
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Simon Gåseby Gjerde

Shoes for the future - Developing
smart shoes for continous
measurement of
ballistocardiography

Master’s thesis in Mechanical Engineering
Supervisor: Martin Steinert
June 2022

M
as

te
r’s

 th
es

is

Simon Gåseby Gjerde

Shoes for the future - Developing
smart shoes for continous
measurement of ballistocardiography

Master’s thesis in Mechanical Engineering
Supervisor: Martin Steinert
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

i

Abstract
This master thesis describes the development process of a pair of smart shoes for

measuring ballistocardiography. The thesis was a continuation of a proof-of-concept

prototype from a previous project thesis. The thesis aimed to develop a functioning smart

shoe for measuring ballistocardiography and validate the results through testing. In

addition, any serendipitous findings in the process were to be explored.

The shoes were developed using an iterative approach based on wayfaring with

prototyping as one of the main tools. Multiple prototypes were created to validate

hypotheses and act as a tool for generating new design questions. Both divergent and

convergent prototypes were created to ensure the best solution was created. In addition,

a benchtop setup was created for simulating the ballistocardiogram to enable rapid

testing of the impact of changing design parameters.

The final proposed concept, called Sole 2.0, consists of a pair of running shoes with five

water-filled bladders in each shoe, each connected to a pressure sensor. The smart shoe

measures the pressure under the user's feet and captures the body's movement due to

the ejection of blood. In addition, the sole 2.0 allowed a BCG scale to be connected to act

as a reference for the captured BCG and to attach a PPG sensor for calculating pulse

transit time and aiding in segmentation.

To validate the concept, a test was run with 14 participants. Participants were measured

in three test periods with one resting period between tests two and three. A cold pressor

test was used to increase the participants’ blood pressure during test period two. Blood

pressure was increased to enable the calculation of pulse travel time. The results from

the testing are not fully processed. However, the preliminary results from two of the

fourteen datasets show great promise, with the BCG being captured in all measurement

periods and the inverse relationship between pulse transit time and blood pressure being

shown.

ii

Sammendrag
Denne masteroppgaven beskriver utviklingen av et par med smartsko for å måle

ballistokardiografi. Masterprosjektet er en fortsettelse av en prosjektoppgave som lagde

en prototype som et konseptbevis. Målet med masteroppgaven var å lage en smartsko

som måler ballistokardiografi, samt validere resultatene gjennom testing. I tillegg, skulle

alle «serendipitous» oppdagelser bli utforsket.

Skoene ble utviklet gjennom en iterativ metode med utgangspunkt i Wayfaring med

prototyping som hovedverktøy. Prototyper ble laget for teste og validere resultater, samt

fungere som et verktøy for å generere kunnskap og design spørsmål. Både divergerende

og konvergerende prototyper ble laget for å nå den beste løsningen. I tillegg, ble en

småskala testoppsett laget som simulerte ballistokariografi for å kunne raskt teste og

validere påvirkningen til diverse design parametere.

Det endelige konseptet, Sole 2.0, består av et par med joggesko med fem væskefylte

blærer i hver sko. Hver av blærene er koblet til en trykksensor. Smartskoen måler

trykket under foten til brukeren og fanger opp bevegelsen til kroppen som følge av

blodsirkulasjonen. I tillegg, er Sole 2.0 designet for å kunne kobles til en

ballistokardiografi vekt som fungerer som en referanse og en PPG-sensor for å måle

pulstransporttid og muliggjøre segmentering.

For å validere resultatene ble et forsøk gjort med 14 deltakere. Deltakerne ble i målt tre

perioder med en hvileperiode mellom test to og test tre. I testperiode to ble en

«coldpressor» test utført for å øke blodtrykket til deltagerne. Blodtrykket ble økt for å

gjøre det mulig å beregne pulstransporttid. Resultatene fra forsøket er ikke behandlet,

men foreløpige resultater er svært lovende. To ut av 14 datasett er behandlet og

ballistokardiografi er suksessfullt målt i alle testperiodene for de to datasettene. I tillegg

er den beregnede pulstransporttiden korrekt invers relatert til blodtrykket.

iii

Preface
This master thesis describes the development process of designing and testing a smart

shoe solution for measuring ballistocardiography. The project was carried out from

January 2022 to June 2022. The thesis has been written to fulfill the requirements for the

degree of Master of Science from the Department of Mechanical and Industrial

Engineering at NTNU. The supervisor for the project has been Martin Steinert.

The project has been carried out at TrollLabs at NTNU in Trondheim.

Acknowledgments
I would like to thank TrollLabs and its community for support and help in solving the

challenges in the thesis. I would especially like to thank the TrollLabs community for

making the entire process fun. In particular, I want to thank Torjus Steffensen for

sharing infinite his wisdom in developing solutions for measuring medical signals. Thank

you to Martin Steinert for creating TrollLabs and its fantastic community.

I would like to thank my parents and my siblings for all the help and support throughout

my degree. Finally, I want to thank my wife, Ida for her encouragement, love an,d

patience.

iv

Contents
Acknowledgments ... iii

Figures .. v

Tables ... vi

Abbreviations/Symbols .. vi

1 Introduction .. 1

2 Theory and background .. 2

2.1 Recap of the project thesis ... 2

2.2 Ballistocardiography .. 2

2.3 Development methodology ... 3

2.3.1 Wayfaring .. 3

2.3.2 Prototyping .. 4

3 Development process ... 6

3.1 Bencthop-setup for simulating BCG ... 6

3.2 Initial parameter testing ... 7

3.3 Sole 0.5 ... 9

3.4 Diverging prototypes ..11

3.4.1 Inductance based prototype ..11

3.4.2 Variable resistance in a carbon fiber and silicone composite12

3.5 Piston-cylinder prototype ..13

3.6 Sole 1.0 - High fidelity prototype two ..14

3.7 BCG scale ..20

4 Sole 2.0 ...22

5 Testing ..25

5.1 Testing procedure and setup ..25

5.2 Dataprocessing ..26

6 Testing results ..28

6.1 Preliminary ballistocardiography findings ...28

6.1.1 Test 1 ...28

6.1.2 Test 2 ...30

6.1.3 Test 3 ...32

6.1.4 PTT ..34

6.2 Pressure distribution ...38

7 Discussion ..41

7.1 Discussion of development process ...41

7.2 Discussion of results ...41

v

7.3 Discussion of Sole 2.0 ...42

8 Conclusion ...43

References ..44

Appendix A ..46

Draft for the conference article to be submitted to IEEE Sensors 20222.46

Appendix B ..50

Project thesis ..50

Appendix C ..72

Risk assessment form ..72

Appendix D ..74

Participation forms ...74

Appendix E ..78

Code for evaluating test results ...78

Appendix F .. 148

Arduino code for sole 2.0 prototype ... 148

Figures
Figure 1 - BCG waveform redrawn based on the Starr BCG (Starr et al. 1939) 3

Figure 2 - Wayfaring and probing figures from (Gerstenberg et al. 2015) 4

Figure 3 - Benchtop setup .. 6

Figure 4 - Bat testing parameters .. 8

Figure 5 - Parameter testing ... 9

Figure 6 - Comparison of material between reference and BMP38810

Figure 7 - Sole 0.5 Sensor placements and wiring ...10

Figure 8 - Results from sole 0.5 test ...11

Figure 9 - Inductance test in bench top setup ..11

Figure 10 - Inductance test setup ...12

Figure 11 - Testing setup for testing carbon fiber sensor ...13

Figure 12 - Piston cylinder setup ..13

Figure 13 - Results from piston cylinder setup tests ..14

Figure 14 - Testing water-filled bladder ...15

Figure 15 - Testing multiple water-filled bladders with extra support15

Figure 16 - Benchtop test of infill material hardness ..16

Figure 17 - Updated design of water-filled bladder with BMP38816

Figure 18 - Infill material testing results ..16

Figure 19 - Sole 1.0 prototype ...17

Figure 20 - Results from placement testing ..19

Figure 21 - Wiring diagram and setup of BCG scale ...20

Figure 22 - Results from testing the BCG Scale ..21

Figure 23 - Sole 2.0 bladder design and placement from Appendix A...........................22

vi

Figure 24 - Wiring for BMP388 sensors and PPG sensor for Sole 2.023

Figure 25 - Shoe 2.0 pictures ...24

Figure 26 - Identified PPG peaks with wrong segments marked in red27

Figure 27 - Ballistocardiogram for a 24-year-old male during T128

Figure 28 - Shoe BCG vs Scale BCG for a 24-year-old Male for T129

Figure 29 - BCG shoe results for a 23-year-old female ..29

Figure 30 - BCG shoe vs BCG scale for a 23-year-old female30

Figure 31 - Shoe BCG vs PPG for a 24-year-old male for T230

Figure 32 - Shoe BCG vs Scale BCG for a 24-year-old male for T231

Figure 33 – Shoe BCG vs PPG for T2 for a 23-year-old female31

Figure 34 – Shoe BCG vs Scale BCG for T2 for a 23-year-old female32

Figure 35 - Shoe BCG vs PPG for T3 for a 24-year-old male32

Figure 36 - Shoe BCG vs Scale BCG for T3 for a 24-year-old male33

Figure 37 - Shoe BCG vs PPG for T3 for a 23-year-old female33

Figure 38 - Shoe BCG vs Scale BCG for a 23-year-old female34

Figure 39 - Peak detection for calculating PTT change for T1, T2 and T3 for a 24 year old

male ...35

Figure 40 - Peak detection for calculating PTT change for T1, T2 and T3 for a 23-year-old

female ..37

Figure 41 - PTT vs Blood pressure the 24-year-old male and the 23-year-old female38

Figure 42 - Pressure distribution when walking ...39

Figure 43 - Pressure distribution while standing ..39

Tables
Table 1 - Results from interviews (Appendix A) ..25

Abbreviations/Symbols
NTNU Norges teknisk-naturvitenskapelige universitet

BCG Ballistocardiography

PPG

PTT

PWV

Photoplethysmography

Pulse travel time

Pulse wave velocity

1

Cardiovascular diseases are one of the leading causes of death in the world, contributing

to as many as 17.9 million deaths a year (WHO n.d.). Many cardiovascular diseases can

be prevented by implementing lifestyle changes such as reduced tobacco use, increased

physical activity, and improved diet. Early detection of cardiovascular diseases is vital to

implement treatment as early as possible. Noninvasive methods for continuous

monitoring of cardiovascular health are one method for early detection. One promising

method for continuous assessment of cardiovascular health in a noninvasive manner is

Ballistocardiography (BCG).

This master thesis is a continuation of a project thesis completed in the autumn of 2021.

The project thesis explored the solution space of sensor setups for measuring physical

signals related to the heart. The project thesis culminated in a promising proof-of-

concept prototype for measuring BCG by measuring the pressure under a person’s foot.

This master thesis continues the project thesis with the following goal:

“Develop and test a smart shoe for continuous cardiovascular monitoring using

Ballistocardiography.”

For developing and testing the smart shoe BCG concept, many subgoals need to be

achieved. The concept from the project thesis needs to be understood better. What

parameters for the setup are important, and what limitations exist. In general, the design

challenges in measuring BCG are little understood. For testing the smart shoe, a more

comprehensive range of users need to be tested to validate its function on all users and

understand how variations such as weight, height, age, and form of the feet might

impact the result. In addition, other design solutions and serendipitous findings should be

explored.

The master thesis has been completed at TrollLabs at NTNU in Trondheim. TrollLabs

research and prototype lab with a multidisciplinary research group at NTNU. Trollabs

focuses on creating new radical ideas and improving the fuzzy front-end of engineering

design.

The master thesis is split up into four main parts and eight sections. Part one introduces

the problem statement, necessary background information, and theory and consists of

sections 0 and 2. Part two covers the development process culminating in a functioning

version of the shoe and consists of sections 3 and 4. Part three covers the testing of the

prototype and results from the tests and consists of sections 5 and 6. Part 4 covers the

discussion of the results, prototype, and development process as well as the conclusion

and consists of sections 7 and 8. The culmination of the master thesis is a paper for

IEEE Sensors 2022 to be submitted on the 18. of June 2022. The draft of this paper is in

Appendix A.

1 Introduction

2

2.1 Recap of the project thesis

The master thesis is a continuation of the project thesis described in Appendix B. The

project thesis was carried out from August 2021 to December 2021. The project thesis

explored the solution space related to wearable physiological sensors.

Ballistocardiography was discovered as a potential candidate for continuous non-invasive

measurement of cardiovascular health. The project thesis culminated in a proof-of-

concept prototype. The proof-of-concept prototype consisted of two air-filled bladders

connected to a corresponding pressure sensor. The bladders were placed under an MDF

plate, one under the heel and the other under the front of the foot of the user. The proof-

of-concept prototype gave a signal which, after segmenting, using a PPG as a reference,

and bandpass filtering the pressure, a clear repeating pattern was discovered. The

waveform of the repeating signal was similar to the BCG waveform but with a less

pronounced J peak. It was concluded that it was highly likely that it was the BCG being

captured due to the similar waveform and matching timing with the pulse. Using two air-

filled bladders also allowed for measuring the pressure distribution, which was seen as a

possible point of interest.

The final prototype had many flaws, and the testing had much to be desired. Motion

fragments were still a big issue and meant the user had to stand very still. The amount

of noise in the signal was still significant. In addition, a problem was discovered with the

air-filled bladders compressing and killing the signal due to compressing completely or

blocking the connection to the sensor. This led to a minimum size of the air-filled

bladders so as to have enough volume for it to take the static weight of the user. The

proof-of-concept prototype was also only tested on one person, which meant that

differences in weight, height, form of the foot, and other characteristics might heavily

impact the results. Little knowledge was also gained about how the various design

parameters affected the result.

2.2 Ballistocardiography

Ballistocardiography is the measurement of the body’s movement due to the ballistic

forces created by the ejection of blood at each cardiac cycle (Giovangrandi et al. 2011).

It is a non-invasive measurement method for assessing cardiovascular health (Omer T.

Inan et al. 2015). BCG was a popular area of research from the 1940s to the 1980s

(Giovangrandi et al. 2011). It fell out of favor due to several reasons. One issue was the

lack of standard measuring techniques which led to differences in the measured signal

from one measurement method to another. Two other issues were a lack of

understanding of the physiological correlation to the different parts of the signal and a

primary focus on clinical diagnostic where other measurement methods were

superior(Giovangrandi et al. 2011). It has, in the recent two decades increased in

popularity due to an increased interest in out-of-clinic measurement and advances in

sensor technology and computers, enabling new methods for measuring BCG

(Giovangrandi et al. 2011).

2 Theory and background

3

Figure 1 shows an example of a BCG waveform that has been redrawn based on the

Starr BCG which is a longitudinal BCG (Starr et al. 1939). Peaks and valleys are

referenced by letters. The peaks and valleys are not associated directly with underlying

events but represent the combined mechanical pulse response of the body and vascular

system due to the ejection of blood at each cardiac cycle(Omer T. Inan et al. 2015). The

valleys and peak corresponding to the IJK complex is the most prominent feature of the

BCG and the easiest to recognize for design purposes.

Figure 1 - BCG waveform redrawn based on the Starr BCG (Starr et al. 1939)

With increased interest in out-of-clinic assessment of cardiovascular health, BCG has

seen a resurgence in interest as a possible non-invasive continuous measuring method.

Many methods for capturing the BCG have been created. (Koivistoinen et al. 2004) use

EMFI sensors in a chair to capture the BCG. (O. T. Inan et al. 2009), (Martin et al. 2016)

and (Campo et al. 2017) use a modified bathroom scale that captures the variation in

load sensor deformation. (Mora et al. 2020) use an accelerometer attached to a bed to

capture the movement of the body and the BCG. (Omer T. Inan et al. 2015) and (Yao et

al. 2019) use on body accelerometers to capture the BCG.

BCG has been used to measure multiple physical parameters. (Campo et al. 2017),

(Martin et al. 2016), (C.-S. Kim et al. 2018) and (Pinheiro, Postolache, and Girão 2009)

have used ballistocardiography to compute pulse wave velocity. Pulse wave velocity is an

important marker for cardiovascular health due to its relation to blood pressure and

arterial stiffness (Pereira, Correia, and Cardoso 2015). (Mack et al. 2009) measure heart

rate and breathing rate, which can be used for sleep analysis.

2.3 Development methodology

2.3.1 Wayfaring

The Fuzzy Front end of product development is the early phase of development before

requirements are set and a concept is considered ready for development (J. Kim and

Wilemon 2002). The fuzzy describing the unclear and unknown part of the situation

where opportunities and the process is unknown. The knowledge gap is significant for the

designers and the design path is unknown. Big ideas cannot easily be deductively

deduced. Wayfaring is one method for navigating the design space during the early

phases with high uncertainty.

Wayfaring was first proposed by Steinert and Leifer as hunter-gatherer model for

navigating the design space. It is a nonlinear dynamic model where designers use

4

iterative prototyping and abductive reasoning to learn and move through the design

space(Steinert and Leifer 2012). The hunter-gatherer model has been further developed

as the wayfaring model by (Gerstenberg et al. 2015). The wayfaring model improves the

hunter-gatherer model by introducing multi-directional prototyping where multiple

directions are developed synchronously, and multiple disciplines are included. The

wayfaring model uses probing by prototypes and iterative design-build-test cycles as its

framework. The designer probes the design space and takes steps in promising directions

as knowledge increases.

Figure 2 - Wayfaring and probing figures from (Gerstenberg et al. 2015)

Probing in the wayfaring model consists of cycles of divergent and convergent thinking.

Divergent thinking is enabled through generative design questions. These are open-

ended questions with the goal of removing design constraints and inspiring creative

exploration. The convergent thinking is done through deep reasoning questions where

the performance and intended function of concepts and solutions are evaluated.

Prototypes are an essential part in answering both the generative and deep reasoning

questions.

The exploratory fashion of navigating the design space using wayfaring enables

serendipity to influence the designer and lets the designer change direction often. This is

important as the knowledge of the design space increases with each probing cycle. The

explorative fashion of wayfaring also enables the designer to elicit “unknown unknowns”.

Unknown unknowns are challenges which are not articulated and must be discovered in

the design process (Sutcliffe and Sawyer 2013). Wayfaring and prototypes can be used

to dynamically create requirements as knowledge increases. By using dynamic

requirements, it is easier for the designer to handle unknown unknowns through the

design process (Kriesi et al. 2016).

2.3.2 Prototyping

Protoypes are an essential part of the product development process (L. S. Jensen, Özkil,

and Mortensen 2016). (Lauff, Kotys-Schwartz, and Rentschler 2018) describe a prototype

as tools for enhanced communication, learning and informed decision making. They

argue prototypes are essential for learning about the design space and the technical

elements as well as making informed decisions about the viability of the product.

Prototypes can be an embodiment of a concept or idea or created as an exploratory tool.

5

Within product development the exploration of known unknowns and the discovery of

unknown unknowns are important (Sutcliffe and Sawyer 2013). Prototypes are one tool

for these tasks. (M. B. Jensen, Elverum, and Steinert 2017) introduce the term prototrial

where prototypes are actively used to explore and understand the design space. They

argue that prototypes can be used for divergent thinking and generating concepts.

(Elverum and Welo 2015) introduce directional and incremental prototypes. Directional

prototypes are not purely for validation and verification but serve to explore the impacts

of larger design changes. Incremental prototypes answer the classic design concerning

validation and verification. (Kriesi et al. 2016) use prototypes as an essential part of the

wayfaring process and argue that the use prototypes can help uncovering and handling

unknown unknowns. Prototyping critical functionalities led to them discovering unknown

problems in a cheap and effective manor and avoiding costly rework.

In general, prototypes can be used for validation and verification, but another common

usage is generating knowledge and design questions by creating prototypes and

exploring how they work. They can answer deep reasoning questions such as “is this

better than..?” but also serve as generative tools answering questions such as “how

many ways can we …?”.

6

The development process of this thesis is a continuation of the development process of

the project thesis in Appendix B. Due to having a proof-of-concept prototype the

challenge for the development process consisted of both an exploratory and an

incremental improvement challenge. The proof-of-concept prototype showed a possible

method for capturing the BCG, but due to the low understanding of the concept other

better solutions might exist. As such a combination of a wayfaring approach and a more

incremental testing approach were used. The main process consists of a convergent

process on the proof-of-concept prototype solution and a divergent process looking for

other better solutions.

3.1 Bencthop-setup for simulating BCG

The proof-of-concept prototype developed in December 2021 left many questions on how

design choices impacted the results and to what degree they impacted. For further

learning and exploration of the design space, larger prototypes with higher quality would

have to be made. This slows down the iteration process if all learning is to be done

through larger prototypes. The project thesis revealed the need for faster ways to

explore how design choices impact results. For assessing how smaller design choices

affect the results a setup for simulating BCG with easily swappable parameters was

needed.

The BCG is the repetitive movements which arise from the ejection of blood from the

heart as described in 2.2. The concept for the proof-of-concept prototype in the project

thesis is that these movements will lead to changes in the pressure under a person’s

feet. The pressure under a person’s foot is a sum of the pressure due to weight and

movement with the weight acting as a static pressure and movements acting as a

variable pressure. Some of the variable pressure is due to movement related to BCG.

Simulating this varying pressure is interesting, since it will increase the understanding of

the solution space and it is relatively easy to simulate the varying pressure at a small

scale. A method for simulating this varying pressure was designed using a smart pump

on an evaluation kit (Evaluation Kit, tppventus, Cambridge UK.

Figure 3 - Benchtop setup

The bench-setup simulation consists of a smart pump from ttpventus, a BMP388 pressure

sensor (BMP388, Bosch Sensortec GmbH, Germany), a signal generator and two

3 Development process

7

bladders. One bladder connected to the smart pump, and one connected to the BMP388

sensor. The bladders are created by cutting sheets out of weldable plastic and using a

soldering iron to weld the sheets together. Both bladders are enclosed within a 3D

printed box which ensures good contact between them. The smart pump varies the

pressure in one bladder which then applies a varied pressure to the bladder the BMP388

sensor is measuring the pressure off. The smart pump can measure its pressure and

functions as a reference for the pressure measured by the BMP388. A waveform for the

pressure variation was generated using a waveform generator attached to the evaluation

kit. The waveform used was a Meyer wave due to its similarities to the IJK complex of

the BCG waveform. It is important to note that the smart pump had sustained some

damage prior to use and as could not mimic the Meyer wave perfectly.

When designing the bench-top setup it was important to facilitate easy change of

variables. Aspects such as varying the size and surface area of the measured bladder,

including material between the two bladders and varying pipe length was initially seen as

interesting aspects to vary. The box was created with extra space filled in with MDF

which meant free space was available if needed. A special connector was created for

quickly swapping the bladder connected to the BMP388. The connector consisted of a 3D

printed tube coated with silicone. Two pipes could be connected using this as the silicon

created an airtight seal between the pipe and the 3D printed tube. The tube had a lip on

each side to make sure the silicon was not allowed to expand or escape.

3.2 Initial parameter testing

Initially five parameters were identified from the proof-of-concept prototype as important

parameters to understand. These were pipe length, shape of bladder, the effect of

applying silicone on sensor, and the combination of applying silicone on the sensor with

water in the bladder. The bladder parameters are shown in Figure 4. To evaluate these

parameters six test were run. One as a reference, and one for each variation of

parameter. At this point the problem was still an exploratory problem and not an

optimization problem. As such the goals were to identify parameters which had major

impact on the result and were interesting to further research. Therefore, only visual

inspection by plotting reference versus measured was done.

8

Figure 4 - Bat testing parameters

The results of the tests are shown in Figure 5. Test 1 was a reference test for comparing

other tests. Test 2 checked the circle shaped bladder. This saw a slight increase in the

amplitude of the measured pressure, which was concluded to most likely be due to the

reduced surface area of the circle compared to the square. This was a key takeaway as it

meant reducing the surface of the bladder would increase the amplitude of the BCG

signal and make it easier to detect. Test 3 and 4 checked a short and a long pipe length.

These tests showed no major impact. Test 5 tested the impact of applying a coating of

silicon to the sensors and test 6 tested using water instead of air in the bladder with

silicone on the sensors. Both of these parameters showed minimal impact on the results.

9

Figure 5a – Normal

Figure 5b - Circle

Figure 5c - Short pipe

Figure 5d - Long pipe

Figure 5e - Silicone no water

Figure 5f - Silicone with water

Figure 5 - Parameter testing

3.3 Sole 0.5

With the knowledge from the bench top simulation a new higher fidelity prototype was

made with the goal of either acquiring a working prototype or uncovering further design

questions. To create this prototype some more design questions had to be answered. It

was desirable to have a material between the bladders and the foot to improve stability

and lessen the impact of motion fragments. The impact of having a material between the

bladder and the foot was uncertain and had to be tested. In addition, the impact of

placement of the bladders was also unknown.

The bench top setup was used to test the impact of having something between the

bladder and the foot. Two test were run, one with a 0.6mm metal sheet between the

reference bladder and the measurement bladder and another with a 6mm MDF sheet.

The 0.6 mm showed no major impact. However, the 6mm MDF plate gave noticeably

worse results. The conclusion was that material between the foot and the bladders need

to be thin to reduce absorption of the forces.

10

Metal plate:

Mdf 6 mm:

Figure 6 - Comparison of material between reference and BMP388

The placement of sensors were chosen by checking where the pressure under the feet

was largest as the assumption was that this is where most of the forces were transferred

to the ground. This was checked by placing plastic pipes under the plate which deformed

when standing on them. The areas with the largest deformations had the largest forces.

The deformation was the biggest at the heel and at the front of the foot. Four places of

interest were initially chosen. The heel and front of the foot due to the aforementioned

largest forces and the middle of the foot as well as an extra sensor on the front. The

middle and the extra on the front were chosen for two reasons. The assumption that he

best locations were the areas with the largest forces might be wrong and it was seen as

interesting to measure pressure distribution which could have extra interesting uses. The

four placements are shown in Figure 7.

Figure 7 - Sole 0.5 Sensor placements and wiring

The results of test are shown in Figure 8. The results of the test were disappointing with

no clear sign of the BCG being captured even after filtering. The results were bandpassed

filtered with a bandpass of [3, 10]. These poor results were likely due to the bladders

compressing almost entirely and the plate mostly touching the floor. The hypothesis was

that most of the forces were transmitted to the floor and creating little to no pressure

difference. This was due to air being compressible and the volume of air being small. In

addition, the bladders were prone to leak air which made testing difficult. The production

of the bladders was difficult as air easily escapes and getting a high enough volume of air

in the bladder was highly challenging.

11

Figure 8 - Results from sole 0.5 test

3.4 Diverging prototypes

As design fixation is a large and important problem in product development a focus was

made on always looking for alternative methods for capturing the BCG. Two such

methods were using inductance variation and using the varying electrical resistance in a

carbon fiber silicone composite due to deformation.

3.4.1 Inductance based prototype

Inductance measurement was seen as one possible way of capturing the BCG. The idea

was that it was possible to attach a magnet to the shoe sole and an inductance meter

under the magnet. With the variation in forces the shoe sole would deform increasing

and decreasing the distance between the inducation measuring unit and the magnet. This

was tested using a LDC1612 (LDC1612, Texas Instruments, Texas USA) inductance

meter and a normal magnet. Upon separating the inductance meter from the magnet

with a soft material it was possible to measure the change in inductance when the force

on the magnet was manually changed and the soft material deformed. This was tested in

the bench-top setup. The magnet was separated from the induction meter with a

deformable foam. This achieved somewhat promising results as seen in Figure 9.

However, the signal seemed somewhat noisier than with the BMP 388 sensor tests.

Figure 9 - Inductance test in bench top setup

The inductance concept was tested in a deconstructed running shoe as shown in Figure

10. A part of the sole was cut out and the inductance meter was placed near the bottom

of the sole. Then most of the cutout was returned on top of the inductance meter. The

magnet was glued on top of the cutout. The testing showed poor results with no clear

signal being captured. The inductance setup was tested again with a setup similar to the

sole 1.0 testing setup as seen in Figure 10. This still showed poor results. The main

12

theory for the poor results is that the force related to the BCG is very small and the

material does not deform enough to give a noticeable signal compared to noise.

Exchanging the material for a softer one or lowering the amount of material between the

inductance meter and the magnet might improve the results. No fundamental flaws were

found with this concept, and it was deemed a optimization problem. However, due to it

not showing any greater potential than the concept using pressure sensors it was not

explored further due to time limitations.

Figure 10 - Inductance test setup

3.4.2 Variable resistance in a carbon fiber and silicone composite

Carbon fiber in a silicone composite was another interesting concept for measuring BCG.

It was based on another project at TrollLabs where the usage of short carbon fiber

strands in silicone matrix is used as a sensor (Vestad and Steinert 2019). When the

carbon fiber enforced silicone is deformed the electrical resistance changes. As such a

concept was to measure this change in resistance when a person stands on a part made

of the material.

A 20x20x3mm cube of the carbon fiber enforced silicone was donated from the other

project. Preliminary test by manually applying forces to deform the cube gave promising

results. Very small forces were enough to give a noticeable output. A test was run using

the cube of the carbon fiber enforced silicone. The setup was based on the testing setup

from sole 1.0 which had shown potential. The cube is placed under a MDF plate directly

under the heel of the foot with a 3 mm MDF plate supporting the front of the foot. This is

shown in Figure 11. The signal was fairly noisy, and no clear signal was captured. The

main theory behind the disappointing results was that the force related to BCG is small

and gave very small deformations in the material. This combined with the fact that the

cube gives relatively noisy results ends up giving poor results. A softer material as the

matrix could improve this. This is also likely an optimization problem. However, due to

the setup not showing any major improvements over the BMP388 setup it was explored

further due to time limitations.

13

Figure 11 - Testing setup for testing carbon fiber sensor

3.5 Piston-cylinder prototype

As the production of the bladders was challenging iteration speed slowed. Another

concept with a larger scale and easier produce parts was needed. A concept was

developed inspired by gas springs where a piston-cylinder setup would replace the air-

filled bladders. Piston-cylinder pairs were quickly created by deconstructing syringes. The

casing of the syringe was cut in half and glued to an acrylic plate creating an airtight

seal. The piston part of the syringe was cut to a shorter length and glued to an MDF

plate. A hole was cut in the cylinder to connect the BMP388 sensor, which enabled

pressure measurements. This setup showed greater promise in ease of creation.

Figure 12 - Piston cylinder setup

This setup gave a few key insights. It showed how much the air would compress when

full bodyweight was applied. It became apparent that at no point would there be enough

air in one of the bladders to ensure that the plate would not touch the ground and disturb

the BCG signal. Water had thus far not been used due to complicating the design as

water and electronics generally don’t match. However, it became apparent that some

sort of incompressible substance was needed with water being the easiest available.

Further tests were conducted with water in the cylinders. A BMP388 with silicon applied

was used to measure the pressure in one of the piston housings under the heel. The

pressure signal was filtered using a bandpass filter with a bandpass of [3, 10] Hz. This

14

gave a very promising result shown in Figure 13. Clear peaks and valleys can be

detected. These appear about every 0.8 seconds which match well with a pulse of about

80 beats per minute which is a realistic pulse to have in this scenario.

Figure 13 - Results from piston cylinder setup tests

The gas spring prototype gave very promising results. Miniaturizing this prototype into a

size which would fit in a shoe sole was a promising approach to the task. One concept for

creating this was 3D printing gas springs in a small size using a SLS printer as SLS

printers can create fully artight structures. However, this proved difficult as the the

tolerances of the parts were small and even small warping in the 3D printed parts would

create leaks or introduce friciton which would dampen the signal. This warping proved

fatal to the concept. This concept was developed in parallell with the bladder concept.

The production quality of the bladders increased withouth the warping issue being

resolved. As the primary limitation for this development process is time this concept had

to be scrapped. It however, showed great promise and could be good solution for future

work.

3.6 Sole 1.0 - High fidelity prototype two

The gas spring prototype gave very promising results and paved the way for another

high-fidelity prototype using the bladder concept. One of the primary takeaways from the

piston-cylinder testing was that water had to be used as compression was a big issue.

Testing this improvement two more test were conducted using a bladder filled with water

instead of air. The first test consisted only of one water filled bladder under the heel and

MDF as support under the front of the foot. This gave surprisingly poor results

considering the setup was fundamentally almost identical to the piston-cylinder setup.

15

Figure 14 - Testing water-filled bladder

One of the main theories for why the results were still not satisfactory was that the back

end of the metal plate was unsupported which led to many small motions in the foot to

stabilize the user. This could be creating enough noise to where the signal was difficult to

capture. This was tested quickly by using three sensors and supporting the metal plate

by adding MDF everywhere under the plate. This gave better results which added

credibility to the theory of small motions being the issue.

Figure 15 - Testing multiple water-filled bladders with extra support

It was of interest to create a prototype which maximized the stability for the user. This is

a solved problem as high-quality shoes exist. Therefore, a prototype using a pair of shoes

as foundation was wanted. However, two design questions stood out before this

prototype could be developed. The first was how the support material around the water

filled bladders would affect the results. The other was testing in a more formal method

what positions for the water-filled bladders would be optimal.

The bench top setup was again used to gain a better understanding for how the support

material would affect the results. The hypothesis was that soft infill materials might

16

deform and absorb some of the motions that was desirable to detect. Four different

materials with different hardness was tested. MDF, a hard foam, a medium hard foam

and a soft foam were tested. The setup for testing the hard foam is shown in Figure 16

with the updated water filled bladders attached to the BMP388 in Figure 17. The results

are shown in Figure 18. No major differences were found which opened the design space

considerably.

Figure 16 - Benchtop test of infill material
hardness

Figure 17 - Updated design of water-filled
bladder with BMP388

Figure 18 - Infill material testing results

Furthermore the placements of the water filled bladders were of interest. The first

hypothesis was that the areas with the most pressure would absorb most of the

movement and be the best placements. However, this was not certain as these areas

would also have the highest variations in pressure due to natural stabilization in the foot.

17

As such six placements were chosen as interesting areas to test. These six positions are

shown in Figure 19.

A high fidelity prototype was created by disasembling an old running shoe and using

three BMP388s. As mentioned six locations were of interest for sensor placement. These

six locations were marked on the shoe sole and a hole was dug for the water bladders to

fit in as well as channels for the pipes connecting the sensors to lay in. The design of the

water bladders and sensors were identical to the design in Figure 17.

Figure 19 - Sole 1.0 prototype

Figure 20 shows the results of testing sensor location. Position one and two are the most

promising for capturing the BCG with tendencies to repeating patterns with clear peaks

and vallies with a frequency of the repeating patterns matching a pulse between 70-90.

Position three, four, five and six are not as promising for capturing the

ballistocardiogram. However they are still valuable as another interesting feature of the

shoe sole is the possibility of capturing the pressure distribution.

18

19

Figure 20 - Results from placement testing

Throughout the process of designing and the testing the sole prototypes an extra

interesting idea was to enable the capture of the pressure distribution under the foot of

20

users. The initial idea was using it for gait analysis. However, during a show and tell of

one of the prototypes it was highlighted how the pressure distribution could be used for

monitoring the pressure distribution under the feet of people who have neuropathy in

their feet. From conversations with medical personnel, it was uncovered that people with

neuropathy struggle with getting sores under their feet without discovering it. To prevent

and treat sores under the feet special shoe soles are developed to shift weight away from

areas with sores. Tracking the pressure distribution under a person foot and looking for

changes in the distribution could possibly lead to earlier detection. In addition, a version

of the shoe with a higher resolution of pressure sensors could be used to speed up the

process of designing special shoe soles.

3.7 BCG scale

To evaluate the results of the high fidelity tests a gold standard for comparison was

needed. The BCG scale as discussed in 2.2 and is a well-known method for capturing the

BCG and yields results of a high quality. As it is also a cheap method for measuring BCG

it was seen as a perfect reference for comparison. As such a bathroom scale was

deconstructed and changed to output its raw signal to a microprocessor. This was done

by connecting the load cells to a HX711 load cell amplifier. The HX711 gives an output of

the weight by connecting the load cells in a wheatstone bridge. The wiring is shown in

Figure 21.

Figure 21 - Wiring diagram and setup of BCG scale

21

The results from the BCG scale were of high quality with the peak of IJK complex being

possible to see without filtering the signal. A segmented, Z-score normalizes, unfiltered

example is shown in Figure 22. Here a clear IJK complex is shown and the

ballistocardiogram is easily recognized. By standing on the BCG scale with the BCG shoes

it is possible to compare the results.

Figure 22 - Results from testing the BCG Scale

22

The final setup is based on the results from Sole 1.0. It is designed for testing with a

wide range of users to validate results. It consists of a pair of running shoes in size 45

each equipped with five water bladders and correspondingly five BMP388 sensors. The

five BMP388 sensors on each shoe are placed on the outside of the shoe to protect them

from damage and simplify design. The pipe connecting the sensors on the outside to the

water bladder on the inside is 24mm long for all sensors except position 4. The final

design is shown in Figure 23. Placement of water bladders is shown in Figure 23. These

positions are based on the results from testing Sole 1.0. Placements one and two were

shown to be optimal for measuring BCG. Placements three, four and five are included to

enable pressure distribution measurement and incase of serendipitous findings.

Figure 23 - Sole 2.0 bladder design and placement from Appendix A.

As shown in Figure 24 all five sensors are connected to a multiplexor with pairs of two

and two sensors sharing one I2C port. The multiplexer is in turn connected to a

microprocessor (Teenzy 4.1, PJRC, USA) which reads sensor output and writes it to the

serial port of computer. On the computer the serial port is read using serialplotter and

saved as a CSV file. In addition, the BCG scale can be connected as shown in the wiring

diagram. A PPG sensor can also be connected as shown in the wiring diagram. The BCG

Scale is for comparing the pressure-based BCG and the PPG is used as a reference for

segmentation.

The water bladder design used is shown in Figure 23. It is made using plastic bladders

meant for being welded and a soldering iron. The plastic bladders are cut into shape

using stencils which form a circle with a rectangle attached. The stencils are of two

different sizes with the diameter of the circles being 27 mm and 37 mm. Pairs of two

plastic pieces of different size are welded together by introducing 4-8 folds into the larger

of the two plastic pieces. The folds ensure the two plastic pieces have the same diameter

and by introducing folds into the larger piece the bladder is naturally going to hold a

dome shape which eases the process of getting water into the bladder. For connecting

the water bladder to the pipe super glue is used before water is added. A soft pipe is

added to the other side of the plastic bladder and is used for adding water. After water is

added, the soft pipe is glued shut.

4 Sole 2.0

23

The sensors are modified slightly by adding silicone to the sensor IC. The metal lid on the

BMP388 is removed and a plastic pipe with a diameter of 3 mm is glued onto the

breakout board encompassing the sensor IC. The silicone is poured into the pipe using a

syringe which with some effort will naturally fall onto the sensor IC. However, for the

longest pipe it was necessary to cut a hole in the pipe right above the breakout board for

air to escape through. After the silicon has gotten to the bottom the hole is glued shut.

The water filled bladders are lowered into the shoe sole by about 2-3 mm. This is done to

get a more natural feel for the shoe, make it more stable to stand on, and decrease the

maximum pressure measured by the sensors as the sensors can max out when moving.

Holes are drilled in the shoe for the pipes connecting the water bladders to the sensor to

go through. For the four forward sensors the shoe sole is cut down to the drilled hole so

the pipes can be lowered into. For the water bladder under the heel a trench is not cut

due to the way the shoes are built. Instead, the sensor is glued onto the pipe after it has

been placed into the shoe sole.

Figure 24 - Wiring for BMP388 sensors and PPG sensor for Sole 2.0

24

Figure 25 - Shoe 2.0 pictures

25

To validate the Sole 2.0 prototype, testing with a wider range of users was important.

The prototypes have mainly been tested on the developer of the prototypes and can as

such be specialized to that person bodytype. Variations in height, weight, size of feet,

gender, age and more can affect the results in unknown ways. Therefore, a test was

conducted on a wider range of people. The goal was to capture the BCG and validate the

results. To achieve this, it was necessary to include a PPG sensor for segmentation of the

pressure signal and a finger cuff for measuring blood pressure. By segmenting with the

PPG the waveform could be captured and by using the PPG as timing comparison with the

BCG signal the Pulse Travel Time (PTT) can be calculated. Then the BCG can be validated

by comparing the changes in PTT to the changes in blood pressure as they are inversely

related (Pereira, Correia, and Cardoso 2015). To induce changes in blood pressure a cold

pressor test was done all participants.

5.1 Testing procedure and setup

Tests were run with 14 participants, of which 7 were female and 8 were male. All

participants in the tests were between 22-29 years old. All participants gave written

informed consent, and the study was approved by NSD with reference number 250185.

All participants were interviewed about their gender, age, height, weight and shoe size as

these parameters were hypothesized to affect the results. The detailed result of the

interviews are shown in Table 1 with the median result and ranges given.

Table 1 - Results from interviews (Appendix A)

 Female Male

Gender 7 8

Age 23.5 (22-26) 25.5 (23-29)

Height 171 (162-175) 182.5 (170.5-193)

Weight 67 (53-93) 80 (64 – 86)

Shoe size 39 (36-40) 44.5 (42.5 – 45)

Participants were instrumented with the BCG shoes on their feet. A PPG sensor

(PulseSensor, World Famous Electronics llc, USA) was clipped on their left index finger

and a finger cuff (MLT382, ADInstruments, United Kingdom) was placed on their left

middle finger. During testing participants were asked to stand on the BCG scale. The

testing was done in three test periods, noted as T1, T2 and T3, with one resting period

between T2 and T3. During T1 the participants were instructed to still on the BCG scale

for 1.5 minutes. After 1.5 minutes T2 was conducted with a cold pressors test.

Participants were asked to put their right hand into a bucket containing water holding five

degrees Celsius for 1 minute when they felt ready. After 1 minute had passed a resting

period of 3 minutes was conducted to normalize blood pressure. For T3 the participants

were again asked to stand on the BCG scale for 1.5 minutes.

5 Testing

26

5.2 Dataprocessing

The PPG, BCG shoes and BCG scale were all sampled synchronously using a

microcontroller at 180hz. The BCG was double sampled due to the HX711 amplifier being

limited to 90 hz in testing. The blood pressure was sampled at 200hz on the same

computer as the microcontroller was writing its data to. The blood pressure measurement

was synced with the other measurements by using the computer as a common timing

system.

To remove noise and achieve a satisfactory result most of the data had to be filtered. The

PPG was filtered using a Savitzky golay filter with a polyorder of three and a segment

size of 0.15s. In addition to filtering noise this also made the PPG differentiable. The

pressure signals were filtered using a forward-backward digital filter with a bandpass of

[3,10] Hz and an order of 12. The scale was sampled at 90Hz by removing every other

sample. The blood pressure was filtered using a Savitzky-Golay filter with a polyorder of

3 and a windowsize of 35 seconds.

The PPG was used for segmenting the pressure and scale signal. It was segmented by

naively locating local peaks on the PPG with a spacing of at least 0.5 seconds between

each peak. After segmentation each segment was normalized using z-score

normalization. The segments were validated automatically by comparing segment sizes

and removing segments that differentiated by more than 5% from the median segment

size. The segments were also validated manually by plotting the PPG segments on top of

each other and comparing the waveform as well as plotting the identified peaks for visual

inspection as shown in Figure 26. Each segment of the PPG were calculated from a peak

of the PPG to the next peak with a padding of 0.5s on each side. The BCG shoes and

scale was segmented using the identified time segments from the PPG segmentation. The

BCG shoe, BCG scale and PPG used windows of 25 seconds within each measurement

period.

The changes in PTT was calculated by comparing the spacing between the peak of the

PPG average and the J peak of the BCG average. The peak locations was computed using

a naïve peak detection algorithm and manually reviewed after. The corresponding blood

pressure for each window of measurements was calculated by finding the mean of the

systolic blood pressure measured by the finger cuff.

27

Figure 26 - Identified PPG peaks with wrong segments marked in red

28

6.1 Preliminary ballistocardiography findings

The data from the Ballistocardiography tests are not fully processed yet, due to the time

needed manually review all of the segmentation and calculations. The results of the fully

processed data will be submitted to the IEEE Sensors 2022 conference. However,

preliminary results for two participants are finished. The data has been processed as

described in 5.2.

6.1.1 Test 1

Figure 27 shows the results of the three best sensors for the first measurement period

for a 24-year-old male. The sensor in position 1 and 2 on the right foot and position two

on the left foot where the sensors which successfully captured the BCG. Figure 28 shows

the BCG captured on the sensor in position 2 on the left foot plotted against the BCG

scale result. The shoe BCG has two noticeable differences from the scale BCG. The J peak

is less pronounced, and the timing is deviating with almost 0.1 seconds.

Figure 27 - Ballistocardiogram for a 24-year-old male during T1

6 Testing results

29

Figure 28 - Shoe BCG vs Scale BCG for a 24-year-old Male for T1

Figure 29 shows the results of the four best sensors for the first measurement period for

a 23-year-old female. Position one and two on both the right and the left foot showed the

best results for the first measurement period. Figure 30 shows the BCG captured on the

sensor in position one on the right foot plotted against the BCG scale result. The shoe

BCG has two noticeable differences from the scale BCG. The H peak is more pronounced

one the shoe BCG and the timing is deviates by a bit over 0.5 seconds.

Figure 29 - BCG shoe results for a 23-year-old female

30

Figure 30 - BCG shoe vs BCG scale for a 23-year-old female

6.1.2 Test 2

Figure 31 shows the results of the four best sensors for the second measurement period

for a 24-year-old male. The sensor in position one on the right foot and position one, two

and three on the left foot where the ones who successfully captured the BCG. Figure 32

shows the BCG captured on the sensor in position 2 on the left foot plotted against the

BCG scale result. The shoe BCG has two noticeable differences from the scale BCG. The J

peak is less pronounced, and the timing is different with almost 0.1 seconds.

Figure 31 - Shoe BCG vs PPG for a 24-year-old male for T2

31

Figure 32 - Shoe BCG vs Scale BCG for a 24-year-old male for T2

Figure 33 shows the results of the four best sensors for the second measurement period

for a 23-year-old female. Position one and two on both the right and the left foot showed

the best results for the second measurement period. Figure 30 shows the BCG captured

on the sensor in position one on the right foot plotted against the BCG scale result. The

shoe BCG has two noticeable differences from the scale BCG. The H peak is more

pronounced one the shoe BCG and the timing is different with a bit over 0.5 seconds.

Figure 33 – Shoe BCG vs PPG for T2 for a 23-year-old female

32

Figure 34 – Shoe BCG vs Scale BCG for T2 for a 23-year-old female

6.1.3 Test 3

Figure 35 shows the results of the four best sensors for the third measurement period for

a 24-year-old male. The sensor in position one and two on both the right and the left foot

where the ones who successfully captured the BCG. Figure 36 shows the BCG captured

on the sensor in position two on the left foot plotted against the BCG scale result. The

shoe BCG has two noticeable differences from the scale BCG. The J peak is less

pronounced and the timing is different with almost 0.1 seconds.

Figure 35 - Shoe BCG vs PPG for T3 for a 24-year-old male

33

Figure 36 - Shoe BCG vs Scale BCG for T3 for a 24-year-old male

Figure 37 shows the results of the four best sensors for the third measurement period for

a 23-year-old female. Position one and two on both the right and the left foot showed the

best results for the first measurement period. Figure 38 shows the BCG captured on the

sensor in position one on the right foot plotted against the BCG scale result. The shoe

BCG has two noticeable differences from the scale BCG. The H peak is more pronounced

one the shoe BCG and the timing is different with a bit over 0.5 seconds.

Figure 37 - Shoe BCG vs PPG for T3 for a 23-year-old female

34

Figure 38 - Shoe BCG vs Scale BCG for a 23-year-old female

6.1.4 PTT

Figure 41 shows the detection of the J peak of the shoe BCG and the detection of the PPG

peak for testing period one, two and three for a 24 year old male participant. The J peak

happens at 0.436 seconds for T1, 0.403 seconds for T2 and 0.504 seconds for T3. The

PPG peak happens at 0.498 seconds for all three testing periods due to the segmentation

method.

35

Figure 39 - Peak detection for calculating PTT change for T1, T2 and T3 for a 24 year old
male

Figure 40 shows the detection of the J peak of the shoe BCG and the detection of the PPG

peak for testing period one, two and three for a 23 year old female participant. The J

peak happens at 0.481 seconds for T1, 0.458 seconds for T2 and 0.487 seconds for T3.

The PPG peak happens at 0.498 seconds for all three testing periods due to the

segmentation method.

36

37

Figure 40 - Peak detection for calculating PTT change for T1, T2 and T3 for a 23-year-old
female

Figure 41 shows the PTT versus blood pressure for the 24-year-old male and the 23-

year-old female. The PTT and blood pressure is inversely related for both participants

with the PTT decreasing in T2 when the blood pressure increases and increasing again in

T3 when the blood pressure decreases.

38

Figure 40a - PTT vs blood pressure for a 24-year-old male

Figure 40b - PTT vs blood pressure for a 23-year-old female

Figure 41 - PTT vs Blood pressure the 24-year-old male and the 23-year-old female

6.2 Pressure distribution

Pressure distribution was briefly tested on one subject while walking and standing. Figure

42 shows the pressure distribution while walking. The different timing of the pressure

sensors is apparent. Figure 43 shows the pressure distribution while standing still.

However, the measurements were not calibrated, and each sensor has their own baseline

value.

39

Figure 42 - Pressure distribution when walking

Figure 43 - Pressure distribution while standing

40

41

7.1 Discussion of development process

The main tool for the development phase was prototyping as well as the bench top setup.

As established in 2.3 prototyping is an important tool in product development and an

essential part of wayfaring. It was used a lot during this development process and

contributed greatly to learning, but some limitations were also uncovered. Due to the

small magnitude of the signal compared to the considerable amount of noise the

prototypes needed to be of a relatively high quality to achieve a good learning outcome.

This meant that the creation of each prototype took a considerable amount of time. As

quick iterations are highly important in wayfaring to efficiently explore the design space

this slowed the development process. As such Wayfaring might have some limitations

when applied to fields that require a high degree of quality of the prototypes. This is not

to say that wayfaring and prototyping was not valuable as even the generation of low

fidelity prototypes did generate some learning and design questions.

The bench top setup did generate a lot of knowledge, mostly in uncovering which

parameters did not matter. Creating experimental setups which emulated the physical

world in a good manner proved incredibly valuable for quickly testing and iterating

through parameters. This might be because the development process was a mixture

between an optimization problem and an exploratory problem. The optimization issue

was larger than anticipated due to the concept appearing solid, but the results were still

poor for many iterations.

7.2 Discussion of results

The results shown in 6.1 shows great promise for capturing the BCG. The findings are

only preliminary as all the data has not been processed yet, but both processed datasets

show huge promise. The BCG waveform is clearly captured in both participants.

Compared to the scale BCG the J peak is often less pronounced with the H peak being

more pronounced. Why this happens is difficult to conclude on but there might be some

dampening occurring. The timing of the shoe BCG vs scale BCG is also deviating a bit by

about 0.05 seconds to 0.1 seconds. This can be due to an error in the processing of data

or due to some underlying difference between what is being captured. One such reason

could be that the shoe BCG captures the force due to the movement while the scale BCG

captures the deflection in the load cells under the scale. Some delay might be happening

from the force occurring to the deflection in the load cells.

Position one and two on both of the feet is the standout sensor positions capturing the

BCG in five out of six analyzed periods. In addition, sensor position three does

sometimes capture the BCG. Sensor position four and five contribute little to the BCG

measurement. However, some more analysis needs to be done before concluding. All 14

datasets need to be analyzed and the results for position four and five need to be further

analyzed. They might capture some other part of waveform or require a different filtering

process.

7 Discussion

42

The PTT is calculated for both the participants and gives very promising results. The PTT

decreases with increased blood pressure in T2 and increases when the blood pressure

stabilizes in T3. This is exactly what is expected to happen if it is the BCG being

captured. The measurement of PTT also shows a real-world application for the shoes

other than capturing BCG waveform as PTT can be used for continuous noninvasive

measurement of cardiovascular health to its relation to pulse wave velocity and in turn

blood pressure and arterial stiffness.

However, some limitations have been discovered both in testing procedure and the

results. The variation in age for the participants is very small and the variation in weight

is also relatively small. As such there might be unknown effects which could worsen the

results for users of different ages and bodytypes. The impact of the weight, height, shoe

size and age has not been reviewed and might lead to some interesting results. The

testing procedure is a controlled scenario where the participants were asked to stand

still. This does not necessarily reflect a real-world scenario where there will be more

motions in the feet. The window size for measuring BCG is 25 seconds which is a long

time for a user to stand still in the real-world. Therefore, it is difficult to conclude on the

real-world application of the shoes without before real-world testing has been done.

The pressure distribution was captured by the shoes. However, very little testing was

done on the capabilities. The biggest problem with the pressure distribution is that no

calibration was conducted. Each sensors have their own baseline value when no pressure

is applied. Without first calibrating it is impossible to conclude whether the pressure

distribution is correct. The pressure distribution while walking is interesting. The timing of

the different sensors is easily captured which can show how a person is walking.

Even with the promising results from the two first datasets no conclusion can be made

before all 14 datasets are processed. There might still be some unknown factors which

can impact the remaining 12 datasets.

7.3 Discussion of Sole 2.0

Sole 2.0 has given very promising preliminary results. However, it does have some

limitations. The water bladders are prone to breaking when walking. A sturdier version

needs to be created for this to have real world applications. In addition, the bladder

version might not be the most optimal solution. For instance, the piston-cylinder setup

showed great promise as a sturdier and easier to produce solution. The main takeaway

from the bladder solution is to only measure a small area where the forces are the

largest to get the largest pressure change due to BCG. This improves the signal

magnitude compared to noise and makes the measurement of BCG easier. Future work

on the concept should be to further test other solutions for localized pressure

measurement. In addition, the electronics need to be miniaturized to enable testing in

real world scenarios.

43

This master thesis has created a smart shoe for measuring BCG in a noninvasive and

continuous manner. The smart shoe, called, Sole 2.0 consists of a pair of shoes with five

water filled bladders placed in each shoe. The water filled bladders are each connected to

a BMP388 barometric pressure sensor which measure the pressure in the bladders. By

measuring the change in pressure under the foot he movements of the body due related

was possible to capture. The two key nuggets in designing the smart shoes were the

placement of the sensors and the advantage of only measuring the force in a small area

where it was the biggest. The sensor position on the heel of the foot and slightly in front

of the heel were the most optimal for measuring BCG. The small surface area for

measuring the pressure change in the area with the largest forces meant the pressure

change was as large as possible which meant the magnitude of the signal was relatively

good compared to the noise.

The smart shoes were tested on 14 participants of which 7 were female and 8 were male.

Only preliminary results for two participants have been generated due to the time needed

to manually validate segmentation and find the optimal measurement periods. However,

the results from the two processed data sets are promising. The BCG was captured for

both datasets in all three time periods. In five out of six sets both position one and two

on the left and right foot managed to measure the BCG. The results were validated by

manual inspection of the waveform and the computation of PTT. The waveform was

similar the BCG scale waveform with a slightly less pronounced J peak and a more

pronounced H peak. The calculated PTT was inversely related to the blood pressure

decreasing when the blood pressure increased in T2 and increased when blood pressure

stabilized in T3.

However, some limitations remain before real world use can be determined. The testing

scenario was a controlled test in a lab environment. In real world there might be other

aspects which affect the results such as more movement in the user and vibrations from

other sources. In addition, it is impossible to conclude on the success of the results

before all 14 datasets have been analyzed. The results are promising enough to conclude

that the BCG shoes show promise as a method for noninvasive continuous measurement

of cardiovascular health.

8 Conclusion

44

Campo, David, Hakim Khettab, Roger Yu, Nicolas Genain, Paul Edouard, Nadine Buard,

and Pierre Boutouyrie. 2017. “Measurement of Aortic Pulse Wave Velocity With a

Connected Bathroom Scale.” American Journal of Hypertension 30 (9): 876–83.

https://doi.org/10.1093/ajh/hpx059.

Elverum, Christer W., and Torgeir Welo. 2015. “On the Use of Directional and

Incremental Prototyping in the Development of High Novelty Products: Two Case

Studies in the Automotive Industry.” Journal of Engineering and Technology

Management 38 (October): 71–88.

https://doi.org/10.1016/j.jengtecman.2015.09.003.

Gerstenberg, Achim, Heikki Sjöman, Thov Reime, Pekka Abrahamsson, and Martin

Steinert. 2015. “A Simultaneous, Multidisciplinary Development and Design

Journey – Reflections on Prototyping.” In Entertainment Computing - ICEC 2015,

edited by Konstantinos Chorianopoulos, Monica Divitini, Jannicke Baalsrud Hauge,

Letizia Jaccheri, and Rainer Malaka, 409–16. Lecture Notes in Computer Science.

Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-

24589-8_33.

Giovangrandi, Laurent, Omer T. Inan, Richard M. Wiard, Mozziyar Etemadi, and Gregory

T.A. Kovacs. 2011. “Ballistocardiography — A Method Worth Revisiting.” In 2011

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society, 4279–82. https://doi.org/10.1109/IEMBS.2011.6091062.

Inan, O. T., M. Etemadi, R. M. Wiard, L. Giovangrandi, and G. T. A. Kovacs. 2009.

“Robust Ballistocardiogram Acquisition for Home Monitoring.” Physiological

Measurement 30 (2): 169–85. https://doi.org/10.1088/0967-3334/30/2/005.

Inan, Omer T., Pierre-Francois Migeotte, Kwang-Suk Park, Mozziyar Etemadi, Kouhyar

Tavakolian, Ramon Casanella, John Zanetti, et al. 2015. “Ballistocardiography and

Seismocardiography: A Review of Recent Advances.” IEEE Journal of Biomedical

and Health Informatics 19 (4): 1414–27.

https://doi.org/10.1109/JBHI.2014.2361732.

Jensen, L. S., A. G. Özkil, and N. H. Mortensen. 2016. “PROTOTYPES IN ENGINEERING

DESIGN: DEFINITIONS AND STRATEGIES.” DS 84: Proceedings of the DESIGN

2016 14th International Design Conference, 821–30.

Jensen, Matilde B., Christer W. Elverum, and Martin Steinert. 2017. “Eliciting Unknown

Unknowns with Prototypes: Introducing Prototrials and Prototrial-Driven Cultures.”

Design Studies 49 (March): 1–31. https://doi.org/10.1016/j.destud.2016.12.002.

Kim, Chang-Sei, Andrew M. Carek, Omer T. Inan, Ramakrishna Mukkamala, and Jin-Oh

Hahn. 2018. “Ballistocardiogram-Based Approach to Cuffless Blood Pressure

Monitoring: Proof of Concept and Potential Challenges.” IEEE Transactions on

Biomedical Engineering 65 (11): 2384–91.

https://doi.org/10.1109/TBME.2018.2797239.

Kim, Jongbae, and David Wilemon. 2002. “Focusing the Fuzzy Front–End in New Product

Development.” R&D Management 32 (4): 269–79. https://doi.org/10.1111/1467-

9310.00259.

Koivistoinen, T., S. Junnila, A. Varri, and T. Koobi. 2004. “A New Method for Measuring

the Ballistocardiogram Using EMFi Sensors in a Normal Chair.” In The 26th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society,

1:2026–29. https://doi.org/10.1109/IEMBS.2004.1403596.

Kriesi, Carlo, Jørgen Blindheim, Øystein Bjelland, and Martin Steinert. 2016. “Creating

Dynamic Requirements through Iteratively Prototyping Critical Functionalities.”

Procedia CIRP, 26th CIRP Design Conference, 50 (January): 790–95.

https://doi.org/10.1016/j.procir.2016.04.122.

References

45

Lauff, Carlye A., Daria Kotys-Schwartz, and Mark E. Rentschler. 2018. “What Is a

Prototype? What Are the Roles of Prototypes in Companies?” Journal of Mechanical

Design 140 (6). https://doi.org/10.1115/1.4039340.

Mack, D.C., J.T. Patrie, P.M. Suratt, R.A. Felder, and M. Alwan. 2009. “Development and

Preliminary Validation of Heart Rate and Breathing Rate Detection Using a

Passive, Ballistocardiography-Based Sleep Monitoring System.” IEEE Transactions

on Information Technology in Biomedicine 13 (1): 111–20.

https://doi.org/10.1109/TITB.2008.2007194.

Martin, Stephanie L.-O., Andrew M. Carek, Chang-Sei Kim, Hazar Ashouri, Omer T. Inan,

Jin-Oh Hahn, and Ramakrishna Mukkamala. 2016. “Weighing Scale-Based Pulse

Transit Time Is a Superior Marker of Blood Pressure than Conventional Pulse

Arrival Time.” Scientific Reports 6 (1): 39273.

https://doi.org/10.1038/srep39273.

Mora, Niccolò, Federico Cocconcelli, Guido Matrella, and Paolo Ciampolini. 2020.

“Accurate Heartbeat Detection on Ballistocardiogram Accelerometric Traces.” IEEE

Transactions on Instrumentation and Measurement 69 (11): 9000–9009.

https://doi.org/10.1109/TIM.2020.2998644.

Pereira, Tânia, Carlos Correia, and João Cardoso. 2015. “Novel Methods for Pulse Wave

Velocity Measurement.” Journal of Medical and Biological Engineering 35 (5):

555–65. https://doi.org/10.1007/s40846-015-0086-8.

Pinheiro, Eduardo, Octavian Postolache, and Pedro Girão. 2009. “Blood Pressure and

Heart Rate Variabilities Estimation Using Ballistocardiography.” In In Proceedings

of the 7 Th Conf. on. Telecom, 125–28.

Starr, Isaac, A. J. Rawson, H. A. Schroeder, and N. R. Joseph. 1939. “STUDIES ON THE

ESTIMATION OF CARDIAC OUPTUT IN MAN, AND OF ABNORMALITIES IN CARDIAC

FUNCTION, FROM THE HEART’S RECOIL AND THE BLOOD’S IMPACTS; THE

BALLISTOCARDIOGRAM.” American Journal of Physiology-Legacy Content 127 (1):

1–28. https://doi.org/10.1152/ajplegacy.1939.127.1.1.

Steinert, Martin, and Larry Leifer. 2012. “‘Finding One’s Way’: Re-Discovering a Hunter-

Gatherer Model Based on Wayfaring.” International Journal of Engineering

Education 28 (January): 251–52.

Sutcliffe, Alistair, and Pete Sawyer. 2013. “Requirements Elicitation: Towards the

Unknown Unknowns.” In 2013 21st IEEE International Requirements Engineering

Conference (RE), 92–104. https://doi.org/10.1109/RE.2013.6636709.

Vestad, Håvard, and Martin Steinert. 2019. “Piezoresistive Chopped Carbon Fiber Rubber

Silicone Sensors for Shedding Frequency Detection in Alternating Vortex Streets.”

In 2019 IEEE SENSORS, 1–4.

https://doi.org/10.1109/SENSORS43011.2019.8956632.

WHO. n.d. “Cardiovascular Diseases.” Accessed June 3, 2022.

https://www.who.int/health-topics/cardiovascular-diseases.

Yao, Yang, Sungtae Shin, Azin Mousavi, Chang-Sei Kim, Lisheng Xu, Ramakrishna

Mukkamala, and Jin-Oh Hahn. 2019. “Unobtrusive Estimation of Cardiovascular

Parameters with Limb Ballistocardiography.” Sensors 19 (13): 2922.

https://doi.org/10.3390/s19132922.

46

Draft for the conference article to be submitted to IEEE

Sensors 20222.

Appendix A

Windows to the Sole: Wearable

Ballistocardiography Using Incompressible Fluid

Sensors
Authors’ Names

line 1 (of Affiliation 1): Dept., Organization, City, Country

line 2: (of Affiliation 2): Dept., Organization, City, Country

E-mail address of the corresponding author

ORCID number of the corresponding author (optional)

Abstract—

Keywords—

I. INTRODUCTION

The ballistocardiogram (BCG) is the recording of the
ballistic forces generated by ejection of blood from the
ventricle during the onset of systole. First rigorously
investigated in the first half of the 20th century, as a non-
invasive cardiovascular measurement the BCG has seen a
modest resurgence as a convenient method of recording
heart- and respiratory rates [1]. In combination with the
photoplethysmogram (PPG), attempts have been made to
define a robust estimate of the pulse wave velocity (PWV)
via multi-messenger time delay [2], [3].

Partly to deal with the notoriously noisy character of
BCG signals, typical measurement scenarios have often
relied on stationary measurements. These have included
bathroom weigh-scales, beds, and chairs ([4] + bed/chair);
these “full-body” BCG setups rely on measuring force, for
example via strain gauges or electret films. This has the
advantage of comparatively high signal-to-noise ratio
(SNR). There is however a healthcare monitoring
motivation for integrating BCG-based measurements in
wearable devices, to which end attention has been focused
on wrist- and earbud-based approaches built on
accelerometry [2], [5]. These have the strong benefit of
convenience and mobility but suffer a loss of signal quality
in return. Here, we propose a “best of both worlds”
solution: by integrating a series of high-sensitivity liquid
pressure sensors in the sole of a shoe, we demonstrate that
the BCG can be reliably recorded with reasonable quality.
In combination with PPG, we use ensemble-averaged
waveforms to estimate pulse transit times. We verified the
performance of the smart shoes by performing a cold
pressor test on 15 volunteers (rfemale = 0,46). Blood
pressure was recorded concurrently using the volume-
clamp method.

II. METHOD

A. Ballistocardiogram shoe design

The smart shoes consist of a standard pair of running

shoes. Each of the shoes is fitted with five BMP388

pressure sensors on a breakout board from Adafruit.

Pressure sensors were used due to being easy to acquire,

easy to interface with and had a relatively low noise and

low drift. Five sensors were found to provide a satisfactory

response range.

Each sensor unit consists of one atmospheric pressure

sensor (BMP388, Bosch Sensortec GmbH, Germany)

connected via a flexible plastic tube to a water filled

bladder which is fitted into the modified sole. The plastic

tube is adhered to the sensor board, surrounding the sensor

IC. The pressure sensor IC is delidded and a thin layer of

silicone is applied in the end of the tube, creating a

waterproof interface to the sensor. The protective silicone

appeared to have little impact on the signal quality during

testing. Water is used due to being incompressible which

was necessary due to the large forces being applied to the

bladder due to bodyweight. The BMP388s are connected

via I2C multiplexer to a MCU (Teensy 4.1, PJRC).

The water-filled bladders have a diameter of 27 mm

and an approximate surface area of 1550 mm2. The bags

are made from plastic bags made for welding which are

cut into plastic sheets of two different sizes . The smallest

with a diameter of 27 mm and the larger with a diameter

of 37 mm. The two sheets are thermally welded together.

Four to eight folds are then introduced into largest plastic

sheet to achieve the same circumference on both of the

sheets. This introduces a natural dome shape to the plastic

bags which greatly simplifies the process of filling the

bladder cavity.

B. Experimental protocol

Fifteen participants were included in the study of which 8

were male and 7 were female. All participants gave

written informed consent after being informed of the

study and its procedures. The study was approved by NSD

with reference number 250185. All participants were

interviewed about their gender, age, height, weight and

shoesize. The results of which are shown in Table 1.
Table 1 - Interview results showing median value and range

 Female Male

Gender 7 8

Age 23.5 (22-26) 25.5 (23-29)

Height 171 (162-175) 182.5 (170.5-

193)

Weight 67 (53-93) 80 (64 – 86)

Shoe size 39 (36-40) 44.5 (42.5 –

45)

Participants were instrumented with the

ballistocardiogram shoes on their feet and a PPG sensor

(PulseSensor, World Famous Electronics llc, USA) on

their left index finger. The labchart Nano housing unit

was placed on the participants left wrist and the

corresponding finger cuff (MLT382, ADInstruments,

United Kingdom) for blood pressure measurement was

placed on the left middle finger. All participants were

asked to stand on a BCG scale which acts as a reference

for the BCG shoes. The BCG shoes capture the pressure

under the participants feet.

The participants were first instructed to stand still on the

BCG scale for 1.5 minutes. After 1.5 minutes had passed

they were asked to place their right hand in the cold water

when they felt ready. The water held 5 degrees Celsius.

The participants held their right hand in the cold water for

1 minute. They were then given 3 minutes to rest. After 3

minutes of rest, they were instructed to stand still on the

BCG scale for 1.5 minutes.

Figure 1 - Instrument setup on participants (Placeholder)

C. Data processing and analysis

The PPG, BCG shoes and BCG scale was sampled
synchronously on the Teenzy 4.1 at 180 hz with the BCG
scale being double sampled due to the HX711 amplifier
being limited to 90 Hz in testing. The blood pressure was
sampled at 200hz on the same computer as the Teenzy 4.1.
The start time of testing for the Teenzy 4.1 and the finger
cuff was logged by the software used. This starttime was
used for synchronizing the measurements from labchart
and the Arduino.

The PPG was filtered using a Savitzky–Golay filter
with a polyorder of 3 and a segment size of 0.15s. This was
done to remove noise and make the PPG differentiable.
The pressure signals were filtered using a forward-
backward digital filter using second order cascaded
sections. The filter used a bandpass of [3,10]Hz and an
order of 12. The scale was sampled at 90hz by removing
every other sample. A corresponding PPG signal was used
by removing the corresponding samples from the PPG.
The blood pressure was smoothed by using a Savitzky-
Golay filter with a polyorder of 3 and a window size of 35
seconds.

The PPG was used for segmenting the pressure and

scale signal. After smoothing the PPG was segmented

naively locating local peaks with a spacing of at least 0.5s

between each peak. The segments were checked

automatically by comparing segment size for each

segment and the median segment size with segment sizes

differing by more than 5% from the median were marked.

The segmentation was also verified manually by manual

inspection of peak detection and plotting each segment on

each other to look for deviations. Each segment of the PPG

were calculated from 0.3 seconds before the first detected

peak to 0.5 seconds after the next detected peak. The BCG

shoes and scale was segmented using the identified time

segments for the PPG.

III. RESULTS

Figure 2 shows the results for the BCG shoe in the first

measurement period for a 24 year old male with the PPG
as a reference. Figure 3 shows the BCG results for the first
measurement period for a 23 year old female. The
waveform of the BCG is easily recognizable in both of the
participants with little variation in the segments for the 23
year old female. For both participants sensor location 2 on
the right shoe gave the best results. Location one and two
one both feet gave the best results in all three measurement
periods with position three giving good results in some of
the participants. Position four and five gave no
recognizable results.

Figure 2 - BCG shoe results for a 24 year old male

Figure 3 - BCG shoe results for a 23 year old female

Figure 4 shows the BCG shoe result for sensor position 2

on the right foot for measurement period one versus the

BCG scale results. There are two notable differences

between the BCG shoe and BCG scale results. The H peak

is more prominent for the BCG shoe. In addition, the

timing of the two BCG results is different by about 0.1

seconds.

Figure 4 - The shoe BCG versus the scale BCG for a 23 year

old female

Figure 5 shows the variation in pulse transit time (PTT)

for measurement period one, two and three and the

variation in blood pressure in the same three periods for

all 14 participants. The PTT is inversely related to the

blood pressure change in all 14 participant.

Figure 5 - Pulse transit time for the 14 participants versus

blood pressure (Placeholder)

IV. DISCUSSION

The results show that the BCG is successfully being
captured by the BCG shoes. The waveform is slight
different from the traditional scale BCG results with a
more pronounced H peak. The sensor position one and two
give the best results on both of the feet showing no major
difference between left and right shoe. The PTT is
calculated for all 14 participants and is inversely related to
the blood pressure. This further strengthens the results in
validating that it is the BCG being captured.

However, the study has some weaknesses. The
participants had little variation in age and weight. It is
therefore possible that some complications might arise in
a broader population. In addition, the study was done in a
controlled environment where the participants were
instructed to stand still. Real world scenarios might have
some complications which can give worse results. To
evaluate whether the shoes have real world value further
testing in real world scenarios would have to be done.

The design of the shoes also have some limitations.
The bags are prone to leaking in when in activities such as
walking and running. Only two of the five sensor positions
on each foot gives consistently good results. If the only
goal is measuring BCG only two sensors should be
included in each shoe. The design is only one possible
solution and most likely not the optimal. However, the
principal of only measuring small areas with the largest
effect does produce better results.

V. CONCLUSION

This has shown a new method for measuring BCG
using smart shoes. The captured BCG has been used to
calculate PTT and shown inverse relationship with blood
pressure. The smart shoes show the optimal measuring
area for measuring BCG under a person’s feet. By only
measuring in a small area where the force due to BCG is
largest the magnitude of the signal is maximized to
improve the signal to noise ratio. Further testing in real
world scenarios is needed to further evaluate and improve
the smart shoes. However, the smart shoe shows promise
as a solution for wearable continuous measurement of
BCG.

VI. REFERENCES

[1] O. T. Inan mfl., «Ballistocardiography and

seismocardiography: a review of recent advances»,

IEEE J. Biomed. Health Inform., bd. 19, nr. 4, s.

1414–1427, jul. 2015, doi:

10.1109/JBHI.2014.2361732.

[2] P. Yousefian mfl., «The Potential of Wearable Limb

Ballistocardiogram in Blood Pressure Monitoring

via Pulse Transit Time», Sci. Rep., bd. 9, nr. 1, s.

10666, jul. 2019, doi: 10.1038/s41598-019-46936-

9.

[3] S. Shin mfl., «Posture-Dependent Variability in

Wrist Ballistocardiogram-Photoplethysmogram

Pulse Transit Time: Implication to Cuff-Less Blood

Pressure Tracking», IEEE Trans. Biomed. Eng., bd.

69, nr. 1, s. 347–355, jan. 2022, doi:

10.1109/TBME.2021.3094200.

[4] S. L.-O. Martin mfl., «Weighing Scale-Based Pulse

Transit Time is a Superior Marker of Blood

Pressure than Conventional Pulse Arrival Time»,

Sci. Rep., bd. 6, s. 39273, des. 2016, doi:

10.1038/srep39273.

[5] M. Etemadi og O. T. Inan, «Wearable

ballistocardiogram and seismocardiogram systems

for health and performance», J. Appl. Physiol., bd.

124, nr. 2, s. 452–461, feb. 2018, doi:

10.1152/japplphysiol.00298.2017.

50

Project thesis

The master thesis is a continuation of the project thesis conducted from August 2021 to

December 2021

Appendix B

i

Department of Mechanical and Industrial Engineering (MTP)

Norwegian University of Science and Technology (NTNU)

Project thesis 2021

Simon Gåseby Gjerde

Early phase development of a wearable setup for
ballistocardiography

Supervisor(s): Martin Steinert, Federico Lozano

Co-supervisor(s): Torjus Lines Steffensen

December 20, 2021

ii

Abstract
This project aimed to explore the solution space related to wearable physiological sensors
using wayfaring and prototyping. The solution space exploration was focused on the early
detection of cardiovascular diseases. Early detection and treatment have been identified
as one of the most significant factors for reducing the impact of cardiovascular diseases.
Wayfaring and prototyping were used to explore the design space, testing multiple
different setups and technologies. Ballistocardiography was discovered as a possible
solution for wearable continuous noninvasive monitoring of the cardiovascular system.
Historically, issues with equipment size and motion artifacts disturbing the signal have
held it back. However, computer and sensor technology advances have been promising in
lessening these issues and widening the solution space. This project discovered and
tested a new solution for measuring the ballistocardiogram by measuring the changes in
pressure under a person’s foot. The setup measures the pressure under the user’s foot
using a configuration of two barometric pressure sensors attached to two inflatable bags
placed under the heel and front of the foot. The setup has been successfully tested in a
lab environment. After filtering and averaging the signal, a clear and periodic signal with
apparent similarities to the known ballistocardiogram waveform was achieved. The
solution opens the possibility of measuring the ballistocardiogram in low-intensity
activities such as standing and sitting by implementing a smart shoe sole. However, this
method still has one of the same problems as earlier methods in terms of motion
artifacts lowering the quality of the output signal. Further testing and optimization are
needed to reduce the impact of this issue. In addition, further research with more
participants is required to discover the maximum quality of the captured data and its
potential for monitoring.

iii

Table of contents
List of figures ... iv

Abbreviations ... iv

1 Introduction .. v

2 Prototyping theory ... vi

2.1 Wayfaring .. vi

2.2 Prototyping .. vii

3 Technical and physiological theory ... viii

3.1 Ballistocardiography .. viii

3.2 Simple signal analysis of physiological signals ... ix

4 Project work .. x

4.1 Part 1 .. x

4.2 Part 2 – Converging on BCG .. xii

5 Final setup and results .. xvi

6 Further work ... xviii

7 Summary .. xix

References .. xx

Appendix ... xxii

Appendix A: Arduino code for data capture in final setup xxii

Appendix B: Matlab code for result analysis ... xxiii

iv

List of figures
Figure 1 – The probing cycle from (Gerstenberg et al., 2015) vi
Figure 2 – Wayfaring from (Gerstenberg et al., 2015) .. vi
Figure 3 - Starr BCG waveform (Starr et al., 1939) .. viii
Figure 4 - Simplified wayfaring journey .. xi
Figure 5 - Prototype 1 ... xii
Figure 6 - In shoe testing ... xiii
Figure 7 - Prototypes 2-4.. xiii
Figure 8 - Power spectrum density for prototype eight ... xiv
Figure 9 - Setup for testing prototype eight with PPG ... xiv
Figure 10 - Prototypes 5-9 from left to right and top to bottom xiv
Figure 11 - Final testing setup .. xv
Figure 12 - Correct bag shape .. xv
Figure 13 - Shape of the bag with insufficient height ... xv
Figure 14 - All parts of final setup .. xvi
Figure 15 - Final bag design .. xvi
Figure 16 - Simple wiring schematic .. xvi
Figure 17 - Mean filtered pressure signal overlayed all pressure signal segments xvii
Figure 18 - Mean filtered pressure signal ... xvii

Abbreviations
BCG
SCG
PPG
PSD
MDF

Ballistocardiograhpy
Seismocardiography
Photoplethysmogram
Power Spectral Density
Medium-density fiberboard

NTNU Norges teknisk-naturvitenskapelige universitet

v

Wearables are already impacting healthcare by enabling continuous monitoring outside of
the clinical environment (Dunn et al., 2018). Many exciting solutions already exist, and
the continued advancements in sensor and microcontroller technology keep widening the
solution space for wearables. Common examples of wearables can be smartwatches,
smart clothes, hearing aids, and smart shoes. One example of a mature solution already
impacting people’s lives is continuous glucose monitoring devices such as the Dexcom G5
and the Freestyle Libre 2, which significantly improve diabetes patients’ ability to monitor
their glucose levels.

The objective for this project thesis was to design, build and test custom sensor setups to
develop the next generation of wearables.

The project scope focused on exploring the solution space for wearables monitoring the
cardiovascular system. This ensured high-quality supervision throughout the process due
to existing knowledge about the cardiovascular system at TrollLabs. The project’s scope
was also focused on developing one or more proof of concepts for sensor setups, due to
the project’s short time frame.

The project was developed at TrollLabs, with a focus on prototyping and wayfaring as
tools for generating knowledge and ideas. TrollLabs is a research and prototyping
laboratory at NTNU. It contains a multidisciplinary research group and has an overall
objective of investigating and improving the fuzzy front end of engineering design.
Wayfaring and prototyping are common tools and methods used TrollLabs to explore the
solution space in the fuzzy front end of development.

The report is split into seven sections and can be divided into three main parts. Part one
contains sections 1, 2, and 3, introducing the problem statement and necessary
background theory for the project thesis. Part two of the report consists of sections four
and five. They explain the most relevant work of the project thesis and present the final
results from the project. Part three contains sections 6 and 7, which discuss
shortcomings of the project and what can be done to address these as well as
summarizing the project.

1 Introduction

vi

2.1 Wayfaring
Improvements: Language and conciseness. Low-resolution prototypes. A better
explanation about why wayfaring is needed (complexity of the product development
process)

The fuzzy front end of innovation is the early explorative phase of innovation before
substantial resources are committed and structured processes are applied (Kim and
Wilemon, 2002). Navigating the fuzzy front end can often be a challenging endeavor.
One method for this navigation is wayfaring. (Steinert and Leifer, 2012) introduced the
hunter-gatherer model for this explorative phase, which was later developed into the
wayfaring model by (Gerstenberg et al., 2015). The wayfaring and hunter-gatherer
model propose exploring the solution space as a wayfaring journey, with only a general
direction or goal as a starting point. This is done by probing the solution space with
iterations of a design-build-test cycle, as shown in Figure 2 (Gerstenberg et al., 2015). A
probe in the wayfaring model is a cycle of designing, building, and testing an idea or a
prototype, as shown in Figure 1. This is done in a converging and diverging fashion using
generative design questions and deep reasoning questions. Generative design questions
initiate creative and divergent thinking creating new ideas. Deep reasoning questions
converge these ideas by measuring performance, feasibility, etc. This cycle creates and
testes new knowledge which (Gerstenberg et al., 2015) call abductive learning. This
learning is then used to perform abductive reasoning to take the next step in the solution
space.

A significant advantage of wayfaring is its ability to discover unknown unknowns and
dynamically create requirements. Unknown unknowns are challenges and requirements
that are yet to be known (Sutcliffe and Sawyer, 2013). These can be a significant source
of costs in development (Kennedy et al., 2014) and are essential to discover as early in
the design process as possible. (Kriesi et al., 2016) show two examples of wayfaring
being used to develop requirements iteratively, discover unknown unknowns, and avoid
design loopbacks.

2 Prototyping theory

Figure 2 – Wayfaring from (Gerstenberg et
al., 2015)

Figure 1 – The probing cycle from
(Gerstenberg et al., 2015)

vii

2.2 Prototyping
Prototyping is an essential part of product development (Jensen et al., 2016). (Schrage,
1996) stated that strong prototyping cultures produce strong products. However, the
many settings and uses of prototypes have resulted in the creation of many different
frameworks and principles for prototyping, with no universal framework being agreed on
(Elverum and Welo, 2015; Jensen et al., 2016). Some examples of these are (Houde and
Hill, 1997) who use prototypes for user-centric designs and as a tool for capturing user
insights, (Lauff et al., 2018) who focus on prototypes as an aid in decision making,
communicating and learning, and (Auflem et al., 2019) focus on prototypes for learning
and ability to establish informed requirements in the fuzzy front end.

Prototyping is also an essential part of probing in the wayfaring model (Kriesi et al.,
2016). (Steinert and Leifer, 2012) propose using prototyping as a tool for abduction and
testing in their wayfaring model. (Gerstenberg et al., 2015) build on this idea by
implementing prototyping as an essential part of their probing cycles. They focus on
minimizing the time spent and maximizing learning by creating low-resolution prototypes
testing critical functions. They also argue for creating prototypes that integrate multiple
systems or disciplines to test and discover interdependencies. (Kriesi et al., 2016) further
advance the use of prototypes in probing by analyzing their use for discovering critical
functionalities and subsequent dynamic requirements. They present two cases where
prototyping was successfully used in the probing cycles to test critical functionalities and
develop dynamic requirements for the finished design based on those tests.

One last important factor of prototyping is its role in eliciting unknown unknowns and
learning. Unknown unknowns are knowledge that the designer does not have and is
unaware of missing(Sutcliffe and Sawyer, 2013). As stated in the wayfaring theory,
discovering unknown unknowns is essential to avoid rework and reduce product
development costs (Kennedy et al., 2014). The discovery of unknown unknowns relates
to (Kriesi et al., 2016) method for developing dynamic requirements. They argue that
prototyping lets them discover unknown problems and requirements faster than
analytical methods.

viii

3.1 Ballistocardiography
Ballistocardiography (BCG) is a method for measuring the body’s movements due to the
ballistic forces associated with the acceleration and deceleration of the blood in the body
(Giovangrandi et al., 2011; Pinheiro et al., 2010). It was heavily studied between 1940
and 1980 but fell out of popularity due to several reasons. Technical difficulties such as
device size and mechanical vibrations impacting the captured signal were one major
problem, and the physiological interpretation of the signal was another major issue
(Pinheiro et al., 2010). It has increased in popularity in the last two decades with modern
sensors and computers opening new solutions for some of the old issues. Although its
potential as a diagnostic tool has historically been lacking, its potential as a wearable to
enable continuous monitoring of the overall health of the cardiovascular system in non-
clinical settings is promising (Giovangrandi et al., 2011).

There exist many solutions for measuring BCG today. For instance, (Mora et al., 2020)
use a triaxial accelerometer attached to a bedframe to capture the ballistocardiogram
from a lying subject. (Koivistoinen et al., 2004) use EMFi sensors, an electromechanical
film, applied to a standard chair to record the ballistocardiogram. (Inan et al., 2009) use
a modified commercial electronic scale to capture the BCG signal. (Pinheiro et al., 2009)
was able to use a chair-based BCG system in combination with ECG and PPG to
noninvasively measure heart rate variability and pulse arrival time with BCG showing
promise as a substitute for ECG.

One complication with using BCG is the variation in the waveform depending on the
measurement method and individual differences (Inan et al., 2009; Pinheiro et al.,
2010). One waveform used as a reference for the ballistocardiogram waveform is the
Starr BCG (Pinheiro et al., 2010) seen in Figure 3. The most prominent features of the
BCG waveform are the J-peak and the W-shape the HIJKL waves create.

3 Technical and physiological theory

Figure 3 - Starr BCG waveform (Starr et
al., 1939)

ix

3.2 Simple signal analysis of physiological signals
Signal processing is important for analyzing physiological signals as many measurement
methods also capture a significant amount of noise. This project has mainly used the
power spectral density (PSD) plot and wavelet filtering to analyze the results. The power
spectral density plot shows the energy of the signal for every frequency captured in the
signal. By inspecting a PSD plot, it is possible to infer which frequencies the signal
contains and their prominence.

Filtering using wavelets is done by decomposing the captured signal using wavelets and
then reconstructing the signal with only the wanted frequency components. A wavelet is
a waveform with a limited duration and an average value of zero. Wavelet decomposition
using the discrete wavelet transform yields a set of approximation and detail coefficients.
The detail and approximation coefficients relate to a specific frequency region depending
on sampling rate frequency. The signal can be reconstructed using the inverse discrete
wavelet transform. The signal is filtered by only including the detail and approximation
coefficients relating to the desired frequency region.

x

This section explains the process of the project and is split into two main parts. Part one
details the early wayfaring process towards an interesting concept or idea. Part two
details the process of developing that initial idea or concept into a proof-of-concept
prototype. However, it is important to note that the outlined process in this chapter is a
simplified, more linear version of the actual process. For instance, Figure 4 shows a
somewhat linear approach with technology as the driving force. In practice, the
technology was not the only driving force. Interest in pulsewavevelocity (PWV) was as
much driven by research into arterial stiffness and the interest in PWV drove interest in
using PPG sensor for that purpose.

4.1 Part 1
As stated in the introduction the task was to build, design and test sensor setups for the
next generation of wearables. Due to existing expertise in TrollLabs the solution space
was focused mainly on wearables related to the cardiovascular system. This was to
ensure better supervision. The preferred tools and method for exploring the solution
space were benchmarking, wayfaring and prototyping. Figure 4 shows a simplified
version of the wayfaring journey of the early phase exploration.

The exploration of the solution space was done in three related but different ways all
united by the wayfaring journey. One method was benchmarking existing wearable
sensor setups, another method was prototyping these setups or ideas for setups and the
third was reading up on common cardiovascular diseases and their symptoms. This
“three pronged” approach was done as each method had its advantages and
disadvantages.

Researching common cardiovascular diseases was done for two main reasons. The first
was that it was clear early in the project that a more thorough understanding of the
cardiovascular system was needed. Most research articles, books and papers within a
specific research field have their own “language” and being familiar with this language is
important for effective research and communication. Therefore, starting at more basic
leve focusing on learning about the cardiovascular system and its common diesases was
necessary. The second reason for this approach was that a thorough understanding of
the cardiovascular system and its diseases gave two important insights. The first is that a
thorough understanding of the physical aspects enabled a better understanding of
possible ways to measure the related physical signals. The second insight was
understanding the “need” for the monitoring. Understanding which diseases were the
most common and severe also gave an understanding of which diseases would have the
biggest impact if prevented or treated early. One example of a common and severe
disease is coronary artery disease (CAD). CAD occur due to buildup of plaque in the walls
of the arteries supplying the heart with blood (CDC, 2021). This gave rise to the interest
in researching pulse wave velocity and arterial stiffness.

Prototyping is one of the essential parts of the wayfaring model and based on personal
experience one of the most effective ways of exploring the solution space. However, a
very important aspect of prototyping is choosing the right resolution for the prototype, as
mentioned in section 2.2. Early in the exploration phase it was discovered that due to the
difficulty in capturing physiological signals a significant resolution was needed for the

4 Project work

xi

prototypes. Simple testing such as learning how sensors worked and checking their
capabilities was easily done through prototyping, and sometimes prototyping setups also
worked. Two examples of this were applying silicon to a BMP 280 pressure sensor and
testing its ability in capturing pulse, which worked really well, and strapping the sensor
to the chest in an attempt to capture the seismocardiogram. This prototype did show
promise in capturing the seismocardiogram but was not tested further due to similar
solutions existing. But many times, evaluating a setups capability in measuring a
physiological signal was challenging without building high resolution prototypes which
would be too time consuming. In those situations, benchmarking other solutions was
frequently used.

Benchmarking was mainly done through reading papers and examining existing
commercial solutions. It was quickly evident that the most common commercial
solutions, such as smartwatches, are well explored and not of much interest to this
project. However, a lot of scientific research has been done on wearables and as such
there existed many interesting state of the art solutions to benchmark. Benchmarking
also helped identify were there was a gap in knowledge or execution. Ballistocardiogram
was discovered as a potential interesting subject as a combination between using
benchmarking and previous knowledge from my co-supervisor candidate at TrollLabs. It
was a signal with a fair bit of interest in the literature and a clear cap in terms of viable
solutions for wearable continuous monitoring.

Figure 4 - Simplified wayfaring journey

xii

4.2 Part 2 – Converging on BCG
At some point in the wayfaring process measuring BCG using pressure sensors was seen
as an interesting concept. The increased focus on BCG was for a couple of reasons. One
was that BCG was in literature seen as an interesting concept with large potential as a
wearable setup. However, no definitive concept for wearable BCG was identified. As such
a gap was identified. Using pressure sensors was interesting as in principle it would be
similar to using an electronic scale, but with a potential for easier wearable integration in
for instance a smartshoe. Once this converging started prototyping also ramped up and
two main ideas for measuring the pressure was developed.

The first was using pressure sensors with silicon attached. The first idea was quickly
proven to not be viable as the pressure sensors could only handle a certain amount of
pressure and the force had to be fairly directly on top of the pressure sensor otherwise
the silicon would distribute the force to the breakout board and other components.

The second idea was using air-filled bags attached to a pressure sensor under the user’s
foot. The first prototype testing this idea is shown in FIGURE NUMBER HERE. This was
mainly a prototype to gain experience with the practical aspects. For instance, figuring
out a way to attach the sensor non-permanently so it could be swapped out to other
prototypes later and testing how difficult it is to stand still on an air-filled bag. After
prototype 1, two more prototypes were quickly created. One using a shoe sole and one
using a thin foam. The foam and shoe sole were included to reduce the amount of air in
the bag. Prototype 2 was also tested in an existing running shoe, to test how this
changed stability and look for unknown unknowns. None of these prototypes showed any
promising results when analyzing the signal from the pressure sensor. Prototype 4 was
meant to reduce the surface area in the bag compared to the force applied by standing
on it with both feet. This however turned out to be too unstable stand on and showed
that when the surface area was reduced stability was also reduced. While creating
prototype 4 some more research was also done on the magnitude of the force applied to
the air-filled bags due to the ballistic forces. Based on (Inan et al., 2009) it was
estimated that the maximum force would be around 1-4N. An assumption was made that
the pressure changes in the bag could be estimated with ΔP = F/A, where F is the
ballistic forces and A is the surface area of the bag. To reach a measurable pressure
difference the surface of the bag had to be cut significantly.

Figure 5 - Prototype 1

xiii

After learning how small the force affecting the bag due to the ballistic forces some
significant changes were made. The pressure sensor was switched from a BMP280 to a
BMP388 which changed the relative pressure accuracy to 0.08hPa from 0.12. As well as
changing the sensor the design of the bag was significantly changed to reduce the
surface area. Prototypes 5 and 6 were the first to use two small bags as contact points.
The idea was to have the heel and front of the foot as contact points and the rest of the
foot in the air. P5 did not work due to wrong dimensions. Prototype number 6 did work
but was unstable and the pipe connecting the two bags was prone to leaking in the
seams between pipe and bag. At this point an idea to create these bags using a soldering
iron instead of the proprietary tools with the bags was thought of. This greatly increased
the design freedom and sped up prototyping. Prototype number 7 did not have the
correct dimensions to stand stable on. It was discovered that the bags had to be at very
specific points under the heel and front of the foot to be stable to stand on. Prototype
number 8 fixed this issue and gave some very promising results from the signal from the
pressure sensor. When using spectral power density to analyze the power of each
frequency of the signal it showed activity in the area between 1 and 10 Hz as shown in
Figure 8. This was a clear indication of the concept working. However, the signal was still
very noisy, and it was clear it needed improvement to have any practical use. A PPG
sensor measuring the pulse at the ankle was introduced in the setup as shown in Figure
9. This made it possible to segment the signal from the pressure sensor into the pulse
periods by comparing with the PPG sensor output. Prototype 9 was an attempt to reduce
the area to force ratio by standing with both feed on the bag, but just as in prototype 4
standing with both feet on the same bag proved too unstable.

Figure 7 - Prototypes 2-4 Figure 6 - In shoe testing

xiv

After prototype 8 showed promise more divergent thinking was needed to reduce the
surface area further. An idea was to introduce a stiff plate the user would stand on with
the bags under the plate. This greatly improved the possible design space for the bags
and was a game changer. Lots of testing was done and some key requirements were
discovered. The biggest was that the height of the bag had to be sufficient otherwise the
plate would touch the ground and disturb the signal. Figure 13 shows an example of a
design with a very small surface area but not enough height. In general, a too low
surface area to volume ratio meant the plate would touch the ground. Another was that
the plate easily damaged the connection to the pressure sensor. Therefore, the pressure
sensor connection had to be moved away from the plate. The solution to both issues was
to move away from the design with the two connected bags and instead use two bags
and two pressure sensors, with two such bags shown in Figure 12. This added another
potential benefit in that they could also show the pressure difference between the front

Figure 10 - Prototypes 5-9 from left to right and top to
bottom

Figure 8 - Power spectrum density for prototype
eight

Figure 9 - Setup for testing prototype eight
with PPG

xv

and back of the foot which could turn interesting later. Figure 11 shows an example of
the final setup. This setup is further explained in section 5.

Figure 13 - Shape of the bag with
insufficient height

Figure 12 - Correct bag
shape

Figure 11 - Final testing setup

xvi

The final setup consists of two BMP388 pressure sensors attached to two air filled bags.
The user stands on a stiff plate made of MDF with one air filled bag under the heel and
one air filled bag under the front of the foot. In addition, a pulse sensor, from World
Famous Electronics llc, is attached to the ankle of the user. Figure 14 shows all
components when not in use and Figure 11 shows the setup in use. Wiring schematic is
shown in Figure 16. As shown in Figure 11 during lab testing the air-filled bags were
placed on a wooden slab each and the stiff plate was suspended between the wooden
slabs to ensure no contact between the ground and the MDF plate was made.

5 Final setup and results

Figure 15 - Final bag design Figure 14 - All parts of final setup

Figure 16 - Simple wiring schematic

xvii

Due to how noisy the signal still was the final results were then processed. Both the pulse
sensor signal and the pressure sensor signals were decomposed using wavelet
decomposition and rebuilt with only the relevant frequencies remaining. Then the
pulsesensor signal was segmented by identifying the peaks of the signal with a minimum
distance between each peak. This is a very naïve method that is dependent on the signal
being clear. The identification of peaks was also confirmed with a visual inspection to
ensure no mistakes were made. The pressure signal was then segmented using the time
segments identified by the pulse segmentation. The mean signal of the pressure signal
was computed using the segments. Figure 17 shows the pressure segments measured
from the front of the foot with the mean signal overlayed.

The signals showed in Figure 18 and Figure 17 show a clear periodic signal which
matches the timing of the pulse. This is a good sign of the setup capturing something
related to the cardiovascular system which most likely is the ballistocardiogram.
However, due to the variations in the waveform of the ballistocardiogram with different
setups, equipment and variations from person to person, as discussed in section 3.1, it is
somewhat difficult to compare the results to existing methods of ballistocardiography.
The signal being segmented using a pulse sensor, with many other setups being tested
using EKG also complicates the comparison somewhat. The J peak is not as prominent as
desired, but the W shape is easily recognizable. Another promising aspect is the large
correlation between the segments of the pressure signal. Based on the W shape, the
measurement method and the segments repeating pattern it is concluded that this is the
ballistocardiogram being captured.

Figure 18 - Mean filtered pressure signal Figure 17 - Mean filtered pressure signal
overlayed all pressure signal segments

xviii

As the current solution is still only a proof of concept there still a lot of improvements
needed. Although the signal after filtering does show very promising results more
improvements the quality could still be valuable as increased quality can possibly make it
possible to measure in low-intensity activities such as walking. One obvious improvement
that was not tested due to a lack of time is using a liquid instead of air. Air is
compressable while a liquid like water is in the practical sense for this setup not
compressable, which should decrease any dampening effect due to the air compressing
and improve the signal. Motion fragments in the captured signal is another aspect that
needs investigation. As discussed in section 3.1 motion fragments in the signal are a
common problem in BCG. Filtering is one solution for handling motion fragments, but
more solutions will most likely need to be investigated for it to be possible to measure
the ballistocardiogram in the aforementioned low intensity activities.

In addition to the discussed improvements further testing is also needed before the
method can be a potential tool monitoring the cardiovascular system. Testing with ECG
for better segmentation and comparison with other methods is needed. The results also
need to be possible to segment without other reference signals to have value on its own.
Testing with more participants is also needed to test for possible unknown individual
differences. The ballistocardiogram is, as discussed in section 3.1, somewhat different
from person to person and this needs to be investigated for this setup as well to ensure it
transferable to other users. In addition, differences in weight, form of the foot and
general movement can possibly affect the measurements.

The current setup is also not wearable. Therefore, solutions for implementation in
wearable equipment is needed. The most obvious solution is to implement the setup in a
smart shoe or sole. The current setup was developed with this in mind, and such an
integration should be possible. However, exploring this design space of integrating the
setup into other wearable equipment might be interesting as other integration solutions
most likely exist.

6 Further work

xix

This project thesis has explored the solution space related to sensor setups for the next
generation of wearables monitoring the cardiovascular system. Wayfaring, prototyping,
and benchmarking were the main tools used to explore the solution space. Through
these three methods ballistocardiography was identified as an interesting topic with
pressure sensors as an interesting solution. Many iterations of prototypes were made,
and a proof-of-concept prototype was developed. This consisted of two air filled bags
with two barometric pressure sensors attached. The bags were placed under the front of
the foot and the heel of the user. In addition, a stiff MDF plate was placed between the
bags and the foot. Some key requirements were discovered during the wayfaring
process. The surface area of the bags had to be very small. At the same time the volume
to surface area ratio had to be kept from becoming too small as this led to the MDF plate
potentially touching the ground and destroying the signal. The proof-of-concept
prototype captured a repeating signal matching up with the signal captured by a pulse
sensor. The segmented signal had a clear pattern. The mean signal calculated from the
segments had the recognizable W-shape of a ballistocardiogram, but the characteristic J-
peak was not as prominent as it usually is. It was still concluded with this being the
ballistocardiogram being captured.

Many improvements remain before this can be a potential valuable tool. The signal needs
to be improved as much as possible to gain the best possible results. The setup also
needs to be segmented using ECG instead of PPG for better comparison between existing
BCG methods. In addition, being able to segment the signal without using external input
would greatly increase its stand-alone value. In addition, the setup is also only tested on
one user. As such there might exist unknown individual differences which need to be
tested for. Finally, this is only a proof-of-concept prototype and not currently wearable.
Integration into for instance a smart shoe needs to be explored to enable continuous
monitoring of the cardiovascular system.

7 Summary

xx

Auflem, M., Erichsen, J.F., Steinert, M., 2019. Exemplifying Prototype-Driven
Development through Concepts for Medical Training Simulators. Procedia CIRP,
29th CIRP Design Conference 2019, 08-10 May 2019, Póvoa de Varzim, Portgal
84, 572–578. https://doi.org/10.1016/j.procir.2019.04.202

BMP280 [WWW Document], n.d. . Bosch Sensortec. URL https://www.bosch-
sensortec.com/products/environmental-sensors/pressure-sensors/bmp280/
(accessed 12.19.21).

BMP388 [WWW Document], n.d. . Bosch Sensortec. URL https://www.bosch-
sensortec.com/products/environmental-sensors/pressure-sensors/bmp388/
(accessed 12.19.21).

CDC, 2021. Coronary Artery Disease | cdc.gov [WWW Document]. Cent. Dis. Control
Prev. URL https://www.cdc.gov/heartdisease/coronary_ad.htm (accessed
12.20.21).

Dunn, J., Runge, R., Snyder, M., 2018. Wearables and the medical revolution. Pers. Med.
15, 429–448. https://doi.org/10.2217/pme-2018-0044

Elverum, C.W., Welo, T., 2015. On the use of directional and incremental prototyping in
the development of high novelty products: Two case studies in the automotive
industry. J. Eng. Technol. Manag. 38, 71–88.
https://doi.org/10.1016/j.jengtecman.2015.09.003

Gerstenberg, A., Sjöman, H., Reime, T., Abrahamsson, P., Steinert, M., 2015. A
Simultaneous, Multidisciplinary Development and Design Journey – Reflections on
Prototyping, in: Chorianopoulos, K., Divitini, M., Baalsrud Hauge, J., Jaccheri, L.,
Malaka, R. (Eds.), Entertainment Computing - ICEC 2015, Lecture Notes in
Computer Science. Springer International Publishing, Cham, pp. 409–416.
https://doi.org/10.1007/978-3-319-24589-8_33

Giovangrandi, L., Inan, O.T., Wiard, R.M., Etemadi, M., Kovacs, G.T.A., 2011.
Ballistocardiography — A method worth revisiting, in: 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. Presented at
the 2011 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, pp. 4279–4282. https://doi.org/10.1109/IEMBS.2011.6091062

Houde, S., Hill, C., 1997. Chapter 16 - What do Prototypes Prototype?, in: Helander,
M.G., Landauer, T.K., Prabhu, P.V. (Eds.), Handbook of Human-Computer
Interaction (Second Edition). North-Holland, Amsterdam, pp. 367–381.
https://doi.org/10.1016/B978-044481862-1.50082-0

Inan, O.T., Etemadi, M., Wiard, R.M., Giovangrandi, L., Kovacs, G.T.A., 2009. Robust
ballistocardiogram acquisition for home monitoring. Physiol. Meas. 30, 169–185.
https://doi.org/10.1088/0967-3334/30/2/005

Jensen, L.S., Özkil, A.G., Mortensen, N.H., 2016. PROTOTYPES IN ENGINEERING
DESIGN: DEFINITIONS AND STRATEGIES. 84 Proc. Des. 2016 14th Int. Des.
Conf. 821–830.

Kennedy, B.M., Sobek II, D.K., Kennedy, M.N., 2014. Reducing Rework by Applying Set-
Based Practices Early in the Systems Engineering Process. Syst. Eng. 17, 278–
296. https://doi.org/10.1002/sys.21269

Kim, J., Wilemon, D., 2002. Focusing the fuzzy front–end in new product development.
RD Manag. 32, 269–279. https://doi.org/10.1111/1467-9310.00259

Koivistoinen, T., Junnila, S., Varri, A., Koobi, T., 2004. A new method for measuring the
ballistocardiogram using EMFi sensors in a normal chair, in: The 26th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society.
Presented at the The 26th Annual International Conference of the IEEE

References

xxi

Engineering in Medicine and Biology Society, pp. 2026–2029.
https://doi.org/10.1109/IEMBS.2004.1403596

Kriesi, C., Blindheim, J., Bjelland, Ø., Steinert, M., 2016. Creating Dynamic Requirements
through Iteratively Prototyping Critical Functionalities. Procedia CIRP, 26th CIRP
Design Conference 50, 790–795. https://doi.org/10.1016/j.procir.2016.04.122

Lauff, C.A., Kotys-Schwartz, D., Rentschler, M.E., 2018. What is a Prototype? What are
the Roles of Prototypes in Companies? J. Mech. Des. 140.
https://doi.org/10.1115/1.4039340

Mora, N., Cocconcelli, F., Matrella, G., Ciampolini, P., 2020. Accurate Heartbeat Detection
on Ballistocardiogram Accelerometric Traces. IEEE Trans. Instrum. Meas. 69,
9000–9009. https://doi.org/10.1109/TIM.2020.2998644

Pinheiro, E., Postolache, O., Girão, P., 2010. Theory and Developments in an Unobtrusive
Cardiovascular System Representation: Ballistocardiography. Open Biomed. Eng.
J. 4, 201–216. https://doi.org/10.2174/1874120701004010201

Pinheiro, E., Postolache, O., Girao, P., 2009. Pulse arrival time and ballistocardiogram
application to blood pressure variability estimation, in: 2009 IEEE International
Workshop on Medical Measurements and Applications. Presented at the 2009 IEEE
International Workshop on Medical Measurements and Applications, pp. 132–136.
https://doi.org/10.1109/MEMEA.2009.5167970

Schrage, M., 1996. Cultures of prototyping, in: Winograd, T. (Ed.), Bringing Design to
Software. ACM, New York, NY, USA, pp. 191–213.
https://doi.org/10.1145/229868.230045

Steinert, M., Leifer, L., 2012. “Finding One’s Way”: Re-Discovering a Hunter-Gatherer
Model based on Wayfaring. Int. J. Eng. Educ. 28, 251–252.

Sutcliffe, A., Sawyer, P., 2013. Requirements elicitation: Towards the unknown
unknowns, in: 2013 21st IEEE International Requirements Engineering Conference
(RE). Presented at the 2013 21st IEEE International Requirements Engineering
Conference (RE), pp. 92–104. https://doi.org/10.1109/RE.2013.6636709

xxii

Appendix A: Arduino code for data capture in final setup
#include "DFRobot_BMP388_I2C.h"

#include "DFRobot_BMP388.h"

#include "Wire.h"

#include "bmp3_defs.h"

//Create a BMP object for each sensor in use

DFRobot_BMP388_I2C bmp1;

DFRobot_BMP388_I2C bmp2;

int Signal; // holds the incoming data from the pulsesensor

int PulseSensorPurplePin = A0; //the purple sensor of the
pulsesensor is wired to A0

void setup(){

 //Start up serial communication

 Serial.begin(115200);

 //Set adresses for the two sensors. 0x77 and 0x76 is the two possible I2C
adresses

 bmp1.set_iic_addr(BMP3_I2C_ADDR_SEC);

 bmp2.set_iic_addr(BMP3_I2C_ADDR_PRIM);

 while(bmp1.begin()){ //Initialize sensor 1

 Serial.println("Initialize error, sensor 1!");

 delay(1000);

 }

 while(bmp2.begin()){ //Initialize sensor 2

 Serial.println("Initialize error, sensor 2!");

 delay(1000);

 }

}

void loop(){

Appendix

xxiii

 //Read the pressure from sensor 1 and 2

 float Pressure1 = bmp1.readPressure();

 float Pressure2 = bmp2.readPressure();

 //Print the time, the pulssensor value and the two pressure values in a
CSV format

 Serial.print(millis());

 Serial.print(",");

 Serial.print(analogRead(PulseSensorPurplePin));

 Serial.print(",");

 Serial.print(Pressure1);

 Serial.print(",");

 Serial.println(Pressure2);

 //delay(1);

}

Appendix B: Matlab code for result analysis
Appendix B contains matlab code for analyzing the results from the proof of concept
setup. The Matlab was developed by my co-supervisor Torjus Lines Steffensen. It
contains two files. File 1 does the filtering, segmentation and computing of the mean
signal. File 2 is only used to allow concatenation between vectors with different length.

File 1:

bcg plot

load a file containing bcg and ppg signal into a matlab timetable

plot the raw signals along with the power pectrum density estimate

use ppg maxima to annotate individual beats

filter the data

use ppg maxima locations to separate cycles

calculate ensemble average signal.

improvements / todos:

use a real algorithm to segment ppg signal (we are very naive and not
robust currently)

set some criteria for good/bad segment

% load a csv file

% expected structure:

% Time,PPG,Pressure

clear all

data = readtable('C:\Users\simon\Documents\Prosjektoppgave -
lokal\Målinger\Pressure_And_PPG_P7_18_11_2021.csv');

xxiv

% store the data in a matlab "timetable" structure.

% this is optional, but timetables have many high level features that make

% dealing with time series simpler (for example, selecting all data between

% two specific time points without knowing what the sample indexes would

% be)

% note this means the default timetable time index, "timetable.Time", is

% not double type but one of matlab's proprietary "duration" or "datetime"

% datatypes. can switch back and forth between duration and double with the
functions

% seconds() or milliseconds() for some other functions that don't accept

% one of these types.

data.Time = milliseconds(data.Time - data.Time(1));

tt = timetable(data.Time,data.PPG,data.Pressure);

tt.Properties.VariableNames = {'ppg','Pressure'};

% calculate the mean sample rate, we'll need it later

fs = 1 / seconds(mean(diff(tt.Time)));

% plot the signal we just loaded alongside a ~10 second slice to see what
we're

% dealing with

figure

subplot(4,1,1)

plot(tt.Time,detrend(tt.Pressure))

title('raw pressure')

subplot(4,1,2)

plot(tt.Time,detrend(tt.ppg))

title('ppg')

subplot(4,1,3)

plot(tt.Time,tt.Pressure)

xlim([seconds(15) seconds(25)])

title('pressure section, close up')

subplot(4,1,4)

plot(tt.Time,detrend(tt.ppg))

xxv

xlim([seconds(15) seconds(25)])

title('ppg section, close up')

power spectrum

% plot the power spectrum of the signal in the range of interest

% (up to 20hz)

figure

pspectrum(tt.Pressure,fs)

title('power spectrum')

xlim([0 10])

% OPTIONAL: trim the raw data

% (for example if we see the signal is only "good" between 0, 30 seconds)

tr = timerange(seconds(5),seconds(45));

tt = tt(tr,:);

finding ppg peaks.

% we start by denoising the ppg signal via wavelet reconstruction (it has

% to be smooth for differentiation).

% Logical array for selecting reconstruction elements

levelForReconstruction = [false, false, false, true, true, true, true,
true, false];

% Perform the decomposition using modwt

wt = modwt(detrend(tt.ppg), 'sym4', 8);

% Construct MRA matrix using modwtmra

mra = modwtmra(wt, 'sym4');

% Sum along selected multiresolution signals

tt.bppg = sum(mra(levelForReconstruction,:),1).';

% calculate the first and second derivatives (we might use them later on if

% ppg signal is not "clean")

dppg = diff(tt.bppg);

xxvi

dppg = [dppg;dppg(end)];

ddppg = diff(dppg);

ddppg = [ddppg;ddppg(end)];

% plot the smoothed ppg signal and its derivatives

figure

subplot(3,1,1)

plot(tt.Time,tt.bppg)

title('ppg and derivatives')

ylabel('ppg')

xlim([seconds(15) seconds(20)])

subplot(3,1,2)

plot(tt.Time,dppg)

ylabel('d/dt ppg')

xlim([seconds(15) seconds(20)])

subplot(3,1,3)

plot(tt.Time,ddppg)

ylabel('(d/dt)^2 ppg')

xlim([seconds(15) seconds(20)])

% in case of a pretty clean ppg, we can just use naive peak finding.

% the function findpeaks below finds local maxima, with some requirements

% like minimum prominence and minimum distance between peak candidates.

% pplocs is the index of the identified peaks

% find peaks, plot the filtered ppg signal alongside the identified peak

% locations (see if there are many missing beats or false positives, in
which case

% we either have to tweak our function call, or move on to use the
derivatives

% which takes a little more thought)

[pppks,pplocs]=findpeaks(tt.bppg,'MinPeakProminence',10,'MinPeakDistance',2
20);

figure

plot(tt.Time,tt.bppg)

xxvii

xline(tt.Time(pplocs),'--r')

xlim([seconds(15) seconds(20)])

title('identified ppg peaks')

% we can now get the heart rate by looking at time between peaks in the

% part of the signal we're interested in

dim = [.2 .6 .3 .3];

str = ["HR estimate from PPG peak distance: " +
seconds(60)/mean(diff(tt.Time(pplocs)))];

t=annotation('textbox',dim,'String',str,'FitBoxToText','on');

t.BackgroundColor=[1 1 1];

filter the pressure data

% we will do two things: a classic FIR bandpass filter, and a wavelet

% decomposition. we can compare the results later.

% start by creating the digital bandpass filter. this fill attenuate signal

% components below 1hz, and above 20hz.

d=designfilt('bandpassfir','StopbandFrequency1',0.7,'PassbandFrequency1',1.
5,...

 'PassbandFrequency2',15,'StopbandFrequency2',22,...

 'StopbandAttenuation1',60,'PassbandRipple',1, ...

 'StopbandAttenuation2',60,'SampleRate',fs, ...

 'DesignMethod','kaiserwin');

% we apply the filter twice: "forwards" and "backwards". this is because

% this type of filter can affect the phase of our signal. using filtfilt()

% we avoid this (this is called zero phase filtering)

tt.bp = filtfilt(d,tt.Pressure);

% next we also do a wavelet decomposition using discrete wavelet transform

% (modwt)

xxviii

levelForReconstruction = [false, false, false, true, true, true, false,
false, false];

% Perform the decomposition using modwt

wt = modwt(tt.Pressure, 'db9', 8);

% Construct MRA matrix using modwtmra

mra = modwtmra(wt, 'db9');

% Sum along selected multiresolution signals

tt.wmra = sum(mra(levelForReconstruction,:),1).';

% if we want, we can plot the original signal alongside the filtered signal

% to see the result of what we just did

f1 = figure;

plot(tt.Time,detrend(tt.Pressure),'--')

hold on

plot(tt.Time,tt.bp)

plot(tt.Time,tt.wmra)

xlim([seconds(15) seconds(25)])

legend([{'original'},{'bandpassed'},{'wmra'}])

title('filtered signal')

segment pressure data

% this code is adapted from another script, so it might look weird.

% which index do we use to segment?

% in this case we only have ppg, so we use pplocs

segmentIndex = pplocs;

segments=[];

% segmentBuffer can be used to "move" the segments uniformly backwards or

% forwards in time by the same number of samples. can be useful for

% plotting

segmentBuffer = -50;

% which signal to segment?

% bp: FIR bandpassed signal, wmra: wavelet filtered

xxix

use = 'wmra';

% using the reference points in segmentIndex, collect all data between

% index i and index i+1 into its own structure in the struct segments.

% scale all the segments using z-scoring.

try

for i = 1 : length(segmentIndex) - 1

 tr=timerange(tt.Time(segmentIndex(i) -
segmentBuffer),tt.Time(segmentIndex(i+1) - segmentBuffer));

 % watch out: some sanity checks for too long / too short segments have
been

 % added, but dangerously, are in #samples rather than actual time

 % (danger if sample rate changes)

 %Which it has done -

 %if length(tt.Time(segmentIndex(i)-segmentBuffer : segmentIndex(i+1)-
segmentBuffer)) > 80 && ...

 % length(tt.Time(segmentIndex(i)-segmentBuffer :
segmentIndex(i+1)-segmentBuffer)) < 150

 segments(i).Time = tt.Time(segmentIndex(i)-segmentBuffer :
segmentIndex(i+1)-segmentBuffer);

 segments(i).Timefz = segments(i).Time - segments(i).Time(1);

 tmptable = tt(tr,:).ppg;

 segments(i).ppg = (tmptable - mean(tt.ppg)) / std (tt.ppg);

 segments(i).ppg = [segments(i).ppg;segments(i).ppg(end)];

 tmptable = tt(tr,use).(1);

 segments(i).pressure = (tmptable - mean(tt(:,use).(1))) / std
(tt(:,use).(1));

 segments(i).pressure =
[segments(i).pressure;segments(i).pressure(end)];

 %end

end

end

xxx

% which segments to use to plot / average?

startseg = 1;

endseg = numel(segments);

sigs = [startseg endseg];

% plot selected segments

f2 = figure;

figure(f2)

hold on

for i = startseg : endseg

 plot(milliseconds(segments(i).Timefz),segments(i).pressure,'--
','LineWidth',1);

end

title(["stacked traces, n = " + sum([diff(sigs),1])])

% calculate mean signals

% this requires the padcat external function. padcat concatenates matrices

% with incompatible sizes by padding with NaN

tr = timerange(milliseconds(0),milliseconds(1000));

means = [];

means.pressure = padcat(segments(sigs(1):sigs(2)).pressure);

means.pressure(isnan(means.pressure)) = 0;

means.pressure = mean(means.pressure,2);

means.pressure = timetable(means.pressure,'SampleRate',fs);

means.pressure = means.pressure(tr,:);

means.pressure.Properties.VariableNames={'data'};

means.ppg = padcat(segments(sigs(1):sigs(2)).ppg);

means.ppg(isnan(means.ppg)) = 0;

means.ppg = mean(means.ppg,2);

means.ppg = timetable(means.ppg,'SampleRate',fs);

means.ppg = means.ppg(tr,:);

means.ppg.Properties.VariableNames={'data'};

figure(f2)

xxxi

plot(milliseconds(means.pressure.Time),means.pressure.data,'-
','LineWidth',4)

figure

plot(milliseconds(means.pressure.Time),means.pressure.data,'-
','LineWidth',2)

title(["ensemble average, n = " + sum([diff(sigs),1])])

figure

subplot(2,1,1)

plot([means.pressure.Time
means.pressure.Time+means.pressure.Time(end)],[means.ppg.data
means.ppg.data],'-b','LineWidth',2)

ylim([1.5*min(means.ppg.data) 1.5*max(means.ppg.data)])

subplot(2,1,2)

plot([means.pressure.Time
means.pressure.Time+means.pressure.Time(end)],[means.pressure.data
means.pressure.data],'-b','LineWidth',2)

ylim([1.5*min(means.pressure.data) 1.5*max(means.pressure.data)])

File 2:

function [M, TF] = padcat(varargin)

% PADCAT - concatenate vectors with different lengths by padding with NaN

%

% M = PADCAT(V1, V2, V3, ..., VN) concatenates the vectors V1 through VN

% into one large matrix. All vectors should have the same orientation,

% that is, they are all row or column vectors. The vectors do not need to

% have the same lengths, and shorter vectors are padded with NaNs.

% The size of M is determined by the length of the longest vector. For

% row vectors, M will be a N-by-MaxL matrix and for column vectors, M

% will be a MaxL-by-N matrix, where MaxL is the length of the longest

% vector.

%

% Examples:

% a = 1:5 ; b = 1:3 ; c = [] ; d = 1:4 ;

% padcat(a,b,c,d) % row vectors

% % -> 1 2 3 4 5

% % 1 2 3 NaN NaN

% % NaN NaN NaN NaN NaN

xxxii

% % 1 2 3 4 NaN

% CC = {d.' a.' c.' b.' d.'} ;

% padcat(CC{:}) % column vectors

% % 1 1 NaN 1 1

% % 2 2 NaN 2 2

% % 3 3 NaN 3 3

% % 4 4 NaN NaN 4

% % NaN 5 NaN NaN NaN

%

% [M, TF] = PADCAT(..) will also return a logical matrix TF with the same

% size as R having true values for those positions that originate from an

% input vector. This may be useful if any of the vectors contain NaNs.

%

% Example:

% a = 1:3 ; b = [] ; c = [1 NaN] ;

% [M,tf] = padcat(a,b,c)

% % find the original NaN

% [Vev,Pos] = find(tf & isnan(M))

% % -> Vec = 3 , Pos = 2

%

% This second output can also be used to change the padding value into

% something else than NaN.

%

% [M, tf] = padcat(1:3,1,1:4)

% M(~tf) = 99 % change the padding value into 99

%

% Scalars will be concatenated into a single column vector.

%

% See also CAT, RESHAPE, STRVCAT, CHAR, HORZCAT, VERTCAT, ISEMPTY

% NONES, GROUP2CELL (Matlab File Exchange)

% Example figure created using:

% C = arrayfun(@(x) ones(1,randi([10 100],1,1)),1:40,'un',0) ;

% pcolor(padcat(C{:}))

% for Matlab 2008 and up (last tested in R2018a)

xxxiii

% version 1.4 (dec 2018)

% (c) Jos van der Geest

% email: samelinoa@gmail.com

% History

% 1.0 (feb 2009) created

% 1.1 (feb 2011) improved comments

% 1.2 (oct 2011) added help on changing the padding value into something

% else than NaN

% 1.3 (feb 2016) updated contact info

% 1.4 (dec 2018) fixed minor code warnings

% Acknowledgements:

% Inspired by padadd.m (feb 2000) Fex ID 209 by Dave Johnson

narginchk(1,Inf) ;

% check the inputs

SZ = cellfun(@size,varargin,'UniformOutput',false) ; % sizes

Ndim = cellfun(@ndims,varargin) ; %

if ~all(Ndim==2)

 error([mfilename ':WrongInputDimension'], ...

 'Input should be vectors.') ;

end

TF = [] ; % default second output so we do not have to check all the time

% for 2D matrices (including vectors) the size is a 1-by-2 vector

SZ = cat(1,SZ{:}) ;

maxSZ = max(SZ) ; % probable size of the longest vector

% maxSZ equals :

% - [1 1] for all scalars input

% - [X 1] for column vectors

% - [1 X] for all row vectors

% - [X Y] otherwise (so padcat will not work!)

xxxiv

if ~any(maxSZ == 1) % hmm, not all elements are 1-by-N or N-by-1

 % 2 options ...

 if any(maxSZ==0)

 % 1) all inputs are empty

 M = [] ;

 return

 else

 % 2) wrong input

 % Either not all vectors have the same orientation (row and column

 % vectors are being mixed) or an input is a matrix.

 error([mfilename ':WrongInputSize'], ...

 'Inputs should be all row vectors or all column vectors.') ;

 end

end

if nargin == 1

 % single input, nothing to concatenate ..

 M = varargin{1} ;

else

 % Concatenate row vectors in a row, and column vectors in a column.

 dim = (maxSZ(1)==1) + 1 ; % Find out the dimension to work on

 X = cat(dim, varargin{:}) ; % make one big list

 % we will use linear indexing, which operates along columns. We apply a

 % transpose at the end if the input were row vectors.

 if maxSZ(dim) == 1

 % if all inputs are scalars, ...

 M = X ; % copy the list

 elseif all(SZ(:,dim)==SZ(1,dim))

 % all vectors have the same length

 M = reshape(X,SZ(1,dim),[]) ;% copy the list and reshape

 else

 % We do have vectors of different lengths.

 % Pre-allocate the final output array as a column oriented array.
We

xxxv

 % make it one larger to accommodate the largest vector as well.

 M = zeros([maxSZ(dim)+1 nargin]) ;

 % where do the fillers begin in each column

 M(sub2ind(size(M), SZ(:,dim).'+1, 1:nargin)) = 1 ;

 % Fillers should be put in after that position as well, so applying

 % cumsum on the columns

 % Note that we remove the last row; the largest vector will fill an

 % entire column.

 M = cumsum(M(1:end-1,:),1) ; % remove last row

 % If we need to return position of the non-fillers we will get them

 % now. We cannot do it afterwards, since NaNs may be present in the

 % inputs.

 if nargout > 1

 TF = ~M ;

 % and make use of this logical array

 M(~TF) = NaN ; % put the fillers in

 M(TF) = X ; % put the values in

 else

 M(M==1) = NaN ; % put the fillers in

 M(M==0) = X ; % put the values in

 end

 end

 if dim == 2

 % the inputs were row vectors, so transpose

 M = M.' ;

 TF = TF.' ; % was initialized as empty if not requested

 end

end % nargin == 1

if nargout > 1 && isempty(TF)

 % in this case, the inputs were all empty, all scalars, or all had the

 % same size.

 TF = true(size(M)) ;

end

xxxvi

72

Risk assessment form

Appendix C

73

74

Participation forms

Appendix D

75

76

77

Interview form

78

Code for evaluating test results
import numpy as np

from matplotlib import pyplot as plt

import pandas as pd

import scipy.interpolate as interpolate

from scipy.signal import filtfilt, butter, detrend, savgol_filter

import pywt

from sklearn import preprocessing

import scipy

import data_processing_functions as dpf

import datetime

import seaborn as sns

import statistics

#Forsøk på et en objektorientert metode

#Objekt som tar inn tidspunkter, trykk, ppg, vekt, vekt_ppg, hc_systolic,

time, butter_level

#Computes filtered_pressure

class Measurement:

 T1TimeArduino = None

 CPTimeArduino = None

 T3TimeArduino = None

 T1TimeChart = None

 CPTimeChart = None

 T3TimeChart = None

 pressFilt = None

 timeLabChart = None

 fs_LabChart = None

 HCSystolic = None

 averagedDiastolic = None

Appendix E

79

 fingerPressureHC = None

 def __init__(self, timeStampT1, timeStampCP, timeStampT3,

dataArduinoPath, ChartDataAddress, nameListArduino, nameListChart):

 #Initializes the class. Also reads arduino data

 sns.set()

 SMALL_SIZE = 24

 MEDIUM_SIZE = 10

 BIGGER_SIZE = 24

 plt.rc('font', size=SMALL_SIZE) # controls default text sizes

 plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title

 plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y

labels

 plt.rc('xtick', labelsize=12) # fontsize of the tick labels

 plt.rc('ytick', labelsize=12) # fontsize of the tick labels

 plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize

 plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure

title

 #plt.rc('axes', facecolor='beige')

 dataArduino = pd.read_csv(dataArduinoPath, sep=",",

names=nameListArduino, skiprows=1)

 self.arduinoNameList = nameListArduino

 self.chartNameList = nameListChart

 timeArduino = (dataArduino.Time.to_numpy() / 1000) # divide by

1000 to get seconds

 timeArduino = timeArduino - timeArduino[0]

 self.timeArduino = timeArduino + dataArduino["timestamp"][0]

 self.Pressure0 = dataArduino.Pressure0.to_numpy() #Right foot

furthest back

 self.Pressure1 = dataArduino.Pressure1.to_numpy() #Right foot

second furthest back

 self.Pressure2 = dataArduino.Pressure2.to_numpy() #Right foot

forward to the right

 self.Pressure3 = dataArduino.Pressure3.to_numpy() #Right foot

middle

80

 self.Pressure4 = dataArduino.Pressure4.to_numpy() #Left foot

forward right

 self.Pressure5 = dataArduino.Pressure5.to_numpy() #Right foot

forward left

 self.Pressure6 = dataArduino.Pressure6.to_numpy() #Left foot middle

 self.Pressure7 = dataArduino.Pressure7.to_numpy() #Left foot

forward left

 self.Pressure8 = dataArduino.Pressure8.to_numpy() #Left foot second

furthest back

 self.Pressure9 = dataArduino.Pressure9.to_numpy() #Left foot

furthest back

 self.PPG = dataArduino.PPG.to_numpy()

 self.Scale = dataArduino.Scale.to_numpy()

 self.PPG2 = self.PPG*self.PPG

 self.fs_Arduino = (self.timeArduino[-1] - self.timeArduino[0]) /

len(self.timeArduino)

 self.hz_Arduino = 1 / self.fs_Arduino

 self.timeArduinoScale = self.timeArduino[1::2]

 #self.Scale = self.Scale[1::2] #Decided to handle this later so i

can reuse segmentation code

 self.PPGScale = self.PPG[1::2]

 self.fs_Scale = (self.timeArduinoScale[-1] -

self.timeArduinoScale[0]) / len(self.timeArduinoScale) #Que?

 self.dataArduinoPath = dataArduinoPath

 self.chartAddress = ChartDataAddress

 self.T1TimeString = timeStampT1

 self.CPTimeString = timeStampCP

 self.T3TimeString = timeStampT3

 self.pressSegT1 = None

 self.normPressSegT1 = None

 self.avgPressSegT1 = None

 self.pressSegCP = None

 self.normPressSegCP = None

 self.avgPressSegCP = None

 self.pressSegT3 = None

 self.normPressSegT3 = None

81

 self.avgPressSegT3 = None

 self.PPGSegT1 = None

 self.normPPGSegT1 = None

 self.avgPPGSegT1 = None

 self.PPGSegCP = None

 self.normPPGSegCP = None

 self.avgPPGSegCP = None

 self.PPGSegT3 = None

 self.normPPGSegT3 = None

 self.avgPPGSegT3 = None

 #computing ddPPG

 #Just testing what filtering the ppg will do - no good is the

conclusion

 #sos = butter(N=12 , Wn=[1,10], btype='bandpass',

fs=self.hz_Arduino, output='sos')

 #self.PPG = scipy.signal.sosfilt(sos, self.PPG)

 polyOrder = 3

 windowSizeSeconds = 0.15 #Change this back to 0.15

 windowSizeArduino = int(windowSizeSeconds / self.fs_Arduino)

 if windowSizeArduino % 2 == 0:

 windowSizeArduino = windowSizeArduino + 1

 self.PPGFilt = savgol_filter(self.PPG, windowSizeArduino,

polyOrder)

 self.dPPGFilt = savgol_filter(self.PPG, windowSizeArduino,

polyOrder, deriv=1)

 self.ddPPGFilt = savgol_filter(self.PPG, windowSizeArduino,

polyOrder, deriv=2)

 #dppg = np.gradient(self.PPGFilt)

 #polyOrder = 3

 #windowSizeSeconds = 0.15 #Change this back to 0.15

 #windowSizeArduino = int(windowSizeSeconds / self.fs_Arduino)

 #if windowSizeArduino % 2 == 0:

 # windowSizeArduino = windowSizeArduino + 1

 #self.dPPGFilt = savgol_filter(dppg, windowSizeArduino, polyOrder)

 #ddppg = np.gradient(self.dPPGFilt)

82

 # Filtering double derivative to identify peaks

 #polyOrder = 3

 #windowSizeSeconds = 0.15 #Change this back to 0.15

 #windowSizeArduino = int(windowSizeSeconds / self.fs_Arduino)

 #if windowSizeArduino % 2 == 0:

 # windowSizeArduino = windowSizeArduino + 1

 #self.ddPPGFilt = savgol_filter(ddppg, windowSizeArduino,

polyOrder)

 # Need the derivative for the scale measurement as well

 polyOrder = 3

 windowSizeSeconds = 0.15

 windowSizeScale = int(windowSizeSeconds / self.fs_Scale)

 if windowSizeScale % 2 == 0:

 windowSizeScale = windowSizeScale + 1

 self.PPGFiltScale = savgol_filter(self.PPGScale, windowSizeScale,

polyOrder)

 dppgScale = np.gradient(self.PPGFiltScale)

 polyOrder = 3

 windowSizeSeconds = 0.15

 windowSizeScale = int(windowSizeSeconds / self.fs_Scale)

 if windowSizeScale % 2 == 0:

 windowSizeScale = windowSizeScale + 1

 self.dPPGFiltScale = savgol_filter(dppgScale, windowSizeScale,

polyOrder)

 ddppgScale = np.gradient(self.dPPGFiltScale)

 polyOrder = 3

 windowSizeSeconds = 0.15

 windowSizeScale = int(windowSizeSeconds / self.fs_Scale)

 if windowSizeScale % 2 == 0:

 windowSizeScale = windowSizeScale + 1

 self.ddPPGFiltScale = savgol_filter(ddppgScale, windowSizeScale,

polyOrder)

 def filterPressure(self, butterLevel, passBand):

83

 sos = butter(N=butterLevel, Wn=passBand, btype='bandpass',

fs=self.hz_Arduino, output='sos')

 self.pressFilt0 = scipy.signal.sosfiltfilt(sos, self.Pressure0)

 self.pressFilt1 = scipy.signal.sosfiltfilt(sos, self.Pressure1)

 self.pressFilt2 = scipy.signal.sosfiltfilt(sos, self.Pressure2)

 self.pressFilt3 = scipy.signal.sosfiltfilt(sos, self.Pressure3)

 self.pressFilt4 = scipy.signal.sosfiltfilt(sos, self.Pressure4)

 self.pressFilt5 = scipy.signal.sosfiltfilt(sos, self.Pressure5)

 self.pressFilt6 = scipy.signal.sosfiltfilt(sos, self.Pressure6)

 self.pressFilt7 = scipy.signal.sosfiltfilt(sos, self.Pressure7)

 self.pressFilt8 = scipy.signal.sosfiltfilt(sos, self.Pressure8)

 self.pressFilt9 = scipy.signal.sosfiltfilt(sos, self.Pressure9)

 def loadChartData(self):

 #reads the labchartdata and extracts the interesting data into a

readable format

 data = pd.read_csv(self.chartAddress, sep="\t",

names=self.chartNameList, header=None)

 startLocations = data.loc[data["Time"] == "Range="]

 indexFinalStart = startLocations.index[-1]

 #data.iloc[indexFinalStart - 5]

 startTimeString = data["Finger_Pressure"][indexFinalStart - 4]

 startTimeList = startTimeString.split()[0].split(".") +

startTimeString.split()[1].split(":")

 startTimeList = startTimeList[:-1] + startTimeList[-1].split(",")

 for i in range(len(startTimeList)):

 startTimeList[i] = int(startTimeList[i])

 epochLabChart = datetime.datetime(startTimeList[2],

startTimeList[1], startTimeList[0], startTimeList[3],

 minute=startTimeList[4],

second=startTimeList[5],

 microsecond=startTimeList[6] *

1000).timestamp()

 data.drop(list(range(indexFinalStart + 1)), inplace=True)

 numpyArrayList = []

 interestingDataList = ["Time", "HC_Systolic", "Active_Cuff",

"Finger_Pressure_HC"]

84

 for i in interestingDataList:

 data[i] = data[i].str.replace(',', '.')

 data[i] = data[i].astype(float)

 data[i] = data[i].fillna(0)

 numpyArrayList.append(data[i].to_numpy())

 timeLabChart = numpyArrayList[0]

 self.timeLabChart = timeLabChart + epochLabChart

 self.fs_LabChart = (self.timeLabChart[-1] - self.timeLabChart[0]) /

len(self.timeLabChart)

 self.HCSystolic = numpyArrayList[1]

 self.averagedDiastolic = numpyArrayList[2]

 self.fingerPressureHC = numpyArrayList[3]

 def findMatchingTime(self, timeArray, timeStamp):

 #Should probably be a private function

 for i in range(len(timeArray)):

 if abs(timeArray[i] - timeStamp) < 0.01:

 return i

 def computeTimeIndice(self, timeSet, timeArray):

 # Timeset should be a list [start, stop] where start and stop

should be written as dd:mm:yy:hh:mm:ss:ms

 epochTimeSet = []

 for i in timeSet:

 timeList = i.split(":")

 for i in range(len(timeList)):

 timeList[i] = int(timeList[i])

 epochTimeStamp = datetime.datetime(timeList[2], timeList[1],

timeList[0], timeList[3],

 minute=timeList[4],

second=timeList[5],

 microsecond=timeList[6] *

1000).timestamp()

 epochTimeSet.append(self.findMatchingTime(timeArray,

epochTimeStamp))

 timeIndice = epochTimeSet

 return timeIndice

 #convert string time stamps into epoch time stamps

85

 def SetTimeIndices(self):

 timeIndice = self.computeTimeIndice(self.T1TimeString,

self.timeArduino)

 self.T1TimeArduino = timeIndice

 timeIndice = self.computeTimeIndice(self.CPTimeString,

self.timeArduino)

 self.CPTimeArduino = timeIndice

 timeIndice = self.computeTimeIndice(self.T3TimeString,

self.timeArduino)

 self.T3TimeArduino = timeIndice

 timeIndice = self.computeTimeIndice(self.T1TimeString,

self.timeLabChart)

 self.T1TimeChart = timeIndice

 timeIndice = self.computeTimeIndice(self.CPTimeString,

self.timeLabChart)

 self.CPTimeChart = timeIndice

 timeIndice = self.computeTimeIndice(self.T3TimeString,

self.timeLabChart)

 self.T3TimeChart = timeIndice

 def averageFingerPressure(self):

 #Computes an average finger pressure by using savitzky golay filter

 polyOrder = 3

 windowSizeSeconds = 35

 windowSize = int(windowSizeSeconds / self.fs_LabChart)

 if windowSize % 2 == 0:

 windowSize = windowSize + 1

 self.HCSystolicFiltered = savgol_filter(self.HCSystolic,

windowSize, polyOrder)

 def plotAvgFingPress(self):

 #Plot the averaged finger pressure

 timeIndexesLabchart = self.T1TimeChart + self.CPTimeChart +

self.T3TimeChart

 plt.figure(figsize=(32, 16), dpi=150)

 plt.ylim(70, 180)

 # plt.plot(HC_Systolic[0:-1])

 # plt.plot(timeLabChart[0:-1], HC_Systolic[0:-1])

 plt.plot(self.timeLabChart[0:-1], self.HCSystolicFiltered[0:-1])

86

 for i in timeIndexesLabchart:

 plt.axvline(x=self.timeLabChart[i])

 plt.show()

 def findPPGPeaks(self, threshold, timeBetween):

 #Finds the peaks of the ppg for segmentation

 #Another idea is to find the PPG squared peaks. Should be easier

(maybe)

 samplesBetweenEach = timeBetween/self.fs_Arduino

 self.peaksPPG, properties = scipy.signal.find_peaks(self.PPGFilt,

height=threshold, distance=samplesBetweenEach)

 self.peaksPPG2, properties = scipy.signal.find_peaks(self.PPG2,

height=threshold, distance=samplesBetweenEach)

 samplesBetweenEach = timeBetween/self.fs_Scale

 self.peaksPPGScale, properties =

scipy.signal.find_peaks(self.PPGFiltScale, height=threshold,

distance=samplesBetweenEach)

 def findddPPGPeaks(self, threshold, timeBetween):

 #Finds the peaks of the ddPPG for segmentation

 samplesBetweenEach = timeBetween/self.fs_Arduino

 self.peaksddPPG, properties =

scipy.signal.find_peaks(self.ddPPGFilt, height=threshold,

distance=samplesBetweenEach)

 samplesBetweenEach = timeBetween/self.fs_Scale

 self.peaksddPPGScale, properties =

scipy.signal.find_peaks(self.ddPPGFiltScale, height=threshold,

distance=samplesBetweenEach)

 def organizePeaks(self):

 #I think it is better to do the sanity check here on the peaks.

 #Compute median distance between peaks, then i look through the

gaps between the peaks. If a gap is too long one of the peaks is wrong.

 #But which one?

 #gapLengths = np.zeros(len(self.peaksPPG) - 1)

 #for i in range(len(self.peaksPPG)):

 # gapLengths[i] = self.peaksPPG[i + 1] - self.peaksPPG[i]

 #medianLength = gapLengths[int(len(gapLengths)/2)]

 #wrongGapIndex = []

87

 #for i in range(len(gapLengths)):

 # if abs(medianLength - gapLengths[i]) > 0.05*medianLength:

 # #Something is wrong and i should remove one of the peaks.

But im not sure which one.

 # wrongGapIndex.append(i)

 #Checking which indices are possibly wrong. Whats interesting to

check is wether

 T1Peaks = []

 T3Peaks = []

 CPPeaks = []

 for i in self.peaksPPG:

 if i > self.T1TimeArduino[0] and i < self.T1TimeArduino[1]:

 T1Peaks.append(i)

 elif i > self.CPTimeArduino[0] and i < self.CPTimeArduino[1]:

 CPPeaks.append(i)

 elif i > self.T3TimeArduino[0] and i < self.T3TimeArduino[1]:

 T3Peaks.append(i)

 self.T1Peaks = T1Peaks

 self.CPPeaks = CPPeaks

 self.T3Peaks = T3Peaks

 T1Peaks2 = []

 T3Peaks2 = []

 CPPeaks2 = []

 for i in self.peaksPPG2:

 if i > self.T1TimeArduino[0] and i < self.T1TimeArduino[1]:

 T1Peaks2.append(i)

 elif i > self.CPTimeArduino[0] and i < self.CPTimeArduino[1]:

 CPPeaks2.append(i)

 elif i > self.T3TimeArduino[0] and i < self.T3TimeArduino[1]:

 T3Peaks2.append(i)

 self.T1Peaks2 = T1Peaks2

88

 self.CPPeaks2 = CPPeaks2

 self.T3Peaks2 = T3Peaks2

 def sanityCheckSeg(self, segmentList):

 minLength = 100000

 # Identifying the shortest period and making all the segments that

length by cutting off the end

 # Should add some sanity check to remove wrongly identified

segments. For instance by length

 avgLength = 0

 lengthList = []

 for i in range(len(segmentList)):

 lengthList.append(len(segmentList[i]))

 #median = lengthList[int(len(lengthList)/2)]

 median = statistics.median(lengthList)

 for j in range(len(segmentList)):

 # avgLength = avgLength + len(segmentList[j])

 if minLength > len(segmentList[j]):

 minLength = len(segmentList[j])

 avgLength = avgLength / len(segmentList)

 avgLength = avgLength + 0.1 * avgLength # Not in use atm

 popList = []

 for k in range(len(segmentList)):

 if abs(len(segmentList[k]) - median) > 0.05*median:

 # pressureSegmentList.pop(k)

 popList.append(k) #List of the indices im gonna pop

(remove)

 else:

 segmentList[k] = segmentList[k][0:minLength] #Setting all

segments to the same length for easier plotting

 for l in range(len(popList)):

 segmentList.pop(popList[l] - l)

 #print(popList)

 return segmentList, popList

 def segmentUsingPPGT1(self, peaks, fs, press=False, PPG=False):

89

 #Segments the data by using the identified PPG peaks

 #How do i choose which peaks i want to use?

 #Should change this to just use self.peaksT1. Doesnt need me to

give it peaks

 if press:

 pressureSegmentList0 = []

 pressureSegmentList1 = []

 pressureSegmentList2 = []

 pressureSegmentList3 = []

 pressureSegmentList4 = []

 pressureSegmentList5 = []

 pressureSegmentList6 = []

 pressureSegmentList7 = []

 pressureSegmentList8 = []

 pressureSegmentList9 = []

 for i in range(len(peaks) - 1):

 # Takes a subset from data from peak1 to peak2 and pad

about 0.15 seconds on each side

 segment0 = self.pressFilt0[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment1 = self.pressFilt1[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment2 = self.pressFilt2[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment3 = self.pressFilt3[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment4 = self.pressFilt4[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment5 = self.pressFilt5[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment6 = self.pressFilt6[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment7 = self.pressFilt7[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment8 = self.pressFilt8[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment9 = self.pressFilt9[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 pressureSegmentList0.append(segment0)

 pressureSegmentList1.append(segment1)

90

 pressureSegmentList2.append(segment2)

 pressureSegmentList3.append(segment3)

 pressureSegmentList4.append(segment4)

 pressureSegmentList5.append(segment5)

 pressureSegmentList6.append(segment6)

 pressureSegmentList7.append(segment7)

 pressureSegmentList8.append(segment8)

 pressureSegmentList9.append(segment9)

 #Doing sanity checks

 self.pressureSegmentList0T1, popList =

self.sanityCheckSeg(pressureSegmentList0)

 self.pressureSegmentList1T1, popList =

self.sanityCheckSeg(pressureSegmentList1)

 self.pressureSegmentList2T1, popList =

self.sanityCheckSeg(pressureSegmentList2)

 self.pressureSegmentList3T1, popList =

self.sanityCheckSeg(pressureSegmentList3)

 self.pressureSegmentList4T1, popList =

self.sanityCheckSeg(pressureSegmentList4)

 self.pressureSegmentList5T1, popList =

self.sanityCheckSeg(pressureSegmentList5)

 self.pressureSegmentList6T1, popList =

self.sanityCheckSeg(pressureSegmentList6)

 self.pressureSegmentList7T1, popList =

self.sanityCheckSeg(pressureSegmentList7)

 self.pressureSegmentList8T1, popList =

self.sanityCheckSeg(pressureSegmentList8)

 self.pressureSegmentList9T1, popList =

self.sanityCheckSeg(pressureSegmentList9)

 self.popListT1 = popList

 #print("PopListT1: ", self.popListT1)

 elif PPG:

 PPGSegmentList = []

 for i in range(len(peaks) - 1):

 # Takes a subset from data from peak1 to peak2 and pad

about 0.15 seconds on each side

 segment = self.PPGFilt[peaks[i] - int(0.5 / fs): peaks[i +

1] + int(0.5 / fs)]

 PPGSegmentList.append(segment)

91

 PPGSegmentList, popList = self.sanityCheckSeg(PPGSegmentList)

 self.PPGSegmentListT1 = PPGSegmentList

 self.popListT1 = popList

 #print("PopListT1: ", self.popListT1)

 def segmentUsingPPGCP(self, peaks, fs, press=False, PPG=False):

 #Segments the data by using the identified PPG peaks

 #How do i choose which peaks i want to use?

 if press:

 pressureSegmentList0 = []

 pressureSegmentList1 = []

 pressureSegmentList2 = []

 pressureSegmentList3 = []

 pressureSegmentList4 = []

 pressureSegmentList5 = []

 pressureSegmentList6 = []

 pressureSegmentList7 = []

 pressureSegmentList8 = []

 pressureSegmentList9 = []

 for i in range(len(peaks) - 1):

 # Takes a subset from data from peak1 to peak2 and pad

about 0.15 seconds on each side

 segment0 = self.pressFilt0[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment1 = self.pressFilt1[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment2 = self.pressFilt2[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment3 = self.pressFilt3[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment4 = self.pressFilt4[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment5 = self.pressFilt5[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment6 = self.pressFilt6[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment7 = self.pressFilt7[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

92

 segment8 = self.pressFilt8[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment9 = self.pressFilt9[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 pressureSegmentList0.append(segment0)

 pressureSegmentList1.append(segment1)

 pressureSegmentList2.append(segment2)

 pressureSegmentList3.append(segment3)

 pressureSegmentList4.append(segment4)

 pressureSegmentList5.append(segment5)

 pressureSegmentList6.append(segment6)

 pressureSegmentList7.append(segment7)

 pressureSegmentList8.append(segment8)

 pressureSegmentList9.append(segment9)

 #Doing sanity checks

 self.pressureSegmentList0CP, popList =

self.sanityCheckSeg(pressureSegmentList0)

 self.pressureSegmentList1CP, popList =

self.sanityCheckSeg(pressureSegmentList1)

 self.pressureSegmentList2CP, popList =

self.sanityCheckSeg(pressureSegmentList2)

 self.pressureSegmentList3CP, popList =

self.sanityCheckSeg(pressureSegmentList3)

 self.pressureSegmentList4CP, popList =

self.sanityCheckSeg(pressureSegmentList4)

 self.pressureSegmentList5CP, popList =

self.sanityCheckSeg(pressureSegmentList5)

 self.pressureSegmentList6CP, popList =

self.sanityCheckSeg(pressureSegmentList6)

 self.pressureSegmentList7CP, popList =

self.sanityCheckSeg(pressureSegmentList7)

 self.pressureSegmentList8CP, popList =

self.sanityCheckSeg(pressureSegmentList8)

 self.pressureSegmentList9CP, popList =

self.sanityCheckSeg(pressureSegmentList9)

 self.popListCP = popList

 elif PPG:

 PPGSegmentList = []

 for i in range(len(peaks) - 1):

93

 # Takes a subset from data from peak1 to peak2 and pad

about 0.15 seconds on each side

 segment = self.PPGFilt[peaks[i] - int(0.5 / fs): peaks[i +

1] + int(

 0.5 / fs)]

 PPGSegmentList.append(segment)

 PPGSegmentList, popList = self.sanityCheckSeg(PPGSegmentList)

 self.PPGSegmentListCP = PPGSegmentList

 self.popListCP = popList

 def segmentUsingPPGT3(self, peaks, fs, press=False, PPG=False):

 #Segments the data by using the identified PPG peaks

 #How do i choose which peaks i want to use?

 if press:

 pressureSegmentList0 = []

 pressureSegmentList1 = []

 pressureSegmentList2 = []

 pressureSegmentList3 = []

 pressureSegmentList4 = []

 pressureSegmentList5 = []

 pressureSegmentList6 = []

 pressureSegmentList7 = []

 pressureSegmentList8 = []

 pressureSegmentList9 = []

 for i in range(len(peaks) - 1):

 # Takes a subset from data from peak1 to peak2 and pad

about 0.15 seconds on each side

 segment0 = self.pressFilt0[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment1 = self.pressFilt1[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment2 = self.pressFilt2[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment3 = self.pressFilt3[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment4 = self.pressFilt4[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment5 = self.pressFilt5[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

94

 segment6 = self.pressFilt6[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment7 = self.pressFilt7[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment8 = self.pressFilt8[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 segment9 = self.pressFilt9[peaks[i] - int(0.5 / fs):

peaks[i + 1] + int(0.5 / fs)]

 pressureSegmentList0.append(segment0)

 pressureSegmentList1.append(segment1)

 pressureSegmentList2.append(segment2)

 pressureSegmentList3.append(segment3)

 pressureSegmentList4.append(segment4)

 pressureSegmentList5.append(segment5)

 pressureSegmentList6.append(segment6)

 pressureSegmentList7.append(segment7)

 pressureSegmentList8.append(segment8)

 pressureSegmentList9.append(segment9)

 #Doing sanity checks

 self.pressureSegmentList0T3, popList =

self.sanityCheckSeg(pressureSegmentList0)

 self.pressureSegmentList1T3, popList =

self.sanityCheckSeg(pressureSegmentList1)

 self.pressureSegmentList2T3, popList =

self.sanityCheckSeg(pressureSegmentList2)

 self.pressureSegmentList3T3, popList =

self.sanityCheckSeg(pressureSegmentList3)

 self.pressureSegmentList4T3, popList =

self.sanityCheckSeg(pressureSegmentList4)

 self.pressureSegmentList5T3, popList =

self.sanityCheckSeg(pressureSegmentList5)

 self.pressureSegmentList6T3, popList =

self.sanityCheckSeg(pressureSegmentList6)

 self.pressureSegmentList7T3, popList =

self.sanityCheckSeg(pressureSegmentList7)

 self.pressureSegmentList8T3, popList =

self.sanityCheckSeg(pressureSegmentList8)

 self.pressureSegmentList9T3, popList =

self.sanityCheckSeg(pressureSegmentList9)

 self.popListT3 = popList

95

 elif PPG:

 PPGSegmentList = []

 for i in range(len(peaks) - 1):

 # Takes a subset from data from peak1 to peak2 and pad

about 0.15 seconds on each side

 segment = self.PPGFilt[peaks[i] - int(0.5 / fs): peaks[i +

1] + int(

 0.5 / fs)] # This will probably make wrongly segmented

segments worse.

 PPGSegmentList.append(segment)

 PPGSegmentList, popList = self.sanityCheckSeg(PPGSegmentList)

 self.PPGSegmentListT3 = PPGSegmentList

 self.popListT3 = popList

 def normAndAvgPressSegT1(self):

 #Shit - This does not consider T1, CP and T3 - Start here next time

(22.05.2022) and then fix plotting.

 normSeg0 = []

 for i in self.pressureSegmentList0T1:

 normSeg0.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg0T1 = normSeg0

 self.avgSeg0T1 = dpf.averageSegments(segments=normSeg0)

 normSeg1 = []

 for i in self.pressureSegmentList1T1:

 normSeg1.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg1T1 = normSeg1

 self.avgSeg1T1 = dpf.averageSegments(segments=normSeg1)

 normSeg2 = []

 for i in self.pressureSegmentList2T1:

 normSeg2.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg2T1 = normSeg2

 self.avgSeg2T1 = dpf.averageSegments(segments=normSeg2)

96

 normSeg3 = []

 for i in self.pressureSegmentList3T1:

 normSeg3.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg3T1 = normSeg3

 self.avgSeg3T1 = dpf.averageSegments(segments=normSeg3)

 normSeg4 = []

 for i in self.pressureSegmentList4T1:

 normSeg4.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg4T1 = normSeg4

 self.avgSeg4T1 = dpf.averageSegments(segments=normSeg4)

 normSeg5 = []

 for i in self.pressureSegmentList5T1:

 normSeg5.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg5T1 = normSeg5

 self.avgSeg5T1 = dpf.averageSegments(segments=normSeg5)

 normSeg6 = []

 for i in self.pressureSegmentList6T1:

 normSeg6.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg6T1 = normSeg6

 self.avgSeg6T1 = dpf.averageSegments(segments=normSeg6)

 normSeg7 = []

 for i in self.pressureSegmentList7T1:

 normSeg7.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg7T1 = normSeg7

 self.avgSeg7T1 = dpf.averageSegments(segments=normSeg7)

 normSeg8 = []

 for i in self.pressureSegmentList8T1:

 normSeg8.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

97

 self.normSeg8T1 = normSeg8

 self.avgSeg8T1 = dpf.averageSegments(segments=normSeg8)

 normSeg9 = []

 for i in self.pressureSegmentList9T1:

 normSeg9.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg9T1 = normSeg9

 self.avgSeg9T1 = dpf.averageSegments(segments=normSeg9)

 def normAndAvgPressSegCP(self):

 #Shit - This does not consider T1, CP and T3 - Start here next time

(22.05.2022) and then fix plotting.

 normSeg0 = []

 for i in self.pressureSegmentList0CP:

 normSeg0.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg0CP = normSeg0

 self.avgSeg0CP = dpf.averageSegments(segments=normSeg0)

 normSeg1 = []

 for i in self.pressureSegmentList1CP:

 normSeg1.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg1CP = normSeg1

 self.avgSeg1CP = dpf.averageSegments(segments=normSeg1)

 normSeg2 = []

 for i in self.pressureSegmentList2CP:

 normSeg2.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg2CP = normSeg2

 self.avgSeg2CP = dpf.averageSegments(segments=normSeg2)

 normSeg3 = []

 for i in self.pressureSegmentList3CP:

 normSeg3.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg3CP = normSeg3

98

 self.avgSeg3CP = dpf.averageSegments(segments=normSeg3)

 normSeg4 = []

 for i in self.pressureSegmentList4CP:

 normSeg4.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg4CP = normSeg4

 self.avgSeg4CP = dpf.averageSegments(segments=normSeg4)

 normSeg5 = []

 for i in self.pressureSegmentList5CP:

 normSeg5.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg5CP = normSeg5

 self.avgSeg5CP = dpf.averageSegments(segments=normSeg5)

 normSeg6 = []

 for i in self.pressureSegmentList6CP:

 normSeg6.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg6CP = normSeg6

 self.avgSeg6CP = dpf.averageSegments(segments=normSeg6)

 normSeg7 = []

 for i in self.pressureSegmentList7CP:

 normSeg7.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg7CP = normSeg7

 self.avgSeg7CP = dpf.averageSegments(segments=normSeg7)

 normSeg8 = []

 for i in self.pressureSegmentList8CP:

 normSeg8.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg8CP = normSeg8

 self.avgSeg8CP = dpf.averageSegments(segments=normSeg8)

 normSeg9 = []

99

 for i in self.pressureSegmentList9CP:

 normSeg9.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg9CP = normSeg9

 self.avgSeg9CP = dpf.averageSegments(segments=normSeg9)

 def normAndAvgPressSegT3(self):

 #Shit - This does not consider T1, CP and T3 - Start here next time

(22.05.2022) and then fix plotting.

 normSeg0 = []

 for i in self.pressureSegmentList0T3:

 normSeg0.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg0T3 = normSeg0

 self.avgSeg0T3 = dpf.averageSegments(segments=normSeg0)

 normSeg1 = []

 for i in self.pressureSegmentList1T3:

 normSeg1.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg1T3 = normSeg1

 self.avgSeg1T3 = dpf.averageSegments(segments=normSeg1)

 normSeg2 = []

 for i in self.pressureSegmentList2T3:

 normSeg2.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg2T3 = normSeg2

 self.avgSeg2T3 = dpf.averageSegments(segments=normSeg2)

 normSeg3 = []

 for i in self.pressureSegmentList3T3:

 normSeg3.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg3T3 = normSeg3

 self.avgSeg3T3 = dpf.averageSegments(segments=normSeg3)

 normSeg4 = []

 for i in self.pressureSegmentList4T3:

100

 normSeg4.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg4T3 = normSeg4

 self.avgSeg4T3 = dpf.averageSegments(segments=normSeg4)

 normSeg5 = []

 for i in self.pressureSegmentList5T3:

 normSeg5.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg5T3 = normSeg5

 self.avgSeg5T3 = dpf.averageSegments(segments=normSeg5)

 normSeg6 = []

 for i in self.pressureSegmentList6T3:

 normSeg6.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg6T3 = normSeg6

 self.avgSeg6T3 = dpf.averageSegments(segments=normSeg6)

 normSeg7 = []

 for i in self.pressureSegmentList7T3:

 normSeg7.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg7T3 = normSeg7

 self.avgSeg7T3 = dpf.averageSegments(segments=normSeg7)

 normSeg8 = []

 for i in self.pressureSegmentList8T3:

 normSeg8.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg8T3 = normSeg8

 self.avgSeg8T3 = dpf.averageSegments(segments=normSeg8)

 normSeg9 = []

 for i in self.pressureSegmentList9T3:

 normSeg9.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSeg9T3 = normSeg9

 self.avgSeg9T3 = dpf.averageSegments(segments=normSeg9)

101

 def normAndAvgPPGSegT1(self):

 normSeg = []

 for i in self.PPGSegmentListT1:

 normSeg.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSegPPGT1 = normSeg

 self.avgSegPPGT1 = dpf.averageSegments(segments=normSeg)

 def normAndAvgPPGSegCP(self):

 normSeg = []

 for i in self.PPGSegmentListCP:

 normSeg.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSegPPGCP = normSeg

 self.avgSegPPGCP = dpf.averageSegments(segments=normSeg)

 def normAndAvgPPGSegT3(self):

 normSeg = []

 for i in self.PPGSegmentListT3:

 normSeg.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.normSegPPGT3 = normSeg

 self.avgSegPPGT3 = dpf.averageSegments(segments=normSeg)

 def segmentNormalizeAndAverage(self, fs, segPress, segPPG, PPG2 =

False, ddPPG = False, segScale = False, T1=False, CP=False, T3=False):

 #ref is the reference we use to segments. Called peaks later

 #ddPPG is not fixed

 if T1:

 if ddPPG:

 ref =

self.ddPPGFilt[self.T1TimeArduino[0]:self.T1TimeArduino[1]]

 elif PPG2:

 ref = self.T1Peaks2

 else:

 #ref =

self.PPG[self.T1TimeArduino[0]:self.T1TimeArduino[1]]

102

 ref = self.T1Peaks

 self.segmentUsingPPGT1(ref, fs, press=segPress, PPG=segPPG)

 if segPress:

 self.normAndAvgPressSegT1()

 elif segPPG:

 self.normAndAvgPPGSegT1()

 elif CP:

 if ddPPG:

 ref =

self.ddPPGFilt[self.CPTimeArduino[0]:self.CPTimeArduino[1]]

 elif PPG2:

 ref = self.CPPeaks2

 else:

 #ref =

self.PPG[self.CPTimeArduino[0]:self.CPTimeArduino[1]]

 ref = self.CPPeaks

 self.segmentUsingPPGCP(ref, fs, press=segPress, PPG=segPPG)

 if segPress:

 self.normAndAvgPressSegCP()

 if segPPG:

 self.normAndAvgPPGSegCP()

 elif T3:

 if ddPPG:

 ref =

self.ddPPGFilt[self.T3TimeArduino[0]:self.T3TimeArduino[1]]

 elif PPG2:

 ref = self.T1Peaks2

 else:

 #ref =

self.PPG[self.T3TimeArduino[0]:self.T3TimeArduino[1]]

 ref = self.T3Peaks

 self.segmentUsingPPGT3(ref, fs, press=segPress, PPG=segPPG)

 if segPress:

 self.normAndAvgPressSegT3()

 if segPPG:

 self.normAndAvgPPGSegT3()

103

 def segmentPressure(self, ddPPG = False, PPG2 = False): #Should change

the name of the variable for wether im segmenting ppg

 self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=True,

segPPG=False, PPG2=PPG2, ddPPG = ddPPG, T1=True)

 self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=True,

segPPG=False, PPG2=PPG2, ddPPG=ddPPG, CP=True)

 self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=True,

segPPG=False, PPG2=PPG2, ddPPG=ddPPG, T3=True)

 def segmentScalePressure(self, threshold, timeBetween): #Needs to be

updated

 self.segmentNormalizeAndAverage(self.Scale, self.fs_Scale,

threshold, timeBetween, T1 = True)

 self.segmentNormalizeAndAverage(self.Scale, self.fs_Scale,

threshold, timeBetween, CP = True)

 self.segmentNormalizeAndAverage(self.Scale, self.fs_Scale,

threshold, timeBetween, T3 = True)

 def segmentPPG(self, ddPPG = False, PPG2 = False):

 self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=False,

segPPG=True, PPG2=PPG2, ddPPG=ddPPG, T1=True)

 self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=False,

segPPG=True, PPG2=PPG2, ddPPG=ddPPG, CP=True)

 self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=False,

segPPG=True, PPG2=PPG2, ddPPG=ddPPG, T3=True)

 def plotSegPress(self, pressSelect, T1 = False, CP = False, T3 = False,

savePlot = False, ID = ""):

 #Might be better to just make this 9 functions. One for each sensor

 if pressSelect == 0:

 if T1:

 avgData = self.avgSeg0T1

 normData = self.normSeg0T1

 elif CP:

 avgData = self.avgSeg0CP

 normData = self.normSeg0CP

 elif T3:

 avgData = self.avgSeg0T3

 normData = self.normSeg0T3

 elif pressSelect == 1:

104

 if T1:

 avgData = self.avgSeg1T1

 normData = self.normSeg1T1

 elif CP:

 avgData = self.avgSeg1CP

 normData = self.normSeg1CP

 elif T3:

 avgData = self.avgSeg1T3

 normData = self.normSeg1T3

 elif pressSelect == 2:

 if T1:

 avgData = self.avgSeg2T1

 normData = self.normSeg2T1

 elif CP:

 avgData = self.avgSeg2CP

 normData = self.normSeg2CP

 elif T3:

 avgData = self.avgSeg2T3

 normData = self.normSeg2T3

 elif pressSelect == 3:

 if T1:

 avgData = self.avgSeg3T1

 normData = self.normSeg3T1

 elif CP:

 avgData = self.avgSeg3CP

 normData = self.normSeg3CP

 elif T3:

 avgData = self.avgSeg3T3

 normData = self.normSeg3T3

 elif pressSelect == 4:

 if T1:

 avgData = self.avgSeg4T1

 normData = self.normSeg4T1

 elif CP:

 avgData = self.avgSeg4CP

 normData = self.normSeg4CP

105

 elif T3:

 avgData = self.avgSeg4T3

 normData = self.normSeg4T3

 elif pressSelect == 5:

 if T1:

 avgData = self.avgSeg5T1

 normData = self.avgSeg5T3

 elif CP:

 avgData = self.avgSeg5CP

 normData = self.normSeg5CP

 elif T3:

 avgData = self.avgSeg5T3

 normData = self.normSeg5T3

 elif pressSelect == 6:

 if T1:

 avgData = self.avgSeg6T1

 normData = self.normSeg6T1

 elif CP:

 avgData = self.avgSeg6CP

 normData = self.normSeg6CP

 elif T3:

 avgData = self.avgSeg6T3

 normData = self.normSeg6T3

 elif pressSelect == 7:

 if T1:

 avgData = self.avgSeg7T3

 normData = self.normSeg7T1

 elif CP:

 avgData = self.avgSeg7CP

 normData = self.normSeg7CP

 elif T3:

 avgData = self.avgSeg7T3

 normData = self.avgSeg2T3

 elif pressSelect == 8:

 if T1:

 avgData = self.avgSeg8T1

106

 normData = self.normSeg8T1

 elif CP:

 avgData = self.avgSeg8CP

 normData = self.normSeg8CP

 elif T3:

 avgData = self.avgSeg8T3

 normData = self.normSeg8T3

 elif pressSelect == 9:

 if T1:

 avgData = self.avgSeg9T1

 normData = self.normSeg9T1

 elif CP:

 avgData = self.avgSeg9CP

 normData = self.normSeg9CP

 elif T3:

 avgData = self.avgSeg9T3

 normData = self.normSeg9T3

 plt.figure(figsize=(32, 16), dpi=150)

 plt.plot(

 np.linspace(start=0, stop=((len(avgData)) * self.fs_Arduino),

num=(len(avgData))),

 avgData[:], "r", linewidth=4)

 for i in range(len(normData)):

 plt.plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino,

 num=(len(normData[i]))), normData[i], "b--

")

 plt.grid(axis='x')

 plt.title("Pressure segmented and averaged")

 plt.xticks(np.arange(start=0, stop=((len(avgData)) *

self.fs_Arduino), step=0.05))

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPress_" + ID

 plt.savefig(saveName)

 plt.show()

107

 def plotSegPressV2(self, pressSelect, T1=False, CP=False, T3=False,

savePlot = False, ID = ""):

 # Might be better to just make this 9 functions. One for each

sensor

 if pressSelect == 0:

 if T1:

 avgData = self.avgSeg0T1

 normData = self.normSeg0T1

 elif CP:

 avgData = self.avgSeg0CP

 normData = self.normSeg0CP

 elif T3:

 avgData = self.avgSeg0T3

 normData = self.normSeg0T3

 elif pressSelect == 1:

 if T1:

 avgData = self.avgSeg1T1

 normData = self.normSeg1T1

 elif CP:

 avgData = self.avgSeg1CP

 normData = self.normSeg1CP

 elif T3:

 avgData = self.avgSeg1T3

 normData = self.normSeg1T3

 elif pressSelect == 2:

 if T1:

 avgData = self.avgSeg2T1

 normData = self.normSeg2T1

 elif CP:

 avgData = self.avgSeg2CP

 normData = self.normSeg2CP

 elif T3:

 avgData = self.avgSeg2T3

 normData = self.normSeg2T3

 elif pressSelect == 3:

 if T1:

108

 avgData = self.avgSeg3T1

 normData = self.normSeg3T1

 elif CP:

 avgData = self.avgSeg3CP

 normData = self.normSeg3CP

 elif T3:

 avgData = self.avgSeg3T3

 normData = self.normSeg3T3

 elif pressSelect == 4:

 if T1:

 avgData = self.avgSeg4T1

 normData = self.normSeg4T1

 elif CP:

 avgData = self.avgSeg4CP

 normData = self.normSeg4CP

 elif T3:

 avgData = self.avgSeg4T3

 normData = self.normSeg4T3

 elif pressSelect == 5:

 if T1:

 avgData = self.avgSeg5T1

 normData = self.avgSeg5T3

 elif CP:

 avgData = self.avgSeg5CP

 normData = self.normSeg5CP

 elif T3:

 avgData = self.avgSeg5T3

 normData = self.normSeg5T3

 elif pressSelect == 6:

 if T1:

 avgData = self.avgSeg6T1

 normData = self.normSeg6T1

 elif CP:

 avgData = self.avgSeg6CP

 normData = self.normSeg6CP

 elif T3:

109

 avgData = self.avgSeg6T3

 normData = self.normSeg6T3

 elif pressSelect == 7:

 if T1:

 avgData = self.avgSeg7T3

 normData = self.normSeg7T1

 elif CP:

 avgData = self.avgSeg7CP

 normData = self.normSeg7CP

 elif T3:

 avgData = self.avgSeg7T3

 normData = self.avgSeg2T3

 elif pressSelect == 8:

 if T1:

 avgData = self.avgSeg8T1

 normData = self.normSeg8T1

 elif CP:

 avgData = self.avgSeg8CP

 normData = self.normSeg8CP

 elif T3:

 avgData = self.avgSeg8T3

 normData = self.normSeg8T3

 elif pressSelect == 9:

 if T1:

 avgData = self.avgSeg9T1

 normData = self.normSeg9T1

 elif CP:

 avgData = self.avgSeg9CP

 normData = self.normSeg9CP

 elif T3:

 avgData = self.avgSeg9T3

 normData = self.normSeg9T3

 fig, ax1 = plt.subplots(figsize=(32, 16), dpi = 150)

 ax1.plot(np.linspace(start=0, stop=((len(avgData)) *

self.fs_Arduino), num=(len(avgData))),

 avgData[:], "r", linewidth=4)

 #plt.plot(

110

 # np.linspace(start=0, stop=((len(avgData)) * self.fs_Arduino),

num=(len(avgData))),

 # avgData[:], "r", linewidth=4)

 axisList = []

 for i in range(len(normData)):

 axisList.append(ax1.twinx())

 axisList[i].plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino, num=(len(normData[i]))),

 normData[i], "b--")

 fig.axes[i].get_yaxis().set_visible(False)

 #plt.plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino,

 # num=(len(normData[i]))), normData[i], "b-

-")

 plt.grid(axis='x')

 plt.title("Pressure segmented and averaged plotV2")

 plt.xticks(np.arange(start=0, stop=((len(avgData)) *

self.fs_Arduino), step=0.05))

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPressV2_" + ID

 plt.savefig(saveName)

 plt.show()

 def plotAllPressureSegAndAvg(self, ID, T1 = False, CP = False, T3 =

False, savePlot = False):

 if T1:

 pressSegs = [self.normSeg0T1, self.normSeg1T1, self.normSeg2T1,

self.normSeg3T1, self.normSeg4T1, self.normSeg5T1,

 self.normSeg6T1, self.normSeg7T1, self.normSeg8T1,

self.normSeg9T1]

 pressAvgs = [self.avgSeg0T1, self.avgSeg1T1, self.avgSeg2T1,

self.avgSeg3T1, self.avgSeg4T1, self.avgSeg5T1,

 self.avgSeg6T1, self.avgSeg7T1, self.avgSeg8T1,

self.avgSeg9T1]

 elif CP:

 pressSegs = [self.normSeg0CP, self.normSeg1CP, self.normSeg2CP,

self.normSeg3CP, self.normSeg4CP, self.normSeg5CP,

 self.normSeg6CP, self.normSeg7CP, self.normSeg8CP,

self.normSeg9CP]

 pressAvgs = [self.avgSeg0CP, self.avgSeg1CP, self.avgSeg2CP,

self.avgSeg3CP, self.avgSeg4CP, self.avgSeg5CP,

111

 self.avgSeg6CP, self.avgSeg7CP, self.avgSeg8CP,

self.avgSeg9CP]

 elif T3:

 pressSegs = [self.normSeg0T3, self.normSeg1T3, self.normSeg2T3,

self.normSeg3T3, self.normSeg4T3, self.normSeg5T3,

 self.normSeg6T3, self.normSeg7T3, self.normSeg8T3,

self.normSeg9T3]

 pressAvgs = [self.avgSeg0T3, self.avgSeg1T3, self.avgSeg2T3,

self.avgSeg3T3, self.avgSeg4T3, self.avgSeg5T3,

 self.avgSeg6T3, self.avgSeg7T3, self.avgSeg8T3,

self.avgSeg9T3]

 posList = ["right 1", "right 2", "right 5", "right 3", "left 5",

"right 4", "left 3", "left 4", "left 2", "left 1"]

 #self.Pressure0 = dataArduino.Pressure0.to_numpy() #Right foot

furthest back

 #self.Pressure1 = dataArduino.Pressure1.to_numpy() #Right foot

second furthest back

 #self.Pressure2 = dataArduino.Pressure2.to_numpy() #Right foot

forward to the right

 #self.Pressure3 = dataArduino.Pressure3.to_numpy() #Right foot

middle

 #self.Pressure4 = dataArduino.Pressure4.to_numpy() #Left foot

forward right

 #self.Pressure5 = dataArduino.Pressure5.to_numpy() #Right foot

forward left

 #self.Pressure6 = dataArduino.Pressure6.to_numpy() #Left foot

middle

 #self.Pressure7 = dataArduino.Pressure7.to_numpy() #Left foot

forward left

 #self.Pressure8 = dataArduino.Pressure8.to_numpy() #Left foot

second furthest back

 #self.Pressure9 = dataArduino.Pressure9.to_numpy() #Left foot

furthest back

 #Testing something here

 for i in range(len(pressSegs)):

 fig, ax1 = plt.subplots(figsize=(32, 16), dpi=150)

 ax1.plot(np.linspace(start=0, stop=((len(pressAvgs[i])) *

self.fs_Arduino), num=(len(pressAvgs[i]))),

 pressAvgs[i][:], "r", linewidth=4)

 # plt.plot(

 # np.linspace(start=0, stop=((len(avgData)) * self.fs_Arduino),

num=(len(avgData))),

 # avgData[:], "r", linewidth=4)

 axisList = []

112

 ax2 = ax1.twinx()

 for j in range(len(pressSegs[i])):

 #axisList.append(ax1.twinx())

 #axisList[j].plot(np.linspace(start=0,

stop=(len(pressSegs[i][j])) * self.fs_Arduino, num=(len(pressSegs[i][j]))),

 # pressSegs[i][j], "b--")

 #fig.axes[j].get_yaxis().set_visible(False)

 ax2.plot(np.linspace(start=0, stop=(len(pressSegs[i][j])) *

self.fs_Arduino, num=(len(pressSegs[i][j]))),

 pressSegs[i][j], "b--")

 # plt.plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino,

 # num=(len(normData[i]))), normData[i], "b-

-")

 plt.grid(axis='x')

 plt.title("Pressure segmented and averaged " + "position " +

posList[i] + " - " + ID)

 plt.xticks(np.arange(start=0, stop=((len(pressAvgs[i])) *

self.fs_Arduino), step=0.05))

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots2\\SegPressV2_Press" +

str(i) + ID

 plt.savefig(saveName)

 #plt.show()

 def segmentScale(self):

 #alright so i have the peaks for the normal PPG but not the PPG

scale. I can probably take their position use that to find the scale

segments then

 #shorten the scale segments. Lets actually try that

 peaks = self.T1Peaks

 scaleSegmentList = []

 for i in range(len(peaks) - 1):

 # Takes a subset from data from peak1 to peak2 and pad about

0.15 seconds on each side

 segment = self.Scale[peaks[i] - int(0.5 / self.fs_Arduino):

peaks[i + 1] + int(

 0.5 / self.fs_Arduino)] # This will probably make wrongly

segmented segments worse.

 scaleSegmentList.append(segment)

 scaleSegmentList, popList = self.sanityCheckSeg(scaleSegmentList)

113

 for i in range(len(scaleSegmentList)):

 scaleSegmentList[i] = scaleSegmentList[i][1::2]

scaleSegmentList = scaleSegmentList[1::2]

 self.scaleSegmentListT1 = scaleSegmentList

 self.popListScaleT1 = popList

 normScale=[]

 for i in self.scaleSegmentListT1:

 normScale.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.scaleSegmentListT1 = normScale

 self.avgScaleSegT1 =

dpf.averageSegments(segments=self.scaleSegmentListT1)

 peaks = self.CPPeaks

 scaleSegmentList = []

 for i in range(len(peaks) - 1):

 # Takes a subset from data from peak1 to peak2 and pad about

0.15 seconds on each side

 segment = self.Scale[peaks[i] - int(0.5 / self.fs_Arduino):

peaks[i + 1] + int(

 0.5 / self.fs_Arduino)] # This will probably make wrongly

segmented segments worse.

 scaleSegmentList.append(segment)

 scaleSegmentList, popList = self.sanityCheckSeg(scaleSegmentList)

 for i in range(len(scaleSegmentList)):

 scaleSegmentList[i] = scaleSegmentList[i][1::2]

 self.scaleSegmentListCP = scaleSegmentList

 self.popListScaleCP = popList

 normScale=[]

 for i in self.scaleSegmentListCP:

 normScale.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.scaleSegmentListCP = normScale

 self.avgScaleSegCP =

dpf.averageSegments(segments=self.scaleSegmentListCP)

 peaks = self.T3Peaks

114

 scaleSegmentList = []

 for i in range(len(peaks) - 1):

 # Takes a subset from data from peak1 to peak2 and pad about

0.15 seconds on each side

 segment = self.Scale[peaks[i] - int(0.5 / self.fs_Arduino):

peaks[i + 1] + int(

 0.5 / self.fs_Arduino)] # This will probably make wrongly

segmented segments worse.

 scaleSegmentList.append(segment)

 scaleSegmentList, popList = self.sanityCheckSeg(scaleSegmentList)

 for i in range(len(scaleSegmentList)):

 scaleSegmentList[i] = scaleSegmentList[i][1::2]

scaleSegmentList = scaleSegmentList[1::2]

 self.scaleSegmentListT3 = scaleSegmentList

 self.popListScaleT3 = popList

 normScale=[]

 for i in self.scaleSegmentListT3:

 normScale.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten())

 self.scaleSegmentListT3 = normScale

 self.avgScaleSegT3 =

dpf.averageSegments(segments=self.scaleSegmentListT3)

 def plotSegScaleT1(self):

 plt.figure(figsize=(32, 16), dpi=150)

 plt.plot(np.linspace(start=0, stop=((len(self.avgScaleSegT1)) *

self.fs_Scale), num=(len(self.avgScaleSegT1))),

 self.avgScaleSegT1[:], "r", linewidth=4)

 for i in range(len(self.scaleSegmentListT1)):

 plt.plot(np.linspace(start=0,

stop=(len(self.scaleSegmentListT1[i])) * self.fs_Scale,

 num=(len(self.scaleSegmentListT1[i]))),

self.scaleSegmentListT1[i], "b--")

 plt.grid(axis='x')

 plt.title("Scale segmented and averaged")

 plt.xticks(np.arange(start=0,

stop=((len(self.scaleSegmentListT1[1])) * self.fs_Scale), step=0.1))

 #

plt.savefig("C:\\Users\\simon\\Documents\\Master\\Bilder\\filtered_segmente

d_with_PPG_Scale_back_from_shoes_2_0_with_ppg__scale_03_04_2022_test1.png")

115

 plt.show()

 def plotSegScaleCP(self):

 plt.figure(figsize=(32, 16), dpi=150)

 plt.plot(np.linspace(start=0, stop=((len(self.avgScaleSegCP)) *

self.fs_Scale), num=(len(self.avgScaleSegCP))),

 self.avgScaleSegCP[:], "r", linewidth=4)

 for i in range(len(self.scaleSegmentListCP)):

 plt.plot(np.linspace(start=0,

stop=(len(self.scaleSegmentListCP[i])) * self.fs_Scale,

 num=(len(self.scaleSegmentListCP[i]))),

self.scaleSegmentListCP[i], "b--")

 plt.grid(axis='x')

 plt.title("Scale segmented and averaged")

 plt.xticks(np.arange(start=0,

stop=((len(self.scaleSegmentListCP[1])) * self.fs_Scale), step=0.1))

 #

plt.savefig("C:\\Users\\simon\\Documents\\Master\\Bilder\\filtered_segmente

d_with_PPG_Scale_back_from_shoes_2_0_with_ppg__scale_03_04_2022_test1.png")

 plt.show()

 def plotSegScaleT3(self):

 plt.figure(figsize=(32, 16), dpi=150)

 plt.plot(np.linspace(start=0, stop=((len(self.avgScaleSegT3)) *

self.fs_Scale), num=(len(self.avgScaleSegT3))),

 self.avgScaleSegT3[:], "r", linewidth=4)

 for i in range(len(self.scaleSegmentListT3)):

 plt.plot(np.linspace(start=0,

stop=(len(self.scaleSegmentListT3[i])) * self.fs_Scale,

 num=(len(self.scaleSegmentListT3[i]))),

self.scaleSegmentListT3[i], "b--")

 plt.grid(axis='x')

 plt.title("Scale segmented and averaged")

 plt.xticks(np.arange(start=0,

stop=((len(self.scaleSegmentListT3[1])) * self.fs_Scale), step=0.1))

 #

plt.savefig("C:\\Users\\simon\\Documents\\Master\\Bilder\\filtered_segmente

d_with_PPG_Scale_back_from_shoes_2_0_with_ppg__scale_03_04_2022_test1.png")

 plt.show()

 def plotPPGAvgVsScaleAvgT1(self):

116

 #x1 = np.linspace(start=0, stop=((len(pressAvg)) *

self.fs_Arduino), num=(len(pressAvg)))

 fig, ax1 = plt.subplots(figsize=(16, 8), dpi=250)

 l1, = ax1.plot(np.linspace(start=0, stop=((len(self.avgScaleSegT1))

* self.fs_Scale), num=(len(self.avgScaleSegT1))),

 self.avgScaleSegT1[:], "r", linewidth=2)

 ax2 = ax1.twinx()

 l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSeg0T1)) *

self.fs_Arduino, num=(len(self.avgSeg0T1))),

 self.avgSeg0T1, "b", linewidth=2)

 #plt.axvline(x=x1[ppgPeak[0][0]])

 #plt.axvline(x=x1[bcgPeak[0][0]])

 #print("PPG peak:", x1[ppgPeak[0][0]], " and bcg peak: ",

x1[bcgPeak[0][0]])

 #fig.axes[1].get_yaxis().set_visible(False)

 #fig.axes[0].get_yaxis().set_visible(False)

 # plt.plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino,

 # num=(len(normData[i]))), normData[i], "b--")

 plt.grid(axis='x')

 plt.legend([l1, l2], ["Pressure averaged", "PPG average"],

loc="upper left",

 fontsize=14)

 #ax1.legend(loc='upper left', fontsize=10)

 ax1.set_xlabel("Time [seconds]", fontsize=16)

 ax1.set_ylabel("Scale normalized", fontsize=16)

 ax2.set_ylabel("Pressure normalized", fontsize=16)

 plt.title("Scale segments averaged vs pressure average - T1")

 plt.tight_layout()

 plt.xticks(np.arange(start=0, stop=((len(self.avgScaleSegT1)) *

self.fs_Scale), step=0.1))

 plt.show()

 def plotPPGAvgVsScaleAvgCP(self):

 #x1 = np.linspace(start=0, stop=((len(pressAvg)) *

self.fs_Arduino), num=(len(pressAvg)))

117

 fig, ax1 = plt.subplots(figsize=(16, 8), dpi=250)

 l1, = ax1.plot(np.linspace(start=0, stop=((len(self.avgScaleSegCP))

* self.fs_Scale), num=(len(self.avgScaleSegCP))),

 self.avgScaleSegCP[:], "r", linewidth=2)

 ax2 = ax1.twinx()

 l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSeg0CP)) *

self.fs_Arduino, num=(len(self.avgSeg0CP))),

 self.avgSeg0CP, "b", linewidth=2)

 #plt.axvline(x=x1[ppgPeak[0][0]])

 #plt.axvline(x=x1[bcgPeak[0][0]])

 #print("PPG peak:", x1[ppgPeak[0][0]], " and bcg peak: ",

x1[bcgPeak[0][0]])

 #fig.axes[1].get_yaxis().set_visible(False)

 #fig.axes[0].get_yaxis().set_visible(False)

 # plt.plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino,

 # num=(len(normData[i]))), normData[i], "b--")

 plt.grid(axis='x')

 plt.legend([l1, l2], ["Pressure averaged", "PPG average"],

loc="upper left",

 fontsize=14)

 #ax1.legend(loc='upper left', fontsize=10)

 ax1.set_xlabel("Time [seconds]", fontsize=16)

 ax1.set_ylabel("Scale normalized", fontsize=16)

 ax2.set_ylabel("Pressure normalized", fontsize=16)

 plt.title("Scale segments averaged vs pressure average - T1")

 plt.tight_layout()

 plt.title("Scale segments averaged vs pressure segments averaged -

T2")

 plt.xticks(np.arange(start=0, stop=((len(self.avgScaleSegCP)) *

self.fs_Scale), step=0.05))

 plt.show()

 def plotPPGAvgVsScaleAvgT3(self):

 #x1 = np.linspace(start=0, stop=((len(pressAvg)) *

self.fs_Arduino), num=(len(pressAvg)))

 fig, ax1 = plt.subplots(figsize=(16, 8), dpi=250)

118

 l1, = ax1.plot(np.linspace(start=0, stop=((len(self.avgScaleSegT3))

* self.fs_Scale), num=(len(self.avgScaleSegT3))),

 self.avgScaleSegT3[:], "r", linewidth=2)

 ax2 = ax1.twinx()

 l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSeg0T3)) *

self.fs_Arduino, num=(len(self.avgSeg0T3))),

 self.avgSeg0T3, "b", linewidth=2)

 #plt.axvline(x=x1[ppgPeak[0][0]])

 #plt.axvline(x=x1[bcgPeak[0][0]])

 #print("PPG peak:", x1[ppgPeak[0][0]], " and bcg peak: ",

x1[bcgPeak[0][0]])

 #fig.axes[1].get_yaxis().set_visible(False)

 #fig.axes[0].get_yaxis().set_visible(False)

 # plt.plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino,

 # num=(len(normData[i]))), normData[i], "b--")

 plt.grid(axis='x')

 plt.legend([l1, l2], ["Pressure averaged", "PPG average"],

loc="upper left",

 fontsize=14)

 #ax1.legend(loc='upper left', fontsize=10)

 ax1.set_xlabel("Time [seconds]", fontsize=16)

 ax1.set_ylabel("Scale normalized", fontsize=16)

 ax2.set_ylabel("Pressure normalized", fontsize=16)

 plt.title("Scale segments averaged vs pressure average - T1")

 plt.tight_layout()

 plt.title("Scale segments averaged vs pressure segments averaged -

T3")

 plt.xticks(np.arange(start=0, stop=((len(self.avgScaleSegT3)) *

self.fs_Scale), step=0.05))

 plt.show()

 def plotSegPPG(self, T1 = False, CP = False, T3 = False, savePlot =

False, ID = ""):

 #TODO:

 if T1:

 avgData = self.avgSegPPGT1

119

 normData = self.normSegPPGT1

 elif CP:

 avgData = self.avgSegPPGCP

 normData = self.normSegPPGCP

 elif T3:

 avgData = self.avgSegPPGT3

 normData = self.normSegPPGT3

 plt.figure(figsize=(32, 16), dpi=150)

 plt.plot(

 np.linspace(start=0, stop=((len(avgData)) * self.fs_Arduino),

num=(len(avgData))),

 avgData[:], "r", linewidth=4)

 for i in range(len(normData)):

 plt.plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino,

 num=(len(normData[i]))), normData[i], "b--

")

 plt.grid(axis='x')

 plt.title("PPG segmented and averaged")

 plt.xticks(np.arange(start=0, stop=((len(avgData)) *

self.fs_Arduino), step=0.05))

 if savePlot:

 if T1:

 timeStr = "T1"

 elif CP:

 timeStr = "CP"

 elif T3:

 timeStr = "T3"

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPPG_" + ID + "_" +

timeStr

 plt.savefig(saveName)

 #

plt.savefig("C:\\Users\\simon\\Documents\\Master\\Bilder\\filtered_segmente

d_with_PPG_right_foot_second_furthest_back_interpolated_from_shoes_2_0_with

_ppg__scale_03_04_2022_test1.png")

 plt.show()

120

 def plotPeaksVSPPGT1(self, savePlot = False, ID = ""):

 plt.figure(figsize=(32, 16), dpi=150)

plt.plot(self.timeArduino[self.T1TimeArduino[0]:self.T1TimeArduino[1]],

self.PPGFilt[self.T1TimeArduino[0]:self.T1TimeArduino[1]])

 for i in self.T1Peaks:

 plt.axvline(x=self.timeArduino[i])

 #Poplist contains a list of indices of wrong segments. Each segment

has atleast one peak wrongly identified next to it

 #The indice of a wrong segment corresponds to the indice of the

peak in front of the segment.

 #I dont know which peak is wrong....

 lastIndice = 0

 for j in range(len(self.popListT1)):

 try:

 if abs(self.popListT1[j] - self.popListT1[j + 1]) == 1:

plt.axvline(x=self.timeArduino[self.T1Peaks[self.popListT1[j+1]]],

color="r")

 else:

plt.axvline(x=self.timeArduino[self.T1Peaks[self.popListT1[j]]], color="r")

 except IndexError:

plt.axvline(x=self.timeArduino[self.T1Peaks[self.popListT1[j]]], color="r")

 plt.title("PPG and identified PPG peaks")

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPPG" + "_T1_" + ID

 plt.savefig(saveName)

 plt.show()

 def plotPeaksVSPPGCP(self, savePlot = False, ID = ""):

 plt.figure(figsize=(32, 16), dpi=150)

plt.plot(self.timeArduino[self.CPTimeArduino[0]:self.CPTimeArduino[1]],

 self.PPGFilt[self.CPTimeArduino[0]:self.CPTimeArduino[1]])

 for i in self.CPPeaks:

 plt.axvline(x=self.timeArduino[i])

121

 for j in range(len(self.popListCP)):

 try:

 if abs(self.popListCP[j] - self.popListCP[j + 1]) == 1:

plt.axvline(x=self.timeArduino[self.CPPeaks[self.popListCP[j+1]]],

color="r")

 else:

plt.axvline(x=self.timeArduino[self.CPPeaks[self.popListCP[j]]], color="r")

 except IndexError:

plt.axvline(x=self.timeArduino[self.CPPeaks[self.popListCP[j]]], color="r")

 plt.title("PPG and identified PPG peaks")

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPPG" + "_CP_" + ID

 plt.savefig(saveName)

 plt.show()

 def plotPeaksVSPPGT3(self, savePlot = False, ID = ""):

 plt.figure(figsize=(32, 16), dpi=150)

plt.plot(self.timeArduino[self.T3TimeArduino[0]:self.T3TimeArduino[1]],

self.PPGFilt[self.T3TimeArduino[0]:self.T3TimeArduino[1]])

 for i in self.T3Peaks:

 plt.axvline(x=self.timeArduino[i])

 for j in range(len(self.popListT3)):

 try:

 if abs(self.popListT3[j] - self.popListT3[j + 1]) == 1:

plt.axvline(x=self.timeArduino[self.T3Peaks[self.popListT3[j+1]]],

color="r")

 else:

plt.axvline(x=self.timeArduino[self.T3Peaks[self.popListT3[j]]], color="r")

 except IndexError:

plt.axvline(x=self.timeArduino[self.T3Peaks[self.popListT3[j]]], color="r")

122

 plt.title("PPG and identified PPG peaks")

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPPG" + "_CP_" + ID

 plt.savefig(saveName)

 plt.show()

 def plotRightFootT1(self, savePlot = False, ID = ""):

 fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16),

dpi=150)

 fig.suptitle('Right foot sensors - T1', fontsize=24)

 ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg0T1)) *

self.fs_Arduino), num=(len(self.avgSeg0T1))), self.avgSeg0T1)

 ax1.set_title("Furthest back", fontsize=16)

 ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg1T1)) *

self.fs_Arduino), num=(len(self.avgSeg1T1))), self.avgSeg1T1)

 ax2.set_title("Second furthest back", fontsize=16)

 ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg3T1)) *

self.fs_Arduino), num=(len(self.avgSeg3T1))), self.avgSeg3T1)

 ax3.set_title("Middle", fontsize=16)

 ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg5T1)) *

self.fs_Arduino), num=(len(self.avgSeg5T1))), self.avgSeg5T1)

 ax4.set_title("Left forward", fontsize=16)

 ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg2T1)) *

self.fs_Arduino), num=(len(self.avgSeg2T1))), self.avgSeg2T1)

 ax5.set_title("Right forward", fontsize=16)

 fig.tight_layout()

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\RightFootT1_" + ID

 plt.savefig(saveName)

 plt.show()

 def plotLeftFootT1(self, savePlot=False, ID =""):

 fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16),

dpi=150)

 fig.suptitle('Left foot sensors - T1', fontsize=24)

123

 ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg9T1)) *

self.fs_Arduino), num=(len(self.avgSeg9T1))), self.avgSeg9T1)

 ax1.set_title("Furthest back", fontsize=16)

 ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg8T1)) *

self.fs_Arduino), num=(len(self.avgSeg8T1))), self.avgSeg8T1)

 ax2.set_title("Second furthest back", fontsize=16)

 ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg6T1)) *

self.fs_Arduino), num=(len(self.avgSeg6T1))), self.avgSeg6T1)

 ax3.set_title("Middle", fontsize=16)

 ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg7T1)) *

self.fs_Arduino), num=(len(self.avgSeg7T1))), self.avgSeg7T1)

 ax4.set_title("Left forward", fontsize=16)

 ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg4T1)) *

self.fs_Arduino), num=(len(self.avgSeg4T1))), self.avgSeg4T1)

 ax5.set_title("Right forward", fontsize=16)

 fig.tight_layout()

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\LeftFootT1_" + ID

 plt.savefig(saveName)

 plt.show()

 def plotRightFootCP(self, savePlot = False, ID=""):

 fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16),

dpi=150)

 fig.suptitle('Right foot sensors - Cold pressor', fontsize=24)

 ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg0CP)) *

self.fs_Arduino), num=(len(self.avgSeg0CP))), self.avgSeg0CP)

 ax1.set_title("Furthest back", fontsize=16)

 ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg1CP)) *

self.fs_Arduino), num=(len(self.avgSeg1CP))), self.avgSeg1CP)

 ax2.set_title("Second furthest back", fontsize=16)

 ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg3CP)) *

self.fs_Arduino), num=(len(self.avgSeg3CP))), self.avgSeg3CP)

 ax3.set_title("Middle", fontsize=16)

 ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg5CP)) *

self.fs_Arduino), num=(len(self.avgSeg5CP))), self.avgSeg5CP)

124

 ax4.set_title("Left forward", fontsize=16)

 ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg2CP)) *

self.fs_Arduino), num=(len(self.avgSeg2CP))), self.avgSeg2CP)

 ax5.set_title("Right forward", fontsize=16)

 fig.tight_layout()

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\RightFootCP_" + ID

 plt.savefig(saveName)

 plt.show()

 def plotLeftFootCP(self, savePlot=False, ID = ""):

 fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16),

dpi=150)

 fig.suptitle('Left foot sensors - Cold pressor', fontsize=24)

 ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg9CP)) *

self.fs_Arduino), num=(len(self.avgSeg9CP))), self.avgSeg9CP)

 ax1.set_title("Furthest back", fontsize=16)

 ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg8CP)) *

self.fs_Arduino), num=(len(self.avgSeg8CP))), self.avgSeg8CP)

 ax2.set_title("Second furthest back", fontsize=16)

 ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg6CP)) *

self.fs_Arduino), num=(len(self.avgSeg6CP))), self.avgSeg6CP)

 ax3.set_title("Middle", fontsize=16)

 ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg7CP)) *

self.fs_Arduino), num=(len(self.avgSeg7CP))), self.avgSeg7CP)

 ax4.set_title("Left forward", fontsize=16)

 ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg4CP)) *

self.fs_Arduino), num=(len(self.avgSeg4CP))), self.avgSeg4CP)

 ax5.set_title("Right forward", fontsize=16)

 fig.tight_layout()

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\LeftFootCP_" + ID

 plt.savefig(saveName)

125

 plt.show()

 def plotRightFootT3(self, savePlot=False, ID=""):

 fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16),

dpi=150)

 fig.suptitle('Right foot sensors - T3', fontsize=24)

 ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg0T3)) *

self.fs_Arduino), num=(len(self.avgSeg0T3))), self.avgSeg0T3)

 ax1.set_title("Furthest back", fontsize=16)

 ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg1T3)) *

self.fs_Arduino), num=(len(self.avgSeg1T3))), self.avgSeg1T3)

 ax2.set_title("Second furthest back", fontsize=16)

 ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg3T3)) *

self.fs_Arduino), num=(len(self.avgSeg3T3))), self.avgSeg3T3)

 ax3.set_title("Middle", fontsize=16)

 ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg5T3)) *

self.fs_Arduino), num=(len(self.avgSeg5T3))), self.avgSeg5T3)

 ax4.set_title("Left forward", fontsize=16)

 ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg2T3)) *

self.fs_Arduino), num=(len(self.avgSeg2T3))), self.avgSeg2T3)

 ax5.set_title("Right forward", fontsize=16)

 fig.tight_layout()

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\RightFootT3_" + ID

 plt.savefig(saveName)

 plt.show()

 def plotLeftFootT3(self, savePlot=False, ID=""):

 fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16),

dpi=150)

 fig.suptitle('Left foot sensors', fontsize=24)

 ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg9T3)) *

self.fs_Arduino), num=(len(self.avgSeg9T3))), self.avgSeg9T3)

 ax1.set_title("Furthest back", fontsize=16)

126

 ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg8T3)) *

self.fs_Arduino), num=(len(self.avgSeg8T3))), self.avgSeg8T3)

 ax2.set_title("Second furthest back", fontsize=16)

 ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg6T3)) *

self.fs_Arduino), num=(len(self.avgSeg6T3))), self.avgSeg6T3)

 ax3.set_title("Middle", fontsize=16)

 ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg7T3)) *

self.fs_Arduino), num=(len(self.avgSeg7T3))), self.avgSeg7T3)

 ax4.set_title("Left forward", fontsize=16)

 ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg4T3)) *

self.fs_Arduino), num=(len(self.avgSeg4T3))), self.avgSeg4T3)

 ax5.set_title("Right forward", fontsize=16)

 fig.tight_layout()

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\LeftFootT3_" + ID

 plt.savefig(saveName)

 plt.show()

 def plotLeftAndRightFootT1(self): # Not finished.

 fig, axs = plt.sublpots(5, 2, figsize=(16, 32), dpi = 150)

 fig.suptitle('Left and right foot pressure', fontsize=24)

 #Right foot sensors

 axs[0, 0].plot(np.linspace(start=0, stop=((len(self.avgSeg0T1)) *

self.fs_Arduino), num=(len(self.avgSeg0T1))), self.avgSeg0T1)

 axs[0, 0].set_title("Furthest back", fontsize=16)

 axs[1, 0].plot(np.linspace(start=0, stop=((len(self.avgSeg1T3)) *

self.fs_Arduino), num=(len(self.avgSeg1T3))),

 self.avgSeg1T3)

 axs[1, 0].set_title("Second furthest back", fontsize=16)

 axs[2, 0].plot(np.linspace(start=0, stop=((len(self.avgSeg3T3)) *

self.fs_Arduino), num=(len(self.avgSeg3T3))),

 self.avgSeg3T3)

 axs[2, 0].set_title("Middle", fontsize=16)

 axs[3, 0].plot(np.linspace(start=0, stop=((len(self.avgSeg5T3)) *

self.fs_Arduino), num=(len(self.avgSeg5T3))),

 self.avgSeg5T3)

 axs[3, 0].set_title("Left forward", fontsize=16)

127

 axs[4, 0].plot(np.linspace(start=0, stop=((len(self.avgSeg2T3)) *

self.fs_Arduino), num=(len(self.avgSeg2T3))),

 self.avgSeg2T3)

 axs[4, 0].set_title("Right forward", fontsize=16)

 fig.tight_layout()

 def plotPPGavgVsPressavgT1(self, pressSelect, savePlot = False): #Not

finished

 if pressSelect == 0:

 pressAvg = self.avgSeg0T1

 if pressSelect == 1:

 pressAvg = self.avgSeg1T1

 if pressSelect == 2:

 pressAvg = self.avgSeg2T1

 if pressSelect == 3:

 pressAvg = self.avgSeg3T1

 if pressSelect == 4:

 pressAvg = self.avgSeg4T1

 if pressSelect == 5:

 pressAvg = self.avgSeg5T1

 if pressSelect == 6:

 pressAvg = self.avgSeg6T1

 if pressSelect == 7:

 pressAvg = self.avgSeg7T1

 if pressSelect == 8:

 pressAvg = self.avgSeg8T1

 if pressSelect == 9:

 pressAvg = self.avgSeg9T1

 ppgPeak = scipy.signal.find_peaks(self.avgSegPPGT1, height=0.5)#,

distance=1/self.fs_Arduino) #Find the peak within 1 second

 bcgPeak = scipy.signal.find_peaks(pressAvg, height=0.6)

 x1 = np.linspace(start=0, stop=((len(pressAvg)) * self.fs_Arduino),

num=(len(pressAvg)))

 fig, ax1 = plt.subplots(figsize=(16, 8), dpi = 250)

128

 l1, = ax1.plot(np.linspace(start=0, stop=((len(pressAvg)) *

self.fs_Arduino), num=(len(pressAvg))),

 pressAvg[:], "r", linewidth=2)

 ax2 = ax1.twinx()

 l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSegPPGT1)) *

self.fs_Arduino, num=(len(self.avgSegPPGT1))),

 self.avgSegPPGT1, "b", linewidth=2)

 plt.axvline(x=x1[ppgPeak[0][0]])

 plt.axvline(x=x1[bcgPeak[0][1]], color="r")

 fig.axes[1].get_yaxis().set_visible(False)

 fig.axes[0].get_yaxis().set_visible(False)

 ax1.set_ylabel("Pressure normalized", fontsize=18)

 ax2.set_ylabel("PPG normalized", fontsize=18)

 ax1.set_xlabel("Time [seconds]", fontsize=18)

 plt.legend([l1, l2], ["Pressure segments averaged", "PPG segments

averaged"], loc="upper right",

 fontsize=14)

 print("PPG peak:", x1[ppgPeak[0][1]], " and bcg peak: ",

x1[bcgPeak[0][1]])

 #fig.axes[1].get_yaxis().set_visible(False)

 #fig.axes[0].get_yaxis().set_visible(False)

 #plt.plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino,

 # num=(len(normData[i]))), normData[i], "b-

-")

 #plt.legend([l1, l2], ["Pressure averaged", "PPG average"],

loc="upper left",

 # fontsize=10)

 #ax1.legend(loc='upper left', fontsize=10)

 #ax1.set_xlabel("Time [seconds]", fontsize=16)

 plt.grid(axis='x')

 plt.title("Pressure segments averaged vs PPG segments averaged -

T1")

 plt.xticks(np.arange(start=0, stop=((len(self.avgSeg0T1)) *

self.fs_Arduino), step=0.05))

 plt.show()

 def plotPPGavgVsPressavgCP(self, pressSelect, savePlot = False): #Not

finished

129

 if pressSelect == 0:

 pressAvg = self.avgSeg0CP

 if pressSelect == 1:

 pressAvg = self.avgSeg1CP

 if pressSelect == 2:

 pressAvg = self.avgSeg2CP

 if pressSelect == 3:

 pressAvg = self.avgSeg3CP

 if pressSelect == 4:

 pressAvg = self.avgSeg4CP

 if pressSelect == 5:

 pressAvg = self.avgSeg5CP

 if pressSelect == 6:

 pressAvg = self.avgSeg6CP

 if pressSelect == 7:

 pressAvg = self.avgSeg7CP

 if pressSelect == 8:

 pressAvg = self.avgSeg8CP

 if pressSelect == 9:

 pressAvg = self.avgSeg9CP

 ppgPeak = scipy.signal.find_peaks(self.avgSegPPGCP, height=0.5)#,

distance=1/self.fs_Arduino) #Find the peak within 1 second

 bcgPeak = scipy.signal.find_peaks(pressAvg, height=0.6)

 x1 = np.linspace(start=0, stop=((len(pressAvg)) * self.fs_Arduino),

num=(len(pressAvg)))

 fig, ax1 = plt.subplots(figsize=(16, 8), dpi = 250)

 l1, = ax1.plot(np.linspace(start=0, stop=((len(pressAvg)) *

self.fs_Arduino), num=(len(pressAvg))),

 pressAvg[:], "r", linewidth=2)

 ax2 = ax1.twinx()

 l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSegPPGCP)) *

self.fs_Arduino, num=(len(self.avgSegPPGCP))),

 self.avgSegPPGCP, "b", linewidth=2)

 fig.axes[1].get_yaxis().set_visible(False)

130

 fig.axes[0].get_yaxis().set_visible(False)

 ax1.set_xlabel("Time [seconds]", fontsize=18)

 plt.legend([l1, l2], ["Pressure segments averaged", "PPG segments

averaged"], loc="upper right",

 fontsize=14)

 plt.axvline(x=x1[ppgPeak[0][0]])

 plt.axvline(x=x1[bcgPeak[0][1]], color = "r")

 ax1.set_ylabel("Pressure normalized", fontsize=18)

 ax2.set_ylabel("PPG normalized", fontsize=18)

 print("PPG peak:", x1[ppgPeak[0][0]], " and bcg peak: ",

x1[bcgPeak[0][1]])

 #fig.axes[1].get_yaxis().set_visible(False)

 #plt.plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino,

 # num=(len(normData[i]))), normData[i], "b-

-")

 plt.grid(axis='x')

 plt.title("Pressure segments averaged vs PPG segments averaged -

T2")

 plt.xticks(np.arange(start=0, stop=((len(self.avgSeg0CP)) *

self.fs_Arduino), step=0.05))

 plt.show()

 def plotPPGavgVsPressavgT3(self, pressSelect, savePlot = False): #Not

finished

 if pressSelect == 0:

 pressAvg = self.avgSeg0T3

 if pressSelect == 1:

 pressAvg = self.avgSeg1T3

 if pressSelect == 2:

 pressAvg = self.avgSeg2T3

 if pressSelect == 3:

 pressAvg = self.avgSeg3T3

 if pressSelect == 4:

 pressAvg = self.avgSeg4T3

 if pressSelect == 5:

131

 pressAvg = self.avgSeg5T3

 if pressSelect == 6:

 pressAvg = self.avgSeg6T3

 if pressSelect == 7:

 pressAvg = self.avgSeg7T3

 if pressSelect == 8:

 pressAvg = self.avgSeg8T3

 if pressSelect == 9:

 pressAvg = self.avgSeg9T3

 ppgPeak = scipy.signal.find_peaks(self.avgSegPPGT3, height=0.5)#,

distance=1/self.fs_Arduino) #Find the peak within 1 second

 bcgPeak = scipy.signal.find_peaks(pressAvg, height=0.6)

 x1 = np.linspace(start=0, stop=((len(pressAvg)) * self.fs_Arduino),

num=(len(pressAvg)))

 fig, ax1 = plt.subplots(figsize=(16, 8), dpi = 250)

 l1, = ax1.plot(np.linspace(start=0, stop=((len(pressAvg)) *

self.fs_Arduino), num=(len(pressAvg))),

 pressAvg[:], "r", linewidth=2)

 ax2 = ax1.twinx()

 l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSegPPGT3)) *

self.fs_Arduino, num=(len(self.avgSegPPGT3))),

 self.avgSegPPGT3, "b", linewidth=2)

 fig.axes[1].get_yaxis().set_visible(False)

 fig.axes[0].get_yaxis().set_visible(False)

 plt.axvline(x=x1[ppgPeak[0][0]])

 plt.axvline(x=x1[bcgPeak[0][1]], color = "r")

 ax1.set_ylabel("Pressure normalized", fontsize=18)

 ax2.set_ylabel("PPG normalized", fontsize=18)

 ax1.set_xlabel("Time [seconds]", fontsize=18)

 plt.legend([l1, l2], ["Pressure segments averaged", "PPG segments

averaged"], loc="upper right",

 fontsize=14)

 print("PPG peak:", x1[ppgPeak[0][1]], " and bcg peak: ",

x1[bcgPeak[0][1]])

 #fig.axes[1].get_yaxis().set_visible(False)

 #plt.plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino,

132

 # num=(len(normData[i]))), normData[i], "b-

-")

 plt.grid(axis='x')

 plt.title("Pressure segments averaged vs PPG segments averaged -

T3")

 plt.xticks(np.arange(start=0, stop=((len(self.avgSeg0T3)) *

self.fs_Arduino), step=0.05))

 plt.show()

 def plotPressureWithPPG(self, ID, T1 = False, CP = False, T3 = False,

savePlot = False):

 if T1:

 pressSegs = [self.normSeg0T1, self.normSeg1T1, self.normSeg2T1,

self.normSeg3T1, self.normSeg4T1, self.normSeg5T1,

 self.normSeg6T1, self.normSeg7T1, self.normSeg8T1,

self.normSeg9T1]

 pressAvgs = [self.avgSeg0T1, self.avgSeg1T1, self.avgSeg2T1,

self.avgSeg3T1, self.avgSeg4T1, self.avgSeg5T1,

 self.avgSeg6T1, self.avgSeg7T1, self.avgSeg8T1,

self.avgSeg9T1]

 ppgAvg = self.avgSegPPGT1

 timeStr = "T1"

 elif CP:

 pressSegs = [self.normSeg0CP, self.normSeg1CP, self.normSeg2CP,

self.normSeg3CP, self.normSeg4CP, self.normSeg5CP,

 self.normSeg6CP, self.normSeg7CP, self.normSeg8CP,

self.normSeg9CP]

 pressAvgs = [self.avgSeg0CP, self.avgSeg1CP, self.avgSeg2CP,

self.avgSeg3CP, self.avgSeg4CP, self.avgSeg5CP,

 self.avgSeg6CP, self.avgSeg7CP, self.avgSeg8CP,

self.avgSeg9CP]

 ppgAvg = self.avgSegPPGCP

 timeStr = "T2"

 elif T3:

 pressSegs = [self.normSeg0T3, self.normSeg1T3, self.normSeg2T3,

self.normSeg3T3, self.normSeg4T3, self.normSeg5T3,

 self.normSeg6T3, self.normSeg7T3, self.normSeg8T3,

self.normSeg9T3]

 pressAvgs = [self.avgSeg0T3, self.avgSeg1T3, self.avgSeg2T3,

self.avgSeg3T3, self.avgSeg4T3, self.avgSeg5T3,

 self.avgSeg6T3, self.avgSeg7T3, self.avgSeg8T3,

self.avgSeg9T3]

 ppgAvg = self.avgSegPPGT3

133

 timeStr = "T3"

 posList = ["right 1", "right 2", "right 5", "right 3", "left 5",

"right 4", "left 3", "left 4", "left 2", "left 1"]

 #self.Pressure0 = dataArduino.Pressure0.to_numpy() #Right foot

furthest back

 #self.Pressure1 = dataArduino.Pressure1.to_numpy() #Right foot

second furthest back

 #self.Pressure2 = dataArduino.Pressure2.to_numpy() #Right foot

forward to the right

 #self.Pressure3 = dataArduino.Pressure3.to_numpy() #Right foot

middle

 #self.Pressure4 = dataArduino.Pressure4.to_numpy() #Left foot

forward right

 #self.Pressure5 = dataArduino.Pressure5.to_numpy() #Right foot

forward left

 #self.Pressure6 = dataArduino.Pressure6.to_numpy() #Left foot

middle

 #self.Pressure7 = dataArduino.Pressure7.to_numpy() #Left foot

forward left

 #self.Pressure8 = dataArduino.Pressure8.to_numpy() #Left foot

second furthest back

 #self.Pressure9 = dataArduino.Pressure9.to_numpy() #Left foot

furthest back

 #Testing something here

 for i in range(len(pressSegs)):

 fig, (ax1, ax2) = plt.subplots(2, figsize=(12, 8), dpi=250)

 l1, = ax1.plot(np.linspace(start=0, stop=((len(ppgAvg)) *

self.fs_Arduino), num=(len(ppgAvg))),

 ppgAvg[:], "r", linewidth=4, label = "PPG Average")

 ax1.set_title("PPG average based on segmentation", fontsize=24)

 l2, = ax2.plot(np.linspace(start=0, stop=((len(pressAvgs[i])) *

self.fs_Arduino), num=(len(pressAvgs[i]))),

 pressAvgs[i][:], "r", linewidth=4)

 # plt.plot(

 # np.linspace(start=0, stop=((len(avgData)) * self.fs_Arduino),

num=(len(avgData))),

 # avgData[:], "r", linewidth=4)

 axisList = []

134

 #ax3 = ax2.twinx() # If i dont twin i force everything onto the

same axes

 for j in range(len(pressSegs[i])):

 #axisList.append(ax1.twinx())

 #axisList[j].plot(np.linspace(start=0,

stop=(len(pressSegs[i][j])) * self.fs_Arduino, num=(len(pressSegs[i][j]))),

 # pressSegs[i][j], "b--")

 #fig.axes[j].get_yaxis().set_visible(False)

 l3, = ax2.plot(np.linspace(start=0,

stop=(len(pressSegs[i][j])) * self.fs_Arduino, num=(len(pressSegs[i][j]))),

 pressSegs[i][j], "b--", linewidth=1)

 # plt.plot(np.linspace(start=0, stop=(len(normData[i])) *

self.fs_Arduino,

 # num=(len(normData[i]))), normData[i], "b-

-")

 plt.grid(axis='x')

 ax2.set_title("Pressure segmented and averaged - " + "position

" + posList[i], fontsize=24)

 plt.xticks(np.arange(start=0, stop=((len(pressAvgs[i])) *

self.fs_Arduino), step=0.1))

 plt.legend([l2, l3], ["Average pressure normalized", "Pressure

segments normalized"], loc="upper right", fontsize=14)

 ax1.legend(loc='upper right', fontsize = 14)

 ax1.set_xlabel("Time [seconds]", fontsize = 18)

 ax2.set_xlabel("Time [seconds]", fontsize = 18)

 fig.tight_layout()

 if T1:

 tp = "T1"

 elif CP:

 tp = "CP"

 elif T3:

 tp = "T3"

 if savePlot:

 saveName =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots2\\PressAndPPG_Press" +

str(i) + "_" + tp + "_" + ID

 plt.savefig(saveName)

 #plt.show()

135

#Testing functions:

#timeStampsT1_2170 = ["04:05:2022:14:26:00:0", "04:05:2022:14:26:15:0"]

#timeStampsCP_2170 = ["04:05:2022:14:27:40:0", "04:05:2022:14:27:55:0"]

#timeStampsT3_2170 = ["04:05:2022:14:33:00:0", "04:05:2022:14:33:15:0"]

#dataLabChartPath_2170 =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\2170\\2170_Labchart_Raw_Text.

txt"

#dataArduinoPath_2170 =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\2170\\2170_Arduino_Raw_4.csv"

#interestingDataList = ["Time", "HC_Systolic", "Active_Cuff",

"Finger_Pressure_HC"]

#nameList = ["Time", "Date", "Finger_Pressure", "Finger_Pressure_HC",

"HCU_Pressure", "Systolic", "HC_Systolic",

"Mean_Arterial", "HC_Mean_Arterial", "Diastolic",

"HC_Diastolic", "HR", "Interbeat_Interval", "Active_Cuff",

"Cuff_Countdown", "Autocal_Quality", "Autocal_Countdown",

"Comments"]

#nameListArduino = ["timestamp", "Time", "PPG", "Scale", "Pressure0",

"Pressure1", "Pressure2", "Pressure3", "Pressure4"

, "Pressure5", "Pressure6", "Pressure7", "Pressure8",

"Pressure9"]

#Test2170 = Measurement(timeStampsT1_2170, timeStampsCP_2170,

timeStampsT3_2170, dataArduinoPath_2170, dataLabChartPath_2170,

nameListArduino, nameList)

#Test2170.loadChartData()

#Test2170.SetTimeIndices()

#Test2170.averageFingerPressure()

#Test2170.plotAvgFingPress()

#Test2170.findPPGPeaks(threshold=500, timeBetween=0.5)

#Test2170.organizePeaks()

#Test2170.filterPressure(butterLevel=12, passBand=[3,10])

#Test2170.segmentPressure(ddPPG=False)

#Test2170.segmentPPG(ddPPG=False)

#Test2170.plotSegPress(pressSelect=1, T1 = True)

#Test2170.plotSegPPG(T1 = True)

#Test2170.plotPeaksVSPPGT1()

#Test2170.plotRightFoot()

#print(Test2170.hz_Arduino)

import numpy as np

136

from matplotlib import pyplot as plt

import pandas as pd

import scipy.interpolate as interpolate

from scipy.signal import filtfilt, butter, detrend, savgol_filter

import pywt

from sklearn import preprocessing

import scipy

import data_processing_functions as dpf

import Processing_Test_Results_V3 as ptr

import datetime

import seaborn as sns

interestingDataList = ["Time", "HC_Systolic", "Active_Cuff",

"Finger_Pressure_HC"]

nameList = ["Time", "Date", "Finger_Pressure", "Finger_Pressure_HC",

"HCU_Pressure", "Systolic", "HC_Systolic",

 "Mean_Arterial", "HC_Mean_Arterial", "Diastolic",

"HC_Diastolic", "HR", "Interbeat_Interval", "Active_Cuff",

 "Cuff_Countdown", "Autocal_Quality", "Autocal_Countdown",

"Comments"]

nameListArduino = ["timestamp", "Time", "PPG", "Scale", "Pressure0",

"Pressure1", "Pressure2", "Pressure3", "Pressure4"

 , "Pressure5", "Pressure6", "Pressure7", "Pressure8",

"Pressure9"]

dataLabChartPath_2832 =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\2832\\2832_Labchart_Raw_Text.

txt"

dataArduinoPath_2832 =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\2832\\2832_Arduino_Raw_2.csv"

timeStampsT1_2832 = ["04:05:2022:13:23:30:0", "04:05:2022:13:24:05:0"]

timeStampsCP_2832 = ["04:05:2022:13:25:45:0", "04:05:2022:13:26:20:0"]

timeStampsT3_2832 = ["04:05:2022:13:30:00:0", "04:05:2022:13:30:35:0"]

Test2832 = ptr.Measurement(timeStampsT1_2832, timeStampsCP_2832,

timeStampsT3_2832, dataArduinoPath_2832,

 dataLabChartPath_2832, nameListArduino,

nameList)

Test2832.loadChartData()

Test2832.SetTimeIndices()

137

Test2832.averageFingerPressure()

Test2832.findPPGPeaks(threshold=500, timeBetween=0.5)

Test2832.organizePeaks()

Test2832.filterPressure(butterLevel=12, passBand=[3,10])

Test2832.segmentPressure(ddPPG=False)

Test2832.segmentPPG(ddPPG=False)

Test2832.plotAvgFingPress()

#Test2832.plotSegPressV2(pressSelect=3, T1 = True, savePlot=True,

ID="T1_2832")

#Test2832.plotAllPressureSegAndAvg(ID="_T1_2832", T1 = True, CP = False, T3

= False, savePlot = True)

Test2832.plotPressureWithPPG(ID="2832", T1 = True, CP = False, T3 = False,

savePlot = True)

Test2832.plotSegPPG(T1 = True)

Test2832.plotPeaksVSPPGT1()

#Test2832.plotSegPressV2(pressSelect=1, CP = True, savePlot=True,

ID="CP_2832")

#Test2832.plotAllPressureSegAndAvg(ID="_CP_2832", T1 = False, CP = True, T3

= False, savePlot = True)

Test2832.plotPressureWithPPG(ID="2832", T1 = False, CP = True, T3 = False,

savePlot = True)

Test2832.plotSegPPG(CP = True)

Test2832.plotPeaksVSPPGCP()

#Test2832.plotSegPressV2(pressSelect=1, T3 = True, savePlot=True,

ID="T3_2832")

#Test2832.plotAllPressureSegAndAvg(ID="_T3_2832", T1 = False, CP = False,

T3 = True, savePlot = True)

Test2832.plotPressureWithPPG(ID="2832", T1 = False, CP = False, T3 = True,

savePlot = True)

Test2832.plotSegPPG(T3 = True)

Test2832.plotPeaksVSPPGT3()

#Test2832.plotRightFootT1(savePlot=True, ID="2832")

#Test2832.plotLeftFootT1(savePlot=True, ID="2832")

Test2832.plotPPGavgVsPressavgT1(pressSelect = 8 , savePlot = False)

138

Test2832.plotPPGavgVsPressavgCP(pressSelect = 8 , savePlot = False)

Test2832.plotPPGavgVsPressavgT3(pressSelect = 8 , savePlot = False)

#Computing the average pressure for each section

T1Avg =

np.average(Test2832.HCSystolicFiltered[Test2832.T1TimeChart[0]:Test2832.T1T

imeChart[1]])

T2Avg =

np.average(Test2832.HCSystolicFiltered[Test2832.CPTimeChart[0]:Test2832.CPT

imeChart[1]])

T3Avg =

np.average(Test2832.HCSystolicFiltered[Test2832.T3TimeChart[0]:Test2832.T3T

imeChart[1]])

print("T1 avgpress: ", T1Avg, "\n", "T2 avgpress: ", T2Avg, "\n", "T3

avgpress: ", T3Avg)

Test2832.segmentScale()

Test2832.plotSegScaleT1()

Test2832.plotSegScaleCP()

Test2832.plotSegScaleT3()

Test2832.plotPPGAvgVsScaleAvgT1()

Test2832.plotPPGAvgVsScaleAvgCP()

Test2832.plotPPGAvgVsScaleAvgT3()

#Plotting scale vs PPG

pressAvg = Test2832.avgSeg8T1

fig, ax1 = plt.subplots(figsize=(16, 8), dpi = 250)

l1, =ax1.plot(np.linspace(start=0, stop=((len(pressAvg)) *

Test2832.fs_Arduino), num=(len(pressAvg))),

 pressAvg[:], "r", linewidth=2)

ax2 = ax1.twinx()

l2, = ax2.plot(np.linspace(start=0, stop=(len(Test2832.avgScaleSegT1)) *

Test2832.fs_Scale, num=(len(Test2832.avgScaleSegT1))),

 Test2832.avgScaleSegT1, "b", linewidth=2)

ax3 = ax1.twinx()

l3, = ax2.plot(np.linspace(start=0, stop=(len(Test2832.avgSegPPGT1)) *

Test2832.fs_Arduino, num=(len(Test2832.avgSegPPGT1))),

 Test2832.avgSegPPGT1, "g", linewidth=2)

plt.grid(axis='x')

139

plt.legend([l1, l2, l3],["Trykksensor", "Vekt", "PPG"], loc="upper left",

fontsize=16)

plt.show()

Participant 4116

dataLabChartPath_4116 =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\4116\\4116_Labchart_Raw_Text.

txt"

dataArduinoPath_4116 =

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\4116\\4116_Arduino_Raw_2.csv"

timeStampsT1_4116 = ["04:05:2022:10:20:00:0", "04:05:2022:10:20:25:0"]

timeStampsCP_4116 = ["04:05:2022:10:22:00:0", "04:05:2022:10:22:25:0"]

timeStampsT3_4116 = ["04:05:2022:10:26:15:0", "04:05:2022:10:26:40:0"]

Test4116 = ptr.Measurement(timeStampsT1_4116, timeStampsCP_4116,

timeStampsT3_4116, dataArduinoPath_4116,

 dataLabChartPath_4116, nameListArduino,

nameList)

Test4116.loadChartData()

Test4116.SetTimeIndices()

Test4116.averageFingerPressure()

Test4116.findPPGPeaks(threshold=500, timeBetween=0.5)

Test4116.organizePeaks()

Test4116.filterPressure(butterLevel=12, passBand=[3,10])

Test4116.segmentPressure(ddPPG=False)

Test4116.segmentPPG(ddPPG=False)

Test4116.plotAvgFingPress()

#Test4116.plotSegPressV2(pressSelect=3, T1 = True, savePlot=True,

ID="T1_4116")

#Test4116.plotAllPressureSegAndAvg(ID="_T1_4116", T1 = True, CP = False, T3

= False, savePlot = True)

Test4116.plotPressureWithPPG(ID="4116", T1 = True, CP = False, T3 = False,

savePlot = True)

Test4116.plotSegPPG(T1 = True)

Test4116.plotPeaksVSPPGT1()

140

#Test4116.plotSegPressV2(pressSelect=1, CP = True, savePlot=True,

ID="CP_4116")

#Test4116.plotAllPressureSegAndAvg(ID="_CP_4116", T1 = False, CP = True, T3

= False, savePlot = True)

Test4116.plotPressureWithPPG(ID="4116", T1 = False, CP = True, T3 = False,

savePlot = True)

Test4116.plotSegPPG(CP = True)

Test4116.plotPeaksVSPPGCP()

#Test4116.plotSegPressV2(pressSelect=1, T3 = True, savePlot=True,

ID="T3_4116")

#Test4116.plotAllPressureSegAndAvg(ID="_T3_4116", T1 = False, CP = False,

T3 = True, savePlot = True)

Test4116.plotPressureWithPPG(ID="4116", T1 = False, CP = False, T3 = True,

savePlot = True)

Test4116.plotSegPPG(T3 = True)

Test4116.plotPeaksVSPPGT3()

#Test4116.plotRightFootT1(savePlot=True, ID="4116")

#Test4116.plotLeftFootT1(savePlot=True, ID="4116")

#the best and consistent for T1, T2, and T3 was R2 probably? L1 and L2 is

also a good choice

Test4116.plotPPGavgVsPressavgT1(pressSelect = 0 , savePlot = False)

Test4116.plotPPGavgVsPressavgCP(pressSelect = 0 , savePlot = False)

Test4116.plotPPGavgVsPressavgT3(pressSelect = 0 , savePlot = False)

#Computing the average pressure for each section

T1Avg =

np.average(Test4116.HCSystolicFiltered[Test4116.T1TimeChart[0]:Test4116.T1T

imeChart[1]])

T2Avg =

np.average(Test4116.HCSystolicFiltered[Test4116.CPTimeChart[0]:Test4116.CPT

imeChart[1]])

T3Avg =

np.average(Test4116.HCSystolicFiltered[Test4116.T3TimeChart[0]:Test4116.T3T

imeChart[1]])

print("T1 avgpress: ", T1Avg, "\n", "T2 avgpress: ", T2Avg, "\n", "T3

avgpress: ", T3Avg)

Test4116.segmentScale()

141

Test4116.plotSegScaleT1()

Test4116.plotSegScaleCP()

Test4116.plotSegScaleT3()

Test4116.plotPPGAvgVsScaleAvgT1()

Test4116.plotPPGAvgVsScaleAvgCP()

Test4116.plotPPGAvgVsScaleAvgT3()

Other stuff

strList = ["T1", "T2", "T3"]

pttT1_2832 = 0.437 - 0.498

pttT2_2832 = 0.403 - 0.498

pttT3_2832 = 0.504 - 0.498

ptt_2832 = [pttT1_2832, pttT2_2832, pttT3_2832]

HC_2832 = [149, 166, 134]

sns.set()

pttT1_4116 = 0.481 - 0.297

pttT2_4116 = 0.456 - 0.297

pttT3_4116 = 0.487 - 0.297

ptt_4116 = [pttT1_4116, pttT2_4116, pttT3_4116]

HC_4116 = [100, 151, 101]

fig, ax1 = plt.subplots(figsize= (4, 3), dpi=250)

l1, = ax1.plot(strList, ptt_2832, "--rx")

ax2 = ax1.twinx()

l2, = ax2.plot(strList, HC_2832, "--bx")

ax1.set_ylabel("Pulse Travel Time", fontsize=10)

ax2.set_ylabel("Blood pressure", fontsize=10)

ax1.set_xlabel("Time [seconds]", fontsize=10)

plt.legend([l1, l2],["Pulse travel time", "Systolic blood pressure"],

loc="upper left", fontsize=5)

plt.show()

fig, ax1 = plt.subplots(figsize= (4, 3), dpi=250)

142

l1, = ax1.plot(strList, ptt_4116, "--rx")

ax2 = ax1.twinx()

l2, = ax2.plot(strList, HC_4116, "--bx")

ax1.set_ylabel("Pulse Travel Time", fontsize=10)

ax2.set_ylabel("Blood pressure", fontsize=10)

ax1.set_xlabel("Time [seconds]", fontsize=10)

plt.legend([l1, l2],["Pulse travel time", "Systolic blood pressure"],

loc="upper left", fontsize=5)

plt.show()

dataArduinoPath =

"C:\\Users\\simon\\Documents\\Master\\water_filled_bag_test1_01_03_2022.csv

"

dataArduino = pd.read_csv(dataArduinoPath, sep=",")

dataArduino

Time = (dataArduino["Time"].to_numpy())/10**3

Pressure = dataArduino["Pressure"].to_numpy()

fs = (Time[-1] - Time[0])/len(Time)

hz = 1/fs

xlim = [1000, 3000]

plt.figure(figsize=(32, 16), dpi=150)

plt.xticks(np.arange(Time[xlim[0]], Time[xlim[1]], step=1))

plt.grid(axis='x')

plt.plot(Time[xlim[0]:xlim[1]], Pressure[xlim[0]:xlim[1]])

plt.show()

plt.figure(figsize=(32, 16), dpi=150)

plt.xlim([1, 30])

plt.psd(Pressure, Fs=hz)

plt.show()

sos = butter(N=12, Wn=[1, 10], btype='bandpass', fs=hz, output='sos')

143

PressFilt = scipy.signal.sosfilt(sos, Pressure)

plt.figure(figsize=(32, 16), dpi=150)

plt.xticks(np.arange(Time[xlim[0]], Time[xlim[1]], step=1))

plt.grid(axis='x')

plt.plot(Time[xlim[0]:xlim[1]], PressFilt[xlim[0]:xlim[1]])

plt.show()

#Initial placement test plots

#3bmp388_in_shoe_08_03_2022_test2

dataArduinoPath1 =

"C:\\Users\\simon\\Documents\\Master\\3bmp388_in_shoe_08_03_2022_test2.csv"

dataArduino1 = pd.read_csv(dataArduinoPath1, sep=",")

dataArduinoPath2 =

"C:\\Users\\simon\\Documents\\Master\\3bmp388_in_shoe_08_03_2022_test3.csv"

dataArduino2 = pd.read_csv(dataArduinoPath2, sep=",")

#Dataarduino1:

#Press0 = Pos 2

#Press1 = Pos 4

#Press2 = Pos 5

#Dataarduino 2:

#Press0 = Pos 1

#Press1 = Pos 3

#Press2 = Pos 6

pos1 = dataArduino2["Pressure0"].to_numpy()

pos2 = dataArduino1["Pressure0"].to_numpy()

pos3 = dataArduino2["Pressure1"].to_numpy()

pos4 = dataArduino1["Pressure1"].to_numpy()

pos5 = dataArduino1["Pressure2"].to_numpy()

pos6 = dataArduino2["Pressure2"].to_numpy()

time1 = dataArduino1["Time"].to_numpy()/10**6

time2 = dataArduino2["Time"].to_numpy()/10**6

pos1 = pos1[1::2]

pos2 = pos2[1::2]

pos3 = pos3[1::2]

144

pos4 = pos4[1::2]

pos5 = pos5[1::2]

pos6 = pos6[1::2]

time1 = time1[1::2]

time2 = time2[1::2]

hz1 = 1/((time1[-1]-time1[0])/len(time1))

hz2 = 1/((time2[-1]-time2[0])/len(time2))

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz1, output='sos')

PosFilt2 = scipy.signal.sosfilt(sos, pos2)

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz1, output='sos')

PosFilt4 = scipy.signal.sosfilt(sos, pos4)

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz1, output='sos')

PosFilt5 = scipy.signal.sosfilt(sos, pos5)

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz2, output='sos')

PosFilt1 = scipy.signal.sosfilt(sos, pos1)

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz2, output='sos')

PosFilt3 = scipy.signal.sosfilt(sos, pos3)

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz2, output='sos')

PosFilt6 = scipy.signal.sosfilt(sos, pos6)

len(PosFilt6)

hz1

plt.figure(figsize=(8,4), dpi=250)

plt.plot(time2[1000:1100], pos1[1000:1100])

plt.show()

plt.figure(figsize=(8,4), dpi=250)

plt.plot(time2[4000:7000], PosFilt1[4000:7000], linewidth=1)

plt.title("Filtered pressure in placement 1", fontsize=16)

plt.xlabel("Time [seconds]", fontsize=16)

plt.grid(axis='x')

plt.xticks(np.arange(time2[4000], time2[7000], step=1), fontsize=8)

plt.tight_layout()

145

plt.show()

plt.figure(figsize=(10,6), dpi=250)

plt.plot(time1[4000:7000], PosFilt2[4000:7000], linewidth=1)

plt.title("Filtered pressure in placement 2", fontsize=16)

plt.xlabel("Time [seconds]", fontsize=16)

plt.xticks(np.arange(time1[4000], time1[7000], step=1), fontsize=8)

plt.grid(axis='x')

plt.tight_layout()

plt.show()

plt.figure(figsize=(8,4), dpi=250)

plt.plot(time2[4000:7000], PosFilt3[4000:7000], linewidth=1)

plt.title("Filtered pressure in placement 3", fontsize=16)

plt.xlabel("Time [seconds]", fontsize=16)

plt.xticks(np.arange(time2[4000], time2[7000], step=1), fontsize=8)

plt.grid(axis='x')

plt.tight_layout()

plt.show()

plt.figure(figsize=(8,4), dpi=250)

plt.plot(time1[4000:7000], PosFilt4[4000:7000], linewidth=1)

plt.title("Filtered pressure in placement 4", fontsize=16)

plt.xlabel("Time [seconds]", fontsize=16)

plt.xticks(np.arange(time1[4000], time1[7000], step=1), fontsize=8)

plt.tight_layout()

plt.grid(axis='x')

plt.show()

plt.figure(figsize=(8,4), dpi=250)

plt.plot(time1[4000:7000], PosFilt5[4000:7000], linewidth=1)

plt.title("Filtered pressure in placement 5", fontsize=16)

plt.xlabel("Time [seconds]", fontsize=16)

plt.xticks(np.arange(time1[4000], time1[7000], step=1), fontsize=8)

plt.grid(axis='x')

plt.tight_layout()

146

plt.show()

plt.figure(figsize=(8,4), dpi=250)

plt.plot(time2[4000:7000], PosFilt6[4000:7000], linewidth=1)

plt.title("Filtered pressure in placement 6", fontsize=16)

plt.xlabel("Time [seconds]", fontsize=16)

plt.xticks()

plt.xticks(np.arange(time2[4000], time2[7000], step=1), fontsize=8)

plt.grid(axis='x')

plt.tight_layout()

plt.show()

plt.figure(figsize=(32, 16), dpi=250)

plt.xlim([1, 30])

plt.psd(PosFilt1, Fs=hz2, linewidth = 1)

plt.show()

plt.figure(figsize=(8, 4), dpi=250)

plt.xlim([1, 30])

plt.psd(PosFilt2, Fs=hz1, linewidth = 1)

plt.show()

plt.figure(figsize=(8, 4), dpi=250)

plt.xlim([1, 30])

plt.psd(PosFilt3, Fs=hz2, linewidth = 1)

plt.show()

plt.figure(figsize=(8, 4), dpi=250)

plt.xlim([1, 30])

plt.psd(PosFilt4, Fs=hz1, linewidth = 1)

plt.show()

plt.figure(figsize=(8, 4), dpi=250)

plt.xlim([1, 30])

plt.psd(PosFilt5, Fs=hz1, linewidth = 1)

plt.show()

147

plt.figure(figsize=(8, 32), dpi=250)

plt.xlim([1, 30])

#plt.ylim([0,80])

plt.psd(PosFilt6, Fs=hz2, linewidth = 1)

plt.show()

148

Arduino code for sole 2.0 prototype
#include <Wire.h>

#include "HX711.h"

// OBS: I do not have any protection if the slave sends less data than

expected. - fixed ish

#define TCAADDR 0x70

int PPGPin = A0;

#define LOADCELL_DOUT_PIN A1

#define LOADCELL_SCK_PIN A2

const uint32_t BMP_ADDR1 = 0x76;

const uint32_t BMP_ADDR2 = 0x77;

uint32_t pressure;

// int clockFrequency = 400000;

int clockFrequency = 3400000;

//------------- Setting up functions i need -------------------------------

//For selecting which multiplexer adress is used

void tcaselect(uint8_t i)

{

 if (i > 7)

 return;

 Wire.beginTransmission(TCAADDR);

 Wire.write(1 << i);

 Wire.endTransmission();

}

//Borrowed from DFrobot library

void I2C_WriteOneByte(uint8_t DevAddr, uint8_t RegAddr, uint8_t value){

Appendix F

149

 Wire.beginTransmission(DevAddr);

 Wire.write(RegAddr);

 Wire.write(value);

 Wire.endTransmission();

}

//Borrowed from DFrobot library

int8_t readMultipleBytes(uint8_t devId ,uint8_t regAddr, uint8_t *dataVec,

int dataLen){

 int i = 0;

 Wire.beginTransmission(devId);

 Wire.write(regAddr);

 Wire.endTransmission();

 Wire.requestFrom(devId, dataLen);

 while (Wire.available()){

 dataVec[i++] = Wire.read();

 }

 return 0;

}

uint8_t I2C_ReadOneByte(uint8_t DevAddr, uint8_t RegAddr)

{

 uint8_t value;

 Wire.beginTransmission(DevAddr);

 Wire.write((byte)RegAddr);

 Wire.endTransmission();

 Wire.requestFrom(DevAddr, (byte)1);

 value = Wire.read();

 return value;

}

struct COMPCOEFFS

{

150

 double PAR_T1;

 double PAR_T2;

 double PAR_T3;

 double PAR_P1;

 double PAR_P2;

 double PAR_P3;

 double PAR_P4;

 double PAR_P5;

 double PAR_P6;

 double PAR_P7;

 double PAR_P8;

 double PAR_P9;

 double PAR_P10;

 double PAR_P11;

 double t_lin;

};

class BMPSENSOR

{

public:

 uint8_t Address;

 double Pressure;

 uint32_t uncompPressure;

 uint32_t uncompTemperature;

 double Temperature;

 COMPCOEFFS PressureCoeffs;

 // Kinda an unnecessary

 void setAddress(uint32_t bmpAddress){

 Address = bmpAddress;

 }

 void setPressureCoeffs(){

 /*

 TODO:

151

 Get coefficients (21 registers (21 bytes), 17 values) (0x31 - 9x45)

 Parse coefficients

 */

 uint8_t regAddress = 0x31;

 int dataLen = 21;

 uint8_t dataVec[21] = {0};

 readMultipleBytes(Address , regAddress, dataVec, dataLen);

 //Need some temporary variables

 uint32_t data1;

 uint32_t data2;

 //The types of my NVM_PAR variables might be wrong

 data1 = (uint16_t)dataVec[0];

 data2 = (uint16_t)dataVec[1] << 8;

 uint16_t NVM_PAR_T1 = data2 | data1;

 data1 = (uint16_t)dataVec[2];

 data2 = (uint16_t)dataVec[3] << 8;

 uint16_t NVM_PAR_T2 = data2 | data1;

 data1 = (int8_t)dataVec[4];

 int8_t NVM_PAR_T3 = data1;

 data1 = (int16_t)dataVec[5];

 data2 = (int16_t)dataVec[6] << 8;

 int16_t NVM_PAR_P1 = data2 | data1;

 data1 = (int16_t)dataVec[7];

 data2 = (int16_t)dataVec[8] << 8;

 int16_t NVM_PAR_P2 = data2 | data1;

 data1 = (int8_t)dataVec[9];

 int8_t NVM_PAR_P3 = data1;

152

 data1 = (int8_t)dataVec[10];

 int8_t NVM_PAR_P4 = data1;

 data1 = (uint16_t)dataVec[11];

 data2 = (uint16_t)dataVec[12] << 8;

 uint16_t NVM_PAR_P5 = data2 | data1;

 data1 = (uint16_t)dataVec[13];

 data2 = (uint16_t)dataVec[14] << 8;

 uint16_t NVM_PAR_P6 = data2 | data1;

 data1 = (int8_t)dataVec[15];

 int8_t NVM_PAR_P7 = data1;

 data1 = (int8_t)dataVec[16];

 int8_t NVM_PAR_P8 = data1;

 data1 = (int16_t)dataVec[17];

 data2 = (int16_t)dataVec[18] << 8;

 int16_t NVM_PAR_P9 = data2 | data1;

 data1 = (int8_t)dataVec[19];

 int8_t NVM_PAR_P10 = data1;

 data1 = (int8_t)dataVec[20];

 int8_t NVM_PAR_P11 = data1;

 //This should be correct!

 //2^-8 = 0.00390625

 PressureCoeffs.PAR_T1 = ((double)NVM_PAR_T1 / 0.00390625);

 //2^30 = 1073741824

 PressureCoeffs.PAR_T2 = ((double)NVM_PAR_T2 / 1073741824.0);

 //2^48 = 281474976710656

 PressureCoeffs.PAR_T3 = (((double)NVM_PAR_T3) / 281474976710656.0);

153

 //2^20 = 1048576, 2^14 = 16384

 PressureCoeffs.PAR_P1 = (((double)(NVM_PAR_P1 - (16384))) /

(1048576.0));

 //2^29 = 536870912, 2^14 = 16384

 PressureCoeffs.PAR_P2 = (((double)(NVM_PAR_P2 - (16384))) /

(536870912.0));

 //2^32 = 4294967296

 PressureCoeffs.PAR_P3 = (((double)NVM_PAR_P3) / 4294967296.0);

 //2^37 = 137438953472

 PressureCoeffs.PAR_P4 = (((double)NVM_PAR_P4) / 137438953472.0);

 //2^-3 = 0.125

 PressureCoeffs.PAR_P5 = (((double)NVM_PAR_P5) / 0.125);

 //2^ = 64

 PressureCoeffs.PAR_P6 = (((double)NVM_PAR_P6) / 64.0);

 //2^8 = 256

 PressureCoeffs.PAR_P7 = (((double)NVM_PAR_P7) / 256.0);

 //2^15 = 32768

 PressureCoeffs.PAR_P8 = (((double)NVM_PAR_P8) / 32768.0);

 //2^48 = 281474976710656

 PressureCoeffs.PAR_P9 = (((double)NVM_PAR_P9) / 281474976710656.0);

 //2^48 = 281474976710656

 PressureCoeffs.PAR_P10 = (((double)NVM_PAR_P10) / 281474976710656.0);

 //2^65 = 36893488147419103232

 PressureCoeffs.PAR_P11 = (((double)NVM_PAR_P11) /

36893488147419103232.0);

 /*

 Serial.print("PAR_T1: ");

 Serial.println(PressureCoeffs.PAR_T1, 9);

 Serial.print("PAR_T2: ");

 Serial.println(PressureCoeffs.PAR_T2, 9);

 Serial.print("PAR_T3: ");

 Serial.println(PressureCoeffs.PAR_T3, 9);

 Serial.print("PAR_P1: ");

 Serial.println(PressureCoeffs.PAR_P1, 9);

 Serial.print("PAR_P2: ");

 Serial.println(PressureCoeffs.PAR_P2, 9);

 Serial.print("PAR_P3: ");

154

 Serial.println(PressureCoeffs.PAR_P3, 9);

 Serial.print("PAR_P4: ");

 Serial.println(PressureCoeffs.PAR_P4, 9);

 Serial.print("PAR_P5: ");

 Serial.println(PressureCoeffs.PAR_P5, 9);

 Serial.print("PAR_P6: ");

 Serial.println(PressureCoeffs.PAR_P6, 9);

 Serial.print("PAR_P7: ");

 Serial.println(PressureCoeffs.PAR_P7, 9);

 Serial.print("PAR_P8: ");

 Serial.println(PressureCoeffs.PAR_P8, 9);

 Serial.print("PAR_P9: ");

 Serial.println(PressureCoeffs.PAR_P9, 9);

 Serial.print("PAR_P10: ");

 Serial.println(PressureCoeffs.PAR_P10, 9);

 Serial.print("PAR_P11: ");

 Serial.println(PressureCoeffs.PAR_P11, 9);

 */

 }

 int8_t begin(){

 //TODO: Clean up

 //Implementing some stuff from the DFROBOT library to see if it fixes

things

 //readMultipleBytes(Address,)

 uint8_t chipIdAdress = 0x00;

 int DataLen = 1;

 uint8_t chipId = 0;

 uint8_t cmd_rdy_status;

 uint8_t cmd_err_status;

 int8_t result = readMultipleBytes(Address, chipIdAdress, &chipId, 1);

//reading chipId

 if (result == 0){ //Successfully read

 if (chipId == 0x50){ //devId is correct

155

 //Reset sensors and continue

 //Reads sensor status (page 31) to check if it ready for a new

command

 int8_t result = readMultipleBytes(Address, 0x03, &cmd_rdy_status,

1);

 //If true then sensor is ready for a new command

 if ((cmd_rdy_status & 0x10) && (result == 0)){

 I2C_WriteOneByte(Address, 0x7E, 0xB6); // Trigger a Softreset

(page 39)

 delay(20);

 //Checking for command error status

 result = readMultipleBytes(Address, 0x02, &cmd_err_status, 1);

 if ((cmd_err_status & 0x02) || (result != 0)){

 return -2;

 }

 }

 else{return -2;}

 }

 else {

 return -2;

 }

 }

 else{

 return -2;

 }

 //Finished with what i borrowed from DFRobot

 //All of this must be wrong

 I2C_WriteOneByte(Address, 0x1c, 0x00); // Disable oversampling pressure

 delay(20);

 I2C_WriteOneByte(Address, 0x1d, 0x00); // Output data rate is set to

200hz

 delay(20);

 I2C_WriteOneByte(Address, 0x1f, 0x00); // Disable filter

 delay(20);

 //I2C_WriteOneByte(Address, 0x1B, (byte)00110011);

156

 I2C_WriteOneByte(Address, 0x1B, 0x03 | 0x30); // Sets sensor to normal

mode - can maybe just use 00110001 (or 00110011)

 setPressureCoeffs();

 return 0;

 }

 //Is used in getTemperature

 void compensateTemperature(){

 //Algorithm for compensating is taken from page 55 and 56 of the

technical documentation

 //https://www.bosch-sensortec.com/products/environmental-

sensors/pressure-sensors/bmp388/#technical

 //Serial.println("Compensating temp: ");

 double partial_data1;

 double partial_data2;

 partial_data1 = (double)(uncompTemperature - PressureCoeffs.PAR_T1);

 partial_data2 = (double)(partial_data1 * PressureCoeffs.PAR_T2);

 /*

 Serial.print("Partial_data1: ");

 Serial.println(partial_data1);

 Serial.print("Partial data2: ");

 Serial.println(partial_data2);

 */

 PressureCoeffs.t_lin = partial_data2 + (partial_data1 *

partial_data1)*PressureCoeffs.PAR_T3;

 Temperature = PressureCoeffs.t_lin;

 }

 void updateTemperature(){

 /*

 Wire.beginTransmission(Address);

 Wire.write(0x07); // Set the pointer for where im reading

 Wire.endTransmission();

 */

 uint8_t regAddress = 0x07;

 int dataLen = 3;

157

 uint8_t dataVec[dataLen] = {0};

 readMultipleBytes(Address , regAddress, dataVec, dataLen);

 //Need some temporary variables

 uint32_t data1;

 uint32_t data2;

 uint32_t data3;

 data1 = (uint32_t)dataVec[0];

 data2 = (uint32_t)dataVec[1] << 8;

 data3 = (uint32_t)dataVec[2] << 16;

 uncompTemperature = data3 | data2 | data3;

 }

 void compensatePressure(){

 //Algorithm for compensating is taken from page 55 and 56 of the

technical documentation

 //https://www.bosch-sensortec.com/products/environmental-

sensors/pressure-sensors/bmp388/#technical

 double partial_data1 = 0;

 double partial_data2 = 0;

 double partial_data3 = 0;

 double partial_data4 = 0;

 double partial_out1 = 0;

 double partial_out2 = 0;

 partial_data1 = PressureCoeffs.PAR_P6 * PressureCoeffs.t_lin; //ish

10800

 partial_data2 = PressureCoeffs.PAR_P7 *

(PressureCoeffs.t_lin*PressureCoeffs.t_lin); // ish -24

 partial_data3 = PressureCoeffs.PAR_P8 *

(PressureCoeffs.t_lin*PressureCoeffs.t_lin*PressureCoeffs.t_lin); //ish -

3,24

 partial_out1 = PressureCoeffs.PAR_P5 + partial_data1 + partial_data2 +

partial_data3; // ish 211100

158

 partial_data1 = PressureCoeffs.PAR_P2 * PressureCoeffs.t_lin; //lite

 partial_data2 = PressureCoeffs.PAR_P3 *

(PressureCoeffs.t_lin*PressureCoeffs.t_lin); //knøttlite

 partial_data3 = PressureCoeffs.PAR_P4 *

(PressureCoeffs.t_lin*PressureCoeffs.t_lin*PressureCoeffs.t_lin);

//knøttlite

 partial_out2 = uncompPressure * (PressureCoeffs.PAR_P1 + partial_data1

+ partial_data2 + partial_data3);//ish negative -1100000

 partial_data1 = ((double)uncompPressure) * ((double)uncompPressure);

//kjempestort

 partial_data2 = PressureCoeffs.PAR_P9 + (PressureCoeffs.PAR_P10 *

PressureCoeffs.t_lin); //knøttlite

 partial_data3 = partial_data1 * partial_data2; //uuuh,

kjempestort*knøttlite

 partial_data4 = partial_data3 + (((double)uncompPressure) *

((double)uncompPressure) * ((double)uncompPressure)) *

PressureCoeffs.PAR_P11;

 /*

 Serial.println("Compensating pressure: ");

 Serial.print("Partial out1 : ");

 Serial.println(partial_out1);

 Serial.print("Partial out2 : ");

 Serial.println(partial_out2);

 Serial.print("Partial data4 : ");

 Serial.println(partial_data4);

 */

 Pressure = partial_out1 + partial_out2 + partial_data4;

 }

 void updatePressure(){

 //Remember to run temperature first to update t_lin

 /*

 Wire.beginTransmission(Address);

 Wire.write(0x04); // Set the pointer for where im reading

 Wire.endTransmission();

 */

 uint8_t regAddress = 0x04;

 int dataLen = 6;

159

 uint8_t dataVec[dataLen] = {0};

 readMultipleBytes(Address , regAddress, dataVec, dataLen);

 //Need some temporary variables

 uint32_t data1;

 uint32_t data2;

 uint32_t data3;

 data1 = (uint32_t)dataVec[0];

 data2 = (uint32_t)dataVec[1] << 8;

 data3 = (uint32_t)dataVec[2] << 16;

 uncompPressure = data3 | data2 | data1;

 data1 = (uint32_t)dataVec[3];

 data2 = (uint32_t)dataVec[4] << 8;

 data3 = (uint32_t)dataVec[5] << 16;

 uncompTemperature = data3 | data2 | data1;

 compensateTemperature();

 compensatePressure();

 }

};

// ----------------- Finished with function and class definitions ---------

BMPSENSOR BMP0;

BMPSENSOR BMP1;

BMPSENSOR BMP2;

BMPSENSOR BMP3;

BMPSENSOR BMP4;

BMPSENSOR BMP5;

BMPSENSOR BMP6;

160

BMPSENSOR BMP7;

BMPSENSOR BMP8;

BMPSENSOR BMP9;

BMPSENSOR BMP10;

//Comment in if using scale

HX711 scale;

int i = 1;

float scaleValue = 0;

void setup()

{

 delay(5000); //just for debugging

 Serial.begin(115200);

 Wire.begin();

 Wire.setClock(clockFrequency);

 //Comment in if using scale

 scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK_PIN, 128);

 //Starting up sensors and setting addresses

 tcaselect(0);

 BMP0.Address = BMP_ADDR2;

 while(BMP0.begin() != 0){

 Serial.println("Error starting up sensor 0");

 delay(200);

 }

 BMP1.Address = BMP_ADDR1;

 while(BMP1.begin() != 0){

 Serial.println("Error starting up sensor 1");

 delay(200);

 }

 tcaselect(1);

 BMP2.Address = BMP_ADDR2;

 while(BMP2.begin() != 0){

 Serial.println("Error starting up sensor 2");

161

 delay(200);

 }

 BMP3.Address = BMP_ADDR1;

 while(BMP3.begin() != 0){

 Serial.println("Error starting up sensor 3");

 delay(200);

 }

 tcaselect(2);

 BMP4.Address = BMP_ADDR2;

 while(BMP4.begin() != 0){

 Serial.println("Error starting up sensor 4");

 delay(200);

 }

 BMP5.Address = BMP_ADDR1;

 while(BMP5.begin() != 0){

 Serial.println("Error starting up sensor 5");

 delay(200);

 }

 tcaselect(3);

 BMP6.Address = BMP_ADDR2;

 while(BMP6.begin() != 0){

 Serial.println("Error starting up sensor 6");

 delay(200);

 }

 BMP7.Address = BMP_ADDR1;

 while(BMP7.begin() != 0){

 Serial.println("Error starting up sensor 7");

 delay(200);

 }

 tcaselect(4);

 BMP8.Address = BMP_ADDR2;

 while(BMP8.begin() != 0){

 Serial.println("Error starting up sensor 8");

 delay(200);

 }

 BMP9.Address = BMP_ADDR1;

162

 while(BMP9.begin() != 0){

 Serial.println("Error starting up sensor 9");

 delay(200);

 }

 delay(200);

}

void loop()

{

 //reading pressure values from sensors

 //Serial.print(millis());

 //Serial.print(" - ");

 tcaselect(0);

 BMP0.updatePressure();

 BMP1.updatePressure();

 tcaselect(1);

 BMP2.updatePressure();

 BMP3.updatePressure();

 tcaselect(2);

 BMP4.updatePressure();

 BMP5.updatePressure();

 tcaselect(3);

 BMP6.updatePressure();

 BMP7.updatePressure();

 tcaselect(4);

 BMP8.updatePressure();

 BMP9.updatePressure();

 //Serial.println(millis());

 //printing time and pressure values

 Serial.print(millis());

 Serial.print(",");

 //Comment in if using PPG

 Serial.print(analogRead(PPGPin));

 Serial.print(",");

 //Comment in if using scale

163

 if (i%2 == 0){

 scaleValue = scale.read();

 Serial.print(scaleValue);

 Serial.print(',');

 }

 else{

 Serial.print(scaleValue);

 Serial.print(",");

 }

 //right foot furthest back

 Serial.print(BMP0.Pressure);

 Serial.print(",");

 //right foot second to the furthest back

 Serial.print(BMP1.Pressure);

 Serial.print(",");

 //right foot forward to the right

 Serial.print(BMP2.Pressure);

 Serial.print(",");

 //right foot middle

 Serial.print(BMP3.Pressure);

 Serial.print(",");

 //left foot forward right

 Serial.print(BMP4.Pressure);

 Serial.print(",");

 //right foot forward left

 Serial.print(BMP5.Pressure);

 Serial.print(",");

 //left foot middle

 Serial.print(BMP6.Pressure);

 Serial.print(",");

 //left foot forward left

 Serial.print(BMP7.Pressure);

 Serial.print(",");

 //left foot second to furthest back

 Serial.print(BMP8.Pressure);

 Serial.print(",");

164

 //left foot furthest back

 Serial.println(BMP9.Pressure);

 i++;

 delay(4); // delay to ensure im not rereading the same value twice.

Should implement a smarter way to do this

 }

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Simon Gåseby Gjerde

Shoes for the future - Developing
smart shoes for continous
measurement of
ballistocardiography

Master’s thesis in Mechanical Engineering
Supervisor: Martin Steinert
June 2022

M
as

te
r’s

 th
es

is

	pdf_Master_1_Simon
	Windows to the Sole - draft 2 - pdf
	pdf_Master_1_Simon
	Project_Thesis_Simon_Gjerde
	pdf_Master_1_Simon
	pdf_Master_1_Simon

