainly important within
the inner layer region. This remark is supported as well by the Singh, Rudman &
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Blackburn (2016) results where, for a fixed GN fluid rheology within the inner layer
region, no significant differences are observed in the mean-flow and first-order statistics
even if different apparent fluid viscosity profiles are attained outside the inner layer. Singh,
Rudman & Blackburn (2018) also reported small contributions from viscosity fluctuation
terms to the mean shear stress budget, mean flow and turbulent kinetic energy budget up to
moderate frictional Reynolds numbers, Reτ = 323–750. Arosemena et al. (2021) further
reasoned that observed drag-reducing features with shear-thinning behaviour are likely
related to important changes to the near-wall turbulent structures and, in consequence, to
the self-sustaining process occurring near the wall.

1.2. Near-wall self-sustaining process
The inner region of wall-bounded turbulent shear flows has been extensively investigated
and remarkable well-organized coherent structures have been found. In the vicinity to the
wall, where shear dominates, flow visualizations by Kline et al. (1967) in boundary layers
and by Corino & Brodkey (1969) in pipes revealed regions of low- and high-speed fluid
(‘streaks’) staggered in the spanwise direction. Such streaks undergo a series of dynamical
processes leading to production of turbulence; during an intermittent, quasi-cyclical
process, outward ejections of low-speed fluid and inrush of high-speed fluid towards the
wall occur (Wallace, Eckelmann & Brodkey 1972; Willmarth & Lu 1972). The other
important near-wall structures consist of quasi-streamwise vortices or rolls. The streaks
contain most of the turbulent kinetic energy and the vortices both organize the energy
dissipation and the momentum transfer (Jiménez 2013).
A recurring topic in the study of near-wall structures is the regeneration cycle involving

the streaks and vortices. While it is generally accepted that the quasi-streamwise vortices
cause the streaks by advection of the mean velocity gradient (Blackwelder & Eckelmann
1979) and with independence from the presence of the wall (Lee, Kim & Moin 1990),
there is still uncertainty regarding what causes the rolls. Explanations for the regeneration
cycle of near-wall vortical structures can be grouped within two main categories (Schoppa
& Hussain 2002): (i) parent–offspring regeneration (see for instance Brooke & Hanratty
(1993) in the case of roll-up of near-wall streamwise vorticity sheets and Zhou et al. (1999)
for quasi-streamwise vortex generation from hairpin-shaped vortical structures) and (ii)
instability-based generation (see for instance Swearingen & Blackwelder 1987; Robinson
1991; Jiménez 1994 or Hamilton, Kim &Waleffe 1995 for velocity streak instability-based
generation). Jiménez & Pinelli (1999) showed that disturbing the streaks in a region where
the wall-normal coordinate – in inner viscous/wall units – is less than 60 but greater than
20 inhibits the formation of streamwise vortices and suggested that a regeneration cycle
based on streaks instabilities dominates over other mechanisms for the generation of rolls.
Jiménez & Pinelli (1999) additionally showed that near-wall turbulence is autonomous in
the sense that streaks and vortices do not decay even after the outer flow is artificially
removed. On the other hand, Schoppa & Hussain (2002) argued that most buffer streaks
are too weak to be unstable to the inflectional mechanism described by Jiménez & Pinelli
(1999) and proposed an alternative explanation for the streaks instability based on (linear)
transient growth of secondary perturbations. Hence, it seems there is no unanimous
agreement in how the near-wall vortical structures are produced, albeit the idea of the
regeneration of rolls due to the instability of the streaks, leading to their breakdown, is
consistent between multiple authors (see also Hoepffner, Brandt & Henningson (2005)
and more recently, Cossu et al. (2011)).
Despite the shortcomings in our understanding regarding the near-wall vortex dynamics,

we do know that any drag-reducing strategy is based on disturbing the turbulence
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regeneration cycle (Karniadakis & Choi 2003). Drag reduction can be achieved by
decreasing the intensity of the quasi-streamwise vortices or by weakening their interaction
with the near-wall flow (Tardu 1995) and the use of riblets (Choi, Moin & Kim 1993;
García-Mayoral & Jiménez 2011) and polymer additives (several studies, e.g. Ptasinski
et al. 2003; Dubief et al. 2004; Kim et al. 2007; Li & Graham 2007; Kim & Sureshkumar
2013) are within the few successful strategies that actually disrupt the self-sustained
regeneration cycle. In polymer solutions, known effects of viscoelasticity on the wall
turbulence are the reduction in the strength and numbers of the quasi-streamwise vortices
and a reduction in the spanwise meandering and thickening of the streaks (Kim et al. 2007;
White & Mungal 2008). The self-sustained cycle is seemly disrupted by the polymers
which oppose the motion of the vortices (Dubief et al. 2005; Kim et al. 2007), take energy
from them and release it into the streaks (Dubief et al. 2004, 2005). In contrast to studies
about polymer solutions accounting for viscoelastic effects, works related to drag-reducing
GN fluids have not directly addressed probable mechanisms leading to disruption of the
self-sustaining process in the absence of elastic effects and, in general, less attention
has been given to the phenomenological changes in the near-wall turbulence structures;
for instance, observations about structures are limited to instantaneous contours of the
streamwise streaks, two-point velocity correlations and integral length scales (see e.g.
Rudman & Blackburn 2006, Singh et al. 2017, Arosemena et al. 2021 or alternatively
Appendix A) whereas findings about the quasi-streamwise vortices are not often reported.

1.3. Methods for vortex identification and the Q-criterion
The identification of three-dimensional structures involves connecting fluid regions where
a certain condition for a quantity of interest is fulfilled. In the case of vortical structures, the
identification methods can be broadly classified as Lagrangian or Eulerian, the last being
the most common type of vortex identification method (Epps 2017). Several (well-known)
Eulerian identification methods such as Q-criterion (Hunt, Wray & Moin 1988), the
discriminant �-criterion (Chong, Perry & Cantwell 1990), the λ2-criterion (Jeong &
Hussain 1995) or the more recent omega method (Liu et al. 2016) are based on conditions
related to either the eigenvalues or the invariants corresponding to the velocity gradient
tensor, D = Dij. The characteristic equation of Dij is given by (see e.g. Zhou et al. 1999)

ξ3i + Pξ2i + Qξi + R = 0, (1.2)

where ξi are the eigenvalues of Dij and P, Q and R are the first, second and third invariants
of the velocity gradient tensor, respectively. Hence

P = −tr(D), Q = 1
2 [P

2 − tr(DD)], and R = − det(D). (1.3a–c)

Here, tr is the trace of the tensor quantity and det is the absolute value of the determinant.
For an incompressible fluid, P = 0 and the second invariant of Dij simplifies to

Q = −1
2(DijDji)

= 1
2 (ΩijΩij − SijSij), (1.4)

since Dij = Sij + Ωij, i.e. the sum of its symmetric and antisymmetric parts, respectively.
Here, Sij is the aforementioned strain rate tensor and Ωij is the rotation rate tensor.
In the present work, the Q-criterion is considered to identify vortical structures which,

as noted by Chakraborty, Balachandar & Adrian (2005), represents a local measure of
the excess of rotation relative to the strain rate. Chakraborty et al. (2005) also observed
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remarkably similar vortical structures when comparing the Q-criterion to other local
identification methods based on point-wise values of the velocity gradient tensor. This
observation strongly suggests that the choice of a particular method for identifying the
structures does not significantly impact the results. Ideally, a vortex is a connected fluid
region with Q ≥ 0. However, similar to other methods, a non-zero threshold value is to be
selected for the identification of individual structures; otherwise a ‘sponge-like’ object,
occupying a significant part of the total domain, will be observed. Another difficulty
when detecting structures in inhomogeneous flows is the necessity of non-constant
threshold values for proper visualization. For a channel flow which is inhomogeneous
in the wall-normal direction, different thresholds may be required at different wall-normal
positions. Nagaosa & Handler (2003) showed that the probability density function (p.d.f.)
of the Q-values normalized by its standard deviation is homogeneous everywhere except
in the viscous sublayer and, based on this result, proposed that the threshold values should
vary in the wall-normal direction according to the standard deviation of the Q-values.
In this study, vortical structures are identified by the Q-criterion, i.e. Q ≥ Qthresh; where

Qthresh ≥ 0 is required to account for the statistical wall-normal dependency of the channel
flow. Further details regarding the identification method, and the statistical information
obtained as a result of it, are provided in § 3.2.

1.4. Outline
The paper is organized as follows. Section 2 summarizes the numerical experiments
considered for the study, § 3 presents evidence of the changes to the quasi-streamwise
vortices due to shear-thinning rheology compared with a Newtonian base case, § 4 explains
probable reasons for the modification of the near-wall self-sustaining process and, finally,
§ 5 shows a summary of the main findings and drawn conclusions. Readers not familiar
with the changes to the velocity streaks due to shear-thinning rheology are also encouraged
to glance through Appendix A.

2. The numerical experiments

The data to be analysed are taken from channel flow simulations of GN fluids at a
target Reτ = ρuτh/μw = 180 (Arosemena et al. 2021). Here, ρ is the fluid density,
uτ = (τ̄w/ρ)1/2 is the frictional velocity defined in terms of the shear stress at the wall
τ̄w, h is the channel half-width and μw is the nominal wall viscosity (Draad, Kuiken
& Nieuwstadt 1998; Ptasinski et al. 2001). The code, called CALC-LES (Davidson
& Peng 2003; Davidson 2020), solves the incompressible form of the momentum and
continuity equations through a finite volume method on a collocated grid, using central
differencing approximations in space and the Crank–Nicolson scheme in time. The
numerical procedure is based on an implicit, two-time stepping technique where Poisson’s
equation for the pressure is solved with an efficient multigrid method; see Emvin (1997).
To incorporate the GN fluid rheology, the apparent fluid viscosity is modelled through the
Carreau fluid model, i.e.

μ = μ∞ + (μ0 − μ∞)[1 + (Λγ̇ )2](α−1)/2, (2.1)

where μ∞ and μ0 are the ‘infinite’ and ‘zero’ shear rate viscosities, respectively, Λ

is a time constant and α is the flow index which for shear thinning is to be less than
unity. Note that Newtonian fluid behaviour is recovered for α = 1. Also, within the
iterative process of the two-step time-advancement technique, the viscosity is handled
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Figure 1. Mean viscosity, Reynolds shear stress and velocity profiles: (a) μ̄+ and (b) τ̄+
tur, ū+. In (a),

μ∞/μ0 = 1 × 10−3, μ+
0 ≈ 1.782, Λ+ = 0.1 and α is set to 0.8 and to 1 for cases P180 and N180, respectively.

In (b), profiles corresponding to τ̄+
tur and ū+ are indicated by the line styles ‘—–’ and ‘- - -’, respectively. Line

colours as explained in table 1.

in a manner similar to how the turbulent viscosity is handled for a hybrid large eddy
simulation–Reynolds-averaged Navier–Stokes (LES–RANS) model; see e.g. Davidson &
Peng (2003). In the simulations, the flow is driven by a constant pressure gradient and,
for a given flow index, the different parameters in the Carreau model are fixed to achieve
the nominal wall viscosity corresponding to the target frictional Reynolds number. To
properly solve the different turbulent scales, a large enough computational domain and a
fine enough spatial grid are considered. Regarding the boundary conditions, the top and
bottom are physical (no-slip, impermeable) walls and periodicity is set in the streamwise
and spanwise directions of the computational box.
Table 1 summarizes the computational set-up for the Newtonian (N180) and

pseudoplastic/shear-thinning (P180) fluid cases. Meanwhile, figure 1(a) shows the attained
mean (averaged over time and the spatially homogeneous directions) dynamic viscosity for
case P180. Note that, for the shear-thinning fluid case, the viscosity at the channel centre
is indeed noticeably larger than its nominal wall value; μ0/μw ≈ 1.782. On the other
hand, μw � μ∞ and, in consequence, the ‘infinite’ shear rate viscosity is asymptotically
attained at strain rate values much larger than the ones reached here for case P180. It is also
remarked that, at the given flow conditions and within the region where viscous effects
are particularly dominant, the increase of local viscosity with shear-thinning behaviour
is (on average) less than 50% of the value at the wall. Such increase is comparable to
what has been reported in previous studies (see viscosity rheograms in e.g. Rudman et al.
2004; Gavrilov & Rudyak 2016; Singh et al. 2018). It is worth mentioning as well that
the use of different values for the flow index is not expected to change the observed
trends with shear-thinning rheology. Consider, for instance, Singh et al. (2017) where
consistent trends, such as a continuous increase in the mean velocity profile and a decrease
in the Reynolds shear stress, are observed with decreasing flow index, i.e. increasing
shear-thinning fluid behaviour.
Hereafter, we denote the streamwise (or longitudinal), wall-normal and spanwise (or

lateral) coordinates by x, y and z, respectively, and the corresponding velocity and vorticity
components by u, v,w and ωx, ωy, ωz, respectively. Most variables and parameters,
denoted by ‘+’ superscript, are given in ‘wall’ units using μw, uτ , (μw/ρ)/uτ , (μw/ρ)/u2τ
and ρu2τ as characteristic viscosity, velocity, length, time and stress, respectively. Here,
t indicates time, and mean and fluctuating variables are identified by �( ) and ( )′,
respectively. On the other hand, when index notation is used, suffix i (or any other
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GN fluid Line/marker ρUb2h/μw Lx/h Lz/h �x+ �y+
min �y+

max �z+ Nf t+f
case colour

N180 Black 5692 4π 2π 9.88 0.22 4.62 4.94 150 5400
P180 Red 5993 6π 2.5π 14.81 0.22 4.62 6.17 150 5400

Table 1. Parameters of the simulations. Here, Ub is the bulk flow velocity, Lx and Lz are the periodic
streamwise and spanwise lengths of the computational box, �x+ and �z+ are the constant grid spacings in
the x and z directions, respectively, whilst �y+

min and �y+
max are the minimum and maximum grid spacing in

the wall-normal direction; Nf is the number of collected flow fields and t+f is the time span over which the
fields are collected, after discarding the initial transients. The rheological parameters for cases N180 and P180
are given in the caption of figure 1.

suffix) takes the value 1, 2 or 3 to represent the x, y or z component, respectively, and –
unless otherwise specified – repeated indices imply summation from x to z. Also,
root-mean-squared values are denoted by rms( ).
In this paper, the majority of the analysis and discussion are limited to the viscous wall

region y+ � 50 (Pope 2000). In a canonical flow of Newtonian fluids, while considering
variations with the wall-normal coordinate, it is common to consider a flow-region
subdivision: there is an inner layer region; comprised of a viscous sublayer ( y+ � 5),
a buffer layer region (5 � y+ � 55), a quite limited – if at all exiting for such a low Reτ –
log-law region (55 � y+ � 62) and a remaining outer region. Here, the y+-ranges for
the buffer and log-law layers are assigned based on the wall-normal position at which
the limited, logarithmic-law behaviour for the mean velocity, in case N180, is observed.
The viscous wall region is within the inner layer and it is where viscous contributions to
the total shear stress are significant and viscous effects are important to the overall mean
dynamics.

3. Near-wall turbulent structures

The analysis of structures corresponding to a GN drag-reducing fluid case allows
us to understand the effects of variations of local viscosity on the channel flow
without considering elastic effects. Furthermore, for several important materials, the
non-Newtonian rheology is primarily of shear-thinning nature and viscoelastic effects are
negligible (Rudman et al. 2004). On this point, it is important to note that, although we
are interested in near-wall structural changes with shear-thinning behaviour, this does not
diminish the importance of flow statistics. Information about coherent structures can be
inferred from statistical quantities since an event should occur often enough for it to be
relevant to the overall dynamics (Jiménez 2013). Of course, the previous statement does
not imply that rare but intense events are unimportant.
We will start our discussion with the computation of quite a noticeable drag-reducing

feature; the percentage amount of drag reduction, DR%, defined as (see for instance Gyr
& Bewersdorff 1995)

DR% = Cf ,N − Cf ,P

Cf ,N
× 100%, (3.1)

where the friction coefficient Cf = τ̄w/(ρU2
b/2) = 2u2τ /U

2
b or, alternatively, Cf =

2(Reτ /Reb)2 in terms of the bulk-based Reynolds number Reb = ρUbh/μw. The
subscripts ‘N’ and ‘P’ denote the Newtonian and pseudoplastic/shear-thinning fluid
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cases, respectively. Thus, for the parameters corresponding to the GN fluid flow cases
summarized in table 1, the amount of drag reduction is approximately

DR% =
[
1 −

(
Reb,N
Reb,P

)2
]

× 100%

≈ 10%. (3.2)

Due to shear-thinning behaviour, along with the amount of drag reduction, there is a
perceptible decrease in the Reynolds shear stress, i.e. τ̄+

tur = −u′v′/u2τ , and an increase
in the mean velocity profile, ū+, as seen in figure 1(b). The decrease in τ̄+

tur implies an
overall suppression of turbulent production but furthermore, it represents a clear statistic
indicative of the weakening of near-wall vortices. On the other hand, the enhancement
of ū+ with the considered shear-dependent rheology is self-evident; recall that U+

b =∫ h+
0 ū+ dy+/h+, nonetheless, it is interesting to note that, for case P180 and as seen from
figure 1(b), the starting point of the apparent log-law region seems to move (slightly)
further away from the wall. This observation suggests that, with shear-thinning behaviour,
there is a modest thickening of the buffer layer and a probable extension of the overall
region where viscous effects are important to the mean dynamics. Moreover, the change
in the ū+ profile also suggests potential variations in the near-wall velocity structures with
shear-thinning rheology.
The following subsections address the changes in quasi-streamwise vortices with

shear-thinning rheology considering evidence both from the flow statistics and from
identified three-dimensional vortical structures. For observations regarding the changes
in the velocity streaks due to shear-thinning behaviour, consider for instance Singh et al.
(2017) and Arosemena et al. (2021), or alternatively, Appendix A.

3.1. Effects on quasi-streamwise vortices: evidence from flow statistics
In wall-bounded turbulent flow of Newtonian fluids, the quasi-streamwise vortices are
highly elongated structures which are slightly inclined from the wall (Jeong et al. 1997).
Several vortices are associated with each velocity streak, with a longitudinal spacing of
order λ+

x ≈ 300–400 (Jiménez & Moin 1991; Jiménez, Álamo & Flores 2004) and there
is no clear evidence that the near-wall region is dominated by pairs of counter-rotating
streamwise vortices (Bakewell & Lumley 1967) although there is a tendency for vortices
with opposite sign to stack on top of each other (Jiménez & Moin 1991).
Statistical evidence about quasi-streamwise vortical structures, in the viscous wall

region, can be inferred by analysing the streamwise and spanwise coherence of v′
and w′ through the two-point correlations of these fluctuating velocity components, i.e.
Rij( y, r) = u′

i(x, t)u
′
j(x + r, t)/u′

i(x, t)u
′
j(x, t); where x = (x, y, z) and r is the separation

vector between the two points. Figures 2 and 3 show R22 and R33 for separations in the
longitudinal direction δx+ and in the spanwise direction δz+, respectively, at y+ ≈ 5, 30
and 50. The position of a minimum in the R22 and R33 correlations with spanwise
separation is related to the average diameter d+

av of a vortex and to the mean spanwise
spacing between pairs of counter-rotating vortices, respectively (Moser & Moin 1984).
Figure 3(a) reveals that, outside the sublayer, R22(δz+) decays more slowly and larger
d+
av values are attained with shear-thinning rheology. On the other hand, a minimum in

R33(δz+) is only observed in the very near-wall region and not for y+ � 20; see figure 3(b).
Thus, pairs of counter-rotating rolls with centre at the same wall-normal position do
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Figure 2. Normalized two-point correlations with streamwise separation δx+: (a) R22 and (b) R33. Line styles
‘—–’, ‘- - -’ and ‘· · ·’ are used to identify correlations at y+ ≈ 5, 30 and 50, respectively. Line colours as
explained in table 1.
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‘—–’, ‘- - -’ and ‘· · ·’ are used to identify correlations at y+ ≈ 5, 30 and 50, respectively. Line colours as
explained in table 1.

not appear to be a dominant feature within the viscous wall region. Furthermore, such
a configuration is even less probable with shear-thinning fluid behaviour since the
average vortex diameter keeps increasing as we move further away from the wall, as
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Figure 4. Average distance across a vortex, d+
av . Marker colours as explained in table 1.

seen in figure 4. Regarding longitudinal coherence of v′ and w′ which is related to the
average spacing in the x-direction between vortical structures, figure 2(a,b) reveals longer
streamwise coherence with shear-thinning rheology, although there is no clear statistical
evidence of an increase in the mean streamwise spacing between rolls as the wall-normal
position increases.
The average diameter of near-wall vortices can also be estimated by considering the

profile of the standard deviation corresponding to the longitudinal vorticity component,
i.e. rms(ω+

x ) = rms(ω′
x
+
) shown in figure 5(a). The wall-normal positions of the local

minimum and maximum away from the wall in the rms(ω′
x
+
) profile correspond to the

average locations of the edge and centre, respectively, of the quasi-streamwise rolls (Moser
& Moin 1984). As seen in figure 5(a), the mean locations corresponding to the edge and
centre of the quasi-streamwise vortices have moved slightly further away from the wall
with shear-thinning rheology. In consequence, on average, the vortices grow in size and
depart away from the wall with shear-thinning fluid behaviour. Note that, overall, the mean
diameter is approximately 30 wall units and it is comparable to the estimates seen in
figure 4. With respect to the other large value in the rms(ω′

x
+
) profile, it occurs at the

wall because of the no-slip boundary condition. Figure 5(a) also allows us to notice a
general decrease in the intensity of the streamwise and wall-normal vorticities with the
non-Newtonian rheology. Regarding the rms(ω′

z
+
) profile, we observe a similar trend

with shear-thinning fluid behaviour for y+ > 10. However, note that, close to the sublayer
region, there is an overall increase in the spanwise vorticity intensity with shear-thinning
rheology. This behaviour is explained in the context of the vorticity transport in the vicinity
to the wall, which is discussed below.
Since we are interested in the changes experienced by the near-wall vortices with

shear-thinning rheology and in the overall self-sustaining cycle of such structures, it is
worth considering and discussing the characteristics of the vorticity field close to the
wall. The transport equation for the instantaneous vorticity field, obtained by applying
the operator ‘curl’ to the momentum equation for an incompressible GN fluid, is given by

D
Dt

(ω̄i + ω′
i) = (ω̄j + ω′

j)
∂

∂xj
(ūi + u′

i) + εijk
∂

∂xj

(
1
ρ

∂τklvis

∂xl

)
. (3.3)

Here, D( )/Dt = ∂( )/∂t + (ūj + u′
j)∂( )/∂xj is the material time derivative and εijk is the

alternation or Levi-Civita tensor. In (3.3), the first term on the right-hand side represents
the vorticity production terms Pωi whilst the last term accounts for diffusion of vorticity

925 A37-10



Shear-thinning effects on turbulent structures

y+ y+

100 102101 100 102101

100 102101 100 102101

0.4(a) (b)

(c) (d)

rm
s(

ω
′ i+

)
rm

s (
P

+ ω
y)

rm
s(

P
+ ω

z)
rm

s(
P

+ ω
x)

0.3

0.2

0.1

0

0.015

0.010

0.005

0

0.05

0.04

0.03

0.02

0.01

0

0.020

0.015

0.010

0.005

0

Figure 5. Vorticity intensities and root-mean-squared values corresponding to production terms of the
vorticity components: (a) rms(ω′
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+
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ωy
) and (d) rms(P+

ωz
). In (a), standard deviations

corresponding to x, y and z vorticity components are indicated by the line styles ‘—–’, ‘- - -’ and ‘· · ·’,
respectively. In (b–d), root-mean-squared profiles of production terms due to effects over x, y and z vorticity
components are indicated by the line styles ‘—–’, ‘- - -’ and ‘· · ·’, respectively. Line colours as explained in
table 1.

due to viscous effects. Note that, in a fully developed turbulent channel, the mean vorticity
is simply the lateral component, i.e. ω̄z = −∂ ū/∂y. In consequence, the production of the
x, y and z vorticity components are given by

Pωx = ω′
x
∂u′

∂x
+ ω′

y
∂

∂y
(ū + u′) + (ω̄z + ω′

z)
∂u′

∂z

= ω′
x
∂u′

∂x
−

(
∂w′

∂x

)
∂

∂y
(ū + u′) +

(
∂v′

∂x

) (
∂u′

∂z

)
, (3.4)

Pωy = ω′
x
∂v′

∂x
+ ω′

y
∂v′

∂y
+ (ω̄z + ω′

z)
∂v′

∂z

=
(

∂w′

∂y

)
∂v′

∂y
+ ω′

y
∂v′

∂y
−

(
∂

∂y
(ū + u′)

)
∂v′

∂z
, (3.5)

and

Pωz = ω′
x
∂w′

∂x
+ ω′

y
∂w′

∂y
+ (ω̄z + ω′

z)
∂w′

∂z

= −
(

∂v′

∂z

)
∂w′

∂x
+

(
∂u′

∂z

)
∂w′

∂y
+ (ω̄z + ω′

z)
∂w′

∂z
, (3.6)

respectively, since ωi = −εijk∂uj/∂xk. As seen from (3.4)–(3.6), the production terms
involve stretching, tilting and twisting/turning of the different vorticity components and,
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to facilitate their identification, a contribution due to a given action over a certain vorticity
component is denoted by P( j)

ωi . For instance, P
(x)
ωx = ω′

x∂u
′/∂x represents production of

streamwise vorticity due to stretching of the x-vorticity component. Note as well that
(3.6) corresponds to production of total lateral vorticity. Production of ω′

z is obtained
by subtracting the production terms corresponding to the mean spanwise vorticity, i.e.
Pω̄z = ω′

j∂w
′/∂xj.

The root-mean-squared values of Pωx,Pωy and Pωz , in wall units, are shown in
figure 5(b–d). Since our interest primarily lays in the quasi-longitudinal vortices, we
will start this part of the discussion considering the production terms corresponding to
streamwise vorticity. A straightforward order-of-magnitude analysis is sufficient to show
that the leading-order terms always are those involving the mean velocity gradient; as
expected since the velocity gradient inevitably attains large values close to the wall
in order for the streamwise velocity to satisfy the no-slip condition. Therefore, P( y)

ωx =
−(∂w′/∂x)∂(ū + u′)/∂y seems to be the leading term in the vicinity of the wall and
thus, the importance of ωy and in particular of ∂w′/∂x shear layers in the production
of streamwise vorticity. Figure 5(b) shows that indeed P( y)

ωx is the dominant term in
the very near-wall region and also reveals an overall decrease in the production of ωx

with shear-thinning rheology. Once again, P(z)
ωy = −∂(ū + u′)/∂y(∂v′/∂z) is the expected

leading-order term in the region close to the wall and, in consequence, the total lateral
vorticity, ω̄z + ω′

z, can be considered the main source for the production of ωy. Figure 5(c)
reveals that P(z)

ωy is certainly the largest term in the near-wall region and also allows us to
see a general decrease in the production of wall-normal vorticity with shear-thinning fluid
behaviour.
With respect to the production of spanwise vorticity, as with the production of ωy, the

dominant term in the vicinity to the wall is P(z)
ωz = (ω̄z + ω′

z)∂w
′/∂z, which implies that, at

least on average, production of total lateral vorticity appears to be primarily self-sustained
and mainly due to stretching of the mean lateral vorticity ω̄z under ∂w′/∂z shear rates.
Figure 5(d) shows that, as with Pωx and Pωy , there is an overall decrease in the production
of ωz with shear-thinning rheology. Additional insight regarding total production of lateral
vorticity can be gained by also considering the transport equation for ω̄z by Reynolds
averaging equation (3.3) and taking the i = 3 component. This results in

∂ω̄z

∂t
= − ∂

∂xj
(u′

jω
′
z) + ω′

j
∂w′

∂xj
+ ε3jk

∂

∂xj

(
1
ρ

∂τklvis

∂xl

)
= 0, (3.7)

where, in order of appearance, the terms on the right-hand side are the advection of
fluctuating lateral vorticity component (also called turbulent force density, see e.g. Tardu
& Doche 2009) denoted by Bω̄z , the total production of ω̄z through stretching, turning and
lifting (or tilting) by the fluctuating local field and the molecular diffusion of the mean
vorticity field due to viscous effects, MDω̄z , respectively.
Figure 6 presents P+

ω̄z
and B+

ω̄z
being balanced out byMD+

ω̄z
for both GN fluids confined

to the viscous wall region. In the same figure, the rms(ω′
z
+
) profiles are also displayed once

again. The inhibition of the turbulent force density and in particular of the production
term with shear-thinning rheology appears to be related to the very near-wall behaviour
observed for the standard deviation of the spanwise vorticity component. Manipulation of
the production and advective terms are common in active and passive strategies employed
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to reduce turbulent drag (Tardu &Doche 2009). In our case, for a common driving pressure
gradient, the magnitude of the total lateral vorticity actually increases, as we approach
the wall, for the shear-thinning rheology. Recall that ωz|y=0 = −∂(ū + u′)/∂y|y=0 and
the wall-normal velocity gradient at the wall increases with shear-thinning behaviour to
compensate for the appearance of a new non-Newtonian term arising due to fluctuations
in viscosity (see e.g. shear stress budget in Arosemena et al. 2021 or in Singh et al. 2017).
The increase in rms(ω′

z
+
) for case P180, seen as we approach the wall, is expected to be

caused by an increase in the difference between production and dissipation of ω′
zω

′
z for the

drag-reducing fluid case.
Regarding interaction between the small-scale eddies and the mean shear, similar to the

turbulence-to-mean-shear time scale ratio (see e.g. Appendix A), it is possible to define a
parameter with the purpose of analysing such interactions. Figure 7(a) presents the ratio
of time scale of vorticity to that of the mean shear, given by

S�= 2S̄12

ω′
iω

′
i
1/2 , (3.8)

where ω′
iω

′
i is the variance of the vorticity fluctuations, often referred to as the enstrophy.

Note that, since the mean shear is equal to the absolute mean vorticity, (3.8) can also be
interpreted as the ratio of mean vorticity magnitude (Euclidean norm) to the magnitude
of the vorticity fluctuations. As seen from figure 7(a), outside the viscous sublayer, there
is a small increase in S� with shear-thinning rheology and it is expected that the vortical
structures will tend to be slightly more oriented along the most extensive strain direction
at 45◦ to the mean-flow direction (Rogers & Moin 1987). In the sublayer region, due to the
increase in the spanwise vorticity fluctuation, there is a decrease in S� with shear-thinning
fluid behaviour. Also, note that, outside the viscous wall region, i.e. y+ � 50, for both
fluid cases, S� is fairly small and the small-scale eddies are likely to behave as in a weakly
sheared flow. This tendency is more evident when considering ηc = (cijcji/6)1/2 based on
the vorticity anisotropy tensor (Mansour, Kim & Moin 1988; Antonia, Kim & Browne
1991) defined as

cij =
ω′
iω

′
j

ω′
kω

′
k

− 1
3
δij, (3.9)

925 A37-13



A.A. Arosemena, R. Andersson, H.I. Andersson and J. Solsvik

2.8(a) (b)

2.4

2.0

1.6

1.2

0.8

0.4

0

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0
100 102101

y+

S�

0 1.00.80.6

3ηc

0.40.2

Figure 7. Mean-shear-related properties of the vorticity that resides in the smaller scales: (a)
vorticity-to-mean-shear time scale ratio, S�, vs y+ and (b) S� vs second invariant of the anisotropy tensor
corresponding to the vorticity correlations, i.e. 3ηc. Line colours as explained in table 1.

where δij is the Kronecker’s delta. Here, the variable 3ηc varies from unity for vorticity
completely aligned in one direction (one-dimensional turbulence) to zero for fully isotropic
vorticity fluctuations (three-dimensional isotropic turbulence). Figure 7(b) shows S�

against 3ηc. As can be seen, consistent with the profiles in figure 5(a), there is a general
increase in the small-scale anisotropy with shear-thinning rheology. Overall, in both GN
fluid cases and within the viscous wall region, the small-scale eddies behave as in slightly
anisotropic homogeneous shear and as we move towards the log-layer region, the smallest
scales start to increasingly decouple from the shear and become more isotropic as y+
continues to increase.
Finally, some of the aforementioned effects, such as the dampening of quasi-longitudinal

vortices, have been reported for several drag-reducing flows including those with
solid–spherical particles (Zhao, Andersson & Gillissen 2010), those with polymer
additives (Dubief et al. 2004) and those in contact with riblet-mounted surfaces (Choi
et al. 1993). This situation of similar changes in the near-wall structures strongly suggests
that the self-sustained cycle in the region close to the wall (Jiménez & Pinelli 1999) has
been disrupted, albeit (probably) through different mechanisms.

3.2. Effects on quasi-streamwise vortices: structures

3.2.1. Identification method
In this work, vortical structures are identified by means of theQ-criterion, i.e. Q ≥ Qthresh.
The inhomogeneity of the channel flow is taken into account through Qthresh = Qthresh( y)
depending on the standard deviation of the second invariant of Dij = ∂ui/∂xj, which is
a more significant statistical indicator of vortical events compared with other quantities.
For instance, figure 8(a) shows the mean Q-values normalized by their standard deviations
and, as can be seen, for both GN fluid cases, in regions with Q̄ > 0; i.e. regions where
on average Q-positive values are slightly more common, Q̄ 
 rms(Q′). Figure 8(a)
also makes apparent that, in the very near-wall region, particularly within the viscous
sublayer, the mean Q-values are approximately of the same order of magnitude as the
root-mean-squared values of its fluctuations. Other interesting observations regarding
the standard deviation of the Q-values as a statistical indicator of vortical structures are
noted by considering figure 8(b). The figure reveals an apparent inhibition of the intensity
corresponding to the fluctuating Q-values with shear-thinning rheology. This result points
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to an overall decrease in the population of vortices for the drag-reducing fluid case.
Figure 8(b), for both fluid cases, also displays a clear peak in the rms(Q′+) profiles close
to y+ ≈ 20 which suggests predominance of vortical structures in and close to that region
of the buffer layer.
According to what was discussed in the introduction and in the previous paragraph,

non-zero threshold values accounting for variations in the inhomogeneous direction are
to be selected in order to deliver proper results but the question about which particular
threshold values should be used still remains unanswered. For instance, in the channel
flow and at a given wall-normal position, a threshold value, T , is required to be large
enough such that it is possible to distinguish individual structures and also to capture as
many structures as possible. On the other hand, a too large T -value makes it easier to
identify individual structures but only captures the most intense ones. Thus, a common
limitation for the Q-criterion and for many other identification methods, is their threshold
dependency. The threshold selection remained relatively subjective until Moisy & Jiménez
(2004) introduced the percolation analysis to systematically select T -values for proper
visualization of the structures. Here, a perceptible transition from a highly clustered region
to increasing individual structures, identified according to a particular method (e.g. Q
or λ2-criterion), occurs at a critical threshold value, Tc. Percolation analysis has been
successfully used not only for identifying vortex clusters in turbulent channel flows (del
Álamo et al. 2006) but also for detecting three-dimensional velocity structures (Sillero
2014; Hwang & Sung 2018) and quadrant events in turbulent channels (Lozano-Durán,
Flores & Jiménez 2012) and homogeneous shear turbulence (Dong et al. 2017) based
on a three-dimensional extension of the classical quadrant analysis (Wallace et al. 1972;
Willmarth & Lu 1972). More recently, the percolation analysis for threshold selection has
also been employed by Cheng et al. (2020a) for the identification of scale-based structures
of streamwise wall shear stress fluctuations in turbulent channel flows.
A brief description of the approach used for identifying the three-dimensional vortical

structures is given as follows.

(i) For a given instantaneous flow field, the Q(x, y, z)-values are computed according to
(1.4).

(ii) The vortical structures are identified as fluid connected regions where the criterion

Q(x, y, z) ≥ Qthresh( y); Qthresh( y) = T rms(Q′) (3.10a,b)
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Figure 9. Flowchart of the procedure followed for the identification of three-dimensional vortical structures
and computation of related statistics.

is satisfied. Here, percolation analysis is used to determine the value of T and
the standard deviation of the Q-values, for cases P180 and N180, is according
to the profiles presented in figure 8(b). Also, the individual structures consist of
connected grid point values satisfying (3.10a,b) and connectivity is defined by the six
orthogonal nearest neighbours of each grid point. Figure 9 also shows the followed
procedure by means of a flowchart.

Figures 10(a) and 10(b) show the time averaged Vmax/Vtot; which is the ratio of the
volume corresponding to the largest identified structure Vmax, at a given T , to the total
volume occupied by all structures Vtot, and Ntot/Nmax; which is the ratio of the total
number of identified objectsNtot, at a given T , to the largest number of identified structures
over all T -values which is denoted by Nmax, respectively. In the figure, for both cases,
the critical threshold values; where d(Vmax/Vtot)/dT is a minimum and the percolation
transition occurs, and the threshold value Tmax where Ntot = Nmax are marked as well.
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Figure 10(a) shows that the threshold at which the merging process is more intense,
i.e. Tc, slightly decreases with shear-thinning rheology. Note that, for T < Tc and as
T keeps decreasing, fewer structures are identified and the existing ones keep merging
until a single, large ‘sponge-like’ object remains, where Vtot = Vmax (del Álamo et al.
2006). A tentative explanation for the decrease of Tc with shear-thinning behaviour may be
associated with the overall decrease in the number of identified objects and the intensity
of the fluctuating Q-values, as seen in figure 8(b) for the shear-thinning case; a cluster
of objects leading to a less populated domain is likely to distinctly ‘break down’ more
promptly. From figure 10(b) is also apparent that the maximum number of identified
objects decreases with shear-thinning fluid behaviour; at low T -values just a few objects
are detected and the increase in the ratio Ntot/Nmax with shear-thinning rheology implies
that Nmax,P180 < Nmax,N180. Figure 10(b) also allows us to see that Tmax ≈ 1 for cases
P180 and N180. Thus, to facilitate the comparison of the results, the threshold value in
(3.10a,b) is taken equal to the value that maximizes the number of detected objects for
both cases, i.e. T = Tmax. A short discussion regarding the influence of the threshold
value is presented in Appendix B.
Finally, observations regarding the decrease in the total number of identified structures

and the slight variations in their orientation (see also discussion of the ratio S� in § 3.1)
are easily drawn as well from the isosurfaces of the instantaneous Q-values fulfilling
(3.10a,b), which are shown in figures 11(a) and 11(b). Here, for comparison purposes,
a computational box of 12h+ in the x-direction and 6h+ in the z-direction, corresponding
to twice the minimal flow unit up to the logarithmic region (Flores & Jiménez 2010), and
centred around the midpoint in the x − z plane is considered. Also, the presented objects
are limited to y+ � 50 and coloured by the streamwise vorticity component.

3.2.2. Classification: wall-attached and wall-detached structures
Each object identified with condition (3.10a,b) is circumscribed within a bounding box
aligned with the Cartesian axes, which is used to define both its position and size lx, lz
and ly = ymax − ymin; where ymax and ymin are the maximum and minimum distances
of each object to the closer wall, respectively. See figure 12. Figure 13 shows the joint
probability density function ( j.p.d.f.) of the minimum and maximum wall distances for
the vortical structures, p( ymin/h, ymax/h), for cases P180 and N180. Here, the j.p.d.f.s are
approximated via joint probability mass functions (also called discrete density functions).
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Figure 11. Isosurfaces of instantaneous Q(x, y, z) ≥ rms(Q′) coloured by streamwise vorticity, ωx, for:
(a) Newtonian and (b) shear-thinning fluid cases. Blue and red colours are used to identify values of ωx > 0
and ωx < 0, respectively.

As can be seen from figure 13, the objects can be grouped within two families based
on their distance to the wall: the first family is the narrow vertical band to the left of
ymin/h � 20/h+ which includes some very tall structures reaching almost to the opposite
wall, while the second family corresponds to the highly populated inclined band where
ymin/h > 20/h+, limited by ymax = ymin, and which structures depend little on their
distance from the wall and mainly on their vertical height ly. del Álamo et al. (2006)
denoted the first and second families as wall-attached and wall-detached vortex clusters,
respectively. Comparing figure 13(b) with 13(a) reveals that both families present taller
objects with shear-thinning fluid rheology.
For the following subsections, most of the discussion will focus on the wall-attached

structures which are larger but, most importantly, interact with the near-wall flow. Also,
regarding possible Reynolds number dependency of the results, it is worth pointing out
that del Álamo et al. (2006) studied the vortex clusters in turbulent channels of Newtonian
fluids for 180 < Reτ < 1900 and showed fairly small Reynolds number dependency in
their results. Hence, we therefore anticipate that observed trends with shear-thinning fluid
behaviour may hold even at higher Reynolds numbers.

3.2.3. Length scale self-similarity
Figures 14(a) and 14(b) display the p.d.f. of the aspect ratios l+x /l+y and l+z /l+y , respectively,
for the wall-attached structures confined to the viscous wall region and for cases P180 and
N180. Unsurprisingly, the peaks in the profiles showed in figures 14(a) and 14(b) suggest
self-similarity of the lengths and widths of the wall-attached structures with their heights.
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Figure 12. Schematic representation of an identified vortical structure circumscribed in a box of size
lx × ly × lz: (a) top view and (b) side view.
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Figure 13. The j.p.d.f. of the maximum and minimum wall distances of the identified structures,
p( ymin/h, ymax/h): (a) N180 and (b) P180. The contours are 0.25, 0.5, 1 and 5, from darker to lighter blue
until yellow. Dashed vertical line at ymin/h � 20/h+ and dashed horizontal line at ymax/h � 50/h+.

For the Newtonian base case, l+x ≈ 3l+y and l+z ≈ l+y , which are similar to the linear
laws reported by del Álamo et al. (2006), albeit less wide in comparison since there,
l+z ≈ 1.5l+y , for the tall attached structures, i.e. ymin/h � 20/h+ and ymax/h � 100/h+.
With respect to the shear-thinning case, l+x ≈ 4.7l+y and l+z ≈ 0.9l+y . Thus, it appears that,
for a given height, the structures are longer but with approximately the same width for
the drag-reducing fluid rheology. With respect to the flow physics, these results show
that, unlike what is observed in the streamwise direction, the character of the flow in the
cross-stream planes remains unchanged with shear-thinning behaviour.
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Figure 14. The p.d.f. of the bounding boxes’ aspect ratios: (a) l+x /l+y and (b) l+z /l+y corresponding to the
wall-attached structures, ymin/h � 20/h+, confined to the viscous wall region, ymax/h � 50/h+. Dashed
vertical lines mark the approximate peak values of the p.d.f. Line colours as explained in table 1.
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Figure 15. Scale-dependent properties: (a) j.p.d.f. of the logarithms of the volumes corresponding to the
wall-attached vortical structures and their height, p(log(l+y ), log(V+

core)), and (b) population density of the
wall-attached vortical structures, n+

s , as function of their wall-normal position, y+
c . In (a), the levels represented

contain 70% and 97% of the data, respectively, and the dashed lines, found through least-squares fitting,
denote V+

core ≈ 3.5(l+y )1.7 and V+
core ≈ 4(l+y )1.7 for cases P180 and N180, respectively. Line/marker colours as

explained in table 1.

3.2.4. Scale-dependent properties
Regarding the actual shape of the identified objects, figure 15(a), displaying the j.p.d.f. of
the logarithms of volumes corresponding to the wall-attached vortical structures, V+

core, and
their heights, i.e. p(log(l+y ), log(V+

core)), suggests that the vortex cores grow approximately
as (l+y )1.7 for both GN fluids. This result is consistent with the one reported by del Álamo
et al. (2006) although, there, the power-law index is slightly larger; V+

core ∝ (l+y )2. The
growth of the vortex cores contrasts with that of the circumscribing box volume, lxlylz,
which grows as (l+y )3 for the wall-attached structures within the viscous wall region; see
§ 3.2.3. Thus, if the exponent found is interpreted as a fractal dimension, it implies that
the identified structures are shell-like objects (del Álamo et al. 2006). Figure 15(a) also
reveals that the shear-thinning rheology leads to slightly larger V+

core-values for a given
structure height without affecting their crude estimation of their fractal dimension.
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Another scale-dependent property of interest is the population density defined as

n+
s = N( y+

c )

Nf L+
x L+

z
, (3.11)

where N is the histogram of the wall-attached structures at a wall-normal position y+
c =

y+
min + l+y /2. Hence, n+

s represents the number of wall-attached vortical structures per
wall-normal position, number of collected flow fields and wall-normal area. Figure 15(b)
displays the population density for cases P180 and N180 and consistent with the statistical
indicator shown in figure 8(b), the densities peak at the buffer layer. Note that, an overall
decrease in n+

s , most noticeable in the buffer layer, and a slight shift towards the channel
centre of the wall-normal position at which the population density peaks are also observed
with shear-thinning fluid rheology. With respect to the tails of the population density
profiles, although not of our main interest, it is worth mentioning that a similar decay
for the population density is noticed for both cases. For the tall attached objects, l+y ≈ 2y+

c

and n+
s ∝ (l+y )−3 (del Álamo et al. 2006), which constitutes a faster decay in comparison

with the wall-normal decay of the three-dimensional wall-attached quadrant events leading
to positive turbulence production (Lozano-Durán et al. 2012) and the three-dimensional
wall-attached structures based on intense velocity fluctuations (Cheng et al. 2020b). In
consequence, interactions between vortical structures and other types of structures are
deemed more likely to occur in regions closer to the wall.

4. Near-wall self-sustaining process

As mentioned in the introduction, a turbulent flow of a GN fluid exhibiting shear-thinning
behaviour shows several features common to the LDR regime also seen in flows of polymer
solutions with viscoelastic effects. Furthermore, regarding the near-wall structures and
aside from the reduction in the spanwise meandering, spacing and the thickening of
the velocity streaks (see e.g. Appendix A), Section 3 has provided substantial evidence
about the changes of the quasi-streamwise vortices with shear-thinning behaviour; those
structures seem to grow in size, depart from the wall, diminish in population and strength
in a similar manner as observed when viscoelastic effects are introduced. Recall that, in
viscoelastic solutions, the polymers appear to oppose the motion of the vortices (Dubief
et al. 2005; Kim et al. 2007), take energy from them and release it into the streaks through
the work arising from the interactions between the corresponding fluctuating velocity and
the polymer body force (Dubief et al. 2004, 2005). In the case of wall-bounded turbulent
flows of a GN fluid, it is known that an analogous force arises due to fluctuations in
viscosity (see e.g. Singh et al. 2017; Arosemena et al. 2021). To gain insight into the
potential disruption in the self-sustaining cycle near the wall, in the spirit of De Angelis,
Casciola & Piva (2002), the following correlation coefficient is considered:

norm(u′
i f

′
i ) = u′

i f
′
i

rms(u′
i) rms( f ′i )

, (4.1)

where f ′i is the fluctuating component of the new force fi = (1/ρ)∂(2μ′Sij)/∂xj arising
due to viscosity fluctuations. The summation convention does not apply to subscript i in
(4.1). The interaction term E(NN)

i = u′
i f

′
i , appearing in the budget equation of the diagonal

components of the Reynolds stress u′
iu

′
k, represents a mechanical work that can enhance

(E(NN)
i > 0) or diminish (E(NN)

i < 0) the energy carried by the velocity component u′
i.
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Figure 16. Correlation coefficients potentially related to disruption in the near-wall self-sustaining cycle for
the viscous wall region, y+ ≤ 50. Profiles corresponding to correlation coefficients of u′f ′x, v′f ′y, w′f ′z and

ω′
xMD(NN)

ωx

′
are indicated by the line styles ‘—–’, ‘- - -’, ‘· · ·’ and ‘- · -’, respectively. Line colours as explained

in table 1.

Figure 16 shows norm(u′
i f

′
i ) confined to the viscous wall region. This correlation

coefficient is an indicator of E(NN)
i ; if the correlation is positive (negative), on average,

f ′i has the tendency to increase (decrease) u′
i, which is equivalent to positive (negative)

work. In striking contrast to viscoelastic solutions, all velocity fluctuations are, almost
everywhere, enhanced by the new force f ′i . In the case of the streamwise velocity
fluctuation – related to the near-wall streaks – it is worth to note that, as for polymer
solutions showing viscoelastic effects, the major enhancement occurs close to the upper
edge of the viscous sublayer, i.e. y+ ≈ 5. The wall-normal and spanwise velocity
fluctuations – which in a simplified picture of near-wall turbulence are related to
the quasi-streamwise vortices – are mostly enhanced by f ′y and f ′z , respectively. This
observation indicates that the new forces seem to support rather than to oppose the vortices
and contrasts with the findings of e.g. De Angelis et al. (2002), Dubief et al. (2004), Kim
et al. (2007) and Li & Graham (2007), where it is reported that the polymer forces oppose
and potentially suppress the near-wall vortices. Moreover, figure 16 also displays the profile

of norm(ω′
xMD(NN)

ωx

′
), which is the correlation coefficient between ωx and its molecular

diffusion due to viscous effects related to fluctuations in viscosity (analogous to the term
interpreted as the polymer torque in Kim et al. (2007) when considering viscoelastic
effects); as seen from the figure, since outside the viscous sublayer the correlation is
positive, the effects due to viscosity fluctuations appear to neither act in opposition to the
streamwise vorticity component nor reduce the strength of the near-wall quasi-streamwise
vortices.
Finally, although the forces arising due to viscosity fluctuations appear to enhance the

different turbulent intensities, it is important to consider these effects in conjunction with
those resulting from the local increase of mean viscosity with shear-thinning behaviour.
Figure 17(a–c) presents the total contribution to the budgets of u′u′, v′v′ and w′w′

attributed to viscous effects related to the mean viscosity and its fluctuations, i.e. 2E(N)
i

and 2E(NN)
i , respectively. Here, the interaction term E(N)

i = u′
ig

′
i, g

′
i = (1/ρ)∂(2μ̄S′

ij)/∂xj;
summation is applied over index j but not over index i. As expected, for the shear-thinning
fluid, contributions due to fluctuations in viscosity are fairly small in comparison with
those due to the mean viscosity; see the terms related to the budgets of v′v′ and w′w′.
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Nonetheless, as displayed in figure 17(a), 2E(NN)
x appears to be a source term to the

u′u′-budget that cannot be neglected. An intriguing situation when considering the budget
of u′u′ for a shear-thinning fluid in comparison with a Newtonian base case (see e.g.
Arosemena et al. 2021), is that, although the production term is decreasing due to the
decrease in Reynolds shear stress with shear-thinning behaviour (see figure 1b), there is
an increase in the streamwise turbulence intensity as reported by several authors (see e.g.
Gavrilov & Rudyak 2016; Singh et al. 2017; Arosemena et al. 2021). In consequence,
the interpretation of 2E(NN)

x as an additional source term to the u′u′-budget, explains
this well-known observation. The increase in |2E(N)

x | observed in figure 17(a) with
shear-thinning rheology, required to balance out the overall budget, is also attributed
to this new source term. Thus, based on these observations, it is really not surprising
that the streaks are thickened and display less meandering/streakiness with shear-thinning
behaviour. On the other hand, consistent with the decrease in energy redistribution from
the u′u′-budget through the velocity–pressure gradient term with shear-thinning behaviour
(Arosemena et al. 2021), there is a decrease in |2E(N)

y | and |2E(N)
z | observed in figures 17(b)

and 17(c), respectively. The fact that less energy is available for the cross-sectional
intensities is certainly related to the observed suppression of the quasi-streamwise vortices
with shear-thinning rheology.
It is also worth pointing out that the results of this section are in line with our previous

remark about the character of the flow which, unlike the streamwise direction, seems to be
unaffected in the cross-stream planes with shear-thinning fluid behaviour; see § 3.2.3. In
summary, despite the similar flow characteristics between drag-reducing viscoelastic flows
and those of (purely viscous) shear-thinning behaviour, the disruption of the near-wall
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self-sustaining process does not seem to occur in the same manner. The features of
Newtonian near-wall structures remain also for the shear-thinning case; the near-wall
vortices cause the streaks and, for instance, their instability or local regions of longitudinal
vorticity, that may roll-up, form the coherent quasi-streamwise vortices. The difference is
that with shear-thinning rheology, the viscosity – a function of the local properties of the
flow – increases as we move away from the wall and a new force arises due to viscosity
fluctuations. These two factors appear to be leading to less energetic streamwise-oriented
vortical motions and more stable and thicker streaks, respectively.

5. Conclusions

Data of statistically converged turbulent channel flow simulations of GN fluids at Reτ =
180 (Arosemena et al. 2021) are considered to analyse how the near-wall quasi-streamwise
vortices change with shear-thinning rheology compared with the Newtonian base case.
The shear-dependent rheology leads to drag reduction amounting to approximately 10%
and the study comprises statistics compiled from flow field variables and from identified
three-dimensional vortical structures. The following can be inferred from the flow
statistics:

(i) On average (in time and in the homogeneous spatial directions), compared with the
Newtonian fluid case, the quasi-streamwise vortices appear to grow in size, depart
from the wall and decrease in intensity with shear-thinning rheology. In particular, it
is found that the different terms involved in production of streamwise vorticity, Pωx ,
are suppressed with shear-thinning fluid behaviour.

(ii) Also, with respect to the near-wall small-scale motions and the vorticity field,
outside the viscous sublayer, an increase in the time scale of vorticity relative to
that of the mean shear, S�, is noticed for the shear-thinning rheology. Such increase
in S� suggests that the vortical structures will tend to be slightly more oriented along
the most extensive strain direction of the mean flow and also pushes the small-scale
eddies towards higher anisotropy states.

Furthermore, considering the identified vortical structures, we reported the following
findings:

(i) Tall attached and detached families (del Álamo et al. 2006) are also observed with
shear-thinning rheology, however, both families appear to be comprised by taller
objects in comparison with the Newtonian fluid case.

(ii) Regarding the geometry of the structures confined to the viscous wall region,
when they are inscribed into parallelepipedal boxes aligned with the Cartesian
axes, the boxes are self-similar, with dimensions l+x ≈ 3l+y , l+z ≈ l+y and l+x ≈ 4.7l+y ,
l+z ≈ 0.9l+y for the Newtonian and shear-thinning fluid cases, respectively. Hence,
the vortical structures of a particular height appear to be more elongated but with
approximately the same width for the drag-reducing fluid case. This shows that,
unlike what is observed in the streamwise direction, the character of the flow in the
cross-stream planes remains unchanged with the shear-thinning rheology.

(iii) Also, related to the geometry of the structures, it is found that the actual shape
of the vortex cores is still shell like for the shear-thinning fluid case; although,
shear-thinning rheology leads to larger volumes, for a given circumscribing box
height, their fractal dimension remains the same.

(iv) Finally, a decrease in the population density is observed with the shear-dependent
rheology and its peak, at the buffer layer, is significantly suppressed and seen slightly
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shifted away from the wall. This observation is consistent with the previous remark,
inferred from the flow statistics, about the departure of longitudinal vortices from
the vicinity of the wall for the drag-reducing fluid case.

The above findings, by themselves, are useful for the study of certain topics in different
fields, for instance, in chemical engineering, information about the aspect ratio and number
density of the turbulent vortices are of practical importance when computing the rate
of interaction between continuous and dispersed phase in the closure models for fluid
particle breakup and coalescence due to turbulence (see e.g. Ghasempour et al. 2014;
Solsvik & Jakobsen 2016). Furthermore, these results – in conjunction with the observed
changes on the near-wall velocity streaks due to the shear-thinning rheology (see e.g.
Appendix A) – strongly suggest that the self-sustaining process in the vicinity of the wall
has been disrupted.
The study of the interaction between velocity fluctuations and forces related to the

viscous effects revealed that, despite the phenomenological similarities with other LDR
regime flows, such as those with viscoelastic effects, the qualitative features of the
Newtonian near-wall structure remain for the shear-thinning case; quasi-streamwise
vortices cause the velocity streaks and either their instability or other parent vortices
produce the near-wall rolls. The difference with the shear-thinning rheology is the local
increase of viscosity – experienced as we move away from the wall – which seems to lead
to less energetic vortices, whereas the streaks are provided with an additional source of
energy due to fluctuations in viscosity.
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Appendix A. Effects on the velocity structures

In the shear-dominated viscous and buffer layers, the velocity structures consist of an
irregular array of spanwise staggered, alternating regions of low- and high-speed fluid
elongated in the streamwise direction and superimposed to the mean flow. In a canonical
flow, such as a fully developed channel or a boundary layer of a Newtonian fluid, the
streaks are quite long (streamwise length λ+

x ≈ 103–104) with an average spanwise spacing
λ+
z ≈ 100 (Smith & Metzler 1983).
Information about the effects on the near-wall velocity structures due to shear-thinning

rheology can be obtained by analysing the two-point correlation R11 for separations in the
longitudinal and lateral directions. As seen in figure 18(a), R11(δx+) decays more slowly
with increasing δx+ for the shear-thinning fluid than for the Newtonian fluid; indicating
that the streaks are coherent over longer streamwise distances. This is more noticeable
as the distance from the wall decreases, see the contours of instantaneous u′+ at the
same wall-normal positions in figure 19. Note that for comparison purposes, and since
the computational domain for P180 is larger than for case N180, the bounding box for both
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Figure 18. Normalized two-point correlation R11 with: (a) streamwise separation, δx+, and (b) spanwise
separation, δz+. Line styles ‘—–’, ‘- - -’ and ‘· · ·’ are used to identify correlations at y+ ≈ 5, 30 and 50,
respectively. Line colours as explained in table 1.

GN fluid cases has been set to 12h+ in the x-direction and to 6h+ in the z-direction centred
around the midpoint in the x-z plane. This box constitutes twice the box size containing
the minimal flow unit in the logarithmic layer, as discussed by Flores & Jiménez (2010)
and thus, it is considered more than enough to observe several streaks within the viscous
wall region even for the shear-thinning fluid case.
Figure 18(b), on the other hand, shows R11(δz+) decaying rapidly and, at a given y+,

attaining a minimum at a larger spanwise separation with shear-thinning rheology. The
location of this minimum is the average distance between a high- and a low-speed streaks
and, in consequence, the average streak spacing λ+

z is twice such distance (Moser &
Moin 1984). Figure 20 shows the average streak spacing for both cases and a distinct
increase in λ+

z is observed with shear-thinning fluid behaviour. Note that, at y+ ≈ 5–10,
the attained streak spacing is close to the predicted value based on the expression proposed
by Oldaker & Tiederman (1977) for wall-bounded flow of a polymer solution. Also, as for
a Newtonian fluid, λ+

z increases with increasing distance from the wall. An interesting
observation regarding the streak spacing, in the region close to the viscous sublayer, is
that its increase is accompanied by an increase in the average lifetime of a streak which is
less or equal to the time interval between bursts (Achia & Thompson 1977). The meaning
of ‘bursting’ varies between authors but here it is used to describe the three-stage process
of low-speed streak lift-up, oscillation and breakup (Kim, Kline & Reynolds 1971). The
increase in the lifetime of a sublayer streak suggests an increase in their stability with
shear-thinning rheology and in consequence, less bursting and overall lessening of the
turbulent generating events (see for instance the quadrant analysis of Arosemena et al.
2021).
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Figure 19. Contours of instantaneous streamwise velocity fluctuations normalized by frictional velocity for
Newtonian (left panels) and shear-thinning (right panels) fluid cases at: (a,b) y+ ≈ 5, (c,d) y+ ≈ 30 and (e, f )
y+ ≈ 50. White and blue represent negative and positive fluctuations, respectively.
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Figure 20. Average spanwise spacing between streaks, λ+
z . Line style ‘—–’ corresponds to correlation λ+

z =
1.9DR% + 99.7 proposed by Oldaker & Tiederman (1977) for region close to the viscous sublayer. Marker
colours as explained in table 1.

Another important quantity when considering how the energy-containing motions
are affected with shear-thinning rheology in a turbulent shear flow, is the
turbulent-to-mean-shear time scale ratio (Corrsin 1957) given by

S∗ = 2S̄12k
εk

, (A1)

where 2S̄12 = ∂ ū/∂y is the shear rate, k = u′
iu

′
i/2 is the turbulent kinetic energy and εk

is the total mean dissipation rate in the GN fluid flow. Hence, the shear parameter S∗
represents a dimensionless measure of the interaction between the mean shear and the
large-scale energy-containing, eddies (Jiménez 2013). The shear parameter is presented in

925 A37-27



A.A. Arosemena, R. Andersson, H.I. Andersson and J. Solsvik

1.00.80.60.40.2100 102101

y+ 3ηb

S∗

30(a) (b)

25

20

15

10

5

0

30

25

20

15

10

5

0

Figure 21. Mean-shear-related properties of the energy-containing scales: (a) turbulent-to-mean-shear time
scale ratio, S∗, vs y+ and (b) S∗ vs second invariant of the Reynolds stress anisotropy tensor, 3ηb. Line colours
as explained in table 1.

figure 21(a). Within the viscous wall region, for both fluid cases, it is clear that S∗ � 1
and many similarities – in the instantaneous structures and turbulent statistics – with
homogeneous shear flow at comparable S∗ values and thus with linearized rapid-distortion
theory (Lee et al. 1990) are expected. Also, with shear-thinning rheology and for y+ < 50,
the increase in the ratio of energy-decay time to the time scale of mean deformation
implies an increase in the amount that turbulent kinetic energy production exceeds
total dissipation. Such increase in S∗ for the shear-thinning fluid case implies as well
that, compared with the Newtonian base case, mean shear dominates even more the
large-scale motions.
A straightforward way to quantify the effect over the energy-containing scales, is to

measure their anisotropy. A convenient indicator of turbulence anisotropy at large scales is
the variable ηb = (bijbji/6)1/2, see for instance Choi & Lumley (2001), which is based on
the second invariant of the Reynolds stress anisotropy tensor (Lumley & Newman 1977)
defined as

bij =
u′
iu

′
j

u′
ku

′
k

− 1
3
δij. (A2)

Figure 21(b) shows S∗ against 3ηb. The variable 3ηb varies from unity for velocities
completely aligned in one direction to zero for fully isotropic ones. As can be seen, the
increase in the shear parameter with shear-thinning rheology is accompanied by an overall
increase in large-scale anisotropy, which is consistent with the reported enhancement of
streamwise turbulence intensity and the inhibition of the other cross-sectional intensities
by multiple authors (see, e.g. Gavrilov & Rudyak 2016; Singh et al. 2017; Arosemena
et al. 2021). Furthermore, figure 21(b) clearly shows that in the buffer layer, at a y+ value
close to 10, the increase in the maximum value for the shear parameter from S∗

max ≈ 19
to S∗

max ≈ 28 with non-Newtonian rheology pushes the energy-containing eddies towards
a one-component turbulent state similar to what it is obtained in the limit when initially
isotropic turbulence goes through a hypothetical slip-free asymmetric diffuser (Hanjalić
& Launder 2011).

Appendix B. The influence of the selected threshold, T
The influence of the threshold value, in the range Tc ≤ T ≤ 3Tc, is considered.
Figures 22(a) and 22(b) present the p.d.f. of the bounding boxes’ aspect ratios and allow
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Figure 22. The p.d.f. of the bounding boxes’ aspect ratios: (a) l+x /l+y and (b) l+z /l+y corresponding to the
wall-attached structures, ymin/h � 20/h+, confined to the viscous wall region, ymax/h � 50/h+. The line styles
‘—–’, ‘- - -’ and ‘· · ·’ are used to identify the threshold values T = Tc, T = 2Tc and T = 3Tc, respectively.
Line colours as explained in table 1.
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Figure 23. Crude estimate of the fractal dimension of the vortex cores, β, as a function of T /Tc. Marker

colours as explained in table 1.

us to notice an increase in their peak values and a slight shift towards lower aspect
ratios with increasing threshold, T , values. However, the overall shape of the distributions
and the trend of longer bounding boxes of about the same width, for the shear-thinning
case in comparison with the Newtonian one, persists. Note that, in (3.10a,b), T is set to
Tmax ≈ 1 and thus, T ≈ 1.67Tc and T ≈ 1.85Tc for the Newtonian and shear-thinning
cases, respectively. In consequence, a slight decrease in the overall number of structures
is expected for T = 2Tc and T = 3Tc; this explains the increase in the peaks of the
probability distributions with increasing T -values.
Figure 23 displays the effect of the threshold T on the crude estimate of the fractal

dimension of the vortex cores, β; V+
core ∝ (l+y )β . As seen from this figure, β remains close

to 1.7 for both cases and for the considered range of T -values.
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HANJALIĆ, K. & LAUNDER, B. 2011 Modelling Turbulence in Engineering and the Environment:

Second-moment Routes to Closure. Cambridge University Press.
HOEPFFNER, J., BRANDT, L. & HENNINGSON, D.S. 2005 Transient growth on boundary layer streaks.

J. Fluid Mech. 537, 91–100.
HUNT, J.C.R., WRAY, A.A. & MOIN, P. 1988 Eddies, streams and convergence zones in turbulent flows.

Rep. No. CTR-S88. Center for Turbulence Research.
HWANG, J. & SUNG, H.J. 2018 Wall-attached structures of velocity fluctuations in a turbulent boundary layer.

J. Fluid Mech. 856, 958–983.
IRGENS, F. 2014 Rheology and Non-Newtonian Fluids. Springer.
JEONG, J. & HUSSAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 177, 69–94.
JEONG, J., HUSSAIN, F., SCHOPPA, W. & KIM, J. 1997 Coherent structures near the wall in a turbulent

channel flow. J. Fluid Mech. 332, 185–214.
JIMÉNEZ, J. 1994 On the structure and control of near wall turbulence. Phys. Fluids 6, 944–953.
JIMÉNEZ, J. 2013 Near-wall turbulence. Phys. Fluids 25, 101302.
JIMÉNEZ, J., ÁLAMO, J.C.D. & FLORES, O. 2004 The large-scale dynamics of near-wall turbulence. J. Fluid

Mech. 505, 179–199.
JIMÉNEZ, J. & MOIN, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240.
JIMÉNEZ, J. & PINELLI, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 355–359.
KARNIADAKIS, G.E. & CHOI, K. -S. 2003 Mechanisms of transverse motions in turbulent wall flows. Annu.

Rev. Fluid Mech. 35, 45–62.
KIM, H.T., KLINE, S.J. & REYNOLDS, W.C. 1971 The production of turbulence near a smooth wall in a

turbulent boundary layer. J. Fluid Mech. 50, 133–160.
KIM, K., LI, C.-F., SURESHKUMAR, R., BALACHANDAR, S. & ADRIAN, R.J. 2007 Effects of polymer

stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281–299.
KIM, K. & SURESHKUMAR, R. 2013 Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer

torque in polymer drag-reduced turbulent channel flows. Phys. Rev. E 87, 063002.
KLINE, S.J., REYNOLDS, W.C., SCHRAUB, F.A. & RUNSTADLER, P.W. 1967 The structure of turbulent

boundary layers. J. Fluid Mech. 30, 741–773.
LEE, M.J., KIM, J. & MOIN, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561–583.
LI, W. & GRAHAM, M.D. 2007 Polymer induced drag reduction in exact coherent structures of plane

Poiseuille flow. Phys. Fluids 19, 083101.
LIU, C., WANG, Y., YANG, Y. & DUAN, Z. 2016 New omega vortex identification method. Sci. China-Phys.

Mech. Astron. 59, 684711.
LOZANO-DURÁN, A., FLORES, O. & JIMÉNEZ, J. 2012 The three-dimensional structure of momentum

transfer in turbulent channels. J. Fluid Mech. 694, 100–130.
LUMLEY, J.L. & NEWMAN, G.R. 1977 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82,

161–178.
MANSOUR, N.N., KIM, J. & MOIN, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent

channel flow. J. Fluid Mech. 194, 15–44.
MOISY, F. & JIMÉNEZ, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid

Mech. 513, 111–133.
MOSER, R.D. & MOIN, P. 1984 Direct numerical simulation of curved turbulent channel flow. NASA Tech.

Rep. TM 85974. Stanford University.
NAGAOSA, R. & HANDLER, R.A. 2003 Statistical analysis of coherent vortices near a free surface in a fully

developed turbulence. Phys. Fluids 15, 375–394.
OLDAKER, D.K. & TIEDERMAN, W.G. 1977 Spatial structure of the viscous sublayer in drag-reducing

channel flows. Phys. Fluids 20, S133.
PARK, J.T., MANNHEIMER, R.J., GRIMLEY, T.A. & MORROW, T.B. 1989 Pipe flow measurements of a

transparent non-Newtonian slurry. Trans. ASME J. Fluids Engng 11, 331–336.
PEREIRA, A.S. & PINHO, F.T. 1994 Turbulent pipe flow characteristics of low molecular weight polymer

solutions. J. Non-Newtonian Fluid Mech. 55, 321–344.
PINHO, F.T. & WHITELAW, J.H. 1990 Flow of non-Newtonian fluids in a pipe. J. Non-Newtonian Fluid Mech.

34, 129–144.
POPE, S.B. 2000 Turbulent Flows. Cambridge University Press.

925 A37-31



A.A. Arosemena, R. Andersson, H.I. Andersson and J. Solsvik

PTASINSKI, P.K., BOERSMA, B.J., NIEUWSTADT, F.T.M., HULSEN, M.A., VAN DER BRULE, B.H.A.A.
& HUNT, J.C.R. 2003 Turbulent channel flow near maximum drag reduction: simulations, experiments
and mechanisms. J. Fluid Mech. 490, 251–291.

PTASINSKI, P.K., NIEUWSTADT, F.T.M., VAN DER BRULE, B.H.A.A. & HULSEN, M.A. 2001 Experiments
in turbulent pipe flow with polymer additives at maximum drag reduction. Flow Turbul. Combust. 66,
159–182.

ROBINSON, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601–639.
ROGERS, M.M. & MOIN, P. 1987 The structure of the vorticity field in homogeneous turbulent flows. J. Fluid

Mech. 176, 33–66.
RUDMAN, M. & BLACKBURN, H.M. 2003 Turbulent pipe flow of non-Newtonian fluids. In Computational

Fluid Dynamics 2002 (ed. S.W. Armfield, P. Morgan & K. Srinivas), pp. 687–692. Springer.
RUDMAN, M. & BLACKBURN, H.M. 2006 Direct numerical simulation of turbulent non-Newtonian flow

using a spectral element method. Appl. Math. Model. 30, 1229–1248.
RUDMAN, M., BLACKBURN, H.M., GRAHAM, L.J.W. & PULLUM, L. 2004 Turbulent pipe flow of

shear-thinning fluids. J. Non-Newtonian Fluid Mech. 118, 33–48.
SCHOPPA, W. & HUSSAIN, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453,

57–108.
SILLERO, J. 2014 High Reynolds numbers turbulent boundary layers. PhD thesis, U. Politécnica Madrid.
SINGH, J., RUDMAN, M. & BLACKBURN, H.M. 2016 The rheology dependent region in turbulent pipe flow

of a generalised Newtonian fluid. In Proceedings of the 20th Australasian Fluid Mechanics Conference.
Perth, pp. 1–4. AFMS.

SINGH, J., RUDMAN, M. & BLACKBURN, H.M. 2017 The influence of shear-dependent rheology on turbulent
pipe flow. J. Fluid Mech. 822, 848–879.

SINGH, J., RUDMAN, M. & BLACKBURN, H.M. 2018 Reynolds number effects in pipe flow turbulence of
generalized Newtonian fluids. Phys. Rev. Fluids 3, 094607.

SJÄLANDER, M., JAHRE, M., TUFTE, G. & REISSMANN, N. 2019 EPIC: an energy-efficient,
high-performance GPGPU computing research infrastructure. arXiv:1912.05848

SMITH, C.R. & METZLER, S.P. 1983 The characteristics of low-speed streaks in the near-wall region of a
turbulent boundary layer. J. Fluid Mech. 129, 27–54.

SOLSVIK, J. & JAKOBSEN, H.A. 2016 A review of the statistical turbulence theory required extending the
population balance closure models to the entire spectrum of turbulence. AIChE J. 62, 1795–1820.

SWEARINGEN, J.D. & BLACKWELDER, R.F. 1987 The growth and breakdown of streamwise vortices in the
presence of a wall. J. Fluid Mech. 182, 255–290.

TARDU, S.F. 1995 Active control of near-wall turbulence by local oscillating blowing. J. Fluid Mech. 439,
217–253.

TARDU, S.F. & DOCHE, O. 2009 One-information suboptimal control repercussion on the fine structure of
wall turbulence. Comput. Fluids 38, 637–647.

WALLACE, J.M., ECKELMANN, H. & BRODKEY, R.S. 1972 The wall region in turbulent shear flow. J. Fluid
Mech. 54, 39–48.

WARHOLIC, M.D., MASSAH, H. & HANRATTY, T.J. 1999 Influence of drag-reducing polymers on
turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27, 461–472.

WHITE, C.M. & MUNGAL, M.G. 2008 Mechanics and prediction of turbulent drag reduction with polymer
additives. Annu. Rev. Fluid Mech 40, 235–256.

WILLMARTH, W.W. & LU, S.S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 65–92.
ZHAO, L.H., ANDERSSON, H.I. & GILLISSEN, J.J.J. 2010 Turbulence modulation and drag reduction by

spherical particles. Phys. Fluids 22, 081702.
ZHOU, J., ADRIAN, R.J., BALACHANDAR, S. & KENDALL, T.M. 1999 Mechanisms for generating coherent

packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396.

925 A37-32



Paper III

Velocity–vorticity correlations and the four-layer regime
in turbulent channel flow of generalized Newtonian

fluids
Arturo A. Arosemena and Jannike Solsvik

Eur. J. Mech. B Fluids 91, 1–8 (2022)

135

https://doi.org/10.1016/j.euromechflu.2021.08.006




European Journal of Mechanics / B Fluids 91 (2022) 1–8

Contents lists available at ScienceDirect

European Journal ofMechanics / B Fluids

journal homepage: www.elsevier.com/locate/ejmflu

Velocity–vorticity correlations and the four-layer regime in turbulent
channel flow of generalized Newtonian fluids
Arturo A. Arosemena, Jannike Solsvik ∗

Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO 7491, Trondheim, Norway

a r t i c l e i n f o

Article history:
Received 9 February 2021
Received in revised form 2 August 2021
Accepted 28 August 2021
Available online 20 September 2021

Keywords:
Turbulence
Wall-bounded flow
Generalized Newtonian fluids
Low Reynolds number
Velocity–vorticity correlations
Four-layer dynamical regime

a b s t r a c t

The data of Arosemena et al. (2021), consisting of turbulent channel flow simulations of generalized
Newtonian (GN) fluids, are considered to study the effects of shear-dependent rheology on the nonzero
velocity–vorticity correlations and the mean dynamics. In the near-wall region and compared to
Newtonian channel flow, the velocity–vorticity products contributing to the turbulent inertia term
decrease/increase with shear-thinning/thickening fluid behaviour suggesting that with e.g. shear-
thinning rheology, the sublayer streaks are more stable, the near-wall vortical motions are dampened
and there is a narrower range of turbulent length scales. The mean momentum balance analysis, on
the other hand, revealed that the four-layer structure first recognized by Wei et al. (2005a) remains
for all GN fluids and that the shear-dependent rheology only seems to influence the location of the
layers. For instance, with shear-thinning behaviour, layers II and III are thicker and there is an increase
in the importance of the viscous forces in these intermediate layers. The influence of shear-thinning/
thickening fluid behaviour on the extent of the layers II and III is found remarkably similar to an
increase/decrease of the Reynolds number for Newtonian channel flow. These findings suggest that
the shear-dependent rheology should also be taken into account for proper scaling of the intermediate
layers. A potential length scale factor is proposed and its suitability is tested.

© 2021 The Author(s). Published by ElsevierMasson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Turbulence is ubiquitous in nature and many man-made pro-
cesses. Wall-bounded shear flows, such as boundary layers and
pressure-driven pipes and channels, despite their simplicity in
terms of geometrical configuration, are important reference flows
for several technological applications. Consider, for instance, drag-
related studies for novel designs of vehicles propelled in air and
water, or the energy-budget analyses for a new generation of
pipelines in the transport of gas and fuel within the petroleum
industry.

Control of turbulence in wall-bounded flows for drag reduc-
tion, entrainment of particles or mixing purposes has concerned
engineers and applied physicists for decades. The time-averaged
form of the momentum equation differs from its instantaneous
form since it involves a turbulence interaction term consisting
of gradients of the net momentum flux ρu′i by the macroscopic
velocity fluctuations u′j; here ρ is the density of the fluid. In
an incompressible turbulent flow, the gradient of the turbu-
lent or Reynolds stresses, ∂

(
u′iu

′

j

)
/∂xj, can be rewritten as (see

∗ Corresponding author.
E-mail addresses: arturo.arosemena@ntnu.no (A.A. Arosemena),

jannike.solsvik@ntnu.no (J. Solsvik).

e.g. Hinze [1], Tardu [2])

∂

∂xj

(
u′iu

′

j

)
= u′j

∂u′i
∂xj

− u′j
∂u′j
∂xi

+ u′j
∂u′j
∂xi

= −u′jω
′

kεijk +
∂

∂xi

(
u′ju

′

j

2

)
. (1)

In the previous equation, mean and fluctuating variables are
identified by ( ) and ( )′, respectively, xi and ωi denote the spatial-
Cartesian coordinates and the vorticity field, respectively, and
εijk is the alternation or Levi-Civita tensor. Note that, in Eq. (1),
ω′

k = −εijk∂u′i/∂xj. Here, when index notation is used, suffix i (or
any other suffix) takes the value 1,2 or 3 to represent the x, y or z
component, respectively; i.e. (x1, x2, x3) = (x, y, z), (u1, u2, u3) =(
ux, uy, uz

)
and (ω1, ω2, ω3) =

(
ωx, ωy, ωz

)
, and a repeated index

implies summation from x to z. Also, note that, we have adopted
the common approach to denote the velocity correlation u′iu

′

j as
the Reynolds stress tensor, which is not strictly correct.

For canonical channel flow, the i = 1–3 components of Eq. (1)
read

−
∂

∂y

(
u′xu′y

)
= u′yω′

z − u′zω′
y, (2)

https://doi.org/10.1016/j.euromechflu.2021.08.006
0997-7546/© 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).
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∂k
∂y

= u′zω′
x − u′xω′

z +
∂

∂y

(
u′yu′y

)
, (3)

and

0 = u′yω′
x − u′xω′

y, (4)

respectively. Here k = u′iu
′

i/2 is the turbulent kinetic energy.
For boundary layer, Eqs. (2)–(4) are approximately valid since
the gradients ∂( )/∂x are small but nonzero and become smaller
relative to the other terms with increasing Reynolds number
(Klewicki [3]). Thus, insight into how the stress gradients are
generated can also be gained through the velocity–vorticity cor-
relation terms, i.e., u′jω

′

k.
Experimental and numerical investigations related to the

velocity–vorticity products, and to turbulent–vorticity transport
in general, are quite scarce (Eyink [4]). The studies by Klewicki
and co-workers [3,5–8] are notable exceptions. Klewicki [3] used
Eq. (1) and the approximate formulas of Phillips [9] to deduce
some unmeasured (at that point) velocity–vorticity correlation
profiles from available experimental data. The same study
(Klewicki [3]) also showed that contributions to the gradients of
the diagonal Reynolds stresses are dominated by the correlations
involving the z-vorticity component whilst the contributions to
the gradient of the off-diagonal stresses are shared between
the correlations involving the z- and y-vorticity components.
Klewicki et al. [5] considered zero-pressure-gradient boundary
layer measurements to obtain the velocity–vorticity correlations
and to investigate the ω′

z motion contributions to the gradients
of the turbulent stresses and its possible relation to sweep and
ejection events (Willmarth and Lu [10]; Wallace et al. [11]) in
connection with important contributions to the turbulent diffu-
sion term in the budget for u′xu′x. Priyadarshana et al. [6] reported
a number of statistics, based on laboratory data, related to the
velocity–vorticity products including premultiplied cospectra and
correlation coefficients and observed their sensitivity to Reynolds
number as well to wall roughness. Klewicki et al. [7] pondered
Eq. (2) in the context of the mean momentum balance-based
layer structure for boundary layer, pipe and channel flows and
their scaling behaviour (see Fife et al. [12,13]; Wei et al. [14,15];
Klewicki et al. [16,17]; Chin et al. [18]; White et al. [19], among
others).

Afterwards, Morrill-Winter and Klewicki [8] focused on the
u′yω′

z correlation and its scale separation also in boundary layers,
occurring as a function of both the y-coordinate and the Reynolds
number, finding that the scaling of motions affiliated with the tur-
bulent inertia term, i.e. ∂

(
u′xu′y

)
/∂y, is greater than O(µ/ (ρuτ ))

in the region y+ = yuτ/ (µ/ρ) ≤ 40; where µ is the fluid’s
dynamic viscosity and uτ =

√
τw/ρ is the frictional velocity

defined in terms of the mean shear stress at the wall, τw . Aside
from Klewicki and co-workers, it is worth mentioning the letter
of Yoon et al. [20] who analysed the contributions of the velocity–
vorticity correlations to the frictional drag in wall-bounded flows
and found them dominant over the other contributions due to vis-
cous and inhomogeneous effects in the x-direction (for boundary
layer).

The aforementioned studies, concerning the velocity–vorticity
products, are mostly about canonical wall-bounded flows of New-
tonian fluids despite that for many industrial applications, the
working fluid is non-Newtonian. The purpose of this paper is to
explore the effects of shear-dependent rheology on the velocity–
vorticity correlations in a turbulent channel flow and the under-
lying physical implications. As mentioned before, there are but
a few studies regarding the velocity–vorticity interaction terms
and to the authors’ knowledge, none where the effect of having
non-constant, nonelastic viscosity is considered. Moreover, our

interest not only lays in the changes of the correlations but also in
how such changes affect the net mean effect of turbulent inertia
and the resulting mean momentum balance in the wall-bounded
flow. The study of the redistribution of mean momentum clar-
ifies the influence of shear-dependent rheology over the mean
dynamics and potentially leads to a proper scaling of this type of
non-Newtonian channel flow.

2. The numerical experiments

Velocity–vorticity correlations and other statistics are com-
puted using data from turbulent channel flow simulations of GN
fluids at a frictional Reynolds number, Reτ = ρuτh/µw = 180; h
being the channel half-width and µw the nominal wall viscosity
based on τw and the considered rheology model (see Draad et al.
[21]; Ptasinski et al. [22]). GN fluids are purely viscous, time
independent fluids which stress tensor due to viscous effects,
τijvis, is given by

τijvis = 2µSij, (5)

where µ = µ (γ̇ ) is the apparent dynamic viscosity solely
depending on the strain rate γ̇ =

(
2SijSji

)1/2 and Sij =
(
∂ui/∂xj+

∂uj/∂xi
)
/2 is the strain rate tensor. The rheology of a GN fluid

may be reproduced through different models such as the power-
law (PL), Spriggs or Carreau fluid models (see e.g. Irgens [23])
which relate the apparent viscosity to the strain rate through
a constitutive equation. The choice of a particular model has
little effect on the turbulent flow predictions if high strain rate
rheology (typical in turbulent regime near walls) is used in the
rheology characterization (Singh et al. [24]).

The direct numerical simulations (DNS) are performed us-
ing a FORTRAN 77 code called CALC-LES (Davidson and Peng
[25]; Davidson [26]) which solves the incompressible form of
the momentum and continuity equations through a finite volume
method on a collocated grid, using central differencing approxi-
mations in space and the Crank–Nicolson scheme in time. The nu-
merical procedure consists of an implicit, two-time stepping tech-
nique where the Poisson’s equation for the pressure is solved with
an efficient multigrid method (Emvin [27]). Regarding boundary
conditions, in the wall-normal direction (y-coordinate) physical
(no-slip, impermeable) top and bottom walls are imposed and pe-
riodicity is set in the streamwise/longitudinal (x-coordinate) and
spanwise/lateral (z-coordinate) directions of the computational
box.

In the DNS, to avoid unphysical results at large and low strain
rate values which may arise with the simpler PL fluid model, the
rheology is incorporated through the Carreau model, i.e.,

µ = µ∞ + (µ0 − µ∞)
[
1+ (Λγ̇ )2

](α−1)/2
, (6)

where µ∞ and µ0 are the ‘infinite’ and ‘zero’ shear rate viscosi-
ties, respectively, Λ is a time constant and α is the flow index
which for shear-thinning/thickening is to be less/more than unity.
Here, the different parameters are adjusted to attain the target
Reτ according to the set nominal wall viscosity. Fig. 1 shows the
mean (averaged in time and in the spatially homogeneous direc-
tions) viscosity for the considered shear-thinning/pseudoplastic
(P180), Newtonian (N180) and shear-thickening/dilatant (D180)
fluids cases. As evidenced by Eq. (6), shear-thinning/thickening
refers to a fluid exhibiting a decrease/increase in its apparent fluid
viscosity with increasing strain rate. It is remarked that at the
given flow conditions and within the region where viscous effects
are likely dominant, the increase/decrease of local viscosity with
shear-thinning/thickening behaviour is (on average) less than 50%
of the approximate value at the wall. Such increase/decrease
is comparable to what has been reported in previous studies
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Fig. 1. Mean viscosity profile, µ+
= µ/µw , vs. y+ . Here, µ∞/µ0 = 1 × 10−3 ,

µ+

0 ≈ 1.782/0.561 for fluid case P180/D180, Λ+
= 0.1 and α is set to

0.8, 1.0 and 1.2 for fluid cases P180, N180 and D180, respectively. Profiles
corresponding to P180, N180 and D180 are identified by red, black and cyan
colours, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

(see viscosity rheograms in e.g. Rudman et al. [28]; Gavrilov and
Rudyak [29]; Singh et al. [30]). Note as well that, the channel
flow is pressure-driven and that all turbulent scales have been
properly resolved for the simulations of the three considered GN
fluid cases. For further details regarding the computational set-up
and the used database, we refer to Arosemena et al. [31].

In the following sections, most statistics are given in ‘wall’
units, ( )+, using µw, uτ , (µw/ρ) /uτ , (µw/ρ) /u2

τ and ρu2
τ as

characteristic viscosity, velocity, length, time and stress, respec-
tively.

3. Velocity–vorticity correlations

Figs. 2 and 3 show the contributions to the wall-normal gradi-
ent of the nonzero Reynolds stresses, i.e., terms on the right-hand
side of Eqs. (2) and (3), respectively. As it can be seen from Fig. 2,
for the considered GN fluid cases, contributions to the gradient of
the off-diagonal component, ∂

(
u′xu′y

+
)

/∂y+, are shared by cor-

relations involving both ω′
z and ω′

y; the interaction term −u′zω′
y,

in particular, appears to dominate the most within the region
y+ ≲ 30. The relative contributions of these correlations to the
turbulent inertia term are clarified by taking their ratio; see Fig. 4.
The figure also displays the wall-normal position, y+m , at which a
maximum is attained for the Reynolds shear stress, i.e., the zero-
crossing point of its wall-normal gradient. As seen from Fig. 4,
at y+m the ratio u′yω′

z/u′zω′
y ≈ 1 whereas prior/beyond y+m , the

correlation u′yω′
z becomes smaller/larger than the−u′zω′

y term. On
the other hand, Fig. 3 reveals that, for all considered GN fluid
cases, contributions to the gradient of the diagonal stresses are
dominated by the correlation involving ω′

z . The interaction terms
appearing in Eq. (4), found to be several orders of magnitude less
than u′zω′

x which is the smallest velocity–vorticity product studied
so far (see Fig. 3), are considered approximately zero. Thus, for
all cases, the wall-normal and streamwise velocity components
appear to be uncorrelated to the longitudinal and wall-normal
vorticity components, respectively.

The velocity–vorticity correlations presented in Fig. 2 are par-
ticularly important since their difference not only expresses the

Fig. 2. Contributions to the wall-normal gradient of the Reynolds stress,
−∂

(
u′xu′y

+
)

/∂y+ , and wall-normal gradient of the Reynolds stress vs. y+ . Line
styles ‘‘—’’ and ‘‘· · ·’’ are used to identify contributions from the correlations
−u′zω′

y
+

and u′yω′
z
+
, respectively, whereas line style ‘‘- - -’’ is used for the

gradient −∂y+u′xu′y
+

= −∂

(
u′xu′y

+
)

/∂y+ and line style ‘‘- · -’’ for the zero-
crossing line. Profiles corresponding to fluid cases P180, N180 and D180 are
identified by red, black and cyan colours, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Contributions to the wall-normal gradient of the turbulent kinetic energy,
∂k+/∂y+ , vs. y+ . Line styles ‘‘—’’, ‘‘- · -’’ and ‘‘· · ·’’ are used to identify
contributions from the correlations −u′xω′

z
+
, u′zω′

x
+

and the gradient ∂y+u′yu′y
+
=

∂

(
u′yu′y

+
)

/∂y+ , respectively. Profiles corresponding to fluid cases P180, N180
and D180 are identified by red, black and cyan colours, respectively. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

mean effect of turbulent inertia in the differential statement
of mean dynamics (Morrill-Winter and Klewicki [8]) but also,
their cross-stream gradients are the source or sink for the mean
vorticity (Tennekes and Lumley [32]). The correlation u′yω′

z is
related to the advective transport, central to Taylor’s mixing-
length theory of vorticity transfer [33], and it has been shown to
be particularly relevant for the development of the logarithmic
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Fig. 4. Ratios of the velocity–vorticity correlations, TIa/TIb and TIb/TIa , vs. y+;
here TIa = u′yω′

z and TIb = u′zω′
y . In (a)-(c), profiles corresponding to fluid cases

P180, N180 and D180 are identified by red, black and cyan coloured markers,
respectively. The marker ‘◦’ is used for the TIa/TIb ratio whilst the marker ‘□’ is
used for the TIb/TIa ratio. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

mean velocity profile (Klewicki et al. [16]) once the leading order
terms in the mean dynamics are purely inertial (Wei et al. [14]).
On the other hand, the correlation u′zω′

y is related to change-
of-scale effects (Tennekes and Lumley [32]), constitute a gain
(or loss) of mean vorticity in the channel flow−note that total
production of ωz is given by ω′

j∂u′z/∂xj = ∂

(
ω′

ju′z
)

/∂xj since

ω′

j is divergenceless− and when it is not negligible implies that
the mixing-length theory is not an appropriate approximation.
In Fig. 2, the peaks in the correlations occur near y+ ≈ 5 −

10 where the wall-normal gradients of −u′xu′y
+

are the largest.
Also, close to the peak values and with shear-thinning/thickening
fluid rheology, the absolute value of the correlations decrease/
increase which is consistent with the overall decrease/increase of
turbulent shear stress and its wall-normal gradient with shear-
thinning/thickening fluid behaviour (see the mean shear stress
budget in e.g. Singh et al. [30]). Here, an interesting observa-
tion is that both velocity–vorticity products are affected by the
shear-dependent rheology. This is in contrast with the observed
changes due to Reynolds number for Newtonian wall-bounded
flow where only the correlation u′zω′

y appears to be Reynolds-
number-dependent (Chin et al. [18]). Meanwhile, unsurprisingly
and as shown in Fig. 3, the principal contribution to ∂k+/∂y+ also
attains its maximum close to the edge of the viscous sublayer,
y+ ≈ 5, and increases/decreases with shear-thinning/thickening
fluid behaviour. This interaction term involves u′x−largest ve-
locity fluctuation− and ω′

z−important source for the sustain-
ment of turbulence−which intensities are known to increase/
decrease with shear-thinning/thickening fluid rheology in the
very near-wall region (see e.g. Arosemena et al. [31]).

At this point, we would like to highlight the (potential) phys-
ical implications of changes observed with shear-dependent rhe-
ology in the velocity–vorticity correlations contributing to the
turbulent inertia term. The region of positive u′yω′

z , seen up to
y+ ≈ 10 (compared to the Newtonian case, actual zero-crossing
point slightly increases/decreases with shear-thinning/thickening
behaviour as displayed in Fig. 2), is believed to be related to the
outward motion of sublayer streaks (Klewicki et al. [5]) whereas
the region of negative u′yω′

z , after y+ ≈ 10, is believed to be due
to the vertical advection of detached hairpin-like vortex heads;
likely important for the near-wall self-sustaining process of vor-
tical motion (Falco et al. [34]; Klewicki et al. [5]). In consequence,
compared to a Newtonian fluid and with e.g. shear-thinning fluid
behaviour, the suppression of u′yω′

z across the channel seems to
imply that the sublayer streaks are more stable, i.e., less prone
to be lifted-up, oscillate and eventually break-up during a ‘burst-
ing’ process (Kim et al. [35]; Offen and Kline [36]) and that
the strength of the near-wall vortical motions is reduced. See
contours of instantaneous streamwise velocity fluctuations, u′x,
in e.g. Singh et al. [37]; Arosemena et al. [31], where coarser
structures with less ‘streakiness’, more streamwise coherence
and larger spanwise separation are observed with shear-thinning
rheology and Arosemena et al. [31], where the intensity of the
streamwise vorticity component is reported to decrease−for the
shear-thinning fluid− when compared to the Newtonian base
case.

Related to one of the previous remarks, it is worth comparing
the changes experienced by the near-wall streaks in Newtonian
channel flow due to a decrease in Reynolds number with those
attributed to shear-thinning rheology. In Newtonian fluids where
the flow is wall-bounded, the streaks are known to keep a rel-
atively constant spanwise spacing (see e.g. Klewicki et al. [38];
Cossu and Hwang [39]) but the bursting periods are longer (see
e.g. Jímenez et al. [40]). The fact that, for a Newtonian fluid, the
bursting period seems to increase with decreasing Reτ does not
imply an increase in stability in the same sense as for shear-
thinning behaviour, i.e. structures less prone to be lifted-up, but
that perhaps due to the lessened turbulence intensity (see e.g. Lee
and Moser [41]), the streaks are likely to persist over longer
periods of time. Furthermore, as aforementioned, the correlation
associated with the outward motion of the streaks (u′yω′

z) appears
nearly invariant to changes of Reynolds number. On the other
hand, with respect to the term −u′zω′

y associated with the mod-
ulation (change-of-scale effect) of near-wall motions, its overall
attenuation−for the shear-thinning fluid case− is a clear indica-
tive of a decrease in the range of length scales in the turbulent
channel flow. See the previously mentioned contours of u′x in
Singh et al. [37]; Arosemena et al. [31], where a narrower range
of turbulent eddy sizes is observed for the shear-thinning fluid
compared to the Newtonian fluid and also, Section 4.1; about the
hierarchy of length scales.

Finally, it would be wise to discuss the possible Reynolds
number dependency of the velocity–vorticity correlations and
related statistics. At least up to moderate frictional Reynolds
numbers (Reτ = 750), contribution of viscosity fluctuations
(in e.g. the mean shear budget or the turbulent kinetic energy
budget) are known to remain relatively small and consistent
trends in the different statistics (including the Reynolds shear
stress which wall-normal gradient is directly related to the terms
u′yω′

z and−u′zω′
y) are seen when comparing Newtonian and shear-

dependent fluid cases (Singh et al. [37]). In consequence, at least
up to moderate Reynolds numbers, a similar Reτ dependency
(for the different statistics) is deem probable for all GN fluid
cases. In other words, it is likely that for a particular GN fluid,
an increase in Reynolds number would lead to an invariant u′yω′

z-
profile whereas the correlation −u′zω′

y is expected to display a
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similar Reynolds number dependency to the turbulent inertia
term as reported by Chin et al. [18] for Newtonian wall-bounded
flow. It is emphasized that this last statement elucidates what the
authors find probable and should be taken with caution. Definite
evidence about the Reynolds number dependency of the velocity–
vorticity products for GN fluids in wall-bounded turbulent flows
requires actual computation of these profiles for a wide range of
Reynolds numbers and it is proposed as further work.

4. Streamwise mean momentum balance and the four-layer
structure

Based on the properties of the mean velocity profile and the
mean shear stress field, turbulent boundary layer, channel and
pipe flows are commonly scaled according to identified regions
consisting of different layers (see e.g. Tennekes and Lumley [32];
Pope [42]): there is an inner layer region; comprised by a viscous
sublayer

(
y+ ≲ 5

)
, a buffer layer region

(
5 ≲ y+ ≲ 30

)
, a log-

law region
(
30 ≲ y+ ≲ 0.15h+

)
, and a remaining outer region.

There is some discrepancy in the location of the layers reported
by different authors and in general, the logarithmic-law layer,
overlapping the inner and outer regions, is more distinct as the
Reynolds number increases (see e.g. Smits et al. [43]; Marusic
et al. [44]). Wei et al. [14] remarked that it is the gradients of
the stresses and not the stresses themselves that are the relevant
dynamical quantities and proposed an alternative layer structure
directly based on the mean dynamics described by the time-
averaged momentum balance. As a framework, before discussing
the mean dynamics for the shear-dependent cases, we briefly
outline the mean momentum equation analysis for turbulent
channel flow of GN fluids which (as presented) is indistinct to
the one of Newtonian channel and pipe flows and fairly similar to
the one of zero-pressure-gradient turbulent boundary layer; see
for instance Fife et al. [12]; Wei et al. [14]; Klewicki et al. [17];
Chin et al. [18], among others.

For a statistically converged, pressure-driven, turbulent chan-
nel flow of a GN fluid, the streamwise mean momentum equation
reads
∂

∂y+
(
u′xu′y

)+
=

1
Reτ

+
∂

∂y+
(
τ xy

+

vis

)
, (7)

since the mean continuity equation and the y-component of the
mean momentum equation lead to −∂p+/∂x+ = −dp+w/dx+ =

τ+

w/h+ which by definition is equivalent to 1/Reτ . Here p denotes
pressure and the subscript ‘w’ refers to values at the bottom
wall of the channel. In general, for a GN fluid, the total mean
viscous shear stress is given by τ xy

+

vis = 2
[
µ+S

+

xy +
(
µ′S′xy

)+]
;

i.e., τ xy
+

vis may also include a contribution arising due to viscosity
fluctuations. In terms of simpler notation, Eq. (7) can be rewritten
as

TI = PG+ VF. (8)

Hence, for the channel flow, the mean statement of dynamics
indicates that the net effect of turbulent inertia (TI) is balanced
by the sum of the mean pressure gradient (PG) and net viscous
force (VF). Based on Eq. (8), for Reτ ≥ 180, Wei et al. [14] noted
that indeed the three effects must all be in balance, or have at
least two non-negligible terms in balance, and recognized that
the mean dynamical balance can be described by a four-layer
structure: layer I, |PG| ≈ |VF| ≫ |TI|; layer II, |VF| ≈ |TI| ≫ |PG|;
layer III, |PG| ≈ |VF| ≈ |TI|; layer IV, |PG| ≈ |TI| ≫ |VF|.

Fig. 5, displaying the terms appearing in Eq. (8), reveals the
mean dynamics for turbulent channel flow of the considered GN
fluid cases. In the figure, the net mean viscous force is split
into VF(N)

= 2
(
µ+S

+

xy

)
and VF(NN)

= 2
(
µ′S′xy

)+
, being the

Fig. 5. Distribution of stress gradients in the Reynolds-averaged streamwise
momentum equation vs. y+ . Line styles ‘‘- · -’’ , ‘‘—’’, ‘‘· · ·’’ and ‘‘- - -’’ are
used to identify PG, VF(N) , VF(NN) and −TI, respectively. Profiles corresponding
to fluid cases P180, N180 and D180 are identified by red, black and cyan colours,
respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

last term non-zero only for the shear-dependent cases since it
arises due to fluctuations in viscosity. As seen from Fig. 5, in
the near-wall region and for all cases, the turbulent inertia term
is balanced out by VF(N) with an error VF(NN)

+ PG. Further-
more, as mentioned while discussing Fig. 2, with shear-thinning/
thickening fluid behaviour the peak value in −TI is suppressed/
enhanced and moves slightly to the right/left in comparison with
the Newtonian case. Also, as already seen from Fig. 4, the zero-
crossing point of the turbulent inertia term (y+m) appears to be
affected by the shear-dependent rheology; with shear-thinning/
thickening, the wall-normal position at which TI = 0 occurs
further/nearer the wall in comparison with the Newtonian fluid
case. On the other hand, the term arising due to fluctuation in
viscosity

(
VF(NN)

)
peaks in magnitude near the upper edge of

the traditional viscous sublayer, i.e. y+ ≈ 5, and seems to be in
favour/against −TI for shear-thinning/thickening fluid rheology.
Nonetheless, VF(NN) approaches zero as we move further away
from the wall and, across the channel, its magnitude is always
smaller than the magnitude of the normalized, constant, driving
pressure gradient. In summary, the inherent character of the
mean dynamics seems to remain the same for all GN fluids
and the shear-dependent rheology appears to only influence the
location of the regions depending on the leading-order balance
between the terms in Eq. (8).

Following Wei et al. [14], the regions corresponding to the
four-layer structure are revealed through the −VF/TI ratio shown
in Fig. 6. The inner viscous/pressure-gradient balance layer (layer
I), extending from the wall up to y+ ≈ 3, does not differ in
a significant manner from the traditional viscous sublayer and
appears to be unaffected by the shear-dependent rheology in
terms of its physical extent but does display a larger |VF/TI| ratio
with shear-thinning fluid behaviour. At the outer edge of layer I,
the ratio −VF/TI approaches −1 and marks the beginning of the
stress-gradient balance layer (layer II). Note that, at low Reynolds
numbers for pressure-driven channel flow, the ratio of −1 is
approached asymptotically, probably, due to a net diminishing
effect of the associate surface flux of vorticity (Wei et al. [14]).
Layer II extends up to a wall-normal position where the ratio
−VF/TI is less than −2 (Wei et al. [14]) and marks the start of
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Fig. 6. Ratio of the mean viscous force to the mean effect of turbulent inertia,
−VF/TI, vs. y+ . Profiles corresponding to fluid cases P180, N180 and D180
are identified by red, black and cyan coloured markers, respectively. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

the viscous/pressure-gradient/inertial balance layer (layer III). In
layer III, TI changes sign at y+m and Eq. (8) undergoes a balance
breaking and exchange of terms (Klewicki et al. [7]); i.e., in the
mean force balance, the turbulent inertia starts to be of leading
order instead of the mean viscous force (Morrill-Winter and
Klewicki [8]). Finally, the inertial/pressure-gradient balance layer
(layer IV) is attained when the ratio −VF/TI decreases to 0.5
(Wei et al. [14]) and marks the beginning of an inertial subrange
where viscous forces can be neglected. As seen from Fig. 6, lay-
ers II and III appear to be thicker/thinner with shear-thinning/
thickening fluid behaviour in comparison to the Newtonian case
and thus, the influence of VF appears to increase/decrease up to
wall-normal positions further away from/closer to the wall with
shear-thinning/thickening rheology. Moreover, such behaviour is
probably due to the local increase/decrease of viscosity as y+

increases for the shear-thinning/thickening cases; see Fig. 1. This
clearly contrasts with the results reported for viscoelastic channel
flow (White et al. [19]); where, even for the low drag reduction
regime (Warholic et al. [45]), the increase of importance in the
viscous effects−compared to Newtonian channel flow and as we
move further away from the wall− is attributed not to an increase
in viscosity but to a diminishing importance of the inertial effects.

It is also worth remarking that the effect of shear-thinning/
thickening rheology in the −VF/TI profile seems to be similar
to an increase/decrease of the Reynolds number in the New-
tonian case (see e.g. Klewicki et al. [17]) which suggests that
proper scaling of the intermediate layers in turbulent channel
flow of GN fluids should account for their shear-dependency.
In Section 4.1, scaling concepts are applied to identify the (po-
tential) appropriate length scales in the different regions and
to gain further insight into the four-layer structure once the
shear-dependent rheology is introduced. The analysis follows
the conceptual framework used by Fife et al. [12,13] in which
the stress gradient balance layers have a mathematical structure
composed of a hierarchy of length scales and, where, the tradi-
tional inner and outer scales are simply the two extremes in a
continuum of length scales.

4.1. The hierarchy of length scales

Consider Eq. (7) in the following convenient form
dV
dy+

+
dT
dy+

+ ϵ2
= 0, (9)

where V
(
y+
)
= τ xy

+

vis, T
(
y+
)
= −u′xu′y and ϵ2

= 1/Reτ . Also,
consider a mathematical construct, based on the Reynolds shear
stress, defined as

Tβ
(
y+
)
= T

(
y+
)
+ ϵ2y+ − βy+. (10)

Here Tβ is an adjusted Reynolds stress (in Tβ , β is a superscript
not an exponent) and β is a small positive number restricted
to β ≤

[
max

(
dT/dy+

)
+ ϵ2

]
/C; where the coefficient C is a

number in the interval 5 to 20 (Fife et al. [12]). Note that, the
function Tβ satisfies
dTβ

dy+
=

dT
dy+

+ ϵ2
− β, (11)

and thus, Eq. (9) can be rewritten as

dV
dy+

+
dTβ

dy+
+ β = 0. (12)

As will be seen shortly, the introduction of Tβ allow us to have an
exact differential equation in rescaled variables with no explicit
dependency on any parameter. Moreover, Tβ has led to Eq. (12)
expressing an approximate balance between its first two terms
for an arbitrary (small) β-parameter. Such balance must be (even-
tually) broken, at a given y+, and changes to another kind of
balance where the three terms in Eq. (12) have the same order
of magnitude (Fife et al. [12]; Fife [46]).

Proper scaling of Eq. (12)−in a given region−requires that the
two derivatives are bounded and at least one of them cannot be
too small. Through a transformation of differentials, such as

dy+ = ℓdŷ, dV = φdV̂, dTβ
= δdT̂β , (13)

it is possible to rescale the original variables into the new vari-
ables ŷ, V̂ and T̂β which (potentially) represent most clearly and
naturally the momentum balance within a certain subdomain of
interest. The coefficients ℓ, φ and δ in the linear transformations
are β-dependent. In consequence, with the use of the differential
transformations (13), Eq. (12) is recast as(

φ

ℓ

)
dV̂
dŷ

+

(
δ

ℓ

)
dT̂β

dŷ
+ β = 0. (14)

A suitable scaling would render the previous differential equation
(14) into a parameterless equation. This requires matching, in
formal order of magnitude, between the two terms involving
derivatives in Eq. (14) and the third term, β . Therefore, one can
specify

ℓ =
φ

β
, δ = φ. (15)

As seen from Eq. (15), the criterion of equal order of magnitude,
by itself, does not define uniquely the three scaling factors since,
for a given β , one of them is still undetermined. A possible closure
is found assuming that e.g. φ (β) = β−σ ; where the parameter σ
is an exponent (Fife [46]). Hence

ℓ = β−(σ+1), δ = φ = β−σ . (16)

If β = ϵ2, inner and outer length scaling are recovered for σ =

−1 and σ = 0, respectively. The continuum of scales is between
these two extreme cases, i.e., σ ∈ [−1, 0] when β = ϵ2.

The intermediate or ‘meso’ layer III in Wei et al. [14] corre-
sponds to σ = −1/2 and β = ϵ2. However, this mesolayer III is
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Table 1
Scaling behaviour of the intermediate layer III for turbulent channel flow of GN
fluids. Here, ∆y+III = y+3 − y+2 ; where y+2 and y+3 denote the beginning and end
of mesolayer III.

Case ∆y+III µ+
(
y+m
)

∆y+III/
√
Reτ µ+

(
y+m
)

D180 18.6 0.75 1.60
N180 22.1 1 1.65
P180 26.2 1.41 1.64

just one among many, in the sense that, different adjusted meso-
layers can be constructed by replacing T by Tβ and mesolayer III
is just a particular case, where Tβ

= T, and which approximate
centre is at the location y+ = y+m where the balance breaking
and exchange of leading-order terms in the streamwise mean
momentum equation occurs (Fife et al. [12]). Note as well that,
when β = ϵ4, σ = −1/2 and Tβ

̸= T also corresponds to the
outer length scaling case.

At this point, it is worth mentioning that the previous obser-
vations are valid for all GN fluids however, the fact that local
variations of viscosity take place for the shear-dependent cases,
and in the light of results presented in Fig. 6− where the ex-
tension of the intermediate layers seems to be affected by the
shear-dependent rheology−make us ponder if the choice σ =

−1/2 and β = ϵ2 is the most suitable for layer III. Consider-
ing that the balance breaking in Eq. (8) happens at y+ = y+m ,
where TI = 0 (see Fig. 4), another reasonable candidate for the
parameter of interest, β , would be ϵ2/µ+

(
y+m
)
; i.e., a rescaling

factor which takes into account the increase/decrease of the mean
viscosity (with respect to nominal µw) at y+ = y+m for the
shear-thinning/thickening fluid case. For the Newtonian case, as
remarked earlier, the intermediate layer is centred in the vicinity
of y+m since dT/dy+ = dTβ/dy+ = 0. In contrast, for the shear-
thinning and shear-thickening fluid cases is centred around y+ =

y+β where dTβ/dy+ = 0. This wall-normal position, for the con-
sidered cases, is nearby y+m . In comparison with y+m , y

+

β is slightly
closer to/further away from the wall for the shear-thickening/
thinning case since the location of the maximum for Tβ decreases
as β increases. In consequence, for the shear-dependent cases,
µ+

(
y+β
)
is expected to be slightly larger than µ+

(
y+m
)
but not to

significantly affect the proposed scaling, in particular, as ϵ2
→ 0,

i.e., as the frictional Reynolds number increases.
The suitability of the choice β = ϵ2/µ+

(
y+m
)
for turbulent

channel flow of GN fluids can be checked in a quantitative man-
ner. Based on the transformations (13), we obtain y+3 − y+2 =

β−1/2
(
ŷ3 − ŷ2

)
; where y+2 and y+3 denote the beginning and end

of mesolayer III, respectively, and ŷ2 and ŷ3 the same wall-normal
positions but now in the rescaled variable. Here, ∆ŷ = ŷ3 −

ŷ2 = O (1) and thus, ∆y+ = y+3 − y+2 = O
(
β−1/2

)
. As seen

from Table 1, the ratio ∆y+/

√
Reτµ+

(
y+m
)
appears to bounded

for all GN fluid cases, and, it is expected that will tend to 1 as
Reτ increases, i.e., as ϵ2

→ 0. Note as well that this decrease/
increase in the overall range of length scales with shear-thinning/
thickening fluid behaviour is in line with the showed trends for
−u′zω′

y in Section 3.

5. Summary

Turbulent channel flow simulations of GN fluids, consisting of
weakly shear-thinning, Newtonian, and weakly shear-thickening
fluid cases, at Reτ = 180 (Arosemena et al. [31]) are considered
to compute the nonzero velocity–vorticity correlations and some
statistics related to the mean dynamics.

Regarding the velocity–vorticity products, for all considered
GN fluid cases, contributions to the wall-normal gradient of

−u′xu′y are shared between the vortex-stretching and advective
transport terms, i.e., −u′zω′

y and u′yω′
z , respectively. On the other

hand, contributions to the wall-normal gradient of the turbu-
lent kinetic energy are dominated by the correlation −u′xω′

z
which, in the near-wall region, seemingly increases/decreases in
magnitude with shear-thinning/thickening fluid behaviour. The
opposite trend is noted for the velocity–vorticity products related
to the turbulent inertia term, suggesting that with e.g. shear-
thinning rheology, the sublayer streaks are more stable, the
near-wall vortical motions are dampened, and there is a narrower
range of turbulent eddy sizes.

In the context of mean momentum balance analysis, for the
shear-dependent cases, the contributions VF(NN) (arising due to
fluctuations in viscosity) are found to peak in the vicinity of the
wall but, across the channel, are always smaller than PG and over-
all are deemed negligible. The study of the terms contributing to
the mean momentum balance revealed that the four-layer struc-
ture, first recognized by (Wei et al. [14]), remains for all GN fluids
and that the shear-dependent rheology appears to only influence
the location of the layers. Compared to Newtonian channel flow,
with shear-thinning/thickening fluid behaviour, the upper bound
for layers II and III are located further away/closer to the wall
and with e.g. shear-thinning rheology, the balance breaking and
exchange of mean forces at y+m also moves further away from
the channel wall. The results imply an increase/decrease in the
importance of the viscous forces in the intermediate layers with
shear-thinning/thickening behaviour.

We remark that the effect of shear-dependent rheology on the
thickness of layer II and III is strikingly similar to a change of
Reynolds number for Newtonian channel flow (see e.g. Klewicki
et al. [17]; Chin et al. [18]) which strongly suggests that the
shear-dependency should be taken into account for proper scaling
of the intermediate layers in wall-bounded flows of GN fluids.
The mean momentum balance-based layers have a mathematical
structure composed of a hierarchy of length scales (Fife et al.
[12]) and for the intermediate layer III, in case of shear-dependent
rheology, it is proposed that a suitable length scale should ac-
count for the local variation in the mean viscosity (with respect
to its nominal wall value) at y+m . Quantitative evidence (see Ta-
ble 1) revealed that the width of the mesolayer III, ∆y+III, seems

to scale with
√
Reτµ+

(
y+m
)
which is in line with the previous

observation about the overall decrease/increase in the range of
turbulent length scales with shear-thinning/thickening rheology
in the channel flow.
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ABSTRACT

Data obtained from large eddy simulations of single-phase, turbulent flow of Newtonian and shear-thinning fluids in a baffled stirred tank
reactor are considered to identify and characterize vortical structures. The identification proceeds through an objectivized Eulerian method,
accounting for the inhomogeneities in the flow, which palliates some shortcomings of previous implementations. The characterization
focuses on turbulent vortices larger than the dissipative scales and, to a lesser extent, on trailing and macro-instability vortices. The character-
ization performed through different statistical analyses includes aspects such as size, number density, shape, distribution and organization in
space, and correlation with the kinetic energy due to turbulence and the periodic passage of the blades. To the authors’ knowledge, some of
these representative aspects have been rarely investigated or have not been addressed at all for the turbulent flow in a stirred vessel. The influ-
ence of changing the rotational speed of the tank and the rheology of the working fluid are explored as well. Finally, considering one-way
coupling, some potential and practical implications for liquid–liquid and gas–liquid dispersed systems are briefly discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0083843

I. INTRODUCTION

Mechanically agitated tanks are widely used in numerous indus-
tries for chemical and biochemical processes. A stirred tank has three
essential components: (i) a cylindrical vessel containing the working
fluid, (ii) a propeller (typically a shafted six-bladed disk/Rushton tur-
bine) generating the swirling motion, and (iii) baffles (commonly four
in an equally-spaced configuration) fitted to the walls of the vessel to
prevent gross vortexing.1 A sketch of the typical flow pattern produced
in a baffled vessel by a flat-bladed turbine is shown in Fig. 1. The
Rushton turbine generates a strong radial discharge, pushing the fluid
until reaching the tank walls and thereby creating circulation zones on
top and bottom of the propeller region. In stirred tanks, depending
upon aspects such as the desired products, the operation may take
place under turbulent or locally transitional regimes. Furthermore, the
working fluids may be Newtonian but more often than not present
more complex rheology. See, e.g., Nouri and Whitelaw,2 Soos et al.,3

Fernandes del Pozo et al.,4 and Hara et al.5

Over the last decades, stirred tank reactors have received signifi-
cant attention and substantial effort has been made to improve our
understanding of flow phenomena in these vessels. Broadly speaking,
stirred tank studies can be grouped into two categories: experimental
investigations and numerical simulations. Experimentally, different
visualization techniques, such as particle image velocimetry (PIV),

hot-wire anemometry, and laser Doppler velocimetry (LDV), are
largely used to investigate flow patterns and acquire instantaneous
velocity measurements in stirred vessels (see e.g., Sch€afer et al.,6 Sharp
and Adrian,7 Venneker et al.,8 and de Lamotte et al.;9 also, see
Mavros10 for a concise review of different employed experimental
techniques). On the other hand, nearly all well-known numerical
approaches for turbulent flows in computational fluid dynamics
(CFD) have been considered for stirred tank modeling. These include
attempted direct numerical simulations (DNS; see Sbrizzai et al.,11

Derksen and den Akker,12 and Tamburini et al.13), scale resolving sim-
ulations (SRS; see Eggels,14 Derksen and Van den Akker,15 Hartmann
et al.,16 and Sungkorn et al.17), and Reynolds-averaged Navier–Stokes
simulations (RANS; see Hartmann et al.,16 Singh et al.,18 and
Tamburini et al.,19 among many others).

Previous studies (either experimental or numerical), for the most
part, have focused on flow patterns, turbulence intensities, turbulent
kinetic energy, and dissipation rates. Changes due to different types of
impellers, vessel configurations, Reynolds numbers, and working fluid
rheology have been explored as well. These properties, geometrical fea-
tures, and operational aspects are of interest due to their relevance in
mixing and transport phenomena within the agitated tank. For
instance, flow patterns are known to influence mixing performance at
the largest scales (macromixing), while the turbulent dissipation rate is
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important for both dispersion of fluid particles (drops and bubbles)
and mass transfer in multiphase systems; see Garcia–Ochoa and
Gomez20 for a review about gas–liquid mass transfer in a bioprocess
where the dissipation rate is identified as one of the main factors
affecting the oxygen transfer rate. In addition, topics such as turbu-
lence anisotropy for modeling of realizable states of turbulence,21 local
shear-rate quantification,22 and identification of coherent vortical
structures (starting with the tomographic observations of Takashima
and Mochizuki23) have also been addressed in studies about stirred
tanks, albeit perhaps to a lesser extent.

Vortices are swirling-like structures, which play a major role in
turbulence. The popular quote by Richardson,24 broadly describing
the direct energy cascade process, constitutes a memorable illustration
of such a role. In a mechanically agitated vessel, these structures are
clearly important not only for the cascade process but also for actual
mixing (at the molecular level) and particle dispersion and coales-
cence; many models for fluid particle breakup and coalescence in dis-
persed turbulent flow systems are based on particle–eddy interaction
mechanisms (see Liao and Lucas25,26 and Solsvik et al.27 for reviews of
these models). As illustration, in the context of deformation and
breakup of fluid particles, consider Kresta and Brodkey28 who pre-
sented different particle responses depending on the size and intensity

of the surrounding eddies. A droplet may be simply advected when
interacting with a much larger eddy, whereas it may deform or even
breakup in daughter particles when the interacting eddies are of com-
parable size or much smaller than the size of the original droplet. It is
worth mentioning that despite vortices of different sizes being encoun-
tered in stirred tanks, trailing/tip vortices at an intermediate scale and
those related to flow macroinstabilities (MIs) are the most studied.

Trailing vortices are counter-rotating vortex pairs generated
behind the upper and lower edges of each impeller blade due to their
periodic passage.29–31 Trailing vortices have been subject of extensive
research because of the seemly strong correlation between them and
regions of high vorticity, strain rate, turbulent dissipation, and
Reynolds stresses; see e.g., Yianneskis et al.,32 Stoots and Calabrese,33

Lee and Yianneskis,34 Derksen et al.,35 Sharp and Adrian,7 Escudi�e
and Lin�e,36 Escudi�e et al.,37 Bouremel et al.,38 Sharp et al.,39 Chara
et al.,40 among others. Aside reporting turbulent quantities in the
near-impeller region, some of these authors have also attempted to
characterize the trailing vortices by identifying their cores and corre-
sponding mean trajectories, surface area (indicative of vortex size),
and velocity circulation (indicative of vortex strength). Meanwhile,
MIs are temporal mean flow variations affecting the flow patterns and
stemming from changes of impeller off-bottom clearance, changes in
Reynolds numbers, and/or precessional motion of a vortex (or vorti-
ces) around the impeller shaft.41,42 MIs vortices were first identified by
Yianneskis et al.32 as low-frequency, “whirlpool”-like type of vortex
precessing around the shaft in which characterization started with
their frequency at different impeller designs, impeller clearances,41 and
Reynolds numbers.42 Further information, such as the trajectory of
these structures43 and their interaction with trailing vortices,44 has also
been reported for mixing enhancement purposes.

The present work aims to identify and characterize vortical struc-
tures. The input flow fields are obtained from large eddy simulations
of single-phase, turbulent flow of Generalized Newtonian (GN)
fluids45 in a baffled stirred tank reactor. Different from previous inves-
tigations, the identification is performed using a fully frame invariant
version of an Eulerian local region-type method, which takes into
account that the stirred flow is inhomogeneous in all spatial directions.
The characterization includes representative aspects of the identified
structures that have been rarely investigated or have not been
addressed at all in the context of stirred tanks and focuses on turbulent
vortices larger than the dissipative scales and, to a lesser extent, on
trailing and MI vortices. The effects of having different rotational
speeds and shear-thinning rheology (in comparison with Newtonian
fluids) are also explored. Some potential and practical implications for
liquid–liquid and gas–liquid dispersed systems, where the local frac-
tion of the dispersed phase (holdup) is always sufficiently small, are
briefly discussed as well.

This paper is organized as follows. The used numerical approach,
the considered fluid flow cases, and other computational details, such
as impeller motion treatment or employed grid, are described in Sec. II.
Eulerian methods that are commonly used for the identification of vor-
tical structures and their main weaknesses when considering flows due
to induced swirling motion are outlined in Sec. III. Section III also
describes the considered vortex identification method, which is not
only Galilean invariant but also observer-independent, and different
regions of potential interest in the stirred vessel. The characterization
of the identified structures, including aspects such as size, number

FIG. 1. Illustration of the flow pattern produced by a Rushton-type impeller in a
baffled tank: (a) cross-sectional view and (b) top view.
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density, shape, distribution and organization in space, and the cor-
relation between the vortex indicator and the kinetic energy due to
turbulence and the periodic passage of the blades, is addressed in
Sec. IV. Finally, a summary of our main findings, some possible
implications in terms of multiphase systems, and further work are
presented in Sec. V.

II. NUMERICAL PROCEDURE
A. Large-eddy simulations (LES)

In the LES approach, large grid scales are resolved while the
smallest, subgrid-scales (SGS) are modeled. The smallest scales are
supposed to be more isotropic and more in equilibrium than the large
scales. Moreover, the smallest scales only contain a minor fraction of
the total turbulent kinetic energy. The governing equations in LES are
obtained by spatially filtering the governing equations for mass and
momentum conservation. For incompressible GN fluids, in the
absence of external forces, the filtered equations read as

@eui

@xi
¼ 0; (1)

@eui

@t
þ
@ euieuj
� �
@xj

¼ � 1
q
@ep
@xi

þ 1
q

@

@xj
2glaSij� �

� @sij
@xj

; (2)

where gð Þ indicates a grid-filtered variable, xi and ui denote the
spatial-Cartesian coordinates and the instantaneous velocity field,
respectively, and t represents time while q is the fluid density and p is
the pressure field. In Eq. (2), la is the apparent dynamic viscosity,
which, for a GN fluid, solely depends on the strain rate _c
¼ ð2SijSijÞ1=2, and Sij ¼ ð@ui=@xj þ @uj=@xiÞ=2 is the strain rate ten-
sor. In this paper, when index notation is used, subscript i (or any
other subscript) takes the value 1, 2, or 3 to represent the X, Y, or Z
component, respectively. In the stirred vessel, the Cartesian coordinate
system is as shown in Fig. 1.

The SGS- or residual stress tensor sij, introduced after filtering
the momentum equation, is defined as

sij ¼ guiuj � euieuj; (3)

which is to be modeled. The SGS-stress tensor for a shear-dependent
GN fluid is treated in the same manner as for a Newtonian fluid17 and
modeled through the Smagorinsky–Lilly model46,47 as

sij �
1
3
dijskk ¼ �2�sgseSij ¼ �2 ‘2sgs 2eSijeSij� �1=2

� �eSij: (4)

In SGS-kinematic viscosity �sgs, SGS-length ‘sgs is given by

‘sgs ¼ min CsD;jdð Þ: (5)

Here, Cs is the flow-dependent Smagorinsky “constant,” D is the local
grid size based on the volume of the corresponding computational
cell, j � 0:4 is the von K�arm�an constant, and d is the distance to the
nearest wall. For stirred tank flow, the optimal value for Cs has yet to
be determined.12 In this work, as in Fan et al.48 and Devi and
Kumar,49 Cs is set as 0.1.

B. Fluid rheology

In simulations, shear-dependent rheology is incorporated
through the Carreau fluid model (see, e.g., Irgens45) i.e.,

la ¼ l1 þ l0 � l1ð Þ 1þ k _cð Þ2
� 	 a�1ð Þ=2

; (6)

where l1 and l0 are the “infinite” and “zero” shear rate viscosities,
respectively, k is a time constant, and a is the flow index, which, for
shear-thinning, is to be less than unity. Newtonian fluid behavior is
recovered for a ¼ 1. The values for different physical properties and
Carreau model parameters of the fluids under study, water and 0.2wt.%
carboxymethyl cellulose (CMC) solution, are presented in Table I.
The corresponding viscosity rheogram for the shear-thinning fluid
case (CMC 0.2%) is shown in Fig. 2.

C. Impeller motion treatment

The rotational motion of the impeller adds complexity to the
simulations. For baffled stirred tanks, the contradiction between the
rotating impeller and the stationary baffles requires specific numerical
treatment.51 Modeling is typically performed using either the multiple

TABLE I. Physical properties, Carreau model parameters, and Reynolds number of the fluid flow cases under study. Here, W600 and C600 denote the cases where the stirred
vessel is operated at 600 rpm, whereas W800 and C800 denote the cases where it is operated at 800 rpm. Re is the Reynolds number based on the impeller rotational speed
Nðrev s�1Þ, its diameter D; see Subsection II D, and la for an average strain rate according to the Metzner–Otto correlation for a Rushton-type stirrer;50 i.e., ksN � 11:5N. ks is
the Metzner constant.

Case Fluid Line/marker color q� 103 ðkgm�3Þ l0 � 10�3 ðPa sÞ l1 � 10�3 ðPa sÞ k ðsÞ a ð� � �Þ Re ¼ qND2=la ð� � �Þ

W600 Water Black 1.00 1.00 � � � � � � 1.000 0 49 000
W800 Water Black 1.00 1.00 � � � � � � 1.000 0 65 333
C600 CMC 0.2% Red 1.00 97.40 14.80 0.281 5 0.689 2 1144
C800 CMC 0.2% Red 1.00 97.40 14.80 0.281 5 0.689 2 1616

FIG. 2. Apparent viscosity as a function of the strain rate, la vs _c, for 0.2 wt. %
CMC solution.
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reference frame (MRF, Luo et al.52) or the sliding mesh (SM, Murthy
et al.53) approach. The MRF approach is a steady-state approximation
for stirred tanks having a weak impeller-baffle interaction. In the MRF
method, the computational mesh is fixed at the beginning of simula-
tion and the domain is divided into an impeller zone (using a rotating
reference frame) and a stationary zone (using a stationary reference
frame). On the other hand, the SM technique is a fully transient
approach where the rotational motion of the impeller is explicitly
taken into account.54 In the SM approach, the computational domain
is also divided into two non-overlapping submeshes, one rotating with
the impeller while the other is fixed as in the MRF method. However,
the SM method allows the adjacent meshes to slide relative to one
another and the coupling along the sliding interface is accounted for
by re-establishing the cell connectivity each time when sliding
occurs.51 In other words, as the computation proceeds and the impel-
ler moves in a periodic manner, the computational mesh is adjusted
accordingly. The SM approach is considered as a more accurate
method for unsteady state simulations in stirred tanks, and it is used
in this work.

D. Computational aspects

Simulations were performed for a laboratory-scale, 11 L stirred
tank. Table I summarizes the considered flow cases, and Fig. 3 shows
the stirred vessel configuration. The corresponding geometrical details
are as follows: tank diameter T¼ 24 cm, fluid column height H¼T,
baffles width wbf ¼ T=9:6, baffles thickness tbf ¼ T=24, off-bottom
clearance C¼ 7 cm, impeller diameter D¼C, impeller diameter with-
out blades Di ¼ 5:2 cm, blades height hb ¼ 1:5 cm, blades width
wb ¼ 1:8 cm, blades thickness tb ¼ 0:2 cm, outer diameter of shaft
DSo ¼ 1.2 cm, and inner diameter of shaft DSi ¼ 1 cm.

The computational domain was enclosed between two main
parts: an inner rotating cylinder, consisting of the shaft and impeller,
and an outer stationary cylinder containing the baffles and rest of the
tank. The domain was discretized with structured hexahedral elements
using Ansys ICEM (version 19.1, Ansys, Inc., Canonsburg, PA). The
inner rotating cylinder region and regions near wall boundaries and
edges were discretized using finer cells than those used in other regions
of the tank. Boundary layers were specified to resolve the flow effects
near to the walls of the stirred tank. The boundary layers were defined
using a first layer thickness approach. The total number of boundary
layers was five, and the first layer thickness was set to 0.2mm. This is
the minimum grid size while the maximum size goes up to 4mm. The
grid quality was checked by computing the determinant of hexahedral
elements. The determinant test computes the deformation of the ele-
ments by calculating the Jacobian of each hexahedron and then nor-
malizing the determinant of the matrix. Determinant values above 0.3
are acceptable for most commercial solvers and, in this work, the mini-
mum and maximum values of the determinant were 0.764 and 1,
respectively. It is worth commenting that the mesh size was selected
after performing a grid sensitivity analysis. In the tests, the grid size of
the stirred tank was scaled by a factor of 2 (see Table II). For different
axial positions and for a radial coordinate close to the edge of the
impeller blades, the radial, axial, and tangential velocity components
for water and CMC 0.2% cases were computed and compared for all
grid sizes as shown in Table II. A slight difference (1%–3%) between
the computed values of the velocity components using grid sizes G2
and G3 was found, and thus, G2 was selected for conducting all the

simulations. Table II also shows the near-wall resolution, yþ, for differ-
ent grids and when water is the working fluid. To the best of the
authors’ knowledge, in most rotation flow problems, the grid is gener-
ally considered well resolved with yþ < 40. See Fig. 4 for an illustra-
tion of the employed grid distribution, G2. With respect to the
boundary conditions, the inner rotating cylinder containing the impel-
ler and shaft was specified with rotational speed (rpm). The contact
boundary between the inner rotating cylinder and outer stationary cyl-
inder was set as interface. The top surface of the tank was set to
no-slip boundary condition to mimic the placement of a lid at the top

FIG. 3. Stirred tank configuration: (a) cross-sectional view and (b) top view.

TABLE II. Grids considered during sensitivity analysis.

Grid label Number of cells (106) Number of nodes (106) yþ

G1 0.845 0.891 23.8
G2 1.570 1.631 19.5
G3 3.146 3.249 12.5
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surface in experiments to avoid the formation of air bubbles in the liq-
uid. All other remaining boundaries were specified with no-slip and
impermeability boundary conditions.

LES were performed using a finite volume based-method through
the commercial package, Ansys FLUENT (version 19.1, Ansys, Inc.,
Canonsburg, PA). In this software, the term in parentheses, appearing
on the right-hand side of Eq. (2), is approximated as laeSij. Also, la is
calculated considering a strain rate based on the resolved flow field. The
discretized governing equations were solved using the algebraic multi-
grid method. The bounded central differencing scheme was used for the
spatial discretization of the cell-face values of the transported field in the
momentum equation. Meanwhile, Green–Gauss node-based and
second-order schemes were used for the evaluation of gradients and for
interpolating the pressure values at the cell–faces, respectively. A second
order implicit scheme was used for the temporal formulation. Coupling
between the continuity and momentum equations was done using the
pressure-based SIMPLEC segregated algorithm.

Computations were initialized with the results obtained from
steady RANS (realizable version of k� e eddy-viscosity model;

Launder and Spalding55) simulations. These simulations were con-
ducted with a time step of 0.2ms (corresponding to 1� of impeller
rotation). The number of iterations per time step was set to 50 for
ensuring that every residual parameter reached the set absolute
convergence criteria of 1 � 10�5. A total number of 27 000 time
steps were performed, corresponding to at least 35 impeller revolu-
tions. The volume-averaged torque and turbulent kinetic energy
were monitored during LES and after 10–13 impeller revolutions,
the system reached quasi-steady state. Afterward, for each fluid
flow case, instantaneous realizations of the grid-resolved velocity
field in the Cartesian coordinate system, i.e., eui ¼ euiðxi; tÞ, were
exported and a total of 1700 flow fields were collected for post-
processing into our own in-house FORTRAN scripts. For simplic-
ity, hereafter the tilde is dropped and, unless otherwise stated, a
variable without tilde should be interpreted as a grid-resolved one,
ui � eui. All simulations were performed on Fram, a Norwegian
national high-performance computing (HPC) system, and each
simulation case consumed about 50 000 CPU hours. Post-
processing consisting of the identification of vortical structures

FIG. 4. Illustration of the computational
mesh used for large eddy simulations of
the baffled stirred tank.
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and computation of other relevant statistics was carried out on the
Idun cluster, a local NTNU HPC-facility.

III. VORTEX IDENTIFICATION METHOD

As remarked in the Introduction, the identification and conse-
quent understanding of vortices is of paramount importance for mix-
ing in stirred tanks. Our intuition associates vortical structures with
circular patterns seen in a flow; however, until today, there is no for-
mal (mathematical) definition of a “vortex,” which is unanimously
recognized by the fluid dynamics community. For instance, when
looking at a vortex as a finite structure, it is difficult to agree on its
extension, i.e., where the vortex ends.56 This lack of an accepted defini-
tion hinders their identification and explains the emergence of multi-
ple criteria for vortex detection during the last decades. Vortex
identification methods can be broadly classified as Lagrangian and
Eulerian (see Epps57 for a recent comprehensive review). The most
popular vortex identification methods such as the Q-criterion,58 the
D-criterion59 or the k2-criterion

60 are region-type methods, where vor-
tex cores are defined within regions where a scalar field based on e.g.,
local or point-wise values of the velocity gradient tensor, Dij

¼ @ui=@xj, exceeds or not a certain threshold.
The aforementioned Eulerian local region-type methods are con-

ceptually easy to explain in the sense that a vortex exists if the consid-
ered criterion is met and typically have clear physical meaning such as
a vortex represents regions of coherent swirling motion (swirling-
strength criterion, Zhou et al.61) or a vortex is a local region where
there is an excess of rotation rate relative to strain rate (Q-criterion;
see Chakraborty et al.62). Moreover, since these methods can be com-
puted in a point-wise manner and only depend on the instantaneous
velocity field, their computation can be parallelized and they adapt
instantaneously to an evolving unsteady flow field.57 Nevertheless,
these identification methods have also several shortcomings (see, e.g.,
Kol�a�r63) such as their inability to provide the same results in different
rotation frames (i.e., material objectivity or frame invariance, see
Haller64) or their sensitivity to the selected threshold value; that is, dif-
ferent vortical structures are visualized at different thresholds (see, e.g.,
Liu et al.65).

For industrial equipment where swirling motion is induced by
rotating mechanical parts, such as turbomachines or stirred-tank reac-
tors, material objectivity is particularly desirable; unless rotational
invariance is fulfilled, different observers applying these methods (e.g.,
Q and D criteria) in their own frame of reference will identify different
regions as vortical structures.66 In this regard, recently, Haller67

remarked that in the available objectivization procedures for these
local vortex criteria, only the replacement of the spin/rotation rate ten-
sor by a spin-deviation tensor defines compatible local observers for
arbitrary fluid flows. Here, the idea is to compute the spin-deviation
tensor as the difference between the original rotation rate tensor and
its instantaneous spatially averaged value obtained from the instanta-
neous spatially averaged vorticity field; see Haller et al.68 The proce-
dure was proposed and implemented by Liu et al.69 and Liu et al.70 to
objectivize the Rortex criterion71–73 and the omega method.65

The other issue, about the threshold sensitivity of these Eulerian
methods, comprises (i) the (potential) spatial dependency of the
threshold in the case of inhomogeneous flows and, perhaps more
importantly, (ii) the absence of a general procedure that removes the
user-subjective approach in the selection of threshold values. The first

aspect can be addressed considering a non-uniform threshold based
on a statistical indicator of the criterion used for the vortex detection.
Nagaosa and Handler74 proposed a threshold varying in the wall-
direction with the standard deviation of the Q-values for (canonical)
turbulent channel flow. Thereupon, the idea of using the standard
deviation of the considered Eulerian criterion to take into account
inhomogeneities in the flow has been successfully employed by multi-
ple authors (see, e.g., del �Alamo et al.,75 Lozano-Dur�an et al.,76 and
Cheng et al.77). The second aspect, about the arbitrary selection of
thresholds, can be palliated considering the percolation crisis analysis
introduced by Moisy and Jim�enez78 (see, e.g., del �Alamo et al.,75

Lozano-Dur�an et al.,76 Dong et al.,79 Hwang and Sung,80 Osawa and
Jim�enez,81 and Cheng et al.77). In this procedure, different thresholds
are evaluated to examine where a perceptible transition from a highly
clustered region to increasing individual structures identified accord-
ing to a particular method (e.g., Q or D-criterion) occurs. The thresh-
old at which the percolation transition/crisis takes place is considered
a critical one, and the threshold for proper visualization of the struc-
tures lies above it. Nonetheless, it is still up to the researcher to decide
how large the selected threshold should be with respect to the critical
one. For this reason, the clustering methodology is often accompanied
by a sensitivity analysis where the influence of the selected threshold is
briefly studied.

In the case of stirred-tank devices, previous studies have mostly
implemented nonobjective and threshold sensitive vortex identifica-
tion methods. Escudi�e et al.37 used the k2-criterion to identify vortex
cores of trailing vortices, and Escudi�e et al.37 and Escudi�e and Lin�e82

remarked that earlier investigations localize trailing vortices either (i)
from the phase-averaged velocity fields, where for a given angular
position of the measurement plane compared to the blade, the vortex
center is defined by the location where the vertical velocity is zero or
(ii) from a dimensionless vorticity calculated in a vertical plane of mea-
surement relative to the blade position, which had to exceed an arbi-
trary threshold value for the detection of a vortex core. Afterward, the
k2-criterion gained significant popularity and has been used for the
identification of both trailing and MI-vortices; see e.g., Ducci and
Yianneskis,43 Chara et al.,40 and Başbu�g et al.83 In recent years, aside
the k2-criterion, other methods such as the swirling-strength criterion
(see Sharp et al.39 and Singh et al.18) or the standard Q-criterion (see
Zamiri and Chung84) have been implemented as well. Nevertheless,
these methods present the same shortcomings. In this work, vortical
structures are identified using an Eulerian local region-type method,
which should be fully frame invariant, take into account that the flow
is inhomogeneous in all spatial directions and also lead to consistent
results even if slightly different threshold values are used. Subsection
IIIA describes the procedure employed to identify the vortical
structures.

A. An objectivized version of the Q-criterion

The previously mentioned velocity-gradient-based vortex identi-
fication criteria (see Sec. III) are Galilean invariant, i.e., invariant under
translation of frames but not material objective since the angular rota-
tion rates in the spin tensor are (implicitly) measured relative to the
reference frame of the observer.57 Eulerian methods based on instanta-
neous point-wise values of Dij can be objectivized by replacing the
velocity gradient tensor with a net version of it, defined as67,69
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Dij? ¼ Sij þ Xij � hXiji
� �

; (7)

where Dij? is a net velocity gradient tensor, Xij ¼ ð@ui=@xj
� @uj=@xiÞ=2 is the spin/rotation rate tensor, and hXiji ¼ �eijkhxki=2
is a spatially averaged spin tensor based on a spatially averaged vortic-
ity, hxki. Here, eijk is the alternation or Levi–Civita tensor. Haller
et al.68 defines this instantaneous spatially averaged vorticity as

hxki ¼
1
V

ð
V
xkdV; (8)

where V is the volume of the flow domain. From Eq. (7), we can easily
define objective versions of the different well-known vortex identifica-
tion criteria.

The objectivized version of the Q-criterion,58 in the context of
incompressible flows, can be expressed as

Q? ¼ � 1
2

Dij?Dji?ð Þ ¼
1
2

Xij?Xij? � SijSij
� �

> 0; (9)

where Q? denotes the considered objective version of the Q-criterion
and Xij? ¼ Xij � hXiji is the corresponding net spin tensor. In this
work, we have decided to use the Q?-criterion to identify vortical
structures in the stirred tank considering that the classical Q-criterion
is one of the most commonly used vortex identification methods (see,
e.g., Mihalić et al.85 for an application in turbomachinery or Wang
et al.86 for an application in design of marine propellers).
Conceptually, Q? > 0 defines a vortex as a connected fluid region
where there is more net rotation than stretching; however, similar to
the original criterion, a non-zero threshold value is required for the
identification of (distinct) individual structures. Moreover, this thresh-
old should account for the fact that the swirling flow in the stirred
tank is inhomogeneous in all spatial directions and its selection should
not be arbitrary.

Following the arguments presented above, at a given instant, we
consider that a grid point in the spatial domain belongs to a vortex if

Q? � T stv Q?ð Þ; (10)

where T is the thresholding parameter and stvðQ?Þ is the standard
deviation of the Q?-values and the selected statistical indicator to take
into account inhomogeneities in the flow. Here, for a given T , neigh-
boring grid points satisfying Eq. (10) are connected, merged, and clas-
sified as individual structures. Connectivity is defined by the six
orthogonal nearest neighbors of each grid point, and the T -parameter
is chosen following a percolation crisis analysis. In a percolation analy-
sis, the ratio between the volume of the largest structure, Vmax, and the
total volume occupied by all the structures, Vtot, is computed for dif-
ferent values of T . Here, as mentioned in Sec. III, the idea is to set a
threshold larger than that of the critical one for proper visualization.
The critical threshold corresponds to the T -value where the percola-
tion transition occurs, i.e., where the change of the ratio with respect
to T attains a minimum. Before the critical threshold, most of the
domain is occupied by large objects, and in practice, it is not possible
to distinguish individual structures. In percolation analysis, aside the
Vmax=Vtot-ratio, the ratio between the total number of identified
objects at a given T ; Ntot, to the largest number of identified struc-
tures’ overall T -values, Nmax, is often studied as well.

For a wide range of T -values, Fig. 5(a) displays the time average
of the Vmax=Vtot-ratio, whereas Fig. 5(b) shows the time average of the

Ntot=Nmax-ratio. Considering these percolation diagrams, we observe
the following:

(i) Before the percolation transition takes place, the largest
identified object occupies most of the domain. Moreover,
the maximum (possible) number of structures is detected as
well.

(ii) The percolation transition starts at the critical threshold
and goes up to T � 1. For cases C600, C800, W600, and
W800, the critical threshold is about 0.073, 0.077, 0.177,
and 0.179, respectively.

(iii) The percolation transition appears to delay (slightly) with
an increase of Reynolds number, Re, but this fact alone is
not deemed sufficient to explain the difference between the
profiles corresponding to Newtonian and shear-thinning
fluid cases for a given impeller rotational speed, N. The
overall decrease in the number of structures with shear-
thinning behavior is probably the main reason for the dif-
ference in the percolation transition. A cluster of objects
leading to a less populated domain is likely to fall apart
more promptly.

In summary, the clustering methodology allows us to recognize
the lowest practical threshold for which the vortices can still be identi-
fied individually, i.e., the critical one. Here, for comparison purposes
and for more easily distinguish the individual structures, T is set to 1
for all fluid flow cases. At such a threshold, between 30% and 40% of

FIG. 5. Percolation diagrams: (a) expðVmax=VtotÞ and (b) expðNtot=NmaxÞ. Here,
expð Þ denotes an expectation or time-averaged quantity. Cases where the impeller
operates at 800 and 600 rpm are identified by the line styles “—–” and “- - -,”
respectively. Colors as explained in Table I.
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the maximum (possible) number of structures are identified and the
largest object does not occupy most of the domain. Due to the compu-
tational cost, a sensitivity analysis of the results to the selected threshold
is not performed. Nonetheless, considering previous works (see, e.g.,
Cheng et al.77 and Arosemena et al.87) and for threshold values larger
than the that of the critical one, it is deemed probable that consistent
trends in the results will be observed when the threshold value is
changed to another one differing by less than an order-of-magnitude.

Figure 6 shows the vortical structures identified by criterion (10)
with T ¼ 1 for the Newtonian and shear-thinning fluid cases when
the stirred tank operates at 800 rpm. Here, despite using a threshold
value close to the end of the percolation transition, it is still challenging
to interpret the results. Nevertheless, from the figure, we note an
apparent increase in the size of the objects and an overall decrease in
the number of detected structures for the shear-thinning fluid case.
Furthermore, for both the cases, some regions in the tank seem more
populated than others and the range of scales of the vortices probably
varies as well.

B. Regions of potential interest in a stirred tank

Regardless of the fluid flow case, the identified vortical
structures in the stirred tank appear to be complex, being highly

three-dimensional and presenting a wide range of scales.
Considering Fig. 6, as we move in a circular manner from the
tank’s center toward its wall, the following three distinct regions
are seen:

(i) r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
2 ½0; 0:5D	, i.e., up to the impeller. This

region in comparison with the others does not seem as
highly populated. Moreover, the size of the structures
appears more moderated and the range of scales narrower.

(ii) r 2 ð0:5D; 0:396T	, i.e., approximately up to the baffles.
Here, a larger range of scales is seen and, compared to (i),
this region is more populated.

(iii) r 2 ð0:396T; 0:5T	, i.e., up to the tank’s wall. In this region,
compared to (i) and (ii), sizable structures are mostly seen.
Visually, this also make it difficult to determine if region
(iii) is more populated than (i) and (ii).

Likewise, distinct features are expected in the axial direction, as
we move from bottom of the tank up to its top. However, based on
Fig. 6, it is not evident which regions are the most populated or
which ones present a wider range of spatial scales. Having said that, it
is also well-known that the trailing vortices are generated behind the
upper and lower edges of each blade, which makes the impeller region
and those right next to it, compelling targets for investigation.

FIG. 6. Instantaneous vortical structures
identified by the isosurfaces of
Q?=stvðQ?Þ ¼ 1 for (a), (b) W800 and
(c), (d) C800. 3 D view displayed in (a),
(c) and top view in (b), (d). Fluid flow
cases as described in Table I.
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In consequence, there are (at least) three regions of potential interest
in the axial direction:

(a) Z 2 ½0;C � 0:5hb	, i.e., up to the lower edge of each impeller
blade. This is the lower circulation loop region (see illustra-
tion in Fig. 1).

(b) Z 2 ðC � 0:5hb;C þ 0:5hb	, i.e., up to the upper edge of each
impeller blade. This is the impeller region.

(c) Z 2 ðC þ 0:5hb;T	 constituting the remaining part of the
tank where the upper circulation loop is observed (see illus-
tration in Fig. 1). It is worth remarking that the upper circula-
tion loop does not extend to the top of the tank and there is a
badly mixed region occupying 14%–18% of the total tank vol-
ume.16 In the case of shear-thinning fluid rheology, such a
badly mixed region is probably larger.

The regions of potential interest in the stirred tank lead to certain
subdomains and, most of them, are summarized in Table III. Here, six
different subdomains consisting of either cylindrical or tube-like vol-
umes are considered (see Fig. 7). It is noted that the seemingly clus-
tered region of structures between baffles and tank wall is not
explored. The characterization of the identified vortices in these sub-
domains of potential interest is presented in Sec. IV. Here, a vortical
structure is included in the analysis of a particular subdomain if the
centroid of such a structure, ðXc;Yc;ZcÞ, is encountered in that subdo-
main. Further details about spatial distribution of the detected vortices
are discussed in Subsection IVC.

IV. CHARACTERIZATION OF VORTICAL STRUCTURES

Before continuing with Subsections IVA–IVD, we would like to
stress that although the presented results correspond to single-phase

flow simulations, their discussion is vastly motivated by the possible
implications in multiphase flow systems. This is particularly the case
for systems in which the local fraction of the dispersed phase is always
small enough such that the influence of the dispersed phase over the
continuous one is negligible. Hence, the reason for introducing differ-
ent representative aspects in the context of interactions with fluid par-
ticles in the following.

A. Size and number density

Information about the size of the structures is relevant for under-
standing and modeling the interaction between turbulent vortices and
fluid particles. For instance, in several models,27 particle breakup is
presumed to take place when the particles interact with vortices of
comparable size. In this work, particular attention is paid to structures
with an equivalent diameter deq ¼ ð6Vcore=pÞ1=3, where Vcore is the
vortex core volume, which is equal to 2, 5, and 8mm since such struc-
tures are representative of those likely to interact with mother particles
of typical size used in laboratory setups, see, e.g., Solsvik and
Jakobsen88 where the injected mother bubble diameters were in the
range of 2.5–3.4mm or Vejra�zka et al.89 where the bubbles where in
the range of 1.8–5mm.

For different cases, Fig. 8(a) shows the resulting deq normalized
by the equivalent diameter of the largest detected structure, maxðdeqÞ,

FIG. 7. Schematic representation of subdomains of potential interest as described
in Table III. Subdomains A, B, C, D, E, and F colored in light blue, light green, light
red, dark blue, dark green, and dark red, respectively.

FIG. 8. Normalized size indicator and number density of the identified structures:
(a) deq=maxðdeqÞ vs ðVcore=VA�FÞ � 100% and (b) nd vs deq. Cases where
the impeller operates at 800 and 600 rpm are identified by the line styles “—–” and
“- - -,” respectively. Colors as explained in Table I. In (b), the blue line denotes
nd ¼ 24A=½ð2pÞ5=3Bd4eq	, which is the theoretical limit corresponding to the inertial
subrange considering A ¼ 1:591 and B ¼ 4:82A.92

TABLE III. Subdomains of potential interest in a stirred tank.

Label Regions covered Resulting volume

SUB-A (i)-(a) pð0:5DÞ2ðC � 0:5hbÞ
SUB-B (i)-(b) ½pðð0:5DÞ2 � ð0:5DiÞ2Þ � 6tbð0:5wbÞ	hb
SUB-C (i)-(c) p½ð0:5DÞ2 � ð0:5DSiÞ2	ðT � C � 0:5hbÞ
SUB-D (ii)-(a) p½ð0:396TÞ2 � ð0:5DÞ2	ðC � 0:5hbÞ
SUB-E (ii)-(b) p½ð0:396TÞ2 � ð0:5DÞ2	hb
SUB-F (ii)-(c) p½ð0:396TÞ2 � ð0:5DÞ2	ðT � C � 0:5hbÞ
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as a function of the percentage volume fraction occupied by the corre-
sponding structure, Vcore=VA�F � 100%. Here, VA�F is the volume of
the fluid in the subdomains A–F (see Table III). The plot includes all
possible deq based on Vcore of the structures detected in the subdo-
mains A–F. As seen from Fig. 8(a), for a given type of fluid, an increase
in N is leading to finer structures and to a decrease in the range of
length scales, which is to be expected since Re is increasing as well. On
the other hand, when comparing Newtonian and shear-thinning fluid
cases at the same N, more sizable structures are found but not
within a narrow range of length scales. This increase in size
with the shear-thinning behavior is consistent with previous
findings for the simpler turbulent channel flow of GN fluids
(see Arosemena et al.87). Regarding the range of length scales,
also for the turbulent channel flow of GN fluids, it is known that
both the fluid rheology and the Reynolds number have an
influence in the velocity–vorticity correlation associated with

change-of-scale-effects.90 In this case, when comparing the Newtonian
and shear-thinning fluid cases at the same N, Re is probably playing a
major role over the range of length scales. From a practical point of
view, it is worth commenting that the size indicator, deq, appears to be
in the range of � 1mm to 52, 47, 53, and 49mm for cases W600,
W800, C600, and C800, respectively.

Another important feature when considering the interaction with
fluid particles, it is the number of structures of a given size in the
stirred vessel. In the aforementioned example about particle breakup,
the likelihood of the breakup event will possibly increase if the number
of structures of comparable size to the mother particle is large rather
than small. A quantitative indicator of the amount of vortical struc-
tures is the number density nd defined as

nd ¼
n

nfVfluidDdeq
; (11)

FIG. 9. Number density, nd, as the function of the size indicator, deq, for (a) SUB-A, (b) SUB-B, (c) SUB-C, (d) SUB-D, (e) SUB-E, and (f) SUB-F. Cases where the impeller
operates at 800 and 600 rpm are identified by the line styles “—–” and “- - -,” respectively. Colors as explained in Table I. In (a)–(f), the blue, straight line denotes
nd ¼ 24A=½ð2pÞ5=3Bd4eq	, which is the theoretical limit corresponding to the inertial subrange, considering A ¼ 1:591 and B ¼ 4:82A,92 whereas the blue, dashed lines
mark values of constant deq of interest; i.e., deq ¼ 2; 5, and 8mm, respectively.
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where n is the number of identified vortices of size between deq and
deq þ Ddeq for the collected realizations, nf is the number of collected
flow fields, Vfluid is the considered fluid volume within the stirred tank,
i.e., Vfluid ¼ VA�F for a number density defined in the subdomains
A–F, and Ddeq is the bin width for n. In other word, nd is the time-
averaged number of identified vortices of size between deq and
deq þ Ddeq per bin width in the considered fluid volume. Figure 8(b)
displaying the number density allows us to note a monotonic decrease
in nd with increasing deq for all cases. Moreover, keeping in mind the
models for nd proposed for the whole energy spectrum,93 we observe
that the profiles appear to depict only the energy containing and iner-
tial subranges. This is in line with the fact that large eddy simulations
have been carried out. With respect to trends with fluid rheology and
impeller speed, at small deq values, there is an overall decrease in the
number density with shear-thinning behavior when compared to the
Newtonian cases, whereas there is almost no difference in the profiles
of the same fluid at different N values. Therefore, under the premise
that the interaction with particles of typical size found in laboratory
setups (leading to their breakup and actual mixing) is probably occur-
ring with structures of comparable size, i.e., those having small deq, a
decrease in particle breakage and dispersed–continuum phases mass
transfer are expected for shear-thinning behavior in comparison with
a Newtonian fluid flow operating at the same N. Recent experimental
studies of bubble–liquid mass transfer94,95 have revealed that indeed
there is a decrease in bubble breakage and volumetric mass transfer
coefficient with shear-thinning rheology. See trends for the bubble size
distributions and the volumetric mass transfer coefficient in, e.g., Ali
and Solsvik94 for water compared to the CMC cases at the same opera-
tional conditions and axial liquid height. On the other hand, at large
deq, the rapid decrease in nd is seemingly delayed both with decreasing
N and shear-thinning fluid behavior; consistently with what it is
expected as the Reynolds number decreases.

Additional insight into the interaction with fluid particles, in par-
ticular regions of the tank, can be gained by considering the nd profile
in the subdomains A–F as shown in Fig. 9. Here, aside the already
noted decrease in nd with shear-thinning behavior for deq � 10�2 m,
the following particularities are observed: (i) a wider range in deq is
seen for subdomains D–F, (ii) larger nd values for structures with
deq ¼ 2, 5, and 8mm are perceived in subdomains B, D, and E, (iii) a
conspicuous nd value is noticed for deq � 18mm in subdomain E, and
(iv) for deq � 10�2 m, nd appears to peak twice in subdomain C; first
between 18mm �deq� 20mm and then at deq � 25mm. These par-
ticularities have the following (potential) implications: (i) greater range
of turbulent scales for subdomains D–F, (ii) improved likelihood of
particle breakage and overall mixing in subdomains B (impeller
region), D and E, (iii) evidence of trailing vortices and/or remnant of
them at an intermediate scale, and (iv) existence of sizable structures

FIG. 10. Elongation, E, against flatness, F, diagram for classifying structures based
on Zingg’s categories.97 The corners also illustrate the extreme cases:78 ribbons
(0,0), tubes (1,0), sheets (0,1), and spheres (1,1).

FIG. 11. Shape indicators of the identified structures across the stirred tank: (a)
CDF of the maximum projection sphericity, UP , and (b) JCDF of E and F, respec-
tively. Cases where the impeller operates at 800 and 600 rpm are identified by the
line styles “—–” and “- - -,” respectively. Colors as explained in Table I. In (b), the
levels represented contain 99%, 70%, and 30% of the data. Also, the blue lines
mark values of constant E and F, where E and F are equal to 2/3.
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above the impeller region, probably very large structures toward the
stagnation region of the tank andMI-vortex, respectively.

B. Shape

In theoretical models for breakup and coalescence of fluid par-
ticles, it is common to represent the turbulent vortices interacting with
the drops or bubbles as spherical structures. Thus, the reason for using
an equivalent diameter based on a spherical geometry for quantifying
the size of the structures in Subsection IVA. Nonetheless, this assump-
tion is rather questionable even for representing the largest, energy
containing eddies, considering that the turbulent flow in a stirred tank
is highly complex, showing different degrees of anisotropy across the
vessel.21

Morphological analyses, typical for solid particles, include prop-
erties such as roughness, roundness (measure of the sharpness of the
edges and corners of an object), and sphericity (degree to which an
object approximates the shape of a sphere and measure of equidimen-
sionality). Analogously, we can consider the sphericity and other
length measurements to study the overall shape of the detected vorti-
ces. Here, the shape of the identified vortical structures is determined
considering their maximum projection sphericity96 defined as

UP ¼ d2S
dLdI

� �1=3

; (12)

and their flatness and elongation parameters97 are given by

F ¼ dS
dI

; (13a)

E ¼ dI
dL

; (13b)

respectively. In Eqs. (12) and (13), dS, dI, and dL denote the shortest,
intermediate, and largest dimensions of the oriented bounding-box
(OBB) of the corresponding structure. The OBB was computed by
principal component analysis (PCA), see e.g., Jolliffie.98 The sphericity
index (12) represents the ratio between the maximum projection area
of a sphere of the same volume as the structure to the maximum pro-
jection area of the structure and has a maximum value of 1 for struc-
tures with the perfect spherical shape. On the other hand, the ratios F
and E can be used to broadly classify the structures into four catego-
ries:97 oblate if F< 2=3 and E> 2=3, compact if F> 2=3 and E> 2=3,
triaxial if F< 2=3 and E< 2=3, and prolate if F> 2=3 and E< 2=3
(see Fig. 10). It is worth mentioning that compared to the so-called
true sphericity,99 U, the maximum projection sphericity is higher and
lower for prolate and oblate structures, respectively. For compact and
triaxial structures, UP � U. Also, it is relevant to remark that in the
context of turbulent structures, Moisy and Jim�enez78 proposed a simi-
lar approach to characterize the geometry of the structures. In the
study, a different methodology is used to compute the lengths, dS, dI,
and dL, but the characterization is based on the same two dimension-
less aspect ratios, F and E. In the case of ideal ribbons, tubes, sheets
and spheres, these parameters are of the order of (0,0), (1,0), (0,1), and
(1,1), respectively78 (see Fig. 10).

Figure 11(a) shows the cumulative distribution function, CDF, of
UP across the stirred vessel for the cases described in Table I. As seen
from this figure, the probability of the identified vortices being non-

spherical is close to 80%, i.e., CDFðUP 
 0:9Þ � 0:8 for all cases.
Moreover, there are two ranges in UP where the probability is fairly
high; one is seen for 0:6 < UP 
 0:7 where the probability is close to
35% and the other is seen for 0:9 < UP 
 1:0 corresponding to per-
fect spherical structures and those approaching them. With respect to
the length-related parameters, Fig. 11(b) displaying the joint cumula-
tive distribution function, JCDF, of F and E across the tank allows us
to note that about 70% of the data is likely to fall into the compact and
prolate categories, whereas only 30% falls into the compact category
alone. The fact that CDFðUPÞ and JCDFðF;EÞ are similar for different
tank rotational speeds and working fluid rheology implies that the cor-
responding probability density and joint probability density functions,
PDFðUPÞ and JPDFðF;EÞ, are also similar and, thus, suggest that the
cases are statistically identical regardless of Re and fluid behavior. In
other words, at least for the considered cases, the effects of shear-
thinning rheology and Reynolds number over the shape of the identi-
fied structures in the whole tank appear negligible. In addition, Fig. 12
displaying the isocontours of JPDFðF;EÞ for case W800 allows us to
observe two clear peaks; one for 0:9 < F 
 1:0; 0:2 < E 
 0:3 and
another for 0:9 < F 
 1:0; 0:9 < E 
 1:0. These peaks correspond
to the two aforementioned regions of high probability in Fig. 11(a). It
is also worth mentioning that the expectation (mean value) for UP , F,
and E is 0.68, 0.83, and 0.5, respectively. To summarize, considering
the information revealed by Figs. 11 and 12, although a substantial
number of the detected vortices in the stirred tank present sphere-like
shape, the majority do not. Furthermore, tube-like vortical structures
are as likely to appear as the spherical blobs if not more so.

FIG. 12. Isocontours of the JPDF of E and F across the stirred tank for case W800
(see Table I).
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Aside considering the form of the structures in the whole vessel,
it is also reasonable to ponder which shapes are more likely to be
observed locally and for those structures within a deq-range of interest.
Figures 13(a)–13(f) present the JCDFðF; EÞ for cases W800 and C800
in different subdomains. Even though similar profiles were found
when comparing Newtonian and shear-thinning cases in the entire
tank, it is judged possible that these differences will arise in different
subdomains and/or when considering structures of a given size in
these subdomains. As seen from the figure, the probability of having
compact and prolate structures remains high for all considered subdo-
mains albeit compact structures are deemed more likely to be observed
for subdomains B and E where most of the energy is contained. With
respect to the influence of the shear-dependent rheology, the same
figure reveals a slight increase in the likelihood of seeing more ribbon-
like structures with shear-thinning rheology in the different sub-
domains; see consistent movement to the left and bottom of curve
covering 99% of all data in subdomains A–F for case C800.
Figures 13(a)–13(f) also display the peaks values of the JPDFðF; EÞ for
a particular deq-range of interest in the subdomains A–F. In subdo-
main C, with independence of the fluid rheology, those structures con-
sidered to be very large and the MI-vortex appear almost and fully
tubular, respectively, whereas in subdomain E, those structures
hypothesized as trailing vortices seem fairly triaxial. The influence of

the shear-thinning rheology over the remaining smaller structures of
interest seems more complicated. On a first impression, at least to a
moderate extent, it appears that structures of comparable size with
deq � 10�2 m present a different shape-related probability distribution
if the fluid rheology is non-Newtonian. Nonetheless, in general, the
peak of JPDFðF;EÞ for the considered deq-ranges in the cases W800
and C800 suggests a higher probability of the structures being more
similar to ribbons and tubes than to sheets and spheres.

C. Distribution and organization in space

Under the premise that mixing is enhanced with a larger proba-
bility of interaction between vortical structures and fluid particles, a
matter of practical importance is the spatial distribution of the vortices
in the tank. Although it has been showed that the largest number den-
sity of vortical structures is found within subdomains B, D, and E
(see Subsection IVA), information is still pending about the position-
ing in space where there are higher probabilities of encountering those
structures. Figures 14(a)–14(f) show the marginal JCDFðrc=D;Zc=DÞ,
i.e., for all possible angular positions of the centroids and where
rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
c þ Y2

c

p
, in different subdomains. The figure also presents the

ðrc=D;Zc=DÞ coordinates corresponding to peaks in the marginal
JPDFðrc=D;Zc=DÞ for a particular deq-range of interest only for cases

FIG. 13. JCDF of E and F for (a) SUB-A, (b) SUB-B, (c) SUB-C, (d) SUB-D, (e) SUB-E, and (f) SUB-F. The levels represented contain 99%, 70%, and 30% of the data, respec-
tively, for cases W800 and C800. The blue lines mark values of constant E and F, where E and F are equal to 2/3. Other colors as explained in Table I. Also, the markers “�,”
“�,” “(,” and “?” are used to identify the (E, F)-values where the JPDFðF; EÞ peaks for deq ¼ 2–3, 5–6, 8–9, and 25–26mm, respectively, for cases W800 and C800. In addi-
tion and for the same cases, the “�”-marker used in (c) and (e) represents the values where the joint probability peaks for deq ¼ 18–21 and 18–19mm, respectively.
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W800 and C800. As seen from Fig. 14, in comparison with changes in
rotational speed for a given working fluid, changes in rheology for the
tank operating at a specified N seem to impact the distributions in a
more significant manner. Compared to the Newtonian cases for sub-
domains A and C, the curves covering 99% of the data move toward
positions closer to the center of the tank with shear-thinning rheology,
whereas the opposite behavior is observed for subdomains D and F.
These trends are likely due to pronounced differences in the local flow
since the changes are more evident as we approach the top and bottom
walls of the stirred vessel, i.e., Z=D � 3:43 and Z=D ¼ 0, respectively.
On the other hand, with respect to the subdomains with the largest
number density and for all cases, it is remarked that at least 70% of the
data falls into 0:25 < rc=D 
 0:5; 0:95 < Zc=D 
 1:11; 0:8 < rc=D

 1:36; 0:15 < Zc=D 
 0:89; and 0:6 < rc=D 
 1:36; 0:95 < Zc=D

 1:11 for subdomains B, D, and E, respectively. Regarding the most
probable ðrc=D;Zc=DÞ coordinates for the considered deq-range, as

with the shape indicators in Subsection IVA, a rather hectic behavior
is observed. Nonetheless, for the impeller region (SUB-B), it does
appear that structures with deq � 10�2 m are likely to be detected with
centroids at radial positions larger than 0:4D. Finally, from Figs. 14(c)
and 14(e) and with independence of the fluid rheology, it is remarked
that structures considered to be very large and the MI-vortex appear
around the center of the tank with Zc=D � 3 and 1.6, respectively,
while those structures associated with trailing vortices are probably
observed with rc=D � 1 and Zc=D � 1:1.

Another interesting aspect, particularly when considering that
high deformation and eventual breakup of fluid particles may occur
due to interactions with pairing of eddies,100 it is the organization in
space of nearby structures sharing similar size. Here, the nearest struc-
ture (j) to a vortex (i) is determined by considering the minimum,
absolute distance between (i), and all other detected structures (k).
Thus,

FIG. 14. Marginal JCDF of the normalized centroids in the radial and axial direction, rc=D and Zc=D, for (a) SUB-A, (b) SUB-B, (c) SUB-C, (d) SUB-D, (e) SUB-E, and (f)
SUB-F. Cases where the impeller operates at 800 and 600 rpm are identified by the line styles “—–” and “- - -,” respectively. The levels represented contain 99%, 70%, 50%,
and 30% of the data. Colors as explained in Table I. Also, the markers “�,” “�,” “(,” and “?” are used to identify the ðrc=D; Zc=DÞ-values where the marginal
JPDFðrc=D; Zc=DÞ peaks for deq ¼ 2–3, 5–6, 8–9, and 25–26mm, respectively, for cases W800 and C800. In addition and for the same cases, the “�”-marker used in (c)
and (e) represents the values where the marginal joint probability peaks for deq ¼ 18–21 and 18–19, respectively.
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d i;jð Þ ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X kð Þ
c � X ið Þ

c

� �2
þ Y kð Þ

c � Y ið Þ
c

� �2
þ Z kð Þ

c � Z ið Þ
c

� �2q� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

jð Þ
c � X ið Þ

c

� �2
þ Y

jð Þ
c � Y ið Þ

c

� �2
þ Z

jð Þ
c � Z ið Þ

c

� �2q
; (14)

where dði;jÞ is the absolute distance between an structure (i) and the
nearest one to it (j). In addition, following the works of Lozano-Dur�an
et al.,76 Dong et al.,79 Osawa and Jim�enez,81 and Cheng et al.,77 we
consider that two structures, (i) and (j), are of similar size if their size

indicator differs by less than a factor of 2, i.e., if 0:5 < dðiÞeq =d
ðjÞ
eq < 2.

To evaluate the likelihood of the nearest structure to vortex (i), i.e., the

structure at dði;jÞ, being of similar size, we consider the PDFðdðiÞeq=dðjÞeq Þ
in the different subdomains and for all cases, see Figs. 15(a)–15(f). As

seen from this figure, PDFðdðiÞeq=d
ðjÞ
eq Þ peaks at d

ðiÞ
eq =d

ðjÞ
eq � 1 regardless

of the case and considered subdomain in the tank. Moreover, when
considering a particular subdomain, this PDF appears fairly similar for
the different cases described in Table I. From Fig. 15, we also note that
the probability of having the nearest structure of similar size is, at least,

of 80% for SUB-A–F. As for the PDFðdðiÞeq=d
ðjÞ
eq Þ corresponding to a

given deq-range of interest, Fig. 15 also displays the peaks for
deq ¼ 2–3, deq ¼ 5–6, and deq ¼ 8–9mm, respectively, for cases
W800 and C800. As observed from the figure, irrespective of the sub-
domain and for both the cases, the probability distribution peaks

within 0:5 < dðiÞeq =d
ðjÞ
eq < 2 only for the lowest deq-range of interest.

Subsequently, to gain insight into the spatial organization of
nearby structures sharing similar size, we will discuss their relative
position with respect to the Cartesian coordinate system. The normal-
ized relative separation between structures (i) and (j) in the X-, Y-, and
Z-directions are defined as

dX ¼ X
jð Þ

c � X ið Þ
c

d i;jð Þ ; (15a)

dY ¼ Y
jð Þ

c � Y ið Þ
c

d i;jð Þ ; (15b)

dZ ¼ Z
jð Þ

c � Z ið Þ
c

d i;jð Þ ; (15c)

FIG. 15. PDF of ratio between the size indicator of a vortex “i ” to the nearest vortex “j ” to it, dðiÞeq =d
ðjÞ
eq , for (a) SUB-A, (b) SUB-B, (c) SUB-C, (d) SUB-D, (e) SUB-E, and (f)

SUB-F. Cases where the impeller operates at 800 and 600 rpm are identified by the line styles “—–” and “- - -,” respectively. Colors as explained in Table I. Also, the markers
“�,” “�,” and “(” are used to identify the dðiÞeq =d

ðjÞ
eq -values where the PDFðdðiÞeq=dðjÞeqÞ peaks for deq ¼ 2–3, 5–6, and 8–9mm in cases W800 and C800.
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respectively. From the perspective of analytic geometry, relationships
(15) represent the direction cosines of a straight line joining the centroids
of structures (i) and (j). As a consequence, these relationships range
from –1 to 1 for corresponding direction angles ranging from p to 0. For
SUB-A–F, Fig. 16 shows the marginal probabilities, PDFðdXÞ;
PDFðdYÞ, and PDFðdZÞ. We remark that the figure only displays the
marginal probabilities for case W800 since similar distributions were
found for cases W600, C600, and C800 (not shown here). As seen from
the figure, for all subdomains, PDFðdXÞ and PDFðdYÞ seem statistically
identical and the largest values in these marginal probabilities are
observed for dX and dY equal to �

ffiffiffi
2

p
=2; 0, and

ffiffiffi
2

p
=2. In contrast and

with respect to PDFðdZÞ, the marginal probability always peaks at
dZ¼ 0 and, only for subdomains B and E, peaks at dZ ¼ 6

ffiffiffi
2

p
=2 are

moderately discernible. We emphasize that these finding about the mar-
ginal probabilities only indicate which direction cosine is more probable
when considering all possible values for the two remaining direction
cosines. Nonetheless, the consistent peaks at dX and dY equal to6

ffiffiffi
2

p
=2

and the fact that, in the Z-direction, the most likely outcome appears to

be a right angle with the nearest structures of similar size, it is already
conveying. Figure 17 shows the marginal JPDFðdX; dZÞ for case W800
and the subdomains with the largest number density, SUB-B, -D,
and -E. As displayed by this figure, the global maxima of the marginal
joint distributions for these subdomains are the same and occur at
dX � 6

ffiffiffi
2

p
=2; dZ ¼ 0. Likewise, for subdomain E, additional local

maxima is clearly observed at dX ¼ 0; dZ � 6
ffiffiffi
2

p
=2. Recalling that

only two of the three direction cosines are independent, it is expected
that dY ¼ 6dX for the global maxima and dY ¼ 6dZ for the addi-
tional maxima in SUB-E. These findings imply a high probability of
encountering the nearest structures having similar size, side-by-side in
the radial direction. Furthermore, these pairs of nearest structures having
similar size are unlikely to overlap and seem organized both in the X and
Y directions with separation of about dði;jÞ. It is worth mentioning that
based on the other found maxima, at least for SUB-E, it is probable to
encounter nearest structures having similar size on top of each other
without perfect alignment of their centroids. Also, considering the simi-
larities between the marginal distributions for subdomains A, C, D, and

FIG. 16. Marginal PDF of the normalized relative separation between nearest structures of similar size, dX, dY, and dZ, for case W800 as described in Table I and for (a) SUB-
A, (b) SUB-B, (c) SUB-C, (d) SUB-D, (e) SUB-E, and (f) SUB-F. Black, cyan, and magenta colors are used to represent the profiles corresponding to the marginal probabilities
of dX, dY, and dZ, respectively.
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F (see Fig. 16), a similar organization as the one observed for SUB-D is
expected for SUB-A, -C, and -F.

D. Correlation with kinetic energy

Finally, when thinking about dispersion of fluid particles and
actual mixing in a stirred vessel, it is important to explore whether the
identified structures are positioned in regions with high energy con-
tents or not. Many criteria for deformation and eventual breakup of
drops and bubbles are based on energy balances between the fluid par-
ticles and the surrounding eddies, see e.g., Liao and Lucas25 and
Solsvik et al.27 In this work, to address the degree of correlation
between the identified vortices and the kinetic energy due to turbu-
lence and the periodic blade passage (associated with the trailing vorti-
ces), we consider the following correlation coefficient:

CQ?k ¼
cov Q?; kð Þ

stv Q?ð Þstv kð Þ ; (16)

where covðQ?; kÞ is the covariance or mixed second moment of Q?

subject to condition (10) and k ¼ ðui � expðuiÞÞ2=2, i.e., the instanta-
neous kinetic energy due to turbulent fluctuations and the periodic
component imposed by the frequency of the blade passages. Here,
stvðkÞ is the standard deviation of k and expðuiÞ is the expectation or
time-averaged value for ui. The correlation coefficient is a statistical
indicator about the degree of (linear) correlation between two stochas-
tic variables. If the coefficient is zero, the variables are entirely irrele-
vant (in a linear sense), whereas if it is 1, they are perfectly correlated.
In the case where the coefficient is�1, the variables are perfectly nega-
tively correlated and the increase in one leads to the (linear) decrease
in the other. As a consequence, CQ?k is a practical tool to determine
how closely related is the vortex indicator, Q?, to k.

For the regions exhibiting the largest number density of struc-
tures, the circumferential averages h ih, i.e., averages over the angular
direction h, corresponding to CQ?k and k are presented in Figs. 18–20
for cases W600, W800, and C800. In these figures, hkih is normalized

by its local maximum, maxSUBhkih, in that particular subdomain. As
displayed by the figures, the isocontours corresponding to cases W600
andW800 seem quite similar, whereas case C800 presents some differ-
ences. For the shear-thinning case, more discernible patches of moder-
ate correlation values are observed at larger radial distances and the
regions of high kinetic energy seem more localized. Nonetheless,
regardless of the case and for r=D� 0:25, positive and fairly high cor-
relation values are noted in the subdomain occupied by the impeller.
Moreover, such a region, where the passage of the blades takes place,
appears as the most energetic in SUB-B, see Figs. 18(d)–20(d). With
respect to subdomains D and E, the largest correlation values are also
seen in the vicinity of the most energetic regions for the three cases,
see Figs. 18(b)–20(b), 18(c)–20(c), 18(e)–20(e), and 18(f)–20(f). In
addition, also for subdomains D and E, it is observed that low correla-
tion regions corresponds to those with low energy contents but a high
distribution of vortical structures (see Subsection IVC). Overall, these
findings suggest that strong vortices in the sense of how much their
rotation rate exceeds their strain rate are detected in regions with a sig-
nificant amount of k, and in such regions, a linear approximation
between Q? and k may be reasonable to some extent. Conversely, as
one moves from the impeller region and k solely represents turbulent
kinetic energy, its correlation with the vortex indicator is rather poor.
Of course, this does not imply that Q? and k are independent but just
that the relationship between them is nonlinear, which is in chord
with our understanding of the direct cascade process.

V. FINAL REMARKS

Instantaneous flow fields have been considered to identify and
characterize vortical structures. The flow fields, collected after quasi-
steady state conditions are achieved, correspond to large eddy simula-
tions of a laboratory-scale, baffled, stirred tank with a Rushton-type
impeller. In simulations, the tank operates under turbulent flow condi-
tions (at least in the region near the impeller) either at 600 or 800 rpm
and with water or 0.2wt. % CMC solution as the working fluid. Thus,
changes in the detected structures arising due to variations of the tank
rotational speed and the fluid rheology are explored as well.

FIG. 17. Isocontours of the marginal JPDF of dX and dZ for case W800 as described in Table I and for (a) SUB-B, (b) SUB-D, and (c) SUB-E.
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The identification of the structures is performed using an
objectivized version of the traditional Q-criterion,58 which also
takes into account that the flow in a stirred tank is inhomogeneous
in all spatial directions. The implemented method is believed to
yield consistent results even if slightly different threshold
values are used. The characterization of the detected structures,
involving aspects such as size, number density, shape, spatial
organization, and correlation with kinetic energy, is done through
different statistical analyses. Our main findings can be summa-
rized as follows:

(i) Considering a size indicator based on the equivalent diame-
ter of a sphere, the largest detected structures seem to be
about the same order of magnitude as the impeller diame-
ter, whereas the smallest identified structures appear to be
about one order of magnitude less than D. Moreover, finer
structures within a narrower range of length scales are
observed with an increase of the impeller rotational speed

for the same working fluid. Regarding the effect of shear-
thinning rheology respect to a Newtonian case operating at
the same N, more sizable structures are detected but not
within a narrower range of length scales. This latter obser-
vation is explained in terms of the Reynolds number playing
a more important role than the fluid rheology when com-
pared to Newtonian and shear-thinning cases operating at
the same N.

(ii) The profiles obtained for the number density as a function
of the size indicator, covering different subdomains under
study in the stirred tank, appear to depict only the energy
containing and inertial subranges. This observation is in
line with the fact that LES are performed. For the smallest
detected scales, the effect of changing N for the same work-
ing fluid seems negligible while a change from Newtonian
to shear-thinning rheology for the tank operating at the
same N leads to an overall decrease in nd. On the other

FIG. 18. Isocontours of the circumferential average, h ih, corresponding to the correlation coefficient between the considered vortex criterion, Q?, and the kinetic energy due to
turbulence and the periodic passage of the blades, k, and normalized k: (a)–(c) hCQ?kih and (d)–(f) hkih=maxSUBhkih. (a) and (d), (b) and (e), and (c) and (f) correspond to
SUB-B, -D, and -E, respectively. Case W600 as described in Table I. In (a), for visualization purposes, 3D undefined positions; i.e., those in regions occupied by the shaft and
disk of the impeller, have been set to 0 before taking the circumferential average.
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hand, at large values of deq, the rapid decrease in nd is seem-
ingly delayed both with decreasing N and shear-thinning
fluid behavior. This observation is consistent with what we
expect as the Reynolds number decreases.

(iii) Also, with respect to nd but for particular regions of the
tank, the largest values in nd are observed in subdomains B,
D, and E (see Table III) for structures having deq of about
one order of magnitude less than D. nd profile is also given
for a wider range of deq in subdomains D–F, and conspicuous
values of nd are achieved in subdomains C and E, which are
hypothesized to be related to MI and trailing vortices, respec-
tively (see Fig. 9).

(iv) In regard to the shape of the detected structures based on
the flatness and elongation parameters (see Subsection
IVB), tube-like vortical structures are as likely to appear as
spherical blobs if not more so. Furthermore, when consider-
ing particular subdomains in the tank, only for subdomains

B and E—where most of the energy is contained—it is
found that sphere-like structures are more likely to be
observed. It is also worth remarking that the structures con-
sidered MI and trailing vortices appear fully tubular and
fairly triaxial, respectively [see Figs. 13(c) and 13(e)]. On
the other hand, the effect of shear-thinning rheology as
compared to a Newtonian case operating at the same N
seems to lead to more ribbon-like structures in different
subdomains of the tank.

(v) Respecting the spatial distribution of structures within sub-
domains having largest nd, it is remarked that at least 70%
of the data covering all angular positions fall into
0:25 < rc=D 
 0:5; 0:95 < Zc=D 
 1:11; 0:8 < rc=D 
 1:36;
0:15 < Zc=D 
 0:89; and 0:6 < rc=D 
 1:36; 0:95 < Zc=D

 1:11 for subdomains B, D, and E, respectively. Moreover,
in comparison with changes in rotational speed for a given
working fluid, changes in rheology for the tank operating at

FIG. 19. Isocontours of the circumferential average, h ih, corresponding to the correlation coefficient between the considered vortex criterion, Q?, and the kinetic energy due to
turbulence and the periodic passage of blades, k, and normalized k: (a)–(c) hCQ?kih and (d)–(f) hkih=maxSUBhkih. (a) and (d), (b) and (e), and (c) and (f) correspond to SUB-
B, -D, and -E, respectively. Case W800 as described in Table I. In (a), for visualization purposes, 3D undefined positions, i.e., those in regions occupied by the shaft and disk
of the impeller, have been set to 0 before taking the circumferential average.
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a specified N appear to impact the distributions in a more
significant manner (see Subsection IVC).

(vi) In term of spatial organization, it is found that the nearest
structure to another detected one shares the same size and
are likely to be side-by-side in the radial direction.
Furthermore, these pairs of nearest structures having similar
size are unlikely to overlap and seem organized both in the
X and Y directions with a separation of about the minimum
absolute distance between a pair [see Eq. (14)].
Additionally, it is worth commenting that for subdomain E,
the probability of encountering nearest structures having
similar size on top of each other but without perfect align-
ment of their centroids is high as well.

(vii) With respect to the correlation between the vortex indicator
and the kinetic energy due to turbulence and the periodic
component, positive and fairly high correlation values are
observed in regions with high energy contents for subdo-
mains B, D, and E, i.e., the subdomains having largest nd.

These results suggest that, at least to some extent and for
regions with the local high energy content, a linear relation-
ship between the vortex indicator and this kinetic energy
may be reasonable.

Although the above findings correspond to simulations of the
single-phase, turbulent flow of the Newtonian and shear-thinning flu-
ids in a baffled stirred tank reactor, the potential implications for
liquid–liquid and gas–liquid dispersed systems are worth pondering.
This is particularly the case when considering one-way coupling in
which the influence of the dispersed phase over the continuous one is
negligible, i.e., for multiphase systems where the local fraction of the
dispersed phase (holdup) is always sufficiently small. Hence, in the
case of one-way coupling, some of the aforementioned findings possi-
bly imply the following:

(i) There is a higher probability of fluid particle breakage in
subdomains B, D, and E where the number density is the
largest for the smallest detected structures, i.e., those having

FIG. 20. Isocontours of the circumferential average, h ih, corresponding to the correlation coefficient between the considered vortex criterion, Q?, and the kinetic energy due to
turbulence and the periodic passage of blades, k, and normalized k: (a)–(c) hCQ?kih and (d)–(f) hkih=maxSUBhkih. (a) and (d), (b) and (e), and (c) and (f) correspond to
SUB-B, -D, and -E, respectively. Case C800 as described in Table I. In (a), for visualization purposes, 3D undefined positions, i.e., those in regions occupied by the shaft and
disk of the impeller, have been set to 0 before taking the circumferential average.
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a size indicator of about one order of magnitude less than D.
This statement, of course, is only valid under the premise that
the interaction with particles of typical size found in laboratory
setups (leading to their deformation and eventual breakup) is
indeed occurring with structures of comparable size.

(ii) It is questionable to assume that vortical structures inter-
acting with fluid particles present spherical shape. Perhaps
such assumption, common in some phenomenological
models used to predict fluid particle breakage rate and size
distributions (consider, e.g., Luo and Svendsen101) should
be limited to regions of high energy content in the stirred
vessel such as subdomains B and E. Moreover, breakage
models where turbulent vortices would be described as
tube-like structures instead of spherical ones are also worth
exploring when considering the energy containing scales
and when moving beyond them. A reasonable starting point
would be to consider non-spherical vortex models for iso-
tropic turbulence, see, e.g., Saffman.102

(iii) The probability of pairs of vortices sharing similar size and
interacting with fluid particles seems fairly high. Moreover,
the spatial organization of these pairing is such that the
odds of encountering several pairs in the vicinity of a fluid
particle is also high. These are aspects that should be
accounted for in models for breakup of bubbles and drop-
lets in turbulent flows.

(iv) Optimal feeding points for fluids particles would be those
where the probability of detecting the structures—of a simi-
lar size to the particles under consideration—is fairly large
but more so where the correlation between the vortex indi-
cator and the energy content is high as well. Such tentative
feeding points can be found by cross-referencing the results
presented Subsections IVC and IVD.

Finally, we would like to highlight some natural extensions of the
present work. On one side, since the input flow fields are obtained
from LES and not DNS, the smallest structures at the dissipative scales
are yet to be analyzed. In addition, in light of recent studies about
reconstruction of 3D flow fields in stirred vessels using proper orthog-
onal decomposition (POD),103–105 it would be interesting to explore
the identification and characterization of vortical structures based on
reconstructed DNS flow fields corresponding to different POD modes
(not just the first and most energetic ones). Conversely, the previous
implications are just potential outcomes and require corroboration by
means of experimentation and/or proper simulations of turbulent dis-
persions in stirred tank reactors. Moreover, even though recent DNS
of single inertial drops in isotropic turbulence have shown that local
patches of swirling fluid provide the main source for particle deforma-
tion, see plausible reinterpretation of the arrival/bombarding eddies of
Luo and Svendsen101 as “outer” eddies by Vela-Mart�ın and Avila,106

vortices or swirling-like structures are not necessarily the only type of
flow structure that plays an active role in the deformation and breakup
of fluid particles.
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NOMENCLATURE

Abbreviations

CDF Cumulative distribution function
CMC Carboxymethyl cellulose
cov Covariance

DNS Direct numerical simulations
exp Expectation/mean
GN Generalized Newtonian

JCDF Joint cumulative distribution function
JPDF Joint probability density function
LES Large-eddy simulations

MI/MIs Macroinstability/macroinstabilities
MRF Multiple reference frame
PDF Probability density function

RANS Reynolds-averaged Navier–Stokes simulations
SGS Subgrid-scales
SM Sliding mesh
stv Standard deviation

SUB Subdomain

Greek letters

_c ¼ ð2SijSijÞ1=2 Strain rate ð1=sÞ
la Fluid apparent dynamic viscosity ðPa sÞ, see

Eq. (6)
q Fluid density ðkg=m3Þ

UP Maximum projection sphericity, see Eq. (12)

Other symbols

C Off-bottom clearance (cm)
CQ?k Correlation coefficient between Q? and k,

see Eq. (16)
C600,C800 CMC flow cases under study, see Table I

D Impeller diameter (cm)
Di Impeller diameter (cm) without blades
Dij Velocity gradient tensor ð1=sÞ

deq ¼ ð6Vcore=pÞ1=3 Equivalent diameter (m) of a vortical
structures.
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dðiÞeq ; d
ðjÞ
eq deq of a vortex (i) and deq of the nearest vor-

tex to it (j)
dði;jÞ Absolute distance (m) between a vortex (i)

and the nearest one to it (j), see Eq. (14)
DSi Shaft inner diameter (cm)

dX, dY, dZ Normalized relative separation between a
vortex (i) and the nearest one to it (j), see
Eq. (15)

F, E Flatness and elongation parameters, see Eq.
(13)

hb Blades height (cm)
k In Subsection IVD, kinetic energy (m/s) due

to turbulence and the periodic blade passage
N Impeller rotational speed (rev/s)
nd Number density per number of temporal

realizations (per m4 s) of vortical structures
Q? Objective version of Q-criterion of Hunt

et al.58 (1/s), see Eq. (9). Also, vortex indica-
tor when inequality (10) is fulfilled

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
Radial coordinate (m)

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
c þ Y2

c

p
Radial coordinate (m) of the centroid of a
vortical structure

Re Reynolds number, see Table I
Sij Strain rate tensor ð1=sÞ, symmetric part

of Dij

T Stirred tank diameter (cm)
T Threshold parameter, see inequality (10)
tb Blades thickness (cm)
ui Instantaneous velocity field (m/s). After

Subsection II D, ui � eui

VA�F Volume of fluid (m3) within subdomains
A–F, see Table III

Vcore Vortex core volume (m3)
wb Blades width (cm)

W600,W800 Water flow cases under study, see Table I
X, Y, Z Cartesian coordinates (m), see Fig. 1

Xc;Yc;Zc Centroid (m) of a vortical structure in
Cartesian coordinates

h ¼ tan�1ðY=XÞ Angular coordinate (rad)e Grid filtering operator in the context of LES
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