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A B S T R A C T   

One challenge that has received attention in maritime industry is assessing the risk level of dynamic positioning 
(DP) systems in emergency situations. Statistics from recent years have shown that the risk level of some DP 
operations is above the industry’s risk criteria. Operators have a significant impact on incidents’ consequences by 
making responsive decisions. In emergencies, one is afforded little time to make a decision. Available risk models 
are not efficient enough to provide systems’ risk level in a short period of time. 

In this study, the application of a new supervised methodology to assist decision making in emergencies is 
proposed. This method significantly reduces the processing and execution time of a system’s probabilistic risk 
assessment models. In this methodology, the most probable failure scenarios are generated using an optimization 
model. The objective of the optimization model in this study is to find scenarios with the highest occurrence 
probabilities. The constraints are a system’s dynamic simulation and its risk model. The proposed method is 
applied to three incidents that occurred in the Norwegian offshore sector in previous years. The results show that 
the model can predict the most probable scenarios with an acceptable accuracy in a very short time.   

1. Introduction 

During the early development of dynamic positioning (DP) systems, 
researchers and engineers focused on a number of important aspects, 
including technology development [1,2] and regulation [3]. Moreover, 
in recent years DP operational reliability and risk assessment have 
gained significant traction. 

In [4], the quantitative reliability of offshore multi-megawatt ca
pacity diesel electric DP systems is assessed based on contemporary 
components technology, revealing that DP classes 1, 2, and 31 have 
mean time to fail periods of 0.3, 2.1 and 2.5 years, respectively. These 
results may be used for the reliability-centered design and maintenance 
planning of multi-megawatt capacity DP systems. Moreover, Chen et al. 
[5] have developed a safety model based on the barrier concept for DP 
drilling operations. Three main barrier functions (barrier functions to 
prevent loss of position, to arrest vessel movement, and to prevent loss of 
well integrity) are considered in the modeling. Analyses of each barrier 

function identify the associated barrier elements, and the authors pro
pose recommendations to strengthen each barrier element. 

In [6] and [7], Man, Technology and Organization (MTO) analysis is 
applied to investigate the cause and barrier failures of nine reported 
accidents/incidents of DP shuttle tankers occurring over a 16-year 
period (2000–2015). The results show that the majority of these acci
dents are caused by a combination of technical, human, and organiza
tional failures. In addition, human error is found to constitute one of the 
major factors involved in these incidents. 

The Institute for Energy Technology has developed a method called 
Petro-Human Reliability Analysis (HRA) to analyze human actions as 
barriers in major accidents in the petroleum industry. In [8], this method 
is applied to a dynamic positioning drilling operation, and the risk level 
is calculated for a drive-off scenario. In addition, in this report the 
personal shaping factors of operators are identified, and the related 
quantities are presented. The study notes that personal shaping factors 
could be used to quantify human errors based on the Standardized Plant 
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Analysis Risk-Human Reliability Analysis (SPAR-H) method. 
In Dong et al. [9], generic scenarios of position loss during the 

operation phase of DPs are identified. The results show that position loss 
normally involves complex human-machine interactions. According to 
the study’s findings, the time aspect plays a significant role in devel
oping an online risk model for DP operations. Hogenboom et al. [10] 
have highlighted the importance of considering human operator and 
human reliability in the design and operation of DP systems. In this 
paper, a functional model of the DP system is presented, and the current 
function allocation of control and its impact on an operator’s situation 
awareness and performance are discussed. It is concluded that the 
visualization of operational risk could enhance operator performance 
and reliability. 

According to the reviewed literature, human error has a remarkable 
impact on DP incidents, especially in emergency situations. Having a 
clear picture of the risk level of decision scenarios could help operators 
to make better decisions [11–13], and consequently ensure safer DP 
operations. In this study, a dynamic probabilistic risk assessment 
(DPRA) methodology for DP systems is developed. This methodology 
considers the interactions of MTO over time in an emergency situation, 
and provides the risk level of the system accordingly. 

The dynamic probabilistic risk assessment method is a powerful tool 
in assessing the risk level of complex systems [14] such as DPs. DPRA 
refers to an emerging class of PRA methods that generate risk scenarios 
through model-based simulations of systems such as DPs and their op
erators’ responses to accident initiators [15]. The dynamic PRA 
approach offers several advantages over the conventional approaches 
currently used by the marine industry worldwide. These advantages 
include: (1) time-dependent prediction of operator error-forcing con
texts; (2) better representation of position control success criteria; and 
(3) considerable reduction in results’ analyst-to-analyst variability. In 
[16], a dynamic risk assessment framework for DPs is proposed. The 
framework supports the decision-making of operators with providing 
failure probability of different possible decision scenarios. This frame
work considers technical, human and organizational factors in the 
modeling process. The input data including frequencies and failure 
probabilities are gathered from the International Marine Contractors 
Association (IMCA) annual incident reports on DP systems from 2004 to 
2015 (IMCA, 2017). The framework is applied to a loss of position 
incident that occurred on a mobile offshore drilling unit. 

With the growth in dynamic systems and the complexity of the in
teractions between hardware and humans, it is extremely difficult to 
enumerate risky scenarios using conventional DPRA methods [17,18]. 
As the complexity of the system increases, system behavior would be 
more uncertain [19]. In a more uncertain environment, the number of 
possible failure scenarios increases significantly. In the DPRA conven
tional methods, all these scenarios should be analyzed, and system risk 
level is calculated accordingly. Therefore, increasing the number of 
possible scenarios due to uncertainty, increases the execution time of the 
conventional DPRA methods dramatically. The effect of system 
complexity on DPRA methods is explained in more detail in [17] and 
[18]. 

In our study, presented in the accompanying article (Part 1) [20], a 
supervised dynamic probabilistic risk assessment methodology is pro
posed. In this methodology, a new investigation strategy is employed 
that searches for the failure scenarios of interest, instead of analyzing all 
possible failure scenarios. The scenarios of interest could be the sce
narios with high risk level or the most probable scenarios. The modeler 
could define the desirable scenarios based on the goal and scope of the 
study. 

In the proposed supervised DPRA method, optimization algorithms 
are explicitly used to guide the DPRA model to find and analyze sce
narios of interest (without solving all possible failure scenarios). In the 
accompanying article (Part 1), a comparison between execution time of 
a conventional DPRA (dynamic event sequence diagrams) and the su
pervised (optimization based) DPRA methods is performed. Results 

show that the execution time of the supervised optimization based DPRA 
method is significantly lower than the conventional method. In the 
current study, the application of this method on risk-informed decision- 
making in DP systems is presented. The main contributions can be 
summarized as follows:  

• A supervised DPRA methodology for DP operations in emergencies is 
developed (Section 3).  

• Human and organizational factors are considered in the DPRA 
(Section 3.4).  

• Three DP incidents are considered as case studies, and the results, 
including the most probable failure scenarios and risk levels, are 
evaluated (Sections 4.1, 5.1, and 6.1).  

• Sensitivity analysis on operational and environmental characteristics 
are performed, and the most significant parameter within DP in
cidents is identified (Sections 4.2, 5.2, 6.2, and 7). 

The paper is organized as follows: a brief overview of the method
ology developed is introduced in Section 2. Details of the methodology 
are presented in Section 3. In Sections 4, 5 and 6, three DP incidents are 
modeled, the results of which are presented accordingly. In Section 7, 
the results of three case studies are summarized and analyzed. In Sec
tion 8, the usefulness and drawbacks of the proposed methodology are 
discussed. Finally, the conclusions and the contributions of this study are 
presented in Section 9. 

2. General methodology and concept 

Fig. 1 presents a flow diagram of the dynamic probabilistic risk 
assessment based on supervised learning algorithms developed in the 
accompanying article (Part 1), [20]. As illustrated in Fig. 1, the 
measurable data from a DP system are model inputs; these inputs might 
constitute alarms, operational or environmental sensor data. These data 
enter supervised failure scenario generation module. In this module, 
desired failure scenarios are generated using an optimization model. The 
optimization model is developed in five consequences steps, which are 
explained in the following sections. Based on these steps, a general risk 
assessment model for the DP system under study is developed. The risk 
assessment model consists of pre-calculated offline information, which 
are not required to be updated in emergency situations. This information 
includes characteristic of the components that could be considered 
constant in an emergency (short term), e.g., engine efficiency, operators 
training level, etc. 

Fig. 1. Flow diagram of the supervised probabilistic risk assessment.  
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In real-time, the model is updated based on the measurement data 
and the output is generated. The output of the module is a set of failure 
scenarios which are sorted based on a metric such as failure probability 
or significance of failure consequences. The metric should be defined in 
the optimization model by the modeler. Based on the defined metric, 
failure scenarios are sorted and reported to the operators. This infor
mation could assist operators to make better decisions in emergency 
situations. This methodology could be applied to any type of DP systems. 

The supervised failure scenario generation utilizes an optimization 
model to build desired scenarios such as success scenarios, failure sce
narios or scenarios with a high impact. The generation of failure sce
narios is of interest in this study, i.e., the proposed optimization model 
helps to generate failure scenarios in a DP system, without generating all 
other possible scenarios. As a result, the execution time is significantly 
improved, and the probabilistic risk level can be calculated in a very 
short execution time. One of the main applications of this method is in 
emergency situations in which operators have limited time to make 
decision. This method can generate a risk level of alternative operating 
scenarios in a very short execution time. 

An optimization model consists of an objective function and a 
number of constraints. The objective function is the real-valued function 
whose value is to be either minimized or maximized over the set of 
feasible alternatives. Moreover, a constraint is a condition of the opti
mization problem that the solution must satisfy. There are several types 
of constraints, including inequality, equality and integer constraints. 
The set of candidate solutions that satisfies all constraints is called the 
feasible set. In order to find the optimal solution among the feasible set, 
an optimization algorithm should be executed. Multiple solution algo
rithms have been proposed for optimization problems. According to the 
performance of the solution algorithm, the best suitable algorithm 
should be selected for the system under study. Further information on 
optimization models and solution algorithms could be found in [21,22]. 

3. Implementation of the methodology 

In this section, the steps of implementing the supervised failure 
scenario generation on a complex system are presented. As mentioned, a 
DP system is an example of a complex system. It represents a computer- 
controlled system to automatically maintain a vessel’s position and 
heading by using its own components [16]. A DP system consist of 
computer, propulsion, reference, power and control systems. The oper
ating and environmental condition data are collected using reference 
systems. These data are analyzed in the DP computer and action signals 
are sent to propulsion and control systems to maintain the vessel posi
tion and heading. All these components should work properly to be able 
to control the vessel. Failure of one component could result in the failure 
of the DP system. The crew have an important role in the case of com
ponents’ failure. They could detect and diagnose faulty components, and 
make a decision to recover the DP system or control the vessel manually 
based on the system and environmental conditions. 

At each step presented in this section, a general modeling strategy is 
followed by the implementation of the strategy in a DP system. 

The decision-making process consists of four main steps, including 
detection, diagnosis, decision making and execution that interacts with 
the DP system. In this study, the interaction between human operator 
and DP components are models; and the risk of decision making in 
emergencies is presented and discussed. In the following sub-sections, 
the steps of the modeling, presented in Fig. 1, are followed and the 
proposed methodology is applied to the case studies. 

3.1. Step 1: goal, scope and boundary 

This study seeks to generate failure scenarios of DP systems in 
emergency situations. A DP emergency situation is a condition in which 
a system failure results in an inability to maintain position or heading 
control [23]. A system boundary comprises environmental and technical 

factors that affect an operator’s decision making and action process. 
Decisions are made according to detection and diagnosis phases, with 
actions taken accordingly. Actions may be taken either automatically or 
manually. In automatic mode, a DP system is utilized to take the action 
and to try to maintain the vessel’s position, whereas in manual mode an 
operator controls the vessel’s position and heading [24]. 

3.2. Step 2: initial events and end states 

Initial events may be any abnormal condition of the vessel that leads 
to a failure to maintain its position. End states can be OK status 
(maintain position), or failure status (loss of position, collision, me
chanical damage, etc.). 

3.3. Step 3: dynamic event sequence diagram 

The event sequence diagram method is used in risk assessment 
problems [25,26]. Dynamic event sequence diagrams (DESDs) are 
extended versions of event sequence diagrams (ESDs) that could be used 
as a DPRA methodology. DESDs can consider system dynamic behavior 
in the modeling process [27,28]. They can be used in combination with 
dynamic methodology computational algorithms, which seek to solve 
the underlying probabilistic dynamics behavior of complex systems over 
time. The probability of events in DESDs could be quantified based on 
different probabilistic methods, such as Bayesian networks and fault 
trees, which are discussed in the following sections. 

There are different considerations on the development of DESDs, e. 
g., timestamps are implicit with BNs but usually explicit with DESDs 
models. More details on DESD methodology could be found in [28–30]. 

Fig. 2 presents a DESD for decision making processes of DP systems in 
emergency situations. This diagram contains all the possible event se
quences that could occur after an initial event under different opera
tional, human, and environmental conditions. 

The first layer presents detection alternatives. Alarms represent the 
most common means of incident detection; however, sometimes oper
ators perform other methods, including checking the vessel’s position or 
making other visual detections such as of the engine room or weather. 
The probability of alarm detection depends on an alarm system’s health 
status as well as operator’s personal shaping factors. Moreover, the 
occurrence probability of performing a “position check” or “other visual 
detection” is contingent on an operator’s personal shaping factors. For 
instance, it is more probable that an experienced operator performs 
“other visual detections” than an entry-level operator. The occurrence 
probabilities of these three detection processes are a function of an op
erator’s behavioral factors, and can be calculated using the Bayesian 
networks (BNs) presented in Section 3-4. In order to be rendered more 
practical, an operator’s measurable behavioral factors, including fitness 
for duty, stress and training level, are selected as BN inputs. These pa
rameters can be updated in real time in a DP vessel. 

The next layer presented in DESD is the diagnosis phase. In this layer, 
operators try to figure out the status of the system and control the sit
uation in order to return the system to its normal operation. In this stage, 
if there is enough time (defined in [8]), operators check DP components 
in order to identify the main causes of the incident as well as the con
sequences (drift off, drive off and potential incidents). Alternatively, 
operators attempt to control the situation using the available informa
tion from the detection layer and DP screens. In addition to available 
time, the probability of performing components diagnosis depends on 
detection accuracy. If the detection accuracy is high, components 
diagnosis is unnecessary, as sufficient information has already been 
attained from the detection layer. Table 1 presents the assumed rules 
based on expert knowledge for connection between the detection layer 
and the diagnosis events (control situation, components diagnosis) as a 
function of time and detection accuracy. The limited/enough time and 
detection accuracy levels could be determined by experts. In this study, 
the limited and enough times are defined based on [8] and a high 
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accuracy level is set to 0.95 and above. 
If components diagnosis is selected, the probabilities can be calcu

lated using the associated fault trees (FTs) presented in Section 3.4. In 
addition, the probabilities of components selection are equal, unless a 
clear alarm from one component is detected. In such a case, the prob
ability of selecting a related component is higher. 

Following components diagnosis, the possible consequences should 
be identified. In this step, the probabilities of consequences including 
drive off, drift off, potential incident and dismiss alarm are calculated. 
The probabilities of drive off, drift off and potential incident depend on 
components status and are calculated according to The International 
Marine Contractors Association (IMCA) reports from 2004 to 2015 [31]. 
If there is no fault in the components and environmental conditions, 
dismiss alarm is selected as an active event in the DESD. 

As mentioned, the other step in the diagnosis process is “control 

situation”. The probability of this event can be calculated using the BN 
presented in Section 3.4. The next layer of the DESD is decision making 
and execution. In this layer, operators decide to stop the vessel 
(disconnection) or try to keep position. In either case, operators can 
select manual or automatic mode to perform the task. Selecting the task 
(disconnection or keep position) and mode (automatic or manual) de
pends on multiple factors, including standards, an operator’s personal 
shaping factors (PSFs), components status, available time and so forth. 

For instance, in DP drilling units, specific operating guidelines 
(WSOG) are used to define the actions that should be taken by a dynamic 
positioning operator in the event of certain changes to the DP units’ 
capability [32]. Whenever a system passes the yellow region (defined in 
WSOG) and enters the red region (defined in WSOG), the operator must 
perform disconnection. As a result, if the vessel operates in a “red situ
ation”, the probability of selecting disconnection mode is higher than 
keeping position. In “green & yellow situations”, selecting the keep 
position branch has a higher probability. 

Moreover, based on the DP’s functionality, it is assumed that the 
disconnection or keep position modes are performed automatically un
less a failure in reference and/or computer system occurs. The manual 
mode selection rules are defined based on expert knowledge and pre
sented in Table 2. For all other conditions, the probability of manual or 
automatic modes being selected can be considered equal. 

The probabilities of automatic/manual disconnection or keep posi
tion performance can be calculated using the fault trees and Bayesian 

Fig. 2. Dynamic event sequence diagram of DP systems.  

Table 1 
Selection rules of connection alternatives between detection and diagnosis 
layers.  

Time Detection accuracy Connection 

Limited High/Low Connection to control situation 
Enough High Connection to control situation 
Enough Low Connection to components diagnosis  
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networks presented in Section 3.4. 
One of the other layers in decision making and execution is per

forming recovery actions. It is assumed that the probability of per
forming a recovery action depends on the time available. In situations 
with limited time, no recovery actions are performed. However, if there 
is sufficient time, recovery actions can be performed. According to 
expert knowledge, the recovery actions of DP systems in emergency 
situation are limited to seven scenarios, which are presented in Table 3. 
The required execution times of each recovery scenario are gathered 
based on expert knowledge as well, and are shown in the final column of 
Table 3. 

3.4. Step 4: fault trees and Bayesian networks 

The failure probability of each event presented in the DESD (Fig. 2) 
can be calculated using the related fault trees and Bayesian networks 
presented in [16]. The fault trees of the propulsion, reference, power, 
automatic control and manual control systems are presented in [16]. 

The remainder of the events presented in the DESD are human- 
related. The failure probabilities of these events depend on the type of 
action performed. In [16], the Bayesian networks of detection, diag
nosis, decision making, and execution actions are constructed and 
quantified. Figs. 3, 4 and 5 present the Bayesian networks presented in 
this study for detection, diagnosis, decision making and execution ac
tions, respectively. 

The quantification process of the presented Bayesian networks is 
discussed in detail in [33]. It should be noted that in this study, the 
parent nodes are modified; and nodes that can be quantified using 
sensors or questionnaires with operators are considered as child nodes. 
These nodes include an operator’s fitness for duty, stress and training 
level. The rest of the child nodes, such as ergonomics and work pro
cesses, are not included in this study. Eliminating these nodes will result 
in a more realistic and certain model. In the abstracted model, the status 
of all parent nodes can be updated based on the real data from sen
sors/questionnaires, i.e., there is no need to assume the value of un
known inputs. Adding assumption on unknown input data results in 
model uncertainty, that is eliminated in the abstracted model. 

3.5. Step 5: DP system simulation 

As mentioned in Section 3.3, some of the connection probabilities are 
dependent on the time available. For instance, if there is enough time 
(defined in [8]), components diagnosis can be performed, or recovery 
actions can be taken. In this study, a dynamic simulator is utilized to 
calculate the remaining available time, considering operation and 
environmental conditions [34]. This time depends on components status 

(engines, thrusters, control system, etc.), environmental conditions 
(wind force and direction, wave force and direction, etc.), and DP type. 
For instance, the remaining available time in DP drilling units is equal to 
the minimum required time that the vessel reaches the red limit, as 
presented in Fig. 6. The remaining available time in DP supply vessels is 
equal to the minimum required time that collision occurs between the 
DP supply vessel and a floating storage and offloading vessel (FSO). This 
time is contingent on DP components status and environmental condi
tions. The remaining available time can be defined for other types of DP 
systems based on DP operating functions. This definition can be used in 
DP dynamic simulators to formulate the calculation of the remaining 
available time. 

Fig. 7 illustrates a sample of the outputs of a dynamic simulator. As 
can be seen, the operational and environmental conditions of the DP 
system, including wave, current power system, control system and 
propulsion system characteristics, are taken as inputs [36]. Using dy
namic simulation, the position and the velocity of the DP system over 
time are calculated. In this example, it is assumed that the DP vessel is 
20 m away from the red limit. The dashed red line in the reference 
position figure presented in Fig. 7 shows the time it takes to move 20 m 
into the red area, which is about 900 s. 

3.6. Optimization model 

An optimization model is used to generate desired failure scenarios, 
without exploring all possible scenarios after an incident. The first step 
in developing an optimization model is to define an objective function. 
The objective function determines the scenarios that should be gener
ated, and it is defined based on the scope/goals of the study. 

The objective of this study is to find the most probable failure sce
nario, and is presented in Eq. (1) 

Max
∑m

j=1

∑n

i=1

(
pij × xij

)
+
∑r

k=1

∑o

j=1

∑l

i=1

(
pijk × xijk

)
(1)  

where the first term presents the occurrence probability of each event in 
each layer of the event sequence diagram. n is the number of events in 
each layer, and m is the number of total layers, which is equal to 8, as 
presented in Fig. 2. The second term presents the connection probability 
between events in two neighboring layers. l is the number of events in 
the initial layer, and 0 is the number of events in the secondary layer. r is 
the total number of possible connections between layers. pi presents the 
probability of an event or connection, while xi is a binary variable {1,0} 
that indicates the existence and/or non-existence of an event or 
connection, e.g., an event/connection with xi=1 represents the existence 
of the event/connection in the most probable scenario. 

The probability of events and connections is a function of the oper
ational and environmental conditions in question. Based on the ESD, 
FTs, BNs (Section 3.4) and the dynamic simulation model (Section 3.7) 
developed and presented in the previous section, these functions are 
quantified and presented as optimization model constraints, i.e., all the 
governing principle rules of the ESD, FTs, BNs and the dynamic simu
lation model are considered as optimization model constraints. 

The objective function and constraints of this optimization model are 
nonlinear and decision variables are integer. Therefore, mixed-integer 

Table 2 
Selection rules of automatic or manual modes.  

Component Status Connection 

Reference system Failed Manual mode 
Computer Failed Manual mode  

Table 3 
Recovery actions of each component and related timelines.  

Component Recovery actions Required execution 
time 

Reference 1- Change position reference 3–5 s 
2- Recalibrate reference origin 50–60 s 
3- Deselect faulty sensor 3–5 s 

Control 4- Reference system recovery 3–60s 
5- Tuning software 30 s 

Power 6- Start new generator and connect it 30–60 s 
Propulsion 7- Safe start of equipment on alternative 

switchboard 
30–60 s  

Fig. 3. Bayesian network of detection probability [16].  
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nonlinear programming (MINLP) methods can be utilized to find the 
optimal solution. Multiple solution algorithms have been proposed for 
MINLP problems [37]. According to the performance of the solution 
algorithm, a modified particle swarm optimization (PSO) algorithm [38] 
is selected for the system under study. 

3.7. Probabilistic risk assessment 

The outputs of the optimization model are the optimal decision 
variable matrix X, and its probability value. The X matrix represents the 
most probable failure scenario with binary values. For instance, the 
following matrix is an example of an optimal scenario. Each column is a 
layer presented in the ESD, i.e., the first column is the detection layer, 
the second and third columns are diagnosis layers, the fourth, fifth and 
sixth columns are the decision making and action taking layers, and the 
last column is the end state layer. These layers are presented and 

separated with dashed lines in Fig. 2. 

XOpt =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 1 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2) 

According to this example, at the detection layer (first column), the 
alarm is detected (the second element is equal to one and the rest are 
zero). Then, at the second column, diagnosis on the computer system is 
performed (X32=1 and the rest of the elements are equal to zero). The 
rest of the columns can be translated accordingly (element equal to 1 
shows the existence of the related event in the ESD). 

Another output of the optimization model is the probability of the 
optimal scenario. For instance, p(Xopt) may be equal to 0.01. This means 
that the probability of the optimal scenario is equal to 0.01. 

After finding the most probable scenario, this scenario is eliminated, 
and the optimization model is run again to find the second most prob
able scenario. This process is repeated until the least desired scenario is 
generated. 

In the following section, the model is applied to three incidents as 
case studies. The inputs of the model are gathered from the investigation 
reports of each incident. The model is run, and the most probable sce
narios are generated for each case study accordingly. 

4. Application 1: collision of a DP shuttle tanker on November 
13, 2006 

4.1. Incident summary and failure scenario generation 

On November 13, 2006, a DP shuttle tanker touched an FSO as it 
started its loading operation. The shuttle tanker sustained some damage 
above the waterline in the bow area. The FSO suffered damage to its 
stern and to some equipment in the after part of the poop deck. Ac
cording to the established investigation report, the DP shuttle tanker was 
operating in automatic positioning mode and had just received and 
secured the mooring hawser. As the bow crew was in the process of 
preparing the loading hose transfer, a blackout of the starboard main 
switch board (MSWB) occurred. The blackout caused a loss of starboard 
main propulsion as well as a loss of side thrusters numbers 2 and 4, as 
these were powered by the said MSWB. 

Unexpectedly, side thrusters’ numbers 1 and 3 also stopped due to a 
lack of power. As per DP class 2 requirements, these thrusters are 
powered by the port MSWB, for which the main power is completely 
separated from the starboard MSWB, and thus its main power was not 
affected by the blackout. With only the port main propeller and rudder 
available on the DP, the vessel remained in DP automatic positioning 
mode. The DP system was not capable of maintaining or controlling its 
position with only one rudder and one propeller. About four minutes 

Fig. 4. Bayesian network of diagnosis and decision-making probabilities [16].  

Fig. 5. Bayesian network of execution probability [16].  

Fig. 6. DP drilling operation zones [35].  
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later, the shuttle tanker hit the FSO with approximately 2.4 knots [39]. 
The impact caused visual damage to both vessels, but no physical in
juries to personnel. The sequence of events is highlighted in the dynamic 
event sequence diagram illustrated in Fig. 8. The presented DESD is 
developed based on the general DESD of DP system (Fig. 2) 

The supervised DPRA model is applied to this case study, and failure 
scenarios are generated accordingly. The inputs of the model are derived 
from the investigation report of this incident [39], and are presented as 
follows.  

• Blackout has occurred.  

• The operator has enough fitness for duty and training, and the stress 
level is normal.  

• There is not enough time and the DP vessel is in an emergency 
situation.  

• The environmental conditions including wind and waves (force and 
directions) are in normal conditions.  

• The reference and computer systems work properly.  
• The propulsion system including thrusters has failed. 

Based on these inputs, the model is run, and all failure scenarios (271 
scenarios) are generated. Failure of each event presented in Fig. 8 could 
result in a failure scenario. All possible combinations of event sequences 

Fig. 7. A sample of dynamic simulator output.  

Fig. 8. Dynamic event sequence diagram of the DP shuttle tanker collision.  
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with a failed end state (last event) are equal to 271 scenarios. In Table 4, 
failure of each event that could result in generating a failure scenario is 
presented. 

The probability of failure of the presented events in Table 4, could be 
calculated using BN/FTs presented in Sections 3.3 and 3.4. 

Table 5 presents most probable failure scenarios of the DP shuttle 
tanker collision. The failure scenarios are different branches of the event 
sequence diagram. The scenarios cannot occur at the same time, so they 
are mutually exclusive. The probability of system failure is equal to the 
sum of all failure scenarios probabilities, which is 0.726. The generated 
scenarios are sorted based on the failure probability, and the most 
probable scenarios are presented in Table 5. 

As can be seen, the scenario that occurred and is presented in the 
investigation report, presented in the beginning of this section, was the 
second most probable scenario out of 271 possible failure scenarios. In 
addition, according to the second and third most probable scenarios, 
automatic disconnection was more likely to fail than manual, mainly 
because the DP components (thrusters, etc.) did not work properly. As a 
result, the failure probability of automatic modes may be deemed 
higher. However, after recovery actions, DP components work properly. 
Therefore, manual keep positions are more likely to fail than automatic 
mode, as presented in the table. 

Another point that can be inferred from the table is that two of the 
recovery scenarios (start of equipment on alternative switchboard and 
start new generator) are more likely to be performed in order to return 
power to the system. However, due to the lack of time, the recovery 
actions may fail. 

4.2. Sensitivity analysis 

In the following sub-sections, a number of operation and environ
mental conditions at the time of the incident are altered to evaluate their 
impacts on the output, i.e., most probable failure scenarios and system 
failure probability. 

4.2.1. Faulty position reference system 
The position reference systems are to comply with the relevant re

quirements for the mandatory classification notations of the vessel for 
electrical, mechanical, and hydraulic components and subsystems [40]. 
The accuracy and the limitations of the position references used are to be 
adequate for the specific task in which the vessel is engaged. In this 
section, it is assumed that the position reference system was faulty and 
provided inaccurate data regarding the incident. It is assumed that the 
faulty reference system has a failure probability of 0.9. This failure 
probability is used in the “reference” event in the first layer of diagnosis 
process, presented in Fig. 8. Moreover, it is assumed that the inaccurate 
data from reference system affect diagnosis process probability 
(Bayesian network presented in Fig. 4), and the failure probability of 
diagnosis increases by 30%. Table 6 presents the most probable failure 
scenarios in this situation. 

The overall failure probability in this scenario increases slightly and 
is equal to 0.728. The reason is that, success or failure of the reference 
system, while the power system is not working, would not affect the 
overall failure probability significantly. In a lack of power system, the 
main engine and the thrusters cannot operate, so having a healthy or 
faulty reference system would not significantly affect the overall func
tioning of the DP system. Another point that can be inferred from Table 6 
is that in addition to the recovery of the power system, the recovery of 
the reference system is presented in the most probable scenarios. 

4.2.2. Sufficient time 
In this section, it is assumed that there is enough time to make a 

decision and to take action. In other words, it is assumed that the DP 
vessel is sufficiently far from the FSO, and that a collision between the 
vessel and the FSO would not happen in a short time. According to 
PetroHRA [8], sufficient time means that there is enough time to 

undertake the task, and the operator(s) only experiences a low degree of 
time pressure or need to speed up in order to complete the task. Table 7 
presents the most probable failure scenarios, assuming that there is 
enough time to undertake tasks after the initial event, i.e., alarm 
detection. 

The overall failure probability in this scenario decreases significantly 
and is equal to 0.451. Moreover, the rank of most probable scenarios is 
altered. With enough time, it is more likely that the operator controls the 
situation, and the scenario of failure in this situation drops from the first 
to the third level. Another point is that the failure of the recovery action 
is less probable in comparison to the results presented for the real case 
with limited available time. This indicates the impact of available time 
on recovery action performance. Having sufficient time will result in 
more successful recovery actions. According to the results, it can be 
inferred that available time has a significant effect on failure scenarios 
and their probabilities. As available time increases, operators have 
enough time to efficiently diagnose, make a decision and take action. As 
a result, human error is much lower in comparison with situations under 
limited available time. 

4.2.3. Sensitivity analysis on input parameters 
In this section, the sensitivity analysis on input parameters including 

available time, power level, and an operator’s characteristics is per
formed. Fig. 9 presents the variation of the overall probability of the DP 
shuttle tanker collision as a function of input parameters. As can be seen 
on the horizontal axis of the figure, input parameters are scaled to a 
value between zero and one in order to be comparable. 

As can be seen, available time has the greatest effect on collision 
probability. As presented in [8], available time refers to the amount of 
time that an operator has to diagnose and act upon an abnormal event. A 
shortage of time can affect the operator’s ability to think clearly and 
consider alternatives. It may also affect the operator’s ability to perform. 
Therefore, with limited available time, the collision probability is much 
higher. 

After available time, an operator’s fitness for duty has a significant 
effect on collision probability. Fitness for duty refers to whether or not 
the individual performing the task is physically and mentally fit to 
perform the task at the time. Factors that may affect fitness include fa
tigue, sickness, drug use (legal or illegal), overconfidence, personal 
problems, and distractions [8]. These characteristics affect the perfor
mance and the accuracy of the operator in making a diagnosis, making 
decisions and taking actions. Consequently, altering this factor signifi
cantly affects collision probability. 

In addition, power level has a noteworthy impact on collision 
probability, as the main cause of the failure of this incident is lack of 
power. Changing the power level means that power returns to the sys
tem after the incident. 

5. Application 2: loss of position of a DP shuttle tanker on 
August 5, 2007 

5.1. Incident summary and failure scenario generation 

On August 5, 2007, all of the position reference systems of a shuttle 
tanker were lost. Action was taken and the vessel was manually 
controlled by the DP operator. The vessel was kept steadily close to the 
ideal position/distance from a floating production storage and off
loading (FPSO) unit. To safeguard the situation, emergency shutdown 
was activated. According to the investigation report, the vessel had not 
exceeded the maximum operation distance limit when emergency 
shutdown was activated. 

The loading operation was stopped for 30 min while the DP system 
was taken to standby mode to rebuild the model and to allow the po
sition reference system to be reset. Subsequently, all systems were found 
to be stable before the vessel was put back in DP mode. 

When emergency shutdown was activated, the vessel communicated 
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with the FPSO unit and informed it that all position reference systems 
had been lost. The FPSO asked when the vessel was ready to resume 
cargo operations. Once the systems had been recalibrated, reset and 
deemed stable and the vessel was put back in DP mode, the master 
adjudged that loading could be resumed under the current conditions 
and under the close monitoring of the DP systems. After having informed 
the FPSO accordingly, and in agreement with the FPSO, loading oper
ations was resumed [41]. The sequence of events is highlighted in the 
dynamic event sequence diagram illustrated in Fig. 10. 

In order to model this incident based on the proposed methodology, 
the following inputs are considered.  

• Reference systems are lost.  
• The operator has enough fitness for duty and training, and the stress 

level is normal. 
• Environmental conditions including wind and waves (force and di

rections) are in normal conditions.  
• Propulsion and computer systems work properly. 

The most probable failure scenarios, with considering the above- 
mentioned inputs, are presented in Table 8, and the overall failure 

Table 4 
Failure events of the DESD presented in Fig. 2.  

Dynamic event sequence diagram layers 
Detection Diagnosis Decision making and execution 

Failed to detect position 
and speed direction 

Propulsion failure Failed to drift off/drive off/ 
potential incidents diagnosis 

Failed auto DC Failure of one or more recovery 
actions presented in Table 3 

Failure of automatic 
keep position Reference failure Failed manual DC 

Computer failure 
Failed to detect alarm Power failure Failure of automatic 

keep position 
Failure of manual 
keep position Human error 

Failed to perform other 
visual detection 

Bad environmental 
conditions 

Failure of manual 
keep position 

Failed to control 
situation   

Table 5 
More probable failure scenarios of the DP shuttle tanker collision.  

Probability Detection Diagnosis Decision making and execution 

5.53E-01 Alarm 
detected 

Failure in 
control 
situation    

1.09E-01 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Failed 
auto DC 
*   

6.38E-02 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Failed 
manual 
DC**   

1.24E-04 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure to 
start 
equipment 
on 
alternative 
switchboard  

1.24E-04 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure to 
start new 
generator  

2.85E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Start of 
equipment 
on 
alternative 
switchboard 

Failure of 
manual 
keep 
position 

2.85E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Start new 
generator 

Failure of 
manual 
keep 
position 

1.66E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Start of 
equipment 
on 
alternative 
switchboard 

Failure of 
automatic 
keep 
position 

1.66E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Start new 
generator 

Failure of 
automatic 
keep 
position 

1.25E-06 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure of 
tuning 
software   

* Automatic disconnection. 
** Manual disconnection. 

Table 6 
More probable failure scenarios of the DP shuttle tanker collision, assuming the 
reference system was faulty.  

Probability Detection Diagnosis Decision making and execution 

5.53E-01 Alarm 
detected 

Failure in 
control 
situation    

1.09E-01 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Failed 
auto DC*   

6.38E-02 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Failed 
manual 
DC**   

3.62E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure of change 
position reference  

3.62E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure to 
recalibrate 
reference origin  

3.62E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure to 
deselect faulty 
sensor  

3.62E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure of 
reference system 
recovery  

3.62E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure of tuning 
software  

3.62E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure to start 
new generator  

3.62E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure to start 
equipment on 
alternative 
switchboard   

* Automatic disconnection. 
** Manual disconnection. 
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probability is equal to 0.442. 
According to the table, disconnection is performed in almost all of 

the most probable scenarios. This is mainly because of the failure of the 
reference systems. In such situations, it is more likely that the operator 
performs disconnection rather than trying to keep position. Further
more, the failure probability of automatic disconnection is higher in 
comparison with automatic mode due to the faulty reference system. As 
the reference system has failed, accurate data cannot be transferred to 
the DP system. As a result, the computer and control system receive 
faulty data and the probability of failure increases. In manual mode, 
some of the faulty data would be modified by an operator’s visual de
tections, and the probability of failure would be lower. However, after 
performing recovery action, DP components including the reference 
system return to work. Therefore, the failure probability of manual keep 
position is higher than automatic mode. 

5.2. Sensitivity analysis 

In the following sub-sections, the operation and environmental 
conditions at the time of the incident are changed to evaluate their 
impact on the most probable failure scenarios and system failure 
probability. 

5.2.1. Available redundant system 
DP systems rely on more than one position monitoring systems in 

order to obtain an accurate and reliable input for the current position of 
the vessel. For DP Class 2 or Class 3, it is necessary to use three different 
position monitoring systems. Two systems are insufficient, because if 
one system malfunctions and fails to give correct data, the DP control 
system is unable to identify which system is wrong. Thus, it is necessary 
to have at least three reference systems active to provide a two-out-of- 
three voting and identify the wrong set of data [42]. In the investiga
tion report, it is assumed that all three reference systems are missed. In 
this section, it is assumed that there are other redundant systems that 
might be used as reference systems by operators. Table 9 presents the 
most probable scenarios in this situation. 

The overall failure probability in this scenario decreases slightly to 
0.441. The main difference of the most probable scenarios in this situ
ation is that the operator tries to keep position and does not perform 
disconnection. The reason is that in the main case, all reference systems 
are lost, and the operator has to perform disconnection; but with a 
redundant reference system, the operator tries to maintain the vessel’s 
position. In addition, keeping position is performed manually, as auto
matic mode is not reliable enough due to the lack of reference system. 

5.2.2. Sensitivity analysis on input parameters 
The overall failure probabilities of the DP system as a function of 

available time, power level and the operator’s characteristics are pre
sented in Fig. 11. 

As can be seen in Fig. 11, available time has the greatest impact on 
failure probability, followed by the operator’s characteristics and the 
power level. Changing the power level has the smallest effect on system 
failure probability, as the main cause of failure – the failure of the 
reference system – will remain through changing the power level. 

6. Application 3: collision between a supply ship and an oil field 
on June 7, 2019 

6.1. Incident summary and failure scenario generation 

On June 7, 2019, a collision occurred between a supply ship and an 
oil field during loading/discharging. In this accident, a technical fault 
caused the vessel’s load reduction mode to be activated, reducing the 
power to all of its thrusters to 10–15% of the maximum. Later, power 
was lost to two out of three bow thrusters. Its position was thereby lost. 
The officer attempted to switch the vessel to partly manual positioning. 

Table 7 
More probable failure scenarios of the DP shuttle tanker collision, assuming 
sufficient time is available.  

Probability Detection Diagnosis Decision making and execution 

2.43E-01 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Failed 
auto DC 
*   

1.42E-01 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Failed 
manual 
DC**   

1.97E-02 Alarm 
detected 

Failure in 
control 
situation    

1.39E-02 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Start new 
generator 

Failure of 
manual 
keep 
position 

1.39E-02 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Start of 
equipment 
on 
alternative 
switchboard 

Failure of 
manual 
keep 
position 

8.10E-03 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Start new 
generator 

Failure of 
automatic 
keep 
position 

8.10E-03 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Start of 
equipment 
on 
alternative 
switchboard 

Failure of 
automatic 
keep 
position 

9.69E-04 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure to 
start new 
generator  

9.69E-04 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure to 
start 
equipment 
on 
alternative 
switchboard  

1.41E-04 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Tuning 
software 

Failure of 
manual 
keep 
position  

* Automatic disconnection. 
** Manual disconnection. 

Fig. 9. Sensitivity analysis on input parameters for the DP shuttle tanker 
collision case. 
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The vessel drifted against the facility, suffering extensive damage to the 
mast and equipment above the bridge, and denting its starboard side aft. 
Moreover, the mast caused damage to the oil field’s lifeboat station. The 
master switched from DP to manual positioning. The programmable 
logic controller (PLC) was then reset to blackout safety system genera
tors 2 and 4. 

The direct causes of the incident were drifting as a result of 

inadequate thruster power, and the location of the loading/discharge 
operation on the windward (weather) side. The underlying causes that 
resulted in insufficient thruster power were related to the failure of or 
the incorrect installation of the equipment components, with disruption 
from the defective components leading to network failure in the 
blackout safety system (“network storm”), a loss of network frequency 
measurement on the main switchboard, activation of the load-reduction 
mode, and restriction of all thrusters to 10–15% of maximum output, 
nonconformity between DP commands and nominal input speed (rpm) 
feedback from all thrusters, and automatic shutdown of thrusters 1 and 3 
[43]. The sequence of the incident events is highlighted in the dynamic 
event sequence diagram, illustrated in Fig. 12. 

According to the investigation report, the initial event and conditions 
of this accident were as follows.  

• The operator had enough fitness for duty and training, and the stress 
level was normal.  

• There was not enough time and the vessel was in an emergency 
situation.  

• Power was reduced to 15%.  
• The reference and computer systems worked properly.  
• The propulsion system including thrusters were not working 

properly. 

These conditions are utilized here as model inputs, and failure sce
narios are generated as results. Table 10 presents the most probable 
failure scenarios of the supply ship. 

The overall failure probability is equal to 0.724. As can be seen, the 
scenario that occurred and is presented in the investigation report is the 
third most probable scenario among 271 possibilities. In addition, ac
cording to the second and third most probable scenarios, automatic 
disconnection is more likely to fail than manual. This matter can be 
inferred from the rest of the scenarios, as most of the successful dis
connections are performed manually. This is mainly because DP com
ponents (power system, thrusters, etc.) do not work properly. As a result, 
the failure probability of automatic mode is higher. However, after 
performing recovery actions, DP components work properly. Therefore, 
manual keep positions are more likely to fail than automatic mode, as 
presented in the table. 

6.2. Sensitivity analysis 

As mentioned, operation and environmental conditions affect the 
collision probability of a supply ship. Sensitivity analysis on these pa
rameters are performed in the following sub-sections. 

Fig. 10. Event sequence diagram of loss of position of the DP shuttle tanker.  

Table 8 
More probable failure scenarios of loss of position of the DP shuttle tanker.  

Probability Detection Diagnosis Decision making and execution 

2.40E-01 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Failed 
auto DC 
*   

1.42E-01 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Failed 
manual 
DC**   

1.97E-02 Alarm 
detected 

Failure in 
control 
situation    

6.32E-03 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Reference 
system 
recovery 

Failure of 
manual 
keep 
position 

6.32E-03 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Deselect 
faulty 
sensor 

Failure of 
manual 
keep 
position 

6.32E-03 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Recalibrate 
reference 
origin 

Failure of 
manual 
keep 
position 

6.32E-03 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Change 
position 
reference 

Failure of 
manual 
keep 
position 

3.19E-03 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Tuning 
software 

Failure of 
manual 
keep 
position 

1.91E-03 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Deselect 
faulty 
sensor 

Failure of 
automatic 
keep 
position 

1.91E-03 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Recalibrate 
reference 
origin 

Failure of 
automatic 
keep 
position  

* Automatic disconnection. 
** Manual disconnection. 
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6.2.1. Poor fitness for duty and high stress level of operator 
In the investigation report, there is no information regarding the 

operator’s fitness for duty and stress level. In the main case study, it is 
assumed that the operator’s fitness for duty and stress level fall within a 
normal range, and the results are presented in Table 10 accordingly. 
However, in this section, it is assumed that the level of the operator’s 
fitness for duty is low and the stress level is high. 

According to the PetroHRA [8], the performance of operators with 
poor fitness for duty is negatively affected by the work processes at the 
facility (e.g., shift turnover does not include adequate communication 

about ongoing maintenance activities; poor command and control by 
supervisor(s); performance expectations are not made clear). In addi
tion, a high stress level is defined by PetroHRA as a level of stress greater 
than the nominal level (e.g., multiple instruments and annunciators 
sound unexpectedly and at the same time; loud, continuous noise 
compromises ability to focus attention on the task; the consequences of 
the task represent a threat to facility safety) [8]. Table 11 presents the 
most probable failure scenario of the supply ship operated by an oper
ator with poor fitness for duty and high stress level. 

The overall failure probability of this case increases significantly 
from 0.724 to 0.827. The most probable scenarios remain almost the 
same. However, more recovery actions tend to fail due to the higher 
probability of human errors. 

6.2.2. Sufficient time and an operator with poor fitness for duty and high 
stress level 

In this section, it is assumed that the operator has poor fitness for 
duty and a high stress level, just as in the previous section. However, in 
this scenario it is assumed that there is sufficient time for the operator to 
diagnose, make a decision and take action. Table 12 presents the most 
probable failure scenarios. 

The overall failure probability of this case drops to 0.556. The results 
show that more recovery actions are performed in comparison to the 
previous section’s results due to sufficient available time. However, the 
recovery actions tend to fail due to low human reliability. 

6.2.3. Sensitivity analysis on input parameters 
The overall collision probability of the supply ship as a function of 

available time, power level and the operator’s characteristics are pre
sented in Fig. 13. 

As can be seen, the collision probabilities have the same trend as the 

Table 9 
More probable failure scenarios of loss of position of a DP shuttle tanker, assuming DP vessel has a redundant reference system.  

Probability Detection Diagnosis Decision making and execution 

2.38E-01 Alarm detected Control situation performed perfectly Failure of automatic keep position   
1.40E-01 Alarm detected Control situation performed perfectly Failure of manual keep position   
1.97E-02 Alarm detected Failure in control situation    
6.25E-03 Alarm detected Control situation performed perfectly Manual keep position Change position reference Failure of manual keep position 
6.25E-03 Alarm detected Control situation performed perfectly Manual keep position Recalibrate reference origin Failure of manual keep position 
6.25E-03 Alarm detected Control situation performed perfectly Manual keep position Deselect faulty sensor Failure of manual keep position 
6.25E-03 Alarm detected Control situation performed perfectly Manual keep position Reference system recovery Failure of manual keep position 
3.16E-03 Alarm detected Control situation performed perfectly Manual keep position Tuning software Failure of manual keep position 
2.40E-03 Alarm detected Control situation performed perfectly Failed auto DC* Reference system recovery Failure of automatic keep position 
1.89E-03 Alarm detected Control situation performed perfectly Manual keep position Reference system recovery Failure of automatic keep position  

* Automatic disconnection. 

Fig. 11. Sensitivity analysis on input parameters for the DP shuttle tanker loss 
of position case. 

Fig. 12. Event sequence diagram of the supply ship collision.  
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probabilities presented for the DP shuttle tanker accident on November 
13, 2006, as the main cause of failure of both was low power level. 

7. Results summary 

As presented in the previous sections, system failure probability is 
strongly affected by the operation and environmental conditions at the 
time of the incident. According to these results, it can be inferred that 
this dependency varies case by case and is contingent on the nature of 
the incident. For instance, the failure probability of case 2 is more 
strongly affected by human characteristics in comparison to cases 1 and 
3. As can be inferred from the figures, operator fitness for duty and 
operator stress level change more in case 2 (Fig. 11) in comparison to 
cases 1 (Fig. 9) and 3 (Fig. 13). 

In this section, a comparison between the sensitivity of failure 
probabilities to input parameters for the three case studies has been 
performed. Table 13 presents the variation of failure probability by 
changing the input parameters from zero to one for all three case studies. 
Zero and one present the worse and best-case statuses of the input pa
rameters. For instance, the available time input changes from no time 
(zero) to adequate (one) available time; or the operator’s stress level 
changes from no stress (zero) to high stress level (one). As can be seen, 
changing stress level from zero to one has a negative effect on failure 
probability reduction (− 0.07, − 0.08, − 0.07) ,2 i.e., by increasing stress 
level of operators the probability of system failure exacerbates. The 
main reason is that human error rises with increasing stress level and 
results in higher system failure probability. 

Another important point that could be inferred from Table 13 is that 
the percentage values presented for case 2 (64.24%, 42.94%, − 18.61%, 
8.04%, 3.92%)3 are higher due to the lower system failure value in 
comparison to cases 1 (37.90%, 24.10%, − 10.07%, 4.42%, 14.05%)4 

and case 3 (38.42%, 24.37%, − 10.19%, 4.46%, 14.10%)4. 
As indicated in Table 13, available time is the most important factor 

in all cases (has the highest value), followed by the operator’s fitness for 
duty, stress and training level. It is demonstrated that power level has a 
greater impact on probability in cases 1 (14.05%) and case 3 (14.10%) in 
comparison to case 2 (3.92%). The reason is that the main cause of 

failure in cases 1 and 3 is a lack or low level of power. Therefore, 
changing the power level will help the system to return to work. How
ever, in case 2, the main reason for failure is the reference system, so 
changing the power level will not recover the faulty reference system, 
hence the main cause of failure will remain. 

Available time has almost the same effect across the three cases with 
a reduction of failure probability equals to 0.28. The reason is that in all 
three cases, a component is failed (in cases 1 and 3, the power system; in 
case 2, the reference system), and the operator try to maintain position 
and perform recovery actions within the available time. Changing 
available time affect human related events in the dynamic event 
sequence diagram, such as “operator control situation” or “recovery 
actions”, which are the same for these three cases. 

The small difference between values in fitness for duty (0.18, 0.19, 
0.18) ,4 stress (− 0.07, − 0.08, − 0.07)5, and training level (0.03, 0.04, 
0.03)5 across the three cases owes to the difference between the effects 
of human error on the reference and power system failures. According to 
the IMCA reports [31], the probability of human error in power systems 
is higher than in reference systems. As a result, human factors have a 
greater impact on power system failure probability than reference sys
tem failure probability. In cases 1 and 3, the power system is failed. 
Human errors affect working components including reference system. In 
case 2, the reference system failed, and human errors affect the power 
system. Changing human characteristics has a slightly greater impact on 
case 2 (0.19, − 0.08, 0.04)6, as it may affect the failure probability of the 
power system. However, this effect is lower in cases 1 (0.18, − 0.07, 
0.03)5 and case 3 (0.18, − 0.07, 0.03)6, as human characteristics affect 
the failure probability of the reference system. Another reason for the 
slightly greater effect of human characteristics in case 2 may owe to 
there being sufficient available time in this case. As presented in Section 
5, in case 2, operators have enough time to diagnose, make a decision 
and take action. As a result, their impact on the failure probability of the 
system is higher than in cases 1 and 3 where there is limited available 
time. 

Table 10 
More probable failure scenarios of the supply ship collision.  

Probability Detection Diagnosis Decision making and execution 

5.53E-01 Alarm 
detected 

Failure in control situation    

1.07E-01 Alarm 
detected 

Control situation performed 
perfectly 

Failed automatic DC 
*   

6.38E-02 Alarm 
detected 

Control situation performed 
perfectly 

Failed manual DC**   

1.23E-04 Alarm 
detected 

Control situation performed 
perfectly 

Manual DC Failure to start new generator  

1.23E-04 Alarm 
detected 

Control situation performed 
perfectly 

Manual DC Failure to start equipment on alternative 
switchboard  

2.84E-05 Alarm 
detected 

Control situation performed 
perfectly 

Manual DC Start new generator Failure of manual keep position 

2.84E-05 Alarm 
detected 

Control situation performed 
perfectly 

Manual DC Start of equipment on alternative switchboard Failure of manual keep position 

1.42E-05 Alarm 
detected 

Control situation performed 
perfectly 

Manual DC Start new generator Failure of automatic keep 
position 

1.42E-05 Alarm 
detected 

Control situation performed 
perfectly 

Manual DC Start of equipment on alternative switchboard Failure of automatic keep 
position 

6.41E-06 Alarm 
detected 

Control situation performed 
perfectly 

Automatic DC Failure to start equipment on alternative 
switchboard   

* Automatic disconnection. 
** Manual disconnection. 

2 For Case 1, 2, and 3.  
3 For available time, operator’s fitness for duty, stress level, training level, 

and power level, respectively. 

4 For cases 1, 2, and 3, respectively.  
5 For operator’s fitness for duty, stress level, and training level, respectively. 
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8. Discussion 

8.1. Method effectiveness 

In this study, the application of a new supervised dynamic probabi
listic risk assessment model has been examined and discussed. In this 
model, knowledge of the system is explicitly used in an optimization 
model to predict possible failure scenarios. In the optimization model, a 
supervised learning algorithm is used to find the optimal solution, which 
is the desired failure scenario, i.e., instead of focusing on obtaining all 
possible scenarios, we have approached the problem of exploring the 
desired failure scenarios efficiently. 

The model has been applied to solve DPRA problems in three 
different DP accidents. The accidents’ characteristics have been 
explored using the investigation reports of each accident, and the model 
outputs have been compared with the failure scenarios presented in 
these investigation reports. According to these comparisons, the pro
posed model can predict the most probable failure scenarios with a high 
degree of accuracy. In addition, the execution time of the model is under 
1 min to generate 271 failure scenarios, which is significantly lower than 
other conventional DPRA methods presented in the literature. In the 

accompanying article (Part 1) [19], a comparison between the execution 
time of a conventional DPRA (dynamic ESD) and the supervised (opti
mization based) DPRA methods is performed. These two methods are 
applied to a case study, and execution times at different time intervals 
are recorded. Results show that the execution time of the supervised 
DPRA method is significantly lower than the conventional DPRA 
method. 

8.2. Model validation and sensitivity analysis 

Model validation and sensitivity analysis have been employed to 
assess the correctness of the model specification and to analyze the 
strength of the conclusions drawn. The model has been validated using 
three different DP accidents. Input data have been derived from the 
investigation reports of accidents, and outputs (possible failure sce
narios) have been generated using the proposed model. In cases 1 and 3, 
the real accident has been identified among the top three most probable 
failure scenarios generated by the model. The second and third most 
probable failure scenarios for case 1 (Table 5) and 3 (Table 10), 
respectively, are the real failure scenarios as presented in the investi
gation report. 

In addition, a sensitivity analysis on input parameters has been 
performed for all three case studies. The results of the sensitivity analysis 
are particularly useful in gaining confidence in the results of the primary 
analysis, and are important in situations where a model is likely to be 
used in a future investigation. 

8.3. Operation and environmental conditions 

The simulation results have demonstrated that accident scenarios are 
highly dependent on system dynamics, hence the event sequences need 
to be analyzed with great care. In particular, it has been shown that 
operation and environmental conditions’ impacts on a system’s risk 
level are contingent on the nature of the accident. For instance, power 
level had a smaller effect on case 2 (changes from 0.46 to 0.44 as pre
sented in Fig. 11) where the reference system was the main cause of 
failure, as having more power does not necessarily help the reference 
system to return to operation. However, power level had a greater effect 
on case 1 (changes from 0.71 to 0.61 as presented in Fig. 9) and case 3 
(changes from 0.71 to 0.61 as presented in Fig. 13) where the main cause 
of the accident was a blackout. 

Such findings illustrate the importance of a comprehensive and ac
curate diagnosis at the early stage of initial event (incident) detection. 
Knowing the main cause helps to determine the critical affecting pa
rameters, so that one can try to keep these within an acceptable range to 
prevent the negative consequences from being exacerbated. 

8.4. Human and organizational factors 

Modeling human and organizational factors plays a very important 
role in DP system risk analysis. In order to model a system with high 
accuracy – particularly in emergency situations – the human and com
ponents model must be integrated into the DPRA work. In this study, the 
SPAR-H method has been used to include human and organizational 
factors. The factors considered here were the operator’s fitness for duty, 
stress and training level. With improvements in human modeling, the 
integrated DPRA methodology introduced here can become even more 
powerful. 

8.5. Future works 

According to the sensitivity analysis results, available time has the 
greatest effect on the risk level of a DP system operation in emergency 
situations. Therefore, managing the available time may significantly 
reduce the risk level of the system. Fault diagnosis models may provide 
useful information to operators by analyzing and interpreting available 

Table 11 
More probable failure scenarios of the supply ship collision, assuming operator 
has poor fitness for duty and high stress level.  

Probability Detection Diagnosis Decision making and execution 

7.04E-01 Alarm 
detected 

Failure in 
control 
situation    

7.00E-02 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Failed 
auto DC 
*   

5.27E-02 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Failed 
manual 
DC**   

6.51E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure to 
start new 
generator  

6.51E-05 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Failure to 
start 
equipment 
on 
alternative 
switchboard  

9.75E-06 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Start new 
generator 

Failure of 
manual 
keep 
position 

9.75E-06 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Start of 
equipment 
on 
alternative 
switchboard 

Failure of 
manual 
keep 
position 

5.34E-06 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Auto DC Failure to 
start new 
generator  

5.34E-06 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Auto DC Failure to 
start 
equipment 
on 
alternative 
switchboard  

3.88E-06 Alarm 
detected 

Control 
situation 
performed 
perfectly 

Manual 
DC 

Start 
equipment 
on 
alternative 
switchboard 

Failure of 
automatic 
keep 
position  

* Automatic disconnection. 
** Manual disconnection. 
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data. With the development of artificial intelligence (AI), many new 
methods have been introduced to research into the fault diagnosis of 
complex systems. Utilizing these methods in DP systems enables oper
ators to determine the root cause of failure, and consequently to 
significantly reduce the time required for the diagnosis phase. 

In addition, prediction models may help operators to make a better 
decision within a limited timeframe. In emergency situations, there are 
multiple alternative decision scenarios that can be made to control the 
hazard. Prediction models could be employed to simulate each decision 
scenario and achieve a better picture of their consequences. Fault 
diagnosis methods and prediction models for DP systems should be 
explored in future works to help operators to make better decisions in 
emergency situations. 

9. Conclusion 

In this paper, the capabilities of supervised dynamic probabilistic 
risk assessment methodology to evaluate the risk level of dynamic 
positioning systems in emergencies have been demonstrated. The su
pervised dynamic PRA methodology has been applied to a DP system to 
enable a more efficient and yet accurate evaluation of the risk level of 
the system during emergencies, as shown through an analysis of the case 
studies presented. 

These cases were three DP system incidents that have occurred in the 
Norwegian offshore sector. The information required to perform 
modeling has been gathered from the available investigation reports for 
each incident. The model outputs are the most probable scenarios and 
risk levels of the system after each incident. Comparing these results 
with the investigation reports has revealed that the model has a high 
level of accuracy, as the accidents are sorted among predicted high 
probable failure scenarios. Moreover, sensitivity analysis on the input 
parameters of the model has been performed, with the results indicating 
that available time has the greatest impact on the risk level. As a result, 
having an efficient predictive risk model could reduce the risk level of 
the system by providing useful information to operators so that they can 
make a decision within a shorter timeframe. 
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Table 12 
More probable failure scenarios of the supply ship collision, assuming there is sufficient time and the operator has low fitness for duty and high stress level.  

Probability Detection Diagnosis Decision making and execution 

2.01E-01 Alarm 
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Control situation performed 
perfectly 

Failed automatic DC 
*   

1.70E-01 Alarm 
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Failure in control situation    

1.51E-01 Alarm 
detected 

Control situation performed 
perfectly 

Failed manual DC**   

7.92E-03 Alarm 
detected 

Control situation performed 
perfectly 

Manual DC Start new generator Failure of manual keep position 

7.92E-03 Alarm 
detected 

Control situation performed 
perfectly 

Manual DC Start equipment on alternative switchboard Failure of manual keep position 
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* Automatic disconnection. 
** Manual disconnection. 

Fig. 13. Sensitivity analysis on input parameters for the supply ship colli
sion case. 

Table 13 
Reduction of DP system failure probability by changing input parameters from 
0 to 1.  

Parameter Reduction of failure probability (percentage) 

Case 1 Case 2 Case 3 

Available time 
0: No time 
1: Adequate time 

0.28 (37.90%) 0.28 (64.24%) 0.28 (38.42%) 

Operator’s fitness for 
duty 
0: No fitness 
1: High level of 
fitness 

0.18 (24.10%) 0.19 (42.94%) 0.18 (24.37%) 

Operator’s stress level 
0: No stress 
1: High stress level 

− 0.07 
(− 10.07%) 

− 0.08 
(− 18.61%) 

− 0.07 
(− 10.19%) 

Operator’s training 
level 
0: No training 
1: High level of 
training 

0.03 (4.42%) 0.04 (8.04%) 0.03 (4.46%) 

Power level 
0: Blackout 
1: Full power 
available 

0.10 (14.05%) 0.02 (3.92%) 0.10 (14.10%)  
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