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Abstract

As concerns of climate change and environmental degradation are becoming ever more

prevalent in society today, power producers have a great responsibility to operate in an

environmentally sustainable way. Many of the large reservoirs in Norway also are used

for recreational activities and there are strict regulations on some reservoirs to ensure high

enough water levels and avoid drought in popular recreational areas. These regulations are

state-dependent, making them challenging to implement in the modeling framework used

in medium-term hydropower scheduling today.

This master’s thesis addresses the inclusion of state-dependent environmental constraints

in medium-term scheduling of hydropower plants with reservoirs. An exact restriction

formulation is compared, through a case study, to linear approximations; one complete

relaxation and one tighter relaxation with a lower auxiliary reservoir bound. The three

approaches are benchmarked against a base case method.

Results from the case study showed similar improvement for the exact formulation and

the tighter linear approximation of the state-dependent constraints. The financial results

indicate an earning potential, but the overall reservoir level did not increase substantially.

Still, the model is very price sensitive, and a different price profile could lead to a more

significant impact. There was no significant difference between the complete relaxation

and the base case method, indicating poor performance. The tighter linear approximation

method can be used in today’s industry approaches and is a good alternative for including

state-dependent environmental constraints in medium-term hydropower scheduling.
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Sammendrag

Ettersom frykten for klimaendringer stadig blir mer utbredt i samfunnet i dag, har kraft-

produsenter et stort ansvar for å produsere på en mest mulig bærekraftig måte. Mange av

de store vannkraftmagasinene i Norge brukes også til formål som friluftsliv og rekreasjon,

og derfor er det i noen tilfeller svært strenge reguleringer knyttet til magasinfylling. Disse

lovene og reglene er tilstandsavhengige, noe som gjør de vanskelig å inkludere i modelle-

ringsrammeverkene som brukes til vannkraftplanlegging i dag.

Denne masteroppgaven tar for seg inkluderingen av tilstandsavhengige restriksjoner i vann-

kraftplanlegging. En eksakt formulering av restriksjonen sammenlignes gjennom en case-

studie med to lineære approksimasjoner; en fullstendig relaksering og en strammere rel-

aksering som har en kunstig nedre magasingrense. Disse tre formuleringsmetodene er sett

opp mot et base case.

Resultater fra case-studien viste at det er tilnærmet lik forbedring ved bruk av den eksakte

formuleringen som med den strammere lineære relakseringen. De økonomiske resultatene

indikerer at det er et inntjeningspotensial, men vannmengden i magasinet økte ikke. Mo-

dellen er svært prissensitiv, og en annen prisprofil vil kunne føre til en større innvirkning.

Det var ingen signifikant forskjell mellom den fullstendige relakseringen og base caset,

som indikerer at det er lite hensiktsmessig å bruke denne metoden. Den strammere relak-

seringsmetoden kan brukes i dagens vannkraftplanleggingsverktøy og er en god metode

for å inkludere tilstandsavhengige miljørestriksjoner.
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DP Dynamic Programmin

EMPS Multi-area Power-market Simulator

IP Integer Programming

LP Linear Programming
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SDP Stochastic Dynamic Programming

SDDiP Stochastic Dynamic Dual integer Programming

SDDP Stochastic Dynamic Dual Programming
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Nomenclature

Index Sets

S Set of scenarios (inflow and price)

T Set of stages (weeks)

V0 Set of states (discretized initial reservoir levels)

Parameters

↵
marginal
t Marginal value of profit in stage t

Ū Maximum discharge

V̄ Maximum reservoir volume

�
s
t Power price in stage t, given scenario s

Ṽt Environmental limit on reservoir volume in stage t

V
⇤ Auxiliary lower limit on reservoir volume in stage t

e Energy conversion factor

Fvt+1 Future profit function of vt

i
s
t Inflow (Mm3/week) in stage t, given scenario s

V
0 Initial reservoir used in parallel simulations
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NOMENCLATURE

v
0
t Initial reservoir level in stage t (Mm3)

Variables

↵t+1 Future expected profit

↵t Expected profit

↵
v0
t

t Expected profit for initial reservoir level v0t

qt Plant outflow in stage t (Mm3/week)

st Spilled outflow in stage t (Mm3/week)

ut Plant output (MWh)

vt Reservoir level at end of period (Mm3)

v
+
t Slack variable for vt
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Chapter 1

Introduction

Climate change and environmental degradation are existential threats to Europe and the

world. Power producers are encouraged to operate in an environmentally sustainable way,

especially in recent years, as the unprecedented situation in European energy markets has

led to a decisive involvement of public consumers. High electricity prices and low water

levels in the Norwegian hydro reservoirs have put even greater pressure on hydropower

producers. As many of the large reservoirs in Norway are also used for recreational ac-

tivities, strict regulations have been imposed on the minimum level of some reservoirs.

The environmental constraints aim to avoid drought in popular recreational areas, as it

leads to great dissatisfaction among the local population. It has become more common

to formulate environmental rules and regulations as state-dependent in recent years[1].

State-dependent restrictions balance economic interests and environmental considerations

but have the disadvantage of being mathematically challenging to model[2].
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Chapter 1. Introduction

1.1 Scope of the Thesis

This master’s thesis aims to evaluate how different modeling approaches for state-dependent

environmental constraints affect medium-term hydropower scheduling. More specifically,

the thesis aims to answer the following research questions:

• How are economic aspects and reservoir distribution affected by state-dependent

environmental restrictions?

• Is it possible to create a hydropower scheduling method that includes state-dependent

environmental constraints, which today’s industry can use?

Medium-term hydropower scheduling models currently used in the hydropower industry

do not include accurate representations of state-dependent constraints as they often lead to

nonconvexities and the need for logical conditions. State-of-the-art solution methods for

hydropower scheduling, using stochastic dual dynamic programming (SDDP) [3], require

a convex model formulation and rely on linear approximations of such constraints. Using

another modeling framework, e.g., stochastic dynamic programming (SDP) [4], will en-

able the possibility of including nonconvexities and logical conditions. However, the SDP

method is suitable only for small systems.

The main research objectives of this thesis summarized below.

• Background and Theory: Present an introduction to hydropower scheduling and

look into relevant optimization techniques. Furthermore, an overview of existing

research on state-dependent environmental constraints is provided.

• Methodology: Develop a medium-term hydropower scheduling model for local

reservoir management, including four different modeling formulations. The model

is then applied to a Norwegian case study.

• Results and Discussions: Observe and interpret results from the case study to in-

vestigate how the different modeling formulations affect solution quality and discuss

sensitivities and weaknesses of the model.

2



1.2 Contribution

1.2 Contribution

There exists research that considers accurate representations of state-dependent environ-

mental constraints using stochastic dual dynamic integer programming (SDDiP) [3] and

SDP [5] and linear approximations in SDDP[6]. Still, to the best of the author’s knowl-

edge, there is no material comparing the different approaches.

By implementing the different restriction formulations in an SDP model framework, both

linear- and exact formulations may be evaluated without additional noise in the compar-

ison. This master’s thesis can therefore compare linear formulations that can be used in

SDDP-based models and more accurate representations that cannot be included in SDDP

due to nonconvexities.

The thesis is written in collaboration with TrønderEnergi, in addition to being affiliated

with HydroCen, a Norwegian Research Centre for Hydropower Technology. The work is

of relevance to research areas within hydropower and energy modeling. In addition to writ-

ing this master’s thesis, the author has written an article for the European Energy Market

Conference and an abstract for the International Conference on Hydropower Scheduling

in Competitive Electricity Markets. These articles are attached in the Appendix A and B,

and they are primarily based on results and insights from the work of this master’s thesis.
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Chapter 1. Introduction
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Chapter 2

Background and Theory

Section 2.1 and the beginning of 2.3 are adapted from Section 1.1 and Section 2 in [7].

2.1 Introduction to Hydropower Scheduling

Hydropower scheduling can be defined as “utilizing available generation resources in such

a way that the optimal result is obtained, and all relevant constraints are satisfied”[8, p.1].

After the deregulation of the Nordic power market in the 1990s, obtaining the optimal

result is equivalent to maximizing the profit, given a price forecast. Before the deregu-

lation, the optimal result was rather to minimize costs, given a demand forecast. These

two objectives are equivalent from a global view and therefore many of the same methods

and tools can be used in both cases. The definition also requires all relevant constraints

to be satisfied. These constraints are typically considered to be restrictions on generation,

transmission capacity, demand, and environmental constraints[8, p.2].

In hydropower scheduling an opportunity cost is used for valuing hydro storage as an en-

ergy resource. Similar to other renewable energy sources, the marginal cost of producing

hydropower is close to zero, but in addition to this there is also an opportunity cost as-
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Chapter 2. Background and Theory

sociated with the hydro storage[8, p.2]. The opportunity cost comes from the possibility

to store water in a reservoir and utilize the resource at a later time. As the amount of

water available is limited and uncertain, producing 1kWh of hydropower now deprives

the opportunity to produce this water in the future. This is an evaluation that the power

producers need to consider every week, every day and every hour. The possibility space of

this consideration is large and complex, but is at its simplest form illustrated in Figure 2.1.

A complicated aspect of the decision tree in the figure, is to find an appropriate value for

the stored water, i.e. determine the opportunity cost. The value of the opportunity cost is

challenging to calculate as there are many uncertainties to consider and the need for good

hydropower scheduling is crucial to optimize revenue.

Figure 2.1: Illustration of the decision process for hydropower scheduling, adapted from [9, p.6].

Furthermore, the amount of inflow is negatively correlated with the demand. From Figure

2.2, which shows the average inflow and demand in Norway, it is clear that the inflow

is lowest in the winter when the demand is highest and vice versa in the summer. This

discordance signifies the crucial importance of hydro reservoir handling.

6



2.1 Introduction to Hydropower Scheduling

Figure 2.2: Precipitation, consumption and production of electricity in Norway in 2019, obtained
from [10].

The time horizon in hydropower scheduling can be from a few hours to 5 years. Ideally, the

optimal solution results from one single optimization process that considers all decisions

across the time horizons. However, because the problem is extensive and highly complex,

the optimization process is divided into smaller problems with different time horizons and

levels of detail. A descriptive illustration of the sub-problems, along with its solution

methods and scheduling hierarchy, is illustrated in Figure 2.3. The figure shows the most

common division of the hydropower scheduling process, with the four main steps: long

term, seasonal, short term, and detailed simulations. A description of the solution methods

in the figure can be found in [8, p.11].

This thesis deals with medium-term hydropower scheduling for local reservoir manage-

ment. Hydropower scheduling can be carried out at the global or local level. Global

hydropower scheduling analyses entire power systems to predict electricity prices, while

local scheduling uses price forecasts as exogenous parameters and aims to determine op-

timal reservoir management.

The scheduling model in this thesis aims to optimize hydro resources with a period of

analysis of one year. Based on Figure 2.3, the model is placed somewhere in between

long-term and seasonal scheduling. The time horizon is considered suitable due to the

7



Chapter 2. Background and Theory

Figure 2.3: Scheduling hierarchy of operational decisions in hydropower scheduling, obtained from
[8, p.30].

nature of the environmental constraints investigated in this thesis. The environmental con-

straints are closely linked to reservoir handling, a slow process that must be planned well

in advance. Because the research question does not include any structural investments

or expansions and only addresses local reservoir management, the long-term scheduling

approach is unnecessary.

The hydropower scheduling problem is a large and complex problem with considerable

financial resources involved. Medium-term hydropower scheduling can be solved with a

weekly time step and a time horizon of up to several years, resulting in large problem sizes

and many iterations. It is thus a clear need for, and a great opportunity in, good hydro

reservoir planning and hydropower scheduling. However, there are many challenges in

finding the optimal production schedule.

8



2.1 Introduction to Hydropower Scheduling

The modeling involves many uncertainties, particularly related to inflow (temperature,

melting, precipitation) and electricity price (thermal fuel price, demand). Estimates and

forecasts from global models play a significant role in local hydropower scheduling to deal

with these uncertainties. The value of the water is, in reality, a function of future devel-

opment depending on load, market prices, and inflow [8, p.39]. That is to say, some of

the most influential factors for the producer’s financial results are uncertain parameters.

Uncertainty adds complexity to the model and is challenging from a production planning

perspective. The complexity of the decision problem emphasizes the need for good deci-

sion support and hence a good hydropower scheduling model.

In addition to the fact that there are significant uncertainties associated with essential pa-

rameters, there are also physical constraints, rules, and guidelines that need to be fulfilled

in each step. The state-dependent environmental constraints addressed in this master’s the-

sis are examples of such rules. The constraints are thoroughly described in the following

subsection.

9



Chapter 2. Background and Theory

2.2 Background to Environmental Constraints

As previously described, rules and guidelines are imposed on hydropower scheduling pro-

cesses. One example of such regulations is environmental constraints. An environmental

constraint is a term that broadly covers limits or boundaries that are put on the reservoir

volumes and release plans for environmental considerations. Many of these are easy to

include in hydropower scheduling processes, for example, static restrictions on reservoir

levels or discharge, as modeling an absolute requirement is quite simple. When referring to

environmental constraints in this thesis, these state-dependent environmental restrictions

on the reservoir level are meant. State-dependent means that the restrictions depend on the

situation or state of the hydropower system.

In Norway, many reservoirs are also used for recreational purposes. Hydropower produc-

tion’s reservoir handling and release plans can lead to drought in popular recreational ar-

eas, river sections and lakes, and impact fish mitigation and terrestrial ecosystems. There-

fore, environmental constraints are imposed to facilitate synergies in reservoir usage and

ensure high enough water levels. A photograph that illustrates the situation that follows at

low reservoir levels is included in Figure 2.4.

Figure 2.4: Photograph of Gjevilvatnet reservoir at a low reservoir level. Foto: Gorm Kallestad /
NTB

10



2.2 Background to Environmental Constraints

The environmental constraints handled in this model are state-dependent. The state-dependency

in this situation means that they are contingent on a specific state of the reservoir level.

State-dependent environmental constraints are imposed on the operation of several Nor-

wegian hydropower plants and they may be imposed on more hydropower plants in the

near future as a result of a revision of the concession terms of existing plants[1].

As these new considerations are imposed on the system, the scheduling models must adapt

accordingly. On the one hand, state-dependent restrictions are often more economically

efficient and can be better targeted in terms of environmental gains. On the other hand,

they have the disadvantage of being mathematically challenging to model as they can

make the problem formulation nonconvex [2]. This thesis aims to investigate how these

mathematically challenging environmental constraints can be included in medium-term

hydropower scheduling. The challenges and opportunities of environmental constraints

will be further discussed in Chapter 3 through an in-depth literature review.

11



Chapter 2. Background and Theory

2.3 Mathematical Optimization of Hydropower Produc-

tion

For decision-making in hydropower scheduling, there are several possible solution meth-

ods. The hydropower scheduling problem can be solved by simulations or optimization,

and the optimization problem can be deterministic or stochastic. The choice of solution

method is largely dependent on the time horizon and objective of the scheduling. As pre-

viously introduced in Section 2.1, the complexity of the hydropower scheduling problem

requires smaller sub-problems with different solution methods. In order to find an optimal

solution to the problem as a whole, a combination of optimization and simulation methods

may be used.

Optimization methods are based on mathematical and numerical techniques and aim to

find the single best solution among all possible outcomes[11, p.1]. A set of limitations

or constraints defines the possible outcomes, and the best solution is determined by a de-

fined objective, which typically maximizes profit or minimizes costs. All optimization

techniques referred to in this thesis are exact optimization using mathematical program-

ming. It is assumed that the reader has a good understanding of linear programming (LP)

and integer programming(IP). For theory and mathematical background on mathematical

programming, see [11, p.77] and [11, p.323].

To understand the optimization of hydropower scheduling, it is helpful to distinguish be-

tween deterministic and stochastic optimization. Deterministic optimization means that

all parameters and conditions are known and given as inputs to the model. A deterministic

approach in hydropower scheduling will assume parameters, for example, electricity price

and inflow, to be known values. These are parameters that, in reality, cannot be known, and

the predictability declines in pace with the time horizon. Therefore, a stochastic approach

is better suited to optimize scheduling problems with a long analysis period. Stochastic

optimization models take the uncertainty into account by including several realizations in

each step of the process. These realizations may be described by a probability distribu-

tion, thereby considering the effects of extreme events. State-of-the-art solution methods

12



2.3 Mathematical Optimization of Hydropower Production

for medium- to long-term hydropower scheduling in the Nordic are based on stochastic

optimization[12] and is further explained in the following subsection.

2.3.1 Stochastic Dynamic Programming

The scope of the thesis is to evaluate different approaches for representing environmental

constraints in medium-term hydropower scheduling models. In order to investigate the so-

lution quality of the different representations of the constraint, a medium-term hydropower

scheduling model based on stochastic dynamic programming (SDP) is developed. An SDP

model framework is chosen due to its straightforward implementation and good opportu-

nities for formulation flexibility. The same model framework is used for all approaches to

avoid additional noise in the comparison. This subsection introduces the theory behind the

SDP method.

Stochastic dynamic programming (SDP) is a stochastic optimization method utilizing a

problem’s dynamic structure to find the optimal solution. Problems have a dynamic struc-

ture if they can be divided into a number of sequential stages[11, p. 481]. The definition

of a stage can depend on the problem, but it is usually defined as a time period. The solu-

tion strategy for dynamic programming problems is to find the optimal solution to a set of

subproblems in each stage. The set of subproblems is defined by all possible states in that

stage. Given the current state in one stage, the decision will give a new state in the next

stage. In this way, a connection between the stages is obtained. The connection between

the stages is used to compute the optimal solution to the whole problem. In relation to the

hydropower scheduling problem, each state represents a possible reservoir level or power

price, and each stage is a time step.

Each problem solved using dynamic programming (DP) can be described as the shortest

path problem with a solution process based on Bellman’s equations[11, p. 481]. Figure 2.5

illustrates how a network system can represent DP problems. Each arc represents a cost

(or negative profit), and for each node in a given stage, we want to determine which arc to

include in the shortest path. The cost on which each decision is based has two components.

The first component is the arc cost, the cost of going from one node in the current stage

13



Chapter 2. Background and Theory

to another node in the next stage. The second component is the total best cost to continue

from the current node to the end node. The last stage computed provides the overall best

objective function value.

Figure 2.5: Illustration of the shortest path representation of a dynamic problem, obtained from
[13].

One advantage of this solution method is that information about all arcs and nodes does

not need to be stored explicitly. Bellman’s equations can be formulated as ”Given the

current state, the optimal decision for each of the remaining stages must not depend on

previously reached states or previously chosen decisions.”[11, p.484] In other words, the

decision made in each stage only depends on the current state and not on earlier states or

decisions.

In relation to the hydropower scheduling problem, the connection between each stage is

the reservoir level. The operational decisions in one step determine the reservoir level, af-

fecting the decisions in the next step. The dynamic structure in the hydropower scheduling

problem facilitates the ability to solve smaller problems for each time step independently

and use the connection between time steps to establish the optimal solution for the whole

problem.

14



2.3 Mathematical Optimization of Hydropower Production

Another advantage of the SDP method is its straightforward implementation and good op-

portunities for formulation flexibility. The method allows for the inclusion of discrete vari-

ables, and it finds the optimal solution without requiring linearity or convexity [8, p.195].

Subsection 2.3.2 presents a thorough explanation of how nonlinearities and nonconvexities

are handled in the mathematical programming framework.

A drawback of SDP in regard to hydropower scheduling is that the model cannot be scaled

up to several reservoirs, as the discretization of state variables leads to an exponentially

increasing problem size with the number of reservoirs [9, p.15]. Since the model devel-

oped in this project is based on a single reservoir, this is not an issue here. However, on

larger hydro systems, the problem becomes too large. This is one of the reasons why the

state-of-the-art medium to long-term hydropower scheduling models are based on the dual

formulation, stochastic dual dynamic programming (SDDP). The SDDP scheme does not

require discretization of state variables which reduces the solution time, but it cannot han-

dle nonconvexities [9, p.15]. Chapter 3 includes a literature review regarding SDP and

SDDP in hydropower scheduling.

2.3.2 Modeling Non-linearity in Mathematical Programming Prob-

lems

A strength of the SDP framework introduced above is its possibility of including nonlin-

earities and nonconvexities. This, however, needs to be cautiously handled. The following

subsection presents common ways of expressing nonlinearity in LP and IP problems. The

difference between convex and nonconvex formulations and how these can be modeled

will also be explained.

One possible way to handle the nonlinearities is through piecewise linear modeling. Mod-

eling piecewise linear functions is useful when dealing with nonlinear, nonconvex, or non-

continuous interactions approximated as piecewise linear over a discrete set of points. In

hydropower scheduling models based on SDP, the discretization of reservoir levels (states)

leads to piecewise linearities. The modeling of piecewise linear functions will depend on
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Chapter 2. Background and Theory

whether or not the function is convex. A function is convex when the successive slopes of

the piecewise linear approximation are nondecreasing and concave if these slopes are non-

increasing [14, p.383]. A comparison of convex and nonconvex piecewise linear functions

is included in Figure 2.6. A convex piecewise linear function can be modeled in an LP

framework by representing the function by linear cuts or as convex combination of points.

However, nonconvex piecewise linear functions are more challenging.

(a) Illustration of a piecewise linear convex(concave)
function.

(b) Illustration of a piecewise linear noncon-
vex(nonconcave) function.

Figure 2.6: Comparison of convex and nonconvex piecewise linear functions.

When including nonconvex piecewise linear functions, one option is to include Special

Ordered Sets of type 2 (SOS2). An SOS2 is a set of variables in which at most two can

be non-zero. The two variables must be adjacent given the ordering of the set [15, p.178].

Hence, SOS2 is based on the same principles as a convex combination of points, except

that the variables are sorted, and at most, two adjacent variables can be non-zero.
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Chapter 3

Literature Review on State

Dependent Environmental

Constraints

This chapter provides an overview of existing research on state-dependent environmental

constraints and aims to accumulate background knowledge for and contextualize the work

in this master’s thesis. The state-of-the-art solution methods for medium-term hydropower

scheduling require a convex model formulation. Because state-dependent constraints often

lead to nonconvexities and the need for logical conditions, accurate representations of

state-dependent constraints are not included in the models currently used in the Nordic

hydropower industry. To explore recent methodological advances, as well as place this

thesis in the research field, previous research considering state-dependent environmental

constraints using SDP [5], SDDiP [3], and linear approximations in SDDP [6] will be

reviewed in this chapter.

17



Chapter 3. Literature Review on State Dependent Environmental Constraints

3.1 Exact Formulation in SDP and SDDiP

There exist acknowledged research on environmental restrictions in hydropower in gen-

eral. However, this subsection aims to present literature that betters comprehension of

mathematical modeling of state-dependent restrictions. There is no standard way of deal-

ing with state-dependent environmental constraints in commercial hydropower schedul-

ing software as they are not easily treated in the SDDP method. This section explores

previous research regarding the inclusion of environmental constraints in other modeling

frameworks than SDDP, specifically SDP and SDDiP.

The research paper ”A Stochastic Dynamic Programming Model for Hydropower Schedul-

ing with State-dependent Maximum Discharge Constraints” [5], describes how environ-

mental constraints can be formulated precisely. Using an SDP framework enables the

modeling of nonconvexities, allowing for an exact formulation of the constraint in the

scheduling model. The developed model is then applied to a case study of a Norwegian

hydropower system with multiple reservoirs and the results indicate that environmental

constraints significantly impact water values and the simulated hydropower operation.

Though, it is worth noting that the methods used in this article cannot be transferred to

other modeling frameworks that require a nonconvex formulation. In addition, using the

SDP modeling framework on large scale systems is not beneficial because the discretiza-

tion, which allows nonconvexities, leads to exponential growth in problem size and solu-

tion time. The results, therefore, serve more as an important benchmark in further work to

linearize nonconvex environmental constraints than a solution to the problem.

Another research paper exploring the possibilities of including an exact formulation of en-

vironmental constraints is [3]. The paper ”Nonconvex Environmental Constraints in Hy-

dropower Scheduling, ” describes how the stochastic dual dynamic integer programming

(SDDiP) method can include nonconvex environmental constraints. SDDiP is a newly de-

veloped, advanced SDDP method that allows for handling nonconvexities by using integer

variables. The authors present a mathematical SDDiP model for medium- to long-term hy-

dropower scheduling, then tested on a multi-reservoir case study. The results of this study

indicate the same as [5]; that there is potential for improving hydropower scheduling by
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a good approximation of environmental constraints. Despite favorable case study results,

the SDDiP method is too immature to be scaled and used in commercial software today.

Limitations include convergence challenges and extensive solving time.

3.2 Linear Approximation in SDDP

There are challenges regarding the inclusion of environmental constraints in the SDDP

framework, and as previously mentioned, there is no common commercial way of dealing

with them in hydropower scheduling software. Despite this, there exists research regarding

the inclusion of environmental constraints in SDDP, which will be explored further in this

section.

HydroCen has carried out research work related to the future renewable energy system in

Norway. The 12th HydroCen Report[16] addresses state-dependent environmental con-

straints in seasonal hydropower scheduling. The authors surveyed the need for improved

modeling of environmental and technical constraints related to operational hydropower

scheduling software using SDDP. Based on the survey results, two types of constraints

were selected as most relevant to explore further; volume-dependent discharge boundaries

and inflow-dependent discharge boundaries, where the former resembles the constraints

referred to in this master’s thesis. The proposed solution method for volume-dependent

discharge boundaries is a linear approximation. The HydroCen Report enlighted the need

for modeling environmental restrictions in hydropower scheduling and proposed a possi-

ble solution method. However, an indication of the proposed solution method’s optimality

is not possible to provide as it has not been implemented and tested.

The most recent research regarding state-dependent environmental constraints [6] further

addresses the implementation in hydropower scheduling. The authors propose a solution

that combines constraint relaxation and time-dependent auxiliary lower bound on reser-

voir volume. The article highlights the trade-off between a tighter relaxation, using the

auxiliary lower bound, and problem feasibility. Results from two different case studies

indicate that adding an auxiliary lower bound on reservoir volume has significant potential
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Chapter 3. Literature Review on State Dependent Environmental Constraints

for improved system operation. Because of the modeling challenges previously described,

this research also does not include an exact formulation of the environmental constraint.

To conclude whether or not the proposed approximations are accurate enough for practi-

cal use, the next step in the research could be to implement and compare the constraint

approximations against the exact formulation.

3.3 State-of-the-Art

This chapter has explored previous research and recent advances considering environmen-

tal constraints in medium- to long-term hydropower scheduling. Research regarding ex-

act formulations of the constraint showed an opportunity for significantly improved wa-

ter value calculations, but this can only be implemented in modeling frameworks that

handle nonconvexities. In addition, there exists research on approximated formulations

of environmental constraints. However, there is not found any research comparing the

performance of approximated constraints to the exact formulations. This master’s thesis

contributes to the research field by evaluating and comparing the performance of several

constraint formulations. The same model framework, SDP, is used for all implementations

to avoid additional noise and get the best possible basis for comparison.
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Chapter 4

Methodology - Model Description

This chapter presents the medium-term hydropower scheduling model for local reservoir

management. The model takes the perspective of a power producer, and the objective is to

maximize revenue while complying with all physical and regulatory constraints, including

environmental constraints. The solution process consists of two main steps; a strategy part

that calculates water values, and a simulation part, where production plans are calculated.

Both water value calculations and production plan simulations are based on the dynamic

method described in Subsection 2.3.1. The dynamic structure enables the ability to inde-

pendently solve smaller scheduling problems for each weekly stage and use the connection

between the weekly stages to establish the optimal solution for the whole scheduling prob-

lem. The solution strategy of the water value calculations, which then are used to simulate

production plans, is illustrated in Figure 4.1. Each node in the figure represents a smaller

sub-problem. Thus, there exists one sub-problem for each stage (week) and each state

(discretized reservoir level).
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Chapter 4. Methodology - Model Description

Figure 4.1: Illustration of the water value matrix.

In the strategy calculations, the sub-problems are stochastic, as inflow and price are un-

certain parameters. All sub-problems are solved sequentially from t = T to t = 1. To

calculate the water value, the model uses the stochastic power price and the profit from the

week t+ 1 evaluate whether the water is worth more by producing now or saving later. In

that way the model can calculate the hydro storage’s highest possible value.

In the production plan simulations, the sub-problems are deterministic. It is assumed that

the inflow and price are known in each stage. To determine optimal production plans,

the same sub-problem is solved in the reverse sequence, starting at t = 1 and ends at

t = T . The production plan simulations use water values from the strategy calculation to

evaluate how much hydro to discharge in the current week and how much will be stored

for later. One sub-problem is solved for each weekly stage, and the resulting reservoir

level t becomes the initial reservoir in t+ 1.
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4.1 Modeling of System Components

4.1 Modeling of System Components

The hydro system modeled is illustrated in Figure 4.2. The system consists of one reser-

voir and one power plant, and the physical components are represented in the weekly stage

problem. The following section describes how basic system components are mathemati-

cally modeled in the hydropower production problem.

The material in Subsections 4.1.1 - 4.1.3 is a nearly verbatim adaptation of Section 3.1 of

[7].

Figure 4.2: Illustration of the hydropower system, obtained from [7]
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Chapter 4. Methodology - Model Description

4.1.1 Water Balance

As illustrated in Figure 4.2 there is one waterway into the system, and two waterways

leading the water out. The inflow i
s
t is water coming into the system and discharge ut is

the water going into power plant and converted to electricity. There is no bypass discharge

in this system, which result in spillage when the inflow exceeds the reservoir space and

the discharge capacity. Spillage water, st is wasted energy, because it cannot be used for

electricity production. The reservoir level at the end of stage t, vt is expressed in Equation

4.1 and this equation is used to model the reservoir balance. v0t is the initial reservoir level

in stage t.

vt = v
0
t � ut � st + i

s
t (4.1)

4.1.2 Energy Conversion

Energy conversion is the relation between discharge qt and output ut in hydropower pro-

duction. This conversion is given in Equation 4.2, where e is the energy equivalent.

ut = e · qt · 103 (4.2)

Energy equivalent determines how much energy is stored in each m3 of water in the reser-

voir. Because the unit for e is [kWh/m3], a factor of 103 is needed to get [MWh/Mm3]. The

energy equivalent is mainly determined by the efficiency and plant head, which is again

dependent on the reservoir curve and backwater level. Because the variation in meters

above sea level is assumed to be small compared to the plant head, the energy equivalent

is modeled as a constant value. There is also assumed to be a minimal effect of backwater,

and the variable turbine efficiency is disregarded. For a long term hydropower schedul-

ing model a lower level of detail is needed, and therefore, a static energy equivalent is

assumed.

24



4.1 Modeling of System Components

4.1.3 Physical Constraints

There are physical constraints in the hydropower system in relation to plant discharge and

reservoir level. The purpose of the physical constraints is to model the physical reality

and ensure safe and legal operation of the power plant. Boundary constraints for reservoir

volume V̄ and discharge Ū are expressed in Equations 4.3 and 4.4, respectively.

0  vt  V̄ (4.3)

0  ut  Ū (4.4)

The reservoir level is described by its volume given in Mm3 and discharge is referred

to as Mm3/t. The upper boundary on output is assumed to be static as a consequence

of the constant energy equivalent. The constraints on minimum reservoir volume and

discharge are set to zero because the variables are assumed to only take positive values.

In this formulation of discharge boundary the minimum run level is disregarded. This

assumption can be made because a consequence of the static energy conversion factor is

that the production will usually either be maximum or zero.

4.1.4 Future Profit

In order to determine the value of water in the reservoir, the future profit is a key parameter.

The model represents the future profit as a continuous variable, constrained by a piecewise

linear function. It is assumed that the future profit of a discrete set of end reservoir levels

is known. From the set of discrete state variables (reservoir levels), it is possible to ap-

proximate a piecewise linear function, which acts as an upper bound of the future profit.

This is illustrated in Figure 4.3.

To model the piecewise linearity in a mathematical programming framework, the SOS2

described in 2.3.2, are applied to the future profit function. In the typical hydropower

scheduling formulation, the expected future profit is concave in terms of reservoir level.
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Figure 4.3: Illustration of piecewise linear approximation of a discrete set of points.

Due to the risk of spillage and thereby lost revenue, the marginal profit of having one more

unit of water in the reservoir consistently decreases with the increasing reservoir level.

When the environmental constraints are included, the future cost function is no longer

guaranteed to be concave. The nonconvexity make it necessary to model the piecewise

linear constraint using SOS2. The following procedure does this:

Let x1, . . . , xn be the discrete set of end reservoir levels and y1, . . . , yn be the known profit

of the discretized reservoir levels. Let w1, . . . , wn be a SOS2 of weights.

8i, wi 2 SOS2 (4.5a)

nX

i=1

wi = 1 (4.5b)

nX

i=1

wi · xi = vt (4.5c)

nX

i=1

wi · yi = ↵t+1 (4.5d)
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4.1 Modeling of System Components

In most commercial solvers, built-in functions exist to take care of the inclusion of SOS2.

For simplicity, the inclusion of future profit described in this subsection is further referred

to by Equation 4.6.

↵t+1  F↵t+1(vt) (4.6)

4.1.5 Environmental Constraint

In Section 4.1.3 the physical limits on reservoir level and release plans were described. In

addition to these, there can also be environmental constraints on the reservoir level and

release plans to ensure good conditions for surrounding nature and residents. As many

of the large reservoirs in Norway also are used for recreational activities, the Norwegian

government has imposed strict regulations on some reservoirs to facilitate synergies in

reservoir usage and ensure high enough water levels.

The environmental constraints handled in this model are state-dependent, meaning that

they are dependent on the reservoir level. The constraint imposes a lower reservoir limit

Ṽt that becomes active given that a specified condition is met. The state-dependency is

modeled using binary variables. If the reservoir level is lower than the environmental

threshold, Ṽt, the binary variable �t is set to zero, and the production has to stop. �t can

be set to one when the reservoir level is higher than the threshold. Then the hydropower

plant can produce power, but the resulting reservoir level has to be above the threshold.

Equations (4.7) and (4.8) ensures that the environmental constraint is being complied with.

vt � �t · Ṽt (4.7)

ut  �t · Ū (4.8)
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4.2 Water Value Calculations

The first step of hydropower scheduling is to find optimal strategies for hydropower using

the water value method. Water value is an expression for the expected marginal value of

the energy stored in the reservoirs [8, p.39]. The water value is a helpful tool in production

planning. Comparing the water value to the power price indicates whether it is profitable

to produce water or wait until a later time. If the water value is lower than the power

price, a producer will produce hydro. On the other hand, if the water value is higher than

the power price, it is more profitable to wait and save the hydro. The water values are

very complex to determine and are highly dependent on stochastic parameters, like the

future development of market prices and future inflow. The stochastic values, with many

uncertainties, are taken into account by calculating the expected profit of given scenarios

or outcomes.

4.2.1 Modeling Uncertainties and Autocorrelation

The model developed in this thesis can handle uncertainty in both inflow and price. To

include the uncertain parameters in the water value calculation, the model calculates the

expected value of water values, given multiple possible values for inflow and price.

In [7], the expected value was calculated as an arithmetic mean with equally distributed

probabilities for all data points. However, findings indicate that this simplification might

not be the best way of handling the uncertainties. In a high price scenario, the model

that did not consider autocorrelation anticipated lower prices in the weeks ahead. The

production plan became exceedingly eager to use hydro without realizing that the price

would likely be high in the coming weeks. The results in [7] suggest that autocorrelation

affects the scheduling’s optimality and that there is potential for improvement by modeling

the uncertainties more realistically. Autocorrelation is a measure of non-randomness in

data series [9, p. 8].

The correlation in price and inflow of each week is shown in Figures 4.4a and 4.4b. Figure

4.4a shows a very strong positive correlation. In practice, this means that if the price is
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4.2 Water Value Calculations

higher than the median in week t-1, the price is more likely to be above average in week t,

and vice versa for lower prices. From Figure 4.4b it can be read from the figure that there is

a positive correlation for inflow as well, but it is not as strong as for the price series. Based

on this information, it was deemed as interesting to look more closely at the inclusion of

autocorrelation in the model.
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(a) Correlation of Price Series.
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(b) Correlation of Inflow Series.

Figure 4.4: Correlation of the Stochastic Data Series, obtained from [7].The slope of the scattered
line is the autocorrelation factor.

There are several ways to include autocorrelation in the SDP framework for calculat-

ing water values, but common to all is that the problem size and complexity increase.

The technical report ”Application of Stochastic Dual DP and Extensions to Hydrothermal

Scheduling[9]” addresses the inclusion of autocorrelation in inflow data series by mod-

eling the inflow in the previous stage as a state variable. As previously mentioned, a

weakness of SDP is that the model increases exponentially with the number of state vari-

ables. Hence, including autocorrelation increases the problem’s complexity and solution

time excessively. To assess solution time and complexity against benefit, an assessment

was made of whether autocorrelation in the stochastic data series should be modeled ex-

plicitly. Based on the autocorrelation determined in the project thesis, displayed in Figure

4.4, it was evaluated as most critical to model autocorrelation in the price series as that

resulted in a stronger correlation than the inflow series.

The uncertainty in inflow is represented using a Markov model with equally weighted

probabilities, without regard to autocorrelation. In practice, this means that all inflow
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levels are equally as probable in week t, regardless of the inflow in the previous week

t� 1.

The autocorrelation in price is considered by modeling price as a state variable. The cor-

relation from last week is represented by using the power price in the previous week t� 1

as a state variable in week t. Even with autocorrelation modeled only in the price series,

the problem is significantly larger. Therefore, as a measure to decrease the problem size,

all data points were clustered into five scenarios.

Each sub-problem in the water value calculations is solved five times, i.e., for each price

scenario. Thus, there are four water values per node in Figure 4.1.

4.2.2 Solution Algorithm

The algorithm used to calculate water values is described in this subsection. As previously

mentioned, the dynamic structure enables the possibility of solving large and complex

problems by solving a sequence of smaller sub-problems. These sub-problems are called

”Weekly Stage Problems” and will be further described in Subsection 4.2.3. Each weekly

stage problem is solved for all states, i.e., price scenarios and discrete reservoir levels, and

time stages. After solving all the decision problems in each stage, the expected future profit

is calculated and used when solving the previous stage (t� 1). The solution algorithm for

calculating expected profit is presented in Algorithm 1.

When the problem has been solved for all weeks, the algorithm re-solves the entire plan-

ning horizon, using the water values from the first stage as an end-value setting in the last

stage. To avoid unwanted end-of-horizon effects, this continues until the algorithm con-

verges, i.e., when the first week’s water values equal the last week’s water values. This

process is described in Algorithm 2. When the SDP algorithm has converged, the calcu-

lated water values can be used for a final forward simulation in order to obtain production

plans.
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Algorithm 1 SDP algorithm for expected profit calculation

for t = |T |, |T |� 1, ..., 0 do
for each discrete initial reservoir level do

for each price scenario do
for each inflow scenario do

Solve one-stage problem with inputs �s
t , i

s
t , v

0
t , F↵t+1(vt),

to obtain the objective value ↵
v0
t

t for given inflow scenario,
price scenario, reservoir level v0t , and week t

end for
Calculate expected profit for given price scenario:
↵
v0
t

t = probability ·
P

inflow ↵
v0
t

t

end for
Calculate expected profit for discrete initial reservoir level:
↵
v0
t

t = probability ·
P

price ↵
v0
t

t

end for
Save discrete profit values for future profit function

end for

Algorithm 2 End-of-horizon convergence
Set the marginal value of profit at end-of-horizon to 0
while convergence is not reached do

Solve Algorithm 1 with ↵|T +1| = ↵0

if ↵marginal
0 == ↵

marginal
|T +1| + /� 1 then

Convergence reached
end if

end while

After solving the algorithms, the result is a matrix of expected profits for each price sce-

nario in each discrete reservoir level in each time step. The water value is the marginal

value of the expected profit.

4.2.3 Weekly Stage Problem

The objective of medium-term hydropower scheduling is to find the dispatch strategy that

maximizes profit for the hydropower producer [8, p.1]. A weekly decision problem is

solved iteratively, as described in Algorithm 1, to calculate the optimal release strategy.
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The weekly decision problem determines how much of the stored water is to be converted

into electricity every week. If hydro energy is produced today, the opportunity to produce

electricity at a later time decreases as the total amount of water is reduced. The optimal

decision in each weekly stage is dependent on the initial reservoir level, amount of inflow,

electricity price, and expected future profit of the stored hydro. The weekly stage problem

is deterministic, meaning that all dependencies are known. We thus assume that the initial

reservoir, electricity price, inflow, and expected future profit of stored hydro are known in

each step.

This thesis aims to enlighten how different modeling approaches to include state-dependent

environmental constraints in water value calculations affect water values and production

plans. In order to compare the different approaches of modeling the state-dependent en-

vironmental constraint, production plans are simulated using four different sets of cal-

culated water values. This subsection includes a description of three different modeling

approaches for including the state-dependent environmental constraint; one exact repre-

sentation and two linear approximations. The three approaches are compared towards a

base situation, where these constraints are not considered in the planning. All formulations

can be used in methods that do not require a convex model formulation, such as SDP. In

models based on SDDP, a convex model formulation is required, and a linear approxima-

tion is necessary.

The solution algorithm developed and presented in Algorithm 1 is equal for all formula-

tions of the environmental constraint. The differences in the methods arise in the weekly

problem. The mathematical formulations of four different ways of including the envi-

ronmental constraint into the water value calculations are presented below. The features

previously described in Section 4.1 are reflected in the Weekly Stage Problems as con-

straints.

Exact Formulation

The exact formulation presented in this section uses binary logic to express the state de-

pendencies in the constraint. Binary logic is possible for the modeling framework in this
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thesis, SDP, as it can handle nonconvexities. Binary logic is not applicable for SDDP. The

purpose of including the exact formulation, even though it cannot be implemented into

SDDP, is to have results to benchmark against the other approaches. The weekly decision

problem for the exact formulation is formulated with (4.9a)-(4.9i).

max↵t = �
s
t · ut + ↵t+1 (4.9a)

vt = v
0
t � ut � st + i

s
t (4.9b)

↵t+1  F↵t+1(vt) (4.9c)

ut = E · qt (4.9d)

vt � �t · Ṽt (4.9e)

ut  �t · Ū (4.9f)

vt  V̄ (4.9g)

ut, vt,↵t+1, qt, st � 0 (4.9h)

�t 2 {0, 1} (4.9i)

The objective of the weekly stage problem (4.9a) is to maximize revenue from the current

week, as well as the future revenue of remaining reservoir volume. The resulting reservoir

level of each week is determined by (4.9b) and the future revenue is set by (4.9c). The

energy conversion is described in (4.9d) and is modeled as a constant relation. Equations

(4.9e) and (4.9f) ensures that the environmental constraint is being complied with. If the

reservoir level is lower than the environmental threshold, Ṽt, the binary variable �t is set

to zero and the production has to stop. �t can be set to one when the reservoir level is

higher than the threshold. Then the hydropower plant can produce power, but the resulting

reservoir level has to be above the threshold. Equation (4.9g) ensures reservoir level within

the physical boundaries.
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Linear Approximation

State-of-the-art solution methods for medium- to long-term hydropower scheduling in the

Nordic are based on SDDP [12], which requires a convex model formulation. The exact

formulation presented above is nonconvex and uses binary logic. To avoid this, a linear

relaxation is imposed, setting �t to a continuous variable between 0 and 1 for all stages.

The weekly decision problem for the linear approximation formulation is (4.9a) - (4.9h),

and in addition to setting �t to continuous, the equation below is added to ensure values

between 0 and 1.

0  �t  1 (4.10)

Tighter Linear Approximation

In many practical situations, the reservoir level is far below Ṽt at the beginning of the

restriction period, and the complete relaxation presented previously may be too facile.

To tighten the linear relaxation, a solution using an auxiliary lower reservoir bound is

proposed. The weekly decision problem for the tighter linear approximation formulation

is (4.9a) - (4.9h), setting �t to continuous and adding (4.10) to ensure values between 0

and 1. Finally, (4.9a) and (4.9e) is replaced with, (4.11a) and (4.11b), respectively.

max↵t = �
s
t · ut + ↵t+1 � C · v+t (4.11a)

vt + v
+
t � �t · (Ṽt � V

⇤) � V
⇤ (4.11b)

The auxiliary lower bound V
⇤ is determined by the lowest possible accumulated inflow

during the restriction period. The discretization of reservoir bounds in the SDP algorithm

makes it necessary to include a slack variable v+t . In this way, water value calculations for

discrete reservoir levels lower than V
⇤ will be feasible, but as it is heavily punished in the

objective function, never optimal.
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4.2 Water Value Calculations

Base Method

Calculating water values without including environmental constraints is often used in com-

mercial Nordic hydropower scheduling as there are no good enough alternatives. The base

method is useful for the research in this thesis as it provides a benchmark to other the ap-

proaches and highlights the opportunities of modeling environmental constraint at all lev-

els of the hydropower scheduling. The base method, excludes environmental constraints

in the hydropower strategy calculations.

The base method uses the mathematical formulation (4.9a) - (4.9h) and sets �t to 1 in (4.4)

and �t to 0 in (4.9e).
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4.3 Production Plan Simulations

Simulating production plans using water values is similar to the procedure of calculating

water values. The main difference is that the algorithm uses forward recursion with deter-

ministic parameters to imitate how the operation could be in reality. By forward recursion,

it is meant that the sequence of time steps is reversed.

In the forward simulation, nonconvexities and binary logic are allowed. Therefore, to sim-

ulate production plans, the weekly stage problem with the exact environmental constraint

formulations is solved in a sequence of steps. In relation to the four formulation methods

described in 4.2.3, this means that the same production plan algorithm solves the same

problem four times using the results from the four methods of calculating water values as

input. The water value method calculates the expected profit of a discrete set of reservoir

levels, and values from this computation are retrieved in the production plan simulations

to estimate future profit. Already calculated water values, as well as deterministic param-

eters, lead to weekly decisions for production, illustrated in Figure 4.5. Instead of using a

discrete set of initial reservoirs, the resulting reservoir level in one iteration becomes the

initial reservoir in the next.

 

Figure 4.5: Illustration of production plans simulated using the water value matrix in Figure 4.1.
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4.3 Production Plan Simulations

The algorithm for simulating production plans is described below, in Algorithm 3. The

final simulations are conducted as parallel simulations, i.e., assuming a fixed start-reservoir

level in week 1 for all simulated weather and price scenarios. Parallel simulation differs

from series simulations, where the weather years are simulated consecutively, and the

initial reservoir level in each year is set equal to the resulting reservoir in the last year.

Parallel simulation is the selected approach because this resembles the industrial process

of production planning in TrønderEnergi.

Algorithm 3 Algorithm for hydro power production planning
1: for each simulated weather year do
2: v

0
�1 = V

0

3: for t 2 T do
4: if t == |T | then
5: F↵t+1(vt) = F↵0(vt)
6: end if
7: Solve one-stage problem with inputs �s

t , i
s
t , v

0
t = vt�1, F↵t+1(vt),

8: to obtain the production in given week. Store all decision
9: variables from the one-stage problem

10: end for
11: Store yearly production plan
12: end for
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Chapter 5

Case Study

In this section, the model from Chapter 4 is applied to a case study in Norway. First, the

case study will be described in detail, and all input data is presented and explained. Then,

useful results from water value calculations and production plan simulations is presented.

Finally, the results will be interpreted and discussed, in addition to an analysis of plausible

sensitivities and limitations.
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Chapter 5. Case Study

5.1 Case Study Description

The model described in Chapter 4 is applied to a single-reservoir hydropower plant case

study. The case study described in this section is the production planning of Driva power

plant, with Gjevilvatnet as the main reservoir. Driva power plant is located in Møre and

Romsdal county and Gjevilvatnet is located in Trøndelag county, both in Central Norway.

TrønderEnergi, the Norwegian energy company that operates the power plant, initiated

the study by request due to existing challenges regarding the inclusion of environmental

constraints in their production planning process. Gjevilvatnet is, in addition to being a

hydropower reservoir, an assembly point for recreational activities as seen in the picture

in Figure 5.1. Every summer, many people come from surrounding cities to this area to

spend their vacation fishing, swimming, and boating in Gjevilvatnet. Therefore, it is of

great interest that the reservoir level is kept high enough to ensure that visitors can do

these activities. The case study is a compelling case as there is a lot of pressure from the

local population and the authorities that the reservoir level must be high in the summer. A

main motivation of the work has been the close industry collaboration and the access to

actual data from TrønderEnergi.

Figure 5.1: Photograph of Gjevilvatnet reservoir at a low reservoir level. Foto: Gorm Kallestad /
NTB
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5.1 Case Study Description

The following subsections describe the case study in terms of relevant physical structures,

imposed environmental regulations and stochastic input data. Parts of the section is taken

from the case study description of the specialization project [7], specifically from Subsec-

tion 4.1 ”Data Handling”.

5.1.1 Static Data Inputs

This subsection is taken from section Static Data in project thesis. The Driva hydropower

system consists of one reservoir, Gjevilvatnet, which has a maximum volume of 280 Mm3.

There are two generators with a combined maximum capacity of 150 MW. A rule of thumb

for the energy equivalent used in energy conversion is 1.4 kWh/m3. These values are

included in the model by setting the input parameters below to their respective value.

Ū = 150 MW · 168h = 25 200 MWh

V̄ = 280 Mm3 = 100 %

e = 1.4 kWh/m3

In addition, a reservoir curve is given in Table 5.1 for conversion between meters above

sea level (masl) and volume (Mm3).

Table 5.1: Gjevilvatnet Reservoir Curve.

Mm3 0 11.2 19.4 44.9 53.6 116.6 125.8 192.3 202 232 242.2 280
masl 645.8 646.5 647 648.5 649 652.5 653 656.5 657 658.5 659 660.8

Min Max

Environmental Constraint from NVE

The environmental constraint set by the Norwegian Water Resources and Energy Direc-

torate (NVE) is presented in Table 5.2. The table displays the state-dependent minimum

restriction imposed on the system. If the reservoir level in the beginning of the week, is

lower than the limit, the production has to stop. If the initial reservoir level is higher than
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the limit, the hydropower plant can produce power, but the resulting reservoir level has to

be above the limit.

The restriction defined by NVE applies to stipulated dates. Because the SDP model is

solved for weekly time steps, these stipulated dates need to be converted into week num-

bers. To ensure that the restriction is complied with at all times, the week containing the

start date of each tightening is used. In addition to this the reservoir limit has to be con-

verted to volume. This is done by interpolation using values from the reservoir curve in

Table 5.1.

Table 5.2: Table of the imposed environmental constraint on reservoir level for each week.

Date Week Restriction (masl) Restriction (Mm3)
0-20 645.80 0.00

1st - 14th of June 21-22 656.80 198.12
15th - 30th of June 23-24 657.80 218.00
1st - 14th of July 25-26 658.80 238.12
15th July- 15th October 27-41 659.80 259.00

42-51 645.80 0.00

5.1.2 Stochastic Data Inputs

All input data is provided from TrønderEnergi. The inflow scenarios are based on historical

data, and the price scenarios are simulated from a fundamental model (EMPS)[17] that

uses historical weather years as the stochastic input.

Price Data

The electricity price estimations used in this case study are predictions used for hydropower

scheduling, by TrønderEnergi in 2018. The price predictions are gathered from the EMPS

model [17] and adjusted to match the forward market curve as of 2018. The data is pro-

vided for the years 1958 to 2015, representing 57 unique weather years. Each year is

defined to consist of 52 weeks, with 12 price segments for each week. In order to use the

price forecasts from TrønderEnergi as price scenarios in the model, the forecasts are con-
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5.1 Case Study Description

verted from weekly segments to a mean weekly price. The price scenarios are presented

in Figure 5.2, with emphasis on the maximum, minimum and median value of each week.
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Figure 5.2: Input data for price scenarios.

In this model, the yearly price data series are clustered by k-means clustering into five

price states, or five price scenarios. The transfer probabilites are determined by a Markov

model with autocorrelation, as described in Subsection 4.2.1.

Inflow Data

Inflow scenarios are accumulated from historical data. Inflow has been measured from the

start of the plant’s lifetime and earlier data are based on NVE watermark measurements

calibrated to measured inflow to Driva. The inflow data is given as a daily volumetric

flow rate with the unit m3/s. In order for the inflow data to correspond with the scenario

format, some adjustments had to be made. Firstly, the data is converted to Mm3/day by

multiplying the inflow with 60 · 60 · 24 · 1/106. Then, the daily volume is summed up over

for each week. Finally, the yearly scenarios have to be altered according to the structure
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of price estimates. In order to impose equal sizes of all scenarios, the years with 53 weeks

are adjusted by dropping the inflow of the last week. This will result in slightly less inflow,

but as the 53rd week of the year usually has a very small amount of inflow, this assumed

to be negligible. The inflow scenarios are presented in Figure 5.3, with emphasis on the

maximum, minimum and median value of each week.
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Figure 5.3: Input data for inflow scenarios.

To model inflow efficiently, the yearly inflow data series are clustered by k-means cluster-

ing into five scenarios. The transfer probabilities of scenarios are independent of state and

determined by a Markov model without any autocorrelation, as described in Subsection

4.2.1.
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5.2 Case Study Results and Discussion

5.2 Case Study Results and Discussion

The four approaches described in 4.2.3 are used with the case described in Section 5.1 to

calculate water values, which is then used to simulate production plans. The results of the

water value calculations and production plan simulations are presented and compared in

this section.

5.2.1 Comparison of Calculated Water Values

Applying the water value calculations in 4.2 on the case study in 5.1 resulted in 52 weekly

water values. For each of the four restriction formulations presented in Subsection 4.2.3,

weekly water values were obtained for 10 discretized reservoir levels, for 5 different price

clusters. Essential post-processings of the water values include using the results to sim-

ulate production plans, which will be further presented in Subsection 5.2.2. In addition,

some selected water values are presented in this subsection.

For illustrative purposes, the water values of the five different price levels were aggre-

gated, using its associated probability weighting, to one value per reservoir level for each

week. After the aggregation, weekly values for each reservoir level, and each of the four

different methods, can be presented. The thesis aims to investigate how planning tools in

hydropower take into account condition-dependent environmental restrictions when they

are modeled in different ways in the model. Therefore, two weeks have been selected, one

before the restriction and one at the very beginning of the restriction period. These water

values are presented in Figure 5.4.

Moreover, the results revealed that the water values for the base case and the linear relax-

ation formulation were approximately equal. Therefore, the water values from the linear

relaxation are not presented separately.
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(a) week 17
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(b) week 22

Figure 5.4: Water values of selected weeks. The color of the line distinguishes the different restric-
tion formulations. The base formulation is blue, the exact formulation is red, while the tighter linear
approximation is green. The two vertical dashed lines represent the auxiliary lower reservoir bound
and environmental reservoir threshold.
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Figures 5.4a and 5.4b display the water values before the environmental constraint is acti-

vated and the first week into the restriction period. In both weeks, the exact formulation’s

water values are lower than the base case and the tighter relaxed formulation up to a cer-

tain point. Then, the exact water values become higher than the base case and the tighter

relaxed formulation. Finally, as the reservoir approaches 90%, the water values are equal

in all formulations. A lower water value signifies a greater incentive to produce electric-

ity this week. On the other hand, higher water values indicate a greater incentive to save

water. At a reservoir level of 100%, any additional unit of water will be spillage and is

therefore worth C0.

The exact formulation has lower water values than the base case up to a particular reservoir

volume. This point signifies that the reservoir level is high enough to reach the environ-

mental restriction, shifting according to how many weeks are left to store hydro before the

constraint is activated. For lower reservoir volumes, it is unlikely to reach the restriction

for a very long time. As production has to stop until the restriction is met, the possibility

of profit from producing during the restriction period is lost. Comparatively, the tighter

relaxation method follows a reversed path. The water values are higher than the base case

and exact formulation for low reservoir levels. For higher reservoir levels, it is equal to

the base case. The turning point occurs at lower reservoir volumes than the exact formula-

tion because the lower auxiliary reservoir bound anticipated is significantly lower than the

environmental constraint considered in the exact formulation.

The presence of lower reservoir bounds, illustrated with dashed vertical lines in Figure

5.4b, causes increased water values around the intersections for both the exact and tighter

relaxed formulation. The water values are higher as being allowed to production in the

current week grants the option to either produce for immediate income or save for more

profitable weeks. This trend can be seen as early as week 13.

The curve for tighter relaxation is cropped for reservoir levels below 10 % because the

auxiliary lower limit, modeled with strict punishment in the objective function, leads to

artificially high water values for having an empty reservoir level. Because the auxiliary

lower limit is determined by the lowest possible value, violating this is impossible and will

47



Chapter 5. Case Study

not affect production plans or water values in other weeks. Hence, this is only a modeling

measure.

5.2.2 Comparison of Simulated Production Plans

Water values from the four modeling approaches described in 4.2.3 are used to simulate

production plans using parallel simulation. Although there were minimal differences in the

water values of the base case of linear approximated formulation, all the water values were

used to simulate production plans. Presented production plans are discussed and compared

against each other and benchmarked against the base case. A necessary remark is that the

aspects discussed in this section are the same as those presented in Subsection 5.2.1. One

is simply a consequence of the other; higher water values result in higher reservoir levels

and the other way around.

The simulated production plans show the recommended reservoir level each week for his-

torical inflow and price prognosis from 57 years and calculated water values from each

of the three approaches described in 4.2.3. The average simulated reservoir levels of each

week from the simulations are provided in Figure 5.5.
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Figure 5.5: Average reservoir level of simulations from all four constraint formulations.
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The resulting production plans follow a traditional, seasonal curve for reservoir manage-

ment, with low reservoir levels prior to the spring flooding and higher reservoir levels for

autumn and winter. The model plans in advance to avoid spillage and make room for a

large amount of expected inflow to be stored in the reservoir. There is no apparent differ-

ence in average reservoir levels between the different model formulations. The production

plans from simulations with different water values are equal for most simulated scenarios.

With water values from the near exact formulation, 65% of the simulated production plans

were identical to the plans without consideration of the restriction. With water values from

the linearly approximated formulations, the complete linear relaxation and the tighter re-

laxation, respectively 93% and 75% of the simulated production plans, were equal to the

plans simulated with water values that did not include the restriction.

Average yearly revenue for the base case, without the restriction in water value calcula-

tions, was 17.1MC. The average change in profit of all simulations is presented in Table

5.3. The economic results in Table 5.3 are calculated considering the change in yearly

revenue from power production and the difference in the value of the reservoir level at the

end of the analysis period.

Table 5.3: Economical Improvement from Base Case

Formulation Method
Linear Approx. Tighter Linear Approx. Exact Formulation

Absolute average 2300 EUR/yr 43 000 EUR/yr 41 000 EUR/yr
Relative average 0.01% 0.25 % 0.24%

The average change in profit from Table 5.3 shows a variance between the different ap-

proaches. The water values from the stricter linear relaxation result in production plans

that achieve 0.01 % better economic gain than the exact formulation. This can be explained

by the fact that the methods make decisions based on different water values. The lower

auxiliary bound is significantly lower than the environmental constraint, which causes the

production to change during extreme weather years. The exact formulation method would

not increase the reservoir levels in these scenarios as it is highly unlikely for the reservoir
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level to reach the actual restriction. Due to improbable occasions, with high prices and

high inflow, there are some years of high financial gain for the tighter formulation. In

addition, the end-of-horizon valuation will be of great importance. The end-of-horizon

valuation is partly inaccurate because the models use their unique final valuation to calcu-

late the optimal production plan. Hence, they become more difficult to compare at the end

of the analysis period.

Although there was a slight difference between the exact and tighter linear formulation,

both methods’ profit gains are still relatively low. The low economic gains in the exact for-

mulation and tighter linear method may be due to numerous simulations resulting in equal

production plans for each approach. Therefore, the identical scenarios were filtered out

to analyze differences caused by including the restriction in the water value calculations.

In addition, the complete relaxed linearized formulation is not included in the following

results due to the lack of change from the base case, neither in water values nor production

plans. The average economic results from scenarios that deviate from the base method are

presented in Table 5.4.

Table 5.4: Economical Improvement from Base Case
of Filtered Simulationsa

Formulation Method
Tighter Linear Approx. Exact Formulation

Best Improvement 1.87M EUR/yr 1.6M EUR/yr
Worst Deterioration 19 000 EUR/yr 1.3M EUR/yr

Absolute average 176 000 EUR/yr 117 000 EUR/yr
Relative average 1.03% 0.67%

% of simulations that differed 25% 35%
from the base case

aSimulations that resulted in unequal production plans.

Average weekly reservoir levels filtered scenarios are presented in Figures 5.6 and 5.8, in-

cluding base case formulation and, respectively, the exact formulation method and tighter

linear relaxation method.
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Figure 5.6: Average reservoir levels of scenarios where the exact formulation differed from base
case. Red line is the base case simulations and green line is the exact formulation simulations.

The production plans in Figure 5.6 appear similar, but there is an interesting difference

during the restriction period at two particular points. At the beginning of the restriction

period, the reservoir level is lower for the simulations that uses water values that consider

the constraint. After a few weeks, this reverses, and during the last weeks of the restriction

period, the reservoir level is higher. This reflects the lower water values that become higher

after the restriction period is activated. The producer has no chance to govern differently

until the reservoir level reaches the threshold in the restriction period, i.e., the turning point

comes from how the individual scenarios that have already reached the limit are handled.

The same reasoning also explains why the average reservoir level crosses the boundary

in weeks 37 and 39. The turning point, where the average reservoir levels of the exact

formulation exceed the base case, is further illustrated in Figure 5.7.
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Figure 5.7: Excerpt from Figure 5.6. Red line is the base case simulations and green line is the
exact formulation simulations.

An important remark to Figures 5.6 and 5.7 is that the average values do not fully reflect the

spread in the curves, and for some scenarios, there are more significant differences. From

the water values, we know that the water value is lower for small reservoir volumes, while

the water value is higher for higher reservoir volumes. This is important for the production

plans. In cases with low water levels in the reservoirs, the model does not believe in being

able to reach the environmental restriction and therefore produces water more easily before

this period. Moreover, at the same time, with high water levels, the model would choose

to save water in the hope of producing towards the end of the restriction period. Taking

the average of both higher and lower scenarios results in few visible changes.

The remark above does not apply to the same extent to the tighter relaxed restriction pre-

sented in Figure 5.8. As the auxiliary lower reservoir volume is set very low, there are no

scenarios that cannot reach this limit. The production plans of the approximated formula-

tion are generally higher than the base case during the restriction period.
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Figure 5.8: Average reservoir levels of scenarios where the tighter approximated formulation dif-
fered from base case.Red line is the base case simulations and green line is the tighter approximated
formulation simulations.

Duration curves are valuable to understand better how the model produces new production

plans, leading to improved economic results. The duration curves show weekly power

production in a selected scenario for the water values with and without the restriction,

sorted by descending price. The two scenarios selected, 5.9a and 5.9b, have been chosen

on the basis that they illustrate well how the model can shift production to avoid having

to produce in low price weeks. Here, the model moves production to weeks with a higher

price and thus gets more profit from the water resource. The production is forced to stop

whenever the reservoir level is lower than the threshold during the restriction period.
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(a) Price duration curve of a selected simulation(1979). The bars show weekly production, sorted
by descending weekly price. Red bars are the base case and green bars are the exact formulation
approach.
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(b) Price duration curve of a selected simulation(1975). The bars show weekly production, sorted
by descending weekly price. Red bars are the base case and green bars are the tight linear approxi-
mation method.

Figure 5.9: Price duration curves for selected scenarios. The bars show weekly production, sorted
by descending weekly price.
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For most weeks, all model formulations are producing the same amount of power, with

maximum discharge during the highest priced weeks, furthest to the left, and no production

in the lowest priced weeks, furthest to the right. However, there are some exceptions,

where the production plan differs. In Figure 5.9a the production at weeks around 35 C/

MWh are moved to the left. The same can be seen in Figure 5.9b where production at

weeks with prices around 25 C/ MWh are moved to weeks with prices around 35 C/

MWh. In addition, some of the production have also been moved to another year.
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5.3 Insights from Modeling Environmental Constraints

In the previous section, concrete results from the case study have been presented and

discussed. This section addresses a more general discussion regarding the impacts of

modeling environmental constraints, the industry application of the modeling approaches,

and the limitations and sensitivities relevant to the case study.

5.3.1 Impact of Modeling Environmental Constraints

Section 5.2 identified various consequences following the introduction of environmental

constraints in a medium-term hydropower scheduling case study. This subsection further

discusses how the changes in reservoir distribution, as a result of the exact formulation of

the constraint and the tighter linear approximated modeling approach, impact the intention

and purpose of the policymakers.

The exact formulation method is the only out of the approaches that can foresee the en-

vironmental constraint in its actual characteristic. Ahead of the restriction period, there

is a trade-off between either producing hydropower or storing hydro in hopes of reaching

the environmental limit. For lower reservoir volumes, it is more profitable to use water

now, as production is expected to stop for a long time to come. The possibility of profit

from producing during the restriction period is lost, which leads to lower water values. The

lower water values lead to increased discharge and lower reservoir levels during spring and

the beginning of summer. However, for higher reservoir volumes, water values from the

exact formulation are higher than the other formulation methods. This means that in some

scenarios, there will be higher reservoir levels. In other words, there will be a larger gap in

water values when the environmental restriction is included, but it is not straightforward

to see as the average reservoir levels will be the same.

An essential reason for introducing this restriction, from NVE’s point of view, is to make

sure that there is enough water in the reservoir so that cabin owners and other visitors

can fish, swim and drive a boat on the water, in addition to it being visually satisfying.

Even though the case study resulted in a financial gain from including the constraint in the
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water value calculations, the threshold is not reached earlier in the restriction period. All

simulated production plans comply with the regulations, but the restriction’s purpose has

been fulfilled to a lesser extent in some scenarios.

The trade-off previously discussed does not apply to the same extent to the tighter relaxed

restriction, as the auxiliary lower reservoir volume is set very low. There will not be any

scenarios that cannot reach this limit throughout the restriction period, and the higher water

values led to an increased reservoir volume. As the tighter approximated formulation sees

a different lower limit than the exact formulation, the increased water values occur at much

lower reservoir levels. Despite being considerably lower, the auxiliary bound incentivizes

the reservoir to stay above levels close to zero. Hence, the higher reservoir levels better

achieve the purpose behind the environmental constraints in this case study.

Despite a rise in the average reservoir levels, the tighter relaxed formulation only altered

the scenarios with the lowest reservoir volumes. Most scenarios have already reached the

auxiliary lower bound and are therefore unchanged. The same argument can also explain

why the completely relaxed formulation shows little to no change in water values. With a

complete relaxation of the binary variable, the lower reservoir bound becomes close to zero

in weeks with low production. Hence, there is no rigid lower reservoir that the model is

rewarded for obeying. Consequently, the approximated models are not a good measure of

the trade-off evaluation essential for planning well for the condition-dependent restriction.

It does not see the production stop waiting ahead for most scenarios. A consequence of

this is that the model believes it can govern production without limitations for all reservoir

levels lower than the actual limit. Moving the auxiliary lower bound to a higher value may

provide even better incentives, but infeasible solutions and convergence issues may occur.

Although there are varying degrees of achievement of the purpose behind the restriction,

the hydropower schedules are impacted by the inclusion of environmental constraints.

Both the tighter relaxation and exact formulation experienced higher water values due

to the environmental constraint already in week 13, implying that the model plans for the

restriction for many months before it arrives. Planning ahead of the restriction is cru-

cial because, during the restriction period, the producers have no real chance to manage
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differently until the reservoir level reaches the threshold in the restriction period.

5.3.2 Industry Applications

One of the goals of the thesis was to investigate whether there is a way to include state-

dependent environmental constraints that could be used in industry today. The exact for-

mulation leads to nonconvexities and can therefore not be used in the SDDP planning tools

that the industry uses. However, the two approximate formulations as well as the base case

are possible to include in commercial software today.

All constraint formulations performed better than the base case, which excluded the con-

straints in the water value calculations. The economic improvement was less than 0.5%

for all restriction formulations, but the least improvement was with the complete linear

approximation, with only 0.01% change. The water values were almost identical to the

base case, leading only to minimal differences in the production plan simulations. As

the linear approximation approach did not change the water values and production plans

of any economic significance, this indicates that it is not the most suitable method. The

economic improvement for the tighter relaxation in this case study was approximately the

same as for the exact formulation. The main challenge is many equal years, i.e., there have

to be more extreme cases before the water values change. However, the simulated pro-

duction plans show good financial gain and, to a greater extent, fulfill the purpose behind

the restriction, which is to get a higher reservoir level through the summer. Therefore,

the results from the case study indicate that the stricter linear approximation is a favorable

alternative for including state-dependent environmental constraints in the SDDP algorithm

used in industry today.

5.3.3 Generalization and Sensitivity

Insights from modeling environmental constraints include shifts in reservoir management

and economic differences. The results presented are inevitably affected by case-specific

sensitivities and sensitivities in the data input. This subsection addresses how sensitivity
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and uncertainty in stochastic parameters can affect the results to understand better which

characteristics can be generalized and which are limited to this case study.

Despite the changes discussed previously, the reservoir levels in the case study do not

change of any practical significance. The small changes in the reservoir levels may point

to the case’s price distribution, as the model is economically driven and governed by the

earning potential in the period with the restriction. The power price data series show low

summer prices during the summer, i.e., during the environmental restriction period, and

high prices during the winter. Consequently, the model does not see an incentive to save

water in the winter to reach a high enough level to be allowed to produce water earlier in the

summer. This is also apparent in the duration curves, where most of the ”no-production”

weeks are further to the right, meaning that these weeks have a low price and it would

not be beneficial to produce regardless of the restriction. Power production within the

restriction period is already less beneficial than the rest of the year, which may lead to a

dampening effect of the environmental constraint. In addition, it also further substantiates

the observation that including environmental constraints in water value calculations does

not necessarily lead to higher fulfillment of the purpose behind the restriction.

On the one hand, the case-specific price distribution is statistically typical, and the restric-

tion will often lead to little change in optimal production plans. On the other hand, as seen

in recent years, the price distribution may change, leading to higher prices in the summer.

If higher prices in the summer are expected, saving water to produce in the summer weeks

could be more favorable, making it more advantageous to plan for the restriction well in

advance. While the price distribution in this case study is typical, some years may be

abnormal, with higher summer prices. Years with this atypical price distribution predic-

tions could incentivize planning for the restriction. The model can weigh the benefit of

producing in the winter against the disadvantage of experiencing stop requirements in the

summer; hence, the price distribution influences the model. In addition to price sensitiv-

ity, the results from the case study are also case-specific in terms of characteristics of the

hydropower plant and the regulatory definition of the environmental constraint.
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Chapter 6

Conclusion and Further Work

6.1 Conclusion

This master’s thesis has evaluated formulation approaches for state-dependent environ-

mental constraints in medium-term hydropower scheduling. The thesis aimed to contribute

to the research field by implementing and comparing suggested methods of including en-

vironmental constraints. A case study was performed to compare an exact formulation to

linear approximations; a complete relaxation and a tighter relaxation with a lower auxil-

iary reservoir bound. The three approaches were compared to a base case method, which

excludes the restriction in water value calculations.

Findings from the case study showed performance improvement when including an exact

formulation of the state-dependent constraints. The financial results indicate an earning

potential, and the duration curve illustrated how planning ahead for the restriction could

ensure production in higher priced weeks. On the other hand, the overall reservoir level

did not increase substantially. Despite a financial gain, a higher fulfillment of the purpose

behind the restriction, which is to get more water for recreational purposes, was not seen.

Still, the model is very price sensitive, and it is expected that planning for the restriction

could have a more significant impact with a different seasonal price profile.
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The linear approximations of the environmental constraint impacted the hydropower schedul-

ing to varying degrees. There was no significant difference between the complete relax-

ation and the base case method, indicating that a complete relaxation of the binary vari-

ables is not a suitable method. However, the tighter relaxation approach showed economic

improvement very close to the exact method. In addition, the reservoir distribution led to

higher reservoir levels in the weeks prior to and during the restriction period. This implies

an improved fulfillment of the underlying purpose of the constraint, which is to get more

water in the reservoirs. This method also has the advantage of not leading to nonconvex-

ities and can therefore be used in the SDDP framework, which is the industry standard

for medium-term hydropower scheduling. Hence, results from the case study indicate that

the tighter linear approximation method is a good alternative to including state-dependent

environmental constraints in medium-term hydropower scheduling.

6.2 Further Work

It was identified that the model is very price sensitive, as it is economically driven and

governed by the earning potential. A possible extension of this thesis is to investigate how

a different seasonal price profile would impact production planning. In recent years, there

has been an extraordinary situation in the power market, with unusually high prices also

during the summer. This situation has led to many concerns among both politicians and

the civil population, and better and more accurate hydropower production planning will

become more relevant and essential. Therefore, it is advantageous to better understand the

effects of price changes by including more price data series in the case study.
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[11] V. P. Lundgren J. Röhnqvist M., Optimization. Studentlitteratur, 2010.

[12] M. V. Pereira and L. M. Pinto, “Multi-stage stochastic optimization applied to en-

ergy planning,” Math. Program., vol. 52, no. 1–3, pp. 359–375, May 1991, ISSN:

0025-5610.

[13] Z. Li and T. Majozi, “Optimal synthesis of batch water networks using dynamic pro-

gramming,” Process Integration and Optimization for Sustainability, vol. 2, no. 4,

pp. 391–412, Dec. 2018, ISSN: 2509-4246. DOI: 10.1007/s41660- 018-

0061-2. [Online]. Available: https://doi.org/10.1007/s41660-

018-0061-2.

[14] K. B. W. Fourer R. Gay D. M., “Ampl: A modeling language for mathematical

programming,” in 2nd ed. Boston: Cengage Learning, 2002, ch. 17.

[15] P. Williams, “Model building in mathematical programming,” in 5th ed. New Jersey:

Wiley & Sons, Ltd., Publication, 2013, ch. 9.

64

https://doi.org/https://doi.org/10.1016/j.renene.2022.05.106
https://www.sciencedirect.com/science/article/pii/S0960148122007534
https://www.sciencedirect.com/science/article/pii/S0960148122007534
https://energifaktanorge.no/en/norsk-energiforsyning/kraftproduksjon/
https://energifaktanorge.no/en/norsk-energiforsyning/kraftproduksjon/
https://doi.org/10.1007/s41660-018-0061-2
https://doi.org/10.1007/s41660-018-0061-2
https://doi.org/10.1007/s41660-018-0061-2
https://doi.org/10.1007/s41660-018-0061-2


BIBLIOGRAPHY

[16] A. Helseth, “Environmental constraints in seasonal hydropower scheduling - hydro-

cen report nr. 12,” NTNU, SINTEF, NINA, Tech. Rep., 2019.

[17] O. Wolfgang, A. Haugstad, B. Mo, A. Gjelsvik, I. Wangensteen, and G. Door-

man, “Hydro reservoir handling in norway before and after deregulation,” Energy,

vol. 34, no. 10, pp. 1642–1651, 2009, 11th Conference on Process Integration, Mod-

elling and Optimisation for Energy Saving and Pollution Reduction, ISSN: 0360-

5442. DOI: https://doi.org/10.1016/j.energy.2009.07.025.

[Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0360544209003119.

65

https://doi.org/https://doi.org/10.1016/j.energy.2009.07.025
https://www.sciencedirect.com/science/article/pii/S0360544209003119
https://www.sciencedirect.com/science/article/pii/S0360544209003119


BIBLIOGRAPHY

66



Appendix A

Full Paper Submission:

European Energy Market

Conference

This paper was written for the European Energy Market Conference[kilde], with final

review notification due in mid-July. The paper is based on the first results from the master

thesis, not including the tighter linear approximated method.
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Abstract—This paper addresses the inclusion of state - depen-
dent environmental constraints in medium-term scheduling of
hydropower plants with reservoirs. The reservoir handling and
release plans of hydropower production can lead to dry river
sections and lakes, create barriers for fish mitigation and impact
terrestrial ecosystems. In Norway, many reservoirs are also used
for recreational purposes. Environmental constraints are imposed
to facilitate synergies in reservoir usage and ensure high enough
water levels. Some environmental constraints are challenging to
mathematically include in hydropower scheduling models, due
to nonconvex characteristics or binary logic. State-dependent
constraints can make the problem formulation nonconvex, and
are therefore not included in existing scheduling tools. This paper
compare different approaches for representing such constraints
in medium to long-term scheduling models and evaluate the
difference in optimality.

Index Terms—hydropower scheduling, environmental con-
straints, state-dependent constraints

NOMENCLATURE

Index Sets
T Set of stages (weeks)
S Set of scenarios (inflow and price)
Parameters
�
s
t Power price in stage t, given scenario s, in C

MWh
i
s
t Inflow in stage t, given scenario s, in Mm

3

v
0
t Initial reservoir level in stage t, in Mm

3

E Energy conversion factor, in MWh
Mm3

V̄ Maximum reservoir volume, in Mm
3

Ū Maximum discharge, in MW

Ṽt Environmental limit on reservoir volume in stage t,
in Mm

3

Fvt+1 Future profit function of vt
Variables
qt Plant outflow in stage t, in Mm

3

st Spilled outflow in stage t, in Mm
3

ut Plant output in stage t, in MWh

vt Reservoir level at end of stage t, in Mm
3

↵t+1 Future expected profit in stage t, in C

This work has been partially supported by the Research Council of
Norway’s BALANSE project 295920 IDUN.

↵t Expected profit in stage t, in C
�t Environmental binary variable for stopping produc-

tion in stage t

I. INTRODUCTION

Climate change and environmental degradation are exis-
tential threats to Europe and the world. To overcome these
challenges, power producers are encouraged to operate in
an environmentally sustainable way. The dominating energy
source in Norway is hydropower, and to limit the ecological
burden of hydropower production, the Norwegian government
has imposed rules and regulations on the reservoir volume and
release plans.

In Norway, many large reservoirs are also used for recre-
ational activities such as fishing, boat trips, and swimming
for the locals. There are strict regulations at the minimum
reservoir level to keep these activities alive. The goal of the
environmental constraint is to avoid low water levels in the
reservoirs, which leads to great dissatisfaction among the local
population. A picture that illustrates the situation that follows
at low reservoir levels is included in 1.

Fig. 1. Example of low water level in a recreational area.

State-dependent environmental constraints are imposed on
operation of several Norwegian hydropower plants, and may
be imposed on more hydropower plants in near future as a



result of revision of the concession terms of existing plants.
State-dependent restrictions are often more economically effi-
cient and can be better targeted in terms of environmental gains
but have the disadvantage of being mathematically challenging
to model.

Medium-term hydropower scheduling models currently used
in the Nordic hydropower industry do not include accurate
representations of state-dependent constraints as they often
lead to nonconvexities and the need for logical conditions.
State-of-the-art solution methods for medium- to long-term
hydropower scheduling in the Nordic are based on stochas-
tic dual dynamic programming (SDDP) [1], which require
a convex model formulation. These models therefore rely
on linear approximations of state-dependent environmental
constraints. Using stochastic dynamic programming (SDP)
[2] will enable the possibility to include nonconvexities and
logical conditions but is suitable only for small systems.
Previous research considers an accurate representation of state-
dependent environmental constraints using SDDiP [3] and
SDP [4], and linear approximations in SDDP, but there is, to
the best of our knowledge, no material comparing the different
approaches.

The research presented in this paper aims to enlighten how
different modelling approaches of state-dependent environ-
mental constraints in water value calculations affect water
values and production plans. Our contribution includes a
description of two different modelling approaches, an exact
representation and a linear approximation of the environmental
constraint. The two approaches are compared towards the
current situation, where these constraints are not considered
in the planning. The comparison is conducted for a case study
of the Driva hydropower plant in mid-Norway, using data
provided by the operator of the plant, TrønderEnergi. Both
formulations can be used in methods that do not require a
convex model formulation, such as SDP. In models based on
SDDP, a convex model formulation is required and a linear
approximation is necessary.

II. MODEL DESCRIPTION

A medium-term hydropower scheduling model based on
SDP is used to investigate the solution quality of the different
representations of the constraint. An SDP model framework is
chosen due to its straightforward implementation and good
opportunities for formulation flexibility, including noncon-
vexities and hereby state-dependent constraints. The same
model framework is used for both implementations to avoid
additional noise in the comparison.

The developed SDP-model takes the perspective of a power
producer, and the objective is to maximize revenue while
complying with all physical and regulatory constraints, in-
cluding environmental constraints. The dynamic structure in
the hydropower scheduling problem enables the ability to
solve smaller scheduling problems for each weekly stage
independently and use the connection between the weekly
steps to establish the optimal solution for the whole scheduling
problem. The connection between each weekly stage is the

reservoir level and, due to strong autocorrelation, the level
of the power price. The operational decisions in one step
determines the reservoir level, affecting the decisions in the
next step.

A. Modeling Uncertainties
Inflow and power price are considered uncertain and are

represented in the model as stochastic variables. The uncer-
tainty is represented using a Markov model with weighted
probabilities. In addition, autocorrelation in price is considered
by modeling price as a state variable. The correlation from last
week is represented by using the power price in the previous
week t� 1 as a state variable in week t.

B. Weekly Stage Problem
The SDP-algorithm solves the decision problem for each

weekly stage t = 1, ..., T , for all discrete reservoir states and
all stochastic states, see e.g. [5] for a description of a similar
SDP-algorithm. The weekly decision problem is formulated
with (1a)-(1i).

max↵t = �
s
t · ut + ↵t+1 (1a)

vt = v
0
t � ut � st + i

s
t (1b)

↵t+1  F↵t+1(vt) (1c)

ut = E · qt (1d)

vt � �t · Ṽt (1e)

ut  �t · Ū (1f)

vt  V̄ (1g)

ut, vt,↵t+1, qt, st � 0 (1h)

�t 2 {0, 1} (1i)

The objective of the weekly stage problem (1a) is to
maximize revenue from the current week, as well as the future
revenue of remaining reservoir volume. The resulting reservoir
level of each week is determined by (1b) and the future
revenue is set by (1c). The energy conversion is described
in (1d) and is modeled as a constant relation. Equations
(1e) and (1f) ensures that the environmental constraint is
being complied with. If the reservoir level is lower than the
environmental threshold, Ṽt, the binary variable �t is set to
zero and the production has to stop. �t can be set to one
when the reservoir level is higher than the threshold. Then
the hydropower plant can produce power, but the resulting
reservoir level has to be above the threshold. Equation (1g)
ensures reservoir level within the physical boundaries.

After solving all the decision problems in each stage, the
expected future profit is calculated and used when solving the
previous stage (t� 1). When the problem has been solved for
all weeks, the algorithm re-solves the entire planning horizon,
using the water values from the first stage as end-value setting
in the last stage. To avoid unwanted end of horizon-effects, this
continues until the algorithm converges, i.e. when the water



values in the first step equals the water values in the last step.
When the SDP algorithm has converged, the calculated water
values can be used for a final forward simulation in order to
obtain production plans.

C. Solution Method
In order to compare the different approaches of modeling

the state-dependent environmental constraint, production plans
are simulated using three different sets of calculated water
values. The three different approaches for calculating water
values are presented below:

1) Without Environmental Constraint: To calculate water
values without inclusion of environmental constraints is
often the currently used method in commercial Nordic
hydropower scheduling. In this case, the weekly stage
problem presented in II-B is modified by excluding
constraint (1e) and set �t to 1 for all stages.

2) Near Exact Formulation: To include the environmental
constraint with a near exact formulation, the weekly
stage problem presented in II-B is used to calculate
water values.

3) Linear Approximation: The formulation in II-B is non-
convex and uses binary logic. To avoid this, a linear
relaxation is imposed, setting �t to a continuous variable
between 0 and 1 for all stages.

The final simulations are conducted as parallel simulation,
i.e. assuming a fixed start-reservoir level in week 1 for all
simulated weather and price scenarios. This is the selected
simulation approach because this resembles the industrial
process of production planning in TrønderEnergi.

III. CASE STUDY

Finally, the model is applied to a single-reservoir hy-
dropower plant case study. The case study described in this
section is the production planning of the Driva power plant,
with Gjevilvatnet as the main reservoir, located in Norway.
TrønderEnergi, the Norwegian energy company that operates
the power plant, initiated the study by request due to exist-
ing challenges regarding the inclusion of environmental con-
straints in their production planning process. Gjevilvatnet is,
in addition to being a hydropower reservoir, an assembly point
for recreational activities. Every summer, many people come
from surrounding cities to this area to spend their vacation
fishing, swimming, and boating in Gjevilvatnet. Therefore, it
is of great interest that the reservoir level is kept high enough
to ensure that visitors can do these activities. The case study
is a compelling case as there is a lot of pressure from the local
population and the authorities that the reservoir level must be
high in the summer. A main motivation of the work has been
the close industry collaboration and the access to actual data
from TrønderEnergi.

A. Price and Inflow Data Inputs
All input data is provided from TrønderEnergi. The inflow

scenarios are based on historical data, and the price scenarios
are simulated from a fundamental model (EMPS) that uses

historical weather years as the stochastic input. The price and
inflow scenarios are presented in Figures 3 and 2, respectively.
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Fig. 2. Input data for inflow scenarios.
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Fig. 3. Input data for price scenarios.

B. Results and Discussion
The three approaches described in II-C are used to calculate

water values and simulate production plans using parallel
simulation. The results of the simulations are presented in the
following section.

To simulate production plans for the hydropower plant,
historical inflow and price prognosis from 57 years are used
together with calculated water values from each of the three
approaches described in II-C. The resulting production plans
follow a traditional, seasonal curve for reservoir management.
This is reasonable considering that the assumed power price
has a characteristic curve, with high prices in the winter and
low in the summer. Comparing the results from simulations
with different water values, we see that the production plans
are equal between the three approaches for most of the
simulated scenarios. With water values from the near exact
formulation, 65% of the simulated production plans were
identical to the plans without consideration of the restriction.
With water values from the linearly approximated formulation,



93% of the simulated production plans were equal to the plans
simulated with water values that did not include the restriction.
The relatively low impact of considering the constraint can be
explained by the assumed power price. Because of low prices
during summer, power production within the restriction period
is already less beneficial than the rest of the year, dampening
the effect of the constraint.

Yearly revenue for the base case, without the restriction in
water value calculations, was 17.1MC. The average change in
profit of all simulations is presented in Table I. The economic
results in Table I are calculated considering the change in
yearly revenue from power production and the difference in
the value of the reservoir level at the end of the analysis period.

TABLE I
ECONOMICAL IMPROVEMENT FROM BASE CASE

Formulation Method
Linear Approximation Exact Formulation

Absolute average 2333 EUR/yr 40 993 EUR/yr
Relative average 0.01% 0.24 %

The average change in profit from Table I shows a slight
variance between the different approaches. The average differ-
ence is considerably more prominent for the exact formulation
than for the linear approximated formulation but less than
0.5% in both cases. The low economic gains could be due
to many weather years resulting in equal production plans for
each approach.

The linear approximation approach did not change the
production plans of any economic significance, indicating that
it is not the most suitable method. Therefore, further studying
results from the approximated constraint was seen as less
valuable than the exact formulation to analyze how the new
water values affect the production plans.

The following observations and discussions are comparing
the exact constraint formulation to the base case method.
The identical scenarios are filtered out to see what differ-
ences occur by including the restriction in the water value
calculations. In other words, we only look at the 20 weather
years that changed the production plan after introducing the
exact restriction formulation. The average economic results in
which the exact formulation deviates from the base method are
presented in Table II. The scenario with the best improvement
resulted in an economical gain of 1.6 MC, while the worst
scenario gave a loss of 1.3MC. The average profit gain of all
years with improvement was 460 000 Cand the average profit
loss of all years with deterioration was 302 000 C.

TABLE II
ECONOMICAL IMPROVEMENT FROM BASE CASE

OF FILTERED SIMULATIONSa

Absolute average 117 000 EUR/yr
Relative average 0.67 %
aSimulations that resulted in unequal production plans.

The average reservoir levels for each week are presented
in Figure 4. An important remark is that the average values

do not fully reflect the spread in the curves, and for some
scenarios, there are greater differences. The production plans
appear similar, but there is an interesting difference during the
restriction period at two particular points. At the beginning of
the restriction period, the reservoir level is lower for the water
values that consider the constraint. After a few weeks, this
reverses, and during the last weeks of the restriction period,
the reservoir level is higher for the water values that consider
the constraint.
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Fig. 4. Average reservoir level of simulations that resulted in unequal
production plans. Red line is the base case simulations and green line is
the exact formulation simulations.

The turning point, where the average reservoir levels of the
exact formulation exceed the base case, is further illustrated
in Figure 5. This means that the water values considering the
environmental constraint are lower right before the restriction
period and become higher during the following weeks. The
producer has no chance to govern differently until the reservoir
level reaches the threshold in the restriction period, i.e.,
the turning point comes from how the individual scenarios
that have already reached the limit are handled. The same
reasoning also explains why the average reservoir level crosses
the boundary in weeks 37 and 39.

Despite the changes discussed previously, the reservoir
levels in the case study do not change of any practical
significance. The small changes in the reservoir levels may
point to the case’s price distribution, with lower prices in the
summer and higher in the winter. The model does not see an
incentive to save water in the winter to reach a high enough
level to be allowed to produce water earlier in the summer.

The model is economically driven and therefore governed
by the earning potential in the period with the restriction.
Even though the case study resulted in a financial gain from
including the constraint in the water value calculations, the
threshold is not reached any earlier in the restriction period.
The purpose behind the restriction is not better achieved, but
the operation does not violate the terms of the restriction. A
different price distribution will likely affect how the policy’s
purpose, which is to get more water, is met.
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Fig. 5. Excerpt from Figure 4. Red line is the base case simulations and
green line is the exact formulation simulations.
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Fig. 6. Duration curve of a selected simulation. Red bars are the base case
and green bars are the exact formulation approach.

The new water values, which take into account the envi-
ronmental constraint, reflects a production halt in the weeks
following activation of the restriction. By anticipating the re-
striction in advance, power producers can move production to
weeks with higher prices. The shift in production is illustrated
with the duration curve in Figure 6. The duration curve shows
weekly power production in a selected scenario for the water
values with and without the restriction, sorted by descending
price. Here, the model manages to move production to weeks
with a higher price and thus get more profit from the water
resource.

The production is forced to stop whenever the reservoir
level is lower than the threshold during the restriction period.
From Figure 4 it is clear that there, on average, are a lot of
simulations resulting in a no-production directive. From the
duration curve in Figure 6 most of the ”no-production” weeks
are further to the right, meaning that these weeks have a low

price and it would not be beneficial to produce regardless
of the restriction. This emphasizes what was seen from the
production plans, that the reservoir level often does not change
when the restriction is included in the water value calculations.
In addition, it also further substantiates the observation that
including environmental constraints in water value calculations
does not necessarily lead to higher fulfillment of the purpose
behind the restriction. Improved modeling of the constraint in
the medium-term scheduling was not found to improve the
fulfillment of the underlaying purpose of the constraint.

There may, however, be some years where this distribution
does not occur. While the price distribution in this case study
is typical, some years may be abnormal, with higher summer
prices. Years with this atypical price distribution predictions
could incentivize planning for the restriction. The model can
weigh the benefit of producing in the winter against the
disadvantage of experiencing stop requirements in the summer;
hence, the price distribution influences the model. In addition
to price sensitivity, the results from the case study are also case
specific in terms of the characteristics of the hydropower plant
where the constraint is imposed and the regulatory definition
of the constraint.

IV. CONCLUSIONS

This research paper has investigated state-dependent envi-
ronmental constraints in medium-term hydropower scheduling.
The authors aimed to contribute to the research field by
implementing and comparing suggested methods of including
environmental constraints. A case study was performed to
compare an exact formulation to a linear approximation. The
two approaches were compared to the base case method,
excluding the restriction in water value calculations.

The main findings from the case study showed performance
improvement when including an exact formulation of the state-
dependent constraints. The financial results indicate an earning
potential, and the duration curve illustrated how planning
ahead for the restriction could ensure production in higher
priced weeks. On the other hand, the overall reservoir level
did not increase substantially. Despite a financial gain, a higher
fulfillment of the purpose behind the restriction, which is to get
more water for recreational purposes, was not seen. Still, the
model is very price sensitive, and it is expected that planning
for the restriction could have a larger impact with a different
seasonal price profile.

There was no significant difference between linear approx-
imation and the base case method, indicating that a complete
relaxation of the binary variables is not a suitable method.
A possible extension of this study is to look at other tighter
approximation methods.
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Abstract — This paper aims to address the inclusion of state 
-dependent environmental constraints in medium-term 
scheduling of hydropower plants with reservoirs. Hydropower 
production's reservoir handling and release plans may cause 
ecological burdens, including dry river sections and lakes. In 
Norway, many reservoirs are also used for recreational 
purposes. Environmental constraints are imposed to facilitate 
synergies in reservoir usage and ensure high enough water 
levels. There are different possibilities to mathematically 
include these constraints in hydropower scheduling models, 
each with its advantages and disadvantages. This paper 
compares different approaches to evaluate the difference in 
optimality. 

Keywords — Hydropower Scheduling, Environmental 
Constraints, State-Dependent Constraints 

I. INTRODUCTION  
Climate change and environmental degradation are 

existential threats to Europe and the world. Power producers 
are encouraged to operate in an environmentally sustainable 
way to overcome ecological challenges. As many of the large 
reservoirs in Norway also are used for recreational activities, 
there are strict regulations on the minimum reservoir level. 
The goal of the environmental constraint is to avoid drought 
in popular recreational areas, which leads to great 
dissatisfaction among the local population. It has become 
more common to formulate environmental rules and 
regulations as state-dependent in recent years. State-
dependent restrictions are often more economically efficient 
and better targeted in terms of environmental gains but have 
the disadvantage of being mathematically challenging to 
model. 

Medium-term hydropower scheduling models currently 
used in the hydropower industry do not include accurate 
representations of state-dependent constraints as they often 
lead to non-convexities and the need for logical conditions. 
State-of-the-art solution methods for hydropower scheduling, 
using stochastic dual dynamic programming (SDDP) [1], 
require a convex model formulation and rely on linear 
approximations of such constraints. Using stochastic dynamic 
programming (SDP) [2] will enable the possibility of 
including non-convexities and logical conditions but is 
suitable only for small systems. There exists research that 
considers accurate representations of state-dependent 
environmental constraints using SDDiP [3] and SDP [4] and 
linear approximations in SDDP. Still, to the best of our 

knowledge, there is no material comparing the different 
approaches. 

This paper aims to compare linear formulations that can be 
used in SDDP based models and more accurate 
representations that cannot be included in SDDP due to 
nonconvexities. The more accurate representations of state-
dependent constraints can be used in methods that do not 
require a convex model formulation, such as SDP.  

II. METHODOLOGY 
The representations are implemented in an SDP model 

framework to investigate differences in solution quality. The 
same model framework is used for all the implementations to 
avoid additional noise in the comparison. An SDP model for 
medium-term hydropower scheduling of local reservoir 
management has been developed. The model takes the 
perspective of the power producer, and the objective is to 
maximize revenue while complying with all physical and 
regulatory constraints, including environmental constraints. It 
was of great interest to develop a process close to industrial 
production planning, as the study was initiated at the request 
of TrønderEnergi, a Norwegian energy company. 
TrønderEnergi has an existing problem they want to solve in 
Driva Power Station, a single reservoir hydropower plant in 
Norway.  

In order to compare the different approaches to model the 
state-dependent environmental constraint, several 
formulations of the constraint are implemented in the model 
framework. The authors have implemented and studied one 
linear approximation and one accurate representation of the 
constraint. Further, this work will be continued by including a 
tighter linear approximation and a formulation closer to 
TrønderEnergi’s industrial approach. Finally, the model is 
applied to the TrønderEnergi case study. 

III. RESULTS 
The expected results are practical and financial 

consequences of including environmental constraints in the 
medium-term scheduling of reservoirs. Preliminary results 
show a considerable difference between the formulations 
implemented. The results indicate that a complete relaxation 
of the exact formulation is a poor linear approximation and 
suggest that other approximations could be more helpful. The 
final results will include an evaluation of the performance of 
two more constraint formulations, a tighter linear 
approximation and a hard stop-the-station constraint used by 



TrønderEnergi today. The latter is an alternative approach 
since the actual constraint cannot be included in existing 
decision support tools. 
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