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Abstract 
This master thesis describes the development process of a pair of smart shoes for 

measuring ballistocardiography. The thesis was a continuation of a proof-of-concept 

prototype from a previous project thesis. The thesis aimed to develop a functioning smart 

shoe for measuring ballistocardiography and validate the results through testing. In 

addition, any serendipitous findings in the process were to be explored.  

The shoes were developed using an iterative approach based on wayfaring with 

prototyping as one of the main tools. Multiple prototypes were created to validate 

hypotheses and act as a tool for generating new design questions. Both divergent and 

convergent prototypes were created to ensure the best solution was created. In addition, 

a benchtop setup was created for simulating the ballistocardiogram to enable rapid 

testing of the impact of changing design parameters.  

The final proposed concept, called Sole 2.0, consists of a pair of running shoes with five 

water-filled bladders in each shoe, each connected to a pressure sensor. The smart shoe 

measures the pressure under the user's feet and captures the body's movement due to 

the ejection of blood. In addition, the sole 2.0 allowed a BCG scale to be connected to act 

as a reference for the captured BCG and to attach a PPG sensor for calculating pulse 

transit time and aiding in segmentation. 

To validate the concept, a test was run with 14 participants. Participants were measured 

in three test periods with one resting period between tests two and three. A cold pressor 

test was used to increase the participants’ blood pressure during test period two. Blood 

pressure was increased to enable the calculation of pulse travel time. The results from 

the testing are not fully processed. However, the preliminary results from two of the 

fourteen datasets show great promise, with the BCG being captured in all measurement 

periods and the inverse relationship between pulse transit time and blood pressure being 

shown.  
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Sammendrag 
Denne masteroppgaven beskriver utviklingen av et par med smartsko for å måle 

ballistokardiografi. Masterprosjektet er en fortsettelse av en prosjektoppgave som lagde 

en prototype som et konseptbevis. Målet med masteroppgaven var å lage en smartsko 

som måler ballistokardiografi, samt validere resultatene gjennom testing. I tillegg, skulle 

alle «serendipitous» oppdagelser bli utforsket. 

Skoene ble utviklet gjennom en iterativ metode med utgangspunkt i Wayfaring med 

prototyping som hovedverktøy. Prototyper ble laget for teste og validere resultater, samt 

fungere som et verktøy for å generere kunnskap og design spørsmål. Både divergerende 

og konvergerende prototyper ble laget for å nå den beste løsningen. I tillegg, ble en 

småskala testoppsett laget som simulerte ballistokariografi for å kunne raskt teste og 

validere påvirkningen til diverse design parametere. 

Det endelige konseptet, Sole 2.0, består av et par med joggesko med fem væskefylte 

blærer i hver sko. Hver av blærene er koblet til en trykksensor. Smartskoen måler 

trykket under foten til brukeren og fanger opp bevegelsen til kroppen som følge av 

blodsirkulasjonen. I tillegg, er Sole 2.0 designet for å kunne kobles til en 

ballistokardiografi vekt som fungerer som en referanse og en PPG-sensor for å måle 

pulstransporttid og muliggjøre segmentering.  

For å validere resultatene ble et forsøk gjort med 14 deltakere. Deltakerne ble i målt tre 

perioder med en hvileperiode mellom test to og test tre. I testperiode to ble en 

«coldpressor» test utført for å øke blodtrykket til deltagerne. Blodtrykket ble økt for å 

gjøre det mulig å beregne pulstransporttid. Resultatene fra forsøket er ikke behandlet, 

men foreløpige resultater er svært lovende. To ut av 14 datasett er behandlet og 

ballistokardiografi er suksessfullt målt i alle testperiodene for de to datasettene. I tillegg 

er den beregnede pulstransporttiden korrekt invers relatert til blodtrykket.  
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Preface 
This master thesis describes the development process of designing and testing a smart 

shoe solution for measuring ballistocardiography. The project was carried out from 

January 2022 to June 2022. The thesis has been written to fulfill the requirements for the 

degree of Master of Science from the Department of Mechanical and Industrial 

Engineering at NTNU. The supervisor for the project has been Martin Steinert.  

The project has been carried out at TrollLabs at NTNU in Trondheim. 
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Cardiovascular diseases are one of the leading causes of death in the world, contributing 

to as many as 17.9 million deaths a year (WHO n.d.). Many cardiovascular diseases can 

be prevented by implementing lifestyle changes such as reduced tobacco use, increased 

physical activity, and improved diet. Early detection of cardiovascular diseases is vital to 

implement treatment as early as possible. Noninvasive methods for continuous 

monitoring of cardiovascular health are one method for early detection. One promising 

method for continuous assessment of cardiovascular health in a noninvasive manner is 

Ballistocardiography (BCG).  

This master thesis is a continuation of a project thesis completed in the autumn of 2021. 

The project thesis explored the solution space of sensor setups for measuring physical 

signals related to the heart. The project thesis culminated in a promising proof-of-

concept prototype for measuring BCG by measuring the pressure under a person’s foot. 

This master thesis continues the project thesis with the following goal: 

“Develop and test a smart shoe for continuous cardiovascular monitoring using 

Ballistocardiography.” 

For developing and testing the smart shoe BCG concept, many subgoals need to be 

achieved. The concept from the project thesis needs to be understood better. What 

parameters for the setup are important, and what limitations exist. In general, the design 

challenges in measuring BCG are little understood. For testing the smart shoe, a more 

comprehensive range of users need to be tested to validate its function on all users and 

understand how variations such as weight, height, age, and form of the feet might 

impact the result. In addition, other design solutions and serendipitous findings should be 

explored.  

The master thesis has been completed at TrollLabs at NTNU in Trondheim. TrollLabs 

research and prototype lab with a multidisciplinary research group at NTNU. Trollabs 

focuses on creating new radical ideas and improving the fuzzy front-end of engineering 

design.  

The master thesis is split up into four main parts and eight sections. Part one introduces 

the problem statement, necessary background information, and theory and consists of 

sections 0 and 2. Part two covers the development process culminating in a functioning 

version of the shoe and consists of sections 3 and 4. Part three covers the testing of the 

prototype and results from the tests and consists of sections 5 and 6. Part 4 covers the 

discussion of the results, prototype, and development process as well as the conclusion 

and consists of sections 7 and 8.  The culmination of the master thesis is a paper for 

IEEE Sensors 2022 to be submitted on the 18. of June 2022. The draft of this paper is in 

Appendix A. 

 

 

1 Introduction 
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2.1 Recap of the project thesis 

The master thesis is a continuation of the project thesis described in Appendix B. The 

project thesis was carried out from August 2021 to December 2021. The project thesis 

explored the solution space related to wearable physiological sensors.  

Ballistocardiography was discovered as a potential candidate for continuous non-invasive 

measurement of cardiovascular health. The project thesis culminated in a proof-of-

concept prototype. The proof-of-concept prototype consisted of two air-filled bladders 

connected to a corresponding pressure sensor. The bladders were placed under an MDF 

plate, one under the heel and the other under the front of the foot of the user. The proof-

of-concept prototype gave a signal which, after segmenting, using a PPG as a reference, 

and bandpass filtering the pressure, a clear repeating pattern was discovered. The 

waveform of the repeating signal was similar to the BCG waveform but with a less 

pronounced J peak. It was concluded that it was highly likely that it was the BCG being 

captured due to the similar waveform and matching timing with the pulse. Using two air-

filled bladders also allowed for measuring the pressure distribution, which was seen as a 

possible point of interest.  

The final prototype had many flaws, and the testing had much to be desired. Motion 

fragments were still a big issue and meant the user had to stand very still. The amount 

of noise in the signal was still significant. In addition, a problem was discovered with the 

air-filled bladders compressing and killing the signal due to compressing completely or 

blocking the connection to the sensor. This led to a minimum size of the air-filled 

bladders so as to have enough volume for it to take the static weight of the user. The 

proof-of-concept prototype was also only tested on one person, which meant that 

differences in weight, height, form of the foot, and other characteristics might heavily 

impact the results. Little knowledge was also gained about how the various design 

parameters affected the result.   

2.2 Ballistocardiography 

Ballistocardiography is the measurement of the body’s movement due to the ballistic 

forces created by the ejection of blood at each cardiac cycle (Giovangrandi et al. 2011). 

It is a non-invasive measurement method for assessing cardiovascular health (Omer T. 

Inan et al. 2015). BCG was a popular area of research from the 1940s to the 1980s 

(Giovangrandi et al. 2011). It fell out of favor due to several reasons. One issue was the 

lack of standard measuring techniques which led to differences in the measured signal 

from one measurement method to another. Two other issues were a lack of 

understanding of the physiological correlation to the different parts of the signal and a 

primary focus on clinical diagnostic where other measurement methods were 

superior(Giovangrandi et al. 2011). It has, in the recent two decades increased in 

popularity due to an increased interest in out-of-clinic measurement and advances in 

sensor technology and computers, enabling new methods for measuring BCG 

(Giovangrandi et al. 2011). 

2 Theory and background 
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Figure 1 shows an example of a BCG waveform that has been redrawn based on the 

Starr BCG which is a longitudinal BCG (Starr et al. 1939). Peaks and valleys are 

referenced by letters. The peaks and valleys are not associated directly with underlying 

events but represent the combined mechanical pulse response of the body and vascular 

system due to the ejection of blood at each cardiac cycle(Omer T. Inan et al. 2015). The 

valleys and peak corresponding to the IJK complex is the most prominent feature of the 

BCG and the easiest to recognize for design purposes.  

 

 
 

Figure 1 - BCG waveform redrawn based on the Starr BCG (Starr et al. 1939) 

With increased interest in out-of-clinic assessment of cardiovascular health, BCG has 

seen a resurgence in interest as a possible non-invasive continuous measuring method. 

Many methods for capturing the BCG have been created. (Koivistoinen et al. 2004) use 

EMFI sensors in a chair to capture the BCG. (O. T. Inan et al. 2009), (Martin et al. 2016) 

and (Campo et al. 2017) use a modified bathroom scale that captures the variation in 

load sensor deformation. (Mora et al. 2020) use an accelerometer attached to a bed to 

capture the movement of the body and the BCG. (Omer T. Inan et al. 2015) and (Yao et 

al. 2019) use on body accelerometers to capture the BCG.  

BCG has been used to measure multiple physical parameters. (Campo et al. 2017), 

(Martin et al. 2016), (C.-S. Kim et al. 2018) and (Pinheiro, Postolache, and Girão 2009) 

have used ballistocardiography to compute pulse wave velocity. Pulse wave velocity is an 

important marker for cardiovascular health due to its relation to blood pressure and 

arterial stiffness (Pereira, Correia, and Cardoso 2015). (Mack et al. 2009) measure heart 

rate and breathing rate, which can be used for sleep analysis.  

2.3 Development methodology 

2.3.1 Wayfaring 

The Fuzzy Front end of product development is the early phase of development before 

requirements are set and a concept is considered ready for development (J. Kim and 

Wilemon 2002). The fuzzy describing the unclear and unknown part of the situation 

where opportunities and the process is unknown. The knowledge gap is significant for the 

designers and the design path is unknown. Big ideas cannot easily be deductively 

deduced. Wayfaring is one method for navigating the design space during the early 

phases with high uncertainty.  

Wayfaring was first proposed by Steinert and Leifer as hunter-gatherer model for 

navigating the design space. It is a nonlinear dynamic model where designers use 
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iterative prototyping and abductive reasoning to learn and move through the design 

space(Steinert and Leifer 2012). The hunter-gatherer model has been further developed 

as the wayfaring model by (Gerstenberg et al. 2015). The wayfaring model improves the 

hunter-gatherer model by introducing multi-directional prototyping where multiple 

directions are developed synchronously, and multiple disciplines are included. The 

wayfaring model uses probing by prototypes and iterative design-build-test cycles as its 

framework. The designer probes the design space and takes steps in promising directions 

as knowledge increases. 

  

Figure 2 - Wayfaring and probing figures from (Gerstenberg et al. 2015) 

Probing in the wayfaring model consists of cycles of divergent and convergent thinking. 

Divergent thinking is enabled through generative design questions. These are open-

ended questions with the goal of removing design constraints and inspiring creative 

exploration. The convergent thinking is done through deep reasoning questions where 

the performance and intended function of concepts and solutions are evaluated. 

Prototypes are an essential part in answering both the generative and deep reasoning 

questions.   

The exploratory fashion of navigating the design space using wayfaring enables 

serendipity to influence the designer and lets the designer change direction often. This is 

important as the knowledge of the design space increases with each probing cycle. The 

explorative fashion of wayfaring also enables the designer to elicit “unknown unknowns”. 

Unknown unknowns are challenges which are not articulated and must be discovered in 

the design process (Sutcliffe and Sawyer 2013). Wayfaring and prototypes can be used 

to dynamically create requirements as knowledge increases. By using dynamic 

requirements, it is easier for the designer to handle unknown unknowns through the 

design process (Kriesi et al. 2016).  

 

2.3.2 Prototyping 

Protoypes are an essential part of the product development process (L. S. Jensen, Özkil, 

and Mortensen 2016). (Lauff, Kotys-Schwartz, and Rentschler 2018) describe a prototype 

as tools for enhanced communication, learning and informed decision making. They 

argue prototypes are essential for learning about the design space and the technical 

elements as well as making informed decisions about the viability of the product. 

Prototypes can be an embodiment of a concept or idea or created as an exploratory tool. 
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Within product development the exploration of known unknowns and the discovery of 

unknown unknowns are important (Sutcliffe and Sawyer 2013). Prototypes are one tool 

for these tasks. (M. B. Jensen, Elverum, and Steinert 2017) introduce the term prototrial 

where prototypes are actively used to explore and understand the design space.  They 

argue that prototypes can be used for divergent thinking and generating concepts. 

(Elverum and Welo 2015) introduce directional and incremental prototypes. Directional 

prototypes are not purely for validation and verification but serve to explore the impacts 

of larger design changes. Incremental prototypes answer the classic design concerning 

validation and verification. (Kriesi et al. 2016) use prototypes as an essential part of the 

wayfaring process and argue that the use prototypes can help uncovering and handling 

unknown unknowns. Prototyping critical functionalities led to them discovering unknown 

problems in a cheap and effective manor and avoiding costly rework.  

In general, prototypes can be used for validation and verification, but another common 

usage is generating knowledge and design questions by creating prototypes and 

exploring how they work. They can answer deep reasoning questions such as “is this 

better than..?” but also serve as generative tools answering questions such as “how 

many ways can we …?”.   
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The development process of this thesis is a continuation of the development process of 

the project thesis in Appendix B. Due to having a proof-of-concept prototype the 

challenge for the development process consisted of both an exploratory and an 

incremental improvement challenge. The proof-of-concept prototype showed a possible 

method for capturing the BCG, but due to the low understanding of the concept other 

better solutions might exist. As such a combination of a wayfaring approach and a more 

incremental testing approach were used. The main process consists of a convergent 

process on the proof-of-concept prototype solution and a divergent process looking for 

other better solutions. 

3.1 Bencthop-setup for simulating BCG 

The proof-of-concept prototype developed in December 2021 left many questions on how 

design choices impacted the results and to what degree they impacted. For further 

learning and exploration of the design space, larger prototypes with higher quality would 

have to be made. This slows down the iteration process if all learning is to be done 

through larger prototypes. The project thesis revealed the need for faster ways to 

explore how design choices impact results. For assessing how smaller design choices 

affect the results a setup for simulating BCG with easily swappable parameters was 

needed.  

The BCG is the repetitive movements which arise from the ejection of blood from the 

heart as described in 2.2. The concept for the proof-of-concept prototype in the project 

thesis is that these movements will lead to changes in the pressure under a person’s 

feet. The pressure under a person’s foot is a sum of the pressure due to weight and 

movement with the weight acting as a static pressure and movements acting as a 

variable pressure. Some of the variable pressure is due to movement related to BCG. 

Simulating this varying pressure is interesting, since it will increase the understanding of 

the solution space and it is relatively easy to simulate the varying pressure at a small 

scale. A method for simulating this varying pressure was designed using a smart pump 

on an evaluation kit (Evaluation Kit, tppventus, Cambridge UK.   

  

Figure 3 - Benchtop setup 

 

The bench-setup simulation consists of a smart pump from ttpventus, a BMP388 pressure 

sensor (BMP388, Bosch Sensortec GmbH, Germany), a signal generator and two 

3 Development process 



7 

 

bladders. One bladder connected to the smart pump, and one connected to the BMP388 

sensor. The bladders are created by cutting sheets out of weldable plastic and using a 

soldering iron to weld the sheets together. Both bladders are enclosed within a 3D 

printed box which ensures good contact between them. The smart pump varies the 

pressure in one bladder which then applies a varied pressure to the bladder the BMP388 

sensor is measuring the pressure off. The smart pump can measure its pressure and 

functions as a reference for the pressure measured by the BMP388. A waveform for the 

pressure variation was generated using a waveform generator attached to the evaluation 

kit. The waveform used was a Meyer wave due to its similarities to the IJK complex of 

the BCG waveform. It is important to note that the smart pump had sustained some 

damage prior to use and as could not mimic the Meyer wave perfectly.  

When designing the bench-top setup it was important to facilitate easy change of 

variables. Aspects such as varying the size and surface area of the measured bladder, 

including material between the two bladders and varying pipe length was initially seen as 

interesting aspects to vary. The box was created with extra space filled in with MDF 

which meant free space was available if needed. A special connector was created for 

quickly swapping the bladder connected to the BMP388. The connector consisted of a 3D 

printed tube coated with silicone. Two pipes could be connected using this as the silicon 

created an airtight seal between the pipe and the 3D printed tube. The tube had a lip on 

each side to make sure the silicon was not allowed to expand or escape.  

3.2 Initial parameter testing 

Initially five parameters were identified from the proof-of-concept prototype as important 

parameters to understand. These were pipe length, shape of bladder, the effect of 

applying silicone on sensor, and the combination of applying silicone on the sensor with 

water in the bladder. The bladder parameters are shown in Figure 4. To evaluate these 

parameters six test were run. One as a reference, and one for each variation of 

parameter. At this point the problem was still an exploratory problem and not an 

optimization problem. As such the goals were to identify parameters which had major 

impact on the result and were interesting to further research. Therefore, only visual 

inspection by plotting reference versus measured was done.   
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Figure 4 - Bat testing parameters 

The results of the tests are shown in Figure 5. Test 1 was a reference test for comparing 

other tests. Test 2 checked the circle shaped bladder. This saw a slight increase in the 

amplitude of the measured pressure, which was concluded to most likely be due to the 

reduced surface area of the circle compared to the square. This was a key takeaway as it 

meant reducing the surface of the bladder would increase the amplitude of the BCG 

signal and make it easier to detect. Test 3 and 4 checked a short and a long pipe length. 

These tests showed no major impact. Test 5 tested the impact of applying a coating of 

silicon to the sensors and test 6 tested using water instead of air in the bladder with 

silicone on the sensors. Both of these parameters showed minimal impact on the results.  
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Figure 5a – Normal 

 

Figure 5b - Circle 

 

Figure 5c - Short pipe 
 

Figure 5d - Long pipe 

 

Figure 5e - Silicone no water 

 

Figure 5f - Silicone with water 

Figure 5 - Parameter testing 

3.3 Sole 0.5 

With the knowledge from the bench top simulation a new higher fidelity prototype was 

made with the goal of either acquiring a working prototype or uncovering further design 

questions. To create this prototype some more design questions had to be answered. It 

was desirable to have a material between the bladders and the foot to improve stability 

and lessen the impact of motion fragments. The impact of having a material between the 

bladder and the foot was uncertain and had to be tested. In addition, the impact of 

placement of the bladders was also unknown. 

The bench top setup was used to test the impact of having something between the 

bladder and the foot. Two test were run, one with a 0.6mm metal sheet between the 

reference bladder and the measurement bladder and another with a 6mm MDF sheet. 

The 0.6 mm showed no major impact. However, the 6mm MDF plate gave noticeably 

worse results. The conclusion was that material between the foot and the bladders need 

to be thin to reduce absorption of the forces.  
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Metal plate:

 

Mdf 6 mm: 

 

Figure 6 - Comparison of material between reference and BMP388 

The placement of sensors were chosen by checking where the pressure under the feet 

was largest as the assumption was that this is where most of the forces were transferred 

to the ground. This was checked by placing plastic pipes under the plate which deformed 

when standing on them. The areas with the largest deformations had the largest forces. 

The deformation was the biggest at the heel and at the front of the foot. Four places of 

interest were initially chosen. The heel and front of the foot due to the aforementioned 

largest forces and the middle of the foot as well as an extra sensor on the front. The 

middle and the extra on the front were chosen for two reasons. The assumption that he 

best locations were the areas with the largest forces might be wrong and it was seen as 

interesting to measure pressure distribution which could have extra interesting uses. The 

four placements are shown in Figure 7.   

  

Figure 7 - Sole 0.5 Sensor placements and wiring 

 

The results of test are shown in Figure 8. The results of the test were disappointing with 

no clear sign of the BCG being captured even after filtering. The results were bandpassed 

filtered with a bandpass of [3, 10]. These poor results were likely due to the bladders 

compressing almost entirely and the plate mostly touching the floor. The hypothesis was 

that most of the forces were transmitted to the floor and creating little to no pressure 

difference. This was due to air being compressible and the volume of air being small. In 

addition, the bladders were prone to leak air which made testing difficult. The production 

of the bladders was difficult as air easily escapes and getting a high enough volume of air 

in the bladder was highly challenging.  
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Figure 8 - Results from sole 0.5 test 

3.4 Diverging prototypes 

As design fixation is a large and important problem in product development a focus was 

made on always looking for alternative methods for capturing the BCG. Two such 

methods were using inductance variation and using the varying electrical resistance in a 

carbon fiber silicone composite due to deformation.   

3.4.1 Inductance based prototype 

Inductance measurement was seen as one possible way of capturing the BCG. The idea 

was that it was possible to attach a magnet to the shoe sole and an inductance meter 

under the magnet. With the variation in forces the shoe sole would deform increasing 

and decreasing the distance between the inducation measuring unit and the magnet. This 

was tested using a LDC1612 (LDC1612, Texas Instruments, Texas USA) inductance 

meter and a normal magnet. Upon separating the inductance meter from the magnet 

with a soft material it was possible to measure the change in inductance when the force 

on the magnet was manually changed and the soft material deformed. This was tested in 

the bench-top setup. The magnet was separated from the induction meter with a 

deformable foam. This achieved somewhat promising results as seen in Figure 9. 

However, the signal seemed somewhat noisier than with the BMP 388 sensor tests.  

 

 

Figure 9 - Inductance test in bench top setup 

The inductance concept was tested in a deconstructed running shoe as shown in Figure 

10. A part of the sole was cut out and the inductance meter was placed near the bottom 

of the sole. Then most of the cutout was returned on top of the inductance meter. The 

magnet was glued on top of the cutout. The testing showed poor results with no clear 

signal being captured. The inductance setup was tested again with a setup similar to the 

sole 1.0 testing setup as seen in Figure 10. This still showed poor results. The main 
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theory for the poor results is that the force related to the BCG is very small and the 

material does not deform enough to give a noticeable signal compared to noise. 

Exchanging the material for a softer one or lowering the amount of material between the 

inductance meter and the magnet might improve the results. No fundamental flaws were 

found with this concept, and it was deemed a optimization problem. However, due to it 

not showing any greater potential than the concept using pressure sensors it was not 

explored further due to time limitations.  

 

Figure 10 - Inductance test setup 

3.4.2 Variable resistance in a carbon fiber and silicone composite  

Carbon fiber in a silicone composite was another interesting concept for measuring BCG. 

It was based on another project at TrollLabs where the usage of short carbon fiber 

strands in silicone matrix is used as a sensor  (Vestad and Steinert 2019). When the 

carbon fiber enforced silicone is deformed the electrical resistance changes. As such a 

concept was to measure this change in resistance when a person stands on a part made 

of the material.  

A 20x20x3mm cube of the carbon fiber enforced silicone was donated from the other 

project. Preliminary test by manually applying forces to deform the cube gave promising 

results. Very small forces were enough to give a noticeable output. A test was run using 

the cube of the carbon fiber enforced silicone. The setup was based on the testing setup 

from sole 1.0 which had shown potential. The cube is placed under a MDF plate directly 

under the heel of the foot with a 3 mm MDF plate supporting the front of the foot. This is 

shown in Figure 11. The signal was fairly noisy, and no clear signal was captured. The 

main theory behind the disappointing results was that the force related to BCG is small 

and gave very small deformations in the material. This combined with the fact that the 

cube gives relatively noisy results ends up giving poor results. A softer material as the 

matrix could improve this. This is also likely an optimization problem. However, due to 

the setup not showing any major improvements over the BMP388 setup it was explored 

further due to time limitations.  
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Figure 11 - Testing setup for testing carbon fiber sensor 

 

3.5 Piston-cylinder prototype 

As the production of the bladders was challenging iteration speed slowed. Another 

concept with a larger scale and easier produce parts was needed. A concept was 

developed inspired by gas springs where a piston-cylinder setup would replace the air-

filled bladders. Piston-cylinder pairs were quickly created by deconstructing syringes. The 

casing of the syringe was cut in half and glued to an acrylic plate creating an airtight 

seal. The piston part of the syringe was cut to a shorter length and glued to an MDF 

plate. A hole was cut in the cylinder to connect the BMP388 sensor, which enabled 

pressure measurements. This setup showed greater promise in ease of creation.  

  

Figure 12 - Piston cylinder setup 

This setup gave a few key insights. It showed how much the air would compress when 

full bodyweight was applied. It became apparent that at no point would there be enough 

air in one of the bladders to ensure that the plate would not touch the ground and disturb 

the BCG signal. Water had thus far not been used due to complicating the design as 

water and electronics generally don’t match. However, it became apparent that some 

sort of incompressible substance was needed with water being the easiest available. 

Further tests were conducted with water in the cylinders. A BMP388 with silicon applied 

was used to measure the pressure in one of the piston housings under the heel. The 

pressure signal was filtered using a bandpass filter with a bandpass of [3, 10] Hz. This 
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gave a very promising result shown in Figure 13. Clear peaks and valleys can be 

detected. These appear about every 0.8 seconds which match well with a pulse of about 

80 beats per minute which is a realistic pulse to have in this scenario.  

 

Figure 13 - Results from piston cylinder setup tests 

The gas spring prototype gave very promising results. Miniaturizing this prototype into a 

size which would fit in a shoe sole was a promising approach to the task. One concept for 

creating this was 3D printing gas springs in a small size using a SLS printer as SLS 

printers can create fully artight structures. However, this proved difficult as the the 

tolerances of the parts were small and even small warping in the 3D printed parts would 

create leaks or introduce friciton which would dampen the signal. This warping proved 

fatal to the concept. This concept was developed in parallell with the bladder concept. 

The production quality of the bladders increased withouth the warping issue being 

resolved. As the primary limitation for this development process is time this concept had 

to be scrapped. It however, showed great promise and could be good solution for future 

work.  

3.6 Sole 1.0 - High fidelity prototype two 

The gas spring prototype gave very promising results and paved the way for another 

high-fidelity prototype using the bladder concept. One of the primary takeaways from the 

piston-cylinder testing was that water had to be used as compression was a big issue. 

Testing this improvement two more test were conducted using a bladder filled with water 

instead of air. The first test consisted only of one water filled bladder under the heel and 

MDF as support under the front of the foot. This gave surprisingly poor results 

considering the setup was fundamentally almost identical to the piston-cylinder setup.  
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Figure 14 - Testing water-filled bladder 

One of the main theories for why the results were still not satisfactory was that the back 

end of the metal plate was unsupported which led to many small motions in the foot to 

stabilize the user. This could be creating enough noise to where the signal was difficult to 

capture. This was tested quickly by using three sensors and supporting the metal plate 

by adding MDF everywhere under the plate. This gave better results which added 

credibility to the theory of small motions being the issue. 

 

Figure 15 - Testing multiple water-filled bladders with extra support 

It was of interest to create a prototype which maximized the stability for the user. This is 

a solved problem as high-quality shoes exist. Therefore, a prototype using a pair of shoes 

as foundation was wanted. However, two design questions stood out before this 

prototype could be developed. The first was how the support material around the water 

filled bladders would affect the results. The other was testing in a more formal method 

what positions for the water-filled bladders would be optimal.  

The bench top setup was again used to gain a better understanding for how the support 

material would affect the results. The hypothesis was that soft infill materials might 
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deform and absorb some of the motions that was desirable to detect. Four different 

materials with different hardness was tested. MDF, a hard foam, a medium hard foam 

and a soft foam were tested. The setup for testing the hard foam is shown in Figure 16 

with the updated water filled bladders attached to the BMP388 in Figure 17. The results 

are shown in Figure 18. No major differences were found which opened the design space 

considerably.  

 

Figure 16 - Benchtop test of infill material 
hardness 

 

Figure 17 - Updated design of water-filled 
bladder with BMP388 

 

 

 

 

  

  

Figure 18 - Infill material testing results 

Furthermore the placements of the water filled bladders were of interest. The first 

hypothesis was that the areas with the most pressure would absorb most of the 

movement and be the best placements. However, this was not certain as these areas 

would also have the highest variations in pressure due to natural stabilization in the foot. 
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As such six placements were chosen as interesting areas to test. These six positions are 

shown in Figure 19.  

A high fidelity prototype was created by disasembling an old running shoe and using 

three BMP388s. As mentioned six locations were of interest for sensor placement. These 

six locations were marked on the shoe sole and a hole was dug for the water bladders to 

fit in as well as channels for the pipes connecting the sensors to lay in. The design of the 

water bladders and sensors were identical to the design in Figure 17.  

  

Figure 19 - Sole 1.0 prototype 

  

Figure 20 shows the results of testing sensor location. Position one and two are the most 

promising for capturing the BCG with tendencies to repeating patterns with clear peaks 

and vallies with a frequency of the repeating patterns matching a pulse between 70-90. 

Position three, four, five and six are not as promising for capturing the 

ballistocardiogram. However they are still valuable as another interesting feature of the 

shoe sole is the possibility of capturing the pressure distribution.  
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Figure 20 - Results from placement testing 

Throughout the process of designing and the testing the sole prototypes an extra 

interesting idea was to enable the capture of the pressure distribution under the foot of 



20 

 

users. The initial idea was using it for gait analysis. However, during a show and tell of 

one of the prototypes it was highlighted how the pressure distribution could be used for 

monitoring the pressure distribution under the feet of people who have neuropathy in 

their feet. From conversations with medical personnel, it was uncovered that people with 

neuropathy struggle with getting sores under their feet without discovering it. To prevent 

and treat sores under the feet special shoe soles are developed to shift weight away from 

areas with sores. Tracking the pressure distribution under a person foot and looking for 

changes in the distribution could possibly lead to earlier detection. In addition, a version 

of the shoe with a higher resolution of pressure sensors could be used to speed up the 

process of designing special shoe soles.  

   

3.7 BCG scale 

To evaluate the results of the high fidelity tests a gold standard for comparison was 

needed. The BCG scale as discussed in 2.2 and is a well-known method for capturing the 

BCG and yields results of a high quality. As it is also a cheap method for measuring BCG 

it was seen as a perfect reference for comparison. As such a bathroom scale was 

deconstructed and changed to output its raw signal to a microprocessor. This was done 

by connecting the load cells to a HX711 load cell amplifier. The HX711 gives an output of 

the weight by connecting the load cells in a wheatstone bridge. The wiring is shown in 

Figure 21.  

 

 

Figure 21 - Wiring diagram and setup of BCG scale 

 



21 

 

The results from the BCG scale were of high quality with the peak of IJK complex being 

possible to see without filtering the signal. A segmented, Z-score normalizes, unfiltered 

example is shown in Figure 22. Here a clear IJK complex is shown and the 

ballistocardiogram is easily recognized. By standing on the BCG scale with the BCG shoes 

it is possible to compare the results.  

 

Figure 22 - Results from testing the BCG Scale 
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The final setup is based on the results from Sole 1.0. It is designed for testing with a 

wide range of users to validate results. It consists of a pair of running shoes in size 45 

each equipped with five water bladders and correspondingly five BMP388 sensors. The 

five BMP388 sensors on each shoe are placed on the outside of the shoe to protect them 

from damage and simplify design. The pipe connecting the sensors on the outside to the 

water bladder on the inside is 24mm long for all sensors except position 4. The final 

design is shown in Figure 23. Placement of water bladders is shown in Figure 23. These 

positions are based on the results from testing Sole 1.0. Placements one and two were 

shown to be optimal for measuring BCG. Placements three, four and five are included to 

enable pressure distribution measurement and incase of serendipitous findings.   

 

 

Figure 23 - Sole 2.0 bladder design and placement from Appendix A.  

As shown in Figure 24 all five sensors are connected to a multiplexor with pairs of two 

and two sensors sharing one I2C port. The multiplexer is in turn connected to a 

microprocessor (Teenzy 4.1, PJRC, USA) which reads sensor output and writes it to the 

serial port of computer. On the computer the serial port is read using serialplotter and 

saved as a CSV file. In addition, the BCG scale can be connected as shown in the wiring 

diagram. A PPG sensor can also be connected as shown in the wiring diagram. The BCG 

Scale is for comparing the pressure-based BCG and the PPG is used as a reference for 

segmentation.  

The water bladder design used is shown in Figure 23. It is made using plastic bladders 

meant for being welded and a soldering iron. The plastic bladders are cut into shape 

using stencils which form a circle with a rectangle attached. The stencils are of two 

different sizes with the diameter of the circles being 27 mm and 37 mm. Pairs of two 

plastic pieces of different size are welded together by introducing 4-8 folds into the larger 

of the two plastic pieces. The folds ensure the two plastic pieces have the same diameter 

and by introducing folds into the larger piece the bladder is naturally going to hold a 

dome shape which eases the process of getting water into the bladder. For connecting 

the water bladder to the pipe super glue is used before water is added. A soft pipe is 

added to the other side of the plastic bladder and is used for adding water. After water is 

added, the soft pipe is glued shut.  

4 Sole 2.0 
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The sensors are modified slightly by adding silicone to the sensor IC. The metal lid on the 

BMP388 is removed and a plastic pipe with a diameter of 3 mm is glued onto the 

breakout board encompassing the sensor IC. The silicone is poured into the pipe using a 

syringe which with some effort will naturally fall onto the sensor IC. However, for the 

longest pipe it was necessary to cut a hole in the pipe right above the breakout board for 

air to escape through. After the silicon has gotten to the bottom the hole is glued shut.  

The water filled bladders are lowered into the shoe sole by about 2-3 mm. This is done to 

get a more natural feel for the shoe, make it more stable to stand on, and decrease the 

maximum pressure measured by the sensors as the sensors can max out when moving. 

Holes are drilled in the shoe for the pipes connecting the water bladders to the sensor to 

go through. For the four forward sensors the shoe sole is cut down to the drilled hole so 

the pipes can be lowered into. For the water bladder under the heel a trench is not cut 

due to the way the shoes are built. Instead, the sensor is glued onto the pipe after it has 

been placed into the shoe sole.   

 

 

Figure 24 - Wiring for BMP388 sensors and PPG sensor for Sole 2.0 
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Figure 25 - Shoe 2.0 pictures 
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To validate the Sole 2.0 prototype, testing with a wider range of users was important. 

The prototypes have mainly been tested on the developer of the prototypes and can as 

such be specialized to that person bodytype. Variations in height, weight, size of feet, 

gender, age and more can affect the results in unknown ways. Therefore, a test was 

conducted on a wider range of people. The goal was to capture the BCG and validate the 

results. To achieve this, it was necessary to include a PPG sensor for segmentation of the 

pressure signal and a finger cuff for measuring blood pressure. By segmenting with the 

PPG the waveform could be captured and by using the PPG as timing comparison with the 

BCG signal the Pulse Travel Time (PTT) can be calculated. Then the BCG can be validated 

by comparing the changes in PTT to the changes in blood pressure as they are inversely 

related (Pereira, Correia, and Cardoso 2015). To induce changes in blood pressure a cold 

pressor test was done all participants.  

5.1 Testing procedure and setup 

Tests were run with 14 participants, of which 7 were female and 8 were male. All 

participants in the tests were between 22-29 years old. All participants gave written 

informed consent, and the study was approved by NSD with reference number 250185. 

All participants were interviewed about their gender, age, height, weight and shoe size as 

these parameters were hypothesized to affect the results. The detailed result of the 

interviews are shown in Table 1 with the median result and ranges given.  

Table 1 - Results from interviews (Appendix A) 

 Female Male 

Gender 7 8 

Age 23.5 (22-26) 25.5 (23-29) 

Height 171 (162-175) 182.5 (170.5-193) 

Weight 67 ( 53-93) 80 (64 – 86) 

Shoe size 39 (36-40) 44.5 (42.5 – 45) 

 

Participants were instrumented with the BCG shoes on their feet. A PPG sensor 

(PulseSensor, World Famous Electronics llc, USA) was clipped on their left index finger 

and a finger cuff (MLT382, ADInstruments, United Kingdom) was placed on their left 

middle finger. During testing participants were asked to stand on the BCG scale. The 

testing was done in three test periods, noted as T1, T2 and T3, with one resting period 

between T2 and T3. During T1 the participants were instructed to still on the BCG scale 

for 1.5 minutes. After 1.5 minutes T2 was conducted with a cold pressors test. 

Participants were asked to put their right hand into a bucket containing water holding five 

degrees Celsius for 1 minute when they felt ready. After 1 minute had passed a resting 

period of 3 minutes was conducted to normalize blood pressure. For T3 the participants 

were again asked to stand on the BCG scale for 1.5 minutes.  

 

5 Testing  
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5.2 Dataprocessing 

The PPG, BCG shoes and BCG scale were all sampled synchronously using a 

microcontroller at 180hz. The BCG was double sampled due to the HX711 amplifier being 

limited to 90 hz in testing. The blood pressure was sampled at 200hz on the same 

computer as the microcontroller was writing its data to. The blood pressure measurement 

was synced with the other measurements by using the computer as a common timing 

system.  

To remove noise and achieve a satisfactory result most of the data had to be filtered. The 

PPG was filtered using a Savitzky golay filter with a polyorder of three and a segment 

size of 0.15s. In addition to filtering noise this also made the PPG differentiable. The 

pressure signals were filtered using a forward-backward digital filter with a bandpass of 

[3,10] Hz and an order of 12. The scale was sampled at 90Hz by removing every other 

sample. The blood pressure was filtered using a Savitzky-Golay filter with a polyorder of 

3 and a windowsize of 35 seconds.  

The PPG was used for segmenting the pressure and scale signal. It was segmented by 

naively locating local peaks on the PPG with a spacing of at least 0.5 seconds between 

each peak. After segmentation each segment was normalized using z-score 

normalization. The segments were validated automatically by comparing segment sizes 

and removing segments that differentiated by more than 5% from the median segment 

size. The segments were also validated manually by plotting the PPG segments on top of 

each other and comparing the waveform as well as plotting the identified peaks for visual 

inspection as shown in Figure 26. Each segment of the PPG were calculated from a peak 

of the PPG to the next peak with a padding of 0.5s on each side. The BCG shoes and 

scale was segmented using the identified time segments from the PPG segmentation. The 

BCG shoe, BCG scale and PPG used windows of 25 seconds within each measurement 

period. 

The changes in PTT was calculated by comparing the spacing between the peak of the 

PPG average and the J peak of the BCG average. The peak locations was computed using 

a naïve peak detection algorithm and manually reviewed after. The corresponding blood 

pressure for each window of measurements was calculated by finding the mean of the 

systolic blood pressure measured by the finger cuff. 
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Figure 26 - Identified PPG peaks with wrong segments marked in red 
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6.1 Preliminary ballistocardiography findings 

The data from the Ballistocardiography tests are not fully processed yet, due to the time 

needed manually review all of the segmentation and calculations. The results of the fully 

processed data will be submitted to the IEEE Sensors 2022 conference. However, 

preliminary results for two participants are finished. The data has been processed as 

described in 5.2.  

6.1.1 Test 1  

Figure 27 shows the results of the three best sensors for the first measurement period 

for a 24-year-old male. The sensor in position 1 and 2 on the right foot and position two 

on the left foot where the sensors which successfully captured the BCG. Figure 28 shows 

the BCG captured on the sensor in position 2 on the left foot plotted against the BCG 

scale result. The shoe BCG has two noticeable differences from the scale BCG. The J peak 

is less pronounced, and the timing is deviating with almost 0.1 seconds.  

  

 

 

Figure 27 - Ballistocardiogram for a 24-year-old male during T1 

6 Testing results 
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Figure 28 - Shoe BCG vs Scale BCG for a 24-year-old Male for T1 

Figure 29 shows the results of the four best sensors for the first measurement period for 

a 23-year-old female. Position one and two on both the right and the left foot showed the 

best results for the first measurement period. Figure 30 shows the BCG captured on the 

sensor in position one on the right foot plotted against the BCG scale result. The shoe 

BCG has two noticeable differences from the scale BCG. The H peak is more pronounced 

one the shoe BCG and the timing is deviates by a bit over 0.5 seconds.  

  

  

Figure 29 - BCG shoe results for a 23-year-old female 
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Figure 30 - BCG shoe vs BCG scale for a 23-year-old female 

6.1.2 Test 2 

Figure 31 shows the results of the four best sensors for the second measurement period 

for a 24-year-old male. The sensor in position one on the right foot and position one, two 

and three on the left foot where the ones who successfully captured the BCG. Figure 32 

shows the BCG captured on the sensor in position 2 on the left foot plotted against the 

BCG scale result. The shoe BCG has two noticeable differences from the scale BCG. The J 

peak is less pronounced, and the timing is different with almost 0.1 seconds.  

  

  

Figure 31 - Shoe BCG vs PPG for a 24-year-old male for T2 
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Figure 32 - Shoe BCG vs Scale BCG for a 24-year-old male for T2 

Figure 33 shows the results of the four best sensors for the second measurement period 

for a 23-year-old female. Position one and two on both the right and the left foot showed 

the best results for the second measurement period. Figure 30 shows the BCG captured 

on the sensor in position one on the right foot plotted against the BCG scale result. The 

shoe BCG has two noticeable differences from the scale BCG. The H peak is more 

pronounced one the shoe BCG and the timing is different with a bit over 0.5 seconds.  

  

  

Figure 33 – Shoe BCG vs PPG for T2 for a 23-year-old female 



32 

 

 

Figure 34 – Shoe BCG vs Scale BCG for T2 for a 23-year-old female 

6.1.3 Test 3 

Figure 35 shows the results of the four best sensors for the third measurement period for 

a 24-year-old male. The sensor in position one and two on both the right and the left foot 

where the ones who successfully captured the BCG. Figure 36 shows the BCG captured 

on the sensor in position two on the left foot plotted against the BCG scale result. The 

shoe BCG has two noticeable differences from the scale BCG. The J peak is less 

pronounced and the timing is different with almost 0.1 seconds.  

 

  

  

Figure 35 - Shoe BCG vs PPG for T3 for a 24-year-old male 
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Figure 36 - Shoe BCG vs Scale BCG for T3 for a 24-year-old male 

Figure 37 shows the results of the four best sensors for the third measurement period for 

a 23-year-old female. Position one and two on both the right and the left foot showed the 

best results for the first measurement period. Figure 38 shows the BCG captured on the 

sensor in position one on the right foot plotted against the BCG scale result. The shoe 

BCG has two noticeable differences from the scale BCG. The H peak is more pronounced 

one the shoe BCG and the timing is different with a bit over 0.5 seconds.  

  

  

Figure 37 - Shoe BCG vs PPG for T3 for a 23-year-old female 
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Figure 38 - Shoe BCG vs Scale BCG for a 23-year-old female 

6.1.4 PTT 

Figure 41 shows the detection of the J peak of the shoe BCG and the detection of the PPG 

peak for testing period one, two and three for a 24 year old male participant. The J peak 

happens at 0.436 seconds for T1, 0.403 seconds for T2 and 0.504 seconds for T3. The 

PPG peak happens at 0.498 seconds for all three testing periods due to the segmentation 

method. 
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Figure 39 - Peak detection for calculating PTT change for T1, T2 and T3 for a 24 year old 
male 

Figure 40 shows the detection of the J peak of the shoe BCG and the detection of the PPG 

peak for testing period one, two and three for a 23 year old female participant. The J 

peak happens at 0.481 seconds for T1, 0.458 seconds for T2 and 0.487 seconds for T3. 

The PPG peak happens at 0.498 seconds for all three testing periods due to the 

segmentation method. 
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Figure 40 - Peak detection for calculating PTT change for T1, T2 and T3 for a 23-year-old 
female 

Figure 41 shows the PTT versus blood pressure for the 24-year-old male and the 23-

year-old female. The PTT and blood pressure is inversely related for both participants 

with the PTT decreasing in T2 when the blood pressure increases and increasing again in 

T3 when the blood pressure decreases.  
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Figure 40a - PTT vs blood pressure for a 24-year-old male 

 
Figure 40b - PTT vs blood pressure for a 23-year-old female 

Figure 41 - PTT vs Blood pressure the 24-year-old male and the 23-year-old female 

 

6.2 Pressure distribution 

Pressure distribution was briefly tested on one subject while walking and standing. Figure 

42 shows the pressure distribution while walking. The different timing of the pressure 

sensors is apparent. Figure 43 shows the pressure distribution while standing still. 

However, the measurements were not calibrated, and each sensor has their own baseline 

value.  
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Figure 42 - Pressure distribution when walking 

 

Figure 43 - Pressure distribution while standing 
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7.1 Discussion of development process 

The main tool for the development phase was prototyping as well as the bench top setup. 

As established in 2.3 prototyping is an important tool in product development and an 

essential part of wayfaring. It was used a lot during this development process and 

contributed greatly to learning, but some limitations were also uncovered. Due to the 

small magnitude of the signal compared to the considerable amount of noise the 

prototypes needed to be of a relatively high quality to achieve a good learning outcome. 

This meant that the creation of each prototype took a considerable amount of time. As 

quick iterations are highly important in wayfaring to efficiently explore the design space 

this slowed the development process. As such Wayfaring might have some limitations 

when applied to fields that require a high degree of quality of the prototypes. This is not 

to say that wayfaring and prototyping was not valuable as even the generation of low 

fidelity prototypes did generate some learning and design questions. 

The bench top setup did generate a lot of knowledge, mostly in uncovering which 

parameters did not matter. Creating experimental setups which emulated the physical 

world in a good manner proved incredibly valuable for quickly testing and iterating 

through parameters. This might be because the development process was a mixture 

between an optimization problem and an exploratory problem. The optimization issue 

was larger than anticipated due to the concept appearing solid, but the results were still 

poor for many iterations.   

7.2 Discussion of results 

The results shown in 6.1 shows great promise for capturing the BCG. The findings are 

only preliminary as all the data has not been processed yet, but both processed datasets 

show huge promise. The BCG waveform is clearly captured in both participants. 

Compared to the scale BCG the J peak is often less pronounced with the H peak being 

more pronounced. Why this happens is difficult to conclude on but there might be some 

dampening occurring. The timing of the shoe BCG vs scale BCG is also deviating a bit by 

about 0.05 seconds to 0.1 seconds. This can be due to an error in the processing of data 

or due to some underlying difference between what is being captured. One such reason 

could be that the shoe BCG captures the force due to the movement while the scale BCG 

captures the deflection in the load cells under the scale. Some delay might be happening 

from the force occurring to the deflection in the load cells.  

Position one and two on both of the feet is the standout sensor positions capturing the 

BCG in five out of six analyzed periods. In addition, sensor position three does 

sometimes capture the BCG. Sensor position four and five contribute little to the BCG 

measurement. However, some more analysis needs to be done before concluding. All 14 

datasets need to be analyzed and the results for position four and five need to be further 

analyzed. They might capture some other part of waveform or require a different filtering 

process. 

7 Discussion 
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The PTT is calculated for both the participants and gives very promising results. The PTT 

decreases with increased blood pressure in T2 and increases when the blood pressure 

stabilizes in T3. This is exactly what is expected to happen if it is the BCG being 

captured. The measurement of PTT also shows a real-world application for the shoes 

other than capturing BCG waveform as PTT can be used for continuous noninvasive 

measurement of cardiovascular health to its relation to pulse wave velocity and in turn 

blood pressure and arterial stiffness.  

However, some limitations have been discovered both in testing procedure and the 

results. The variation in age for the participants is very small and the variation in weight 

is also relatively small. As such there might be unknown effects which could worsen the 

results for users of different ages and bodytypes. The impact of the weight, height, shoe 

size and age has not been reviewed and might lead to some interesting results. The 

testing procedure is a controlled scenario where the participants were asked to stand 

still. This does not necessarily reflect a real-world scenario where there will be more 

motions in the feet. The window size for measuring BCG is 25 seconds which is a long 

time for a user to stand still in the real-world. Therefore, it is difficult to conclude on the 

real-world application of the shoes without before real-world testing has been done.   

The pressure distribution was captured by the shoes. However, very little testing was 

done on the capabilities. The biggest problem with the pressure distribution is that no 

calibration was conducted. Each sensors have their own baseline value when no pressure 

is applied. Without first calibrating it is impossible to conclude whether the pressure 

distribution is correct. The pressure distribution while walking is interesting. The timing of 

the different sensors is easily captured which can show how a person is walking.  

Even with the promising results from the two first datasets no conclusion can be made 

before all 14 datasets are processed. There might still be some unknown factors which 

can impact the remaining 12 datasets.  

7.3 Discussion of Sole 2.0 

Sole 2.0 has given very promising preliminary results. However, it does have some 

limitations. The water bladders are prone to breaking when walking. A sturdier version 

needs to be created for this to have real world applications. In addition, the bladder 

version might not be the most optimal solution. For instance, the piston-cylinder setup 

showed great promise as a sturdier and easier to produce solution. The main takeaway 

from the bladder solution is to only measure a small area where the forces are the 

largest to get the largest pressure change due to BCG. This improves the signal 

magnitude compared to noise and makes the measurement of BCG easier. Future work 

on the concept should be to further test other solutions for localized pressure 

measurement. In addition, the electronics need to be miniaturized to enable testing in 

real world scenarios. 
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This master thesis has created a smart shoe for measuring BCG in a noninvasive and 

continuous manner. The smart shoe, called, Sole 2.0 consists of a pair of shoes with five 

water filled bladders placed in each shoe. The water filled bladders are each connected to 

a BMP388 barometric pressure sensor which measure the pressure in the bladders. By 

measuring the change in pressure under the foot he movements of the body due related 

was possible to capture. The two key nuggets in designing the smart shoes were the 

placement of the sensors and the advantage of only measuring the force in a small area 

where it was the biggest. The sensor position on the heel of the foot and slightly in front 

of the heel were the most optimal for measuring BCG. The small surface area for 

measuring the pressure change in the area with the largest forces meant the pressure 

change was as large as possible which meant the magnitude of the signal was relatively 

good compared to the noise.  

The smart shoes were tested on 14 participants of which 7 were female and 8 were male. 

Only preliminary results for two participants have been generated due to the time needed 

to manually validate segmentation and find the optimal measurement periods. However, 

the results from the two processed data sets are promising. The BCG was captured for 

both datasets in all three time periods. In five out of six sets both position one and two 

on the left and right foot managed to measure the BCG. The results were validated by 

manual inspection of the waveform and the computation of PTT. The waveform was 

similar the BCG scale waveform with a slightly less pronounced J peak and a more 

pronounced H peak. The calculated PTT was inversely related to the blood pressure 

decreasing when the blood pressure increased in T2 and increased when blood pressure 

stabilized in T3.  

However, some limitations remain before real world use can be determined. The testing 

scenario was a controlled test in a lab environment. In real world there might be other 

aspects which affect the results such as more movement in the user and vibrations from 

other sources. In addition, it is impossible to conclude on the success of the results 

before all 14 datasets have been analyzed. The results are promising enough to conclude 

that the BCG shoes show promise as a method for noninvasive continuous measurement 

of cardiovascular health.  
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I. INTRODUCTION  

The ballistocardiogram (BCG) is the recording of the 
ballistic forces generated by ejection of blood from the 
ventricle during the onset of systole. First rigorously 
investigated in the first half of the 20th century, as a non-
invasive cardiovascular measurement the BCG has seen a 
modest resurgence as a convenient method of recording 
heart- and respiratory rates [1]. In combination with the 
photoplethysmogram (PPG), attempts have been made to 
define a robust estimate of the pulse wave velocity (PWV) 
via multi-messenger time delay [2], [3]. 

Partly to deal with the notoriously noisy character of 
BCG signals, typical measurement scenarios have often 
relied on stationary measurements. These have included 
bathroom weigh-scales, beds, and chairs ([4] + bed/chair); 
these “full-body” BCG setups rely on measuring force, for 
example via strain gauges or electret films. This has the 
advantage of comparatively high signal-to-noise ratio 
(SNR). There is however a healthcare monitoring 
motivation for integrating BCG-based measurements in 
wearable devices, to which end attention has been focused 
on wrist- and earbud-based approaches built on 
accelerometry [2], [5]. These have the strong benefit of 
convenience and mobility but suffer a loss of signal quality 
in return. Here, we propose a “best of both worlds” 
solution: by integrating a series of high-sensitivity liquid 
pressure sensors in the sole of a shoe, we demonstrate that 
the BCG can be reliably recorded with reasonable quality. 
In combination with PPG, we use ensemble-averaged 
waveforms to estimate pulse transit times. We verified the 
performance of the smart shoes by performing a cold 
pressor test on 15 volunteers (rfemale = 0,46). Blood 
pressure was recorded concurrently using the volume-
clamp method. 

II. METHOD 

A. Ballistocardiogram shoe design 

The smart shoes consist of a standard pair of running 

shoes. Each of the shoes is fitted with five BMP388 

pressure sensors on a breakout board from Adafruit. 

Pressure sensors were used due to being easy to acquire, 

easy to interface with and had a relatively low noise and 

low drift. Five sensors were found to provide a satisfactory 

response range.  

Each sensor unit consists of one atmospheric pressure 

sensor (BMP388, Bosch Sensortec GmbH, Germany) 

connected via a flexible plastic tube to a water filled 

bladder which is fitted into the modified sole. The plastic 

tube is adhered to the sensor board, surrounding the sensor 

IC. The pressure sensor IC is delidded and a thin layer of 

silicone is applied in the end of the tube, creating a 

waterproof interface to the sensor. The protective silicone 

appeared to have little impact on the signal quality during 

testing. Water is used due to being incompressible which 

was necessary due to the large forces being applied to the 

bladder due to bodyweight. The BMP388s are connected 

via I2C multiplexer to a MCU (Teensy 4.1, PJRC). 

The water-filled bladders have a diameter of 27 mm 

and an approximate surface area of 1550 mm2. The bags 

are made from plastic bags made for welding  which are 

cut into plastic sheets of two different sizes . The smallest 

with a diameter of 27 mm and the larger with a diameter 

of 37 mm. The two sheets are thermally welded together. 

Four to eight folds are then introduced into largest plastic 

sheet to achieve the same circumference on both of the 

sheets. This introduces a natural dome shape to the plastic 

bags which greatly simplifies the process of filling the 

bladder cavity. 

 

 

 
 

 

 

 



 

 

 

B. Experimental protocol 

Fifteen participants were included in the study of which 8 

were male and 7 were female. All participants gave 

written informed consent after being informed of the 

study and its procedures. The study was approved by NSD 

with reference number 250185. All participants were 

interviewed about their gender, age, height, weight and 

shoesize. The results of which are shown in Table 1.   
Table 1 - Interview results showing median value and range 

 Female Male 

Gender 7 8 

Age 23.5 (22-26) 25.5 (23-29) 

Height 171 (162-175) 182.5 (170.5-

193) 

Weight 67 ( 53-93) 80 (64 – 86) 

Shoe size 39 (36-40) 44.5 (42.5 – 

45) 

 

 

Participants were instrumented with the 

ballistocardiogram shoes on their feet and a PPG sensor 

(PulseSensor, World Famous Electronics llc, USA) on 

their left index finger. The labchart Nano housing unit 

was placed on the participants left wrist and the 

corresponding finger cuff (MLT382, ADInstruments, 

United Kingdom) for blood pressure measurement was 

placed on the left middle finger. All participants were 

asked to stand on a BCG scale which acts as a reference 

for the BCG shoes. The BCG shoes capture the pressure 

under the participants feet.   

 

The participants were first instructed to stand still on the 

BCG scale for 1.5 minutes. After 1.5 minutes had passed 

they were asked to place their right hand in the cold water 

when they felt ready. The water held 5 degrees Celsius. 

The participants held their right hand in the cold water for 

1 minute. They were then given 3 minutes to rest. After 3 

minutes of rest, they were instructed to stand still on the 

BCG scale for 1.5 minutes.  

 

  

Figure 1 - Instrument setup on participants (Placeholder) 

 

C. Data processing and analysis 

The PPG, BCG shoes and BCG scale was sampled 
synchronously on the Teenzy 4.1 at 180 hz with the BCG 
scale being double sampled due to the HX711 amplifier 
being limited to 90 Hz in testing. The blood pressure was 
sampled at 200hz on the same computer as the Teenzy 4.1. 
The start time of testing for the Teenzy 4.1 and the finger 
cuff was logged by the software used. This starttime was 
used for synchronizing the measurements from labchart 
and the Arduino.  

The PPG was filtered using a Savitzky–Golay filter 
with a polyorder of 3 and a segment size of 0.15s. This was 
done to remove noise and make the PPG differentiable. 
The pressure signals were filtered using a forward-
backward digital filter using second order cascaded 
sections. The filter used a bandpass of [3,10]Hz and an 
order of 12. The scale was sampled at 90hz by removing 
every other sample. A corresponding PPG signal was used 
by removing the corresponding samples from the PPG. 
The blood pressure was smoothed by using a Savitzky-
Golay filter with a polyorder of 3 and a window size of 35 
seconds.  

The PPG was used for segmenting the pressure and 

scale signal. After smoothing the PPG was segmented 

naively locating local peaks with a spacing of at least 0.5s 

between each peak. The segments were checked 

automatically by comparing segment size for each 

segment and the median segment size with segment sizes 

differing by more than 5% from the median were marked. 

The segmentation was also verified manually by manual 

inspection of peak detection and plotting each segment on 

each other to look for deviations. Each segment of the PPG 

were calculated from 0.3 seconds before the first detected 

peak to 0.5 seconds after the next detected peak. The BCG 

shoes and scale was segmented using the identified time 

segments for the PPG. 

III. RESULTS 

 
Figure 2 shows the results for the BCG shoe in the first 

measurement period for a 24 year old male with the PPG 
as a reference. Figure 3 shows the BCG results for the first 
measurement period for a 23 year old female. The 
waveform of the BCG is easily recognizable in both of the 
participants with little variation in the segments for the 23 
year old female. For both participants sensor location 2 on 
the right shoe gave the best results. Location one and two 
one both feet gave the best results in all three measurement 
periods with position three giving good results in some of 
the participants. Position four and five gave no 
recognizable results.  



 

 

 

Figure 2 - BCG shoe results for a 24 year old male  

 

Figure 3 - BCG shoe results for a 23 year old female 

Figure 4 shows the BCG shoe result for sensor position 2 

on the right foot for measurement period one versus the 

BCG scale results. There are two notable differences 

between the BCG shoe and BCG scale results. The H peak 

is more prominent for the BCG shoe. In addition, the 

timing of the two BCG results is different by about 0.1 

seconds.   

 

Figure 4 - The shoe BCG versus the scale BCG for a 23 year 

old female 

Figure 5 shows the variation in pulse transit time (PTT) 

for measurement period one, two and three and the 

variation in blood pressure in the same three periods for 

all 14 participants. The PTT is inversely related to the 

blood pressure change in all 14 participant.  

 

 

Figure 5 - Pulse transit time for the 14 participants versus 

blood pressure (Placeholder) 

IV. DISCUSSION  

The results show that the BCG is successfully being 
captured by the BCG shoes. The waveform is slight 
different from the traditional scale BCG results with a 
more pronounced H peak. The sensor position one and two 
give the best results on both of the feet showing no major 
difference between left and right shoe. The PTT is 
calculated for all 14 participants and is inversely related to 
the blood pressure. This further strengthens the results in 
validating that it is the BCG being captured.  

However, the study has some weaknesses. The 
participants had little variation in age and weight. It is 
therefore possible that some complications might arise in 
a broader population. In addition, the study was done in a 
controlled environment where the participants were 
instructed to stand still. Real world scenarios might have 
some complications which can give worse results. To 
evaluate whether the shoes have real world value further 
testing in real world scenarios would have to be done.  

The design of the shoes also have some limitations. 
The bags are prone to leaking in when in activities such as 
walking and running. Only two of the five sensor positions 
on each foot gives consistently good results. If the only 
goal is measuring BCG only two sensors should be 
included in each shoe. The design is only one possible 
solution and most likely not the optimal. However, the 
principal of only measuring small areas with the largest 
effect does produce better results.  

V. CONCLUSION 

This has shown a new method for measuring BCG 
using smart shoes. The captured BCG has been used to 
calculate PTT and shown inverse relationship with blood 
pressure. The smart shoes show the optimal measuring 
area for measuring BCG under a person’s feet. By only 
measuring in a small area where the force due to BCG is 
largest the magnitude of the signal is maximized to 
improve the signal to noise ratio. Further testing in real 
world scenarios is needed to further evaluate and improve 
the smart shoes. However, the smart shoe shows promise 
as a solution for wearable continuous measurement of 
BCG.  
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Abstract 
This project aimed to explore the solution space related to wearable physiological sensors 
using wayfaring and prototyping. The solution space exploration was focused on the early 
detection of cardiovascular diseases. Early detection and treatment have been identified 
as one of the most significant factors for reducing the impact of cardiovascular diseases. 
Wayfaring and prototyping were used to explore the design space, testing multiple 
different setups and technologies. Ballistocardiography was discovered as a possible 
solution for wearable continuous noninvasive monitoring of the cardiovascular system. 
Historically, issues with equipment size and motion artifacts disturbing the signal have 
held it back. However, computer and sensor technology advances have been promising in 
lessening these issues and widening the solution space. This project discovered and 
tested a new solution for measuring the ballistocardiogram by measuring the changes in 
pressure under a person’s foot. The setup measures the pressure under the user’s foot 
using a configuration of two barometric pressure sensors attached to two inflatable bags 
placed under the heel and front of the foot. The setup has been successfully tested in a 
lab environment. After filtering and averaging the signal, a clear and periodic signal with 
apparent similarities to the known ballistocardiogram waveform was achieved. The 
solution opens the possibility of measuring the ballistocardiogram in low-intensity 
activities such as standing and sitting by implementing a smart shoe sole. However, this 
method still has one of the same problems as earlier methods in terms of motion 
artifacts lowering the quality of the output signal. Further testing and optimization are 
needed to reduce the impact of this issue. In addition, further research with more 
participants is required to discover the maximum quality of the captured data and its 
potential for monitoring.   

  



iii 
 

Table of contents 
List of figures ..................................................................................................... iv 

Abbreviations ..................................................................................................... iv 

1 Introduction .................................................................................................... v 

2 Prototyping theory ........................................................................................... vi 

2.1 Wayfaring ................................................................................................ vi 

2.2 Prototyping .............................................................................................. vii 

3 Technical and physiological theory ................................................................... viii 

3.1 Ballistocardiography ................................................................................ viii 

3.2 Simple signal analysis of physiological signals ............................................... ix 

4 Project work .................................................................................................... x 

4.1 Part 1 ...................................................................................................... x 

4.2 Part 2 – Converging on BCG ...................................................................... xii 

5 Final setup and results .................................................................................... xvi 

6 Further work ............................................................................................... xviii 

7 Summary ...................................................................................................... xix 

References .......................................................................................................... xx 

Appendix ........................................................................................................... xxii 

Appendix A: Arduino code for data capture in final setup ...................................... xxii 

Appendix B: Matlab code for result analysis ....................................................... xxiii 

 

  



iv 
 

List of figures 
Figure 1 – The probing cycle from (Gerstenberg et al., 2015) ...................................... vi 
Figure 2 – Wayfaring from (Gerstenberg et al., 2015) ................................................ vi 
Figure 3 - Starr BCG waveform (Starr et al., 1939) .................................................. viii 
Figure 4 - Simplified wayfaring journey .................................................................... xi 
Figure 5 - Prototype 1 ........................................................................................... xii 
Figure 6 - In shoe testing ..................................................................................... xiii 
Figure 7 - Prototypes 2-4...................................................................................... xiii 
Figure 8 - Power spectrum density for prototype eight ............................................. xiv 
Figure 9 - Setup for testing prototype eight with PPG ............................................... xiv 
Figure 10 - Prototypes 5-9 from left to right and top to bottom ................................. xiv 
Figure 11 - Final testing setup ................................................................................ xv 
Figure 12 - Correct bag shape ................................................................................ xv 
Figure 13 - Shape of the bag with insufficient height ................................................. xv 
Figure 14 - All parts of final setup .......................................................................... xvi 
Figure 15 - Final bag design .................................................................................. xvi 
Figure 16 - Simple wiring schematic ...................................................................... xvi 
Figure 17 - Mean filtered pressure signal overlayed all pressure signal segments ........ xvii 
Figure 18 - Mean filtered pressure signal ............................................................... xvii 
 

 

Abbreviations 
BCG 
SCG 
PPG 
PSD 
MDF 

Ballistocardiograhpy 
Seismocardiography 
Photoplethysmogram 
Power Spectral Density 
Medium-density fiberboard 

NTNU Norges teknisk-naturvitenskapelige universitet 
  

 



v 
 

Wearables are already impacting healthcare by enabling continuous monitoring outside of 
the clinical environment (Dunn et al., 2018). Many exciting solutions already exist, and 
the continued advancements in sensor and microcontroller technology keep widening the 
solution space for wearables. Common examples of wearables can be smartwatches, 
smart clothes, hearing aids, and smart shoes. One example of a mature solution already 
impacting people’s lives is continuous glucose monitoring devices such as the Dexcom G5 
and the Freestyle Libre 2, which significantly improve diabetes patients’ ability to monitor 
their glucose levels.  

The objective for this project thesis was to design, build and test custom sensor setups to 
develop the next generation of wearables.  

The project scope focused on exploring the solution space for wearables monitoring the 
cardiovascular system. This ensured high-quality supervision throughout the process due 
to existing knowledge about the cardiovascular system at TrollLabs. The project’s scope 
was also focused on developing one or more proof of concepts for sensor setups, due to 
the project’s short time frame.  

The project was developed at TrollLabs, with a focus on prototyping and wayfaring as 
tools for generating knowledge and ideas. TrollLabs is a research and prototyping 
laboratory at NTNU. It contains a multidisciplinary research group and has an overall 
objective of investigating and improving the fuzzy front end of engineering design. 
Wayfaring and prototyping are common tools and methods used TrollLabs to explore the 
solution space in the fuzzy front end of development. 

The report is split into seven sections and can be divided into three main parts. Part one 
contains sections 1, 2, and 3, introducing the problem statement and necessary 
background theory for the project thesis. Part two of the report consists of sections four 
and five. They explain the most relevant work of the project thesis and present the final 
results from the project. Part three contains sections 6 and 7, which discuss 
shortcomings of the project and what can be done to address these as well as 
summarizing the project.  

1 Introduction 
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2.1 Wayfaring 
Improvements: Language and conciseness. Low-resolution prototypes. A better 
explanation about why wayfaring is needed (complexity of the product development 
process) 

The fuzzy front end of innovation is the early explorative phase of innovation before 
substantial resources are committed and structured processes are applied (Kim and 
Wilemon, 2002). Navigating the fuzzy front end can often be a challenging endeavor. 
One method for this navigation is wayfaring. (Steinert and Leifer, 2012) introduced the 
hunter-gatherer model for this explorative phase, which was later developed into the 
wayfaring model by (Gerstenberg et al., 2015). The wayfaring and hunter-gatherer 
model propose exploring the solution space as a wayfaring journey, with only a general 
direction or goal as a starting point. This is done by probing the solution space with 
iterations of a design-build-test cycle, as shown in Figure 2 (Gerstenberg et al., 2015). A 
probe in the wayfaring model is a cycle of designing, building, and testing an idea or a 
prototype, as shown in Figure 1. This is done in a converging and diverging fashion using 
generative design questions and deep reasoning questions. Generative design questions 
initiate creative and divergent thinking creating new ideas. Deep reasoning questions 
converge these ideas by measuring performance, feasibility, etc. This cycle creates and 
testes new knowledge which (Gerstenberg et al., 2015) call abductive learning. This 
learning is then used to perform abductive reasoning to take the next step in the solution 
space.  

A significant advantage of wayfaring is its ability to discover unknown unknowns and 
dynamically create requirements. Unknown unknowns are challenges and requirements 
that are yet to be known (Sutcliffe and Sawyer, 2013). These can be a significant source 
of costs in development (Kennedy et al., 2014) and are essential to discover as early in 
the design process as possible. (Kriesi et al., 2016) show two examples of wayfaring 
being used to develop requirements iteratively, discover unknown unknowns, and avoid 
design loopbacks.  

2 Prototyping theory 

Figure 2 – Wayfaring from (Gerstenberg et 
al., 2015) 

Figure 1 – The probing cycle from 
(Gerstenberg et al., 2015)  
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2.2 Prototyping 
Prototyping is an essential part of product development  (Jensen et al., 2016). (Schrage, 
1996) stated that strong prototyping cultures produce strong products. However, the 
many settings and uses of prototypes have resulted in the creation of many different 
frameworks and principles for prototyping, with no universal framework being agreed on 
(Elverum and Welo, 2015; Jensen et al., 2016). Some examples of these are (Houde and 
Hill, 1997) who use prototypes for user-centric designs and as a tool for capturing user 
insights, (Lauff et al., 2018) who focus on prototypes as an aid in decision making, 
communicating and learning, and (Auflem et al., 2019) focus on prototypes for learning 
and ability to establish informed requirements in the fuzzy front end. 

Prototyping is also an essential part of probing in the wayfaring model (Kriesi et al., 
2016). (Steinert and Leifer, 2012) propose using prototyping as a tool for abduction and 
testing in their wayfaring model. (Gerstenberg et al., 2015) build on this idea by 
implementing prototyping as an essential part of their probing cycles. They focus on 
minimizing the time spent and maximizing learning by creating low-resolution prototypes 
testing critical functions. They also argue for creating prototypes that integrate multiple 
systems or disciplines to test and discover interdependencies. (Kriesi et al., 2016) further 
advance the use of prototypes in probing by analyzing their use for discovering critical 
functionalities and subsequent dynamic requirements. They present two cases where 
prototyping was successfully used in the probing cycles to test critical functionalities and 
develop dynamic requirements for the finished design based on those tests.  

One last important factor of prototyping is its role in eliciting unknown unknowns and 
learning. Unknown unknowns are knowledge that the designer does not have and is 
unaware of missing(Sutcliffe and Sawyer, 2013). As stated in the wayfaring theory, 
discovering unknown unknowns is essential to avoid rework and reduce product 
development costs (Kennedy et al., 2014). The discovery of unknown unknowns relates 
to (Kriesi et al., 2016) method for developing dynamic requirements. They argue that 
prototyping lets them discover unknown problems and requirements faster than 
analytical methods.   
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3.1 Ballistocardiography 
Ballistocardiography (BCG) is a method for measuring the body’s movements due to the 
ballistic forces associated with the acceleration and deceleration of the blood in the body 
(Giovangrandi et al., 2011; Pinheiro et al., 2010). It was heavily studied between 1940 
and 1980 but fell out of popularity due to several reasons. Technical difficulties such as 
device size and mechanical vibrations impacting the captured signal were one major 
problem, and the physiological interpretation of the signal was another major issue 
(Pinheiro et al., 2010). It has increased in popularity in the last two decades with modern 
sensors and computers opening new solutions for some of the old issues. Although its 
potential as a diagnostic tool has historically been lacking, its potential as a wearable to 
enable continuous monitoring of the overall health of the cardiovascular system in non-
clinical settings is promising (Giovangrandi et al., 2011).  

There exist many solutions for measuring BCG today. For instance, (Mora et al., 2020) 
use a triaxial accelerometer attached to a bedframe to capture the ballistocardiogram 
from a lying subject. (Koivistoinen et al., 2004) use EMFi sensors, an electromechanical 
film, applied to a standard chair to record the ballistocardiogram. (Inan et al., 2009) use 
a modified commercial electronic scale to capture the BCG signal. (Pinheiro et al., 2009) 
was able to use a chair-based BCG system in combination with ECG and PPG to 
noninvasively measure heart rate variability and pulse arrival time with BCG showing 
promise as a substitute for ECG.  

One complication with using BCG is the variation in the waveform depending on the 
measurement method and individual differences (Inan et al., 2009; Pinheiro et al., 
2010). One waveform used as a reference for the ballistocardiogram waveform is the 
Starr BCG (Pinheiro et al., 2010) seen in Figure 3. The most prominent features of the 
BCG waveform are the J-peak and the W-shape the HIJKL waves create.  

3 Technical and physiological theory

Figure 3 - Starr BCG waveform (Starr et 
al., 1939) 



ix 
 

3.2 Simple signal analysis of physiological signals 
Signal processing is important for analyzing physiological signals as many measurement 
methods also capture a significant amount of noise. This project has mainly used the 
power spectral density (PSD) plot and wavelet filtering to analyze the results. The power 
spectral density plot shows the energy of the signal for every frequency captured in the 
signal. By inspecting a PSD plot, it is possible to infer which frequencies the signal 
contains and their prominence.  

Filtering using wavelets is done by decomposing the captured signal using wavelets and 
then reconstructing the signal with only the wanted frequency components. A wavelet is 
a waveform with a limited duration and an average value of zero. Wavelet decomposition 
using the discrete wavelet transform yields a set of approximation and detail coefficients. 
The detail and approximation coefficients relate to a specific frequency region depending 
on sampling rate frequency. The signal can be reconstructed using the inverse discrete 
wavelet transform. The signal is filtered by only including the detail and approximation 
coefficients relating to the desired frequency region.  
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This section explains the process of the project and is split into two main parts. Part one 
details the early wayfaring process towards an interesting concept or idea. Part two 
details the process of developing that initial idea or concept into a proof-of-concept 
prototype. However, it is important to note that the outlined process in this chapter is a 
simplified, more linear version of the actual process. For instance, Figure 4 shows a 
somewhat linear approach with technology as the driving force. In practice, the 
technology was not the only driving force. Interest in pulsewavevelocity (PWV) was as 
much driven by research into arterial stiffness and the interest in PWV drove interest in 
using PPG sensor for that purpose.  

4.1 Part 1 
As stated in the introduction the task was to build, design and test sensor setups for the 
next generation of wearables. Due to existing expertise in TrollLabs the solution space 
was focused mainly on wearables related to the cardiovascular system. This was to 
ensure better supervision. The preferred tools and method for exploring the solution 
space were benchmarking, wayfaring and prototyping. Figure 4 shows a simplified 
version of the wayfaring journey of the early phase exploration.  

The exploration of the solution space was done in three related but different ways all 
united by the wayfaring journey. One method was benchmarking existing wearable 
sensor setups, another method was prototyping these setups or ideas for setups and the 
third was reading up on common cardiovascular diseases and their symptoms. This 
“three pronged” approach was done as each method had its advantages and 
disadvantages.   

Researching common cardiovascular diseases was done for two main reasons. The first 
was that it was clear early in the project that a more thorough understanding of the 
cardiovascular system was needed. Most research articles, books and papers within a 
specific research field have their own “language” and being familiar with this language is 
important for effective research and communication. Therefore, starting at more basic 
leve focusing on learning about the cardiovascular system and its common diesases was 
necessary. The second reason for this approach was that a thorough understanding of 
the cardiovascular system and its diseases gave two important insights. The first is that a 
thorough understanding of the physical aspects enabled a better understanding of 
possible ways to measure the related physical signals. The second insight was 
understanding the “need” for the monitoring. Understanding which diseases were the 
most common and severe also gave an understanding of which diseases would have the 
biggest impact if prevented or treated early. One example of a common and severe 
disease is coronary artery disease (CAD). CAD occur due to buildup of plaque in the walls 
of the arteries supplying the heart with blood (CDC, 2021). This gave rise to the interest 
in researching pulse wave velocity and arterial stiffness. 

Prototyping is one of the essential parts of the wayfaring model and based on personal 
experience one of the most effective ways of exploring the solution space. However, a 
very important aspect of prototyping is choosing the right resolution for the prototype, as 
mentioned in section 2.2. Early in the exploration phase it was discovered that due to the 
difficulty in capturing physiological signals a significant resolution was needed for the 

4 Project work
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prototypes. Simple testing such as learning how sensors worked and checking their 
capabilities was easily done through prototyping, and sometimes prototyping setups also 
worked. Two examples of this were applying silicon to a BMP 280 pressure sensor and 
testing its ability in capturing pulse, which worked really well, and strapping the sensor 
to the chest in an attempt to capture the seismocardiogram. This prototype did show 
promise in capturing the seismocardiogram but was not tested further due to similar 
solutions existing. But many times, evaluating a setups capability in measuring a 
physiological signal was challenging without building high resolution prototypes which 
would be too time consuming. In those situations, benchmarking other solutions was 
frequently used.  

Benchmarking was mainly done through reading papers and examining existing 
commercial solutions. It was quickly evident that the most common commercial 
solutions, such as smartwatches, are well explored and not of much interest to this 
project. However, a lot of scientific research has been done on wearables and as such 
there existed many interesting state of the art solutions to benchmark. Benchmarking 
also helped identify were there was a gap in knowledge or execution. Ballistocardiogram 
was discovered as a potential interesting subject as a combination between using 
benchmarking and previous knowledge from my co-supervisor candidate at TrollLabs. It 
was a signal with a fair bit of interest in the literature and a clear cap in terms of viable 
solutions for wearable continuous monitoring.  

 

 

 

Figure 4 - Simplified wayfaring journey 
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4.2 Part 2 – Converging on BCG 
At some point in the wayfaring process measuring BCG using pressure sensors was seen 
as an interesting concept. The increased focus on BCG was for a couple of reasons. One 
was that BCG was in literature seen as an interesting concept with large potential as a 
wearable setup. However, no definitive concept for wearable BCG was identified. As such 
a gap was identified. Using pressure sensors was interesting as in principle it would be 
similar to using an electronic scale, but with a potential for easier wearable integration in 
for instance a smartshoe. Once this converging started prototyping also ramped up and 
two main ideas for measuring the pressure was developed. 

The first was using pressure sensors with silicon attached. The first idea was quickly 
proven to not be viable as the pressure sensors could only handle a certain amount of 
pressure and the force had to be fairly directly on top of the pressure sensor otherwise 
the silicon would distribute the force to the breakout board and other components.  

The second idea was using air-filled bags attached to a pressure sensor under the user’s 
foot. The first prototype testing this idea is shown in FIGURE NUMBER HERE. This was 
mainly a prototype to gain experience with the practical aspects. For instance, figuring 
out a way to attach the sensor non-permanently so it could be swapped out to other 
prototypes later and testing how difficult it is to stand still on an air-filled bag. After 
prototype 1, two more prototypes were quickly created. One using a shoe sole and one 
using a thin foam. The foam and shoe sole were included to reduce the amount of air in 
the bag. Prototype 2 was also tested in an existing running shoe, to test how this 
changed stability and look for unknown unknowns. None of these prototypes showed any 
promising results when analyzing the signal from the pressure sensor. Prototype 4 was 
meant to reduce the surface area in the bag compared to the force applied by standing 
on it with both feet. This however turned out to be too unstable stand on and showed 
that when the surface area was reduced stability was also reduced. While creating 
prototype 4 some more research was also done on the magnitude of the force applied to 
the air-filled bags due to the ballistic forces. Based on (Inan et al., 2009) it was 
estimated that the maximum force would be around 1-4N. An assumption was made that 
the pressure changes in the bag could be estimated with ΔP = F/A, where F is the 
ballistic forces and A is the surface area of the bag. To reach a measurable pressure 
difference the surface of the bag had to be cut significantly. 

Figure 5 - Prototype 1 
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After learning how small the force affecting the bag due to the ballistic forces some 
significant changes were made. The pressure sensor was switched from a BMP280 to a 
BMP388 which changed the relative pressure accuracy to 0.08hPa from 0.12. As well as 
changing the sensor the design of the bag was significantly changed to reduce the 
surface area. Prototypes 5 and 6 were the first to use two small bags as contact points. 
The idea was to have the heel and front of the foot as contact points and the rest of the 
foot in the air. P5 did not work due to wrong dimensions. Prototype number 6 did work 
but was unstable and the pipe connecting the two bags was prone to leaking in the 
seams between pipe and bag. At this point an idea to create these bags using a soldering 
iron instead of the proprietary tools with the bags was thought of. This greatly increased 
the design freedom and sped up prototyping. Prototype number 7 did not have the 
correct dimensions to stand stable on. It was discovered that the bags had to be at very 
specific points under the heel and front of the foot to be stable to stand on. Prototype 
number 8 fixed this issue and gave some very promising results from the signal from the 
pressure sensor. When using spectral power density to analyze the power of each 
frequency of the signal it showed activity in the area between 1 and 10 Hz as shown in 
Figure 8. This was a clear indication of the concept working. However, the signal was still 
very noisy, and it was clear it needed improvement to have any practical use. A PPG 
sensor measuring the pulse at the ankle was introduced in the setup as shown in Figure 
9. This made it possible to segment the signal from the pressure sensor into the pulse 
periods by comparing with the PPG sensor output. Prototype 9 was an attempt to reduce 
the area to force ratio by standing with both feed on the bag, but just as in prototype 4 
standing with both feet on the same bag proved too unstable.  

Figure 7 - Prototypes 2-4 Figure 6 - In shoe testing 
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After prototype 8 showed promise more divergent thinking was needed to reduce the  
surface area further. An idea was to introduce a stiff plate the user would stand on with 
the bags under the plate. This greatly improved the possible design space for the bags 
and was a game changer. Lots of testing was done and some key requirements were 
discovered. The biggest was that the height of the bag had to be sufficient otherwise the 
plate would touch the ground and disturb the signal. Figure 13 shows an example of a 
design with a very small surface area but not enough height. In general, a too low 
surface area to volume ratio meant the plate would touch the ground. Another was that 
the plate easily damaged the connection to the pressure sensor. Therefore, the pressure 
sensor connection had to be moved away from the plate. The solution to both issues was 
to move away from the design with the two connected bags and instead use two bags 
and two pressure sensors, with two such bags shown in Figure 12. This added another 
potential benefit in that they could also show the pressure difference between the front 

Figure 10 - Prototypes 5-9 from left to right and top to 
bottom 

Figure 8 - Power spectrum density for prototype 
eight 

Figure 9 - Setup for testing prototype eight 
with PPG 
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and back of the foot which could turn interesting later. Figure 11 shows an example of 
the final setup.  This setup is further explained in section 5. 

Figure 13 - Shape of the bag with 
insufficient height 

Figure 12 - Correct bag 
shape 

Figure 11 - Final testing setup 
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The final setup consists of two BMP388 pressure sensors attached to two air filled bags. 
The user stands on a stiff plate made of MDF with one air filled bag under the heel and 
one air filled bag under the front of the foot. In addition, a pulse sensor, from World 
Famous Electronics llc, is attached to the ankle of the user. Figure 14 shows all 
components when not in use and Figure 11 shows the setup in use. Wiring schematic is 
shown in Figure 16. As shown in Figure 11 during lab testing the air-filled bags were 
placed on a wooden slab each and the stiff plate was suspended between the wooden 
slabs to ensure no contact between the ground and the MDF plate was made.  

 

5 Final setup and results

Figure 15 - Final bag design Figure 14 - All parts of final setup 

Figure 16 - Simple wiring schematic 
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Due to how noisy the signal still was the final results were then processed. Both the pulse 
sensor signal and the pressure sensor signals were decomposed using wavelet 
decomposition and rebuilt with only the relevant frequencies remaining. Then the 
pulsesensor signal was segmented by identifying the peaks of the signal with a minimum 
distance between each peak. This is a very naïve method that is dependent on the signal 
being clear. The identification of peaks was also confirmed with a visual inspection to 
ensure no mistakes were made. The pressure signal was then segmented using the time 
segments identified by the pulse segmentation. The mean signal of the pressure signal 
was computed using the segments. Figure 17 shows the pressure segments measured 
from the front of the foot with the mean signal overlayed.  

 

 

The signals showed in Figure 18 and Figure 17 show a clear periodic signal which 
matches the timing of the pulse. This is a good sign of the setup capturing something 
related to the cardiovascular system which most likely is the ballistocardiogram. 
However, due to the variations in the waveform of the ballistocardiogram with different 
setups, equipment and variations from person to person, as discussed in section 3.1, it is 
somewhat difficult to compare the results to existing methods of ballistocardiography. 
The signal being segmented using a pulse sensor, with many other setups being tested 
using EKG also complicates the comparison somewhat. The J peak is not as prominent as 
desired, but the W shape is easily recognizable. Another promising aspect is the large 
correlation between the segments of the pressure signal. Based on the W shape, the 
measurement method and the segments repeating pattern it is concluded that this is the 
ballistocardiogram being captured.  

Figure 18 - Mean filtered pressure signal Figure 17 - Mean filtered pressure signal 
overlayed all pressure signal segments 
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As the current solution is still only a proof of concept there still a lot of improvements 
needed. Although the signal after filtering does show very promising results more 
improvements the quality could still be valuable as increased quality can possibly make it 
possible to measure in low-intensity activities such as walking. One obvious improvement 
that was not tested due to a lack of time is using a liquid instead of air. Air is 
compressable while a liquid like water is in the practical sense for this setup not 
compressable, which should decrease any dampening effect due to the air compressing 
and improve the signal. Motion fragments in the captured signal is another aspect that 
needs investigation. As discussed in section 3.1 motion fragments in the signal are a 
common problem in BCG. Filtering is one solution for handling motion fragments, but 
more solutions will most likely need to be investigated for it to be possible to measure 
the ballistocardiogram in the aforementioned low intensity activities.  

In addition to the discussed improvements further testing is also needed before the 
method can be a potential tool monitoring the cardiovascular system. Testing with ECG 
for better segmentation and comparison with other methods is needed. The results also 
need to be possible to segment without other reference signals to have value on its own. 
Testing with more participants is also needed to test for possible unknown individual 
differences. The ballistocardiogram is, as discussed in section 3.1, somewhat different 
from person to person and this needs to be investigated for this setup as well to ensure it 
transferable to other users. In addition, differences in weight, form of the foot and 
general movement can possibly affect the measurements.  

The current setup is also not wearable. Therefore, solutions for implementation in 
wearable equipment is needed. The most obvious solution is to implement the setup in a 
smart shoe or sole. The current setup was developed with this in mind, and such an 
integration should be possible. However, exploring this design space of integrating the 
setup into other wearable equipment might be interesting as other integration solutions 
most likely exist.  

6 Further work
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This project thesis has explored the solution space related to sensor setups for the next 
generation of wearables monitoring the cardiovascular system. Wayfaring, prototyping, 
and benchmarking were the main tools used to explore the solution space.  Through 
these three methods ballistocardiography was identified as an interesting topic with 
pressure sensors as an interesting solution. Many iterations of prototypes were made, 
and a proof-of-concept prototype was developed. This consisted of two air filled bags 
with two barometric pressure sensors attached. The bags were placed under the front of 
the foot and the heel of the user. In addition, a stiff MDF plate was placed between the 
bags and the foot. Some key requirements were discovered during the wayfaring 
process. The surface area of the bags had to be very small. At the same time the volume 
to surface area ratio had to be kept from becoming too small as this led to the MDF plate 
potentially touching the ground and destroying the signal. The proof-of-concept 
prototype captured a repeating signal matching up with the signal captured by a pulse 
sensor. The segmented signal had a clear pattern. The mean signal calculated from the 
segments had the recognizable W-shape of a ballistocardiogram, but the characteristic J-
peak was not as prominent as it usually is. It was still concluded with this being the 
ballistocardiogram being captured.  

Many improvements remain before this can be a potential valuable tool. The signal needs 
to be improved as much as possible to gain the best possible results. The setup also 
needs to be segmented using ECG instead of PPG for better comparison between existing 
BCG methods. In addition, being able to segment the signal without using external input 
would greatly increase its stand-alone value. In addition, the setup is also only tested on 
one user. As such there might exist unknown individual differences which need to be 
tested for. Finally, this is only a proof-of-concept prototype and not currently wearable. 
Integration into for instance a smart shoe needs to be explored to enable continuous 
monitoring of the cardiovascular system.  

7 Summary
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Appendix A: Arduino code for data capture in final setup 
#include "DFRobot_BMP388_I2C.h" 

#include "DFRobot_BMP388.h" 

#include "Wire.h" 

#include "bmp3_defs.h" 

 

//Create a BMP object for each sensor in use 

DFRobot_BMP388_I2C bmp1; 

DFRobot_BMP388_I2C bmp2; 

 

int Signal;                // holds the incoming data from the pulsesensor 

int PulseSensorPurplePin = A0;        //the purple sensor of the 
pulsesensor is wired to A0 

 

void setup(){ 

  //Start up serial communication 

  Serial.begin(115200); 

  //Set adresses for the two sensors. 0x77 and 0x76 is the two possible I2C 
adresses 

  bmp1.set_iic_addr(BMP3_I2C_ADDR_SEC); 

  bmp2.set_iic_addr(BMP3_I2C_ADDR_PRIM); 

  while(bmp1.begin()){ //Initialize sensor 1 

    Serial.println("Initialize error, sensor 1!"); 

    delay(1000); 

  } 

  while(bmp2.begin()){ //Initialize sensor 2 

    Serial.println("Initialize error, sensor 2!"); 

    delay(1000); 

  } 

} 

 

void loop(){ 

Appendix
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  //Read the pressure from sensor 1 and 2 

  float Pressure1 = bmp1.readPressure(); 

  float Pressure2 = bmp2.readPressure(); 

  //Print the time, the pulssensor value and the two pressure values in a 
CSV format  

  Serial.print(millis()); 

  Serial.print(","); 

  Serial.print(analogRead(PulseSensorPurplePin)); 

  Serial.print(","); 

  Serial.print(Pressure1); 

  Serial.print(","); 

  Serial.println(Pressure2); 

  //delay(1); 

} 

Appendix B: Matlab code for result analysis 
Appendix B contains matlab code for analyzing the results from the proof of concept 
setup. The Matlab was developed by my co-supervisor Torjus Lines Steffensen. It 
contains two files. File 1 does the filtering, segmentation and computing of the mean 
signal. File 2 is only used to allow concatenation between vectors with different length.  

File 1:  

bcg plot 

load a file containing bcg and ppg signal into a matlab timetable 

plot the raw signals along with the power pectrum density estimate 

use ppg maxima to annotate individual beats 

filter the data 

use ppg maxima locations to separate cycles 

calculate ensemble average signal. 

improvements / todos: 

use a real algorithm to segment ppg signal (we are very naive and not 
robust currently) 

set some criteria for good/bad segment 

 

% load a csv file 

% expected structure: 

% Time,PPG,Pressure 

clear all 

data = readtable('C:\Users\simon\Documents\Prosjektoppgave - 
lokal\Målinger\Pressure_And_PPG_P7_18_11_2021.csv'); 
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% store the data in a matlab "timetable" structure. 

% this is optional, but timetables have many high level features that make 

% dealing with time series simpler (for example, selecting all data between 

% two specific time points without knowing what the sample indexes would 

% be) 

% note this means the default timetable time index, "timetable.Time", is 

% not double type but one of matlab's proprietary "duration" or "datetime" 

% datatypes. can switch back and forth between duration and double with the 
functions 

% seconds() or milliseconds() for some other functions that don't accept 

% one of these types. 

 

data.Time = milliseconds(data.Time - data.Time(1)); 

tt = timetable(data.Time,data.PPG,data.Pressure); 

tt.Properties.VariableNames = {'ppg','Pressure'}; 

 

% calculate the mean sample rate, we'll need it later 

fs = 1 / seconds(mean(diff(tt.Time))); 

 

% plot the signal we just loaded alongside a ~10 second slice to see what 
we're 

% dealing with 

 

figure 

subplot(4,1,1) 

plot(tt.Time,detrend(tt.Pressure)) 

title('raw pressure') 

subplot(4,1,2) 

plot(tt.Time,detrend(tt.ppg)) 

title('ppg') 

subplot(4,1,3) 

plot(tt.Time,tt.Pressure) 

xlim([seconds(15) seconds(25)]) 

title('pressure section, close up') 

subplot(4,1,4) 

plot(tt.Time,detrend(tt.ppg)) 
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xlim([seconds(15) seconds(25)]) 

title('ppg section, close up') 

 

 

power spectrum 

% plot the power spectrum of the signal in the range of interest  

% (up to 20hz) 

 

figure 

pspectrum(tt.Pressure,fs) 

title('power spectrum') 

xlim([0 10]) 

 

% OPTIONAL: trim the raw data  

% (for example if we see the signal is only "good" between 0, 30 seconds) 

 

tr = timerange(seconds(5),seconds(45)); 

tt = tt(tr,:); 

 

finding ppg peaks. 

 

% we start by denoising the ppg signal via wavelet reconstruction (it has 

% to be smooth for differentiation). 

 

% Logical array for selecting reconstruction elements 

levelForReconstruction = [false, false, false, true, true, true, true, 
true, false]; 

% Perform the decomposition using modwt 

wt = modwt(detrend(tt.ppg), 'sym4', 8); 

% Construct MRA matrix using modwtmra 

mra = modwtmra(wt, 'sym4'); 

% Sum along selected multiresolution signals 

tt.bppg = sum(mra(levelForReconstruction,:),1).'; 

 

% calculate the first and second derivatives (we might use them later on if 

% ppg signal is not "clean") 

dppg = diff(tt.bppg); 
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dppg = [dppg;dppg(end)]; 

ddppg = diff(dppg); 

ddppg = [ddppg;ddppg(end)]; 

 

% plot the smoothed ppg signal and its derivatives 

figure 

subplot(3,1,1) 

plot(tt.Time,tt.bppg) 

title('ppg and derivatives') 

ylabel('ppg') 

xlim([seconds(15) seconds(20)]) 

subplot(3,1,2) 

plot(tt.Time,dppg) 

ylabel('d/dt ppg') 

xlim([seconds(15) seconds(20)]) 

subplot(3,1,3) 

plot(tt.Time,ddppg) 

ylabel('(d/dt)^2 ppg') 

xlim([seconds(15) seconds(20)]) 

 

 

% in case of a pretty clean ppg, we can just use naive peak finding. 

% the function findpeaks below finds local maxima, with some requirements 

% like minimum prominence and minimum distance between peak candidates. 

% pplocs is the index of the identified peaks 

 

% find peaks, plot the filtered ppg signal alongside the identified peak 

% locations (see if there are many missing beats or false positives, in 
which case  

% we either have to tweak our function call, or move on to use the 
derivatives  

% which takes a little more thought) 

 

[pppks,pplocs]=findpeaks(tt.bppg,'MinPeakProminence',10,'MinPeakDistance',2
20); 

figure 

plot(tt.Time,tt.bppg) 
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xline(tt.Time(pplocs),'--r') 

xlim([seconds(15) seconds(20)]) 

title('identified ppg peaks') 

 

% we can now get the heart rate by looking at time between peaks in the 

% part of the signal we're interested in 

 

dim = [.2 .6 .3 .3]; 

str = ["HR estimate from PPG peak distance: " + 
seconds(60)/mean(diff(tt.Time(pplocs)))]; 

t=annotation('textbox',dim,'String',str,'FitBoxToText','on'); 

t.BackgroundColor=[1 1 1]; 

 

filter the pressure data 

% we will do two things: a classic FIR bandpass filter, and a wavelet 

% decomposition. we can compare the results later. 

 

% start by creating the digital bandpass filter. this fill attenuate signal 

% components below 1hz, and above 20hz. 

 

d=designfilt('bandpassfir','StopbandFrequency1',0.7,'PassbandFrequency1',1.
5,... 

    'PassbandFrequency2',15,'StopbandFrequency2',22,... 

    'StopbandAttenuation1',60,'PassbandRipple',1, ... 

    'StopbandAttenuation2',60,'SampleRate',fs, ... 

    'DesignMethod','kaiserwin'); 

 

 

% we apply the filter twice: "forwards" and "backwards". this is because 

% this type of filter can affect the phase of our signal. using filtfilt() 

% we avoid this (this is called zero phase filtering) 

 

tt.bp = filtfilt(d,tt.Pressure); 

 

% next we also do a wavelet decomposition using discrete wavelet transform 

% (modwt) 
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levelForReconstruction = [false, false, false, true, true, true, false, 
false, false]; 

% Perform the decomposition using modwt 

wt = modwt(tt.Pressure, 'db9', 8); 

% Construct MRA matrix using modwtmra 

mra = modwtmra(wt, 'db9'); 

% Sum along selected multiresolution signals 

tt.wmra = sum(mra(levelForReconstruction,:),1).'; 

 

 

% if we want, we can plot the original signal alongside the filtered signal 

% to see the result of what we just did 

 

f1 = figure; 

plot(tt.Time,detrend(tt.Pressure),'--') 

hold on 

plot(tt.Time,tt.bp) 

plot(tt.Time,tt.wmra) 

xlim([seconds(15) seconds(25)]) 

legend([{'original'},{'bandpassed'},{'wmra'}]) 

title('filtered signal') 

 

segment pressure data 

 

% this code is adapted from another script, so it might look weird. 

 

% which index do we use to segment?  

% in this case we only have ppg, so we use pplocs 

segmentIndex = pplocs; 

segments=[]; 

% segmentBuffer can be used to "move" the segments uniformly backwards or 

% forwards in time by the same number of samples. can be useful for 

% plotting 

segmentBuffer = -50; 

 

% which signal to segment?  

% bp: FIR bandpassed signal, wmra: wavelet filtered 



xxix 
 

use = 'wmra'; 

 

% using the reference points in segmentIndex, collect all data between 

% index i and index i+1 into its own structure in the struct segments. 

% scale all the segments using z-scoring. 

 

try 

for i = 1 : length(segmentIndex) - 1 

 

    tr=timerange(tt.Time(segmentIndex(i) - 
segmentBuffer),tt.Time(segmentIndex(i+1) - segmentBuffer)); 

 

    % watch out: some sanity checks for too long / too short segments have 
been 

    % added, but dangerously, are in #samples rather than actual time 

    % (danger if sample rate changes) 

    %Which it has done -  

 

    %if length(tt.Time(segmentIndex(i)-segmentBuffer : segmentIndex(i+1)-
segmentBuffer)) > 80 && ... 

    %        length(tt.Time(segmentIndex(i)-segmentBuffer : 
segmentIndex(i+1)-segmentBuffer)) < 150 

 

        segments(i).Time = tt.Time(segmentIndex(i)-segmentBuffer : 
segmentIndex(i+1)-segmentBuffer); 

        segments(i).Timefz = segments(i).Time - segments(i).Time(1); 

 

        tmptable = tt(tr,:).ppg; 

        segments(i).ppg = (tmptable - mean(tt.ppg)) / std (tt.ppg); 

        segments(i).ppg = [segments(i).ppg;segments(i).ppg(end)]; 

 

        tmptable = tt(tr,use).(1); 

        segments(i).pressure = (tmptable - mean(tt(:,use).(1))) / std 
(tt(:,use).(1)); 

        segments(i).pressure = 
[segments(i).pressure;segments(i).pressure(end)]; 

    %end 

end 

end 
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% which segments to use to plot / average? 

startseg = 1; 

endseg = numel(segments); 

sigs = [startseg endseg]; 

 

% plot selected segments 

f2 = figure; 

figure(f2) 

hold on 

for i = startseg : endseg 

    plot(milliseconds(segments(i).Timefz),segments(i).pressure,'--
','LineWidth',1); 

end 

title(["stacked traces, n = " + sum([diff(sigs),1])]) 

 

% calculate mean signals 

% this requires the padcat external function. padcat concatenates matrices 

% with incompatible sizes by padding with NaN 

 

tr = timerange(milliseconds(0),milliseconds(1000)); 

means = []; 

means.pressure = padcat(segments(sigs(1):sigs(2)).pressure); 

means.pressure(isnan(means.pressure)) = 0; 

means.pressure = mean(means.pressure,2); 

means.pressure = timetable(means.pressure,'SampleRate',fs); 

means.pressure = means.pressure(tr,:); 

means.pressure.Properties.VariableNames={'data'}; 

 

means.ppg = padcat(segments(sigs(1):sigs(2)).ppg); 

means.ppg(isnan(means.ppg)) = 0; 

means.ppg = mean(means.ppg,2); 

means.ppg = timetable(means.ppg,'SampleRate',fs); 

means.ppg = means.ppg(tr,:); 

means.ppg.Properties.VariableNames={'data'}; 

 

figure(f2) 
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plot(milliseconds(means.pressure.Time),means.pressure.data,'-
','LineWidth',4) 

figure 

plot(milliseconds(means.pressure.Time),means.pressure.data,'-
','LineWidth',2) 

title(["ensemble average, n = " + sum([diff(sigs),1])]) 

 

 

figure 

subplot(2,1,1) 

plot([means.pressure.Time 
means.pressure.Time+means.pressure.Time(end)],[means.ppg.data 
means.ppg.data],'-b','LineWidth',2) 

ylim([1.5*min(means.ppg.data) 1.5*max(means.ppg.data)]) 

subplot(2,1,2) 

plot([means.pressure.Time 
means.pressure.Time+means.pressure.Time(end)],[means.pressure.data 
means.pressure.data],'-b','LineWidth',2) 

ylim([1.5*min(means.pressure.data) 1.5*max(means.pressure.data)]) 

File 2:  

function [M, TF] = padcat(varargin) 

% PADCAT - concatenate vectors with different lengths by padding with NaN 

% 

%   M = PADCAT(V1, V2, V3, ..., VN) concatenates the vectors V1 through VN 

%   into one large matrix. All vectors should have the same orientation, 

%   that is, they are all row or column vectors. The vectors do not need to 

%   have the same lengths, and shorter vectors are padded with NaNs. 

%   The size of M is determined by the length of the longest vector. For 

%   row vectors, M will be a N-by-MaxL matrix and for column vectors, M 

%   will be a MaxL-by-N matrix, where MaxL is the length of the longest  

%   vector. 

% 

%   Examples: 

%      a = 1:5 ; b = 1:3 ; c = [] ; d = 1:4 ; 

%      padcat(a,b,c,d) % row vectors 

%         % ->   1     2     3     4     5 

%         %      1     2     3   NaN   NaN 

%         %    NaN   NaN   NaN   NaN   NaN 
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%         %      1     2     3     4   NaN 

%      CC = {d.' a.' c.' b.' d.'} ; 

%      padcat(CC{:}) % column vectors 

%         %      1     1   NaN     1     1 

%         %      2     2   NaN     2     2 

%         %      3     3   NaN     3     3 

%         %      4     4   NaN   NaN     4 

%         %    NaN     5   NaN   NaN   NaN 

% 

%   [M, TF] = PADCAT(..) will also return a logical matrix TF with the same 

%   size as R having true values for those positions that originate from an  

%   input vector. This may be useful if any of the vectors contain NaNs. 

% 

%   Example: 

%       a = 1:3 ; b = [] ; c = [1 NaN] ; 

%       [M,tf] = padcat(a,b,c) 

%       % find the original NaN 

%       [Vev,Pos] = find(tf & isnan(M)) 

%       % -> Vec = 3 , Pos = 2 

% 

%   This second output can also be used to change the padding value into 

%   something else than NaN. 

% 

%       [M, tf] = padcat(1:3,1,1:4)  

%       M(~tf) = 99 % change the padding value into 99 

% 

%   Scalars will be concatenated into a single column vector. 

% 

%   See also CAT, RESHAPE, STRVCAT, CHAR, HORZCAT, VERTCAT, ISEMPTY 

%            NONES, GROUP2CELL (Matlab File Exchange) 

 

% Example figure created using: 

%   C = arrayfun(@(x) ones(1,randi([10 100],1,1)),1:40,'un',0) ; 

%   pcolor(padcat(C{:})) 

 

% for Matlab 2008 and up (last tested in R2018a) 
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% version 1.4 (dec 2018) 

% (c) Jos van der Geest 

% email: samelinoa@gmail.com 

 

% History 

% 1.0 (feb 2009) created 

% 1.1 (feb 2011) improved comments 

% 1.2 (oct 2011) added help on changing the padding value into something 

%     else than NaN 

% 1.3 (feb 2016) updated contact info  

% 1.4 (dec 2018) fixed minor code warnings 

 

% Acknowledgements: 

% Inspired by padadd.m (feb 2000) Fex ID 209 by Dave Johnson 

 

narginchk(1,Inf) ; 

 

% check the inputs 

SZ = cellfun(@size,varargin,'UniformOutput',false) ; % sizes 

Ndim = cellfun(@ndims,varargin) ; %  

 

if ~all(Ndim==2) 

    error([mfilename ':WrongInputDimension'], ... 

        'Input should be vectors.') ; 

end 

 

TF = [] ; % default second output so we do not have to check all the time 

 

% for 2D matrices (including vectors) the size is a 1-by-2 vector 

SZ = cat(1,SZ{:}) ; 

maxSZ = max(SZ) ;    % probable size of the longest vector 

% maxSZ equals : 

%  - [1 1] for all scalars input 

%  - [X 1] for column vectors 

%  - [1 X] for all row vectors 

%  - [X Y] otherwise (so padcat will not work!) 
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if ~any(maxSZ == 1)  % hmm, not all elements are 1-by-N or N-by-1 

    % 2 options ... 

    if any(maxSZ==0) 

        % 1) all inputs are empty 

        M  = [] ; 

        return 

    else 

        % 2) wrong input  

        % Either not all vectors have the same orientation (row and column 

        % vectors are being mixed) or an input is a matrix. 

        error([mfilename ':WrongInputSize'], ... 

            'Inputs should be all row vectors or all column vectors.') ; 

    end 

end 

 

if nargin == 1 

    % single input, nothing to concatenate .. 

    M = varargin{1} ; 

else 

    % Concatenate row vectors in a row, and column vectors in a column. 

    dim = (maxSZ(1)==1) + 1 ;      % Find out the dimension to work on 

    X = cat(dim, varargin{:}) ;    % make one big list 

 

    % we will use linear indexing, which operates along columns. We apply a 

    % transpose at the end if the input were row vectors. 

 

    if maxSZ(dim) == 1 

        % if all inputs are scalars, ... 

        M = X ;   % copy the list 

    elseif all(SZ(:,dim)==SZ(1,dim)) 

        % all vectors have the same length 

        M = reshape(X,SZ(1,dim),[]) ;% copy the list and reshape 

    else 

        % We do have vectors of different lengths. 

        % Pre-allocate the final output array as a column oriented array. 
We 
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        % make it one larger to accommodate the largest vector as well. 

        M = zeros([maxSZ(dim)+1 nargin]) ; 

        % where do the fillers begin in each column 

        M(sub2ind(size(M), SZ(:,dim).'+1, 1:nargin)) = 1 ; 

        % Fillers should be put in after that position as well, so applying 

        % cumsum on the columns 

        % Note that we remove the last row; the largest vector will fill an 

        % entire column. 

        M = cumsum(M(1:end-1,:),1) ; % remove last row 

 

        % If we need to return position of the non-fillers we will get them 

        % now. We cannot do it afterwards, since NaNs may be present in the 

        % inputs. 

        if nargout > 1 

            TF = ~M ; 

            % and make use of this logical array 

            M(~TF) = NaN ; % put the fillers in 

            M(TF)  = X ;   % put the values in 

        else 

            M(M==1) = NaN ; % put the fillers in 

            M(M==0) = X ;   % put the values in 

        end 

    end 

 

    if dim == 2 

        % the inputs were row vectors, so transpose 

        M = M.' ; 

        TF = TF.' ; % was initialized as empty if not requested 

    end 

end % nargin == 1 

 

if nargout > 1 && isempty(TF) 

    % in this case, the inputs were all empty, all scalars, or all had the 

    % same size. 

    TF = true(size(M)) ; 

end 
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Risk assessment form

Appendix C 
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Participation forms 

 

Appendix D  
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Interview form 
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Code for evaluating test results 
import numpy as np 

from matplotlib import pyplot as plt 

import pandas as pd 

import scipy.interpolate as interpolate 

from scipy.signal import filtfilt, butter, detrend, savgol_filter 

import pywt 

from sklearn import preprocessing 

import scipy 

import data_processing_functions as dpf 

import datetime 

import seaborn as sns 

import statistics 

 

#Forsøk på et en objektorientert metode 

 

#Objekt som tar inn tidspunkter, trykk, ppg, vekt, vekt_ppg, hc_systolic, 

time, butter_level 

#Computes filtered_pressure 

class Measurement: 

 

    T1TimeArduino = None 

    CPTimeArduino = None 

    T3TimeArduino = None 

    T1TimeChart = None 

    CPTimeChart = None 

    T3TimeChart = None 

    pressFilt = None 

    timeLabChart = None 

    fs_LabChart = None 

    HCSystolic = None 

    averagedDiastolic = None 

Appendix E 
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    fingerPressureHC = None 

 

    def __init__(self, timeStampT1, timeStampCP, timeStampT3, 

dataArduinoPath, ChartDataAddress, nameListArduino, nameListChart): 

        #Initializes the class. Also reads arduino data 

        sns.set() 

        SMALL_SIZE = 24 

        MEDIUM_SIZE = 10 

        BIGGER_SIZE = 24 

 

        plt.rc('font', size=SMALL_SIZE)  # controls default text sizes 

        plt.rc('axes', titlesize=SMALL_SIZE)  # fontsize of the axes title 

        plt.rc('axes', labelsize=MEDIUM_SIZE)  # fontsize of the x and y 

labels 

        plt.rc('xtick', labelsize=12)  # fontsize of the tick labels 

        plt.rc('ytick', labelsize=12)  # fontsize of the tick labels 

        plt.rc('legend', fontsize=SMALL_SIZE)  # legend fontsize 

        plt.rc('figure', titlesize=BIGGER_SIZE)  # fontsize of the figure 

title 

        #plt.rc('axes', facecolor='beige') 

 

 

        dataArduino = pd.read_csv(dataArduinoPath, sep=",", 

names=nameListArduino, skiprows=1) 

        self.arduinoNameList = nameListArduino 

        self.chartNameList = nameListChart 

 

        timeArduino = (dataArduino.Time.to_numpy() / 1000)  # divide by 

1000 to get seconds 

        timeArduino = timeArduino - timeArduino[0] 

        self.timeArduino = timeArduino + dataArduino["timestamp"][0] 

 

        self.Pressure0 = dataArduino.Pressure0.to_numpy() #Right foot 

furthest back 

        self.Pressure1 = dataArduino.Pressure1.to_numpy() #Right foot 

second furthest back 

        self.Pressure2 = dataArduino.Pressure2.to_numpy() #Right foot 

forward to the right 

        self.Pressure3 = dataArduino.Pressure3.to_numpy() #Right foot 

middle 
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        self.Pressure4 = dataArduino.Pressure4.to_numpy() #Left foot 

forward right 

        self.Pressure5 = dataArduino.Pressure5.to_numpy() #Right foot 

forward left 

        self.Pressure6 = dataArduino.Pressure6.to_numpy() #Left foot middle 

        self.Pressure7 = dataArduino.Pressure7.to_numpy() #Left foot 

forward left 

        self.Pressure8 = dataArduino.Pressure8.to_numpy() #Left foot second 

furthest back 

        self.Pressure9 = dataArduino.Pressure9.to_numpy() #Left foot 

furthest back 

 

        self.PPG = dataArduino.PPG.to_numpy() 

        self.Scale = dataArduino.Scale.to_numpy() 

        self.PPG2 = self.PPG*self.PPG 

 

        self.fs_Arduino = (self.timeArduino[-1] - self.timeArduino[0]) / 

len(self.timeArduino) 

        self.hz_Arduino = 1 / self.fs_Arduino 

        self.timeArduinoScale = self.timeArduino[1::2] 

        #self.Scale = self.Scale[1::2] #Decided to handle this later so i 

can reuse segmentation code 

        self.PPGScale = self.PPG[1::2] 

        self.fs_Scale = (self.timeArduinoScale[-1] - 

self.timeArduinoScale[0]) / len(self.timeArduinoScale) #Que? 

        self.dataArduinoPath = dataArduinoPath 

        self.chartAddress = ChartDataAddress 

        self.T1TimeString = timeStampT1 

        self.CPTimeString = timeStampCP 

        self.T3TimeString = timeStampT3 

 

        self.pressSegT1 = None 

        self.normPressSegT1 = None 

        self.avgPressSegT1 = None 

        self.pressSegCP = None 

        self.normPressSegCP = None 

        self.avgPressSegCP = None 

        self.pressSegT3 = None 

        self.normPressSegT3 = None 
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        self.avgPressSegT3 = None 

 

        self.PPGSegT1 = None 

        self.normPPGSegT1 = None 

        self.avgPPGSegT1 = None 

        self.PPGSegCP = None 

        self.normPPGSegCP = None 

        self.avgPPGSegCP = None 

        self.PPGSegT3 = None 

        self.normPPGSegT3 = None 

        self.avgPPGSegT3 = None 

 

        #computing ddPPG 

        #Just testing what filtering the ppg will do - no good is the 

conclusion 

        #sos = butter(N=12 , Wn=[1,10], btype='bandpass', 

fs=self.hz_Arduino, output='sos') 

        #self.PPG = scipy.signal.sosfilt(sos, self.PPG) 

 

        polyOrder = 3 

        windowSizeSeconds = 0.15 #Change this back to 0.15 

        windowSizeArduino = int(windowSizeSeconds / self.fs_Arduino) 

        if windowSizeArduino % 2 == 0: 

            windowSizeArduino = windowSizeArduino + 1 

        self.PPGFilt = savgol_filter(self.PPG, windowSizeArduino, 

polyOrder) 

        self.dPPGFilt = savgol_filter(self.PPG, windowSizeArduino, 

polyOrder, deriv=1) 

        self.ddPPGFilt = savgol_filter(self.PPG, windowSizeArduino, 

polyOrder, deriv=2) 

        #dppg = np.gradient(self.PPGFilt) 

        #polyOrder = 3 

        #windowSizeSeconds = 0.15 #Change this back to 0.15 

        #windowSizeArduino = int(windowSizeSeconds / self.fs_Arduino) 

        #if windowSizeArduino % 2 == 0: 

        #    windowSizeArduino = windowSizeArduino + 1 

        #self.dPPGFilt = savgol_filter(dppg, windowSizeArduino, polyOrder) 

        #ddppg = np.gradient(self.dPPGFilt) 
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        # Filtering double derivative to identify peaks 

        #polyOrder = 3 

        #windowSizeSeconds = 0.15 #Change this back to 0.15 

        #windowSizeArduino = int(windowSizeSeconds / self.fs_Arduino) 

        #if windowSizeArduino % 2 == 0: 

        #    windowSizeArduino = windowSizeArduino + 1 

        #self.ddPPGFilt = savgol_filter(ddppg, windowSizeArduino, 

polyOrder) 

 

        # Need the derivative for the scale measurement as well 

        polyOrder = 3 

        windowSizeSeconds = 0.15 

        windowSizeScale = int(windowSizeSeconds / self.fs_Scale) 

        if windowSizeScale % 2 == 0: 

            windowSizeScale = windowSizeScale + 1 

        self.PPGFiltScale = savgol_filter(self.PPGScale, windowSizeScale, 

polyOrder) 

        dppgScale = np.gradient(self.PPGFiltScale) 

 

        polyOrder = 3 

        windowSizeSeconds = 0.15 

        windowSizeScale = int(windowSizeSeconds / self.fs_Scale) 

        if windowSizeScale % 2 == 0: 

            windowSizeScale = windowSizeScale + 1 

        self.dPPGFiltScale = savgol_filter(dppgScale, windowSizeScale, 

polyOrder) 

        ddppgScale = np.gradient(self.dPPGFiltScale) 

 

        polyOrder = 3 

        windowSizeSeconds = 0.15 

        windowSizeScale = int(windowSizeSeconds / self.fs_Scale) 

        if windowSizeScale % 2 == 0: 

            windowSizeScale = windowSizeScale + 1 

        self.ddPPGFiltScale = savgol_filter(ddppgScale, windowSizeScale, 

polyOrder) 

 

    def filterPressure(self, butterLevel, passBand): 
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        sos = butter(N=butterLevel, Wn=passBand, btype='bandpass', 

fs=self.hz_Arduino, output='sos') 

        self.pressFilt0 = scipy.signal.sosfiltfilt(sos, self.Pressure0) 

        self.pressFilt1 = scipy.signal.sosfiltfilt(sos, self.Pressure1) 

        self.pressFilt2 = scipy.signal.sosfiltfilt(sos, self.Pressure2) 

        self.pressFilt3 = scipy.signal.sosfiltfilt(sos, self.Pressure3) 

        self.pressFilt4 = scipy.signal.sosfiltfilt(sos, self.Pressure4) 

        self.pressFilt5 = scipy.signal.sosfiltfilt(sos, self.Pressure5) 

        self.pressFilt6 = scipy.signal.sosfiltfilt(sos, self.Pressure6) 

        self.pressFilt7 = scipy.signal.sosfiltfilt(sos, self.Pressure7) 

        self.pressFilt8 = scipy.signal.sosfiltfilt(sos, self.Pressure8) 

        self.pressFilt9 = scipy.signal.sosfiltfilt(sos, self.Pressure9) 

 

 

 

    def loadChartData(self): 

        #reads the labchartdata and extracts the interesting data into a 

readable format 

        data = pd.read_csv(self.chartAddress, sep="\t", 

names=self.chartNameList, header=None) 

        startLocations = data.loc[data["Time"] == "Range="] 

        indexFinalStart = startLocations.index[-1] 

        #data.iloc[indexFinalStart - 5] 

        startTimeString = data["Finger_Pressure"][indexFinalStart - 4] 

        startTimeList = startTimeString.split()[0].split(".") + 

startTimeString.split()[1].split(":") 

        startTimeList = startTimeList[:-1] + startTimeList[-1].split(",") 

        for i in range(len(startTimeList)): 

            startTimeList[i] = int(startTimeList[i]) 

        epochLabChart = datetime.datetime(startTimeList[2], 

startTimeList[1], startTimeList[0], startTimeList[3], 

                                          minute=startTimeList[4], 

second=startTimeList[5], 

                                          microsecond=startTimeList[6] * 

1000).timestamp() 

        data.drop(list(range(indexFinalStart + 1)), inplace=True) 

        numpyArrayList = [] 

        interestingDataList = ["Time", "HC_Systolic", "Active_Cuff", 

"Finger_Pressure_HC"] 
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        for i in interestingDataList: 

            data[i] = data[i].str.replace(',', '.') 

            data[i] = data[i].astype(float) 

            data[i] = data[i].fillna(0) 

            numpyArrayList.append(data[i].to_numpy()) 

        timeLabChart = numpyArrayList[0] 

        self.timeLabChart = timeLabChart + epochLabChart 

        self.fs_LabChart = (self.timeLabChart[-1] - self.timeLabChart[0]) / 

len(self.timeLabChart) 

        self.HCSystolic = numpyArrayList[1] 

        self.averagedDiastolic = numpyArrayList[2] 

        self.fingerPressureHC = numpyArrayList[3] 

 

    def findMatchingTime(self, timeArray, timeStamp): 

        #Should probably be a private function 

        for i in range(len(timeArray)): 

            if abs(timeArray[i] - timeStamp) < 0.01: 

                return i 

 

    def computeTimeIndice(self, timeSet, timeArray): 

        # Timeset should be a list [start, stop] where start and stop 

should be written as dd:mm:yy:hh:mm:ss:ms 

        epochTimeSet = [] 

        for i in timeSet: 

            timeList = i.split(":") 

            for i in range(len(timeList)): 

                timeList[i] = int(timeList[i]) 

            epochTimeStamp = datetime.datetime(timeList[2], timeList[1], 

timeList[0], timeList[3], 

                                               minute=timeList[4], 

second=timeList[5], 

                                               microsecond=timeList[6] * 

1000).timestamp() 

            epochTimeSet.append(self.findMatchingTime(timeArray, 

epochTimeStamp)) 

        timeIndice = epochTimeSet 

        return timeIndice 

        #convert string time stamps into epoch time stamps 
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    def SetTimeIndices(self): 

        timeIndice = self.computeTimeIndice(self.T1TimeString, 

self.timeArduino) 

        self.T1TimeArduino = timeIndice 

        timeIndice = self.computeTimeIndice(self.CPTimeString, 

self.timeArduino) 

        self.CPTimeArduino = timeIndice 

        timeIndice = self.computeTimeIndice(self.T3TimeString, 

self.timeArduino) 

        self.T3TimeArduino = timeIndice 

        timeIndice = self.computeTimeIndice(self.T1TimeString, 

self.timeLabChart) 

        self.T1TimeChart = timeIndice 

        timeIndice = self.computeTimeIndice(self.CPTimeString, 

self.timeLabChart) 

        self.CPTimeChart = timeIndice 

        timeIndice = self.computeTimeIndice(self.T3TimeString, 

self.timeLabChart) 

        self.T3TimeChart = timeIndice 

 

    def averageFingerPressure(self): 

        #Computes an average finger pressure by using savitzky golay filter 

        polyOrder = 3 

        windowSizeSeconds = 35 

        windowSize = int(windowSizeSeconds / self.fs_LabChart) 

        if windowSize % 2 == 0: 

            windowSize = windowSize + 1 

        self.HCSystolicFiltered = savgol_filter(self.HCSystolic, 

windowSize, polyOrder) 

 

    def plotAvgFingPress(self): 

        #Plot the averaged finger pressure 

        timeIndexesLabchart = self.T1TimeChart + self.CPTimeChart + 

self.T3TimeChart 

        plt.figure(figsize=(32, 16), dpi=150) 

        plt.ylim(70, 180) 

        # plt.plot(HC_Systolic[0:-1]) 

        # plt.plot(timeLabChart[0:-1], HC_Systolic[0:-1]) 

        plt.plot(self.timeLabChart[0:-1], self.HCSystolicFiltered[0:-1]) 
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        for i in timeIndexesLabchart: 

            plt.axvline(x=self.timeLabChart[i]) 

        plt.show() 

 

    def findPPGPeaks(self, threshold, timeBetween): 

        #Finds the peaks of the ppg for segmentation 

        #Another idea is to find the PPG squared peaks. Should be easier 

(maybe) 

        samplesBetweenEach = timeBetween/self.fs_Arduino 

        self.peaksPPG, properties = scipy.signal.find_peaks(self.PPGFilt, 

height=threshold, distance=samplesBetweenEach) 

        self.peaksPPG2, properties = scipy.signal.find_peaks(self.PPG2, 

height=threshold, distance=samplesBetweenEach) 

        samplesBetweenEach = timeBetween/self.fs_Scale 

        self.peaksPPGScale, properties = 

scipy.signal.find_peaks(self.PPGFiltScale, height=threshold, 

distance=samplesBetweenEach) 

 

 

    def findddPPGPeaks(self, threshold, timeBetween): 

        #Finds the peaks of the ddPPG for segmentation 

        samplesBetweenEach = timeBetween/self.fs_Arduino 

        self.peaksddPPG, properties = 

scipy.signal.find_peaks(self.ddPPGFilt, height=threshold, 

distance=samplesBetweenEach) 

        samplesBetweenEach = timeBetween/self.fs_Scale 

        self.peaksddPPGScale, properties = 

scipy.signal.find_peaks(self.ddPPGFiltScale, height=threshold, 

distance=samplesBetweenEach) 

 

    def organizePeaks(self): 

        #I think it is better to do the sanity check here on the peaks. 

        #Compute median distance between peaks, then i look through the 

gaps between the peaks. If a gap is too long one of the peaks is wrong. 

        #But which one? 

        #gapLengths = np.zeros(len(self.peaksPPG) - 1) 

        #for i in range(len(self.peaksPPG)): 

        #    gapLengths[i] = self.peaksPPG[i + 1] - self.peaksPPG[i] 

        #medianLength = gapLengths[int(len(gapLengths)/2)] 

        #wrongGapIndex = [] 
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        #for i in range(len(gapLengths)): 

        #    if abs(medianLength - gapLengths[i]) > 0.05*medianLength: 

        #        #Something is wrong and i should remove one of the peaks. 

But im not sure which one. 

        #        wrongGapIndex.append(i) 

        #Checking which indices are possibly wrong. Whats interesting to 

check is wether 

 

        T1Peaks = [] 

        T3Peaks = [] 

        CPPeaks = [] 

 

        for i in self.peaksPPG: 

            if i > self.T1TimeArduino[0] and i < self.T1TimeArduino[1]: 

                T1Peaks.append(i) 

            elif i > self.CPTimeArduino[0] and i < self.CPTimeArduino[1]: 

                CPPeaks.append(i) 

            elif i > self.T3TimeArduino[0] and i < self.T3TimeArduino[1]: 

                T3Peaks.append(i) 

 

        self.T1Peaks = T1Peaks 

        self.CPPeaks = CPPeaks 

        self.T3Peaks = T3Peaks 

 

        T1Peaks2 = [] 

        T3Peaks2 = [] 

        CPPeaks2 = [] 

 

        for i in self.peaksPPG2: 

            if i > self.T1TimeArduino[0] and i < self.T1TimeArduino[1]: 

                T1Peaks2.append(i) 

            elif i > self.CPTimeArduino[0] and i < self.CPTimeArduino[1]: 

                CPPeaks2.append(i) 

            elif i > self.T3TimeArduino[0] and i < self.T3TimeArduino[1]: 

                T3Peaks2.append(i) 

 

        self.T1Peaks2 = T1Peaks2 
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        self.CPPeaks2 = CPPeaks2 

        self.T3Peaks2 = T3Peaks2 

 

 

    def sanityCheckSeg(self, segmentList): 

        minLength = 100000 

        # Identifying the shortest period and making all the segments that 

length by cutting off the end 

        # Should add some sanity check to remove wrongly identified 

segments. For instance by length 

        avgLength = 0 

        lengthList = [] 

        for i in range(len(segmentList)): 

            lengthList.append(len(segmentList[i])) 

        #median = lengthList[int(len(lengthList)/2)] 

        median = statistics.median(lengthList) 

 

        for j in range(len(segmentList)): 

        #    avgLength = avgLength + len(segmentList[j]) 

            if minLength > len(segmentList[j]): 

                minLength = len(segmentList[j]) 

        avgLength = avgLength / len(segmentList) 

        avgLength = avgLength + 0.1 * avgLength  # Not in use atm 

        popList = [] 

        for k in range(len(segmentList)): 

            if abs(len(segmentList[k]) - median) > 0.05*median: 

                # pressureSegmentList.pop(k) 

                popList.append(k) #List of the indices im gonna pop 

(remove) 

            else: 

                segmentList[k] = segmentList[k][0:minLength] #Setting all 

segments to the same length for easier plotting 

        for l in range(len(popList)): 

            segmentList.pop(popList[l] - l) 

        #print(popList) 

        return segmentList, popList 

 

    def segmentUsingPPGT1(self, peaks, fs, press=False, PPG=False): 
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        #Segments the data by using the identified PPG peaks 

        #How do i choose which peaks i want to use? 

        #Should change this to just use self.peaksT1. Doesnt need me to 

give it peaks 

        if press: 

            pressureSegmentList0 = [] 

            pressureSegmentList1 = [] 

            pressureSegmentList2 = [] 

            pressureSegmentList3 = [] 

            pressureSegmentList4 = [] 

            pressureSegmentList5 = [] 

            pressureSegmentList6 = [] 

            pressureSegmentList7 = [] 

            pressureSegmentList8 = [] 

            pressureSegmentList9 = [] 

            for i in range(len(peaks) - 1): 

                # Takes a subset from data from peak1 to peak2 and pad 

about 0.15 seconds on each side 

                segment0 = self.pressFilt0[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment1 = self.pressFilt1[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment2 = self.pressFilt2[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment3 = self.pressFilt3[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment4 = self.pressFilt4[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment5 = self.pressFilt5[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment6 = self.pressFilt6[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment7 = self.pressFilt7[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment8 = self.pressFilt8[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment9 = self.pressFilt9[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

 

                pressureSegmentList0.append(segment0) 

                pressureSegmentList1.append(segment1) 
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                pressureSegmentList2.append(segment2) 

                pressureSegmentList3.append(segment3) 

                pressureSegmentList4.append(segment4) 

                pressureSegmentList5.append(segment5) 

                pressureSegmentList6.append(segment6) 

                pressureSegmentList7.append(segment7) 

                pressureSegmentList8.append(segment8) 

                pressureSegmentList9.append(segment9) 

 

                #Doing sanity checks 

 

            self.pressureSegmentList0T1, popList = 

self.sanityCheckSeg(pressureSegmentList0) 

            self.pressureSegmentList1T1, popList = 

self.sanityCheckSeg(pressureSegmentList1) 

            self.pressureSegmentList2T1, popList = 

self.sanityCheckSeg(pressureSegmentList2) 

            self.pressureSegmentList3T1, popList = 

self.sanityCheckSeg(pressureSegmentList3) 

            self.pressureSegmentList4T1, popList = 

self.sanityCheckSeg(pressureSegmentList4) 

            self.pressureSegmentList5T1, popList = 

self.sanityCheckSeg(pressureSegmentList5) 

            self.pressureSegmentList6T1, popList = 

self.sanityCheckSeg(pressureSegmentList6) 

            self.pressureSegmentList7T1, popList = 

self.sanityCheckSeg(pressureSegmentList7) 

            self.pressureSegmentList8T1, popList = 

self.sanityCheckSeg(pressureSegmentList8) 

            self.pressureSegmentList9T1, popList = 

self.sanityCheckSeg(pressureSegmentList9) 

            self.popListT1 = popList 

            #print("PopListT1: ", self.popListT1) 

        elif PPG: 

            PPGSegmentList = [] 

            for i in range(len(peaks) - 1): 

                # Takes a subset from data from peak1 to peak2 and pad 

about 0.15 seconds on each side 

                segment = self.PPGFilt[peaks[i] - int(0.5 / fs): peaks[i + 

1] + int(0.5 / fs)] 

                PPGSegmentList.append(segment) 
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            PPGSegmentList, popList = self.sanityCheckSeg(PPGSegmentList) 

            self.PPGSegmentListT1 = PPGSegmentList 

            self.popListT1 = popList 

            #print("PopListT1: ", self.popListT1) 

 

    def segmentUsingPPGCP(self, peaks, fs, press=False, PPG=False): 

        #Segments the data by using the identified PPG peaks 

        #How do i choose which peaks i want to use? 

 

        if press: 

            pressureSegmentList0 = [] 

            pressureSegmentList1 = [] 

            pressureSegmentList2 = [] 

            pressureSegmentList3 = [] 

            pressureSegmentList4 = [] 

            pressureSegmentList5 = [] 

            pressureSegmentList6 = [] 

            pressureSegmentList7 = [] 

            pressureSegmentList8 = [] 

            pressureSegmentList9 = [] 

            for i in range(len(peaks) - 1): 

                # Takes a subset from data from peak1 to peak2 and pad 

about 0.15 seconds on each side 

                segment0 = self.pressFilt0[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment1 = self.pressFilt1[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment2 = self.pressFilt2[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment3 = self.pressFilt3[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment4 = self.pressFilt4[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment5 = self.pressFilt5[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment6 = self.pressFilt6[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment7 = self.pressFilt7[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 
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                segment8 = self.pressFilt8[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment9 = self.pressFilt9[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

 

                pressureSegmentList0.append(segment0) 

                pressureSegmentList1.append(segment1) 

                pressureSegmentList2.append(segment2) 

                pressureSegmentList3.append(segment3) 

                pressureSegmentList4.append(segment4) 

                pressureSegmentList5.append(segment5) 

                pressureSegmentList6.append(segment6) 

                pressureSegmentList7.append(segment7) 

                pressureSegmentList8.append(segment8) 

                pressureSegmentList9.append(segment9) 

 

                #Doing sanity checks 

            self.pressureSegmentList0CP, popList = 

self.sanityCheckSeg(pressureSegmentList0) 

            self.pressureSegmentList1CP, popList = 

self.sanityCheckSeg(pressureSegmentList1) 

            self.pressureSegmentList2CP, popList = 

self.sanityCheckSeg(pressureSegmentList2) 

            self.pressureSegmentList3CP, popList = 

self.sanityCheckSeg(pressureSegmentList3) 

            self.pressureSegmentList4CP, popList = 

self.sanityCheckSeg(pressureSegmentList4) 

            self.pressureSegmentList5CP, popList = 

self.sanityCheckSeg(pressureSegmentList5) 

            self.pressureSegmentList6CP, popList = 

self.sanityCheckSeg(pressureSegmentList6) 

            self.pressureSegmentList7CP, popList = 

self.sanityCheckSeg(pressureSegmentList7) 

            self.pressureSegmentList8CP, popList = 

self.sanityCheckSeg(pressureSegmentList8) 

            self.pressureSegmentList9CP, popList = 

self.sanityCheckSeg(pressureSegmentList9) 

            self.popListCP = popList 

        elif PPG: 

            PPGSegmentList = [] 

            for i in range(len(peaks) - 1): 
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                # Takes a subset from data from peak1 to peak2 and pad 

about 0.15 seconds on each side 

                segment = self.PPGFilt[peaks[i] - int(0.5 / fs): peaks[i + 

1] + int( 

                0.5 / fs)] 

                PPGSegmentList.append(segment) 

            PPGSegmentList, popList = self.sanityCheckSeg(PPGSegmentList) 

            self.PPGSegmentListCP = PPGSegmentList 

            self.popListCP = popList 

    def segmentUsingPPGT3(self, peaks, fs, press=False, PPG=False): 

        #Segments the data by using the identified PPG peaks 

        #How do i choose which peaks i want to use? 

 

        if press: 

            pressureSegmentList0 = [] 

            pressureSegmentList1 = [] 

            pressureSegmentList2 = [] 

            pressureSegmentList3 = [] 

            pressureSegmentList4 = [] 

            pressureSegmentList5 = [] 

            pressureSegmentList6 = [] 

            pressureSegmentList7 = [] 

            pressureSegmentList8 = [] 

            pressureSegmentList9 = [] 

            for i in range(len(peaks) - 1): 

                # Takes a subset from data from peak1 to peak2 and pad 

about 0.15 seconds on each side 

                segment0 = self.pressFilt0[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment1 = self.pressFilt1[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment2 = self.pressFilt2[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment3 = self.pressFilt3[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment4 = self.pressFilt4[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment5 = self.pressFilt5[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 
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                segment6 = self.pressFilt6[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment7 = self.pressFilt7[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment8 = self.pressFilt8[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

                segment9 = self.pressFilt9[peaks[i] - int(0.5 / fs): 

peaks[i + 1] + int(0.5 / fs)] 

 

                pressureSegmentList0.append(segment0) 

                pressureSegmentList1.append(segment1) 

                pressureSegmentList2.append(segment2) 

                pressureSegmentList3.append(segment3) 

                pressureSegmentList4.append(segment4) 

                pressureSegmentList5.append(segment5) 

                pressureSegmentList6.append(segment6) 

                pressureSegmentList7.append(segment7) 

                pressureSegmentList8.append(segment8) 

                pressureSegmentList9.append(segment9) 

 

                #Doing sanity checks 

            self.pressureSegmentList0T3, popList = 

self.sanityCheckSeg(pressureSegmentList0) 

            self.pressureSegmentList1T3, popList = 

self.sanityCheckSeg(pressureSegmentList1) 

            self.pressureSegmentList2T3, popList = 

self.sanityCheckSeg(pressureSegmentList2) 

            self.pressureSegmentList3T3, popList = 

self.sanityCheckSeg(pressureSegmentList3) 

            self.pressureSegmentList4T3, popList = 

self.sanityCheckSeg(pressureSegmentList4) 

            self.pressureSegmentList5T3, popList = 

self.sanityCheckSeg(pressureSegmentList5) 

            self.pressureSegmentList6T3, popList = 

self.sanityCheckSeg(pressureSegmentList6) 

            self.pressureSegmentList7T3, popList = 

self.sanityCheckSeg(pressureSegmentList7) 

            self.pressureSegmentList8T3, popList = 

self.sanityCheckSeg(pressureSegmentList8) 

            self.pressureSegmentList9T3, popList = 

self.sanityCheckSeg(pressureSegmentList9) 

            self.popListT3 = popList 
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        elif PPG: 

            PPGSegmentList = [] 

            for i in range(len(peaks) - 1): 

                # Takes a subset from data from peak1 to peak2 and pad 

about 0.15 seconds on each side 

                segment = self.PPGFilt[peaks[i] - int(0.5 / fs): peaks[i + 

1] + int( 

                0.5 / fs)]  # This will probably make wrongly segmented 

segments worse. 

                PPGSegmentList.append(segment) 

            PPGSegmentList, popList = self.sanityCheckSeg(PPGSegmentList) 

            self.PPGSegmentListT3 = PPGSegmentList 

            self.popListT3 = popList 

 

    def normAndAvgPressSegT1(self): 

        #Shit - This does not consider T1, CP and T3 - Start here next time 

(22.05.2022) and then fix plotting. 

        normSeg0 = [] 

        for i in self.pressureSegmentList0T1: 

            normSeg0.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg0T1 = normSeg0 

        self.avgSeg0T1 = dpf.averageSegments(segments=normSeg0) 

 

        normSeg1 = [] 

        for i in self.pressureSegmentList1T1: 

            normSeg1.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg1T1 = normSeg1 

        self.avgSeg1T1 = dpf.averageSegments(segments=normSeg1) 

 

        normSeg2 = [] 

        for i in self.pressureSegmentList2T1: 

            normSeg2.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg2T1 = normSeg2 

        self.avgSeg2T1 = dpf.averageSegments(segments=normSeg2) 
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        normSeg3 = [] 

        for i in self.pressureSegmentList3T1: 

            normSeg3.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg3T1 = normSeg3 

        self.avgSeg3T1 = dpf.averageSegments(segments=normSeg3) 

 

        normSeg4 = [] 

        for i in self.pressureSegmentList4T1: 

            normSeg4.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg4T1 = normSeg4 

        self.avgSeg4T1 = dpf.averageSegments(segments=normSeg4) 

 

        normSeg5 = [] 

        for i in self.pressureSegmentList5T1: 

            normSeg5.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg5T1 = normSeg5 

        self.avgSeg5T1 = dpf.averageSegments(segments=normSeg5) 

 

        normSeg6 = [] 

        for i in self.pressureSegmentList6T1: 

            normSeg6.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg6T1 = normSeg6 

        self.avgSeg6T1 = dpf.averageSegments(segments=normSeg6) 

 

        normSeg7 = [] 

        for i in self.pressureSegmentList7T1: 

            normSeg7.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg7T1 = normSeg7 

        self.avgSeg7T1 = dpf.averageSegments(segments=normSeg7) 

 

        normSeg8 = [] 

        for i in self.pressureSegmentList8T1: 

            normSeg8.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 
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        self.normSeg8T1 = normSeg8 

        self.avgSeg8T1 = dpf.averageSegments(segments=normSeg8) 

 

        normSeg9 = [] 

        for i in self.pressureSegmentList9T1: 

            normSeg9.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg9T1 = normSeg9 

        self.avgSeg9T1 = dpf.averageSegments(segments=normSeg9) 

 

    def normAndAvgPressSegCP(self): 

        #Shit - This does not consider T1, CP and T3 - Start here next time 

(22.05.2022) and then fix plotting. 

        normSeg0 = [] 

        for i in self.pressureSegmentList0CP: 

            normSeg0.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg0CP = normSeg0 

        self.avgSeg0CP = dpf.averageSegments(segments=normSeg0) 

 

        normSeg1 = [] 

        for i in self.pressureSegmentList1CP: 

            normSeg1.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg1CP = normSeg1 

        self.avgSeg1CP = dpf.averageSegments(segments=normSeg1) 

 

        normSeg2 = [] 

        for i in self.pressureSegmentList2CP: 

            normSeg2.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg2CP = normSeg2 

        self.avgSeg2CP = dpf.averageSegments(segments=normSeg2) 

 

        normSeg3 = [] 

        for i in self.pressureSegmentList3CP: 

            normSeg3.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg3CP = normSeg3 
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        self.avgSeg3CP = dpf.averageSegments(segments=normSeg3) 

 

        normSeg4 = [] 

        for i in self.pressureSegmentList4CP: 

            normSeg4.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg4CP = normSeg4 

        self.avgSeg4CP = dpf.averageSegments(segments=normSeg4) 

 

        normSeg5 = [] 

        for i in self.pressureSegmentList5CP: 

            normSeg5.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg5CP = normSeg5 

        self.avgSeg5CP = dpf.averageSegments(segments=normSeg5) 

 

        normSeg6 = [] 

        for i in self.pressureSegmentList6CP: 

            normSeg6.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg6CP = normSeg6 

        self.avgSeg6CP = dpf.averageSegments(segments=normSeg6) 

 

        normSeg7 = [] 

        for i in self.pressureSegmentList7CP: 

            normSeg7.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg7CP = normSeg7 

        self.avgSeg7CP = dpf.averageSegments(segments=normSeg7) 

 

        normSeg8 = [] 

        for i in self.pressureSegmentList8CP: 

            normSeg8.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg8CP = normSeg8 

        self.avgSeg8CP = dpf.averageSegments(segments=normSeg8) 

 

        normSeg9 = [] 
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        for i in self.pressureSegmentList9CP: 

            normSeg9.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg9CP = normSeg9 

        self.avgSeg9CP = dpf.averageSegments(segments=normSeg9) 

 

    def normAndAvgPressSegT3(self): 

        #Shit - This does not consider T1, CP and T3 - Start here next time 

(22.05.2022) and then fix plotting. 

        normSeg0 = [] 

        for i in self.pressureSegmentList0T3: 

            normSeg0.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg0T3 = normSeg0 

        self.avgSeg0T3 = dpf.averageSegments(segments=normSeg0) 

 

        normSeg1 = [] 

        for i in self.pressureSegmentList1T3: 

            normSeg1.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg1T3 = normSeg1 

        self.avgSeg1T3 = dpf.averageSegments(segments=normSeg1) 

 

        normSeg2 = [] 

        for i in self.pressureSegmentList2T3: 

            normSeg2.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg2T3 = normSeg2 

        self.avgSeg2T3 = dpf.averageSegments(segments=normSeg2) 

 

        normSeg3 = [] 

        for i in self.pressureSegmentList3T3: 

            normSeg3.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg3T3 = normSeg3 

        self.avgSeg3T3 = dpf.averageSegments(segments=normSeg3) 

 

        normSeg4 = [] 

        for i in self.pressureSegmentList4T3: 



100 

 

            normSeg4.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg4T3 = normSeg4 

        self.avgSeg4T3 = dpf.averageSegments(segments=normSeg4) 

 

        normSeg5 = [] 

        for i in self.pressureSegmentList5T3: 

            normSeg5.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg5T3 = normSeg5 

        self.avgSeg5T3 = dpf.averageSegments(segments=normSeg5) 

 

        normSeg6 = [] 

        for i in self.pressureSegmentList6T3: 

            normSeg6.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg6T3 = normSeg6 

        self.avgSeg6T3 = dpf.averageSegments(segments=normSeg6) 

 

        normSeg7 = [] 

        for i in self.pressureSegmentList7T3: 

            normSeg7.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg7T3 = normSeg7 

        self.avgSeg7T3 = dpf.averageSegments(segments=normSeg7) 

 

        normSeg8 = [] 

        for i in self.pressureSegmentList8T3: 

            normSeg8.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg8T3 = normSeg8 

        self.avgSeg8T3 = dpf.averageSegments(segments=normSeg8) 

 

        normSeg9 = [] 

        for i in self.pressureSegmentList9T3: 

            normSeg9.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSeg9T3 = normSeg9 

        self.avgSeg9T3 = dpf.averageSegments(segments=normSeg9) 
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    def normAndAvgPPGSegT1(self): 

        normSeg = [] 

        for i in self.PPGSegmentListT1: 

            normSeg.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSegPPGT1 = normSeg 

        self.avgSegPPGT1 = dpf.averageSegments(segments=normSeg) 

 

    def normAndAvgPPGSegCP(self): 

        normSeg = [] 

        for i in self.PPGSegmentListCP: 

            normSeg.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSegPPGCP = normSeg 

        self.avgSegPPGCP = dpf.averageSegments(segments=normSeg) 

 

    def normAndAvgPPGSegT3(self): 

        normSeg = [] 

        for i in self.PPGSegmentListT3: 

            normSeg.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.normSegPPGT3 = normSeg 

        self.avgSegPPGT3 = dpf.averageSegments(segments=normSeg) 

 

    def segmentNormalizeAndAverage(self, fs, segPress, segPPG, PPG2 = 

False, ddPPG = False, segScale = False, T1=False, CP=False, T3=False): 

        #ref is the reference we use to segments. Called peaks later 

        #ddPPG is not fixed 

 

        if T1: 

            if ddPPG: 

                ref = 

self.ddPPGFilt[self.T1TimeArduino[0]:self.T1TimeArduino[1]] 

            elif PPG2: 

                ref = self.T1Peaks2 

            else: 

                #ref = 

self.PPG[self.T1TimeArduino[0]:self.T1TimeArduino[1]] 
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                ref = self.T1Peaks 

            self.segmentUsingPPGT1(ref, fs, press=segPress, PPG=segPPG) 

            if segPress: 

                self.normAndAvgPressSegT1() 

            elif segPPG: 

                self.normAndAvgPPGSegT1() 

 

        elif CP: 

            if ddPPG: 

                ref = 

self.ddPPGFilt[self.CPTimeArduino[0]:self.CPTimeArduino[1]] 

            elif PPG2: 

                ref = self.CPPeaks2 

            else: 

                #ref = 

self.PPG[self.CPTimeArduino[0]:self.CPTimeArduino[1]] 

                ref = self.CPPeaks 

            self.segmentUsingPPGCP(ref, fs, press=segPress, PPG=segPPG) 

            if segPress: 

                self.normAndAvgPressSegCP() 

            if segPPG: 

                self.normAndAvgPPGSegCP() 

        elif T3: 

            if ddPPG: 

                ref = 

self.ddPPGFilt[self.T3TimeArduino[0]:self.T3TimeArduino[1]] 

            elif PPG2: 

                ref = self.T1Peaks2 

            else: 

                #ref = 

self.PPG[self.T3TimeArduino[0]:self.T3TimeArduino[1]] 

                ref = self.T3Peaks 

            self.segmentUsingPPGT3(ref, fs, press=segPress, PPG=segPPG) 

            if segPress: 

                self.normAndAvgPressSegT3() 

            if segPPG: 

                self.normAndAvgPPGSegT3() 
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    def segmentPressure(self, ddPPG = False, PPG2 = False): #Should change 

the name of the variable for wether im segmenting ppg 

        self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=True, 

segPPG=False, PPG2=PPG2, ddPPG = ddPPG, T1=True) 

        self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=True, 

segPPG=False, PPG2=PPG2, ddPPG=ddPPG, CP=True) 

        self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=True, 

segPPG=False, PPG2=PPG2, ddPPG=ddPPG, T3=True) 

 

    def segmentScalePressure(self, threshold, timeBetween): #Needs to be 

updated 

        self.segmentNormalizeAndAverage(self.Scale, self.fs_Scale, 

threshold, timeBetween, T1 = True) 

        self.segmentNormalizeAndAverage(self.Scale, self.fs_Scale, 

threshold, timeBetween, CP = True) 

        self.segmentNormalizeAndAverage(self.Scale, self.fs_Scale, 

threshold, timeBetween, T3 = True) 

 

    def segmentPPG(self, ddPPG = False, PPG2 = False): 

        self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=False, 

segPPG=True, PPG2=PPG2, ddPPG=ddPPG, T1=True) 

        self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=False, 

segPPG=True, PPG2=PPG2, ddPPG=ddPPG, CP=True) 

        self.segmentNormalizeAndAverage(self.fs_Arduino, segPress=False, 

segPPG=True, PPG2=PPG2, ddPPG=ddPPG, T3=True) 

 

    def plotSegPress(self, pressSelect, T1 = False, CP = False, T3 = False, 

savePlot = False, ID = ""): 

        #Might be better to just make this 9 functions. One for each sensor 

        if pressSelect == 0: 

            if T1: 

                avgData = self.avgSeg0T1 

                normData = self.normSeg0T1 

            elif CP: 

                avgData = self.avgSeg0CP 

                normData = self.normSeg0CP 

            elif T3: 

                avgData = self.avgSeg0T3 

                normData = self.normSeg0T3 

        elif pressSelect == 1: 
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            if T1: 

                avgData = self.avgSeg1T1 

                normData = self.normSeg1T1 

            elif CP: 

                avgData = self.avgSeg1CP 

                normData = self.normSeg1CP 

            elif T3: 

                avgData = self.avgSeg1T3 

                normData = self.normSeg1T3 

        elif pressSelect == 2: 

            if T1: 

                avgData = self.avgSeg2T1 

                normData = self.normSeg2T1 

            elif CP: 

                avgData = self.avgSeg2CP 

                normData = self.normSeg2CP 

            elif T3: 

                avgData = self.avgSeg2T3 

                normData = self.normSeg2T3 

        elif pressSelect == 3: 

            if T1: 

                avgData = self.avgSeg3T1 

                normData = self.normSeg3T1 

            elif CP: 

                avgData = self.avgSeg3CP 

                normData = self.normSeg3CP 

            elif T3: 

                avgData = self.avgSeg3T3 

                normData = self.normSeg3T3 

        elif pressSelect == 4: 

            if T1: 

                avgData = self.avgSeg4T1 

                normData = self.normSeg4T1 

            elif CP: 

                avgData = self.avgSeg4CP 

                normData = self.normSeg4CP 
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            elif T3: 

                avgData = self.avgSeg4T3 

                normData = self.normSeg4T3 

        elif pressSelect == 5: 

            if T1: 

                avgData = self.avgSeg5T1 

                normData = self.avgSeg5T3 

            elif CP: 

                avgData = self.avgSeg5CP 

                normData = self.normSeg5CP 

            elif T3: 

                avgData = self.avgSeg5T3 

                normData = self.normSeg5T3 

        elif pressSelect == 6: 

            if T1: 

                avgData = self.avgSeg6T1 

                normData = self.normSeg6T1 

            elif CP: 

                avgData = self.avgSeg6CP 

                normData = self.normSeg6CP 

            elif T3: 

                avgData = self.avgSeg6T3 

                normData = self.normSeg6T3 

        elif pressSelect == 7: 

            if T1: 

                avgData = self.avgSeg7T3 

                normData = self.normSeg7T1 

            elif CP: 

                avgData = self.avgSeg7CP 

                normData = self.normSeg7CP 

            elif T3: 

                avgData = self.avgSeg7T3 

                normData = self.avgSeg2T3 

        elif pressSelect == 8: 

            if T1: 

                avgData = self.avgSeg8T1 
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                normData = self.normSeg8T1 

            elif CP: 

                avgData = self.avgSeg8CP 

                normData = self.normSeg8CP 

            elif T3: 

                avgData = self.avgSeg8T3 

                normData = self.normSeg8T3 

        elif pressSelect == 9: 

            if T1: 

                avgData = self.avgSeg9T1 

                normData = self.normSeg9T1 

            elif CP: 

                avgData = self.avgSeg9CP 

                normData = self.normSeg9CP 

            elif T3: 

                avgData = self.avgSeg9T3 

                normData = self.normSeg9T3 

 

 

        plt.figure(figsize=(32, 16), dpi=150) 

        plt.plot( 

            np.linspace(start=0, stop=((len(avgData)) * self.fs_Arduino), 

num=(len(avgData))), 

            avgData[:], "r", linewidth=4) 

        for i in range(len(normData)): 

            plt.plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, 

                                 num=(len(normData[i]))), normData[i], "b--

") 

        plt.grid(axis='x') 

        plt.title("Pressure segmented and averaged") 

        plt.xticks(np.arange(start=0, stop=((len(avgData)) * 

self.fs_Arduino), step=0.05)) 

        if savePlot: 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPress_" + ID 

            plt.savefig(saveName) 

        plt.show() 
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    def plotSegPressV2(self, pressSelect, T1=False, CP=False, T3=False, 

savePlot = False, ID = ""): 

        # Might be better to just make this 9 functions. One for each 

sensor 

        if pressSelect == 0: 

            if T1: 

                avgData = self.avgSeg0T1 

                normData = self.normSeg0T1 

            elif CP: 

                avgData = self.avgSeg0CP 

                normData = self.normSeg0CP 

            elif T3: 

                avgData = self.avgSeg0T3 

                normData = self.normSeg0T3 

        elif pressSelect == 1: 

            if T1: 

                avgData = self.avgSeg1T1 

                normData = self.normSeg1T1 

            elif CP: 

                avgData = self.avgSeg1CP 

                normData = self.normSeg1CP 

            elif T3: 

                avgData = self.avgSeg1T3 

                normData = self.normSeg1T3 

        elif pressSelect == 2: 

            if T1: 

                avgData = self.avgSeg2T1 

                normData = self.normSeg2T1 

            elif CP: 

                avgData = self.avgSeg2CP 

                normData = self.normSeg2CP 

            elif T3: 

                avgData = self.avgSeg2T3 

                normData = self.normSeg2T3 

        elif pressSelect == 3: 

            if T1: 
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                avgData = self.avgSeg3T1 

                normData = self.normSeg3T1 

            elif CP: 

                avgData = self.avgSeg3CP 

                normData = self.normSeg3CP 

            elif T3: 

                avgData = self.avgSeg3T3 

                normData = self.normSeg3T3 

        elif pressSelect == 4: 

            if T1: 

                avgData = self.avgSeg4T1 

                normData = self.normSeg4T1 

            elif CP: 

                avgData = self.avgSeg4CP 

                normData = self.normSeg4CP 

            elif T3: 

                avgData = self.avgSeg4T3 

                normData = self.normSeg4T3 

        elif pressSelect == 5: 

            if T1: 

                avgData = self.avgSeg5T1 

                normData = self.avgSeg5T3 

            elif CP: 

                avgData = self.avgSeg5CP 

                normData = self.normSeg5CP 

            elif T3: 

                avgData = self.avgSeg5T3 

                normData = self.normSeg5T3 

        elif pressSelect == 6: 

            if T1: 

                avgData = self.avgSeg6T1 

                normData = self.normSeg6T1 

            elif CP: 

                avgData = self.avgSeg6CP 

                normData = self.normSeg6CP 

            elif T3: 
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                avgData = self.avgSeg6T3 

                normData = self.normSeg6T3 

        elif pressSelect == 7: 

            if T1: 

                avgData = self.avgSeg7T3 

                normData = self.normSeg7T1 

            elif CP: 

                avgData = self.avgSeg7CP 

                normData = self.normSeg7CP 

            elif T3: 

                avgData = self.avgSeg7T3 

                normData = self.avgSeg2T3 

        elif pressSelect == 8: 

            if T1: 

                avgData = self.avgSeg8T1 

                normData = self.normSeg8T1 

            elif CP: 

                avgData = self.avgSeg8CP 

                normData = self.normSeg8CP 

            elif T3: 

                avgData = self.avgSeg8T3 

                normData = self.normSeg8T3 

        elif pressSelect == 9: 

            if T1: 

                avgData = self.avgSeg9T1 

                normData = self.normSeg9T1 

            elif CP: 

                avgData = self.avgSeg9CP 

                normData = self.normSeg9CP 

            elif T3: 

                avgData = self.avgSeg9T3 

                normData = self.normSeg9T3 

        fig, ax1 = plt.subplots(figsize=(32, 16), dpi = 150) 

        ax1.plot(np.linspace(start=0, stop=((len(avgData)) * 

self.fs_Arduino), num=(len(avgData))), 

                 avgData[:], "r", linewidth=4) 

        #plt.plot( 



110 

 

        #    np.linspace(start=0, stop=((len(avgData)) * self.fs_Arduino), 

num=(len(avgData))), 

        #    avgData[:], "r", linewidth=4) 

        axisList = [] 

        for i in range(len(normData)): 

            axisList.append(ax1.twinx()) 

            axisList[i].plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, num=(len(normData[i]))), 

                             normData[i], "b--") 

            fig.axes[i].get_yaxis().set_visible(False) 

            #plt.plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, 

            #                     num=(len(normData[i]))), normData[i], "b-

-") 

        plt.grid(axis='x') 

        plt.title("Pressure segmented and averaged plotV2") 

        plt.xticks(np.arange(start=0, stop=((len(avgData)) * 

self.fs_Arduino), step=0.05)) 

        if savePlot: 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPressV2_" + ID 

            plt.savefig(saveName) 

        plt.show() 

 

    def plotAllPressureSegAndAvg(self, ID, T1 = False, CP = False, T3 = 

False, savePlot = False): 

        if T1: 

            pressSegs = [self.normSeg0T1, self.normSeg1T1, self.normSeg2T1, 

self.normSeg3T1, self.normSeg4T1, self.normSeg5T1, 

                     self.normSeg6T1, self.normSeg7T1, self.normSeg8T1, 

self.normSeg9T1] 

            pressAvgs = [self.avgSeg0T1, self.avgSeg1T1, self.avgSeg2T1, 

self.avgSeg3T1, self.avgSeg4T1, self.avgSeg5T1, 

                     self.avgSeg6T1, self.avgSeg7T1, self.avgSeg8T1, 

self.avgSeg9T1] 

        elif CP: 

            pressSegs = [self.normSeg0CP, self.normSeg1CP, self.normSeg2CP, 

self.normSeg3CP, self.normSeg4CP, self.normSeg5CP, 

                     self.normSeg6CP, self.normSeg7CP, self.normSeg8CP, 

self.normSeg9CP] 

            pressAvgs = [self.avgSeg0CP, self.avgSeg1CP, self.avgSeg2CP, 

self.avgSeg3CP, self.avgSeg4CP, self.avgSeg5CP, 
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                     self.avgSeg6CP, self.avgSeg7CP, self.avgSeg8CP, 

self.avgSeg9CP] 

        elif T3: 

            pressSegs = [self.normSeg0T3, self.normSeg1T3, self.normSeg2T3, 

self.normSeg3T3, self.normSeg4T3, self.normSeg5T3, 

                     self.normSeg6T3, self.normSeg7T3, self.normSeg8T3, 

self.normSeg9T3] 

            pressAvgs = [self.avgSeg0T3, self.avgSeg1T3, self.avgSeg2T3, 

self.avgSeg3T3, self.avgSeg4T3, self.avgSeg5T3, 

                     self.avgSeg6T3, self.avgSeg7T3, self.avgSeg8T3, 

self.avgSeg9T3] 

        posList = ["right 1", "right 2", "right 5", "right 3", "left 5", 

"right 4", "left 3", "left 4", "left 2", "left 1"] 

        #self.Pressure0 = dataArduino.Pressure0.to_numpy() #Right foot 

furthest back 

        #self.Pressure1 = dataArduino.Pressure1.to_numpy() #Right foot 

second furthest back 

        #self.Pressure2 = dataArduino.Pressure2.to_numpy() #Right foot 

forward to the right 

        #self.Pressure3 = dataArduino.Pressure3.to_numpy() #Right foot 

middle 

        #self.Pressure4 = dataArduino.Pressure4.to_numpy() #Left foot 

forward right 

        #self.Pressure5 = dataArduino.Pressure5.to_numpy() #Right foot 

forward left 

        #self.Pressure6 = dataArduino.Pressure6.to_numpy() #Left foot 

middle 

        #self.Pressure7 = dataArduino.Pressure7.to_numpy() #Left foot 

forward left 

        #self.Pressure8 = dataArduino.Pressure8.to_numpy() #Left foot 

second furthest back 

        #self.Pressure9 = dataArduino.Pressure9.to_numpy() #Left foot 

furthest back 

        #Testing something here 

        for i in range(len(pressSegs)): 

            fig, ax1 = plt.subplots(figsize=(32, 16), dpi=150) 

            ax1.plot(np.linspace(start=0, stop=((len(pressAvgs[i])) * 

self.fs_Arduino), num=(len(pressAvgs[i]))), 

                 pressAvgs[i][:], "r", linewidth=4) 

        # plt.plot( 

        #    np.linspace(start=0, stop=((len(avgData)) * self.fs_Arduino), 

num=(len(avgData))), 

        #    avgData[:], "r", linewidth=4) 

            axisList = [] 
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            ax2 = ax1.twinx() 

            for j in range(len(pressSegs[i])): 

                #axisList.append(ax1.twinx()) 

                #axisList[j].plot(np.linspace(start=0, 

stop=(len(pressSegs[i][j])) * self.fs_Arduino, num=(len(pressSegs[i][j]))), 

                #                pressSegs[i][j], "b--") 

                #fig.axes[j].get_yaxis().set_visible(False) 

                ax2.plot(np.linspace(start=0, stop=(len(pressSegs[i][j])) * 

self.fs_Arduino, num=(len(pressSegs[i][j]))), 

                         pressSegs[i][j], "b--") 

            # plt.plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, 

            #                     num=(len(normData[i]))), normData[i], "b-

-") 

            plt.grid(axis='x') 

            plt.title("Pressure segmented and averaged " + "position " + 

posList[i] + " - " + ID) 

            plt.xticks(np.arange(start=0, stop=((len(pressAvgs[i])) * 

self.fs_Arduino), step=0.05)) 

            if savePlot: 

                saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots2\\SegPressV2_Press" + 

str(i) + ID 

                plt.savefig(saveName) 

            #plt.show() 

 

    def segmentScale(self): 

        #alright so i have the peaks for the normal PPG but not the PPG 

scale. I can probably take their position use that to find the scale 

segments then 

        #shorten the scale segments. Lets actually try that 

        peaks = self.T1Peaks 

        scaleSegmentList = [] 

        for i in range(len(peaks) - 1): 

            # Takes a subset from data from peak1 to peak2 and pad about 

0.15 seconds on each side 

            segment = self.Scale[peaks[i] - int(0.5 / self.fs_Arduino): 

peaks[i + 1] + int( 

                0.5 / self.fs_Arduino)]  # This will probably make wrongly 

segmented segments worse. 

            scaleSegmentList.append(segment) 

        scaleSegmentList, popList = self.sanityCheckSeg(scaleSegmentList) 
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        for i in range(len(scaleSegmentList)): 

            scaleSegmentList[i] = scaleSegmentList[i][1::2] 

#        scaleSegmentList = scaleSegmentList[1::2] 

        self.scaleSegmentListT1 = scaleSegmentList 

        self.popListScaleT1 = popList 

        normScale=[] 

        for i in self.scaleSegmentListT1: 

            normScale.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.scaleSegmentListT1 = normScale 

        self.avgScaleSegT1 = 

dpf.averageSegments(segments=self.scaleSegmentListT1) 

 

 

        peaks = self.CPPeaks 

        scaleSegmentList = [] 

        for i in range(len(peaks) - 1): 

            # Takes a subset from data from peak1 to peak2 and pad about 

0.15 seconds on each side 

            segment = self.Scale[peaks[i] - int(0.5 / self.fs_Arduino): 

peaks[i + 1] + int( 

                0.5 / self.fs_Arduino)]  # This will probably make wrongly 

segmented segments worse. 

            scaleSegmentList.append(segment) 

        scaleSegmentList, popList = self.sanityCheckSeg(scaleSegmentList) 

        for i in range(len(scaleSegmentList)): 

            scaleSegmentList[i] = scaleSegmentList[i][1::2] 

        self.scaleSegmentListCP = scaleSegmentList 

        self.popListScaleCP = popList 

        normScale=[] 

        for i in self.scaleSegmentListCP: 

            normScale.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.scaleSegmentListCP = normScale 

        self.avgScaleSegCP = 

dpf.averageSegments(segments=self.scaleSegmentListCP) 

 

 

        peaks = self.T3Peaks 
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        scaleSegmentList = [] 

        for i in range(len(peaks) - 1): 

            # Takes a subset from data from peak1 to peak2 and pad about 

0.15 seconds on each side 

            segment = self.Scale[peaks[i] - int(0.5 / self.fs_Arduino): 

peaks[i + 1] + int( 

                0.5 / self.fs_Arduino)]  # This will probably make wrongly 

segmented segments worse. 

            scaleSegmentList.append(segment) 

        scaleSegmentList, popList = self.sanityCheckSeg(scaleSegmentList) 

        for i in range(len(scaleSegmentList)): 

            scaleSegmentList[i] = scaleSegmentList[i][1::2] 

#        scaleSegmentList = scaleSegmentList[1::2] 

        self.scaleSegmentListT3 = scaleSegmentList 

        self.popListScaleT3 = popList 

        normScale=[] 

        for i in self.scaleSegmentListT3: 

            normScale.append(dpf.normZScore(i.reshape(-1, 1)).reshape(1, -

1).flatten()) 

        self.scaleSegmentListT3 = normScale 

        self.avgScaleSegT3 = 

dpf.averageSegments(segments=self.scaleSegmentListT3) 

 

 

    def plotSegScaleT1(self): 

        plt.figure(figsize=(32, 16), dpi=150) 

        plt.plot(np.linspace(start=0, stop=((len(self.avgScaleSegT1)) * 

self.fs_Scale), num=(len(self.avgScaleSegT1))), 

                 self.avgScaleSegT1[:], "r", linewidth=4) 

        for i in range(len(self.scaleSegmentListT1)): 

            plt.plot(np.linspace(start=0, 

stop=(len(self.scaleSegmentListT1[i])) * self.fs_Scale, 

                                 num=(len(self.scaleSegmentListT1[i]))), 

self.scaleSegmentListT1[i], "b--") 

        plt.grid(axis='x') 

        plt.title("Scale segmented and averaged") 

        plt.xticks(np.arange(start=0, 

stop=((len(self.scaleSegmentListT1[1])) * self.fs_Scale), step=0.1)) 

        # 

plt.savefig("C:\\Users\\simon\\Documents\\Master\\Bilder\\filtered_segmente

d_with_PPG_Scale_back_from_shoes_2_0_with_ppg__scale_03_04_2022_test1.png") 
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        plt.show() 

 

    def plotSegScaleCP(self): 

        plt.figure(figsize=(32, 16), dpi=150) 

        plt.plot(np.linspace(start=0, stop=((len(self.avgScaleSegCP)) * 

self.fs_Scale), num=(len(self.avgScaleSegCP))), 

                 self.avgScaleSegCP[:], "r", linewidth=4) 

        for i in range(len(self.scaleSegmentListCP)): 

            plt.plot(np.linspace(start=0, 

stop=(len(self.scaleSegmentListCP[i])) * self.fs_Scale, 

                                 num=(len(self.scaleSegmentListCP[i]))), 

self.scaleSegmentListCP[i], "b--") 

        plt.grid(axis='x') 

        plt.title("Scale segmented and averaged") 

        plt.xticks(np.arange(start=0, 

stop=((len(self.scaleSegmentListCP[1])) * self.fs_Scale), step=0.1)) 

        # 

plt.savefig("C:\\Users\\simon\\Documents\\Master\\Bilder\\filtered_segmente

d_with_PPG_Scale_back_from_shoes_2_0_with_ppg__scale_03_04_2022_test1.png") 

        plt.show() 

 

    def plotSegScaleT3(self): 

        plt.figure(figsize=(32, 16), dpi=150) 

        plt.plot(np.linspace(start=0, stop=((len(self.avgScaleSegT3)) * 

self.fs_Scale), num=(len(self.avgScaleSegT3))), 

                 self.avgScaleSegT3[:], "r", linewidth=4) 

        for i in range(len(self.scaleSegmentListT3)): 

            plt.plot(np.linspace(start=0, 

stop=(len(self.scaleSegmentListT3[i])) * self.fs_Scale, 

                                 num=(len(self.scaleSegmentListT3[i]))), 

self.scaleSegmentListT3[i], "b--") 

        plt.grid(axis='x') 

        plt.title("Scale segmented and averaged") 

        plt.xticks(np.arange(start=0, 

stop=((len(self.scaleSegmentListT3[1])) * self.fs_Scale), step=0.1)) 

        # 

plt.savefig("C:\\Users\\simon\\Documents\\Master\\Bilder\\filtered_segmente

d_with_PPG_Scale_back_from_shoes_2_0_with_ppg__scale_03_04_2022_test1.png") 

        plt.show() 

 

    def plotPPGAvgVsScaleAvgT1(self): 
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        #x1 = np.linspace(start=0, stop=((len(pressAvg)) * 

self.fs_Arduino), num=(len(pressAvg))) 

 

        fig, ax1 = plt.subplots(figsize=(16, 8), dpi=250) 

        l1, = ax1.plot(np.linspace(start=0, stop=((len(self.avgScaleSegT1)) 

* self.fs_Scale), num=(len(self.avgScaleSegT1))), 

                 self.avgScaleSegT1[:], "r", linewidth=2) 

        ax2 = ax1.twinx() 

 

        l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSeg0T1)) * 

self.fs_Arduino, num=(len(self.avgSeg0T1))), 

                 self.avgSeg0T1, "b", linewidth=2) 

        #plt.axvline(x=x1[ppgPeak[0][0]]) 

        #plt.axvline(x=x1[bcgPeak[0][0]]) 

        #print("PPG peak:", x1[ppgPeak[0][0]], " and bcg peak: ", 

x1[bcgPeak[0][0]]) 

        #fig.axes[1].get_yaxis().set_visible(False) 

        #fig.axes[0].get_yaxis().set_visible(False) 

        # plt.plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, 

        #                     num=(len(normData[i]))), normData[i], "b--") 

        plt.grid(axis='x') 

        plt.legend([l1, l2], ["Pressure averaged", "PPG average"], 

loc="upper left", 

                   fontsize=14) 

        #ax1.legend(loc='upper left', fontsize=10) 

        ax1.set_xlabel("Time [seconds]", fontsize=16) 

        ax1.set_ylabel("Scale normalized", fontsize=16) 

        ax2.set_ylabel("Pressure normalized", fontsize=16) 

        plt.title("Scale segments averaged vs pressure average - T1") 

        plt.tight_layout() 

        plt.xticks(np.arange(start=0, stop=((len(self.avgScaleSegT1)) * 

self.fs_Scale), step=0.1)) 

        plt.show() 

 

    def plotPPGAvgVsScaleAvgCP(self): 

        #x1 = np.linspace(start=0, stop=((len(pressAvg)) * 

self.fs_Arduino), num=(len(pressAvg))) 

 



117 

 

        fig, ax1 = plt.subplots(figsize=(16, 8), dpi=250) 

        l1, = ax1.plot(np.linspace(start=0, stop=((len(self.avgScaleSegCP)) 

* self.fs_Scale), num=(len(self.avgScaleSegCP))), 

                 self.avgScaleSegCP[:], "r", linewidth=2) 

        ax2 = ax1.twinx() 

 

        l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSeg0CP)) * 

self.fs_Arduino, num=(len(self.avgSeg0CP))), 

                 self.avgSeg0CP, "b", linewidth=2) 

        #plt.axvline(x=x1[ppgPeak[0][0]]) 

        #plt.axvline(x=x1[bcgPeak[0][0]]) 

        #print("PPG peak:", x1[ppgPeak[0][0]], " and bcg peak: ", 

x1[bcgPeak[0][0]]) 

        #fig.axes[1].get_yaxis().set_visible(False) 

        #fig.axes[0].get_yaxis().set_visible(False) 

        # plt.plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, 

        #                     num=(len(normData[i]))), normData[i], "b--") 

        plt.grid(axis='x') 

        plt.legend([l1, l2], ["Pressure averaged", "PPG average"], 

loc="upper left", 

                   fontsize=14) 

        #ax1.legend(loc='upper left', fontsize=10) 

        ax1.set_xlabel("Time [seconds]", fontsize=16) 

        ax1.set_ylabel("Scale normalized", fontsize=16) 

        ax2.set_ylabel("Pressure normalized", fontsize=16) 

        plt.title("Scale segments averaged vs pressure average - T1") 

        plt.tight_layout() 

        plt.title("Scale segments averaged vs pressure segments averaged - 

T2") 

        plt.xticks(np.arange(start=0, stop=((len(self.avgScaleSegCP)) * 

self.fs_Scale), step=0.05)) 

        plt.show() 

 

    def plotPPGAvgVsScaleAvgT3(self): 

        #x1 = np.linspace(start=0, stop=((len(pressAvg)) * 

self.fs_Arduino), num=(len(pressAvg))) 

 

        fig, ax1 = plt.subplots(figsize=(16, 8), dpi=250) 
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        l1, = ax1.plot(np.linspace(start=0, stop=((len(self.avgScaleSegT3)) 

* self.fs_Scale), num=(len(self.avgScaleSegT3))), 

                 self.avgScaleSegT3[:], "r", linewidth=2) 

        ax2 = ax1.twinx() 

 

        l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSeg0T3)) * 

self.fs_Arduino, num=(len(self.avgSeg0T3))), 

                 self.avgSeg0T3, "b", linewidth=2) 

        #plt.axvline(x=x1[ppgPeak[0][0]]) 

        #plt.axvline(x=x1[bcgPeak[0][0]]) 

        #print("PPG peak:", x1[ppgPeak[0][0]], " and bcg peak: ", 

x1[bcgPeak[0][0]]) 

        #fig.axes[1].get_yaxis().set_visible(False) 

        #fig.axes[0].get_yaxis().set_visible(False) 

        # plt.plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, 

        #                     num=(len(normData[i]))), normData[i], "b--") 

        plt.grid(axis='x') 

        plt.legend([l1, l2], ["Pressure averaged", "PPG average"], 

loc="upper left", 

                   fontsize=14) 

        #ax1.legend(loc='upper left', fontsize=10) 

        ax1.set_xlabel("Time [seconds]", fontsize=16) 

        ax1.set_ylabel("Scale normalized", fontsize=16) 

        ax2.set_ylabel("Pressure normalized", fontsize=16) 

        plt.title("Scale segments averaged vs pressure average - T1") 

        plt.tight_layout() 

        plt.title("Scale segments averaged vs pressure segments averaged - 

T3") 

        plt.xticks(np.arange(start=0, stop=((len(self.avgScaleSegT3)) * 

self.fs_Scale), step=0.05)) 

        plt.show() 

 

 

    def plotSegPPG(self, T1 = False, CP = False, T3 = False, savePlot = 

False, ID = ""): 

        #TODO: 

        if T1: 

            avgData = self.avgSegPPGT1 
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            normData = self.normSegPPGT1 

        elif CP: 

            avgData = self.avgSegPPGCP 

            normData = self.normSegPPGCP 

        elif T3: 

            avgData = self.avgSegPPGT3 

            normData = self.normSegPPGT3 

 

 

        plt.figure(figsize=(32, 16), dpi=150) 

        plt.plot( 

            np.linspace(start=0, stop=((len(avgData)) * self.fs_Arduino), 

num=(len(avgData))), 

            avgData[:], "r", linewidth=4) 

        for i in range(len(normData)): 

            plt.plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, 

                                 num=(len(normData[i]))), normData[i], "b--

") 

        plt.grid(axis='x') 

        plt.title("PPG segmented and averaged") 

        plt.xticks(np.arange(start=0, stop=((len(avgData)) * 

self.fs_Arduino), step=0.05)) 

        if savePlot: 

            if T1: 

                timeStr = "T1" 

            elif CP: 

                timeStr = "CP" 

            elif T3: 

                timeStr = "T3" 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPPG_" + ID + "_" + 

timeStr 

            plt.savefig(saveName) 

        # 

plt.savefig("C:\\Users\\simon\\Documents\\Master\\Bilder\\filtered_segmente

d_with_PPG_right_foot_second_furthest_back_interpolated_from_shoes_2_0_with

_ppg__scale_03_04_2022_test1.png") 

        plt.show() 
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    def plotPeaksVSPPGT1(self, savePlot = False, ID = ""): 

        plt.figure(figsize=(32, 16), dpi=150) 

        

plt.plot(self.timeArduino[self.T1TimeArduino[0]:self.T1TimeArduino[1]], 

                            

self.PPGFilt[self.T1TimeArduino[0]:self.T1TimeArduino[1]]) 

        for i in self.T1Peaks: 

            plt.axvline(x=self.timeArduino[i]) 

        #Poplist contains a list of indices of wrong segments. Each segment 

has atleast one peak wrongly identified next to it 

        #The indice of a wrong segment corresponds to the indice of the 

peak in front of the segment. 

        #I dont know which peak is wrong.... 

        lastIndice = 0 

        for j in range(len(self.popListT1)): 

            try: 

                if abs(self.popListT1[j] - self.popListT1[j + 1]) == 1: 

                    

plt.axvline(x=self.timeArduino[self.T1Peaks[self.popListT1[j+1]]], 

color="r") 

                else: 

                    

plt.axvline(x=self.timeArduino[self.T1Peaks[self.popListT1[j]]], color="r") 

            except IndexError: 

                

plt.axvline(x=self.timeArduino[self.T1Peaks[self.popListT1[j]]], color="r") 

        plt.title("PPG and identified PPG peaks") 

        if savePlot: 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPPG" + "_T1_" + ID 

            plt.savefig(saveName) 

        plt.show() 

 

    def plotPeaksVSPPGCP(self, savePlot = False, ID = ""): 

        plt.figure(figsize=(32, 16), dpi=150) 

        

plt.plot(self.timeArduino[self.CPTimeArduino[0]:self.CPTimeArduino[1]], 

                 self.PPGFilt[self.CPTimeArduino[0]:self.CPTimeArduino[1]]) 

        for i in self.CPPeaks: 

            plt.axvline(x=self.timeArduino[i]) 
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        for j in range(len(self.popListCP)): 

            try: 

                if abs(self.popListCP[j] - self.popListCP[j + 1]) == 1: 

                    

plt.axvline(x=self.timeArduino[self.CPPeaks[self.popListCP[j+1]]], 

color="r") 

                else: 

                    

plt.axvline(x=self.timeArduino[self.CPPeaks[self.popListCP[j]]], color="r") 

            except IndexError: 

                

plt.axvline(x=self.timeArduino[self.CPPeaks[self.popListCP[j]]], color="r") 

        plt.title("PPG and identified PPG peaks") 

        if savePlot: 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPPG" + "_CP_" + ID 

            plt.savefig(saveName) 

        plt.show() 

 

    def plotPeaksVSPPGT3(self, savePlot = False, ID = ""): 

        plt.figure(figsize=(32, 16), dpi=150) 

        

plt.plot(self.timeArduino[self.T3TimeArduino[0]:self.T3TimeArduino[1]], 

                            

self.PPGFilt[self.T3TimeArduino[0]:self.T3TimeArduino[1]]) 

        for i in self.T3Peaks: 

            plt.axvline(x=self.timeArduino[i]) 

 

        for j in range(len(self.popListT3)): 

            try: 

                if abs(self.popListT3[j] - self.popListT3[j + 1]) == 1: 

                    

plt.axvline(x=self.timeArduino[self.T3Peaks[self.popListT3[j+1]]], 

color="r") 

                else: 

                    

plt.axvline(x=self.timeArduino[self.T3Peaks[self.popListT3[j]]], color="r") 

            except IndexError: 

                

plt.axvline(x=self.timeArduino[self.T3Peaks[self.popListT3[j]]], color="r") 
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        plt.title("PPG and identified PPG peaks") 

        if savePlot: 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\SegPPG" + "_CP_" + ID 

            plt.savefig(saveName) 

        plt.show() 

 

    def plotRightFootT1(self, savePlot = False, ID = ""): 

        fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16), 

dpi=150) 

        fig.suptitle('Right foot sensors - T1', fontsize=24) 

 

        ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg0T1)) * 

self.fs_Arduino), num=(len(self.avgSeg0T1))), self.avgSeg0T1) 

        ax1.set_title("Furthest back", fontsize=16) 

        ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg1T1)) * 

self.fs_Arduino), num=(len(self.avgSeg1T1))), self.avgSeg1T1) 

        ax2.set_title("Second furthest back", fontsize=16) 

        ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg3T1)) * 

self.fs_Arduino), num=(len(self.avgSeg3T1))), self.avgSeg3T1) 

        ax3.set_title("Middle", fontsize=16) 

        ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg5T1)) * 

self.fs_Arduino), num=(len(self.avgSeg5T1))), self.avgSeg5T1) 

        ax4.set_title("Left forward", fontsize=16) 

        ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg2T1)) * 

self.fs_Arduino), num=(len(self.avgSeg2T1))), self.avgSeg2T1) 

        ax5.set_title("Right forward", fontsize=16) 

        fig.tight_layout() 

 

        if savePlot: 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\RightFootT1_" + ID 

            plt.savefig(saveName) 

 

        plt.show() 

 

    def plotLeftFootT1(self, savePlot=False, ID =""): 

        fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16), 

dpi=150) 

        fig.suptitle('Left foot sensors - T1', fontsize=24) 
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        ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg9T1)) * 

self.fs_Arduino), num=(len(self.avgSeg9T1))), self.avgSeg9T1) 

        ax1.set_title("Furthest back", fontsize=16) 

        ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg8T1)) * 

self.fs_Arduino), num=(len(self.avgSeg8T1))), self.avgSeg8T1) 

        ax2.set_title("Second furthest back", fontsize=16) 

        ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg6T1)) * 

self.fs_Arduino), num=(len(self.avgSeg6T1))), self.avgSeg6T1) 

        ax3.set_title("Middle", fontsize=16) 

        ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg7T1)) * 

self.fs_Arduino), num=(len(self.avgSeg7T1))), self.avgSeg7T1) 

        ax4.set_title("Left forward", fontsize=16) 

        ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg4T1)) * 

self.fs_Arduino), num=(len(self.avgSeg4T1))), self.avgSeg4T1) 

        ax5.set_title("Right forward", fontsize=16) 

        fig.tight_layout() 

 

        if savePlot: 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\LeftFootT1_" + ID 

            plt.savefig(saveName) 

 

        plt.show() 

 

    def plotRightFootCP(self, savePlot = False, ID=""): 

        fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16), 

dpi=150) 

        fig.suptitle('Right foot sensors - Cold pressor', fontsize=24) 

 

        ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg0CP)) * 

self.fs_Arduino), num=(len(self.avgSeg0CP))), self.avgSeg0CP) 

        ax1.set_title("Furthest back", fontsize=16) 

        ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg1CP)) * 

self.fs_Arduino), num=(len(self.avgSeg1CP))), self.avgSeg1CP) 

        ax2.set_title("Second furthest back", fontsize=16) 

        ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg3CP)) * 

self.fs_Arduino), num=(len(self.avgSeg3CP))), self.avgSeg3CP) 

        ax3.set_title("Middle", fontsize=16) 

        ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg5CP)) * 

self.fs_Arduino), num=(len(self.avgSeg5CP))), self.avgSeg5CP) 
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        ax4.set_title("Left forward", fontsize=16) 

        ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg2CP)) * 

self.fs_Arduino), num=(len(self.avgSeg2CP))), self.avgSeg2CP) 

        ax5.set_title("Right forward", fontsize=16) 

        fig.tight_layout() 

 

        if savePlot: 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\RightFootCP_" + ID 

            plt.savefig(saveName) 

 

        plt.show() 

 

    def plotLeftFootCP(self, savePlot=False, ID = ""): 

        fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16), 

dpi=150) 

        fig.suptitle('Left foot sensors - Cold pressor', fontsize=24) 

 

        ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg9CP)) * 

self.fs_Arduino), num=(len(self.avgSeg9CP))), self.avgSeg9CP) 

        ax1.set_title("Furthest back", fontsize=16) 

        ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg8CP)) * 

self.fs_Arduino), num=(len(self.avgSeg8CP))), self.avgSeg8CP) 

        ax2.set_title("Second furthest back", fontsize=16) 

        ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg6CP)) * 

self.fs_Arduino), num=(len(self.avgSeg6CP))), self.avgSeg6CP) 

        ax3.set_title("Middle", fontsize=16) 

        ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg7CP)) * 

self.fs_Arduino), num=(len(self.avgSeg7CP))), self.avgSeg7CP) 

        ax4.set_title("Left forward", fontsize=16) 

        ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg4CP)) * 

self.fs_Arduino), num=(len(self.avgSeg4CP))), self.avgSeg4CP) 

        ax5.set_title("Right forward", fontsize=16) 

        fig.tight_layout() 

 

        if savePlot: 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\LeftFootCP_" + ID 

            plt.savefig(saveName) 
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        plt.show() 

 

    def plotRightFootT3(self, savePlot=False, ID=""): 

        fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16), 

dpi=150) 

        fig.suptitle('Right foot sensors - T3', fontsize=24) 

 

        ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg0T3)) * 

self.fs_Arduino), num=(len(self.avgSeg0T3))), self.avgSeg0T3) 

        ax1.set_title("Furthest back", fontsize=16) 

        ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg1T3)) * 

self.fs_Arduino), num=(len(self.avgSeg1T3))), self.avgSeg1T3) 

        ax2.set_title("Second furthest back", fontsize=16) 

        ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg3T3)) * 

self.fs_Arduino), num=(len(self.avgSeg3T3))), self.avgSeg3T3) 

        ax3.set_title("Middle", fontsize=16) 

        ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg5T3)) * 

self.fs_Arduino), num=(len(self.avgSeg5T3))), self.avgSeg5T3) 

        ax4.set_title("Left forward", fontsize=16) 

        ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg2T3)) * 

self.fs_Arduino), num=(len(self.avgSeg2T3))), self.avgSeg2T3) 

        ax5.set_title("Right forward", fontsize=16) 

        fig.tight_layout() 

 

        if savePlot: 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\RightFootT3_" + ID 

            plt.savefig(saveName) 

 

        plt.show() 

 

    def plotLeftFootT3(self, savePlot=False, ID=""): 

        fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, figsize=(16,16), 

dpi=150) 

        fig.suptitle('Left foot sensors', fontsize=24) 

 

        ax1.plot(np.linspace(start=0, stop=((len(self.avgSeg9T3)) * 

self.fs_Arduino), num=(len(self.avgSeg9T3))), self.avgSeg9T3) 

        ax1.set_title("Furthest back", fontsize=16) 
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        ax2.plot(np.linspace(start=0, stop=((len(self.avgSeg8T3)) * 

self.fs_Arduino), num=(len(self.avgSeg8T3))), self.avgSeg8T3) 

        ax2.set_title("Second furthest back", fontsize=16) 

        ax3.plot(np.linspace(start=0, stop=((len(self.avgSeg6T3)) * 

self.fs_Arduino), num=(len(self.avgSeg6T3))), self.avgSeg6T3) 

        ax3.set_title("Middle", fontsize=16) 

        ax4.plot(np.linspace(start=0, stop=((len(self.avgSeg7T3)) * 

self.fs_Arduino), num=(len(self.avgSeg7T3))), self.avgSeg7T3) 

        ax4.set_title("Left forward", fontsize=16) 

        ax5.plot(np.linspace(start=0, stop=((len(self.avgSeg4T3)) * 

self.fs_Arduino), num=(len(self.avgSeg4T3))), self.avgSeg4T3) 

        ax5.set_title("Right forward", fontsize=16) 

        fig.tight_layout() 

 

        if savePlot: 

            saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots\\LeftFootT3_" + ID 

            plt.savefig(saveName) 

 

        plt.show() 

 

    def plotLeftAndRightFootT1(self): # Not finished. 

        fig, axs = plt.sublpots(5, 2, figsize=(16, 32), dpi = 150) 

        fig.suptitle('Left and right foot pressure', fontsize=24) 

        #Right foot sensors 

        axs[0, 0].plot(np.linspace(start=0, stop=((len(self.avgSeg0T1)) * 

self.fs_Arduino), num=(len(self.avgSeg0T1))), self.avgSeg0T1) 

        axs[0, 0].set_title("Furthest back", fontsize=16) 

        axs[1, 0].plot(np.linspace(start=0, stop=((len(self.avgSeg1T3)) * 

self.fs_Arduino), num=(len(self.avgSeg1T3))), 

                 self.avgSeg1T3) 

        axs[1, 0].set_title("Second furthest back", fontsize=16) 

        axs[2, 0].plot(np.linspace(start=0, stop=((len(self.avgSeg3T3)) * 

self.fs_Arduino), num=(len(self.avgSeg3T3))), 

                 self.avgSeg3T3) 

        axs[2, 0].set_title("Middle", fontsize=16) 

        axs[3, 0].plot(np.linspace(start=0, stop=((len(self.avgSeg5T3)) * 

self.fs_Arduino), num=(len(self.avgSeg5T3))), 

                 self.avgSeg5T3) 

        axs[3, 0].set_title("Left forward", fontsize=16) 



127 

 

        axs[4, 0].plot(np.linspace(start=0, stop=((len(self.avgSeg2T3)) * 

self.fs_Arduino), num=(len(self.avgSeg2T3))), 

                 self.avgSeg2T3) 

        axs[4, 0].set_title("Right forward", fontsize=16) 

        fig.tight_layout() 

 

 

    def plotPPGavgVsPressavgT1(self, pressSelect, savePlot = False): #Not 

finished 

        if pressSelect == 0: 

            pressAvg = self.avgSeg0T1 

        if pressSelect == 1: 

            pressAvg = self.avgSeg1T1 

        if pressSelect == 2: 

            pressAvg = self.avgSeg2T1 

        if pressSelect == 3: 

            pressAvg = self.avgSeg3T1 

        if pressSelect == 4: 

            pressAvg = self.avgSeg4T1 

        if pressSelect == 5: 

            pressAvg = self.avgSeg5T1 

        if pressSelect == 6: 

            pressAvg = self.avgSeg6T1 

        if pressSelect == 7: 

            pressAvg = self.avgSeg7T1 

        if pressSelect == 8: 

            pressAvg = self.avgSeg8T1 

        if pressSelect == 9: 

            pressAvg = self.avgSeg9T1 

        ppgPeak = scipy.signal.find_peaks(self.avgSegPPGT1, height=0.5)#, 

distance=1/self.fs_Arduino) #Find the peak within 1 second 

        bcgPeak = scipy.signal.find_peaks(pressAvg, height=0.6) 

        x1 = np.linspace(start=0, stop=((len(pressAvg)) * self.fs_Arduino), 

num=(len(pressAvg))) 

 

 

        fig, ax1 = plt.subplots(figsize=(16, 8), dpi = 250) 



128 

 

        l1, = ax1.plot(np.linspace(start=0, stop=((len(pressAvg)) * 

self.fs_Arduino), num=(len(pressAvg))), 

                 pressAvg[:], "r", linewidth=2) 

        ax2 = ax1.twinx() 

 

        l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSegPPGT1)) * 

self.fs_Arduino, num=(len(self.avgSegPPGT1))), 

                         self.avgSegPPGT1, "b", linewidth=2) 

        plt.axvline(x=x1[ppgPeak[0][0]]) 

        plt.axvline(x=x1[bcgPeak[0][1]], color="r") 

        fig.axes[1].get_yaxis().set_visible(False) 

        fig.axes[0].get_yaxis().set_visible(False) 

        ax1.set_ylabel("Pressure normalized", fontsize=18) 

        ax2.set_ylabel("PPG normalized", fontsize=18) 

        ax1.set_xlabel("Time [seconds]", fontsize=18) 

        plt.legend([l1, l2], ["Pressure segments averaged", "PPG segments 

averaged"], loc="upper right", 

                   fontsize=14) 

        print("PPG peak:", x1[ppgPeak[0][1]], " and bcg peak: ", 

x1[bcgPeak[0][1]]) 

        #fig.axes[1].get_yaxis().set_visible(False) 

        #fig.axes[0].get_yaxis().set_visible(False) 

            #plt.plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, 

            #                     num=(len(normData[i]))), normData[i], "b-

-") 

        #plt.legend([l1, l2], ["Pressure averaged", "PPG average"], 

loc="upper left", 

        #           fontsize=10) 

        #ax1.legend(loc='upper left', fontsize=10) 

        #ax1.set_xlabel("Time [seconds]", fontsize=16) 

        plt.grid(axis='x') 

        plt.title("Pressure segments averaged vs PPG segments averaged - 

T1") 

        plt.xticks(np.arange(start=0, stop=((len(self.avgSeg0T1)) * 

self.fs_Arduino), step=0.05)) 

        plt.show() 

 

    def plotPPGavgVsPressavgCP(self, pressSelect, savePlot = False): #Not 

finished 
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        if pressSelect == 0: 

            pressAvg = self.avgSeg0CP 

        if pressSelect == 1: 

            pressAvg = self.avgSeg1CP 

        if pressSelect == 2: 

            pressAvg = self.avgSeg2CP 

        if pressSelect == 3: 

            pressAvg = self.avgSeg3CP 

        if pressSelect == 4: 

            pressAvg = self.avgSeg4CP 

        if pressSelect == 5: 

            pressAvg = self.avgSeg5CP 

        if pressSelect == 6: 

            pressAvg = self.avgSeg6CP 

        if pressSelect == 7: 

            pressAvg = self.avgSeg7CP 

        if pressSelect == 8: 

            pressAvg = self.avgSeg8CP 

        if pressSelect == 9: 

            pressAvg = self.avgSeg9CP 

 

        ppgPeak = scipy.signal.find_peaks(self.avgSegPPGCP, height=0.5)#, 

distance=1/self.fs_Arduino) #Find the peak within 1 second 

        bcgPeak = scipy.signal.find_peaks(pressAvg, height=0.6) 

        x1 = np.linspace(start=0, stop=((len(pressAvg)) * self.fs_Arduino), 

num=(len(pressAvg))) 

 

 

        fig, ax1 = plt.subplots(figsize=(16, 8), dpi = 250) 

        l1, = ax1.plot(np.linspace(start=0, stop=((len(pressAvg)) * 

self.fs_Arduino), num=(len(pressAvg))), 

                 pressAvg[:], "r", linewidth=2) 

        ax2 = ax1.twinx() 

 

        l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSegPPGCP)) * 

self.fs_Arduino, num=(len(self.avgSegPPGCP))), 

                         self.avgSegPPGCP, "b", linewidth=2) 

        fig.axes[1].get_yaxis().set_visible(False) 
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        fig.axes[0].get_yaxis().set_visible(False) 

 

 

        ax1.set_xlabel("Time [seconds]", fontsize=18) 

        plt.legend([l1, l2], ["Pressure segments averaged", "PPG segments 

averaged"], loc="upper right", 

                   fontsize=14) 

        plt.axvline(x=x1[ppgPeak[0][0]]) 

        plt.axvline(x=x1[bcgPeak[0][1]], color = "r") 

        ax1.set_ylabel("Pressure normalized", fontsize=18) 

        ax2.set_ylabel("PPG normalized", fontsize=18) 

        print("PPG peak:", x1[ppgPeak[0][0]], " and bcg peak: ", 

x1[bcgPeak[0][1]]) 

 

        #fig.axes[1].get_yaxis().set_visible(False) 

            #plt.plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, 

            #                     num=(len(normData[i]))), normData[i], "b-

-") 

        plt.grid(axis='x') 

        plt.title("Pressure segments averaged vs PPG segments averaged - 

T2") 

        plt.xticks(np.arange(start=0, stop=((len(self.avgSeg0CP)) * 

self.fs_Arduino), step=0.05)) 

        plt.show() 

 

    def plotPPGavgVsPressavgT3(self, pressSelect, savePlot = False): #Not 

finished 

        if pressSelect == 0: 

            pressAvg = self.avgSeg0T3 

        if pressSelect == 1: 

            pressAvg = self.avgSeg1T3 

        if pressSelect == 2: 

            pressAvg = self.avgSeg2T3 

        if pressSelect == 3: 

            pressAvg = self.avgSeg3T3 

        if pressSelect == 4: 

            pressAvg = self.avgSeg4T3 

        if pressSelect == 5: 
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            pressAvg = self.avgSeg5T3 

        if pressSelect == 6: 

            pressAvg = self.avgSeg6T3 

        if pressSelect == 7: 

            pressAvg = self.avgSeg7T3 

        if pressSelect == 8: 

            pressAvg = self.avgSeg8T3 

        if pressSelect == 9: 

            pressAvg = self.avgSeg9T3 

 

        ppgPeak = scipy.signal.find_peaks(self.avgSegPPGT3, height=0.5)#, 

distance=1/self.fs_Arduino) #Find the peak within 1 second 

        bcgPeak = scipy.signal.find_peaks(pressAvg, height=0.6) 

        x1 = np.linspace(start=0, stop=((len(pressAvg)) * self.fs_Arduino), 

num=(len(pressAvg))) 

 

        fig, ax1 = plt.subplots(figsize=(16, 8), dpi = 250) 

        l1, = ax1.plot(np.linspace(start=0, stop=((len(pressAvg)) * 

self.fs_Arduino), num=(len(pressAvg))), 

                 pressAvg[:], "r", linewidth=2) 

        ax2 = ax1.twinx() 

        l2, = ax2.plot(np.linspace(start=0, stop=(len(self.avgSegPPGT3)) * 

self.fs_Arduino, num=(len(self.avgSegPPGT3))), 

                         self.avgSegPPGT3, "b", linewidth=2) 

        fig.axes[1].get_yaxis().set_visible(False) 

        fig.axes[0].get_yaxis().set_visible(False) 

        plt.axvline(x=x1[ppgPeak[0][0]]) 

        plt.axvline(x=x1[bcgPeak[0][1]], color = "r") 

        ax1.set_ylabel("Pressure normalized", fontsize=18) 

        ax2.set_ylabel("PPG normalized", fontsize=18) 

        ax1.set_xlabel("Time [seconds]", fontsize=18) 

        plt.legend([l1, l2], ["Pressure segments averaged", "PPG segments 

averaged"], loc="upper right", 

                   fontsize=14) 

        print("PPG peak:", x1[ppgPeak[0][1]], " and bcg peak: ", 

x1[bcgPeak[0][1]]) 

        #fig.axes[1].get_yaxis().set_visible(False) 

            #plt.plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, 
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            #                     num=(len(normData[i]))), normData[i], "b-

-") 

        plt.grid(axis='x') 

        plt.title("Pressure segments averaged vs PPG segments averaged - 

T3") 

        plt.xticks(np.arange(start=0, stop=((len(self.avgSeg0T3)) * 

self.fs_Arduino), step=0.05)) 

        plt.show() 

 

    def plotPressureWithPPG(self, ID, T1 = False, CP = False, T3 = False, 

savePlot = False): 

        if T1: 

            pressSegs = [self.normSeg0T1, self.normSeg1T1, self.normSeg2T1, 

self.normSeg3T1, self.normSeg4T1, self.normSeg5T1, 

                     self.normSeg6T1, self.normSeg7T1, self.normSeg8T1, 

self.normSeg9T1] 

            pressAvgs = [self.avgSeg0T1, self.avgSeg1T1, self.avgSeg2T1, 

self.avgSeg3T1, self.avgSeg4T1, self.avgSeg5T1, 

                     self.avgSeg6T1, self.avgSeg7T1, self.avgSeg8T1, 

self.avgSeg9T1] 

            ppgAvg = self.avgSegPPGT1 

            timeStr = "T1" 

        elif CP: 

            pressSegs = [self.normSeg0CP, self.normSeg1CP, self.normSeg2CP, 

self.normSeg3CP, self.normSeg4CP, self.normSeg5CP, 

                     self.normSeg6CP, self.normSeg7CP, self.normSeg8CP, 

self.normSeg9CP] 

            pressAvgs = [self.avgSeg0CP, self.avgSeg1CP, self.avgSeg2CP, 

self.avgSeg3CP, self.avgSeg4CP, self.avgSeg5CP, 

                     self.avgSeg6CP, self.avgSeg7CP, self.avgSeg8CP, 

self.avgSeg9CP] 

            ppgAvg = self.avgSegPPGCP 

            timeStr = "T2" 

        elif T3: 

            pressSegs = [self.normSeg0T3, self.normSeg1T3, self.normSeg2T3, 

self.normSeg3T3, self.normSeg4T3, self.normSeg5T3, 

                     self.normSeg6T3, self.normSeg7T3, self.normSeg8T3, 

self.normSeg9T3] 

            pressAvgs = [self.avgSeg0T3, self.avgSeg1T3, self.avgSeg2T3, 

self.avgSeg3T3, self.avgSeg4T3, self.avgSeg5T3, 

                     self.avgSeg6T3, self.avgSeg7T3, self.avgSeg8T3, 

self.avgSeg9T3] 

            ppgAvg = self.avgSegPPGT3 
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            timeStr = "T3" 

        posList = ["right 1", "right 2", "right 5", "right 3", "left 5", 

"right 4", "left 3", "left 4", "left 2", "left 1"] 

        #self.Pressure0 = dataArduino.Pressure0.to_numpy() #Right foot 

furthest back 

        #self.Pressure1 = dataArduino.Pressure1.to_numpy() #Right foot 

second furthest back 

        #self.Pressure2 = dataArduino.Pressure2.to_numpy() #Right foot 

forward to the right 

        #self.Pressure3 = dataArduino.Pressure3.to_numpy() #Right foot 

middle 

        #self.Pressure4 = dataArduino.Pressure4.to_numpy() #Left foot 

forward right 

        #self.Pressure5 = dataArduino.Pressure5.to_numpy() #Right foot 

forward left 

        #self.Pressure6 = dataArduino.Pressure6.to_numpy() #Left foot 

middle 

        #self.Pressure7 = dataArduino.Pressure7.to_numpy() #Left foot 

forward left 

        #self.Pressure8 = dataArduino.Pressure8.to_numpy() #Left foot 

second furthest back 

        #self.Pressure9 = dataArduino.Pressure9.to_numpy() #Left foot 

furthest back 

        #Testing something here 

        for i in range(len(pressSegs)): 

            fig, (ax1, ax2) = plt.subplots(2, figsize=(12, 8), dpi=250) 

 

            l1, = ax1.plot(np.linspace(start=0, stop=((len(ppgAvg)) * 

self.fs_Arduino), num=(len(ppgAvg))), 

                 ppgAvg[:], "r", linewidth=4, label = "PPG Average") 

            ax1.set_title("PPG average based on segmentation", fontsize=24) 

 

            l2, = ax2.plot(np.linspace(start=0, stop=((len(pressAvgs[i])) * 

self.fs_Arduino), num=(len(pressAvgs[i]))), 

                 pressAvgs[i][:], "r", linewidth=4) 

 

        # plt.plot( 

        #    np.linspace(start=0, stop=((len(avgData)) * self.fs_Arduino), 

num=(len(avgData))), 

        #    avgData[:], "r", linewidth=4) 

            axisList = [] 
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            #ax3 = ax2.twinx() # If i dont twin i force everything onto the 

same axes 

            for j in range(len(pressSegs[i])): 

                #axisList.append(ax1.twinx()) 

                #axisList[j].plot(np.linspace(start=0, 

stop=(len(pressSegs[i][j])) * self.fs_Arduino, num=(len(pressSegs[i][j]))), 

                #                pressSegs[i][j], "b--") 

                #fig.axes[j].get_yaxis().set_visible(False) 

                l3, = ax2.plot(np.linspace(start=0, 

stop=(len(pressSegs[i][j])) * self.fs_Arduino, num=(len(pressSegs[i][j]))), 

                         pressSegs[i][j], "b--", linewidth=1) 

            # plt.plot(np.linspace(start=0, stop=(len(normData[i])) * 

self.fs_Arduino, 

            #                     num=(len(normData[i]))), normData[i], "b-

-") 

            plt.grid(axis='x') 

            ax2.set_title("Pressure segmented and averaged - " + "position 

" + posList[i], fontsize=24) 

            plt.xticks(np.arange(start=0, stop=((len(pressAvgs[i])) * 

self.fs_Arduino), step=0.1)) 

            plt.legend([l2, l3], ["Average pressure normalized", "Pressure 

segments normalized"], loc="upper right", fontsize=14) 

            ax1.legend(loc='upper right', fontsize = 14) 

            ax1.set_xlabel("Time [seconds]", fontsize = 18) 

            ax2.set_xlabel("Time [seconds]", fontsize = 18) 

            fig.tight_layout() 

 

            if T1: 

                tp = "T1" 

            elif CP: 

                tp = "CP" 

            elif T3: 

                tp = "T3" 

            if savePlot: 

                saveName = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\Plots2\\PressAndPPG_Press" + 

str(i) + "_" + tp + "_" + ID 

                plt.savefig(saveName) 

 

            #plt.show() 
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#Testing functions: 

#timeStampsT1_2170 = ["04:05:2022:14:26:00:0", "04:05:2022:14:26:15:0"] 

#timeStampsCP_2170 = ["04:05:2022:14:27:40:0", "04:05:2022:14:27:55:0"] 

#timeStampsT3_2170 = ["04:05:2022:14:33:00:0", "04:05:2022:14:33:15:0"] 

#dataLabChartPath_2170 = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\2170\\2170_Labchart_Raw_Text.

txt" 

#dataArduinoPath_2170 = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\2170\\2170_Arduino_Raw_4.csv" 

#interestingDataList = ["Time", "HC_Systolic", "Active_Cuff", 

"Finger_Pressure_HC"] 

#nameList = ["Time", "Date", "Finger_Pressure", "Finger_Pressure_HC", 

"HCU_Pressure", "Systolic", "HC_Systolic", 

#            "Mean_Arterial", "HC_Mean_Arterial", "Diastolic", 

"HC_Diastolic", "HR", "Interbeat_Interval", "Active_Cuff", 

#           "Cuff_Countdown", "Autocal_Quality", "Autocal_Countdown", 

"Comments"] 

#nameListArduino = ["timestamp", "Time", "PPG", "Scale", "Pressure0", 

"Pressure1", "Pressure2", "Pressure3", "Pressure4" 

#                  , "Pressure5", "Pressure6", "Pressure7", "Pressure8", 

"Pressure9"] 

 

#Test2170 = Measurement(timeStampsT1_2170, timeStampsCP_2170, 

timeStampsT3_2170, dataArduinoPath_2170, dataLabChartPath_2170, 

nameListArduino, nameList) 

#Test2170.loadChartData() 

#Test2170.SetTimeIndices() 

#Test2170.averageFingerPressure() 

#Test2170.plotAvgFingPress() 

#Test2170.findPPGPeaks(threshold=500, timeBetween=0.5) 

#Test2170.organizePeaks() 

#Test2170.filterPressure(butterLevel=12, passBand=[3,10]) 

#Test2170.segmentPressure(ddPPG=False) 

#Test2170.segmentPPG(ddPPG=False) 

#Test2170.plotSegPress(pressSelect=1, T1 = True) 

#Test2170.plotSegPPG(T1 = True) 

#Test2170.plotPeaksVSPPGT1() 

#Test2170.plotRightFoot() 

#print(Test2170.hz_Arduino) 

 

import numpy as np 
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from matplotlib import pyplot as plt 

import pandas as pd 

import scipy.interpolate as interpolate 

from scipy.signal import filtfilt, butter, detrend, savgol_filter 

import pywt 

from sklearn import preprocessing 

import scipy 

import data_processing_functions as dpf 

import Processing_Test_Results_V3 as ptr 

import datetime 

import seaborn as sns 

 

interestingDataList = ["Time", "HC_Systolic", "Active_Cuff", 

"Finger_Pressure_HC"] 

nameList = ["Time", "Date", "Finger_Pressure", "Finger_Pressure_HC", 

"HCU_Pressure", "Systolic", "HC_Systolic", 

            "Mean_Arterial", "HC_Mean_Arterial", "Diastolic", 

"HC_Diastolic", "HR", "Interbeat_Interval", "Active_Cuff", 

           "Cuff_Countdown", "Autocal_Quality", "Autocal_Countdown", 

"Comments"] 

nameListArduino = ["timestamp", "Time", "PPG", "Scale", "Pressure0", 

"Pressure1", "Pressure2", "Pressure3", "Pressure4" 

                  , "Pressure5", "Pressure6", "Pressure7", "Pressure8", 

"Pressure9"] 

 

dataLabChartPath_2832 = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\2832\\2832_Labchart_Raw_Text.

txt" 

dataArduinoPath_2832 = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\2832\\2832_Arduino_Raw_2.csv" 

timeStampsT1_2832 = ["04:05:2022:13:23:30:0", "04:05:2022:13:24:05:0"] 

timeStampsCP_2832 = ["04:05:2022:13:25:45:0", "04:05:2022:13:26:20:0"] 

timeStampsT3_2832 = ["04:05:2022:13:30:00:0", "04:05:2022:13:30:35:0"] 

 

Test2832 = ptr.Measurement(timeStampsT1_2832, timeStampsCP_2832, 

timeStampsT3_2832, dataArduinoPath_2832,  

                           dataLabChartPath_2832, nameListArduino, 

nameList) 

 

Test2832.loadChartData() 

Test2832.SetTimeIndices() 
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Test2832.averageFingerPressure() 

Test2832.findPPGPeaks(threshold=500, timeBetween=0.5) 

Test2832.organizePeaks() 

Test2832.filterPressure(butterLevel=12, passBand=[3,10]) 

Test2832.segmentPressure(ddPPG=False) 

Test2832.segmentPPG(ddPPG=False) 

 

Test2832.plotAvgFingPress() 

 

#Test2832.plotSegPressV2(pressSelect=3, T1 = True, savePlot=True, 

ID="T1_2832") 

#Test2832.plotAllPressureSegAndAvg(ID="_T1_2832", T1 = True, CP = False, T3 

= False, savePlot = True) 

Test2832.plotPressureWithPPG(ID="2832", T1 = True, CP = False, T3 = False, 

savePlot = True) 

Test2832.plotSegPPG(T1 = True) 

Test2832.plotPeaksVSPPGT1() 

 

#Test2832.plotSegPressV2(pressSelect=1, CP = True, savePlot=True, 

ID="CP_2832") 

#Test2832.plotAllPressureSegAndAvg(ID="_CP_2832", T1 = False, CP = True, T3 

= False, savePlot = True) 

Test2832.plotPressureWithPPG(ID="2832", T1 = False, CP = True, T3 = False, 

savePlot = True) 

Test2832.plotSegPPG(CP = True) 

Test2832.plotPeaksVSPPGCP() 

 

#Test2832.plotSegPressV2(pressSelect=1, T3 = True, savePlot=True, 

ID="T3_2832") 

#Test2832.plotAllPressureSegAndAvg(ID="_T3_2832", T1 = False, CP = False, 

T3 = True, savePlot = True) 

Test2832.plotPressureWithPPG(ID="2832", T1 = False, CP = False, T3 = True, 

savePlot = True) 

Test2832.plotSegPPG(T3 = True) 

Test2832.plotPeaksVSPPGT3() 

 

#Test2832.plotRightFootT1(savePlot=True, ID="2832") 

#Test2832.plotLeftFootT1(savePlot=True, ID="2832") 

 

Test2832.plotPPGavgVsPressavgT1(pressSelect = 8 , savePlot = False) 
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Test2832.plotPPGavgVsPressavgCP(pressSelect = 8 , savePlot = False) 

Test2832.plotPPGavgVsPressavgT3(pressSelect = 8 , savePlot = False) 

 

#Computing the average pressure for each section 

T1Avg = 

np.average(Test2832.HCSystolicFiltered[Test2832.T1TimeChart[0]:Test2832.T1T

imeChart[1]]) 

T2Avg = 

np.average(Test2832.HCSystolicFiltered[Test2832.CPTimeChart[0]:Test2832.CPT

imeChart[1]]) 

T3Avg = 

np.average(Test2832.HCSystolicFiltered[Test2832.T3TimeChart[0]:Test2832.T3T

imeChart[1]]) 

print("T1 avgpress: ", T1Avg, "\n", "T2 avgpress: ", T2Avg, "\n", "T3 

avgpress: ", T3Avg  ) 

 

Test2832.segmentScale() 

Test2832.plotSegScaleT1() 

Test2832.plotSegScaleCP() 

Test2832.plotSegScaleT3() 

Test2832.plotPPGAvgVsScaleAvgT1() 

Test2832.plotPPGAvgVsScaleAvgCP() 

Test2832.plotPPGAvgVsScaleAvgT3() 

 

#Plotting scale vs PPG 

pressAvg = Test2832.avgSeg8T1 

fig, ax1 = plt.subplots(figsize=(16, 8), dpi = 250) 

l1, =ax1.plot(np.linspace(start=0, stop=((len(pressAvg)) * 

Test2832.fs_Arduino), num=(len(pressAvg))), 

         pressAvg[:], "r", linewidth=2) 

ax2 = ax1.twinx() 

 

l2, = ax2.plot(np.linspace(start=0, stop=(len(Test2832.avgScaleSegT1)) * 

Test2832.fs_Scale, num=(len(Test2832.avgScaleSegT1))), 

                         Test2832.avgScaleSegT1, "b", linewidth=2) 

ax3 = ax1.twinx() 

l3, = ax2.plot(np.linspace(start=0, stop=(len(Test2832.avgSegPPGT1)) * 

Test2832.fs_Arduino, num=(len(Test2832.avgSegPPGT1))), 

                         Test2832.avgSegPPGT1, "g", linewidth=2) 

plt.grid(axis='x') 
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plt.legend([l1, l2, l3],["Trykksensor", "Vekt", "PPG"], loc="upper left", 

fontsize=16) 

plt.show() 

 

## Participant 4116 

 

dataLabChartPath_4116 = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\4116\\4116_Labchart_Raw_Text.

txt" 

dataArduinoPath_4116 = 

"C:\\Users\\simon\\Documents\\Master\\Forsøk\\4116\\4116_Arduino_Raw_2.csv" 

timeStampsT1_4116 = ["04:05:2022:10:20:00:0", "04:05:2022:10:20:25:0"] 

timeStampsCP_4116 = ["04:05:2022:10:22:00:0", "04:05:2022:10:22:25:0"] 

timeStampsT3_4116 = ["04:05:2022:10:26:15:0", "04:05:2022:10:26:40:0"] 

 

Test4116 = ptr.Measurement(timeStampsT1_4116, timeStampsCP_4116, 

timeStampsT3_4116, dataArduinoPath_4116,  

                           dataLabChartPath_4116, nameListArduino, 

nameList) 

 

Test4116.loadChartData() 

Test4116.SetTimeIndices() 

Test4116.averageFingerPressure() 

Test4116.findPPGPeaks(threshold=500, timeBetween=0.5) 

Test4116.organizePeaks() 

Test4116.filterPressure(butterLevel=12, passBand=[3,10]) 

Test4116.segmentPressure(ddPPG=False) 

Test4116.segmentPPG(ddPPG=False) 

 

Test4116.plotAvgFingPress() 

 

#Test4116.plotSegPressV2(pressSelect=3, T1 = True, savePlot=True, 

ID="T1_4116") 

#Test4116.plotAllPressureSegAndAvg(ID="_T1_4116", T1 = True, CP = False, T3 

= False, savePlot = True) 

Test4116.plotPressureWithPPG(ID="4116", T1 = True, CP = False, T3 = False, 

savePlot = True) 

Test4116.plotSegPPG(T1 = True) 

Test4116.plotPeaksVSPPGT1() 
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#Test4116.plotSegPressV2(pressSelect=1, CP = True, savePlot=True, 

ID="CP_4116") 

#Test4116.plotAllPressureSegAndAvg(ID="_CP_4116", T1 = False, CP = True, T3 

= False, savePlot = True) 

Test4116.plotPressureWithPPG(ID="4116", T1 = False, CP = True, T3 = False, 

savePlot = True) 

Test4116.plotSegPPG(CP = True) 

Test4116.plotPeaksVSPPGCP() 

 

#Test4116.plotSegPressV2(pressSelect=1, T3 = True, savePlot=True, 

ID="T3_4116") 

#Test4116.plotAllPressureSegAndAvg(ID="_T3_4116", T1 = False, CP = False, 

T3 = True, savePlot = True) 

Test4116.plotPressureWithPPG(ID="4116", T1 = False, CP = False, T3 = True, 

savePlot = True) 

Test4116.plotSegPPG(T3 = True) 

Test4116.plotPeaksVSPPGT3() 

 

#Test4116.plotRightFootT1(savePlot=True, ID="4116") 

#Test4116.plotLeftFootT1(savePlot=True, ID="4116") 

 

#the best and consistent for T1, T2, and T3 was R2 probably? L1 and L2 is 

also a good choice 

Test4116.plotPPGavgVsPressavgT1(pressSelect = 0 , savePlot = False) 

Test4116.plotPPGavgVsPressavgCP(pressSelect = 0 , savePlot = False) 

Test4116.plotPPGavgVsPressavgT3(pressSelect = 0 , savePlot = False) 

 

 

#Computing the average pressure for each section 

T1Avg = 

np.average(Test4116.HCSystolicFiltered[Test4116.T1TimeChart[0]:Test4116.T1T

imeChart[1]]) 

T2Avg = 

np.average(Test4116.HCSystolicFiltered[Test4116.CPTimeChart[0]:Test4116.CPT

imeChart[1]]) 

T3Avg = 

np.average(Test4116.HCSystolicFiltered[Test4116.T3TimeChart[0]:Test4116.T3T

imeChart[1]]) 

print("T1 avgpress: ", T1Avg, "\n", "T2 avgpress: ", T2Avg, "\n", "T3 

avgpress: ", T3Avg  ) 

 

Test4116.segmentScale() 
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Test4116.plotSegScaleT1() 

Test4116.plotSegScaleCP() 

Test4116.plotSegScaleT3() 

Test4116.plotPPGAvgVsScaleAvgT1() 

Test4116.plotPPGAvgVsScaleAvgCP() 

Test4116.plotPPGAvgVsScaleAvgT3() 

 

 

 

# Other stuff 

 

strList = ["T1", "T2", "T3"] 

 

pttT1_2832 = 0.437 - 0.498 

pttT2_2832 = 0.403 - 0.498 

pttT3_2832 = 0.504 - 0.498 

ptt_2832 = [pttT1_2832, pttT2_2832, pttT3_2832] 

HC_2832 = [149, 166, 134] 

sns.set() 

pttT1_4116 = 0.481 - 0.297 

pttT2_4116 = 0.456 - 0.297 

pttT3_4116 = 0.487 - 0.297 

ptt_4116 = [pttT1_4116, pttT2_4116, pttT3_4116] 

HC_4116 = [100, 151, 101] 

fig, ax1 = plt.subplots(figsize= (4, 3), dpi=250) 

l1, = ax1.plot(strList, ptt_2832, "--rx") 

ax2 = ax1.twinx() 

l2, = ax2.plot(strList, HC_2832, "--bx") 

 

ax1.set_ylabel("Pulse Travel Time", fontsize=10) 

ax2.set_ylabel("Blood pressure", fontsize=10) 

ax1.set_xlabel("Time [seconds]", fontsize=10) 

plt.legend([l1, l2],["Pulse travel time", "Systolic blood pressure"], 

loc="upper left", fontsize=5) 

plt.show() 

 

fig, ax1 = plt.subplots(figsize= (4, 3), dpi=250) 
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l1, = ax1.plot(strList, ptt_4116, "--rx") 

ax2 = ax1.twinx() 

l2, = ax2.plot(strList, HC_4116, "--bx") 

 

ax1.set_ylabel("Pulse Travel Time", fontsize=10) 

ax2.set_ylabel("Blood pressure", fontsize=10) 

ax1.set_xlabel("Time [seconds]", fontsize=10) 

plt.legend([l1, l2],["Pulse travel time", "Systolic blood pressure"], 

loc="upper left", fontsize=5) 

plt.show() 

 

 

 

dataArduinoPath = 

"C:\\Users\\simon\\Documents\\Master\\water_filled_bag_test1_01_03_2022.csv

" 

dataArduino = pd.read_csv(dataArduinoPath, sep=",") 

dataArduino 

 

Time = (dataArduino["Time"].to_numpy())/10**3 

Pressure = dataArduino["Pressure"].to_numpy() 

fs = (Time[-1] - Time[0])/len(Time) 

hz = 1/fs 

xlim = [1000, 3000] 

 

plt.figure(figsize=(32, 16), dpi=150) 

plt.xticks(np.arange(Time[xlim[0]], Time[xlim[1]], step=1)) 

plt.grid(axis='x') 

plt.plot(Time[xlim[0]:xlim[1]], Pressure[xlim[0]:xlim[1]]) 

plt.show() 

 

plt.figure(figsize=(32, 16), dpi=150) 

plt.xlim([1, 30]) 

plt.psd(Pressure, Fs=hz) 

plt.show() 

 

sos = butter(N=12, Wn=[1, 10], btype='bandpass', fs=hz, output='sos') 
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PressFilt = scipy.signal.sosfilt(sos, Pressure) 

 

plt.figure(figsize=(32, 16), dpi=150) 

plt.xticks(np.arange(Time[xlim[0]], Time[xlim[1]], step=1)) 

plt.grid(axis='x') 

plt.plot(Time[xlim[0]:xlim[1]], PressFilt[xlim[0]:xlim[1]]) 

plt.show() 

 

#Initial placement test plots 

#3bmp388_in_shoe_08_03_2022_test2 

dataArduinoPath1 = 

"C:\\Users\\simon\\Documents\\Master\\3bmp388_in_shoe_08_03_2022_test2.csv" 

dataArduino1 = pd.read_csv(dataArduinoPath1, sep=",") 

dataArduinoPath2 = 

"C:\\Users\\simon\\Documents\\Master\\3bmp388_in_shoe_08_03_2022_test3.csv" 

dataArduino2 = pd.read_csv(dataArduinoPath2, sep=",") 

#Dataarduino1:  

#Press0 = Pos 2 

#Press1 = Pos 4 

#Press2 = Pos 5 

#Dataarduino 2: 

#Press0 = Pos 1 

#Press1 = Pos 3 

#Press2 = Pos 6 

pos1 = dataArduino2["Pressure0"].to_numpy() 

pos2 = dataArduino1["Pressure0"].to_numpy() 

pos3 = dataArduino2["Pressure1"].to_numpy() 

pos4 = dataArduino1["Pressure1"].to_numpy() 

pos5 = dataArduino1["Pressure2"].to_numpy() 

pos6 = dataArduino2["Pressure2"].to_numpy() 

 

time1 = dataArduino1["Time"].to_numpy()/10**6 

time2 = dataArduino2["Time"].to_numpy()/10**6 

 

pos1 = pos1[1::2] 

pos2 = pos2[1::2] 

pos3 = pos3[1::2] 
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pos4 = pos4[1::2] 

pos5 = pos5[1::2] 

pos6 = pos6[1::2] 

time1 = time1[1::2] 

time2 = time2[1::2] 

 

hz1 = 1/((time1[-1]-time1[0])/len(time1)) 

hz2 = 1/((time2[-1]-time2[0])/len(time2)) 

 

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz1, output='sos') 

PosFilt2 = scipy.signal.sosfilt(sos, pos2) 

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz1, output='sos') 

PosFilt4 = scipy.signal.sosfilt(sos, pos4) 

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz1, output='sos') 

PosFilt5 = scipy.signal.sosfilt(sos, pos5) 

 

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz2, output='sos') 

PosFilt1 = scipy.signal.sosfilt(sos, pos1) 

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz2, output='sos') 

PosFilt3 = scipy.signal.sosfilt(sos, pos3) 

sos = butter(N=12, Wn=[2, 10], btype='bandpass', fs=hz2, output='sos') 

PosFilt6 = scipy.signal.sosfilt(sos, pos6) 

len(PosFilt6) 

hz1 

 

plt.figure(figsize=(8,4), dpi=250) 

plt.plot(time2[1000:1100], pos1[1000:1100]) 

plt.show() 

 

plt.figure(figsize=(8,4), dpi=250) 

plt.plot(time2[4000:7000], PosFilt1[4000:7000], linewidth=1) 

plt.title("Filtered pressure in placement 1", fontsize=16) 

plt.xlabel("Time [seconds]", fontsize=16) 

plt.grid(axis='x') 

plt.xticks(np.arange(time2[4000], time2[7000], step=1), fontsize=8) 

plt.tight_layout() 
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plt.show() 

 

plt.figure(figsize=(10,6), dpi=250) 

plt.plot(time1[4000:7000], PosFilt2[4000:7000], linewidth=1) 

plt.title("Filtered pressure in placement 2", fontsize=16) 

plt.xlabel("Time [seconds]", fontsize=16) 

plt.xticks(np.arange(time1[4000], time1[7000], step=1), fontsize=8) 

plt.grid(axis='x') 

plt.tight_layout() 

plt.show() 

 

plt.figure(figsize=(8,4), dpi=250) 

plt.plot(time2[4000:7000], PosFilt3[4000:7000], linewidth=1) 

plt.title("Filtered pressure in placement 3", fontsize=16) 

plt.xlabel("Time [seconds]", fontsize=16) 

plt.xticks(np.arange(time2[4000], time2[7000], step=1), fontsize=8) 

plt.grid(axis='x') 

plt.tight_layout() 

plt.show() 

 

plt.figure(figsize=(8,4), dpi=250) 

plt.plot(time1[4000:7000], PosFilt4[4000:7000], linewidth=1) 

plt.title("Filtered pressure in placement 4", fontsize=16) 

plt.xlabel("Time [seconds]", fontsize=16) 

plt.xticks(np.arange(time1[4000], time1[7000], step=1), fontsize=8) 

plt.tight_layout() 

plt.grid(axis='x') 

plt.show() 

 

plt.figure(figsize=(8,4), dpi=250) 

plt.plot(time1[4000:7000], PosFilt5[4000:7000], linewidth=1) 

plt.title("Filtered pressure in placement 5", fontsize=16) 

plt.xlabel("Time [seconds]", fontsize=16) 

plt.xticks(np.arange(time1[4000], time1[7000], step=1), fontsize=8) 

plt.grid(axis='x') 

plt.tight_layout() 
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plt.show() 

 

plt.figure(figsize=(8,4), dpi=250) 

plt.plot(time2[4000:7000], PosFilt6[4000:7000], linewidth=1) 

plt.title("Filtered pressure in placement 6", fontsize=16) 

plt.xlabel("Time [seconds]", fontsize=16) 

plt.xticks() 

plt.xticks(np.arange(time2[4000], time2[7000], step=1), fontsize=8) 

plt.grid(axis='x') 

plt.tight_layout() 

plt.show() 

 

plt.figure(figsize=(32, 16), dpi=250) 

plt.xlim([1, 30]) 

plt.psd(PosFilt1, Fs=hz2, linewidth = 1) 

plt.show() 

 

plt.figure(figsize=(8, 4), dpi=250) 

plt.xlim([1, 30]) 

plt.psd(PosFilt2, Fs=hz1, linewidth = 1) 

plt.show() 

 

plt.figure(figsize=(8, 4), dpi=250) 

plt.xlim([1, 30]) 

plt.psd(PosFilt3, Fs=hz2, linewidth = 1) 

plt.show() 

 

plt.figure(figsize=(8, 4), dpi=250) 

plt.xlim([1, 30]) 

plt.psd(PosFilt4, Fs=hz1, linewidth = 1) 

plt.show() 

 

plt.figure(figsize=(8, 4), dpi=250) 

plt.xlim([1, 30]) 

plt.psd(PosFilt5, Fs=hz1, linewidth = 1) 

plt.show() 
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plt.figure(figsize=(8, 32), dpi=250) 

plt.xlim([1, 30]) 

#plt.ylim([0,80]) 

plt.psd(PosFilt6, Fs=hz2, linewidth = 1) 

plt.show() 
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Arduino code for sole 2.0 prototype 
#include <Wire.h> 

#include "HX711.h" 

 

// OBS: I do not have any protection if the slave sends less data than 

expected. - fixed ish 

 

#define TCAADDR 0x70 

int PPGPin = A0; 

#define LOADCELL_DOUT_PIN A1 

#define LOADCELL_SCK_PIN A2 

 

const uint32_t BMP_ADDR1 = 0x76; 

const uint32_t BMP_ADDR2 = 0x77; 

 

uint32_t pressure; 

// int clockFrequency = 400000; 

int clockFrequency = 3400000; 

 

//------------- Setting up functions i need -------------------------------

---- 

//For selecting which multiplexer adress is used 

void tcaselect(uint8_t i) 

{ 

  if (i > 7) 

    return; 

 

  Wire.beginTransmission(TCAADDR); 

  Wire.write(1 << i); 

  Wire.endTransmission(); 

} 

//Borrowed from DFrobot library 

void I2C_WriteOneByte(uint8_t DevAddr, uint8_t RegAddr, uint8_t value){ 

Appendix F 
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  Wire.beginTransmission(DevAddr); 

  Wire.write(RegAddr); 

  Wire.write(value); 

  Wire.endTransmission(); 

} 

//Borrowed from DFrobot library 

int8_t readMultipleBytes(uint8_t devId ,uint8_t regAddr, uint8_t *dataVec, 

int dataLen){ 

  int i = 0; 

 

  Wire.beginTransmission(devId); 

  Wire.write(regAddr); 

  Wire.endTransmission(); 

   

  Wire.requestFrom(devId, dataLen); 

  while (Wire.available()){ 

    dataVec[i++] = Wire.read(); 

  } 

  return 0; 

} 

 

uint8_t I2C_ReadOneByte(uint8_t DevAddr, uint8_t RegAddr) 

{ 

  uint8_t value; 

 

  Wire.beginTransmission(DevAddr); 

  Wire.write((byte)RegAddr); 

  Wire.endTransmission(); 

 

  Wire.requestFrom(DevAddr, (byte)1); 

  value = Wire.read(); 

 

  return value; 

} 

 

struct COMPCOEFFS 

{ 
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  double PAR_T1; 

  double PAR_T2; 

  double PAR_T3; 

  double PAR_P1; 

  double PAR_P2; 

  double PAR_P3; 

  double PAR_P4; 

  double PAR_P5; 

  double PAR_P6; 

  double PAR_P7; 

  double PAR_P8; 

  double PAR_P9; 

  double PAR_P10; 

  double PAR_P11; 

  double t_lin; 

}; 

 

 

class BMPSENSOR 

{ 

public: 

  uint8_t Address; 

  double Pressure; 

  uint32_t uncompPressure; 

  uint32_t uncompTemperature; 

  double Temperature; 

  COMPCOEFFS PressureCoeffs; 

 

  // Kinda an unnecessary  

  void setAddress(uint32_t bmpAddress){ 

    Address = bmpAddress; 

  } 

 

  void setPressureCoeffs(){ 

    /* 

      TODO: 
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      Get coefficients (21 registers (21 bytes), 17 values) (0x31 - 9x45) 

      Parse coefficients 

    */ 

    uint8_t regAddress = 0x31; 

    int dataLen = 21; 

    uint8_t dataVec[21] = {0}; 

 

    readMultipleBytes(Address , regAddress, dataVec, dataLen); 

   

    //Need some temporary variables 

    uint32_t data1; 

    uint32_t data2; 

     

    //The types of my NVM_PAR variables might be wrong 

 

    data1 = (uint16_t)dataVec[0]; 

    data2 = (uint16_t)dataVec[1] << 8; 

    uint16_t NVM_PAR_T1 = data2 | data1; 

 

    data1 = (uint16_t)dataVec[2]; 

    data2 = (uint16_t)dataVec[3] << 8; 

    uint16_t NVM_PAR_T2 = data2 | data1; 

 

    data1 = (int8_t)dataVec[4]; 

    int8_t NVM_PAR_T3 = data1; 

 

    data1 = (int16_t)dataVec[5]; 

    data2 = (int16_t)dataVec[6] << 8; 

    int16_t NVM_PAR_P1 = data2 | data1; 

 

    data1 = (int16_t)dataVec[7]; 

    data2 = (int16_t)dataVec[8] << 8; 

    int16_t NVM_PAR_P2 = data2 | data1; 

 

    data1 = (int8_t)dataVec[9]; 

    int8_t NVM_PAR_P3 = data1; 
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    data1 = (int8_t)dataVec[10]; 

    int8_t NVM_PAR_P4 = data1; 

 

    data1 = (uint16_t)dataVec[11]; 

    data2 = (uint16_t)dataVec[12] << 8; 

    uint16_t NVM_PAR_P5 = data2 | data1; 

 

    data1 = (uint16_t)dataVec[13]; 

    data2 = (uint16_t)dataVec[14] << 8; 

    uint16_t NVM_PAR_P6 = data2 | data1; 

 

    data1 = (int8_t)dataVec[15]; 

    int8_t NVM_PAR_P7 = data1; 

 

    data1 = (int8_t)dataVec[16]; 

    int8_t NVM_PAR_P8 = data1; 

 

    data1 = (int16_t)dataVec[17]; 

    data2 = (int16_t)dataVec[18] << 8; 

    int16_t NVM_PAR_P9 = data2 | data1;   

 

    data1 = (int8_t)dataVec[19]; 

    int8_t NVM_PAR_P10 = data1; 

 

    data1 = (int8_t)dataVec[20]; 

    int8_t NVM_PAR_P11 = data1; 

 

 

    //This should be correct! 

    //2^-8 = 0.00390625 

    PressureCoeffs.PAR_T1 = ((double)NVM_PAR_T1 / 0.00390625); 

    //2^30 = 1073741824 

    PressureCoeffs.PAR_T2 = ((double)NVM_PAR_T2 / 1073741824.0); 

    //2^48 = 281474976710656 

    PressureCoeffs.PAR_T3 = (((double)NVM_PAR_T3) / 281474976710656.0); 
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    //2^20 = 1048576, 2^14 = 16384 

    PressureCoeffs.PAR_P1 = (((double)(NVM_PAR_P1 - (16384))) / 

(1048576.0)); 

    //2^29 = 536870912, 2^14 = 16384 

    PressureCoeffs.PAR_P2 = (((double)(NVM_PAR_P2 - (16384))) / 

(536870912.0)); 

    //2^32 = 4294967296 

    PressureCoeffs.PAR_P3 = (((double)NVM_PAR_P3) / 4294967296.0); 

    //2^37 = 137438953472 

    PressureCoeffs.PAR_P4 = (((double)NVM_PAR_P4) / 137438953472.0); 

    //2^-3 = 0.125 

    PressureCoeffs.PAR_P5 = (((double)NVM_PAR_P5) / 0.125); 

    //2^ = 64  

    PressureCoeffs.PAR_P6 = (((double)NVM_PAR_P6) / 64.0); 

    //2^8 = 256 

    PressureCoeffs.PAR_P7 = (((double)NVM_PAR_P7) / 256.0); 

    //2^15 = 32768 

    PressureCoeffs.PAR_P8 = (((double)NVM_PAR_P8) / 32768.0); 

    //2^48 = 281474976710656 

    PressureCoeffs.PAR_P9 = (((double)NVM_PAR_P9) / 281474976710656.0); 

    //2^48 = 281474976710656  

    PressureCoeffs.PAR_P10 = (((double)NVM_PAR_P10) / 281474976710656.0); 

    //2^65 = 36893488147419103232 

    PressureCoeffs.PAR_P11 = (((double)NVM_PAR_P11) / 

36893488147419103232.0); 

    /* 

    Serial.print("PAR_T1: "); 

    Serial.println(PressureCoeffs.PAR_T1, 9); 

    Serial.print("PAR_T2: "); 

    Serial.println(PressureCoeffs.PAR_T2, 9); 

    Serial.print("PAR_T3: "); 

    Serial.println(PressureCoeffs.PAR_T3, 9); 

    Serial.print("PAR_P1: "); 

    Serial.println(PressureCoeffs.PAR_P1, 9); 

    Serial.print("PAR_P2: "); 

    Serial.println(PressureCoeffs.PAR_P2, 9); 

    Serial.print("PAR_P3: "); 
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    Serial.println(PressureCoeffs.PAR_P3, 9); 

    Serial.print("PAR_P4: "); 

    Serial.println(PressureCoeffs.PAR_P4, 9); 

    Serial.print("PAR_P5: "); 

    Serial.println(PressureCoeffs.PAR_P5, 9); 

    Serial.print("PAR_P6: "); 

    Serial.println(PressureCoeffs.PAR_P6, 9); 

    Serial.print("PAR_P7: "); 

    Serial.println(PressureCoeffs.PAR_P7, 9); 

    Serial.print("PAR_P8: "); 

    Serial.println(PressureCoeffs.PAR_P8, 9); 

    Serial.print("PAR_P9: "); 

    Serial.println(PressureCoeffs.PAR_P9, 9); 

    Serial.print("PAR_P10: "); 

    Serial.println(PressureCoeffs.PAR_P10, 9); 

    Serial.print("PAR_P11: "); 

    Serial.println(PressureCoeffs.PAR_P11, 9); 

    */ 

     

 

  } 

 

  int8_t begin(){ 

    //TODO: Clean up 

    //Implementing some stuff from the DFROBOT library to see if it fixes 

things 

    //readMultipleBytes(Address, ) 

    uint8_t chipIdAdress = 0x00; 

    int DataLen = 1; 

    uint8_t chipId = 0; 

    uint8_t cmd_rdy_status; 

    uint8_t cmd_err_status; 

 

    int8_t result = readMultipleBytes(Address, chipIdAdress, &chipId, 1); 

//reading chipId 

    if (result == 0){ //Successfully read 

      if (chipId == 0x50){ //devId is correct 
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        //Reset sensors and continue 

        //Reads sensor status (page 31) to check if it ready for a new 

command 

        int8_t result = readMultipleBytes(Address, 0x03, &cmd_rdy_status, 

1);  

        //If true then sensor is ready for a new command 

        if ((cmd_rdy_status & 0x10) && (result == 0)){ 

          I2C_WriteOneByte(Address, 0x7E, 0xB6); // Trigger a Softreset 

(page 39) 

          delay(20); 

           

          //Checking for command error status 

          result = readMultipleBytes(Address, 0x02, &cmd_err_status, 1); 

          if ((cmd_err_status & 0x02) || (result != 0)){ 

            return -2; 

          } 

        } 

        else{return -2;} 

      } 

    else { 

      return -2; 

      } 

    } 

    else{ 

      return -2; 

    } 

    //Finished with what i borrowed from DFRobot 

    //All of this must be wrong 

    I2C_WriteOneByte(Address, 0x1c, 0x00); // Disable oversampling pressure 

    delay(20); 

    I2C_WriteOneByte(Address, 0x1d, 0x00); // Output data rate is set to 

200hz 

    delay(20); 

    I2C_WriteOneByte(Address, 0x1f, 0x00); // Disable filter 

    delay(20); 

    //I2C_WriteOneByte(Address, 0x1B, (byte)00110011); 
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    I2C_WriteOneByte(Address, 0x1B, 0x03 | 0x30); // Sets sensor to normal 

mode - can maybe just use 00110001 (or 00110011) 

 

    setPressureCoeffs(); 

    return 0; 

  } 

 

  //Is used in getTemperature 

  void compensateTemperature(){ 

    //Algorithm for compensating is taken from page 55 and 56 of the 

technical documentation 

    //https://www.bosch-sensortec.com/products/environmental-

sensors/pressure-sensors/bmp388/#technical 

    //Serial.println("Compensating temp: "); 

    double partial_data1; 

    double partial_data2; 

 

    partial_data1 = (double)(uncompTemperature - PressureCoeffs.PAR_T1); 

    partial_data2 = (double)(partial_data1 * PressureCoeffs.PAR_T2); 

    /* 

    Serial.print("Partial_data1: "); 

    Serial.println(partial_data1); 

    Serial.print("Partial data2: "); 

    Serial.println(partial_data2); 

    */ 

    PressureCoeffs.t_lin = partial_data2 + (partial_data1 * 

partial_data1)*PressureCoeffs.PAR_T3; 

    Temperature = PressureCoeffs.t_lin; 

  } 

 

  void updateTemperature(){ 

    /* 

    Wire.beginTransmission(Address); 

    Wire.write(0x07); // Set the pointer for where im reading 

    Wire.endTransmission(); 

    */ 

    uint8_t regAddress = 0x07; 

    int dataLen = 3; 
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    uint8_t dataVec[dataLen] = {0}; 

 

    readMultipleBytes(Address , regAddress, dataVec, dataLen); 

 

    //Need some temporary variables 

    uint32_t data1; 

    uint32_t data2; 

    uint32_t data3; 

 

    data1 = (uint32_t)dataVec[0]; 

    data2 = (uint32_t)dataVec[1] << 8; 

    data3 = (uint32_t)dataVec[2] << 16; 

 

    uncompTemperature = data3 | data2 | data3; 

 

  } 

 

  void compensatePressure(){ 

    //Algorithm for compensating is taken from page 55 and 56 of the 

technical documentation 

    //https://www.bosch-sensortec.com/products/environmental-

sensors/pressure-sensors/bmp388/#technical 

     

    double partial_data1 = 0; 

    double partial_data2 = 0; 

    double partial_data3 = 0; 

    double partial_data4 = 0; 

    double partial_out1 = 0; 

    double partial_out2 = 0; 

 

    partial_data1 = PressureCoeffs.PAR_P6 * PressureCoeffs.t_lin; //ish 

10800 

    partial_data2 = PressureCoeffs.PAR_P7 * 

(PressureCoeffs.t_lin*PressureCoeffs.t_lin); // ish -24 

    partial_data3 = PressureCoeffs.PAR_P8 * 

(PressureCoeffs.t_lin*PressureCoeffs.t_lin*PressureCoeffs.t_lin); //ish -

3,24 

    partial_out1 = PressureCoeffs.PAR_P5 + partial_data1 + partial_data2 + 

partial_data3; // ish 211100 
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    partial_data1 = PressureCoeffs.PAR_P2 * PressureCoeffs.t_lin; //lite  

    partial_data2 = PressureCoeffs.PAR_P3 * 

(PressureCoeffs.t_lin*PressureCoeffs.t_lin); //knøttlite 

    partial_data3 = PressureCoeffs.PAR_P4 * 

(PressureCoeffs.t_lin*PressureCoeffs.t_lin*PressureCoeffs.t_lin); 

//knøttlite 

    partial_out2 = uncompPressure * (PressureCoeffs.PAR_P1 + partial_data1 

+ partial_data2 + partial_data3);//ish negative -1100000 

 

    partial_data1 = ((double)uncompPressure) * ((double)uncompPressure); 

//kjempestort 

    partial_data2 = PressureCoeffs.PAR_P9 + (PressureCoeffs.PAR_P10 * 

PressureCoeffs.t_lin); //knøttlite 

    partial_data3 = partial_data1 * partial_data2; //uuuh, 

kjempestort*knøttlite 

    partial_data4 = partial_data3 + (((double)uncompPressure) * 

((double)uncompPressure) * ((double)uncompPressure)) * 

PressureCoeffs.PAR_P11; 

    /* 

    Serial.println("Compensating pressure: "); 

    Serial.print("Partial out1 : "); 

    Serial.println(partial_out1); 

    Serial.print("Partial out2 : "); 

    Serial.println(partial_out2); 

    Serial.print("Partial data4 : "); 

    Serial.println(partial_data4); 

    */ 

    Pressure = partial_out1 + partial_out2 + partial_data4; 

  } 

 

  void updatePressure(){ 

    //Remember to run temperature first to update t_lin 

    /* 

    Wire.beginTransmission(Address); 

    Wire.write(0x04); // Set the pointer for where im reading 

    Wire.endTransmission(); 

    */ 

    uint8_t regAddress = 0x04; 

    int dataLen = 6; 
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    uint8_t dataVec[dataLen] = {0}; 

 

    readMultipleBytes(Address , regAddress, dataVec, dataLen); 

 

    //Need some temporary variables 

    uint32_t data1; 

    uint32_t data2; 

    uint32_t data3; 

 

    data1 = (uint32_t)dataVec[0]; 

    data2 = (uint32_t)dataVec[1] << 8; 

    data3 = (uint32_t)dataVec[2] << 16; 

 

    uncompPressure = data3 | data2 | data1; 

     

    data1 = (uint32_t)dataVec[3]; 

    data2 = (uint32_t)dataVec[4] << 8; 

    data3 = (uint32_t)dataVec[5] << 16; 

     

    uncompTemperature = data3 | data2 | data1; 

 

    compensateTemperature(); 

    compensatePressure(); 

 

  } 

}; 

 

// ----------------- Finished with function and class definitions ---------

---------------- 

 

BMPSENSOR BMP0; 

BMPSENSOR BMP1; 

BMPSENSOR BMP2; 

BMPSENSOR BMP3; 

BMPSENSOR BMP4; 

BMPSENSOR BMP5; 

BMPSENSOR BMP6; 
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BMPSENSOR BMP7; 

BMPSENSOR BMP8; 

BMPSENSOR BMP9; 

BMPSENSOR BMP10; 

//Comment in if using scale 

HX711 scale; 

int i = 1; 

float scaleValue = 0; 

 

void setup() 

{ 

  delay(5000); //just for debugging 

  Serial.begin(115200); 

  Wire.begin(); 

  Wire.setClock(clockFrequency); 

   

  //Comment in if using scale 

  scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK_PIN, 128);  

 

 

  //Starting up sensors and setting addresses 

  tcaselect(0); 

  BMP0.Address = BMP_ADDR2; 

  while(BMP0.begin() != 0){ 

    Serial.println("Error starting up sensor 0"); 

    delay(200); 

  } 

  BMP1.Address = BMP_ADDR1; 

  while(BMP1.begin() != 0){ 

    Serial.println("Error starting up sensor 1"); 

    delay(200); 

  }   

  tcaselect(1); 

  BMP2.Address = BMP_ADDR2; 

  while(BMP2.begin() != 0){ 

    Serial.println("Error starting up sensor 2"); 
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    delay(200); 

  } 

  BMP3.Address = BMP_ADDR1; 

  while(BMP3.begin() != 0){ 

    Serial.println("Error starting up sensor 3"); 

    delay(200); 

  } 

  tcaselect(2); 

  BMP4.Address = BMP_ADDR2; 

  while(BMP4.begin() != 0){ 

    Serial.println("Error starting up sensor 4"); 

    delay(200); 

  } 

  BMP5.Address = BMP_ADDR1; 

  while(BMP5.begin() != 0){ 

    Serial.println("Error starting up sensor 5"); 

    delay(200); 

  } 

  tcaselect(3); 

  BMP6.Address = BMP_ADDR2; 

  while(BMP6.begin() != 0){ 

    Serial.println("Error starting up sensor 6"); 

    delay(200); 

  } 

  BMP7.Address = BMP_ADDR1; 

  while(BMP7.begin() != 0){ 

    Serial.println("Error starting up sensor 7"); 

    delay(200); 

  } 

  tcaselect(4); 

  BMP8.Address = BMP_ADDR2; 

  while(BMP8.begin() != 0){ 

    Serial.println("Error starting up sensor 8"); 

    delay(200); 

  } 

  BMP9.Address = BMP_ADDR1; 



162 

 

  while(BMP9.begin() != 0){ 

    Serial.println("Error starting up sensor 9"); 

    delay(200); 

  } 

  delay(200); 

} 

 

void loop() 

{ 

  //reading pressure values from sensors 

  //Serial.print(millis()); 

  //Serial.print(" - "); 

  tcaselect(0); 

  BMP0.updatePressure(); 

  BMP1.updatePressure(); 

  tcaselect(1); 

  BMP2.updatePressure(); 

  BMP3.updatePressure(); 

  tcaselect(2); 

  BMP4.updatePressure(); 

  BMP5.updatePressure(); 

  tcaselect(3); 

  BMP6.updatePressure(); 

  BMP7.updatePressure(); 

  tcaselect(4); 

  BMP8.updatePressure(); 

  BMP9.updatePressure(); 

  //Serial.println(millis()); 

   

  //printing time and pressure values 

  Serial.print(millis()); 

  Serial.print(","); 

  //Comment in if using PPG 

  Serial.print(analogRead(PPGPin)); 

  Serial.print(","); 

  //Comment in if using scale 
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  if (i%2 == 0){ 

    scaleValue = scale.read(); 

    Serial.print(scaleValue); 

    Serial.print(','); 

  } 

  else{ 

    Serial.print(scaleValue); 

    Serial.print(","); 

  } 

  //right foot furthest back 

  Serial.print(BMP0.Pressure); 

  Serial.print(","); 

  //right foot second to the furthest back 

  Serial.print(BMP1.Pressure); 

  Serial.print(","); 

  //right foot forward to the right 

  Serial.print(BMP2.Pressure); 

  Serial.print(","); 

  //right foot middle 

  Serial.print(BMP3.Pressure); 

  Serial.print(","); 

  //left foot forward right 

  Serial.print(BMP4.Pressure); 

  Serial.print(","); 

  //right foot forward left 

  Serial.print(BMP5.Pressure); 

  Serial.print(","); 

  //left foot middle 

  Serial.print(BMP6.Pressure); 

  Serial.print(","); 

  //left foot forward left 

  Serial.print(BMP7.Pressure); 

  Serial.print(","); 

  //left foot second to furthest back 

  Serial.print(BMP8.Pressure); 

  Serial.print(","); 
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  //left foot furthest back 

  Serial.println(BMP9.Pressure); 

  i++; 

  delay(4); // delay to ensure im not rereading the same value twice. 

Should implement a smarter way to do this 

  } 
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