
M
odel-Based Exploration in Reinforcem

ent Learning
Jens Erik Kveen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Jens Erik Kveen

Sample Efficient Deep Reinforcement
Learning via Model-Ensemble-Based
Exploration

Master’s thesis in Cybernetics and Robotics
Supervisor: Prof. Jan Tommy Gravdahl
Co-supervisor: Akhil S. Anand
June 2022M

as
te

r’s
 th

es
is

Jens Erik Kveen

Sample Efficient Deep Reinforcement
Learning via Model-Ensemble-Based
Exploration

Master’s thesis in Cybernetics and Robotics
Supervisor: Prof. Jan Tommy Gravdahl
Co-supervisor: Akhil S. Anand
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This master’s thesis is submitted as a part of the requirements for a master’s

degree at the Department of Engineering Cybernetics at the Norwegian

University of Science and Technology. The work presented in this thesis

has been carried out under the supervision of Prof. Jan Tommy Gravdahl

and PhD Candidate Akhil S. Anand at the Department of Engineering

Cybernetics, NTNU.

This master’s thesis is a continuation of a specialization project [1] con-

ducted during the autumn of 2021. As is customary, the specialization

project is not published. Therefore, some important background theory

from the project is restated fully in this report to provide the best reading

experience. The following sections are adapted from [1]:

• Part of chapter 2 (Specifically section 2.1)

• The subsection Learning Dynamics in 2.4.1

All implementations done during the project are based on open source

libraries or my own work. More specifically, the implementation of the

methods developed in this thesis is based on the implementation of similar

methods found in the mbrl-lib framework developed by Pineda et al. [2] at

Meta Research. During the master’s project, I have further extended this

framework with the methods developed in this thesis as well as the model

implemented in the preliminary project.

i

Acknowledgements

Firstly, I would like to thank my co-supervisor, PhD Candidate Akhil S.

Anand, for a thorough follow-up, fruitful discussions and valuable feedback

throughout the whole project. I would also like to thank my supervisor,

Professor Jan Tommy Gravdahl, for valuable insight and support.

Secondly, I would like to thank my fellow graduates. Without our numer-

ous lunch gatherings, coffee breaks and quizzes, this semester would not

have been as joyful as it has been.

Lastly, I would like to thankmy family for their encouragement and support

from start to finish. Without you, none of this would have been possible.

Jens Erik Kveen

Trondheim, June 2022

ii

Abstract

Model-based reinforcement learning is able to achieve much higher sample

efficiency than model-free methods, making them more suitable for practi-

cal applications. However, model-based methods lack the performance of

their model-free counterparts. This thesis contributes to filling this perfor-

mance gap with a model-based reinforcement learning method based on

targeted exploration by estimating model uncertainty. The performance of

model-based reinforcement learning methods relies on accurately learning

a model of the environment, which can be exploited during planning. How-

ever, current methods focus more on exploiting the model than focusing on

improving it. State of the art model-based reinforcement learning methods

tries to maximize the reward, focusing on exploiting what is already learnt.

However, exploration is a critical part of reinforcement learning, but most

model-based methods lack an explicit way of exploring the state space.

This thesis presents a model-based reinforcement learning method which

utilizes estimated model uncertainty with a deep network ensemble to

target exploration towards states where the model uncertainty is high. By

balancing exploration and exploitation, the algorithm aims to exploit the

model when uncertainty is low and explore when uncertainty is high. The

method is tested on several control benchmark tasks in the OpenAI gym

framework. Results show that through targeted exploration the algorithm

achieves lower model uncertainty on all benchmark tasks while maintain-

ing or improving the performance in terms of sample efficiency compared

to current model-based methods.

iii

iv

Sammendrag

Modellbasert forsterkende læring er i stand til å oppnå mye høyere prøve-

effektivitet enn modellfrie metoder, noe som gjør dem mer egnet for prak-

tiske anvendelser. Imidlertid mangler modellbaserte metoder ytelsen til

sine modellfrie motparter. Denne oppgaven bidrar til å fylle dette ytelses-

gapet med en modellbasert forsterkende læringsmetode basert på målrettet

utforskning ved å estimere modellusikkerhet. Ytelsen til modellbaserte

forsterkende læringsmetoder er avhengig av å lære en nøyaktig modell

av miljøets dynamikk, som kan utnyttes under planlegging. Nåværende

metoder fokuserer imidlertid mer på å utnytte modellen enn på å forbedre

den. Toppmoderne modellbaserte forsterkende læringsmetoder prøver

å maksimere belønningen, med fokus på å utnytte det som allerede er

lært. Utforskning er imidlertid en kritisk del av forsterkende læring, men

de fleste modellbaserte metoder mangler en eksplisitt måte å utforske til-

standsrommet på. Denne oppgaven presenterer en modellbasert forsterkn-

ingslæringsmetode som bruker estimert modellusikkerhet med et dypt

nettverksensemble for å målrette utforskning mot tilstnader hvor model-

lusikkerheten er høy. Ved å balansere utforsking og utnyttelse har algorit-

men som mål å utnytte modellen når usikkerheten er lav og utforske når

usikkerheten er høy. Metoden er testet på flere vanskelige oppgave i Ope-

nAI gym-rammeverket. Resultatene viser at gjennommålrettet utforskning

oppnår algoritmen lavere modellusikkerhet på alle benchmarkoppgaver

samtidig som ytelsen opprettholdes eller forbedres når det gjelder prøveef-

fektivitet sammenlignet med gjeldende modellbaserte metoder.

v

vi

Contents

List of Figures xi

List of Tables xv

List of Algorithms xvi

Acronyms xvii

1 Introduction 1

1.1 Contributions . 3

1.2 Outline . 4

2 Background 5

2.1 Neural Network Models . 6

2.1.1 Fully Connected Neural Networks 6

2.1.2 Probabilistic Neural Networks 8

2.1.3 Ensembles . 10

vii

2.2 Cross Entropy Method . 12

2.2.1 Standard CEM . 12

2.2.2 CEM for Trajectory Optimization 13

2.3 Reinforcement Learning 15

2.3.1 Markov Decision Processes 16

2.3.2 Policies and Value Functions 19

2.3.3 Optimal Policies 22

2.3.4 The Reinforcement Learning Problem 23

2.4 Model-Based Reinforcement Learning 25

2.4.1 Model Learning . 26

2.4.2 Model Utilization 29

2.4.3 PETS - Probabilistic Ensembles with Trajectory

Sampling . 33

2.5 Open AI gym . 37

2.5.1 Gym Environments 37

2.5.2 MuJoCo . 38

2.6 MBRL-Lib . 39

2.6.1 Replay Buffer . 39

2.6.2 Dynamics Models 39

2.6.3 Configuration . 40

viii

3 Developing an RL algorithm 43

3.1 Previous Work and Inspirations 44

3.2 The Exploration Algorithm 45

3.2.1 Uncertainty-Based Exploration 45

3.2.2 Balancing Exploration and Exploitation 47

3.2.3 Evaluating Model Uncertainty 49

3.2.4 Algorithm Summary 50

4 Implementation Details 53

4.1 Model Exploration Wrapper 54

4.2 Sampling Data for Uncertainty Estimation 56

4.3 Schematic Implementation Overview 58

4.4 Configurations . 59

4.5 Task Environments . 63

4.5.1 Cartpole . 63

4.5.2 Halfcheetah . 64

4.5.3 2D Walker . 65

4.5.4 7-DOF Reacher . 66

4.5.5 Summary . 68

5 Experimental Results 69

5.1 2D Walker . 70

5.2 Halfcheetah . 74

5.3 Reacher . 78

5.4 Cartpole . 82

ix

5.5 Model Transferability . 85

6 Discussion 89

6.1 Performance Effects of Exploration 90

6.1.1 Low Exploration Utilization 90

6.1.2 Higher Exploration Utilization 92

6.1.3 Model Uncertainty 95

6.2 Uncertainty Estimation and Exploration Weighting 98

6.2.1 Limitations of the Exploration Weighting 98

6.3 Model Generalizability . 100

7 Conclusion and Future Work 103

7.1 Conclusion . 104

7.2 Future Work . 106

Bibliography 107

x

List of Figures

2.1 Structure of a single node in an FCNN [23] 7

2.2 A random state of a chess game, green arrows highlights

some of the available actions 16

2.3 The interaction between an agent and the environment as

depicted in [5] . 24

2.4 Hybrid model-based / model-free learning, as depicted in

[11] . 30

2.5 Explicit model planning, as depicted in [11] 31

4.1 A high level schematic overview of the algorithm imple-

mentation. The stapled line of training indicates that it is

not happening at every timestep. The two-way arrows in-

dicate communications betweenMPC controller andmodel

wrapper environment when optimizing action sequences. . 59

4.2 Screenshot of the cartpole environment 63

4.3 Screenshot of the halfcheetah environment 64

4.4 Screenshot of the 2D walker environment. 65

xi

4.5 Screenshot of the reacher environment. The red ball corre-

sponds to the desired target position of the end effector . . 67

5.1 Algorithm performance on the 2D walker environment.

The plot shows mean of three different test with different

random seeds. Shaded area corresponds to the standard

deviation between each seed. 70

5.2 Development of the weighting parameter Y through train-

ing on the walker environment. Random and policy refers

𝜋𝑢 being either random or following the exploitation policy

of the current model. 71

5.3 Development of model uncertainty during training. Un-

certainty is evaluated on random state data using model

checkpoints every 10 000 training steps. 72

5.4 Mean agent performance after 50, 100, 150 and 200k train-

ing steps on the 2D walker task. The performance is eval-

uated without utilizing exploration, similar to policy used

in PETS . 73

5.5 Algorithm performance on the halfcheetah environment.

The plot shows mean of three different test with different

random seeds. Shaded area corresponds to the standard

deviation between each seed. 74

5.6 Development of the weighting parameter Y through train-

ing on the halfcheetah environment. Random and policy

refers 𝜋𝑢 being either random or following the exploitation

policy of the current model. 75

xii

5.7 Development of model uncertainty during training. Un-

certainty is evaluated on random state data using model

checkpoints every 10 000 training steps. The first uncer-

tainty estimate is removed to better visualize the later

development. 76

5.8 Mean agent performance after 50, 100, 150 and 200k train-

ing steps on the halfcheetah task. The performance is

evaluated without utilizing exploration, similar to policy

used in PETS . 77

5.9 Algorithm performance on the 3D reacher environment.

The plot shows the mean of three different tests with dif-

ferent random seeds. The shaded area corresponds to the

standard deviation between each seed. The initial reward

for the two exploration agents is about -900 and -600 for

random and policy, respectively. 78

5.10 Development of the weighting parameter Y through train-

ing on the 3D reacher environment. Random and policy

refers 𝜋𝑢 being either random or following the exploitation

policy of the current model. 79

5.11 Development of model uncertainty during training on the

reacher environment. Uncertainty is evaluated on random

state data using model checkpoints every 600 training steps. 80

xiii

5.12 Mean agent performance after 1800, 4200, 9000 and 15000

training steps on the 7-DOF reacher task. The performance

is evaluated without utilizing exploration, similar to policy

used in PETS . 81

5.13 Algorithm performance on the cartpole environment. The

plot shows mean of three different test with different ran-

dom seeds. Shaded area corresponds to the standard devi-

ation between each seed. 82

5.14 Development of the weighting parameter Y through train-

ing on the cartpole environment. Random and policy refers

𝜋𝑢 being either random or following the exploitation policy

of the current model. 83

5.15 Development of model uncertainty throughout training

on cartpole environment. 84

5.16 Mean agent performance after 3000 training steps. The

performance is evaluated without exploration, similar to

the policy used in PETS . 84

5.17 Mean performance of three trials on the halfcheetah en-

vironment, where agents aim to track a desired velocity

opposed to running as fast as possible. 86

5.18 Mean performance of 10 trials in the walker environment,

where agents aim to walk backwards instead of forwards. . 87

xiv

List of Tables

4.1 Space dimensions and task horizon for each gym environment 68

4.2 Reward and termination functions for each gym environ-

ment. 𝑥𝑡 and 𝑧𝑡 corresponds to horizontal and vertical

Cartesian position respectively. For the reacher; 𝑔 and 𝑒𝑒𝑡

are the goal and end effector positions. 68

xv

List of Algorithms

2.1 Cross Entropy Method [3] 13

2.2 CEM for Trajectory Optimization 14

2.3 PETS [4] . 36

3.1 The Exploration Algorithm 51

xvi

Acronyms

CEM Cross-Entropy Method. viii, xvi, 12–14, 32, 33, 35, 46, 50, 51, 54, 58

DOF Degrees of Freedom. 63, 66

FCNN Fully Connected Neural Network. xi, 6, 7

GP Gaussian Processes. 27, 31

MBRL Model-Based Reinforcement Learning. 25, 27, 29, 32, 33, 39–41, 43,

106

MDP Markov Decision Process. 15, 16, 18–20, 23, 25, 37

MPC Model Predictive Control. xi, 13, 31–33, 35, 45, 50, 56, 59, 69

MSE Mean Square Error. 8, 9

NN Neural Network. 6, 8, 10, 11

xvii

PETS Probabilistic Ensembles with Trajectory Sampling. xii–xiv, xvi, 2,

3, 25, 31–36, 40, 44–46, 50, 54, 61, 69–82, 84–86, 90–96, 99–102, 104,

105

PILCO Probabilistic Inference for Learning COntrol. 27, 31

PNN Probabilistic Neural Network. 8, 9, 27, 34

RL Reinforcement Learning. 15, 19, 21, 23–26, 29, 30, 32, 33, 37, 38, 44, 47,

106

TS Trajectory Sampling. 34–36, 40, 50, 51

xviii

Chapter 1

Introduction

Learning from interacting with our surroundings is arguably the most

natural and intuitive way of learning. The way humans and animals learn

from experience is the fundamental idea behind reinforcement learning,

which is the branch of machine learning focusing on learning behaviour

through interactions with the environment[5]. Reinforcement learning has

shown promising results in solving a number of tasks, including beating

the best human players in a variety of games[6, 7, 8] as well as learning

automatic control of physical systems[9, 10]. However, reinforcement

learning methods often require an impractically large amount of interac-

tions with the environment in order to perform well, often limiting their

applicability outside of simulated systems. Therefore, recent research has

focused on sample efficiency and model-based reinforcement learning[11].

1

2 CHAPTER 1. INTRODUCTION

Model-based reinforcement learning methods build a model of the environ-

ment dynamics parallel to learning behaviour. By utilizing this learnt in-

formation in combination with policy updates, the number of environment

interactions can be reduced substantially[12]. However, the performance

of model-based methods is highly dependent on the accuracy of the learnt

model. Therefore they often tend to converge to a lower performance

than their model-free counterparts. With the advancements in deep su-

pervised learning, model-based methods have recently adapted the use

of deep neural networks to model dynamics [13]. Replacing the previous

standard of Gaussian processes[14], the expressiveness of neural networks

has advanced the performance of model-based methods to be comparable

to model-free methods with substantially higher sample efficiency [4, 15].

Current research in model-based methods focuses on both learning the

model [16] and utilizing the learnt model. Learned dynamics models can be

used to improve existing model-free methods by speeding up the learning

of value functions[17] or combining model-free and model-based data

to perform policy updates[15, 18]. However, the currently considered

state-of-the-art method PETS utilizes the learnt dynamics for planning

by incorporating uncertainty aware neural network ensembles and state

propagation [4]. Moreover, by utilizing stochastic network models PETS

achieves performance comparable to the model-free methods like Soft

Actor Critic[19] in orders of magnitude fewer environment samples[4].

When simultaneously learning both a dynamics model and a policy, the

importance of exploration only increases, as performance is heavily reliant

1.1. CONTRIBUTIONS 3

on the model’s accuracy. Exploration has seen much research in model-

free methods[20]; however, current model-based methods lack an explicit

way of exploration. Although Chua et al. [4] achieves high performance

with PETS, this can be further improved with the use of exploration. This

thesis presents a model-based algorithm based on PETS, which utilizes the

probabilistic ensemble model’s ability to estimate uncertainty to target

exploration. Resulting in reduced model uncertainty and increased sample

efficiency in several challenging benchmark tasks.

1.1 Contributions

This thesis aims to explore further the potential of uncertainty aware

models in model-based reinforcement learning. By using the PETS algo-

rithm as a baseline, an algorithm utilizing the model ensemble’s ability to

estimate epistemic uncertainty for exploration is developed and assessed

in several benchmark tasks. The thesis’ main contributions to the field of

model-based reinforcement learning are as follows:

• Literature review

• The developed algorithm implemented in the existing mbrl frame-

work

• Analysis of the algorithm’s performance on several control bench-

marks

4 CHAPTER 1. INTRODUCTION

1.2 Outline

The report is organized into seven chapters, with this being the first one

serving as an introduction to the thesis. The following chapter 2 provides

the thesis’ theoretical background in deep model-based reinforcement

learning. Then the developed algorithm is presented in detail in chapter 3,

followed by details regarding the implementation of the algorithm and test

environments in chapter 4. The experimental results of the implemented

algorithm are presented in chapter 5. Lastly, the results are discussed in

chapter 6, ending with a conclusion and future directions in chapter 7.

Chapter 2

Background

In this chapter, the theoretical background for the thesis is presented. The

chapter is divided into six sections. The first two sections present some

preliminary theory about neural networks and the cross entropy method

for optimization. Then the focus shifts to reinforcement learning. Firstly,

reinforcement learning is introduced and formalized as Markov decision

processes, and the concept of policies is introduced, followed by a section

presenting concepts and methods in model-based reinforcement learning.

Finally, the last two sections present important software frameworks in

reinforcement learning that are used later in the thesis.

5

6 CHAPTER 2. BACKGROUND

2.1 Neural Network Models

Neural Networks (NN) are efficient and universal function approxima-

tors[21]. There exist several different structures of NNs that are used

for different purposes, for instance, convolutional networks[22], which

are used in image classification and similar tasks. However, this section

presents neural network structures often used in modelling dynamics.

2.1.1 Fully Connected Neural Networks

An FCNN consists of layers of nodes or neurons where each node is

connected to every node in the following layer. When an input is passed

to a node, the signal is fed through a set of weights and a bias. In order

for the network to approximate non-linear functions the output of a node

is passed through a nonlinear activation function. This whole process is

depicted in figure 2.1.

The output of each node is then passed as input to every node in the

following layer. Mathematically, the process from input 𝒙 to output 𝒚 in a

complete network with 𝑛 layers can be summarized by

2.1. NEURAL NETWORK MODELS 7

Figure 2.1: Structure of a single node in an FCNN [23]

𝒍0 = 𝒙 (2.1a)

𝒍𝑖 = 𝜑𝑖 (𝑾𝑖 𝒍𝑖−1 + 𝒃𝑖) , 𝑖 ∈ {1, . . . , 𝑛} (2.1b)

𝒚 = 𝒍𝑛 (2.1c)

Where𝑾𝑖 , 𝒃𝑖 and 𝜑𝑖 corresponds to the weights, bias’ and activation func-

tion of the 𝑖-th layer, 𝒍𝑖 , respectively. For simplicity, the learnable parame-

ters of a given NN will be denoted by \ ; in this case, \ corresponds to𝑾

and 𝒃 .

The network learns by minimizing a cost function, often referred to as

the objective function or loss function. This cost function is based on the

8 CHAPTER 2. BACKGROUND

error of the model’s predictions. Therefore, a common choice is the mean

square error (MSE)

MSE =
1

𝑁

𝑁∑︁
𝑛=1

(𝒚𝑖 − �̂�𝑖)2 =
1

𝑁

𝑁∑︁
𝑛=1

(𝒚𝑖 − NN\ (𝒙𝑖))2 (2.2)

To train the network, the learnable parameters \ are updated through back-

propagation[24]. Backpropagation takes advantage of the differentiability

of the loss function to compute the gradients with respect to network pa-

rameters efficiently. These gradients are then used to optimize the network

parameters through some optimization method, like stochastic gradient

descent[24].

2.1.2 Probabilistic Neural Networks

A probabilistic neural network (PNN) is a particular case of the determin-

istic NN presented in section 2.1.1. The difference lies in the network

output. Where deterministic NNs output the prediction directly, PNNs

instead output a parametrized probability distribution of the prediction.

For example, consider a Gaussian distribution; the PNN model would, in

this case, output a vector of means and corresponding variances. The final

prediction is then drawn from the corresponding Gaussian distribution.

Following the same structure as equation 2.1, the PNN forward pass can

be summarized by

2.1. NEURAL NETWORK MODELS 9

[𝝁, 𝚺] = PNN\ (𝒙) (2.3a)

𝒚 ∼ N(𝝁, 𝚺) (2.3b)

Since the output of a PNN is not a direct prediction, a loss function such

as MSE is not applicable, as there is not necessarily a direct comparison

between the distribution parameters and the final prediction. Instead, as

discussed in [4], one can use the negative log prediction as a loss function:

loss = −
𝑁∑︁
𝑛=1

log PNN\ (𝒙𝑛) = −
𝑁∑︁
𝑛=1

log Pr(𝒚𝑛 |𝒙𝑛) (2.4)

Continuing with the Gaussian example from before, this equates to:

loss = −
𝑁∑︁
𝑛=1

(𝒚𝑛 − 𝝁𝑛)𝚺−1𝑛 (𝒚𝑛 − 𝝁𝑛) + log det(𝚺𝑛) (2.5)

By outputting a probability distribution rather than direct predictions,

PNNs are able to capture aleatoric uncertainty in the data. Knowing the

uncertainty of a model prediction can be beneficial as it an estimate the

model’s precision. In addition, estimating of the aleatoric uncertainty can

help uncover unknown uncertainties in the training data.

10 CHAPTER 2. BACKGROUND

2.1.3 Ensembles

Model ensembling is a method used to reduce epistemic uncertainty in

model predictions. A model ensemble is a collection of different NNmodels

which are trained in parallel with one another on the same training data.

Due to variations in parameter initialization or stochastic elements of the

training, each model in the ensemble learns to adapt to the given data in

slightly different ways. This results in a set of similar yet different models

that fit the same data. By combining predictions from multiple models,

an ensemble is able to reduce model uncertainty compared to a single

network.

As an example, consider an ensemble of models {𝑓𝑖 (𝑥)}𝑛𝑖=1, that outputs a
prediction as the mean of all member model outputs. Assume model 𝑓𝑖 has

a prediction error given by 𝑒𝑖 on some data sample, and let the variance

and covariance of these errors be given by E[𝑒2𝑖] = 𝑣 and E[𝑒𝑖𝑒 𝑗] = 𝑐 . The
total expected square error of the ensemble is then given by:

E

(
1

𝑛

𝑛∑︁
𝑖=1

𝑒𝑖

)
2 =

1

𝑛
𝑣 + 𝑛 − 1

𝑛
𝑐 =

1

𝑛
(𝑣 − 𝑐) + 𝑐 ≤ 𝑣 (2.6)

In the worst case, all member models are perfectly correlated (𝑐 = 𝑣). Thus

the ensemble is no better than just a single model. However, when this is

not the case, the resulting uncertainty of the ensemble prediction is lower

than each member model’s uncertainty.

2.1. NEURAL NETWORK MODELS 11

Utilizing ensembles of models instead of single NN models can therefore

help to reduce model uncertainty. Furthermore, it can also be an excel-

lent way to quantify model uncertainty, providing reasonable uncertainty

estimates through model variance [25].

12 CHAPTER 2. BACKGROUND

2.2 Cross Entropy Method

The cross-entropy method (CEM) is a derivative-free, sampling-based

optimization method [26]. Due to its versatility and ability to solve difficult

optimization problems, it offers a more sophisticated way of planning over

an uncertain dynamics model compared to random shooting methods [4]

[27].

2.2.1 Standard CEM

The goal of CEM, as all optimization methods, is to minimize a given

objective function 𝑓 (𝑥) by finding the optimal value of 𝑥 = 𝑥∗. In CEM,

a number of individual points are sampled from an initial distribution or

population and evaluated on 𝑓 . The samples are then sorted based on their

cost, and a set number of the best samples called an elite-set is selected.

The population parameters are then updated based on the elite set, and

a new set of samples is drawn. After a some number of iterations, an

estimate of the optimal point 𝑥∗ is found as the best sample of the current

elite set. Pseudocode for the plain CEM optimization, using a Gaussian

distribution as population, is described in algorithm 2.1.

2.2. CROSS ENTROPY METHOD 13

Algorithm 2.1: Cross Entropy Method [3]

input :𝑁 : Number of Samples, 𝐾 : Size of elite-set, 𝐶𝐸𝑀𝑖𝑡𝑒𝑟𝑠 :

Number of iterations, 𝑓 : cost function

output :𝑥∗: Optimal solution

1 Initialize `, 𝜎 ;

2 for 𝑖 ← 0 to 𝐶𝐸𝑀𝑖𝑡𝑒𝑟𝑠 do
3 samples← 𝑁 samples from N(`, 𝜎);
4 cost← 𝑓 (𝑥) for 𝑥 in particles;

5 elite-set← The 𝐾 best particles based on cost;

6 `, 𝜎 ← fit Gaussian distribution to elite-set;

7 end
8 return the best sample from the elite set

2.2.2 CEM for Trajectory Optimization

Utilizing CEM for planning is often done when other derivative-based

optimization methods are unavailable due to a non-differentiable objective

function. This is done by incorporating the CEM in algorithm 2.1 in an

MPC framework. Instead of finding an optimal single value 𝑥∗, CEM is

used to find an optimal sequence of actions 𝑎∗, which minimizes the cost

of the resulting trajectory.

A common modification to the CEM in algorithm 2.1, when used in plan-

ning, is to use mean and standard deviations from the last timestep as

initial distribution parameters for optimization in the next timestep[4, 28].

This modification is based on the intuition that the optimal action sequence

is somewhat similar to the previous actions, thus reducing the number of

14 CHAPTER 2. BACKGROUND

iterations by searching close to the optimum. Pseudocode for the modified

CEM for trajectory optimization is given in algorithm 2.2

Algorithm 2.2: CEM for Trajectory Optimization

input :𝑁 : Number of Samples, 𝐾 : Size of elite-set, ℎ: planning

horizon, 𝐶𝐸𝑀𝑖𝑡𝑒𝑟𝑠 : Number of iterations, 𝑓 : cost function

1 Initialize `0, 𝜎0;

2 for 𝑡 ← 1 to 𝑇 do
3 `𝑡 ← `𝑡−1;
4 𝜎𝑡 ← 𝜎𝑡−1;
5 for 𝑖 ← 0 to 𝐶𝐸𝑀𝑖𝑡𝑒𝑟𝑠 do
6 particles← 𝑁 samples from N(`𝑡 , 𝜎𝑡);
7 cost← 𝑓 (𝑥) for 𝑥 in particles;

8 elite-set← The 𝐾 best particle based on cost;

9 `𝑡 , 𝜎𝑡 ← fit Gaussian distribution to elite-set;

10 end
11 Execute the first action of the mean elite sequence;

12 end

2.3. REINFORCEMENT LEARNING 15

2.3 Reinforcement Learning

Reinforcement Learning (RL) is one of the three main branches of ma-

chine learning, the other two being supervised and unsupervised learning.

Where the two latter often handle tasks like classification or regression,

RL is used to learn behaviour. An RL algorithm learns how to behave in

an environment based on the received reward. Simply put, if the agent

receives a positive or high reward, it is more likely to perform similar

actions in the future and less prone to perform actions that yield negative

or low reward.

RL algorithms try to mimic how a human or animal would learn. Through

trial and error, it explores the state space of an environment and acts based

on experience. Very similar to how one would train a dog, for example.

Give it a treat when it behaves nicely, and it will learn to act similarly

because it knows that the consequence is a rewarded treat. The dog in this

example can be considered an RL agent. A trained agent is the result of an

RL algorithm, comparable to a trained neural network in a classification

task, for instance.

This section presents the mathematical preliminaries of RL and finally

combines them to define the problem RL aims to solve. These preliminaries

include defining Markov Decision Processes (MDP), policies and value

functions, including what it means for a policy to be optimal.

16 CHAPTER 2. BACKGROUND

2.3.1 Markov Decision Processes

A Markov decision process (MDP) is a mathematical structure or frame-

work to describe interaction with an environment or sequential decision

making. An MDP consists of states, actions, a transition function and a

reward function. A formal definition of an MDP is given at the end of this

subsection.

States

Figure 2.2: A random state of a chess

game, green arrows highlights some

of the available actions

The possible states of an MDP is de-

noted by S = {𝑠0, 𝑠, . . . , 𝑠𝑛}, where
each 𝑠 ∈ S uniquely describes a

given instance of the environment.

As an example, consider a game

of chess. Each state must in this

case describe the position of all

the pieces on the board and which

pieces are left on the board. In total,

S then describes all possible con-

figurations of a chessboard.

2.3. REINFORCEMENT LEARNING 17

Actions

The set A = {𝑎0, 𝑎1, . . . , 𝑎𝑚} describes all the possible actions that can be

applied to the environment to change its state. In general not every action

is possible at every state, therefore all the possible actions in a given state 𝑠

is denoted byA(𝑠) ⊆ A. In the chess example,A(𝑠) corresponds to every
legal move at a given board state; an example of some of these actions is

shown in figure 2.2.

Transition Function

When applying an action 𝑎 ∈ A in a given state 𝑠 ∈ S, the resulting state

𝑠′ ∈ S is in generally given by a probability distribution. This probability

distribution is called the transition function or transition operator and is

defined as

T : S × A × S −→ [0, 1] (2.7)

(𝑠, 𝑎, 𝑠′) ↦−→ 𝑃 (𝑠′ | 𝑠, 𝑎) (2.8)

In a deterministic case, like the chess example, T simply defines what the

resulting state is by a probability of 1 for the resulting state and 0 for all

other states. However, not all systems are deterministic, thus in general T
must fulfill certain criteria to be a properly defined distribution over the

18 CHAPTER 2. BACKGROUND

possible states:

1. 0 ≤ T (𝑠, 𝑎, 𝑠′) ≤ 1, ∀ 𝑠, 𝑠′ ∈ S, 𝑎 ∈ A
2. T (𝑠, 𝑎, 𝑠′) = 0, ∀ 𝑠, 𝑠′ ∈ S, 𝑎 ∈ A \ A(𝑠)
3.

∑
𝑠 ′∈S T (𝑠, 𝑎, 𝑠′) = 1, ∀ 𝑠 ∈ S, 𝑎 ∈ A

In practice, one often says that T defines the dynamics of an MDP system

and is therefore sometimes referred to as a dynamics function.

Reward Function

Each action applied in an MDP system results in a state 𝑠′ given by T ,
but also a scalar reward 𝑟 . This reward describes the quality of a given

transistion, and the reward function is defined as:

R : S × A × S −→ R (2.9)

(𝑠, 𝑎, 𝑠′) ↦−→ R(𝑠, 𝑎, 𝑠′) (2.10)

This reward function is what defines good and bad actions in an MDP. In

some cases, as the chess example, the reward can be as simple as +1 for
a winning move, −1 for a losing move, and 0 for every other transition.

However, complexity varies greatly depending on the problem.

2.3. REINFORCEMENT LEARNING 19

MDP Definition

Combining these four components discussed so far gives the formal defi-

nition of a Markov decision process:

Definition: A Markov decision process (MDP) is a tuple {S,A,T ,R}.
Where S and A are the sets of states and actions, called state space and

action space, T is the transition operator and R is the reward function.

In addition, the transition operator must be Markovian, which means that

for each state-action pair (𝑠𝑡 , 𝑎𝑡) the resulting transition is independent of

all previous transitions:

𝑃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, . . .) = 𝑃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡) = T (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) (2.11)

2.3.2 Policies and Value Functions

Two key concepts of RL are policies and policy evaluation. When an agent

learns from interacting with an environment to maximize reward, it is said

to learn a policy. The quality of a given policy can be determined through

policy evaluation with a value function.

20 CHAPTER 2. BACKGROUND

Policy

A policy is a function that determines which action to execute in a given

state. For explanation purposes consider a deterministic policy, which is a

function 𝜋 : S −→ A, such that 𝜋 (𝑠) = 𝑎 ∈ A(𝑠).

Through the use of a policy 𝜋 an MDP can be controlled by cyclically

applying the following steps from a given initial state 𝑠0:

1. Pick an action based on the policy; 𝑎𝑡 = 𝜋 (𝑠𝑡)
2. Apply action in MDP system. Through the underlying transition

operator and reward function, the system will give a next state 𝑠𝑡+1

and a reward 𝑟𝑡

3. Repeat with state 𝑠𝑡 = 𝑠𝑡+1

Given an initial state 𝑠0, this results in a series of triples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡) which
describes a trajectory in the MDP system.

A policy is not necessarily deterministic and instead describes a probability

distribution over possible actions given the current state. To distinguish

between the deterministic and stochastic case, a stochastic policy is often

denoted as 𝜋 (𝑎 | 𝑠) and equals the probability of choosing action 𝑎 given

the state 𝑠 .

2.3. REINFORCEMENT LEARNING 21

Value Function

In RL, the goal of an agent is not necessarily the reward gained only from

a single step but rather the cumulative reward gained over a specific time

horizon or period. In order to easily discuss this, the expected return from

time 𝑡 over a horizon 𝑇 is defined as

𝐺𝑡 =

𝑇∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (2.12)

where 𝛾 ∈ [0, 1] is known as the discount factor. A discount factor 𝛾 < 1

implies that immediate reward is more favorable than reward received

further into the future. In the extreme case of 𝛾 = 0, the agent only cares

about the immediate reward and dismiss any potential future reward.

Using equation 2.12, the value function of a state 𝑠 under a policy 𝜋 , denoted
by𝑉𝜋 (𝑠), is defined as the expected return starting in state 𝑠 and following

action decided by 𝜋 as described in 2.3.2. Formally, 𝑉𝜋 (𝑠) is defined as:

𝑉𝜋 (𝑠) = E [𝐺𝑡 | 𝑆𝑡 = 𝑠] = E
[
𝑇∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 | 𝑆𝑡 = 𝑠
]

(2.13)

Similarly, the Q-value defines a value to a state action pair under a given

policy:

22 CHAPTER 2. BACKGROUND

𝑄𝜋 (𝑠, 𝑎) = E [𝐺𝑡 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = E
[
𝑇∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
]
(2.14)

These value functions present a way of comparing policies to one another

and consequently can be used to define an optimal policy.

2.3.3 Optimal Policies

With the definition of policies and value functions, the meaning of an

optimal policy can be defined. One says that a policy 𝜋 is optimal if every

other policy 𝜋 ′ has a lower value in any given state. The optimal policy is

often denoted by 𝜋∗. Formally this is summarized by

𝑉𝜋∗ (𝑠) > 𝑉𝜋 (𝑠), ∀𝑠 ∈ S (2.15)

Similarly, one can use an optimal policy to define the corresponding opti-

mal Q-value and value function:

2.3. REINFORCEMENT LEARNING 23

𝑉 ∗ = max

𝜋
𝑉𝜋 (𝑠) (2.16)

𝑄∗ = max

𝜋
𝑄𝜋 (𝑠, 𝑎) (2.17)

Knowing either the optimal policy or the optimal value function is equiv-

alent. For example, with an optimal value function, one can act greedily

with respect to the values to achieve the highest possible reward, resulting

in an optimal policy. Similarly, the optimal value of a state 𝑠 can be found

by following an optimal policy, starting in 𝑠 .

2.3.4 The Reinforcement Learning Problem

The different concepts described previously in this section define the

problem RL is aiming to solve. In RL, the problem is defined as an MDP,

where the goal is to find a solution in the form of an optimal policy 𝜋∗.

Usually, this is done either by learning an optimal value or Q-function or

directly by learning a parameterized policy.

What is shared between all RL methods, however, is the interaction loop

between the agent and the environment depicted in figure 2.3. Most

RL methods assume to know nothing about the environment and must

therefore interact with it to learn. Often starting with random actions,

the agent receives information about the resulting state of its actions and

24 CHAPTER 2. BACKGROUND

Figure 2.3: The interaction between an agent and the environment as

depicted in [5]

receives a reward for said action. By learning from experience, the agent

slowly understands how to act to get the highest reward possible.

While the dynamics of an RL problem, meaning the transition function, is

usually given by the environment, as well as all possible states and actions.

The reward function, however, must often be defined. Generally, an RL

agent is trained to solve a specific task in a given environment. Therefore,

the reward function must reflect the goal of the given task, and is in many

ways what explicitly defines the agent’s goal.

2.4. MODEL-BASED REINFORCEMENT LEARNING 25

2.4 Model-Based Reinforcement Learning

Reinforcement learning methods can be roughly divided into two main

categories; model-based RL (MBRL) and model-free RL.

Model-based methods either use a known model, ie. the transition and

reward function of the MDP system, or they learn a model by sampling

transitions in the environment. By utilizing this learnt model, model-based

methods learn an optimal policy through some iterative process, often

alternating between model and policy updates.

On the other hand, model-free methods ignore the model and aim to learn

a policy directly, and the MDP system is viewed as a black box responding

to actions. Model-free methods gather state action pairs by exploring the

environment and use the gathered information to learn an optimal policy,

either directly or through learning Q-values or a value function.

Since the focus of this thesis is on model-based RL, this section focuses on

concepts and methods within MBRL. The first two parts present methods

for model learning and utilization, and the last part presents details about

the state of the art MBRL algorithm PETS.

26 CHAPTER 2. BACKGROUND

2.4.1 Model Learning

The foundation of any model-based RL method includes some way of

representing the model of the environment. In most cases, the model is

unknown and must be learned from collected data. There are several ways

of representing the dynamics model, and the choice of representation often

depends on the problem’s complexity.

Model Representation

If the model is known, the representation is often intuitive. For example,

this can be in the form of a differential equation describing the system

dynamics or a set of rules defining a board game. Therefore the focus is

on learnable model representations.

In the simplest case, the environment consists of a finite set of states,

making it possible to iteratively visit every state and try every action to

see what happens. Furthermore, due to the finite state and action space,

one can learn a tabular representation of the model and simply look up

the resulting state of an action. However, this approach is not practical

when the state space becomes too large. It would take an unreasonably

long time to visit every state and action, leading to the necessity of more

efficient model representations.

In general, it is necessary to learn a model representation able to infer

2.4. MODEL-BASED REINFORCEMENT LEARNING 27

from data it has not seen before, especially in the continuous case where

it is impossible to visit every state. The two most common options are

Gaussian Processes (GP) and Neural Network models.

Gaussian processes are highly sample efficient and can learn accurate

models with very few data points [29]. In addition, GPs can accurately

predict model uncertainty which can be incorporated into planning. By

utilizing the analytic nature of GPs methods like PILCO [14] achieves

state of the art performance on low dimensional problems. Due to their

high sample efficiency GPs has typically been the model of choice in

many MBRL methods [14][30]. However, due to the so-called curse of

dimensionality [31], both the sample efficiency and accuracy of GP models

suffer in high dimensional and more complex problems. To overcome this

dimensionality issue, more recent methods replace GP with expressive

neural networks in order to solve more complex tasks.

Neural networks are, as discussed in section 2.1, in theory, universal func-

tion approximators which can efficiently handle the high number of dimen-

sions where GP models fall short. Additionally, they are highly expressive

and can therefore fit more complex dynamics than a GP model. However,

they can easily suffer from overfitting, especially in a low data regime.

Modelling methods like uncertainty aware ensembles are therefore often

used as a method to maintain and reduce uncertainty and stabilize training

[18]. Furthermore, uncertainty aware network models, such as PNNs, are

also able to capture model uncertainty, which can be incorporated into

planning to help learn faster [4].

28 CHAPTER 2. BACKGROUND

Learning Dynamics

With a way of representing the dynamics model, there is still the choice of

what this model represents. In some way, it must describe transitions by

predicting the resulting state (and potentially reward) given a state-action

pair as input.

The simplest and most intuitive way is for the model to output a state

prediction directly, ie. 𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑎𝑡), where 𝑓 is some learnt dynamics

function. This function can be hard to learn when 𝑠𝑡+1 and 𝑠𝑡 are too similar,

and the action taken seems to have little effect on the state, as discussed

by Nagabandi et al. [32]. Although direct state predictions are sufficient in

discrete cases like board games, they might be hard to learn when dealing

with continuous state dynamics.

To solve this issue, the standard way of learning continuous state dynamics

is instead to predict the change in state, ie. 𝑠𝑡+1 = 𝑠𝑡 + 𝑓 (𝑠𝑡 , 𝑎𝑡). This

method also makes the most intuitive sense in a continuous setting, as the

underlying dynamics are, although unknown, usually described by some

differential equation ¤𝑠 = 𝑔(𝑠, 𝑎). When learning to predict state change, the

model resembles this type of differential equation more closely compared

to direct state predictions.

2.4. MODEL-BASED REINFORCEMENT LEARNING 29

2.4.2 Model Utilization

The utilization of a dynamics model is the key to MBRLs high sample

efficiency compared to model-free methods. Whilst learning the model

itself, up to model representation, is usually quite similar betweenmethods,

it is how one utilizes the model that separates MBRL methods. There are

many methods out there utilizing the model in different ways. However,

this section will focus on two separate groups; ones that use the model to

learn a separate policy and methods that explicitly plans over the model

to choose actions.

Learning Explicit Policies

Inspired by model-free methods, one can learn a parameterized policy or

value function to decide actions. In model-free RL this is done by sampling

the environment. However, a benefit of having a dynamics model available

is that one can use the learnt dynamics to update the policy instead of

sampling from the environment, thus increasing sample efficiency over

model-free methods.

If the dynamics are known, one can learn a policy completely without

sampling the environment, which is often the case in games like Go or

chess. Methods like AlphaZero, for example, managed to beat the best hu-

man players in various games only through self-play, without any external

interaction [8]. Unfortunately, although recent studies have been able to

30 CHAPTER 2. BACKGROUND

apply the concept of self-play to practical tasks like video compression[33],

it is not as directly applicable to control problems with uncertain dynamics.

In cases where one has to learn the dynamics as well as a policy, certain

methods seek inspiration from model-free RL. One can utilize the learnt

dynamics to sample trajectories to optimize the policy. These methods

are often referred to as hybrid model-based/model-free [11] or Dyna-style

algorithms[27]. These types of algorithms are able to improve upon the

sample efficiency of state of the art model-free methods by combining

model-based and model-free policy updates, as depicted in figure 2.4. This

idea allows them to learn a policy by generating transition data using the

learnt model, allowing the agent to train on "environment data" without

sampling the environment.

Figure 2.4: Hybrid model-based / model-free learning, as depicted in [11]

The original Dyna algorithm was introduced back in 1991 by Sutton [12].

However, with the increased use of accurate deep network models, meth-

ods like model-based policy optimization (MBPO)[15] achieves both high

performance by utilizing the benefits of model-free policy updates and

high sample efficiency by utilizing a learnt model.

2.4. MODEL-BASED REINFORCEMENT LEARNING 31

Explicit Planning Over Dynamics Model

In contrast to methods like MBPO, which samples the model to train a

policy, algorithms like PILCO [14], and PETS[4] focus on learning the

model and explicitly using this to plan actions. Figure 2.5 shows the

interaction between the model and environment in this type of algorithm;

notice the missing arrow compared to figure 2.4. In methods like PILCO,

one utilizes the analytical gradients of the GP model to optimize actions.

However, with more complex tasks where GPs are not sufficient as a

model, the most common method is using some version of MPC, which

is discussed in detail in section 2.4.2. These MPC-based methods have

become more popular and better performing with the use of expressive

neural networks as dynamics models.

Figure 2.5: Explicit model planning, as depicted in [11]

Methods that utilize MPC are often referred to as shooting methods [27].

They solve the optimization problem by generating a set of action se-

quences which are then evaluated using the dynamics model and a reward

function. Random shooting methods are the simplest form of this; however,

32 CHAPTER 2. BACKGROUND

more sophisticated ways to optimize action sequences like CEM (discussed

in section 2.2) often result in more optimal solutions and consequently

better performance.

The state-of-the-art method PETS utilizes MPC with CEM in order to

achieve performance comparable to the best model-free methods. However,

methods using random shooting, like Model-Based Model-Free [32], have

also shown good results in certain benchmark tasks[27].

MPC in RL

Model-predictive control (MPC) is a method for controlling dynamical

systems through planning and optimization and is the go-to planning

framework for the best planning based MBRL algoirthms[27]. By predict-

ing system behaviour through a dynamics model, MPC solves an online

optimization problem at every timestep in order to estimate the optimal

control inputs. In order to do this, MPC needs an objective function to

evaluate the quality of its inputs. In the context of classical control, the

optimal actions are typically the ones that minimize the state deviation

from a reference signal; however, when utilizing MPC in RL the objective

is instead to maximize the expected return (equation 2.12).

Standard methods for MPC plans actions for a given horizon, which is the

length of the planned trajectory in terms of time, and then execute the first

input in the action sequence before re-planning again. This re-planning is

crucial for MPCs performance, as the estimated dynamics model is usually

2.4. MODEL-BASED REINFORCEMENT LEARNING 33

not perfectly accurate, especially in a MBRL setting where the dynamics

are learnt through training.

In a classical control setting, the optimization problem is often solved

with classic optimization methods involving the derivative of the objective

function. However, in RL the cost function is represented by expected

return (2.12) over a finite horizon, which does not necessarily have readily

available derivatives. Therefore, most methods often rely on derivative-

free optimization methods like CEM to solve the planning problem.

2.4.3 PETS - Probabilistic Ensembles with Trajectory
Sampling

Chua et. al significantly reduced the performance gap between model-

free and model-based methods with PETS [4]. Through ensembles of

probabilistic neural networks and MPC, PETS is able to achieve perfor-

mance comparable to the best model-free methods at convergence with

significantly fewer samples. As a result, PETS is currently considered the

state of the art method in MBRL, achieving the highest or close to highest

performance on several benchmarking tasks [27].

The algorithm consists of two main parts; the ensemble model and trajec-

tory sampling state propagation.

34 CHAPTER 2. BACKGROUND

Probabilistic ensemble model

The model used in the PETS algorithm is an ensemble of PNNs parametriz-

ing a Gaussian distribution, as described in section 2.1.2. By inducing a

distribution over the state transitions rather than using deterministic pre-

diction models, the planning agent is able to account for model uncertainty

in the low data regime, improving the data efficiency of the learning [4].

Utilizing an ensemble of bootstrapmodels provides a simple and reasonable

way to capture epistemic uncertainty. Furthermore, through the use of their

proposed propagation method, PETS incorporates this model uncertainty

into the planning, achieving high performance despite present modelling

errors.

Trajectory Sampling

In addition to uncertainty aware dynamics models, Chua et al. [4] intro-

duced a state propagation method called Trajectory Sampling (TS).

TS is a particle based sampling method. Initially it starts by creating 𝑃

number of particles from a given initial state 𝑠0. The 𝑝-th particle at time

𝑡 is denoted by 𝑠
𝑝

𝑡 , thus initially 𝑠
𝑝

0
= 𝑠0∀𝑝 . Given some way of choosing

action 𝑎𝑡 , each particle is propagated through the dynamics model
˜𝑓 , by

sampling 𝑠
𝑝

𝑡+1 ∼ ˜𝑓𝑏 (𝑠𝑝𝑡 , 𝑎𝑡). Where 𝑏 ∈ {1, . . . , 𝐵} denotes which model

in the ensemble to use for propagation. Chua et al. [4] considered two

2.4. MODEL-BASED REINFORCEMENT LEARNING 35

versions of TS, one where the the index 𝑏 remains constant during a trial,

essentially considering 𝐵 different dynamics models as possible options.

The other version uniformly re-samples the model index 𝑏 for each time

step, which effectively mimics a Bayesian model where dynamics are

re-sampled every timestep.

Algorithm Overview

The PETS algorithm sequentially samples trajectories in the task environ-

ment, and trains the dynamics model on collected data. During planning

PETS uses the CEM optimization presented in algorithm 2.2 to optimize

actions in order to maximize the earned reward. The full planning scheme

is an MPC framework incorporating the proposed propagation method TS

to plan over the uncertainty aware dynamics model. The PETS algorithm

is summarized in algorithm 2.3, as presented by Chua et al. [4].

36 CHAPTER 2. BACKGROUND

Algorithm 2.3: PETS [4]
1 Initialize data D with a random controller for one trial;

2 for Trial 𝑘 = 1 to 𝐾 do
3 Train dynamics model

˜𝑓 on given data D;

4 for Time 𝑡 = 0 to 𝑇𝑎𝑠𝑘𝐻𝑜𝑟𝑖𝑧𝑜𝑛 do
5 for Actions sampled 𝒂𝑡 :𝑡+𝑇 ∼ CEM(·), 1 to 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 do
6 Propagate state particles 𝒔𝑝𝜏 using TS and ˜𝑓 ;

7 Evaluate actions as

∑𝑡+𝜏
𝜏=𝑡

1

𝑝

∑𝑃
𝑝=1 𝑟 (𝒔

𝑝
𝜏 , 𝒂𝜏);

8 Update CEM(·) distribution;
9 end

10 Execute first action 𝒂∗𝑡 from optimal actions 𝒂∗
𝑡 :𝑡+𝑇 ;

11 record outcome: D ← D ∪ {𝒔𝑡 , 𝒂∗𝑡 , 𝒔𝑡+1};
12 end
13 end

2.5. OPEN AI GYM 37

2.5 Open AI gym

Open AI gym is a toolkit for developing and comparing reinforcement

learning algorithms [34]. The tool kit consists of several tasks wrapped in

an MDP like environment that gives rewards based on performed actions

and states. These environments range from classic control tasks like

balancing a pole on a cart to classic atari games and more complex physics-

based tasks. Open AI gym is considered the standard framework for

benchmarking RL algorithms and implementing task environments.

2.5.1 Gym Environments

Intending to standardize test environments for RL, gym environments all

follow a specific structure. In short, each environment needs a method

for stepping and resetting. The stepping method is what executes a given

action in the MDP environment, resulting in the next state and potential

reward received. The reset method is responsible for resetting the environ-

ment between trials. These two methods, apart from initialization, make

up the basis of any gym environment.

Some of the environments supplied by OpenAI are simple tasks with simple

dynamics. For example, these are tasks like cartpole or inverse pendulum.

However, many tasks include complicated physics interactions and involve

robots with multiple joints, simulating animals or humanoids. Therefore,

many of the control environments rely on the physics engine MuJoCo[35].

38 CHAPTER 2. BACKGROUND

2.5.2 MuJoCo

MuJoCo (Multi-Joint dynamics with Contact) is an advanced physics en-

gine explicitly designed for model-based and automatic control[35]. Due

to its optimized forward and backwards kinematics and easy-to-use model

design, it is the physics backbone in most control-based gym environments.

MuJoCo utilizes its own modelling language, MJCF, which aims to be

as accessible and intuitive as possible while simultaneously providing

access to all of MuJoCo’s computing abilities. This makes it possible to

implement models fast and easy for testing, which is practical when testing

RL methods in different scenarios before testing on physical robots, for

example. As a consequence, many of the standard benchmarking tasks

used in RL are MuJoCo-based physics and control tasks[27]. The default

MuJoCo environments in openAI gym range from simple 2D pendulums

to complex humanoid and animal-like robots.

2.6. MBRL-LIB 39

2.6 MBRL-Lib

The mbrl framework is a toolbox for Model-Based Reinforcement Learning

algorithms, based on PyTorch[36]. The library is highly modularized,

allowing for interchangeability of the various subcomponents in a MBRL

algorithm[2]. This section presents some of the key components found in

the framework.

2.6.1 Replay Buffer

A practical utility found in the library is the replay buffer. An essential

part of MBRL is to train a dynamics model on collected data. The replay

buffer handles this data collection. Data collected in a MBRL method is

structured as a tuple of state transitions, including current state, action,

resulting state, reward, and whether the episode terminated or not. This

replay buffer provides a way to handle and store all trajectory information

in a structured manner to facilitate an easy-to-use data loader to train the

dynamics model in a supervised way.

2.6.2 Dynamics Models

Mbrl-lib provides a base class for all models in the framework. However,

of interest to this thesis is the probabilistic network ensemble.

40 CHAPTER 2. BACKGROUND

The GaussianMLPEnsemble provides a PyTorch implementation of the

probabilistic network ensembles presented by Chua et al. [4]. In addition

to the model itself, the implementation also includes the ability to forward

particles through the model by sampling according to the TS propagation

used in PETS.

To further increase the ease-of-use principle, the library provides a set

of wrappers around the model itself to help with training. To utlize the

training data stored as a replay buffer, the TransitionModel wrapper pro-
vides functionality to convert transition data to input and output of the

network model. This includes methods for combining state and actions

into a single model input, as well as methods for generating target values

for training the model in a supervised manor.

To complete the dynamics modelling, the ModelTrainer class provides a
way to train a PyTorch model in a supervised way. The trainers train
method implements a classical supervised training loop that updates the

model for a set number of epochs with the provided dataset. In combination

with the TransitionModel wrapper, it provides a way to train a dynamics

model using transition data with only a few lines of code.

2.6.3 Configuration

When everything is implemented correctly, all parameters necessary to

run an MBRL session are specified in a configuration file utilizing Hydra

2.6. MBRL-LIB 41

configuration[37], an example of one such configuration file is found in

listing 4.1. This type of configuration is made to quickly run simulations

directly from a terminal without altering any code. Furthermore, the

library is made to facilitate MBRL research, and the configuration system

is therefore designed to facilitate easy testing of different parameters and

tasks without the need to re-code the algorithm itself.

42 CHAPTER 2. BACKGROUND

Chapter 3

Developing an RL algorithm

This chapter presents the development of the exploration-based MBRL

method. It is divided into two sections. The first one discusses previous

work and inspiration behind the algorithm developed, while the last section

presents the algorithm itself. The pseudocode of the final algorithm is

given at the end of the chapter in algorithm 3.1.

43

44 CHAPTER 3. DEVELOPING AN RL ALGORITHM

3.1 Previous Work and Inspirations

The intuition behind the algorithm developed in section 3.2 is that ex-

ploring uncertainty areas will lead to higher information gain and thus

learning faster. This concept is known as targeted exploration and is a

well-known idea in RL. Although the term uncertainty is not used, the

concept of using uncertainty to direct exploration was presented in the

early 1990’s[38].

Although much research exists on exploration in model-free RL, model-

based exploration has only started seeing research in recent years. Previous

methods like "curiosity" [39] achieve exploration by rewarding the agent

based on prediction errors compared to the real dynamics. Furthermore,

counting based methods "count" the number of visits to each state, aiming

to explore as many of the unseen states as possible[40]. However, all these

methods have in common that they reward the agent for visiting states

about which it has little information or is uncertain, aiming tomaximize the

information gained from each step. This is also the idea behind targeting

exploration with uncertainty estimation.

The algorithm presented in section 3.2 is an extension of PETS [4] which

incorporates uncertainty guided exploration into planning. Inspired by

previous work inmodel-based exploration by Pathak et al. [41] and the field

of active learning [42], the algorithm utilizes the probabilistic ensemble

model proposed by Chua et al. [4] to estimate uncertainty in order to guide

and balance exploration.

3.2. THE EXPLORATION ALGORITHM 45

3.2 The Exploration Algorithm

PETS outperforms most other model-based methods with its probabilistic

ensembles andMPC scheme. However, the full potential of the probabilistic

ensemble model is not utilized. Inspired by the ideas mentioned in section

3.1, this section proposes a method for incorporating the estimated model

uncertainty into planning, aiming to improve the agents’ ability to explore

the state space efficiently. The first few subsections explain details about

each component of the algorithm before a summary, and the full algorithm

is given in section 3.2.4.

3.2.1 Uncertainty-Based Exploration

The probabilistic ensemble dynamics model captures both aleatoric and

epistemic uncertainty. We propose using the epistemic uncertainty mea-

surement directly during planning to direct exploration towards parts of

the state space where the model is uncertain.

Uncertainty Estimation

Given an ensemble dynamics model
˜𝑓 of 𝐵 bootstrap models, and a model

input consisting of a state action pair (𝑠, 𝑎). The epistemic uncertainty

of the model on the given data point can be estimated by the empirical

variance between the prediction of each member model in the ensemble:

46 CHAPTER 3. DEVELOPING AN RL ALGORITHM

𝜎2𝑠 =
1

𝐵 − 1

𝐵∑︁
𝑏=1

(
˜𝑓𝑏 (𝑠, 𝑎) − ˜𝑓 (𝑠, 𝑎)

)2
(3.1)

This estimate measures the disagreement between each model in the en-

semble. If it is low, it indicates that the model is quite confident in its

prediction, whilst if high, the prediction is uncertain. This estimate, there-

fore, gives a natural indication of whether to explore in the given state or

not.

Planning

During planning, PETS evaluates action sequences by using the reward

from the environment as an optimization function. The result is an agent

actively exploiting the current model and potentially visiting the same

states repeatedly to solve the task. However, shifting the focus toward

better learning outcomes rather than earned rewards should result in a

more accurate model.

During exploration, trajectories can be evaluated based on the uncertainty

of the model’s one step predictions. When exploring, the agent, therefore,

receives a reward equal to the variance between each ensemble model

(equation 3.4) instead of a reward from the task environment. In practice,

this means changing the objective function used by the CEM optimizer

from the expected return to the cumulative uncertainty estimate. Fur-

3.2. THE EXPLORATION ALGORITHM 47

thermore, by visiting states with the highest model uncertainty, the agent

aims to learn as much new information as possible from each step, thus

reducing training time and overall model uncertainty.

3.2.2 Balancing Exploration and Exploitation

The exploration vs exploitation dilemma is always present in every RL

problem. Typically model-free methods resort to some form of Y-greedy

approach, where Y ∈ [0, 1] corresponds to the probability of exploring

instead of exploiting. In the model-based setting, there is more information

available. Using this information, we propose a continuous and adaptive

method inspired by the Y-greedy approach in model-free RL.

The principle behind Y-greedy methods is that an agent does less explo-

ration and more exploitation as it learns. This reduced exploitation is

usually achieved by reducing Y during training, either by an exponential

approach or similar [5]. However, this approach does not consider that

the agent might benefit from exploring states it does not reach until its

performance is good enough. Instead, updating the Y parameter based on

the model’s uncertainty can achieve a more adaptive weighting between

exploration and exploration. Since the model’s uncertainty remains the

same between training sessions, the uncertainty is estimated each time the

model is updated, and Y is adjusted accordingly. To achieve this adaptivety,

Y is updated as the normalized model uncertainty based on the highest

uncertainty estimate seen during training:

48 CHAPTER 3. DEVELOPING AN RL ALGORITHM

Y = 𝜎2𝑚/𝜎2𝑚𝑎𝑥 (3.2)

Here, 𝜎𝑚 represent the overall model uncertainty, which will be defined

later in equation 3.4. Utilizing this update-law both ensures that Y follows

the change in model uncertainty and is contained in the interval [0, 1].

In addition to updating Y adaptively, the algorithm uses Y as a scaling

factor between exploration and exploitation during action evaluation,

rather than a probability of choosing one or the other. During training,

the agent receives a reward both for exploration, given by equation 3.1,

and for exploitation, which is given by the environment reward. These

two rewards are then scaled by Y to give a single scalar reward:

𝑟agent =

𝑇∑︁
𝑡=1

Y × 𝜎2𝑠 (𝒔𝑡 , 𝒂𝑡) + (1 − Y) × 𝑟 (𝒔𝑡 , 𝒂𝑡) (3.3)

Here 𝜎𝑠 is the one-step uncertainty from the current state (equation 3.1),

and 𝑟 is the actual reward from the environment’s reward function. Provid-

ing the agent reward in this manner achieves two things. Firstly, for some

given value of Y this reward enables the agent to exploit areas where its

uncertainty is low rather than forcing the agent to explore areas where it

is already quite confident. If 𝜎𝑠 ≃ 0, the agent will focus on exploiting the

environment reward even though Y is high. Secondly, this approach still

retains the idea of exploring less as the agent improves. The model’s un-

3.2. THE EXPLORATION ALGORITHM 49

certainty should naturally decrease as the agent trains. Therefore it should

also tend towards preferring exploitation rewards instead of exploration

as its performance increases.

3.2.3 Evaluating Model Uncertainty

In order to update Y as discussed in section 3.2.2, the need for an accurate

uncertainty estimate of the model is necessary. The uncertainty estimation

of the model described in equation 3.1 only considers one single data point.

Thus, in order to get a more general uncertainty estimate, the model’s

uncertainty is instead evaluated as the mean over a whole set of data points

denoted by D. The adapted version of equation 3.1 then becomes:

𝜎2𝑚 =
1

|D|
∑︁
(𝑠,𝑎)∈D

1

𝐵 − 1

𝐵∑︁
𝑏=1

(
˜𝑓𝑏 (𝑠, 𝑎) − ˜𝑓 (𝑠, 𝑎)

)2
(3.4)

Using the same data as the agent collects during training would not neces-

sarily yield an accurate estimate of the model uncertainty, as the model is

trained to fit this data. Therefore, a separate dataset D𝑢𝑛𝑐 is sampled in

order to be used for uncertainty evaluation.

In order to sample this external dataset, a separate policy 𝜋𝑢 is used instead

of the policy used for training. This gives the ability to sample data

independently of the current model and the current policy, which results in

50 CHAPTER 3. DEVELOPING AN RL ALGORITHM

amore general estimate of themodel uncertainty. However, the uncertainty

estimate will always be biased towards the data used for evaluation. Thus,

this dataset should not be static throughout the whole training. However,

updating D𝑢𝑛𝑐 for every uncertainty estimate would result in multiple

times the number of interactions with the environment, which reduces

the sample efficiency drastically. So instead, D𝑢𝑛𝑐 is updated every few

model updates with some given frequency of training episodes.

3.2.4 Algorithm Summary

Combining all the ideas discussed in this chapter with the ideas from

PETS, the result is an exploration based PETS algorithm summarized as

pseudocode in algorithm 3.1. Between each trial the dynamics model is

trained on the collected dataset, similar to PETS. After each model update,

a new uncertainty estimate of the model, 𝜎2𝑚 is evaluated on the D𝑢𝑛𝑐
dataset (equation 3.4), which itself is re-sampled at set frequency of trials.

Based on this uncertainty a new value for the weighting Y is calculated

using the update rule in equation 3.2. The planning part itself follows the

idea from PETS; an MPC control scheme utilizing CEM optimization and

the TS state propagation. However, trajectories are evaluated based on the

weighting between exploration and exploitation in equation 3.3.

Notice that the trajectory evaluation in algorithm 3.1 contains a mapping

𝜙 : R ↦→ R, which is not present in equation 3.3. This mapping is used to

map the one step uncertainty 𝜎2𝑠 to a value comparable to the environment

3.2. THE EXPLORATION ALGORITHM 51

reward and is potentially experiment specific. Specific details regarding

this are discussed in the implementation chapter, section 4.1.

Algorithm 3.1: The Exploration Algorithm

1 Initialize dynamics model
˜𝑓 , Y, 𝜋𝑢 ;

2 Populate dataset D using random controller for n initial trials.

3 for 𝑘 ← 1 to 𝐾 Trials do
4 Train dynamics model

˜𝑓 on D;

5 Populate uncertainty data D𝑢𝑛𝑐 with 𝜋𝑢 with some frequency;

6 𝜎𝑚 ← Evaluate model uncertainty on D𝑢𝑛𝑐 according to 3.4;

7 Y ← Calculate new Y from 𝜎𝑚 according to 3.2;

8 for 𝑡 ← 1 to TaskHorizon do
9 for Actions sampled 𝒂𝑡 :𝑡+𝑇 ∼CEM(·), 1 to NIters do
10 Propagate state particles 𝒔𝑝 using TS and ˜𝑓 ;

11 Evaluate actions as∑𝑡+𝑇
𝜏=𝑡

1

𝑃

∑𝑃
𝑝=1(1 − Y)𝑟 (𝒔

𝑝
𝜏 , 𝒂𝜏) + Y𝜙 (𝜎2𝑠 (𝑠

𝑝
𝜏 , 𝒂𝜏));

12 Update CEM distribution;

13 end
14 Execute first action 𝒂∗𝑡 from optimal action sequence 𝒂∗

𝑡 :𝑡+𝑇 ;
15 Record outcome: D ← D ∪ (𝒔𝑡 , 𝒂𝑡 , 𝒔𝑡+1)
16 end
17 end

52 CHAPTER 3. DEVELOPING AN RL ALGORITHM

Chapter 4

Implementation Details

This chapter presents the details regarding implementing algorithm 3.1

in the mbrl-lib framework by Pineda et al. [2]. The first section describes

how the trajectory evaluation and exploration scaling are implemented.

The following section discusses details regarding data sampling for model

uncertainty estimation, followed by a schematic overview of the vari-

ous algorithm components. The last section presents details of the task

environment used to evaluate the algorithm.

53

54 CHAPTER 4. IMPLEMENTATION DETAILS

4.1 Model Exploration Wrapper

A vital part of the algorithm proposed in section 3.2 is how trajectories

are evaluated by the CEM optimizer during the planning. The mbrl-lib
framework provides an excellent class for evaluating trajectories based on

received rewards by wrapping the model in a gym-like interface. In order

to prevent re-implementing a lot of the already existing functionality, the

implementation inherits this evaluation by expanding the model wrapper

to facilitate the exploration-based trajectory evaluation.

Stepping and Reward Calculation

Similar to gym environments, the wrapper contains a function called step,
which is responsible for propagating a state and action using the dynamics

model and returning the resulting state, reward and termination details. In

the base wrapper in mbrl-lib, this reward is based on an external reward

calculated using a provided reward function typically representing the

reward function of the task environment, which is what is done in the

PETS algorithm. However, in the exploration case, it is also necessary to

incorporate uncertainty (equation 3.3). To facilitate this extra exploration

reward, the step method was overwritten. The parent base wrapper is still

responsible for calculating the environmental reward; however, in addition,

the new step method calculates the disagreement between member models

in the ensemble and scales the rewards according to equation 3.3. One

4.1. MODEL EXPLORATION WRAPPER 55

interesting consequence of this implementation is the ability to turn off

exploration, which can be helpful during testing. This feature also proved

to be useful in further implementations discussed in section 4.2.

In order to properly implement the reward in equation 3.3, the need for a

way to handle Y arises. The extended model wrapper, therefore, includes

this parameter as an internal variable in order to properly evaluate rewards

from the step method. Consequently, this wrapper also needs methods for

setting and updating this Y parameter.

Updating 𝜺

In order to facilitate the adaptive Y update in equation 3.2, this wrapper

implements a method to update Y based on given model input. This update

is performed by evaluating the model uncertainty on the given state and

action data using equation 3.4. The wrapper class itself then keeps track

of the highest uncertainty seen so far, and evaluates the new Y as the

normalized uncertainty estimate given in equation 3.2: Y = 𝜎2𝑚/𝜎2𝑚𝑎𝑥 .

Uncertainty and Reward Mapping

The exploration reward, or uncertainty estimate, used to evaluate trajec-

tories grows exponentially with each propagation loop due to compiling

model uncertainty with each step. Therefore, the final reward calculation

56 CHAPTER 4. IMPLEMENTATION DETAILS

utilizes a mapping of this uncertainty to make it more comparable to the

environmental rewards. This is the map denoted as 𝜙 in algorithm 3.1, and

the default is implemented as the mapping 𝜙 (𝑥) = log(1 + 𝑥). However,
this can be changed using the configurations discussed in section 4.4. A

similar map is also implemented for the environment reward, which de-

faults to the identity map: 𝑥 ↦→ 𝑥 . However, this map was not used in any

experiments and is therefore not included in algorithm 3.1, although the

implementation remains for potential use in future work.

4.2 Sampling Data for Uncertainty Estima-

tion

Two versions of the exploration algorithm were considered and imple-

mented. The difference is the policy used to sample data for model uncer-

tainty estimation. One version uses a random policy to sample data, while

the other utilizes the learnt MPC policy without exploration.

Two sampling agents

The random sampling agent is straightforward to implement; in fact, mbrl-
lib has a class implementing a random agent which samples the action

space of the environment to choose actions. However, the implementation

of the policy agent is a bit trickier. Although, the way the model wrapper

4.2. SAMPLING DATA FOR UNCERTAINTY ESTIMATION 57

performs trajectory evaluations was implemented made it much more

manageable. Since the policy is essentially the same as the one used for

training, except it only utilizes the expected environment reward, it was

possible to use the same agent as done during training. All that is necessary

is to disable exploration in the model wrapper and enable it after sampling

the uncertainty data.

Sampling Frequency

Re-sampling the uncertainty dataset every time the model uncertainty

is evaluated would drastically reduce the sample efficiency. While not

updating the dataset would make the estimate biased towards the static

data. The uncertainty of the model is more biased toward data used for

evaluation at the start of training when it can be very inaccurate, as

opposed to later when it is more generalized. Therefore, the frequency with

which this dataset is updated is reduced throughout training. To achieve

this, the sampling frequency is reduced according to the model uncertainty

by utilizing the model wrappers Y parameter as an estimate of uncertainty

decrease. Practically, this frequency is given as the minimum number of

training steps between each update and is updated by multiplying the

current frequency with
1

Y
. However, in some cases, Y converges towards

zero. Therefore, the frequency is bound from below at 10% of the total

training steps to prevent it from becoming too low.

58 CHAPTER 4. IMPLEMENTATION DETAILS

4.3 Schematic Implementation Overview

The complete algorithm was implemented as an algorithm in the mbrl-lib
framework, utilizing various utilities presented in 2.6. The existing replay

buffer and model trainer was used to help train the dynamics model, and

their implementation of a CEM optimizer was used to optimize action

selection through the evaluation described in section 4.1.

A simplified schematic of the interaction between the various components

in the algorithm implementation is depicted in figure 4.1. For simplicity,

the uncertainty data sampling is left out of this schematic.

4.4. CONFIGURATIONS 59

CEM MPC

EnvironmentReplay Buffer

Model Environment

Dynamics Model

Action evaluator

Reward
calculations

OptimizationSequence
evaluation

Init state Apply
action

Store
DataTraining

Figure 4.1: A high level schematic overview of the algorithm implemen-

tation. The stapled line of training indicates that it is not happening at

every timestep. The two-way arrows indicate communications between

MPC controller and model wrapper environment when optimizing action

sequences.

4.4 Configurations

Similar to the other algorithms already present in the mbrl-lib framework,

the implementation is compatible with the configuration options in the

framework. This allows the algorithm to be tested in various environments

with different configurations without needing to alter the code itself. All

configurations needed to run an experiment are given in the configuration

files. These files are written in YAML format and loaded using hydra [37].

An example of one such configuration file is shown in listing 4.1.

60 CHAPTER 4. IMPLEMENTATION DETAILS

algorithm :

i n i t i a l _ exp lo ra t i on_ s t ep s : 1000

t a r g e t _ i s _de l t a : true
normalize : true
num_particles : 20

overr ides :
env: p e t s _ h a l f c h e e t a h

num_steps: 200000

t r i a l _ l eng th : 1000

agent_type : "pets"

num_uncertainty_trajectories : 3

random_uncertainty : true
uncertainty_sample_freq : 1000

adaptive_uncertainty_freq : true
reward_map: None

uncertainty_map : None

act ion_optimizer :
#Omitted to save space

dynamics_model:
#Omitted to save space

Listing 4.1: Example configuration file, highlighting some of the important

configuration options in the algorithm implementation.

4.4. CONFIGURATIONS 61

All of the experiment specific parameters are specified in the overrides

section of the configuration. This includes which environment to use,

trial length, the total number of training steps and similar configurations.

Compared to the already present PETS configurations, the exploration

algorithm requires a few more configuration inputs:

• Agent type: This specifies the type of agent to be used for training.

The current implementation’s only options are ’pets’ and ’Explo-

ration’, which decide whether to utilize the targeted exploration

(Exploration) in planning or not (pets).

• Number of uncertainty trajectories: This refers to the size of

the dataset used to estimate model uncertainty and specifies how

many trajectories to sample in order to populate the dataset. In our

experiments, 3 was used for all tests.

• Random uncertainty: This specifies whether to sample the un-

certainty data using a random agent or not. If false, it will use the

exploiting policy agent; otherwise, a random agent will be used.

• Adaptive uncertainty frequency specifies whether to change the

frequency of how often the uncertainty estimation data is re-sampled

based on model uncertainty. If not specified, this defaults to True. If

False, the frequency remains constant throughout training.

• Uncertainty sample frequency This specifies the frequency at

which the uncertainty data is updated; if adaptive uncertainty is

True, this sets the initial frequency. If unspecified, it defaults to the

trajectory length.

62 CHAPTER 4. IMPLEMENTATION DETAILS

Additionally, there is the configuration option of the reward and uncer-

tainty maps discussed in section 4.1. These specify which functions to use

for mapping exploration and exploitation rewards during planning. As

mentioned in 4.1, the default is the identity map and log(1 + 𝑥), which is

what will be used if these are not specified. To specify any other maps, the

corresponding functions must be implemented in the math utility module

of the mbrl-lib framework.

Any additional configurations regarding the action optimizer and dynamics

model is already present in the framework. The full implementation is

available at https://github.com/JayKays/Robotic-mbrl.

https://github.com/JayKays/Robotic-mbrl

4.5. TASK ENVIRONMENTS 63

4.5 Task Environments

The algorithm was tested on four different gym environments; cartpole,

half-cheetah,7-DOF reacher and 2D-walker. Each having different di-

mensions, rewards and complexity. This section present details about

complexity and reward for each task environment.

4.5.1 Cartpole

The cartpole environment is the simplest of the four environments. The

goal in cartpole is to balance a pole on a cart by moving the cart back and

forth (see figure 4.2). The state space consists of position and velocity of

the cart as well as the angle and angular velocity of the pole joint. The

action space is a continuous scalar value between −1 and 1, representing

the control input to the carts velocity.

Figure 4.2: Screenshot of the cartpole

environment

An episode in the cartpole envi-

ronments is terminated if the pole

angle or cart position becomes

too large, or the time horizon is

reached. And the reward is simply

+1 for every time step that does not

end in termination.

64 CHAPTER 4. IMPLEMENTATION DETAILS

4.5.2 Halfcheetah

In the half-cheetah environment the goal is to learn how to control a

cheetah-like robot (figure 4.3) to run as fast as possible. The cheetah has 6

controllable rotational joints, whose applied torques make up the action

space. The state space contains positions and angular velocities of the

joints as well as Cartesian position and velocity of the cheetah, adding up

to a total of 18 states.

Figure 4.3: Screenshot of the halfcheetah environment

In contrast to the cartpole environment, the halfcheetah environment has

no termination other than the episode horizon. The reward is based on

the cartesian velocity of the cheetah, in addition to a penalty for using to

large actions.

4.5. TASK ENVIRONMENTS 65

4.5.3 2D Walker

The walker environment is similar to the halfcheetah in that the goal is

to run (or walk) as fast as possible. However, the controllable robot here

represents a two-dimentional humanoid. The walker has 6 controllable

joints which makes up the action space. The same joints’ position and

velocity is also part of the state space. In addition, the state space contains

the vertical position and angle of the walkers head, as well as vertical,

horizontal and angular velocities of the head. Adding up to 17 total states.

Figure 4.4: Screenshot of the 2D walker environment.

66 CHAPTER 4. IMPLEMENTATION DETAILS

In contrast to the cheetah, the goal of the walker is to walk both fast and

upright, therefore there is a termination based on how high above the

ground the head is and the magnitude of the head angle. The walker gets

a rewards based on horizontal velocity and a penalty for large actions. In

addition it gets an "is alive" reward of +1 for every timestep that does not

end in termination, similar to cartpole.

4.5.4 7-DOF Reacher

The reacher evironment is the same as the one used in the original pets

paper [4]. It consists of a 3D 7-DOF robot arm, where the goal is to reach a

desired end effector position. Similar to the other evironments, the actions

space consists of torques and forces applied to the robots 7 joints, and the

state space contains the position and velocity of these joints. In this task

the state space also contains the Cartesian position of the target position

of the end effector, resulting in 17 total states.

The reacher task has no termination, but the reward given here is purely

negative. Similar to the walker and cheetah, the reacher gets a penalty

for large actions. In addition it also gets a penalty equal to the distance

between the end effector and the target for each time step.

4.5. TASK ENVIRONMENTS 67

Figure 4.5: Screenshot of the reacher environment. The red ball corre-

sponds to the desired target position of the end effector

68 CHAPTER 4. IMPLEMENTATION DETAILS

4.5.5 Summary

A summary of the environment details is given in table 4.1 and 4.2. Firstly,

table 4.1 describes state and action dimensions of each environment as

well as task horizon, while table 4.2 gives mathematical descriptions of

each environment’s reward and potential termination function.

Table 4.1: Space dimensions and task horizon for each gym environment

Environment State Dim Action Dim Task Horizon

Cartpole 4 1 200

Half-cheetah 18 6 1000

Walker 17 6 1000

Reacher 17 7 150

Table 4.2: Reward and termination functions for each gym environment.

𝑥𝑡 and 𝑧𝑡 corresponds to horizontal and vertical Cartesian position respec-

tively. For the reacher; 𝑔 and 𝑒𝑒𝑡 are the goal and end effector positions.

Environment Reward Termination when

Cartpole 1 |𝑥𝑡 | > 2.4 ∨ |\ | > 12
◦

Halfcheetah ¤𝑥𝑡 − 0.01| |𝒂𝑡 | |2 None

Walker ¤𝑥𝑡 − 0.01| |𝒂𝑡 | |2 + 1 𝑧𝑡 ∉ [0.2, 0.8] ∨ |\ | > 1

Reacher −||g − ee𝑡 | |2 − 0.01| |𝒂𝑡 | |2 None

Chapter 5

Experimental Results

This chapter presents the experimental results from testing the algorithm

on the four different benchmark tasks described in section 4.5. Performance

is evaluated by using the PETS algorithm as a baseline. Two different

versions of the exploration algorithm are considered, one uses a random

controller to sample data for uncertainty measurements, while the other

exploits the current model using an MPC policy similar to PETS.

The chapter is divided into five sections. The first four sections present

test results from each of the four test environments described in section

4.5. The last section presents test results regarding the transferability of

the trained agents to solve different tasks with the same dynamics. For

visual clarity, the training curves in this chapter are smoothed using a

SciPy [43] Gaussian filter.

69

70 CHAPTER 5. EXPERIMENTAL RESULTS

5.1 2D Walker

This section presents the results of the algorithm evaluated on the 2D

walker environment. Figure 5.1 shows training curves of PETS and the

two versions of the exploration algorithm, and figure 5.2 shows the value

of Y for the two versions of the exploration algorithm.

0 25000 50000 75000 100000 125000 150000 175000 200000
Training steps

0

100

200

300

400

En
vi

ro
nm

en
t r

ew
ar

d

Walker training rewards

pets
exp_random
exp_policy

Figure 5.1: Algorithm performance on the 2D walker environment. The

plot showsmean of three different test with different random seeds. Shaded

area corresponds to the standard deviation between each seed.

Initially, PETS achieves higher rewards than both versions of the explo-

ration algorithm until about 75’000 training steps, where both exploration

agents achieve higher rewards than PETS. Figure 5.2 shows how the pa-

rameter Y changes through training for the two exploration agents. Using

the learnt policy to sample data for uncertainty estimation results in Y

5.1. 2D WALKER 71

0 25 50 75 100 125 150 175 200
Number of model updates

0.2

0.4

0.6

0.8

1.0

Ep
sil

on
 v

al
ue

Walker exploration weighting
exp_random
exp_policy

Figure 5.2: Development of the weighting parameter Y through training

on the walker environment. Random and policy refers 𝜋𝑢 being either

random or following the exploitation policy of the current model.

dropping to about 0.2 early in training, while the random sampling agent

still has an Y around 0.9. This difference in exploration weighting is re-

flected in figure 5.1, where the random uncertainty agent receives a much

lower reward than the other two during the first 50’000 steps. This signif-

icant difference in exploration weighting is reduced towards the end of

the training. However, the random sampling agent still has a significantly

higher Y than the policy sampling agent while performing better in terms

of received reward. Comparing the two exploration agents to the PETS

agent, the policy sampling exploration agent closely follows the curve of

PETS. The random sampling agent utilizes more exploration and does not

experience the same reward peak at the begging as the two other methods,

maintaining increasing performance until the end of training.

72 CHAPTER 5. EXPERIMENTAL RESULTS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Training steps (x 10 000)

0.1

0.2

0.3

0.4

0.5

Un
ce

rta
in

ty
 e

st
im

at
e

Walker model uncertainty
pets
exp_random
exp_policy

Figure 5.3: Development of model uncertainty during training. Uncertainty

is evaluated on random state data using model checkpoints every 10 000

training steps.

Figure 5.3 shows the estimated uncertainty of the models during training

for the three different algorithms. Similar to the performance seen in the

training curve (figure 5.1), the model uncertainty of the two exploration

agents is noticeably lower than that of PETS, with the random sampling

agent achieving the lowest uncertainty of the two.

Figure 5.4 shows the average performance of each agent after 50, 100, 150

and 200k training steps without exploring. The two exploration agents

achieve generally higher rewards than PETS in all checkpoints, with the

exploration agent achieving the highest performance after the training. Un-

like figure 5.1, PETS shows lower performance early in training compared

to the two exploration agents.

5.1. 2D WALKER 73

50000 100000 150000 final
Number of training steps

0

50

100

150

200

250

En
vi

ro
nm

en
t r

ew
ar

ds

Walker agent performance
pets
exp_random
exp_policy

Figure 5.4: Mean agent performance after 50, 100, 150 and 200k training

steps on the 2Dwalker task. The performance is evaluatedwithout utilizing

exploration, similar to policy used in PETS

74 CHAPTER 5. EXPERIMENTAL RESULTS

5.2 Halfcheetah

The performance of the three agents during training in the halfcheetah

environment is shown in figure 5.5. Contrary to the walker results, the

three agents show much similar training curves when solving this task.

0 25000 50000 75000 100000 125000 150000 175000 200000
Training steps

0

1000

2000

3000

4000

5000

6000

7000

8000

En
vi

ro
ne

nt
 re

wa
rd

Cheetah training rewards

pets
exp_random
exp_policy

Figure 5.5: Algorithm performance on the halfcheetah environment. The

plot showsmean of three different test with different random seeds. Shaded

area corresponds to the standard deviation between each seed.

The two exploration agents achieve higher rewards during the beginning of

training compared to PETS. While PETS catches up to the policy sampling

agent, the random sampling exploration agent generally achieves better

performance than PETS during the whole training session. In general, the

two exploration agents show more consistent performance between each

separate seed than PETS which shows an overall larger standard deviation

5.2. HALFCHEETAH 75

0 25 50 75 100 125 150 175 200
Number of model updates

0.0

0.2

0.4

0.6

0.8

1.0

Ep
sil

on
 v

al
ue

Halfcheetah exploration weighting
exp_random
exp_policy

Figure 5.6: Development of the weighting parameter Y through training on

the halfcheetah environment. Random and policy refers 𝜋𝑢 being either

random or following the exploitation policy of the current model.

between trials. Figure 5.6 shows mean value of Y for each of the exploration

agents. The large difference in the walker task (figure 5.2) is not present

here, and the value of Y converges toward zero rather early in training.

Similar results are seen in the uncertainty of the models in figure 5.5. The

uncertainty converges rather fast with all three methods. However, the

model uncertainty with both exploration agents is consistently lower than

that of PETS, with the random sampling exploration being slightly lower

than the one using policy sampling.

76 CHAPTER 5. EXPERIMENTAL RESULTS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Training steps (x 10 000)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Un
ce

rta
in

ty
 e

st
im

at
e

Halfcheetah model uncertainty
pets
exp_random
exp_policy

Figure 5.7: Development of model uncertainty during training. Uncertainty

is evaluated on random state data using model checkpoints every 10 000

training steps. The first uncertainty estimate is removed to better visualize

the later development.

The performance of the three agents after 50, 100, 150 and 200 trials is

shown in figure 5.8. This evaluationwas performedwithout the exploration

enabled, only focusing on maximizing environment reward. After 200k

training steps, the performance of the three agents is almost identical,

while the two exploration agents are able to achieve higher rewards earlier

in training than PETS.

5.2. HALFCHEETAH 77

50000 100000 150000 final
Number of training steps

0

1000

2000

3000

4000

5000

6000

7000

En
vi

ro
nm

en
t r

ew
ar

ds

Halfcheetah agent performance
pets
exp_random
exp_policy

Figure 5.8: Mean agent performance after 50, 100, 150 and 200k training

steps on the halfcheetah task. The performance is evaluated without

utilizing exploration, similar to policy used in PETS

78 CHAPTER 5. EXPERIMENTAL RESULTS

5.3 Reacher

The training results on the reacher environment are shown in figure 5.9.

Initially, both version of the exploration agent achieves much lower re-

wards than PETS. However, after about 2000-3000 steps, both exploration

agents achieve similar rewards as PETS, and all three agents converge to

the same reward after about 4000 training steps. For visual clarity, the

exact initial rewards of the exploration agents are not shown in the plot.

0 2000 4000 6000 8000 10000 12000 14000
Training steps

300

250

200

150

100

50

En
vi

ro
nm

en
t r

ew
ar

d

Reacher training rewards

pets
exp_random
exp_policy

Figure 5.9: Algorithm performance on the 3D reacher environment. The

plot shows the mean of three different tests with different random seeds.

The shaded area corresponds to the standard deviation between each seed.

The initial reward for the two exploration agents is about -900 and -600

for random and policy, respectively.

Figure 5.10 shows the development of the Y parameter throughout the

training of the two versions of the exploration algorithm. Similar to the

5.3. REACHER 79

walker results (figure 5.2), there is a significant gap between the agent

evaluating uncertainty on random data compared to the one sampling

using the exploitation policy. The agent sampling with the exploitation

policy shows similar development as in other environments, where Y

converges towards zero. However, the version using random data reaches

its minimum value of Y = 0.2 after about 20 trials before slowly increasing

to around 0.4-0.5 throughout the rest of the training.

0 20 40 60 80 100
Number of model updates

0.0

0.2

0.4

0.6

0.8

1.0

Ep
sil

on
 v

al
ue

Reacher exploration weighting
exp_random
exp_policy

Figure 5.10: Development of the weighting parameter Y through training

on the 3D reacher environment. Random and policy refers 𝜋𝑢 being either

random or following the exploitation policy of the current model.

The model uncertainty of the three agents is shown in figure 5.11. The

uncertainty of all three models is quite similar, following the same trend

throughout training. However, the model uncertainty of the PETS agent

shows large oscillations toward the end of the training. In contrast, the

two exploration agents show much smaller and more stable oscillations.

80 CHAPTER 5. EXPERIMENTAL RESULTS

0 5 10 15 20 25
Training steps (x600)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Un
ce

rta
in

ty
 e

st
im

at
e

Reacher model uncertainty
pets
exp_random
exp_policy

Figure 5.11: Development of model uncertainty during training on the

reacher environment. Uncertainty is evaluated on random state data using

model checkpoints every 600 training steps.

However, all three agents achieve the lowest model uncertainty about

halfway through training, which increases towards the end of the training.

The performance of each agent was evaluated after 1800, 4200, 9000, and

15000 training steps without exploration. The average rewards are shown

in figure 5.12. The two exploration agents perform better than PETS in

the first checkpoint at 1800 steps. However, after 4200 training steps and

later, performance is not changing much, with PETS showing generally

better performance than the two exploration agents.

5.3. REACHER 81

1800 4200 9000 final
Number of training steps

100

80

60

40

20

0

En
vi

ro
nm

en
t r

ew
ar

ds

Reacher agent performance

pets
exp_random
exp_policy

Figure 5.12: Mean agent performance after 1800, 4200, 9000 and 15000

training steps on the 7-DOF reacher task. The performance is evaluated

without utilizing exploration, similar to policy used in PETS

82 CHAPTER 5. EXPERIMENTAL RESULTS

5.4 Cartpole

Cartpole is the least complex environment used for testing. The training

curves in figure 5.13 show that both exploration agents and PETS can

completely solve the tasks of balancing the pole for the entire task horizon

in under 1000 steps earning the maximum reward of 200.

0 500 1000 1500 2000 2500 3000
Environment steps

25

50

75

100

125

150

175

200

En
vi

ro
nm

en
t r

ew
ar

d

Cartpole training rewards

pets
exp_random
exp_policy

Figure 5.13: Algorithm performance on the cartpole environment. The plot

shows mean of three different test with different random seeds. Shaded

area corresponds to the standard deviation between each seed.

Similar to halfcheetah (figure 5.6) the value of Y for the two exploration

agents on cartpole converges towards zero after only the first few trials as

seen in figure 5.14. The model uncertainty shown in figure 5.15 shows a

similar fast converging development for all three agents.

5.4. CARTPOLE 83

0 10 20 30 40 50 60
Number of model updates

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ep
sil

on
 v

al
ue

Cartpole exploration weighting
exp_random
exp_policy

Figure 5.14: Development of the weighting parameter Y through training

on the cartpole environment. Random and policy refers 𝜋𝑢 being either

random or following the exploitation policy of the current model.

Figure 5.16 shows the agents’ performance after training, which reflects

the results seen in figure 5.13. Each of the three agents can consistently

achieve the maximum reward of 200.

84 CHAPTER 5. EXPERIMENTAL RESULTS

0 2 4 6 8 10 12 14
Training steps (x 200)

0.000

0.001

0.002

0.003

0.004

Un
ce

rta
in

ty
 e

st
im

at
e

Cartpole model uncertainty
pets
exp_random
exp_policy

Figure 5.15: Development of model uncertainty throughout training on

cartpole environment.

pets exp_random exp_policy
0

25

50

75

100

125

150

175

200

Fin
al

 c
ar

tp
ol

e
pe

rfo
rm

an
ce

Cartpole rewards

Figure 5.16: Mean agent performance after 3000 training steps. The perfor-

mance is evaluated without exploration, similar to the policy used in PETS

5.5. MODEL TRANSFERABILITY 85

5.5 Model Transferability

One major benefit to model-based methods over model-free methods is the

ability to transfer the learnt dynamics to different tasks. In order to test

this, the trained agents were tested in the same environment it was trained

in by using a different reward function, thus altering the task to solve.

Two environments were tested; halfcheetah and walker. The comparison

is done between PETS and the random sampling exploration agent, as

these generally showed the largest performance difference in results from

section 5.1 - 5.4.

For the halfcheetah environment, the agents was set to follow a desired

velocity 𝑣𝑑 opposed to running as fast as possible, which is the task they

were trained to do. The reward used to evaluate the performance was

formulated as:

𝑟 (𝑠, 𝑎) = −0.01| |𝒂𝑡 | |2 − 10 exp(−0.3| | ¤𝑥𝑡 − 𝑣𝑑 | |22) (5.1)

The maximum velocity achieved by all agents was around 9− 10𝑚/𝑠 when
running as fast as possible. Therefore, the agents were tested by tracking

velocities of 2, 4 and 8𝑚/𝑠 . The resulting rewards are shown in figure 5.17.

When tracking a desired velocity of 2 and 4, both agents achieve similar

performance, with the exploration agent performing slightly better than

PETS. However, when tracking a desired velocity of 8, the exploration

86 CHAPTER 5. EXPERIMENTAL RESULTS

2 4 8
Desired velocity (m/s)

0

2000

4000

6000

8000

10000

Re
cie

ve
d

re
wa

rd

Performance tracking a desired velocity in halfcheetah
pets
exp_random

Figure 5.17: Mean performance of three trials on the halfcheetah environ-

ment, where agents aim to track a desired velocity opposed to running as

fast as possible.

agent achieves significantly higher reward than PETS.

A similar test was done in the walker environment. However, instead of

tracking a desired velocity, the task was set to walking backwards. To

achieve this, the reward function in table 4.2 was altered by changing the

sign of ¤𝑥𝑡 . The results in figure 5.18 show that the exploration agent is able

to achieve noticeably higher reward than the PETS agent when solving

this new task.

5.5. MODEL TRANSFERABILITY 87

pets exp_random
Agent type

0

20

40

60

80

100

En
vi

ro
nm

en
t r

ew
ar

d

Performance walking backwards in walker environment

Figure 5.18: Mean performance of 10 trials in the walker environment,

where agents aim to walk backwards instead of forwards.

88 CHAPTER 5. EXPERIMENTAL RESULTS

Chapter 6

Discussion

In this chapter, the findings from chapter 5 are discussed. Firstly, the effects

of exploration in the different task environments is discussed with respect

to performance and model quality. Subsequently, the method of evaluating

uncertainty and scaling exploration during training is reviewed. Lastly, the

trained agents’ transferability to other tasks within the same environment

is discussed.

89

90 CHAPTER 6. DISCUSSION

6.1 Performance Effects of Exploration

Overall the exploration algorithm shows promising results, improving

the sample efficiency of PETS in most benchmark tasks. Additionally, the

incorporation of exploration show reduced model uncertainty across most

tasks.

6.1.1 Low Exploration Utilization

The results suggest that the halfcheetah and cartpole environments are

the two benchmark tasks with the easiest dynamics to learn. Development

of the exploration weighting (figure 5.6 and 5.14) shows that in both these

cases, the amount of exploration compared to exploitation drastically

favours exploitation only after a few trials of training as Y tend towards 0.

In cartpole, both exploration agents, as well as PETS, manage to solve the

task after about 1000 steps, consistently earning the maximum reward of

200. Although there are slight variations in model uncertainty between

each method, results suggest that the cartpole task is solved too quickly to

see any significant effects of exploration.

The halfcheetah task shows similar development to cartpole in terms of Y

(figure 5.6); the amount of exploration is significantly reduced after only

the first few trials. This similarity alone might suggest reduced effects of

the exploration, similar to cartpole. However, the training curves in figure

6.1. PERFORMANCE EFFECTS OF EXPLORATION 91

5.5 and midway evaluations in figure 5.8 suggest otherwise. Training

curves show that the random sampling exploration agent, in general,

performs better than PETS during the whole training, except at the very

beginning. Apart from a few slight dips in reward, the policy sampling

exploration agent performs similarly. Evaluations of the performance

without exploration tell a similar story. Both exploration agents shows

higher performance than PETS in almost all checkpoint evaluations in

figure 5.8. However, this performance gap decreases throughout training

ending in almost identical performance of the final agents. The large

performance increase early in training suggests that even though Y heavily

favours exploitation after the first few trials, the exploration in the first

few trials and the small amount of exploration reward received throughout

training is enough to increase sample efficiency. However, given enough

training time PETS will achieve similar performance when Y << 1, as seen

in figure 5.8. These results imply that the initial exploration is effective

in increasing sample efficiency, but without continued use of exploration,

PETS will eventually catch up.

In summary, the development of Y shows similar behaviour in both halfchee-

tah and cartpole; however, performance in terms of rewards differs. The

simplicity and reward cap of cartpole allows all agents to solve the task

rather quickly, resulting in little effect from the exploration. While in

halfcheetah, the exploration shows clear improvements in terms of sample

efficiency despite the fast convergence of exploration weighting. However,

without continued exploration, the performance improvement dissipates

given enough training.

92 CHAPTER 6. DISCUSSION

6.1.2 Higher Exploration Utilization

Compared to the cartpole and halfcheetah environments, the exploration

weighting in figure 5.2 and 5.10 suggests that these dynamics are harder to

learn, utilizing much more exploration than seen in cartpole and halfchee-

tah. Although the amount of exploration used in walker and reacher

environments show similarities, the performance in these two environ-

ments shows opposite effects of exploration.

The walker task shows a clear performance difference between the explo-

ration algorithm and PETS. Focusing on the version using random data to

estimate uncertainty, figure 5.1 shows that the exploration agent achieves a

significantly lower reward than PETS early in training. The training curve

correlates well with the plot showing the weighting factor Y in figure 5.2,

which shows high values in early training that slowly decrease towards the

end. Seeing as the goal of exploration is not to achieve high rewards but to

learn more about the state space, this behaviour is expected. However, later

parts of training where the amount of exploration is reduced show a clear

benefit of the exploration, where the exploring agent achieves noticeably

better performance towards the end than PETS.

Interestingly, the reward peak in the early parts of training is not present

in the training curve of the exploration agent but is present in the first

checkpoint evaluation in figure 5.4. Although receiving lower external

rewards during training, the exploration agent can both learn and outper-

form PETS in a similar amount of training steps, suggesting a clear benefit

6.1. PERFORMANCE EFFECTS OF EXPLORATION 93

in terms of sample efficiency by introducing exploration. The exploration

agent estimating uncertainty using policy data shows similar results. The

training curve more closely follows the curve of PETS, likely due to the

lower amount of exploration. However, there is a similar trend in both

exploration agents in the checkpoint evaluations without exploration in

figure 5.4. Both agents outperform PETS in all model checkpoints, al-

though the random sampling agent shows a significantly higher reward

in the final checkpoint. These results further strengthen what is seen in

the halfcheetah task, that without continued exploration PETS will catch

up in performance given enough time. The reduced exploration with the

policy sampling agent results in a similar performance to PETS with Y ≃ 0,

while the more exploring random sampling agent achieves significantly

higher rewards in the end.

However, in the reacher task, this correlation between exploration and

increased performance is not present. Training rewards in figure 5.9 show

low reward during the early trials as a consequence of exploration, which

is similar to results seen on the walker task. However, all three methods

converge to the same performance after the first 20% of total training

steps, with almost no distinction between them for the rest of the training.

Comparing this to the exploration weighting in figure 5.10 does not show

the same correlation as with the walker results. Although the weighting

on the random sampling exploration is much higher and increases toward

the end of the training, the performance in terms of reward is almost

identical compared to the policy sampling agent. The midway evaluations

of each agent show that after the first checkpoint PETS achieves better

94 CHAPTER 6. DISCUSSION

performance than the two exploration agents. Suggesting that in this task,

the introduction of exploration reduces the agent’s performance rather

than improves it. However, the performance during training in figure 5.9

is very similar between all three agents. Thus, using exploration seems to

help maintain a similar performance to PETS than without exploration.

One thing to note about the reacher environment compared to the three

others is that the goal of the task changes. For instance, in the walker task,

the goal is constant; walk as far right as possible. However, in the reacher

task, the goal position of the end effector is random for every trial. This

type of randomness might naturally induce a form of exploration by simply

trying to solve the task, which is not the case in other environments. This

natural exploration in the reacher task indicates a potential reason for the

contradicting results, where exploration improves performance in both

walker and halfcheetah, but is reduced in reacher. Another cause of the

performance difference might be a result of the model overfitting on task

data and thus underfitting on general state data. However, this is further

discussed in section 6.1.3.

Lastly, the walker results show a spike in performance early in training

from all three agents (figure 5.4). This spike represents the highest reward

achieved by all agents during training and is not reached again during

the 200k training steps. This type of behaviour indicates that all agents

might be stuck in some form of local minimum. Although the exploring

agents achieve better performance than PETS, the exploration itself is not

enough to push the agent out of this minimum in the given training time.

6.1. PERFORMANCE EFFECTS OF EXPLORATION 95

Previous work shows that PETS is able to achieve higher rewards in a

similar environment by increasing the training time to 1 million steps[27].

Thus, more testing might be needed to see the full effects of introducing

exploration in this particular task.

In summary, although the development of Y shows similar results in both

walker and reacher, the performance in the walker environment is in-

creased with exploration, while it decreases in the reacher environment.

This behaviour suggests that the amount of exploration beneficial to per-

formance is highly dependent on the task to solve, and more exploration is

not necessarily always beneficial. However, in environments where explo-

ration is beneficial, the walker results further strengthen the importance

of continued exploration, as suggested by the halfcheetah results.

6.1.3 Model Uncertainty

Introducing targeted exploration in PETS shows varying effects in terms

of reward performance. However, in all tasks, excluding cartpole where

the task seems to be solved entirely, the use of exploration helps reduce

model uncertainty compared to PETS, generally with the random sampling

exploration agent resulting in the lowest model uncertainty.

Focusing on the walker and halfcheetah environments in figure 5.3 and

5.7 shows a clear distinction between all three methods. The uncertainty

in the walker models shows a much more significant distinction between

96 CHAPTER 6. DISCUSSION

the three methods, which correlates well with the amount of exploration

used in this task; more exploration seems to result in a more certain model.

Although smaller, the same distinction is seen in the halfcheetah model

uncertainty, where the amount of exploration, in general, is much lower.

These results back up the hypothesis that exploring uncertainty areas

results in higher information gain and, thus, lower model uncertainty.

The model uncertainty in the reacher task, seen in figure 5.11, also sug-

gests that exploration can help reduce uncertainty. However, the model

uncertainty increases slightly towards the end of the training, indicating

that the model might be overfitting on the data from the task subspace.

Thus, a larger model might be beneficial in this environment compared

to the rest. Moreover, the uncertainty is estimated on random data, and

the states used in this estimation might not be part of the task space on

which the model is trained, which can explain the development in model

uncertainty seen in figure 5.11.

However, despite the increase in uncertainty, both exploration agents show

reduced uncertainty compared to PETS, especially toward the end of the

training, when uncertainty starts to increase. This reduction indicates that

the exploration agents learn a more general dynamics model compared

to PETS. However, if model complexity is not high enough to adequately

capture the robot dynamics, this can also explain the reduced performance

in terms of reward.

The PETS agent is less likely to visit states outside of the task space than

6.1. PERFORMANCE EFFECTS OF EXPLORATION 97

the two exploring agents. Thus, resulting in lower uncertainty on task

data and higher uncertainty on general data, which is what the results in

figure 5.11 represent. However, despite any potential overfitting, similar

to walker and halfcheetah, these results also suggest a general model

improvement with the use of exploration.

In summary, the results suggest that the introduction of exploration yields

overall lower model uncertainty. Which fits well with both the hypothesis

and previous work on information gain [42], suggesting that information

gain is increased by utilizing uncertainty to target exploration.

98 CHAPTER 6. DISCUSSION

6.2 Uncertainty Estimation and Exploration

Weighting

The two versions of the exploration algorithm evaluate model uncertainty,

𝜎2𝑚 , in different ways, either using data from a random controller or using

data collected with an exploitation based policy. Results from all environ-

ments, excluding cartpole, show that the agent that utilizes policy data

results in faster convergence of Y. Consequently, the amount of exploration

is also reduced significantly in this exploration agent compared to the ran-

dom sampling version. In all tasks except cartpole, results show that the

reduced amount of exploration results in higher overall model uncertainty.

In the walker and halfcheetah tasks where exploration is beneficial for

performance, the reduced exploration also results in lower performance.

This difference implies that using a random controller to sample data to

evaluate uncertainty is the more prominent approach. At least with the

current update law for Y.

6.2.1 Limitations of the Exploration Weighting

If the algorithm is to be used in a physical system and not only in simu-

lations, the approach of sampling random data might be undesirable. In

a simulation, applying random actions works perfectly well. However,

applying random input to a physical system might cause unsafe or dam-

aging behaviour to the robot or environment. Thus, following a safer

6.2. UNCERTAINTY ESTIMATION AND EXPLORATION WEIGHTING 99

policy might be a better option. Results show that the lower amount of

exploration done by the policy sampling agent still improves model un-

certainty as well as performance compared to PETS which does not have

include any explicit exploration. However, if the algorithm is to allow for

more exploration while still maintaining the safety of following a planning

policy compared to random input, a different update law for Y might be

needed.

The current update law for Y is a linear scaling of the current model

uncertainty with the maximum uncertainty. Although easy to implement,

it might not offer the smoothest or optimal adaptation. In all of the tasks

used to test the algorithm, the value of Y experiences significant "jumps"

in value. This behaviour is evident in reacher and walker environments

(figure 5.10 and 5.2) where Y oscillates between the first few iterations. In

the halfcheetah environment (figure 5.6), Y rather quickly converges to 0,

discarding the potential benefit of further exploration. These effects might

be reduced by a less "aggressive" adaptation law. Smoothing out the curve

of Y might allow the algorithm to utilize the safety of a policy sampling

agent and still achieve the benefits from more exploration, as seen with

the random sampling. However, this is left for future work.

100 CHAPTER 6. DISCUSSION

6.3 Model Generalizability

The results in section 5.5 show the trained model’s ability to be used

for planning in different tasks than they were originally trained. The

overall results show that the trained exploration agent achieves higher

performance in all tasks tested compared to the PETS agent, indicating

a clear correlation between the reduced model uncertainty and ability to

learn the general dynamics of the environment.

When testing the trained agents on the halfcheetah environment by aiming

to run at a constant speed, the performance of both the PETS agent and the

exploration agent is very similar when running at the low speeds of 2 and

4𝑚/𝑠 , with only a slight performance improvement from the exploration

agent. However, running at a faster velocity of 8 𝑚/𝑠 shows a lower

reward for both agents, and there is a much more significant performance

difference between the two, as seen in figure 5.17. Since the agents are

trained to solve the task of running as fast as possible, they naturally

will run faster and faster with each training episode, and as mentioned in

section 5.5 the final agents achieve velocities of up to 10𝑚/𝑠 . Thus, the
lower velocities of 2 and 4 will naturally contribute to a a larger portion of

the sampled training data than the higher velocity of 8. This, in addition to

the time it takes to accelerate, can explain the better performance on the

lower desired velocities from both agents. Furthermore, as seen in figure

5.8, the final performance of both agents on the default halfcheetah task

are almost identical, which should suggest that the performance on higher

6.3. MODEL GENERALIZABILITY 101

velocities would be pretty similar as well. However, this is not the case as

the exploration agent achieves achieves significantly higher reward than

the PETS agent when tracking 8𝑚/𝑠 .

There are a few potential reasons for this behaviour. Firstly, the reduced

model uncertainty of the exploration agent seen in figure5.7 implies that

the model is generally more accurate. Thus, it should be able to more

precisely predict the dynamics of unknown states than the model trained

with PETS. Consequently, this should give better control of the cheetah in

lesser-known states, which suggests a reason for the exploration agents’

performance improvement over PETS when tracking a higher velocity.

Secondly, the exploration agent achieves higher sample efficiency than

PETS, as it is able to reach higher velocity states earlier in training, as sug-

gested by the checkpoint performance in figure 5.8. Thus the exploration

agent might sample more data in the higher velocity states than the PETS

agent. Since the trained model is more accurate in states similar to the

data it is trained on, the exploration agent then results in a model more

accurate on higher velocities. This, in turn, results in better performance

when tracking the higher velocity of 8𝑚/𝑠 .

Interestingly the performance of the exploration is slightly better on the

lower velocities as well, even though the PETS model is potentially trained

on higher amounts of low-velocity data. This slight performance difference

further strengthens the results that the overall model using exploration

is more accurate on a broader range of the state space with overall lower

uncertainty than the model from the PETS agent. Thus, the exploration

102 CHAPTER 6. DISCUSSION

algorithm learns a more generalized dynamics model.

The test performed on the walker environment where the new task was to

walk backwards instead of forwards suggests similar model improvements.

As seen in figure 5.18, the trained exploration agent achieves noticeably

better performance on this new task than the PETS agent. As discussed

in section 6.1.2, all agents seem to be stuck in some local minimum when

training ends after 200k steps. Thus, the performance difference seen in

figure 5.18 is likely a similar performance difference to the one seen at

the end of training and a potential consequence of the additional "is alive"

reward the walker environment gives. However, the performance is clearly

improved with the use of exploration, and the exploration agent is able

to keep the walker "alive" longer than the PETS agent when aiming to

solve the task of walking backwards. This result further suggests a gen-

eral improvement in terms of model accuracy when utilizing exploration

compared to PETS.

In summary, the trained exploration agent outperforms the PETS agent

when set to solve different tasks with the same dynamics. This result sug-

gests a more general and accurate model resulting from the incorporation

of exploration in training, which can be very useful in a transfer learning

setting. The model from one task forms a baseline for other tasks, with

a more accurate model the exploration can allow for faster training of

different agents in the same environment.

Chapter 7

Conclusion and Future Work

This chapter concludes the thesis. Firstly the conclusion summarises the

report and results discussed in chapter 6. Followed by a section on different

directions for future research.

103

104 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis presented a model-based reinforcement learning algorithm

incorporating explicit exploration in the state of the art algorithm PETS.

The algorithm was implemented as an extension to the existing framework

mbrl-lib [2]. Furthermore, relevant literature within the field of deep rein-

forcement learning was reviewed, and the algorithm’s performance was

analyzed in terms of its sample efficiency and the accuracy and uncertainty

of the resulting dynamics model.

The proposed algorithm utilizes uncertainty aware network ensembles

to model the environment’s dynamics and estimate model uncertainty.

By targeting exploration towards states with high model uncertainty, the

algorithm aims to increase information gain in each training step, resulting

in improved sample efficiency with lower model uncertainty in comparison

with the baseline PETS algorithm. Two versions of the algorithm were

assessed. One evaluates the general model uncertainty with random state

data to guide exploration over the entire state space. The other evaluates

model uncertainty on the task space by exploiting the current model

when sampling data for estimation. The version that utilized random data

generally utilized more exploration in all tasks than the one using task

space data, resulting in a more general and less uncertain dynamics model.

Results indicate that the introduction of explicit exploration is beneficial in

increasing sample efficiency and reducing model uncertainty by increasing

information gain and speeding up learning. Both versions of the explo-

7.1. CONCLUSION 105

ration algorithm improved the sample efficiency of PETS and resulted in

a more accurate dynamics model. However, results on the reacher envi-

ronment also suggest that the amount of beneficial exploration is highly

dependent on the task and can, if the task itself induces natural exploration,

reduce overall performance rather than improve it. Where exploration is

beneficial, the incorporation of exploration also results in a more gener-

alized dynamics model able to capture a broader range of the state space

dynamics compared to the dynamics model learned with PETS.

106 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2 Future Work

The benchmark performance is highly dependent on the amount of ex-

ploration done by the agent. Therefore, it would be interesting to further

investigate other options for updating the exploration weighting. By in-

corporating adaptive methods from model-free RL or adaptive control,

it is likely that the developed algorithm can achieve further improved

performance on tasks where exploration is beneficial.

Lastly, the algorithm developed in this thesis is based off of uncertainty

estimation and planning. However, the concepts regarding efficient model

learning through maximizing information gain applies to most MBRL algo-

rithms. Therefore, it would be interesting to investigate the potential for

incorporating explicit exploration in algorithms that train a policy. Dyna-

style methods that train a policy by sampling the trained model should

also benefit from a more certain and accurate model. Thus, incorporating

explicit exploration should also help increase performance of these types

of algorithms.

Bibliography

[1] Jens Erik Kveen. Dynamics Modelling with Probabilistic and Bayesian
Network Ensembles. Dec. 2021.

[2] Luis Pineda et al. “MBRL-Lib: A Modular Library for Model-based

Reinforcement Learning”. In: Arxiv (2021). url: https://arxiv.

org/abs/2104.10159.

[3] Cristina Pinneri et al. Sample-efficient Cross-Entropy Method for
Real-time Planning. 2020. doi: 10.48550/ARXIV.2008.06389. url:
https://arxiv.org/abs/2008.06389.

[4] Kurtland Chua et al. “Deep Reinforcement Learning in a Handful of

Trials using Probabilistic Dynamics Models”. In: Advances in Neural
Information Processing Systems 2018-Decem.Nips (2018), pp. 4754–

4765. issn: 10495258. arXiv: 1805.12114. url: https://arxiv.

org/pdf/1805.12114.pdf.

107

https://arxiv.org/abs/2104.10159
https://arxiv.org/abs/2104.10159
https://doi.org/10.48550/ARXIV.2008.06389
https://arxiv.org/abs/2008.06389
https://arxiv.org/abs/1805.12114
https://arxiv.org/pdf/1805.12114.pdf
https://arxiv.org/pdf/1805.12114.pdf

108 BIBLIOGRAPHY

[5] Richard S Sutton and Andrew G Barto. Reinforcement Learning, An
Introduction, Second Edition. MIT Press, 2018.

[6] David Silver et al. “Mastering the Game of Go with Deep Neural

Networks and Tree Search”. In: Nature 529.7587 (Jan. 2016), pp. 484–
489. issn: 0028-0836. doi: 10.1038/nature16961.

[7] Gerald Tesauro. “Temporal Difference Learning and TD-Gammon”.

In: Commun. ACM 38.3 (Mar. 1995), pp. 58–68. issn: 0001-0782. doi:

10.1145/203330.203343. url: https://doi.org/10.1145/

203330.203343.

[8] David Silver et al. “A general reinforcement learning algorithm that

masters chess, shogi, and Go through self-play”. In: Science 362.6419
(2018), pp. 1140–1144. doi: 10.1126/science.aar6404.url: https:

//www.science.org/doi/abs/10.1126/science.aar6404.

[9] Pieter Abbeel et al. “An Application of Reinforcement Learning

to Aerobatic Helicopter Flight”. In: Advances in Neural Information
Processing Systems. Ed. by B Schölkopf, J Platt, and THoffman. Vol. 19.

MIT Press, 2006. url: https://proceedings.neurips.cc/paper/

2006/file/98c39996bf1543e974747a2549b3107c-Paper.pdf.

[10] Timothy P. Lillicrap et al. Continuous control with deep reinforcement
learning. 2015. doi: 10.48550/ARXIV.1509.02971. url: https:
//arxiv.org/abs/1509.02971.

https://doi.org/10.1038/nature16961
https://doi.org/10.1145/203330.203343
https://doi.org/10.1145/203330.203343
https://doi.org/10.1145/203330.203343
https://doi.org/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://proceedings.neurips.cc/paper/2006/file/98c39996bf1543e974747a2549b3107c-Paper.pdf
https://proceedings.neurips.cc/paper/2006/file/98c39996bf1543e974747a2549b3107c-Paper.pdf
https://doi.org/10.48550/ARXIV.1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971

BIBLIOGRAPHY 109

[11] Aske Plaat, Walter Kosters, and Mike Preuss. Deep Model-Based
Reinforcement Learning for High-Dimensional Problems, a Survey.
2020. arXiv: 2008.05598 [cs.LG].

[12] Richard S. Sutton. “Dyna, an Integrated Architecture for Learning,

Planning, and Reacting”. In: SIGART Bull. 2.4 (July 1991), pp. 160–

163. issn: 0163-5719. doi: 10.1145/122344.122377. url: https:

//doi.org/10.1145/122344.122377.

[13] Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. “Improv-

ing PILCO with Bayesian neural network dynamics models”. In:

Data-Efficient Machine Learning workshop, International Conference
on Machine Learning. 2016.

[14] Marc Deisenroth and Carl Rasmussen. “PILCO: A Model-Based and

Data-Efficient Approach to Policy Search.” In: Jan. 2011, pp. 465–472.

[15] Michael Janner et al. When to Trust Your Model: Model-Based Pol-
icy Optimization. 2019. doi: 10.48550/ARXIV.1906.08253. url:
https://arxiv.org/abs/1906.08253.

[16] Michael Lutter et al. “Learning Dynamics Models for Model Predic-

tive Agents”. In: (2021), pp. 1–16. arXiv: 2109.14311. url: http:

//arxiv.org/abs/2109.14311.

[17] Shixiang Gu et al. “Continuous Deep Q-Learning with Model-based

Acceleration”. In: Proceedings of The 33rd International Conference
on Machine Learning. Ed. by Maria Florina Balcan and Kilian Q.

https://arxiv.org/abs/2008.05598
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://doi.org/10.48550/ARXIV.1906.08253
https://arxiv.org/abs/1906.08253
https://arxiv.org/abs/2109.14311
http://arxiv.org/abs/2109.14311
http://arxiv.org/abs/2109.14311

110 BIBLIOGRAPHY

Weinberger. Vol. 48. Proceedings of Machine Learning Research.

New York, New York, USA: PMLR, June 2016, pp. 2829–2838. url:

https://proceedings.mlr.press/v48/gu16.html.

[18] Thanard Kurutach et al. Model-Ensemble Trust-Region Policy Opti-
mization. 2018. doi: 10.48550/ARXIV.1802.10592. url: https:
//arxiv.org/abs/1802.10592.

[19] Tuomas Haarnoja et al. Soft Actor-Critic: Off-Policy Maximum En-
tropy Deep Reinforcement Learning with a Stochastic Actor. 2018. doi:
10.48550/ARXIV.1801.01290. url: https://arxiv.org/abs/

1801.01290.

[20] Susan Amin et al. A Survey of Exploration Methods in Reinforcement
Learning. 2021. doi: 10.48550/ARXIV.2109.00157. url: https:
//arxiv.org/abs/2109.00157.

[21] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer

feedforward networks are universal approximators”. In: Neural net-
works 2.5 (1989), pp. 359–366.

[22] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Under-

standing of a convolutional neural network”. In: 2017 International
Conference on Engineering and Technology (ICET). 2017, pp. 1–6. doi:
10.1109/ICEngTechnol.2017.8308186.

[23] Amit Borundiya. Activation Function for Multi-Layer Nerual Net-
works. June 2019. url: https : / / medium . com / @aborundiya /

https://proceedings.mlr.press/v48/gu16.html
https://doi.org/10.48550/ARXIV.1802.10592
https://arxiv.org/abs/1802.10592
https://arxiv.org/abs/1802.10592
https://doi.org/10.48550/ARXIV.1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://doi.org/10.48550/ARXIV.2109.00157
https://arxiv.org/abs/2109.00157
https://arxiv.org/abs/2109.00157
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://medium.com/@aborundiya/activation-function-for-multi-layer-neural-networks-a07ac473f69e

BIBLIOGRAPHY 111

activation-function-for-multi-layer-neural-networks-

a07ac473f69e.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016. Chap. 6.

[25] Glenn Palmer et al.Calibrated bootstrap for uncertainty quantification
in regression models. 2021. doi: 10.48550/ARXIV.2105.13303. url:
https://arxiv.org/abs/2105.13303.

[26] Zdravko I Botev et al. “Chapter 3 - The Cross-Entropy Method

for Optimization”. In: Handbook of Statistics. Ed. by C R Rao and

Venu Govindaraju. Vol. 31. Handbook of Statistics. Elsevier, 2013,

pp. 35–59. doi: https://doi.org/10.1016/B978-0-444-53859-

8.00003-5. url: https://www.sciencedirect.com/science/

article/pii/B9780444538598000035.

[27] Tingwu Wang et al. “Benchmarking Model-Based Reinforcement

Learning”. In: (), pp. 1–25. url: https://www.cs.toronto.edu/$%

5Csim$tingwuwang/mbrl.pdf.

[28] Tingwu Wang and Jimmy Ba. Exploring Model-based Planning with
Policy Networks. 2019. doi: 10.48550/ARXIV.1906.08649. url:
https://arxiv.org/abs/1906.08649.

[29] Christopher M. Bishop. Pattern recognition and machine learning.
Springer Verlag, 2006.

https://medium.com/@aborundiya/activation-function-for-multi-layer-neural-networks-a07ac473f69e
https://medium.com/@aborundiya/activation-function-for-multi-layer-neural-networks-a07ac473f69e
https://medium.com/@aborundiya/activation-function-for-multi-layer-neural-networks-a07ac473f69e
https://medium.com/@aborundiya/activation-function-for-multi-layer-neural-networks-a07ac473f69e
http://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.2105.13303
https://arxiv.org/abs/2105.13303
https://doi.org/https://doi.org/10.1016/B978-0-444-53859-8.00003-5
https://doi.org/https://doi.org/10.1016/B978-0-444-53859-8.00003-5
https://www.sciencedirect.com/science/article/pii/B9780444538598000035
https://www.sciencedirect.com/science/article/pii/B9780444538598000035
https://www.cs.toronto.edu/$%5Csim$tingwuwang/mbrl.pdf
https://www.cs.toronto.edu/$%5Csim$tingwuwang/mbrl.pdf
https://doi.org/10.48550/ARXIV.1906.08649
https://arxiv.org/abs/1906.08649

112 BIBLIOGRAPHY

[30] Sanket Kamthe and Marc Peter Deisenroth. Data-Efficient Reinforce-
ment Learning with Probabilistic Model Predictive Control. 2017. doi:
10.48550/ARXIV.1706.06491. url: https://arxiv.org/abs/

1706.06491.

[31] Richard Bellman. “Dynamic programming”. In: Science 153.3731

(1966), pp. 34–37.

[32] Anusha Nagabandi et al. Neural Network Dynamics for Model-Based
Deep Reinforcement Learning with Model-Free Fine-Tuning. 2017.
arXiv: 1708.02596 [cs.LG].

[33] Amol Mandhane et al. MuZero with Self-competition for Rate Control
in VP9 Video Compression. 2022. doi: 10.48550/ARXIV.2202.06626.
url: https://arxiv.org/abs/2202.06626.

[34] Open AI. Gym. url: https://gym.openai.com.

[35] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics

engine for model-based control”. In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2012, pp. 5026–5033.
doi: 10.1109/IROS.2012.6386109.

[36] AdamPaszke et al. “PyTorch: An Imperative Style, High-Performance

Deep Learning Library”. In: Advances in Neural Information Process-
ing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019,

pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-

https://doi.org/10.48550/ARXIV.1706.06491
https://arxiv.org/abs/1706.06491
https://arxiv.org/abs/1706.06491
https://arxiv.org/abs/1708.02596
https://doi.org/10.48550/ARXIV.2202.06626
https://arxiv.org/abs/2202.06626
https://gym.openai.com
https://doi.org/10.1109/IROS.2012.6386109
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

BIBLIOGRAPHY 113

pytorch - an - imperative - style - high - performance - deep -

learning-library.pdf.

[37] Omry Yadan. Hydra - A framework for elegantly configuring complex
applications. Github. 2019.url: https://github.com/facebookresearch/
hydra.

[38] Sebastian Thrun. Efficient Exploration In Reinforcement Learning.
Tech. rep. CMU-CS-92-102. Pittsburgh, PA: Carnegie Mellon Univer-

sity, Jan. 1992.

[39] Deepak Pathak et al. Curiosity-driven Exploration by Self-supervised
Prediction. 2017. doi: 10.48550/ARXIV.1705.05363. url: https:
//arxiv.org/abs/1705.05363.

[40] Marc G. Bellemare et al. Unifying Count-Based Exploration and In-
trinsic Motivation. 2016. doi: 10.48550/ARXIV.1606.01868. url:
https://arxiv.org/abs/1606.01868.

[41] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-Supervised
Exploration via Disagreement. 2019. doi: 10.48550/ARXIV.1906.
04161. url: https://arxiv.org/abs/1906.04161.

[42] H. S. Seung, M. Opper, and H. Sompolinsky. “Query by Commit-

tee”. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory. COLT ’92. Pittsburgh, Pennsylvania, USA: Associa-

tion for Computing Machinery, 1992, pp. 287–294. isbn: 089791497X.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra
https://doi.org/10.48550/ARXIV.1705.05363
https://arxiv.org/abs/1705.05363
https://arxiv.org/abs/1705.05363
https://doi.org/10.48550/ARXIV.1606.01868
https://arxiv.org/abs/1606.01868
https://doi.org/10.48550/ARXIV.1906.04161
https://doi.org/10.48550/ARXIV.1906.04161
https://arxiv.org/abs/1906.04161

114 BIBLIOGRAPHY

doi: 10.1145/130385.130417. url: https://doi.org/10.1145/

130385.130417.

[43] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scien-

tific Computing in Python”. In: Nature Methods 17 (2020), pp. 261–
272. doi: 10.1038/s41592-019-0686-2.

https://doi.org/10.1145/130385.130417
https://doi.org/10.1145/130385.130417
https://doi.org/10.1145/130385.130417
https://doi.org/10.1038/s41592-019-0686-2

M
odel-Based Exploration in Reinforcem

ent Learning
Jens Erik Kveen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Jens Erik Kveen

Sample Efficient Deep Reinforcement
Learning via Model-Ensemble-Based
Exploration

Master’s thesis in Cybernetics and Robotics
Supervisor: Prof. Jan Tommy Gravdahl
Co-supervisor: Akhil S. Anand
June 2022M

as
te

r’s
 th

es
is

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Contributions
	Outline

	Background
	Neural Network Models
	Fully Connected Neural Networks
	Probabilistic Neural Networks
	Ensembles

	Cross Entropy Method
	Standard CEM
	CEM for Trajectory Optimization

	Reinforcement Learning
	Markov Decision Processes
	Policies and Value Functions
	Optimal Policies
	The Reinforcement Learning Problem

	Model-Based Reinforcement Learning
	Model Learning
	Model Utilization
	PETS - Probabilistic Ensembles with Trajectory Sampling

	Open AI gym
	Gym Environments
	MuJoCo

	MBRL-Lib
	Replay Buffer
	Dynamics Models
	Configuration

	Developing an RL algorithm
	Previous Work and Inspirations
	The Exploration Algorithm
	Uncertainty-Based Exploration
	Balancing Exploration and Exploitation
	Evaluating Model Uncertainty
	Algorithm Summary

	Implementation Details
	Model Exploration Wrapper
	Sampling Data for Uncertainty Estimation
	Schematic Implementation Overview
	Configurations
	Task Environments
	Cartpole
	Halfcheetah
	2D Walker
	7-DOF Reacher
	Summary

	Experimental Results
	2D Walker
	Halfcheetah
	Reacher
	Cartpole
	Model Transferability

	Discussion
	Performance Effects of Exploration
	Low Exploration Utilization
	Higher Exploration Utilization
	Model Uncertainty

	Uncertainty Estimation and Exploration Weighting
	Limitations of the Exploration Weighting

	Model Generalizability

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

