
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

Markus Aleksander Wulff

Implementation of Tetrahedral
Elements in a Finite Element Method
Plug-in for Grasshopper

Master’s thesis in Civil and Environmental Engineering
Supervisor: Anders Rønnquist
Co-supervisor: Sverre Magnus Haakonsen
June 2022M

as
te

r’s
 th

es
is





Markus Aleksander Wulff

Implementation of Tetrahedral
Elements in a Finite Element Method
Plug-in for Grasshopper

Master’s thesis in Civil and Environmental Engineering
Supervisor: Anders Rønnquist
Co-supervisor: Sverre Magnus Haakonsen
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Structural Engineering





Department of Structural Engineering                 
Faculty of Engineering 
NTNU − Norwegian University of Science and Technology 
 
 
 
 

MASTER THESIS 2022 
 
 
SUBJECT AREA: 

Structural Engineering 

DATE: 

10/06/2022 

NO. OF PAGES: 

Vii + 48 + 9 
 
 
TITLE: 
 
Implementation of Tetrahedral Elements in a Finite Element Method Plug-in for 
Grasshopper 
Implementering av tetraeder-elementer i en elementmetode-programvareutvidelse for 
Grasshopper. 

BY: 
 
 
Markus Aleksander Wulff 
                                                                                         

 
 
RESPONSIBLE TEACHER: Professor Anders Rønnquist 
 
SUPERVISOR(S): Sverre Magnus Haakonsen 
 
CARRIED OUT AT: Department of Structural Engineering, Norwegian University of Science and 
Technology 

SUMMARY: 
In recent years, the algorithms-aided design environment Grasshopper has allowed architects and structural 
engineers to design complex gridshells with the help of form-finding methods. However, the nodes have a big 
impact on the structural performance and visual appearance of gridshells, but there is currently no way to 
analyse the nodes inside Grasshopper. This thesis aims to find out if a finite element method plug-in for 
Grasshopper can be used to analyse gridshell nodes with sufficient speed, accuracy, and ease of use. In this 
context, algorithms-aided design is defined as a design method where the geometry is generated by 
algorithms in a visual programming environment. 
 
To test if gridshell nodes can be analysed inside Grasshopper, tetrahedral solid elements were implemented 
in an existing finite element method plug-in for Grasshopper, called Solid FEM, which, until now, only 
accepted hexahedral solid elements. The motivation behind this was that generation of hexahedral meshes is 
a highly complicated task, while an algorithm for generation of tetrahedral meshes already exist inside 
Grasshopper. Solid FEM was investigated through two case studies. In the first case study, an analysis of a 
cantilevered beam was compared to beam theory and the finite element method software, Ansys. In the 
second case study, a gridshell node was analysed with Solid FEM and compared to Ansys. 
 
Solid FEM proved to be sufficiently accurate for early-stage designs as a basis for decision making and 
design exploration, but not for documentation of structural reliability. The solver has a maximum capacity 
regarding number of degrees of freedom which indirectly limits the accuracy. Correct application of loads and 
boundary conditions is a prerequisite for obtaining a reliable result, and the user should be aware of the 
impact on accuracy and computation time caused by element type and mesh size. The solver is slow, but still 
saves you time and work compared to exporting the geometry to other software. In combination with other 
useful tools in Grasshopper, Solid FEM can become a useful tool for designing complex gridshell nodes. 

ACCESSIBILITY 
 
OPEN 



 
 
 



Preface

This thesis concludes my Master of Science degree in structural engineering at the Department of
Structural Engineering at the Norwegian University of Science and Technology.

I would like to thank my supervisor Sverre Magnus Haakonsen for his investment in this thesis.
The meetings, discussions and guidance during the course of this thesis has been invaluable. I
would also like to thank Silje Knutsvik Kalleberg, Magnus Kunnas and Hilde Iden Nedland for
their great work with their Master’s thesis in 2021, which formed the base for my work on this
thesis. I would like to thank architect and PhD candidate at the Institute of Architecture and Tech-
nology, Steinar Hillersøy Dyvik for the discussions regarding gridshell nodes and for providing
finished geometry of gridshell nodes used in this thesis. Finally, I would like to thank my girl-
friend, family and friends for their continuous support throughout my studies.

Markus Aleksander Wulff

i



Abstract

In recent years, the algorithms-aided design environment Grasshopper has allowed architects and
structural engineers to design complex gridshells with the help of form-finding methods. However,
the nodes have a big impact on the structural performance and visual appearance of gridshells, but
there is currently no way to analyse the nodes inside Grasshopper. This thesis aims to find out
if a finite element method plug-in for Grasshopper can be used to analyse gridshell nodes with
sufficient speed, accuracy, and ease of use. In this context, algorithms-aided design is defined as a
design method where the geometry is generated by algorithms in a visual programming environ-
ment.

To test if gridshell nodes can be analysed inside Grasshopper, tetrahedral solid elements were
implemented in an existing finite element method plug-in for Grasshopper, called Solid FEM,
which, until now, only accepted hexahedral solid elements. The motivation behind this was that
generation of hexahedral meshes is a highly complicated task, while an algorithm for generation
of tetrahedral meshes already exist inside Grasshopper. Solid FEM was investigated through two
case studies. In the first case study, an analysis of a cantilevered beam was compared to beam
theory and the finite element method software, Ansys. In the second case study, a gridshell node
was analysed with Solid FEM and compared to Ansys.

Solid FEM proved to be sufficiently accurate for early-stage designs as a basis for decision making
and design exploration, but not for documentation of structural reliability. The solver has a max-
imum capacity regarding number of degrees of freedom which may limit the accuracy. Correct
application of loads and boundary conditions is a prerequisite for obtaining a reliable result, and
the user should be aware of the impact on accuracy and computation time caused by element type
and mesh size. The solver is slow, but still saves you time and work compared to exporting the
geometry to other software. In combination with other useful tools in Grasshopper, Solid FEM
can become a useful tool for designing complex gridshell nodes.

ii



Sammendrag

I nyere tid har arkitekter og bygningsingeniører designet komplekse gitterskall ved hjelp av form-
finningsmetoder i det algoritmiske modelleringsverktøyet Grasshopper. Knutepunktene i gitter-
skall påvirker i stor grad den strukturelle oppførselen og det visuelle uttrykket, men for øyeblikket
er det ikke mulig å analysere knutepunktene i Grasshopper. Denne oppgaven undersøker om en
programvareutvidelse til Grasshopper kan brukes til å analysere knutepunkter i gitterskall ved
hjelp av elementmetoden, hvor hastighet, nøyaktighet og brukervennlighet skal vurderes. I denne
sammenhengen defineres algoritmisk modellering som en design-metode hvor geometrien gener-
eres av algoritmer i et visuelt programmeringsverktøy.

For å undersøke om slike knutepunkter kan analyseres i Grasshopper ble volumetriske tetraeder-
elementer implementert i en eksisterende programvareutvidelse kalt Solid FEM, som utførte ele-
mentmetodeanalyser med heksaeder-elementer. Motivasjonen bak dette var at heksaeder-mesh er
veldig komplisert å generere, mens det allerede eksisterer en komponent i Grasshopper som kan
generere tetraeder-mesh. Solid FEM ble undersøkt gjennom to eksempelstudier. I den første ble
en utkragerbjelke analysert, og sammenlignet med bjelketeori og elementmetode-programvaren
Ansys. I den andre eksempelstudien ble et gitterskallknutepunkt analysert i Solid FEM og sam-
menlignet med resultater fra Ansys.

Solid FEM viste seg å være tilstrekkelig nøyaktig for tidlig-fase design, som et grunnlag for be-
slutningstaking og utforskning av designalternativer, men ikke nøyaktig nok for dokumentasjon
av pålitelighet. Programvaren har en makskapasitet på antall frihetsgrader, noe som kan påvirke
nøyaktigheten. Korrekt påføring av laster og grensebetingelser er en forutsetning for å oppnå et
pålitelig resultat, og brukeren burde være bevisst på påvirkningen elementtypen og størrelsen på
meshet har på nøyaktigheten og beregningstiden. Programvaren er treg, men den sparer brukeren
likevel for tid og arbeid, sammenlignet med å eksportere geometri til en annen programvare. I
kombinasjon med andre nyttige verktøy i Grasshopper kan Solid FEM bli et nyttig verktøy for
design av knutepunkter i gitterskall.

iii



Table of Contents

Preface i

Abstract ii

Sammendrag iii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Layout of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory: The Finite Element Method 3

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Strains and stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Stiffness matrix K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Solid elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Software 15

3.1 CAD software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 FEM software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Programming software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Solid FEM 19

4.1 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Solid FEM workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



5 Case studies 28

5.1 Case study 1: Verification of Solid FEM . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Case study 2: Analysis of gridshell node . . . . . . . . . . . . . . . . . . . . . . 37

6 Discussion and conclusion 45

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Further development of Solid FEM . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography 49

Appendix 50

A Mesh import in Ansys 50

B Python script: convergence plots 52

C Python script: displacement plots 55

D Additional files 57

List of Figures

2.1 1D, 2D and 3D modelling of a beam. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Solid HEX8 element and plane stress Q4 element. . . . . . . . . . . . . . . . . . 9

2.3 Displacement modes of the Q4 element. . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Shear locking in Q4 element. Analytical case to the left and Q4 to the right. . . . 11

2.5 TET4 element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Volume coordinates for Tetrahedrons. . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Example of geometry meshed with Tetrino. . . . . . . . . . . . . . . . . . . . . 18

3.2 Tetrino component in Grasshopper. . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Diagram showing the different classes and their relations. . . . . . . . . . . . . . 19

v



4.2 The components and how they are connected. The blue are FEM components, the
green are deconstructors and the orange are preview components. . . . . . . . . . 21

4.3 Flowchart describing the algorithm of the FEM Boundary Condition component. 21

4.4 Flowchart describing the algorithm of the FEM Load component. . . . . . . . . . 22

4.5 Flowchart describing the algorithm of the FEM Solver component. . . . . . . . . 22

4.6 Flowchart describing the procedure for performing an FEA with Solid FEM. . . 24

4.7 Creating geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.8 Mesh BREP algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.9 Tetrahedral mesh of the beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.10 Load and support points algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.11 Load and support points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.12 FEA algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.13 Preview and results algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.14 Colour map of displacements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Cantilever beam with point load. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Variation of mesh division for the cantilever beam. . . . . . . . . . . . . . . . . 29

5.3 Displacement convergence for TET4 elements. . . . . . . . . . . . . . . . . . . 30

5.4 Displacements along the length of the beam for the different mesh divisions with
TET4 elements and the beam theory solution. . . . . . . . . . . . . . . . . . . . 30

5.5 σxx convergence for TET4 elements. . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6 Mises stress convergence for TET4 elements. . . . . . . . . . . . . . . . . . . . 32

5.7 Mises stress distribution for the finest mesh with TET4 elements. . . . . . . . . . 32

5.8 Difference in meshing between Solid FEM and Ansys for the middle mesh division. 33

5.9 Displacements along the length of the beam for the different mesh divisions with
TET10 elements and the beam theory solution. . . . . . . . . . . . . . . . . . . 34

5.10 Displacement convergence for TET10 elements. . . . . . . . . . . . . . . . . . . 34

5.11 Normal stress convergence for TET10 elements. . . . . . . . . . . . . . . . . . . 35

5.12 Stress concentrations for TET10 meshes. . . . . . . . . . . . . . . . . . . . . . . 35

5.13 Mises stress convergence for TET10 elements. . . . . . . . . . . . . . . . . . . . 36

5.14 POLO-1 gridshell node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vi



5.15 Gridshell node geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.16 Meshing algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.17 Meshing the gridshell node geometry. . . . . . . . . . . . . . . . . . . . . . . . 39

5.18 Workflow for obtaining the load and support points in the mesh. . . . . . . . . . 39

5.19 Load and support points in the mesh. . . . . . . . . . . . . . . . . . . . . . . . . 39

5.20 Algorithm for obtaining the load vectors. . . . . . . . . . . . . . . . . . . . . . . 40

5.21 FEA workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.22 Distribution of Mises stress in the gridshell node obtained from Solid FEM. . . . 41

5.23 Distribution of Mises stress in the gridshell node obtained from Ansys. . . . . . . 41

5.24 Distribution of displacements in the gridshell node obtained from Solid FEM. . . 42

5.25 Distribution of displacements in the gridshell node obtained from Ansys. . . . . . 42

A1 Deconstructing nodes and elements in order to obtain coordinates and connectivities. 50

A2 Sorting the coordinates and connectivities. . . . . . . . . . . . . . . . . . . . . . 50

A3 Assembly of the different components to make the final script. . . . . . . . . . . 51

List of Tables

2.1 Integration points in natural coordinates and weights for numerical integration
over tetrahedrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Complexity of modelling a beam in one two and three dimensions. . . . . . . . . 8

5.1 Cantilever data. wmax and σmax are calculated from beam theory. . . . . . . . . . 28

5.2 Material data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Results from analyses with TET4 elements. . . . . . . . . . . . . . . . . . . . . 29

5.4 Results from analyses with TET10 elements. . . . . . . . . . . . . . . . . . . . . 33

5.5 Loads and bending moments for each timber member. . . . . . . . . . . . . . . . 37

5.6 Results from analysis of POLO-1 gridshell node. nels is the number of elements,
nn is the number of nodes and umax is the largest total displacement. . . . . . . . 41

D.1 List of additional files used for this thesis. . . . . . . . . . . . . . . . . . . . . . 57

vii



1 Introduction

1.1 Background

In recent years the use of algorithms-aided design (AAD), also known as parametric design or
algorithmic modelling, has gained popularity among both structural engineers and architects. It
is called algorithms-aided design due to the fact that the geometry is generated by algorithms in
a visual programming environment. When creating an algorithmic model, there is established
a relation between all the components of the geometry. For example, if a sphere is placed at the
midpoint of a line, it would automatically move if the line is changed. The relation between the line
and the sphere stays constant due to the definition of the algorithm. This method enables designers
to quickly explore different design options, which makes it a useful tool in early-stage designs.
The AAD environment Grasshopper also contains additional tools for doing optimisation, form-
finding and structural analyses, among other things, which has made it an attractive software for
structural engineers. Creating complex free-form structures has become more normalized due to
having such user-friendly tools easily accessible. For example, gridshells are shell-like structures
composed of linear members formed in a grid, rather than a continuous surface. Gridshells are
usually doubly-curved, which is also the source of their strength, and can quickly be designed
with form-finding algorithms like dynamic relaxation or the force density method. With integrated
structural analysis tools, the reliability of the structural model can be verified and improved as
well. The nodes, which connect the members, are essential parts of gridshells. They influence the
structural performance and assembly, while also impacting the visual appearance. The existing
structural analysis software in Grasshopper can only analyse members of the structure which can
be simplified to lines or shells. The nodes are usually complex shapes which cannot be simplified
to lines or shells, so there are currently no way to analyse them inside Grasshopper.

In addition to influencing the structural behaviour of the gridshell, the nodes are often the weakest
point, especially in timber gridshells. This means that there is a need to analyse the performance
of the nodes inside Grasshopper. Their complex geometry and three dimensional stress state cause
a need for a finite element analysis (FEA) using solid elements. Such analyses can be performed
in finite element method (FEM) software like Ansys or ABAQUS, but there does not currently
exist any tools in Grasshopper which can perform such an analysis. In order to analyse nodes
designed in Grasshopper, the geometry needs to be exported and imported in another software.
This is a cumbersome and time demanding process which also eliminates the possibility to auto-
matically combine the FEA with other useful tools inside Grasshopper, like optimisation. This is
the motivation behind this thesis.

In 2021, for their masters thesis at NTNU, Hilde Iden Nedland, Magnus Kunnas and Silje Knutsvik
Kalleberg developed a plug-in for Grasshopper called Solid FEM, which could perform FEA on
solid hexahedral elements. For this thesis, Solid FEM has been further developed in order to
be able to perform FEA on tetrahedral elements. The motivation for this is that generation of
hexahedral meshes of complex geometries is a difficult task, and there does not currently exist
any components in Grasshopper which can do this. However, there does exist a plug-in that can
generate tetrahedral meshes of solid geometries, called Tetrino.

1



1.2 Research question

Through two case studies this thesis will investigate how well Solid FEM works for early-stage
design of gridshell nodes. The first case study is a verification of Solid FEM where a cantilevered
beam is analysed, and the results are compared to Euler-Bernoulli beam theory and results from
the equivalent analysis in Ansys. The second case study is an analysis of a gridshell node with
complex geometry. These two case studies will try to answer whether or not Solid FEM works
according to its intentions. Namely that it

• is easy to use with little knowledge about FEM.

• is accurate enough.

• is fast enough.

1.3 Layout of this thesis

The layout is as follows: first relevant theory about the finite element method will be presented.
Then the different software used for the development of Solid FEM is presented. Section 4 will
present and explain Solid FEM and how to use it. Section 5 contains the two case studies with
separate discussions. Finally, in Section 6, Solid FEM along with the results from the case studies
will be discussed which leads to a conclusion and a part regarding relevant further development of
Solid FEM.

2



2 Theory: The Finite Element Method

2.1 Background

The finite element method (FEM) is a numerical method used within different fields of engineering
and physics to approximate the solution of differential equations where an analytical solution is
difficult or practically impossible to obtain. Heat transfer and fluid flow are typical problems
solved by using FEM, but the method was primarily developed for structural analysis within civil
engineering (Bathe, 2014), and is today used by a lot of different structural analysis software.

In structural analysis, FEM is used in cases with large or complex structures with many unknowns.
The essence of the method is to subdivide the structure into a finite number of elements and
nodes, and assign degrees of freedom (DOFs) to each node. The DOFs can be both translations
and rotations of the nodes, and are the unknowns of the system. Each element has a stiffness
matrix which dependent on the chosen DOFs, which tells us how strongly the element will resist
movements in the nodes for specific load cases.

FEM is based on the displacement method, which can be illustrated by a spring: the force on
the spring is equal to the spring constant multiplied by the elongation of the spring: F = k ·∆x.
But in structures we can have displacements and rotations in different different directions, and we
generally have many nodes, so the simple spring equation turns into a matrix equation: S = kv,
where S is the element load vector, k is the element stiffness matrix and v are the element DOFs:

S =


S1

S2
...

Sn

=


k11 k12 · · · k1n

k21 k22 · · · k2n
...

...
. . .

...
kn1 kn2 · · · knn




v1

v2
...

vn

= kv (2.1)

In equation 2.1, n is the number of element DOFs. To analyse the system of elements we need to
assemble the element matrices in system matrices. Different elements contributes to stiffness in
the same global DOFs, and the contributions need to be added up. This is done with a connectivity
matrix, a, which says which global DOFs the local element DOFs correspond to:

v =


v1

v2
...

vn

=


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
an1 an2 · · · anN




r1

r2
...

rN

= ar (2.2)

where n is the number of element DOFs, N is the number of global DOFs, a is the connectivity
matrix and r are the global DOFs. It can be shown that the global stiffness matrix K is obtained
from equation 2.3:

K =
N

∑
i=1

a⊺i kiai (2.3)

3



where the contribution from each element is assigned to the correct global DOFs and summed
up. Then the system stiffness relation is established with the global load vector R, global stiffness
matrix K and the global DOFs u and solved by inverting the stiffness matrix as described in
equation 2.4:

R = Ku ⇒ u = K−1R (2.4)

When the system equation is solved and the displacements at the nodes have been calculated, the
displacements within each element can be obtained by the chosen set of shape functions. Each
node has a specific shape function which equals one at the node, and zero at all other nodes.
This enables us to obtain the displacements within each element by summing up the contributions
from all the nodal displacements. For example for a three dimensional element with n nodes the
displacements can be obtained from equation 2.5:

u =

u(x,y,z)
v(x,y,z)
w(x,y,z)

=

N0 0 0
0 N0 0
0 0 N0


vx

vy

vz

 (2.5)

where:

N0 =
[
N1 N2 · · · Nn

]
, vx =


vx1

vx2
...

vxn

 , vy =


vy1

vy2
...

vyn

 , vz =


vz1

vz2
...

vzn

 (2.6)

In equation 2.6, N1, N2 · · ·Nn are the shape functions related to nodes 1,2 · · ·n, and are functions
of x, y and z. vx, vy and vz are the nodal displacements in direction x, y, z, respectively. The
choice of shape functions and their complexity are dependent on the number of nodes and DOFs.
For example if you want a one dimensional element to be able to display a state of pure bending,
its not enough to have two DOFs and a linear shape function. Displaying pure bending requires at
least a 2nd degree polynomial which requires 3 unknowns (DOFs). This implies that the number of
nodes and DOFs have a big influence on an elements capability to display different displacement
modes, which will affect the elements ability to display strains and stresses. Examples of shape
functions and their abilities and limitations are presented in sections 2.4.1 and 2.4.2.

4



2.2 Strains and stresses

A big part of the FEA is to obtain the strains and the stresses from the nodal displacements. The
strains are calculated for each element using the derivatives of the displacements (Bell, 2014):

ε =



εx

εy

εz

γxy

γyz

γxz


=



δu
δx
δv
δy
δw
δ z

δu
δy +

δv
δx

δv
δ z +

δw
δy

δu
δ z +

δw
δx


= ∆u = ∆Nv = Bv =⇒ B = ∆N (2.7)

where B is the strain-displacement matrix and:

∆ =



δ

δx 0 0

0 δ

δy 0

0 0 δ

δ z
δ

δy
δ

δx 0

0 δ

δ z
δ

δy
δ

δ z 0 δ

δx


(2.8)

The stresses are then calculated from the strains (Bell, 2014):

σ =



σx

σy

σz

τxy

τyz

τxz


=



λ +2G λ λ 0 0 0
λ λ +2G λ 0 0 0
λ λ λ +2G 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G





εx

εy

εz

γxy

γyz

γxz


= Cε (2.9)

where
λ =

νE
(1+ν)(1−2ν)

(2.10)

In equations 2.9 and 2.10, G is the shear modulus, C is the material dependent elasticity matrix, E
is the elasticity modulus and ν is the Poisson’s ratio. Both E, G, C and ν are constant and equal
for all elements of the same material.

5



2.3 Stiffness matrix K

The stiffness matrix is an essential part FEAs. It contains information about how the structure
reacts to different loads and is the most important part for establishing the system of equations
needed to be solved in order to obtain the nodal displacements. The global stiffness matrix K is
assembled from the element stiffness matrices ki where i = 1,2,3...Nels as seen in equation 2.3.
The local stiffness matrices are established from equation 2.11:

k =
∫∫∫

V
BT CBdV (2.11)

where B is the strain-displacement matrix and C is the elasticity matrix as described in equations
2.7 and 2.9. But in most cases the shape functions are formulated in terms of natural or dimen-
sionless coordinates: N = N(r,s, t), where r, s, and t are the natural coordinates. This means that
we need to transform the shape functions to the Cartesian coordinate system when evaluating the
partial derivatives and when performing the integration of the stiffness matrix. This is done with
a Jacobian matrix J which relates the natural coordinate derivatives to the Cartesian coordinate
derivatives (Bathe, 2014):

δ

δr
=


δ

δ r

δ

δ s

δ

δ t

=


δx
δ r

δy
δ r

δ z
δ r

δx
δ s

δy
δ s

δ z
δ s

δx
δ t

δy
δ t

δ z
δ t




δ

δx

δ

δy

δ

δ z

= J
δ

δx
(2.12)

where:

J =


δx
δ r

δy
δ r

δ z
δ r

δx
δ s

δy
δ s

δ z
δ s

δx
δ t

δy
δ t

δ z
δ t

=
n

∑
i=1


δNi
δ r

δNi
δ s

δNi
δ t

[
xi yi zi

]
(2.13)

and xi, yi, and zi are the Cartesian coordinates at node "i" and n is the number of element nodes.
From equation 2.12, you see that in order to obtain the partial derivatives of the shape functions
with respect to the Cartesian coordinates we need to invert the Jacobian:


δNi
δx

δNi
δy

δNi
δ z

= J−1


δNi
δ r

δNi
δ s

δNi
δ t

 (2.14)

When all the terms of the B-matrix are calculated, and before we perform the integration of the
stiffness matrix, we need to transform the volume differential dV to natural coordinates:

dV = det(J) dr ds dt (2.15)

where det(J) = J is the determinant of the Jacobian matrix.

6



Now the element stiffness matrix can be obtained from equation 2.16:

k =
∫∫∫

V
BT CB J dr ds dt (2.16)

According to Bathe, 2014, an analytical evaluation of the integral in equation 2.16 is, in gen-
eral, not effective. Instead, numerical integration (or quadrature rule) is employed. In numerical
integration the analytical integral is approximated by the formula:

I =
∫ b

a
f (x)dx ≈

n

∑
k=1

wk f (xk) (2.17)

where xk are the integration points, wk are the weights for each integration point and n is the number
of integration points. There exists different quadrature rules that, for n integration points, can
integrate a polynomial of order p exactly. For example, Zienkiewicz et al., 2013 lists a quadrature
rule for integrating over tetrahedrons which is presented in Table 2.1.

Order Point Coordinates Weights

Linear a 1
4

1
4

1
4

1
4 1

Quadratic

a α β β β
1
4

b β α β β
1
4

c β β α β
1
4

d β β β α
1
4

α = 0.58541020

β = 0.13819660

Table 2.1: Integration points in natural coordinates and weights for numerical integration over
tetrahedrons.

With the use of numerical integration, the final expression for the local stiffness matrices becomes:

k =
∫∫∫

V
BT CB J dr ds dt =

n

∑
k=1

BT
k CBk Jk (2.18)

where Bk and Jk are the strain-displacement matrix and the Jacobian determinant evaluated at the
integration points.

7



2.4 Solid elements

In structural problems where the geometry can not be represented by beam-, plate- or shell-
elements, solid elements are needed to obtain reliable results. Connections between structural
members are typical candidates for solid elements. The formulation of the elasticity problem is
actually simpler in three dimensions than in one and two dimensions, as described in (Bell, 2014),
due to the fact that there is no need to make any assumptions in order to simplify the problem.
However, solving the resulting problem demands substantially more computational power. This is
best visualized by an example. Figure 2.1 shows three different ways to model a beam with finite
elements. Table 2.2 shows how the number of DOFs grows from 63 for the one dimensional case,
to 945 for the three dimensional case. This means that solving the system of equations involves
inverting a 945x945 matrix, which is substantially more demanding than inverting a 63x63 matrix.
This illustrates that one should only use solid elements in cases where the geometry can not be
simplified to one or two dimensional elements.

Figure 2.1: 1D, 2D and 3D modelling of a beam.

Dimensions 1D 2D 3D

Number of elements 20 80 160

Number of nodes 21 105 315

Number of DOFs 63 315 945

Table 2.2: Complexity of modelling a beam in one two and three dimensions.

8



2.4.1 Hexahedral elements

Hexahedral solid elements are rectangular prisms with six faces and 8 corners. The simplest
hexahedral element is the HEX8 element, seen in Figure 2.2a, often denoted "brick element",
which has one node in each of its 8 corners. Each node has three DOFs: translation in x-, y- and
z-direction, denoted u, v and w. The brick elements capabilities are more conveniently illustrated
by the equivalent two-dimensional element, the plane stress Q4 element with two DOFs in each
node, as seen in Figure 2.2b.

(a) HEX8 element. (b) Q4 element.

Figure 2.2: Solid HEX8 element and plane stress Q4 element.

The Q4 element has two translational DOFs in each of its four corner nodes. This enables the
element to display a bi-linear displacement pattern with shape functions given in equation 2.19
(Bathe, 2014).

N1 =
1
4
(1+ r)(1+ s)

N2 =
1
4
(1− r)(1+ s)

N3 =
1
4
(1− r)(1− s)

N4 =
1
4
(1+ r)(1− s)

(2.19)

The shape functions are given in natural coordinates (r, s) which is a non-dimensional coordinate
system where the corner nodes have coordinates r,s = ±1. This simplifies the shape functions,
making it much easier to obtain the strain-displacement matrix B and thereby also the stiffness
matrix k. Figure 2.3 shows the eight different displacement modes of the Q4 element, and the
deformed element can have any combination of these displacement modes.

The HEX8 element has more or less the same capabilities and limitations as the Q4, but with an
additional dimension. The shape functions for the HEX8 are given in equation 2.20 (Bathe, 2014):

Ni =
1
8
(1+ rir)(1+ sis)(1+ tit)

ri,si, ti =±1
(2.20)

9



where ni is the shape function corresponding to node "i" and ri,si, ti are the point coordinates
of node "i" given in the natural coordinate system (r, s, t). This enables the HEX8 element to
display a tri-linear displacement field, with the equivalent modes of the Q4, only with an additional
dimension.

Figure 2.3: Displacement modes of the Q4 element.

HEX8 elements have some advantages and some disadvantages. The advantages are:

• They have a very simple geometry which makes it easy to mesh simple geometry which
is composed of straight lines and plane surfaces, for example cubes, cuboids or prisms. If
formulated as isoparametric elements, HEX8 elements can also have arbitrary shape which
enables them to better represent geometry which not only consists of right angles and par-
allel lines and surfaces.

• You would need fewer hexahedral elements compared to tetrahedral elements for the same
geometry and the same number for nodes/DOFs. This is because you need at least six
tetrahedral elements to make up one hexahedral element (Bell, 2014). This makes it com-
putationally more efficient to assemble the stiffness matrix as there are fewer elements that
we need to add the contribution from (See equation 2.3).

• The formulation of the HEX8 element shape functions is very simple, as seen in equation

10



2.20. All eight nodes have very similar and clean shape functions which makes it easier
to implement in a FEM-solver, as you need to calculate the partial derivatives in order to
establish the stiffness matrix, as seen in 2.3.

Some disadvantages of HEX8 elements are:

• They exhibit something called shear locking behaviour which happens when the element is
trying to display pure bending. The same thing happens with the plane stress Q4 element,
and Figure 2.4 illustrates the phenomena. What happens is that when a Q4 (or HEX8) ele-
ment is bent, the top and bottom edges remain straight, and each node only has a horizontal
displacement. However, for the analytical case, the top and bottom edges become curved,
and each node as a horizontal as well as a vertical displacement. This means that the element
experiences so-called parasitic shear strains in addition to the pure bending strains. These
parasitic shear strains absorbs strain energy so that the bending strains are smaller than they
should be for the given load case, which makes the element too stiff.

• A distinct disadvantage of the HEX8 element is that they cannot easily mesh complex geo-
metry. While they are very useful for meshing geometry with straight edges, and plane
surfaces, they run into trouble when trying to mesh curved geometry, especially when it
curves in multiple directions and with high curvature. If the element is upgraded to the 20
node HEX20 element, it can represent curved geometry, but generating such a mesh is still
a highly complicated task.

Figure 2.4: Shear locking in Q4 element. Analytical case to the left and Q4 to the right.

2.4.2 Tetrahedral elements

Tetrahedral elements are elements with four corners and four faces. The simplest tetrahedral
element is the 4 noded TET4 element, also known as the constant strain tetrahedron, with four
corner nodes. As the HEX8 element, the TET4 element has three DOFs in each node (translation
in each direction), see Figure 2.5. The TET4 element is the three dimensional equivalent to the
plane stress triangular CST element. It can display a tri-linear displacement field, and thus it
can only represent a constant strain field. If you take the TET4 element and add nodes on each

11



element edge, you get the ten noded TET10 element, also known as the linear strain tetrahedron.
This element can represent a quadratic displacement field, and thus can display a linear strain field.
This enables the TET10 element to display a state of pure bending exactly.

Figure 2.5: TET4 element.

Natural coordinates are also used for tetrahedrons, but in a slightly different manner than for
hexahedral elements. Something called volume coordinates are used. There is one coordinate
related to each corner node, denoted ζi, and they are defined as follows for an internal point P:

• The point P divides the tetrahedron into 4 different volumes/tetrahedrons

• Vi is the volume of the tetrahedron where node i is swapped with the point P, as illustrated
in Figure 2.6.

• The coordinate ζi is then defined as Vi/V where V is the volume of the original tetrahedron
such that:

4

∑
i=1

ζi =
V1 +V2 +V3 +V4

V
= 1 (2.21)

A property of volume coordinates is that they have the value of either 1 or 0 at the nodes, and they
vary linearly between nodes. For example, ζ1 has the value of 1 at node 1 and the value 0 at all

ζ1 =V1/V

ζ2 =V2/V

ζ3 =V3/V

ζ4 =V4/V

Figure 2.6: Volume coordinates for Tetrahedrons.

12



other nodes. This makes volume coordinates suitable shape functions for TET4 elements:

u =


u

v

w

=


N0 0 0

0 N0 0

0 0 N0




vx

vy

vz

= Nv (2.22)

where

N0 =

[
N1 N2 N3 N4

]
=

[
ζ1 ζ2 ζ3 ζ4

]
(2.23)

and
ζi =

Vi

V
(2.24)

However, to uniquely describe a point in space you only need three coordinates/dimensions. And
as we see in equation 2.21, the four volume coordinates are linearly dependent. For this reason
one has to choose three of the four volume coordinates to represent the natural coordinate system
(r,s, t). For example:

r = ζ1

s = ζ2

t = ζ3

(2.25)

This can then easily be substituted into the shape functions:

N0 =

[
N1 N2 N3 N4

]
=

[
r s t (1− r− s− t)

]
(2.26)

Volume coordinates are used for TET10 element shape functions, although not as simple and
elegant as for TET4 elements. (Bathe, 2014) lists the ten shape functions as:

N1 = 1− r− s− t − 1
2 N5 − 1

2 N7 − 1
2 N10

N2 = r− 1
2 N5 − 1

2 N6 − 1
2 N8

N3 = s− 1
2 N6 − 1

2 N7 − 1
2 N9

N4 = t − 1
2 N8 − 1

2 N9 − 1
2 N10

N5 = 4r(1− r− s− t)

N6 = 4rs

N7 = 4s(1− r− s− t)

N8 = 4rt

N9 = 4st

N10 = 4t(1− r− s− t)

(2.27)

There are advantages and disadvantages of using tetrahedral elements. Advantages:

• Tetrahedrons are much better for meshing complex geometry with surfaces curved in mul-
tiple directions, as the element edges can remain straight, while still providing an approx-
imation of the geometry close to the original shape. There exists algorithms that generates
such tetrahedral meshes efficiently based on a surface mesh or a solid geometry. This is
a huge advantage over hexahedral meshes which are much more difficult to generate for
complex geometries.

• In the case of the TET4 element, it is remarkably easy to implement in a FEM-solver, as
volume coordinates make the shape functions very simple expressions. This in turn elim-

13



inates the need for integration when establishing the stiffness matrix because the strain-
displacement matrix B and the jacobian matrix J are constant for TET4. This also makes
assembly of the global stiffness matrix computationally efficient as there is no need for
numerical integration.

• TET10 elements are very good for displaying states of pure bending without the need for
a very fine mesh. This can reduce the number of elements needed to obtain results with
sufficient accuracy.

The disadvantages:

• As mentioned in Section 2.4.1 you need at least six tetrahedral elements to make up one
hexahedral element. This means that for establishing the global stiffness matrix K you need
to add the contribution from six times as many elements compared to hexahedral elements.
However, this is more of a disadvantage for TET10 elements, as TET4 elements does not
need gauss integration and the resulting TET4-mesh would contain the same number of
nodes (and DOFs) as a HEX8 mesh. TET10 elements however would add many more nodes
to the global mesh which increases the size of the stiffness matrix and thus the number of
system equations.

• TET4 elements are poor at representing states of bending or twisting because the strains
(and thus the stresses) are constant over the span of an element. This means that for TET4
elements to be sufficiently accurate you either need a situation where the stresses are almost
constant, or you need a very fine mesh as the convergence is slow.

Comment:

• Even though you need six times more TET4 elements compared to HEX8 elements, the
number of global nodes is approximately the same for an equivalent mesh. This means
that in both cases you have an equal number of DOFs and elements in the stiffness matrix,
so solving the resulting system of equations, which is the most time consuming and CPU-
demanding task in an FEA, would be equally demanding and time consuming for TET4 and
HEX8 elements.

14



3 Software

This section describes the different software and computer programs used for the work with this
thesis. This includes some computer-aided design (CAD) software, FEM software, mesh genera-
tion software and programming software.

3.1 CAD software

3.1.1 Rhinoceros 3D

Rhinoceros 3D (McNeel et al., 2022), more commonly referred to as Rhino or Rhino 7, is a 3D
CAD software developed by Robert McNeel & Associates. Rhino is a versatile CAD software
which can be used for 3D modelling, analyses and presentation, among other things. By using
NURBS curves and surfaces it represents geometry with high level of accuracy (Robert McNeel
& Associates, 2022b), which is necessary for both architectural and engineering projects. Rhino
also includes a rendering tool which can generate reality-like visualizations for presentations. For
this thesis, Rhino has been used for the add-on software Grasshopper, explained in Section 3.1.2,
and for visualizing the results from the FEA with coloured meshes.

3.1.2 Grasshopper

Grasshopper (Robert McNeel & Associates, 2022a) is an add-on for Rhino 7, and is an AAD
environment. In Grasshopper, like other AAD environments, instead of drawing points, lines and
surfaces manually, these are programmed in a visual programming interface called canvas. On the
canvas there is established a relation between the different parts. For example, one can define two
points by their coordinates, and define a line between these two points. If the point coordinates are
changed, the line changes with the points. These relations make the model more flexible regarding
changes in the design.

Another thing making AAD a useful tool is setting different parameters as variable values by
the use of sliders. For example by letting the height, width and length of a building be variable
parameters, one can easily and quickly explore many different design options. This is one of the
reasons why Grasshopper is a useful tool in early design phase. Often at this stage, the design is far
from determined and undergoes many changes before arriving at the final design. An algorithmic
model helps to streamline this process, as one doesn’t have to redraw the entire model manually
every time changes occur.

There also exist numerous plug-ins for Grasshopper that are free to download. These allow the
user to do much more than just make a 3D model. For example there are plug-ins that can perform
environmental simulations (Ladybug), structural analysis (Karamba3D), optimisation (Galapagos)
and mesh generation. Food4rhino.com contains a huge library with different plug-ins free to
download. The mesh generation plug-in, Tetrino, is described in Section 3.3.2.

15



3.2 FEM software

3.2.1 Ansys Mechanical

Ansys Mechanical is a structural FEA software that can perform a variety of analyses. This in-
cludes linear and non-linear analyses, dynamic and modal analyses, and thermal analysis for simu-
lating heat conduction (ANSYS Inc, n.d.). It includes a range of material models to accurately rep-
resent your structure. Ansys Mechanical includes a meshing engine producing path-conforming
meshes, and lets the user select what type of elements to be used. This is the software used for
comparisons in the study cases in Section 5.

3.2.2 Solid FEM

Solid FEM is a plug-in for Grasshopper and the research topic for this thesis. It is a linear FEM
solver which accepts tetrahedral and hexahedral solid elements. It is described in detail in Section
4.

16



3.3 Mesh generation

A big challenge when it comes to FEA of complex geometry is concerning mesh generation.
The major FEM software includes powerful mesh generation engines which can produce such
meshes with both hexahedral and tetrahedral elements. However, generating hexahedral elements
is very complicated, and there does not exist a simple algorithm that has been implemented in
Grasshopper for generating such meshes. But, there exists an algorithm for generating tetrahedral
meshes called TetGen which is implemented in the Grasshopper component Tetrino. These are
described in sections 3.3.1 and 3.3.2.

3.3.1 TetGen

TetGen is an algorithm for generation of tetrahedral meshes developed by the research group
Numerical Mathematics and Scientific Computing at the Weierstrass Institute for Applied Analysis
and Stochastics (WIAS). TetGen is an open source code written in C++ and is highly portable - in
the sense that it should run and compile on all major computer systems (Weierstrass Institute for
Applied Analysis and Stochastics (WIAS), n.d.). The algorithm is both fast, memory efficient and
robust. It produces high quality and adaptive tetrahedral meshes suitable for numerical methods,
such as the finite element method.

3.3.2 Tetrino

Tetrino is a plug-in for Grasshopper which contains a tetrahedral mesh generator based on the
TetGen algorithm (Username: tomsvilans, 2017). It can generate tetrahedral meshes from either
a surface mesh or a boundary representation (BREP). This component was a prerequisite for the
work related to this thesis. It enabled the author of the thesis to mainly focus his work on im-
plementing tetrahedral elements in a FEM plug-in for Grasshopper. Tetrino, combined with Solid
FEM eliminates the need to export geometry from Grasshopper to an external FEM-program, like
Ansys or ABAQUS. This saves time and work, and allows you to combine the FEA with other
Grasshopper-components, like Galapagos optimisation. Figure 3.1 shows an example of a geo-
metry meshed with Tetrino.

The Tetrino component is quite simple to use and is displayed in Figure 3.2. The mesh-input can
be either a surface mesh or a BREP. The input Flags are integers depending on what kind of output
you want:

• 0 returns a list of tetrahedrons

• 1 returns a triangulated mesh

• 2 returns tetra indices

• 3 returns edge indices

MinRatio is the desired tetrahedron ratio.

17



Figure 3.1: Example of geometry meshed with Tetrino.

Figure 3.2: Tetrino component in Grasshopper.

3.4 Programming software

3.4.1 C# in Visual Studios

Solid FEM is written in C# using Visual Studios 2019. C# is an object oriented programming
language which makes use of classes and objects. This gives the code extended functionality, and
helps to keep the code clean and clear. Robert McNeel & Associates, 2022c contains the applic-
ation programming interface (API) documentation of all the different classes in Rhino geometry
which was used for programming the plug-in.

3.4.2 Python for plotting

Python, with the Matplotlib library has been used to create plots and graphs for presenting the
results from different analyses in the case studies.

18



4 Solid FEM

The majority of the work related to this thesis has been dedicated to implementing tetrahedral
elements in a FEM solver in Grasshopper. This is based on the work done by Hilde Iden Nedland,
Magnus Kunnas and Silje Knutsvik Kalleberg for their masters thesis in 2021. They developed a
plug-in for Grasshopper, called Solid FEM, which performed an FEA on eight noded hexahedral
elements (HEX8). For this thesis, the plug-in has been further developed and it is now capable of
performing an FEA on both linear and quadratic tetrahedral elements, namely TET4 and TET10
elements, as described in Section 2.4.2.

4.1 Classes

The plug-in is written in C# which is an object oriented programming language. This enables the
use of classes and objects which provides the code with extended functionality and helps keeping
the code clean and readable. The classes used in Solid FEM can be divided into two categories:
physical and functional classes, which are described in the following sections.

4.1.1 Physical classes

The physical classes are classes from which objects with certain attributes are created and used
throughout the code. The physical classes and the relation between them are illustrated in Figure
4.1.

Figure 4.1: Diagram showing the different classes and their relations.

FE_Mesh:
This class contains information regarding the global mesh that is analysed. An FE_Mesh object
stores the element meshes, the global nodes, material and all the elements. In addition it contains
all the nodal results, like displacements and stresses.

Element:
This class contains information about each element in the FE_Mesh class. The information stored

19



for each element is the global ID, list of element nodes, the nodal connectivity, element type,
element mesh and the list of vertices.

Node:
This class contains information about the nodes in the FE_Mesh class and the element class. Each
node has a global ID, point coordinates and boundary conditions in three directions.

Material:
The material class contains the Young’s modulus, Poisson’s ratio, yielding stress and density of an
FE_Mesh object.

Support:
The support class contains the point coordinates of constrained nodes, and in which directions
they are constrained.

4.1.2 Functional classes

The functional classes are only made for containing methods (functions) for performing different
operations throughout the code. This helps keeping the main code clean, compared to writing
every method inside the main code. They do not have any attributes and there are not created any
objects from these classes.

FEM_Utility:
Contains methods for performing necessary operations for FEA. For example obtaining the shape
functions or the integration points of an element, or calculating displacements and stresses.

FEM_Matrices:
Contains all the methods for calculating different matrices. For example getting the stiffness
matrix or the strain-displacement matrix.

FEM_Logger:
This is a class for debugging and storing information about the analysis. For example time con-
sumption of each component, and warning about a negative Jacobian.

20



4.2 Components

The actual components that are used in Grasshopper are illustrated in Figure 4.2, and can be
divided into three categories: FEM components, deconstructors and preview compoents.

Figure 4.2: The components and how they are connected. The blue are FEM components, the
green are deconstructors and the orange are preview components.

4.2.1 FEM components

FEM Boundary Condition

This component applies boundary conditions to mesh points. It takes the input points and con-
strains them in the directions specified. The output is a list of Support objects. The algorithm is
illustrated in Figure 4.3.

Figure 4.3: Flowchart describing the algorithm of the FEM Boundary Condition component.

21



FEM Load

This is the component for applying loads. It accepts point loads and the inputs are a list of points
along with a list of load vectors and the tetrahedral mesh. The output is a list of ndo f values, where
the first three values correspond to the force components in x-, y- and z-direction applied to the
first global node, the next three values correspond to the second node and so on. The algorithm is
illustrated in Figure 4.4.

Figure 4.4: Flowchart describing the algorithm of the FEM Load component.

FEM Material

FEM Material creates an object of the material class where the input variables are Young’s mod-
ulus, Poisson’s ratio, yield stress and density. As default these variables correspond to S355 steel.

Add mid-edge nodes

This component transforms TET4 elements to TET10 elements. It takes a tetrahedral mesh with
four corner nodes, and returns a tetrahedral mesh with ten nodes, where the additional six nodes
are placed on the midpoint of the mesh edges.

FEM Solver

This is the main component which performs the FEA based on mesh, load, boundary conditions
and material. The output is an FE_Mesh object which contains all the results from the analysis.
The algorithm is illustrated in Figure 4.5.

Figure 4.5: Flowchart describing the algorithm of the FEM Solver component.

22



4.2.2 Deconstructors

Deconstructors are components which allows the user to extract the properties of a class.

Deconstruct FE_Mesh
This components takes an FE_Mesh object and returns its nodes and elements (objects of node
class and element class).

Deconstruct Element
Deconstruct Element takes an element object and returns its nodes, connectivity, type, ID and
mesh.

Deconstruct Node
Deconstruct Node takes a node object and returns its ID, point coordinates and boundary condi-
tions in x-, y- and z-directions.

4.2.3 Preview components

There are two preview components for presenting and obtaining the result data from the FEA:

Mesh Preview
Mesh Preview takes the analysed FE_Mesh object and returns a coloured mesh displaying either
displacements, utilization or the different stress components (x-dir, y-dir, shear stresses etc.).

Nodal Results
Nodal Results takes the analysed FE_Mesh and returns a list of displacements and stresses in all
directions for all global nodes in addition to their point coordinates.

23



4.3 Solid FEM workflow

The purpose of the plug-in is to provide a way to quickly analyse complex geometry with limited
knowledge about FEM and structural analyses. This section describes the necessary steps for
performing an FEA with the plug-in through a simple example.

The flowchart in Figure 4.6 illustrates the overall procedure which consists of: creating and mesh-
ing the geometry, obtaining the load and support points, performing the FEA and previewing the
results from the analysis. The colours correspond to the background colours in the following
sections describing each step in detail.

Figure 4.6: Flowchart describing the procedure for performing an FEA with Solid FEM.

4.3.1 Step 1: Create the geometry

The first step is to create the geometry for the object we want to analyse. For example creating a
closed boundary representation (BREP). Figure 4.7 shows the algorithm for creating a BREP of
a cantilevered beam, by making a box from two points. The dimensions of the beam are variable
parameters.

(a) Create geometry algorithm.

(b) Cantilever geometry.

Figure 4.7: Creating geometry.

24



4.3.2 Step 2: Mesh the geometry

The second step is to mesh the geometry. In order to create the tetrahedral mesh elements, the
geometry needs to be formulated as either a BREP or a surface mesh. In order to have more
control over the size and quality of the mesh, two components called Mesh Brep and Quad Remesh
can be used to create a surface mesh of the geometry, before being input into the Tetrahedralize
component. The Solid FEM component AddMidEdgeNodes can be used to turn TET4 elements to
TET10 elements. Figure 4.8 shows the algorithm for meshing the geometry and Figure 4.9 shows
the meshed beam.

Figure 4.8: Mesh BREP algorithm.

Figure 4.9: Tetrahedral mesh of the beam.

4.3.3 Step 3: Obtain load and support points

The algorithm for this step is illustrated in Figure 4.10. The important part about this step is that
the load points and the support points need to be vertices in the mesh. This is why the component
deconstruct mesh is used. Figure 4.11 shows the support points (green dots) to the left and the
load vectors (green arrows) to the right.

Figure 4.10: Load and support points algorithm.

25



Figure 4.11: Load and support points.

4.3.4 Step 4: Performing the FEA

Step 4 is the main part which is performing the FEA. This includes turning the load points and
vectors into correct format through FEM Load, and creating Support-objects from the support
points with FEM Boundary Condition. The inputs Tx, Ty and Tz are boolean values (True or
false) which tell in which directions the support points are constrained. FEM Material doesn’t
need any input as the default values correspond to S355 steel, but these need to be specified for
any other material. The main component, FEM Solver, takes the mesh, loads, BCs and material,
and performs the FEA. It returns a list of nodal displacements in all three directions, the elemental
and nodal Mises stress, the diagnostics of the analysis, as well as the analysed FE_Mesh object.
The algorithm is shown in Figure 4.12.

Figure 4.12: FEA algorithm.

4.3.5 Step 5: Preview and results

The final step is to obtain the results from the analysis. Nodal Results returns a list of the direc-
tional displacements and stresses in the global nodes. With this component the node with the
largest displacement and/or stresses can easily be located. Mesh Preview takes the analysed

26



FE_Mesh and returns the deformed mesh with colours showing the distribution of stresses or
displacements. The input Type determines what kind of results the colour map represents. The
algorithm is shown in Figure 4.13. Figure 4.14 shows a colour map of displacements.

Figure 4.13: Preview and results algorithm.

Figure 4.14: Colour map of displacements.

27



5 Case studies

5.1 Case study 1: Verification of Solid FEM

The first case study is a study of the accuracy and speed of Solid FEM. Through a simple example
of a cantilevered beam with a point load at the tip, the accuracy and efficiency of Solid FEM will
be compared to Ansys and to the analytical solution obtained using beam theory. TET4 elements
will be compared and discussed first, followed by TET10 elements.

The structural problem is illustrated in Figure 5.1 and the relevant data is presented in Table 5.1
and 5.2.

Figure 5.1: Cantilever beam with point load.

Length L Width b Height h Load P Material wmax σmax

1200 mm 100 mm 200 mm 100 kN S355 Steel 4.11 mm 180 MPa

Table 5.1: Cantilever data. wmax and σmax are calculated from beam theory.

Density ρ Yield stress fy Youngs modulus E Shear modulus G Poisson’s ratio ν

7850 kg
m3 355 MPa 210 GPa 81 GPa 0.3

Table 5.2: Material data.

5.1.1 TET4 elements

For the TET4 test, the cantilever mesh was created semi-manually in Grasshopper, by dividing the
beam into cubes and then using the Tetrino component to generate tetrahedrons. By doing this,
the element size and the number of elements was easier to control and the elements avoid getting
stretched. To eliminate sources of error, the exact same mesh was imported into Ansys by creating

28



a script in Grasshopper. The script contained a list of all mesh nodes, it specified the element
type (TET4) and listed all elements and their connectivity. This was created by deconstructing
the analysed FE_Mesh, the nodes and elements, and extracting the nodal coordinates and element
connectivity. The algorithm for creating these scripts and an example of such a script is found in
Appendix A.

The structural problem was analysed for five different mesh divisions to study the convergence of
the FEA. Figure 5.2 shows the different mesh divisions. In order to test the accuracy of Solid FEM,
the largest displacement wmax, the largest stress σxx and the element Mises stress is compared to
the results obtained in Ansys for the same mesh, as well as analytical solution. The results from
the FEA along with the mesh divisions are presented in Table 5.3.

Figure 5.2: Variation of mesh division for the cantilever beam.

Result parameter Calculation type 12x1x2 24x2x4 48x4x8 72x6x12 96x8x16

wmax [mm]
GH TET4 2,27 3,50 4,03 4,13 4,16

Ansys TET4 2,17 3,50 4,03 4,13 4,16

σxx [MPa]
GH TET4 80,4 128,8 166,2 188,5 201,8

Ansys TET4 106,3 171,6 225,8 256,4 279,6

Element mises [MPa]
GH TET4 99,8 158,7 195,8 210,3 219,9

Ansys TET4 94,6 158,7 195,8 210,3 219,8

Computation time [ms]
GH TET4 4 127 5347 86094 492048

Ansys TET4 1300 1500 3141 6375 14203

Table 5.3: Results from analyses with TET4 elements.

29



Displacements:
As can be seen in Table 5.3 the largest displacement at the tip of the beam is almost exactly the
same in GH and Ansys for all the mesh divisions. Only the coarsest mesh deviates slightly from
the Ansys result. This is very promising and strengthens the credibility and integrity of Solid FEM
because Ansys is a reliable FEM software. That being said, in order to obtain a reliable solution,
the beam needs to be divided into many elements, as seen in figures 5.3 and 5.4, which increases
the computational time substantially. As described in Section 2.4.2, TET4 elements are poor at
representing fields of bending, which makes it unfit to model a cantilevered beam where bending is
the source of the displacements and stresses. Another remark is that when the mesh is refined, the
displacement converges towards a value higher than the beam theory solution, as seen in Figure
5.3. This may be due to the effect of shear deformation. Euler-Bernoulli beam theory neglects
shear deformation in the calculation of vertical displacement, but solid elements will experience
some shear deformation. This will increase the vertical displacement for the FEA and is a possible
cause of the difference.

Figure 5.3: Displacement convergence for TET4 elements.

Figure 5.4: Displacements along the length of the beam for the different mesh divisions with TET4
elements and the beam theory solution.

30



Normal stress, σxx:
From Table 5.3 we see that the normal stress σxx,max is approximately 73% of the Ansys solution
for all the mesh divisions. This is a curious result considering the remarkably close results for
displacements. Both the Solid FEM and Ansys solution converges towards a value higher than the
beam theory solution, as seen in Figure 5.5. A potential cause of this is stress concentrations near
the support points. However, Solid FEM is closer to the beam theory solution when the mesh is
refined. The deviation of the stresses is larger compared to the deviation of displacements. This
is due to the fact that stresses is derived from the displacements, which means the deviation from
analytical solution increases. Also, as described in Section 2.4.2, TET4 elements are suitable in
situations where stresses are constant over the span of an element. In a cantilevered beam the
stress distribution is linear along the length and height of the beam. This means that the beam
needs to be divided in a very fine mesh in order to obtain accurate results with TET4 elements.

Figure 5.5: σxx convergence for TET4 elements.

Computation time:
As seen in Table 5.3, the computation time in Solid FEM increases in a much higher rate than in
Ansys when the mesh is refined, which inplies that the computation time in Ansys is more stable
than in Solid FEM. Solid FEM uses less time than Ansys for the two coarsest meshes, but this is
less important than the computation time for the finest meshes, because the absolute difference is
still small, and both will be perceived as practically momentarily. For the finest meshes, however,
Ansys is much faster. For the finest mesh division, Ansys spends 14 seconds, whereas Solid FEM
spends over eight minutes on the same analysis. TET4 elements usually requires a fine mesh to
be accurate, which means that Solid FEM needs to improve its efficiency in order to compete with
Ansys.

Mises stress:
From Table 5.3 and Figure 5.6 we see that the results for Mises stress from Solid FEM and Ansys
are almost identical, like the displacements. Figure 5.7 shows the distribution of Mises stresses.
This is also very promising result because in most cases when performing a solid FEA the Mises
stresses are more representative for a three dimensional stress state, rather than the directional

31



stresses separately. This is why Mises stresses are more important for a solid FEA. Another
remark is that the Mises stresses, as the normal stresses, converge toward a value higher than
analytical value. However, Solid FEM converges to a value higher than the normal stress, and
Ansys converges to a value lower than the normal stress. A possible cause for the difference in
Solid FEM is that Mises stress accounts for all the directional stresses, like σzz and τxz. This could
contribute to the difference from σxx. Regarding the difference between Mises stress and σxx in
Ansys, this can be explained by the fact that the Mises stress is the average value of the Mises
stress in the element’s nodes, while the normal stress is the stress value in the most stressed node.
The stress values in the other less strained nodes contributes to lower the average stress value of
the element.

Figure 5.6: Mises stress convergence for TET4 elements.

Figure 5.7: Mises stress distribution for the finest mesh with TET4 elements.

32



5.1.2 TET10 elements

For the TET10 test, the mesh was created in the same manner as for TET4 in Grasshopper, but
Ansys used its own meshing engine. This means that there were slight differences in the analysed
meshes, but the corresponding meshes in Grasshopper and Ansys consisted of approximately the
same number of elements. The difference in meshes between Grasshopper and Ansys is illustrated
in Figure 5.8 for the middle mesh division. For TET10 only three different mesh divisions were
analysed due to the quickly increasing number of DOFs when the mesh was refined. The results
from the analyses are presented in Table 5.4

(a) Meshed beam in Grasshopper. (b) Meshed beam in Ansys.

Figure 5.8: Difference in meshing between Solid FEM and Ansys for the middle mesh division.

Result parameter Calculation type 12x1x2 24x2x4 48x4x8

wmax [mm]
GH TET10 4,143 4,167 4,173

Ansys TET10 4,150 4,168 4,173

σxx [Mpa]
GH TET10 188,1 193,7 222,0

Ansys TET10 188,2 209,5 269,3

Element mises [Mpa]
GH TET10 129,9 154,7 179,8

Ansys TET10 147,4 161,2 185,9

Computation time [ms]
GH TET10 188 4817 330291

Ansys TET10 812 1375 3844

Table 5.4: Results from analyses with TET10 elements.

Displacements:
As seen in Table 5.4 the displacement results are very good for all the mesh divisions. In Figure
5.9, the displacement plots of the different mesh divisions can barely be distinguished from each
other. This is expected due to the TET10 elements capabilities. As stated in Section 2.4.2, the
TET10 element is capable of representing a state of pure bending exactly. Based on Table 5.4
and Figure 5.10, it looks like the largest displacement is converging towards 4,17-4,18, which is
1.5% higher than beam theory solution. TET10 elements also account for shear deformation, so it
makes sense that the displacement converges to a value larger than the beam theory solution. Also,
Solid FEM provides almost the exact same displacements as Ansys, even though the meshes are

33



not identical. This strengthens the reliability of Solid FEM.

Figure 5.9: Displacements along the length of the beam for the different mesh divisions with
TET10 elements and the beam theory solution.

Figure 5.10: Displacement convergence for TET10 elements.

Normal stress, σxx:
As the displacements, the normal stress is also close to beam theory solution for the coarsest mesh.
This is also expected, because TET4 elements can represent a quadratic displacement field and a
linear stress field, because normal stress is the derivative of the displacements. By this logic you
do not need a very fine mesh in order to obtain reliable results. However when the mesh is refined,
the maximum stress increases, and based on Figure 5.11 it even looks like it diverges. This is
probably due to stress concentrations at the support points, and may not be realistic. From Figure
5.12 we see that the stresses are larger in the supported corners, and this effect increases when the
mesh is refined. Another remark is that Ansys solution is even higher than the Solid FEM solution,

34



which can be interpreted in two ways. On one side it is a good thing that the Solid FEM solution is
closer to the beam theory solution, as this is an analytical solution. On the other hand the stresses
should be the same in Solid FEM and Ansys when the displacements are so similar.

Figure 5.11: Normal stress convergence for TET10 elements.

Figure 5.12: Stress concentrations for TET10 meshes.

Element Mises stress:
Table 5.4 and Figure 5.13 shows that the Mises stress is close between Solid FEM and Ansys,
and the difference decreases when the mesh is refined. For the coarsest mesh we see that the
Mises stress is 72% of beam theory solution, which is a larger deviation than the displacement. As
described in Section 5.1.1 this is also expected due to the fact that stress is a derived result from
the displacements. It is also partly due to the fact that the element Mises stress is the mean value
of the Mises stresses at the element nodes. The lower stressed nodes will contribute to lower the
element mean value. When the mesh is refined, the element size reduces, which leads to smaller

35



differences in the nodal Mises stresses within one element, which increases the element mean
value.

Finally, the Mises stress is closer to the beam theory stress as the mesh is refined compared to σxx.
This is a positive result because, as said in Section 5.1.1, Mises stress is more informative than
directional stresses when dealing with a three dimensional stress state, which is usually the case
when using solid elements in an FEA.

Figure 5.13: Mises stress convergence for TET10 elements.

Computation time:
Table 5.4 shows that the computation time increases even faster for TET10 elements than TET4
elements in Solid FEM. This is because when the number of elements increases, the number of
nodes, and thereby also the number of DOFs, increases in a higher rate for TET10 elements than
TET4 elements. When comparing the computation time with Ansys, we see the same trend as for
TET4 elements: Ansys is more stable and much more efficient when the mesh is refined.

36



5.2 Case study 2: Analysis of gridshell node

For this case study a gridshell node was analysed in order to investigate how well Solid FEM works
with regards to its intentions, namely analyzing complex geometry in an AAD environment. The
gridshell node is called POLO-1, and Figure 5.14 illustrates an example where it connects six
timber members. It is a typical node design and consists of a cylinder with vertical welded-on
plates. The plates are slotted in the timber members, and connected with bolts. This simple design
makes it adaptable to other situations. For example a variable number of connected members, or
different angles of the members.

Figure 5.14: POLO-1 gridshell node.

In this case study, the POLO-1 gridshell node was analysed for a specific load case obtained from
an article on the British Museum gridshell roof (Brun, 2019). The loads for each member is
presented in Table 5.5. Neither the timber members nor the bolts were analysed in this example.

Member Axial force [kN] Shear force [kN] Bending moment [kNm]
1 68.6 3.04 -15.79
2 -16.12 -0.35 -0.99
3 -5.52 -0.6 -2.3
4 62.99 -2.19 -14.49
5 -14.27 0.7 -3.05
6 -7.37 0.08 -0.54

Table 5.5: Loads and bending moments for each timber member.

37



5.2.1 Workflow

This section will present the workflow and the different steps when analyzing the gridshell node
and previewing the results.

Create the geometry:
The geometry was generated with an algorithm in Grasshopper created by Steinar Hillersøy Dyvik
for his research on gridshell nodes. The geometry is illustrated without the timber members and
the bolts in Figure 5.15, and in order to limit the number of elements in the mesh, the holes for
the bolts were removed. If the holes remained then the mesh would need to be divided into a very
high number of elements in order to provide a realistic mesh close to the original geometry, and
that led to the number of DOFs exceeding the capacity of Solid FEM.

Figure 5.15: Gridshell node geometry.

Meshing the geometry:
For meshing the geometry a component called Quad Remesh was used. This accepts either meshes,
surfaces or BREPs, and returns a new surface mesh. The user can select a number of settings, for
example the target number of faces in the resulting mesh. This component provided the ability
to control the number of elements in the mesh. The result from Quad Remesh was the input to
the Tetrino component which returned a list of tetrahedral elements. The process is illustrated in
Figure 5.16 and the meshed geometry is illustrated in Figure 5.17.

Figure 5.16: Meshing algorithm.

38



(a) POLO-1 quadrilateral surface mesh. (b) POLO-1 tetrahedral solid mesh.

Figure 5.17: Meshing the gridshell node geometry.

Obtaining load and support points:
Even though the geometry was simplified and the holes were removed, the loads would still be
transferred to the node through these points. This was handled by obtaining the vertices in the
mesh within a set distance to the original bolt holes. The algorithm is illustrated in Figure 5.18.
Due to the fact that this node is in the middle of a gridshell without any fixed support points,
in order to perform an analysis without the node flying away due to rigid body motion, the load
points in one of the connecting plates were set as fixed supports. In Figure 5.19 the load points are
marked with green and the support points are marked with yellow.

Figure 5.18: Workflow for obtaining the load and support points in the mesh.

Figure 5.19: Load and support points in the mesh.

39



Applying loads and boundary conditions:
The main concern when applying loads and boundary conditions was to apply a different load to
each of the connecting plates, as well as transforming the bending moment into a force couple. In
Grasshopper it was handled by sorting the loading points in six groups, one for each connecting
plate. Then the axial and shear force was applied to the correct points with their vector compon-
ents. Finally, the bending moment was divided by the distance between the bolts, and the force
couple was applied to the correct loading points. The algorithm is illustrated in Figure 5.20. This
part of the algorithm used clusters. Clusters are very useful in Grasshopper for when performing
the same algorithm many times. They allow users to create small (or large) algorithms and set
inputs and outputs. The cluster becomes a kind of customized component, hiding the algorithm
inside the cluster. This helps keeping the main algorithm clean and clear. In Figure 5.20, the
clusters take the loads and bending moments along with the moment arm and load points, and
return the load vectors distributed to the load points as well as the load points.

Figure 5.20: Algorithm for obtaining the load vectors.

Analysis and preview:
Finally, the mesh, load points and support points were inputs to the Solid FEM components which
performed the analysis, as illustrated in Figure 5.21.

Figure 5.21: FEA workflow.

40



5.2.2 Results

The gridshell node was analysed in Ansys in order to compare the results from Solid FEM. For this
analysis, the final geometry including the bolt holes were imported and meshed using the Ansys
meshing engine. Both Solid FEM and Ansys performed the analysis with TET4 elements. The
results from the analyses are presented in Table 5.6, and colour maps showing the distribution of
stresses and displacements are presented in figures 5.22 to 5.25.

Calculation nels nn umax [mm] Mises stress [MPa] Computation time [ms]
Solid FEM 9267 3264 2,38 414 7028
Ansys 8550 3133 2,04 376 2984

Table 5.6: Results from analysis of POLO-1 gridshell node. nels is the number of elements, nn is
the number of nodes and umax is the largest total displacement.

Figure 5.22: Distribution of Mises stress in the gridshell node obtained from Solid FEM.

Figure 5.23: Distribution of Mises stress in the gridshell node obtained from Ansys.

41



From Table 5.6 we see that there are distinct differences between Solid FEM and Ansys. The
number of elements and nodes are approximately the same, and so the results should be compar-
able. The largest displacement was 16% higher than Ansys and the Mises stress was 10% higher.
When comparing the colour maps for Mises stress from Solid FEM and Ansys (figures 5.22 and
5.23), we see that the stress concentrations occur at the same places, and the general distribution
of stresses looks very similar. The same applies to the displacement maps (figures 5.24 and 5.25).

Figure 5.24: Distribution of displacements in the gridshell node obtained from Solid FEM.

Figure 5.25: Distribution of displacements in the gridshell node obtained from Ansys.

However, in both Solid FEM and Ansys the stress concentrations exceed the yield stress which
is a bad sign. We might expect that the stresses increases for a refined mesh. This means that a
linear FEA might be insufficient for this geometry, or that the geometry needs changing. Ansys
used under half the computation time compared to Solid FEM, but for an analysis of this scale, the
additional three seconds are insignificant. The relevance of computation time increases when the
mesh is refined, and the number of DOFs increase.

Solid FEM has a maximum capacity with regards to number of DOFs. The capacity depends on the

42



computer running Solid FEM, and it is caused by the establishing of the stiffness matrix. When the
number of DOFs increase, the number of elements in the stiffness matrix increases exponentially.
In the code, the stiffness matrix is established as a dense matrix, which means that all elements are
established and stored. The capacity depends on the available memory on the computer running
Solid FEM. This is a huge drawback because, when analyzing complex geometry, there is usually
a need for a very fine mesh, especially in some sections of the geometry.

5.2.3 Discussion

Is Solid FEM easy to use?

One goal of Solid FEM is that it is supposed to be easy to use with limited knowledge about FEM.
However it is absolutely a prerequisite that the users of Solid FEM have some experience or ba-
sic knowledge about structures and structural mechanics regarding load application and boundary
conditions. For example they need to know where and how to apply the load, which can be chal-
lenging when dealing with bending moments. Bending moments are often the most contributing
factor to strains and stresses, which makes it very important to apply them correctly. To neglect or
wrongly apply bending moments can therefore in some cases be a critical mistake. Additionally,
the users should be aware of the limitations of the element type. When using TET4 elements, there
is a need for a very fine mesh in order to obtain accurate results, due to the fact that the stresses
are constant over the span of an element. This increases the number of DOFs and it is likely that
the maximum capacity of the solver is reached. TET10 elements are capable of representing a tri-
linear stress state, which makes them suitable for coarse meshes. However, the number of DOFs
increase rapidly when refining the mesh, which means that the capacity of the solver is reached
for a coarser mesh than with TET4 elements. Therefore the users should be able to choose what is
more important: a fine mesh which can more accurately represent the geometry, or a coarser mesh
which can represent a linear stress distribution.

Assuming the user has a good understanding of how to apply the loads, then the challenge when
using Solid FEM might be to generate the algorithm in Grasshopper. However, the target users for
Solid FEM are architects and structural engineers who already are familiar with Grasshopper and
know how to use it. For a competent Grasshopper user, Solid FEM does not introduce any new
challenges, other than load application. The most important operations you need to perform when
using Solid FEM is meshing the geometry and sorting points. These operations are familiar for
most experienced Grasshopper users, and the Tetrino component helps to simplify the meshing.
Sorting the points in a suitable data structure is an important part in order to apply the correct
loads at the correct points. This might be one of the most difficult parts of parametric design, and
requires some grasshopper- or programming experience. But again, the target users of Solid FEM
are architects and structural engineers with Grasshopper experience.

Is it accurate enough?

From Table 5.6, we see that there is a slight difference between the solutions in Solid FEM and
Ansys for the corresponding meshes. The differences are likely to be caused by the different
meshes. The impact of the holes seem to be relatively low as there are not any stress concentra-
tions surrounding them in Ansys, which may indicate that the simplification of the geometry in

43



Grasshopper was appropriate. For a different load case however, there might occur stress concen-
trations in such locations, and simplifications should be done carefully.

However, the analysed mesh is relatively coarse, considering that TET4 elements were used. These
elements can only represent a state of constant stress, which means that the mesh needs to be
refined in such a way, so that stresses are approximately constant over the span of an element.
With this in mind, it very well may be that the real stresses are even higher than the results from
the analysis. As said in Section 5.2.2, Solid FEM has a maximum capacity when it comes to
number of DOFs, and this analysis was performed close to the capacity limit on a standard laptop.
This implies that Solid FEM has an upper limit with regards to accuracy as well, because it cannot
analyse the mesh when it becomes too large. This is an absolute disadvantage of Solid FEM.

On the other hand, the intentions of Solid FEM is to be used for comparing of different design
options and in combination with other Grasshopper tools like optimisation. For this case it might
be accurate enough with the current capacity. Even though the results from the analyses deviate
from the real solution, an optimisation process could still lead to a more efficient and reliable
geometry with either lower stresses or displacements. For comparison of different geometries, as
long as the deviation is more or less the same for the different geometries, the analysis results
could still provide useful results, and be a basis for decision making in early design phase. For the
detail design phase, the reliability of the geometry would still need to be documented in a different
FEM software like Ansys or ABAQUS.

Is it fast enough?

As expected, Solid FEM spends more time performing the analysis than Ansys. Solid FEM was
written and created by structural engineers, and not software engineers. This is why Solid FEM
has great potential to improve the computation time. But even if Solid FEM is slower than Ansys,
the user still saves time and work compared to exporting the data from Grasshopper and running
the analysis in Ansys. For each time the geometry changes, the loads and supports would need to
be reapplied in Ansys, which makes it a pretty cumbersome process. While in Grasshopper, the
algorithm automatically obtains the load and support points, which eliminates the need for manual
work to be done for each time the geometry changes (assuming the algorithm works as intended).

Regarding optimisation processes, the speed of Solid FEM becomes an important aspect. For
example, Galapagos optimisation is an evolutionary algorithm which generates a set number of
combinations of input parameters for each round, called a population. Based on the results from
each round it generates a new population with new parameter combinations. This process is re-
peated until ended by the user or the solution converges towards a certain combination. A normal
population size is around 50 combinations, which means that for each round the algorithm needs
tor run 50 times. And the optimisation process usually takes several rounds to converge. This
means that an optimisation process potentially can spend many hours, or even days, depending
on the computer and the efficiency of the algorithm. Even though this may take a lot of time, the
process can be automated, such that the users can work on other things in the mean time.

44



6 Discussion and conclusion

6.1 Discussion

This discussion part summarizes the most important parts from the discussions of the case studies
in sections 5.1 and 5.2. Additionally, Solid FEM will be discussed in general regarding pros and
cons, and whether or not it works as intended.

Regarding the verification of Solid FEM and the comparison with Ansys in case study 1, the results
were satisfactory. For the TET4 case, the displacements and the Mises stresses were remarkably
close to the results from Ansys, which is a very good and important result. Displacements and
Mises stresses are arguably the most important result parameters in a solid FEA. This strengthens
the integrity and reliability of Solid FEM. The same applies to the analyses with TET10 elements.
In this test, the differences were bigger, but could be explained by the fact that the meshes in
Grasshopper and Ansys were not identical. However, with this in mind the results were still very
satisfactory, even for the coarse meshes.

A less positive result is regarding the directional normal stress σxx. The differences between
Solid FEM and Ansys were bigger than for displacements and Mises stresses. This was a slightly
surprising result, considering that the displacements and Mises stresses were almost identical for
both TET4 and TET10 elements. The cause of this might be stress concentrations at the support
points, and that Solid FEM and Ansys handles this in different ways. It is more understandable
for the TET10 case due to the different meshes, but still a little surprising for the TET4 case.
However, in solid FEA, the Mises stresses are more important than the directional stresses because
it accounts for all the directional stresses, and in solid FEA, the stress situation is often three
dimensional.

The results from Case study 2 didn’t harm the results from Case study 1, as the results from Solid
FEM and Ansys were relatively similar. In this case there were bigger differences in the meshes
which were decisive for the differences in displacements and stresses.

Regarding the use and workflow of Solid FEM, and whether or not it is easy to use, is of course
to some degree subjective. But as described in Section 5.2.3, Solid FEM does not introduce any
new challenges concerning the workflow inside Grasshopper. The necessary steps for performing
an FEA with Solid FEM only requires tools and methods which are very frequently used in al-
gorithmic design in Grasshopper. Furthermore, the target group for Solid FEM are architects and
structural engineers with Grasshopper experience. A ton of knowledge about FEM is not a re-
quirement, but the users need to have a certain understanding of structures and correct application
of loads. This is potentially the most complicated part regarding the use of Solid FEM, but struc-
tural engineers should have the necessary experience and understanding of this. Architects might
not have the same understanding of this, but since it is an important part of the analysis it could be
necessary to study or to confer with a structural engineer. Additionally, the users should be aware
of the impact on accuracy caused by the element type and mesh size. For example, in Case study 1,
TET10 elements were clearly the best option, while in Case study 2, even the coarsest mesh resul-
ted in too many DOFs regarding the capacity of the solver when using TET10 elements. Choosing
the best suitable element type and mesh size could greatly impact both accuracy and computation

45



time, and is something the users should know be aware of.

As mentioned in Section 5.2.3, Solid FEM has a maximum capacity when it comes to number
of DOFs. The capacity depends on the computer running Solid FEM and its memory. This acts
as a limiting factor regarding the accuracy of the analyses. Complex geometries require a fine
mesh in order to properly represent the actual geometry and to obtain accurate results from the
analyses. In some cases, however, it might not be an issue. Solid FEM is intended to be used in
early design phase, where accurate results are not that necessary. The goal at this stage can be
either to investigate whether or not a design proposal is a logical/possible solution, or to compare
several different design options to serve as a basis for decision making. For these goals Solid FEM
can be useful and provide results in order to serve as an assessment basis for choosing a design
option, or to alter the existing geometry.

Concerning the use of Solid FEM in combination with other useful Grasshopper tools, like Galapa-
gos optimisation, the results are mixed. In principle, Solid FEM is arranged in such a way so that
an optimisation process is possible to perform. The output and post-processing components en-
able the users to easily obtain the critical result parameters, like stresses or displacements. The
optimisation process could then be based on trying to minimize the displacements while still hav-
ing a utilization below 100%. This is a great feature of Solid FEM. On the other hand the solver
efficiency should be improved with the help of a software engineer. As it works now, the solver
is slow, which would affect an optimisation process greatly. An optimisation would run the solver
numerous times, which means that the computation time plays a bigger part. Regardless, it would
still work as it is, but would be a time demanding process with potential to be improved.

Some final remarks/limitations of Solid FEM. The solver is only capable of analyzing geometry
made of isotropic materials, like steel or aluminium. This eliminates the ability to analyse timber,
concrete and other composite materials. This would also mean that for study case 2, Solid FEM
does not say anything about the timber members nor the bolts. In timber structures, the connections
are often the critical part when it comes to structural resistance. This may cause a situation where
an optimisation process arrives at a result which is best for the node, but worse for the timber
member.

46



6.2 Conclusion

After two case studies it is time to answer the question regarding whether or not Solid FEM can
be used in the early design phase for analysing a complex geometry gridshell node. From Case
study 1 (section 5.1), it became clear that Solid FEM itself is reliable and sufficiently accurate.
The two result parameters, displacements and equivalent Mises stresses, was almost identical in
Solid FEM and Ansys for the cantilevered beam, and converged to a value close to beam theory
solution, which strengthens the solvers integrity and reliability.

Case study 2 presented an example of how Solid FEM can be used for analyzing a complex geo-
metry gridshell node. The use of Solid FEM in Grasshopper is simple and does not introduce
any new programming challenges for users who are familiar with Grasshopper. However, correct
application of loads and boundary conditions is a prerequisite for obtaining a reliable result. This
is probably the most complicated part regarding an analysis, and any simplifications of the load
situation should be done with care. In addition, the choice of element type and mesh size impacts
the accuracy and computation time, which the users should be aware of. Regardless, Solid FEM
has potential to become a useful tool for architects and structural engineers.

Solid FEM does have an upper limit when it comes to number of DOFs. This depends on the
computer running it, and can potentially affect the accuracy of the result due to the mesh being
too coarse. In other words, the solver is accurate, the mesh may not be. However, Solid FEM is
not intended to be used as documentation of structural reliability, but more as a basis for decision
making and a way to efficiently explore different design options while simultaneously obtaining
information about their structural performances. Even though the solver is slow, it still saves time
compared to exporting the geometry to another FEM software, and in combination with other
Grasshopper tools, like Galapagos optimisation, Solid FEM can become a very useful tool in
designing complex geometries for gridshell nodes. It is still an early version of Solid FEM, and
with further development it is likely that both the speed and limitation of DOFs can be improved
significantly.

47



6.3 Further development of Solid FEM

Even though Solid FEM is working as intended at the moment, there are several things that could
be done in order to improve its performance and efficiency. The first thing is the computation time.
This solver was developed by structural engineers, and not software engineers. With the help of
software engineers, the solver could probably run faster and increase the limit of DOFs so that it
can analyse more refined meshes and obtain even more accurate results for complex geometries.

Another thing that can be improved is the load component. At the moment this component only
accepts point loads. For the results to be more accurate, the load component could be expanded to
accept surface loads and apply these as a consistent load vector. This would mean using the shape
functions to distribute the loads to the mesh nodes.

A final thing that could be done is to expand Solid FEM to handle anisotropic materials. At the
moment it is limited to isotropic materials like steel and aluminium. If anisotropic materials are
accepted, Solid FEM could analyse timber and composite materials.

48



Bibliography

ANSYS Inc. (n.d.). Ansys mechanical | structural fea analysis software. Retrieved 16th May 2022,
from https://www.ansys.com/products/structures/ansys-mechanical#tab1-1

Bathe, K.-J. (2014). Finite element procedures. Klaus-Jürgen Bathe.
Bell, K. (2014). An engineering approach to finite element analysis of linear structural mechanics

problems. Fagbokforlaget.
Brun, H. J. K. (2019). British museum grid shell analysis.
McNeel, R. et al. (2022). Rhinoceros 3d, version 7.0. Robert McNeel & Associates, Seattle, WA.
Robert McNeel & Associates. (2022a). Grasshopper - algorithmic modelling for rhino. Retrieved

29th May 2022, from https://www.grasshopper3d.com/
Robert McNeel & Associates. (2022b). Rhino - features. Retrieved 16th May 2022, from https:

//www.rhino3d.com/features/
Robert McNeel & Associates. (2022c). Rhinocommon api. Retrieved 29th May 2022, from https:

//developer.rhino3d.com/api/RhinoCommon/html/R_Project_RhinoCommon.htm
Username: tomsvilans. (2017). Tetrino. Retrieved 6th June 2022, from https://www.food4rhino.

com/en/app/tetrino
Weierstrass Institute for Applied Analysis and Stochastics (WIAS). (n.d.). Tetgen - a quality tet-

rahedral mesh generator and a 3d delaunay triangulator. Retrieved 16th May 2022, from
https://wias-berlin.de/software/index.jsp?id=TetGen#Documentation

Zienkiewicz, O., Taylor, R. & Zhu, J. (2013). The finite element method: Its basis and fundament-
als. Butterworth-Heinemann.

49

https://www.ansys.com/products/structures/ansys-mechanical#tab1-1
https://www.grasshopper3d.com/
https://www.rhino3d.com/features/
https://www.rhino3d.com/features/
https://developer.rhino3d.com/api/RhinoCommon/html/R_Project_RhinoCommon.htm
https://developer.rhino3d.com/api/RhinoCommon/html/R_Project_RhinoCommon.htm
https://www.food4rhino.com/en/app/tetrino
https://www.food4rhino.com/en/app/tetrino
https://wias-berlin.de/software/index.jsp?id=TetGen#Documentation


Appendix

A Mesh import in Ansys

Figures A1 to A3 illustrates the algorithm for creating the .txt-file for importing the exact same
mesh into ansys from Grasshopper. The Grasshopper file is added to the zip file described in
section D.

Figure A1: Deconstructing nodes and elements in order to obtain coordinates and connectivities.

Figure A2: Sorting the coordinates and connectivities.

50



Figure A3: Assembly of the different components to make the final script.

The following script is an example of a .txt-file to import a mesh consisting of eight nodes and six
four noded tetrahedral elements:

/PREP7
N, 1, 0, 0.1, 0
N, 2, 0, 0, 0
N, 3, 0.2, 0, 0.1
N, 4, 0, 0, 0.1
N, 5, 0, 0.1, 0.1
N, 6, 0.2, 0.1, 0.1
N, 7, 0.2, 0, 0
N, 8, 0.2, 0.1, 0
ET, 1, 187
EN, 1, 1, 2, 3, 4
EN, 2, 5, 1, 3, 4
EN, 3, 1, 5, 3, 6
EN, 4, 2, 1, 3, 7
EN, 5, 3, 1, 6, 7
EN, 6, 6, 1, 8, 7
CDWRITE,db,tetraMesh,cdb

Line 2-9 lists the nodes. The N stands for node, the next number is the node ID, the next three
numbers are the coordinates.

Line 10 specifies the element type (ET). The element code 187 is the four noded tetrahedral ele-
ment.

Line 11-16 lists the elements. EN stands for element number, the next number specifies the ele-
ment ID, the next four numbers specify which nodes the element is made up of (connectivity).

51



B Python script: convergence plots

import matplotlib.pyplot as plt
import pandas as pd

### Import data from excel file ###
data1 = pd.read_excel(r'C:filePath', sheet_name='GH TET4')
GHTET4 = pd.DataFrame(data1, columns=['Max displacement', 'sigma_xx', ...

...'Mises element', 'Analytical w', 'Analytical sigma_xx'])
data2 = pd.read_excel(r'C:filePath', sheet_name='GH TET10')
GHTET10 = pd.DataFrame(data2, columns=['Max displacement', 'sigma_xx', ...

...'Mises element', 'Analytical w', 'Analytical sigma_xx'])
data3 = pd.read_excel(r'C:filePath', sheet_name='Ansys TET4')
AnsysTET4 = pd.DataFrame(data3, columns=['Max displacement', 'sigma_xx', ...

...'Mises element', 'Analytical w', 'Analytical sigma_xx'])
data4 = pd.read_excel(r'C:filePath', sheet_name='Ansys TET10')
AnsysTET10 = pd.DataFrame(data4, columns=['Max displacement', 'sigma_xx', ...

...'Mises element', 'Analytical w', 'Analytical sigma_xx'])

dataType = 'sigma_xx' # "Max displacement", "Mises stress" or "sigma_x".
elementType = 'TET4' # Set the element type. "TET4" or "TET10".

### Lists of all the data ####
dataListTET4 = [GHTET4, AnsysTET4]
dataListTET10 = [GHTET10, AnsysTET10]

# Mesh divisions
x1 = ["12x1x2", "24x2x4", "48x4x8", "72x6x12", "96X8X16"] # TET4
x2 = ["12x1x2", "24x2x4", "48x4x8"] # TET10

# Beam theory displacement
w_analytical1 = [4.11, 4.11, 4.11, 4.11, 4.11] # TET4
w_analytical2 = [4.11, 4.11, 4.11] # TET10

# Beam theory stress
sigma_xx_analytical1 = [180, 180, 180, 180, 180] # TET4
sigma_xx_analytical2 = [180, 180, 180] # TET10

## Labels ##
labelsTET4 = ["GH TET4", "Ansys TET4"]
labelsTET10 = ["GH TET10", "Ansys TET10"]

52



### Get the correct data and labels based on element type ###
dataList = []
labels = []
x = []
w_analytical = []
sigma_xx_analytical = []
if elementType == 'TET4':

dataList = dataListTET4
labels = labelsTET4
x = x1
w_analytical = w_analytical1
sigma_xx_analytical = sigma_xx_analytical1

elif elementType == 'TET10':
dataList = dataListTET10
labels = labelsTET10
x = x2
w_analytical = w_analytical2
sigma_xx_analytical = sigma_xx_analytical2

### Plotting ###
plt.figure(figsize=[6.4, 4.8])
for type, label in zip(dataList, labels): # Loop the data list and labels

y = type[dataType] # Obtain correct data type

## Set x-limit
if elementType == 'TET10':

plt.xlim(0, 2)
else:

plt.xlim(0, 4)

plt.plot(x, y, label=label) # Plot

### Set y-limit and plot beam theory solution based on data type ###
if dataType == 'Max displacement':

plt.ylim(0, 4.3)
plt.plot(x, w_analytical, label='Analytical')

elif dataType == 'sigma_xx' or dataType == 'Mises element':
plt.ylim(0, 300)
plt.plot(x, sigma_xx_analytical, label='Analytical')

### Set labels and legends ###
plt.xlabel('Mesh division')
plt.ylabel(dataType)

53



plt.legend(loc='lower right')
plt.grid()
plt.show()

54



C Python script: displacement plots

# This is the script used to plot the displacements along the length
# of the beam for Case study 1.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

### Beam data ###
E = 210000
P = 100000
L = 1200
Iy = 6.6666667*10**7
W = 20/3*10**5

### Import data from excel ###
data = pd.read_excel(r'C:filepath', sheet_name='GH TET4 Plot')
GHTET4Data = pd.DataFrame(data, columns=['Disp 1', 'Disp 2', 'Disp 3',...

...'Disp 4', 'Disp 5'])
data = pd.read_excel(r'C:filePath', sheet_name='GH TET10 Plot')
GHTET10Data = pd.DataFrame(data, columns=['Disp 1', 'Disp 2', 'Disp 3'])

elementType = 'TET4' # Set the element type. 'TET4' or 'TET10'

### Beam theory solution ###
x = np.linspace(0, 1.2, 25)
w_analytical = -P*(x*1000)**2/(6*E*Iy)*(3*L-x*1000)

### Obtain correct data based on element type ###
disp = []
if elementType == 'TET10':

disp = [GHTET10Data['Disp 1'], GHTET10Data['Disp 2'],...
...GHTET10Data['Disp 3'], w_analytical]

labels = ["12x1x2", "24x2x4", "48x4x8", "Analytical"]
elif elementType == 'TET4':

disp = [GHTET4Data['Disp 1'], GHTET4Data['Disp 2'], GHTET4Data['Disp 3'],...
...GHTET4Data['Disp 4'], GHTET4Data['Disp 5'], w_analytical]

labels = ["12x1x2", "24x2x4", "48x4x8", "72x6x12", "96X8X16", "Analytical"]

### Plot ###
plt.figure(figsize=[6.4, 4.8])
plt.xlim(0, 1.2)

55



plt.ylim(-4.3, 0.3)
for y, label in zip(disp, labels):

if label == "Analytical":
plt.plot(x, y, label=label, linewidth=2)

else:
plt.plot(x, y, label=label)

plt.xlabel('$x$ [m]')
plt.ylabel('$w(x)$ [mm]')
plt.grid()
plt.legend(loc='upper right')
plt.show()

56



D Additional files

The plug-in, Solid FEM, can be found in its entirety in the branch develop_tetraMesh on GitHub:
https://github.com/marcinluczkowski/SolidFEM/tree/develop_tetraMesh

Additionally, the following files are uploaded in the zip-file Appendix:

File name Description

CantileverTestResults.xlsx
Excel file containing the results from
Case study 1.

Create_meshfile_for_Ansys_Illustration.gh
Grasshopper file showing how to obtain
the .txt file for importing mesh into
Ansys from Grasshopper.

SolidFEM_POLO-1_Analysis.gh
Grasshopper file used to analyse the
gridshell node in Case study 2.

SolidFEM_Verification_Cantilever.gh
Grasshopper file used to analyse the
cantilever beam in Case study 1.

SolidFEM_Workflow_Illustration.gh
The Grasshopper file used to illustrate the
workflow of Solid FEM in section 4.

Table D.1: List of additional files used for this thesis.

57

https://github.com/marcinluczkowski/SolidFEM/tree/develop_tetraMesh


N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

Markus Aleksander Wulff

Implementation of Tetrahedral
Elements in a Finite Element Method
Plug-in for Grasshopper

Master’s thesis in Civil and Environmental Engineering
Supervisor: Anders Rønnquist
Co-supervisor: Sverre Magnus Haakonsen
June 2022M

as
te

r’s
 th

es
is


	Preface
	Abstract
	Sammendrag
	List of Figures
	List of Tables
	Introduction
	Background
	Research question
	Layout of this thesis

	Theory: The Finite Element Method
	Background
	Strains and stresses
	Stiffness matrix K
	Solid elements

	Software
	CAD software
	FEM software
	Mesh generation
	Programming software

	Solid FEM
	Classes
	Components
	Solid FEM workflow

	Case studies
	Case study 1: Verification of Solid FEM
	Case study 2: Analysis of gridshell node

	Discussion and conclusion
	Discussion
	Conclusion
	Further development of Solid FEM

	Bibliography
	Appendix
	Mesh import in Ansys
	Python script: convergence plots
	Python script: displacement plots
	Additional files

