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Sammendrag

Denne masteroppgaven omhandler oppførsel av avstivede platefelt av stål. Den består av et

litteraturstudium, utregninger for hånd og analyse via elementmetoden. Eurocodene 1993-1-1

og 1993-1-5 utgjør grunnlaget for utregningene av aksialkapasitet på langs og tvers. Metodene

herfra er ikke nødvendivis er ikke nødvendigvis særlig treffsikker, da de reduserer som regel

kapasiteten av hensyn til global knekking i tilfeller der det er lokal og ikke globalknekk som er

kritisk. Dette er spesielt relevant da disse plategeometriene er ikke særlig utsatt for globalknekk

i utgangspunktet. Totalt er det 30 geometrier (10 lengder per valgt tverrsnitt).

Lineær knekkanalyse og kapasitetsanalyse med imperfeksjon ble utført med hjelp av

FEM-analyse programvaren Abaqus.

Øvrig teori tas av boka “Dimensjonering av stålkonstruksjoner” av Per Kristian Larsen, og denne

brukes til å tilpasse Eurocodemetoden for kapasitetsutregning i lastsituasjoner på tvers. En

hybridmetode brukes også i kapasitetsanalyse med langsetter last for å ta høyde for forskjellen

på kritiskknekklast regnet ut fra henholdsvis Abaqus og Eurocoden, som ikke tar høyde for

torsjonsstivheten til lukkede stivertverrsnitt.

En viss likhet i oppførsel identifiseres for avstivede plater med store, lignende stivere, nemlig

fordi disse har et lignende forhold mellom stiver- og platestivhet i bøyning.

I tillegg utførtes et studium på oppførselen til avstivede plater med last ut av planet, både for

trykk og sug. Tre forskjellige aksiallastkombinasjoner ble sett på for å utforske hvordan

kapasiteten påvirkes av aksiallast. Her ble FEM-analysen sammenlignet med en metode fra

Eurocode 1999-1-1, og denne ble vurdert til å være ufullstendig.

For aksiallast på langs, Eurocodemetodene var betraklig konservative, med et avvik fra

FEM-analysekapasiteten på rundt 40% på de lengste platene. Hybridmetoden var også

betraktlig konservativ. For tverrlast, den tilpassede metoden ga rimlige resultater for 2 av 3

tverrsnitt, med et avvik på 7-10%, men var utrygg for den tredje geometrien som hadde mindre

stivere. Materialfaktorer ble ekskludert for å kunne sammenligne metodene.
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Abstract

This master’s thesis consists of a literature study, hand-calculations and finite element analysis

modeling for longitudinally stiffened plates. The Eurocodes 1993-1-1 and 1993-1-5 provide the

basis for hand calculations of the axial capacity of the plate when uniaxially loaded in either the

longitudinal or transverse direction. These methods are not necessarily perfectly accurate, as

they primarily focus on global buckling and provide capacity reduction even in cases where

global buckling is not critical. There are 30 different geometries (10 lengths per cross-section).

Linear buckling analyses and capacity analyses with imperfections were performed in the FEM

software Abaqus.

Additional material comes from the textbook “Dimensjonering av stålkonstruksjoner” by Per

Kristian Larsen, providing the theory through which one can adapt the Eurocode guidelines in

the case of loading in the transverse direction. A hybrid method is also used in the case of

loading in the longitudinal direction to account for different critical buckling loads determined by

the FEM software Abaqus and the Eurocode, which does not account for torsional stiffness of

closed-section stiffeners.

A similarity is found between the behaviors of plates with large similar stiffeners, as these have

a similar relationship between the stiffener and plate bending stiffnesses.

An additional study was performed on one length per cross section regarding out-of-plane

pressure and suction load. Three different axial load combinations per geometry were studied to

examine how axial load affects the capacity for out-of-plane load. Here the finite element

analysis is compared to a method retrieved from EC 1999-1-1, Design of Aluminum Structures.

For axial loads in the longitudinal direction, the Eurocode methods were found to be very

conservative, with a deviation of around 40% in the longest plates. The hybrid method was also

excessively conservative. For transverse loading, the Eurocode provided decent results for two

of the three cross-sections (7-10% deviation) after adaptation, but was nonconservative in the

case of the third geometry, which had smaller stiffeners. Material safety factors were excluded

for the sake of comparison between methods.
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1. Introduction

Stiffened plates are suitable for use in several types of load-bearing structures. Such plates are

often used in bridge constructions such as bridge beams and boxes. Other uses include ship

hulls and offshore structures, as well as containers and vehicles. Stiffened plates are especially

attractive for use in constructions due to their high axial and moment resistance capacities

relative to their weight and slenderness.

This thesis covers steel plates designed with closed-section longitudinal stiffeners. The

Eurocode 1993-1-1 and 1993-1-5 provide means of dimensioning by analytical means, but its

methods and resulting capacities differ somewhat from the true ones, which can be

approximated more closely by analysis using the Finite Element Method. Different geometrical

combinations result in significant capacity differences, and the Eurocode is not equally equipped

to deal with them all. Specifically in this thesis, we have chosen stiffeners that have relatively

high resistance to global buckling, though the individual plate members may be slender. That is,

the critical elastic buckling loads are close to or larger than the nonreduced axial capacity of the

relevant cross section. In chapters 4 and 5 we examine the behavior of stiffened plates when

uniaxially loaded, and in chapters 7 and 8 we examine their response to out-of-plane loading

with different load combinations, and compare them to a relevant method for Aluminum plates

from 1999-1-1(3).

The buckling loads were calculated using the calculation rules in EN 1993-1-5 and EN 1993-1-1

(1, 2). These are compared to buckling analyzes that were produced by the element method

software Abaqus and the plate program EBPlate in chapter 5 .
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2. Theory of Stiffened Steel Plates

2.1 Design Process

2.1.1 General

EN 1993-1-5 covers three approaches to the analysis of the plated structures, effective width

method, reduced stress method and finite element analysis (FEA). the effective width method is

divided into three parts, these methods consists of:

● Effective width - shear lag effects

● Effective width - local buckling of plates

● Effective width - interaction of shear lag and local buckling

The effective width method and the reduced stress method are covered much more than the

finite element method. The standard has very detailed design procedures for these two

methods, while only the general principles of FEA are described. The reason behind this is that

the design of plated structures are mostly performed via the effective width and reduced stress

method. FEA is often used to calculate the elastic critical stresses which will be used in the

other two methods.

2.1.2 Effective Width Method

The effective width method is used in the warm-up example in chapter 3. The effective width

method and reduced stress method produce the same results when analyzing a uniaxially

loaded plate with longitudinal stiffeners. Effective width method comes in use when a thin plate

which is loaded by in-plane compressive stresses has buckled. The stress distribution after

buckling is non-linear as shown in figure 2.1. Since the stress distribution varies along the edge

of the plate, which makes it difficult to analyze, the effective width method transforms the plate

into a “fictitious plate” with an effective width of and makes the stress distribution uniform𝑏
𝑒𝑓𝑓

and equal to the yield stress, as shown in figure 2.2.
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Figure 2.1: Effective width method

2.1.3 Reduced Stress Method

Section 10 of the EN 1993-1-5 provides the reduced stress method, which aids in finding the

critical stresses for both stiffened and unstiffened plates. This method applies both for standard

steel cross sections and non-parallel flanges and webs with openings and non-orthogonal

stiffeners. In contrast to the effective width method, this method assumes a linear stress

distribution instead of reducing the cross section area due to buckling, as shown in figure 2.2.

This assumption is valid up to the stress limit of the first plate element which buckles first, and

up to this point the cross section is fully effective. This method assumes class 3 properties.
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Figure 2.2: Reduces stress method

The benefits of the reduced stress method is that it is more applicable to non-standard plate

constructions (standard being I girder and box cross sections) than the reduced width method. It

is applicable to all geometries, including those with non orthogonal stiffeners or flanges that are

not parallel. Load shedding from members with high stress to members with low stress is not

considered in the reduced stress method as it is in the effective width method, and this makes

the method more conservative over all. Additionally, the reduced width method is not applicable

to situations of loading from multiple directions.

In cases where the cross section of a plate consists of several plate parts, then the difference

between the effective width method and the reduced stress method is very easy to identify. But

in cases where the cross section is made of a single plate there will be no difference and

therefore the reduced method will give the same results as the effective width method.

In his master’s thesis on the reduced stress method, Derik performed analyses on several

different loading scenarios in order to analyze the differences of the methods (8), under three

categories. Unstiffened uniaxially loaded plates, unstiffened biaxially loaded plates and stiffened
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uniaxially loaded plates. In our project we will be looking at stiffened uniaxially and biaxially

loaded plates.

The findings show that for uniaxial loading of unstiffened plates, effective width method and

reduced stress method produced the same results, and these closely match the FEM analysis

performed in Abaqus. Meanwhile for biaxially loaded plates, there was a significant difference in

the calculated buckling strength for Abaqus and the reduced stress method when the plate had

an aspect ratio larger than one, demonstrating that the RSM fails to account for the aspect ratio.

For stiffened plates uniaxially loaded, effective width and RSM produce, again, the same critical

buckling strength, which was 10-15% off from the calculated values in Abaqus, demonstrating

that the hand calculations are conservative.

In uniaxial loading conditions, Derik found that effective width method was more appropriate

when it came to strength capacity, but the reduced strength method can be quickly and

efficiently used as the parameter can be easily retrieved from the FEM software Abaqus or𝑎
𝑢𝑙𝑡,𝑘

EBplate. The reduced stress method is also the only one that can be used in loading situations

in which the load comes from multiple directions.

2.1.4 Design Procedure of Effective Width and Reduced Stress Method

The effective width is determined by multiplying the mean value of the stresses and the

maximum stress by the original width of the plate

ρ =
σ

𝑚

𝑓
𝑦

=
𝑏

𝑒𝑓𝑓

𝑏 (2.1)

where is the reduction factor for the plate buckling resistance.ρ

The mentioned reduction factor is in EN 1993-1-5 calculates by the following rules:
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(2.2)

(2.3)

where represents the stress ratio and represents the slenderness of a plate, which is givenψ λ
𝑝

by the following:

λ
𝑝

= 𝑏/𝑡

28.4ε 𝑘
σ

(2.4)

being the buckling coefficient and = with in MPa.𝑘
σ

ε 235
𝑓

𝑦
𝑓

𝑦

The reduction factor for outstand elements loaded by compression is given by:

(2.5)

The reduced stress method solves the interaction between different stress types by using von

Mises criterion.

2.2 Pourostad´s Suggestions

In Pourostad’s presentation, he identifies problems with the current EC procedures and has two

suggestions for improvement (10). This is specifically relevant to panels in uniaxial or biaxial

compression. His suggestions for improvements to the design process of plates with in-plane

moments is not included here.

Firstly, Pourostad notes that in the reduced stressed method (referred to hereafter as RSM)

according to the Eurocode, torsional stiffness is not taken into account for plates with closed

stiffeners.

Neglecting torsional stiffness means that the strength/stiffness analyses are overly conservative,

and lead therefore to designs with unnecessarily thick plates. He identifies several possible

solutions:
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- Use ρp,x according to Annex B of Eurocode 1993-1-5 and considering torsional stiffness

in calculation of ɑcr

- Modification of interpolation function for column-like and plate-like buckling to ensure

safety of results when torsional stiffness is considered.

The interpolation function as it stands in the Eurocode today is:

(2.6)

(2.7)

(2.8)

Pourostad’s suggestion is to replace the function f with a new function with more conservative

interpolation. Namely:

(2.9)

Local Global

V=1

P = 0.5 for long. loads

P = 1.5P = 1.5 for transv. loads

Table 2.1: Parameter values in Pourostad’s interpolation formula
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This suggestion improved the results of the reduced stress method, and was considerably

“safer” than the current Eurocode method would be if torsional stiffness were to be included in

calculation of critical buckling stress.

Figure 2.3: Comparison of Eurocode values and Pourostad’s proposal values (10)
RM X2 = Eurocode, RM X3 = Pourostad

The second suggestion Pourostad had was to ignore plate-like buckling behavior in the

transverse direction, and to assume that column-like behavior would dominate. This produces

good results and simplifies the buckling verification process, since it is unnecessary to then

check against a second order analysis.

Compared to the FEM analysis, the method with these two corrections does reasonably well,

but for stocky panels under biaxial stress, there is a region of instability, which Pourostad

recommends fixing by performing verifications individually in the transverse and longitudinal

direction.
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2.3 EN 1999-1-1, Design of Aluminum Constructions (3)

For the combined loading of axial forces, expressed through and bending moments due toη
𝑁

out-of-plane loading which is expressed by , the resistances should satisfy the followingη
𝑚

interaction formula which shows the utilization grade,

𝑈 = η
𝑁
2 + 0, 9η

𝑚
2 − 𝑘

𝑁𝑚
η

𝑁
η

𝑚 (2.10)

where =1 if the bending moment gives compression in the studied layer, and =-1 if the𝑘
𝑁𝑚

𝑘
𝑁𝑚

bending moment gives tension in the layer of interest. The contribution from the axial forces η
𝑁

is found by the following formula,

(2.11)

where when both and are both compressive, which is the case in the𝑘
𝑥𝑦

= 2χ
𝑥
χ

𝑦
− 1 𝑁

𝑥,𝐸𝑑
𝑁

𝑦,𝐸𝑑

following study. The contribution from the out-of-plane load is accounted for by the formula

below:

(2.12)

where the moments and can be calculated using either numerical methods or the𝑚
𝑥,𝐸𝑑

𝑚
𝑦,𝐸𝑑

following formulas for cases where the plate is simply supported,
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(2.13)

(2.14)

where , and are for a cross section as shown in figure 2.3 given by the following𝐵
𝑥

𝐵
𝑦

𝐻

formulas,

𝐵
𝑥

=
𝐸𝐼

𝐿

2𝑎 (2.15)

is the second moment of area of the cross section given in figure 2.3, and is the width of a𝐼
𝐿

2𝑎

stiffener plus the adjacent plating.

(2.16)

here , and are the length of the different parts of a stiffener, as shown in figure 2.3. is𝑎
1

𝑎
2

𝑎
3

𝐵

given by the formula below,

(2.17)

(2.18)

where is the torsional constant of the cross section shown in figure 2.3. Here and is𝐼
𝑡

ϕ
𝑝𝑙𝑡

ϕ
𝑑𝑖𝑠

determined by,
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(2.19)

(2.20)

and the values of , , and is found by these:α
1

α
2

α
3

𝑓

(2.21)

(2.22)

All of these steps have to be done in order to find the bending moments in x and y direction.

These moments are given as moments per unit width, and therefore the moment resistances in

both directions have to be calculated as resistances per unit width.

Figure 2.4: Cross section notations
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2.4 EBPlate

EBPlate is a software that provides accurate values of elastic critical stresses for rectangular

plates subjected to in-plane loading. The rectangular plates can be unstiffened or stiffened by

either longitudinal or transverse stiffeners. Numerical eigenvalues can also be solved by using

the Rayleigh-Ritz Method. This software is used as an alternative to find the buckling load of the

plates that are presented. Buckling load analysis in EBPlate includes not only the bending of the

stiffeners and of the plate in the longitudinal and transversal direction, but also torsion.

By using the Rayleigh-ritz method, EBPlate is able to calculate a factor , known as in theϕ
𝑐𝑟

𝑎
𝑐𝑟

reduced stress method of capacity calculation. Rayleigh-ritz method is an energy method and

furthermore the principle of stationary potential energy is used to set up a formula for energy

balance in case of instability

∆𝑈 − ∆𝑊
𝑖𝑛𝑡

= 0 (2.10)

where represents the total tensile energy and represents the total inner work of the∆𝑈 ∆𝑊
𝑖𝑛𝑡

critical stress .𝑆
𝑐𝑟

= ϕ
𝑐𝑟

𝑆

The eigenvalue problem can now be solved by the help of the aforementioned formulas

[ 𝑑𝑒𝑡 𝑅
0
𝑅𝑇𝑌 − ϕ

𝑐𝑟
𝑅

𝐺
(𝑆) = 0 (2.11)

where represents material stiffness and represents the geometrical stiffness.𝑅
0

𝑅
𝐺
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3. Warm-up Example

On page 181 of the commentary to the current steel eurocode there is a worked example of a

longitudinally stiffened plate where the plate is loaded in-plane (11). The plate has dimensions

as shown below

Figure 3.1: Example from Commentary (11)
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The example in the commentary included strength verification for a specific loading situation,

but we used it as the basis of calculating the buckling load for the plate, making sure to follow

the commentary closely.

In addition to hand calculations, we performed a FEM analysis with the software Abaqus in

order to compare the results.

Figure 3.2: Local buckling mode
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Figure 3.3: Local buckling mode

Figure 3.4: Local buckling mode
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Figure 3.5: Local buckling mode

With this particular geometry, we were unable to determine a global buckling mode in the first

100 modes. This means that the plate is much more vulnerable to local buckling than it is to

global buckling, because of a combination of large stiffeners and small thickness values.

The Eurocode accounts for local buckling by calculating an effective area, where the section is

expected to fail as the whole effective area reaches the yield stress. This effective axial capacity

is then used to calculate slenderness, or susceptibility to global buckling (more on this in

chapters 4 and 5). As we were not able to determine a global buckling mode with FEM (to

request more eigenvalues is computationally expensive and irrelevant in practice) we are not

able to compare the FEM elastic global buckling force to the value from the Eurocode.

For loading in the transverse direction, the plate did buckle globally, which initially confused us.

We assumed that we were performing the buckling analysis incorrectly when loading in the

longitudinal direction. In fact, the large stiffener size provided enough resistance to global

buckling so as to ensure local buckling be critical.
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4. Calculations According to Eurocode

4.1 Buckling Analysis of Longitudinal Load

The process of buckling analysis according to the Eurocode (1, 2) is identifying a critical

buckling stress for plate-like buckling behavior, as well as a critical buckling stress for

column-like behavior.

4.1.1 Plate-like Behavior

Unstiffened plates buckle in two directions (provided the boundary conditions prevent

out-of-plane displacement), the longitudinal and the transverse. In a situation where the plate is

loaded uniaxially, the center of the plate will have a significantly larger out-of-plane displacement

than a point closer to the longitudinal edge. This is because the resistance provided by the

boundary conditions is reduced the closer the point is to the plate’s center.

A plate without boundary conditions that prevent out-of-plane displacement along the

longitudinal edge will not have this variation. One can also assume that the largest displacement

will be as large or larger than an analogous plate with these boundary conditions.

Plate-like buckling behavior involves therefore a more or less quadratic or consistently

“rounded” deformed shape in both the transverse and longitudinal directions
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Figure 4.1: Plate-like buckling

Figure 4.2: Plate-like buckling
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4.1.1 Column-like Behavior

Longitudinal stiffeners increase the second moment of area about the transverse axis for the

section of the plate they cover, increasing the total buckling resistance and reducing

out-of-plane displacement. In this way it can also be useful to model the buckling of a stiffened

plate as a row of columns that buckle as a group (1).

At the same time, the boundary conditions provide an extra resistance to out of plane

displacement, so a longitudinally loaded, longitudinally stiffened plate will always have a higher

resistance to buckling than a true row of columns. This is why the Eurocode requires

calculations of critical buckling stresses for both column-like and plate-like behavior.

A plate with relatively soft stiffeners will have a displacement field that more closely resembles a

plate-like buckling shape (that is, a large portion of the total resistance will come from the

boundary conditions and membrane forces) while a plate with very large or stiff stiffeners will

have a displacement field that more closely resembles the buckling shape of a row of columns.

In calculation of total axial capacity, the non-reduced axial capacity is multiplied with a reduction

factor (see below) in order to account for buckling, and this reduction factor is an interpolation

between the reduction factors for plate-like and column-like buckling, respectively. This equation

is provided and explained below.
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Figure 4.3: Column-like buckling

Figure 4.4: Column-like buckling
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4.1.2 Capacity Analysis Following EC 3

Capacity analysis of the stiffened plate under axial load is described in chapters 4 and 5 of EC

1993-1-5, with capacity:

(4.1)

is the effective compressive area, and differs from the gross area by taking into account𝐴
𝑐,𝑒𝑓𝑓

reduction for local and global buckling. For the purposes of comparison between EC results and

FEM analysis results, material factors are not included.

(4.2)

● is the reduction factor, derived from the interpolation function that takes into accountρ
𝑐

both column and plate-like behavior

● is the net area that takes local buckling into account𝐴
𝑐,𝑒𝑓𝑓, 𝑙𝑜𝑐

● is the area of the plate connected to other parts of the cross section𝐴
𝑒𝑓𝑓,𝐼

● If neither local nor global buckling are critical, is equal to the gross area, and the𝐴
𝑐,𝑒𝑓𝑓

capacity of the plate cross section is equal to unreduced axial capacity

Reduction factors for global buckling

The global reduction factor is an interpolation between the reduction factors for column

and plate-like buckling behavior, respectively.
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● Column-like behavior

(4.3)

(4.4)

(4.5)

– χ is the reduction factor

– is the adjusted imperfection factorα
𝑐

– is the sections slendernessλ
𝑐

– is the proportion between the effective and gross areas of the stiffenerβ
𝐴,𝑐

cross-section

– is the critical buckling stress for the column (in uniform compression, this value isσ
𝑐𝑟,𝑠𝑙

equal to the critical buckling stress σ
𝑐𝑟,𝑐

● Plate-like behavior

(4.6)

Otherwise (4.7)

where slenderness is the square root of the ratio of the nonreduced axial capacity to theλ
𝑝

𝑁
𝑎,𝑅𝑑

critical plate-buckling load 𝑁
𝑐𝑟,𝑝
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(4.8)

(4.9)

Nonreduced axial capacity (taking into account local buckling):

(4.10)

Interpolation of reduction factor:

(4.11)

where

(4.12)

The interpolation is an increase on the reduction factor for column-like behavior. Since

membrane forces and boundary conditions increase resistance and decrease displacement, the

resistance to buckling will always be slightly larger than the value calculated for an analogous

row of columns.

A low value for variable indicates that the stiffeners provide a high level of resistance on theirξ

own, and the membrane forces and boundary conditions provide a relatively small addition,

while a high value of indicates a larger role in membrane forces and boundary conditions inξ

the total resistance.

It is important to note that the value of is primarily dependent on the buckling resistance of theξ

stiffeners. The calculated value of critical buckling stress for plate-like behavior can be

calculated as lower than the corresponding value for column-like behavior. In practice, a

stiffened plate will always have more resistance than the corresponding row of columns. It is

therefore reasonable to conclude that the Eurocode will produce conservative capacities for

plates with very large/stiff stiffeners, even before safety and material factors are included. Short

plates with large stiffeners are particularly likely to encounter this problem.
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The current Eurocode method also ignores torsional resistance of the stiffeners. Torsional

stiffness is of limited significance for open stiffener sections, but in closed trapezoids it makes a

larger difference. This is especially true for large stiffeners.

Table 4.1: Values for “small” geometry
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Table 4.2: Values for “slender” geometry

Table 4.3: Values for “stiff” geometry
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Figure 4.5: Reduction factors for buckling

All three geometries are dominated by column buckling for plates with an aspect ratio less than

or equal to one (read: length = 4200), while the slender and stiff geometries largely remain so

for all lengths. This is why the curve for “Small” geometry begins to flatten out as plate-like

buckling takes on a larger role, while the other two continue in a fairly linear fashion. Meanwhile,

“Slender” and “Stiff” geometries have curves that are very close, due to having large stiffeners

with the same cross section, albeit of different thicknesses.

.
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4.2 Compensation for Neglect of Torsional Stiffness

To compensate for the Eurocode’s neglect of torsional stiffness of longitudinal stiffeners, we

have included an alternate method of capacity calculation for comparison purposes.

4.2.1 Hybrid Method

In the Eurocode, critical buckling stress (and therefore critical buckling load) is determined by

performing calculations on geometrical sizes, and then this critical buckling stress is used to

determine slenderness and reduction factors for both plate-like and column-like behavior.

If, however, we instead retrieve critical buckling load from LBA performed in Abaqus, we can

substitute this value for the ones calculated from the Eurocode to determine slenderness and a

reduction factor.

Advantages
An advantage of this approach is simplicity. By retrieving the critical buckling load from Abaqus,

we circumvent the need to calculate the critical buckling stresses and to evaluate values for

both column-like and plate-like behavior. Since the “column” and “plate” critical buckling

stresses are the same, receives a value of zero and only the column-like reduction factor isξ

relevant. This dovetails well with our specific chosen geometries, as column-like buckling

dominates for the majority of them anyway.

Another advantage is that the resulting buckling curve can be compared to the Abaqus buckling

curve for all lengths, and not only the ones where global buckling is critical.

Disadvantages
A possible disadvantage of this approach is that the Eurocode estimation of capacity is

specifically tailored to the theoretical elastic buckling loads calculated from it. In this way, the

neglect of torsional stiffness may be compensated for to some degree in a way of which we are

unaware.
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Pourostad’s proposal hints to this being the case, as his interpolation formula is more

conservative in order to allow for the inclusion of torsional stiffness. The results we received

from this method, however, were conservative enough, as discussed later.

Results.

Included are our results. An example calculation sheet is included in the appendices.

Table 4.4: Hybrid ”small” Table 4.5: Hybrid ”slender”
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Table 4.6: Hybrid ”stiff”

4.2.2 Pourostad’s Interpolation Formula

Another approach that takes torsional stiffness into account is Pourostad’s suggestion for an

alternate interpolation formula that adjusts it when the method includes torsional stiffness (10).

This method, however, is more conservative than the current approach taken by the Eurocode.

As such, it is not of much use for our particular geometries, where the Eurocode is already

excessively conservative (see chapter 5). This section was included to clarify why the method is

not included in the comparison graphs.
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4.3 Transverse Load

Load perpendicular to the stiffener direction

Relevant load cases can often occur in the bottom plate of a hollow bridge cross section as a

result of traffic load or the self weight of the construction during the launching phase. The

shearing force is carried by the diagonal webs and transferred to the bottom plate partially as

compressive axial force. During the bridge’s use, the self-weight and traffic load provide a

tensile stress on the bottom plate due to rotational moment. As such, the case of biaxial

compression occurs in the launching phase.

A common way to install a bridge is through “launching” over the bridge’s intended span. This

setup poses a unique challenge to the design process, as the self-weight load of the bridge

causes a moment where compressive stresses occur in the bottom plate. Stated another way:

during the launching phase the bridge behaves as a cantilever until it reaches the supports.

We have here analyzed a plate of aspect ratio 1 (4200x4200 mm). We have also chosen to

apply the transverse load on all three sections that are also mentioned in the longitudinal load

part. These sections are called “small”, “slender” and “stiff”.

4.3.1 Numerical Analysis

When calculating the capacity for transverse compressive axial load, hand calculations must be

performed by adapting the Eurocode method (either effective width or reduced stress method)

for plate buckling for unstiffened plates. This is because there is no current recommended

method for dimensioning a stiffened plate when the plate’s stiffener direction is perpendicular to

the compressive load, see chapter 6.

Meanwhile, numerical analysis can be utilized via FEM software like ABAQUS, which we have

also used to determine capacity in the longitudinal direction.

In order to model the transverse behavior, we adjusted boundary conditions slightly because of

the change in the load direction. These changes can be seen on the figures below. Otherwise,

we first performed a linear buckling analysis to determine the critical buckling load and shape,

and then included the critical mode as an imperfection when running the capacity analysis, with
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maximum deflection 1 mm. We also performed a capacity analysis on the perfect geometry first,

in order to ensure that our choice of boundary conditions was appropriate.

Figure 4.6: Load perpendicular to the stiffener direction

Figure 4.7: Section A-A from the figure 4.6
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Figure 4.8: Section B-B from the figure 4.6

Figure 4.6 shows how the transverse load was applied to the plate. The load was as shown in

the figure, applied as a distributed load along the edge on both sides of the plate. The 1-, 2- and

3-direction on the figures reflect the x-,y- and z-direction, respectively.  The directions are the

same as the ones used in ABAQUS. 1-direction is along the width of the plate, 2-direction along

the length of the plate and 3-direction along the height of the plate.

Figures 4.7 and 4.8 show two different sections from the plate which are closely examined with

respect to the boundary conditions of the plate. Section A-A shows that displacement is

prevented in the 1-direction (x-direction) by restraining the node in the center of the plate’s

edge. The plate and the stiffeners are also restrained along the edge against displacement in

the 2 direction (y direction).

Section B-B which is shown in the figure 4.8 above shows the loaded edge and its boundary

conditions. It is worth mentioning that the boundary conditions of the opposite edge of the plate

are the exact same as the one shown in the figure. On this edge the plate is restrained along

the edge against displacement in the 2-direction. There is also one node in the corner of the

plate which can be seen on the left side of the figure 4.8, that is restraining the plate against

displacement in the 3-direction (z-direction).
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4.3.2 Capacity

When running the capacity analysis with perfect geometry, we noticed that there was a slight

downward deflection of the plate members between the edge and first stiffener on both sides.

The buckling shape from the LBA, however, showed an upward deflection of these same

sections. For this reason we included an imperfection with scale factor -1 in addition to 1, in

order to find the lowest strength, presumed to be the design strength.

Figure 4.9: Critical buckling mode for “slender” geometry (α = 1)
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Figure 4.10: Critical buckling mode for “slender” geometry (α = 1)
Side view

Below is the shape of the perfect geometry in deformed condition at section yield (note that the

deformations are scaled larger for visibility purposes.)
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Figure 4.11: Failure mode for “slender” geometry ( . Imperfection factor 0α = 1)

Figure 4.12: Failure mode for “slender” geometry ( . Imperfection factor 0. Side viewα = 1)
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It is clear that the deformation of the perfect geometry is analogous to the eigenvalue shape

(note also that Abaqus’s linear analysis stopped at the same load as the critical buckling load.

The buckling load gives a stiffness matrix with determinant zero and therefore will not provide a

convergent result.) As a result of this, it is logical to include an imperfection that is a negatively

scaled form of the buckling mode. We therefore include two capacities in our results.

Imperfection scale factor Capacity[MN]

1 6.68

-1 6.325

Table 4.7: Capacities including imperfections

The capacity with the negatively scaled buckling mode is slightly smaller, with a difference of

about 5.6%. The most unfavorable imperfection shape is generally preferable, since the shape

of any real imperfections are unpredictable, so it is better to take the conservative estimate

despite the LBA suggesting an upward deflection of the side panels during buckling.
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5. Abaqus analysis

5.1 Model Description

5.1.1 Imperfections

When performing a static capacity analysis, Abaqus operates with the assumption of perfect

geometry. In practice, this is never the case. Material safety factors are intended to compensate

for non-uniformities in the building material (in this case steel) but do not address the issue of

buckling. For this reason we have included an imperfection in the model geometry by first

running a buckling analysis and including the lowest mode as a scaled imperfection in the

geometry when running a static capacity analysis. The lowest mode would give an imperfection

that is presumably the weakest possible construction of the plate with regards to buckling, and

therefore should give reasonable results in the capacity analysis.

EC 1993-1-5 states that a plate can be considered planar so long as the curvature radius

satisfies the following condition (2).

(5.1)

where r is the radius of curvature, a is the width of the plate (here interpreted as longest in-plane

dimension), and t is the plate’s thickness.

If we assume the largest displacement occurs in the middle of the plate, we can use the

pythagorean theorem and algebra to determine a maximum central displacement for a plate to

still be considered planar.

(5.2)
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For all the chosen plate lengths, this equation produced a displacement of just over 3 mm (for

t=24) or 1.5 (for t=12). As a result, for all geometries where the critical buckling mode was

global, we used an imperfection factor of 3 and 1.5 respectively for a maximum central

out-of-plane displacement of 3 mm or 1.5 mm. For geometries where the critical buckling mode

was a local buckling mode, we used a scale factor of 0.5. For transverse applied load, failure

with perfect geometry produced a displacement field resembling the first buckling mode, but in

the opposite direction. We have therefore applied a scale factor of both 1 and -1 to identify the

weakest imperfect geometry.

In 1993-1-1, chapter 5.1 discusses imperfections. For columns an imperfection eccentricity is

placed at the vertical center of the column, and can range from 1/150 times the length to 1/350

times the length, depending on the buckling curve.Our shape factor was 0.452, which is closest

to buckling curve c, with a shape factor of 0.49. This means that if we included the imperfection

suggested for columns, the imperfection should be 1/200th of the length, or 42mm for the

longest length. This is 14 times larger than the imperfection we have chosen. If the

manufacturer of a plated structure is following the Eurocode, this is far too large an imperfection

to be allowed in the context of plated structures, and we have therefore chosen to use

imperfection size 3 mm.

For a few of the geometries (3 out of 30), introduction of imperfection in this manner provided a

capacity higher than that of the perfect geometry. Since this only occurred in very short plates

with local buckling modes where the reduced and nonreduced axial capacities were very close,

we deemed the capacity of the perfect geometry adequate. This will be further discussed later in

the chapter.

5.1.2 Geometries

Our chosen geometries consist of combinations of ten plate lengths and three cross sections.

“Slender” cross section

The “Slender” cross-section comes from the example retrieved from the commentary and

included in chapter 3. As a compressive class 4 cross section with very slender stiffeners, six of

our ten chosen lengths resulted in local buckling being critical. This made us curious about the
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behavior of similar cross sections that were less slender, leading to our two other cross-section

choices.

“Stiff” cross section

The “Stiff” cross section has the same dimensions as the “Slender” section apart from plate and

stiffener thicknesses, which were both doubled to 24 and 12 mm, respectively. The

cross-sectional area is twice that of the “Slender” section. The “Stiff” section is of compressive

class 1.

“Small” cross section

The “Small” cross section is a modification of the “Slender” cross section in which the stiffener’s

angular height was halved in order to reduce the second moment of area about the transverse

axis. The cross-sectional area is about 14,8 percent lower than that of the “Slender” section.

The “Small” section is of compressive class 4.

We chose 10 lengths ranging from 600 mm to 8400mm (aspect ratio range of 0.143 to 2) in

order to get an idea of how axial capacity changes along with aspect ratio.

5.2.2 Boundary Conditions

The Abaqus axes corresponded to the plate axes thus:

● The X axis was the transverse axis

● The Y axis was the orthogonal or out-of-plane axis

● The Z axis was the longitudinal axis.

The following figures demonstrate the boundary conditions.
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Figure 5.1: Longitudinal loading with varying plate length.
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Figure 5.2: Section A-A, boundary conditions and constraints

Figure 5.3: Section B-B, boundary conditions and constraints

In order to distribute longitudinal load throughout the section without including an unintentional

rotational moment about the transverse axis, we placed a reference point in the center of area,

and then constrained the section edge to the reference point using kinematic coupling (see

section 5.2.3). Note that the center of area is the center of area for the entirety of the plate

section. In reality, the three central stiffeners could be loaded about their own center of area

(including the corresponding plate sections) which is slightly higher, while the two edge

stiffeners have a center of area slightly lower than our reference point.

Our options were to choose the column center of area, the edge column center of area, or the

global center of area. Though the global center of area introduces slight inaccuracies to both

central and edge columns, we deemed it the best of the three options, and the differences are

small enough to not interfere with our results to a significant extent.



50

5.2.3 Kinematic Coupling Constraints

Applying load is more complicated in sections with longitudinal stiffeners, as the load needs to

be applied at the center of area so as to not cause an unintentional rotational moment. This was

achieved by adding a reference point in the Assembly module, placing it in the center of area for

the section, and using kinematic coupling constraints to control the displacement behavior of the

section.

The constraints did not include the corner nodes of the plate. When performing a triaxially

loaded capacity analysis, including the corners causes distortion in the displacement field, and

we chose to use the same constraints for consistency’s sake.

Boundary conditions were applied to the reference point, creating a pinned reference point at

one end of the plate and a sliding reference point at the other. The constraints allow for the

section to rotate about the transverse axis.

5.3 Analysis

5.3.1 Longitudinal and Transverse Elastic Buckling

As previously mentioned, we performed a linear buckling analysis by including a linear

perturbation step of type buckling.

Before running the analysis, we added a reference load of 1 Newton to the sliding reference

point. Our results provided a set of eigenvalues for 3 buckling modes, the eigenvalue being a

multiplier to the reference load. This means that an eigenvalue result of 8E7 indicates an elastic

buckling load of 80 MN.

The first eigenvalue produced by Abaqus for each geometry is the lowest mode, and is

therefore the critical elastic buckling load. This can be either a global or a local buckling mode,

whereas the Eurocode determines the elastic buckling load specifically for global buckling (see

buckling curves in figures 5.4-5.6). One consequence of this is that it is meaningless to compare

critical buckling loads retrieved from Abaqus to critical buckling loads calculated using the

Eurocode specifically in cases where local buckling modes are critical.



51

For the “small” section, this was the three lengths with an aspect ratio less than 0.5. Meanwhile,

the “stiff” section had global buckling modes for all plates of 3000 mm (aspect ratio 0.714) and

up. The “slender” sections buckled locally up to and including the plate of length 4200 mm

(aspect ratio 1). This is likely because of a combination of large stiffeners and slender plate

members; the large stiffeners provide high resistance to global buckling while the thin plates

make the section more susceptible to local buckling. Both of these characteristics contributed to

higher likelihood of local buckling.

Low aspect ratios, in particular, tend to be susceptible to local buckling because of the low level

of column slenderness. This effect begins to wane around aspect ratios of 1.

Table 5.1: left to right small, slender, stiff. Critical buckling load per Abaqus
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Figure 5.4: Buckling curve for “small” geometry
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Figure 5.5: Buckling curve for “slender” geometry
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Figure 5.6: Buckling curve for “stiff” geometry
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We can clearly see the region on the left where Abaqus begins to identify local buckling modes

as critical while the Eurocode and values retrieved from EB plate diverge.

The point where the EC3 curve crosses the curve is the point at which torsional resistance

begins to play a larger role. It makes sense that this occurs for long plates since it is here the

column buckling resistance begins to significantly decline.

For stiff geometry, the EB plate curve is not included because it provided values that were so

large as to be irrelevant. The cause of this presumably has something to do with the

cross-sectional class and stiffener size, as the EB plate curves and the Eurocode curves are

very close for the other two sections, which are both of class 4.
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5.3.4 Capacity Analyses

The capacities of the various geometries are included here:

Length [mm] Small [MN] Slender [MN] Stiff [MN]

600 22.212 25.4925 51.1555

1050 21.99 25.4815 50.996

1500 21.978 25.432 50.9575

2100 20.823 24.992 50.6935

3000 17.922 24.6125 49.115

4200 12.546 24.662 49.049

6300 9.387 23.925 49.06

7000 9.126 23.694 49.093

7700 9.012 23.3475 49.137

8400 8.982 22.8635 49.1975

Table 5.2: Axial longitudinal resistance capacities

Note that for “Stiff,” the capacities for the two shortest plates are higher than the total theoretical

capacity for the section (50.928 MN). This section is class 1 and therefore includes no reduction

to account for local buckling of members and must be the maximum capacity. The error is likely

caused by the exclusion of the corner nodes by the kinematic coupling constraints used to apply

axial load.

This error need not compromise the results, however, because it is very small (0.4%) even for

maximum error.
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Note that for all lengths of the “slender” section, capacity is higher than the axial capacity

(disregarding buckling) determined by the Eurocode. This is interesting, as the areal reduction is

supposed to protect against the risk of local buckling, and in our case has produced

conservative results. This is similarly true for the “small” plates with lengths of 1500 or shorter.

5.5 Comparison to Eurocode and Discussion

With regard to critical elastic buckling load it is, as previously mentioned, meaningless to

compare Abaqus values to those of the Eurocode for geometries for which the critical buckling

mode is a local one. This tends to occur in situations where the plate is particularly short or

particularly vulnerable to local buckling because of slender geometry (class 4 sections).

Another large difference is, as noted by Pourostad (10), the Eurocode does not take torsional

stiffness of stiffeners into account when calculating the critical elastic buckling load. For this

reason, for long plates, Abaqus produces a critical elastic buckling load that is significantly

higher than the value suggested by the Eurocode.

It should be noted that for the geometries we have chosen all have buckling curves that are

partially (for “Small” geometries shorter than 4200 mm) or entirely (“Slender” and “Stiff”) above

the nonreduced axial capacity according to Abaqus. Additionally, even while neglecting torsional

stiffness, the Eurocode produced buckling curves for the “slender” and “stiff” geometries that

were largely above the non-reduced axial capacity. This doesn’t mean that the sections are

immune to buckling, but rather that they are not particularly vulnerable. Combined with the

Eurocode’s neglect of  torsional stiffness and the size of the error in capacities, this suggests

that the Eurocode produces overly conservative results when slenderness values are low and

the section has closed stiffeners. This is interesting to note, especially in the case of “slender”

geometry, a class 4 section with stiffeners that are prone to local buckling.

Additionally, in the case of column-buckling, the Eurocode suggests including a much larger

imperfection than what we have used in order to calculate the resistance to buckling. This

implies that with such small scale factors for the imperfections, it may be useful to test them in

the opposite direction as well to confirm that it is indeed buckling and not failure due to other

imperfections that are decisive.
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Figure 5.7: Axial capacity for “small” geometry, buckling included
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Figure 5.8: Axial capacity for “slender” geometry, buckling included
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Figure 5.9: Axial capacity for “stiff” geometry,  buckling included

Both EC3 and hybrid methods are conservative, but for long plates the Eurocode deviates

further from the capacity determined in FEM analysis than the hybrid method. For both “small”

and “stiff” geometries, the hybrid method and EC3 curves cross around aspect ratio 1, or length

4200. This is not the case for “slender” geometry, but the relevant “slender” plate is vulnerable to

local rather than global buckling, and this has the function of reducing the capacity in the hybrid

method to a value lower than that of the Eurocode. The next plate length (aspect ratio 1.5) does

see this cross.

This suggests that the hybrid method is preferable to the Eurocode for plates with aspect ratios

above 1, provided they have low slenderness for global buckling; however, the hybrid method is

still conservative, and underestimates capacity by around 30%, suggesting that it is inadequate.

It is also worse than the Eurocode in situations where local buckling is critical, rather than global

buckling.
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6. Hand Calculations of Transverse Capacity

Capacity for axial loads in the transverse direction was determined by the effective width

method according to EC3. Here there is only plate-like behavior, as there are no longitudinal

stiffeners to add to the capacity.

Because of the five stiffeners, and the LBA results, it is reasonable to conclude that the lowest

relevant buckling mode will have 5 half-sine waves perpendicular to the stiffener direction, see

figure 6.1. This is a necessary adaptation to the Eurocode method, as it is unreasonable to

assume it would behave exactly as an unstiffened plate would.

Figure 6.1: Critical buckling mode for “slender” geometry

Otherwise, we treated the plate as unstiffened. In reality, the longitudinal stiffeners aid in

providing some stiffness, but the Eurocode says nothing about the buckling behavior of a plate

when uniaxially loaded perpendicular to the stiffener direction.
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This example is for the “Slender” section with an aspect ratio of 1. This method is retrieved from

source (4)

We begin by calculating the buckling factor 𝑘
σ

(6.1)

Here a is the length of the plate, b is the width, m is the number of half-sine waves in the

relevant buckling shape in the longitudinal direction, and n is the number of half-sine waves in

the transverse direction. Notice that since the plate is being loaded perpendicular to the

stiffeners, what we have earlier referred to as the longitudinal and transverse axes have now

switched places.

(6.2)

(6.3)

(6.4)

(6.5)

The FEM analysis determined the value to be 6.325 MN, meaning the Eurocode has about 10%

error. This is interesting considering that the error was much larger for axial load in the

longitudinal direction (parallel to stiffeners).
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The lowest buckling mode for “stiff” geometry had an asymmetrical form, with 4 half-sine waves.

Figure 6.2: Critical buckling mode for “stiff” geometry

Figure 6.3: Critical buckling mode for “stiff” geometry, side view
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Though the half-sine waves are not of uniform size, we performed calculations with an m-value

of 4 in addition to the m-value of 5, in order to compare.

Figure 6.4: Critical buckling mode for “small” geometry

Figure 6.5: Critical buckling mode for “small” geometry, side view
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For small geometry, we chose an m-value of 3.This seemed most appropriate as the middle

three stiffeners did not appear to aid much against buckling.

Geometry Capacity according to
hand calculations
[MN]

Capacity according to
FEM analysis [MN]

Deviation [% of FEM
capacity]

Stiff (m=4) 17.61 22.62 22.1% (safe)

Stiff (m=5) 20.86 22.62 7.8% (safe)

Small (m=3) 3.75 2.992 25.3% (unsafe)

Table 6.1: Capacity comparison of Eurocode and Abaqus

It is interesting to note that for “stiff” geometry, the m-value of 4 gave a conservative value for

the capacity. Even with an m-value of 5, the capacity is still on the safe side. Keep in mind that

the imperfection that gave the lowest capacity was a scaled mode 1, which is closer to the

shape of plate buckling with m-value 4.

For small geometry however, this method was unsafe, producing a value 25% larger than the

true capacity. It is clear, then, that the current methods for plate buckling should not be applied

to stiffened plates in this way, and an alternative should be developed.

The method does work for sections with large stiffeners due to higher bending resistance, but if

the point is to be able to use this method without first confirming or checking against more exact

methods of design, this adapted method is still insufficient.
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7. Out-of-plane Loads

Figure 7.1: Loading model for out-of-plate loading
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Figure 7.2: Cross section A-A with constraints and boundary conditions

Figure 7.3: Cross section BB with boundary conditions

In modeling the plate behavior under out of plane loads, we used the FEM software ABAQUS.

Unlike in our axial analyses, the behavior of the plate is not as simple as a capacity that, when

reached, necessarily results in the plate buckling/failing.

In a plate that is only loaded out of plane, without axial loads in the longitudinal and transverse

directions, the resistance of the plate is determined by first bending behavior and then

membrane behavior in tension (see section 7.3). If the plate is biaxially loaded in addition to its

out-of-plane load, the deflection of the midpoint will cause the plate to begin taking on a shape

resembling a global buckling mode. This deflection is therefore comparable to an imperfection in

global buckling analysis, and reduces the axial resistance of the plate.
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As such, when the deflection of the midpoint becomes too large, the plate will buckle, similarly

to the plates in earlier chapters.

7.1 Description of Load Combinations

To investigate this loading situation, we modeled a plate of aspect ratio 1 (4200x4200 mm), for

each section (“Small,” “Slender” and “Stiff”) and included three load combinations for each

geometry.

● Control: The control situation had no axial loads, and a gradually increasing out-of-plane

load (pressure or suction)

● 10% group: The 10% load combination included axial loads that were 10% of the

capacities for axial load in the longitudinal and transverse directions, respectively. These

load capacities are taken from our Abaqus results in chapter 5.

● 30% group: Similar to 10% group, but with 30% of the axial capacities applied in each

direction.

For both the 10% and 30% groups, we added a step in Abaqus to ensure that they were held

constant during the progressive loading of the pressure/suction load

7.2 Interpretation of Results

Initially, we had difficulty understanding the results we produced. When performing static

analyses (provided that nonlinear geometry is enabled), Abaqus exits with an error once it is

unable to produce a convergent result within the increment bounds set by the user. Provided the

minimum time increment is sufficiently small (default is 1E-5) this means that the equilibrium

curve has reached a nonlinearity. For the purposes of axial capacity analysis, this is adequate,

as the relevant nonlinearity is buckling or section failure. In the case of plates with zero axial

load, the analysis continues past any semblance of what one could reasonably call its

resistance capacity.

This is due to the pressure forces causing such large deformation that additional load is taken

by deformed sections of the plate as tension loads.
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Figure 7.4: Ultimate deformation of slender plate when analysis continues until

non-convergence

It is more relevant to constructions to evaluate the capacity in terms of bending resistance of the

stiffeners. There is no current method for this in the EC3, but the EC9, which gives guidelines

for dimensioning aluminum members, includes a method that we have used for comparison

purposes (see chapter 8).

Meanwhile, we have taken an observational approach to capacity determination based on our

results.

7.2 Results

We requested a History Output for the out-of-plane deflection of the center point of the plate,
and plotted its displacement against the total force acting upon the plate out of plane.

7.2.1 Pressure
The Force-Displacement graphs for each geometry follow. The curves for the control, 10% and
30% groups are presented on the same graphs for clarity and comparison’s sake.
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The pressure graph for “stiff” geometry is the easiest to interpret. The curves resemble a

stress-strain curve for a tensile material test, in that there is a fairly linear section initially,

followed by a region of softening, where the rate of displacement relative to force increases.

This effect is more obvious for the axially loaded groups than for the control group, where the

curve does not flatten as much. Still, there is a clear linear region presumably dominated by

bending, followed by a softer region where the stiffeners provide less resistance as they deform.

For the “Slender” geometry, the curves for the control and 10% groups actually overlap briefly,

though this could be due to imprecisions in the calculations. The general behavior is the same,

with a clear linear region followed by a region of softening. Though the 10% and control group

curves are very close even during a large portion of this softening region, the 10% curve flattens

more, due to axial loads accelerating the deflection of the plate center.

The “Small” plate has an equilibrium curve that is less clear. It too has a softening region, but

this is more difficult to identify. The initial linear area has a shallow slope to begin with, and does

not flatten as much in relative terms. This is visible despite scale differences because of the

failure points on the 10% and 30% curves.

Note the points at which the 10% and 30% groups stop. These are the aforementioned points at

which Abaqus is no longer able to find a convergent value. This is because the displacement is

increasing so quickly (while the equilibrium load is either decreasing or behaving with a

nonlinearity) that Abaqus can no longer determine a solution using the Newton Raphson

method, where buckling of the plate occurs. Still, we suggest that a better value for the plate’s

resistance capacity can be determined from the region of the curve at which the slope begins to

decline.

7.2.2 Suction

The Force-Displacement curves for suction follow on the next three pages.
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The shape of the curves in suction is analogous to the shape for pressure load, but there are

larger capacity differences between the curves for different groups of the same geometry.

A part of this effect comes from the reversal of the bending moment about the transverse axis.

When the plate is under a pressure load, most of the stiffener is in tension, and the plate is in

compression. Because the center of area is very close to the plate, the magnitude of the

stresses due to bending are significantly larger at the top of the stiffener than at the bottom of

the plate. This large tension stress is offset somewhat by the compressive stress from the axial

loads. Though this does increase the stress in the plate, the total stress distribution is more

favorable.

In suction, however, the top flange of the stiffener has a compressive stress due to bending

moment and compressive stress from the axial loads. Though this reduces the overall stress in

the plate, it increases the compressive stress in the flange and is altogether a more vulnerable

loading situation. In the slender geometry, this is further compounded by the stiffener web’s

vulnerability to local buckling. This is perhaps an explanation for why the slender curve for

suction without axial loads flattens and fails, while the other two continue in a shallower pattern.

Figure 7.11: Stress distribution throughout section, suction
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Figure 7.12: Stress distribution throughout section, pressure

In bending about the longitudinal axis, the plate has a much lower resistance, due to the

slenderness of the plate. We therefore consider bending about the transverse axis to be more

relevant for determination of resistance.
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7.2.3 Stress Distribution Throughout the Plate

Figure 7.13: Stress distribution throughout plate, pressure

Figure 7.14: Stress distribution throughout plate, suction
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These figures are retrieved from the Abaqus output database around the time the flattening of

the curves begins. In both the pressure and suction scenarios, it is the stiffeners that begin to

yield first. This is what causes the flattening of the curves, as the red sections on the figures are

unable to provide the resistance they did before.

Note the lower levels of stress in the plate in the suction scenario. This is a result of the dynamic

discussed above; the offset of the stresses in the plates by the axial loads exacerbates the

stress scenario in the stiffeners and reduces the tension stress in the plate, causing a scenario

where the stiffeners are at a much higher stress level than the plate in relative terms.

7.3 Discussion of Procedure

As mentioned above, when determining the capacity of a plate loaded in this way, there is no

current Eurocode guideline to assess how the resistance strength changes with different axial

load combinations. Therefore, when running the analysis in Abaqus, the user has to use his or

her best judgment in deciding what the true resistance capacity of the plate is. Ideally, this would

also be standardized, so that different geometries and load situations could be easily compared.

By standardized, we mean that capacity should be determined as the load that causes a certain

displacement, in terms of, for example, the height of the total cross section. Another suggestion

would be when the slope of the Force-Displacement curve is reduced to a predetermined

proportion of the slope in the linear region. An advantage of this suggestion is that a small

deviation in the load size from the design load would not necessarily produce a much larger

displacement, since the slope of the curve has not yet reached the shallow region.

More research is needed, and analyses performed on different geometries in order to determine

a reasonable window for either of these suggestions. The variation is large (see curves for

“small” vs “stiff” geometry) and three geometries is not adequate for making this determination.

Additionally, we have assumed an aspect ratio of 1, and the plate may behave differently under

different aspect ratios.

A Note on Membrane Forces:

When designings constructions, deflections and deformations are critical to understanding the

behavior of both the component and the entire constructions. In the case of a plate loaded out of

plane, it is the deformation that accounts for much of the strength after a certain point.
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The plate in figure 7.4 in its deformed state is clearly too deformed to be of any use, despite its

retention of some resistance strength. This resistance strength comes from the membrane

forces in the plate. Along the plate’s edges, the plate has deformed so much as to be practically

perpendicular to its original orientation, causing the pressure load to be carried by tension in the

plate.
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8. Comparison to The Aluminum Standard

To calculate the theoretical capacity against pressure and suction, we used the interaction

method, (eq 2.10) from the aluminum standard, EN 1999-1-1 (3). We calculated as mentioned in

the previous chapter the out-of-plane load capacities in combination with axial loads for these

three cases, 0%, 10% and 30% of the total axial capacity from both longitudinal and transverse

direction.

8.1 Suction

In our case, the studied layer was the plate and this was under tension when we applied suction

to the stiffened plate. The results of this analysis is shown in figure 8.4. The figure shows the

results for all three geometries that were analyzed. As we can see the capacity against suction

decreases with the size of the geometry and the increasing percentage of total axial load. The

mentioned tendencies follows the observations made in chapter 7. However, when we compare

the final results from EC9 against ABAQUS, it is obvious that the results from EC9 are unsafe,

see figures below.

The results from EC9 are added on the Abaqus graphs, in order to be able to compare the

curves. EC9 results are shown by horizontal lines with the same color as the corresponding

ABAQUS result.The difference between the two methods is clearer as the axial load grows.
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Figure 8.1: “Small” geometry plotted as horizontal lines (EC9)

Figure 8.2: “Slender” geometry plotted as horizontal lines (EC9)
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Figure 8.3: “Stiff” geometry plotted as horizontal lines (EC9)

8.2 Pressure

The EC9 results from the pressure loading are inconsistent with findings from chapter 7

because of the increase of the out-of-plane pressure capacity with the bigger axial loads, as

shown in figure 8.5. The only difference we made here compared to the suction, was that we

changed the value from 1 to -1. This change caused the capacity to trend in the opposite𝑘
𝑁𝑚

direction of the results from ABAQUS, where it is obvious that the pressure capacity decreases

when the axial load increases. As such, plotting these results is meaningless, and has been

omitted.

Our results show that the interaction method from EC9 is not fully suitable nor trustworthy. The

reason behind this is that the interaction method requires adjustment. Another possible reason

is that the differences between steel and aluminum are critical here, since this interaction

method is derived from the aluminum standard.
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Figure 8.4: Plate loaded by suction, 𝑘
𝑁𝑚

=− 1

Figure 8.5: Plate loaded by pressure, 𝑘
𝑁𝑚

= 1
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9. Conclusion

Longitudinally stiffened steel plates currently have an incomplete procedure for design

according to the Eurocode. In determination of axial capacity, our results show that, in the

longitudinal direction, it tends to be conservative, at least for our choices of geometry. Earlier

studies have shown that the method is not sufficiently conservative, while our study has

produced opposite results. This implies that the Eurocode does not account for different

geometries in consistent ways, since it does not provide consistently conservative or

consistently unsafe results. To adjust or adapt the current method, therefore, more complicated

measures should be implemented. For axial capacity, at least, the current method can be safely

used for geometries similar to ours, as it is conservative.

Note that our geometries have closed section stiffeners and are not particularly susceptible to

global buckling. The risk of local buckling for two of our three geometries reduced the

slenderness with regard to global buckling, and the size of the stiffeners in the third geometry

also reduced slenderness via its large stiffeners and significant torsional strength.

For transverse uniaxial loading of stiffened plates, the adapted methods for determination of

resistance capacities worked to a reasonable extent for the geometries with large stiffeners with

a high degree of bending resistance, but produced unsafe results for the “small” geometry, even

when the difference in bending stiffness is partially accounted for via analysis of the lower

buckling modes (showing fewer half-sine waves and therefore lower resistance than intuition

implies). This suggests that, similarly to axial capacity, whether the method is easily adapted in

this way is more dependent on the specific geometry as opposed to the method itself. The

torsional stiffness is likely of value here.

When it comes to out-of-plane loading of the stiffened plate, it is clear that increased

compressive axial load reduces the plate’s resistance capacity. Especially for plates whose

stiffeners have a high level of bending resistance, one method for determining capacity could be

found by analyzing the displacement of the center of the plate. Due to membrane forces, the

plate has some post-buckling resistance strength as well, but the global deformation at this point

is likely to be undesirable. While there is no current method for steel plates, the 2021 version of
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the EC9, or aluminum standard, includes a method for determining capacity via utilization grade,

but this appears as well to be unsafe and inadequate in its current form.
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Appendix A

Longitudinal buckling load for slender geometry:

- Orthotropic plate with trapezoid stiffeners

Dimensions:

≔a

600
1050
1500
2100
3000
4200
6300
7000
7700
8400

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

mm Plate lengths

≔b 4200 mm Plate width
≔bI 450 mm Plate width between stiffeners
≔bII 300 mm Plate width between one stiffener
≔bIII 288 mm Angled height of stiffener
≔bIV 135 mm Width of stiffener parallell to plate

≔h 275 mm Vertical height of stiffener
≔t 12 mm Plate thickness
≔tsl 6 mm Stiffener thickness

Material Data:

≔fy 355 MPa
≔E 210000 MPa
≔ν 0.3

≔ε =
‾‾‾‾‾‾‾‾2
――――
235 MPa

fy
0.814

≔γM0 1.00 Note that for comparison 
purposed we will neglect 
material factors

≔γM1 1.05
≔ψ 1
≔kσ 4

Non-Commercial Use Only



Calculation of effective areas of subpanels:

≔reduction ((var)) ‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
||

|
|
|
|
|
|
||

if

else

<var 0.673
‖
‖1

‖
‖
‖‖
―――――――
(( −var 0.055 (( +3 ψ))))

var2

≔vecred ((var)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
||

for ∊ |
|
|
|
|
|
|
|
|
|
|
||

i ‥0 9
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|

if

else

<var
i

0.673

‖
‖‖

←vec
i

1

‖
‖
‖
‖
‖

←vec
i

―――――――

⎛
⎝

−var
i

0.055 (( +3 ψ))⎞
⎠

var
i

2

vec

Plate between two longitudianl 
stiffeners:

≔λp.I =――――

⎛
⎜
⎝
―
bI
t

⎞
⎟
⎠

28.4 ε ‾‾kσ
0.811

≔ρI =reduction ⎛⎝λp.I⎞⎠ 0.898

≔beff.I =⋅ρI bI 404.209 mm

≔Aeff.I =⋅⋅ρI bI t ⎛⎝ ⋅4.851 103 ⎞⎠ mm 2

Plate between one longitudinal 
stiffener:

≔λp.II =――――

⎛
⎜
⎝
―
bII
t

⎞
⎟
⎠

28.4 ε ‾‾kσ
0.541

≔ρII =reduction ⎛⎝λp.II⎞⎠ 1
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≔ρII =reduction ⎛⎝λp.II⎞⎠ 1

≔Aeff.II =⋅bII t ⎛⎝ ⋅3.6 103 ⎞⎠ mm 2 No reduction for local buckling

≔beff.II =bII 300 mm

Inclined part of the stiffener:

≔λp.III =――――

⎛
⎜
⎝
――
bIII
tsl

⎞
⎟
⎠

28.4 ε ‾‾kσ
1.039

≔ρIII =reduction ⎛⎝λp.III⎞⎠ 0.759

≔beff.III =⋅ρIII bIII 218.549 mm

≔Aeff.III =⋅⋅ρIII bIII tsl ⎛⎝ ⋅1.311 103 ⎞⎠ mm 2

Stiffener, part parallell to the plate: 

≔λp.IV =――――

⎛
⎜
⎝
――
bIV
tsl

⎞
⎟
⎠

28.4 ε ‾‾kσ
0.487

≔ρIV =reduction ⎛⎝λp.IV⎞⎠ 1

≔beff.IV =⋅ρIV bIV 135 mm No reduction for local buckling

≔Aeff.IV =⋅⋅ρIV bIV tsl 810 mm 2

Relevant cross sections:

≔A =+++⋅⋅bI t 6 ⋅⋅bII t 5 ⋅⋅bIII tsl 10 ⋅⋅bIV tsl 5 ⎛⎝ ⋅7.173 104 ⎞⎠ mm 2

≔Asl =⋅5 ⎛⎝ +⋅⋅2 bIII tsl ⋅bIV tsl⎞⎠ ⎛⎝ ⋅2.133 104 ⎞⎠ mm 2

≔Asl.1.eff =+++Aeff.I Aeff.II ⋅2 Aeff.III Aeff.IV
⎛⎝ ⋅1.188 104 ⎞⎠ mm 2

≔Ap =⋅b t ⎛⎝ ⋅5.04 104 ⎞⎠ mm 2

≔Aadj.p =⋅bI t ⎛⎝ ⋅5.4 103 ⎞⎠ mm 2

≔Ac =−A Aadj.p
⎛⎝ ⋅6.633 104 ⎞⎠ mm 2

≔Ac.eff.loc =+⎛⎝ +⋅5 Aeff.IV ⋅10 Aeff.III⎞⎠ 5 ⎛⎝ +Aeff.I Aeff.II⎞⎠ ⎛⎝ ⋅5.942 104 ⎞⎠ mm 2
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Second moment of area of the whole stiffened plate:

≔θ =acos
⎛
⎜
⎝
――
h
bIII

⎞
⎟
⎠

17.281 deg

≔zc.1 =―――――――――――――――――――――

++
⎛
⎜
⎝

+⋅⋅bIV tsl
⎛
⎜
⎝

+h ―
t
2

⎞
⎟
⎠

⋅⋅⋅2 bIII tsl
⎛
⎜
⎝

+―
h
2

―
t
2

⎞
⎟
⎠

⎞
⎟
⎠

⋅⋅
⎛
⎜
⎝

+bII 2 ―
bI
2

⎞
⎟
⎠
t ―

t
2

⋅⋅―
bI
5

t ―
t
2

+++⋅bIV tsl ⋅⋅2 bIII tsl ⋅
⎛
⎜
⎝

+bII ⋅2 ―
bI
2

⎞
⎟
⎠
t ⋅―

bI
5

t

54.651 mm

≔Iadj.p =+――――――

⎛
⎜
⎝

⋅
⎛
⎜
⎝

+bII ⋅2 ―
bI
2

⎞
⎟
⎠
t3

⎞
⎟
⎠

12
⋅⋅

⎛
⎜
⎝

+bII ⋅2 ―
bI
2

⎞
⎟
⎠
t

⎛
⎜
⎝

−zc.1 ―
t
2

⎞
⎟
⎠

2

⎛⎝ ⋅2.141 107 ⎞⎠ mm 4

≔Iadj.s.∥ =+――――
⎛⎝ ⋅bIV tsl

3 ⎞⎠
12

⋅⋅bIV tsl
⎛
⎜
⎝

−+h ―
t
2

zc.1
⎞
⎟
⎠

2

⎛⎝ ⋅4.15 107 ⎞⎠ mm 4

≔Iadj.s.ang =+⋅――――
⎛⎝ ⋅tsl bIII

3 ⎞⎠
12

cos ((θ))
2

⋅⋅bIII tsl
⎛
⎜
⎝

−+―
h
2

―
t
2

zc.1
⎞
⎟
⎠

2

⎛⎝ ⋅2.453 107 ⎞⎠ mm 4

≔Isidep =+――――

⎛
⎜
⎝

⋅
⎛
⎜
⎝
―
bI
2

⎞
⎟
⎠
t3

⎞
⎟
⎠

12
⋅⋅―

bI
2

t
⎛
⎜
⎝

−zc.1 ―
t
2

⎞
⎟
⎠

2

⎛⎝ ⋅6.423 106 ⎞⎠ mm 4

≔Isl =+⋅5 ⎛⎝ ++Iadj.p Iadj.s.∥ ⋅2 Iadj.s.ang⎞⎠ ⋅2 Isidep ⎛⎝ ⋅5.727 108 ⎞⎠ mm 4

Plate type buckling behaviour:

≔Ip =――――
⎛⎝ ⋅b t3 ⎞⎠

12 ⎛⎝ −1 ν2 ⎞⎠
⎛⎝ ⋅6.646 105 ⎞⎠ mm 4

≔γ =―
Isl
Ip

861.728 ≔δ =――
Asl

Ap

0.423

≔α =―
a
b

0.143
0.25
0.357
0.5
0.714
1
1.5
1.667
1.833
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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≔α =―
a
b

0.143
0.25
0.357
0.5
0.714
1
1.5
1.667
1.833
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

≔kσ.p =‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

for ∊ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|

i ‥0 9
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
||

if

else

≤α
i

‾‾4
γ

‖
‖
‖
‖
‖
‖

←kσ.pi

⎛
⎜
⎜
⎜
⎝

2 ――――――

⎛
⎜
⎝

−+⎛
⎜⎝

+1 α
i

2 ⎞
⎟⎠

2

γ 1
⎞
⎟
⎠

α
i

2 (( +ψ 1)) (( +1 δ))

⎞
⎟
⎟
⎟
⎠

‖
‖
‖
‖

←kσ.pi

⎛
⎜
⎜⎝
4 ―――――

⎛
⎝ +1 ‾‾γ⎞⎠

(( +ψ 1)) (( +1 δ))

⎞
⎟
⎟⎠

kσ.p

⋅2.967 104

⋅9.689 103

⋅4.748 103

⋅2.424 103

⋅1.189 103

607.588
272.088
221.33
183.91
155.586

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Calculation of elastic critical plate buckling stress:

≔σE =―――――
⎛⎝ ⋅π2 E t2 ⎞⎠

12 ⎛⎝ −1 ν2 ⎞⎠ b2
1.549 MPa

≔σcr.p =⋅kσ.p σE

⋅4.597 104

⋅1.501 104

⋅7.357 103

⋅3.755 103

⋅1.841 103

941.39
421.571
342.926
284.948
241.063

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

MPa
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Slenderness of stiffened plate:

≔βA.c =―――
Ac.eff.loc

Ac

0.896

≔λp =
‾‾‾‾‾‾‾‾
―――
⎛⎝ ⋅βA.c fy⎞⎠
σcr.p

0.083
0.146
0.208
0.291
0.416
0.581
0.869
0.963
1.056
1.149

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

≔ρ =vecred ⎛⎝λp⎞⎠

1
1
1
1
1
1
0.86
0.801
0.749
0.704

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

Column type buckling behaviour:

≔Isl.1 =++Iadj.p Iadj.s.∥ ⋅2 Iadj.s.ang ⎛⎝ ⋅1.12 108 ⎞⎠ mm 4

≔Asl.1 =+⎛⎝ +⋅⋅2 bIII tsl ⋅bIV tsl⎞⎠ ⋅t
⎛
⎜
⎝

+⋅2 ―
bI
2

bII
⎞
⎟
⎠

⎛⎝ ⋅1.327 104 ⎞⎠ mm 2

≔σcr.sl =――――
⎛⎝ ⋅π2 E Isl.1⎞⎠

⋅Asl.1 a2

⋅4.86 104

⋅1.587 104

⋅7.775 103

⋅3.967 103

⋅1.944 103

991.742
440.774
357.027
295.064
247.936

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

MPa
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Slenderness of a stiffener as a column:

≔βA.c =―――
Asl.1.eff

Asl.1

0.896

≔λc =
‾‾‾‾‾‾‾‾
―――
⎛⎝ ⋅βA.c fy⎞⎠
σcr.sl

0.081
0.142
0.202
0.283
0.404
0.566
0.849
0.944
1.038
1.133

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

Reduction factor χ

≔i =
‾‾‾‾
――
Isl.1
Asl.1

91.873 mm

≔α 0.34 Curve b for closed section stiffeners

≔e =−――――――――――――

⎛
⎜
⎝

+⋅⋅bIV tsl
⎛
⎜
⎝

+h ―
t
2

⎞
⎟
⎠

⋅⋅⋅2 bIII tsl
⎛
⎜
⎝

+―
h
2

―
t
2

⎞
⎟
⎠

⎞
⎟
⎠

+⋅bIV tsl ⋅⋅2 bIII tsl
zc.1 114.956 mm

≔αc =+α ――
0.09

―
i
e

0.453

≔ϕ =0.5 ⎛⎝ ++1.0 ⋅αc ⎛⎝ −λc 0.2⎞⎠ λc
2 ⎞⎠

0.476
0.497
0.521
0.559
0.628
0.743
1.008
1.114
1.229
1.352

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

≔χc =―――――
1

+ϕ ‾‾‾‾‾‾‾−ϕ2 λc
2

1.057
1.028
0.999
0.961
0.902
0.817
0.645
0.587
0.53
0.478

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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≔χc =for ∊ |
|
|
|
|
|
|
|

i ‥0 9
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|

if >χci
1

‖
‖
‖

←χci
1

χc

1
1
0.999
0.961
0.902
0.817
0.645
0.587
0.53
0.478

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

Interaction between plate and column buckling:

≔ξ =−――
σcr.p

σcr.sl

1

−0.054
−0.054
−0.054
−0.053
−0.053
−0.051
−0.044
−0.039
−0.034
−0.028

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

≔ξ =for ∊ |
|
|
|
|
|
||

i ‥0 9
‖
‖
‖
‖
‖
‖‖

|
|
|
||

if <ξ
i

0

‖
‖‖

←ξ
i

0

ξ

0
0
0
0
0
0
0
0
0
0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

≔ρc =‖
‖
‖
‖
‖
‖

|
|
|
|
|
|

for ∊ |
|
|
|

i ‥0 9
‖
‖
‖

←ρci +⋅⋅⎛
⎜⎝

−ρ
i

χci
⎞
⎟⎠
ξ
i
⎛
⎝

−2 ξ
i
⎞
⎠

χci

ρc

1
1
0.999
0.961
0.902
0.817
0.645
0.587
0.53
0.478

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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Verification for uniform compression:

≔Ac.eff +⋅ρc Ac.eff.loc Aeff.I

=A ⎛⎝ ⋅7.173 104 ⎞⎠ mm 2

≔Ncr.p =⋅σcr.p A

⋅3.297 103

⋅1.077 103

527.733
269.342
132.088
67.526
30.239
24.598
20.439
17.291

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

MN ≔Ncr.c =⋅σcr.sl A

⋅3.486 103

⋅1.138 103

557.719
284.551
139.43
71.138
31.617
25.61
21.165
17.784

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

MN

Note that the Eurocode does not take torsional stiffness into account, and 
therefore can produce a resistance capacity above 

≔Na.Rd =⋅⎛⎝ +Ac.eff.loc Aeff.I⎞⎠ fy 22.814 MN

≔Nb.Rd =⋅Ac.eff fy

22.814
22.814
22.792
21.988
20.749
18.946
15.331
14.094
12.909
11.807

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

MN

≔Nc.Rd =for ∊ |
|
|
|
|
|
|
|
|
|
|
|

i ‥0 9
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|

if

else

≤Nb.Rdi
Na.Rd

‖
‖
‖

←Nc.Rdi
Nb.Rdi

‖
‖
‖

←Nc.Rdi
Na.Rd

Nc.Rd

22.814
22.814
22.792
21.988
20.749
18.946
15.331
14.094
12.909
11.807

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

MN
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Length

((mm))

600

1050

1500

2100

3000

4200

6300

7000

7700

8400

Ncr.p

((MN))

3297

1077

527.733

269.342

132.088

67.526

30.239

24.598

20.439

17.291

Ncr.c

((MN))

3486

1138

557.719

284.551

139.43

71.138

31.617

25.61

21.165

17.784

λp

0.083

0.146

0.208

0.291

0.416

0.581

0.869

0.963

1.056

1.149

λc

0.081

0.142

0.202

0.283

0.404

0.566

0.849

0.944

1.038

1.133

ρ

1

1

1

1

1

1

0.86

0.801

0.749

0.704

χc

1

1

0.999

0.961

0.902

0.817

0.645

0.587

0.53

0.478

ρc

1

1

0.999

0.961

0.902

0.817

0.645

0.587

0.53

0.478

Nc.Rd

((MN))

22.814

22.814

22.792

21.988

20.749

18.946

15.331

14.094

12.909

11.807
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Include << C:\Users\kristtge\Desktop\beregninger\Beregningermiddel.mcdx

Appendix B

Hybrid method for calculating buckling load:
- Slender geometry

≔Ncr.ab

47.8
42.3
42.0
41.6
41.1
40.7
36.8
31.9
28.4
26.0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

MN

=Na.Rd 22.814 MN

≔λc =
‾‾‾‾‾
――
Na.Rd

Ncr.ab

0.691
0.734
0.737
0.741
0.745
0.749
0.787
0.846
0.896
0.937

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

≔αc 0.452

≔ϕ =0.5 ⎛⎝ ++1.0 ⋅αc ⎛⎝ −λc 0.2⎞⎠ λc
2 ⎞⎠

0.85
0.89
0.893
0.896
0.901
0.904
0.943
1.004
1.059
1.105

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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≔χc =―――――
1

+ϕ ‾‾‾‾‾‾‾−ϕ2 λc
2

0.744
0.717
0.716
0.714
0.711
0.709
0.684
0.648
0.616
0.591

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

≔Nc.Rd =⋅χc Na.Rd

16.974
16.366
16.329
16.279
16.216
16.164
15.614
14.778
14.056
13.485

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

MN

Length

((mm))

600

1050

1500

2100

3000

4200

6300

7000

7700

8400

Ncr

((MN))

47.8

42.3

42.0

41.6

41.1

40.7

36.8

31.9

28.4

26.0

λc

0.691

0.734

0.737

0.741

0.745

0.749

0.787

0.846

0.896

0.937

χc

0.744

0.717

0.716

0.714

0.711

0.709

0.684

0.648

0.616

0.591

Nc.Rd

((MN))

16.974

16.366

16.329

16.279

16.216

16.164

15.614

14.778

14.056

13.485
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Appendix C

Interaction Method by EN1999-1-1

- Slender geometry with 10% axial load 

Dimensions:
≔L 4200 mm Plate length
≔b 4200 mm Plate width
≔bI 450 mm Plate width between stiffeners
≔bII 300 mm Plate width between one stiffener
≔bIII 288 mm Angled height of stiffener
≔bIV 135 mm Width of stiffener parallell to plate

≔h 275 mm Plate thickness
≔t 12 mm Vetical height of stiffener
≔tsl 6 mm Stiffener thickness

≔a 375 mm

≔a1 =―
bII
2

150 mm

≔a2 =――
bIV
2

67.5 mm

≔a3 =bIII 288 mm

≔a4 =―
bI
2

225 mm

Material data:

≔fy 355 MPa

≔E 210000 MPa

≔ν 0.3

≔ε =
‾‾‾‾‾‾‾‾
――――
235 MPa

fy
0.814

≔γM0 1.00
≔γM1 1.05

≔ψ 1
≔kσ 4

Non-Commercial Use Only



Second moment of area:

≔θ =acos
⎛
⎜
⎝
――
h
bIII

⎞
⎟
⎠

17.281 deg

≔zc.1 =―――――――――――――――――――――

++
⎛
⎜
⎝

+⋅⋅bIV tsl
⎛
⎜
⎝

+h ―
t
2

⎞
⎟
⎠

⋅⋅⋅2 bIII tsl
⎛
⎜
⎝

+―
h
2

―
t
2

⎞
⎟
⎠

⎞
⎟
⎠

⋅⋅
⎛
⎜
⎝

+bII 2 ―
bI
2

⎞
⎟
⎠
t ―

t
2

⋅⋅―
bI
5

t ―
t
2

+++⋅bIV tsl ⋅⋅2 bIII tsl ⋅
⎛
⎜
⎝

+bII ⋅2 ―
bI
2

⎞
⎟
⎠
t ⋅―

bI
5

t

54.651 mm

≔II.II =+――――――

⎛
⎜
⎝

⋅
⎛
⎜
⎝

+bII ⋅2 ―
bI
2

⎞
⎟
⎠
t3

⎞
⎟
⎠

12
⋅⋅

⎛
⎜
⎝

+bII ⋅2 ―
bI
2

⎞
⎟
⎠
t

⎛
⎜
⎝

−zc.1 ―
t
2

⎞
⎟
⎠

2

⎛⎝ ⋅2.141 107 ⎞⎠ mm 4

≔IIV =+――――
⎛⎝ ⋅bIV tsl

3 ⎞⎠
12

⋅⋅bIV tsl
⎛
⎜
⎝

−+h ―
t
2

zc.1
⎞
⎟
⎠

2

⎛⎝ ⋅4.15 107 ⎞⎠ mm 4

≔I2.III =+⋅――――
⎛⎝ ⋅tsl bIII

3 ⎞⎠
12

cos ((θ))
2

⋅⋅bIII tsl
⎛
⎜
⎝

−+―
h
2

―
t
2

zc.1
⎞
⎟
⎠

2

⎛⎝ ⋅2.453 107 ⎞⎠ mm 4

≔Isideplate =+――――

⎛
⎜
⎝

⋅
⎛
⎜
⎝
―
bI
2

⎞
⎟
⎠
t3

⎞
⎟
⎠

12
⋅⋅―

bI
2

t
⎛
⎜
⎝

−zc.1 ―
t
2

⎞
⎟
⎠

2

⎛⎝ ⋅6.423 106 ⎞⎠ mm 4

≔Isl =++II.II IIV ⋅2 I2.III ⎛⎝ ⋅1.12 108 ⎞⎠ mm 4 Second moment of area of one 
stiffener and adjacent plating

≔Itot =+⋅5 ⎛⎝ ++II.II IIV ⋅2 I2.III⎞⎠ ⋅2 Isideplate ⎛⎝ ⋅5.727 108 ⎞⎠ mm 4

≔A =+++⋅⋅bI t 6 ⋅⋅bII t 5 ⋅⋅bIII tsl 10 ⋅⋅bIV tsl 5 ⎛⎝ ⋅7.173 104 ⎞⎠ mm 2 Total area
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Moments in x and y direction:

≔α1 =――
2 a1

⋅E t3
⎛⎝ ⋅8.267 10−7⎞⎠ ―

1
N

(8.125)
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