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Abstract

In the design of large floating welded structures, the damping level is significant in
deciding the response at frequencies of interest. The current engineering practice
is based on rules of thumb, meaning the need for accurate representation of the
damping levels might not always be achieved. In addition to hydrodynamic damping,
aerodynamic damping, and soil damping, contributions from structural damping
may also play a significant role in the behaviour of the structure. Structural damping
can be divided into internal material damping and frictional damping in connections.

This thesis presents a report of analytical, experimental, and numerical work done
in order to increase the understanding of the structural damping in welded steel
structures. The main approach of the work was to conduct laboratory tests on
a cantilever steel beam. Experiments were conducted on the beam with different
support conditions in the form of a partly welded clamped end and a fully welded
clamped end. In addition, a finite element (FE) model was created using Abaqus
CAE with the purpose of replicating the beam in the experiments. In this numerical
model, the steel-on-steel contact between the beam and plate was modelled using
the augmented Lagrange contact formulation.

To assess the accuracy of the different methods, a static deflection test was conduc-
ted. The analytical results, experimental results, and numerical results were used in
the assessment of assumed material properties in the experimental setup, and the
mesh and contact formulation in the numerical. Furthermore, free vibration tests
and forced vibration tests were conducted to establish the damping ratios of the
beam with different support conditions. Damping ratios were measured using the
logarithmic decrement and half-power point method.

The experimental results indicated that the damping increased as the clamped end
went from partly welded to fully welded. However, the repeatably was seen as
not satisfactory. For the forced vibration tests, there was a clear change in the
behaviour of the beam during testing, these were observed as a reduction in the
resonant frequency. The most consistent results came from the free vibration tests.
Given that these seemed to coincide with the forced vibration, a rough estimate
of the damping level of the physical was decided. The numerical model showed
similar behaviour to the free vibration tests with the partially welded clamped end.
However, there was not enough evidence to make a conclusion on the separation of
material damping and frictional damping.
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Sammendrag

Dempingsniv̊aet er viktig for å bestemme responsen ved nyttige frekvenser i design
av store flytende sveiste st̊alstrukturer. N̊aværende praksis er baser p̊a tommelfinger-
regler, noe som betyr at nøyaktige estimeringer ikke alltid er tilfellet. I tillegg til
hydrodynamisk demping, aerodynamisk demping og fundamentdemping kan bidra-
gene fra strukturdemping ogs̊a være sentrale i oppførselen til strukturen. Struk-
turdemping kan bli delt inn i den interne matrialdempingen og friksjonsdempingen
mellom sammenføyninger.

Denne oppgaven er en rapport p̊a analytisk arbeid, eksperimentelt arbeid og nu-
merisk arbeid som ble gjort for å øke forst̊aelsen om strukturedemping i sveiste
st̊alstrukturer. Det ble gjennomført eksperimenter p̊a en bjelke med forskjellige in-
nfestninger. Innfestningene bestod av en delvis sveist fast innspent ende og en hels-
veist fast innspent ende. I tillegg ble en endelig element modell laget ved hjelp av
Abaqus CAE. Denne var tiltenkt å gjenskape oppførselen til bjelken i eksperimentet.
I den numeriske modellen ble augmented Lagrange kontaktformulering benyttet p̊a
st̊al mot st̊al kontaktflaten mellom bjelken og platen.

For å kunne bedømme nøyaktigheten til de forskjellige metodene ble det utført en
statisk nedbøyingstest. De analytisk resultatene, eksperimentelle resultatene og nu-
meriske resultatene ble brukt under vurdering av de antatte matrialegenskapene i
det eksperimentelle oppsette. I tillegg ble det gjort vurderinger av mesh og kontakt-
formuleringen i den numeriske modellen. Videre ble fri vibrasjontester og tvungen
vibrasjontester gjennomført for å etablere dempingsratioer. Dempingsratioene ble
estimert ved bruk av logaritisk dekrement og Half-power point metoden.

De eksperimentelle resultatene indikerer at dempingen øker n̊ar den fast innspente
enden g̊ar fra delvis sveis til helt sveist. Repeterbarheten var derimot ikke bra nok
for disse testene. For forsøkene med tvungen vibrasjon var det en klar endring
i oppførselene til bjelken under testing, hvor det var observert en reduksjon av
resonansfrekvensen underveis. De mest konsekvente resultatene kom fra testene
med fri vibrasjon. Siden disse tilsynelatende stemte med tvungen vibrasjon ble et
grovt anslag p̊a dempingen funnet. Den numeriske modellen viste lignende oppførsel
som under frivibrasjonstestene for delvis sveiset fast innspent ende. Det var derimot
ikke nok grunnlag til å trekke en konklusjon om fordelingen av materialdemping og
friksjonsdemping.
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Chapter 1

Introduction

In the maritime industry, steel structures are a crucial part of the infrastructure. For
some purposes it is more cost-effective and safe to build large structures. Some of
these are classified as very large floating ftructures(VLFS). Compared to traditional
ships and offshore rigs, the flexible modes of larger structures may lead to lower
stiffness and consequently longer natural periods (Mobron et al., 2021). Accurate
estimation of the dynamic response is desired as an overestimation will lead to very
large plate thicknesses, again leading to increased steel weight and manufacturing
costs. The structural dynamics are also part of the global strength documentation,
which are required to be approved by classification societies.

In the offshore industry methods using dynamic amplification factors(DAF) are well-
known and proven (Horn et al., 2015). Here, the intention is to include inertia forces
by relating the dynamic response to the static response. In order to utilize these
methods in the design of large structures for aquaculture, transportation and energy
harvesting at sea, accurate estimations are needed in order to predict the resonant
response.The choice of structural damping ratio will effect the DAF, meaning a
high accuracy of the damping ratio will give better and more accurate results. The
current way of assigning damping ratios to marine structures is to use typical values.
These come from measurements, meaning there is no known method of estimating
the damping of a structure before it is built. In addition, it is difficult to distinguish
structural damping from hydrodynamic damping, aerodynamic damping and other
sources. The need to establish methods of predicting the structural damping of
welded steel structures is therefore present in the maritime industry.

Currently, rules of thumb are often used when setting values for structural damping
in dynamic analysis. These are often established without a strong basis in empirical
results or material models, resulting in a knowledge gap in the determination of
damping values in welded steel shell structures relevant for many marine applica-
tions. This master thesis work is intended to investigate this knowledge gap and to
improve the understanding of structural damping in such structures.

The scope of the work goes as follows. Literature review of the present empirical
and numerical approaches of estimating both material and structural damping. In
addition, full scale data and numerical models are to be familiarized with. Given
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that the knowledge on structural damping in marine structures is rather limited,
literature from civil engineering is also reviewed. In addition laboratory test are
conducted in order to improve the understanding of material damping and the effects
of welds in relevant scale structures. Experiments will be conducted on a welded
cantilever I-beam where in addition the determination of the damping, the effect of
different support conditions in the form of weld geometries is investigated. Lastly,
the development of an FE model in order to perform simulations of the experimental
setup and explain the observed damping performance.

The report is divided into the following section. First, relevant theory and a re-
view of the current literature is presented. Parts of this review was done during the
project work in Fall 2021. Furthermore, the experimental setup and experimental
procedures are presented. Next, the Abaqus CAE model and procedures are presen-
ted. Afterwards, the results are presented and discussed. Lastly, a conclusion and
recommendation for further work given.
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Chapter 2

Theory and literature review

In order to obtain a greater understanding of the importance of damping in steel
structures one can look at the known theory. The following section presents relevant
theory for analytical calculations and post-processing of experimental results. As the
experimental setup is a cantilever beam, the analytical static deflection and natural
frequency of beams are presented first. Furthermore, a presentation of structural
damping phenomena and the mathematical models are presented. In addition, the
results from a literature review of commonly used damping ratios and previously
conducted experiments are presented. Since damping can be regarded as a niche
area, this section is quite is quite comprehensive as the reader might not be familiar
with all the theory.

2.1 Static deflection of cantilever beam

When considering a cantilever beam, the static deflection of the tip due to a point
load is written as:

δ =
P

K
(2.1)

In Equation 2.1, δ is the tip deflection, P is the point load and K is the beam
stiffness. The tip defection for a cantilever is known to be:

δ =
Pl3

3EI
(2.2)

In Equation 2.2, EI is the beam bending stiffness and l is the length of the beam.
Note that the clamped end is assumed to be completely rigid in Equation 2.2. If this
is not the case, a rotational spring with stiffness Kθ is introduced. Considering the
moment around the clamped end, one can account for the rotational spring stiffness
in the expression for tip deflection:

δ =
PL3

3EI
+
PL2

Kθ

(2.3)
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Solving for the spring stiffness leads to the following expression:

Kθ =
PL2

δ
− 3EI

L
(2.4)

A practical way of measuring the behaviour along the beam is the strain during
deflection. The following expression can be used to calculate the strain at a given
point along the beam:

ε(x, z) =
M(x) · z
EI

=
P · (L− x) · z

EI
(2.5)

2.2 Natural frequency of 2-DOF system

Another topic for interest is the analytical natural frequency. In order to obtain
the natural frequency, the mass and stiffness matrices of the system have to be
determined. Two possible methods for obtaining the natural frequency are presented
below.

Euler Bernoulli beam theory with consistent mass matrix

A way to find an estimate of the natural frequency of a cantilever beam is to consider
the elastic 2D Euler beam in matrix form.

(a) Beam theory model (b) Cantilever beam

Figure 2.1: Beam model and 2DOF cantilever system

The full mass matrix and stiffness matrix for the beam element shown in Figure 2.1a
are given in Section A.

Considering the boundary conditions results in the following 2x2 matrices system.

M =
ml

420

156 22l

22l 4l2

 (2.6)
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K =
2EI

l3

 6 3l

3l 2l2

 (2.7)

If a point mass m is to introduced to the system at a given DOF this is done by
adding it to the respective placement in the mass matrix. The mass matrix for the
system in Figure 2.1 with a point mass on the tip becomes:

M =
ml

420

156 22l

22l 4l2 +m

 (2.8)

2.2.1 Energy methods

If the system has some rotation at the clamped end, another possible way to establish
the mass matrix and stiffness matrix is to use energy methods. A system with
rotation in shown in Figure 2.2.

Figure 2.2: 2 DOF system

In general, one can use the following equation to express the displacement of a beam:

r(x) = C0 + C1 · x+ C2 · x2 + C3x
3 (2.9)

In Equation 2.9 r(x) is the displacement along the beam. C0,C1,C2 and C3 are
constants. x is the horizontal position of along the beam.

For the system in Figure 2.2, the following equation is also valid.

r = r1 + r2 = NT r =

[
ϕv ϕθ

]rv
rθ

 (2.10)
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In Equation 2.10 rv and rθ are the displacement in the respective degrees of freedom
whereas ϕv and ϕθ are the shape functions. The shape functions are found by apply-
ing a unit load to on degree of freedom while assuming the other to be stationary.
Firstly, one can find ϕv by considering the bending moment along the beam.

M = P (L− x) (2.11)

The relation between moment and curvature is given by:

M = EIκ (2.12)

By considering a unit load, the curvature is given by:

κ = rv,xx=
1(L− x)

EI
(2.13)

The displacement function is thereby found from double integration, with constants
found from the following boundary conditions.

• rv(0) = 0

• rv,x (0) = 0

• rv(L) = 1

• rv,xx (L) = 0

The double integration goes as follows.

rv,x =
1

EI

∫
(L− x)dx =

1

EI

(
Lx− 1

2
x2
)
+ C1 (2.14)

C1 = 0 since the angle rv,x= 0 at x = 0. The deformation can be found by another
integration.

rv =
1

EI

∫ (
Lx− 1

2
x2
)
dx =

1

EI

(
1

2
Lx2 − 1

6
x3
)
+ C2 (2.15)

C2 = 0 since rv(0) = 0. The shape function is then given by:

ϕv =

(
1

2
Lx2 − 1

6
x3
)

(2.16)

It is noted that in order to obtain the unit deflection, one need to scale the shape
function by 3

L3 , resulting in the following.

ϕv =
3

L3

(
1

2
Lx2 − 1

6
x3
)

(2.17)

A similar procedure is performed in order to find the shape function for ϕθ. Initially,
it is known that a moment, M0, applied in rθ must satisfy the following conditions.
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• M(0) =M

• M(L) = 0

The resulting function for the moment then become:

M(x) =M0(1−
x

L
)

The following boundary conditions are applied in the calculation.

• rθ(0) = 0

• rθ(L) = 0

• rθ,x (0) = 1

• rθ,xx (L) = 0

The resulting shape function is given as:

ϕθ =

(
−3

L

)
·
(
x2

2
− x3

6L
− L

3
x

)
(2.18)

When the shape functions are know one can establish the consistent mass matrix
and stiffness matrix. They are given as the following.

M =

mv mvθ

mvθ mθ

 = ρA

∫ L

0

ϕvϕv ϕvϕθ

ϕθϕv ϕθϕθ

 dx (2.19)

K =

 kv kvθ

kvθ kθ

 = EI

∫ L

0

ϕv,xx ϕv,xx ϕv,xx ϕθ,xx

ϕθ,xx ϕv,xx ϕθ,xx ϕθ,xx

 dx (2.20)

The integration of the elements in Equation 2.19 is given in Section A.

The resulting consistent mass matrix is presented in the following.

M =

 99
420
mL 67

280
mL2

67
280
mL2 2

105
mL3

 (2.21)

The stiffness matrix is found in the following manner. First, the elements in the
matrix in Equation 2.20 are found.

7



ϕv,xx = x (2.22a)

ϕθ,xx = 1− 1

x
(2.22b)

By inserting the relations in Equation 2.22 into Equation 2.20 the following results
are obtained.

K = EI

∫ L

0

x2 x− x2

L

x2

L
1− 2x

L
+ x2

L2

 dx = EI

L3

3
L2

6

L2

6
L
3

 (2.23)

By including a lumped mass me in the vertical DOF and a spring stiffness kθ in the
rotational DOF the final matrices for the 2 DOF system in Figure 2.2 becomes:

M =

 99
420
mL+me

67
280
mL2

67
280
mL2 2

105
mL3

 (2.24)

K = EI

L3

3
L2

6

L2

6
L
3
+ kθ

 (2.25)

2.2.2 Eigenvalue problem

Considering free undamped vibration and assuming both degrees of freedom to have
the same frequency and phase yields the following equation of motion:

Mr̈ +Kr = 0 (2.26)

Where M is the mass matrix, K is the stiffness matrix, and r is the displacement
vector. By setting r = ϕ sin (ωt) the general eigenvalue problem can be obtained.[

K − ω2M
]
ϕ = 0 (2.27)

In order to not get a trivial solution when solving [K − ω2M ], the matrix determ-
inant is set to zero.

Det
([
K − ω2M

])
= 0 (2.28)

This matrix will be singular and a non-trivial solution can be found. The square root
of the eigenvalues are the eigenfrequencies of the system, and the eigenvectors are the
mode shapes. The mode shape can be describe as the response to a corresponding
eigenfrequency. For a 2-DOF system it is possible to find the analytical values of ω1

and ω2. More on multi-degrees-of-freedom (MDOF) systems in Section 2.7.
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2.3 Material damping

When a structure is subjected to oscillatory deformations, the potential and kinetic
energy can describe the state of the structure. For a real structure some of the
energy is lost during oscillation, and converted to thermal energy. This conversion
is known as damping. Structural damping can be divided into two parts. Material
damping and friction damping in connections. A possible way of obtaining a deeper
understanding of the damping in large structures is to look at the underlying theory
of the microscopical processes in the material itself. In this subsection, the concept
of material damping will be presented by looking at mechanisms and mathematical
models.

An in-depth study of damping in different structural materials was done by B.J
Lazan in the 1960’s. These models are still regarded as valid today, as not much
additional research has been done since. The work is presented in the book Damping
of materials and Members in Structural Mechanics(Lazan, 1968). Section 2.3.1,
Section 2.3.2, Section 2.3.3, Section 2.3.4 and Section 2.3.5 are based on the theory
found in this book.

2.3.1 Fundamentals of material damping

In general, the material damping is described as dependent on many factors, where
the main ones are type of material, stress amplitude, internal force, number of cycles,
size of geometry and temperature. The quantification of the damping energy is done
by assessing the hysteresis loops during cyclic loading. The following figure show
examples of hysteresis loops are from Lazan’s book.
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Figure 2.3: Hysteresis loops (Lazan, 1968)

The general equations for the damping of complete members and for materials are
given as:

Ds =

∮
P · dX (2.29)

D =

∮
σ · dε (2.30)

The integral given in Equation 2.29 represents the area within the hysteresis loop of
the complete specimen/part. Ds is the absorbed energy per cycle of loading. P is
the applied load and X is the displacement. Equation 2.30 describes the damping in
the material. D is the unit energy absorbed by a macroscopically uniform material
per unit volume during cyclic loading. σ is the unit stress and ε is the unit strain.

Lazan saw that the internal damping of structural materials can be described in the
following way:

D = J · σn
a (2.31)

where J and n are constants and σa is the stress amplitude. n is normally between
2 and 4. n = 2.3 is a typical value (Orban, 2011).
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A quantification of the damping in a material is given by the specific damping
capacity, ψ. This is the energy loss per cycle divided by the maximum potential
(strain) energy during one cycle:

ψ =
D

U
(2.32)

Another used measure of damping is the loss coefficient, η. This is defined as the
specific damping capacity for each cycle.

η =
ψ

2π
(2.33)

2.3.2 Approaches to understanding material damping

Lazan (1968) presented three different methods for understanding damping. First,
the micromechanisms in the material whom from a research point of view give a
greater understanding of why and how damping happens. However, this method has
its problems of being utilized as an engineering tool as many variables in the given
material and environment makes it hard to predict the behaviour of the micromech-
anisms. Nevertheless, it is mentioned that correlations can be useful. Secondly, ad
hoc testing may provide data on a specific material under certain stress and environ-
mental conditions. Again, for engineering purposes this will be hard to utilize as the
conditions for the data obtained are very specific. The macroanalytical approach
starts with determining the unit properties of the material. These can later be used
to express the properties of the whole member and mathematical models can be
developed.

Useful classifications of damping phenomena in materials are rate-dependency and
rate-independency. ”Perfectly elastic” is used for materials where the stress-strain
curve is linear. Any deviation from this will be characterized as ”inelasticity”. This
can be from rate-dependent behaviour, meaning the frequency of the loading is
important. However, it can also be dependent on the recoverability, which means
the materials ability to return to previous deformation, i.e no plastic deformation.
For quantifying the damping, Equation 2.31 can be used with different values of n.
An example here is n = 2, giving linear damping and an elliptical hysteresis loop.

2.3.3 Linear micromechanisms causing damping in struc-
tural materials

The observed damping behaviour is better understood by assessing the micromech-
anisms that are present in the material. For metals at low and intermediate applied
stress, some of the material damping mechanisms show a linear behaviour with
respect to the stress. This stress range is relevant when considering welded struc-
tures as stresses close to yield are not expected because of fatigue considerations.
These physical mechanisms are generally frequency (or temperature) dependent,
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with peaks in the internal damping at different frequencies. Some important mech-
anisms will be presented, and the rate-dependence of the loss coefficient is shown in
Figure 2.4.

Figure 2.4: Rate dependence of damping due to micromechanisms (Lazan, 1968)

The grains of carbon steel are shown in Figure 2.5. It is clear that the size, shape
and environment of the grains all vary from point to point. Macroscopic behaviour
therefore depends on the distribution of these features. Grain boundary viscosity
is a form of damping that comes from the disordered state of the grains. Under
cyclic loading, the energy dissipation from internal friction between grains will be
larger at the boundaries than within the grains. This type of internal friction is
frequency and temperature dependent. For low temperature or high frequency, the
energy dissipation will be low as a result of the shear strain along the boundary only
relaxing slightly. This will lead to a narrow hysteresis loop. For high temperature
or low frequency there will be full relaxation during the cycles, and the cyclic strain
is also reduced giving a narrow loop. It is during an intermediate state that the
largest area under the hysteresis loop is present, i.e maximum damping is produced.

Figure 2.5: Grain structure in carbon steel (Cuevas-Arteaga et al., 2012)
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Another damping mechanism is the heat transfer during loading. On a macroscopic
level, if the specimen is loaded non-uniformly, a heat gradient will be produced
between the local stresses. If the load frequency is higher or lower than the time
of heat flow along temperature gradients, the process is reversible and there will be
no damping. However, when the load frequency is close to the heat flow we have
the transformation of mechanical energy to heat. i.e damping. This mechanism can
also appear on a smaller scale between the grains. Since the grains are oriented in
different directions, heat gradients can be formed even under uniform axial loading
of the material.

Another microscopic damping phenomena is the dislocation motion between slip-
planes. The dislocation components will under alternating stress lag behind the
applied stress. This forms a hysteric loop, which again means dissipation of energy.
This type of mechanism can happen with relatively low applied stress, as the local
stresses can be large on a microscopic level.

2.3.4 Nonlinear micromechanisms

There are also nonlinear micromechanisms present in metals. One type of nonlinear
and rate-independent damping is known as plastic slip. On a microscopic scale,
inhomogeneity in the stress distribution will lead to high local stresses that may
cause local plastic strain. This phenomena can happen even though the macroscopic
stress is low, with increasing occurrence as the stress gets closer to yield. Since
dislocations and their features(kind,role, number dispercion and lattice anchorage)
are not well understood, they are lumped under the term plastic strain damping.

The most important damping mechanism in metals is pointed out to be the magne-
toelastic mechanism in ferromagnetic materials e.g steel. The previously mentioned
contributions from linear damping (anelastic and dislocation mechanisms) are gen-
erally small if the frequency does not coincide with the peaks in Figure 2.4. The
plastic-strain mechanism can provide large damping, but this is at high stresses near
the fatigue limit. However, magnetoelastic damping is shown to have large values
at low and intermediate stress.

This mechanism can be explained in the following way. Firstly, ferromagnetic sub-
stances are composed of small domains that are individually magnetized to sat-
uration. When the metal is demagnetized, the result is random directions of the
magnetization vector for each domain. However, a magnetic field may affect the dir-
ection of the vector field. This change in magnification gives movement in the walls
of the domain. A stress field (or strain) will also change the state of magnetization
of the material. This leads to rotation of the domain vectors and wall movements
similar to those from a magnetic field. If the material is under cyclic stress there
will be a cyclic elastic strain, but also a cyclic magnetostrictive stress component.
The latter is an irreversible process, leading to damping. At low and intermediate
stress, exposing a ferromagnetic material to a magnetic field or magnetized it to
saturation will lead to low measured damping. This indicates that the dominating
mechanism is related to magnetorestriction.
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Most materials also show a decrease in magnetoelastic damping with increasing
temperature, however the decrease is small until the curie temperature is reached.
This is the temperature where materials loose their magnetism. Given a static mean
stress the damping can be reduced by suppressing the motion of the domain walls.
In addition, the magnetoelastic damping is independent of frequency in the ranges
present in structural mechanics.

2.3.5 Damping of members

The mechanisms described in Section 2.3.3 and Section 2.3.4 will often be ”lumped”
together in idealized models which can be applied for calculations. For mem-
bers, three different damping units are usually used. The total damping energy
Ds[Nm/cycle], the average damping energy Dav = Ds/Vs[N/m

2cycle] and the unit
damping energy D[N/m2cycle]. The unit damping D is a true material property
that is not dependent on shape, stress or volume of part. The average damping
energy unit Dav is defined by total damping energy Ds divided by the volume Vs. It
is shown to be dependent on both the stress and and shape, meaning it will not be a
good material property to base further calculations on. However, this is a common
way to present damping data. Ds is the total damping of a whole member, and
is usually of interest in structural analysis. The main goal is therefore to express
this total damping as a function of the general material property D. Lazan (1968)
presented the following equations:

Ds =

∫ Vs

V=0

DdV =
Vs
σam

∫ σam

σ=0

D
d(V/Vs)

d(σa/σam)
dσa

= DamVs

∫ 1

σa/σam=0

(
D

Dam

)
d(V/Vs)

d (σa/σam)
d (σa/σam)

= DamVsα

(2.34)

Dav =
Ds

Vs
= αDam (2.35)

Above, the following is used:

• The normalized damping integral: α =
∫ 1

σa/σam=0

(
D

Dam

)
d(V/Vs)

d(σa/σam)
d (σa/σam)

• Dam=unit damping energy at σa = σam

• Vs=total effective volume of specimen or part contributing to dissipation.

• V=volume of specimen or part subjected to stress less than σa

• σa=amplitude of stress at any point in specimen, where 0 < σa < σam

• σam=maximum stress at any point in specimen.

• Dav=average damping energy.
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In order to calculate the material damping of a member, α and Dam need to be
found. α is found by Equation 2.34. This is dependent on two functions. The
volume-stress function:

V

(Vs)
(2.36)

and the damping function:
D/Dam (2.37)

The volume-stress function for a cantilever beam with bending momentMx = x
L
M0,

is given by:
V

Vs
=

σa
σam

[
1− ln

σa
σam

]
(2.38)

The stress distribution function to be used in Equation 2.34 is then defined:

d(V/Vs)

d(σa/σam)
= −ln σa

σam
(2.39)

Assuming the general case of D = Jσn
a , gives the function α the following definition

for a cantilever beam:

α =
1

(n+ 1)2
(2.40)

Considering the theory and mathematical models presented in this section it is clear
that the damping for a given structural material is possible to obtain. In Damping of
materials and Members in Structural Mechanics the damping properties of steel in
bending is given by the loss coefficient under certain loading. During cyclic loading
with a frequency of f = 2 Hz and a mean longitudinal stress of σm = 20.68 MPa,
the loss coefficient is given as ηs = 4.8 · 10−4.

2.4 Mathematical models of structural damping

The damping mechanisms described in Section 2.3 are microscopic phenomena.
However, the equation of motion used in structural analysis describes macroscopic
behaviour creating a conflict of scale (Kareem and Gurley, 1996). The term struc-
tural damping is used to describe the energy dissipation of the whole structure. In
the following subsection, some important mathematical models for structural damp-
ing is presented.

The real damping of a system may be difficult to model correctly as different types of
damping may be present. It is therefore convenient to introduce simplified models.
Some common damping models can be described by the following:

FD(u̇) = au̇|u̇|θ−1 (2.41)

Above, FD(u̇) is the damping force, u̇ is the velocity and a is a damping coeffi-
cient(Kareem and Gurley, 1996).
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2.4.1 Linear viscous damping

Linear viscous damping is commonly used in the dynamic equilibrium equation and
has proven sufficient accuracy (Langen and Sigbjörnsson, 1979). It is normally
represented by a dashpot, where the damping force is in-phase and proportional to
the velocity. The function is found by setting θ = 1 in Equation 2.41.

FD(u̇) = cu̇ (2.42)

This model is typically used in engineering practice as it results in a linear equation
of motion, which is mathematically convenient(Hall, 2006). A good way to explain
the properties of this model is to consider the equation of motion for a single-degree-
of-freedom(SDOF) system:

mü+ cu̇+ ku = q(t) (2.43)

Here m is the mass coefficient, c is the damping coefficient, k is the stiffness coeffi-
cient and q(t) is the applied load. For free vibration only the homogeneous solution
is considered.

mü+ cu̇+ ku = 0 (2.44)

Assuming u = est yields the solution:

u = Aes1t +Bes2t (2.45)

The two roots of this characteristic equation is:

s1,2 = − c

2m
±
√( c

2m

)2
− k

m
(2.46)

A and B are dependent on the initial conditions. Combining Equation 2.45 and
Equation 2.46 results in:

u(t) = e(−c/2m) t

(
Ae

(√
(c/2m)2−k/m

)
t
+Be

−
(√

(c/2m)2−k/m)
)
t

)
(2.47)

Now the critical damping coefficient can be defined as:

ccr = 2m

√
k

m
= 2mωn (2.48)

where ωn is the natural frequency. The damping is often expressed as the ratio of
ccr. It is defined as:

ζ =
c

ccr
=

c

2mωn

(2.49)

• Supercritical damping c > ccr: Here, the exponent is real and there is no
oscillatory motion.
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• Subcritical damping c < ccr: Here the exponents are imaginary and there will
be oscillatory motion. This is the most common case for structural systems
(Langen and Sigbjörnsson, 1979).

For subcritical damping the roots of Equation 2.46 will be complex and given as:

s = −ζωn ± iωd (2.50)

The damped natural frequency is given as:

ωd = ωn

√
1− ζ2 (2.51)

The differential equation of motion given in Equation 2.43, now becomes:

ü+ 2ζωnu̇+ ω2
nu =

1

m
q(t) (2.52)

As mentioned in Section 2.3, the damping is defined by the energy dissipation during
one cycle. If a steady state harmonic load is assumed, it can be shown that the
hysteresis loop for a linear viscous damper will form an ellipse. Inserting the linear
damping force in Equation 2.29 yields:

D =

∮
FDdu = πcωu20 (2.53)

Combining Equation 2.32 and Equation 2.48 we get a specific damping capacity:

ψ =
D

U
=
πcωu20
1
2
ku20

=
2πcω

k
= 4πζ (2.54)

The loss coefficient is found by combining Equation 2.33 and Equation 2.48:

η =
D

2πUmax

=
πcωu20
2π 1

2
ku20

=
cω

k
= 2ζ (2.55)

2.4.2 Coulomb damping

Coulomb damping is normally used to model dry friction e.g steel on steel contact.
This is a nonlinear model where the damping force is constant and in-phase with
the velocity. The force is assumed to be proportional to the normal force N which
acts between two surfaces. The expression for Coulomb damping is found by setting
θ = 0 in Equation 2.41.

FD(u̇) = µNsgn(u̇) (2.56)
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µ is the coefficient of friction. For steel on steel contact, the kinematic coefficient
is given as µ = 0.57 (Grigoriev et al., 1997). Figure 2.6 shows the model and the
corresponding hysteresis loop.

Figure 2.6: Model and hysteresis loop for Coulomb damping (Langen and Sigbjörns-
son, 1979)

2.4.3 Nonlinear viscous damping

Nonlinear viscous damping means that the damping force is not proportional to the
velocity. By setting θ = 2 in Equation 2.41 the following is obtained:

FD(u̇) = qu̇|u̇| (2.57)

This is known as quadratic damping. For marine application an example is the drag
force on a slender cylinder found by the Morison equation (Morison et al., 1950).
When only considering the drag term the following nonlinear drag force is obtained.

dF (t) =
1

2
ρCDD ˙u(t)| ˙u(t)| (2.58)

2.4.4 Equivalent viscous damping

The linear viscous damping model given in Section 2.4.1 is an approximation used for
its simplicity during calculations. However, real damping often exhibits a different
dependency on frequency and displacement. The equivalent viscous damping is a
method of approximating the steady state solution of a nonlinear SDOF system.
This is done by evaluating the linear system with respect to the energy dissipation
during one cycle of sinusoidal response (Jacobsen, 1930). The damping models
mentioned in Section 2.4.1-Section 2.4.3 have following equivalent damping ratios:
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Mathematical model Equivalent damping ratio, ζeq

Linear viscous damping c
2mω

Coulomb damping 4µN
πmω2u0

Nonlinear viscous (quadratic) damping 4
3
qu0

πm

Table 2.1: Equivalent viscous damping ratios

This method is often used for the seismic response of buildings. Studies have shown
that use of the equivalent damping ratio can be a good approximation for sinusoidal
response (Dwairi, 2004). However, for real earthquakes the method seem to be more
unreliable and overestimate the damping.

2.5 Forced vibration

So far, free vibration has been assumed with regards to the equation of motion given
in Equation 2.43. When a structure is subjected to harmonic loading, one can use
the frequency-response method to obtain the natural frequency of the structure. For
a linear system, there is a linear relationship between the input and output signal.
This is known as the Frequency Response Function, H(ω). Again, if a SDOF system
is considered, the equation of motion is given by Equation 2.43. In order to solve
the differential equation, the harmonic load q(t) = q0 · cos(ωt+ θ) is assumed. The
frequency response function for a SDOF system is then given by:

H(ω) =
1

k

1

(1− β2 + i(2ζβ))
(2.59)

The derivation of Equation 2.59 is given in Section A. Above, the frequency ratio
β = ω

ωn
is introduced. For a given load F (t) = ℜ[X · eiωt], the response will be:

u0 = |H(ω)| · |X| (2.60)

Where:

|H(ω)| =
√

ℜ(H(ω))2 + ℑ(H(ω))2 =
1

k

1√
(1− β2)2 + (2ζβ)2

(2.61)

For a multi-degree-of-freedom system(MDOF) Equation 2.59 can not be simplified,
so H(ω) will be defined as follows:

H(ω) = [−ω2M+ iωC+K]−1 (2.62)

More on MDOF systems in Section 2.7.
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2.6 Dynamic amplification factor

When structural dynamics in marine structures are considered, the dynamic ampli-
fication factor(DAF) is essential in the estimation of the response when using certain
methods. The DAF is defined as the ratio between the dynamic response and the
static response (Horn et al., 2015). In terms of the frequency response function it
can be written as:

DAF =
ud
us

=
|H(ω)|X
X/k

=
|H(ω)|
|H(0)|

=
1√

(1− β2)2 + (2ζβ)2
(2.63)

It is clear from Equation 2.63 that the damping ratio is essential for the accuracy
of the structural analysis where the DAF is employed. As an example, the DAFs of
a system at resonance (β = 1) are given with different damping ratios:

Damping ratio ζ [-] DAF [-]

0.005 100
0.01 50
0.015 33.333
0.02 25

Table 2.2: DAF for different damping ratios at resonance

The importance of accurate damping ratios becomes explicit as damping clearly
affects the estimate of dynamic response at resonance.

2.7 Multi-degree-of-freedom system

The equation of motion for a multi-degrees-of-freedom(MDOF) system can be writ-
ten on matrix form as:

Mr̈ +Cṙ +Kr = Q (2.64)

The mass matrix M , linear damping matrix C and stiffness matrix K have the
dimensions lxl, and the acceleration vector r̈, velocity vector ṙ and displacement
vector r have dimensions lx1, where l is the number of degrees of freedom in the
system. This system has l eigenfrequencies and l corresponding mode shapes which
can be found by solving Equation 2.28. Since the l different eigenvectors are linearly
independent, a linear combination can be used to find the displacement:

r =
l∑

i=1

Φiyi(t) = Φy (2.65)

Above, y is a vector of l time-dependent amplitudes, and Φ is a matrix containing
the mode shapes:

Φ = [ϕ1ϕ2 . . .ϕl] (2.66)
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Inserting the transformation in Equation 2.65 into the equation of motion and prem-
ultiply by ΦT

i yields the following results:

ΦT
i MΦÿ +ΦT

i CΦẏ +ΦT
i KΦy = ΦT

i Q(t) (2.67)

It can be shown that the modes have certain orthogonality properties with regard
to the mass matrix and stiffness matrix. Assuming that the same orthogonality
properties apply for the damping matrix gives the following characteristics:

ΦT
i MΦj = 0

ΦT
i CΦj = 0

ΦT
i KΦj = 0

(2.68)

This is valid for i ̸= j, and it results in l linearly independent equations that can be
solved independently. It is noted that the orthogonality property in the damping
matrix is only valid under certain conditions. The total system now becomes:

ΦTMΦÿ +ΦTCΦẏ +ΦTKΦy = ΦTQ(t) (2.69)

Using the properties from Equation 2.68 in Equation 2.69, the following uncoupled
equation system is obtained.

Mÿ +Cẏ +Ky = F (t) (2.70)

This can be solved for each degree of freedom. The damping ratio for a given mode
shape can therefore be found by solving the corresponding uncoupled equation of
motion. The result is the following:

m̄i = ΦT
i MΦi

k̄i = ΦT
i KΦi

c̄i = ΦT
i CΦi = 2m̄iωiζi

(2.71)

ζi =
c̄i

2m̄iωi

(2.72)

The typical way to represent the damping in a structure is to use the mode shapes,
which is done for convenience (Lanzi and Luco, 2017). Previously it has been as-
sumed that Equation 2.68 holds, meaning the undamped mode shapes are orthogonal
with respect to C. If this is the case, the modal damping coefficient can be found
by solving the uncoupled equation system given in Equation 2.70. The more com-
mon case is that the orthogonality condition is not satisfied. This will lead to the
following:

C = ΦTCΦ

c̄ij = ΦT
i CΦj ̸= 0

(2.73)

In order to employ the modal damping coefficient in Equation 2.71 it is implied
that the coupling terms c̄i are neglected for i ̸= j. The equivalent modal damping
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coefficient ¯̄ci is still possible to find from C. This is done by the Least square
method (Malhotra and Joseph Penzien, 1970). The following is a short summary of
this procedure.

Assuming that C is a diagonal matrix containing ¯̄ci one can write C as a function
of an error vector e:

Cẏ = Cẏ + e (2.74)

This can be rewritten:

e2i = ẏT
(
Ci −Ci

)T (
Ci −Ci

)
ẏ (2.75)

Above, Ci is row i in C. The smallest time average of the function is then found.

<
∂e2i
∂ ¯̄ci

>=< 2
(
Ci −Ci

)
ẏẏi > = 0

⇒<
(
Ciẏ − Ciẏi

)
ẏi > = 0

(2.76)

This can be solved for ¯̄ci:

¯̄ci = c̄i +
n∑

j=1, j ̸=i

cij
< ẏj ẏi >

< ẏ2i >
(2.77)

The equation above is solved iteratively where ẏi is found by solving Equation 2.70
for the given mode, and then an improved ¯̄ci is obtained.

2.8 Methods for establishing the damping matrix

In the previous subsection, the damping matrix was assumed to be known for the
modal damping. In order to establish the modal damping matrix, a linear combin-
ation of M and K is used. According to Lanzi and Luco (2017) three different
methods are normally used for this purpose.

2.8.1 Rayleigh damping matrix

The common way of establishing a orthogonal damping matrix is by representing it
as a Rayleigh damping matrix (Rayleigh and Lindsay, 1945). The damping matrix
C, is assumed to be proportional to the mass matrix M. This can be written as:

C = α1M (2.78)

The same is assumed for the stiffness matrix:

C = α2K (2.79)
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The coupled relation between the two equations above is given as:

C = α1M+ α2K (2.80)

This is called Rayleigh damping or proportional damping. The damping matrix will
be accurate for low levels of damping (Liu and Gorman, 1995). Similarly to M and
K, the damping matrix C has orthogonal properties. Consequently the coefficients
will become:

c̄i = ΦT
i CΦi = αim̄i + α2k̄i (2.81)

Moreover, the damping ratio of a given mode i can be found if α1 and α2 are known.

ζi =
c̄i

2m̄iωi

=
1

2

(
α1

ω1

+ α2ω2

)
(2.82)

If the damping ratio for two frequencies are known in the domain of interest, it is
possible to determine α1 and α2.

α1 =
2ω1ω2

ω2
2 − ω2

1

(ζ1ω2 − ζ2ω1)

α2 =
2(ω2ζ2 − ω1ζ1)

ω2
2 − ω2

1

(2.83)

Hall (2006) presented a method which aims for a constant damping ratio within a
given frequency range. The method is consistent with field data and goes as follows.

Select a desired damping ratio ζ, and a frequency range from ω̂ to Rω̂, where R > 1
and the frequency range covers modes important to the response. ∆ is introduced as
the bounds of the damping ratios important to the modes in the specified frequency
range.

∆ = ζ
1 +R− 2

√
R

1 +R + 2
√
R

(2.84)

All the modes in the range will be bound by ζbound = ζ ± ∆. If the bounds are
narrow enough, α1 and α2 can be found by:

α1 = 2ζω̂
2R

1 +R + 2
√
R

α2 = 2ζ
1

ω̂

2R

1 +R + 2
√
R

(2.85)
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Figure 2.7: Rayleigh damping from (Hall, 2006).

The advantage of Rayleigh damping is that it does not alter the mode shape, making
calculations fairly simple(Liu and Gorman, 1995).

2.8.2 Caughey series

Caughey (1960) derived the general form of a viscous damping matrix with ortho-
gonal properties for a discrete system . Later, Caughey and O’Kelly (1965) presented
Caughey series involving negative or zero powers as a representation of the damping
matrix. This is given in the following equation.

C = M
M−1∑
l=0

al
(
M−1K

)l
(2.86)

Here, al are arbitrary coefficients to be determined, and M ≤ l is the number of
terms in the series. As before, M and K are lxl matrices with l DOF and any
desired number of terms can be used in the Caughey series (Wilson and J. Penzien,
1972). It should also be noted that the two first terms of Equation 2.86 give Rayleigh
damping.

The coefficient al are evaluated by looking at each mode, i. This can be done by
combining Equation 2.86 and Equation 2.68 (Wilson and J. Penzien, 1972). The
result is:

c̄i =
M−1∑
l=0

alm̄iω
2l
i = 2m̄iωiζi (2.87)

Solving for ζi show that if the damping ratios for all the modes are known, then the
coefficients al, can be found from:
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ζi =
1

2

(
a0
ωi

+ a1ωi + a2ω
3
i + · · ·+ aM−1ω

2N−3
i

)
(2.88)

One important note is that the application of the Caughey series approach is in-
tended for structures with a moderate amount of DOFs, a part of the reason is
the numerical difficulties when ωn

i becomes large in Equation 2.88 (Wilson and J.
Penzien, 1972). However, the Caughey series approaches can be used at element or
substructure level in complex structures (Lanzi and Luco, 2017).

2.8.3 Direct evaluation of damping matrix

As a proposal to solve the numerical difficulties Wilson and J. Penzien (1972) presen-
ted a method which uses the superposition of modal damping matrices. This method
starts by evaluating the normal damping matrix C from Equation 2.70. The damp-
ing matrix then determined from modal damping ratios. The result is:

C = M

(
N∑
i

2ζiωi

m̄i

ϕiϕ
T
i

)
M (2.89)

Term i represents the contribution from mode ϕi in the damping matrix. When
a term is not included, it is implied that the given mode has zero damping. In
practical analysis, the matrix from Equation 2.89 has not been popular as it is a fully
populated matrix and requires all frequencies and modes (Chopra and McKenna,
2016). However, if all these are known, it is less computationally demanding than
using Caughey series (Wilson and J. Penzien, 1972).

2.9 Measurement of structural damping

There are several ways to measure the damping of structures. This section presents
methods for estimation of damping during free vibration and during forced oscilla-
tion.

2.9.1 Logarithmic decrement

The logarithmic decrement is a common way of obtaining the viscous damping ratio
during free vibration. This is done by measuring two successive peak values, uj and
uj+1. These instances can be described as functions of the damped natural period.

uj = u(t)

uj+1 = u(t+ Td)
(2.90)

The damped natural frequency is given in Equation 2.51, and the damped natural
period then becomes:

Td =
2π

ωd

= 2
π

ωn

1√
1− ζ2

(2.91)
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The solution for the equation of motion given in 2.47, can be rewritten for the
subcritical case:

u(t) = e−ζωn(Asin(ωdt) +Bcos(ωdt)) (2.92)

The ratio between two consecutive peaks can now be given:

uj
uj+1

=
e−ζωnt

e−ζωn(t+Td)
= eζωnTd (2.93)

Taking the natural logarithm on both sides yields the decrement:

δ = ln

(
uj
uj+1

)
=

2πζωn

ωd

(2.94)

For low levels of damping, the following approximation used:

δ ∼= 2πζ (2.95)

Abbreviated series expansion of
uj

uj+1
yields:

δ ∼=
uj − uj+1

2πuj+1

(2.96)

The logarithmic decrement is typically applied to estimate the damping of the first
vibration mode, which can be modeled as a SDOF system (Liao and Wells, 2011).
By comparing an uncertainty analysis with experimental results, it is shown that the
number of measured periods effect the uncertainty of the result. In simple terms,
the larger the damping the fewer periods should be measured(Tweten et al., 2014).

2.9.2 Half-power point method

The half-power point method is a way of determining the damping ratio experiment-
ally during forced vibration. The method uses the width of the peak value of the
frequency response function for a given structure(Papagiannopoulos and Hatzigeor-
giou, 2011). The approach is based on obtaining the maximum amplitude related
to the natural frequency of the system. In addition, the two frequencies that cor-
responds to the maximum amplitude divided on the square root of two(Olmos and
Roesset, 2010). These are shown in Figure 2.8.
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Figure 2.8: Response-frequency curve in half-power bandwidth method (Olmos and
Roesset, 2010)

From the magnitude of the frequency response function Equation 2.59, one can
derive the damping ratio:

H =
1√[

1−
(

ω
ωn

)2]2
+
[
2ζ
(

ω
ωn

)]2 (2.97)

The magnitude of the frequency response at resonance is therefore H = 1
2ζ
. By

taking the square on both sides of Equation 2.97, the following is obtained:

(
1

2ζ

)2

=
1[

1−
(

ω
ωn

)2]2
+
[
2ζ
(

ω
ωn

)]2
⇒
(
ω

ω0

)4

− 2(1− ζ2)

(
ω

ωn

)2

+ (1− 8ζ2) = 0

(2.98)

Solving for
(

ω
ωn

)
gives the result:

(
ω

ωn

)2

= (1− 2ζ2)± 2ζ
√

1− ζ2 (2.99)

By assuming ζ << 1, the higher order terms can be neglected:(
ω

ωn

)2

= 1± 2ζ (2.100)
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The roots of Equation 2.100 are now ωa and ωb. Given that ωa < ωb the following
is obtained:

4ζ =
ω2
b − ω2

a

ωn

∼= 2

(
ωb − ωa

ωn

)
⇒ ζ =

ωb − ωa

2ωn

=
fb − fa
2fn

(2.101)

The half-power method can be used for SDOF structures and MDOF structures
with linear viscous damping. This also includes structures that do not have classical
normal modes, meaning that the damping matrix is not uncoupled. The method
is proven to provide accurate results in both field and laboratory tests (Olmos and
Roesset, 2010).

2.10 Structural damping in welded marine struc-

tured

So far the known theory around damping mechanisms and the mathematical mod-
eling of damping is covered. However there are parts of the damping phenomena
that are still unknown and highly relaying on observations and conservatism. Es-
pecially regarding the connection between the material damping and the damping
ratio for real structures. Here, the damping ratio, ζ, is of main interest as this
determines the DAF. The following section presents a literature review of common
damping ratios used in welded marine structures. Other comparable structures are
also investigated. In addition, the results from a previous full scale experiment is
presented.

2.10.1 Commonly used damping levels

First, a look into the work done on the dynamics of floating Bridges. Langen and
Sigbjörnsson (1980) started to look at the stochastic dynamic response of the Salhus
Bridge outside Bergen. Here, the structural damping was seen to be small compared
to the hydrodynamic damping and was therefore neglected. In recent years, research-
ers at the department of structural engineering at NTNU have continued this work.
Viuff, Leira et al. (2016) looked at the dynamic response of another floating bridge
in Norway. In this study, the damping ratio was assumed to be 2% and Rayleigh
damping was used.

One year later, a study using a operation modal analysis was performed on the same
bridge by Kv̊ale et al. (2017). However, the structural damping was not separated
from the hydrodynamic damping. The most promising for finding an estimate for
the structural damping used on floating bridges was in Viuff, Xiang et al. (2018).
Here, a comparison of an analysis using Simo-Riflex and Orcaflex floating bridge
concept across Bjørnafjorden was made. For both analysis, Rayleigh damping is
used. Mass proportional damping was set to 0.0025 and the stiffness proportional
damping is set to 0.2. This results in a damping ratio of ζ < 0.2 in the frequency
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range of both the natural periods and the wave-excitation.

Another possible source of insight on the structural damping is seismic response
of tall steel buildings. The seismic waves on these buildings will have longer periods
than wind loads and can therefore be in the range of interest for marine applications,
i.e 1-10 second. In Suda et al. (1996), data from full scale measurements were com-
pared. When looking at the damping ratio, compared to parameters such as natural
period and building height there was a trend of the damping ratio being reduced as
the building got taller, e.g for buildings that approached 300 meters the damping
ratios approached 1 %. However, there was a lot of scatter in the measurements.
In addition, the amount of available data was not satisfactory for making a good
statistical model. Soil foundation was pointed out as an important factor for the
damping ratio, which makes the result not applicable to floating structures.

A later study on buildings in Japan looked at damping measurements (Satake et al.,
2003). As before, there was a trend of the damping reducing with the height and
natural frequency of the building. However, it should be noted that 2% damping is
pointed out as the normal design damping used for tall steel framed buildings. The
same value is assumed for the steel deck of a bridge in in Qin and Lou (2000).

As mentioned, soil foundations can be a cause of uncertainty. In addition, the use of
bolted connections will give a larger interfacial coulomb damping compared to wel-
ded connections. Bolted connections are more commonly used in civil engineering,
than naval architecture. In marine structures, stiffened panels are normally used.
The structural damping of ship hulls are normally assumed to be small (i.e ζ ≪ 1),
as in the vibration analysis done by Yucel and Arpaci (2013).

2.10.2 Previously conducted experiments

A similar experiment to the one in this thesis was conducted by Ehnes (2003). Here,
measurements on a stiffened plate panel was done to establish the damping in welds
on war ships. Both free vibration and forced vibration was measured and Rayleigh
damping was used as the mathematical model. The panel used was a 1/4 scale of
a generic warship panel. The plate was 1.2192m by 2.5908m and had a thickness
of 2.8mm, a flat plate was used for comparison. For the free vibration test, the
logarithmic decrements was used. The half-power bandwidth method was used for
forced vibration. It was noted that the free vibration results were not cohesive and
therefore dropped.

The conclusion was that the welds seemed to contribute to the damping, and that
Rayleigh damping was an appropriate model. Another important finding was that
the increase in damping was in the whole structure, and not a local phenomena.
The largest damping was found for low frequencies. The most important statement
was that compared to a flat plate, the damping was not significantly increased.

The findings above show that the knowledge about the ”step” from material damping
to the damping of whole structures is still relaying on measured data. There is also
a clear lack of research on the field. The mentioned experiment is seen as the most
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relevant for the current project. However, the scope is somewhat different as the
current experiment will be used along a FE model.
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Chapter 3

Experiment

During Spring 2022, a series of experiments were conducted on a cantilever beam
at the Department of Marine Technology in Trondheim. In the following chapter, a
description of the beam, welding and hardware will be presented. In addition, there
is a description of the performed tests and possible error sources.

3.1 Context and hypothesis

The goal of the experiment was to establish methods for estimation of damping in
full scale steel structures. By conducting an experiment with a cantilever I-beam,
the damping levels were to be determined at different support configurations using
the logarithmic decrement and half-power point method. In addition to the material
damping described in Section 2.3, a hypothesis is that there was additional damping
caused by the relative motion at the interface between the beam and the plate. It
was expected that the damping levels found from only one beam would be small,
however given that the hull of a VLFS contains a large number of welded plates the
total effect might be significant.

3.2 Experimental setup

The setup consisted of a 1.53 m cantilever I-beam welded to a thick plate, which
again was bolted to a testing rig. The beam had an I-profile. At the beam tip, an
exciter was placed. There were fillet welds connecting the beam to the plate at each
side of the web and on the top flanges and bottom flanges. The thickness of the
web was 5.3 mm. Top and bottom flanges taper from 7.5 mm close to the web to
7.0 mm on the flange edge. The setup and measurements are shown in the following
figure and table.
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Figure 3.1: Cantilever beam with exciter

Part Dimension [mm] Comment

Beam length 1512
Beam height 160
Flange width 80

Flange thickness 7.5-7 Tapering from centre
Web thickness 5.3

Table 3.1: Beam dimensions

3.3 Welding

Fillet welds were used as the welding technique. During the project, the welds were
elongated one time. The first setup had two welds on the top flange and two on the
bottom flanges. In addition there were two on each side of the web. This setup will
be referred to as weld configuration 1. Figure 3.2 and Figure 3.3 show the welds and
numbering.
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(a) Top flange (b) Bottom flange (c) Web (d) Web

Figure 3.2: Weld configuration 1

Figure 3.3: Sketch with numbering of welds as seen from tip towards clamped end.

Measurements of the length and throat(a-measurement) of the welds are given in
the following table.

Weld number Length, L [mm] Throat, a [mm]

1 24 4.6
2 26 6
3 34 5.3
4 36 4.8
5 37 5.6
6 36 4.6
7 27 4.5
8 22 8

Table 3.2: Weld measurements, weld configuration 1

As the welds had uneven thickness, Table 3.2 show the average a-measurements,
which were measured at each end and in the middle of the welds. The welds were
made with minimal burn-in as a result of the dimensions of the flanges and web.
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With to much burn-in the metal would be continuous between the beam and the
plate, i.e there would not be a steel-on-steel contact between the beam and the plate.

After conduction test on the beam with smaller welds a continuous weld was made
around the beam end. The new arrangement will be referred to as weld configuration
2 and can be seen in the following figure.

(a) Top flange (b) Bottom flange (c) Web (d) Web

Figure 3.4: Welds along all of beam

3.4 Hardware

The servomotor shown in Figure 3.1 was a Lenze MCS-09H60-RS0B0-B14N-ST5S00N-
R0SU. This had maximum rotational frequency of 6000 rpm, which corresponds to
628.3 rad/s. The weight of the exciter and servomotor was me = 19.8 kg. A control
unit enabled the motor to be adjusted to the desired frequency. The motor was
clamped to the end of the beam by two plates, where the length of the plates were
0.4 m. The three acceleration sensors were of type KAS903-02A. They were place
on the top flange, the bottom flange and on the web 0.733 m from the clamped end.
The sensors can be seen in Figure 3.5.
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Figure 3.5: Acceleration sensors

The strain gauges were one Tokyo Measurement Instruments Lab general use strain
gauge at the top flange 0.4 m from the welds and one at bottom flange 0.4 m from
the clamped end. In addition there were three Tokyo Measurement Instruments Lab
rosettes located 0.0215 m from the welds at the web. The placement of hardware
on the beam is shown in the following figure.

Figure 3.6: Sketch of beam with hardware

All signals from acceleration sensors and strain gauges were sent though amplifiers
and gathered using catman®Easy software. This software enable for live visual-
ization of the sensors. In addition the data could be exported to excel for further
editing. During testing the sample rate was set to 1200 Hz. This was done on
the basis of initial test were the natural frequency of the beam was measured to
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around 34 Hz, a ratio of 35.3 between the sampling rate and vibrations of interest
was considered adequate.

3.5 Experimental methods

3.5.1 Static deflection

An import part of establishing the properties of the system was to investigate the
bending stiffness, EI, and the rotational stiffness, kθ, of the cantilever beam as
described in Equation 2.4. This was done by a static deflection tests where three
weights were placed in order on top of the motor as described Table 3.3. The radius
of the weights were 8 cm, and they were placed with the edge flush to the beam tip.
Furthermore, the relative deflection was measured at a distance of 55 mm from the
beam tip using an analogue micrometer. The procedure is shown in Figure 3.7.

Step weight[kg]

1 2.43
2 4.87
3 7.26

Table 3.3: Weights

Figure 3.7: Measurement of tip deflection

The strains in the flanges was obtained by measuring for one second with a sample
rate of 1200 Hz. Measurements of each step was performed three times, with reset of
the strain gauges after each run. Both the deflection and strain measurements were
done simultaneously for consistency. It should be noted that all the deflection tests
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were performed with the motor mounted. This was done for practical reasons, and
was considered as not important as only the difference in deflection was of interest.

3.5.2 Free vibration

In order to establish the natural frequency of the beam and to estimate the damping
by the logarithmic decrement a free vibration test was performed. The logarithmic
decrement is described in Section 2.9.1. In order to produce free vibration, the beam
was hit at the top flange with a hammer. During the test, measurements were done
for 5 s with a sample rate of 1200 Hz. In total, six tests were conducted for each
weld configuration. Three were performed before any other testing, the latter three
was performed in between other tests in order to investigate possible changes in the
natural frequency.

3.5.3 Forced vibration

Damping levels of the beam were also found using the half-power point method
described in Section 2.9.2. These tests were conducted by running the exciter at
different frequencies. The load frequency was controlled manually where the fre-
quency increment was 0.1 Hz. With help from live visualization of the results is was
possible to see when steady state was achieved, further identification of steady state
was done during post processing. From observations it was noted that steady state
was usually achieved rather quickly. The sampling rate was 1200 Hz.

3.6 Post processing

The raw data from all sensors were stored in excel files, which enabled for easy
editing. In order to reduce computational time, the files were edited so only the
steady state response was saved. The excel files were then imported to Python
and treated there. The relevant codes are found in B. Before further processing
a butterworth lowpass filter was used on all the measurement. This filter was set
at 100 Hz on the basis of the measured natural frequency during initial testing.
Looking at the mechanical transfer function given in Equation 2.62 the resulting
β = 100

35
would give about 1

7
of the undamped resonant response of the system.

3.6.1 Static deflection

The strains during static loading was found by taking the average of the measured
strain at the top flange. For comparison the analytical strain was calculated using
Equation 2.5. The measured deflection was found by taking the average of the
measured deflections from multiple tests. After a an adequate number of deflection
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measurements were acquired, the beam stiffness and rotational stiffness could be
calculated using Equation 2.1 and Equation 2.4.

3.6.2 Natural frequency

The natural frequency of the beam was found by considering the free vibration
initiated by the hammer hit. By performing a fast fourier transform the natural
frequency was identified as the maximum of the response spectrum.

3.6.3 Logarithmic decrement

For the logarithmic decrement the data was extracted in the same way as previously
described. Afterwards the built-in function Scipy.signal.find peaks() was used to
find the peaks of the signal. Furthermore the positive peaks of the response were
identified in order to obtain the damping as described in Equation 2.95. During post
processing of the results, it was observed that the damping ratio was dependent on
the number of positive peaks counted. This lead to a convergence study with a limit
of 5% deviance between the calculated damping ratios.

3.6.4 Half-power point

From the raw data captured during forced vibration the steady state response was
identified from the time series, and transient displacement was deleted. The response
amplitudes used for the half-power point method was then found by dividing the
absolute value of the max and minimum steady state response by two. This was
done for each load frequency. The half-power point and corresponding damping was
calculated as described in Equation 2.101. This procedure was done for the strain
at the flanges and for the vertical acceleration.

3.7 Sources of error

Different sources of error could effect the accuracy of the obtained results. In the
following section, uncertainties in the experimental setup and methods will be men-
tioned. Discussion of the specific effect these could have on the results will be
discussed in chapter 5.

3.7.1 Material and geometry

Firstly, the materials and geometry of the beam contained some uncertainties. With
limited knowledge of the steel alloy of the beam and plate a Young’s modulus of
E=210 GPA and Poisson ratio of ν = 0.3 was assumed. The accuracy of the bending
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stiffness ,EI, could have effected both static response and the dynamic response as
can be seen in e.g. Equation 2.2 and Equation 2.25.

The geometry of the beam could also have affected the results, especially if the
flanges and web were bent. This would result in a transverse load and possible
torsional movement of the beam. This effect could be present both during the
free vibration and forces vibration. The beam end not being perfectly even could
also have a consequence for contact behaviour at the interface. Irregularities in
the surface could make the contact area between the beam and plate smaller than
expected.

3.7.2 Welds

Another uncertainty in the experiment were the geometry of the welds. First, the
weld shape was irregular which made taking accurate measurements with calipers
challenging. The length and a-measurement was therefore used as these were the
easiest to obtain. For the a-measurement, the average of the depth at each end
and center was used as previously mentioned. The uneven welds could have lead to
torsional movement during loading and uneven stresses around the weld.

Cracking was observed in the welds near the flanges during testing. A cracked weld
could result in torsional movement as one side of the flange would not be held in
place when the given flange was in tension. Given that the damping calculations
were made from vertical measurement this could effect the results. As a result of
cracking, it was decided to reconstruct weld number 2 and weld number 7. These
welds can be seen in Figure 3.3. All presented results are from tests conducted after
this reconstruction. Note that possible internal cracks in other welds could still have
been present in the remaining welds. Consequently, both the response of the beam
and the stresses in the weld could be effected.

3.7.3 Measurements

In an attempt to keep the errors in the measurements to a minimal, resetting of
the gauges and acceleration sensor were conducted after each test. It should be
noted that after resetting the channels, live update of the sensors still showed some
fluctuations in the signal. This noise creates uncertainty in the accuracy of the signal
given the small magnitude of measured strain and acceleration. This uncertainty was
prominent during static deflection test and free vibration test where the magnitude
of the deflection was small.

For the static deflection the measurement using a micrometer could have been un-
certain as a result of inaccurate reading. Possible errors are the micrometer being at
an angle and small movements in the base of the micrometer. These uncertainties
were reduced by taking the average of multiple measurements.

The way the free vibration tests were conducted also include some inherent uncer-
tainties. As the test was performed by hitting the beam with a hammer, both the
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force and contact points were uncertain. The force could have been inconsistent for
each hit, resulting in a different magnitudes of the response. This could have lead
to different damping values if the decay of the beam was dependent on amplitude.
In the case of an off-center hammer hit, torsional movement could have resulted in
wrong damping ratios if the vertical vibration was effected.

For the forced vibration, the main source of error is believed to be not achieving
steady state. While changing frequencies it was observed a transient with larger
response than the following steady state. This effect was especially critical close to
resonance as unnecessary testing on these frequencies was avoided. Misalignment
of the motor could also introduce torsional movement. The mentioned cracking of
welds were also important during this test, given the high stresses during resonant
testing.
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Chapter 4

Finite element analysis

The FEA software Simulia Abaqus CAE 2019 was utilized for modelling the beam in
weld configuration 1. In order to obtain greater understanding of the Abaqus model,
a description of the model and procedures is presented in the following chapter. The
accuracy of the model is discussed in Section 5.5.3.

4.1 Model description

The model consisted of two parts, a plate and a beam. The plate had dimensions
0.2mx0.2m with a thickness of 30 mm. Welds were modeled as triangular prisms,
where the size was the average sizes found from the experimental setup . This lead
to different sizes for the horizontal and vertical welds. The vertical welds had height
and width of 6 mm and length 35 mm. The horizontal welds had height and width
8 mm mm and length 25 mm. Sketches of the weld profiles are given in Figure 4.1.

(a) Profile of vertical weld (b) Profile of horizontal weld

Figure 4.1: Profile of welds

In order to capture the movement in the interface between the plate and the beam,
the two parts had to be merged together as if the steel was continuous from the
plate, through the welds and into the beam. This was to be achieved by merging

41



the welds to the plate, and later using the Tie constraint to connect the beam to
the welds. More on the Tie constraint in Section 4.5.

The beam was a 1.512 m long I-beam with the almost the same measurements as
given in Table 3.1. Only difference was the size of the flanges, instead of tapering
the thickness was 7.25 mm. This was done to ease the meshing.

Figure 4.2: FE model

4.2 Elements

For the Abaqus analyses a proper element had to be used in order to achieve the
highest possible accuracy in the analysis. In Abaqus, solid elements can be used for
both linear -and nonlinear analysis. They are categorized by the shape and num-
ber of nodes. The elements have either first-order(linear) interpolation or second-
order(quadratic) interpolation. The order denotes the shape function of the element.
Second order elements provide higher accuracy, and are better at catching stress
concentrations than first order elements. However, they have a longer running time
(MIT, 2021c).

Reduced integration uses a lower-order quadrature rule to integrate over the element.
This is done for the stiffness matrix, however the mass matrix is fully integrated. By
using this method the running time will be reduced, especially in three dimensions.
After talking to the supervisors quadratic reduced integration elements are seen as
the most suitable for this analysis. This element is named C3D20R in Abaqus.
During the end of the master thesis work it was noticed that the elements in plate
were set to first order by mistake, which could effect the results. As the dynamic
analyses are quite extensive there was no time to run the analyses again, meaning
this could be a source of inaccuracy in the results. There was time to run the static
analyses with C3D20R elements in both the plate and the beam.

4.3 Mesh

The mesh is made such that there are two elements over the flange thickness in order
to obtain accurate stress and pressure. For the web there is only one element across
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the width. This is seen as adequate since the loading was purely vertical, i.e the
stress and pressure differences across the web height are captured. The mesh was
kept simple by using the same mesh size for the rest of the parts. This is done in
order to avoid distorted elements. The resulting mesh has a characteristic length of
3.333 mm, and the complete model had 141495 elements. The following figure show
the mesh near the welds.

Figure 4.3: Mesh near clamped end

4.4 Dynamic analysis

In Abaqus there is the possibility to choose between implicit and explicit time integ-
ration. Both come with their advantages and disadvantages (MIT, 2021b). First,
the run-time has to be considered. In implicit dynamic analysis a set of nonlinear
equilibrium equations and the integration operator matrix is inverted and solved at
each time increment. In an explicit dynamic analysis there is no forming or inverting
of global mass and stiffness matrices, making each time-increment relatively inex-
pensive compared to the increments in an implicit integration scheme. However, the
implicit operators are unconditionally stable for linear systems. Consequently the
time step can be larger compared to the central difference scheme used in explicit
analysis. Initial testing of using explicit analysis showed time steps around 107 s.
This was with automatic regulation of the time step in Abaqus. Since the available
computational power was a computer with 10 processors, the lower computational
cost of each explicit increment did not make the total analysis time practical. Con-
sequently, it was decided to use implicit analysis in this project. However, this
decision was made early in the project in order to focus on the contact formulation.
Explicit analysis should therefor not be excluded as a viable option.

In Abaqus, the default time integration for implicit is Hilber-Hughes-Taylor time
integration (Hilber et al., 1977). This method has some numerical damping, luck-
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ily this can be avoided by editing the numerical parameters associated with the
operator. By setting α = 0 there should be no numerical damping.

4.5 Constraints

Constraints on the degrees of freedom can be used to bind different surfaces together.
This can be useful as the intent of the model is to connect the plate and beam by
the weld. The tie connection fuses two surfaces together, even if the meshes are
unequal (MIT, 2021d). In order to connect the welds to the beam the tie constraint
is found the most useful as it ensures that the same displacement is maintained
for connecting parts (Abdul Kudus, 2020). The reason for the welds to be merged
into one part with the plate was convergence difficulties that likely came from two
constraints on the welds, i.e two different tie constraints on neighbouring nodes.

4.6 Damping in Abaqus

Rayleigh damping is used for material damping in direct integration dynamic ana-
lysis in Abaqus. It is possible to define α1 and α2. During analysis the stiffness
proportional damping found by solving Equation 2.82 for α2 given α1 = 0. Here
the damping level needs to be known, meaning that this feature could be useful in
a parametric study.

4.7 Contact formulation

The interaction between the beam and plate needs to be modelled as precisely as
possible in order to obtain the behaviour of the steel-on-steel friction. This is par-
ticularly important for the normal direction of the surfaces. Codes that can handle
contact problems mainly use either the penalty method or the Lagrangian multi-
plier method (Wriggers, 1995). The penalty formulation introduces a spring stiffness
between the two contacting bodies. The result is that the final equations do not con-
tain additional variables, simplifying the implementation. However, one drawback
of the method is that the accuracy of the approximate solution depends strongly on
the penalty number (Huněk, 1993). In addition, the constraint conditions are only
approximately satisfied, meaning penetrations are unavoidable.

The Lagrange multiplier method fulfills the contact condition exactly. Here, an
additional constraint equation allows no contact to occur(Jiang and Rogers, 1988).
However, this increase in size of the equation system leads to increased computa-
tional time.

A third option for normal contact constraint is the augmented Lagrange method.
Information regarding this formulation in Abaqus was found in MIT (2022) and goes
as follows. Simply put this method uses an augmentation iteration scheme in order
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to reduce the penetration distance between the contact surfaces. For each increment
the following sequence takes place. First, the solver uses the penalty method in order
to find a converged solution. Furthermore, the penetration between the surfaces is
checked. If the penetration of the surfaces is not within a given tolerance the contact
pressure is augmented and more iterations are conducted until another convergence.
This procedure is continued until the penetration is within the tolerance.

It was attempted to use the Lagrangian multiplier during the project work. How-
ever there was problems getting the solutions to converge. It should be mentioned
that Abaqus CAE prints a warning about possible convergence issues while using
Lagrangian multipliers. Penalty formulations are recommended instead. A lot of
time had been spent during the project work trying to use Lagrangian multipliers.
Consequently, it was therefore decided to use augmented Lagrange contact formula-
tion in the normal direction close to the end of the project. This lead to a somewhat
limited number of analyses. The tangential contact formulation is not critical when
is comes to penetration. It was therefore decided to use penalty as frictional contact
in order to simplify the calculations.

Different choices and parameters had to be decided for the augmented contact for-
mulation. Given the somewhat limited time, default parameters where decided on
as a start. Firstly, the choice was made the option surface-to-surface contact dis-
cretization. As explained in MIT (2021a), the surface-to-surface formulation uses a
master slave relationship between the contact surfaces. Here, the method enforces
contact conditions in an average sense over regions nearby slave nodes. Each con-
tact constraint will predominantly consider one slave node but will also consider
adjacent slave nodes in the region of averaging, which is centered approximately on
slave node.

Another parameter is the tracking approach. There are two options in Abaqus,
where Finite-sliding tracking approach is the most general approach (MIT, 2021a).
This approach allows for contact between all points on both surfaces. The other
option is the Small-sliding approach. This sets a limit to the tracking of the surfaces,
which in turn reduces computational cost. Since the sliding in the interface of the
beam was unknown it was decided that the best option was to use finite-sliding,
even given the extra computational cost.

4.8 Analysis procedures

In the following, the specific procedures used for the static deflection and free vi-
bration. The previously mentioned settings are valid for both cases.

4.8.1 Static deflection

For a static deflection test a static nonlinear stress analysis is preformed in Abaqus.
The procedure is done to replicate the tests described in Section 3.5.1. The weights
were modelled as a pressure force on top of the beam using the total force option
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which divides the input force across a given surface. The area had dimension 16
cm x 8 cm, equal to the diameter of the weights. Gravity is set to be g=9.81 m/s2

when calculating the force. The load can be seen in the following figure.

Figure 4.4: Beam with static pressure load

The static analysis had a duration of 0.5 s where the load was applied linearly over
the whole step. The suggested initial time step was set to 5 · 10−7 s with a minimal
allowed step of 1 · 10−7 s . If the time step was not sufficiently small during initial
contact, there was trouble with convergence. Abaqus regulated the size of time-step
in order to reduce run-time of the analysis. In order to reduce the time for each
analysis, a maximum allowed time-step 0.1 s was used.

4.8.2 Numerical eigenfrequecy

In order to obtain the natural frequency of the beam a the Lanzcos eigensolver was
used. Here the mass of the motor is modelled as inertia in a node 54893, located
19.747 cm from the tip. As the real center of gravity is unknown for the motor this
was an assumption as the motor length was 40 cm.

4.8.3 Numerical free vibration

For the free vibration a combination of a static load step and dynamic implicit
vibration step was used. During the static step, deflection in the form of a boundary
condition at the tip was introduced. The displacement of the tip was set to 1 mm
downward. The use of a boundary condition instead of a load was from convergence
considerations. This static step had a length of 0.4 s.

The static step was followed by a implicit dynamic step. This step involved no load,
only a inertia located as the same position as previously mentioned. The time steps
will be discussed in Section 5.5.3.
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4.9 Methodology

Abaqus is a comprehensive CAE software providing many options during analyses.
The main goal of the numerical model is to investigate if is possible to obtain and
identify the damping from different sources for welded steel structures. A summary
of the methodology and decisions that were taken during work on the model are
presented below.

1. Establish the properties of the model that was kept constant during further
investigation. While working with the model it was decided that the parts, as-
sembly, mesh and boundary were to be kept constant due to limited time. The
same goes for the contact properties. As mentioned, Lagrangian multipliers
lead to convergence issues. Consequently it was decided that Agumented Lag-
range contact formulation was to be used in the normal direction and penalty
formulation in the tangential direction.

2. The loading for the different procedures were decided on. These are described
in Section 4.8.

3. A static analysis was conducted in order to verify the accuracy of the model
and contact formulation. This was done by comparing the numerical deflection
to analytical results and experimental results.

4. For the dynamic analysis multiple input options available for the contact sur-
face and damping. The experimental results could not indicate if the damping
in the beam was from material damping or steel-on-steel friction. The task of
identifying the different contributions to the damping was therefor quite hard.
The way this was done was to first run an analysis without using material
damping. Afterwards the damping was obtained for this basic model using
the same methods as for the experimental tests, i.e logarithmic decrement.
It was planned to use the difference in the damping results to indicate the
magnitude of damping from material damping and damping from movement.
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Chapter 5

Results and discussion

Presented in this section are the results and discussion from the three different tests.
First, the analytical results, experimental results and numerical results for the static
deflection test. Afterwards, the experimental results from free vibration and forced
vibration. Lastly, results and discussion of the numerical simulations are presented.

5.1 Static deflection

5.1.1 Analytical results

As a check for the quality of the beam setup, analytical calculations were conducted
in order to obtain the deflection of the beam. As described in Section 2.1, simple
hand calculations can be done for both the deflection and strain at various positions.
The following dimensions and material properties were used in the calculations.

Dimensions and properties Size

Young’s modulus, E 210GPa
Moment of inertia, I 9.9 · 106 mm4

Density, ρ 7850 kg/m3

Area, A 2008mm2

Table 5.1: Dimensions

The analytical end deflections and corresponding weights were calculated using
Equation 2.2 and Equation 2.5. The following results were obtained.
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Weight [kg] δ[m] ∆δ[m] ε[−] ∆ε[−]

2.43 13.21 · 10−6 0 1.020 · 10−6 0
4.87 26.48 · 10−6 13.27 · 10−6 2.044 · 10−6 1.024 · 10−6

7.26 39.47 · 10−6 12.99 · 10−6 3.048 · 10−6 1.004 · 10−6

Table 5.2: Analytical results for static loading. δ is the analytical deflection at the
tip. ε is the analytical strain 0.4m from the clamped end.

The calculated strains were small in magnitude. Note that the calculations were
conducted without weight from the motor. For practical reasons, the measurement
of static deflections and strains were impossible to do without the exciter on the
beam, as the assembly process would effect the measurements. In addition, the
magnitudes are so small that the response can be assumed to be linear, making the
difference due to the weights relevant.

5.1.2 Experimental results

The static deflection of the beam was measured as described in Section 3.5.1. The
strains were measured as described in Section 3.6.1. The following results were
obtained.

Weight [kg] δ1[m] ∆δ1[m] δ2[m] ∆δ2[m]

2.43 27 · 10−6 0 18.33 · 10−6 0
4.87 53 · 10−6 26 · 10−6 35 · 10−6 16.67 · 10−6

7.26 77 · 10−6 24 · 10−6 52.67 · 10−6 17.67 · 10−6

Table 5.3: Deflection 5.5 cm from tip. δ1 is the deflection for weld configuration
1. δ2 is the deflection for weld configuration 2. ∆δ1 and ∆δ2 are the changes in
deflection.

Weight [kg] ε1 [−] ∆ε1[−] ε2 [−] ∆ε2[−]

2.43 1.347 · 10−6 0 8.605 · 10−7 0
4.87 2.957 · 10−6 1.61 · 10−6 2.645 · 10−6 1.7845 · 10−6

7.26 3.958 · 10−6 1.001 · 10−6 4.092 · 10−6 1.447 · 10−6

Table 5.4: Strain in top flange 0.4 m from clamped end. ε1 is the strain for weld
configuration 1. ε2 is the strain for weld configuration 2. ∆ε1 and ∆ε2 are the
changes in strain.

Table 5.3 and Table 5.4 show the average tip deflection and strains at the top flange
for three different test. The tip deflection of the beam decreased when changing to
weld configuration 2, which is the reasonable as the latter was a more firmly welded
beam. The main source of error for this test are thought to be the position and angle
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of the micrometer. In order to obtain accurate results from both weld configurations,
the placement was marked during testing on weld configuration 1. However, given
the small scale of the deflections, even small inaccuracies in the placement for weld
configuration 2 could effect the results.

The strain measurements showed a relative increase in magnitude when going from
weld configuration 1 to weld configuration 2. An uncertainty here could be from
noise in the signal. The increase in deflection and reduction in strains when going
from weld configuration 1 to weld configuration 2 indicates that rotation in the
clamped end was more prominent for the first configuration. Consequently, the
deflection for weld configuration 2 might have been dominated by beam bending.
The same behaviour can be expected for the dynamic test, which might have lead
to more relative movement in the beam plate interface for weld configuration 1.

5.1.3 Numerical results

The numerical static deflection were found as descried in Section 4.8.1. Horizontal
strain measurements were done at node 18300 located 0.402932 m from the plate on
the top flange. The tip deflection was measured at node 65787, located 55.86 mm
from the beam tip at the bottom flange.

Weights [kg] ε[−] ∆ε δ[m] ∆δ

2.43 1.150 · 10−6 0 15.15 · 10−6 0
4.87 2.305 · 10−6 1.155 · 10−6 30.37 · 10−6 15.22 · 10−6

7.26 3.436 · 10−6 1.131 · 10−6 45.28 · 10−6 14.91 · 10−6

Table 5.5: Results, numerical static deflection for weld configuration 1

The first observation is that the numerical response of the beam was close to linear
as the loads were applied.

Figure 5.1: Displacement along beam with all weights

Figure 5.1 shows the vertical displacement at the top flange along the length of
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the beam. The parabolic shape are thought to be a good representation of beam
bending for a cantilever beam. It is also noted that the deflection is close to zero at
the clamped end, meaning the Tie constraints seem to merge the parts together.

Figure 5.2: Stress in weld during static loading, weld configuration 1

The plate stress contours in Figure 5.2 show that the largest stress were at the welds
in the top flange, indicating the beam was kept in place at the top by the constraint.
In order to investigate the accuracy of the constraint behaviour, the displacement of
nodes 476 and node 113889 were considered. These nodes are located on the beam
and the weld and can be seen in the following figure.

Figure 5.3: Weld at top flange
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The measured horizontal displacements are given in the following table.

Node Horizontal displacement[m]

476 144.749 · 10−9

113889 140.84 · 10−9

Difference [m] 3.909 · 10−9

Table 5.6: Horizontal displacement at weld

The weld displacement was slightly smaller than the beam displacement, as seen in
Table 5.6. The reason for the difference could have been that node 476 was placed
on a larger element, further away from the clamped end. However, a more likely
reason is that Tie constraint has some deviation to it. As the difference were 10−9,
the constraint can be seen as fairly accurate in modelling of a welded connection.

Another aspect in the interaction between the beam and the plate was the contact
formulation. The contact openings at node 11122 and node 11049 are presented in
the following table. The nodes were located in the middle of the top flange 76.39
mm from the web middle and located in the middle of the bottom flange 76.38 mm.

Node Location Opening[m]

11122 Top flange 171.245 · 10−9

11049 Bottom flange −19.1254 · 10−12

Table 5.7: Contact opening at top flange and bottom flange

The penetration can be assessed by looking at the opening for the bottom flange.
It is clear that there was some movement in the node, if this was from penetration
or contraction in the metal is hard to conclude on. It is known that the contact
formulation can have some penetration, making it plausible that this is the cause.

In order to get an overview of the static behaviour of the beam, results from all
methods are gathered in the following figure.

Figure 5.4: Static deflection, 5.5 cm from tip
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The deflections where close to linear for all cases except for the experimental results
for weld configuration 1. The reason for this deviation might have been some rotation
at the clamped end. In addition, there was less deflection from the numerical result
for weld configuration 1 than the experimental results for weld configuration 2. This
might have been from the uncertainty in the material properties of the beam. As the
experimental results had assumed material properties and possible imperfections in
geometry, there is reason to believe that the consistent geometry and homogeneous
material in the numerical beam could effect the results. Another possible error
source was the rather coarse mesh in the numerical calculations, especially around
the welds.

The static tests were conducted in order to verify the behaviour of the beam. This
evaluation was intended as a supplement to the dynamic analyses and the meshes
were therefore kept the same. In order to reduce computation the number of elements
were kept as low as possible, leading to a coarse mesh. There is reason to believe
that a finer mesh around the welds would have improved the accuracy of the static
results. In addition, there was uncertainty in the analog experimental measurements.
However, the procedure was repeated three times meaning that the results should
be fairly accurate. The use of heavier weights might have improved the accuracy,
as the effects of errors in material properties and geometrical properties would have
been smaller compared to the measurements.

5.2 Damping during free vibration

During the free vibration test the natural frequency and the logarithmic damp-
ing were established. Results including analytical natural frequency, experimental
natural frequency and experimental damping are presented and discussed in this
section.

5.2.1 Analytical natural frequency

An estimate for the natural frequency for weld configuration one was found by com-
bining the measured deflections with the 2-DOF system presented in Section 2.2.1.
By using Equation 2.4 in the matrices presented in Section 2.2.1

Knowing the rotational stiffness of the system one can find the coupled natural
frequency of the system as described in Section 2.2. The resulting average rotational
stiffness is kθ = 1.7214095 · 106.

This results in a natural frequency of 50.49 Hz. The main source of this deviation is
thought to be the rotational stiffness, kθ. The measurements of static deflection are
prone to some errors as previously mentioned. The small magnitude of deflection
makes the rotational stiffness quite sensitive, thus leading to uncertainty in result.

For weld configuration 2, the end is assumed to be fully clamped. The eigenfrequency
was therefore calculated using the matrices described in Section 2.2. The resulting
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natural frequency was fn = 36.84 Hz. As the latter is the frequency for a stiffer
system, the two results do not seem to give realistic values.

5.2.2 Experimental natural frequency and damping

The following time series were recorded during a hit of a hammer at the top flange
for weld configuration 1. A Butterworth filter with cutoff 100 Hz. All the presented
results are from the vertical acceleration sensor on the weld. This was chosen as
the amplitude of the signal is larger further away from the web, which should have
reduced the influence of noise in the signal.

Figure 5.5: Time series of vertical acceleration

The hammer hit can clearly be seen as the large peak in acceleration right after t = 2
s in Figure 5.5. By conducting a discrete Fourier analysis on the vertical vibration,
it was also possible to identify the natural frequency of the system. The following
figure show the transform for vertical acceleration.
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Figure 5.6: Frequency domain plot of acceleration

The natural frequency is found by identifying the peak of the transform. Three test
were initially conducted in weld configuration 1, before running the forced vibration
tests. Three additional free vibration tests were performed in between the forced
vibration testing in order to observe possible changes in the natural frequency. All
the measured natural frequencies are given below.

Test number Vertical fn [Hz]

1 32.154
2 32.105
3 32.27
4 31.83
5 30.71
6 23.6

Table 5.8: Measured natural frequency, weld configuration 1

Even while considering the mentioned sources of error such as off center hit with
the hammer and signal noise, it is observed that the measured natural frequency
from the three first test are cohesive and subsequently regarded as valid. For the
three tests conducted in between the forced vibration tests, a decline in the natural
frequency was observed. The most likely source of this decline is thought to be
cracking in some of the welds. Before the presented test were conducted, cracks
were observed as mentioned in Section 3.7.2.

In order to calculate the damping of the system the peaks of the response had to be
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identified. The following figure show the positive peaks that were identified during
post-processing. These were later used in the damping analysis.

Figure 5.7: Identified peaks, test 1

As seen in Figure 5.7, the decay of the peaks followed a trend but there was some
fluctuation between neighbouring peaks. This error could be from signal noise.

The damping levels found from the measured results were observed to be dependent
on the counted number of peaks. The following figure show the results from two
convergence studies where damping levels were compared to counted number of
peaks.

(a) No suspected cracks (b) Suspected cracks

Figure 5.8: Convergence, weld configuration 1

Figure 5.8a show the damping levels for test 1− 3 in Table 5.8. It can be seen that
the damping levels are close to each other and that there is convergence when the
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number peaks n increases. Even though the results are from the hammer test with
the given inaccuracies of procedure this compliance in the results may be interpreted
as an confirmation of the accuracy of the logarithmic decrement as an measurement
of damping. the results are diverging after the suspected cracking of welds. This
can be seen in Figure 5.8b. The correlation in damping and natural frequency could
be an indication of a relation between daming and stiffness of the system. The
following table all results for the hammer test conducted for weld configuration 1.
The maximum strains, εm are also included.

Test number fn [Hz] n ζ [−] εm [−]

1 32.154 22 0.004285 15.82 · 10−6

2 32.105 16 0.006217 17.88 · 10−6

3 32.27 16 0.006781 15.18 · 10−6

4 31.83 18 0.006001 10.82 · 10−6

5 30.71 13 0.005943 16.25 · 10−6

6 23.6 23 0.002022 16.95 · 10−6

Table 5.9: Measured natural frequency and damping, weld configuration 1

Table 5.9 show the results from different hammer hits. The first test show lower
damping than test 2 and test 3. The difference in peaks counted before convergence
can reveal the possible source of this difference to be noise in the signal, again this
can be from the small amplitudes of the response during the hammer hit. Same
can be said about the results from test 6. The strains in the flange are also small
for all test, making signal noise an important factor. The average damping before
reduction in the natural frequency was ζ = 0.005761. If the damping was dominated
by material damping or friction is impossible to conclude with from this result only.
However, the level is low compared to damping normally used in structures.

For weld configuration 2 the same test were conducted. The resulting accelera-
tion plots, peaks plots and frequency domain plots were similar to those for weld
configuration 1. All result plots can be seen in Appendix C.

Similarly to weld configuration 1, a convergence study was conducted for weld con-
figuration 2.
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Figure 5.9: Convergence, weld configuration 2

As seen in Figure 5.9, the convergence were similar for all the conducted tests. The
results are given in the following table.

Test number fn [Hz] n ζ [-] εm

1 37.76 17 0.008182 9.76 · 10−6

2 37.92 14 0.01020 10.35 · 10−6

3 37.72 19 0.00733 10.86 · 10−6

4 37.84 16 0.008277 8.70 · 10−6

5 36.02 16 0.008608 9.945 · 10−6

6 35.90 16 0.008924 10.83 · 10−6

7 35.53 16 0.0060107 9.03 · 10−6

8 34.98 17 0.008003 8.92 · 10−6

Table 5.10: Measured natural frequency and damping, weld configuration 2. fn is
the natural frequency. n is the number of peaks counted. ζ is the damping ratio.
εm is the maximum measured strain.

Compared to weld configuration 1, there was an increase in the measured damping
increased when the end was more firmly welded. Again, there were some discrepan-
cies in the result that did not seem to be directly linked to the natural frequency. The
measured strains are also relatively small giving uncertainty from signal noise. The
average damping ratio before reduction in the natural frequency was ζ = 0.008497.

The increase in damping ratio between weld configuration 1 and weld configuration
2 could suggest that the movement at the beam and plate interface does not have
substantial damping for this beam. When more welds were introduced, its reasonable
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to assume less movement, which again means that the increase in damping for weld
configuration 2 likely come from other sources. The main suspect here is an increase
in material damping.

5.3 Damping during forced vibration

The results from test were the half-power point method was used are presented in
the following section. Note that the presented figures are for only one test, plot from
remaining test are given in Appendix C.

5.3.1 Experimental results

Figure 5.10: Vertical acceleration, max strain at 31.9Hz

Figure 5.10 show the vertical acceleration at the web during forced vibration. A
clear peak is observed near the resonance frequency. Note that the peak load fre-
quency was not necessarily the resonance frequency. The peak of the response is
subsequently named frequency of max strain. Even for a step length of 0.1 Hz, the re-
sponse is increased substantially at peak compared to nearby frequencies. This lead

59



to interpolation between load frequencies being used in order to find the half-power
point.

Figure 5.11: vertical -and horizontal acceleration, max strain at 31.9 Hz

Figure 5.11 show the vertical acceleration and horizontal acceleration of the top
and bottom flange. The magnitude of the vertical acceleration was large compared
to the horizontal for all load frequencies. The damping in the beam can therefore
be assumed to be mainly from the vertical movement of the beam. However, it
should be noted that the horizontal acceleration at the bottom flange seem to be
somewhat larger than at the top flange for near resonance. The main suspects for
this asymmetry are beam geometry, weld geometry or weld cracking.

The following table contain the numerical results for all the conducted damping test
for weld configuration 1. These are presented in the same order as the test were
conducted.
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Frequency of
maximum strain [Hz]

Strain
gauge

Maximum
strain, εm [-]

ζ [-]
Damping from
acceleration [-]

31.9 Top flange 326.90 · 10−6 0.00504 0.005593
Bottom flange 320.76 · 10−6 0.005542

30.2 Top flange 268.25 · 10−6 0.009756 0.008750
Bottom flange 262.88 · 10−6 0.009815

29.7 Top flange 243.00 · 10−6 0.007171 0.005943
Bottom flange 238.68 · 10−6 0.007259

27.9 Top flange 180.71 · 10−6 0.006743 0.005774
Bottom flange 182.95 · 10−6 0.006702

27.2 Top flange 153.68 · 10−6 0.009345 0.008039
Bottom flange 152.86 · 10−6 0.009284

24.6 Top flange 91.64 · 10−6 0.007097 0.007382
Bottom flange 91.07 · 10−6 0.006638

22.6 Top flange 78.57 · 10−6 0.011973 0.011444
Bottom flange 79.16 · 10−6 0.011444

Table 5.11: Results: Weld configuration 1

The damping levels were between values of 0.55% and 1.1%, where the overall aver-
age damping was ζ = 0.007561. Another observation is the correlation in decreased
strain, εmax and decreased frequency of maximum strain. This observation corres-
ponds to decrease observed in Section 5.2.2. Note that εmax is given at the strain
gauge 0.4 m from the clamped end. The measurements of vertical acceleration were
used in the calculation of damping as the large magnitude of the signal reduced the
influence from noise.

As seen in Table 5.11, the damping values for the test with maximum strain at 30.2
Hz has some deviation from nearby test.

(a) Vertical acceleration (b) Vertical and horizontal acceleration

Figure 5.12: Maximum strain at 30.2 Hz

Figure 5.12a show that the response peak for the mentioned test. There were only
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two measured point between the half-power points, introducing some uncertainty
in the results. The horizontal accelerations were observed to be substantial when
compared to the vertical for this test. This can be seen in Figure 5.12b. The
large horizontal acceleration introduce some uncertainty in the damping result as
the damping was calculated from the vertical acceleration. The measured damping
could therefore be smaller than the real damping of the beam as torsional movement
may increase the energy dissipation i.e damping, by increased movement of the beam.

(a) Vertical acceleration (b) Vertical and horizontal acceleration

Figure 5.13: Maximum strain at 31.9 Hz

The results given Figure 5.13 show a more symmetric peak of the vertical response.
In addition, the horizontal acceleration were relatively low, meaning the damping
results are thought to be more accurate.

Figure 5.14: Damping rations for weld configuration 1

All damping ratios for weld configuration 1 are shown in Figure 5.14. The plot
shows an increase in the damping as the load frequency of maximum strain was
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reduces. For the lowest frequency the damping is drastically increased. The increase
in damping for lower frequencies can come from an increase in the relative motion
in the interface between the beam and plate. However, since there was no trend
leading up to this damping level in other tests, there is no substantial evidence for
this being the case.

For weld configuration 2 changes in beam behaviour were observed. First, during
loading near and above resonance there was a slowly varying vibration of about 1
Hz. In addition, there was an increase in the maximum response compared to weld
configuration 1. The slowly varying vibration disappeared at high load frequencies.
This behaviour can be seen in the following figure.

Figure 5.15: Time-series during forced vibration

The cause of this behaviour was most likely the weld as they were the only change
when coming to weld configuration 2. As the old welds were not removed before
elongating the welds, old cracks could be the source of this behaviour. The results
were still regarded as useful since the calculation of the half-power point used the
peak amplitude at each load frequency. On the contrary this behaviour should be
kept in mind when considering the validity of the result for this configuration. Ro-
tational movement could also introduce friction in beam to plate interface resulting
in deviation from the numerical model.

When considering the response for different load frequencies the torsional movement
was more prominent compared to the vertical response. This can be seen in the
following figure.
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Figure 5.16: Horizontal and vertical acceleration

As seen in Figure 5.16 the horizontal acceleration is greater for this weld configur-
ation. The shape of the response peak for the vertical movement was also changed
with larger response past resonance. The same behaviour was observed for the
strain, as seen in Figure 5.17.

Figure 5.17: Strain at top flange

Furthermore, the results from different runs are presented in the following table.
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Frequency of
maximum strain [Hz]

Strain
gauge

Maximum
strain,εm [-]

ζ [-]
Damping from
acceleration [-]

36.5 Top flange 510.99 · 10−6 0.0088864 0.0091
Bottom flange 513.86 · 10−6 0.0088865

35.3 Top flange 592.38 · 10−6 0.007298 0.00805
Bottom flange 591.22 · 10−6 0.007297

34.6 Top flange 584.02 · 10−6 0.008492 0.009698
Bottom flange 595.21 · 10−6 0.008492

34.5 Top flange 574.62 · 10−6 0.007818 0.008420
Bottom flange 586.04 · 10−6 0.009284

34.2 Top flange 570.83 · 10−6 0.007675 0.008124
Bottom flange 560.62 · 10−6 0.007664

34.1 Top flange 559.62 · 10−6 0.007495 0.008268
Bottom flange 548.98 · 10−6 0.007526

33.8 Top flange 536.95 · 10−6 0.006494 0.006813
Bottom flange 527.01 · 10−6 0.006489

33.6 Top flange 461.90 · 10−6 0.007831 0.007820
Bottom flange 451.73 · 10−6 0.0078406

33.4 Top flange 491.19 · 10−6 0.003537 0.003597
Bottom flange 481.13 · 10−6 0.003537

32.9 Top flange 490.86 · 10−6 0.005542 0.005425
Bottom flange 480.58 · 10−6 0.005562

Table 5.12: Results weld configuration 2

As for weld configuration 1, the frequency of max strain decreases as more tests
are conducted. There was also a decrease in the measured strain over the course of
the tests. Cracks in the welds are again assumed to be the cause of this behaviour.
The comparison between frequency and damping is shown in Figure 5.18. The
average damping ratio for the three first tests was ζ = 0.008949. The three first test
are regarded as the most accurate as cracks in the welds were thought to be less
prominent. Damping ratios in this figure are found from the vertical acceleration.
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Figure 5.18: Frequency vs. damping

There was a slight increase in the observed damping ratios as the load frequency of
maximum strain increased. This is opposite behaviour of weld configuration 1, where
the damping increased as the frequency decreased. When considering the hypothesis
of damping from movement of the beam and plate interface, the behaviour should
be the opposite, i.e as the beam was welded more firmly the damping should have
decreased.

On the contrary, this increase in damping when introducing more welds could be
from the material damping in the metal. As mentioned in Section 2.3.4, there will be
an increase in plastic strain damping in the material when the material is closer to
yield. The local plastic strain can give large damping, and even though Lazan (1968)
states that this form of damping is not as relevant structural material because of
fatigue considerations, there is reason to believe that these high stresses were present
during resonant runs in the experiment.

Comparing the experimental damping ratios from the free vibration and forced vi-
bration one can see that for both types of tests the damping increased for weld
configuration 2. During free vibration for weld configuration 1, the average damp-
ing was ζ = 0.005761 before substantial reduction in the frequency of maximum
strain. The damping results from the three first tests of the half-power method had
similar magnitude. Given that both tests show nearly the same damping, there is
evidence to believe that the damping level was around 0.5%− 0.6%.

The same can be said about weld configuration 2, where the free vibration tests show
ζ = 0.008497. The first three tests for the half-power point method show values
around ζ = 0.009. A damping level between 0.8% − 0.9% for weld configuration 2
is therefore plausible. The damping levels can therefore be thought to increase as
more welds are introduced. As a result of this there is no substantial evidence for
an increase in damping due to more relative movement at the interface when the
welds are intact. The only increase were found when the welds were cracked and
there was substantial increase in the movement of the clamped end.

66



5.4 Assessment of repeatability

The repeatability of the preformed tests were seen as somewhat unsatisfactory. The
resulting damping are inconsistent when repeating the test even though there are
trends in some of the results as shown above. The change in natural frequency
during testing also makes repeating the results difficult. The most consistent tests
were the hammer tests, even with uncertainties in the method. The half-power point
method showed changes in the behaviour during testing which were thought to be
from cracks in the welds.

5.5 Numerical damping results

In the following section the numerical damping levels are established and compared
to the experimental results. The numerical analysis was only conducted for weld
configuration 1 as there was limited time after deciding not to move forward with
the Lagrangian multipliers in the contact formulation.

5.5.1 Numerical eigenfrequency

The natural frequency of the beam is found as described in chapter 4. The resulting
eigenfrequency was fn = 42.08 Hz for weld configuration 1, where the shape of the
bending mode can be seen in the following figure.

Figure 5.19: Natural frequency in bending mode

This numerical eigenfreguency was somewhat higher than the experimental results
which were around 32 Hz during initial testing. However, as seen from the static
deflection in Figure 5.4, the behaviour of the beam was stiffer in the numerical ana-
lysis. This might explain the increase in the increase in natural frequency, however
this reasoning is not consistent with the analytical static results which in turn were
stiffer than the numerical. There is therefore some uncertainty in the numerical
eigenfrequency.
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5.5.2 Numerical free vibration for weld configuration 1

The time series and identified peaks for the numerical free vibration are shown in
the following figure.
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Figure 5.20: Transition between static and implicit dynamic analysis

In Figure 5.20 we can see that there was some damping in the system as the peaks
of the response were reduced during the vibration. When the analysis transitions
from static to implicit dynamic at 0.4 s, an increase in the response is observed.
This behaviour can be seen in the following figure.
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Figure 5.21: Transition between static and implicit dynamic analysis

The reason for this increase are unknown, and without experimental tests with the
same method for inducing vibration it can not be concluded if this behaviour is
natural or not.

The damping numerical damping ratio was identified as ζ = 0.005666 and it con-
verged after counting 25 peaks. This results is quite similar to the one obtained
by the experimental free vibration test which was at ζ = 0.005761 for weld config-
uration 1. As there was no material damping or numerical damping this suggests
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that all damping during the free vibration test was a results of movement of the
interface. The following figure shows the movement of the opening at the top and
bottom flanges, in addition to the total contact are.
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Figure 5.22: Opening and contact area

As seen in Figure 5.22a the contact opening decays as during the vibration. Note
that the bottom opening had a peak at the start of the free vibration, which are
though to correspond to peak in Figure 5.20a. The bottom opening was a somewhat
larger than the top opening which could be a result of the mesh not being perfectly
symmetrical around the node. However, the movement are regarded as fairly accur-
ate as there was very small penetration of the surface. Looking at total contact area
in Figure 5.22b
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Figure 5.23: Vertical motion of top and bottom

First, looking at the tangential vertical motion of nodes at the top flange middle and
bottom flange middle, there was large motion initially before a gradual decay. The
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top and bottom were also in opposite phases during vibration. It is also noted that
the motion is constant at some point during each oscillation. The reason for this is
thought to be the horizontal stopping the vertical movement of the beam end.
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Figure 5.24: Vertical motion of bottom flange and web at bottom weld

As seen in Figure 5.24, the vertical motion of the web is small compared to the
motion of flange meaning that the Tie constraints held the web in place fairly well.

The results found above indicate that almost all damping found from the experi-
mental free vibration test come from the steel on steel contact in the clamped end.
From the forced vibration test the average damping were also around the same level
for the weld configuration. On the contrary, by looking at the results from the static
test its suggested that the numerical model behaves more firmly than the experi-
mental. One can therefore assume that there would be more damping if material
damping was introduced. This would require more testing with both full weld and
a parametric study of the material damping.

5.5.3 Accuracy of FE analyses

The uncertainty in the finite element model comes from different choices that were
made regarding methods and parameters. First, the geometry of the model has
some simplifications. The flanges were modelled with constant thickness in order
to ease the meshing. However, the largest geometrical uncertainty is seen to be the
weld shapes. As the real welds were uneven in both a-measurement and length,
an average size of the physical welds were used for respectively the web and flange
welds. As previously discussed, there is also the possibility of the numerical results
deviating from the experimental as imperfections in the physical beam are likely.

There was also some uncertainty in the sensitivity of the time step. Figure 5.25
show a comparison of the measured peaks for both ∆t = 0.00075 s and time step
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∆t = 0.000075 s. The first time step was selected as it was close to the sample rate
of the experimental test.
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Figure 5.25: Measured peaks for different time steps

The response was clearly effected by the the reduction in time step, which a larger
decay observed for the longer step. Unfortunately there was neither time or available
computational power to reduce the time step further. For reference, the computation
of 0.5 s of free vibration using time step ∆t = 0.000075 s took 118 hours and
produced and 202.9 GB output file.It was seen as impractical to use smaller time
steps without access to a more powerful computer. This makes the given damping
level ζ = 0.00576 uncertain for the given results.
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Chapter 6

Conclusion and further work

6.1 Conclusion

This main objective of this work was to investigate structural damping in welded
structures and possible numercal models for calculation of damping levels. After
reviewing relevant literature it is clear that there is a knowledge gap between the
internal material damping and damping of full scale structures. The micromechan-
isms and mathematical qualifications of the internal damping of structural materials
are seen as well established. The mathematical models for evaluating the response
of full scale structure are also adequate. Here, modal analysis is widely used and
consistent with field data. It is clear that assuming damping ratios are the only
ways of establishing the damping matrix needed to preform these analyses. Unfor-
tunately, the damping has previously been shown to be impossible to predict within
plus minus 30 %

Full scale experiments were conducted on a weld cantilever I-beam in order to es-
tablish its damping levels. Tests were performed for different support conditions in
terms of a partly welded clamped end and a clamped end with welds all around the
cross section. The partly welded beam was later modelled in Abaqus CAE with the
goal of separating the material damping from other sources of energy dissipation.
The finite element model was made so that the beam and plate were connected
through welds, creating steel on steel contact between the beam end and the plate.
Augmented Lagrange contact formulation was used for the interface between the
beam and the plate.

First, the result analytical results, experimental results and numerical results from
a static deflection test were gathered. The results were fairly consistent, with the
largest deflection found in the experimental result. The numerical model displayed
stiffer behaviour than the real beam for similar weld geometry. This find was most
likely related to meshing or geometrical imperfections as the constraints and contact
formulation seemed to be accurate.

Damping levels were established during free vibration and forced vibration by util-
izing the logarithmic decrement and half-power point method. The experimental
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results indicated an increase in the damping ratio when going from a partly welded
clamped end to a fully welded clamped end. Rough estimates for the respective weld
configurations were 0.5%−0.6% and 0.8%−0.9%. The source of this increase could
be more material damping in the beam as the fully welded configurations had higher
stress levels during testing. The accuracy of the free vibration results were seen as
the most consistent. However, possible errors due to signal noise and inaccuracies in
experimental method, one can only use the mentioned damping levels as estimates.

The numerical damping result during free vibration was consistent with the observed
experimental free vibration damping result. As the numerical model did not contain
any material damping this could indicate that all the damping in that configuration
was from friction. However, as the model contained uncertainties from meshing,
geometry and time step size this hypothesis should only be seen as plausible. Thus,
the overall evaluation of the model is that it can be useful as a simplification and
be useful as the starting point for further work.

6.2 Recommendations for further work

The work done in this project can be useful as a start for numerical modelling of
structural damping in welded structures. The following is recommended topic for
further work.

First, possible further work for the analytical and experimental methods:

• Perform analytical calculations of material damping in order to obtain more
insight in its importance in structural damping.

• Conduct experiments with more consistent beam and weld geometry. Special
attention to cracking of weld could also be useful.

• Improve the methods for inducing free vibration, e.g. by having a more con-
sequent hammer drop. Investigation of other methods for measuring damping
could also be useful.

The following are recommendations for work on the FE model:

• Further investigate the use of Lagrangian multiplier methods as contact for-
mulation.

• Investigate the use of explicit analysis.

• Further investigation of the uncertainty related to time step size in implicit
analysis

• Conduct a parametric study of material damping in the numerical model.
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Appendix

A Theory

Mass and stiffness matrix for beam model

K =
2EI

l3


6 −3l −6 −3l

−3l 2l2 3l l2

−6 −6l 6 3l
−3l l2 3l 2l2



K =
ml

420


156 −22l 54 13l
−22l 4l2 −13l −3l2

54 −13l 156 22l
13l −3l2 22l 4l2



Consistent mass matrix

mv = ρA

∫ L

0

ϕvϕvdx =
9m

L6
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0
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1

2
Lx2 − 1

6
x3
)2

dx
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x3
)2

dx
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x7
]L
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=
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mθ = ρA
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ϕθϕθdx =
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2
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mvθ = mθv = ρA
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ϕθϕvdx
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Frequency response function

First, the load is expressed on compact form:

F0cos(ωt+ θ) = Re[(XR + iXI)(cos(ωt) + isin(ωt)] = Re[X · eiωt]

XR = F0cos(θ)

XI = F0sin(θ)

The response also needs to be a harmonic function:

u = Re[u0e
iωt]

u̇ = Re[iωu0e
iωt]

ü = Re[−ω2u0e
iωt]

The equation of motion given in 2.43 can now be rewritten:

mü+ cu̇+ ku = F (t)

(−mω2 + icω + k)u0e
iωt = Xeiωt

(−mω2 + icω + k)u0 = X

u0 = (−mω2 + icω + k)−1︸ ︷︷ ︸
H(ω)

X

The result is the frequency response function:

ii



H(ω) = (−mω2 + icω + k)−1

= (mω2
n −mω2 + iω(2mωnζ)

−1

=
1

m
(ω2

n − ω2 + iω(2ωnζ))
−1

=
1

m 1
ω2
n
(ω2

n − ω2 + iω(2ωnζ))

=
1

k(1− β2 + i(2ζβ))

Above, the following relations are introduced:

ζ =
c

2mωn

ω2
0 =

k

m
β =

ω

ωn

For a given load F (t) = Re[X · eiωt], the response will be:

u0 = |H(ω)| · |X|
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B Python code

import data.py

#------------------------------------------------------

#Purpose: Importing raw data from Excel files.

#------------------------------------------------------

#Input parameters:

#Directory: File location

#Filename: file name

#sensor: Identification of acceleration sensor

# and strain gauges

import pandas as pd

import numpy as np

def import_data(directory,filename,sensor):

direct=directory + filename

print(direct)

time=pd.read_excel(direct, header=38,usecols='A')

time_n=time.to_numpy()

if sensor =='acc_vert':

data=pd.read_excel(direct,header=38,usecols='B')

data_n=data.to_numpy()

if sensor =='acc_hor_top':

data=pd.read_excel(direct,header=38,usecols='C')

data_n=data.to_numpy()

if sensor =='acc_hor_bot':

data=pd.read_excel(direct,header=38,usecols='D')

data_n=data.to_numpy()

if sensor=='sg1':

data=pd.read_excel(direct,header=38,usecols='S')

data_n=data.to_numpy()

if sensor=='sg2':

data=pd.read_excel(direct,header=38,usecols='T')

data_n=data.to_numpy()

if sensor=='sg3':

data=pd.read_excel(direct,header=38,usecols='U')

data_n=data.to_numpy()

if sensor=='sg4':
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data=pd.read_excel(direct,

header=38,usecols='V')

data_n=data.to_numpy()

if sensor=='sg5':

data=pd.read_excel(direct,

header=38,usecols='W')

data_n=data.to_numpy()

if sensor=='sg6':

data=pd.read_excel(direct,header=38,usecols='X')

data_n=data.to_numpy()

if sensor=='sg7':

data=pd.read_excel(direct,header=38,usecols='Y')

data_n=data.to_numpy()

if sensor=='sg8':

data=pd.read_excel(direct,header=38,usecols='Z')

data_n=data.to_numpy()

if sensor=='sg9':

data=pd.read_excel(direct,header=38,usecols='AA')

data_n=data.to_numpy()

if sensor=='sg10':

data=pd.read_excel(direct,header=38,usecols='AB')

data_n=data.to_numpy()

if sensor=='sg11':

data=pd.read_excel(direct,header=38,usecols='AC')

data_n=data.to_numpy()

dataset=np.hstack((time_n,data_n))

return dataset
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lowpass filter.py

#------------------------------------------------------#

#Purpose: Establish lowpass filter and filter data

# Source: https://www.delftstack.com/howto/python/

# low-pass-filter-python/

# Downloaded: 02.02.2022

#------------------------------------------------------#

#Input parameters:

#data: raw data sample

#cutoff: cutof frequency of filter

#fs: samplerate

#order: order of polynomial

#------------------------------------------------------

from scipy.signal import find_peaks,butter, lfilter

#---------------Lowpass filter--------------

def butter_lowpass(cutoff,fs,order):

nyq=0.5*fs

normal_cutoff=cutoff/nyq

b, a=butter(order,normal_cutoff,btype='low',analog=False)

return b, a

def butter_lowpass_filter(data, cutoff, fs, order):

b, a = butter_lowpass(cutoff, fs, order=order)

y = lfilter(b, a, data)

return y
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static deflection.py

#--------------------------------------------------------------#

#Purpose: Calculate analytical deflection for

# a cantilever beam and corresponding strain. Gather and

#calculate the average mean static strain. Calculate the

# rotational stiffness from measurements.

#--------------------------------------------------------------#

import numpy as np

from matplotlib import pyplot as plt

from import_data import *

from lowpass_filter import *

cutoff = 100 #cutoff frequency

order = 8 # Order of ploynomial in filter

#filter and find mean from measurments

def mean_deflection(directory,file,sensor, cutoff,samplerate,order):

#Raw data from experiments

data=import_data(directory,file,sensor)

#Lowpass filter

data_low=butter_lowpass_filter(data[:,1],cutoff,samplerate,order)

#Find mean of filtered signal

mean_deflect=np.mean(data_low)

return mean_deflect

res_point=np.zeros([4,1]) #Results, weld configuration 1

res_full=np.zeros([4,1]) #Results, weld configuration 2

#Files with raw data, weld configuration 1

file_point_weld_0=['','']

file_point_weld_1=['','']

file_point_weld_2=['','']

file_point_weld_3=['','']

#Files with raw data, weld configuration 2

file_full_weld_0=['','']

file_full_weld_1=['','']

file_full_weld_2=['','']

file_full_weld_3=['','']

#Calculate mean deflection for all weights, weld configuration 1

for i in file_point_weld_0:

mean=mean_deflection(directory,i,sensor,cutoff,samplerate,order)

res_point[0,0]+=mean

for i in file_point_weld_1:
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mean=mean_deflection(directory,i,sensor,cutoff,samplerate,order)

res_point[1,0]+=mean

for i in file_point_weld_2:

mean=mean_deflection(directory,i,sensor,cutoff,samplerate,order)

res_point[2,0]+=mean

for i in file_point_weld_3:

mean=mean_deflection(directory,i,sensor,cutoff,samplerate,order)

res_point[3,0]+=mean

#Mean strain of experimental results [-]

res_point_mean=res_point/len(file_point_weld_0)

#Calculate mean deflection for all weights, weld configuration 2

for i in file_full_weld_0:

mean=mean_deflection(directory,i,sensor,cutoff,samplerate,order)

res_full[0,0]+=mean

for i in file_full_weld_1:

mean=mean_deflection(directory,i,sensor,cutoff,samplerate,order)

res_full[1,0]+=mean

for i in file_full_weld_2:

mean=mean_deflection(directory,i,sensor,cutoff,samplerate,order)

res_full[2,0]+=mean

for i in file_full_weld_3:

mean=mean_deflection(directory,i,sensor,cutoff,samplerate,order)

res_full[3,0]+=mean

#Mean strain of experimental results [-]

res_full_mean=res_full/len(file_full_weld_0)

Weights=np.array([0.00001,2.43,4.87,7.26]) #Weights [kg]

#Note. First element in the array above is

#set to a small value to avoid divding by zero

#---------------------------Calculation of strains at flange-------#

load=Weights*9.81 #Force from weights [N]

EI=2.079*10**6 #Bending stiffness [Nm^4]

length=1.512 #Lenght of beam [m]

#Placement of strain gauge on top flange[m]

placement_weight=length-0.4
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#Analytical strain at top flange[-]

strain=((0.08/EI)*placement_weight*load)

print('Analytical strain',strain)

print('Measured strain',res_point*10**-6)#print with conversion

#to microstrain

#---------------------------End deflection-------------------------#

#Analytical end deflection

end_deflection=np.array(((length**3)/(3*EI))*load)#[m]

#measured end deflection, weld configuration 1[10^-6 m]

measured_deflection=np.array([(0+2+0)/3,(20+22+20)/3,\

(54+53+45)/3,(74+64+64)/3])

#Measured end deflection, weld configuration 2[10^-6 m]

measured_deflection_full=np.array([0.001,(20+18+17)/3, \

(36+35+34)/3,(55+52+51)/3])

#---------------------------Beam stiffness------------------------#

#Analytical stiffness[N/m]

stiffness=np.divide((load*length**2),end_deflection)

#Measured stiffness, weld configuration 1[N/m]

stiffness_measured=np.divide((load*length**2), \

measured_deflection*10**-6)

#Measured stiffness weld configuration 2[N/m]

stiffness_measured_full=np.divide((load*length**2),\

measured_deflection_full*10**-6)

rot_stiffness_calculated=np.zeros(len(load))

rot_stiffness_measured=np.zeros(len(load))

rot_stiffness_measured_new=np.zeros(len(load))

#Measured rotational stiffness[N/theta]

for i in range(len(stiffness)):

rot_stiffness_measured[i]=stiffness_measured[i]-(3*EI)/length
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Eigenfrequency.py

from cmath import pi

import numpy as np

import math

EI=2.079*10**6 #[Nm^2]

l=1.53 #[m]

l_e=l-0.2 #[m], placement of motor

m_e=19.2 #[kg]

m=7850*2008*10**(-6) #[kg/m]

kr=1488010

#rotational stiffness [N/rad]

K=np.array([[(EI*(l**3))/3, ((l**2)*EI)/6],

[((l**2)*EI)/6, ((EI*l)/3)+kr]])

M_tot=(m*l*99/420)+m_e

M_coupling=(67/280)*m*l**2

I=m*(2/105)*l**3

#(121/840)*l**3

M=np.array([[M_tot,M_coupling],[M_coupling,I]])

omega_power_1=((K[0,0]*M[0,0]+I*K[1,1])- \

math.sqrt((K[0,0]*M_tot+I*K[1,1])**2-\

4*M_tot*I*(K[0,0]*K[1,1]-K[0,1]*K[1,0]))) \

/(2*M_tot*I)

omega1=math.sqrt(omega_power_1)

f1=omega1/(2*pi)

omega_power_2=((K[0,0]*M_tot+I*K[1,1])+ \

math.sqrt((K[0,0]*M_tot+I*K[1,1])**2-\

4*M_tot*I*(K[0,0]*K[1,1]-K[0,1]*K[1,0]))) \

/(2*M_tot*I)

omega2=math.sqrt(omega_power_2)

#print(4*EI/l)

f2=omega2/(2*pi)

print("Stiffness matrix:", K)

print("Lumped mass matrix:",M)

print("First eigenfrequency 2DOF:",f1)

print("Second eigenfrequency 2DOF:",f2)

#print(math.sqrt((3*EI)/(m_e*(l**3)))/6.28)
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#print(3.5186*math.sqrt((EI)/(m*l**4))/6.28)

logarithmic decrement.py

#------------------------------------------------------#

#Purpose: Calculate damping from experimental results

#using the logarithmic decrement.

#------------------------------------------------------#

import math

from cmath import pi

import numpy as np

from matplotlib import pyplot as plt

from import_data import *

from lowpass_filter import *

from scipy.signal import find_peaks

#Find the peaks and time of peak in array

def peaks(time_series,displacement):

peaks=find_peaks(displacement)

time=np.zeros(len(peaks[0]))

res=np.zeros(len(peaks[0]))

index=0

for i in peaks[0]:

res[index]=displacement[i]

time[index]=time_series[i]

index+=1

return time,res

#Find only positive values of time series

def pos_values(time,dataset):

time_raw_tot=np.zeros((len(time)))

res_raw_tot=np.zeros((len(dataset)))

idx=0

for t,i in enumerate(dataset):

if i<=0:

continue

res_raw_tot[idx]=i

time_raw_tot[idx]=time[t]

idx+=1

res_raw=np.trim_zeros(res_raw_tot)

time_raw=np.trim_zeros(time_raw_tot)

return time_raw,res_raw

#Calculating logarithmic damping from given sample

def log_damping(n,sample):
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i_max=np.argmax(sample)

sample1=sample[i_max+2]

sample2=sample[i_max+n+2]

decrement=(1/n)*(np.log(sample1)/np.log(sample2))

damping=1/(np.sqrt((1+((2*pi)/decrement)**2)))

return i_max,damping

cutoff = 100 #cutoff frequency

fs = 1200.0 # sample rate, Hz

order = 8 # Order of ploynomial in filter

n=np.arange(5,35) #Number of peaks to count in decrement

#preallocation of arrays

damping_res=np.zeros([len(n)])

natural_frequency=np.zeros([len(files),1])

natural_frequency_rot=np.zeros([len(files),2])

max_strain=np.zeros([len(files),1])

#Import and filter data. Afterwards peaks are identified.

dataset=import_data(directory,file,'acc_vert')

res_lowpass=butter_lowpass_filter(dataset[:,1],cutoff,fs,order)

time_low,res_low=pos_values(dataset[:,0],res_lowpass)

time_peaks_low,res_peaks_low=peaks(time_low,res_low)

i_max_vert=np.argmax(res_peaks_low)#Identify largest peak

for idx, i in enumerate(n):

i_max, damping=log_damping(i,res_peaks_low)

damping_res[idx]=damping

strains_res=import_data(directory,file,'sg11')

strains_low=butter_lowpass_filter(strains_res[:,1],cutoff,fs,order)

max_strain=np.amax(strains_low)

#Convergence of damping ratios are found.

for i in range(len(files)):

for idx, j in enumerate(damping_res[:,i]):

if 0.95<=damping_res[idx-1]/i <=1.05:

print('Coverged at: ',n[idx])

print('Damping: ',damping_res[idx,i])

break
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Half power.py

#-------------------------------------------------------------#

#Purpose: Calculate damping from experimental results using

#the logarithmic decrement.

#-------------------------------------------------------------#

import numpy as np

import math

from scipy.signal import find_peaks

import matplotlib.pyplot as plt

from import_data import *

from lowpass_filter import *

#find the response for given load frequency.

def frequency_results(frequencies,dataset,dataset_lowpass):

m=0

res=np.zeros((len(dataset[:,1]),len(frequencies[:,0])))

for count, j in enumerate(frequencies[:,0]):

for idx,i in enumerate(dataset[:,0]):

if frequencies[count,1]<= i <=frequencies[count,2]:

res[m,count]=dataset_lowpass[idx]

m+=1

return res

#find peaks or response

def peaks_find(peaks,dataset,data_lowpass):

idx=0

peaks_plot=np.empty((len(peaks[0]),2))

for i in peaks[0]:

peaks_plot[idx,0]=dataset[i,0]

peaks_plot[idx,1]=data_lowpass[i]

idx+=1

return peaks_plot

#find amplitude of response

def find_amp(frequencies, res):

append=np.zeros((len(frequencies[:,0]),1))

tot_res=np.hstack((frequencies,append))

for idx,i in enumerate(frequencies[:,0]):

max=np.amax(res[:,idx])

min=np.amin(res[:,idx])

amp=(np.abs(max)+np.abs(min))/2

tot_res[idx,3]=amp

return tot_res

#find halfpower given frequencies

def find_halfpower(tot_res,half_power):
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for i in range(len(tot_res[:,3])):

if tot_res[(i-1),3] <half_power <=tot_res[i,3]:

freq_1=(tot_res[(i-1),0]*(tot_res[i,3]-half_power) \

+tot_res[(i),0]* \

(half_power-tot_res[(i-1),3]))/(tot_res[(i),3]\

-tot_res[(i-1),3])

elif tot_res[(i-1),3] >half_power >=tot_res[i,3]:

freq_2=(tot_res[(i-1),0]*(tot_res[i,3]-half_power) \

+tot_res[(i),0]* \

(half_power-tot_res[(i-1),3]))/(tot_res[(i),3] \

-tot_res[(i-1),3])

return freq_1,freq_2

directory=''#directory where result files are stored.

#Import data from excel file. The time of different frequencies are

#loaded from separate text file.

def calc_damping_halfpower(sensor):

file='' #.txt file with time of different frequencies

dataset=import_data(directory,file_1,sensor) #Import data

frequencies=np.loadtxt("", skiprows=1, dtype='float')#import

#frequencies from text file.

#Lowpass filter requirements.

order = 8 # Order of ploynomial in filter

fs = 1200.0 # sample rate, Hz

cutoff = 100 # desired cutoff frequency of the filter, Hz

data_lowpass=butter_lowpass_filter(dataset[:,1], cutoff, fs, order)

#Finding steady state for each frequency and saving the response.

res=frequency_results(frequencies,dataset,data_lowpass)

#Find the amplitude at at given load frequency

tot_res=find_amp(frequencies,res)

#Find max response in order to calculate half-power point

max_amp=np.amax(tot_res[:,3])

half_power=max_amp/math.sqrt(2)

resonance_idx=np.argmax(tot_res[:,3])

resonance=tot_res[resonance_idx,0]

#Use linear interpolation to find the other frequencies

freq_1,freq_2=find_halfpower(tot_res,half_power)
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#Find the damping ratio

damping=(freq_2-freq_1)/(2*resonance)

return damping, tot_res,freq_1,freq_2,half_power

damping_sg11,tot_res_sg11,freq_1_sg11,freq_2_sg11, \

half_power_vert=calc_damping_halfpower('sg11')

E=210*10**3 #Youngs modulus steel[MPa]

micro_strain=np.zeros(len(tot_res_sg11[:,1])) #Preallocation

micro_strain[:,0]=tot_res_sg11[:,3]

stress=micro_strain*E*10**-6 #Find stress if sensor i strain gauge[MPa]

frequencies=tot_res_sg11[:,0] #[Hz]

num_rows,num_cols=stress.shape

max_stress=np.zeros(num_cols)

for i in range(len(max_stress)):

max_stress[i]=np.amax(stress[:,i])

max_freq_i_1=np.argmax(tot_res_sg11[:,3])
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C Experimental results

Logarithmic decrement

n Test 1, ζ[−] Test 2, ζ[−] Test 3, ζ[−]

5 0.02541141 0.02644074 0.02671619
6 0.02126197 0.0211063 0.02212001
7 0.01746185 0.01742792 0.01857339
8 0.01491345 0.01441006 0.01527911
9 0.01331306 0.01260622 0.01351747
10 0.01158739 0.01078992 0.01166679
11 0.01034073 0.00984072 0.01098909
12 0.00903513 0.00876729 0.00947638
13 0.00845015 0.00791016 0.00849714
14 0.00753031 0.00721178 0.00797305
15 0.00693144 0.00646561 0.00699313
16 0.00637800 0.0062171 0.00678062
17 0.00597521 0.00551559 0.00609886
18 0.00559839 0.00536556 0.0057664
19 0.00511157 0.00463888 0.00527782
20 0.00484383 0.00453943 0.00494468
21 0.00436192 0.00418012 0.00455536
22 0.00428516 0.00393644 0.00434563
23 0.00385865 0.0037307 0.00407786
24 0.00373801 0.00354866 0.00377255
25 0.0035413 0.00335155 0.00377727
26 0.00334601 0.00307001 0.0034763
27 0.00328699 0.00308447 0.00325388
28 0.00299183 0.00282373 0.00301157
29 0.00294867 0.00268684 0.00305522

Table C.1: Convergence, weld configuration 1

(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.1: Weld configuration 1, test 1
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(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.2: Weld configuration 1, test 2

(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.3: Weld configuration 1, test 3

(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.4: Weld configuration 1, test 4
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(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.5: Weld configuration 1, test 5

(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.6: Weld configuration 1, test 6

(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.7: Weld configuration 2, test 1
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(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.8: Weld configuration 2, test 2

(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.9: Weld configuration 2, test 3

(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.10: Weld configuration 2, test 4
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(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.11: Weld configuration 2, test 5

(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.12: Weld configuration 2, test 6

(a) Identified peaks (b) Frequency domain plot of acceleration

Figure C.13: Weld configuration 2, test 7
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Half-power point method

(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.14: Weld configuration 1, test 2

(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.15: Weld configuration 1, test 3

(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.16: Weld configuration 1, test 4
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(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.17: Weld configuration 1, test 5

(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.18: Weld configuration 1, test 6

(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.19: Weld configuration 1, test 7
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(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.20: Weld configuration 1, test 8

(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.21: Weld configuration 2, test 1

(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.22: Weld configuration 2, test 2

xxiii



(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.23: Weld configuration 2, test 3

(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.24: Weld configuration 2, test 4

(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.25: Weld configuration 2, test 5

xxiv



(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.26: Weld configuration 2, test 6

(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.27: Weld configuration 2, test 7

(a) Vertical acceleration amplitude at web (b) vertical -and horizontal acceleration

Figure C.28: Weld configuration 2, test 8
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