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Abstract 

Design/methodology/approach: Inspired by recent observations in the literature concerning cash 

flows, discount rates and values in DCF methods, we mathematically derive DCF valuation 

formulas for annuities. 

Purpose: The purpose of this paper is to establish the flow-to-equity method, the free cash flow 

(FCF) method, the adjusted present value method, and the relationships between these methods 

when the FCF appears as an annuity. More specifically, we depart from the two most widely used 

evaluation settings. The first setting is that of Modigliani and Miller from 1958 and 1963 who 

based their analysis on a stationary FCF. The second setting is that of Miles and Ezzell from 1980 

and 1985 who worked with an FCF that represents an autoregressive possess of first order. 

Findings: The following relationships are established: (a) the correct discount rate of the tax shield 

when the free cash flow takes the form of a first-order autoregressive annuity, (b) the direct 

valuation of the tax shield from the free cash flow for a first-order autoregressive annuity, (c) the 

correct translation from the required return on unlevered equity to the levered equity, when the 

free cash flow is a stationary annuity, and (d) direct calculation of the unlevered and levered firm 

values, and the value of the tax shield for a stationary annuity. 

Originality/value: Until now the complete set of formulas for the valuation of stochastic annuities 

by different DCF methods has not been established in the literature. These formulas are developed 

here. These formulas are important for practitioners and academics when it comes to the valuation 

of cash flows of finite lifetime. 
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1 Introduction 

Discounted cash flow (DCF) methods constitute one of the most widely used approaches to 

evaluate firms and investment projects in practice and academia (Mukhlynina & Nyborg, 2016). 

This is confirmed by contemporary textbooks in corporate finance (e.g., Copeland et al. 2014, 

chapters 13 & 14; Berk & DeMarzo, 2019, chapters 18 & 19; Brealey et al., 2020, chapters 17-19) 

and firm valuation (e.g., Damodaran, 2006, chapters 5-6; Koller et al., 2010, chapter 6; Kruschwitz 

& Löffler, 2020) as well as dozens of research articles (references will appear during this paper). 

The most prominent DCF methods are the flow-to-equity method, the free cash flow (FCF) 

method, the adjusted present value (APV) method (accredited to Myers, 1974) and the capital cash 

flow (CCF) method (e.g., McConnell & Sandberg, 1975; Nantell & Carlson, 1975; Ruback, 2002). 

All these methods are required to be consistent in the sense that they need to give the same firm 

value when they are applied to the same practical case with the same set of assumptions and input 

data. This consistency is ensured by formulas that translate between the discount rates that are used 

in these methods. To the best of our knowledge, Modigliani & Miller are the first to have developed 

such translation formulas in their seminal papers from 1958 and 1963. They show the translation 

between the required return on unlevered equity and the discount rate in the CCF method (their 

formula 11.c), the translation between the required return on unlevered and levered equity (their 

formula 12c), the translation between the required return on unlevered equity and the discount rate 

in the FCF method (inherent in their formula 31.c) and an adjusted present value formulation (their 

formula 3). 

At this point, it is advisable to keep in mind that Modigliani & Miller (1963) aimed to explain the 

relevance of capital structure for the value of the firm. Hence, their paper presents a milestone in 

capital structure theory which was later supplemented by the trade-off theory (Kraus & 

Litzenberger, 1973), pecking order theory (Myers & Majluf, 1984), market timing theory (Baker 
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& Wurgler (2002) and the capital structure substitution theory (Timmer, 2012). However, the 

formulas that they have applied for the derivation of their well-known propositions have also 

entered normative models for valuing firms and investment projects. This can raise some issues 

because the approach of Modigliani & Miller (1958, 1963), and many subsequent researchers such 

as Farrar & Selwyn (1967), Nantell & Carlson (1975), Haris & Pringle (1985) and others, assume 

that the FCF appears as a constant perpetuity. However, in practice many investment projects 

either do not possess an infinite life, or firm value analysts tend to split the life of a firm into 

different valuation stages (such as an explicit planning period, a period with growth, a period 

without growth; see, for example, Mukhlynina & Nyborg, 2016, p. 20). Many researchers have 

therefore questioned to what extent the framework of Modigliani & Miller (1963) and their 

successors is applicable for cases when the FCF is not a constant perpetuity. Myers (1974), 

Beranek (1975), Arditty & Levi (1977), Ben-Horim (1979), Miles & Ezzel (1980), Tham & Vélez-

Pareja (2005, 2019), Brusov et al. (2011, 2014) and Becker (2020, 2021) have investigated cases 

where cash flows have a limited lifetime. Nevertheless, until today no complete and plausible set 

of valuation equations has been developed for an FCF that comes as a stochastic annuity. By 

“complete”, we mean to formulate both the flow-to-equity method, FCF method, CCF method, 

APV method and all the necessary translation formulas between the required returns or discount 

rates that are applied in these methods. By “plausible”, we mean that these methods and translation 

formulas are not only mathematically connected, but that the underlying assumptions are 

compatible with each other and plausible with respect to the absence of arbitrage and the additivity 

of net present values; see, for example, the dispute by Fernandez (2004 and 2005), Fieten et al. 

(2005) and Cooper & Nyborg (2006). Furthermore, assumptions concerning the underlying 

stochasticity in the cash flows should not contradict other assumptions. For example, assuming 

that both the required return on unlevered equity and the required return for the tax shield are 
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constant throughout time is not necessarily a plausible assumption for cash flows with a finite 

lifetime (Becker, 2021), although this assumption would allow for establishing a mathematically 

complete set of valuation equations as in Brusov et al. (2011). Furthermore, many studies do not 

clearly differentiate between the two mutually exclusive settings of Modigliani & Miller (1963) 

and Miles & Ezzell (1980, 1985). 

The aim of this paper is to close these gaps. This paper therefore departs from Becker (2021), who 

has accentuated the differences in the valuation frameworks of Modigliani & Miller (1963) and 

Miles & Ezzell (1980 and 1985). For these two settings, he has illustrated the timely behavior of 

the discount rates when the FCF is an annuity. However, a complete set of valuation formulas and 

a rigorous mathematical derivation have not been tried in his contribution. Therefore, his results 

have limited usefulness for practical valuation cases. We will establish the complete and plausible 

set of formulas for consistent firm valuation of annuities. In addition, we will give an overview of 

the already known formulas. This makes a comparison of the traditional valuation formulas and 

the newly developed formulas easier, and the valuation practitioner will be able to pick the correct 

formula for her valuation case. 

This paper is structured as follows. In section 2, we will give an overview of the assumptions and 

models that are considered in this paper, and which form the basis for the selection of the relevant 

literature that is presented in section 3. In the third section, we will also highlight inconsistencies 

in some of the existing approaches that we attempt to correct in this paper. The fourth section gives 

a summary on the observations made by Becker (2021) concerning the evolution of cash flows, 

discount rates and values of the firm, debt, equity and tax shields when the FCF is an annuity. 

Sections 5 and 6 are devoted to the derivation of the new valuation formulas. Section 7 shows that 

our formulas collapse to the well-known formulas for perpetuities. Finally, section 8 gives a tabular 

summary of all formulas and concludes the paper. 
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2 Assumptions and Discounted Cash Flow Methods 

Beside the immense amount of research that conceptually deals with capital structure policy (some 

key references are given in the previous section), there exist numerous contributions on DCF 

methods and their discount rates. Before we can present the strand of literature relevant to this 

article in the subsequent section, we need to explain the common assumptions underlying this 

literature and our analysis. In most of the contributions, we cannot find complete compilations of 

assumptions on which the analyses are based, although some more or less extensive attempts have 

been made (Miles & Ezzell, 1980, pp. 722-723; Copeland et al. 2014, p. 525; Becker, 2020, pp. 

468-469; Becker 2021). In many analyses, assumptions are not explicitly formulated but are tacitly 

applied in valuation models. The assumptions underlying the literature in the next chapter and our 

subsequent analysis are the following: 

(1) Existence of pricing operator/No arbitrage: We assume that there exists a pricing 

operator or mechanism (stochastic discount factors, vector of state prices, risk-neutral 

probabilities, betas from the capital asset pricing model, or similar) that facilitates the 

assignment of values (prices) in point of time 𝑡 to stochastic cash flows (payoffs) in 𝑡

1. For this pricing operator to make sense in financial markets, we require the principle 

of no arbitrage (Barbi, 2012, p. 254, pp. 473-475, Copeland et al. 2014, p. 525; Tham & 

Vélez-Pareja, 2019; Kruschwitz & Löffler, 2020, pp. 28-31). 

(2) Deterministic and time-invariance of pricing operator: The pricing operator is 

deterministic and remains unchanged throughout time. By this we mean that a stochastic 

cash flow with a specific probability distribution has the same one-period discount rate, 

no matter when the cash flow appears in time (See also Miles & Ezzel, 1980, p. 722; 
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Barbi, 2012, p. 254, footnote 2 on the constancy of the required return on unlevered 

equity). 

(2a) Deterministic and time-invariant risk-free rate: Assumption 2 implies that the risk-

free rate 𝑟 ,  is non-stochastic (Sick, 1990, p. 1434) and constant across time: 𝑟 , 𝑟  

(Modigliani & Miller, 1963, p. 436).  

(3) Discrete points in time: All cash flows appear at discrete and equidistant points in time 

𝑡 1, … ,𝑇. 

(4) Specification of annuity: The free cash flow (FCF) is assumed to be a stochastic 

annuity: More precisely, we assume that 𝐹𝐶𝐹  with 𝑡 1, … ,𝑇 (where 𝑇 may tend to 

infinity in case of a perpetuity) is a stochastic process with constant unconditional 

expectation 𝔼 𝐹𝐶𝐹 𝐴 for all 𝑡 1, … ,𝑇. 𝐴 denotes this constant. 𝐴 is furthermore 

positive to ensure a positive value of the firm. Figures 1 and 3 illustrate two examples of 

such a stochastic annuity (the first four points in time) by means of a scenario tree. 

Since this paper deals with stochastic finite life annuities, we will also require that there 

is no continuing value beyond the lifetime 𝑡 𝑇. 

(5) FCF independence of leverage: The FCF is unaffected by changes in the capital 

structure (Copeland et al. 2014, p. 525; Berk & DeMarzo, 2020, p. 556; Kruschwitz & 

Löffler, 2020, p. 72). 

(6) Types of financing: The firm/project to be valued issues only two types of claims, 

namely pure debt and pure equity (Reilly & Wecker, 1973, p. 123; Barbi, 2012, p. 253, 

Copeland et al. 2014, p. 525). 

(7) Constant leverage: We assume a constant equity-to-firm-value ratio 𝑞 throughout the 

lifetime of the FCF (Boudreaux & Long, 1979, p. 9; Harris & Pringle, p. 240; 1985, 
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Miles & Ezzell, 1980, p. 722; Miles & Ezzell, 1985, p. 1486; Taggart, 1991, p. 14; Barbi, 

2012, p. 255). 

(8) Frictionless levering/delevering: There do not exist any transaction/information costs 

or restraints for levering or delevering the firm (Modigliani & Miller, 1963, pp. 440 and 

442). 

(9) Corporate taxation only: We apply only corporate taxation; there are no wealth taxes 

or personal taxation (Sick, 1990, p. 1434; Fieten et al., 2005, p. 185; Copeland et al. 

2014, p. 525). 

(10) Deterministic, time-invariant, and independent corporate tax rate: The corporate 

tax rate is assumed to be deterministic (non-stochastic) (Farrar & Selwyn, 1967, p. 445; 

Sick, 1990, p. 1434), time-invariant (Boudreaux & Long, 1979), and does not depend on 

the size of the earnings before interest and taxes (EBIT) which is related to the FCF by 

𝐹𝐶𝐹  𝐸𝐵𝐼𝑇 ∙ 1 𝜏 𝐶 where 𝜏 is the tax rate and 𝐶 denotes the difference between 

operating cash flow and operating income (this assumption is discussed in Modigliani & 

Miller, 1963, p. 435, footnote 5 and p. 438, footnote 9.) 

(11) Tax symmetry on gains and losses: There is either no negative income before taxes, or 

in the case of negative income before taxes, there is a tax transfer to the firm (reverse 

taxation) (Sick, 1990, p. 1434; Fieten et al., 2005, p. 185; see Barbi, 2012, p. 253 footnote 

1 for an alternative formulation). Appendix 2 shows that the effective tax rates cannot 

be the same in the unlevered and levered firm if this assumption does not hold. 

(12) Specification of the flow to debt holders: The flow to debt consists of interest payments 

and changes in the principal of debt only. There do not exist additional fees, discounts, 

etc. Any debt that is issued throughout the lifetime of the FCF will be paid back until 𝑇 

(lifetime of FCF). Note that in the perpetual case of Modigliani & Miller (1963) only 
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interest payments occur while the outstanding principal is kept constant eternally. In the 

perpetual case of Miles & Ezzell (1980), the principal amount of debt is adjusted, but it 

will never be paid down entirely. 

(13) Risk-free debt. We assume that debt is risk free (Modigliani & Miller, 1958, p. 268; 

Modigliani & Miller, 1963, p. 436; Miles & Ezzel, 1980, footnote 1; Taggart, 1991, p. 

9). Few researchers have applied a cost of debt that is different from the risk-free rate, 

but still treated debt deterministically (for example, Ruback, 2002; Cooper & Nyborg, 

2008). However, the modeling of risky debt requires additional assumptions and 

complicates the computations. In the case of risky debt, the interest payments may 

belong to another risk class than the down payments. One can presume that interest 

payments are lost before down payments if the cash flow of the firm can only partially 

satisfy the debt holders. The total debt will then have a risk that is composed of both 

these risk classes, meaning that the required return on debt is a compound. Therefore, 

the interest tax shield which is tied to the interest payments cannot be linked to the total 

flow to the debt holders in a linear fashion as is often done in previous research. 

Throughout this paper it will therefore be convenient to assume debt as risk-free. 

(14) No costs of financial distress: We assume the absence of costs in case of bankruptcy or 

financial distress (See Modigliani & Miller, 1958, footnote 18.; See Barbi, 2012, p. 253; 

Copeland et al. 2014, p. 525). 

(15) Outstanding debt equals market value of debt: The value of debt 𝐷𝑉  equals the 

nominal (contractual) amount of debt 𝐷𝑁 : 

𝐷𝑉 𝐷𝑁  for all 𝑡 

This implies that the nominal (contractual) interest rate equals the risk-free rate. This 

assumption is hardly mentioned explicitly in the literature. However, it is essential for 
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deriving the discount rate in the FCF approach (expression (1) below). Appendix 1 shows 

how the weighted average costs would look like if this assumption does not hold. 

Additional aspects that have been discussed in the literature include personal taxation (Sick, 1990; 

Taggart, 1991), asymmetric taxation (Kruschwitz & Löffler, 2018) and costs or benefits of 

financial distress (Stiglitz, 1969; Kraus & Litzenberger, 1973; Berk & DeMarco, 2019, chapter 16; 

Brealey et al., 2020, chapter 18). These aspects are outside the scope of this paper. 

To avoid any confusion about the construction of the valuation methods addressed in this analysis, 

we will quickly outline these models here. Note that other approaches exist, such as the business 

risk-adjusted FCF method or the economic value added (EVA) approach (for an overview, see 

Fernandez, 2007). These approaches are outside the scope of our analysis. 

The notation applied in the models below is given as follows: 

𝐷𝑉 .................................... Value of debt 

𝐸𝑉  ................................... Value of levered equity 

𝐹𝑉  ................................... Value of levered firm 

𝐹𝑉  ................................... Value of unlevered firm (unlevered equity) 

𝑇𝑆𝑉 .................................. Value of interest tax shield 

∆𝐷𝑉 .................................. Change of debt because of down payments or issues of new debt 

𝐹𝐶𝐹 .................................. Free cash flow 

𝐼 ........................................ Interest payments 

𝑇𝑆 ..................................... Interest tax shield 

𝑞 ....................................... Equity-to-firm-value ratio 
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𝜏 ........................................ Corporate tax rate 

𝑟  ................................... Required discount rate in CCF method 

𝑟  .................................... Required return on levered equity 

𝑟  ................................... Required discount rate in the FCF method 

𝑟  ...................................... Required return on debt 

𝑟  ....................................... Risk free rate 

𝑟  .................................... Required discount rate for the interest tax shield 

𝑟  ...................................... Required return on unlevered equity or unlevered firm 

All methods will be stated in recursive form for 𝑡 0, … ,𝑇 1. Accordingly, all parameters 

receive a time index because their amounts can change over time. 

Flow-to-equity method: In this method the value of the equity in the levered firm is calculated 

directly by discounting the cash flow to the equity holders by means of the required return on 

levered equity 𝑟 . The flow to equity is the cash flow that remains after paying interest, issuing 

or paying down debt (see Berk & DeMarzo, 2020, pp. 690-691): 

 
𝐸𝑉 ,

𝐹𝐶𝐹 𝐼 ∙ 1 𝜏 ∆𝐷𝑉 𝐸𝑉 ,

1 𝑟 ,
  

The change in debt is determined as: ∆𝐷𝑉 𝐷𝑉 𝐷𝑉 . The value of the levered firm can 

be calculated by adding the debt value to the equity value: 𝐹𝑉 , 𝐸𝑉 , 𝐷𝑉 . 

FCF method: In this method the value of the levered firm (i.e., the value of equity and debt 

together) is calculated by discounting the FCF by means of a corresponding discount rate 𝑟
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𝑞 ∙ 𝑟 1 𝑞 ∙ 1 𝜏 ∙ 𝑟  (often referred to as the after-tax weighted average costs of capital:  

see Harris & Pringle, 1985, p. 237; McConnell & Sandberg, 1975, p. 885): 

 
𝐹𝑉 ,

𝐹𝐶𝐹 𝐹𝑉 ,

1 𝑞 ∙ 𝑟 , 1 𝑞 ∙ 1 𝜏 ∙ 𝑟 ,
 (1) 

The FCF method evolves from the flow-to-equity method, and this is a well-known relationship 

(see Becker, 2020, p. 475). 

APV method: In this method the value of the levered firm is determined as the value of the 

unlevered firm plus the value of the interest tax shield. The value of the unlevered firm is computed 

by discounting the FCF with the required return on unlevered equity 𝑟 . The value of the tax shield 

is computed by discounting the interest tax shield with the corresponding discount rate 𝑟 . 

𝐹𝑉 , 𝐹𝑉 , 𝑇𝑆𝑉         𝐹𝑉 ,
𝐹𝐶𝐹 𝐹𝑉 ,

1 𝑟 ,
    𝑇𝑆𝑉

𝑇𝑆 𝑇𝑆𝑉
1 𝑟 ,

  

CCF method: In this method the cash flow to the capital holders is discounted with the 

corresponding weighted average costs of capital 𝑟 𝑞 ∙ 𝑟 1 𝑞 ∙ 𝑟 . The flow to the 

capital holders consists of the flow to both the equity and debt holders after corporate taxation: 

 
𝐹𝑉 ,

𝐹𝐶𝐹 𝐼 ∙ 𝜏 𝐹𝑉 ,

1 𝑞 ∙ 𝑟 , 1 𝑞 ∙ 𝑟 ,
 (2) 

This method also evolves directly from the flow to equity method together with the valuation of 

debt. (See appendix in Becker, 2021). From (1) and (2) we can immediately derive the relationship 

between 𝑟  and 𝑟  which is: 

  𝑟 , 𝑟 , 1 𝑞 ∙ 𝜏 ∙ 𝑟 ,   

Having all preliminaries (assumptions and models) in place, we will now discuss the relevant 

literature that deals with cash flows of limited lifetime. 
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3 Literature Review on Valuation of Cash Flows with Limited Lifetime 

In this section we will look at how the existing literature has addressed cash flows that have a finite 

length of life. In this and all subsequent sections we will abbreviate Modigliani & Miller (1963) 

with M&M. Miles & Ezzell (1980, 1985) will be referred to as M&E. 

Arditti (1973, p. 1002) claims that “If annual expected earning in year 𝑡, 𝐸𝐵𝐼𝑇  varies with t, or 

the firm has a finite life […] then the average cost of capital […] will, in general, be 

inappropriate”. However, in his analysis he presumes that the weighted average cost of capital 

(the discount rate 𝑟  or 𝑟  in the FCF or CCF method; these two methods coincide in his 

analysis because there are no taxes) does not change over the lifetime of a project. The same doubt 

is expressed by Reilly & Wecker (1973), who doubt the correctness of the formula of the weighted 

average costs of capital (the discount rate 𝑟  in the CCF method). Like Arditti (1973), they 

require this discount rate to be constant throughout time despite the temporal variation of the cash 

flows. We will see that this doubt is not justified for an autoregressive annuity of first order. 

However, on a general basis it can be expected that both the required return on levered equity 𝑟  

and the equity-value-to-firm-value ratio L

L
 (respectively the debt-value-to-firm-value ratio) 

change over time. This means that we cannot thoughtlessly assume that 𝑟  and 𝑟  remain 

constant across time. Nevertheless, their construction (see formulas (1) and (2) above) cannot be 

questioned. 

Myers (1974, p. 1) states that “capital budgeting rules based on the weighted average cost of 

capital formulas proposed by [M&M] and other authors are not generally correct.” With this 

statement Myers (1974) refers to the following relationship that was originally stated by M&M: 

 𝑟FCF 𝑟U 𝑟U ∙ 𝜏 ∙ 1 𝑞   
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Myers (1974, pp. 10 and 11) shows that the appropriate discount rate for an FCF with a lifetime 

of one period is the following: 

 
𝑟FCF 𝑟U 𝜏 ∙ 1 𝑞 ∙ 𝑟f ∙

1 𝑟U

1 𝑟f
 (3) 

This is the same formula that later will be shown valid for perpetuities by Miles & Ezzell (1980). 

This allows for two immediate conjectures. First, assuming a stochastic cash flow according to 

M&M, the discount rate in the FCF approach will change with the remaining maturity. Second, 

assuming a stochastic cash flow according to M&E, the discount rate in the FCF approach will be 

constant. Third, the discount rate in the FCF approach will be the same for both types of cash flows 

when the remaining lifetime of the FCF is a single period.  

Arditti & Levi (1977) study the validity of the weighted average costs of capital for both perpetual 

and finite life annuities. Their formula (26) represents the FCF method, where they assume a 

constant discount rate. As we will discuss later, this formula is correct only for cash flows that 

fulfill the stochastic properties, according to M&E. Their formula (12) which corresponds to the 

FCF method, and their formula (27), which corresponds to the CCF method, assume both constant 

interest payments and constant discount rates. As we will show later, both these conditions are 

inconsistent with cash flows in both the settings of M&M and M&E. Furthermore, Arditti & Levi 

(1977) generate an inconsistency in the CCF method. The CCF method, with a discount rate 𝑟

L

L
∙ 𝑟

L
∙ 𝑟 , requires that the tax shield is calculated as 𝑇𝑆 𝜏 ∙ 𝑟 ∙ 𝐷𝑉 𝜏 ∙ 𝑟 ∙

L
∙

𝐹𝑉L. Arditti & Levi (1977) in their formula (15) and (27) apply 𝑇𝑆 𝜏 ∙ 𝑟 ∙
L
∙ 𝐼𝑛𝑣 instead, 

where 𝐼𝑛𝑣 is the initial investment outlay (acquisition costs). The last inconsistency is addressed 

and resolved by Ben-Horim (1979). Moreover, for finite life cash flows Bourdreaux & Long (1979, 

pp. 8 and 9) point out that (a) the discount rates may not remain constant across time, (b) the capital 
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structure may change across time, (c) outstanding debt will not necessarily be equal to the debt 

value in any given period of time, (d) the market value of the project can be decreasing throughout 

time, and (e) the amount of the interest tax shield changes throughout time. Despite the importance 

of these statements, a rigorous mathematical analysis of these effects is not undertaken in their 

study. Furthermore, they provide an example where they illustrate that the FCF method and the 

CCF method need to be consistent for any lifetime. In this example they apply constant discount 

rates 𝑟FCF and 𝑟  across time. We will see later that this will be correct for an M&E type of 

annuity, but it will not be valid for an M&M type of annuity. 

Miles & Ezzell (1980, p. 720) depart from their observation that “a number of authors have argued 

that the textbook approach does not generally provide correct valuations of uneven finite cash 

flows.” On the one hand, they show (p. 727) that the discount rate 𝑟  in the FCF method 

corresponds to the WACC, i.e., 𝑟 , 𝑞 ∙ 𝑟 , 1 𝑞 ∙ 1 𝜏 ∙ 𝑟f for any lifetime of the 

cash flow. They also show (p. 726) that the relationship between the discount rate 𝑟  and the 

required return on unlevered equity is given by formula (3) and that this relationship holds for any 

arbitrary lifetime of the FCF. In their analysis, they do not explicitly state the type of stochasticity 

of the FCF. However, it becomes clear that their analysis is based on the implicit assumption that 

the FCF cannot be stationary. In Miles & Ezzel (1985), the same authors state the stochastic 

process of the underlying FCF more explicitly. Specifically, and in contrast to M&M, they assume 

an expectation revision process of the form: 𝔼 𝐹𝐶𝐹  𝔼 𝐹𝐶𝐹  ∙ 1 �̃� ,  with 𝔼 �̃� ,

0. Miles & Ezzell (1985, formula 19) also derive the following formula for determining the value 

of the levered firm and the value of the tax shield for a finite-life FCF (not necessarily an annuity): 

 
𝐹𝑉L, 𝐹𝑉U, 𝑇𝑆𝑉

𝔼 𝐹𝐶𝐹  

1 𝑟
𝔼 𝑇𝑆

1 𝑟 ∙ 1 𝑟
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It is important to note that this formula assumes a particular stochastic process that generates the 

FCF. Moreover, this process needs to assure that both 𝔼 𝐹𝐶𝐹   and 𝔼 𝐹𝑉U, , each for itself, can 

be discounted with the required return on unlevered equity 𝑟 . This is not generally the case, and 

it is particularly not the case in M&M where continuing values (like 𝐹𝑉U, ) are deterministic and 

will be discounted with 𝑟 . It is essential to recognize that even if the FCF is an annuity, the tax 

shield is not an annuity. Hence, in this formula we require the calculation of the amount of the tax 

shield for each point in time. Later, in our analysis, we will therefore derive a formula for 

calculating the value of the tax shield directly from the FCF annuity. 

Brusov et al. (2011) intend to develop a valuation formula for an M&M style constant finite life 

annuity. In their analysis (more precisely their formula 14) they neglect the fact that the continuing 

value of debt (like all the other values) is decreasing throughout time. This fact has already been 

pointed out by Boudreaux & Long (1979, p. 8). If debt decreases, then tax savings will also 

decrease. Hence, the annuity formula applied in their analysis (see Brusov et al., 2011, formula 

14) cannot be valid. Brusov et al. (2011) furthermore presume that the unlevered return on equity 

as well as the discount rate in the FCF method remain constant throughout time. However, as we 

will show below, these rates can be subject to change throughout the lifetime of the FCF. If 

discount rates change throughout time, the traditional annuity formula (as in their formula 20) is 

inapplicable. 

Mukhlynina & Nyborg (2016, p. 21) in their survey present an example that aims at showing the 

share of the terminal value in relation to the total value of the firm. They split the stream of cash 

flows into two parts. The first part is an annuity with the growth factor ℎ and lifetime 𝑇 1, and 

the second part (the terminal value) consists of a perpetuity with growth factor 𝑔 starting in point 

in time 𝑇. They assume that the discount factor 𝑟  in the FCF method is constant across time. 
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These expressions are valid for the kind of stochasticity assumed by M&E. However, this approach 

will be incorrect for a stationary FCF like in M&M. 

Tham & Vélez-Pareja (2019, formula 12) develop the following translation formula: 

 𝑟EL, 𝑟U, 𝑟U, 𝑟D, ∙
𝐷𝑉
𝐸𝑉L,

𝑟U, 𝑟TS, ∙
𝑇𝑆𝑉
𝐸𝑉L,

 (4) 

This formula is more general in the sense that it does not depend on the structure or the lifetime of 

the cash flow. However, Tham & Vélez-Pareja (2019) do not answer the question how the different 

discount rates relate to each other, or how they should be chosen. Furthermore, the ratios 
L,

 and 

L,
 need to be established by means of additional information. It is furthermore important to 

notice that this formula is applicable in the recursive computation (backward induction) of firm 

values as illustrated in Becker (2020). This means that we cannot assume that some or all 

parameters are constant throughout time. Anyway, for the perpetual case of M&M we would have 

the additional relationship that 𝑟TS, 𝑟f, , 𝑇𝑆𝑉 𝜏 ∙ 𝐷𝑉 , and that all parameters are constant 

throughout time. We then receive M&M’s relationship: 

 
𝑟EL 𝑟U 𝑟U 𝑟f ∙

𝐷𝑉
𝐸𝑉L

∙ 1 𝜏   

Becker (2020, formula 46) establishes another special case, where cash flows have a finite lifetime 

and debt financing is prespecified. In such a case, formula (4) can be written as follows: 

 𝑟EL, 𝑟U, 𝑟U, 𝑟f,
𝐷𝑉
𝐸𝑉L,

∙ 1 𝜏 ∙ 𝑣   

Here, the parameter 𝑣  describes the value of the interest payments relative to the value of debt. In 

addition, this formula can only be used in a backward induction scheme. 
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To summarize, we can say that it is possible to determine the value of the levered firm (𝐹𝑉 ), the 

value of the unlevered firm (unlevered equity, 𝐹𝑉 ), the value of levered equity (𝐸𝑉 ), the value 

of debt (𝐷𝑉) and the value of the interest tax shield (𝑇𝑆𝑉) for annuities in the context of M&E.  

However, we will contribute some missing details. First, we will derive a formula for the 

calculation of the required return on the tax shield 𝑟 ,  for the recursive calculation of the form: 

𝑇𝑆𝑉
𝑇𝑆

1 𝑟
𝔼 𝑇𝑆𝑉
1 𝑟

𝑇𝑆 𝔼 𝑇𝑆𝑉

1 𝑟 ,
 

Second, we will show the direct calculation of the value of the tax shield based on the FCF. 

With respect to M&M the literature has not yet provided a valid framework for valuing annuities. 

In this paper we will develop a framework that consists of the complete set of formulas for 

determining the values of unlevered and levered equity, debt and the tax shield, as well as all 

translation formulas for the required returns. 

4 Behavior of Cash Flows, Values and Discount Rates for FCF Annuity 

In this section, we will introduce the results of Becker (2021) regarding the behavior of the cash 

flows, values, and discount rates (required returns) when the FCF takes the form of a stochastic 

annuity. Concerning the evolution of the FCF, two cases are differentiated. The first case 

corresponds to Modigliani & Miller (1963), who assume the following: 

(16a) The FCF is represented by a stationary process of the form:  

𝐹𝐶𝐹  𝐴 ∙ 1 �̃�     with  𝔼 �̃� 0 

with 𝐴 being a constant. Here the tilde “ ” indicates a stochastic variable. 



 

18 

This implies that besides the unconditional expected FCF (see assumption 4), the 

conditional expected FCF is also constant (time-invariant): 

𝔼 𝐹𝐶𝐹  | 𝐹𝐶𝐹  𝐴 

The second case corresponds to Miles & Ezzell (1980, 1985) who assume a weak autoregressive 

process (See Kruschwitz & Löffler, 2020, pp. 50-58). For annuities or perpetuities this process is 

the following (see also Barbi, 2012, p. 254 with a growth component): 

(16b) The FCF can be described by a simple autoregressive process of the form: 

𝐹𝐶𝐹  𝐹𝐶𝐹  ∙ 1 �̃�    with  𝔼 �̃� 0 

where �̃� is a stochastic parameter that is stationary across time. This implies that the 

conditional expected FCF at point in time 𝑡 equals the realized FCF in the previous point 

in time (𝑡 1): 𝔼 𝐹𝐶𝐹  | 𝐹𝐶𝐹  𝐹𝐶𝐹   

Figures 1 to 4 are supposed to help in understanding the summary given below. In these figures 

𝐹𝑡𝐸L,  (𝐹𝑡𝐷 , 𝑇𝑆  refers to the flow to levered equity (flow to debt, tax shield) in node n of the 

tree. All numerical quantities in these figures are taken from Becker (2021). Figure 1 shows a 

scenario tree that represents the evolution of the cash flows according to the setting of M&M. For 

simplicity, the branching of the scenarios in this tree is assumed with equal probability. 

Furthermore, the tax rate, the equity-to-firm-value ratio, and the risk-free rate are 𝜏 30 %, 𝑞

40 % and 𝑟 5 % respectively. Figure 2 shows the corresponding evolution of all values and 

discount rates. All values and discount rates are computed by means of risk-neutral probabilities, 

with the up-scenario and down-scenario having a risk-neutral probability of 40 % and 60 % 

respectively. The detailed computations are shown in Becker (2021) and will not be repeated here. 

Figures 3 and 4 exemplify the evolution of the cash flows, values and discount rates according to 

M&E. 
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Figure 1: Modigliani-Miller Flows to Stakeholders 

 

Figure 2: Modigliani-Miller Values and Discount Rates 
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Figure 3: Miles-Ezzell Flows to Stakeholders 

 

Figure 4: Miles-Ezzell Values and Discount Rates 
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We will now summarize the observations. Based on these observations we will develop the 

corresponding formulas in the next section. 

(1) M&M and M&E coincide in single period settings. 

(2) All discount rates are path independent. 

(3) In the M&M tree the tax shield is always discounted with the risk-free rate. The reason for 

this is that debt is deterministically given for each period. 

(4) In the M&E tree the required return on the tax shield is risk-free only in the last period. The 

more we go backwards in time (from future to present) the higher this discount rate becomes. 

The reason for this is that debt is not deterministically given, but path dependent. The same 

applies to the tax shields. 

(5) In the M&M setup the required return on unlevered equity is decreasing from the future to 

the present. The reason for this is that the continuation value is deterministic, and if 

discounted separately, it would require a risk-free rate. Furthermore, the size of the 

continuation value 𝑉  increases compared to the size of the cash flow 𝐶𝐹 . 

(6) In the M&E tree the required return on the unlevered firm is constant for all nodes and time 

periods. The reason for this is that both the FCF as well as the continuation values are 

perfectly positively correlated. 

(7) In the M&M setup the required return on levered equity is decreasing from the future to the 

present. Here the same reasoning as for the unlevered firm applies. 

(8) In the M&E tree the required return on the levered equity 𝑟  is constant for all nodes and 

time periods. The reason for this is that the flow to the equity and the continuation value of 

levered equity are perfectly positively correlated. 
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(9) In the M&M setup the discount rate in both the FCF method and CCF method are decreasing. 

The reason for this lies in the decreasing required return on the levered equity 𝑟  beside the 

constancy of the remaining ingredients of 𝑟  and 𝑟 . 

(10) In the M&E setup the discount rates in both the FCF method and the CCF method are 

constant. The reason for this lies in the constancy of all the ingredients of these discount 

rates. 

(11) Although the non-conditional expected FCF was assumed to be constant (See assumption 4) 

the non-conditional expected flow to debt, flow to levered equity, CCF, interest payment, 

and tax shield are not constant (are not annuities) for both the settings of M&M and M&E. 

These observations have the following immediate consequences: 

(a) For both M&M and M&E, the discount rates are path independent. This allows for 

discounting the unconditional expectations of the cash flows and values. Hence, it is possible 

to use a deterministic backward induction scheme of the form (as opposed to a stochastic 

backward iteration shown in Becker, 2020 and 2021): 

 
𝑉 ,

𝔼 𝐶𝐹 , 𝑉 ,

1 𝑟
 for all 𝑡 0, … ,𝑇 1 (5) 

where 𝔼 now represents the expectation under real probabilities and 𝑟  is the risk-adjusted 

discount rate for 𝔼 𝐶𝐹 , 𝑉 , . 

(b) For M&M, none of the values in 𝑡 0 can be computed directly by using the formula for 

the present value of an annuity: Present Value Annuity Annuity Factor with the 

annuity factor commonly being defined as: 

Annuity Factor
1 𝑟 1
1 𝑟 ∙ 𝑟
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where 𝑟 is the discount rate and 𝑇 represents the lifetime of the annuity. This is because 

either the expected cash flows, the discount rates or both are not constant. 

(c) For M&E, the FCF method can be carried out by means of the formula: 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒

𝐴𝑛𝑛𝑢𝑖𝑡𝑦 𝐴𝑛𝑛𝑢𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟. The same applies to the value of the unlevered firm. For these 

valuations, both the FCF and the corresponding discount rates are constant across time. The 

value of levered equity, debt and tax shield cannot be computed by means of the annuity 

valuation formula. Here a backward induction of the form (5) needs to be applied. However, 

these values can always be deduced from the levered and unlevered firm value as follows: 

 𝐸𝑉 𝐹𝑉 ∙ 𝑞, 𝐷𝑉 𝐹𝑉 ∙ 1 𝑞 , 𝑇𝑆𝑉 𝐹𝑉 𝐹𝑉   

5 The Modigliani‐Miller Annuity 

In this section we develop the valuation formulas for an FCF annuity that can be represented by a 

stationary process as assumed in M&M. First, we consider the direct and recursive calculation of 

the unlevered firm. Then we determine the direct and recursive valuation of the levered firm. We 

then state the translation between the required return of the unlevered firm and the discount rate in 

the FCF method. Finally, we look at the valuation of the tax shield and the corresponding discount 

rate.  

Direct Valuation of the Unlevered Firm: 

Because of the strict stationarity of the stochastic 𝐹𝐶𝐹  (assumption 16a) and the time-invariance 

of the pricing kernel (assumption 2), the expected FCF needs to be discounted with the same one-

period discount rate 𝑟  in each time period. Furthermore, the value of the unlevered firm 𝐹𝑉 ,  is 

the same in all states 𝑠 ∈ 𝑆  of the same point in time 𝑡. This implies that from the perspective of 

point in time 𝑡 1 the continuing value 𝐹𝑉 ,  is deterministic. Deterministic values need to be 
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discounted with the risk-free rate. For an FCF according to M&M, we can recursively calculate 

the value of the unlevered firm 𝐹𝑉 ,  as follows: 

 
𝐹𝑉 ,

𝐹𝐶𝐹
1 𝑟

𝐹𝑉 ,

1 𝑟
 

 

Since we do not have a continuing value in 𝑡 𝑇, the required return of the unlevered firm 𝑟 ,  

equals the discount rate 𝑟  of the FCF: 

𝑟 , 𝑟  

In a backward manner we will now look at the evolution of the value of the unlevered firm. At 

remaining maturity 𝑣 1 (corresponding to point in time 𝑇 1) we have: 

 
𝐹𝑉 ,

𝐹𝐶𝐹
1 𝑟

 
 

In this and all subsequent formulas, we apply brackets in the form 𝑣  whenever a value, cash flow 

or discount rate is stated with respect to the remaining maturity. We apply no brackets whenever 

we refer to a point in time 𝑡. At remaining maturity 𝑣 2 (corresponding to point in time 𝑇 2) 

we have: 

𝐹𝑉 ,
𝐹𝐶𝐹

1 𝑟

𝐹𝑉 ,

1 𝑟f

𝐹𝐶𝐹
1 𝑟

𝐹𝐶𝐹
1 𝑟 ∙ 1 𝑟f

𝐹𝐶𝐹
1 𝑟

∙ 1
1

1 𝑟f
 

 

At remaining maturity 𝑣 3 (corresponding to point in time 𝑇 3) we have: 

 
𝐹𝑉 ,

𝐹𝐶𝐹
1 𝑟

𝐹𝑉 ,

1 𝑟f
 

𝐹𝐶𝐹
1 𝑟

𝐹𝐶𝐹
1 𝑟 ∙ 1 𝑟f

𝐹𝐶𝐹
1 𝑟 ∙ 1 𝑟f

 

𝐹𝐶𝐹
1 𝑟

∙ 1
1

1 𝑟f

1
1 𝑟f

 

 



 

25 

Without considering more time periods, we notice the factor: 1
f f

⋯

f
, which represents a geometric series that can be reduced to 1 𝑟f ∙ f

f ∙ f
. Let us 

denote the annuity factor f

f ∙ f
 in this expression by 𝜃 , . Hence, the value of the unlevered 

firm can be written as: 

 
    𝐹𝑉 , 𝐹𝐶𝐹 ∙

1 𝑟f

1 𝑟
∙ 𝜃 ,      with         𝜃 ,

1 𝑟f 1
1 𝑟f ∙ 𝑟f

 (6) 

In terms of the elapsed time 𝑡, we can express the value of the unlevered firm at 𝑡 of a cash flow 

with original maturity 𝑇 as follows: 

 
𝐹𝑉 , 𝐹𝐶𝐹 ∙

1 𝑟f

1 𝑟
∙ 𝜃 ,          with         𝜃 ,

1 𝑟f 1
1 𝑟f ∙ 𝑟f

 (7) 

 

Recursive Valuation of the Unlevered Firm and the Corresponding Discount Rate: 

Let us now turn to the recursive calculation of the unlevered firm, which is given by the following 

recursive expression: 

𝐹𝑉 ,
𝐹𝐶𝐹 𝐹𝑉 ,

1 𝑟U,
 

In what follows, we want to derive the correct discount rate 𝑟U,  to be applied in this valuation 

formula. Let us therefore rearrange this expression to: 

 𝐹𝑉 , ∙ 1 𝑟U, 𝐹𝐶𝐹 𝐹𝑉 ,  (8) 
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The value of the unlevered firm with remaining maturity 𝑣 was given by expression (6). 

Accordingly, the value of the unlevered firm with a remaining maturity of 𝑣 1 is: 

 
𝐹𝑉 , 𝐹𝐶𝐹 ∙

1 𝑟f

1 𝑟
∙ 𝜃 ,  (9) 

Placing (9) and (6) into (8), we obtain: 

𝐹𝐶𝐹 ∙
1 𝑟f

1 𝑟
∙ 𝜃 , ∙ 1 𝑟U, 𝐹𝐶𝐹 𝐹𝐶𝐹 ∙

1 𝑟f

1 𝑟
∙ 𝜃 ,  

In the first step, let us solve this expression for 𝑟U, . We obtain: 

 

𝑟U,

1 𝑟A
1 𝑟 𝜃 , 𝜃 ,

𝜃 ,
 (10) 

Note that: 𝜃 , 𝜃 , . After simplifying this expression for 𝑟U,  we obtain the 

desired formula that allows us to compute the required return on unlevered equity dependent of 

the remaining maturity and the required return 𝑟A for discounting the FCF plus the continuing value 

from 𝑡 1 to 𝑡: 

 
𝑟U, 𝑟f ∙

1 𝑟A ∙ 1 𝑟 1
1 𝑟f 1

 (11) 

Using the elapsed time of a cash flow with original maturity 𝑇, this expression becomes: 

 
𝑟U, 𝑟f ∙

1 𝑟A ∙ 1 𝑟 1
1 𝑟f 1

  

Direct Valuation of the Levered Firm: 

Now we will look at the derivation of the value of the levered firm. For this purpose, we will start 

with a recursive description of the flow-to-equity method: 
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We will rearrange this expression slightly to the following:  

 
𝐸𝑉 ,

𝐹𝐶𝐹 𝐷𝑉 ∙ 1 𝑟 ∙ 1 𝜏 𝐹𝑉 ,

1 𝑟EL,
  

In the following step, we separate the stochastic terms (expressed by expectations) from the 

deterministic terms: 

 
𝐸𝑉 ,

𝐹𝐶𝐹
1 𝑟

𝐷𝑉 ∙ 1 𝑟 ∙ 1 𝜏
1 𝑟

𝐹𝑉 ,

1 𝑟
  

Finally, we replace 𝐸𝑉 ,  and 𝐷𝑉  by 𝐹𝑉 , ∙ 𝑞 and 𝐹𝑉 , ∙ 1 𝑞  respectively. This 

brings us to: 

 
𝐹𝑉 , ∙ 1 𝑞 ∙ 𝑟 1 𝑞 ∙ 𝑟 ∙ 1 𝜏 𝐹𝐶𝐹 ∙

1 𝑟
1 𝑟

𝐹𝑉 ,   

Let us abbreviate the term 𝑞 ∙ 𝑟 1 𝑞 ∙ 𝑟 ∙ 1 𝜏  by 𝑟 . The recursive procedure for 

determining the value of the levered firm is therefore: 

 
𝐹𝑉 , 𝐹𝐶𝐹 ∙

1 𝑟
1 𝑟 ∙ 1 𝑟

𝐹𝑉 ,

1 𝑟
  

This recursive calculation can now be transformed into a closed form by looking at how the value 

of the levered firm 𝐹𝑉 ,  evolves when we increase the remaining lifetime of the FCF. Let us start 

with a remaining maturity of 𝑣 1 (corresponding to 𝑇 1) where the continuing value of the 

firm equals zero by assumption, i.e., 𝐹𝑉 , 𝐹𝑉 , 0: 

𝐹𝑉 , 𝐹𝐶𝐹 ∙
1 𝑟

1 𝑟 ∙ 1 𝑟
 

 
𝐸𝑉 ,

𝐹𝐶𝐹 𝐷𝑉 ∙ 𝑟 ∙ 1 𝜏 𝐷𝑉 𝐷𝑉 𝐸𝑉 ,

1 𝑟EL,
 

 

 

Interest & Tax Shield 

Change of principal 

Continuing value 
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Let us now go one period backwards in time, more precisely to a remaining maturity of 𝑣 2 

(corresponding to point in time 𝑡 𝑇 2). Here we obtain: 

𝐹𝑉 , 𝐹𝐶𝐹 ∙
1 𝑟

1 𝑟 ∙ 1 𝑟
𝐹𝐶𝐹 ∙

1 𝑟
1 𝑟

∙
1

1 𝑟
 

Repeating the same computations as we go backwards in time, we observe the law: 

𝐹𝑉 , 𝐹𝐶𝐹 ∙
1 𝑟
1 𝑟

∙
1

1 𝑟
1

1 𝑟
⋯

1
1 𝑟

 

The geometric series on the right-hand side of this expression can be written as: 

𝜃x,
1

1 𝑟
1

1 𝑟
⋯

1
1 𝑟

1 𝑟 1
1 𝑟 ∙ 𝑟

 

The closed form of the levered firm value is therefore: 

 
𝐹𝑉 , 𝐹𝐶𝐹 ∙

1 𝑟
1 𝑟

∙ 𝜃x,         with         𝜃x,
1 𝑟 1
1 𝑟 ∙ 𝑟

 (12) 

Again, we will express this value by means of the elapsed time: 

 
𝐹𝑉 , 𝐹𝐶𝐹 ∙

1 𝑟
1 𝑟

∙ 𝜃x,         with         𝜃x,
1 𝑟x 1
1 𝑟x ∙ 𝑟x

 (13) 

The values of debt and levered equity can be directly calculated by multiplying the value of the 

levered firm with 1 𝑞  and 𝑞, respectively. The parameter 𝑞 represents the equity-to-firm-value 

ratio 𝑞. 

 𝐷𝑉 1 𝑞 ∙ 𝐹𝑉 , 𝐹𝐶𝐹 ∙ 1 𝑞 ∙
1 𝑟
1 𝑟

∙ 𝜃 ,   

 𝐸𝑉 , 𝑞 ∙ 𝐹𝑉 , 𝐹𝐶𝐹 ∙ 𝑞 ∙
1 𝑟
1 𝑟

∙ 𝜃 ,   
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Recursive Valuation of the Levered Firm and the Corresponding Discount Rate: 

We will now derive an expression for the discount rate in the FCF approach according to the 

following recursive expression: 

𝐹𝑉 ,
𝐹𝐶𝐹 𝐹𝑉 ,

1 𝑟FCF,
 

Let us rearrange this expression to: 

 𝐹𝑉 , ∙ 1 𝑟FCF, 𝐹𝐶𝐹 𝐹𝑉 ,  (14) 

The value of the levered firm at remaining maturity 𝑣 was given by expression (12). Accordingly, 

the value of the levered firm at remaining maturity 𝑣 1 is: 

 
𝐹𝑉 , 𝐹𝐶𝐹 ∙

1 𝑟
1 𝑟

∙ 𝜃x,        (15) 

After placing (12) and (15) into (14) we obtain: 

𝐹𝐶𝐹 ∙
1 𝑟
1 𝑟

∙ 𝜃x, ∙ 1 𝑟FCF, 𝐹𝐶𝐹 𝐹𝐶𝐹 ∙
1 𝑟
1 𝑟

∙ 𝜃x,  

After solving this expression for 𝑟FCF,  we obtain: 

 

𝑟FCF,

1 𝑟
1 𝑟 𝜃x, 𝜃x,

𝜃x,
 (16) 

Knowing that 𝜃x, 𝜃x, , we can shorten this expression to the following: 

𝑟FCF, 𝑟 ∙
1 𝑟A ∙ 1 𝑟 1 𝑟

1 𝑟 1 ∙ 1 𝑟
  or  𝑟FCF, 𝑟 ∙

1 𝑟A ∙ 1 𝑟 1 𝑟
1 𝑟 1 ∙ 1 𝑟
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Relationship between 𝒓𝐅𝐂𝐅 and 𝒓𝐔: 

Let us now look at the translation formula between the required return of the unlevered firm and 

the discount rate in the FCF method. Departing from (10) and (16), we can state: 

𝑟U, ∙ 𝜃 ,
1

1 𝑟
1 𝑟A

1 𝑟
        and        𝑟FCF, ∙ 𝜃x,

1
1 𝑟

1 𝑟
1 𝑟

 

Hence, we can immediately conclude the relationship between the discount factor in the FCF 

method and the required return on unlevered equity: 

 

𝑟FCF,

𝑟U, ∙ 𝜃 ,
1

1 𝑟
1

1 𝑟
𝜃x,

 

or 

𝑟FCF,

𝑟U, ∙ 𝜃 ,
1

1 𝑟
1

1 𝑟
𝜃x,

 

(17) 

Below, we will also show that this translation reduces to the formula proposed by M&M when the 

FCF becomes a perpetuity. 

 

Direct Valuation of the Tax Shield and 𝒓𝐓𝐒: 

The value of the tax shield is the difference between the value of the levered firm 𝐹𝑉 ,  given by 

expression (13) and the value of the unlevered firm 𝐹𝑉 ,  given by expression (7). Using these two 

expressions leads immediately to: 

𝑇𝑆𝑉 𝐹𝑉 , 𝐹𝑉 , 𝐹𝐶𝐹 ∙
1 𝑟
1 𝑟

∙ 𝜃 , 𝜃 ,  
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For the sake of completeness, we will here repeat that the required return of the tax shield in the 

recursive calculation equals the risk-free rate, i.e., 𝑟 𝑟 . The recursive calculation of the value 

of the tax shield is therefore: 

𝑇𝑆𝑉
𝑇𝑆 𝑇𝑆𝑉

1 𝑟
𝐷𝑉 ∙ 𝑟 ∙ 𝜏 𝑇𝑆𝑉

1 𝑟
 

6 The Miles‐Ezzell Annuity 

In this section we develop the valuation formulas for an FCF annuity that can be represented by a 

first-order autoregressive process that is assumed in M&E. We will apply the same structure as 

used for M&M: First we look at the direct and recursive calculation of the unlevered firm. Then 

we determine the direct and recursive valuation of the levered firm. We then state the translation 

between the required return of the unlevered firm and the discount rate in the FCF method. Finally, 

we look at the valuation of the tax shield and the corresponding discount rate. 

Direct and Recursive Valuation of the Unlevered Firm:  

Contrary to M&M, the required return on the unlevered firm is constant across time. By 

assumption 4, the unconditional expected FCF is also constant. We can therefore apply the 

traditional annuity formula for directly calculating the value of the unlevered firm for any given 

remaining maturity or point in time as follows: 

 
𝐹𝑉 , 𝐹𝐶𝐹 ∙

1 𝑟U 1
1 𝑟U ∙ 𝑟U

      or      𝐹𝑉 , 𝐹𝐶𝐹 ∙
1 𝑟U 1
1 𝑟U ∙ 𝑟U

  

Because of the constancy of 𝑟U 𝑟A the recursive calculation is simply: 

 
𝐹𝑉 ,

𝐹𝐶𝐹 𝐹𝑉 ,

1 𝑟U
        or        𝐹𝑉 ,

𝐹𝐶𝐹 𝐹𝑉 ,

1 𝑟U
  

Since firm values evolve in a non-deterministic manner throughout time (see figure 4), it is useful 

to notice that these formulas can be used to calculate both expected firm values 𝔼 𝐹𝑉 ,  | ℱ  as 
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well as deterministic firm values 𝐹𝑉 ,  | ℱ . Here ℱ  represents the available historical information 

at point in time 𝑡. 

Direct and Recursive Valuation of the Levered Firm, Levered Equity and Debt: 

In the M&E setup, the discount rate applied in the FCF method is constant across time. As in the 

case of the unlevered firm we can therefore apply the traditional annuity formula for directly 

calculating the value of the levered firm for any given remaining maturity: 

 
𝐹𝑉 , 𝐹𝐶𝐹 ∙

1 𝑟FCF 1
1 𝑟FCF ∙ 𝑟FCF

    with    𝑟 𝑞 ∙ 𝑟EL 1 𝑞 ∙ 𝑟 ∙ 1 𝜏  

or 

𝐹𝑉 , 𝐹𝐶𝐹 ∙
1 𝑟FCF 1

1 𝑟FCF ∙ 𝑟FCF
    with    𝑟 𝑞 ∙ 𝑟EL 1 𝑞 ∙ 𝑟 ∙ 1 𝜏  

 

 

Because of the constancy of 𝑟FCF the recursive calculation is simply: 

 
𝐹𝑉 ,

𝐹𝐶𝐹 𝐹𝑉 ,

1 𝑟
     or     𝐹𝑉 ,

𝐹𝐶𝐹 𝐹𝑉 ,

1 𝑟
  

The value of the debt and levered equity can now be directly calculated by multiplying the value 

of the levered firm with 1 𝑞  and 𝑞, respectively. Again, 𝑞 represents the equity-to-firm-value 

ratio. 

 𝐷𝑉 , 1 𝑞 ∙ 𝐹𝑉 ,          and        𝐸𝑉 , 𝑞 ∙ 𝐹𝑉 ,   

As in the case of the unlevered firm value, these formulas can be used to calculate both 

deterministic and expected values. 

Relationship between 𝒓𝐅𝐂𝐅 and 𝒓𝐔: 

The relationship between 𝑟  and 𝑟  is readily found in the literature. Since 𝑟 ,  is constant 

throughout time, it will be the same for a single-period and an infinite FCF. For the single-period 
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case the formula appears in Myers (1974, p.13). For a perpetual stream of cash flows this formula 

has been provided by Miles and Ezzell (1980, p. 726). 

 
𝑟 𝑟 1 𝑞 ∙ 𝑟 ∙ 𝜏 ∙

1 𝑟
1 𝑟

 (18) 

Valuation of the Tax Shield and the Corresponding Discount Rate: 

The value of the tax shield is the difference between the value of the levered and the unlevered 

firm. 

 
𝑇𝑆𝑉 𝐹𝑉 , 𝐹𝑉 , 𝐹𝐶𝐹 ∙

1 𝑟FCF 1
1 𝑟FCF ∙ 𝑟FCF

1 𝑟U 1
1 𝑟U ∙ 𝑟U

 (19) 

The recursive valuation and the discount rate for the tax shield are defined as follows: 

 
𝑇𝑆𝑉

𝐷𝑉 ∙ 𝑟 ∙ 𝜏 𝑇𝑆𝑉
1 𝑟 ,

      →       𝑟 ,
𝐷𝑉 ∙ 𝑟 ∙ 𝜏 𝑇𝑆𝑉

𝑇𝑆𝑉
1 (20) 

The debt value can be calculated by means of the debt-to-firm-value ratio. 

 𝐷𝑉 1 𝑞 ∙ 𝐹𝑉 ,  (21) 

Substituting (19) and (21) into (20) yields the following expression for the discount rate of the tax 

shield: 

 
𝑟 ,

1 𝑞 ∙ 𝑟 ∙ 𝜏 ∙ 𝜑 , 1 𝑟 1 𝑟

𝜑 , 𝜑 ,
 (22) 

where 𝜑 ,  and 𝜑 ,  represent the annuity factors: 

 
𝜑 ,

1 𝑟 1
1 𝑟 ∙ 𝑟

      and       𝜑 ,
1 𝑟 1
1 𝑟 ∙ 𝑟

 (23) 

Note that 𝑟  in this formula and in the factor 𝜑L,  is related to 𝑟  by means of expression (18). 

Hence, the discount rate of the tax shield can be seen as a function of the unlevered return 𝑟U, the 
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risk-free rate 𝑟 , the tax rate 𝜏, the leverage 𝑞, and the remaining cash flow maturity 𝑣. Stating the 

discount rate 𝑟TS,  in terms of 𝑟U solely (without 𝑟 ) leads to a rather large-sized expression, 

which is omitted here. 

7 Transition to Perpetuities 

Logically, the formulas stated above should collapse to the well-known formulas of M&M and 

M&E if the remaining maturity tends to infinity. The purpose of this section is to quickly show 

that this is indeed the case. 

Modigliani & Miller: Departing from (6) and (12), we can determine the values of the unlevered 

and levered firm when the remaining maturity tends to infinity. The results are easily obtained as 

follows: 

 
    𝐹𝑉 , 𝐹𝐶𝐹 ∙

1 𝑟f

1 𝑟
∙

1
𝑟f

      and      𝐹𝑉 , 𝐹𝐶𝐹 ∙
1 𝑟
1 𝑟

∙
1
𝑟x

  

where 𝑟x 𝑞 ∙ 𝑟f 1 𝑞 ∙ 1 𝜏 ∙ 𝑟f 

(24) 

The relationship between the required return of the unlevered firm and the discount rate in the FCF 

method is given by expression (17). From this expression we can find the limit: 

𝑟FCF, lim
→

𝑟FCF,
𝑟U, ∙ 𝑟x

𝑟f
     with    𝑟x 𝑞 ∙ 𝑟f 1 𝑞 ∙ 1 𝜏 ∙ 𝑟f  

which reduces to: 

𝑟FCF, 𝑟U, 𝑟U, ∙ 1 𝑞 ∙ 𝜏 

This is the well-known result of Modigliani & Miller (1963, p. 438, based on their formula 31.c). 

If we want to relate the discount rates 𝑟FCF,  or 𝑟U,  to the underlying stochasticity of the FCF, 
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it can be useful to consider the relationship between 𝑟U,  and 𝑟A, which can be retrieved as the 

limit of (11) or more directly from (24) as follows: 

𝑟 , 𝑟f ∙
1 𝑟
1 𝑟f

 

Miles & Ezzell: Let us start with the annuity factors stated in (23). The limits of these factors are: 

 
lim
→

𝜑L,
1
𝑟FCF

      and      lim
→

𝜑U,
1
𝑟U

  

For the values of the levered and unlevered firm this implies: 

Value of levered firm Valuation of unlevered firm 

𝐹𝑉L, 𝐹𝐶𝐹 ∙
1
𝑟FCF

 𝐹𝑉U, 𝐹𝐶𝐹 ∙
1
𝑟U

 

From these two expressions we can directly obtain the value of the tax shield as dependent on the 

FCF as follows:  

𝑇𝑆𝑉 𝐹𝐶𝐹 ∙
1
𝑟FCF

1
𝑟U

 

The relationship between 𝑟  and 𝑟  is already stated in (18) and can readily be inserted into this 

expression. 

For stating the dependency between the required return on unlevered equity and the tax shield we 

can depart from expression (22) and take the limit 𝑣 → ∞. This gives: 

𝑟 ,

1 𝑞 ∙ 𝑟 ∙ 𝜏 ∙ 1
𝑟FCF

1
𝑟FCF

1
𝑟U
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After adding the relationship (18) into this expression we obtain: 

𝑟 , 𝑟U ∙
1 𝑟
1 𝑟

 

This result agrees with both Arzac & Glosten (2005, equation 13 with a growth rate 𝑔 0) and 

Barbi (2012, equation 15). 

8 Conclusions and Formula Overview  

Those who do business valuation and capital budgeting in academia or practice want to evaluate 

streams of cash flows of firms or projects with appropriate and consistent methods. They also want 

to be able to analyze how leverage or changes in interest rates, tax rates, time to maturity, etc., 

affect the value of the project or firm. The literature provides a couple of valuation frameworks 

that practitioners can apply in capital budgeting or firm valuation. While in practice the structure 

and length of cash flows can be very different from project to project or firm to firm, the literature 

has developed complete frameworks only for a few possible types of cash flow streams. By 

complete we mean, that the valuation practitioner is able to consistently apply both the flow-to-

equity method, the FCF method, the CCF method, and the adjusted present value method as well 

as to translate between these methods by means of appropriate formulas. Two such frameworks 

are these of Modigliani & Miller (1963, M&M) and Miles & Ezzell (1980, M&E). However, these 

two mutually exclusive frameworks are applicable only to perpetuities. The well-known formulas 

that correspond to these mutually exclusive approaches of M&M and M&E are summarized in 

table 1. A framework for arbitrary cash flows with a finite lifetime under prespecified debt 

financing is shown in Becker (2021).  

In this paper, we focused on the establishment of a complete valuation framework for both 

autoregressive and stationary stochastic annuities. A summary of all formulas is shown in tables 2 
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to 5. More specifically, this paper’s contributions relative to the existing literature are the 

following: 

(1) For autoregressive stochastic annuities (cash flows according to M&E), the previous literature 

has not provided a formula for the required return on the tax shield. This formula is established 

here. This formula reveals that the required return on the tax shield depends on the remaining 

maturity of the FCF. This is not the case for stationary cash flows (cash flows according to 

M&M). 

(2) Furthermore, we show the direct calculation of the value of the tax shield based on the FCF. 

This is a more convenient approach than an iterative backward valuation (like, for example, 

in Miles & Ezzell, 1985). 

(3) We also show that autoregressive cash flow processes allow the application of the standard 

annuity formula for both the computation of the value of the unlevered firm and the valuation 

of the levered firm by means of the FCF method. 

(4) Besides this, we confirm the translation formulas from 𝑟  to 𝑟 , 𝑟  to 𝑟 , and 𝑟  to 𝑟  that 

have been developed in the previous literature for autoregressive cash flow processes. 

Contrary to stationary annuities, these translations are all independent of the remaining 

maturity of the FCF. 

(5) For the stationary annuities the previous literature has not provided a consistent set of 

formulas. For this case we have established all the translation formulas, i.e., from 𝑟  to 𝑟 , 

form 𝑟  to 𝑟  and from 𝑟  to 𝑟 ). We observe that these formulas turn out differently than 

for perpetuities.  

(6) In particular, we see that the required return on levered and unlevered equity and the discount 

rate in the FCF method vary with the remaining maturity of the FCF. This means that applying 
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the original formulas of M&M to cash flows with a finite lifetime will cause invalid and 

inconsistent valuation results. 

Providing a framework for the valuation of both stationary and autoregressive annuities enriches 

the set of evaluation techniques for both academics and practitioners. This means that when 

working with annuities in capital budgeting or firm valuation, it is no longer necessary to regress 

to inappropriate or approximative formulas (like the formulas that apply to perpetuities). 

Nevertheless, one needs to be aware that translation formulas like the ones shown in tables 1 to 5 

have only be established for time-invariant and deterministic pricing operators (see assumption 2 

in section 2) and stationary or autoregressive cash flow processes (assumptions 16a or 16b). 

Applying these formulas to other stochastic environments will lead to valuation errors or 

inconsistencies between valuation methods. 

Some of the strict assumptions presented in section 2 can be relaxed. Now that the basic framework 

for annuities exists, some interesting and immediate extensions are the inclusion of personal 

taxation, the consideration of growth, or the inclusion of risky debt.
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Table 1: Valuation frameworks for perpetual FCF by Modigliani & Miller (1963) and Miles & Ezzell (1980, 1985)  

 Modigliani/Miller Annuity Miles/Ezzell Annuity 

Flow-to-equity 
method: 𝐸𝑉

𝐸𝐵𝐼𝑇 𝐼 ∙ 1 𝜏
𝑟

   where   𝐼 𝐷𝑉 ∙ 𝑟  

FCF method: 
𝐹𝑉

𝐸𝐵𝐼𝑇 ∙ 1 𝜏
𝑟

  where   𝑟 𝑞 ∙ 𝑟 1 𝑞 ∙ 1 𝜏 ∙ 𝑟  

CCF method: 
𝐹𝑉

𝐸𝐵𝐼𝑇 𝐼 ∙ 1 𝜏 𝐼
𝑟

  where   𝑟 𝑞 ∙ 𝑟 1 𝑞 ∙ 𝑟  

APV method:  
𝐹𝑉 𝐹𝑉 𝑇𝑆𝑉        𝐹𝑉

𝐸𝐵𝐼𝑇 ∙ 1 𝜏
𝑟

     𝑇𝑆𝑉
𝑇𝑆
𝑟

𝐷𝑉 ∙ 𝜏 ∙ 𝑟f

𝑟
 

Tax shield 𝑟 𝑟  
𝑟 𝑟 ∙

1 𝑟
1 𝑟

 

 
𝑇𝑆𝑉

𝐷𝑉 ∙ 𝑟 ∙ 𝜏
𝑟

𝐷𝑉 ∙ 𝜏 𝑇𝑆𝑉 𝐷𝑉 ∙ 𝜏 ∙
𝑟f ∙ 1 𝑟
𝑟 ∙ 1 𝑟

 

Translation 

𝒓𝐔  →  𝒓𝐄𝐋: 
𝑟 𝑟 1 𝜏 ∙ 𝑟 𝑟 ∙

1 𝑞
𝑞

 
𝑟

𝑟 𝑟 ∙ 1 𝑞 ∙
𝜏 ∙ 𝑟 𝑟

1 𝑟 1

𝑞
 

Translation 

𝒓𝐔  →  𝒓𝐅𝐂𝐅: 

𝑟FCF 𝑟U 𝑟U ∙ 𝜏 ∙ 1 𝑞  
𝑟 𝑟 𝑟 ∙ 𝜏 ∙ 1 𝑞 ∙

1 𝑟
1 𝑟

 

Translation 

𝒓𝐔  →  𝒓𝐂𝐂𝐅: 

𝑟 𝑟 𝑟 𝑟 ∙ 𝜏 ∙ 1 𝑞  

 
𝑟 𝑟 𝑟 ∙ 1 𝑞 ∙

𝜏 ∙ 𝑟 𝑟
1 𝑟
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Table 2: Recursive calculation of values 

 Modigliani/Miller Annuity Miles/Ezzell Annuity 

𝐹𝑉U,  by means of 𝑟 ,  
𝐹𝑉 ,

𝐹𝐶𝐹 𝐹𝑉 ,

1 𝑟 ,
 

Note that 𝐹𝑉U,  changes over time. Furthermore, 𝑟U,  is time-invariant in the case of M&E, but 

will change across time in the case of M&M. 

𝐹𝑉L,  by means of 𝑟FCF,  

(free-cash-flow method) 
𝐹𝑉L,

𝐹𝐶𝐹 𝐹𝑉L,

1 𝑟FCF,
 

with 𝑟FCF, 𝑞 ∙ 𝑟EL, 1 𝑞 ∙ 𝑟f ∙ 1 𝜏  

Note that 𝐹𝑉L,  changes over time. Furthermore, 𝑟EL,  and 𝑟FCF,  are time-invariant in the case of 

M&E, but these discount rates change across time in the case of M&M. 

𝐹𝑉U,  by means of 𝑟A 𝐹𝑉 ,
𝐹𝐶𝐹

1 𝑟
𝐹𝑉 ,

1 𝑟
 

𝐹𝑉 ,
𝐹𝐶𝐹 𝐹𝑉 ,

1 𝑟
 

Note that in M&E: 𝑟 , 𝑟  

𝐹𝑉L,  by means of 𝑟A 
𝐹𝑉 ,

𝐹𝐶𝐹
1 𝑟

∙
1 𝑟
1 𝑟

𝐹𝑉 ,

1 𝑟
 

where 𝑟 𝑞 ∙ 𝑟f 1 𝑞 ∙ 𝑟f ∙ 1 𝜏  

𝐹𝑉L,
𝐹𝐶𝐹 𝐹𝑉L,

1 𝑟 1 𝑞 ∙ 𝑟 ∙ 𝜏 ∙ 1 𝑟
1 𝑟

 

Note, that in M&E: 𝑟 , 𝑟  

𝑇𝑆𝑉  𝑇𝑆𝑉
𝑇𝑆 𝑇𝑆𝑉

1 𝑟
 

𝑇𝑆𝑉
𝑇𝑆 𝑇𝑆𝑉

1 𝑟 ,
 

where 𝑟 ,  is defined in table 4 
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Table 3: Direct calculation means of the FCF 

 Modigliani/Miller Annuity Miles/Ezzell Annuity 

𝐹𝑉 ,  

𝐹𝑉 , 𝐹𝐶𝐹 ∙
1 𝑟
1 𝑟

∙ 𝜃 ,  𝐹𝑉U, 𝐹𝐶𝐹 ∙ 𝜑U,  

with 𝜃 , ∙
 with 𝜑U, ∙

 

𝐹𝑉 ,  

(FCF or CCF method) 

𝐹𝑉 , 𝐹𝐶𝐹 ∙
1 𝑟
1 𝑟

∙ 𝜃 ,  

with 𝜃 , ∙
 

and 𝑟 𝑞 ∙ 𝑟f 1 𝑞 ∙ 𝑟f ∙ 1 𝜏  

𝐹𝑉L, 𝐹𝐶𝐹 ∙ 𝜑L,  

with 𝜑 , ∙
 

and 𝑟 𝑞 ∙ 𝑟 , 1 𝑞 ∙ 𝑟 ∙ 1 𝜏  

𝑇𝑆𝑉  from 𝐹𝐶𝐹 

(part of APV method) 

𝑇𝑆𝑉 𝐹𝐶𝐹 ∙
1 𝑟
1 𝑟

∙ 𝜃 , 𝜃 ,  

𝜃 ,  and 𝜃 ,  are defined above. 

𝑇𝑆𝑉 𝐹𝐶𝐹 ∙ 𝜑L, 𝜑U,  

𝜑U,  and 𝜑L,  are defined above. 
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Table 4: Transition formulas between discount rates (These discount rates only apply to recursive calculations in table 2) 

 Modigliani/Miller Annuity Miles/Ezzell Annuity 

𝑟 ,  from 𝑟  
𝑟U, 𝑟f ∙

1 𝑟A ∙ 1 𝑟 1
1 𝑟f 1

 

 

𝑟 𝑟  

𝑟 ,  from 𝑟  
𝑟FCF, 𝑟 ∙

1 𝑟A ∙ 1 𝑟 1 𝑟
1 𝑟 1 ∙ 1 𝑟

 

 

𝑟 𝑟 1 𝑞 ∙ 𝑟 ∙ 𝜏 ∙
1 𝑟
1 𝑟

 

𝑟 ,  from 𝑟 ,  

𝑟FCF,

𝑟U, ∙ 𝜃 ,
1

1 𝑟
1

1 𝑟
𝜃x,

 

 

𝑟 𝑟 1 𝑞 ∙ 𝑟 ∙ 𝜏 ∙
1 𝑟
1 𝑟

 

 

𝑟 ,  from 𝑟 ,  𝑟 ,

𝑟U, ∙ 𝜃 , 1 𝑞 ∙ 𝑟 ∙ 1 𝜏 ∙ 𝜃x,
1

1 𝑟
1

1 𝑟
𝑞 ∙ 𝜃x,

 

 

𝑟EL

𝑟U 1 𝑞 ∙ 𝑟 ∙ 1 𝜏 ∙
𝑟 𝑟
1 𝑟

𝑞
 

 

Discount Rate of Tax 
Shield 
 

𝑟TS 𝑟  
𝑟TS,

1 𝑞 ∙ 𝑟 ∙ 𝜏 ∙ 𝜑L, 1 𝑟FCF 1 𝑟U
𝜑L, 𝜑U,
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Table 5: Component wise calculations of the values 

 Modigliani/Miller Annuity Miles/Ezzell Annuity 

𝐹𝑉 ,  

 

𝐹𝑉U,
𝐸𝐵𝐼𝑇 ∙ 1 𝜏

1 𝑟f ∙ 1 𝑟A
 

 

𝐹𝑉U,
𝐸𝐵𝐼𝑇 ∙ 1 𝜏

1 𝑟A
 

 

𝑇𝑆𝑉  from 𝑇𝑆 

(as part of APV method) 
𝑇𝑆𝑉

𝑇𝑆
1 𝑟f

 𝑇𝑆𝑉
𝑇𝑆

1 𝑟A ∙ 1 𝑟f
 

 

Note that tax shield is deterministic. 

Note time-dependence of 𝑇𝑆 ; annuity formula 
is not applicable. 

See also Miles and Ezzell (1985) 

Note that tax shield is stochastic. 

Note time-dependence of 𝑇𝑆 ; annuity formula 
is not applicable. Note that 𝑟U 𝑟 . 

Capital-cash-flow method 

𝐹𝑉L,
𝐸𝐵𝐼𝑇 ∙ 1 𝜏

1 𝑟f ∙ 1 𝑟A

𝐼 ∙ 𝜏
1 𝑟f

 
 

 
   

where the 𝐼  will vary with time.  

Note that 𝑟A 𝑟U, . 
𝐹𝑉L,

𝐸𝐵𝐼𝑇 ∙ 1 𝜏
1 𝑟A

𝐼 ̅ ∙ 𝜏
1 𝑟A ∙ 1 𝑟f

 

    

 where the 𝐼 ̅  will vary with time, and 𝑟U 𝑟 . 
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Continuation of table 5: Component wise calculations of the values 

Flow-to-equity method 

𝐸𝑉L,
𝐸𝐵𝐼𝑇 ∙ 1 𝜏

1 𝑟f ∙ 1 𝑟A

𝐼 ∙ 1 𝜏 ∆𝐷𝑉
1 𝑟f

 

where the 𝐼  and ∆𝐷𝑉 𝐷𝑉 𝐷𝑉  will vary with time.  

Note that 𝑟A 𝑟U, . 

 

 

   

 

𝐸𝑉L,
𝐸𝐵𝐼𝑇 ∙ 1 𝜏 𝐷𝑉

1 𝑟A

𝐼 ̅ ∙ 1 𝜏 𝐷𝑉
1 𝑟A ∙ 1 𝑟f

 

where the 𝐼 ̅ , 𝐷𝑉  and 𝐷𝑉  will vary with time. 

We cannot apply ∆𝐷𝑉 𝐷𝑉 𝐷𝑉  because different discount rates apply. 
Note that 𝑟A 𝑟U  

Debt valuation 

𝐷𝑉L,
𝐼 ∆𝐷𝑉

1 𝑟f
 

where the 𝐼  and ∆𝐷𝑉  will vary with time. Note that 𝑟A 𝑟U, . 

 

 

   

 

𝐷𝑉L,
𝐼 ̅ 𝐷𝑉

1 𝑟A ∙ 1 𝑟f

𝐷𝑉
1 𝑟A

 

 

where the 𝐼 ̅ , 𝐷𝑉  and 𝐷𝑉  will vary with time. 

We cannot apply ∆𝐷𝑉 𝐷𝑉 𝐷𝑉  because different discount rates apply.  

Note that 𝑟A 𝑟U  
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Appendix 1 – The Discount Rate in the FCF method for 𝑫𝑵 𝑫𝑽 

This appendix shows, how a violation of assumption 15 affects the calculation of the discount rate 

in the free cash flow method (weighted average cost of capital with taxes). Assume that the 

nominal (contractual) interest rate 𝑟nom is different from the risk-free rate 𝑟f  (the discount rate 

applied to risk-free debt). The interest payment 𝐼  at point of time 𝑡 1 is calculated as 𝐼

𝐷𝑁 ∙ 𝑟nom, where 𝐷𝑁  is the outstanding amount of debt at point of time 𝑡. For simplicity, we will 

now focus on the final point of time 𝑇 of the cash flow (firm, project). At this point the outstanding 

amount of debt will be fully paid down. Hence, the cash flow to the debt holders is: 

𝐹𝑡𝐷 𝐷𝑁 𝐷𝑁 ∙ 𝑟nom 𝐷𝑁 ∙ 1 𝑟nom  

The value of debt 𝐷𝑉  is then: 

 
𝐷𝑉

𝐷𝑁 ∙ 1 𝑟nom

1 𝑟
 (25) 

We immediately see that 𝐷𝑉 𝐷𝑁  only if 𝑟nom 𝑟 , or vice versa. Solving (25) for 𝐷𝑁  

gives: 

 
𝐷𝑁 𝐷𝑉 ∙

1 𝑟
1 𝑟nom

 (26) 

The flow to equity method can be written as follows:  

𝐸𝑉 ,
𝐸𝐵𝐼𝑇 𝐷𝑁 ∙ 𝑟nom ∙ 1 𝜏 𝐷𝑁

1 𝑟 ,
 

where 𝐸𝐵𝐼𝑇  are the earnings before interest and taxes, and 𝑟 ,  is the required return on equity.  
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We can now substitute (26) together with 𝐸𝑉 , 𝑞 ∙ 𝐹𝑉 ,  and 𝐷𝑉 , 1 𝑞 ∙ 𝐹𝑉 ,  

into the flow to equity method. Then we solve for 𝐹𝑉 ,  and obtain the free cash flow method: 

𝐹𝑉 ,
𝐸𝐵𝐼𝑇 ∙ 1 𝜏

1 𝑞 ∙ 𝑟 1 𝑞 ∙
1 𝑟

1 𝑟nom
∙ 1 𝑟nom ∙ 1 𝜏 1

 

If the debt value does not coincide with the outstanding principal, or if the nominal (contractual) 

interest rate does not correspond to the risk-free rate (required return on debt) then the discount 

rate in the FCF method will be different from what is known in the literature. The same reasoning 

applies to all points in time 𝑡 𝑇. 

Appendix 2 – Assumption of symmetric taxation  

In this appendix, we want to illustrate that symmetric taxation is an important assumption in the 

valuation models studied in this paper and its preceding literature. If this assumption does not hold, 

the FCF in the unlevered firm valuation and the FCF in the FCF method (WACC method) will be 

subject to different average tax rates. In addition, the average tax rate applied in the calculation of 

the interest tax shield will be different. Figure 5 shows two tables. The first table contains 

calculations for the case of symmetric taxation. The second table contains calculations for the case 

where negative income does not imply negative (reversed) taxes. Each of this tables shows the 

EBIT for five different states of the world. Note that the EBIT is negative in the fifth state. In the 

case of the unlevered firm, the EBIT coincide with the income before taxes (we neglect any 

changes in working capital, investments, etc.). In the case of the levered firm, this income is 

calculated as EBIT minus interest. Taxes are calculated based on this income. The tax shield is 

calculated as the interest payment times the tax rate. Each table also contains the average EBIT, 
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income, interest payment, taxes, and tax shield. Finally, for these two cases, the average tax rates 

are calculated. As can be seen in the case of tax symmetry, all average tax rates are equal. In the 

second case, negative taxes are prohibited, and here we see that the average tax rates are different 

for the income in the unlevered firm, the income in the levered firm and the tax shield. Traditional 

firm valuation methods do not deal with differences in these rates. Also, this paper assumes 

symmetric taxation and a single tax rate. 

 

 

Figure 5: The requirement of tax symmetry in DCF models 

 


